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Abstract

This paper describes a modeling framework for product design that facilitates the

incorporation of both engineering and strategic considerations at the design stage.

We �rst develop an abstract representation of a generic product, an AND/OR tree,

that is context-independent and can be used to model a wide variety of products in

di�erent application settings. We show how this representation leads naturally to a

mathematical model and discuss some of the properties of this model. Next, we show

how the AND/OR tree can be employed in di�erent settings; speci�cally, we describe

applications to printed circuit assembly, and microwave module industries. These

applications result in multiobjective integer programming formulations. We discuss the

properties of these formulations, develop appropriate solution procedures, and report

our computational experience. One of the advantages of the framework that we describe

is the ease with which it can be extended to incorporate additional considerations. We

indicate some some possible extensions that might �nd ready applicability in industry.

1 Introduction

Over the past decade, two developments have had a profound impact on the way manufac-

turing �rms operate. The �rst is the advent of the concurrent engineering paradigm, wherein

various `downstream' product life cycle considerations (such as cost, quality, manufactura-

bility, etc.) are explicitly considered at the design stage; the prohibitive costs associated

with the design-build-test-redesign loop no longer permit the designer to simply concentrate
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on product functionality at the design stage. The second is the impact global competition

has had on �rms - many industries have moved away from a highly vertically integrated

to a more disintegrated or `leveraged' model. In short, we are entering an era of `virtual

manufacturing', where complex products are designed and manufactured by widely dispersed

groups of partners and suppliers.

These two developments have in turn spawned two distinct streams of research in the

manufacturing literature. The �rst addresses the concurrent engineering problem by trying

to develop models that facilitate `design for X', where X might stand for cost, quality, manu-

facturability, and so forth. The second addresses the supply chain management problem via

models that, given a �rm's product mix and manufacturing requirements, seek to determine

optimal supplier and distribution con�gurations.

One assumption implicit in the above models is that the product design problem can be

naturally decomposed into its two components; in other words, much of the research has been

focused either on the concurrent engineering problem, or on the supply chain management

problem, without taking into account the interactions between the two. We are of the opinion

that this approach simply leads to another loop: the `design-strategic feasibility evaluation-

redesign' loop, wherein the designs generated by the concurrent engineering tools may not

be compatible with the capabilities of the suppliers selected by the partner evaluation tools.

In a true virtual manufacturing environment the two approaches will need to be combined

into a single, integrated model that lets designers take into account not only product life

cycle considerations, but also supplier capability information, and information concerning

the �rm's own strategic and �nancial goals.

There are two basic research issues underlying this problem|the �rst relates to the

mathematical programming task while the second adresses the system integration task. We

now now brie
y describe these issues in turn.

We need a mathematical modeling framework that, �rst, captures the generic structure of

a product. In order to have the widest possible applicability, the model should be independent
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of the speci�c application setting, i.e., it should simply make explicit the decisions involved in

designing a product, without speci�c reference to the consequences of these decisions|these

are modeled by metrics which might vary across industries, and, within an industry, across

product lines. Next, the model should incorporate both engineering and strategic metrics

(these would be tailored to re
ect the objectives of the �rm/application in question), and

permit a study of the interactions between these metrics. Finally, the model should be


exible enough to permit applications to both conceptual design (a \macro-level" problem)

and detailed design (a \micro-level" problem).

Once we have a mathematical model in place, we need to address the issue of data inte-

gration. Our model will require data from disparate sources. These sources may either be

di�erent databases within the same �rm, or databases outside the �rm, such as product cat-

alogs from suppliers, data from �nancial clearing houses that track companies, etc. Clearly,

integrating data from such vastly disparate sources and presenting them in a coherent form

to the designer is a daunting systems integration task.

In this paper we describe a modeling framework for product design that satis�es the re-

quirements enumerated above. We illustrate the framework via two applications|speci�cally,

to the design of printed circuit board assemblies, and microwave modules. While the ap-

plications that we describe are more concerned with the \detailed-design" problem, the

framework can be easily adapted to handle design problems of a more conceptual nature by

using appropriate data to drive the model. We are currently building an integrated system

in conjunction with a Fortune 500 �rm, that implements the framework and addresses the

data integration tasks.

2 Literature Review

Concurrent engineering and supply chain management are both very active areas of research.

In this section we review some of the relevant literature, especially literature pertaining to

the applications that we discuss in Sections 4 and 5.
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There have been a number of e�orts in the direction of concurrent engineering in industry,

speci�cally via integrated product and process design systems. Initial e�orts were focused on

establishing guidelines to inform designers of manufacturing and assembly concerns to be

addressed at the design stage (Bakerjian 1992, Boothroyd and Dewhurst 1983, Bralla 1986).

Using design for assembly guidelines, Jakiela and Papalambros (1989) built a rule-based

Design-For-Assembly system that gives feedback about assemblability when the designer

adds new features to the design. Gupta et. al.(1994) have developed IMACS, a system

which generates the best operation plans for machined components and gives feedback about

manufacturing infeasibilities in the design. However, none of these tools are applicable to

the electronic domain.

In the electronic domain, Harhalakis et. al.(1993) have developed a rule-based system for

critiquing the manufacturability of microwave modules. Feldmann and Frank (1993) describe

a system that integrates electronic and mechanical CAD tools. These tools do not evaluate

the designs with respect to cost and lead times.

