
 1

Abstract— When coordinating their actions to accomplish a

mission, the agents in a multi-agent system may use a
collaboration algorithm to determine which agent performs
which task. This paper describes a novel data-driven
metareasoning approach that generates a metareasoning policy
that the agents can use whenever they must collaborate to assign
tasks. This metareasoning approach collects data about the
performance of the algorithms at many decision points and uses
this data to train a set of surrogate models that can estimate the
expected performance of different algorithms. This yields a
metareasoning policy that, based on the current state of the
system, estimated the algorithms’ expected performance and
chose the best one. For a ship protection scenario, computational
results show that one version of the metareasoning policy
performed as well as the best component algorithm but required
less computational effort. The proposed data-driven
metareasoning approach could be a promising tool for
developing policies to control multi-agent autonomous systems.

Index Terms—Distributed task allocation, metareasoning,
multivehicle.

I. INTRODUCTION
N many multi-agent systems, the various agents use a
collaboration algorithm to determine which agents should

perform which tasks. Previous research has studied scenarios
in which all agents use the same collaboration algorithm
throughout their mission, and many different collaboration
algorithms have been proposed and tested, but they may
require excessive communication and computation with little
additional benefit.

Metareasoning is thinking about thinking, or deciding how
to decide. Examples of metareasoning include determining
how to make a decision and determining when to stop
deliberating and execute an action. Humans use
metareasoning to select the most appropriate way to make a
decision, which should lead to better decisions; the next wave
of AI-enabled autonomous systems could benefit from this as
well.

Cooperative search, acquisition, and tracking (CSAT) is an
important application for multi-agent autonomous systems in

Manuscript received DATE. This work was supported in part by the U.S.

Naval Air Warfare Center-Aircraft Division. J.W. Herrmann is with the
Department of Mechanical Engineering and the Institute for Systems
Research, University of Maryland, College Park, MD 20742 USA (e-mail:
jwh2@umd.edu).

domains such as emergency response, search and rescue,
wildfire management, homeland security, and defense.
Previous research has developed a variety of CSAT
collaboration algorithms, so it should be possible to exploit
this diversity by using metareasoning in dynamic, uncertain
environments to determine which collaboration algorithm is
most appropriate for the current situation. This paper
describes a novel data-driven approach for generating a
metareasoning policy and presents the results of computational
experiments used to evaluate the metareasoning policy for a
simulated ship protection scenario. This exploratory research
is meant to generate insights into generating and using
metareasoning policies for problems such as CSAT.

The problem of protecting naval ships from small boats in a
crowded maritime environment involves finding the small
boats, which includes harmless craft (such as fishing vessels)
and (possibly) adversaries who wish to attack the ship;
gathering information about them using various sensors (e.g.,
radar and electro-optical and infrared cameras); identifying
and determining which (if any) are threats; and assessing,
tracking, and neutralizing the threats. A variety of unmanned
surface vehicles (USVs) and unmanned aerial vehicles
(UAVs) may be deployed in these tasks. The objectives are to
minimize the likelihood of a successful attack on the ship (by
any adversary) and the likelihood of mistakenly attacking a
harmless vessel.

The remainder of this paper is organized as follows: Section
II discusses related work on CSAT and metareasoning.
Section III presents the approach for generating the
metareasoning policy. Section IV describes the experiments
done to generate the metareasoning policy and the
experiments done to evaluate it. Section V presents the
results. Section VI discusses the results. Section VII
concludes the paper.

II. RELATED WORK
In the CSAT problem [1, 2, 3], multiple agents search for

and track multiple moving, noncooperative targets. Examples
of targets include injured persons in a search and rescue
operation, wildfire patterns in wildfire management, and
potentially hostile vessels in maritime environments.
Although noncooperative targets do not share their locations
with the searchers, they also do not evade the searchers (the
problem with evasive targets is a different challenge). To
observe the targets, the searchers use sensors that may provide
a bearing (the direction from the searcher to the target), a

Data-driven Metareasoning for
Collaborative Autonomous Systems

Jeffrey W. Herrmann

I

 2

range (the distance from the searcher to the target), or both.
Typical sensors have a limited range and are noisy (the
measurements have errors). Data fusion approaches [4] can be
used to combine the measurements from multiple sensors to
estimate a target’s location. A searcher must track a target to
obtain enough measurements to reduce the uncertainty in its
location, at which point the target is “found” and can be
rescued or neutralized.

Coordination among searchers may be centralized (one
leader), decentralized (multiple leaders), or distributed (no
leaders) [3]. The cooperative multi-robot observation of
multiple moving targets (CMOMMT) problem can be viewed
as a special case of CSAT with perfect sensors, and
CMOMMT approaches can be adapted for use in the CSAT
setting [5, 6].

Multiple types of planning algorithms have been proposed
for CSAT systems. Task-based approaches identify specific
tasks (such as search, track, and refuel) at specific locations
and assign them to agents using mechanisms such as auctions.
The consensus-based auction algorithm (CBAA) and
consensus-based bundle algorithm (CBBA) [7] have been used
and extended by other researchers [1, 8-14]. Other task
allocation approaches have been studied by Jin et al. [15],
Ganapathy and Passino [16], and Singhal and Dahiya [17].

The performance impact algorithm [18, 19] is another
distributed task allocation method that systematically
considers how to shift tasks from one agent to another to
reduce the total cost of the task assignment. It can not only
generate a new task assignment but also improve a given task
assignment.

Value-based approaches define an objective function that
each agent seeks to optimize. One class of objective function
uses measures of information such as Fisher information
measure [20] and mutual information [21, 22]. Another class
uses potential fields that force agents towards targets [6, 23,
24]. Another class generates a reward function based on a
partially observable Markov decision process (POMDP) [25-
28]. Ahner [29], Terelius et al. [30], and Hale et al. [31]
described more general optimization approaches.

No single approach is ideal. For instance, when using a
task-based approach that focuses on tracking targets, a small
number of targets can “capture” the searchers’ attention while
other targets go unobserved. Although consensus-based
auction approaches have been successful at coordinating
multiple agents, they may use excessive number of messages
to converge on task allocations.

Metareasoning. Metareasoning is a formalization of
metacognition, which an intelligent agent does when it thinks
about its own thinking [32]. An agent uses metareasoning,
also known as metalevel control, to improve the quality of its
decisions [33]. Examples include determining which
algorithm to use to make a decision and determining when to
stop computing and execute an action. Cox [32], Cox and
Raja [33], Russell and Wefald [34], and Anderson and Oates
[35] presented fundamental concepts in metareasoning.
Because finding the optimal metareasoning decision online is
computationally challenging [36, 37, 38], it is appropriate to

determine a policy offline or consider a small number of
options.

The algorithm selection problem [39, 40] is a metareasoning
problem that is closely related to the proposed metareasoning
approach. Smith-Miles [40] proposed a framework that
developed algorithm selection rules by correlating “features”
of the problem instances and the performance of candidate
algorithms on those instances. Leyton-Brown et al. [41] used
statistical regression techniques to learn models to estimate
expected runtime for combinatorial optimization problems;
Hutter et al. [42] used forward selection to identify the
instance features needed as inputs to such models. Munoz et
al. [43] used a neural network to build a model to predict the
expected number of function evaluations needed to solve a
continuous optimization problem. Munoz et al. [44] and
Kotthoff [45] reviewed algorithm selection methods for
combinatorial optimization and continuous optimization
problems.

