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To tackle climate change, one of the basic decarbonization strategies is to decarbonize end-

use applications through electrification and energy efficiency. This dissertation comprises three 

essays focused on the effectiveness and implementation of the interventions aimed at 

electrification and energy efficiency in the building sector of the demand side. It is not easy to 

facilitate the transition to energy efficiency and electrification. In the building sector, much 

literature has found the “energy efficiency gap”, meaning that there is a persistent gap between the 

level of energy efficiency investment that is projected to save money and the investment that 

actually occurs despite the benefits from energy-efficiency investments. In many situations, the 

energy efficiency upgrade is in conjunction with electrification. 

Two types of interventions have been widely utilized to help close the “energy efficiency 

gap” and “electrification gap” in the building sector: price-based incentives and information-

provision interventions. In my dissertation, the first essay focuses on (price-based) subsidy 



 

 

interventions while the other two essays focus on information-provision interventions to alter 

consumers’ energy demand.  

The first essay aims to evaluate the effectiveness of the subsidies (rebate and loan programs) 

on residential air-source heat pump adoption based on the evidence from North Carolina of U.S. 

Many national, state-level, and city-level decarbonization plans include the transition to heat 

pumps. The rebate and loan programs are the two widely-adopted incentives for residential heat 

pumps in the U.S. Using the method of Difference-in-Differences (DID) in conjunction with 

spatial discontinuity, this essay estimates the impact of a rebate program ($300-450 per system) 

on heat pump adoption rate and compares it with the effect of two loan programs (with different 

annual interest rates: 9% and 3.9%). I find that the rebate program increases the adoption density 

by 13% in a year and shows advantages in increasing the heat pump adoption rate compared to the 

two loan programs. 

The second essay finds a positive house price premium associated with air-source heat pump 

installations in the U.S., which policymakers can use to provide information campaigns to 

influence the adoption of heat pumps. In this essay, I apply the DID method and use a sample of 

450,000 homes across 23 states of the U.S. to estimate the heat pump-induced house sales price 

premium. Residences with an air-source heat pump enjoy a 4.3-7.1% (or $10,400 - $17,000) price 

premium on average. Policymakers can use the information about potential price premiums to 

influence consumer choices, in addition to traditional energy guides, which typically focus on fuel 

costs. 

The third essay investigates the effectiveness of another type of information-provision 

campaign – special environmental events. Special environmental events, such as Earth Hour, 

World Environment Day, and Chinese National Energy Saving Week, can be regarded as a form 



 

 

of “nudge” to arouse people’s awareness of environmental protection and energy 

efficiency/conservation. Using a two-stage local linear method, I estimate the impacts of the three 

special environmental events on short-run electricity-saving behaviors using high-frequency smart 

meter data in Shanghai, China, for both residential and commercial consumers. I find that World 

Environment Day and National Energy Saving Week caused commercial users to reduce their 

electricity consumption by 1.35 kWh/hour and 0.6 kWh/hour intra-event, around 17% and 8% 

reduction compared to average consumption. Earth Hour did not lead to significant energy-saving 

effects for both residential and commercial users. 
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1. Chapter 1: Introduction 

 

1. Research background and motivation 

 

Climate change and global warming have become globally urgent challenges. The increase 

in global average temperature must be kept below 1.5 degrees Celsius above the pre-industrial 

level to avoid irreversible environmental damage (Masson-Delmotte, V. et al., 2018). This requires 

us to reduce, capture and sequester carbon emissions from burning fossil fuels. There are three 

basic strategies to realize the deep-decarbonization of the economy: First, decarbonize the power 

generation through developing and integrating more clean renewable energy into our electricity 

grid; Second, decarbonize end-use applications through electrification and energy efficiency; 

Third, enhance the carbon storage capacity of the environment (Hultman et al., 2019; Denis et al., 

2015). My dissertation is focused on the second basic decarbonization strategy which aims to 

facilitate energy efficiency and electrification from the demand side in the building sector. 

It is not easy to facilitate this transition to energy efficiency and electrification. In the 

building sector, much literature has found the “energy efficiency gap”, meaning that there is a 

persistent gap between the level of energy efficiency investment that is projected to save money 

(such as installing an energy star qualified refrigerator, clothes washer, dishwasher, etc.), and the 

investment that actually occurs despite the benefits from energy-efficiency investments (Fowlie et 

al., 2018). In many situations, the energy efficiency upgrade is in conjunction with electrification. 

Electrifying some fossil-fuel-burning applications can also bring energy fuel cost savings based 

on engineering model projection, such as replacing natural gas furnaces with energy-efficient heat 

pumps and replacing gasoline vehicles with electric vehicles. However, the penetration rate of 
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these energy efficient and electric applications is still low in the actual world. Much literature 

contributes to the explanation of “energy efficiency gap”. Common explanations focus on market 

failures, such as imperfect information, split incentive problems, consumers’ inattention, and other 

consumer behaviors (e.g., Allcott and Greenstone, 2012; Gillingham and Palmer, 2014; Gerarden 

et al., 2015). 

Two types of interventions have been widely utilized to close the “energy efficiency gap” 

and “electrification gap” in the building sector, which are price-based incentives and non-price-

based incentives. For the price-based incentives, the most widely adopted approach by the 

government and utilities is to subsidize the adoption of energy-efficient electric applications. The 

subsidies focus on changing relative prices as the major force altering energy demand and have 

been proved to be very effective, but suffer from expensive implementation costs and possible 

inequitable outcomes across populations. For the non-price-based incentives, building codes, 

mandatory standards, and information campaigns have been widely applied. Particularly, 

academics and policymakers are increasingly interested in using “social nudges” – such as 

information provision and persuasion – to alter consumer behaviors. Nudges are typically 

inexpensive compared to price-based approaches. As Bertrand et al. (2010) stated, carefully crafted 

psychological cues can exert significant effects on consumer demand that are comparable to large 

changes in relative prices (LaRiviere et al., 2014). 

My dissertation contributes to promoting the effectiveness and justness of the interventions 

that encourage electrification and energy efficiency from the demand side based on evidence from 

both China and the U.S. 
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2. Introduction to three essays 

 

My dissertation is composed of three essays focused on the effectiveness of the interventions 

mentioned above towards energy efficiency and electrification, respectively. The first essay 

focuses on subsidy interventions, while the other two essays focus on information-provision 

campaigns to alter consumers’ energy demand. The detailed introduction to each essay is as 

follows. 

The first essay aims to evaluate the effectiveness of the subsides (rebate and loan programs) 

on residential air-source heat pumps adoption based on the evidence from North Carolina of the 

U.S. Many studies have proved that electric heat pumps are a practical and energy-efficient 

alternative to natural-gas furnaces or boilers for space heating (Davis et al., 2018; Lucon et al., 

2014; MacKay, 2009; “The heat is on,” 2007). Many national, state-level, and city-level plans for 

decarbonization include the transition to heat pumps. For example, Finland, Ireland, the 

Netherlands, and Massachusetts in the U.S. all have introduced plans to phase out natural gas and 

electrify buildings via heat pumps. The rebate and loan programs are the two widely-adopted 

incentives for heat pumps in the U.S. Very few studies estimate the effects of these incentives on 

heat pump adoption. This essay provides the first rigorous estimate of the rebate’s impact on 

residential air-source heat pump adoption and compares the rebate’s effect with that of two loan 

programs. Using the approach of difference-in-differences (DID) in conjunction with spatial 

discontinuity, I find that a rebate program ($300-$450) increases the adoption rate by 13% in a 

year period. The rebate program ($300-$450) shows advantages in effectiveness to promote the 

growth of heat pumps compared to the other two loan programs (Annual percentage rate: 9%, 

3.9%). I also find that the rebate program is less effective for low-income households than for 

high-income households. 
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Estimating the benefits of green home improvements (e.g., heat pump adoption) is not 

possible without accurate estimates of their impact on house prices. The second essay aims to find 

a positive house price premium associated with air-source heat pump installations in the U.S., 

which can be used by policymakers to provide information campaigns to influence the adoption of 

heat pumps. In this essay, I leverage a large dataset including over 150 million residential 

properties and 374 million transaction records all over the U.S. I apply the DID method and use a 

sample of 45,000 homes across 23 states of the U.S. to estimate the heat pump-induced house sales 

price premium. I find that residences with an air-source heat pump enjoy a 4.3-7.1% (or $10,400 

- $17,000) price premium on average. Residents who are environmentally conscious, middle class, 

and live in regions with mild climate are more likely to pay a larger price premium. The estimated 

price premiums are larger than the calculated total social benefits of switching to heat pumps. More 

importantly, my findings provide a new incentive for heat pump adoption. Policymakers can use 

the information about potential price premiums to influence consumer choices to help close the 

energy efficiency and electrification gap, in addition to traditional energy guides, which typically 

focus on fuel costs. 

The third essay investigates the effectiveness of another type of information-provision 

campaign – special environmental events. Special environmental events, such as Earth Hour, 

World Environment Day, and Chinese National Energy Saving Week, can be regarded as a form 

of “nudge” in order to arouse people’s awareness of environmental protection and energy 

efficiency/conservation. These events have been globally popular with decades of history. A large 

number of governments and NGOs have been spending great efforts on organizing them. However, 

few studies provide rigorous analysis on it. This essay provides the first empirical evidence of the 

impacts of special environmental events on consumers’ short-run electricity saving behaviors 
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using high-frequency (hourly and daily) electricity consumption data in 2017 in Shanghai, China, 

for both residential and non-residential sectors. I find that World Environment Day and National 

Energy Saving Publicity Week caused commercial users to reduce their electricity consumption 

by 1.35 kWh/hour and 0.6 kWh/hour intra-event, around 17% and 8% reduction compared to 

average consumption, but the impacts decayed rapidly once the events ended. Earth Hour did not 

lead to significant energy-saving effects for both residential and commercial users. In addition, I 

examine detailed activities implemented during these events to understand the heterogeneous 

impacts using social media and policy documents data. I find that most activities during the World 

Environment Day and National Energy Saving Publicity Week are directly related to the 

knowledge and skills of environmental protection and energy saving, while most activities during 

the Earth Hour are only symbolic behaviors (like turning off lights). My analysis provides 

suggestive evidence that activities providing knowledge and skills may promote more energy-

saving behaviors compared to symbolic activities. My results suggest that policymakers should 

combine the merits of symbolic campaigns and knowledge-based campaigns when they aim to 

organize large-scale environmental campaigns.  

 

 

3. Contribution to the literature 

 

My dissertation contributes to the literature on the “energy efficiency gap”, the value of 

energy investment, and the effect of price-based incentives on energy investment. Many studies 

use hedonic pricing methods to value energy technologies and energy efficiency investment, such 

as installing solar panels or solar water heaters, energy efficiency rating or green-building labeling 
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(Aydin et al., 2018; Qiu et al., 2017; Hoen et al., 2013; Dastrup et al., 2012; Walls et al., 2017; 

Kahn and Kok, 2014; Deng et al., 2012; Deng and Wu, 2014; Brounen and Kok, 2011; Jayantha 

and Man, 2013; Eichholtz et al., 2012, 2010; Costa et al., 2018). Some studies investigate the 

subsidy effects on residential energy technology adoption, such as on solar panels (Crago et al., 

2017; Gillingham & Tsvetanov, 2019) and energy efficiency measures (Datta and Gulati, 2014; 

Houde and Aldy, 2017). To the best of my knowledge, my dissertation is the first study to examine 

the subsidy effects on heat pump adoption and the house resale price premium of heat pumps.  

My dissertation also contributes to the literature on the effectiveness of information-based 

interventions aimed at energy efficiency/conservation. Studies have examined the effectiveness of 

different non-price-based interventions, such as commitment (Katzev & Johnson, 1983), goal 

setting (Becker, 1978; McCalley and Midden, 2002), self-feedback (like energy bill reminder 

(Jessoe & Rapson, 2014)), comparative feedback (like Opower letters (Allcott, 2011; Costa and 

Kahn, 2013; Allcott and Rogers, 2014; LaRiviere et al., 2014) and water use comparison messages 

(Ferraro and Price, 2013)). To the best of my knowledge, the third essay in my dissertation is the 

first study to estimate the impact of big environmental events on consumers’ energy saving 

behaviors. 

The research objects of my dissertation are representative. The first and second essays are 

evidenced from the U.S. while the third essay is based on evidence from China. The U.S. and 

China are the two largest carbon emitters in the world in 2021. Investigating the approaches to 

promote the transition to electrification and energy efficiency in these two countries is relevant 

and urgent. 
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2. Chapter 2: Essay 1 - The Effect of Rebate and Loan Incentives on Residential 

Heat Pump Adoption: Evidence from North Carolina 

 

Abstract 

Electrification can promote deep decarbonization to tackle climate change with a cleaner power 

grid. Electric heat pumps provide a feasible and energy-efficient way to replace fossil-fuel furnaces 

for space heating. Rebate and loan programs are the two most widely used incentives for residential 

heat pump installations in the U.S. This study compares the impacts of rebate and loan incentives 

on residential air-source heat pump adoption in North Carolina. First, my results show that the 

rebate program ($300-$450 per system) increases the adoption density by 13% in a year. Second, 

I find that the rebate program is more effective in promoting heat pump adoption for average 

consumers than two loan programs (annual loan interest rate: 9%, 3.9%) under the assumption of 

comparable demand for replacing heating equipment in my samples. Third, I find the rebate 

program is less effective for low-income households than high-income households. Last, I 

compare the rebate with the loan in terms of cost-effectiveness. 

 

 

1. Introduction 

 

Climate change and global warming have become urgent worldwide challenges. Actions are 

needed to stop, reduce, and capture emissions of CO2 to stabilize the earth’s temperature (IPCC, 

2018). Electrifying fossil-fuel-burning appliances with more renewable energy integrated into the 

power grid provides one pathway to promote the “deep decarbonization of the economy” (Denis 

et al., 2015; Hultman et al., 2019). In the context of space heating, reducing emissions from large 

sources (e.g., electric plants) is more effective compared to reducing the emissions from distributed 
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small sources (e.g., tens of millions of small natural gas furnaces across the U.S.). Studies have 

shown that heat pumps are a practical and energy-efficient alternative to natural-gas furnaces or 

boilers for space heating (Davis et al., 2018; Lucon et al., 2014; MacKay, 2009). Many national, 

state, and city-level decarbonization plans have included the transition to heat pumps. For example, 

Finland, Ireland, Netherlands, and Massachusetts in the U.S. have introduced plans to phase out 

natural gas and electrify buildings via electric heat pumps.  

Heat pumps also bring other potential benefits. In addition to space heating, heat pumps 

provide an energy-efficient way for space cooling compared to traditional HVAC (Heating 

Ventilation Air Conditioning) systems. Given the high projected demand for air conditioning in 

developing countries in the near future (Biardeau et al., 2019), heat pumps can help meet this 

demand in an energy-efficient way. In northern U.S. regions, high-efficient electric heat pumps 

can relieve natural gas constraints caused by the high demand for space heating in the winter (Shen 

et al., 2020).  In regions with limited natural gas services availability, heat pumps provide an 

efficient way for space heating. Moreover, with more intermittent energy sources (e.g., renewable 

energy sources) intergraded into the power grid in the future, electric heating systems through the 

installations of heat pumps provide possibilities for remote smart demand management to ensure 

the stable operation of the grid (Kassakian et al., 2011). 

Currently, the penetration rate of residential heat pumps is still low and imbalanced in most 

U.S. regions. Policymakers and utilities have adopted different incentives to promote the diffusion 

of heat pump technology. The rebate and low-interest loan programs are the two most widely used 

incentives for residential heat pump installations according to the Database of State Incentives for 

Renewables & Efficiency (DSIRE)1. In the 2020 U.S. presidential election campaign, Joe Biden 

                                                 
1 The national-level DSIRE database records almost all the incentives for renewable and efficient energy 

technologies, including heat pumps, for every state in the U.S. 
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also put these two policies as the prioritized strategy to tackle the climate crisis. He declared to 

“spur the building retrofit and efficient-appliance manufacturing supply chain by funding direct 

cash rebates and low-cost financing to upgrade and electrify home appliances” in the transition 

plan2. A better understanding of the actual effect of these incentives is needed to identify effective 

policies that can facilitate the transition to heat pumps and other low carbon technologies.  

 This study provides the first empirical evidence of the impact of rebate and loan incentives 

on air-source heat pump adoption rate (measured by the share of households with the heat pumps) 

using difference-in-differences (DID), spatial regression discontinuity (RD), and differential 

trends comparison research designs, leveraging utility borders within the same ZIP code area based 

on three samples in North Carolina. My panel data contains individual property’s heat pump 

installation information from 2016-2020. I conduct a rigorous comparative analysis of different 

impacts between the two widely-used types of incentives. I explore the following research 

questions: Do the rebate incentives increase residential air-source heat pump adoption? Which 

policy (between the rebate and the loan) is better in terms of effectiveness in improving adoption 

rates and cost-effectiveness? What is the mechanism behind the different impacts of these two 

policies? 

This paper makes three primary contributions to the literature. First, my research contributes 

to the literature on the potential policy options for overcoming barriers to heat pump adoption. 

Many studies have demonstrated that major barriers to a greater market share of heat pumps 

include high upfront costs (Kircher & Zhang, 2021), adoption inconvenience (Snape et al., 2015), 

low performance in extremely cold areas (Aste et al., 2013), and residents’ environmentally 

friendly awareness (Karytsas, 2018). Several options have been suggested to overcome these 

                                                 
2 The 46th President of the U.S., Joe Biden, declares a full list of Administration Priorities on Nov 8, 2020, including 

approaches to tackle the climate change crisis. Source: https://buildbackbetter.com/priorities/climate-change/ 
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barriers, such as initiating a new business model based on heat purchase agreements and third-

party ownership (Kircher & Zhang, 2021), setting up building energy performance standards, tax 

and subsidy policies in favor of heat pumps (Hannon, 2015), and information programs about the 

house price premium after heat pump adoption (Shen et al., 2021). Following that, my study 

suggests that rebate and loan programs could help facilitate the adoption of air source heat pumps 

in the US. Second, I build upon existing studies about policy effects on residential energy 

technology adoption, such as on solar panels (Crago and Chernyakhovskiy, 2017; Gillingham and 

Tsvetanov, 2019; O’Shaughnessy et al., 2020), energy efficiency appliances (Datta and Gulati, 

2014; Houde and Aldy, 2017), and electric vehicles (Wee et al., 2018; Zambrano-Gutiérrez et al., 

2018; Roberson and Helveston, 2020). My study provides the first empirical evidence of policy 

effect on heat pump adoption. Third, this paper provides a comparison between rebate and loan 

policies, which are the two most-widely adopted incentives in the U.S for residential heat pumps. 

Heat pumps cost thousands of dollars more compared to traditional HVAC systems. The higher 

upfront cost may impede consumers with credit constraints from adopting the technology. Easy 

access to loans can better relieve consumers’ credit constraints. Low-interest loans and rebates are 

two different types of subsidies, which can reduce the gap between consumers’ willingness to pay 

and the actual price of heat pumps. I provide a comparison of the effects and mechanisms of these 

two incentives. 

This study provides four main results. First, I estimate the rebate program’s effect on the 

residential heat pump adoption rate in North Carolina. A rebate program3 ($300-$450 per system) 

increases the adoption rate by 0.024 (or a 13% increase compared to the pre-treatment period) in 

                                                 
3 The rebate program provided by the Duke Energy utility applies to all kinds of heat pumps for space heating 

(including air-source heat pumps and geothermal heat pumps). My study only estimates the impact of the rebate on 

the adoption of air-source heat pumps. 
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a year. Second, under the assumption of comparable demand for replacing old heating equipment 

within the buffer area in the sample, I find that the rebate program ($300-$450) is more effective 

for average consumers compared to the other two loan programs4 (annual percentage rate (APR) 

of the loan: 9%, 3.9%). Third, I explore the heterogeneous effects of the rebate program across 

different income intervals. I find the rebate’s effect increases with income. Last, I compare the 

rebate with the loan in terms of the cost-effectiveness, measured by the dollars spent per heat pump 

installed caused by the policy, and find that the rebate program is more cost-effective than the two 

loan programs if the proportions of residents who apply for the rebate and the loan in residents 

with new heat pump installations are the same.  

My results have important policy implications. The U.S. government agencies plan to 

provide more funding through rebate and loan incentives to spur energy upgrading. My study 

demonstrates that rebate policies can effectively increase the adoption of heat pumps. Moreover, 

my study shows that the rebate program is more effective and cost-effective to increase heat pump 

adoption compared to the two loan programs based on the empirical evidence from North Carolina, 

though the rebate program is less effective for low-income households. Other innovative policies 

and supports should be considered for low-income communities. My study also has implications 

for policies stimulating the adoption of other energy technologies, such as, solar water heating, 

solar panel, and home battery storage, which are similar to air-source heat pumps with higher 

upfront costs and longer payback periods compared to traditional low-efficiency technologies. 

This article is structured as follows. Section 2 describes the background of heat pump 

adoption in the U.S. Section 3 constructs a stylized model to understand the mechanism of the 

incentives. Section 4 describes methodological approaches and data, and Section 5 presents the 

                                                 
4 The two loan programs also apply to all types of heat pumps for space heating. 



 

12 
 

estimated effects. In Section 6, I conduct robustness tests. Section 7 estimates the heterogenous 

rebate effects by different income intervals. Section 8 compares the cost-effectiveness of each 

incentive program. Section 9 concludes the paper with discussion and policy implications. 

 

 

2. Background on heat pump adoption in the U.S. 

 

The installation of air-source heat pumps has increased for residential space heating in recent 

years in the U.S. However, the distribution of heat pumps is highly imbalanced. Figure 2.1 plots 

the distribution of air-source heat pump density (number of heat pumps per 10K persons) by county 

in 2020 based on the ZTRAX data from Zillow5. The Mountain, South Atlantic, Pacific, and West 

North Central regions have a higher penetration rate of air-source heat pumps than that in other 

regions (See Appendix A for the air-source heat pump adoption density by the state in the U.S. in 

2020). More importantly, the penetration rate of heat pumps in most U.S. regions, including 

regions with mild climates, is low, which implies a potential large room for growth when more 

effective policies or incentives are provided. North Carolina’s warm climate makes it one of the 

areas with the most installed heat pumps in the U.S. My study chooses North Carolina so that I 

have enough observations for robust statistical estimation and inference. Although North Carolina 

has the most installed heat pumps, its penetration rate is only about 9%, with great potential for 

further growth. North Carolina is also a representative case for other suitable regions for installing 

                                                 
5 Zillow’s Assessor and Real Estate Database (Zillow Research, 2020). Data provided by Zillow through the Zillow 

Transaction and Assessment Dataset (ZTRAX). More information on accessing the data can be found at 

http://www.zillow.com/ztrax. The results and opinions are those of the author(s) and do not reflect the position of 

Zillow Group. 
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heat pumps, such as the Middle Atlantic and Pacific regions. Thus, my results on the incentive 

effects based on North Carolina can be useful for broader regions. 

 

 

 

Figure 2.1 The distribution of air-source heat pump adoption density by county in the U.S. 

in 2020. Data source: ZTRAX database (Zillow’s Assessor and Real Estate Database). 

 

 

Many factors influence the adoption of residential heat pumps. I first conduct a descriptive 

analysis and investigate the correlation between the heat pump adoption and a number of 

explanatory factors by regressing the heat pump adoption density in 2018 (the number of air-source 

heat pumps per 10K persons) on a set of variables (including personal income per capita, 

population density, residential electricity price, residential natural gas price, environmental 

awareness level, heating degree days and cooling degree days) at the county level using the U.S. 

national dataset (See Figure 2.2 and Appendix B). I obtain the data from the ZTRAX database, 

Bureau of Economic Analysis, U.S. Department of Commerce, U.S. Energy Information 

Administration, Yale Program on Climate Change Communication (Howe et al., 2015), and 

National Oceanic and Atmospheric Administration. I standardize all the independent variables into 
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variables with 0 mean and 1 standard deviation. Figure 2.2 plots the estimated coefficients of these 

variables, representing the change in heat pump adoption density with a standard deviation change 

of these variables, to identify the relative importance of each factor. I find that the strongest 

correlation is with climate factors (heating and cooling degree days). Most heat pumps are installed 

in regions with mild climates, such as the South Atlantic and Pacific regions, which is in line with 

the physics of heat pumps. In extremely cold areas, heat pumps’ performance is lower, and the 

operating costs are higher. Electricity and natural gas prices come next in terms of correlation with 

heat pump adoption. Income is the third most important factor. Population density and 

environmental awareness level are not significantly correlated with heat pump adoption.  
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Figure 2.2 The correlation between heat pump adoption density (number of heat pumps 

per 10K persons) and other key factors. 

Note: In the figure, circles are point estimates, and error bars are 95% confidence intervals. Here, 

I use U.S. national county-level data to regress the heat pump adoption density in 2018 on other 

variables including personal income per capita in 2016, population density in 2016, average 

residential electricity price in 2018 (Elec. price in the figure), average residential natural gas price 

in 2018 (Ng price in the figure), environmental awareness level in 2015 (Env. awareness in the 

figure), average annual heating degree days (HDD) and cooling degree days (CDD) from 1981 to 

2010. I use the percentage of people who believe global warming is happening in a county to 

represent the level of environmental awareness. I standardize the independent variables into 

variables with 0 mean and 1 standard deviation. I obtain the data from the ZTRAX database, 

Bureau of Economic Analysis, U.S. Department of Commerce, U.S. Energy Information 

Administration, Yale Program on Climate Change Communication (Howe et al., 2015), and 

National Oceanic and Atmospheric Administration. 