Schemes for costing a given microwave module design can be found in a number of sources

(see, for instance, Heng and Gay 1991, Oh and Park 1993). Reviewing this body of literature

reveals that attempts to determine optimal designs (rather than assessing a given design)

with respect to cost have been rather limited. Oh and Park (1993) use a dynamic program-

ming approach to optimize the assembly processes; however, their procedure does not appear

to be very practical for situations having a large search space of design alternatives. The

only other optimization application we have come across is Russell (1986).

An excellent review of the supply chain management literature can be found in Thomas

and Gri�n (1996). The literature may be broadly classi�ed into two categories. The �rst

addresses operational planning issues, such as the determination of optimal reordering poli-

cies. The second category is of more interest to us, and addresses strategic planning issues,

such as vendor and plant location selection. A comprehensive integer programming based

model can be found in Arntzen, et. al.(1995). Other applications include Cohen and Lee
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(1989), and Brown, et. al.(1987).

All of the above models assume that the product mix is known, i.e., they assume that

the product design task has been completed. We are not aware of any models that jointly

consider product design and supplier selection issues.

3 Modeling a Hierarchical System

We begin by introducing an abstract model that captures the structure of any hierarchical

system, and makes explicit the decisions involved in designing such a system. This abstract

model, the AND/OR tree, will constitute the core of all our subsequent models of manu-

facturing systems. Next, we show how an AND/OR tree may be modeled as a system of

equations. We conclude with an investigation of an important property of this system of

equations.

A hierarchical system is one which can be naturally decomposed in a top down fashion

into subsystems, subsubsystems, and so forth. The decomposition process continues until

we encounter atomic elements that cannot be broken down further. Figure 1(A) illustrates

this concept. This representation of a hierarchical system captures the essence of most of

the complex systems that are routinely encountered. We will refer to this representation as

an AND tree (re
ecting the fact that the system A contains subsystems B and C, and so

forth.)

B
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C

A1

A3

A2

A4 A5

B

A

D

C

A1 A4A2

A5 A6E

A3

‘‘AND-Arc’’

B:   An AND/OR TreeA:  A Hierarchical System

system

subsystem

atomic element

Figure 1: Modeling a hierarchical system via an AND/OR Tree.
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A natural way to incorporate alternatives (for some/all of the subsystems/atomic el-

ements) into the above representation is to model it as an AND/OR tree. Figure 1(B)

illustrates this concept. Here, the system, A, contains subsystems B and C (indicated by

the \AND-arc"). B can be decomposed further in two alternative ways; thus, B contains

either subsystem D, or subsystem E. D contains atomic units A1 and A2, E contains A3

and A4, and C contains either A5 or A6. AND/OR trees are a special case of more general

structures, AND/OR graphs. These structures �nd applications in problems such as theorem

proving, symbolic integration, and analysis of industrial schedules (see Horowitz, Sahni, and

Rajasekaran 1998). We will comment more on the relationship between AND/OR trees and

AND/OR graphs in Section 4.3.

Since designing a system involves making choices among the available alternatives, we

will now show how the AND/OR tree can be modeled as a system of equations that can

be embedded into mathematical programming based optimization algorithms. First, we

note that each of the nodes constituting the AND/OR tree is either an AND-node, whose

selection necessitates the selection of all of its child nodes, or an OR-node, whose selection

necessitates the selection of exactly one of its child nodes. In Figure 1(B), A, D and E

are AND-nodes, while B and C are OR-nodes. It is possible that in some applications the

selection of a node will call for the selection of a subset of its child nodes (the `AND-children')

and exactly one of the remaining child nodes (the `OR-children'). We observe that such an

AND/OR tree can always be transformed into one containing only AND-nodes and OR-nodes

(the standard form), by the introduction of appropriate dummy nodes. The transformation

essentially mimics the process whereby an arbitrary boolean expression is transformed into

the conjunctive normal form. We will assume henceforth that the AND/OR tree is of the

standard form. Letting VAND = the set of AND-nodes, VOR = the set of OR-nodes, V =

VAND[VOR = the set of nodes in the tree, ROOT = the root node of the tree, and, CHILD(i)

= the set of nodes that are children of node i, we can de�ne the following decision variables:

xi =

8><
>:

1 if node i is selected to be in the system, i 2 V;

0 otherwise.
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The constraints describing the AND/OR tree would be as follows:

xROOT = 1

xj = xi 8i 2 VAND; j 2 CHILD(i)

X
j2CHILD(i)

xj = xi 8i 2 VOR

The �rst constraint ensures that the root node is always selected, the second set of constraints

(the AND-constraints) ensures that if an AND-node is selected, all of its children are also

selected, and, �nally, the third set of constraints (the OR-constraints) ensures that if an

OR-node is selected, exactly one of its children is also selected. Given a design problem, the

above equations will appear as constraints in the corresponding mathematical programming

formulation of the problem. Since the xi variables are binary, we would be dealing with a

integer program. We will now show that the above system of equations possesses a useful

property, total unimodularity, that will be exploited in subsequent sections. Total unimod-

ularity of the constraint matrix associated with an integer program permits us to solve the

problem using linear programming algorithms (if the right hand side vector associated with

the constraint matrix is integral, as it is in the above case, and if the objective functions are

linear, as they are in the applications that we describe), thus leading to extremely e�cient

solution methods.

De�nition 1 An m� n integral matrix A is totally unimodular (TU) if the determinant of

each square submatrix of A is equal to 0, 1, or -1.