Zilberstein [46] proposed the concept of “operational
rationality,” which determines the best way to use a set of
fixed algorithms, and used metareasoning to determine the
best deliberation time of anytime algorithms by considering
the algorithm’s performance profile (see also Zilberstein and
Russell [47]). The metareasoning approach proposed herein
also attempts to be operationally rational by using
performance and computational cost estimates for algorithm
selection, as Russell and Wefald did [34].

Distributed metareasoning can be used to coordinate a team
of agents [48]. Alexander et al. [49] developed a framework
for metareasoning in multi-agent systems, in which the agents
consider and select their local problem-solving actions while
coordinating with the other agents. In a multi-agent system,
each agent must also consider whether to communicate with
the others. Despite the complexity of the metareasoning task,
however, it would be desirable if each agent could develop
meta-level plans that consider a sequence of computational
actions (not merely the next computation). In Alexander’s
framework, each agent solves a Markov decision process
(MDP), which generates a computation policy that the agent
can use to choose the best computation based on the current
state. Because the possible actions of the other agents create
pending contexts that need to be considered and affect the
value of the agent’s actions, the agent’s metareasoning
procedure must alternate between its local decision making
and the coordinated decision making of the entire group.
Moreover, the agents must share information about their
metareasoning decisions.

Sleight and Durfee [50] considered the problem of
determining an organizational design that coordinates both the
agents’ behavior and their reasoning by prohibiting reasoning
about certain actions in certain states. For the problem of
multiagent tornado tracking, Cheng et al. [51] presented a
meta-level control approach in which the meta-level selects an
abstract action that a lower-level controller implements by
developing a detailed plan. Kota et al. [52] presented an
approach in which agents decide whether to adapt the
organization, which consists of relations between agents.

 3

Among the different types of metareasoning approaches that
have been proposed, optimal metareasoning, which optimizes
overall agent performance given fixed object-level decision-
making processes, is the most promising approach for
enabling the bounded rationality of an agent due to the ease of
implementation and the ability to generate guarantees about
agent behavior [53]. (Bounded rationality describes the limits
of a decision-maker due to limited time, finite computational
resources, and other resource constraints.) It has been
employed, for instance, to monitor an anytime algorithm and
determine when the algorithm should stop searching and
return the best solution found so far.

Previous multi-agent metareasoning approaches explored
innovative, relevant ideas but did not directly address the
problem of deciding which algorithm an agent should use to
plan its next move while participating in a CSAT mission.
The work described in this paper contributes to our knowledge
of metareasoning and the CSAT problem by proposing a novel
data-driven metareasoning approach and using it to generate a
metareasoning policy for a specific CSAT problem. Although
the experiments described in this paper focus on a specific
CSAT problem, the data-driven metareasoning approach is
general and can be applied to a variety of CSAT problems and
other multi-agent systems.

III. METAREASONING APPROACH

A. Using a Metareasoning Policy
Before describing the approach used to generate the

metareasoning policy, it will be useful to describe how the
agents use the metareasoning policy. In the CSAT problem, a
decision point is a time at which the available agents must
decide which tasks to perform. A decision point may occur
when a new task appears, when an existing task is completed,
or when the number of available agents changes.

At each decision point, the agents use the metareasoning
policy to determine which collaboration algorithm will be
used to assign tasks to agents. Based on information about the
current environment, the tasks, and the agents (the “state”), the
metareasoning policy quickly estimates the performance of
every candidate collaboration algorithm using a surrogate
model. This performance represents the expected quality of
the solution that that collaboration algorithm will generate.
The metareasoning policy selects the collaboration algorithm
that has the best estimated performance, and the agents use the
selected collaboration algorithm to decide which tasks to
perform. This structure, in which the agents simultaneously
use the same metareasoning policy to select the collaboration
algorithm, follows the design principle that the agents’
metareasoning be choreographed [49].

Let X be the current state of the system (the current
environment, the tasks, and the agents) at a decision point.
Let { }1, , IA a a=  be the set of candidate algorithms. For i =

1, …, I, let ()if X be the surrogate model that estimates the

performance of algorithm ia when the state equals X. The

cost of computation is also important to consider. Let ()ic X

be the penalty of using algorithm ia when the state equals X.
Then, if a smaller value of performance is preferred, the
metareasoning policy is a function ()MR X that selects an
algorithm when the state equals X:

1, ,
() arg min () ()i i

i I
MR X f X c X

=
= +



 (1)

B. Generating the Metareasoning Policy
As shown in Figure 1, the proposed data-driven

metareasoning approach has four steps:
1. Definition: define the state variables and performance

measure and identify the candidate algorithms,
2. Data collection: conduct simulations to collect data on

the performance of the candidate algorithms in different states,
3. Model building: use this data to train the surrogate

models that can quickly estimate the performance of the
candidate algorithms, and

4. Deployment: deploy these surrogate models in a
metareasoning policy.

Step 1 (Definition) requires identifying the key variables
that describe the state of the system, especially the agents and
the tasks that need to be performed, and the performance
measure that should be optimized. The set of candidate
algorithms A should also be defined. At this point, there is no
specific approach for identifying these, although our results
give some insights into the desirable characteristics of the
performance measure and the set of candidate algorithms (as
discussed in Section VI).

Step 2 (Data collection) requires running numerous
simulations of the CSAT system. At each decision point t in
each replication, every algorithm in A is used to make a
potential task assignment. For algorithm ia A∈ , the quality

itY of the potential task assignment is determined; this quality
is the value of the performance measure defined in Step 1.
The current state tX and quality itY are saved in a dataset iD
for this algorithm. One of the potential task assignments is
selected at random as the solution for that decision point.

Step 3 (Model building) uses machine learning to generate,
for every algorithm ia A∈ , a surrogate model ()if X such

that ()i t itf X Y≈ . This surrogate model is trained using the

inputs in the dataset iD .
Step 4 (Deployment) adds the surrogate models to the

metareasoning policy ()MR X .
In this general approach, the state X could be the state of the

entire system, known perfectly by every agent, or the partial
information that an agent has about the state of the entire
system. In the experiments described in Sections IV and V,
the agents all have the same information about the state of the
system and use the same collaboration algorithm determined
by the metareasoning policy.

In principle, the agents could apply all of the collaboration
algorithms in A to generate multiple potential task
assignments, evaluate the quality of these task assignments,

 4

and use the one with the best quality. This would require the
computational expense of running all of the collaboration
algorithms, however. The proposed approach simplifies the
metareasoning and reduces the online computational burden
by using the surrogate models instead, which follows the
suggestions of previous work that has shown that it is
desirable to use simpler approaches for metareasoning due to
the lack of exact knowledge and the need to minimize the
computational effort used for metareasoning [34, 36, 37].

Although the data collection and model building steps will
require computational effort, the simulation replications in the
data collection step are independent from each other and can
be run in parallel. In addition, the model building tasks for the
candidate algorithms are independent from each other and can
be run in parallel.

Fig. 1. Schematic of the data-driven metareasoning approach.