 

My analyses suggest that economic benefits may play a vital role in people’s decisions about 

heat pumps adoption. Price-based or other economic incentives can potentially influence the 

adoption density. Rebate and loan programs are the two most widely-used incentives. In North 

Carolina, the rebate amount for each newly installed heat pump provided by utilities ranges from 

$200 to $500. My study investigates the effect of a rebate program provided by the Duke Energy 



 

16 
 

utility. On Oct. 1, 2017, the Duke Energy utility introduced the rebate program to encourage the 

adoption of heat pumps. This program is available to all Duke Energy residential electric service 

customers. Eligible consumers should contact a qualified participating contractor (among the list 

provided by the Duke Energy utility) to conduct the work of installation. After completing the 

installation, the contractor will submit a rebate application on the consumer’s behalf. The 

consumer will receive the rebate within 4-6 weeks. Consumers can look for a qualified contractor 

via the website of Duke Energy. The total rebate amount ranges from $300 to $450 depending on 

equipment efficiency. An air source heat pump with 15 and 16 Seasonal Energy Efficiency Ratio 

(SEER) is qualified for a $300 rebate, and an air source heat pump with more than 17 SEER is 

qualified for a $400 rebate. Also, if a smart thermostat is installed along with the heat pump, the 

consumer can obtain an additional $50 rebate. Many utilities also offer a low-interest loan program 

for heat pump adoption. The interest rates of the utilities’ loan programs range from 3.9% to 9% 

in North Carolina. According to the 2019 U.S. Federal Reserve data, the average personal loan 

interest rate and credit card interest rate from commercial banks are 10.32% and 15.05%, 

respectively (U.S. Federal Reserve, 2019). Thus, the interest rates provided by the utilities for heat 

pumps are relatively low. Moreover, the maximum amount of money that can be borrowed from 

these programs ranges from $5,000 to $10,000, which is enough to cover the average price of air-

source heat pumps. The repayment period of these loan programs is usually 60 months. In my 

study, I compare the effect of the rebate with those of two loan programs (APR: 9%, 3.9%) 

provided by the Union Power utility and the Haywood utility. 
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3. A stylized model of energy efficiency investment under the rebate and loan incentives 

 

In this section, I set up a stylized model to help understand the individual’s decision on 

energy efficiency technology (e.g., heat pumps) adoption under the influences of rebate and loan 

programs. I analyze the decision process and compare the different effects of the rebate and loan 

when the consumers have and have no credit constraints.  

When consumers face credit constraints, the loan program can have a significantly larger 

effect than the rebate program to promote energy efficiency investment. Loan programs can 

directly address the credit constraint issue, while the rebate program cannot solve the problem 

because the amount of rebate is usually a small part of the price of the energy efficiency technology. 

For example, if a heat pump costs $8000 and the consumer only has $2000 in savings, a rebate of 

$500 will not be able to help the consumer install the heat pump, while a low-interest loan program 

will enable the consumer to borrow the remaining $6000 and to be able to install the heat pump.  

When there are no credit constraints, I set up the following stylized model following 

Berkouwer & Dean (2020) and Allcott & Greenstone (2012) to compare the different effects of 

rebates and low-interest loans. Agents have access to credits (borrow enough money) to purchase 

an energy efficiency good but need to make a series of repayments in the future. The energy 

efficiency adoption brings a series of benefits (such as energy fuel cost savings) in the future. A 

rational and time-consistent agent will adopt an energy efficiency good if and only if the current 

adoption costs are smaller than the present value of the future benefits of the adoption (Berkouwer 

& Dean, 2020): 

𝑢(𝑃𝑒 − 𝑏) < ∑(1 + 𝛿)−𝑡[𝑢(𝜎𝑡 − 𝜏𝑡)]

𝑇

𝑡=1

         … (1) 
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where 𝑢(⋅) is the utility function; 𝑃𝑒 is the price or upfront cost of an energy efficiency good 

(heat pump); 𝑏 is the amount of money borrowed from the lender; 𝛿 is the individual’s discount 

rate in terms of how to value future gains; 𝜎𝑡  is the fuel cost savings relative to a traditional 

inefficient system at time t; 𝜏𝑡 is the repayment of the loan at time t. T is the lifetime of using the 

energy efficiency product. The equation between the amount of the principal/loan and the 

repayments is 

𝑏 = ∑(1 + 𝑟)−𝑡𝜏𝑡

𝑇

𝑡=1

        … (2) 

where r is the interest rate of the loan. When the energy efficiency good’s price makes the 

agent’s utility indifferent between adopting and not adopting the good, the price is the agent’s 

maximum willingness to pay (WTP). Here I assume a linear utility function and the maximum 

WTP for the energy efficiency good can be given by: 

𝑃∗ = 𝑏 + ∑(1 + 𝛿)−𝑡 ∙ (𝜎𝑡 − 𝜏𝑡)

𝑇

𝑡=1

        … (3) 

Under the baseline situation with 𝛿 = 𝑟, the maximum WTP in the above equation is equal 

to the discounted fuel cost savings, which is given by: 

𝑃∗ = ∑(1 + 𝛿)−𝑡𝜎𝑡

𝑇

𝑡=1

        … (4) 

Under the rebate incentive, agents receive an amount of cash and the down-payment for the 

energy efficiency good can be directly decreased, so the maximum WTP is increased to: 

𝑃∗ + ΔP = ∑(1 + 𝛿)−𝑡𝜎𝑡

𝑇

𝑡=1

+ 𝑅        … (5) 



 

19 
 

where 𝑅 is the amount of rebate. Under the incentive of a low-interest loan with 𝑟 < 𝛿, the 

maximum WTP is increased to: 

𝑃∗ + ΔP = ∑(1 + 𝛿)−𝑡𝜎𝑡

𝑇

𝑡=1

+ 𝜃 ∙ [∑(1 + 𝑟)−𝑡𝜏𝑡

𝑇

𝑡=1

− ∑(1 + 𝛿)−𝑡

𝑇

𝑡=1

𝜏𝑡]        … (6) 

When the interest rate is lower than the discount rate, the loan program provides subsidies 

for consumers. However, some consumers may be inattentive to this subsidy because it is complex 

and difficult to compute the present value of the subsidies (Grubb, 2015; Sexton, 2015). I use the 

coefficient 𝜃 to represent consumers’ inattention and 0 ≤ 𝜃 ≤ 1. Based on the above model setup, 

the effects of the rebate and low-interest loan programs are equivalent when 

𝑅 = 𝜃 ∙ [∑(1 + 𝑟)−𝑡𝜏𝑡

𝑇

𝑡=1

− ∑(1 + 𝛿)−𝑡

𝑇

𝑡=1

𝜏𝑡]         … (7)  

The rebate is more effective in promoting heat pump adoption than the low-interest loan when 

𝑅 > 𝜃 ∙ [∑(1 + 𝑟)−𝑡𝜏𝑡

𝑇

𝑡=1

− ∑(1 + 𝛿)−𝑡

𝑇

𝑡=1

𝜏𝑡]         … (8) 

and the rebate is less effective otherwise.  

Therefore, under the situation of credit constraints, providing access to credits in the loan 

program should be more effective. Without credit constraints, in theory, both rebate and loan 

incentives can help increase the adoption of heat pumps, but the relative magnitude of the impact 

depends on the amount of rebate, interest rate, consumers’ discount rate, and consumers’ 

inattention. In the following sections, I estimate the impact of rebate incentive on heat pump 

adoption and investigate which incentive (between the rebate and the loan) is more effective based 

on empirical evidence in North Carolina. 
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4. Data and empirical strategy 

4.1 ZTRAX Data 

 

I obtain the residential building characteristics data from the ZTRAX database (Zillow’s 

Assessor and Real Estate Database) provided by Zillow Group. The ZTRAX data covers more 

than 150 million homes in over 3,100 counties and 51 states of the U.S. I can observe the building 

characteristics at the individual building level from the ZTRAX dataset via eight independent 

assessments6 from 3/22/2016 to 01/02/2020, which form a panel dataset. Local Town/County tax 

assessment offices conducted these assessments to evaluate property tax. The building 

characteristics information in the dataset includes geographical addresses, year built, year 

remodeled, space heating and cooling systems, number of stories/total rooms/bedrooms/bathrooms, 

lot size, building area, land assessed value, building condition, site/view characteristics, swimming 

pool, among many others. These building characteristics are updated after each assessment and 

include time-varying characteristic variables. The ZTRAX database has been widely used and 

validated by many studies (Bernstein et al., 2019; Baldauf et al., 2020; Buchanan et al., 2020; 

Boslett & Hill, 2019; D’Lima & Schultz, 2020; Nolte, 2020; Onda et al., 2020; Clarke & Freedman, 

2019). My study focuses on the part of North Carolina of the dataset, which includes all the 

privately owned residential properties. 

 

4.2 Supporting Data 

 

                                                 
6 The ZTRAX dataset records eight independent assessments on 3/22/2016, 02/03/2017, 07/31/2017, 11/02/2017, 

01/07/2018, 08/05/2018, 12/30/2018, 01/02/2020. 
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Other supporting data were obtained from different open data sources. The personal income 

per capita, population density, age, household income, education level, and gender ratio data are 

sourced from United States Census Bureau's American Community Survey 1-year Estimates, 

reported at the Census Block Group level, for the release year 2016. The average residential 

electricity and natural gas prices data at the state level in 2018 were obtained from the website of 

the U.S. Energy Information Administration7. The local residents’ environmental awareness level 

data was obtained from the Yale Program on Climate Change Communication (Howe et al., 2015). 

The heating and cooling degree days data at the county level were obtained from the “Climate 

Data Online” database of the National Oceanic and Atmospheric Administration. 

 

4.3 Empirical methodology 

 

Utility companies provide different incentives for residential heat pumps, including rebate 

and low-interest loans (see the distribution of all the electric utilities in North Carolina in 

Appendix C). Leveraging the geographical variation of incentives for heat pumps provided by 

different utilities, I estimate the effect of a rebate program on heat-pump adoption and compare 

the effect of the rebate with those of two loan programs via three different quasi-natural 

experimental approaches.  

There are two common challenges when estimating the average treatment effect on treated 

(ATT). The first challenge is selection bias (Angrist and Pischke, 2008). I cannot directly observe 

the behaviors of consumers if they had not been influenced by the policy using observational data. 

Traditional cross-sectional analysis usually uses consumers’ behavior in a control group (where 

                                                 
7 I obtained the state-level natural gas prices and electricity prices from the two websites: https://www.eia. 

gov/dnav/ng/ng_pri_sum_a_EPG0_PRS_DMcf_m.htm; https://www.eia.gov/electricity/data/state/. 
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the policy is not in place) as a counterfactual. However, if the household characteristics and 

behavioral patterns are significantly different between the treatment and control groups, the 

behavior of consumers who had access to the incentive policy if the incentive had not been in place 

might be different from the behavior of consumers in the control group, which leads to potential 

selection bias. The second challenge is omitted variable bias. The assignment to the treatment (e.g., 

the incentive policies) may be correlated with unobservable variables which also affect the 

outcome variable of my interest, leading to an endogenous estimation bias (Imbens, 2004; Abbott 

and Klaiber, 2011). For instance, residents located in various utilities may also have different 

unobserved characteristics such as different levels of environmental awareness which may directly 

influence their preference for the adoption of energy-efficient appliances.  

To address the above concerns, I examine a narrow buffer zone along the borderlines between 

the Duke Energy Corporation and three other electric utilities with different incentives (or without 

incentives). The borderline is chosen to avoid overlap with administrative boundaries (e.g., state, 

county, township, etc.) and must be within the same ZIP code areas, to avoid any differences 

caused by different locations and administrations. The Duke Energy utility provides a rebate 

program for all kinds of space heating heat pumps 8  and is adjacent to three other utilities 

(Rutherford Electric Membership Cooperative (EMC), Union Power EMC, and Haywood EMC). 

Among the three neighboring utilities, Rutherford EMC provides no incentives, Union Power 

EMC provides a loan program with 9% of APR, and Haywood EMC provides a loan program with 

3.9% of APR for encouraging all kinds of space heating heat pump installations9, which can serve 

as three control or comparison groups, respectively (See figure 2.3 for the illustration of research 

                                                 
8 The rebate program covers the installations of all kinds of heat pumps for space heating (including air source heat 

pumps, geothermal heat pumps, central heat pumps, mini-split heat pumps, etc.). 
9 It includes air source heat pumps, geothermal heat pumps, central heat pumps, mini-split heat pumps, etc. 
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design). By obtaining local samples based on the three borderlines, I am able to estimate the effect 

of the rebate and also compare it with those of two loan programs.  

 

 

Figure 2.3 The research design and sampling distributions 

 

My sample restrictions follow two rules simultaneously. First, households should be within 

the same ZIP code areas along the borderline. Second, I only include households within 3 miles of 
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the borderline as my final sample. Sample 1 is a rural area, located to the west of the Charlotte 

metropolitan area. It covers the following cities and towns: Rutherfordton, Forest City, Ellenboro, 

Shelby, Kings Mountain, and others. Sample 2 is a suburban area, which is in the east of the 

Charlotte metropolitan area. It covers east of Charlotte City, Mint Hill, Matthews, Monroe, 

Fairview, Concord, and others. Sample 3 is a rural area near the Nantahala National Forest, located 

to the west of Sample 1 and to the south of Great Smoky Mountains National Park. It covers the 

following cities and towns: Highlands, Franklin, Webster, Sylva, and others. 

Sampling within a very narrow geographic region alleviates the concerns for potential 

confounding factors (e.g., environmental awareness level, education level, income, population 

density, urban/rural, and climate) that may lead to selection bias and omitted variable bias, given 

the hypothesis that the observable and unobservable attributes of neighboring households, living 

in a narrow region, should be comparable (Ito, 2014).  

Table 2.1 presents a balance check based on observable covariates along the three 

borderlines10. I compare the building characteristics and demographic features of households 

within 3 miles of the borderline between the treatment and control groups, using the ZTRAX 2020 

assessment data and the US Census Bureau's American Community Survey 1-year Estimates in 

201611. I use two balancing statistics including standardized mean difference (SMD) and variance 

ratio (VR), to check the balance (Linden and Samuels, 2013). The SMD is used for comparing the 

sample mean and VR is used for comparing distribution, both of which have been widely used in 

                                                 
10 The average population density of counties covered by sample1, sample 2, and sample 3 are 229, 800, and 75 

persons per square miles, respectively. The average annual CDD and HDD of counties covered by sample 1 are 

2193 and 2621. The average annual CDD and HDD of counties covered by sample 2 are 2482 and 2402. The 

average annual CDD and HDD of counties covered by sample 3 are 1384 and 3287. The data of population density, 

HDD, and CDD at the county level are from Bureau of Economic Analysis, U.S. Department of Commerce, and 

National Oceanic and Atmospheric Administration. 
11 The building characteristics obtained from the ZTRAX database is at the individual building level, while the 

demographic features obtained from the US census data are at the census block group level. I use the averages at the 

census block group level to approximate each individual household’s demographic features. 
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statistic research (Stuart et al., 2013). According to Rubin (2001), if SMD is smaller than 0.25 and 

VR is in the range between 0.5 and 2, the treatment and control groups are balanced for this 

covariate in terms of mean and distribution. The first sample is well balanced on building 

characteristics, while some of the demographic features, such as age, income, and gender ratio, are 

not strictly balanced. My second sample (Duke Energy vs. Union Power) is perfectly balanced on 

the observable building characteristics (e.g., building condition, building age, number of rooms, 

etc.) and demographic features (e.g., age, income, education, etc.). My third sample (Duke Energy 

vs. Haywood) is in general well balanced on both observable building characteristics and 

demographic features except for two covariates (population median age and building’s year 

remodeled12, which I control for in one of my robustness checks).  

 

 

 

 

 

 

 

 

 

 

 

                                                 
12 Although these two covariates are not strictly balanced according to Rubin’s criterion (2001), the differences in 

terms of these covariates are not big. The population median age is 4 years older and the buildings’ average year 

remodeled is 7 years older on the side of Haywood utility than on the side of Duke Energy utility. All the other 

covariates are strictly balanced. Thus, sample 3 is overall balanced. 
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Table 2.1 Covariates balance check: Comparing households (within 3 miles of borderlines 

and within the same ZIP code areas) in two utilities 
  Mean Std. Dev. Mean Std. Dev. SMD VR 

Panel A: Sample 1 Duke Energy Rutherford   

 (n=15,040) (n=16,521)   

Building Characteristics:       

Building condition 4.23 1.00 4.44 1.00 0.21 1.00 

Year built 1969 25.50 1975 24.40 0.24 1.09 

Year remodeled 1983 12.80 1986 12.90 0.23 0.98 

N. of stories 1.09 0.27 1.10 0.30 0.04 0.81 

N. of bedrooms 2.89 0.77 2.93 0.70 0.05 1.21 

N. of bathrooms 1.72 0.87 1.92 0.80 0.24 1.18 

       

Census Characteristics:       

Median age 43.70 7.30 46.20 4.60 0.41 2.52 

Median household income 37580 9044 43632 11065 0.60 0.67 

Per capita income 21339 6633 23855 6313 0.39 1.10 

male/female 0.87 0.21 0.95 0.15 0.44 1.96 

Share of high school degree 0.28 0.08 0.27 0.06 0.14 1.78 

Share of bachelor degree 0.11 0.07 0.12 0.06 0.15 1.36 

Share of master degree 0.05 0.04 0.05 0.03 0.00 1.78 

Share of doctor degree 0.01 0.01 0.01 0.01 0.10 1.00 

Share of households with earnings 0.66 0.10 0.71 0.09 0.53 1.23 

       

Panel B: Sample 2 Duke Energy Union Power   

 (n=58,437) (n=49,156)   

Building Characteristics:       

Building condition 4 0.35 4 0.32 0.00 1.20 

Year built 1989 19.6 1987 22.4 0.10 0.77 

Year remodeled 1991 10.5 1988 10.9 0.28 0.93 

N. of stories 1.49 0.5 1.43 0.49 0.12 1.04 

N. of bedrooms 3.3 0.77 3.4 0.85 0.12 0.82 

N. of bathrooms 2.3 0.75 2.3 0.82 0.00 0.84 

       

Census Characteristics:       

Median age 39 6.92 40.7 6.67 0.25 1.08 

Median household income 73686 32621 75493 35237 0.05 0.86 

Per capita income 29947 11620 32271 12836 0.19 0.82 

male/female 0.96 0.14 0.98 0.15 0.14 0.87 

Share of high school degree 0.21 0.09 0.22 0.1 0.11 0.81 

Share of bachelor degree 0.24 0.12 0.24 0.13 0.00 0.85 

Share of master degree 0.08 0.06 0.07 0.05 0.18 1.44 

Share of doctor degree 0.009 0.01 0.01 0.01 0.10 1.00 

Share of households with earnings 0.84 0.09 0.83 0.08 0.12 1.27 
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Table 2.1: Continued 

  Mean Std. Dev. Mean Std. Dev. SMD VR 

       

Panel C: Sample 3 Duke Energy Haywood   

 (n=15,709) (n=7,808)   

Building Characteristics:       

Year built 1981 19.9 1980 21.4 0.05 0.86 

Year remodeled 1980 12.1 1987 12.9 0.56 0.88 

N. of stories 1.13 0.29 1.16 0.31 0.10 0.88 

N. of bedrooms 2.83 0.89 2.8 0.91 0.03 0.96 

N. of bathrooms 2.34 1.1 2.38 1.12 0.04 0.96 

       

Census Characteristics:       

Median age 50.33 9.06 54.38 5.48 0.54 2.73 

Median household income 48369 10724 46312 9431 0.20 1.29 

Per capita income 31729 11964 34865 11904 0.26 1.01 

male/female 0.93 0.19 0.95 0.12 0.13 2.51 

Share of high school degree 0.2 0.09 0.21 0.08 0.12 1.27 

Share of bachelor degree 0.19 0.075 0.2 0.07 0.14 1.15 

Share of master degree 0.07 0.037 0.07 0.034 0.00 1.18 

Share of doctor degree 0.01 0.018 0.01 0.01 0.00 3.24 

Share of households with earnings 0.64 0.088 0.65 0.055 0.14 2.56 

Note: I use two balancing statistics (standardized mean difference (SMD) and variance ratio (VR)) to check the balance 

between the control group and treatment group (Linden and Samuels, 2013). According to Rubin (2001), if SMD is 

smaller than 0.25 and VR is in the range between 0.5 and 2, the treatment and control groups are balanced for this 

covariate in terms of sample means and distribution. I obtained the individual building characteristics data from the 

ZTRAX database and obtained the demographic characteristics at the census block group level from the US census 

data based on the 2016 American Community Survey. As for the covariate of building conditions, the ZTRAX 

database records six levels of building conditions for each property, which are “Unsound”, “Poor”, “Fair”, “Average”, 

“Good”, “Excellent.” I transform the building condition variable into an ordinal variable with six integers from 1 to 6. 

A more stable, newer, and sounder building at the time of assessment implies a higher building condition recording. 

 

 

For the first sample, I apply two approaches, namely DID and spatial RD, to estimate the 

effect of the rebate on heat-pump adoption, respectively. Although the first sample is not as 

balanced as the other two samples, the DID and RD approaches do not require strictly balanced 

covariates. I show that the pre-treatment parallel trend test in the DID design is passed in the first 

sample in the later section. In my research design, the first sample provides the intention-to-treat 

estimates. For the second and third samples, I estimate the difference in differential trends of heat 
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pump adoption to directly compare the effect of the rebate with those of the other two loan 

programs. Econometric model details are illustrated in the following sections. 

I specifically select the buffer areas of the four utilities as my samples for the following 

reasons. To estimate a causal impact of the rebate with the DID method, I identify a utility area 

with only one rebate incentive for heat pumps and a neighboring utility area without any incentives 

for heat pumps. The buffer area between the Duke Energy utility and the Rutherford utility area is 

the only qualified area I can find in North Carolina. Similarly, to make a robust comparison 

between Duke Energy’s rebate and other loan programs, I have to find a buffer area between the 

Duke Energy utility and another neighboring utility area with only one loan program for heat 

pumps. Many utilities provide both rebate and loan programs for heat pumps, which are not 

qualified for my study. The Union Power utility and the Haywood utility are two of the few areas 

that only provide one loan incentive for heat pumps and are also adjacent to the Duke Energy 

utility. 

 

4.3.1 Difference-in-differences 

I first apply the DID method to estimate the effect of the rebate on air-source heat pump 

adoption based on the borderline between the Duke Energy utility and the Rutherford utility. The 

Duke Energy utility starts to provide a cash rebate ($300-$450) for residential heat-pump adoption 

on 10/01/2017 (see the heat adoption rate before and after the rebate policy in sample 1 in 

Appendix D), while the Rutherford utility does not have any incentives for heat pumps, which 

enables a DID specification along the borderline. The DID approach controls for time-invariant 

confounding factors. For instance, the two electricity utilities had different residential electricity 

prices leading to different fuel costs using heat pumps. This electricity price gap may influence 
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heat pump adoption. My study chooses a time window with time-invariant residential electricity 

prices for both utilities in the first sample to rule out this confounder. My narrow sampling also 

helps control for time-variant confounding factors in the DID setting. First, the narrow sampling 

controls for potential differential impacts of natural gas price, which influences the energy bill 

savings associated with a switch from natural gas furnaces to heat pumps. The sample included in 

my study is within the same natural gas utility and both treatment and control groups face the same 

natural gas price. Second, in the DID specification, I show that the narrow spatial buffer helps 

justify the assumption of parallel trends between the treatment and control groups if the treatment 

had not been in place.  

I apply the following two-way fixed effects model (a generalized DID model) using 

observations in both the pre-treatment and post-treatment periods (including 2016-3-22, 2017-2-

3, 2017-7-31, 2017-11-2, 2018-1-7, 2018-8-5, and 2018-12-30): 

 

𝑌𝑖𝑡 = 𝛽𝐷𝑖𝑡 + 𝜑𝑖 + 𝜎𝑧 ∙ 𝜗𝑡 + 𝜀𝑖𝑡         … (9) 

 

where 𝑌𝑖𝑡 is the outcome of interest. I apply two forms of outcome variables to measure the 

heat pump adoption at two levels: (1) a binary variable at the individual level indicating whether 

household i installs a heat pump in time t; (2) a continuous variable at the 500m×500m 

geographical grid level measuring the residential heat-pump installation rate within the grid i and 

in time t, calculated by the share of households with the installation of heat pumps. The 

500m×500m geographical square grids were artificially plotted on the map by the researchers. 𝐷𝑖𝑡 

is the treatment variable, which takes value one for household i (or, 500m*500m grid i) in the 

Duke Energy utility after the implementation of the rebate program and zero otherwise. 𝜑𝑖 is the 
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individual household (or grid) fixed effects. 𝜎𝑧 ∙ 𝜗𝑡 is the ZIP-code-by-year fixed effects or the 

income-intervals-by-year fixed effects. I divide the household income into four quartiles. 𝜀𝑖𝑡 is the 

error term. According to the balancing tests (See the Panel A of Table 2.1), the household income 

between treatment and control groups is not strictly balanced in the first sample. Also, the income 

has a statistically significant correlation with heat pump adoption based on my national exploratory 

analysis in section 2, which may confound my DID estimation. Although I pass the pre-treatment 

parallel trend test (See section 5), I include income-intervals-by-year fixed effects in the model for 

robustness to allow differential trends across the income intervals to rule out the confounder of 

income. 

When I use the binary variable as the outcome in my DID specification, I am estimating a 

linear probability model (LPM) in conjunction with the DID. The LPM-DID models have been 

widely used by many economic studies to evaluate the impacts of market reforms (Buchmueller 

and DiNardo, 2002; Monheit and Schone, 2004;  Levine, McKnight, and Heep, 2011;  Monheit et 

al. 2011). Compared to non-linear DID models (e.g., logit or probit DID models), the LPM-DID 

model has advantages: (1) the LPM-DID directly estimates the impact of a relevant policy and the 

coefficient can be easily interpreted as “percentage point changes in coverage outcomes” (Cantor 

et al., 2012); (2) the LPM-DID avoids the complications in estimation and interpretation of 

“multiple interaction terms and their standard errors in the logit or probit models” (Cantor et al., 

2012; Ai and Norton, 2003). Nevertheless, the LPM-DID model also has disadvantages. It is not 

well suitable for outcomes with highly skewed values with high zero mass since it may violate 

Ordinary Least Squares (OLS) regression’s assumptions, such as normally distributed errors and 

homoscedasticity (Wooldridge, 2010). For robustness, I apply an alternative continuous outcome 
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variable measuring the residential heat-pump installation rate at the 500m×500m geographical grid 

level. 