It is evident that aij = 0, 1, or -1 if A is TU; that is, A is a (0, 1, -1) matrix. Using

certain properties of TU matrices, it is possible to prove the following theorem (the proof

appears in the appendix):

Theorem 1 The constraint matrix associated with any AND/OR tree is Totally Unimodu-

lar.
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4 Application 1: Design of Printed Circuit Board Assemblies

The �rst application that we describe involves the design of printed circuit board assemblies,

speci�cally transmitter/reciever (T/R) modules. This work is described in Ball et. al.(1995).

In this application we show how the AND/OR tree framework that was developed in the

preceding section can be employed to model a T/R module. The speci�c metrics that we seek

to optimize are a cost metric and a manufacturing yield metric (de�ned as the product of

process yields and component defect rates). It should be noted that the yield associated with

a given design could be factored into the analysis via a rework cost. However, we view cost

and yield as competing (and often con
icting) evaluation metrics for which a multiobjective

approach seems to be more appropriate. In particular, yield can be viewed as a measure of

manufacturing quality, which leads to its consideration as a metric independent of cost.

4.1 Modeling a T/R Module

Any electromechanical or electronic product is designed to satisfy a certain function; for

instance, a T/R module (which is a basic component of most radar systems) should transmit

and receive radio messages. This basic function can then be decomposed into subfunctions,

which can then be recursively decomposed further. These function blocks are, thus, abstract

representations of what a product must do in order to accomplish its function|it is at this

level that design innovation usually takes place. Given a function block representation of a

product, it would then be possible for designers to postulate alternate function blocks that

accomplish the same function.

The decomposition process continues until the function blocks become `concrete' enough,

i.e., until it becomes possible to map a function block on to an assembly/component that can

be manufactured/purchased. Figure 2(A) illustrates this idea. Each of the terminal assembly

nodes in Figure 2(A) can be decomposed into their constituent components. Each of these

components will have alternatives; moreover, each component will have a set of processes that

need to performed on it, and each of these processes will also have alternatives. Figure 2(B)
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shows this decomposition of an assembly into its constituent components and processes.

Once we develop such a decomposition for each terminal assembly node in Figure 2(A),

we will have a complete AND/OR tree description of the product. Our objective is to

choose among the alternative function blocks, assembly blocks, components, and processes

for each component, such that the resulting design is `optimal' with respect to the cost and

manufacturing yield metrics.

Basic function of the product

Function 2Function 1

Function 3 Function 4 Function 5

Assembly 1

Assembly 5Assembly 4

Assembly 3Assembly 2

Assembly 6 Assembly 7

Assembly

GC-1 GC-2 GC-N

C-1 C-2

GP-2GP-1

P-2P-1

GC: Generic Component

   C: Component

GP: Generic Process

   P: Process

A: Function Block Representation B: Decomposition of an Assembly Block

Figure 2: Decomposition of a Product.

We now state the three key assumptions underlying our model. First, we assume that

sub-assemblies are manufactured independently. This assumption would not be valid if, for

instance, di�erent sub-assemblies could be acted upon simultaneously during a single setup

of a process. Second, we do not consider the impact of commonality of components across

sub-assemblies. In some manufacturing situations, it might be advantageous to use common

(i.e., identical) components in di�erent sub-assemblies, even though the sub-assemblies may

be manufactured separately (a simple example would be quantity discounts). Third, the two

metrics that we consider, cost and yield, are decomposable metrics, in the sense that the

cost/yield contribution of an assembly block is assumed to depend upon that block only. Of

course, this would no longer be true without assumptions (1) and (2). These three assump-

tions permit us to decompose the product into its constituent assemblies|we determine the

optimal choice of components and processes for each subassembly and then construct the

overall solution using these partial solutions. We examine the consequences of relaxing these
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assumptions in subsequent sections.

4.2 The Integer Programming Formulation

We now desribe the optimization problem for a single assembly. By our assumption of

independence of the assemblies constituting the product, the �nal solution for the entire

product is simply a concatenation of the solutions for the individual assemblies. We assume

that the input data for the problem consists of the quantities de�ned in Table 1.

Table 1: Notation

We now de�ne the following decision variables:

xj =

8><
>:

1 if component j is selected,

0 otherwise.

yp =

8><
>:

1 if process p is used in the assembly,

0 otherwise.

xpj =

8><
>:

1 if process p is selected for component j,

0 otherwise.

The expressions for cost and yield are given as follows:

C = Unit cost + Runtime cost + Setup cost =
X
i

cixi + l
X
p;j

tpjxpj +
l

b

X
p

tpyp (1)

Y =
Y
p

(�p)
yp
Y
j

(1� �j)
xj (2)
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We note that the labor cost, l, might be di�erent for manual and automatic processes;

thus, the runtime cost may consist of two terms, one for manual processes and another for

automatic processes. The yield expression, (2), consists of the product of the component

defect rates and process yields. We can now linearize (2) to get

Y 0 = log Y =
X
p

yp log �p +
X
j

xj log (1� �j) : (3)

The problem we wish to solve is the following multi-objective integer program:

minimize

8><
>:

C

�Y 0

9>=
>;

subject to

X
j2Vk

xj = 1 k 2 V (4)

X
p2Pji

xpj = xj 8j; i 2 Pj (5)

yp � xpj 8p; j (6)

xj; yp; xpj 2 f0; 1g 8 j; p (7)

Constraints (4) and (5) capture the AND/OR tree structure of the problem. Constraints (6)

tell us which processes have been selected.