IV. EXPERIMENTAL SETUP
As a test of this data-driven metareasoning approach for

collaborative agents, we considered a simplified ship
protection scenario that is related to the CSAT problem. In
this scenario, a high-value naval asset (HVA) is traveling
through a channel towards its destination. The HVA is
accompanied by aircraft (“searchers”) that fly ahead of the
HVA to detect targets and aircraft (“defenders”) that move to
intercept and classify any targets that are found by the
searchers. The targets are surface vessels of two types: (1)
“attackers” approach the HVA and attack it when they are
close enough to damage the HVA; (2) “non-combatants”
move across the channel for their own purposes and pose no
threat to the HVA.

Although a searcher can detect attackers and non-
combatants, its limited sensors cannot distinguish them, so any
surface vessel found is simply labeled as a “target.” A
defender, when it gets close enough to a target, can classify
the target as an attacker or a non-combatant; if the target is an
attacker, the defender can also use an anti-ship missile to stop
an attacker. In the scenarios considered in this study, a
defender has only one missile; when it has used its missile, it
leaves the channel and participates in the mission no more.

A. Scenario Description
Some aspects of the scenario are fixed; other aspects are

randomly determined when the scenario is initialized. All
speeds in knots were converted to meters per second (1 knot =
0.514444 meters per second). All coordinates and distances
were measured in meters. The simulation time step was 30
seconds.

There was exactly one HVA. The HVA’s speed was 12
knots. The HVA’s sensor range was 18,520 meters. The
HVA traveled east to west; its start location was (185200,
24000); its destination was (0, 24000).

The number of searchers was in the set {1, 2, 3, 4}. The
searchers’ speed was 40 knots. The searchers’ sensor range
was 3704 meters. There were two possible search policies. In
the first search policy, the search space was divided into
equal-sized horizontal bands that were parallel to the HVA’s
path. Each searcher covered one band by moving northwest to
the northern edge of the band and then southwest to the
southern edge of the band (because the HVA is moving from
east to west). The searchers’ initial locations were 18,520
meters to the west of the HVA’s initial location and on the
southern edges of the search band.

In the second search policy, the search is one large band,
and the searchers are in a linear formation parallel to the
HVA’s path. The entire formation covers the search area by
moving northwest to the northern edge of the band and then
southwest to the southern edge of the band. The first
searcher’s initial location is 18,520 meters to the west of the
HVA’s initial location; the remaining searchers are positioned
to the west; each one is 3704 meters west of the previous one.

In both cases, the searchers’ bearings are set so that they
can stay in front of the HVA (that is, their westward motion is
not smaller than the HVA’s speed) and cover, as much as
possible, the search band.

The number of defenders was in the set {5, 6, …, 10}. The
defenders’ speed was 40 knots. The defenders’ sensor range
was 1852 meters. The range for a defender’s missile was
1000 meters. The defenders, when not moving towards an
assigned target, circled positions that were 1852 meters (one
nautical mile) ahead of the HVA. The distance between these
positions was 4000 meters. The radius of these circles was
1852 meters. Because the HVA is moving, these positions are
moving as well, so a defender’s path became series of loops.
The defenders’ initial locations were 1852 meters north of
these positions.

The initial locations of attackers and non-combatants were
in a box bounded by the SW and NE corners at (18520,

Data set DI
for algorithm aI

Surrogate model
f1(x) for a1

2. Data Collection

3. Model
Building

Data set D1
for algorithm a1

. . .

Surrogate model
fI(x) for aI

3. Model
Building

1. Definition

4. Deployment

Metareasoning
policy

 5

24000) and (166680, 48000). This box was on the north side
of the HVA’s path.

The number of attackers was in the set {5, 6, …, 10}. The
attackers’ speed was 20 knots. The attackers’ sensor range
was 37,040 meters. The attacker must be within 600 meters to
attack the HVA successfully. The attackers selected a random
“trigger point” along the HVA’s path within the box, and their
initial locations were north of the HVA’s path along an arc
around that trigger point. The radius of this arc was the
attacker’s sensor range. Thus, the attackers simultaneously
detected the HVA when it reached the trigger point. Until that
time, the attackers waited at their initial position. After they
detected the HVA, the attackers moved at full speed to
intercept the HVA.

The number of non-combatants was in the set {20, 21, …,
40}. The non-combatants’ speed was 10 knots. Each non-
combatant’s bearing was randomly chosen from the interval
[-135, -45] degrees from positive x (east). (Thus, they moved
generally to the south between SW to SE.) The non-
combatant’s initial x locations were randomly chosen to be
somewhere inside the box.

There were two movement scenarios for the non-
combatants; one was chosen at random. In the first scenario,
the non-combatant’s initial y locations were randomly chosen
to be somewhere inside the box, and all non-combatants were
moving at the beginning of the simulation. In the second
scenario, the non-combatant’s initial y locations were the
northern edge of the box. For each non-combatant, given its
initial location and its bearing, the simulation determined
where it would cross the HVA’s path, the time that the HVA
would arrive at that location, and the time at which the non-
combatant should leave its initial location to get to that
location at the same time. It then added a randomly
determined shift to that start time. The time shift was a value
in the interval [-300, 600] seconds.

B. Scenario Simulation
At the beginning of the simulation, all attackers and non-

combatants are unknown to the searchers and defenders.
Figure 2 shows the tracks of the HVA, attackers, non-
combatants, searchers, and defenders for one of the simulation
replications; the symbol represents the vehicle’s location at the
end of the track.

During each time step, the HVA, searchers, attackers, non-
combatants, and defenders moved according to their current
bearings. For any defender that was assigned to intercept a
target, its current bearing was towards the target’s location at
the beginning of the time step. Otherwise, its bearing was
modified so that it circled around the position ahead of the
HVA.

In the first non-combatant movement scenario, the non-
combatants moved steadily on constant bearings until they left
the channel (its y coordinate is less than or equal to 0 meters).
In the second non-combatant movement scenario, each non-
combatant remained stationary until its start time; only after its
start time did it move until it left the channel. In both
scenarios, non-combatants that left cannot be detected and do

not need to be intercepted.
During a time step, one or more of the following events

could occur:
Target detection: If the distance between an undetected

attacker or a non-combatant and the HVA is less than or equal
to the HVA sensor range, then it is detected. If the distance
between an undetected attacker or a non-combatant and any
searcher is less than or equal to the searchers’ sensor range,
then it is detected. Any detected attacker or non-combatant
becomes a target. Once it is detected, the target’s current
location is always known by every defender.

Target interception: If the distance between a target and
any defender is less than or equal to the defender’s sensor
range, then the target is intercepted. The defender then knows
if it is an attacker or a non-combatant. An intercepted non-
combatant doesn’t need to be intercepted again. If the target is
an attacker, then the defender will continue to pursue the
attacker; when the distance to an attacker is less than the
defender’s missile range, then the attacker is no longer a
threat; it cannot be detected and doesn’t need to be
intercepted. The defender has expended its missile, it is
considered “empty,” and it leaves the region of interest and is
no longer available for performing tasks.

Successful attack: If distance between an attacker and the
HVA is less than or equal to the attack range, the attacker
successfully completes its attack. Successful attackers cannot
be detected and do not need to be intercepted. A successful
attack does not destroy the HVA, which continues towards its
destination.

Non-combatant departure: If a non-combatant leaves the
region of interest, it cannot be detected and doesn’t need to be
intercepted.

If no events occurred, then the simulation advanced the
clock to the next time step.