 

4.3.2 Spatial regression discontinuity 

I further combine the DID approach with the spatial RD method to estimate the local effect 

of the rebate on heat-pump adoption at the borderline based on the first sample. RD has been 

widely used by empirical studies to evaluate policy impacts by comparing the differences in the 

outcome around the cutoff. Subjects receive the treatment on one side of the cutoff while receiving 

no treatment on the other side of the cutoff. Since subjects at the cutoff share the same probability 

of receiving the treatment, RD approximates a natural experiment at the cutoff region. In my study, 

I follow two steps to estimate the rebate effect using the DID-RD approach and only use the 

variables at the individual household level. First, I compute the first difference of the dependent 

variable, namely the dummy variable indicating heat pump adoption status for each household. 

Second, using the computed first differences as the outcome, a local linear regression discontinuity 

model is applied to estimate the local average treatment effect (LATE) of the rebate on heat-pump 

adoption. Intuitively, I compare the changes in heat-pump adoption statuses of households who 

are infinitely close to one side of the border with those of households who are infinitely close to 

the other side of the border. Although the RD-DID estimator is more local, it has an advantage. 

Treatment and control groups at the cutoff should be indifferent except for the treatment status, so 

there should be no differential trends of heat pump adoption at the cutoff between the treatment 

and control groups if the treatment had not been in place. The parallel trend assumption of the DID 

is met at the cutoff. The time window in the RD-DID analysis is from 03/22/2016 to 08/05/2018. 
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A local linear regression with a triangular kernel function, which has been a standard choice for 

RD estimations (Imbens and Lemieux, 2008; Lee and Lemieux, 2010), is applied as follows: 

 

∆𝑌𝑖,𝑡1,𝑡2
= 𝛼 + 𝛽𝐷𝑖 + 𝛾(𝑋𝑖 − 𝑐) + 𝛿𝐷𝑖(𝑋𝑖 − 𝑐) + 𝜀𝑖         … (10) 

 

where ∆𝑌𝑖,𝑡1,𝑡2
 is the first difference of a binary variable indicating whether household i 

installs a heat pump in time t. 𝐷𝑖  is a binary treatment group variable, which equals to one if 

household i is located in the Duke Energy utility and if 𝑋𝑖 ≥ 𝑐 . 𝑋𝑖  is the running variable, 

measuring the distance to the borderline of household i. When household i is in the Duke Energy 

utility (treatment group), 𝑋𝑖 > 0; when household i is in the Rutherford utility (control group), 

𝑋𝑖 < 0. 𝑐 is the treatment cut off, which equals zero. 𝜀𝑖  is the error term. A triangular kernel 

function on the distance of each household to the borderline is applied to compute the weights 

when approximating the regression functions below and above the cutoff (Calonico et al., 2014). 

Since the performance of point estimators and confidence intervals in RD is sensitive to the 

specific bandwidth selected, I use the mean squared error (MSE)-optimal approach (Imbens and 

Kalyanaraman, 2012) to compute a data-driven bandwidth for the RD point estimator. However, 

the MSE-optimal bandwidth selector usually leads the confidence interval inferences biased 

(Calonico et al., 2014). To ensure robust confidence intervals, I use the robust bias-corrected (RBC) 

methods (Calonico et al., 2014, 2020) to compute the bandwidth for confidence interval inference. 

The 𝛽 is the coefficient of my interest, which measures the local average treatment effect of the 

rebate program on heat pump adoption.  

 

4.3.3 Difference in differential trends in conjunction with spatial discontinuity 
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For the second and third samples, I compute the difference in differential trends in conjunction 

with spatial discontinuity to estimate the relative effects of Duke Energy’s rebate program over 

the other two loan programs (with 9% and 3.9% of APR), respectively. I examine the borderlines 

between the Duke Energy utility, with a rebate program, and the other two utilities with loan 

programs (Union Power EMC, and Haywood EMC). The Union Power EMC has provided access 

to loans (APR: 9%) for heat-pump adoption since 2006, while the Haywood EMC has provided 

the loan program (APR: 3.9%) for residential heat pumps since 2010. My panel data starts from 

2016, so I cannot apply a standard DID specification since pre-treatment period (before the 

implementation of the loan programs) data are not available. I, therefore, compare the differential 

growth trends of the heat pump adoption rate along the borderlines between two utilities. I 

emphasize that the treatment (i.e., the rebate or loan incentive) is assigned in both pre- and post-

periods when I am comparing the differential trends across the borderline, which is different from 

the typical DID specification. I choose a time period (from 11/02/2017 to 01/02/2020) when 

households on both sides of the borderlines had access to the incentives, while households received 

rebates on one side and received loans on the other side. Also, I focus on observations within the 

same ZIP code areas and within 3 miles of the borderlines. 

Not all households need to install new heating systems in a given time. For most households 

(who live in old buildings) in the U.S., the decision to install a heat pump is made when they need 

to replace their old heating equipment (e.g., natural gas furnaces, electric resistance heating, and 

others). The installation of a heat pump is quite different from a solar panel, which is a completely 

new addition to households. Thus, only a fraction of households whose heating equipment is old 

or not functioning well, have the potential demand to replace their heating equipment with a new 

heat pump. Given the relatively small incentives studied in the paper, it is likely that the rebate and 
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loan programs can only alter the decisions of homeowners whose heating equipment is old or not 

functioning well at a specific time. The demand for replacing heating equipment is thus released 

every year when different sets of households need to replace their old units. Conditioning on the 

small buffer area and balanced observed attributes, we assume that the number and attributes of 

households, who have the demand for replacing heating equipment, are comparable across the two 

sides of the borderline at any specific time in our study period. Thus, I can compare the effects of 

the rebate and loan, although the loan programs in our study were introduced earlier than the rebate 

program. Nevertheless, I acknowledge that the loan’s effect is a long-run effect and the rebate’s 

effect is a short-run effect in my sample.  

Studies comparing the effectiveness of different policies using the estimations coming from 

different sites could be problematic when the ATT varies with different treated groups or sites 

(Allcott, 2015). To avoid this issue, I focus on a narrow spatial buffer to exclude the site selection 

bias in program evaluations. Another potential concern is different electricity prices between the 

utilities, which may also influence the heat pump adoption. Unlike in the first study (sample) where 

I use DID to eliminate the influence of time-invariant prices, here I estimate the impact of 

electricity price on heat pump adoption density using a fixed-effects model with a North Carolina 

state-wide panel dataset. I find that the estimated effect of electricity price on heat pump adoption 

is minimal compared to the effects of rebate over loan (see detailed estimations in Section 5.3). 

Therefore, my major conclusion still holds since there is little effect of electricity price on the heat 

pump adoption in the second and third samples. 

I apply the following two-way fixed effects model using observations in two periods 

(11/02/2017 and 01/02/2020) after the implementation of rebate and loan programs to estimate the 

difference in differential trends: 
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𝑌𝑖𝑡 = 𝛽𝐷𝑖𝑡 + 𝜑𝑖 + 𝜎𝑧 ∙ 𝜗𝑡 + 𝜀𝑖𝑡         … (11) 

 

where 𝑌𝑖𝑡  is the outcome variable. I take two forms of outcome: (1) a binary variable 

indicating whether household i installs the heat pump in time t; (2) the residential heat-pump 

installation density (share of households with heat pumps) within a 500m×500m geographical grid 

i in time t. 𝐷𝑖𝑡 is a dummy variable, which takes value one for households or grids in the Duke 

Energy utility and in the second period, and takes value zero otherwise. 𝜑𝑖  is the individual 

household (grid) fixed effects. 𝜎𝑧 ∙ 𝜗𝑡 is the ZIP-code-by-year fixed effects. 𝜀𝑖𝑡 is the error term. 𝛽 

is the coefficient of my interest, comparing the changes in heat pump adoption status (or rate) from 

the first to the second periods under the influence of the rebate with those under the influence of 

the loan. A positive 𝛽 implies that the heat pump adoption growth rate is higher under the rebate 

compared to that under the loan and vice versa. Limited by the empirical context, I cannot isolate 

the effect of a loan program. The loan programs were started earlier than the beginning of the data 

period, and I cannot find qualified neighboring utilities without any incentives for residential heat 

pumps as control groups. Thus, I cannot apply a standard DID specification along a borderline to 

estimate a robust treatment effect of a loan program. 

 

4.3.4 Summary of the research design 

In the above section, I outline my empirical strategies comparing three specific incentives: a 

rebate ($300-$450) program by the Duke Energy utility, a loan program with 9% APR by the 

Union Power utility, and a loan program with 3.9% APR by the Haywood utility. The three 

incentives apply to all types of heat pumps for space heating (e.g., air-source heat pumps, ground-
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source heat pumps, central heat pumps, ductless mini-split heat pumps, etc.), but I only estimate 

the incentives’ effect on air-source heat pump adoption. Air source heat pump is the most common 

type of heat pump. The rebate amount I investigate is typical in North Carolina. The loan programs’ 

interest rates I investigate can roughly cover the range of the interest rates for heat pumps provided 

by utilities in North Carolina. All the members within the Union Power and Haywood utilities are 

qualified to apply for the fixed low-interest loan programs. The maximum amount of money 

borrowed in the programs can cover the full costs of installing a typical air-source heat pump. I 

examined three borderlines between two utilities (Duke Energy – Rutherford; Duke Energy – 

Union Power; Duke Energy – Haywood). I analyze the samples of households within the same ZIP 

code and within 3 miles of the borderline. The first study uses the DID and DID-RD approaches 

to estimate the rebate effect. The second and third studies compare differential growth trends to 

estimate the relative effect of rebate over loan. Table 2.2 summarizes the three studies and research 

designs.  Research designs are guided by the sampling periods and the availability of an appropriate 

control group.  
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Table 2.2 Summary of studies using the three samples 
Studies/Samples Period 1 Period 2 Period 3 Aim and Method (in parentheses) 

     

Utility 1: Duke Energy No incentives Rebate ($300-$450)  Rebate's effect  

(Difference-in-differences; Spatial regression 

discontinuity) 
Utility 2: Rutherford EMC No incentives No incentives  

     

     

Utility 1: Duke Energy  Rebate ($300-$450) Rebate ($300-$450) Relative effect of rebate over loan 

(Comparing differential growth trends 

between the two utilities within a narrow 

buffer zone) 

 

Utility 3: Union Power EMC 

 

 

 

Loan (APR: 9%) Loan (APR: 9%) 

     

Relative effect of rebate over loan 

(Comparing differential growth trends 

between the two utilities within a narrow 

buffer zone) 

 

Utility 1: Duke Energy  Rebate ($300-$450) Rebate ($300-$450) 

Utility 4: Haywood EMC 

 

 

 

Loan (APR: 3.9%) Loan (APR: 3.9%) 

 

 

 

5. Results 

5.1 The effect of the rebate program using DID 

 

Table 2.3 presents the estimates of the effect of the rebate program by including different sets 

of fixed effects and using LPM-DID models and DID models. All the coefficients of the treatment 

variable in Table 2.3 are significantly positive, showing that the rebate program can successfully 

encourage the heat-pump installation. Columns (2) and (5) present results from my preferred 

specifications, which include the ZIP-by-year fixed effects and better control for potential 

unobserved heterogeneity. The rebate program significantly increased the probability of installing 

a heat pump by 1.3% on average across the four post-treatment periods (or an 11% increase 

compared to the pre-treatment periods in the treatment group) and increased residential heat pump 
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adoption density (share of households with heat pumps within a 500m*500m grid) by 0.012 (or a 

6.7% increase). 

 

Table 2.3 The effect of rebate program on heat pump adoption using DID approach 
Model LPM-DID DID 

 (1) (2) (3) (4) (5) (6) 

Outcome Binary variable:  

adopting heat pump 

Heat pump density within a 500m*500m 

grid 

1[Rebate]it 0.008*** 0.013*** 0.017*** 0.01* 0.012*** 0.022*** 

  (0.003) (0.003) (0.003) (0.006) (0.004) (0.006) 

        

Individual FE Yes Yes Yes Yes Yes Yes 

Year FE Yes No No Yes No No 

ZIP-by-Year FE No Yes No No Yes No 

Income-by-Year FE No No Yes No No Yes 

        

Overall Adjusted R2 0.1 0.19 0.06 0.11 0.16 0.08 

Obs 220,915 220,915 220,915 22,729 22,729 22,729 

Mean of outcome 

variable 
0.22 0.22 0.22 0.24 0.24 0.24 

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are in the parentheses and clustered at the 

individual (household, or 500m*500m grid) level. “Income-by-Year FE” means income-intervals-

by-year fixed effects. I divide the household income into four intervals based on its quartiles. I 

focus on the sample of households within 3 miles to the borderlines. The observations include 

seven periods of 2016-3-22, 2017-2-3, 2017-7-31, 2017-11-2, 2018-1-7, 2018-8-5, 2018-12-30. 

 

 

To further explore the time-variant treatment effects of the rebate by different periods, I 

interact the treatment variable with four dummies indicating four post-treatment periods (including 

2017-11-2, 2018-1-7, 2018-8-5, and 2018-12-30), respectively, in my baseline DID models. 

Estimation results are presented in Table 2.4. Results show that the rebate program did not have 
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significant treatment effects on the first two post-treatment periods (2017-11-2 and 2018-1-7), 

which could be due to that these two periods are too close to the initial date of the rebate program 

and the additional demand to replace spacing heating equipment in that time span is little. 

Moreover, I find that the treatment effects became significantly positive in the last two post-

treatment periods (2018-8-5 and 2018-12-30), which are about one year after introducing the 

rebate program. Based on the estimation results in column (5), the rebate program increased the 

adoption rate by 0.024 in a one-year period after the rebate program is introduced, or a 13% of 

increase compared to the pre-treatment periods. If I assume the rebate is all passed through to 

consumers and the price of heat pumps falls by $300 to $450. The average price of a typical air 

source heat pump is $8000. So, the price elasticity of demand for heat pumps is from 2.31 to 3.46, 

which means that the demand for heat pumps is quite elastic.  
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Table 2.4 The effect of rebate program on heat pump adoption by different periods 

Model LPM-DID DID 

  (1) (2) (3) (4) (5) (6) 

Outcome 
Binary variable:  

adopting heat pump 

Heat pump density within a 500m*500m 

grid 

1[Rebate]it * T1 0.001 0.001 0.001 0.002 0.003 0.002 

  (0.001) (0.001) (0.001) (0.002) (0.002) (0.002) 

1[Rebate]it * T2 0.0009 0.0009 0.001 0.003 0.002 0.002 

  (0.001) (0.001) (0.001) (0.002) (0.002) (0.002) 

1[Rebate]it * T3 0.0143 0.025*** 0.033** 0.023** 0.024*** 0.048*** 

  (0.016) (0.01) (0.017) (0.01) (0.008) (0.011) 

1[Rebate]it * T4 0.0142 0.025*** 0.033** 0.022** 0.024*** 0.046*** 

 (0.016) (0.01) (0.016) (0.01) (0.008) (0.011) 

        

Individual FE Yes Yes Yes Yes Yes Yes 

Year FE Yes No No Yes No No 

ZIP-by-Year FE No Yes No No Yes No 

Income-by-Year FE No No Yes No No Yes 

        

Overall Adjusted R2 0.1 0.19 0.05 0.1 0.25 0.08 

Obs 220,915 220,915 220,915 22,729 22,729 22,729 

Mean of outcome 

variable 
0.21 0.21 0.21 0.24 0.24 0.24 

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are in the parentheses and clustered at the individual 

(household, or 500m*500m grid) level. I focus on the sample of households within 3 miles to the borderlines. The 

observations in the sample include periods of 2016-3-22, 2017-2-3, 2017-7-31, 2017-11-2, 2018-1-7, 2018-8-5, 

and 2018-12-30. T1, T2, T3, T4 are dummies indicating four post-treatment periods of 2017-11-2, 2018-1-7, 2018-

8-5, and 2018-12-30. 

 

Observations after 12/30/2018 are excluded due to electricity prices change. The residential 

electricity prices in both utilities did not vary during the time window (from 03/22/2016 to 

12/30/2018). Moreover, both treatment and control groups share the same natural gas utility and 

face the same natural gas prices during the study window.  

To justify the parallel trend assumption of the DID approach, I conduct an event study as a 

robustness check. By applying the following regression, I estimated the treatment effect by 

different periods (including pre-treatment and post-treatment periods). 
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𝑌𝑖𝑡 = ∑ 𝐷𝑖𝑡,𝑘 × 𝛽𝑘

𝑀

𝑚=𝑘,𝑚≠−1

+ 𝜑𝑖 + 𝜎𝑧 ∙ 𝜗𝑡 + 𝜀𝑖𝑡         … (12) 

where 𝑌𝑖𝑡 is the residential heat-pump installation rate within the grid (500m*500m) i and in 

time t.  𝐷𝑖𝑡,𝑘 are a set of dummy variables indicating the treatment status at different periods. k 

takes values from -3, -2, 0, 1, 2, 3, which indicated 6 observed periods in our sample (2016-3-22, 

2017-2-3, 2017-11-2, 2018-1-7, 2018-8-5, and 2018-12-30). The dummy for m = −1 is omitted in 

the equation, so that the treatment effect is calculated relative to the -1 period (2017-7-31) right 

before the introduction of the rebate. 𝜑𝑖 is the individual grid fixed effects. 𝜎𝑧 ∙ 𝜗𝑡 is year fixed 

effects, or ZIP-code-by-year fixed effects, or income-intervals-by-year fixed effects. Figure 2.4 

plots the estimation results of the event study with different specifications (by adding different 

fixed effects).  All the plots show that there are no differential trends in heat pump adoption density 

between the treatment and control groups prior to the launch of the rebate policy. The pre-treatment 

parallel trend test is passed, which supports the key parallel trend assumption required by my DID 

specification. 
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Figure 2.4 The event study of the rebate program for heat-pump adoption 

Note: red points are point estimators, and green error bars are 95% confidence intervals. The 

seven periods are 2016-3-22, 2017-2-3, 2017-7-31, 2017-11-2, 2018-1-7, 2018-8-5, and 2018-

12-30. 

 

While the LPM model has been used in many other DID contexts, the decision to adopt a heat 

pump is effectively a one-time irreversible choice as opposed to repeated, non-permanent binary 

choices. For the setting of individual heat pump adoption, survival models can directly capture a 

data generating process that has a single event, although these survival models are nonlinear 

models that are not well suited for individual household fixed effects. I conduct a robustness check 

to estimate the rebate effect using a Cox proportional hazards model (See Appendix E). The Cox 

model shows a significant positive effect of the rebate, which is consistent with the LPM-DID 

model. The DID specifications that use adoption rates by grid can ameliorate the single-choice 
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problem, but the dependent variable could be censored with the possibility of increased 

development within the grid. I conduct an additional robustness check to address this potential 

problem. Using a Tobit model, I regress the first differences of heat pump adoption density on a 

dummy variable indicating the Duke Energy utility area. Estimates show positive effects consistent 

with my baseline estimations (See Appendix F). 

 

5.2 The effect of the rebate program using DID-RD 

 

I next combine the DID with the RD method to estimate the rebate effect. I compute the 

estimated treatment effect as the difference of the first differences of households’ heat pump 

adoption status at the cutoff (borderline) for the treatment and control groups. First, I present 

graphical evidence for the rebate’s effect. Figure 2.5 shows the regression discontinuity plots with 

a polynomial regression function of order 3 and a local linear regression function, respectively. 

The polynomial order of 3 is chosen by the Bayesian information criterion13 (BIC). I use the 

integrated mean square error (IMSE)-optimal evenly spaced method (Calonico et al., 2015) to 

compute the number of bins (31 bins in plot a and 15 bins in plot b),  which are assigned to calculate 

the sample averages within bins in both plots. The bandwidth is 5 miles in plot a and is 1 mile in 

plot b. Both plots demonstrate that the outcome variable (first differences in heat pump adoption 

status at the household level) jumps at the cutoff (borderline) and is higher at the side of the Duke 

Energy utility which implemented the rebate program, which provides suggestive evidence that 

the rebate program can increase the probability of installing a heat pump. 

 

                                                 
13 I regress the outcome variable (the first differences in heat pump adoption status) on the running variable using 

global polynomial specification allowing up to order 6. I compare the BIC of each model, and the model of 

polynomial order 3 is the best-fit model with the lowest BIC.  
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Figure 2.5 Regression discontinuity plots 

 Note: The distance to the borderline is above 0 at the side of Duke Energy utility and is less 

than 0 at the side of Rutherford utility 

 

The bandwidths in the above RD plots are artificially set by researchers, which provides 

informal graphical evidence of the treatment effect. I then provide formal statistical evidence using 

a data-driven RD-DID approach. I utilize a nonparametric local polynomial estimator, which has 

been a standard choice for RD estimations (Imbens and Lemieux, 2008; Lee and Lemieux, 2010). 
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A local linear regression with a triangular kernel function is applied. I use the MSE-optimal 

approach (Imbens and Kalyanaraman, 2012) to compute the bandwidth employed for the RD point 

estimator, and a 0.867-miles bandwidth is chosen, leading to an effective sample size of 9,411 

households. I use the robust bias-corrected (RBC) methods (Calonico et al., 2014, 2020) to 

compute the bandwidth for confidence interval interference and a 1.802-miles bandwidth is chosen. 

Results show that the estimated coefficient of β is 0.051, with a standard error of 0.025 and a p-

value of 0.046. I reject the null hypothesis that there are no differences in heat pump adoption 

changes between the two utilities at the cutoff at a 95% confidence level. The rebate program can 

significantly increase the probability of installing a heat pump by 5.1% for households at the 

borderline. I conduct a McCrary (2008) manipulation test using local polynomial density 

estimation following Cattaneo et al. (2018)’s approach. The final test T statistic is 0.507, with a p-

value of 0.61. There is no statistical evidence of systematic manipulation of the running variable 

(distance to the borderline) in my RD design. In addition, I conduct a robustness check using a 

traditional RD design by only including observations in the second period (See results in 

Appendix G). 

 

5.3 The relative effect of the rebate program over loan programs 

 

I use the second and third samples to estimate the relative effects of Duke Energy’s rebate 

program over the two loan programs by comparing differential growth trends along the borderline 

within a narrow spatial buffer. I fit a regression model to compute the difference in differences in 

adoption rates across two periods on both sides of the borderline. Throughout the data window, 
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consumers had access to the rebate program on one side of the borderline and had access to the 

loan program on the other side of the borderline.  

Table 2.5 presents estimates of the relative effects by including different sets of fixed effects 

and using different outcome variables. Columns (1) and (2) use the heat pump adoption status at 

the household level as the outcome variable, and Columns (3) and (4) use the heat pump adoption 

density as the outcome. The coefficients presented in the table measure the difference in heat pump 

adoption growth rates across the borderline of the two utilities with different incentives. Panel A 

in Table 2.5 presents results on the relative effects of rebate over the loan program with 9% APR 

and panel B is for relative effects of rebate over the loan program with 3.9% APR. All the 

coefficients in Table 2.5 are significantly positive, except for the coefficient in column (4) of panel 

A with zip-by-year fixed effects, indicating that the rebate program’s effect on the adoption rate is 

larger than the two loan programs (9% and 3.9% APR).  

My estimates are also economically significant. Based on the estimation in column (1), the 

rebate program can increase the likelihood of heat pump adoption by an additional 0.004 for a 

household in a two-year period, compared to the loan program with a 9% APR, suggesting that the 

rebate program can bring additional 233 heat pump installations in the Duke Energy service 

territory in a two-year period in our second sample. This second sample is overlapped with 3 

counties (Cabarrus County, Mecklenburg County, Union County14). If I assume the rebate program 

was implemented by the three counties, the rebate program would bring additional 2,269 heat 

pump installations. The market value of 2,269 air source heat pumps is about 22 million US dollars 

using a back-of-the-envelope calculation. Similarly, based on the estimation in column (1), the 

rebate program can bring additional 581 heat pump installations in the Duke Energy service 

                                                 
14 The total number of households in the three counties (Cabarrus County, Mecklenburg County, Union County) is 

567,324 based on U.S. Census American Community Survey 2019 one-year estimates. 
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territory in our third sample, compared to the loan program with a 3.9% APR. The third sample is 

overlapped with three counties (Jackson County, Macon County, Transylvania County15). The 

rebate program would bring additional 1,748 heat pump installations if the three counties 

implemented the rebate program. The market value of 1,748 air source heat pumps is about 17 

million US dollars. 

Although the treatment coefficients in panel B appear larger than those in panel A, the 

coefficients cannot be compared directly since the estimations are based on different samples. 

Therefore, the effectiveness of two loans program with different APRs cannot be compared 

directly in my samples.  