4.3 Discussion

It is well known that solutions to the parametric problem P:

minimize Z(�) = �C � (1� �)Y 0; (8)

subject to constraints (4)-(7);

where the parameter � ranges over the interval [0; 1], are also e�cient (Pareto optimal)

solutions for the bicriteria IP problem (see, for instance, Gass 1985). It is this version of the

problem that we shall address in what follows. It is straightforward to establish the following

theorem by showing that the uncapacitated facility location problem is a special case of P

(for a proof, see Ball, et. al. 1995).
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Theorem 2 Problem P is NP-Hard.

The facility location problem has been relatively well studied and a number of solu-

tion strategies have been reported in the operations research literature (see, for example,

Nemhauser and Wolsey 1988). An important issue in our application here is that we would

like to generate a set of Pareto optimal solutions parameterized with respect to �. Hence, in

selecting a solution procedure, we need to consider the ease with which parametric analysis

can be carried out.

The solution procedure that we propose arises from the observation that the number of

process alternatives involved in PCB assembly design at the manufacturing facility moti-

vating this application is quite small. The small number of possible processes implies that

an approach which starts by enumerating all possible process combinations (y vectors) is

computationally feasible. We then note that for a given set of selected processes, that is, a

set P 0 such that

yp =

8><
>:

1 if p 2 P 0,

0 otherwise,
(9)

problem P becomes easy to solve. While decision problems on general AND/OR graphs are

known to be NP-complete (see Horowitz, Sahni, and Rajasekaran 1998), it is easy to show

that a polynomial-time greedy algorithm produces an optimal solution (see Ball, et. al. 1995)

for the above problem. The greedy approach however does not permit a straightforward

procedure for parametric analysis with respect to �. For this purpose, consider the following

reduced problem P(P 0)

minimize �C � (1� �)Y 0;

subject to constraints (4)-(7), and (9):

Now, constraints (4) and (5) are simply the AND/OR tree constraints, and, by Theorem 1,

de�ne a totally unimodular matrix. It is a well known fact (for instance, see Proposition

2.2 on page 541 of Nemhauser and Wolsey 1988) that if the constraint matrix for an integer

programming problem, P , is TU, then the feasible region for this problem is an integral
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polyhedron, i.e., has integer extreme points, as long as the right hand side is integer. Con-

sequently, the linear programming relaxation of P(P 0) is guaranteed to produce an integer

solution. Hence P(P 0) can be solved using standard LP software and full parametric analysis

with respect to � can also be e�ciently performed. Furthermore, since all the variables are

binary, the extreme points of the above polyhedron are the only integer feasible points for

the problem P(P 0). This fact enables us to use a well known result from linear vector max-

imization theory (see Theorem 5 on page 128 of Gass 1985, Philip 1972) to guarantee that

parametric analysis with respect to � generates all the e�cient solutions for the problem

P(P 0).

In summary, our approach is to solve 2jPj subproblems, one for each choice for P 0. For

each subproblem, the optimal objective function value is obtained as a piece-wise linear

function of �, using linear programming sensitivity analysis techniques. Figure 3(A) shows

such a parametric curve for one particular choice of P 0, say, P 0
1. The problemP(P 0

1) has three

e�cient solutions, the �rst of which is valid (i.e., minimizes Z(�)) in the range 0 � � < �1;

similarly, the second and third solutions are valid in the ranges �1 � � < �2, and �2 � � � 1

respectively. The lower envelope of the family of these functions yields the parametric

solution to the original problem P. For instance, in Figure 3(B), the problem P has three

e�cient solutions. When 0 � � < �1, it is optimal to select P
0 = P 0

2, and the corresponding

e�cient solution obtained from the parametric curve for problem P(P 0
2) will be the one that

minimizes Z(�) for problem P. Similarly the appropriate e�cient solutions for problems

P(P 0
4) and P(P

0
3) are valid for problem P when �1 � � < �2, and �2 � � � 1 respectively.

Such a lower envelope can be constructed e�ciently using standard computational geometry

algorithms (see, for instance, Preparata and Shamos 1985).

We are now in a position to aggregate the results for the assemblies in order to obtain the

solution for the entire product. For assemblies that are alternatives for each other, we simply

take the lower envelope of their parametric curves (similar to Figure 3(B)); once this has been

done, we add all the parametric curves. Figure 4(A) illustrates this process for a product
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Figure 3: Parametric Analysis With Respect To �.

that has two subassemblies. Once we have the parametric curve for the entire product, we

can recover the cost and yield �gures corresponding to each Pareto optimal solution, and

plot the tradeo� curve for the product. This �gure provides information relating to the

marginal rate of substitution between cost and yield, and can be used by managers as an

aid in decision-making.

Aggregated parametric curve
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parametric curves for the
constituent assemblies

Z(λ)

λ
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Y
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set of efficient solutions
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Figure 4: Parametric Curve For The Entire Product.

