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Abstract— When coordinating their actions to accomplish a 

mission, the agents in a multi-agent system may use a 
collaboration algorithm to determine which agent performs 
which task.  This paper describes a novel data-driven 
metareasoning approach that generates a metareasoning policy 
that the agents can use whenever they must collaborate to assign 
tasks.  This metareasoning approach collects data about the 
performance of the algorithms at many decision points and uses 
this data to train a set of surrogate models that can estimate the 
expected performance of different algorithms.  This yields a 
metareasoning policy that, based on the current state of the 
system, estimated the algorithms’ expected performance and 
chose the best one.  For a ship protection scenario, computational 
results show that one version of the metareasoning policy 
performed as well as the best component algorithm but required 
less computational effort.  The proposed data-driven 
metareasoning approach could be a promising tool for 
developing policies to control multi-agent autonomous systems. 
 

Index Terms—Distributed task allocation, metareasoning, 
multivehicle.  
 

I. INTRODUCTION 
N many multi-agent systems, the various agents use a 
collaboration algorithm to determine which agents should 

perform which tasks.  Previous research has studied scenarios 
in which all agents use the same collaboration algorithm 
throughout their mission, and many different collaboration 
algorithms have been proposed and tested, but they may 
require excessive communication and computation with little 
additional benefit.  

Metareasoning is thinking about thinking, or deciding how 
to decide.  Examples of metareasoning include determining 
how to make a decision and determining when to stop 
deliberating and execute an action.  Humans use 
metareasoning to select the most appropriate way to make a 
decision, which should lead to better decisions; the next wave 
of AI-enabled autonomous systems could benefit from this as 
well.   

Cooperative search, acquisition, and tracking (CSAT) is an 
important application for multi-agent autonomous systems in 
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domains such as emergency response, search and rescue, 
wildfire management, homeland security, and defense.  
Previous research has developed a variety of CSAT 
collaboration algorithms, so it should be possible to exploit 
this diversity by using metareasoning in dynamic, uncertain 
environments to determine which collaboration algorithm is 
most appropriate for the current situation.  This paper 
describes a novel data-driven approach for generating a 
metareasoning policy and presents the results of computational 
experiments used to evaluate the metareasoning policy for a 
simulated ship protection scenario.  This exploratory research 
is meant to generate insights into generating and using 
metareasoning policies for problems such as CSAT.   

The problem of protecting naval ships from small boats in a 
crowded maritime environment involves finding the small 
boats, which includes harmless craft (such as fishing vessels) 
and (possibly) adversaries who wish to attack the ship; 
gathering information about them using various sensors (e.g., 
radar and electro-optical and infrared cameras); identifying 
and determining which (if any) are threats; and assessing, 
tracking, and neutralizing the threats.  A variety of unmanned 
surface vehicles (USVs) and unmanned aerial vehicles 
(UAVs) may be deployed in these tasks.  The objectives are to 
minimize the likelihood of a successful attack on the ship (by 
any adversary) and the likelihood of mistakenly attacking a 
harmless vessel.  

The remainder of this paper is organized as follows: Section 
II discusses related work on CSAT and metareasoning.  
Section III presents the approach for generating the 
metareasoning policy.  Section IV describes the experiments 
done to generate the metareasoning policy and the 
experiments done to evaluate it.  Section V presents the 
results.  Section VI discusses the results.  Section VII 
concludes the paper.  

II. RELATED WORK 
In the CSAT problem [1, 2, 3], multiple agents search for 

and track multiple moving, noncooperative targets. Examples 
of targets include injured persons in a search and rescue 
operation, wildfire patterns in wildfire management, and 
potentially hostile vessels in maritime environments.  
Although noncooperative targets do not share their locations 
with the searchers, they also do not evade the searchers (the 
problem with evasive targets is a different challenge).  To 
observe the targets, the searchers use sensors that may provide 
a bearing (the direction from the searcher to the target), a 
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range (the distance from the searcher to the target), or both.  
Typical sensors have a limited range and are noisy (the 
measurements have errors).  Data fusion approaches [4] can be 
used to combine the measurements from multiple sensors to 
estimate a target’s location.  A searcher must track a target to 
obtain enough measurements to reduce the uncertainty in its 
location, at which point the target is “found” and can be 
rescued or neutralized. 

Coordination among searchers may be centralized (one 
leader), decentralized (multiple leaders), or distributed (no 
leaders) [3].  The cooperative multi-robot observation of 
multiple moving targets (CMOMMT) problem can be viewed 
as a special case of CSAT with perfect sensors, and 
CMOMMT approaches can be adapted for use in the CSAT 
setting [5, 6]. 

Multiple types of planning algorithms have been proposed 
for CSAT systems.  Task-based approaches identify specific 
tasks (such as search, track, and refuel) at specific locations 
and assign them to agents using mechanisms such as auctions.  
The consensus-based auction algorithm (CBAA) and 
consensus-based bundle algorithm (CBBA) [7] have been used 
and extended by other researchers [1, 8-14].  Other task 
allocation approaches have been studied by Jin et al. [15], 
Ganapathy and Passino [16], and Singhal and Dahiya [17]. 

The performance impact algorithm [18, 19] is another 
distributed task allocation method that systematically 
considers how to shift tasks from one agent to another to 
reduce the total cost of the task assignment.  It can not only 
generate a new task assignment but also improve a given task 
assignment. 

Value-based approaches define an objective function that 
each agent seeks to optimize.  One class of objective function 
uses measures of information such as Fisher information 
measure [20] and mutual information [21, 22].  Another class 
uses potential fields that force agents towards targets [6, 23, 
24].  Another class generates a reward function based on a 
partially observable Markov decision process (POMDP) [25-
28].  Ahner [29], Terelius et al. [30], and Hale et al. [31] 
described more general optimization approaches. 

No single approach is ideal.  For instance, when using a 
task-based approach that focuses on tracking targets, a small 
number of targets can “capture” the searchers’ attention while 
other targets go unobserved.  Although consensus-based 
auction approaches have been successful at coordinating 
multiple agents, they may use excessive number of messages 
to converge on task allocations. 