Although the third sample is overall balanced, there are two imbalanced observable covariates, 

namely population median age and building’s year remodeled. To fully rule out the potential 

influences of the two imbalanced covariates, I conduct a robustness test by directly controlling the 

covariates in my differential-trends model and find that my estimations are insensitive to adding 

the covariates. See detailed tests in Appendix H. 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
15 The total number of households in the three counties (Jackson County, Macon County, Transylvania County) is 

47,221 based on U.S. Census American Community Survey 2019 one-year estimates. 
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Table 2.5 The relative effect of rebate over loan (APR:9%, 3.9%) by comparing differential 

trends 
Model (1) (2) (3) (4) 

Outcome Binary Binary Density Density 

     

Panel A: Rebate vs. Loan (9%)    

1[Duke Energy]it 0.004*** 0.001** 0.0045*** 0.0006 

 (0.0004) (0.0005) ( 0.0013) (0.0014) 

     

Individual FE Yes Yes Yes Yes 

Year FE Yes No Yes No 

ZIP-by-Year FE No Yes No Yes 

     

Overall Adjusted R2 0.0011 0.0043 0.0033 0.096 

Obs 214,728 214,728 13,970 13,970 

Mean of outcome variable 0.11 0.11 0.14 0.14 

     

Panel B: Rebate vs. Loan (3.9%)    

1[Duke Energy]it 0.037*** 0.039*** 0.027*** 0.028** 

 (0.005) (0.005) (0.01) (0.011) 

     

Individual FE Yes Yes Yes Yes 

Year FE Yes No Yes No 

ZIP-by-Year FE No Yes No Yes 

     

Overall Adjusted R2 0.04 0.06 0.092 0.006 

Obs 47,034 47,034 2,502 2,502 

Mean of outcome variable 0.15 0.15 0.14 0.14 

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are in the parentheses and clustered at the individual (household, 

or 500m*500m grid) level. I focus on the sample of households within 3 miles to the borderlines. 

 

There are two other potential confounders in this research design: electricity price and natural 

gas price. First, according to the pre-treatment parallel trend test in the first study, there are no 

differential trends of heat pump adoption under two different time-invariant electricity prices, 

though the time-variant electricity price may still be a confounder in other contexts. In the second 

and third samples, the utilities of Union Power and Haywood did not change the residential 

electricity rate plan in my study window, but the Duke Energy utility decreased the marginal 

residential electricity price by about 0.5 cents on 01/01/2019, which might affect the heat pump 
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adoption trend. To address this concern, I show that the impact of changing electricity prices on 

heat pump adoption rate is negligible within North Carolina. Based on a panel data of 1 million 

residential buildings across 26 Electric Membership Cooperatives of North Carolina, I regress the 

heat pump adoption rate within a 1km×1km grid on the yearly average residential electricity prices 

of each cooperative controlling for individual grid fixed effects and year fixed effects using 

observations from 2016 to 2019. The heterogeneous incentives for heat pumps provided by 

different cooperatives can be captured by the individual grid fixed effects. I calculate the average 

residential electricity price by dividing the cooperative’s residential total revenue by residential 

sales based on data from EIA 861 forms16. My estimate shows 0.5 cents decrease in residential 

electricity price leads to a 0.0008 increase in the heat pump adoption rate (See detailed estimation 

results in Appendix I.). Thus, the impact of a decrease in electricity price in the Duke Energy 

utility is very small compared to my estimated effects of the incentives, and my main conclusion 

still holds. For the second concern, since both treatment and control groups share the same natural 

gas utilities, the natural gas price is controlled in my research design. 

To sum up, I find that the rebate program ($300-$450) is more effective in promoting heat 

pump adoption than the other two loan programs (APR: 9%, 3.9%) under the assumption of 

comparable demand for replacing old heating equipment within the buffer area. This comparison 

is representative of North Carolina. The median household incomes in 2018 in the second and third 

samples are 74,534 and 47,675 US dollars. According to the 2018 U.S. census data, the median 

household income in North Carolina is 53,369 US dollars. Thus, my estimation is based on a 

sample that is comparable to average North Carolina consumers. 

                                                 
16Data source: U.S. Energy Information Administration, Annual Electric Power Industry Report, EIA 861 forms, 

https://www.eia.gov/electricity/data/eia861/ 
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There are three potential explanations for my findings. First, most consumers’ credit 

constraints are not binding given that the credit market is well-developed in the U.S. In addition 

to the utilities’ loan programs, consumers may also have access to other loan programs in the U.S., 

such as personal loans provided by commercial banks, credit companies, etc. According to the 

2019 U.S. Federal Reserve data, 26.1% of consumers have personal loans, and its average balance 

amount in North Carolina is $16,359.89 which is much higher than the average price of air-source 

heat pumps (around $8,000). Also, the average amount of household credit card debt in North 

Carolina is $7,225 in 2018. (See the detailed personal loan and credit card data in the U.S. in 

Appendix J.) Thus, credit constraints should not be the primary hurdle for heat pump adoption in 

my sample. The major incentive of the utilities’ loan programs comes from lower interest rates. 

Second, according to my stylized model, although under a certain condition the subsidies provided 

by the rebate program and the low-interest loan program can be equivalent, consumers may be 

inattentive to the subsidies caused by the lower interest rate. It is complex and difficult for some 

consumers to compare different interest rates and compute the present value of subsidies from the 

loan program. The cash rebate program can be more effective in increasing the WTP for heat 

pumps because it sends more straightforward information about the subsidies to consumers. The 

third possible reason is that consumers’ perceived discount rate might be low. According to the 

stylized model in section 3, the incentive of the low-interest loan is related to the relative personal 

discount rate over the loan’s interest rate. If a consumer’s discount rate towards future cash flows 

is lower, the incentive effect of the low-interest loan is weaker. 
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6. Robust tests by altering buffer lengths 

 

To relieve the potential concern of using the 3-miles buffer length, I conduct a sensitivity 

analysis to investigate the potential impact of altering buffer lengths on my estimations. I apply 

two forms of outcomes: (1) the household-level binary variable (heat pump adoption status); (2) 

the heat pump adoption density within a 500m*500m grid. When using the household-level 

outcome, I alter the buffer length from 1 mile to 5 miles (with 0.1-mile intervals) continuously and 

re-run the models for each buffer length. When using the grid-level outcome, I alter the buffer 

length from 2 miles to 5 miles (with 0.1-mile intervals) continuously. For sample 1, I apply the 

LPM-DID and DID models to estimate the rebate’s effect. For samples 2 and 3, I estimate the 

difference in differential trends to compare the effect of the rebate with that of the loans.  

Figure 2.6 plots the estimations along with the changing buffer lengths17. The changing 

impacts along with the changing buffer lengths are due to those different residents included in my 

samples. The impact of a policy on different groups or types of people can vary. For instance, 

some residents may not prefer heat pumps, such as houses without robust electrical wiring or 

residents who do not use space heating very often. The rebate effect on these types of homes can 

be much lower. Thus, after I change the buffer lengths, different residents are included, and 

different effect sizes are estimated. Nevertheless, my results show that all the estimations, 

regardless of the buffer length choice, are significantly positive at a 10% level, implying that 

changing buffer lengths have little impact on my estimations’ statistical significance and the 

direction of impacts. 

                                                 
17 I do not make the scales in all three sub-graphs the same, since the effect size in the second subplot is much 

smaller than the other two subplots and it would be too small to be easily noted. 
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Among the buffer lengths, my estimations consistently show that the rebate can increase the 

household’s probability of installing a heat pump and the effect of the rebate is larger than those 

of the other two loan programs. Thus, changing the buffer length will not change the main 

conclusion of this study.  

 

Figure 2.6 Robust checks by altering the buffer lengths  

Note: black lines are point estimates and shaded areas are 95% confidence intervals 
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7. Heterogeneous rebate effects by income 

 

The heat pump adoption rate is significantly positively correlated with personal income based 

on the analysis in section 2. Low-income households are less likely to adopt energy efficiency 

technologies (Zhao et al., 2012). High-income groups are more likely to afford extra upfront costs 

caused by heat pumps, while low-income groups are less likely to afford the extra upfront costs.  

A large body of literature has discussed this social-economic disparity of energy efficiency 

between low- and high-income groups (O’Shaughnessy et al., 2020; Sunter et al., 2019; Reames, 

2020; He et al., 2020; Lou et al., 2020; Zhao et al., 2012). More incentives and supports are needed 

for low-income groups to improve their building energy efficiency and reduce their energy bills. 

An important policy question is whether the current form of incentive (e.g., cash rebate, low-cost 

financing) can increase energy efficiency investments for low-income groups. In this section, I 

investigate the heterogeneous effects of the rebate program on heat pump adoption rates across 

different income levels. 

To estimate the heterogeneous rebate effects, I use the same research design as the first study 

(using the DID model and sample 1) and add interaction terms between the treatment variable and 

a series of indicators of income intervals. Here, I divide the household income18 into six intervals, 

including “<20K”, “20K-30K”, “30K-40K”, “40K-50K”, “50K-60K”, and “>60K”. The 

econometric model is specified as follows: 

𝑌𝑖𝑡 = 𝛾 + ∑ 𝛽𝑗𝐷𝑖𝑡 ∙ 𝐼𝑛𝑐𝑜𝑚𝑒 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑗

𝑗

𝑗=1

+ 𝜑𝑖 + 𝜗𝑡 + 𝜀𝑖𝑡         … (13) 

                                                 
18 To create the variable of income at the grid level (500m*500m), I applied two steps: First, based on households’ 

longitude and latitude, I match each household with a corresponding census block group-level income. Second, I 

compute the average income within a grid by averaging the households’ incomes (obtained from the first step). 
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where 𝑌𝑖𝑡 is the residential heat-pump installation rate within a 500m×500m grid i in time t. 

𝐷𝑖𝑡 is the treatment variable, which takes value one for grids in the Duke Energy utility after the 

implementation of the rebate program and takes value zero otherwise. 𝜑𝑖 is individual grid fixed 

effects. 𝜗𝑡 is year fixed effects. 𝜀𝑖𝑡 is the error term. Figure 2.7 plots the estimates. 

The effect of the rebate program on heat pump adoption rate increases with income until 

income reaches about 60K. There are several reasons to explain this finding. Low-income 

households may suffer from credit and liquidity constraints and cannot afford the upfront costs of 

heat pumps even with the rebate. The cost burden of building retrofits can be much higher for low-

income households given their limited disposable income, while the future benefits of building 

energy efficiency retrofits can be smaller for low-income households since their energy 

consumption is much less than higher-income groups (Yanagisawa and Data, 2012; Jamasb and 

Meier, 2010). In addition, low-income groups are more likely to be risk averse (Shaw, 1996) and 

hesitant to install new technologies such as heat pumps.  

Also, I find that the rebate program is not effective for households with the highest income 

interval. This could be due to that higher-income households may care more about other visible 

competing technologies (such as solar panels, electric vehicles, and home battery storage) than the 

heat pumps.  

The penetration rate of heat pumps in low-income communities is lower than in rich 

communities, and the current rebate incentive is also relatively less effective for low-income 

communities. From an equity perspective, government agencies and utilities should explore other 

effective and innovative policies to support low-income communities. This study only investigates 

the heterogeneous effects of the rebate program but not the low-interest loan program since I can 



 

55 
 

only conduct a robust DID estimation for the rebate program. Future research could explore the 

effects of other policies (including the low-interest loan) on low-income communities. 

See Appendix K for alternative heterogeneous rebate effects by income quartiles. 

 

 

 

Figure 2.7 The heterogeneous effects of the rebate program on heat pump adoption rate 

（share of households with heat pumps within a 500m*500m grid) by income using DID 

approach.  
Note: In the figure, circles are point estimates, and error bars are 95% confidence intervals. 

 

 

8. Cost-effectiveness analysis 

 

In this section, I compare the rebate program with loan programs in terms of cost-effectiveness. 

I use the amount of dollars spent per heat pump adopted caused by the incentive to measure the 
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cost-effectiveness. The cost-effectiveness ( 𝜎 ) of the incentive program is computed by the 

following equation: 

 

𝜎 =
𝑘 ∙ (𝑛 + ∆) ∙ 𝑐

∆
= 𝑐 +

𝑘𝑛

∆
𝑐        … (14) 

 

where ∆ is the heat pump adoption growth induced by the policy; 𝑛 is the heat pump natural 

adoption growth without the incentives (if the incentives had not been in place); 𝑘 is the proportion 

of residents who apply for the incentive in residents with new heat pump installations; 𝑐 is the 

program cost paid for each application (including the natural adoption of the heat pump). For the 

rebate program, 𝑐𝑅  equals the rebate amount, which is $300 to $450. For the loan program, 𝑐 

equals the difference in the loan principal and the present value of repayments, and is computed 

according to  the following equation: 

 

 𝑐𝐿 = 𝑃 − ∑
𝑃 ∙ (𝑟𝐴𝑃𝑅/12)

1 − (1 + 𝑟𝐴𝑃𝑅/12)−𝑛

5

𝑖=1

∙
12

(1 + 𝑟𝑆&𝑃)𝑖
        … (15) 

 

where 𝑐𝐿 is the loan program cost for each application;  𝑃 is the amount of loan principal; 

𝑟𝐴𝑃𝑅 is the annual interest rate of the loan; 𝑟𝑠&𝑝 is the S&P 500 (a stock market index) annualized 

return rate from 01.01.2015 to 01.01.2020 (a five-year period), which is 10.08%; 𝑛 is the number 

of monthly repayments. Here, I consider a common amortization loan program, which spreads out 

a loan into a series of monthly fixed payments. The two loan programs in my study are both five-

year loan programs. I assume every loan applicant applies for an $8,000 five-year loan program 

for the heat pump, and then calculate the sum of the present value of each year’s repayment using 
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the S&P 500 annualized return rate as the discount rate. The discount rate should reflect the return 

of alternative investments for loan lenders. Using the above equation, 𝑐𝐿 equals $461 for the loan 

program with 9% APR, and 𝑐𝐿 equals $1,328 for the loan program with a 3.9% APR. Thus, I find 

that 𝑐𝑅 < 𝑐𝐿. Based on my previous estimations, the rebate’s effect is larger than the other two 

loan programs, so ∆𝑅> ∆𝐿. If I assume that the application proportions of the rebate program and 

the loan program are the same (𝑘𝑅 = 𝑘𝐿), I have: 

 

𝑐𝑅 +
𝑛

∆𝑅
∙ 𝑐𝑅 < 𝑐𝐿 +

𝑛

∆𝐿
∙ 𝑐𝐿     𝒔. 𝒕.   𝑐𝑅 < 𝑐𝐿 , ∆𝑅> ∆𝐿         … (16)  

 

𝜎𝑅 < 𝜎𝐿     𝒔. 𝒕.   𝑐𝑅 < 𝑐𝐿 , ∆𝑅> ∆𝐿          … (17) 

 

As a result, the rebate program is more cost-effective than the loan program if the same 

proportions of residents applied for the rebate and loan programs. In other words, the amount of 

dollars spent per heat pump adopted induced by the rebate program is less than that by the loan 

programs. Note that I only consider monetary loss and do not take into the costs of program 

administration for both utilities and consumers. The administration costs of the loan program could 

be much higher than the rebate program because loans require more administration work such as 

credit history checks, application paperwork, and a series of repayments. Also, the funding-raising 

costs of the loan program are higher than the rebate program. For example, utilities need to give 

$8,000 to each applicant in a loan program, while they only need to give $450 to each applicant in 

a rebate program. If I consider these extra costs, the loan program should be much less cost-

effective compared to the rebate program. 
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Policymakers should take several important factors into account when investigating the cost-

effectiveness of incentives: the natural adoption growth without the intervention of incentives, the 

percentage of consumers who will apply for the incentives, and the causal effect of the incentives 

on the technology adoption. If the natural adoption growth without the intervention of incentives 

is high and those residents also apply for the rebate and loan programs, it would lead to the free-

riding problem. With a high amount of freeriding, policymakers and utilities are better off not 

having incentives since this will lead to a high cost of the rebate and loan programs. Incentives 

(rebate and loan) targeted at specific marginal consumers whose willingness to pay is at the bottom 

edge of upfront costs could be applied to improve the cost-effectiveness of the incentives.  

The rebound effects after installing heat pumps (Winther & Wilhite, 2015) may reduce the 

expected effect of incentives for heat pumps on decarbonization. Households can get energy bill 

savings from installing the energy efficiency technology and use these savings to increase energy 

consumption in other areas or within the same area for increased comfort. A study finds a rebound 

effect of 20% for consumers after replacing direct electric heating with air source heat pumps in 

Denmark (Gram-Hanssen et al., 2012). In the US, the rebound effect after heat pump adoption may 

also exist and reduce the expected effects of incentives, since increased electricity consumption 

produces air and carbon pollution. However, the rebound effect will not diminish the effect of heat 

pumps on decarbonization with a carbon-free power grid in the future. 

Since I only estimate the rebate’s effect based on sample 1 and I do not know the absolute 

value of the rebate and loans’ effects in samples 2 and 3, I can only compute the absolute value of 

cost-effectiveness for the rebate program in sample 1. The computed cost-effectiveness of the 

rebate program in sample 1 based on a one-year time window is $2,914-$3,921 per heat pump if I 

assume every resident who installed the heat pump applied for the rebate. The cost-effectiveness 
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is much larger than the rebate amount ($300-$450) because the natural adoption growth in that 

region is quite high.  

I also compare the cost-effectiveness of the rebate with the cost of carbon in Appendix L. 

 

9. Discussion and implications 

 

To tackle the crisis of climate change, decarbonizing the demand side through energy 

efficiency and electrification has been one of the most important strategies. Space heating accounts 

for almost two thirds of U.S. home energy consumption (EIA, 2018). Installing electric heat pumps 

provides an energy-efficient way to replace traditional natural gas furnaces or boilers for space 

heating. Many policies have been introduced to accelerate the transition to heat pumps. The cash 

rebate and low-cost loan have been the two most-widely adopted incentives to spur the building 

retrofit and improve energy efficiency. This study provides the first empirical evidence of the 

effects of rebate and loan incentives on residential air-source heat pump adoption rate based on 

three samples in North Carolina. I investigate three incentives, including a rebate ($300-$450) 

program, a loan program with 9% APR, and a loan program with 3.9% APR. I show that a rebate 

program ($300-$450) can increase the adoption rate by 0.024 in a year, around a 13% increase. I 

also conduct a rigorous comparative analysis of the incentive effects between the rebate and loan 

programs. I find that the rebate program shows advantages in promoting the growth of residential 

heat pumps for average consumers compared to the loan programs with 3.9% and 9% APR. When 

I investigate the cost-effectiveness of these incentives, I find that the rebate program is more cost-

effective than the other two loan programs if the proportions of residents who apply for the rebate 

and the loan in residents with new heat pump installations are the same. 
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There are three potential concerns in my identification strategies due to the data limitation and 

the empirical context. First, in the last two samples, I utilize the difference in differential trends to 

compare the two loan and rebate incentives since a standard DID specification cannot be applied 

due to data restrictions. Interpreting the results from the last two samples should proceed with 

caution. I am unable to provide empirical evidence for the assumption of comparable demand for 

replacing old heating equipment across the two sides of the borderline. Nevertheless, my study 

provides a framework for future studies to compare the differential impacts between the rebate and 

loan programs on new green technology adoption. Second, the incentive policies may be 

endogenously determined by energy utilities as the company may choose a particular program 

based on what they thought would work best for their customers. This concern is relieved by the 

narrow buffer zone in my samples because residents share similar demographic and economic 

characteristics across the borderlines in my samples based on my balance test. Future field 

experiment studies may randomly assign the incentives to subjects to fully address the endogeneity 

issue. Third, since I did not observe the exact rebate amount received by consumers in my sample, 

I am unable to distinguish the impact of different rebate amounts on the heat pump adoption rate. 

The amount of rebate ranges from $300-$450 in my context, depending on the heat pump 

configuration and whether a smart thermostat was installed. While my primary interest is not 

comparing the impact of different rebate amounts, future research with individualized rebate 

amount data can explore the rebate elasticity of demand to find if consumers are sensitive to the 

rebate changes and what an “optimal” rebate level should be. Despite the potential concerns, my 

study contributes to the literature on the policy effects on energy technology adoption. Heat pumps 

have been the focus of energy scholars for at least ten years (Sopha et al., 2010; Hannon, 2015; 
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Snape et al., 2015), but no studies provide empirical evidence on the effect of the incentives 

targeted at heat pumps. 

Interpreting the broader applicability of my results should be cautious. My study is focused 

on heat pump adoption, but utilities often have incentive programs for a wide array of energy-

efficient products. The incentives not aimed at heat pumps may actively influence households’ 

decisions on adopting heat pumps. That is, the parameter estimates from this study are conditional 

on all other policies in effect in my samples. If those contemporaneous energy efficiency incentives 

changed over time within the time window of my study, they may also impact my parameter 

estimates. By checking the Database of State Incentives for Renewables & Efficiency (DSIRE), I 

find that only one solar rebate program changed over time in my sample. Based on my analyses, 

the effect of solar rebate program could have only a very small effect on heat pump adoption (see 

Appendix M) and will unlikely change my main results. Also, my estimates are conditional on 

the site selections and sample characteristics, such as regional household income, the share of 

rental units, local residents’ environmental friendly awareness, and others. 

This paper focuses on heat pumps but also has implications for policies stimulating the 

adoption of other energy technologies, such as energy-star-qualified home appliances, solar water 

heating, and solar panel. My finding is consistent with Crago and Chernyakhovskiy (2017) about 

the incentive effect on residential solar photovoltaic (PV) adoption, where the rebates are most 

effective among financial incentives (including income tax credit, rebate, sales tax exemption, and 

third-party ownership), and an additional one dollar per watt rebate can increase the annual PV 

capacity additions by 50%. My estimated effect size of the rebate for air source heat pumps is 

smaller than that for residential PV solar panels in Crago and Chernyakhovskiy (2017)’s study. 

Wee et al. (2018)’s study used a national sample of 50 US states and found that a $1000 increase 
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in the value of EV policies can increase new EV registrations by 5-11%. My estimated effect size 

of the rebate for air source heat pumps is larger than the policy effect on new EV adoption. Future 

research is needed to compare the impacts of cash rebates and low-cost loans on other technologies. 

My study provides several implications for policymakers. First, this evidence-based study 

suggests that the rebate incentive effectively promotes the growth of heat pumps. Notably, many 

decarbonization plans have relied more on financial policy tools (e.g., rebate, low-cost loan) and 

planned to provide more funding for these policies, such as Joe Biden’s prioritized climate policies 

and Massachusetts’ three-year energy efficiency plan. My study shows circumstances where the 

rebate policy can be effective. 

Second, the rebate program is more effective in promoting the growth of heat pumps than the 

low-interest loans based on North Carolina’s evidence. This could be due to the well-developed 

credit market in the U.S. The average price of air-source heat pumps is about $8,000. Most 

residents can obtain this amount of personal loan from commercial banks or credit companies 

easily. Thus, the credit constraints for heat pumps are not binding for most consumers, and the 

major incentive effect of the utility’s loan program is the lower interest rate. Without the problem 

of credit constraints, the low-interest loan and the cash rebate are two forms of subsidies. 

Consumers’ inattention to the subsidies of low-interest loans and consumers’ lower perceived 

discount rate toward future cash flows may lead to the better effectiveness of the rebate program 

(e.g., Sexton, 2015). In practice, policymakers also need to consider other factors to decide which 

policy to apply, such as cost-effectiveness, funding raising costs, program administration costs, 

and the share of people applying for the incentives. My calculation finds that the rebate program 

is the most cost-effective among the three incentives. If I count the higher costs of funding raising 
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and program administration of the loan program, the rebate program could be more cost-effective 

further.  

Third, the rebate program is less effective for low-income groups than high-income groups. 

Low-income groups may not be able to afford the high upfront costs of energy efficiency 

investments. There may still be a gap between low-income people’s willingness to pay and the 

adoption cost with the cash rebate. Thus, the current rebate policy is not effective for low-income 

groups. Policymakers could increase the amount of rebates for low-income groups to increase the 

influence of rebates. The penetration rate of energy efficiency technologies is lower in low-income 

communities, requiring more support from the government in the transition. To promote the 

adoption of heat pumps for all consumers, policymakers can introduce multiple types of policy 

tools at the same time, such as rebates, low-cost loans, energy efficiency audits, and many others. 

The loan program could relieve the credit constraints of low-income consumers. Future studies 

also need to evaluate the effects of the combination of different incentives. 

Last but not least, my study also provides implications for other countries with the urgent 

need for space heating electrification. For example, China has set up an ambitious goal of “carbon 

neutrality” and introduced many incentives to encourage the adoption of heat pumps. In many rural 

areas of China, there is an urgent need to replace coal-fired furnaces with electric heat pumps but 

the majority of consumers there are low-income groups. My study suggests that multiple incentives 

in addition to the cash subsidies should be applied to further increase heat pump adoption in those 

low-income areas. More empirical studies are needed to provide robust evidence on the policy 

effects in other countries.  
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Appendix 

 

Appendix A. The density of air-source heat pumps by the state in the U.S. in 2020. 