5 Application 2: Design of Microwave Modules

In this section we describe the application of our basic modeling framework to the design

of microwave modules (see Trichur, et. al. 1996), electronic devices that are used in many

modern telecommunications systems. This application is quite similar to the previous one|
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we are interested in selecting components, and processes for each component, from a set of

alternate processes and components. Unlike in the earlier application, microwave modules

consist of only one assembly/board. Thus, the problem is simpler in some sense, since we no

longer have to aggregate the solutions for individual assemblies. However, it is considerably

more di�cult than the single assembly problem (problem P) that we discussed in Section 4.3,

due to the following reasons. First, the number of processes is much larger, and, consequently,

the enumeration based approach discussed earlier is no longer viable. Second, we relax the

assumption of independence of part choices, i.e., there is now an advantage to commonality

of parts. Third, we now introduce strategic considerations into our model via additional

metrics. Hence, the parameterization that we carried out in order to obtain P is no longer

valid. Finally, we use more accurate estimates for process runtime costs and yields. This

involves interaction with a process planner.

5.1 Problem De�nition

Key attributes such as material costs, run times, setup times, process yields, and material

defect rates are assumed to be known for components, processes, and component-process

combinations. In addition, we assume that for each component, we know the supplier asso-

ciated with that component, and the delivery lead time of that supplier. The problem is to

determine a set of components (and implicitly, suppliers) and processes that are `e�cient'

with respect to four objectives|cost, yield, supplier lead time, and number of suppliers used.

Let S = the set of suppliers, Sj = set of components supplied by jth supplier, and, ds =

delivery lead time of sth supplier. We now have the supplier variables,

wj =

8><
>:

1 if supplier j is selected,

0 otherwise.

The expressions for cost and yield are exactly the same as before (equations (1) - (3)). We now

discuss the other metrics|these incorporate some strategic considerations into the model

and lead to an integrated concurrent engineering-strategic feasibility evaluation system.
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The �rst new objective that we consider is supplier lead time. We would like to choose

components (and hence suppliers) such that the delivery lead time is as low as possible. The

overall delivery lead time, de�ned as the maximum of the lead times of the selected suppliers,

is given by:

Lead Time = L = Max(d1w1; d2w2; : : : ; dSwS) (10)

We linearize (10) by replacing L with auxiliary continuous variable, L0, in the objective

function, and adding the following constraints:

L0 � diwi 8i 2 S (11)

We would also like to minimize the total number of suppliers. Typically there are quantity

discount advantages associated with ordering more components from the same supplier; also

using a smaller number of suppliers reduces overhead costs related to inventory management

and component tracking. There is also a substantial body of literature that puts forth

theoretical arguments in support of a smaller network of suppliers, and presents empirical

evidence for the prevelance of such networks in industry (see, for instance, Dyer 1990).

Minimizing the total number of suppliers captures these e�ects. The number of suppliers is

given by:

N =
SX
i=1

wi (12)

The problem we wish to solve is the following multi-objective integer program:

minimize

8>>>>>>>>>><
>>>>>>>>>>:

C

�Y 0

L0

N

9>>>>>>>>>>=
>>>>>>>>>>;

subject to

X
j2Vk

xj = 1 k 2 V (13)

X
p2Pji

xpj = xj 8j; i 2 Pj (14)

yp � xpj 8p; j (15)
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wi � xj 8i 2 S; j 2 Si (16)

xj; yp; xpj; ws 2 f0; 1g 8 j; p; s (17)

Constraints (13) and (14) capture the AND/OR tree structure of the problem, and are

identical to (4) and (5). Constraints (15) and (16) tell us which processes and suppliers have

been selected. We would also need to include the set of constraints (11), that de�ne the lead

time variable, L0.

5.2 Discussion

Unlike in Section 4.3, we cannot eliminate the `facility location' constraints, (15) and (16).

Hence, we can no longer solve the LP relaxation and be guaranteed of integer solutions.

However, this formulation of the uncapacitated facility location problem is known to be

\strong", meaning that IP solvers generally perform well on it, at least for problems of

moderate size. As before, we are interested in �nding non-dominated (`e�cient', Pareto

optimal) solutions. Also, since the set of e�cient solutions may be very large, we feel that it

would make more sense for the optimization to proceed in an interactive manner, with the

designer controlling the `search direction.' While there exists a large body of literature on

multiobjective optimization (see, for instance, Sera�ni 1985, Goicoechea, et. al. 1992), most

of this work is applicable only to convex search spaces, and when nonconvexities exist, the

proposed algorithms are problem-speci�c. Consequently, we propose two alternative solution

procedures that are generic enough to be used irrespective of the extensions that might be

incorporated into the model.

The overall approach we use was motivated by the architecture used by the CONSOL

system, which performs nonlinear, multiobjective optimization (Tits and Ma, 1986). Any

mechanism for generating a set of e�cient solutions requires some way of assigning relative

weights to the objectives (the parameter � served this purpose in Section 4.3). Consequently,

we �rst require the user to specify a set of good and bad values for each of the objectives,
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and then normalize the objectives, as follows:

Zi;norm =
Zi � Zi;g

Zi;b � Zi;g
(18)

where Zi stands forC; Y
0; L0, orN , and Zi;g; Zi;b, and Zi;norm are the good, bad, and normalized

values of the i-th objective. The good and bad values can be thought of as de�ning a range

within which the objective is required to lie|for instance, we might want the yield to lie

between 95% and 100%. The objective is not permitted to exceed its bad value (assuming

that we are minimizing the objective.) Clearly, the narrower the range, the more di�cult

it becomes to restrict the objective within the range|objectives with narrow ranges are

consequently given more weight during the optimization process. Thus, the user can alter

the relative weights of the objectives by changing their good and bad values. Such an approach

has a particularly intuitive appeal to users and was used as the basis for a graphical user

interface designed to address these problems (Splain 1998). We now describe our two solution

approaches.