Metareasoning.  Metareasoning is a formalization of 
metacognition, which an intelligent agent does when it thinks 
about its own thinking [32].  An agent uses metareasoning, 
also known as metalevel control, to improve the quality of its 
decisions [33].  Examples include determining which 
algorithm to use to make a decision and determining when to 
stop computing and execute an action.  Cox [32], Cox and 
Raja [33], Russell and Wefald [34], and Anderson and Oates 
[35] presented fundamental concepts in metareasoning.  
Because finding the optimal metareasoning decision online is 
computationally challenging [36, 37, 38], it is appropriate to 

determine a policy offline or consider a small number of 
options.   

The algorithm selection problem [39, 40] is a metareasoning 
problem that is closely related to the proposed metareasoning 
approach.  Smith-Miles [40] proposed a framework that 
developed algorithm selection rules by correlating “features” 
of the problem instances and the performance of candidate 
algorithms on those instances. Leyton-Brown et al. [41] used 
statistical regression techniques to learn models to estimate 
expected runtime for combinatorial optimization problems; 
Hutter et al. [42] used forward selection to identify the 
instance features needed as inputs to such models.  Munoz et 
al. [43] used a neural network to build a model to predict the 
expected number of function evaluations needed to solve a 
continuous optimization problem.  Munoz et al. [44] and 
Kotthoff [45] reviewed algorithm selection methods for 
combinatorial optimization and continuous optimization 
problems. 

Zilberstein [46] proposed the concept of “operational 
rationality,” which determines the best way to use a set of 
fixed algorithms, and used metareasoning to determine the 
best deliberation time of anytime algorithms by considering 
the algorithm’s performance profile (see also Zilberstein and 
Russell [47]).  The metareasoning approach proposed herein 
also attempts to be operationally rational by using 
performance and computational cost estimates for algorithm 
selection, as Russell and Wefald did [34]. 

Distributed metareasoning can be used to coordinate a team 
of agents [48].  Alexander et al. [49] developed a framework 
for metareasoning in multi-agent systems, in which the agents 
consider and select their local problem-solving actions while 
coordinating with the other agents.  In a multi-agent system, 
each agent must also consider whether to communicate with 
the others.  Despite the complexity of the metareasoning task, 
however, it would be desirable if each agent could develop 
meta-level plans that consider a sequence of computational 
actions (not merely the next computation).  In Alexander’s 
framework, each agent solves a Markov decision process 
(MDP), which generates a computation policy that the agent 
can use to choose the best computation based on the current 
state.  Because the possible actions of the other agents create 
pending contexts that need to be considered and affect the 
value of the agent’s actions, the agent’s metareasoning 
procedure must alternate between its local decision making 
and the coordinated decision making of the entire group.  
Moreover, the agents must share information about their 
metareasoning decisions. 

Sleight and Durfee [50] considered the problem of 
determining an organizational design that coordinates both the 
agents’ behavior and their reasoning by prohibiting reasoning 
about certain actions in certain states.  For the problem of 
multiagent tornado tracking, Cheng et al. [51] presented a 
meta-level control approach in which the meta-level selects an 
abstract action that a lower-level controller implements by 
developing a detailed plan.  Kota et al. [52] presented an 
approach in which agents decide whether to adapt the 
organization, which consists of relations between agents. 
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Among the different types of metareasoning approaches that 
have been proposed, optimal metareasoning, which optimizes 
overall agent performance given fixed object-level decision-
making processes, is the most promising approach for 
enabling the bounded rationality of an agent due to the ease of 
implementation and the ability to generate guarantees about 
agent behavior [53].  (Bounded rationality describes the limits 
of a decision-maker due to limited time, finite computational 
resources, and other resource constraints.)  It has been 
employed, for instance, to monitor an anytime algorithm and 
determine when the algorithm should stop searching and 
return the best solution found so far. 

Previous multi-agent metareasoning approaches explored 
innovative, relevant ideas but did not directly address the 
problem of deciding which algorithm an agent should use to 
plan its next move while participating in a CSAT mission.  
The work described in this paper contributes to our knowledge 
of metareasoning and the CSAT problem by proposing a novel 
data-driven metareasoning approach and using it to generate a 
metareasoning policy for a specific CSAT problem.  Although 
the experiments described in this paper focus on a specific 
CSAT problem, the data-driven metareasoning approach is 
general and can be applied to a variety of CSAT problems and 
other multi-agent systems. 

III. METAREASONING APPROACH 

A. Using a Metareasoning Policy 
Before describing the approach used to generate the 

metareasoning policy, it will be useful to describe how the 
agents use the metareasoning policy.  In the CSAT problem, a 
decision point is a time at which the available agents must 
decide which tasks to perform.  A decision point may occur 
when a new task appears, when an existing task is completed, 
or when the number of available agents changes.   

At each decision point, the agents use the metareasoning 
policy to determine which collaboration algorithm will be 
used to assign tasks to agents.  Based on information about the 
current environment, the tasks, and the agents (the “state”), the 
metareasoning policy quickly estimates the performance of 
every candidate collaboration algorithm using a surrogate 
model.  This performance represents the expected quality of 
the solution that that collaboration algorithm will generate.  
The metareasoning policy selects the collaboration algorithm 
that has the best estimated performance, and the agents use the 
selected collaboration algorithm to decide which tasks to 
perform.  This structure, in which the agents simultaneously 
use the same metareasoning policy to select the collaboration 
algorithm, follows the design principle that the agents’ 
metareasoning be choreographed [49]. 