  

State 
HP density (Number/10K 

persons) 
State 

HP density (Number/10K 

persons) 

North Carolina 903.25 South Dakota 22.23 

Virginia 865.64 Iowa 21.41 

Maryland 659.31 Massachusetts 15.81 

South Carolina 572.16 Wyoming 15.28 

Kentucky 332.33 DC 13.25 

Washington 310.77 Arkansas 13.13 

Oregon 244.66 Maine 11.41 

Delaware 200.33 Minnesota 11.26 

Tennessee 168.09 Connecticut 11.16 

Nebraska 137.33 Mississippi 10.53 

Kansas 127.99 Alabama 5.72 

Georgia 108.06 New Hampshire 5.52 

Pennsylvania 100.43 Rhode Island 4.02 

Idaho 98.43 Michigan 3.63 

Indiana 90.60 West Virginia 2.28 

Oklahoma 81.68 Texas 2.00 

Ohio 67.60 Colorado 1.95 

Florida 60.05 North Dakota 1.24 

Arizona 54.53 California 1.13 

Montana 44.50 Alaska 0.98 

Utah 42.02 New Mexico 0.93 

Nevada 39.47 Wisconsin 0.24 

Missouri 28.55   

Data source: ZTRAX  database.
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Appendix B. The correlation between heat pump adoption and other factors using the 

national county-level data 

 

Supplementary Table 1. The correlation between heat pump adoption rate and other factors 

using national county-level data and an OLS model 

  (1) (2) (3) (4) 

  3142 counties 
Excluding counties without heat 

pumps 

  

Original 

independent 

variables 

Standardized 

independent 

variables 

Original 

independent 

variables 

Standardized 

independent 

variables 

Income per capita (2018$) 0.0026*** 30.805*** 0.0044*** 52.02*** 

  (0.0008) (9.51) (0.0017) (19.89) 

Population density in 2018 

(number/miles^2) 
-0.005 -8.966 -0.054** -97.97** 

  (0.0047) (8.54) （0.026) (48.22) 

Average residential electricity price in 2018 

(cents) 
-39.04*** -84.99*** -49.85*** -108.54*** 

  (4.776) (10.39) (11.08) (24.13) 

Average residential natural gas price in 2018 

(cents) 
30.78*** 95.01*** 48.35*** 149.28*** 

  (3.846) (11.87) (9.40) (29.01) 

Environmental awareness level in 2015 (%) 1.47 8.43 0.79 4.566 

  (1.6390) (9.38) (3.57) (20.49) 

Average annual cooling degree days from 

1981 to 2010 
-0.199*** -212.5*** -0.248*** -265.23*** 

  (0.017) (18.56) (0.039) (42.02) 

Average annual heating degree days from 

1981 to 2010 
-0.088*** -178.1*** -0.174*** -350.758*** 

  (0.0097) (19.6) (0.022) (44.98) 

     

R2 0.0792 0.0792 0.1349 0.1349 

Obs 2709 2709 1,236 1,236 

Mean of outcome variable (number per 

10,000 persons) 
155 155 347 347 

Note: *** p<0.01, ** p<0.05, * p<0.1. In column (2) and (4), I standardize the independent variables into variables 

with 0 mean and 1 standard deviation. I use the percentage of people who believe global warming is happening in a 

county to represent the level of environmental awareness (Yale Program on Climate Change Communication, 2019). 

Data sources: Bureau of Economic Analysis, U.S. Department of Commerce; U.S. Energy Information Administration; 

Yale Program on Climate Change Communication (Howe et al., 2015); ZTRAX dataset; National Oceanic and 

Atmospheric Administration. 
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Appendix C. The distribution of electric utilities in North Carolina 

 

Supplementary Figure 1. The distribution of electric utilities in North Carolina. Figure 

source: Carolina country, 

https://www.carolinacountry.com/media/zoo/images/serviceareas_df2b99d1ada9ee3658733481c

4b1f227.jpg 

 

 

 

Supplementary Figure 2. The distribution of three borderlines (Duke Energy – Rutherford; 

Duke Energy – Union Power; Duke Energy – Brunswick) in the three studies.  Figure 

source: Carolina country, 

https://www.carolinacountry.com/media/zoo/images/serviceareas_df2b99d1ada9ee3658733481c

4b1f227.jpg 

 

https://www.carolinacountry.com/media/zoo/images/serviceareas_df2b99d1ada9ee3658733481c4b1f227.jpg
https://www.carolinacountry.com/media/zoo/images/serviceareas_df2b99d1ada9ee3658733481c4b1f227.jpg
https://www.carolinacountry.com/media/zoo/images/serviceareas_df2b99d1ada9ee3658733481c4b1f227.jpg
https://www.carolinacountry.com/media/zoo/images/serviceareas_df2b99d1ada9ee3658733481c4b1f227.jpg
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Appendix D. The heat pump adoption density before and after the rebate in sample 1 

 

Supplementary Figure 3 shows the evolution of heat pump adoption density (within 

500m*500m) across three years in the treatment and control groups in sample 1, respectively. For 

each year, I use all the observations within the year to calculate the average, the ten percentile, and 

the ninety percentile, which are plotted in the figure. Supplementary Table 2 presents the detailed 

numbers of these descriptive statistics across these three years. In the treatment group and in 2016 

before the introduction of the rebate policy, the average adoption density is 0.19. After the rebate 

policy, the average adoption density in the treatment group increased to 0.35. Also, I can find that 

the adoption density of heat pumps increased in both treatment and control groups. Thus, I utilized 

the DID method to compare the changes of adoption density before and after the rebate policy in 

the Duke Energy utility area (treatment group) with those in the Rutherford utility area (control 

group). 

 
Supplementary Figure 3: The evolution of heat pump adoption density in the Duke Energy 

utility area (treatment group) and in the Rutherford utility area (control group) in sample 1. Note: 

The adoption density is computed within a 500 meters*500 meters’ grid. The green bars show 

the ten percentile and the ninety percentile of the adoption densities. 
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Supplementary Table 2: The descriptive statistics of heat pump adoption density across years 

in sample 1 

Year Utility 
Mean of adoption 

density 
10 Percentiles 90 Percentiles 

Standard 

Deviation 

2016 Rutherford 0.1673 0.0000 0.5833 0.2821 

2017 Rutherford 0.1698 0.0000 0.5714 0.2823 

2018 Rutherford 0.3099 0.0000 0.8750 0.3315 

2016 Duke Energy 0.1901 0.0000 0.5294 0.2744 

2017 Duke Energy 0.1907 0.0000 0.5714 0.2767 

2018 Duke Energy 0.3469 0.0000 0.8462 0.3189 

Note: The adoption density is computed within a 500 meters*500 meters’ grid. 
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Appendix E. Estimates of the rebate effect using Cox proportional hazards model 

 

In my setting, the installation of a heat pump for an individual household can be regarded as 

a hazardous event. I focus on a period from 2017-11-02 to 2018-12-30 right after the introduction 

of Duke Energy’s rebate program. I drop the houses that have installed the heat pump on 2017-11-

02 from my sample and those remaining houses did not install the heat pump at the beginning of 

my study period. Since I can only observe house features from 4 periods (including 2017-11-02, 

2018-01-07, 2018-08-05, 2018-12-30), I am not able to know the exact adoption dates of heat 

pumps. Thus, I suppose that if a house did not have a heat pump in one period and it had a heat 

pump in the following period, the house installed the heat pump in this following period. The 

survival time in the Cox model is supposed to be from 2017-11-02 to the date of heat pump 

adoption. In addition, I consider a censored proportional hazards model. Those houses that had not 

installed the heat pump at the end of my study period are regarded as “alive” or “censored” on 12-

30-2018. Then, I fit the following model: 

h(t)𝑖𝑐 = ℎ0(𝑡)𝑖𝑐 × exp (𝛼𝐷𝑖 + φ𝑐) 

where t represents the survival time; h(t)𝑖𝑐 is the hazard function for household i in census block 

group c, meaning the hazardous risk at time t, or the probability of a hazardous event at time t; 

ℎ0(𝑡)𝑖𝑐 is the baseline hazard function when all the covariates equal to zero; 𝐷𝑖𝑐 is the treatment 

group dummy, which takes value one for households in the Duke Energy utility area and takes 

value zero otherwise; φ𝑐 is the census block group fixed effects, which can control for the time-

fixed census demographic features at the block group level. 

Estimation results are presented in Supplementary Table 3. I apply two different 

specifications by not adding or adding the census block group fixed effects. In both columns, the 

coefficients of the treatment dummy are positive significantly, suggesting that the rebate program 
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is positively associated with the event probability (the probability of adopting a heat pump). In 

other words, the rebate program can significantly increase the adoption of heat pumps, which is 

consistent with my baseline estimations.  

 

Supplementary Table 3: Estimates of the rebate effect using Cox proportional hazards 

model 
 (1) (2) 

 Model 1 Model 2 

VARIABLES   

   

1[Duke Energy]i 0.055*** 0.094*** 

 (0.02) (0.035) 

   

Census block group fixed effects No Yes 

Observations 27,346 27,346 

Note: Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Appendix F. Tobit estimates of the rebate effect 

 

Using my first sample across two periods (2016-3-22 & 2018-08-05), I apply a Tobit model 

to estimate the effect of the rebate program. In the Tobit model, I regress the first differences of 

heat pump adoption density on a dummy variable indicating the Duke Energy utility area. 

Estimation results are shown in Supplementary Table 4. In column (2), I added the ZIP code 

fixed effects while I do not include them in column (1). The coefficients are significant and positive 

in both specifications. Based on column (2), results show the rebate program can increase the heat 

pump adoption density by 0.027 significantly in a one-year period, which is consistent with my 

baseline estimates. 

 

Supplementary Table 4. Tobit estimates of the rebate effect 
 (1) (2) 

 Model 1 Model 2 

Outcome 
First differences of heat pump adoption 

density within a 500m*500m grid 

   

1[Duke Energy]i 0.024** 0.027*** 

 (0.011) (0.009) 

   

ZIP code fixed effects No Yes 

Pseudo R2 0.002 1.16 

Observations 3,247 3,247 

Note: Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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Appendix G. Robustness check of traditional RD in sample 1 

 

For the RD-DID analysis in sample 1, a potential robustness check could be to consider just 

adoption outcomes in period 2 (08-05-2018) and then control for household characteristics in 

period 2. This would allow us to avoid any housing characteristic changes over time that may 

affect the result in the RD-DID. In this robustness check, I utilize a nonparametric local polynomial 

estimator, and a local linear regression with a triangular kernel function is applied. Since some 

variables of building characteristics have too many missing values (See the following 

Supplementary Table 5), I only controlled two building characteristics (building year built and 

the number of stories). I use the MSE-optimal approach (Imbens and Kalyanaraman, 2012) to 

compute the bandwidth employed for the RD point estimator, and a 0.788-miles bandwidth is 

chosen, leading to an effective sample size of 5,989 households. I use the robust bias-corrected 

(RBC) methods (Calonico et al., 2014, 2020) to compute the bandwidth for confidence interval 

interference and a 1.589-miles bandwidth is chosen. The result shows that the estimated coefficient 

of β is 0.00476, with a standard error of 0.03134 and a p-value of 0.879. The estimated effect is 

close to zero and insignificant, which could be due to two factors. First, I am not able to control 

for a sufficient number of variables of building characteristics in the RD model since there are so 

many missing observations of building characteristics. Second, the RD estimator in period 2 could 

be biased from the true rebate effect, since there might be other factors jumping at the cutoff along 

with the treatment (the rebate incentive). For instance, the two utilities may have different energy 

efficiency incentives. My baseline RD-DID approach has the advantage of ruling out all the time-

invariant confounding factors (including the time-invariant energy efficiency incentives). As for 

the time-variant confounders, although the building characteristics may change over time, the time 

trends of changing building features should be consistent between the treated and control houses 
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at the cutoff borderline, since the probability of being treated at the cutoff is the same for each 

house at the cutoff. Thus, I think the RD-DID approach better reflects the treatment effect. 

 

Supplementary Table 5. Descriptive Statistics of Building Characteristics in Sample 1 

Variables Obs. Mean Std. Dev. 
Total Sample 

Size 

Year built 33,097 1969.969 26.148 44,810 

No. of stories 31,467 1.088 0.255 44,810 

No. of rooms 735 5.975 1.576 44,810 

No. of bedrooms 9,296 2.908 0.817 44,810 

No. of bathrooms 9,341 1.795 0.793 44,810 

Building condition 9,102 4.242 0.875 44,810 
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Appendix H. Ruling out the potential influences of unbalanced covariates in sample 3 

 

Although the third sample is overall balanced, there are two imbalanced observable covariates, 

namely population median age and building’s year remodeled. To fully rule out the potential 

influences of the two imbalanced covariates, I conduct a robustness test by directly controlling the 

covariates in my differential-trends model. I use the first differences of the heat pump adoption 

statuses at the individual household level as the outcome variable. A regression model is applied 

as follows: 

∆𝑌𝑖,𝑡1,𝑡2
= 𝛽𝐷𝑖 + 𝑋𝑖 + 𝜀𝑖 

where ∆𝑌𝑖,𝑡1,𝑡2
 is the first difference of a binary variable indicating whether household i installs a 

heat pump in time t. 𝐷𝑖 is a binary treatment group variable, which equals one if household i is 

located in the Duke Energy utility. 𝑋𝑖 is the time-invariant observable unbalanced covariant. 𝜀𝑖𝑡 is 

the error term. Estimated results are shown in Supplementary Table 6. The estimations are 

insensitive to adding the control variables (population median age and building’s year remodeled). 

 

 

Supplementary Table 6. Robustness tests by adding unbalanced covariates 

Model (1) (2) (3) 

    

𝛽 0.04*** 0.06*** 0.04*** 

 (0.005) (0.014) (0.005) 

    

Control Variables:    

Building year remodeled No Yes No 

Population median age No No Yes 

    

R square 0.003 0.011 0.004 

Obs 23,517 2,327 23,517 

Note: *** p<0.01, ** p<0.05, * p<0.1. 
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Appendix I. The impact of electricity price on heat pump adoption rate in North Carolina 

 

I estimate the impact of electricity prices on heat pump adoption rate based on about 1 million 

residential buildings across 26 Electric Membership Cooperatives of North Carolina. 

Supplementary Figure 4 plots the distribution of these EMCs. I apply the following two-way 

fixed effect model using yearly panel data from 2016 to 2019: 

 

𝑌𝑖𝑢𝑡 = 𝛽𝑃𝑢𝑡 + 𝜑𝑖 + 𝜗𝑡 + 𝜀𝑖𝑢𝑡 

 

where 𝑌𝑖𝑡 is the heat pump adoption rate within a 1km×1km grid i and on year t. I calculate the 

yearly heat pump adoption rate based on four assessments of ZTRAX database which were 

conducted on 02/03/2017, 01/07/2018, 12/30/2018, 01/02/2020, respectively. 𝑃𝑢𝑡is the average 

electricity residential price (cents) of utility u on year t. Different utilities have different electricity 

prices. I calculate the yearly average residential electricity price by dividing the cooperative’s 

residential total revenue by residential sales based on EIA 861 forms from 2016 to 2019. The EIA 

861 forms were obtained from the website of Annual Electric Power Industry Report, U.S. Energy 

Information Administration. 𝜑𝑖 is the individual grid fixed effects. The heterogeneous incentives 

for heat pumps provided by different cooperatives can be controlled by the individual grid fixed 

effects. 𝜗𝑡 is the year fixed effects controlling for common time trend of heat pump adoption rate. 

I cluster the standard error at the individual grid level. 

Supplementary Table 7 presents the estimation result. The coefficient of the electricity price 

variable is negative and significant. One cent of decrease in residential electricity price can lead to 

the heat pump adoption rate increasing by 0.0016 in North Carolina.   
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Supplementary Figure 4. The distribution of Electric Membership Cooperatives in North 

Carolina 

 

 

 

 

Supplementary Table 7. The impact of electricity price on heat pump adoption rate in North 

Carolina 

Variables Coef. Std. Err. P-value 

Electricity price -0.0016 0.0005 <0.01 

1[year=2017]t 0.0036 0.0003 <0.01 

1[year=2018]t 0.0151 0.0005 <0.01 

1[year=2019]t 0.0161 0.0005 <0.01 

Constant 0.1723 0.0067 <0.01 

    

R-square: 0.003    

Obs: 238,492    

Note: Individual grid fixed effects and year fixed effects are included in the two-way fixed effects 

model. The standard errors are clustered at the individual grid level. 
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Appendix J. The amounts and percentage of personal loan and credit card debt in the U.S. 

 

 

 

Supplementary Table 8. The amounts and percentage of personal loan and credit card debt in 

the U.S. 

Panel A: Personal Loan   

Year 

Average 

Personal Loan 

Balance 

Percentage of 

Personal Loan 

Balance ($20K or 

less) 

Percentage of 

Personal Loan 

Balance ($20K - 

$40K) 

Percentage of Personal 

Loan Balance ($40K or 

more) 

National:     

2019 $16,181 79.70% 11.80% 8.50% 

2018 $16,263 80.10% 11.40% 8.50% 

2017 $16,421 80.40% 11.10% 8.50% 

2016 $16,443 80.70% 10.90% 8.40% 

2015 $15,646 82.20% 10.40% 7.40% 

North Carolina:    

2019 $16,359.89 78.70% 11.20% 10.00% 

     

Panel B：Credit Card Debt in 2018 

Average American Household Credit Card Debt: $5,700. 

Percentage of All American Households Carry Credit Card Debt:  41.2% 

Average Household Credit Card Debt in North Carolina: $7,225 

Data sources: U.S. Census Bureau, U.S. Federal Reserve, 2019 Survey of Consumer Finances. 
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Appendix K. The heterogeneous effects of rebate on heat pump adoption by income 

quartiles  

 

 
Supplementary Figure 5. The heterogeneous effects of the rebate program on heat pump adoption 

rate (share of households with heat pumps within a 500m*500m grid) by income quartiles using 

DID approach. (In the figure, circles are point estimates, and error bars are 95% confidence 

intervals.) 
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Appendix L. Comparing the cost of the policy with the cost of carbon 

 

It is important to discuss the relationship between the cost of instruments (or the cost-

effectiveness defined in section 8) and the cost of carbon. I find two challenges to conducting this 

analysis. First, it is difficult to calculate the absolute value of the cost-effectiveness of the rebate 

and loan programs. The cost-effectiveness (σ) is defined as the amount of dollars spent per heat 

pump adopted caused by the incentive and can be computed using the following equation: 

𝜎 =
𝑘 ∙ (𝑛 + ∆) ∙ 𝑐

∆
= 𝑐 +

𝑘𝑛

∆
𝑐 

where ∆ is the heat pump adoption growth induced by the policy; 𝑛 is the heat pump natural 

adoption growth without the incentives (if the incentives had not been in place); 𝑘 is the proportion 

of residents who apply for the incentive in residents with new heat pump installations; 𝑐 is the 

program cost paid for each application (including the natural adoption of the heat pump). In reality, 

I am not able to observe the 𝑘, and the 𝑛 varies a lot across different sites or samples. Thus, it is 

difficult for us to compute the absolute value of cost-effectiveness. Also, results will depend on 

site selections because of the large variations in the cost-effectiveness across different sites. 

Second, the avoided costs of carbon associated with the switches from typical natural gas 

furnaces to air source heat pumps can be time-variant since it depends on the carbon emissions 

from electricity generation. Although currently coal and natural gas power plants are still in service, 

more and more clean energy sources (e.g., wind and solar power) will replace the traditional fossil 

fuel sources in the near future, which generate zero carbon emissions. The avoided costs of carbon 

will be much larger in the future with more clean energy sources in the power grid. These clean 

energy sources are expanding very quickly these years. As a result, it is hard for us to predict the 

future carbon emissions of electricity generation in this paper and the avoided costs of carbon 

associated with switching to heat pumps in the near future. 
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To summarize, there are two major challenges to comparing the costs of policies with the 

avoided costs of carbon. To address these challenges, I make the following assumptions: 1) every 

resident who installed the heat pump applied for the rebate; 2) under the sustainable development 

scenario, the electricity generation produces zero carbon emissions. Based on the first assumption, 

I estimated the cost-effectiveness of the rebate program, which is $2,914-$3,921 per heat pump 

(see section 8). Based on the second assumption, the avoided costs of carbon are the social costs 

of carbon emissions from a typical natural gas furnace. According to Vaishnav & Fatimah (2020)’s 

study, the average annual CO2 emission from one typical natural gas furnace in North Carolina 

(NC) is 4,266 lbs. I then use the following equation to calculate the present value of the lifetime 

social carbon costs of the natural gas furnace (Ω): 

Ω = ∑ 𝑒 ∙ 𝑃𝑡

𝑡+𝑛

𝑡=2020

 

where 𝑒 is the annual CO2 emissions from a typical natural gas furnace in NC. P is the social 

cost or carbon price of CO2 in year t, and I apply the values of social cost of CO2 by years (from 

2021 to 2025) provided by the US Environmental Protection Agency (2016). 𝑛 is the number of 

years that the natural gas furnace can operate for and I suppose the natural gas furnace is installed 

in 2020 and it will be used for 25 years. After calculation, Ω equals 3400 (in 2021 dollars). So, I 

can find that the Ω is within the range of the cost-effectiveness of the rebate program in sample 1. 

In other words, the costs of the rebate program in sample 1 can be compensated by the avoided 

carbon costs associated with the switches from natural gas furnaces to heat pumps. The cost-

effectiveness of rebate in sample 1 is much larger than the rebate amount ($300-$450) because the 

natural adoption growth in that region is quite high. In regions with lower natural adoption growth 

of heat pumps (or, fewer “free riders”), the costs of the policy can be much lower. A similar 
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calculation for the loan program is not possible since I cannot estimate the absolute value of the 

loans’ effects in samples 2 and 3, due to data limitations. 
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Appendix M. Contemporaneous energy efficiency incentives programs 

 

I check the incentives for energy efficiency products in my sample areas from the Database 

of State Incentives for Renewables & Efficiency (DSIRE).  Based on the ZIP code, I can identify 

all the energy efficiency and renewables incentives in my sample areas. In my samples, I find 48 

incentives in total since 2000. Among these 48 incentives, only one incentive program (in addition 

to the heat pump rebate and loan programs) changed over time within the period of my study 

(2016-03-22 to 2020-01-02), which is Duke Energy Solar Rebate Program (initiated from 

09/24/2018). The effect of the solar rebate program could be one potential confounding factor in 

my study. To check the potential correlation between solar PV adoption and heat pump adoption, 

I utilized the 2015 Residential Energy Consumption Survey (RECS) database (EIA, 2020, 

https://www.eia.gov/consumption/residential/data/2015/), which is a U.S. nationwide 

representative sample of households. Using the RECS data, I conducted a Probit model by 

regressing the dummy of solar PV adoption on the dummy of heat pump adoption. The result 

shows that the marginally increased probability of installing a heat pump for a household with 

solar PV is only 1.3% (P-value <0.01), which indicates that the effect of solar PV adoption on heat 

pump adoption can be very small, and the effect of the solar rebate program on heat pump adoption 

will be much smaller or even negligible.  
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3. Chapter 3: Essay 2 - Estimation of Change in House Sales Prices in the US 

after Heat Pump Adoption 

 

Abstract 

Electrifying most fossil-fuel-burning applications provides a pathway to achieve cost-effective 

deep decarbonization of the economy. Heat pumps offer a feasible and energy-efficient way to 

electrify space heating. Here I show a positive house price premium associated with air-source 

heat pump installations across 23 states in the U.S. Residences with an air-source heat pump enjoy 

a 4.3-7.1% (or $10,400 - $17,000) price premium on average. Residents who are environmentally 

conscious, middle class, and live in regions with mild climate are more likely to pay a larger price 

premium. I find that estimated price premiums are larger than the calculated total social benefits 

of switching to heat pumps. Policymakers can provide information about the estimated price 

premium to influence the adoption of heat pumps.  

 

 

1. Introduction 

 

The increase in global average temperature must be kept below 1.5 degrees Celsius above 

the pre-industrial level to avoid irreversible environmental damage, which requires the carbon 

dioxide emissions to be reduced, or captured and sequestered (Masson-Delmotte et al., 2018). 

Electrifying most fossil-fuel-burning applications based on renewable sources provides a pathway 

to achieve cost-effective deep decarbonization of the economy (Denis et al., 2015; Hultman et al., 

2019). While it is economical and technologically easier to sequester emissions from large sources 

such as electric power plants, reducing emissions from small distributed sources, including tens of 
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millions of natural gas furnaces used to heat homes and offices, is more difficult. Without the 

electrification of space heating, a large amount of carbon emissions are generated from burning 

natural gas in space heating even if I reach a cleaner electricity grid. 

Studies typically identify the electrification of space heating by using air-source or ground-

sourced heat pumps as a technologically straightforward way to replace fossil-fuel-burning 

furnaces or boilers (Davis et al., 2018; Lucon et al., 2014; MacKay, 2008; The heat is on, 2007). 

An increasing number of national, state, and municipal decarbonization plans have relied on the 

diffusion of heat pumps. For instance, the Dutch government plans to electrify buildings and fully 

phase out natural gas by 2050. The Irish government plans to install 600,000 highly efficient heat 

pumps by 2030. Finland sets a carbon neutral target by 2035, which includes a shift to electric 

heating by heat pumps. Massachusetts in the U.S. offers incentive programs for switching to heat 

pumps from furnaces. From a social planner’s perspective, promoting heat pumps to electrify space 

heating will help reach deep decarbonization with a clean electricity grid. In addition, heat pumps 

offer an energy-efficient way for space cooling given a huge potential demand for air-conditioning 

in developing countries (Biardeau et al., 2019), help to balance electricity demand through 

demand-side smart management given the high penetration of renewable energy in the grid in the 

future, and relieve the problem of natural gas infrastructure constraints in the winter when there is 

a peak demand of natural gas for heating in the northern U.S.  

Residential installations of air-source heat pumps have increased in recent years in the U.S. 

The distribution across states is not balanced. The Pacific, Mountain, South Atlantic, and West 

North Central regions enjoy a higher penetration of air-source heat pumps, while other regions 

have a much lower penetration, which implies a large potential for further growth (See Figure 3.1 

for the distribution of air-source heat pump penetration in the U.S. in 2018). The heterogeneous 
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growth of air-source heat pump installations begs the question of whether this new technology has 

been recognized in the housing market. My study investigates how the installation of air-source 

heat pumps affects house prices in the U.S., and whether the presence of a heat pump increases 

house values (i.e., a heat-pump-induced price premium). The heat-pump-induced price premium 

provides useful information for sellers and buyers to better assess house values as well as the 

technology value. More importantly, a positive price premium associated with the presence of air-

source heat pumps can be useful for policymakers to design informational programs to influence 

the adoption and diffusion of heat pumps. For instance, the government can highlight the positive 

price premium induced by heat pumps and put a certified “energy-efficient heat pump” label on 

homes with heat pumps in an information campaign. 

 

 

Figure 3.1 The density of air-source heat pumps (number/10000 people) by county level in 

the U.S. in 2018.  