5.2.1 Approach 1

In what follows, let Z = (Z1; : : : ; ZN) be the set of criteria/metrics under consideration, and

assume without loss of generality that all the criteria have to be minimized. We de�ne a new

variable, Z = Max(Z1;norm; : : : ; ZN;norm), and minimize Z. Thus, we would be minimizing

themaximum deviation of an objective from its good value. Minimax optimization is a natural

setting for obtaining nondominated solutions and is intuitively appealing, given the de�nition

of Pareto optimality. Moreover, it is possible to show (by a straightforward application of

Theorem 13.2 on page 324 of Brayton and Spence 1980) that this approach is guaranteed to

generate all the e�cient solutions to the IP problem.

One drawback to this approach, however, is that in addition to nondominated solutions,

it is also capable of generating dominated solutions. The following simple example illustrates

this fact. Let the criterion vector be Z = (C;N; L0), where the C, N and L0 have their usual

meaning. Let the solution obtained by solving the IP be Z? = (100, 5, 40), and let the good
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and bad values that resulted in this solution be such that Z?
norm = (0.3, 0.5, 0.4), i.e., Max

fZ?
i;normg = 0.5. Now, consider another feasible solution, Z 0 = (100, 5, 30); this solution

has the same cost and uses the same number of suppliers as the earlier solution, but has

a lower maximum lead time, corresponding to the fact that a di�erent set of �ve suppliers

was chosen. Z 0 dominates Z?. Thus, it is clear the optimal solution to the integer program

might actually be a dominated solution. However, note that Z 0
norm = (0.3, 0.5, k), where

k < 0:4 as Z 0
L0 < Z?

L0. Consequently, Max fZ 0
i;normg = 0.5 = Max fZ?

i;normg. We formalize

the above example in the following proposition.

Proposition 1 Let Z? be the solution that minimizes Max fZi;normg. Suppose 9 a feasible

solution Z 0 that dominates Z?. Then, Max fZ 0
i;normg = Max fZ?

i;normg.

Proof: By the optimality of Max fZ?
i;normg, we have Max fZ 0

i;normg � Max fZ?
i;normg. Since

Z 0 dominates Z?, we have Max fZ 0
i;normg � Max fZ?

i;normg. 2

Thus, if the solution returned by the IP (corresponding to the chosen good and bad values) is

not a nondominated solution, the solutions that dominate it will appear as alternate optimal

solutions to the same IP. Ideally, we would like to examine all the alternate optimal solutions

to the IP and select only the nondominated ones; however, determining alternate optima for

integer programs is not an easy task, as it is in the case of linear programs.

To summarize, although minimizing the maximum deviation of an objective from its

good value is an intuitively attractive approach that is capable of generating all the e�cient

solutions, it does not guarantee nondominated solutions. Consequently, we propose the

following alternative solution procedure.

5.2.2 Approach 2

We �rst de�ne the auxiliary variables, zi;n = Max(Zi;norm; 0). Now we let z =
PN

i=1 zi;n,

and minimize z subject to Z � 1. The intuition behind this approach is that we might

not mind one of the objectives being close to its bad value, if another objective were to be
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correspondingly close to its good value|this can be modeled by minimizing the sum of the

normalized objectives. However, we would have to ensure that one of the objectives does

not become better than its good value at the expense of another objective|the de�nition of

zi;n ensures this; essentially, there is no incentive to improve an objective beyond it's good

value (this would cause Zi;norm to become negative). The constraint Z � 1 ensures that

no objective becomes worse than it's bad value. It should be noted that for some choices

of the good and bad values, this constraint might cause the IP to become infeasible, and,

consequently, might need to be relaxed.

In order to characterize the solutions generated by this procedure, we �rst assume that

good value for each objective is set to optimal value of that objective, i.e., we assume that

Zi;g = Zi;opt, where Zi;opt is the value of objective i when it alone is minimized. This ensures

that Zi;norm can never take on a negative value, and, since the equations de�ning zi;n are

now not needed, we will have z =
PN

i=1 Zi;norm. Since z is now simply a weighted sum of the

objectives, it is easy to show (see Theorem 5 on page 227 of Gass 1985) that minimizing z

is guaranteed yield a nondominated solution. However, we note that this result will not hold

for arbitrary good values (i.e., good values not equal to the single objective optima); in this

situation, it is possible that the solution obtained by solving the IP may be dominated by

alternate optimal solutions to the same IP (a result similar to Proposition 1). Furthermore,

this approach will not yield the entire set of e�cient solutions (see Theorem 11.2 on page

275 of Brayton and Spence 1980); it will do so only if the optimization is carried out over

the convex hull of integer points.