Let X be the current state of the system (the current 
environment, the tasks, and the agents) at a decision point.  
Let { }1, , IA a a=   be the set of candidate algorithms.  For i = 

1, …, I, let ( )if X  be the surrogate model that estimates the 

performance of algorithm ia  when the state equals X.  The 

cost of computation is also important to consider.  Let ( )ic X  

be the penalty of using algorithm ia  when the state equals X.  
Then, if a smaller value of performance is preferred, the 
metareasoning policy is a function ( )MR X  that selects an 
algorithm when the state equals X: 
  

1, ,
( ) arg min ( ) ( )i i

i I
MR X f X c X

=
= +



 (1) 

B. Generating the Metareasoning Policy 
As shown in Figure 1, the proposed data-driven 

metareasoning approach has four steps: 
1. Definition: define the state variables and performance 

measure and identify the candidate algorithms,  
2. Data collection: conduct simulations to collect data on 

the performance of the candidate algorithms in different states, 
3. Model building: use this data to train the surrogate 

models that can quickly estimate the performance of the 
candidate algorithms, and  

4. Deployment: deploy these surrogate models in a 
metareasoning policy. 

Step 1 (Definition) requires identifying the key variables 
that describe the state of the system, especially the agents and 
the tasks that need to be performed, and the performance 
measure that should be optimized.  The set of candidate 
algorithms A should also be defined.  At this point, there is no 
specific approach for identifying these, although our results 
give some insights into the desirable characteristics of the 
performance measure and the set of candidate algorithms (as 
discussed in Section VI). 

Step 2 (Data collection) requires running numerous 
simulations of the CSAT system.  At each decision point t in 
each replication, every algorithm in A is used to make a 
potential task assignment.  For algorithm ia A∈ , the quality 

itY  of the potential task assignment is determined; this quality 
is the value of the performance measure defined in Step 1.  
The current state tX  and quality itY  are saved in a dataset iD  
for this algorithm.  One of the potential task assignments is 
selected at random as the solution for that decision point. 

Step 3 (Model building) uses machine learning to generate, 
for every algorithm ia A∈ , a surrogate model ( )if X  such 

that ( )i t itf X Y≈ .  This surrogate model is trained using the 

inputs in the dataset iD . 
Step 4 (Deployment) adds the surrogate models to the 

metareasoning policy ( )MR X . 
In this general approach, the state X could be the state of the 

entire system, known perfectly by every agent, or the partial 
information that an agent has about the state of the entire 
system.  In the experiments described in Sections IV and V, 
the agents all have the same information about the state of the 
system and use the same collaboration algorithm determined 
by the metareasoning policy. 

In principle, the agents could apply all of the collaboration 
algorithms in A to generate multiple potential task 
assignments, evaluate the quality of these task assignments, 
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and use the one with the best quality.  This would require the 
computational expense of running all of the collaboration 
algorithms, however.  The proposed approach simplifies the 
metareasoning and reduces the online computational burden 
by using the surrogate models instead, which follows the 
suggestions of previous work that has shown that it is 
desirable to use simpler approaches for metareasoning due to 
the lack of exact knowledge and the need to minimize the 
computational effort used for metareasoning [34, 36, 37]. 

Although the data collection and model building steps will 
require computational effort, the simulation replications in the 
data collection step are independent from each other and can 
be run in parallel.  In addition, the model building tasks for the 
candidate algorithms are independent from each other and can 
be run in parallel. 

 
Fig. 1. Schematic of the data-driven metareasoning approach. 

IV. EXPERIMENTAL SETUP 
As a test of this data-driven metareasoning approach for 

collaborative agents, we considered a simplified ship 
protection scenario that is related to the CSAT problem.  In 
this scenario, a high-value naval asset (HVA) is traveling 
through a channel towards its destination.  The HVA is 
accompanied by aircraft (“searchers”) that fly ahead of the 
HVA to detect targets and aircraft (“defenders”) that move to 
intercept and classify any targets that are found by the 
searchers.  The targets are surface vessels of two types: (1) 
“attackers” approach the HVA and attack it when they are 
close enough to damage the HVA; (2) “non-combatants” 
move across the channel for their own purposes and pose no 
threat to the HVA.   

Although a searcher can detect attackers and non-
combatants, its limited sensors cannot distinguish them, so any 
surface vessel found is simply labeled as a “target.”  A 
defender, when it gets close enough to a target, can classify 
the target as an attacker or a non-combatant; if the target is an 
attacker, the defender can also use an anti-ship missile to stop 
an attacker.  In the scenarios considered in this study, a 
defender has only one missile; when it has used its missile, it 
leaves the channel and participates in the mission no more. 

A. Scenario Description 
Some aspects of the scenario are fixed; other aspects are 

randomly determined when the scenario is initialized.  All 
speeds in knots were converted to meters per second (1 knot = 
0.514444 meters per second).  All coordinates and distances 
were measured in meters.  The simulation time step was 30 
seconds. 

There was exactly one HVA.  The HVA’s speed was 12 
knots.  The HVA’s sensor range was 18,520 meters.  The 
HVA traveled east to west; its start location was (185200, 
24000); its destination was (0, 24000).   

The number of searchers was in the set {1, 2, 3, 4}.  The 
searchers’ speed was 40 knots.  The searchers’ sensor range 
was 3704 meters.  There were two possible search policies.  In 
the first search policy, the search space was divided into 
equal-sized horizontal bands that were parallel to the HVA’s 
path.  Each searcher covered one band by moving northwest to 
the northern edge of the band and then southwest to the 
southern edge of the band (because the HVA is moving from 
east to west).  The searchers’ initial locations were 18,520 
meters to the west of the HVA’s initial location and on the 
southern edges of the search band.   

In the second search policy, the search is one large band, 
and the searchers are in a linear formation parallel to the 
HVA’s path.  The entire formation covers the search area by 
moving northwest to the northern edge of the band and then 
southwest to the southern edge of the band.  The first 
searcher’s initial location is 18,520 meters to the west of the 
HVA’s initial location; the remaining searchers are positioned 
to the west; each one is 3704 meters west of the previous one. 

In both cases, the searchers’ bearings are set so that they 
can stay in front of the HVA (that is, their westward motion is 
not smaller than the HVA’s speed) and cover, as much as 
possible, the search band. 