 

 

Several studies (Aydin et al., 2018; Qiu et al., 2017; Hoen et al., 2012; Dastrup et al., 2012) 

provide evidence on the price premiums of residential properties after installing solar panels or 
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solar water heaters, and the premiums range from 3.5%-17%. Other studies (Walls et al., 2017; 

Kahn and Kok, 2014; Deng et al., 2012; Deng and Wu, 2014; Brounen & Kok, 2011; Jayantha & 

Man, 2013) look at the capitalization of residential energy efficiency investment into property 

values and find that the property price premiums with energy efficiency rating or green-building 

labeling range from 2%-10%. Studies on commercial properties (Eichholtz et al., 2010, 2013; 

Costa et al., 2018) also find that green-certified office buildings enjoy a premium on transaction 

prices or rents. Existing studies of the price premium from energy efficiency mostly focus on green 

certification or energy efficiency ratings, not on specific technologies such as heat pumps. Despite 

the benefits from energy efficiency investments, there is a persistent gap between the level of 

energy efficiency investment that is projected to save money, and the investment that actually 

occurs (Fowlie et al., 2018). Common explanations focus on market failures, such as imperfect 

information, capital market failures, split incentive problems, and consumer behavior (Allcott & 

Greenstone, 2013; Gillingham & Palmer, 2014; Gerarden et al., 2015). Fowlie et al. (2018) and 

Liang et al. (2018) find that the actual energy savings are lower than engineering models’ 

predictions.  

This paper contributes to the literature using hedonic pricing methods to value energy 

technologies and energy efficiency investment. This study provides the empirical evidence of the 

house price premium induced by air-source heat pumps and its heterogeneity by different 

influencing factors. This paper also contributes to the literature on the “energy efficiency gap.” In 

my research, I find a large house sales price premium induced by air-source heat pumps, providing 

a strong incentive for installing heat pumps. The positive house sales price premium can be 

regarded as a significant private benefit in energy efficiency investment, which helps close the 

“energy efficiency gap”. This study produces three key findings. First, I provide the estimates of 
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house sales price premium induced by air-source heat pumps using observations across 23 states 

of the U.S. I find residences with an air-source heat pump enjoy a 4.3-7.1% (or $10,400 - $17,000) 

price premium on average. Second, I explore the heterogeneity of the price premium by 

investigating its relationship with other factors. Results show that residents who are 

environmentally conscious, middle class, and live in regions with mild climate are more likely to 

pay a larger price premium. Third, I compare the price premium with the benefit and cost of 

switching from a traditional HVAC system to an air-source heat pump. I find that the estimated 

price premiums are larger than the installation costs of heat pumps and larger than the calculated 

total social benefits of switching to heat pumps. 

 

 

2. Data and methods 

2.1Data  

 

In this study, I utilize the Zillow Transaction and Assessment Database (ZTRAX), which is 

obtained from Zillow. The 4TB of data covers more than 150 million homes in 51 states with 

building characteristics (heating types, rooms, area, view, land value, building quality, year built, 

etc.) for each house from six assessments conducted from 2016 to 2018, as well as historical 

transaction records since 1900 across the U.S. So, there are two parts of the dataset: assessment 

data and transaction data. 

The assessment data include six property assessment datasets recorded on 3/22/2016, 

2/03/2016, 7/31/2017, 11/02/2017, 1/07/2018, and 8/05/2018 (thus forming a panel dataset at the 

individual building level). The assessments were conducted repeatedly by Town/County tax 

assessor officers for property tax purposes. Any remodeling or upgrades above a certain level are 
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required by the local laws and regulations to be reported to the local tax assessor office so that the 

office can update the property characteristics. The Zillow company aggregates all the data from 

the local Town/County tax assessor offices and forms a national dataset. The assessment datasets 

provide information on property addresses, prior assessor valuations, and individual building 

characteristics (such as year built, year remodeled, building condition, building quality, number of 

stories, number of total rooms, number of bedrooms, number of bathrooms, building area, land 

assessed value, lot size, swimming pool, and site characteristics). The assessment data include 

approximately 200 million parcels in over 3,100 counties. 

The transaction data include information from more than 374 million detailed public 

transaction records across over 2,750 counties for residential and commercial properties since the 

early 1900s. The sales price is the key outcome variable of this study, which is converted into 

current (2018) dollars adjusted by inflation rates. See figure 3.2 for the illustration of the dataset 

structure. 

 

 
Figure 3.2 Summary of ZTRAX datasets and heat pump installation information 

 

In the ZTRAX data, I can observe the heating and air conditioning types of each property in 

six time nodes. Table 3.1 presents all the heating and cooling types shown in ZTRAX data. An 
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air-source heat pump is recorded as “HP” in the dataset, while a ground-sourced heat pump is 

recorded as “GT” in the dataset. In this study, I focus exclusively on the air-source heat pump. I 

can identify the heat pump installations by comparing the difference in heating types between two 

consecutive assessments. If the heating types differ in two consecutive assessments and in the later 

assessment the heating type is an air-source heat pump, a house installed the heat pump during the 

time window between the two assessments. Based on the heat pump installation dates, I categorize 

the transaction prices as pre- or post-treatment prices.  

 

Table 3.1 Heating and air conditioning system type of houses in ZTRAX data 
Heating System Type Air Conditioning Type 

Code Description Code Description 

BB Baseboard CE Central 

CE Central CW Chilled Water 

CL Coal EC Evaporative Cooler 

CV Convection GT Geo Thermal 

EL Electric NO None 

FA Forced air OT Other 

FL Floor/Wall PA Packaged AC Unit 

GS Gas PR Partial 

GT Geo Thermal RF Refrigeration 

GV Gravity VN Ventilation 

HP Heat Pump WA Wall Unit 

HW Hot Water WU Window Unit 

NO None YY Yes 

OL Oil   

OT Other   

PR Propane   

PT Partial   

RD Radiant   

SM Steam   

SO Solar   

SS Space/Suspended   

VT Vent   

WB Wood Burning   

YY Yes   

ZN Zone   

 

 

The control group consists of the houses using one traditional heating system (Gas, Coal, 

Hot Water, None, Oil, Radiant, Steam, and Wood Burning) and air conditioning system (Center 
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Air-Conditioning, Packaged AC Unit, Evaporative Cooler, Ventilation, and None), and were sold 

at least twice during a similar data window. To make the sales dates of the control group close to 

those of the treatment group, I limit the second sales dates of the control group to be after 2016. 

All the transaction records in my analysis are from 2000 to 2018. I also remove the houses that 

were remodeled after the year 2000 from my sample to rule out the influence of remodeling on the 

estimation of the price premium. These houses remodeled after 2000 only account for a small 

portion (4%) of my full sample. Finally, I match treated houses and control houses in the same 

county to obtain 14,211 houses in the treatment group and 440,168 houses in the control group 

across 23 states for my baseline Difference-in-Differences analysis.  

 

2.2 Empirical strategy  

 

I apply the Difference-in-Differences (DID) method with exact matching at the county level 

to compute the treatment effect of the installation of air-source heat pumps on house prices based 

on the ZTRAX data across the U.S. I also apply several alternative econometric approaches as 

robustness checks. 

There are three common challenges to estimating the average treatment effect on treated, 

including the selection bias, omitted variable bias, and model dependence. Many cross-sectional 

studies apply the outcome of units in the control group as the counterfactual, which potentially 

leads to selection bias (Angrist, 2008). In the context of the housing market, the price of a heat-

pump house if it had not installed the heat-pump may be different from the price of a comparable 

house in the control group. The second major concern is that the assignment to the treatment group 

may be correlated with unobservable variables which also influence the outcome of interest 



 

91 
 

(Imbens, 2004). The treatment variable then becomes endogenous. For instance, the level of 

education in a region could be an unobservable variable, which influences residents’ 

environmental protection awareness and further influences the installation of heat pumps. The 

level of education also affects personal income and house prices. Another major concern is model 

dependence. The actual relationship between variables may not be consistent with the assumed 

models. For instance, most studies applied a hedonic linear regression model to estimate house 

values. The conditional expectation function could be nonlinear and lead to biased estimation. To 

address these concerns, I utilize the method of Difference-in-Differences (two-way fixed-effect 

model) to estimate the treatment effect of adopting a heat pump on the house sales price. I also 

adopt other methods for robustness checks and heterogeneity analysis. Below I describe each 

method in detail. 

 

2.2.1 Baseline method: Difference-in-Differences 

To address the concern of selection bias and omitted variable bias, this study applies the 

Difference-in-Differences method to obtain the treatment effect based on the following equation 

(Lechner, 2010): 

 

𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑒𝑓𝑓𝑒𝑐𝑡 = (𝐸[𝑌𝑖𝑠𝑡|𝑠 = 𝑡𝑟𝑒𝑎𝑡𝑒𝑑, 𝑡 = 𝑝𝑜𝑠𝑡] − 𝐸[𝑌𝑖𝑠𝑡|𝑠 = 𝑡𝑟𝑒𝑎𝑡𝑒𝑑, 𝑡 = 𝑝𝑟𝑒]) 

                                      −(𝐸[𝑌𝑖𝑠𝑡|𝑠 = 𝑐𝑜𝑛𝑡𝑟𝑜𝑙, 𝑡 = 𝑝𝑜𝑠𝑡] − 𝐸[𝑌𝑖𝑠𝑡|𝑠 = 𝑐𝑜𝑛𝑡𝑟𝑜𝑙, 𝑡 = 𝑝𝑟𝑒]) 

…(1) 

 

where 𝑌𝑖𝑠𝑡 is the outcome of unit i in the group s at time t, post means the time after receiving 

the treatment, and pre means the time before the treatment. The difference-in-differences can rule 
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out the influences of neighborhood and community, natural environment, building-specific fixed 

features, consumer-specific fixed characteristics, and other unobserved time-invariant factors. To 

obtain a causal treatment effect, the parallel trend assumption is required between the treatment 

group and the control group to control for the influence of time-variant factors. I match treated 

houses with control houses at the county level for my national estimation (covering 23 states) and 

match at the city level for regional estimation. In most places of the U.S., the house property tax 

is calculated at the county level. I assume that the treated houses and control houses share a 

common macro time trend in the same county or city. I match at the county level for the national 

estimation to obtain observations covering as many areas across the U.S. as possible. Matching at 

the city level would generate more consistent treatment and control groups but it will remove more 

regions from my sample in the national analysis.  

To justify the parallel trend assumption of my DID analysis, I regress the log of house prices 

on interaction terms between an indicator for being in the treatment group and the year of the 

transaction, controlling for county-by-year fixed effects, month-of-year fixed effects, property 

fixed effects, and building age using only pre-treatment data. The statistical results are shown in 

Table 3.2 and Figure 3.3. I find that all the coefficients on the interaction terms are insignificant 

at a 5% level, which provides strong evidence that my model controls for time-variant 

unobservable differences across the treatment group and control group, consistent with the parallel 

trend assumption. 
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Table 3.2 Statistical results of interaction terms between treatment dummy and the year of 

the sale 
Interaction terms between 

treatment dummy and 

the year of the sale 

Coef. Std. Err. P-value 

T*Year2000 0.090271 0.199177 0.65 

T*Year2001 -0.04049 0.214139 0.85 

T*Year2002 0.142318 0.21376 0.506 

T*Year2003 -0.10501 0.205484 0.609 

T*Year2004 0.081316 0.209301 0.698 

T*Year2005 0.103851 0.202862 0.609 

T*Year2006 0.096289 0.206167 0.64 

T*Year2007 0.05221 0.203002 0.797 

T*Year2008 0.177776 0.210701 0.399 

T*Year2009 -0.03767 0.217235 0.862 

T*Year2010 0.092223 0.209432 0.66 

T*Year2011 0.01621 0.209909 0.938 

T*Year2012 0.038587 0.206478 0.852 

T*Year2013 -0.18201 0.204208 0.373 

T*Year2014 -0.06648 0.196222 0.735 

T*Year2015 0.090655 0.19696 0.645 

T*Year2016 0.333574 0.199692 0.095 

 

 

 
Figure 3.3 Pre-treatment trend test 

Note: All the coefficients on the interaction terms except for the year 2016 are insignificant, 

which provides strong evidence that my model controls for time-variant unobservable 
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differences across the treatment group and control group. The green vertical line shows the 95% 

confidence interval.  

 

For my baseline estimation model, I adopt the following two-way fixed-effect model, which 

can be regarded as a generalized DID model, 

 

𝐼𝑛 𝑌𝑖𝑐𝑡 = 𝛽𝐷𝑖𝑡 + 𝛼𝐵𝑖𝑡 + 𝛿𝑉𝑖𝑡 + 𝜑𝑖 + 𝜎𝑐 ∙ 𝜗𝑡 + 𝜇𝑡 + 𝜀𝑖𝑐𝑡 … (2) 

 

where In 𝑌𝑖𝑐𝑡  is the log of the sales price of house i at time t in county c. The price is 

converted into 2018 dollars adjusted for inflation rates. 𝐷𝑖𝑡 is the treatment variable, which takes 

value one when house i has received the treatment (i.e., installed the heat pump) at time t. In my 

regression model, 𝐷𝑖𝑡  takes value one only if house i is in the treatment group and the post-

treatment period. 𝜑𝑖 controls individual fixed effects capturing all the time-invariant individual 

building-specific characteristics. 𝜎𝑐 ∙ 𝜗𝑡  is county-by-year fixed effects, which captures 

unobservable common features in each year of each county such as changing local housing market 

conditions. 𝜇𝑡 is month-of-year fixed effects, which absorbs variation over the annual cycle in the 

housing market. Moreover, 𝐵𝑖𝑡 is the building age since it was built or remodeled (whichever is 

later). 𝜀𝑖𝑐𝑡 is an idiosyncratic error term. I cluster my standard errors at the house level, allowing 

for arbitrary correlations between any two observations within the same house. Remodeling a 

house can significantly influence the house value. I can only observe the remodeling date for each 

house in my dataset but cannot observe the degree of remodeling. Thus, I remove the houses that 

were remodeled after the year 2000 from my sample to ensure no houses were remodeled between 

two transactions in my sample, which can help rule out the influence of remodeling on the 

estimation of the price premium. Houses remodeled after 2000 only account for a small portion 
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(4%) of my full sample. I further include a vector of control variables 𝑉𝑖𝑡 to control for other time-

variant factors, which are federal fund rates, demographic features by county level (Gallin, 2006), 

and the state-level prices of electricity and natural gas (Myers, 2019). These variables will be 

dropped when I include county-year fixed effects though I include these variables in other model 

specifications when the county-year fixed effects are not present. I obtain a robust causal effect of 

heat pump systems on house prices where there are no other unobservable time-variant differences 

between the control and treatment groups. 

 

2.2.2 Cross-sectional data with nearest-neighbor matching 

The DID approach relies on intertemporal price variation. However, the estimates would be 

biased if the hedonic gradient shifts over time (Kuminoff & Pope, 2014).  To address this issue, I 

use an alternative approach that uses cross-sectional data in conjunction with the nearest neighbor 

matching technique following Muehlenbachs et al. (2015). To reduce the selection bias, I need to 

ensure both groups (treatment group and control group) are almost identical except for the 

treatment variable. The nearest neighbor matching is based on the Conditional Independence 

Assumption (CIA) (Angrist, 2008), which controls the selection bias conditional on observed 

features or covariates. However, the matching covariates in my dataset cannot cover all the house 

features. The DID is my preferred specification and the cross-sectional estimation with matching 

serves as a robustness check. 

I first apply an exact match in the time dimension (transaction year) to control for 

unobservable time-variant factors and in the geographic dimension (city) to control for 

unobservable neighborhood factors. I then apply a propensity score matching to find the three 

nearest neighbors in the control group for each treated house based on the covariates of time-
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invariant building characteristics (Qiu et al., 2017). The covariates for matching are the key house 

characteristics, including year built, number of stories, number of rooms, number of bedrooms, 

building area, and land assessed value. After the matching procedure, I run an OLS model by 

regressing the log of the house sale prices on a treatment dummy variable and the house feature 

covariates. The treatment dummy variable takes value one for treated houses and takes value zero 

otherwise. The coefficient of the treatment variable is my estimated treatment effect. The treatment 

effect estimated by cross-sectional data with matching (See the section 3.2) is consistent with the 

results of the DID approach. 

I also conduct a robustness check by focusing on new buildings using the cross-sectional 

data. I still find a positive price premium, which is consistent with my baseline estimates (See the 

section 3.2). 

 

2.2.3 The heterogeneity of the price premium 

I explore the heterogeneity of the price premium by applying a flexible semi-parametric 

approach - partially linear varying coefficient fixed effects panel data model (Cai et al., 2017). 

This method allows for linearity in some variables and nonlinearity in other variables, where the 

effects of these regressors on the outcome variable vary based on low-dimensional variables 

nonparametrically (Cai et al., 2017), which has advantages in estimating non-linear heterogeneity. 

The model has been widely used (Lundberg et al., 2016; Delgado et al., 2014; Su et al., 2013). I 

adopt the following model 

 

𝐼𝑛 𝑌𝑖𝑡 = 𝐷𝑖𝑡 ∙ 𝑔(𝑈𝑖𝑡) + 𝛽𝑉𝑖𝑡 + 𝜑𝑖 + 𝜗𝑡 + 𝜇𝑡 + 𝜀𝑖𝑡, … (3) 
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where 𝑌𝑖𝑡 is the sales price of house i at time t. 𝑈𝑖𝑡 is a continuous variable of an influencing 

factor associated with the house i at time t. 𝐷𝑖𝑡 is a treatment variable with functional coefficient 

𝑔(𝑈𝑖𝑡). 𝑉𝑖𝑡  is a vector of control variables to control for other time-variant factors, which are 

federal fund rates, demographic features by county level, and the price of electricity and natural 

gas by state level. 𝜑𝑖 is individual fixed effects, 𝜗𝑡 is year fixed effects, and 𝜇𝑡 is month-of-year 

fixed effects. I use a linear combination of sieve basis functions to approximate the unknown 

functional coefficient 𝑔(𝑈𝑖𝑡). 

The historical data of federal fund rates were obtained from the online database of 

Macrotrends. The data of population density and personal income per capita by county was 

obtained from the Bureau of Economic Analysis, U.S. Department of Commerce. The data of 

monthly natural gas price and annual electricity price by the state were obtained from the U.S. 

Energy Information Administration. The data on residents’ environmental awareness was obtained 

from the Yale Program on Climate Change Communication. The local adoption rate of air-source 

heat pumps by county was calculated based on ZTRAX data. The data for heating degree days and 

cooling degree days were obtained from the National Oceanic and Atmospheric Administration. 

The heating degree days and cooling degree days are computed based on a base temperature of 65 

Fahrenheit degrees. 

 

 

3. Results 

3.1 House price premium induced by air-source heat pumps 
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I estimate the house sales price premium induced by air-source heat pumps using the DID 

approach with exact matching at the county level based on property data from the ZTRAX. The 

data includes two parts: building characteristics for each house in the U.S. from six assessments 

from 2016 to 2018, and historical transaction records across the U.S. The treatment group consists 

of houses which installed a heat pump. The control group consists of the houses using the same 

types of heating and cooling systems other than heat pumps across all the assessments and are sold 

at least twice during a similar data window. The transaction records in my final analysis are from 

2000 to 2018 (not just during 2016-2018).  

In my DID approach, I match treated houses and control houses in the same county. I remove 

the houses that were remodeled after the year 2000 (about 4% of the total sample) from my sample 

to exclude the influence of remodeling on the estimation of a price premium. I obtain 14,211 

houses in the treatment group and 440,168 houses in the control group across the country covering 

23 states.  

I run a DID specification (two-way fixed effects model) to estimate the house sales price 

premium induced by heat pumps, by regressing the log of transaction prices on a dummy variable 

of installing a heat pump controlling for the building age, county-by-year fixed effects (or year 

fixed effects), month-of-year fixed effects, and individual property fixed effects to capture building, 

neighborhood, regional, and intertemporal confounding factors. Details of the sample restriction 

and DID modeling can be found in the section of data and methods. The coefficient of the heat 

pump installation dummy variable measures the average treatment effect on the treated (ATT).  

Specifically, I compare 4 different model specifications. Results are shown in Table 3.3. In 

models 2 and 3, I include a vector of time-variant control variables, which are financial factors of 

monetary policies (Taylor, 2007), demographic features (Gallin, 2006), and the regional electricity 
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and natural gas prices (Myers, 2019). I obtain the historical data of federal fund rates, which plays 

an important role in influencing house prices, from the online database of Macrotrends. I obtain 

the data on population density, personal income per capita by county from 2005 to 2017 from the 

Bureau of Economic Analysis, U.S. Department of Commerce. I obtain the data on monthly natural 

gas prices by state from 1973 to 2019 and the data on annual electricity prices by state from 1990 

to 2017 from the Energy Information Administration. Model 4 controls for county-by-year fixed 

effects and is my preferred model. Model 4 indicates that the estimated ATT is 7.1%, meaning that 

the installation of air source heat pumps induces a positive price premium, suggesting that houses 

with air-source heat pumps enjoy an additional 7.1% (or $17,000) sales price premium on average 

compared to houses with other heating and cooling systems holding other factors fixed. 

 

Table 3.3 The estimation results using the Difference-in-Differences approach 

Model 1 2 3 4 

Coef. Of D (ATT, Price Premium) 0.0511 0.0349 0.0625 0.0708 

P-value <0.001 <0.001 <0.001 <0.001 

Obs 853,142 634,952 634,952 853,142 

Robust Std Err 0.0069 0.0096 0.0102 0.011 

95% CI 0.0374 0.0159 0.0424 0.0491 

95% CI 0.0647 0.0538 0.0826 0.0924 

R-sq (overall) 0.0483 0.0573 0.0027 0.018 

Groups/Houses 440,764 378,267 378,267 440,764 

Building age control Yes Yes Yes Yes 

Other time-variant control No Yes Yes No 

Household fixed effects Yes Yes Yes Yes 

Month-of-Year fixed effects Yes Yes Yes Yes 

Year fixed effects Yes Yes No No 

State-by-Year fixed effects No No Yes No 

County-by-Year fixed effects No No No Yes 

* Standard errors are all clustered at the house level. 

 

One caveat for my DID analysis is that I identify the treatment variable relying on differences 

in two records for the same property at different times. Heating type information may have been 
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missed out in the first recording. I address this concern from two perspectives. First, all the treated 

houses in my sample were sold within the following two years of the first assessment recording. 

There is unlikely any significantly systematic change in the recordings that may leave (or collect) 

a specific type of information during this short period. The sellers of the treated houses have a 

strong incentive to report the installation of a heat pump to increase the assessment value and 

ultimately the transaction price of their houses when the sellers know the houses will be on the 

market soon. Thus, it is unlikely to miss out on the heat pump information during the assessments, 

especially among the houses that are entering the market soon.  Second, if the heat pump was 

missed out in some houses’ first assessment recording, the price premium induced by the heat 

pump will be underestimated. The treatment group may include houses that were treated in both 

the pre-treated period and the post-treated period. Thus, including these houses in the treatment 

group underestimates the price premium, which still supports the main conclusion that the cost of 

installing an air-source heat pump can be recovered by the price premium. 

I also apply another specification in the baseline DID model where remodeling and building 

age are included at the same time. I include a variable of building age (since a building was built) 

and an interaction term between the remodeling dummy and the variable of building age (since it 

was remodeled) in the baseline DID model. Results (coefficient: 0.148; standard error: 0.012) are 

consistent with my baseline estimation. 

 

3.2 Robustness checks 

 

I also apply several alternative econometric specifications for robustness checks. 
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First, I conduct robustness checks by allowing specific time trends for the treatment and 

control groups in my DID model, respectively, following the method conducted by Davis et al. 

(2014). I first conduct the same analysis as Davis et al. (2014) by adding interaction terms between 

the treatment group indicator variable and time trend variables (the number of years since 2000) 

into my baseline model. I estimated a linear time trend, quadratic time trend, and cubic time trend. 

The following equation (5) represents the above approach, while the equation (4) is my baseline 

DID model. These time trends can control for time-variant systematic differential trends between 

the treatment and the control groups. Following this approach, I further conduct additional analyses 

by adding the interaction terms between the county-by-group fixed-effects (here group indicates 

treatment group or control group) and the time trends in equation (6). 

 

𝐼𝑛 𝑌𝑖𝑐𝑡 = 𝛽𝐷𝑖𝑡 + 𝛼𝐵𝑖𝑡 + 𝛿𝑉𝑖𝑡 + 𝜑𝑖 + 𝜎𝑐 ∙ 𝜗𝑡 + 𝜇𝑡 + 𝜀𝑖𝑐𝑡       …(4) 

𝐼𝑛 𝑌𝑖𝑐𝑡 = 𝛽𝐷𝑖𝑡 + 𝛼𝐵𝑖𝑡 + 𝛿𝑉𝑖𝑡 + 𝜑𝑖 + 𝜎𝑐 ∙ 𝜗𝑡 + 𝜇𝑡 + 𝝆𝟏𝑻𝒊 ∙ 𝜸𝒕 + 𝝆𝟐𝑻𝒊 ∙ 𝜸𝒕
𝟐 + 𝝆𝟑𝑻𝒊 ∙ 𝜸𝒕

𝟑 + 𝜀𝑖𝑐𝑡  (5) 

𝐼𝑛 𝑌𝑖𝑐𝑡 = 𝛽𝐷𝑖𝑡 + 𝛼𝐵𝑖𝑡 + 𝛿𝑉𝑖𝑡 + 𝜑𝑖 + 𝜇𝑡 + ∑ ∑ 𝝉𝒋𝒌 ∙ 𝜸𝒕
𝒄
𝒌=𝟏

𝟐
𝒋=𝟏 + ∑ ∑ 𝝉𝒋𝒌 ∙ 𝜸𝒕

𝟐𝒄
𝒌=𝟏

𝟐
𝒋=𝟏 +

∑ ∑ 𝝉𝒋𝒌 ∙ 𝜸𝒕
𝟑𝒄

𝒌=𝟏
𝟐
𝒋=𝟏 +𝜺𝒊𝒄𝒕       …(6) 

 

where In 𝑌𝑖𝑐𝑡 is the log of the sales price of house i at time t in county c, 𝐷𝑖𝑡 is the variable of heat 

pump adoption, 𝐵𝑖𝑡 is the building age since it was built or remodeled (whichever is later),  𝜑𝑖 

controls individual fixed effects, 𝜎𝑐 ∙ 𝜗𝑡 is county-by-year fixed effects, 𝜇𝑡 is month-of-year fixed 

effects, and 𝜀𝑖𝑐𝑡 is the idiosyncratic error term. In equation (5), 𝑇𝑖 is a treatment group indicator 

variable, which takes values one for buildings in the treatment group.  𝛾𝑡 is the number of years 

since 2000. In equation (6), 𝜏𝑗𝑘 is the indicator dummy for buildings in group j (treatment group 

or control group) and county k.  𝛾𝑡 is the number of years since 2000. 
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Table 3.4 presents the estimation results. Column (1) is the baseline estimation result by 

equation (4) without time trend variables, Column (2)-(4) are the results by equation (5), while 

Column (5) is the result by equation (6). The results are relatively insensitive to including different 

time trends, suggesting that the uncontrolled time-varying confounding unobservables have little 

influence on my estimated treatment effect.  