In summary, we have outlined two solution procedures for solving the multiobjective

integer programming formulation of the product design problem. In either case, the opti-

mization will proceed in an interactive fashion, with the user modifying the good and bad

values at each stage, to yield a set of solutions.
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5.3 Computational Experience

In order to test the strength of the formulation and verify that the solution procedures

outlined above are viable, we generated a set of test problems and conducted a series of

experiments using these problems. A typical microwave module board contains between

25 and 100 components. Consequently, we generated four sets of test problems. The �rst

set consisted of boards containing 25 components, while the second, third, and fourth sets

consisted of boards containing 50, 75, and 100 components on the board respectively. Within

each set, we had �ve test problems, yielding a total of twenty test problems. The components

on the boards had between three and six alternatives each. We modeled ten processes,

which had between two and �ve alternatives each. Both the component and process data

were based on �gures supplied by the manufacturing facility that motivated this work. The

components were supplied by ten vendors, each having a di�erent delivery lead time. Table

2 summarizes the relevant statistics for the the integer programs corresponding to the above

set of problems. For each set, we report the mean number of variables, constraints, and

constraint nonzeroes, in the integer programs corresponding to the problems in that set. It

is clear that as the number of parts on the board grows, we are faced with integer programs

of increasingly non-trivial size.

Table 2: Test problem statistics

Problem Size Variables Constraints Nonzeroes

25 Parts 1179 1521 4362

50 Parts 2518 3600 9405

75 Parts 3836 5493 14350

100 Parts 5052 7268 18946

Our �rst set of experiments consisted of optimizing each objective individually for each of

the above problems. The optimal values of the individual objectives are required for testing

the second approach that we outlined above for solving the multiobjective problem. All of

our experiments were carried out on a Sun SPARC 10 workstation running CPLEX version

4.0. All the solution times were of the order of a few seconds, and, consequently, deemed
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acceptable for an interactive solution procedure.

Next, we examined the e�ect on solution time, of increasing the number of objectives in

the multiobjective model|we would expect the solution time to increase as the number of

objectives goes up. Figure 5 summarizes the results of this experiment. The �rst observation

of note is that the second solution procedure that we outlined above signi�cantly outperforms

the �rst. Next, we note that the solution time does not appear to be sensitive to the number

of objectives in the model, for smaller problem sizes. Finally, we observe that while the

solution time does increase with the number of objectives in most cases, there are some

situations where it actually decreases as the number of objectives rises.
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Figure 5: Solution time vs. number of metrics in the multiobjective model.

Our �nal series of experiments was designed to determine how sensitive the solution

times were to variations in the good and bad values. Intuition would seem to suggest that the

`tighter' the allowable ranges (de�ned by the good and bad values) for the metrics, the larger

would be the solution time, since the constraints on the metrics are now `more di�cult to

satisfy' in some sense. There is, however, a 
ip side to this argument|if the allowable ranges

on all the metrics are very tight, then the number of feasible solutions satisfying these ranges

would be quite small. Thus, we would expect to see the following behavior as we successively

tighten the allowable ranges for an increasing number of metrics|the solution time should
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�rst increase for a while, and then decrease. Figure 6 summarizes the results of this series of

experiments, for the case where we have three objectives in the model. The �gure on the left

plots the solution time vs. `tightness of the allowable ranges' for the �rst solution approach,

while the �gure on the right plots the results for the second. Again, we note that the second

approach considerably outperforms the �rst. Next, we observe that the solution times do

seem to exhibit the behavior that we intuitively expected. Also, the solution times appear

to be relatively insensitive to the tightness of the allowable ranges, for lower problem sizes.

Finally, the second approach appears to be more `stable', in the sense that the solution times

do not exhibit too great a variation|a characteristic that would de�nitely be desirable in

an interactive system.
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Figure 6: Solution time vs. tightness of allowable ranges for the metrics.

To summarize, our experiments appear to indicate that the solution procedures outlined

above are viable, even for large problem sizes, and, therefore, can be incorporated into an

interactive optimization system.

6 Model Extensions and Limitations

The results outlined in the preceding section indicate that it would be quite feasible to ex-

tend the above model to more complex products that are similar to microwave modules, but
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involve multiple assemblies. The modeling framework itself can be extended to accomodate

additional considerations, both of the engineering and of the strategic kind, via the intro-

duction of appropriate metrics. In this section we will brie
y discuss some such extensions.

6.1 Modeling Quantity Discounts

One extension that would make sense for complex products (especially in a high-volume

setting) would be to explicitly model the quantity discounts associated with placing more

orders with the same supplier. A simple approach would be as follows: we assume that we

receive a `payback' (in dollars) when we place additional orders with a supplier; the pay-

back will capture quantity discounts and other intangible bene�ts, such as better (on-time)

performance, etc. The payback can be assumed to depend on the amount of business that

we award to the supplier, and would increase for a while and then 
atten out. It would be a

piecewise linear function, d(u), where u stands for the dollar value of the business awarded

to the supplier. It is possible to incorporate such pay-back structures into the IP formulation

described in Section 5.1 by de�ning appropriate indicator variables that determine the volume

of business awarded to each supplier. However, the resulting formulation would almost

certainly not be as strong as that in Section 5.1, and would thus call for additional analysis.

6.2 Modeling the E�ect of Supplier Contracts

A more interesting e�ect to model would be that of business volume on the quality (defect

rates) of the components supplied by a vendor. Typically, �rms enter into contracts with

their suppliers; these contracts require the supplier to meet certain quality standards speci�ed

in the contract|failure to do so results in the supplier paying a penalty to the purchaser

(see, for instance, Reyniers and Tapiero, 1995). Suppliers are usually willing to commit

to higher quality standards only if they are assured of a certain volume of business. This

e�ect can be incorporated into our model by replacing the component defect rate, �j, in

the yield expression, (2), by si�j, where si is a supplier speci�c multiplier (0 � si � 1)
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that depends on the volume of business that is awarded to the supplier|if the supplier is

awarded the maximum possible business, then si = 1, and the component would su�er only

from its inherent defect rate, �j; lower business volumes would lead to a value of si < 1, and

the component's defect rate would now worsen, re
ecting the fact that the supplier lacks

su�cient incentive to guarantee the maximum possible quality. Of course, such a rede�nition

of component defect rates will lead to additional indicator variables and constraints, as in

the preceding section.