The number of defenders was in the set {5, 6, …, 10}.  The 
defenders’ speed was 40 knots.  The defenders’ sensor range 
was 1852 meters.  The range for a defender’s missile was 
1000 meters.  The defenders, when not moving towards an 
assigned target, circled positions that were 1852 meters (one 
nautical mile) ahead of the HVA.  The distance between these 
positions was 4000 meters.  The radius of these circles was 
1852 meters.  Because the HVA is moving, these positions are 
moving as well, so a defender’s path became series of loops.  
The defenders’ initial locations were 1852 meters north of 
these positions. 

The initial locations of attackers and non-combatants were 
in a box bounded by the SW and NE corners at (18520, 
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24000) and (166680, 48000).  This box was on the north side 
of the HVA’s path.   

The number of attackers was in the set {5, 6, …, 10}.  The 
attackers’ speed was 20 knots.  The attackers’ sensor range 
was 37,040 meters.  The attacker must be within 600 meters to 
attack the HVA successfully.  The attackers selected a random 
“trigger point” along the HVA’s path within the box, and their 
initial locations were north of the HVA’s path along an arc 
around that trigger point.  The radius of this arc was the 
attacker’s sensor range.  Thus, the attackers simultaneously 
detected the HVA when it reached the trigger point.  Until that 
time, the attackers waited at their initial position.  After they 
detected the HVA, the attackers moved at full speed to 
intercept the HVA. 

The number of non-combatants was in the set {20, 21, …, 
40}.  The non-combatants’ speed was 10 knots.  Each non-
combatant’s bearing was randomly chosen from the interval  
[-135, -45] degrees from positive x (east).  (Thus, they moved 
generally to the south between SW to SE.)  The non-
combatant’s initial x locations were randomly chosen to be 
somewhere inside the box. 

There were two movement scenarios for the non-
combatants; one was chosen at random.  In the first scenario, 
the non-combatant’s initial y locations were randomly chosen 
to be somewhere inside the box, and all non-combatants were 
moving at the beginning of the simulation.  In the second 
scenario, the non-combatant’s initial y locations were the 
northern edge of the box.  For each non-combatant, given its 
initial location and its bearing, the simulation determined 
where it would cross the HVA’s path, the time that the HVA 
would arrive at that location, and the time at which the non-
combatant should leave its initial location to get to that 
location at the same time.  It then added a randomly 
determined shift to that start time.  The time shift was a value 
in the interval [-300, 600] seconds. 

B. Scenario Simulation 
At the beginning of the simulation, all attackers and non-

combatants are unknown to the searchers and defenders.  
Figure 2 shows the tracks of the HVA, attackers, non-
combatants, searchers, and defenders for one of the simulation 
replications; the symbol represents the vehicle’s location at the 
end of the track. 

During each time step, the HVA, searchers, attackers, non-
combatants, and defenders moved according to their current 
bearings.  For any defender that was assigned to intercept a 
target, its current bearing was towards the target’s location at 
the beginning of the time step.  Otherwise, its bearing was 
modified so that it circled around the position ahead of the 
HVA. 

In the first non-combatant movement scenario, the non-
combatants moved steadily on constant bearings until they left 
the channel (its y coordinate is less than or equal to 0 meters).  
In the second non-combatant movement scenario, each non-
combatant remained stationary until its start time; only after its 
start time did it move until it left the channel.  In both 
scenarios, non-combatants that left cannot be detected and do 

not need to be intercepted. 
During a time step, one or more of the following events 

could occur: 
Target detection: If the distance between an undetected 

attacker or a non-combatant and the HVA is less than or equal 
to the HVA sensor range, then it is detected.  If the distance 
between an undetected attacker or a non-combatant and any 
searcher is less than or equal to the searchers’ sensor range, 
then it is detected.  Any detected attacker or non-combatant 
becomes a target.  Once it is detected, the target’s current 
location is always known by every defender. 

Target interception: If the distance between a target and 
any defender is less than or equal to the defender’s sensor 
range, then the target is intercepted.  The defender then knows 
if it is an attacker or a non-combatant.  An intercepted non-
combatant doesn’t need to be intercepted again.  If the target is 
an attacker, then the defender will continue to pursue the 
attacker; when the distance to an attacker is less than the 
defender’s missile range, then the attacker is no longer a 
threat; it cannot be detected and doesn’t need to be 
intercepted.  The defender has expended its missile, it is 
considered “empty,” and it leaves the region of interest and is 
no longer available for performing tasks. 

Successful attack:  If distance between an attacker and the 
HVA is less than or equal to the attack range, the attacker 
successfully completes its attack.  Successful attackers cannot 
be detected and do not need to be intercepted.  A successful 
attack does not destroy the HVA, which continues towards its 
destination. 

Non-combatant departure: If a non-combatant leaves the 
region of interest, it cannot be detected and doesn’t need to be 
intercepted. 

If no events occurred, then the simulation advanced the 
clock to the next time step. 

If one or more events occurred, the simulation reached a 
decision point.  If there were no targets or no active defenders, 
then the decision point was skipped, and the simulation 
advanced the clock to the next time step.  Otherwise, a task 
assignment must be determined.  Although the number of 
successful attacks is the key performance measure for the 
defenders, at most decision points, no successful attack is 
imminent (the targets are only moving towards the HVA).  
Thus, successful attacks cannot be used for making the task 
assignment decisions.  Thus, the metareasoning policy used 
the performance measures discussed in Section IV.D for 
making these decisions. 

If a metareasoning policy were being used, then the 
simulation used the surrogate models to estimate the expected 
performance of each candidate algorithm and selected the 
algorithm that had the best estimated performance.  The 
selected algorithm is used to assign targets to defenders as 
follows: 

Random allocation: this algorithm randomly perturbs the 
list of targets and the list of defenders.  The algorithm loops 
over the list of defenders and gives each one the next target 
while there are still targets to assign.  If the number of 
defenders exceeds the number of targets, some defenders will 
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be assigned no target. 
CBAA: this algorithm uses the CBAA algorithm [7] to 

assign targets to defenders.  The positions of the defenders and 
the targets are scaled by dividing all coordinates by the 
distance between the HVA’s start location and its end 
location.  In the CBAA algorithm, tasks (targets) that are 
closer to the HVA have more value, and each defender’s bid 
for a task exponentially decreases as its distance to the task 
increases.  Each defender determines which task it should do, 
receives the other defenders’ bids, and determines whether 
another defender has a higher bid for that task.  The defenders 
iterate through these actions until a consensus assignment is 
reached.  The algorithm assumes that every defender can 
communicate with all other defenders. 