If one or more events occurred, the simulation reached a
decision point. If there were no targets or no active defenders,
then the decision point was skipped, and the simulation
advanced the clock to the next time step. Otherwise, a task
assignment must be determined. Although the number of
successful attacks is the key performance measure for the
defenders, at most decision points, no successful attack is
imminent (the targets are only moving towards the HVA).
Thus, successful attacks cannot be used for making the task
assignment decisions. Thus, the metareasoning policy used
the performance measures discussed in Section IV.D for
making these decisions.

If a metareasoning policy were being used, then the
simulation used the surrogate models to estimate the expected
performance of each candidate algorithm and selected the
algorithm that had the best estimated performance. The
selected algorithm is used to assign targets to defenders as
follows:

Random allocation: this algorithm randomly perturbs the
list of targets and the list of defenders. The algorithm loops
over the list of defenders and gives each one the next target
while there are still targets to assign. If the number of
defenders exceeds the number of targets, some defenders will

 6

be assigned no target.
CBAA: this algorithm uses the CBAA algorithm [7] to

assign targets to defenders. The positions of the defenders and
the targets are scaled by dividing all coordinates by the
distance between the HVA’s start location and its end
location. In the CBAA algorithm, tasks (targets) that are
closer to the HVA have more value, and each defender’s bid
for a task exponentially decreases as its distance to the task
increases. Each defender determines which task it should do,
receives the other defenders’ bids, and determines whether
another defender has a higher bid for that task. The defenders
iterate through these actions until a consensus assignment is
reached. The algorithm assumes that every defender can
communicate with all other defenders.

Closest target: this algorithm assigns to each defender the
target that is closest to it. Thus, some targets may be assigned
to more than one defender.

Performance impact: this algorithm uses the performance
impact algorithm [18] to assign targets to defenders. This is
initialized with the current assignments. The algorithm
maintains a sequence of tasks (targets) for each defender and
repeatedly modifies these sequences by removing and adding
tasks to lower the total cost of performing every task. The
algorithm iterates until no sequence is changed and then
assigns each defender the first task in its sequence.

After updating the defenders’ assignments, the simulation
advanced the clock to the next time step and continued. The
simulation ended when the HVA reached its destination. Note
that each target is a distinct task that can be assigned to a
defender. Any algorithm can change a defender’s assigned
target at any time; that is, a defender may be assigned a new
target before it intercepts its original assignment. Any active
defenders that are not assigned a target return to circling.

C. State Variables
The metareasoning policy used the following variables to

describe the state: (1) the number of defenders still active, (2)
the number of targets, (3) the targets’ positions relative to
HVA, and (4) the defenders’ positions relative to HVA. Let n
be the number of defenders; let m be the number of targets.
Let (),V Vx y be the location of the HVA. Let (),D D

i ix y be the

location of the i-th defender. Let (),T T
j jx y be the location of

the j-th target (a task that can be assigned to a defender). Let
X be the vector of state variables; Table I lists the expressions
for each component.

TABLE I. STATE VARIABLES.

State Variable Expression
Number of active defenders 1X n=
Number of targets 2X m=
Min difference in x
direction from target to
HVA

3 1, ,
min T V

jj m
X x x

=
= −



Mean difference in x
direction from target to
HVA

4
1

1 m
T V
j

j
X x x

m =

= −∑

Max difference in x
direction from target to
HVA

5 1, ,
max T V

jj m
X x x

=
= −



Min difference in y
direction from target to
HVA

6 1, ,
min T V

jj m
X y y

=
= −



Mean difference in y
direction from target to
HVA

7
1

1 m
T V
j

j
X y y

m =

= −∑

Max difference in y
direction from target to
HVA

8 1, ,
max T V

jj m
X y y

=
= −



Min difference in x
direction from defender to
HVA

9 1, ,
min D V

ii n
X x x

=
= −



Mean difference in x
direction from defender to
HVA

10
1

1 n
D V
i

i
X x x

n =

= −∑

Max difference in x
direction from defender to
HVA

11 1, ,
max D V

ii n
X x x

=
= −



Min difference in y
direction from defender to
HVA

12 1, ,
min D V

ii n
X y y

=
= −



Mean difference in y
direction from defender to
HVA

13
1

1 n
D V
i

i
X y y

n =

= −∑

Max difference in y
direction from defender to
HVA

14 1, ,
max D V

ii n
X y y

=
= −



D. Performance Measures
For any task (target) assignment, two performance measures

were calculated. The first, called “Lmax,” was the maximum
“lateness” associated with each target. This was normalized
by dividing the maximum lateness by the average attacker
intercept time. Algorithm 1 (in the appendix) describes the
procedure for calculating this. The second, called “Distance,”
was the average (over the defenders) of the distance to the
assigned target. This was normalized by dividing the average
distance by the average distance to the closest target. Because
the Closest Target algorithm assigned each defender to the
closest target, the distance performance measure for the task
assignment created by that algorithm was always 1.

E. Design of Experiments
For data collection, we ran 100 replications of the

 7

simulation. At each decision point, the current state and both
performance measures of all four assignments (one from each
candidate algorithm) were saved. Then, to create the surrogate
models, we used MATLAB’s Neural Fitting tool (nftool) to
generate a two-layer feed-forward neural network for each
algorithm and performance measure (except the Closest Target
algorithm and the distance performance measure). This tool
used 70% of the data points for training, 15% for validation,
and 15% for testing. Each network had 10 hidden neurons,
and the tool used the Levenberg-Marquardt algorithm for
training. Each resulting network was exported to create a
MATLAB function for use in the policy evaluation
simulations.

We evaluated forty-six policies, numbered 1 to 46 as
follows: (1) random allocation, (2) CBAA, (3) closest target,
(4) performance impact, (5-46) metareasoning. Each
metareasoning policy included two or four algorithms, an
objective function, and a cost function (the combinations are
enumerated in Table II). The objective function was either
Lmax or distance; this determined which set of neural
networks to use for estimating algorithm performance. The
cost function was one of three options (shown in Table III); in
all three options ()ic X did not depend upon the state. The
values of the cost function were set so that the algorithms that
required more computational effort had higher cost values in
cost functions 1 and 2.

For policy evaluation, we evaluated all 46 policies using
100 replications of the simulation (these were not the same
replications used for data collection). For each replication, the
following values were recorded: the number of successful
attacks and the number of decision points at which each
candidate algorithm was used.

TABLE II. METAREASONING POLICY NUMBERS FOR EACH

COMBINATION OF ALGORITHMS, OBJECTIVE, AND COST FUNCTION
(RA = RANDOM ALLOCATION, CT = CLOSEST TARGET,

PI = PERFORMANCE IMPACT).
 Objective and cost function
 Rel. Lmax Rel. Distance
Algorithm combination 0 1 2 0 1 2
RA CBAA CT PI 5 6 7 8 9 10
RA CBAA 11 12 13 14 15 16
RA CT 17 18 19 20 21 22
RA PI 23 24 25 26 27 28
 CBAA CT 29 30 31 32 33 34
 CBAA PI 35 36 37 38 39 40
 CT PI 41 42 43 44 45 46

TABLE III. COST FUNCTIONS WITH

VALUES FOR EACH ALGORITHM
(RA = RANDOM ALLOCATION,

CT = CLOSEST TARGET,
PI = PERFORMANCE IMPACT).