 

 

Table 3.4 The heat pump price premium estimation using the DID model with different 

time trends 

Model (1) (2) (3) (4) (5) 

 No time trend 
Linear time 

trend 

Quadratic time 

trend 

Cubic time 

trend 

Cubic time 

trend 

Heat pump adoption 0.07*** 0.09*** 0.08*** 0.08*** 0.07*** 

 (0.011) (0.011) (0.011) (0.011) (0.008) 

      

Obs 853142 853142 853142 853142 853142 

R-sq 0.01 0.02 0.02 0.02 0.06 

Building age control Yes Yes Yes Yes Yes 

Household fixed effects Yes Yes Yes Yes Yes 

Month-of-Year fixed effects Yes Yes Yes Yes Yes 

County-by-year fixed effects Yes Yes Yes Yes No 

Treatment group dummy linear time trends No Yes No No No 

Treatment group dummy quadratic time trends No No Yes No No 

Treatment group dummy cubic time trends No No No Yes No 

County-by-group fixed effects  cubic time 

trends 
No No No No Yes 

* Standard errors are all clustered at house level and in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
 

 

Second, I use the nearest neighbor matching technique based on cross-sectional data to 

conduct a robustness check. DID specifications rely on panel intertemporal variation and may fail 

to measure the slope of the hedonic function of price. The DID estimates could be biased if the 

hedonic gradient changes over time (Kuminoff & Pope, 2014; Muehlenbachs et al., 2015). To 

address this issue, I use the nearest neighbor matching technique based on cross-sectional data. I 
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first apply an exact match in the time dimension (transaction year) to control for unobservable 

time-variant factors and in the geographic dimension (city) to control for unobservable 

neighborhood factors. Then I apply a propensity score matching on the covariates of time-invariant 

building characteristics, which are correlated with house prices (Qiu et al., 2017; Case et al., 2004). 

The covariates for matching are the key house characteristics, including the year built, number of 

stories, number of rooms, number of bedrooms, building area, and land assessed value. After the 

matching procedure, I run OLS models to estimate the ATT. Table 3.5 presents all the estimates 

of different specifications. The results in Table 3.5 are consistent with my main results using the 

DID approach. 

 

Table 3.5 Estimates using cross-sectional data with nearest neighbor matching 

Model 1 2 3 4 5 

Coef. Of D (ATT, Price Premium) 0.2131 0.1709 0.0278 0.2632 0.1501 

P-value <0.001 <0.001 <0.001 <0.001 <0.001 

Obs 966,099 414,420 301,065 414,420 301,065 

Robust Std Err 0.0043 0.0036 0.0043 0.0035 0.0042 

95% CI 0.2047 0.1637 0.0193 0.2562 0.1417 

95% CI 0.2216 0.1781 0.0362 0.2702 0.1584 

R-sq (overall) 0.39 0.0053 0.07 0.26 0.30 

Groups/Houses 966,099 414,420 301,065 414,420 301,065 

Matching No Yes Yes Yes Yes 

House features control Yes No Yes No Yes 

Year fixed effects Yes No No Yes Yes 

City fixed effects Yes No No Yes Yes 

 

 

I also conduct a third robustness check by restricting the DID sample to transactions between 

2016 and 2018, in order to directly control for the time-variant building features in my DID model 

(See data structure details in the section of data and methods).  I match each transaction with the 

nearest assessment to approximate the building features when it was sold. To reduce the bias 

caused by frequent re-selling, I drop houses if the transaction interval is less than one year in the 
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control group. After these procedures, I obtain 428 treated houses and 4600 control houses 

covering 104 counties (including both treated and control houses) and 14 states. I further add the 

time-variant control variables of building features into the model, but only 117 treated houses are 

included in the model because of lacking building features for some houses.  

Due to the small sample size, this estimation is vulnerable to a number of issues. First, the 

number of treated houses in each county is too small. In most cases, there are only 1-2 treated 

houses in a county. Second, the building features of six assessments do not reflect the actual 

building features when it was sold. Third, when I restrict the sample to a narrow time window 

(from 2016 to 2018), the question of frequent re-selling (“flapping”) will be raised. The house 

sales prices can be much higher or lower than market prices under the situation of frequent re-

selling. Table 3.6 presents the estimation results with and without control variables of time-variant 

building features. Despite the issues mentioned above, I still observe a price premium for the heat 

pump. The coefficient of the price premium is smaller and not significant after adding building 

feature control variables, which may be caused by the much smaller number of treated houses. The 

magnitude is also close to my main estimation result though the standard error differs due to the 

sample size. 
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Table 3.6 The price premium estimated by DID using the sample from 2016 to 2018 
 (1)  (2)  

Time periods 2000-2018 2016-2018 

Price premium 0.071*** 0.063 

 (0.011) (0.081) 

   

Building age control Yes Yes 

Time-variant building features No Yes 

Household FE Yes Yes 

County by year FE Yes No 

Year FE No Yes 

Month of year FE Yes Yes 

R square 0.009 0.063 

Obs 440,764 4,984 

*Notes: Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Time variant building features include the 

number of stories, number of rooms, number of bedrooms, number of bathrooms, and building condition level. 

 

 

The last robustness check restricts the sample to new buildings. Focusing on new buildings 

can eliminate the confounding factors of contemporaneous building retrofits. I explore the 

possibility of using the new buildings subsample to provide additional analyses. I restrict my post-

treatment analysis sample to only new buildings (in which the time interval between the year built 

and the first transaction is less than one year) and focus on the three states that have the highest 

number of heat pump homes (Georgia, Massachusetts, Virginia). This gives a sample of 1,751, 

among which 361 are heat pump homes. I run a simple hedonic regression model controlling for 

building features (e.g., number of stories, number of rooms, number of bedrooms, number of 

bathrooms, year built, building area, and the land assessed value per square feet.). The regression 

results are shown in Table 3.7.  The results show a 0.175 coefficient for log(price), which is 

corresponding to 19.1% of price premium (when the coefficient is large, the percentage change is 

calculated as follows: the percentage change = 𝑒the estimated coefficient -1), which is consistent with 

my main results of a positive price premium. However, since the sample size is small and the cross-

sectional analysis without a DID (there are no pre-heat-pump prices for new buildings) might 



 

106 
 

suffer from more unobservable confounding factors compared to the DID, I still prefer my DID 

results in my main discussions. 

 

Table 3.7 The estimation using a cross-sectional analysis of new buildings 
 (1) 

 New buildings 

Log(Price) 0.175* 

 (0.102) 

  

Building features control Yes 

County Fixed effects Yes 

R square 0.73 

Obs 1,030 

*Notes: Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Controlled building features include the 

number of stories, number of rooms, number of bedrooms, number of bathrooms, year built, building area, and the 

land assessed value per square feet. 

 

3.3 The lower bound of the price premium 

 

Contemporaneous energy-efficiency and building upgrades may also be captured by the 

dummy variable of the heat pump in my model and cause the price premium to be overestimated. 

If these upgrades are counted as remodeling in the data, my results are unbiased because I dropped 

all houses remodeled after the year 2000. I conducted additional analyses to further eliminate the 

influence of contemporaneous upgrades. Specifically, I address these two concerns separately and 

calculate a lower bound of the housing price premium induced by air-source heat pumps. 

 

3.3.1 Contemporaneous energy efficiency retrofits around the installation of a heat pump 

I compare the installed energy efficiency measures of houses with heat pumps against houses 

without heat pumps. I conducted additional analyses and use the installation of an energy 

efficiency measure (a binary variable) as the dependent variable and whether the house has a heat 

pump (a dummy variable) as the independent variable based on a Probit model using all the 
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observations of Residential Energy Consumption Survey (RECS) data from Energy Information 

Administration (EIA), a nationally representative sample of residential consumers. I find that 

houses that installed heat pumps are more likely to have other energy-star qualified appliances 

compared to houses without heat pumps, but the marginally increased probabilities are small at 

about 10%-15%. I also find that there is no significant difference in installing a solar panel or a 

solar water heating system between the houses with and without heat pumps. The coefficient 

estimates and 95% confidence intervals of the Probit models are presented in Figure 3.4 below.  

 

 
Figure 3.4 The adoption of energy efficiency measures of heat-pump houses against other 

houses. 

 

 

I web scrape the price data of energy star qualified appliances from Home Depot online 

shopping site, and then use average prices as the value of these energy efficient appliances (See 

Table 3.8). I multiply the average prices of the energy star qualified measures by the estimated 

marginal increased probabilities and then subtract the sum of the products from the estimated price 

premium while calculating the lower bound. Consumers may overvalue or undervalue the energy 

efficiency measures in the housing market and the valuation based on online retail prices could be 

biased. In this essay, the calculated value of contemporaneous energy efficiency retrofits is very 
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limited ($854) and it has limited influence on my major conclusion. Future studies with the data 

of energy efficiency measures at the individual building level can apply a hedonic model to directly 

estimate the value of these measures in the housing market. 

 

 

Table 3.8 The average prices of energy-efficiency measures 

Energy-efficiency Measures Average price ($) 

Energy star qualified clothes washer 1700 

Energy star qualified dishwasher 2890 

Energy star qualified clothes dryer 600 

Energy star qualified refrigerator 700 

Energy star qualified water heating 700 

Energy star qualified windows 700 

Total 7290 

 

 

 

3.3.2 Contemporaneous building retrofits/upgrades around the installation of heat pump 

 

The potential correlation between the installation of heat pumps and other contemporaneous 

building upgrades may lead to a biased coefficient of the treatment dummy in the DID approach 

when upgrades are not properly controlled for. I have already removed the remodeled houses from 

my sample. In the lower bound analysis, I support my results with additional analyses and 

discussions. 

Two potential different scenarios may introduce the correlation between heat-pump 

installations and other building upgrades. The first scenario is when the homeowners’ primary 

purpose is to upgrade/retrofit their houses while installing an air-source heat pump as an addition. 

In this case, the building upgrade work is relatively large compared to the air-source heat pump. 

The second scenario is when the homeowners intend to install an air-source heat pump and the 

installation induces other building retrofitting work. The retrofitting is relatively small in this case 

because installing an air-source heat pump is easier.  
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In the first scenario, the propensity of upgrading a house (excluding energy-efficiency 

upgrading) between the treatment group and the control group should not be significantly different 

if the observed features between the two groups are balanced. As a result, I focus on the second 

scenario. I show that the building upgrading caused by the second scenario (caused by the adoption 

of heat pumps) is very small using additional housing characteristic data. 

First, the DID approach controls for all the time-invariant confounding factors but not time-

variant confounding factors. I conduct a pre-treated parallel trend test and find that there are 

parallel trends in house sales prices between the treatment group and the control group in the pre-

treated period. Thus, I only focus on periods around the treatment (installation of heat pumps), 

which is within the periods of six assessments in my sample (2016 - 2018). 

Next, I show that the major building features from 2016 to 2018 are overall balanced between 

the treatment group and the control group in my sample (see Table 3.9). I consider the following 

building features: the number of rooms, bathrooms, stories, bedrooms, building conditions, and 

building quality. A more stable, sounder, newer building at the time of assessment induces a higher 

building condition recording.  Zillow database records six levels of building conditions for each 

property, which are “Unsound”, “Poor”, “Fair”, “Average”, “Good”, “Excellent.” I transform the 

building condition variable into an ordinal variable with six integers from 1 to 6. Better building 

materials, better interior decoration, and better building design induce a higher building quality 

recording. There are 15 levels of building quality for each property recorded by Zillow, which are 

from 1 to 15. Given the balanced features between the two groups, the propensity of building 

retrofits in the first scenario should not be systemically different between the treatment group and 

the control group. The balancing test cannot fully exclude unobservable differences between the 

treatment and control groups. The balancing test on observable variables provides suggestive 
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evidence on the properties of unobservable confounding factors (Davis and Wolfram, 2012; Ito, 

2014). If I failed the balance test on the observables, the unobservable are more likely to be 

different across the treatment and control groups. 

 

 

Table 3.9 The balance between treated houses and control houses in the sample of DID 

analysis 

 N. Of Stories Total Rooms 
Total 

Bedrooms 

Total 

Bathrooms 

Building 

Condition 

Building 

Quality 

Treated 1.4921 6.4517 3.0852 2.3765 3.6034 9.4116 

 (0.525) (1.770) (0.886) (0.808) (0.903) (2.327) 

Control 1.4185 6.2692 3.1304 2.0577 3.5684 8.4671 

 (0.544) (1.985) (0.910) (0.881) (0.840) (2.067) 

       

Obs 425,717 257,365 390,581 394,479 321,275 321,275 

       

Balancing statistics:       

SMD 0.138 0.097 0.050 0.377 0.040 0.429 

VR 0.932 0.795 0.948 0.841 1.155 1.268 

Notes: Standard deviations in parentheses. T-statistic is not used as the balancing statistic because it can mix up 

balance and sample size (Imai et al., 2008). Two other balancing statistics are used here to check the balance 

between the treatment and control groups in distributions and means, which have been widely used in the statistics 

research (Stuart et al., 2013). The first statistic is the standardized mean difference (SMD) aimed for comparing 

sample mean (Linden and Samuels, 2013). SMD is not influenced by sample size, which is defined as 𝑆𝑀𝐷𝑗 =
|𝑌𝑗𝑇̅̅ ̅̅ ̅−𝑌𝑗𝐶̅̅ ̅̅ ̅|

√
(𝑆𝑗𝑇)2+(𝑆𝑗𝐶)2

2

, where 𝑌𝐽 is an attribute; S means the standard deviation; T and C denote treatment and control groups. 

The second statistic is variance ratio (VR) aimed for comparing distribution, which is defined by Rubin (2001) as 

𝑉𝑅𝐽 =
(𝑆𝐽𝑇

2)

(𝑆𝐽𝐶
2)

. According to Rubin (2001), when SMD is larger than 0.25, or VR is not within the range from 0.5 to 

2, the treatment and control groups should not be balanced in means or distribution. According to these two 

statistics, I find the treatment and control groups in my sample are overall balanced, although the SMDs of the 

bathrooms and building quality is a little bigger larger than 0.25. 

 

 

Third, I regress the dummy variable of heat pump adoption (takes value one if the heating 

types differ in two consecutive assessments and in the later assessment the heating type is a heat 

pump) on building feature changes using observations of six assessments from 2016 to 2018 

including both treated and control houses in my DID analysis. Table 3.10 presents the estimated 

results. All the coefficients are small in magnitude though still significant, potentially due to the 
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large sample size, indicating that the adoption of a heat pump entails a very small probability of 

other building retrofits. On average, the adoption of an air-source heat pump is correlated with an 

increase of 0.01 stories, 0.08 total rooms, 0.02 bedrooms, 0.04 bathrooms, 0.03 levels of building 

condition, 0.15 levels of building quality and 4% probability of changing roof cover (See Table 

3.10). In rare cases, ducts need to be paved to transmit heat to different rooms under the roof of a 

house if a central air-source heat pump is installed. So, I also investigate the impact on the roof 

because the duct work may induce the house owner to retrofit the roof. My main conclusion still 

holds after accounting for these minor impacts (0.64% - 2.04% changes from the average building 

features).  

 

 

 

Table 3.10 The impact of heat pump adoption on contemporaneous building feature 

changes. 

  D. Stories 

D. Total 

Rooms D. Bedrooms D. Bathrooms 

D. Building 

Condition 

D. Building 

Quality 

Roof Cover 

Change 

Heat Pump 

Adoption 0.0125*** 0.0768*** 0.0201*** 0.042*** 0.0347*** 0.149*** 0.0425*** 

 (0.001) (0.0035) (0.001) (0.0015) (0.005) (0.009) (0.0015) 

        

Obs 2,113,346 1,269,508 1,935,113 1,953,617 1,611,315 1,212,156 1,708,118 

Average of 

the building 

feature 

1.42 6.27 3.13 2.06 3.57 8.48 - 

% change 

from average 
0.88% 1.22% 0.64% 2.04% 0.97% 1.76% - 

Notes: Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. “D. Stories”, “D. Total Rooms”, “D. 

Bedrooms”, “D. Bathrooms”, “D. Building condition”, “D. Building quality” are the first differences of the number 

of stories, total rooms, bedrooms, bathrooms and the levels of building condition and building quality between two 

consecutive assessments. There are six levels of building conditions for each property recorded by Zillow database, 

which are “Unsound”, “Poor”, “Average”, “Fair”, “Good”, “Excellent.” A more stable, sounder, newer building 

induces a higher building condition recording. I transform the building condition variable into an ordinal variable 

with six integers from 1 to 6. There are 15 levels of building quality for each property recorded by Zillow, which are 

from “E-” to “A+”. Better building materials, better interior decoration, and better building design induce a higher 

building quality recording. There are 22 categories of roof cover recorded by the Zillow database (e.g., Aluminum, 

Asphalt, Asbestos, Bermuda, Built Up, Concrete, Composition Shingle, Fiberglass, Gravel/rock, Gypsum, Metal, 

etc.) The variable of “roof cover change” takes value one if the roof cover types differ in two consecutive 

assessments. In rare cases, ducts need to be paved to transmit heat to different rooms under the roof of a house if a 

central air-source heat pump is installed. I investigate the impact on the roof because the ductwork may induce the 

house owner to retrofit the roof. 
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To further estimate the monetary value of these impacts, I apply a cross-sectional hedonic 

model by regressing the house prices on building features using the houses of control group and 

transactions from 2016 to 2018. The coefficients shown in Table 3.11 are the unit monetary value 

($ in 2018) of the building features. I manually set the value of changing a roof cover to 20,000 

dollars because it is hard to estimate the unit monetary value of the roof cover using the hedonic 

model given that the roof cover in Zillow data includes 22 categories. I multiply the unit monetary 

value of the building features by the estimated marginal increase of building features caused by 

the heat pump. I then subtract the sum of the products from the estimated price premium when 

calculating the lower bound.  

In total, I subtract the value of contemporaneous energy efficiency retrofits ($854.0) and the 

value of contemporaneous building retrofits (5,902.0$) from the estimated price premium 

($17,162.4) and obtain a lower bound of the price premium ($10,406.4). The ATT of 7.1% 

($17,162.4) in the last section can be treated as an upper bound. 

My approach of subtracting the impact of other contemporaneous projects is similar to 

Finkelstein et al. (2012), which subtracts the impact of other potentially correlated welfare 

programs when analyzing the impact of the Medicaid program. 
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Table 3.11 The hedonic model using control houses from 2016 to 2018 

 Coef. Std. Err. P value 

N. Of Stories 4118.762 1410.502 <0.01 

Total Rooms 5489.311 553.33 <0.01 

Total Bedrooms -5783.821 863.02 <0.01 

Total Bathrooms 29310.7 1011.03 <0.01 

Building Condition 11997.16 810.63 <0.01 

Building Quality 20318.78 549.4 <0.01 

Area 16.72 0.305 <0.01 

Pool 55995.14 4713.54 <0.01 

Good site 47720.96 3931.06 <0.01 

Building Age 147.35 18.97 <0.01 

 

Year FE Yes 

County FE Yes 

R square 0.48 

Obs 54,562 

*Notes: Because the six assessments are from 2016 to 2018, I restrict the sample to transactions from 2016 and 

2018. I match each transaction with the nearest assessment to approximate the building features when it was sold. 

Because the houses in my sample were not remodeled, the building features of the area, pool, good site are time-

invariant. Thus, I do not include these features while estimating the impact of heat pump adoption on building 

retrofits. “Good site” is a dummy variable, which takes value one if the building is close to a school, airport, railway 

station, major street, lake, ocean, or green belt. “Pool” is a dummy variable, which takes value one if the building 

has a swimming pool. 

 

 

3.3.3 The comprehensiveness of building features considered 

 

Below I show that all the important contemporaneous building upgrades from Zillow that 

can influence house sales prices are accounted for in my analyses. 

Figure 3.5 presents all the categories of the “Facts and features” of homes shown to house 

buyers on the Zillow website when they are comparing different houses. These features of houses 

are the major information that house buyers can receive when they search for a house, and also the 

major indicators for house buyers to compare different comparable houses. Thus, these categories 

of features can be regarded as the major building-feature factors that influence the house sales 

price. 
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The building features shown in Figure 3.5 include building age, heating and cooling systems, 

building area, parking space, the number of rooms/bathrooms/bedrooms/stories, appliances 

(including energy star qualified appliances), flooring, home type, architectural style, construction 

material information. In my paper, I take all of these building features into account. First, I remove 

the buildings with remodeling after 2000 from my sample, so the building area, architectural style, 

swimming pool, parking space and construction material would not change in my sample. Second, 

I take all the other features into account in my lower bound analysis. I also include the levels of 

building condition and building quality into my model. A more stable, sounder, newer, cleaner 

building at the time of assessment induces a higher building condition recording. Zillow database 

records six levels of building conditions for each property, which are “Unsound”, “Poor”, “Fair”, 

“Average”, “Good”, “Excellent.” Better building materials, better interior decoration, and better 

building design can be reflected in (and thus controlled for by) a higher building quality indicator. 

There are 15 levels of building quality for each property recorded by Zillow, which are from “E-” 

to “A+”. See Figure 3.6 for the detailed description of the building condition and building quality 

variables, which can control for a very comprehensive set of building characteristics.  
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Figure 3.5 The “Facts and features” of homes showed on the Zillow website 

Note: These figures are obtained from the website: https://www.zillow.com/homes/for_sale/ 

 

https://www.zillow.com/homes/for_sale/
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Figure 3.6 The attributes in the indicators of building condition and building quality 

recorded by Zillow 

 

 

In addition, the building condition indicator reflects the maintenance level of the buildings 

and addresses the concern about the systematic difference in house owners between the heat-pump 

houses and other houses. The owners of “green” homes may differ from owners of conventional 

homes and also take better care of that home. In this situation, the adoption of heat pumps could 

be correlated with the improved maintenance level of the homes made by the “green” homeowners. 

To address this concern, I account for potential contemporaneous better building maintenance 

around the same time of the heat-pump adoption using the variable of building condition indicator. 

I then subtract the marginal value of these contemporaneous upgrades from my estimated heat-

pump house price premium in my lower bound analysis. 

 

3.4 The heterogeneity of the price premium 

 

The house sales price premium induced by air-source heat pumps may differ across different 

regions and demographic groups. I examine the heterogeneity of the price premium by 

• Building age

• New construction

• Building structure

• The stability of building

• Cleanness

• The condition of appliances

• The condition of exterior wall 

cover

• The condition of interior wall 

cover

• The condition of flooring

• The condition of roof

…

Building Condition
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• Interior decoration and design
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• Exterior wall cover material

• Interior wall cover material

• Flooring material

• Swimming pool
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• Garage parking space

• Fireplace

...
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investigating the correlation of the price premium to several other important factors, including 

residents’ environmental awareness at the county level, air-source heat pump adoption rate at the 

county level, personal income per capita at the county level, average annual heating degree days, 

and annual cooling degree days (Mense, 2017) from 1981 to 2010 at the meteorological station 

level. I use the percentage of people who believe global warming is happening in a county to 

measure the residents’ environmental awareness, based on the Yale Program on Climate Change 

Communication (Howe et al., 2015). All of the above factors are not strongly correlated to each 

other except for heating degree days and cooling degree days (See Appendix A). 

I apply a flexible semi-parametric approach using the partially linear varying coefficient 

fixed effects panel data model. This approach allows for linearity in some variables and 

nonlinearity in other variables, where the effects of these regressors on the outcome variable vary 

based on low-dimensional variables nonparametrically (Cai et al., 2017), which shows advantages 

in estimating non-linear heterogeneity. See the details of model specifications in the section of 

data and methods. 

Figure 3.7 shows the estimated relationships between the price premium and other factors. 

I find that residents who are environmentally conscious, or middle class, or live in regions with a 

mild climate are most likely to pay a higher price premium for houses with air-source heat pumps. 

The price premium induced by heat pumps is not statistically significant for people in regions with 

too low or too high levels of environmental awareness, heat pump penetration rate, income, heating 

degree days and cooling degree days. When residents care more about the environment, they are 

more willing to pay extra money for the “environmental-friendly” air-source heat pumps. However, 

as environmental awareness further increases, residents may favor other green technologies such 

as solar panels, home energy storage, and electric vehicle that are more visible to others to show 
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the environmental status of the owners. This leads to noises in the price premium when 

environmental awareness is high. The insignificant and lower price premium when the penetration 

rate is very low can be explained by uncertainty in the adoption of novel technologies. During the 

very early stage of technology adoption, consumers have little knowledge about how to use the 

technology, its performance, and future return (Strong, 2019). In this case, consumers tend to 

observe the behavior of another person who has used the novel product to infer the usefulness of 

this product (Walden & Browne, 2009; Mulder et al., 2003). Thus, the first user will have much 

less incentive to adopt the new product (Gillingham & Palmer, 2014), which leads to a 

lower/insignificant price premium when the penetration rate is very low. For the downward trend 

when the penetration rate is larger, the lower house price premium could be due to lower 

installation costs, information searching costs, and transaction costs with the increase of 

penetration rate (See the detailed explanation in Appendix A). The relationship between the price 

premium, heating degree days, and cooling degree days is consistent with the physics of heat 

pumps (See the detailed explanation in Appendix A). When the income level is low, households 

cannot afford to upgrade their homes, which leads to an insignificant price premium. High-income 

households may spend a large amount of money on other house retrofits. Thus, homebuyers will 

pay more attention to these other distinguished and salient house features, and the heat pump will 

be overlooked among high income residents.  
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Figure 3.7 The heterogeneity of the price premium induced by air-source heat pumps. 