Closest target: this algorithm assigns to each defender the 
target that is closest to it.  Thus, some targets may be assigned 
to more than one defender. 

Performance impact: this algorithm uses the performance 
impact algorithm [18] to assign targets to defenders.  This is 
initialized with the current assignments.  The algorithm 
maintains a sequence of tasks (targets) for each defender and 
repeatedly modifies these sequences by removing and adding 
tasks to lower the total cost of performing every task.  The 
algorithm iterates until no sequence is changed and then 
assigns each defender the first task in its sequence.  

After updating the defenders’ assignments, the simulation 
advanced the clock to the next time step and continued.  The 
simulation ended when the HVA reached its destination.  Note 
that each target is a distinct task that can be assigned to a 
defender.  Any algorithm can change a defender’s assigned 
target at any time; that is, a defender may be assigned a new 
target before it intercepts its original assignment.  Any active 
defenders that are not assigned a target return to circling. 

C. State Variables 
The metareasoning policy used the following variables to 

describe the state: (1) the number of defenders still active, (2) 
the number of targets, (3) the targets’ positions relative to 
HVA, and (4) the defenders’ positions relative to HVA.  Let n 
be the number of defenders; let m be the number of targets.  
Let ( ),V Vx y  be the location of the HVA.  Let ( ),D D

i ix y  be the 

location of the i-th defender.  Let ( ),T T
j jx y  be the location of 

the j-th target (a task that can be assigned to a defender).  Let 
X be the vector of state variables; Table I lists the expressions 
for each component. 

 
TABLE I.  STATE VARIABLES. 

State Variable Expression 
Number of active defenders 1X n=  
Number of targets 2X m=  
Min difference in x 
direction from target to 
HVA 

3 1, ,
min T V

jj m
X x x

=
= −



 

Mean difference in x 
direction from target to 
HVA 

4
1

1 m
T V
j

j
X x x

m =

= −∑  

Max difference in x 
direction from target to 
HVA 

5 1, ,
max T V

jj m
X x x

=
= −



 

Min difference in y 
direction from target to 
HVA 

6 1, ,
min T V

jj m
X y y

=
= −



 

Mean difference in y 
direction from target to 
HVA 

7
1

1 m
T V
j

j
X y y

m =

= −∑  

Max difference in y 
direction from target to 
HVA 

8 1, ,
max T V

jj m
X y y

=
= −



 

Min difference in x 
direction from defender to 
HVA 

9 1, ,
min D V

ii n
X x x

=
= −



 

Mean difference in x 
direction from defender to 
HVA 

10
1

1 n
D V
i

i
X x x

n =

= −∑  

Max difference in x 
direction from defender to 
HVA 

11 1, ,
max D V

ii n
X x x

=
= −



 

Min difference in y 
direction from defender to 
HVA 

12 1, ,
min D V

ii n
X y y

=
= −



 

Mean difference in y 
direction from defender to 
HVA 

13
1

1 n
D V
i

i
X y y

n =

= −∑  

Max difference in y 
direction from defender to 
HVA 

14 1, ,
max D V

ii n
X y y

=
= −



 

 

D. Performance Measures 
For any task (target) assignment, two performance measures 

were calculated.  The first, called “Lmax,” was the maximum 
“lateness” associated with each target.  This was normalized 
by dividing the maximum lateness by the average attacker 
intercept time.  Algorithm 1 (in the appendix) describes the 
procedure for calculating this.  The second, called “Distance,” 
was the average (over the defenders) of the distance to the 
assigned target.  This was normalized by dividing the average 
distance by the average distance to the closest target.  Because 
the Closest Target algorithm assigned each defender to the 
closest target, the distance performance measure for the task 
assignment created by that algorithm was always 1. 

E. Design of Experiments 
For data collection, we ran 100 replications of the 
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simulation.  At each decision point, the current state and both 
performance measures of all four assignments (one from each 
candidate algorithm) were saved.  Then, to create the surrogate 
models, we used MATLAB’s Neural Fitting tool (nftool) to 
generate a two-layer feed-forward neural network for each 
algorithm and performance measure (except the Closest Target 
algorithm and the distance performance measure).  This tool 
used 70% of the data points for training, 15% for validation, 
and 15% for testing.  Each network had 10 hidden neurons, 
and the tool used the Levenberg-Marquardt algorithm for 
training.  Each resulting network was exported to create a 
MATLAB function for use in the policy evaluation 
simulations. 

We evaluated forty-six policies, numbered 1 to 46 as 
follows: (1) random allocation, (2) CBAA, (3) closest target, 
(4) performance impact, (5-46) metareasoning.  Each 
metareasoning policy included two or four algorithms, an 
objective function, and a cost function (the combinations are 
enumerated in Table II).  The objective function was either 
Lmax or distance; this determined which set of neural 
networks to use for estimating algorithm performance.  The 
cost function was one of three options (shown in Table III); in 
all three options ( )ic X  did not depend upon the state.  The 
values of the cost function were set so that the algorithms that 
required more computational effort had higher cost values in 
cost functions 1 and 2. 

For policy evaluation, we evaluated all 46 policies using 
100 replications of the simulation (these were not the same 
replications used for data collection).  For each replication, the 
following values were recorded: the number of successful 
attacks and the number of decision points at which each 
candidate algorithm was used. 