Cost Algorithm
function RA CBAA CT PI

0 0 0 0 0
1 0 0.1 0.1 0.2
2 0 0.3 0.2 0.4

V. RESULTS
The data collection step generated, over 100 simulation

runs, 3691 points for each dataset. Of these, 89 points were
discarded because they have very large values for the distance
performance measure (distance at least 4). This left 3602
points for building the neural networks.

After using MATLAB’s Neural Fitting tool, seven neural
networks were created. Table IV lists the R values reported
by MATLAB for the test data. We also ran 100 simulations to
evaluate the distributions of the error of each neural network
(error = predicted measure – actual measure). Table IV
provides the interval between the 25-th and 75-th percentiles
of the distributions of error in relative Lmax and relative
distance on 3471 decision points. (No neural network is used
to predict relative distance for the Closest Target algorithm;
this always equals 1.)

The policy evaluation experiment included 100 replications
for each policy. Figure 3 shows, for each policy, the average
number of successful attacks and the average computation
time per decision point. (The standard deviation for the
number of successful attacks ranged from 1.24 to 1.70; this
variability is not shown in order to simplify the figure.)
Pairwise comparisons showed that the following
metareasoning policies’ performance was not statistically
different from the performance of the CBAA algorithm: 11,
14, 15, and 29 to 33, all of which use the CBAA algorithm and
one fast algorithm (policies 11, 14, and 15 use the Random
Allocation and CBAA algorithms; policies 29 to 33 use the
CBAA and Closest Target algorithms). (See Table II for
details of the performance measures and cost functions.)

At each decision point, the average computation time to
perform metareasoning (evaluate the surrogate models and
select an algorithm) was 0.36 × 10-3 seconds; the average
computation time to run the Random Allocation algorithm was
0.10 × 10-3 seconds; the average computation time to run the
CBAA algorithm was 0.57 × 10-3 seconds; the average
computation time to run the Closest Target algorithm was 0.15
× 10-3 seconds; the average computation time to run the
Performance Impact algorithm was 3.60 × 10-3 seconds.

The average computation time per decision point for the
metareasoning policies includes the average time needed to
perform metareasoning and the weighted average time to run
the selected algorithm, which was calculated from data about
the relative use of each candidate algorithm (Figure 4).

Figure 4 shows the relative use of each candidate algorithm
in each metareasoning policy. It shows that metareasoning
policies 11, 14, and 15 used the CBAA algorithm over 80% of
the time; metareasoning policies 29, 30, 32, and 33 used the
CBAA algorithm over 40% of the time. Metareasoning policy
31, however, used the CBAA algorithm at only 10% of the
decision points; it used Closest Target for the remaining 90%.
Unlike the other policies, this policy’s computational effort
was lower than that of the CBAA algorithm.

 8

TABLE IV
R VALUES REPORTED BY MATLAB’S NEURAL FITTING TOOL

AND MIDDLE QUARTILES OF ACCURACY
FOR THE SEVEN NEURAL NETWORKS USING THE DATASETS COLLECTED.

Performance
measure

Collaboration
algorithm R Accuracy

(25%, 75%)
Lmax Random Allocation 0.77 (-0.051, 0.051)

 CBAA 0.89 (-0.028, 0.041)
 Closest Target 0.85 (-0.024, 0.043)
 Performance Impact 0.84 (-0.043, 0.057)

Distance Random Allocation 0.66 (-0.164, 0.141)
 CBAA 0.88 (-0.067, 0.084)
 Closest Target - -
 Performance Impact 0.75 (-0.114, 0.129)

In general, as the cost function increased (changed from 0 to

1 to 2), the metareasoning policies used the more
computationally expensive algorithms (CBAA and
Performance Impact) less often (see, for example, the
metareasoning policies 5-6-7, 8-9-10, 11-12-13, 14-15-16, 23-
24-25, 26-27-28).

As shown in Figure 3, over all 46 policies, the performance
(average number of successful attacks) did not steadily
improve or degrade as the average computation time per
decision point increased. Some policies with low average
computation time performed poorly (e.g., policies 7 and 13),
but others performed well (e.g., policies 20 and 31). The
policies with the best performance had average computation
time near the median. The policies with the greatest average
computation time had poor performance; both characteristics
were due to their relatively high use of the Performance
Impact algorithm, which was computationally expensive and
performed poorly (e.g., policies 23 and 26).

Only metareasoning policy 31 had performance that was
equivalent to CBAA and average computation time that was
better than CBAA. Metareasoning policies 11, 14, 15, 29, 30,
32, and 33 required more average computation time than
CBAA; in these policies, the benefit of occasionally running
the faster Random Allocation algorithm or Closest Target
algorithm did not compensate for the overhead due to
metareasoning.

The system performance of the metareasoning policies that
used the Lmax performance measure was not consistently
better or worse than that of the metareasoning policies that
used the Distance performance measure.

VI. DISCUSSION
These results show that the proposed metareasoning

approach can develop a useful metareasoning policy, but the
quality of the metareasoning policy (system performance and
computation time) varied across the metareasoning policies
that were evaluated. Eight metareasoning policies performed
as well as the best algorithm (CBAA). Others performed very
poorly. Although no metareasoning policy required less
computational effort per decision point than the fastest
algorithms (the Random Allocation and Closest Target
algorithms), some were faster than CBAA, and most were
faster than performance impact.

The impact of changing the cost function was mixed. In

general, increasing the cost (using cost function 1 or 2)
reduced the number of times that the more “expensive”
algorithms (CBAA and performance impact) were used; this
was true, for instance, for metareasoning policy 31, which
used cost function 2 and selected the CBAA algorithm only
10% of the time. For some metareasoning policies (e.g., 11,
12, and 13, which included the random allocation and CBAA
algorithms and the Lmax objective), this degraded
performance because the CBAA algorithm yielded good
performance in these scenarios. For metareasoning policies
that included the performance impact algorithm, however, this
improved performance because the performance impact
algorithm yielded poor performance in these scenarios (e.g.,
metareasoning policies 41 to 46).

None of the metareasoning policies that used all four
algorithms (policies 5 to 10) had performance better than the
best metareasoning policies that used only two algorithms.
This result was surprising, because a metareasoning policy
with more algorithms could be expected to choose even better
task assignments at each decision point. Two factors need to
be considered, however. First, the inaccuracies in the
performance estimates generated by the surrogate models
make it possible that, at some decision points, the algorithm
that would have yielded the truly best task assignment
(measured by Lmax or distance) was not chosen because its
estimated performance was poor while another algorithm’s
estimated performance was better; including another algorithm
in the metareasoning policy makes this more likely. This
inaccuracy could be reduced by collecting more data to cover
more possible scenarios or generating the surrogate models
using another approach (instead of using neural networks).
Second, the dynamics of the system are complex enough that
optimizing Lmax or distance at the current decision point may
be a myopic choice. This results from the short time-horizon
considered at each decision point; none of the algorithms
attempted to optimize the performance across the entire time
horizon. The metareasoning approach described here, like
those considered in other work, used a myopic estimate of
utility [32]. Generating better long-term performance through
better short-term decision making in an uncertain environment
is a well-known difficult problem [54].