6.3 Incorporating Demand Considerations

Thus far, our quality considerations have been restricted to manufacturing yield. A far

more important metric, from a customer's point of view (and from a business strategy

viewpoint), is product quality. However, quality, by itself, is a very di�cult term to de�ne,

and to quantify. Consequently, it might be best to approach it indirectly, via demand

considerations. We could begin by examining the characteristics that a product should

possess, if it is to succeed in the market (i.e., the features that are \in demand")|these

would serve as surrogates for the determinants of product quality. For instance, in the

case of an automobile, customers typically value safety, reliability, fuel e�ciency, comfort,

and appearance (not necessarily in that order). The principal observation that we make

concerning such features is that they exhibit complementarities (i.e., reinforce one another),

and that the marginal return to additional features (in terms of increased demand for the

product) is likely to be diminishing. This suggests that it might be possible to possible

to model demand by means of a supermodular function. Given such a function, the next

step would be to tie it in with the model that we have at hand for the product. Intuition

suggests that the best way to do this would be via the suppliers. For instance, there might

be brand name issues to consider; a computer maker might prefer an Intel microprocessor

(even though cheaper/equivalent alternatives exist), simply because the \Intel Inside" stamp

might increase sales considerably.
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6.4 Modeling Product Families

The model that we described in Sections 4 and 5 could be extended easily to model an entire

product family - each product in the family would be represented by an AND/OR tree. These

otherwise independent AND/OR trees would be linked, of course, via the suppliers. The �rst

step would be to simplify the AND/OR trees corresponding to the individual products, in

order to prevent the model from becoming intractably large. This is most easily done by

eliminating all components/assemblies that are not deemed to be `important enough'. Next,

the issues that we discussed in Sections 6.1, 6.2, and 6.3 would need to be explicitly

considered. We might also want to consider other supplier related issues, primarily logistics

costs (see Thomas and Gri�n 1996), and the compatibility of the suppliers with each other.

Not much is known about the latter at this stage. Some research has been reported on

the strategic classi�cation of manufacturing �rms (see, for instance, Miller and Roth 1994);

however, we are not aware of any quantitative models.

6.5 Conclusions

This paper has presented a formal framework for product design, that permits the considera-

tion of engineering and strategic objectives at the design stage. The model is general enough

to accomodate di�erent application settings, and results in mathemical formulations that

are strong enough to permit incorporation into interactive decision support systems. Future

work will examine extensions of this work in the directions outlined above. Another planned

line of inquiry is the investigation of the tradeo�s between the objectives|Section 4.3 showed

how the tradeo� curve contains information pertaining to the marginal rate of substitution

between the two objectives considered in that application. It would be useful to have similar

information in the multiobjective case.

Appendix: Proof of Theorem 1

We make use of the following theorem (found on page 542 of Nemhauser and Wolsey 1988):
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Theorem 3 The following statements are equivalent.

1. An m� n integral matrix A is TU.

2. For every J � N = 1; : : : ; n, there exists a partition J1, J2 of J such that
������
X
j2J1

aij �
X
j2J2

aij

������
� 1 fori = 1; : : : ;m:

We now show that the columns of the constraint matrix associated with an AND/OR tree

can be partitioned in a manner consistent with the requirements of Theorem 3. It is su�cient

to prove the result for J = N , since taking a subset of N corresponds to deleting certain

variables/tree nodes, which in turn spawns several independent AND/OR trees. First, note

that any pair of nodes can appear together in at most one constraint. Second, the only nodes

that can occur together in a constraint are those which share a parent-child relationship. Now

we de�ne two rules which determine how we partition the variables into two disjoint sets.

First, consider a generic AND-constraint (Rule 1): x�y = 0. Clearly, when partitioning the

columns of the constraint matrix, x and y will have to belong to the same set, in order to

satisfy the conditions set forth in the theorem. Next, consider a generic OR-constraint (Rule

2): �x + y1 + y2 + � � �+ yk = 0. If k is an even number, we can let x; y1; : : : ; yk=2 belong to

one set and yk=2+1; : : : ; yk belong to the other set. Similarly, if k is odd, (x; y1; : : : ; ybk=2c+1)

and (ybk=2c+2; : : : ; yk) would be the two sets.

Given an AND/OR tree, we can write the constraints in a systematic, breath-�rstmanner.

Now, starting at the �rst constraint, we partition the variables into two sets, using the two

rules given above. The fact that we generated the constraints in a breath-�rst fashion, allied

with our earlier observations, ensures that each time a constraint is encountered, there will

be exactly one variable (in that constraint) which has already been assigned to a set; the

other variable(s) in the constraint can be appropriately assigned depending on whether it

is an AND-constraint or an OR-constraint. Thus, there will never be a con
ict, i.e., we

will never encounter a variable which cannot be assigned to either set without violating
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the requirements of the theorem. At the end of this process, the variables will have been

partitioned into two sets satisfying the conditions of Theorem 3. 2
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