 
TABLE II.  METAREASONING POLICY NUMBERS FOR EACH 

COMBINATION OF ALGORITHMS, OBJECTIVE, AND COST FUNCTION 
(RA = RANDOM ALLOCATION, CT = CLOSEST TARGET,  

PI = PERFORMANCE IMPACT). 
    Objective and cost function 
    Rel. Lmax Rel. Distance 
Algorithm combination 0 1 2 0 1 2 
RA CBAA CT PI 5 6 7 8 9 10 
RA CBAA   11 12 13 14 15 16 
RA  CT  17 18 19 20 21 22 
RA   PI 23 24 25 26 27 28 
 CBAA CT  29 30 31 32 33 34 
 CBAA  PI 35 36 37 38 39 40 
  CT PI 41 42 43 44 45 46 

 
TABLE III.  COST FUNCTIONS WITH 

VALUES FOR EACH ALGORITHM  
(RA = RANDOM ALLOCATION,  

CT = CLOSEST TARGET,  
PI = PERFORMANCE IMPACT). 

Cost Algorithm 
function RA CBAA CT PI 

0 0 0 0 0 
1 0 0.1 0.1 0.2 
2 0 0.3 0.2 0.4 

 

V. RESULTS 
The data collection step generated, over 100 simulation 

runs, 3691 points for each dataset.  Of these, 89 points were 
discarded because they have very large values for the distance 
performance measure (distance at least 4).  This left 3602 
points for building the neural networks. 

After using MATLAB’s Neural Fitting tool, seven neural 
networks were created.  Table IV lists the R values reported 
by MATLAB for the test data.  We also ran 100 simulations to 
evaluate the distributions of the error of each neural network 
(error = predicted measure – actual measure).  Table IV 
provides the interval between the 25-th and 75-th percentiles 
of the distributions of error in relative Lmax and relative 
distance on 3471 decision points.  (No neural network is used 
to predict relative distance for the Closest Target algorithm; 
this always equals 1.) 

The policy evaluation experiment included 100 replications 
for each policy.  Figure 3 shows, for each policy, the average 
number of successful attacks and the average computation 
time per decision point.  (The standard deviation for the 
number of successful attacks ranged from 1.24 to 1.70; this 
variability is not shown in order to simplify the figure.)  
Pairwise comparisons showed that the following 
metareasoning policies’ performance was not statistically 
different from the performance of the CBAA algorithm: 11, 
14, 15, and 29 to 33, all of which use the CBAA algorithm and 
one fast algorithm (policies 11, 14, and 15 use the Random 
Allocation and CBAA algorithms; policies 29 to 33 use the 
CBAA and Closest Target algorithms).  (See Table II for 
details of the performance measures and cost functions.)   

At each decision point, the average computation time to 
perform metareasoning (evaluate the surrogate models and 
select an algorithm) was 0.36 × 10-3 seconds; the average 
computation time to run the Random Allocation algorithm was 
0.10 × 10-3 seconds; the average computation time to run the 
CBAA algorithm was 0.57 × 10-3 seconds; the average 
computation time to run the Closest Target algorithm was 0.15 
× 10-3 seconds; the average computation time to run the 
Performance Impact algorithm was 3.60 × 10-3 seconds. 

The average computation time per decision point for the 
metareasoning policies includes the average time needed to 
perform metareasoning and the weighted average time to run 
the selected algorithm, which was calculated from data about 
the relative use of each candidate algorithm (Figure 4).   

Figure 4 shows the relative use of each candidate algorithm 
in each metareasoning policy.  It shows that metareasoning 
policies 11, 14, and 15 used the CBAA algorithm over 80% of 
the time; metareasoning policies 29, 30, 32, and 33 used the 
CBAA algorithm over 40% of the time.  Metareasoning policy 
31, however, used the CBAA algorithm at only 10% of the 
decision points; it used Closest Target for the remaining 90%. 
Unlike the other policies, this policy’s computational effort 
was lower than that of the CBAA algorithm. 
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TABLE IV 
R VALUES REPORTED BY MATLAB’S NEURAL FITTING TOOL  

AND MIDDLE QUARTILES OF ACCURACY  
FOR THE SEVEN NEURAL NETWORKS USING THE DATASETS COLLECTED. 

Performance  
measure 

Collaboration 
algorithm R Accuracy 

(25%, 75%) 
Lmax Random Allocation 0.77 (-0.051, 0.051) 

 CBAA 0.89 (-0.028, 0.041) 
 Closest Target 0.85 (-0.024, 0.043) 
 Performance Impact 0.84 (-0.043, 0.057) 

Distance Random Allocation 0.66 (-0.164, 0.141) 
 CBAA 0.88 (-0.067, 0.084) 
 Closest Target - - 
 Performance Impact 0.75 (-0.114, 0.129) 

 
In general, as the cost function increased (changed from 0 to 

1 to 2), the metareasoning policies used the more 
computationally expensive algorithms (CBAA and 
Performance Impact) less often (see, for example, the 
metareasoning policies 5-6-7, 8-9-10, 11-12-13, 14-15-16, 23-
24-25, 26-27-28).   

As shown in Figure 3, over all 46 policies, the performance 
(average number of successful attacks) did not steadily 
improve or degrade as the average computation time per 
decision point increased.  Some policies with low average 
computation time performed poorly (e.g., policies 7 and 13), 
but others performed well (e.g., policies 20 and 31).  The 
policies with the best performance had average computation 
time near the median.  The policies with the greatest average 
computation time had poor performance; both characteristics 
were due to their relatively high use of the Performance 
Impact algorithm, which was computationally expensive and 
performed poorly (e.g., policies 23 and 26).   

Only metareasoning policy 31 had performance that was 
equivalent to CBAA and average computation time that was 
better than CBAA.  Metareasoning policies 11, 14, 15, 29, 30, 
32, and 33 required more average computation time than 
CBAA; in these policies, the benefit of occasionally running 
the faster Random Allocation algorithm or Closest Target 
algorithm did not compensate for the overhead due to 
metareasoning.   

The system performance of the metareasoning policies that 
used the Lmax performance measure was not consistently 
better or worse than that of the metareasoning policies that 
used the Distance performance measure.   