In the scenarios used to evaluate the metareasoning policies,
the number of agents and targets was small, so the overhead of
using metareasoning required more computational effort than
running the fastest algorithms (random allocation and closest
target). Thus, although they reduced the number of times that
the CBAA algorithm was used, metareasoning policies that
used CBAA usually did not reduce the computational effort
(metareasoning policy 31 was an exception). This might be
different in scenarios with many more agents and targets,
where the computational cost of the algorithms is much larger
than that of metareasoning; in such cases, the computational
savings due to using faster algorithms at the right times would
more than compensate for the overhead of using
metareasoning, and more metareasoning policies could yield
competitive performance with less computational effort.
Future work should conduct experiments to explore this

 9

possibility.
The results here are limited to the specific scenario that was

considered. Although this scenario is related to the CSAT
problem, it is not, however, a standard CSAT problem, and the
metareasoning policy employed cannot be directly applied to
other CSAT problems. Still, the metareasoning approach can
be used to generate a metareasoning policy for any class of
CSAT problems.

This exploratory research was meant to generate insights
into using this metareasoning approach for these types of
problems. The results of the experiments described here
indicate that it may be possible to generate an effective
metareasoning policy with only two candidate algorithms: one
good, fast algorithm and one better but more expensive one.

VII. CONCLUSION
This paper proposed a novel data-driven metareasoning

approach for CSAT and similar problems and described two
sets of simulation experiments: (1) simulations used to collect
data for generating surrogate models and (2) simulations used
to evaluate metareasoning policies that used these surrogate
models.

The proposed metareasoning approach has four steps: (1)
define the state variables and performance measure and
identify the candidate algorithms, (2) conduct simulations to
collect data on the performance of the candidate algorithms in
different states, (3) use this data to train surrogate models that
can quickly estimate the performance of the candidate
algorithms, and (4) deploy these surrogate models in a
metareasoning policy. In our implementation, we used the
data to train neural networks as the surrogate models, but other
function approximation approaches could be used.

The computational results show that, for a simulated ship
protection scenario that is a variant of the CSAT problem, a
metareasoning policy constructed using this approach can
perform as well as the best candidate algorithm while reducing
the computational effort. This metareasoning policy uses one
good, fast algorithm and one better but more expensive one.

These results and these insights are a first step towards
understanding the utility of the proposed metareasoning
approach and the behavior of such metareasoning policies. It
would be interesting to apply the approach to a wide variety of
CSAT problems, with different candidate algorithms, state
variables, and performance measures. Performing an ablation
study to determine which state variables are the most valuable
would be useful, and additional analysis of the choices made
at each decision point could provide insights into the
metareasoning policies’ performance. It would also be
interesting to expand the approach to consider ways to
incorporate agent-specific information in the metareasoning
policy; with that type of policy, some agents could choose (via
the metareasoning policy) one algorithm while the others
choose another algorithm. There may be simpler
metareasoning policies (based on simple rules, for instance)
that perform as well as the data-driven approach that this
paper has proposed; such rules could be based on the
characteristics of the states in which each collaboration

algorithm is used. Other surrogate modeling approaches could
be used as well. Finally, approaches in which the surrogate
models are learned or updated online could be considered.
Although these ideas are beyond the scope of this paper, there
could be considerable merit in them.

APPENDIX
This appendix describes the procedure for calculating Lmax

for a given task assignment. It calls the subroutines
getintercept and calcposition, which are also described in this
appendix.

Given:
{ }1, , n : the set of defenders that are assigned a target.

{ }1, , m : the set of targets (some may be assigned to no
defender).

iT : the target to which defender i is assigned, for 1, ,i n= 

.
(),V Vx y : the location of the HVA.

(),W Wx y : the destination of the HVA.

(),D D
i ix y be the location of defender i, for 1, ,i n=  .

(),T T
j jx y : the location of the j-th target, for 1, ,j m=  .

Vv : the speed of the HVA (meters / second)

Dv : the speed of a defender (meters / second)

Tv : the presumed speed of a target (meters / second)
M: a very large time (e.g., the time needed for the HVA to

reach its destination).

Step 1. For 1, ,j m=  , determine (),A A

j jx y and A
jt , the

location and time at which target j could attack the HVA (its
“due date”), by calling
getintercept (), , , , , , ,V V W W T T

V j j Tx y v x y x y v . If A
jt = ∞ , then set

A
jt M= . Calculate (,)A T A T

j j j j jt x x y y∆ = − − .

Step 2. For 1, ,i n=  , determine (),I I
i ix y and I

it , the

location and time at which defender i could intercept target iT ,
by calling
getintercept (), , , , , , ,

i i i i

T T A A D D
T T T T T i i Dx y v x y x y v . If I

it = ∞ , then set
I
it M= .

Step 3. For 1, ,j m=  , determine jΦ , the set of defenders

assigned to target j: { }:j ii T jΦ = = .

Step 4. For all j such that jΦ is not empty, calculate the

target’s “completion time” { }min :I
j i jC t i= ∈ Φ .

Step 4. If there exist any defenders i such that I
it M< , go

to Step 5. Else, go to Step 6.
Step 5. For all j such that jΦ is empty, perform Steps 5a

 10

and 5b. Then go to Step 7.
Step 5a. For all i such that I

it M< , perform Steps 5a1, 5a2,
and 5a3.

Step 5a1. Calculate (),P P
j jx y , the location of target j at

time I
it , by calling

calcposition (), , , ,T T I
j j j T ix y t v t∆ .

Step 5a2. Calculate (),Q Q
j jx y , the location of target j at

time M, by calling
calcposition (), , , ,T T

j j j Tx y t v M∆ .

Step 5a3. Determine (),K K
i ix y and K

it , the location and

elapsed time at which defender i could intercept target j after
intercepting its assigned target, by calling
getintercept (), , , , , , ,P P Q Q I I

j j T j j i i Dx y v x y x y v . If K
it = ∞ , then set

K I
i it M t= − .

Step 5b. Calculate the target’s “completion time”
{ }min :I K I

j i i iC t t t M= + < .

Step 6. For all j such that jΦ is empty, set jC M= .

Step 7. Calculate { }max 1, , 1
max /

m
A A

j j jj m j
L C t m t

= =

= − ⋅ ∑


getintercept ()0 0 1 1 1 2 2 2, , , , , , ,x y v x y x y v returns an intercept

position 3 3(,)x y and an intercept time *t .
Given:
()0 0,x y : the target’s location

()1 1,x y : the target’s destination

1v : speed of the target (meters per second)

()2 2,x y : location of the pursuer

2v : speed of the pursuer (meters per second)

Step 1. Calculate () ()2 2
1 0 1 0D x x y y= − + − .

Step 2. If 1 0y y≤ , calculate 1
1 0cos (() /)x x Dα −= − ; else,

1
1 0cos (() /)x x Dα −= − − .

Step 3. Calculate () 2 0

2 0

cos sin
,

sin cosp p

x x
x y

y y
α α
α α

−−   
=    −   

  , the

transformed location of the pursuer.
Step 4. Find the roots of the polynomial

()2 2 2 2 2
2 1 12 0p p pv v t x v t x y− + − − =   .

Step 5. If there are no real roots, then return *t = ∞ .
Step 6. If there is only one negative root, then return

*t = ∞ .
Step 7. Set *t to equal the smallest positive root and

calculate *
1 /r v t D=

Step 8. If 1r > , then return *t = ∞ .

Step 9. Calculate
() () ()()3 3 0 1 0 0 1 0, ,x y x r x x y r y y= + − + − and return 3 3(,)x y

and *t .

calcposition ()0 0, , , ,x y v t∆ returns the location ()1 1,x y
Given:
()0 0,x y : the current location

(,)x y∆ = ∆ ∆ : a vector parallel to the bearing.
v: the speed (meters per second)
t: the time (seconds)

Step 1. Calculate 2 2D x y= ∆ + ∆ .

Step 2. Return () ()1 1 0 0, / , /x y x vt x D y vt y D= + ∆ + ∆ .

ACKNOWLEDGMENT
This research was conducted while the author spent a

sabbatical at the Naval Air Warfare Center-Aircraft Division
(NAWC-AD) at NAS Patuxent River. The author would like
to thank Stephen Kracinovich, Johann Soto, and their
colleagues at NAWC-AD for the financial support and the
resources used in this research. The anonymous referees also
contributed greatly to improving the paper.

REFERENCES
[1] J. P. How, C. Fraser, K. C. Kulling, and L. F. Bertuccelli,

“Increasing autonomy of UAVs,” IEEE Robotics &
Automation Magazine, vol. 16, no. 2, 2009.

[2] M. Senanayake, I. Senthooran, J. C. Barca, H. Chung, J.
Kamruzzaman, and M. Murshed, “Search and tracking
algorithms for swarms of robots: a survey,” Robotics and
Autonomous Systems, vol. 75, pp. 422-434, 2016.

[3] A. Khan, B. Rinner, and A. Cavallaro, “Cooperative robots
to observe moving targets: review,” IEEE Transactions on
Cybernetics, vol. 48, no. 1, pp. 187-198, 2018.

[4] S. Blackman and R. Popoli, Design and Analysis of Modern
Tracking Systems, Artech House, 1999.

[5] L. E. Parker, “ALLIANCE: an architecture for fault
tolerant, cooperative control of heterogeneous mobile
robots,” in Proceedings of the IEEE/RSJ/GI International
Conference on Intelligent Robots and Systems 94, vol. 2,
1994, pp. 776-783.

[6] Y. Ding, M. Zhu, Y. He, and J. Jiang, “P-CMOMMT
algorithm for the cooperative multi-robot observation of
multiple moving targets,” in The Sixth World Congress on
Intelligent Control and Automation, vol. 2, 2006, pp. 9267-
9271.

[7] H.-L. Choi, L. Brunet, and J. P. How, “Consensus-based
decentralized auctions for robust task allocation,” IEEE
Transactions on Robotics, vol. 25, no. 4, pp. 912-926, 2009.

[8] S. Koenig, P. Keskinocak, and C. A. Tovey, “Progress on
agent coordination with cooperative auctions,” AAAI, vol.
10, pp. 1713–1717, 2010.

[9] M. TJ Spaan, N. Gonçalves, and J. Sequeira, “Multirobot
coordination by auctioning POMDPs,” in 2010 IEEE
International Conference on Robotics and Automation,
2010, pp. 1446-1451.

[10] M. L. Cummings, J. P. How, A. Whitten, and O. Toupet,
“The impact of human–automation collaboration in
decentralized multiple unmanned vehicle control,”
Proceedings of the IEEE, vol. 100, no. 3, pp. 660-671,
2012.

 11

[11] S. Hunt, Q. Meng, C. Hinde, and T. Huang, “A consensus-
based grouping algorithm for multi-agent cooperative task
allocation with complex requirements,” Cogn. Comput, vol.
6, pp. 338–350, 2014.

[12] E. Raboin, P. Švec, D. S. Nau, and S. K. Gupta, “Model-
predictive asset guarding by team of autonomous surface
vehicles in environment with civilian boats,” Autonomous
Robots, vol. 38, no. 3, pp. 261–282, 2015.

[13] M. Otte, M. Kuhlman, and D. Sofge, “Competitive target
search with multi-agent teams: symmetric and asymmetric
communication constraints,” Autonomous Robots, 2017.

[14] M. Otte, M. Kuhlman, and D. Sofge, “Multi-robot task
allocation with auctions in harsh communication
environments,” in IEEE International Symposium on Multi-
Robot and Multi-Agent Systems, 2017.

[15] Y. Jin, M. M. Polycarpou, and A. A. Minai, “Cooperative
real-time task allocation among groups of UAVs,” in Recent
Developments in Cooperative Control and Optimization.
Boston, MA, USA: Kluwer Academic Publishers, 2004.

[16] S. Ganapathy and K. M. Passino, “Distributed agreement
strategies for cooperative control: modeling and scalability
analysis.” in Recent Developments in Cooperative Control
and Optimization. Boston, MA, USA: Kluwer Academic
Publishers, 2004.

[17] V. Singhal and D. Dahiya, “Distributed task allocation in
dynamic multi-agent system,” in International Conference
on Computing, Communication and Automation, 2015, pp.
643-648.

[18] W. Zhao, Q. Meng, and P. WH Chung, “A heuristic
distributed task allocation method for multivehicle
multitask problems and its application to search and rescue
scenario,” IEEE Transactions on Cybernetics, vol. 46, no.
4, April 2016.

[19] A. Whitbrook, Q. Meng, and P. WH Chung, “A robust,
distributed task allocation algorithm for time-critical, multi-
agent systems operating in uncertain environments,” in
Proceedings, 30th International Conference on Industrial,
Engineering and Other Applications of Applied Intelligent
Systems, Arras, France, 2017.

[20] A. Sinha, T. Kirubarajan, and Y. Bar-Shalom,
“Autonomous ground target tracking by multiple
cooperative UAVs,” in Aerospace Conference, 2005, pp. 1-
9.

[21] G. M. Hoffmann and C. J. Tomlin, “Mobile sensor network
control using mutual information methods and particle
filters,” IEEE Transactions on Automatic Control, vol. 55,
no. 1, pp. 32-47, 2010.

[22] M. Stachura and E. Frew, “Communication-aware
information-gathering experiments with an unmanned
aircraft system,” Journal of Field Robotics, vol. 34, no. 4,
pp. 736-756, 2017

[23] L. E. Parker and B. A. Emmons, “Cooperative multi-robot
observation of multiple moving targets,” in Proceedings of
the 1997 IEEE International Conference on Robotics and
Automation, vol. 3, 1997, pp. 2082-2089.

[24] N. Sydney, D. A. Paley, and D. Sofge, “Physics-inspired
motion planning for information-theoretic target detection
using multiple aerial robots,” Autonomous Robots, vol. 41,
no. 1, pp. 231-241, 2017.

[25] F. Wu, S. Zilberstein, and X. Chen, “Multi-agent online
planning with communication,” in Proceedings of the
Nineteenth International Conference on Automated
Planning and Scheduling, 2009, pp. 321-328.

[26] F. Wu, S. Zilberstein, and X. Chen, “Online planning for
multi-agent systems with bounded communication,”
Artificial Intelligence, vol. 175, pp. 487-511, 2011.

[27] S. Seuken and S. Zilberstein, “Formal models and
algorithms for decentralized decision making under
uncertainty,” Autonomous Agents and Multi-Agent Systems,
vol. 17, no. 2, pp. 190-250, 2008.

[28] L. Matignon, L. Jeanpierre, and A.-I. Mouaddib,
“Coordinated multi-robot exploration under communication
constraints using decentralized Markov decision processes,”
AAAI, 2012.