VI. DISCUSSION 
These results show that the proposed metareasoning 

approach can develop a useful metareasoning policy, but the 
quality of the metareasoning policy (system performance and 
computation time) varied across the metareasoning policies 
that were evaluated.  Eight metareasoning policies performed 
as well as the best algorithm (CBAA).  Others performed very 
poorly.  Although no metareasoning policy required less 
computational effort per decision point than the fastest 
algorithms (the Random Allocation and Closest Target 
algorithms), some were faster than CBAA, and most were 
faster than performance impact.   

The impact of changing the cost function was mixed.  In 

general, increasing the cost (using cost function 1 or 2) 
reduced the number of times that the more “expensive” 
algorithms (CBAA and performance impact) were used; this 
was true, for instance, for metareasoning policy 31, which 
used cost function 2 and selected the CBAA algorithm only 
10% of the time.  For some metareasoning policies (e.g., 11, 
12, and 13, which included the random allocation and CBAA 
algorithms and the Lmax objective), this degraded 
performance because the CBAA algorithm yielded good 
performance in these scenarios.  For metareasoning policies 
that included the performance impact algorithm, however, this 
improved performance because the performance impact 
algorithm yielded poor performance in these scenarios (e.g., 
metareasoning policies 41 to 46).   

None of the metareasoning policies that used all four 
algorithms (policies 5 to 10) had performance better than the 
best metareasoning policies that used only two algorithms.  
This result was surprising, because a metareasoning policy 
with more algorithms could be expected to choose even better 
task assignments at each decision point.  Two factors need to 
be considered, however.  First, the inaccuracies in the 
performance estimates generated by the surrogate models 
make it possible that, at some decision points, the algorithm 
that would have yielded the truly best task assignment 
(measured by Lmax or distance) was not chosen because its 
estimated performance was poor while another algorithm’s 
estimated performance was better; including another algorithm 
in the metareasoning policy makes this more likely.  This 
inaccuracy could be reduced by collecting more data to cover 
more possible scenarios or generating the surrogate models 
using another approach (instead of using neural networks).  
Second, the dynamics of the system are complex enough that 
optimizing Lmax or distance at the current decision point may 
be a myopic choice.  This results from the short time-horizon 
considered at each decision point; none of the algorithms 
attempted to optimize the performance across the entire time 
horizon.  The metareasoning approach described here, like 
those considered in other work, used a myopic estimate of 
utility [32].  Generating better long-term performance through 
better short-term decision making in an uncertain environment 
is a well-known difficult problem [54].   

In the scenarios used to evaluate the metareasoning policies, 
the number of agents and targets was small, so the overhead of 
using metareasoning required more computational effort than 
running the fastest algorithms (random allocation and closest 
target).  Thus, although they reduced the number of times that 
the CBAA algorithm was used, metareasoning policies that 
used CBAA usually did not reduce the computational effort 
(metareasoning policy 31 was an exception).  This might be 
different in scenarios with many more agents and targets, 
where the computational cost of the algorithms is much larger 
than that of metareasoning; in such cases, the computational 
savings due to using faster algorithms at the right times would 
more than compensate for the overhead of using 
metareasoning, and more metareasoning policies could yield 
competitive performance with less computational effort.  
Future work should conduct experiments to explore this 
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possibility. 
The results here are limited to the specific scenario that was 

considered.  Although this scenario is related to the CSAT 
problem, it is not, however, a standard CSAT problem, and the 
metareasoning policy employed cannot be directly applied to 
other CSAT problems.  Still, the metareasoning approach can 
be used to generate a metareasoning policy for any class of 
CSAT problems. 

This exploratory research was meant to generate insights 
into using this metareasoning approach for these types of 
problems.  The results of the experiments described here 
indicate that it may be possible to generate an effective 
metareasoning policy with only two candidate algorithms: one 
good, fast algorithm and one better but more expensive one.   

VII. CONCLUSION 
This paper proposed a novel data-driven metareasoning 

approach for CSAT and similar problems and described two 
sets of simulation experiments: (1) simulations used to collect 
data for generating surrogate models and (2) simulations used 
to evaluate metareasoning policies that used these surrogate 
models.   

The proposed metareasoning approach has four steps: (1) 
define the state variables and performance measure and 
identify the candidate algorithms, (2) conduct simulations to 
collect data on the performance of the candidate algorithms in 
different states, (3) use this data to train surrogate models that 
can quickly estimate the performance of the candidate 
algorithms, and (4) deploy these surrogate models in a 
metareasoning policy.  In our implementation, we used the 
data to train neural networks as the surrogate models, but other 
function approximation approaches could be used. 

The computational results show that, for a simulated ship 
protection scenario that is a variant of the CSAT problem, a 
metareasoning policy constructed using this approach can 
perform as well as the best candidate algorithm while reducing 
the computational effort.  This metareasoning policy uses one 
good, fast algorithm and one better but more expensive one. 

These results and these insights are a first step towards 
understanding the utility of the proposed metareasoning 
approach and the behavior of such metareasoning policies.  It 
would be interesting to apply the approach to a wide variety of 
CSAT problems, with different candidate algorithms, state 
variables, and performance measures.  Performing an ablation 
study to determine which state variables are the most valuable 
would be useful, and additional analysis of the choices made 
at each decision point could provide insights into the 
metareasoning policies’ performance.  It would also be 
interesting to expand the approach to consider ways to 
incorporate agent-specific information in the metareasoning 
policy; with that type of policy, some agents could choose (via 
the metareasoning policy) one algorithm while the others 
choose another algorithm.  There may be simpler 
metareasoning policies (based on simple rules, for instance) 
that perform as well as the data-driven approach that this 
paper has proposed; such rules could be based on the 
characteristics of the states in which each collaboration 

algorithm is used.  Other surrogate modeling approaches could 
be used as well.  Finally, approaches in which the surrogate 
models are learned or updated online could be considered.  
Although these ideas are beyond the scope of this paper, there 
could be considerable merit in them. 

APPENDIX 
This appendix describes the procedure for calculating Lmax 

for a given task assignment.  It calls the subroutines 
getintercept and calcposition, which are also described in this 
appendix. 

 
Given:  
{ }1, , n : the set of defenders that are assigned a target. 

{ }1, , m : the set of targets (some may be assigned to no 
defender). 

iT : the target to which defender i is assigned, for 1, ,i n= 

. 
( ),V Vx y : the location of the HVA.   

( ),W Wx y : the destination of the HVA. 

( ),D D
i ix y  be the location of defender i, for 1, ,i n=  . 

( ),T T
j jx y : the location of the j-th target, for 1, ,j m=  . 

Vv : the speed of the HVA (meters / second) 

Dv : the speed of a defender (meters / second) 

Tv : the presumed speed of a target (meters / second) 
M: a very large time (e.g., the time needed for the HVA to 

reach its destination). 
 
Step 1.  For 1, ,j m=  , determine ( ),A A

j jx y  and A
jt , the 

location and time at which target j could attack the HVA (its 
“due date”), by calling  
getintercept ( ), , , , , , ,V V W W T T

V j j Tx y v x y x y v .  If A
jt = ∞ , then set 

A
jt M= .  Calculate ( , )A T A T

j j j j jt x x y y∆ = − − . 

Step 2.  For 1, ,i n=  , determine ( ),I I
i ix y  and I

it , the 

location and time at which defender i could intercept target iT , 
by calling  
getintercept ( ), , , , , , ,

i i i i

T T A A D D
T T T T T i i Dx y v x y x y v .  If I

it = ∞ , then set 
I
it M= . 

Step 3.  For 1, ,j m=  , determine jΦ , the set of defenders 

assigned to target j: { }:j ii T jΦ = = . 

Step 4.  For all j such that jΦ  is not empty, calculate the 

target’s “completion time” { }min :I
j i jC t i= ∈ Φ . 

Step 4.  If there exist any defenders i such that I
it M< , go 

to Step 5.  Else, go to Step 6. 
Step 5.  For all j such that jΦ  is empty, perform Steps 5a 
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and 5b.  Then go to Step 7. 
Step 5a.  For all i such that I

it M< , perform Steps 5a1, 5a2, 
and 5a3. 

Step 5a1.  Calculate ( ),P P
j jx y , the location of target j at 

time I
it , by calling  

calcposition ( ), , , ,T T I
j j j T ix y t v t∆ . 

Step 5a2.  Calculate ( ),Q Q
j jx y , the location of target j at 

time M, by calling  
calcposition ( ), , , ,T T

j j j Tx y t v M∆ . 

Step 5a3.  Determine ( ),K K
i ix y  and K

it , the location and 

elapsed time at which defender i could intercept target j after 
intercepting its assigned target, by calling  
getintercept ( ), , , , , , ,P P Q Q I I

j j T j j i i Dx y v x y x y v .  If K
it = ∞ , then set 

K I
i it M t= − . 

Step 5b.  Calculate the target’s “completion time” 
{ }min :I K I

j i i iC t t t M= + < . 

Step 6.  For all j such that jΦ  is empty, set jC M= . 

Step 7.  Calculate { }max 1, , 1
max /

m
A A

j j jj m j
L C t m t

= =

= − ⋅ ∑


  

 
getintercept ( )0 0 1 1 1 2 2 2, , , , , , ,x y v x y x y v  returns an intercept 

position 3 3( , )x y  and an intercept time *t . 
Given: 
( )0 0,x y : the target’s location 

( )1 1,x y : the target’s destination 

1v : speed of the target (meters per second) 

( )2 2,x y : location of the pursuer 

2v : speed of the pursuer (meters per second) 
 

Step 1.  Calculate ( ) ( )2 2
1 0 1 0D x x y y= − + − .   

Step 2.  If 1 0y y≤ , calculate 1
1 0cos (( ) / )x x Dα −= − ; else, 

1
1 0cos (( ) / )x x Dα −= − − .  

Step 3.  Calculate ( ) 2 0

2 0

cos sin
,

sin cosp p

x x
x y

y y
α α
α α

−−   
=    −   

  , the 

transformed location of the pursuer. 
Step 4.  Find the roots of the polynomial 

( )2 2 2 2 2
2 1 12 0p p pv v t x v t x y− + − − =   . 

Step 5.  If there are no real roots, then return *t = ∞ . 
Step 6.  If there is only one negative root, then return 

*t = ∞ . 
Step 7.  Set *t  to equal the smallest positive root and 

calculate *
1 /r v t D=  

Step 8.  If 1r > , then return *t = ∞ . 

Step 9.  Calculate 
( ) ( ) ( )( )3 3 0 1 0 0 1 0, ,x y x r x x y r y y= + − + −  and return 3 3( , )x y  

and *t . 
 
calcposition ( )0 0, , , ,x y v t∆  returns the location ( )1 1,x y  
Given: 
( )0 0,x y : the current location 

( , )x y∆ = ∆ ∆ : a vector parallel to the bearing. 
v: the speed (meters per second) 
t: the time (seconds) 
 

Step 1.  Calculate 2 2D x y= ∆ + ∆ .   

Step 2.  Return ( ) ( )1 1 0 0, / , /x y x vt x D y vt y D= + ∆ + ∆ . 
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Fig. 2. Tracks showing the movement of the HVA, searchers, defenders, attackers, and non-combatants in one of the simulation replications. 

Each track covers the same amount of simulated time.   
Blue square: HVA.  Blue circle: searcher.  Blue x: defender.  Red triangle: attacker.  Black diamond: non-combatant.   
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Fig. 3.  The average number of successful attacks and the average computation time per decision for each policy. 

1 = Random Allocation, 2 = CBAA, 3 = Closest Target, 4 = Performance Impact. 
See Table II for definition of each metareasoning policy (5 to 46). 
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Fig. 4.  The relative use of each candidate algorithm in each policy. 
1 = Random Allocation, 2 = CBAA, 3 = Closest Target, 4 = Performance Impact. 

See Table II for definition of each metareasoning policy (5 to 46). 
 