[29] D. K. Ahner, “Real-time planning and control of army
UAVs under uncertainty,” Journal of Aerospace
Computing, Information, and Communication, vol. 4, no. 5,
pp. 798-815, 2007.

[30] H. Terelius, U. Topcu, and R. M. Murray, “Decentralized
multi-agent optimization via dual decomposition,” in
Proceedings of the 18th World Congress, The International
Federation of Automatic Control, 2011, pp. 11245-11251.

[31] M. T. Hale, A. Nedic, and M. Egerstedt, “Cloud-based
centralized/decentralized multi-agent optimization with
communication delays,” in IEEE 54th Annual Conference
on Decision and Control, 2015, pp. 700-705.

[32] M.T. Cox, “Metacognition in computation: A selected
research review,” Artificial Intelligence, vol. 169, no. 2, pp.
104-141, 2005.

[33] M. Cox and A. Raja, “Metareasoning: an introduction,” in
Metareasoning: Thinking about Thinking. Cambridge, MA,
USA: MIT Press, 2011.

[34] S. Russell and E. Wefald, Do the Right Thing. Cambridge,
MA, USA: The MIT Press, 1991.

[35] M. L. Anderson and T. Oates, “A review of recent research
in metareasoning and metalearning,” AI Magazine, vol. 28,
no. 1, p. 12, 2007.

[36] S. Milli, F. Lieder, and T. L. Griffiths, “When does
bounded-optimal metareasoning favor few cognitive
systems?” AAAI, pp. 4422-4428, 2017.

[37] P. M. Krueger, F. Lieder, and T. L. Griffiths, “Enhancing
metacognitive reinforcement learning using reward
structures and feedback.” in Proceedings of the 39th Annual
Meeting of the Cognitive Science Society, Austin, TX, USA,
2017.

[38] V. Conitzer, “Metareasoning as a formal computational
problem,” in Metareasoning: Thinking about Thinking,
M.T. Cox and A. Raja, eds., pp. 119-128, MIT Press,
Cambridge, Massachusetts, 2011.

[39] J. R. Rice, “The algorithm selection problem,” Advances in
Computers, vol. 15, pp. 65-118, 1976.

[40] K. A. Smith-Miles, “Cross-disciplinary perspectives on
meta-learning for algorithm selection,” ACM Computing
Surveys, vol. 41, no. 1, p. 6, 2009.

[41] K. Leyton-Brown, E. Nudelman, and Y. Shoham,
“Empirical hardness models: methodology and a case study
on combinatorial auctions,” Journal of the ACM, vol. 56,
no. 4, p. 22, 2009.

[42] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Identifying
key algorithm parameters and instance features using
forward selection,” in International Conference on
Learning and Intelligent Optimization, 2013, pp. 364-381.

[43] M. A. Muñoz, M. Kirley, and S. K. Halgamuge, “A meta-
learning prediction model of algorithm performance for
continuous optimization problems,” in International
Conference on Parallel Problem Solving from Nature, pp.
226-235.

[44] M. A. Muñoz, Y. Sun, M. Kirley, and S. K. Halgamuge,
“Algorithm selection for black-box continuous optimization
problems: a survey on methods and challenges,”
Information Sciences, vol. 317, pp. 224-245, 2015.

[45] L. Kotthoff, “Algorithm selection for combinatorial search
problems: a survey,” in Data Mining and Constraint
Programming. Springer, 2016, pp. 149-190.

[46] S. Zilberstein, Operational rationality through compilation
of anytime algorithms. Ph.D. Dissertation, University of
California at Berkeley, 1993.

[47] S. Zilberstein and S.J. Russell, “Optimal composition of
real-time systems,” Artificial Intelligence, vol. 82, no. 1–2,
pp. 181–213, 1996.

[48] A. Raja and V. Lesser, “A framework for meta-level control
in multi-agent systems,” Autonomous Agents and Multi-
Agent Systems, vol. 15, no. 2, pp. 147-196, 2007.

[49] G. Alexander, A. Raja, E. H. Durfee, and D. J. Musliner,
“Design paradigms for meta-control in multi-agent
systems,” in Proceedings of AAMAS 2007 Workshop on
Metareasoning in Agent-based Systems, 2007, pp. 92-103.

[50] J. Sleight and E. H. Durfee, “Multiagent metareasoning
through organizational design,” in Proceedings of the 2014

 12

International Conference on Autonomous Agents and Multi-
agent Systems, 2014, pp. 1579-1580.

[51] S. Cheng, A. Raja, and V. Lesser, “Multiagent meta-level
control for radar coordination,” Web Intelligence and Agent
Systems: An International Journal, vol. 11, no. 1, pp. 81-
105, 2013.

[52] R. Kota, N. Gibbins, and N. R. Jennings, “Decentralized
approaches for self-adaptation in agent organizations,”
ACM Transactions on Autonomous and Adaptive Systems,
vol. 7, no. 1, p. 1, 2012.

[53] S. Zilberstein, “Metareasoning and bounded rationality,” in
Metareasoning: Thinking about Thinking. Cambridge, MA,
USA: MIT Press, 2011.

[54] W.B. Powell. A Unified Framework for Optimization
Under Uncertainty. In INFORMS Tutorials in Operations
Research. Published online: 04 Nov 2016; 45-83.
https://doi.org/10.1287/educ.2016.0149

Jeffrey W. Herrmann received the B.S.
degree in applied mathematics from
Georgia Institute of Technology, Atlanta,
Georgia, USA, in 1990, and the Ph.D.
degree in industrial and systems
engineering from the University of
Florida, Gainesville, Florida, USA, in
1993.

He is currently a Professor at the
University of Maryland in College Park,
Maryland, USA, where he holds a joint

appointment in the Department of Mechanical Engineering
and Institute for Systems Research. He is the author of the
textbook Engineering Decision Making and Risk Management
(Wiley, 2015). His current research interests include
collaborative search and tracking and engineering design
decision making.
 Dr. Herrmann is a member of ASEE, IISE, ASME, the
Design Society, and INFORMS.

Fig. 2. Tracks showing the movement of the HVA, searchers, defenders, attackers, and non-combatants in one of the simulation replications.

Each track covers the same amount of simulated time.
Blue square: HVA. Blue circle: searcher. Blue x: defender. Red triangle: attacker. Black diamond: non-combatant.

 13

Fig. 3. The average number of successful attacks and the average computation time per decision for each policy.

1 = Random Allocation, 2 = CBAA, 3 = Closest Target, 4 = Performance Impact.
See Table II for definition of each metareasoning policy (5 to 46).

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

0

1

2

1 3 19 22 18 13 21 20 17 7 31 25 2 6 43 29 30 16 12 34 42 32 33 15 14 11 24 5 41 36 37 10 9 46 28 39 40 35 8 45 38 27 44 23 4 26

Av
er

ag
e

co
m

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

Av
er

ag
e

Nu
m

be
r

of
 S

uc
ce

ss
fu

l A
tta

ck
s

Policy Number

Average number of successes Average time (seconds)

 14

Fig. 4. The relative use of each candidate algorithm in each policy.
1 = Random Allocation, 2 = CBAA, 3 = Closest Target, 4 = Performance Impact.

See Table II for definition of each metareasoning policy (5 to 46).