Note: a, The relationship between the price premium and residents’ environmental awareness. I 

use the percentage of people who believe global warming is happening in a county to measure the 

residents’ environmental awareness, based on the Yale Program on Climate Change 

Communication. b, The relationship between the price premium and heat pump penetration rate. 

c, The relationship between the price premium and annual heating degree days. d, The relationship 

between the price premium and annual cooling degree days. e, The relationship between the price 

premium (%) and personal income per capita (2018$). f, The relationship between the price 

premium (2018$) and personal income per capita (2018$). I fit these curves based on a partially 

linear varying coefficient fixed effects panel data model. Gray shaded area means 95% confidence 

intervals.  

 

Since the house prices are higher among high income residents, the percentage of the price 

premium induced by heat pumps will be diluted by the high house price if I use the log of price as 

the outcome variable. Thus, I also use the absolute price as the outcome variable and delete the 

observations with the top 1% and bottom 1% sales prices to reduce the influences by extreme 
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values. I re-run the model and find that the new estimated relationship is consistent with my 

previous findings (See Figure 3.7 (e) and (f)). The price premium still declines when the income 

level increases above the average level and the inverted “U” relationship still holds. 

Residents’ environmental awareness can also be related to political affiliation or racial 

background. Due to the data limitation and the scope of the paper, I only explore the correlation 

between the price premium with other factors. While my research only demonstrates the potential 

correlation, future research can explore the causal mechanism channels (e.g., through political 

affiliation, demographics) that impact the willingness to pay for the heat pump. 

I also conduct a robustness check using a traditional method based on interaction terms 

between the treatment variable and a set of dummies for different quantiles of the distribution of 

other influencing factors. Supplementary Table 1 in Appendix A shows the estimated results, 

which are consistent with the results using the partially linear varying coefficient model. 

 

3.5 The geographical distribution of the price premium 

 

In addition to national estimations (across 23 states), I also provide regional estimates on the 

house price premium caused by heat pump adoption. 

According to U.S. Census Bureau, the U.S. is divided into 9 divisions: New England (States: 

ME VT NH MA RI CT), Middle Atlantic (States: NJ NY PA), East North Central (States: IL IN 

MI OH WI), West North Central (States: IA KS MN MO NE ND SD), South Atlantic (States: DE 

DC FL GA MD NC SC VA WV), East South Central (States: AL KY MS TN), West South Central 

(States: AR LA OK TX), Mountain (States: AZ NM CO UT WY ID MT NV), Pacific (States: AK 

CA HI OR WA). 
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The number of treated observations in my DID specification is too small to provide a precise 

estimation in seven of the nine census divisions. Table 3.12 shows the sample size under the DID 

specification for each census division. 

 

Table 3.12 Sample size under the DID specification for each census division. 

 Treated houses Control houses 

New England 28 848 

Middle Atlantic 164 29072 

East North Central 97 28038 

West North Central 111 47541 

South Atlantic 11912 156387 

East South Central 132 3501 

West South Central 44 22917 

Mountain 52 50825 

Pacific 1671 101039 

 

 

Thus, I could only provide a precise estimate for the divisions of South Atlantic and Pacific, 

which have large enough treated observations. I match the treated buildings with control buildings 

at city level. I run the same econometric model as model 4 in Table 3.3 by census division level 

to obtain the regional overall price premium induced by the heat pump. I control the building age 

since it was built or remodeled and include month-of-year fixed effects and county-by-year fixed 

effects. The standard errors are clustered at the house level. Table 3.13 presents the estimates using 

the DID approach for Pacific and South Atlantic. 

 

Table 3.13 Estimates using DID approach in the division of Pacific and South Atlantic 

Division Coef. Of D P-value Obs Robust Std Err 95% CI 95% CI R-sq 

South Atlantic 0.064 <0.001 266,585 0.0121 0.0405 0.0882 0.0374 

Pacific 0.052 0.064 174,910 0.02836 -0.00298 0.1082 0.0161 
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I also estimate the lower bound price premium in the Pacific and South Atlantic regions. I 

assume that the value of contemporaneous energy efficiency retrofits and contemporaneous 

building retrofits is the same across the country, so I subtract 6,756$ from the price premium in 

Pacific and South Atlantic to obtain a lower bound price premium in these two census divisions. 

In addition, I apply an alternative approach to estimating regional price premium using the 

cross-sectional data (post-treatment data) with nearest neighbor matching. In the post-treatment 

dataset, I have enough observations for all the divisions to provide precise estimation, but the 

cross-sectional data suffers from unobservable confounding factors. Thus, I only use the estimates 

using post-treatment data as a robustness check. Table 3.14 shows the estimates for all the 

divisions. I run the same models as model 5 in Table 3.5. I regress the log of the house sales price 

on a treatment dummy controlling for house features, city fixed effects, transaction year fixed 

effects after matching. The estimates in Pacific and South Atlantic are consistent with the above 

DID estimates. 

 

Table 3.14 Estimates using post-treatment data with nearest neighbor matching 

Division Coef. Of D P-value Obs StdErr 95% CI 95% CI R-sq 

New England 0.2098207 <0.001 2,438 .0291278 .1527024   .2669391 0.5006 

Middle Atlantic 0.0306784 0.010 19,108 .011864 .0074232 .0539336 0.3132 

East North Central 0.1242622 <0.001 14,809 .014995   .0948702 .1536543 0.2423 

West North Central 0.4149243 <0.001    3,807 .0423057 .33198 .4978686 0.3823 

South Atlantic 0.1040034 <0.001 207,132 .0053658 .0934864 .1145203 0.3061 

East South Central 0.3601161 <0.001 2,996 .0426187 .276550 .4436814 0.3369 

West South Central 0.3115806 <0.001   4,385 .0359909 .2410199 .3821412 0.3435 

Mountain 1.642825 <0.001     2,414 .0941124 1.458274   1.827375 0.2993 

Pacific 0.2544903 <0.001 43,976 .0095059 .2358584 .2731221 0.2807 
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4. Discussion and conclusion 

 

In this study, I provide empirical evidence about the effect of air-source heat pump adoption 

on residential property values. Houses with an air-source heat pump enjoy a 4.3%-7.1% ($10,400 

- $17,000) sales price premium on average in 23 states of the U.S. 

To better understand the estimated price premium, I compare the price premium with the 

installation cost of an air-source heat pump, and the additional cost and the net benefit of replacing 

a traditional HVAC system with an air-source heat pump. The net benefit includes lifetime fuel 

cost saving and lifetime avoided environmental damage, including reduced emissions of CO2 and 

other hazardous pollutants. See the estimation process of the cost and benefit in Appendix B. I 

make these comparisons in two regions (census divisions of South Atlantic and Pacific) as I can 

only provide precise estimates on the price premium for the divisions of South Atlantic and Pacific 

with enough observations for the DID approach (See section 3.4). 

I find that, in both Pacific and South Atlantic, the upper bound of price premium ($15,400 

and $16,200, respectively) and the lower bound of price premium ($8,644 and $9,444, respectively) 

are larger than the average installation cost of an air-source heat pump (the average installation 

cost is about $8,000). The additional cost is close to the lifetime fuel cost saving ($2,948 and 

$3,583, respectively) as well as the total net benefit ($3,017 and $3,965, respectively) associated 

with a switch from a traditional HVAC system to an air-source heat pump. Figure 3.8 presents 

these comparisons.  
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Figure 3.8 Comparing the price premium with the cost and benefit of replacing a 

traditional HVAC system with an air-source heat pump.  

Note: This figure plots the lifetime fuel cost saving, lifetime avoided environmental damage, the 

total net benefit of switching to an air-source heat pump from a traditional HVAC system with 

current power grid; the additional cost (extra cost of installing an air-source heat pump compared 

to a traditional HVAC system); the cost of installing an air-source heat pump; and the house price 

premium induced by air-source heat pumps. (unit: Dollars in 2018) The cost of installing an air-

source heat pump and a traditional HVAC system depends on the size of the home and type of 

equipment. The cost of installing an air-source heat pump typically ranges from 4000 to 12000 

dollars. The cost of installing a traditional HVAC system typically ranges from 3000 to 7000 

dollars. The extra cost of installing an air-source heat pump compared to an HVAC system is about 

3000 dollars. The Upper bound of the price premium is directly estimated from the DID model. 

Lower bound of the price premium is the upper bound minus the product of the values of 

contemporaneous energy efficiency and building upgrades and the probability of conducting these 

other upgrades together with installing heat pumps.  

 

 

The relatively high price premium (compared to the installation cost) can be explained by 

the transaction cost, information searching cost, and cognitive cost. In an equilibrium re-sale 

market, the house price premium approximates the sum of installation cost, transaction cost, 

information searching cost, and cognitive cost. If the house price premium is larger than the sum 
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of these costs, people will buy a house without heat pumps and install one by themselves when I 

assume that the value of dismantled old HVAC equipment is close to zero. First, a resident may 

be willing to pay to avoid complications such as removing the old heating system, doing necessary 

upgrade work, and having to wait at home for the complete installation work (all of which can be 

thought of as transaction costs) (Gillingham & Palmer, 2014). These costs, including the 

opportunity cost of lost time, can be quite high for some homeowners or certain types of houses 

(or certain existing heating systems). Moreover, given the low penetration rate of heat pumps, 

inexperienced installers may increase the time, cost, and risk of installation, (Bollinger & 

Gillingham, 2014; Gillingham et al., 2016) contributing to even higher transaction costs. Second, 

there are information searching costs (Gillingham et al., 2016) for consumers who need to spend 

time and effort to gather and compare different information about the price and performance of 

heat pumps between different installers. Currently, there is no one-size-fits-all heat pump in the 

U.S. The costs and capacity needed for different homes vary. It is not straightforward to obtain the 

price information of heat pumps for a specific building, since a good estimate may require the 

installer to visit the home. Third, there are cognitive costs for consumers who need knowledge 

literacy and to spend efforts to understand a new technology (e.g., heat pumps) and the financial 

aspects (upfront cost versus future benefits), and then make a decision to adopt it. Complex 

information may impede some consumers’ understanding and rational behavior (Houde, 2018; Ito, 

2014). Literacy could be a significant determinant of investment in energy efficiency (Brent & 

Ward, 2018). For some consumers, they may not think of the option of heat pumps when their 

HVAC systems are broken and need to be replaced. 

The divergence between the installation cost and house price premiums is also observed for 

other energy technologies using housing characteristics and transaction data. For example, two 
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recent studies (Qiu et al., 2017; Dastrup et al., 2012) find a positive house sales price premium 

induced by solar panels ranging from $23,000 to $28,000 in 2012 and 2014. This price premium 

is also larger than the installation cost of solar panels, which is $14,400 for an average-sized 3.6-

kW PV system in 2014 (Barbose et al., 2018). 

Figure 3.8 shows that the lifetime fuel cost savings associated with a heat pump compared 

to a traditional HVAC system are large enough to compensate homeowners for the additional cost 

of installing an air-source heat pump, and the house re-sale price premium is large enough to 

compensate the installation cost of the heat pump. Nonetheless, the penetration rate of air-source 

heat pumps in the U.S. is still small. There may be several explanations for this “energy efficiency 

gap”. First, most home buyers do not know whether and when they will sell their homes in the 

future. Uncertainties can lower house owners/buyers’ willingness (Qiu et al., 2014) to adopt new 

energy technologies. Second, imperfect and asymmetric information (Gillingham & Palmer, 2014) 

about the benefits of heat pumps could impede the adoption. Third, liquidity constraints also matter 

given that the median American household only has about $12k in savings (CNBC, 2018). Fourth, 

a heat pump may not be attractive for some consumers (such as for homes without new or robust 

electrical wiring, or households who do not use space heating and cooling very often) even it is 

attractive for the average consumer given the “consumer heterogeneity” (Allcott & Greenstone, 

2012). 

Nevertheless, my results show that the value of the heat pump is recognized by the housing 

market and home buyers. My estimated price premium is larger than the cost of installing an air 

source heat pump, which is valuable information for homeowners who are deciding whether to 

install heat pumps. A significant positive price premium reduces consumer risk of not being able 

to recover their investments when selling their houses (Qiu et al., 2014). This is an important 
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contribution to the literature on the “energy efficiency gap”, where studies typically compare fuel 

cost savings to the initial cost of installation. The significant positive house price premium is an 

important incentive for energy efficiency investment. Policymakers can use the information about 

potential price premiums to influence consumer choices, in addition to traditional energy guides, 

which typically focus on fuel costs. For instance, the government or other authorities put a certified 

“energy-efficient heat pump” label on homes with heat pumps to encourage adoption.  

Many nations, states, and cities have introduced decarbonization plans relying on the 

conversion to heat pumps as discussed earlier in the introduction. Given the increasing importance 

of electrification, my study adds a new dimension to quantify the benefit of installing heat pumps. 

There are significant house price premiums and net social benefits associated with a switch to heat 

pumps in the Pacific and South Atlantic regions of the United States. Similar analyses should be 

conducted in other countries with the urgent need for space heating electrification. 

Three types of factors can influence the full social benefits of heat pumps, including the net 

fuel cost savings and net environmental savings associated with the electrification of space heating 

and cooling, the evolution of the electric grid in the future, and other potential benefits associated 

with the heat pump. More studies are needed to systematically quantify the social benefits of 

switching to heat pumps to better assist policymaking. 
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Appendix 

 

Appendix A. The heterogeneity of the price premium induced by air-source heat pumps 

 

 

I explore the heterogeneity of the price premium by investigating the correlation of the price 

premium to a number of factors (residents’ environmental awareness at the county level, air-source 

heat pump adoption rate at the county level, personal income per capita at the county level, average 

annual heating degree days and annual cooling degree days from 1981 to 2010 at the 

meteorological station level).  

 

(1) The correlation between the factors 

 

These factors are not strongly related to each other except for heating degree days and cooling 

degree days (See Supplementary Figure 1). 
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Supplementary Figure 1. The correlation between investigated factors 

 

 

 

(2) The relationship between the price premium and climate (heating degree days and cooling 

degree days) 

 

My results suggest the price premium higher in places that have an average number of heating 

degree days relative to other places. In places with very low heating degree days (HDD) which do 
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not need much heat, people are unlikely to pay a big upfront premium for efficient heating (e.g., 

the payback time for a heat pump versus conventional heating systems might be too high, because 

annual fuel cost savings for a heat pump compared to conventional heating systems is small in 

places with very low heating degree days). (See Supplementary Figure 2). Thus, there is no 

significant price premium in places with low heating degree days. 

In places with very high heating degree days, heat pumps do not work well at low 

temperatures. For instance, when it is very cold (<5°F), the heat pump turns into a resistive heater 

and can be very expensive to operate. I find that the fuel cost savings compared to conventional 

natural gas furnaces are negative in places with high heating degree days (See Supplementary 

Figure 2). Thus, people are not likely to adopt the heat pumps and there is no significant price 

premium in places with very high heating degree days.  

These findings also imply that consumers care about the private benefits of installing a heat 

pump. Thus, policymakers should provide more information about future savings to encourage 

heat pump adoption. Also, researchers should spend more effort to improve the efficiency of heat 

pumps in extremely cold areas. 
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Supplementary Figure 2. The annual household heating fuel cost savings associated with a 

switch from conventional heating systems to heat pumps, which is obtained from Vaishnav and 

Fatimah (2020). The fitted values are the prediction for fuel cost savings from a linear regression 

of fuel cost savings on HDD and HDD^2. The data of heating degree days and cooling degree 

days were obtained from the National Oceanic and Atmospheric Administration. The heating 

degree days and cooling degree days are computed based on a base temperature of 65 Fahrenheit 

degrees. 

 

 

The cooling degree days are highly (negatively) correlated with the heating degree days (See 

Supplementary Figure 3). The relationship between the price premium and the heating degree 

days explains the relationship between the price premium and the cooling degree days. I can use 

the relationship between the fuel cost savings of heat pumps and heating degree days to explain 

the relationship between the price premium and cooling degree days.  
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Supplementary Figure 3. The correlation between heating degree days and cooling degree days 

Data source: National Oceanic and Atmospheric Administration 

 

 

 

(3) The relationship between the price premium and the penetration rate of heat pumps 

 

The insignificant and lower price premium when the penetration rate is small can be 

explained by uncertainty and observational learning in the adoption of novel technologies. During 

the very early stage of technology adoption, consumers have little knowledge about how to use the 

technology, its performance, and future return (Strong, 2019). In this case, consumers tend to 

observe the behavior of another person who has used the novel product to infer the usefulness of 

this product (Walden & Browne, 2009; Mulder et al., 2003), and then make the decision to adopt 

it. Empirical evidence suggests observational learning influences people’s decisions on technology 

adoption in the laboratory experiment (Song and Walden, 2003) and in real stock markets (Walden 

and Browne, 2008). Thus, the first user will have much less incentive to adopt the new product 

(Gillingham & Palmer, 2014), which leads to a lower/insignificant price premium of heat pumps 

when the penetration rate is very low in my study. 
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For the downward trend when the penetration rate is larger than 0.08 (number of heat pumps 

per person), the lower house price premium could be due to lower installation costs, information 

searching costs, and transaction costs, as explained below.  

First, the installation costs of heat pumps will decrease with the increase in penetration rate 

because of the “learning by doing” process (Van Benthem et al., 2008; Bollinger and Gillingham, 

2019). The installation workers will be more experienced, and the logistics and warehousing costs 

will be lower (e.g., it would be more difficult for heat pump adoption if there are only limited 

inventory in the warehouse) as the penetration rate increases. Gillingham et al. (2016)’s study on 

solar photovoltaic (PV) industry finds that increasing installer experience leads to a lower 

installation price of solar PV. 

Second, the information searching costs and transaction costs for heat pumps decrease with 

the increase in penetration rate. Gillingham et al. (2016) on the solar photovoltaic industry finds 

that higher installer density leads to lower PV installation price because of “lower information 

searching cost.” It could be similar in the case of heat pumps. Moreover, inexperienced installation 

workers may extend installation time, which leads to an increase in transaction costs of house 

owners. 

 

(4) Robustness check using an alternative method 

 

I also conduct a robustness check using a traditional method based on interaction terms 

between the treatment variable and a set of dummies for different quartiles of the distribution of 

other influencing factors. Supplementary Table 1 shows the estimated results, which are 

consistent with the partially linear varying coefficient model. 
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Supplementary Table 1. The heterogeneity of the price premium induced by heat pumps using 

interaction terms 

 (1) (2) (3) (4) (5) (6) 

 Outcome: log (sales price) 
Outcome: 

Absolute price 

 

By 

Environmental 

Awareness (%) 

By Heat 

Pump 

Density 

(N/Person) 

By Annual 

HDDs 

By Annual 

CDDs 

By Personal 

Income Per 

Capita (2018$) 

By Personal 

Income Per 

Capita (2018$) 

       

D*Bin1 -0.1101*** 0.4142*** -0.0003 -0.0601 -0.0452 -1303.99 

 (0.0400) (0.1436) (0.0115) (0.0650) (0.049) (7624.419) 

D*Bin2 0.2061*** -0.0009 0.08*** 0.0341 0.0858 354.77 

 (0.0475) (0.1620) (0.0301) (0.0374) (0.0553) (5846.474) 

D*Bin3 0.0812** -0.0148 0.1191*** 0.2109*** 0.1895*** 30867*** 

 (0.0329) (0.1481) (0.0354) (0.0661) (0 .066) (9079.628) 

D*Bin4 0.1087** 0.1247** 0.1593*** -0.0272 0.1274*** 18338.85*** 

 (0.0483) (0.0525) (0.0491) (0.0549) (0.04) (5945.2) 

D*Bin5 0.0858 0.1229*** -0.074 0.2364** -0.0706 -11434.34* 

 (0.0588) (0.0655) (0.0471) (0.0981) (0.0449) (6027.52) 

D*Bin6 -0.4036*** -0.0425 0.0298 -0.0145 0.0948*** 10735.45* 

 (0.1229) (0.0364) (0.0497) (0.0369) (0.0269) (4578.074) 

D*Bin7 0.0513 0.0023 0.0446 0.2389*** 0.0379* 3503.414 

 (0.0402) (0.0667) (0.0442) (0.0464) (0.0202) (3112.689) 

D*Bin8 0.01256 0.1306*** -0.0064 0.033 0.0198 1795.036 

 (0.0115) (0.0470) (0.0661) (0.0348) (0 .0179) (3467.316) 

D*Bin9 0.2394** 0.1035*** 0.1488** 0.01 0.0178 7517.487* 

 (0.1181) (0.0378) (0.0707) (0.0112) (0.0197) (4564.479) 

D*Bin10 -0.0049 0.0143 0.0849 0.0881 -0.1649*** -50156.3*** 

 (0.0299) (0.0107) (0.0839) (0.0752) (0.053) (18223.34) 

       

Control 

Variables 
Yes Yes Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes Yes Yes 

Month FE Yes Yes Yes Yes Yes Yes 

       

R2 0.0564 0.0558 0.0603 0.0575 0.0569 0.0928 

Obs 634,952 634,952 634,952 634,952 634,952 599,244 

N of 

Houses 
378,267 378,267 378,267 378,267 378,267 356,411 

*Notes: Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. I divide the distribution of influencing 

factors into 10 bins based on 9 quantiles (10%, 20%, …, 90%). Control variables include federal fund rates, annual 

population density and personal income per capita at the county level, monthly natural gas price at the state level, 

and annual electricity price at the state level. 

 



 

135 
 

Appendix B. The private benefit, public benefit, and cost of switching to heat pumps 

 

Heat pumps offer an energy-efficient alternative to traditional heating and cooling systems 

like natural gas furnaces and air conditioners. Heat pumps use electricity to move heat from a cool 

space to a warm space, making the cool space cooler and the warm space warmer. The benefits of 

switching to heat pumps consist of two parts: the benefits of space heating and the benefits of space 

cooling. I use fuel cost saving to represent private benefit and use avoided environmental damage 

to represent the public benefit. 

 

(1) Annual avoided environmental damage and fuel cost saving for space heating associated 

with a switch to air-source heat pumps with the current power grid 

 

I use the data estimated by Vaishnav and Fatimah (2020) to compute the annual avoided 

environmental damage (including CO2, SO2, PM, and NOx) and fuel cost saving for space heating 

associated with a switch to air-source heat pumps for houses included in my analysis. Vaishnav 

and Fatimah adopt a spatial environmental benefit and private benefit analysis for residential air-

source heat pumps at 883 locations in the U.S. These 883 locations spread evenly throughout the 

country. I find the closest location for each house in my dataset based on longitude and latitude, 

and use the estimated fuel cost-saving and environmental benefit of the closest location to 

represent that of the house. 

Vaishnav and Fatimah (2020) assume that there are four types of heating scenarios: main 

heating by a natural gas furnace, main heating by electric resistance heating, main heating by heat 

pump with natural gas furnace used for auxiliary heating, and main heating by heat pump with 



 

136 
 

electric resistance used for auxiliary heating. Nowadays, most households use natural gas or 

electricity as heating fuel sources in the U.S. They assign each of the 883 locations into two types 

(electric heating and natural gas heating) based on each location’s primary heating fuel source. 

The avoided environmental damage can be computed by differencing the environmental damage 

of the current heating pattern and heat-pump pattern. The fuel cost saving can be computed 

similarly.  

Supplementary Table 2 and Supplementary Table 3 show the average fuel cost saving 

and avoided environmental damage for space heating associated with a switch to heat pumps at 

the state level. 
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Supplementary Table 2. The environmental damage induced by space heating per household 

with the current power grid by different heating types 

State 

environmental 

damage by electric 

resistance heating 

(2010$/year) 

environmental 

damage by natural 

gas heating 

(2010$/year) 

environmental 

damage by the heat 

pump and auxiliary 

electric resistance 

heating (2010$/year) 

environmental 

damage by the heat 

pump and auxiliary 

natural gas furnace 

(2010$/year) 

AK     

AL 58.53 45.70 68.27 70.25 

AR 19.43 92.36 142.00 153.07 

AZ 0.00 61.71 75.01 78.37 

CA 0.00 51.27 56.40 57.18 

CO 0.00 201.58 258.23 294.71 

CT 0.00 222.35 249.83 276.83 

DE 0.00 145.45 306.46 349.98 

FL 26.57 5.05 6.61 6.61 

GA 60.62 44.86 66.16 67.91 

HI     

IA 0.00 233.19 600.22 775.88 

ID 0.00 219.12 272.88 297.59 

IL 0.00 203.92 385.42 476.87 

IN 0.00 192.51 416.15 511.83 

KS 0.00 147.01 266.05 311.32 

KY 0.00 124.82 198.14 222.97 

LA 105.69 17.06 26.48 26.48 

MA 0.00 229.62 260.71 296.00 

MD 0.00 116.03 254.82 277.45 

ME 0.00 283.30 365.56 456.73 

MI 0.00 259.58 596.49 754.05 

MN 0.00 301.74 820.99 1187.87 

MO 0.00 139.99 229.30 267.45 

MS 50.58 46.78 69.06 70.77 

MT 0.00 266.98 431.88 565.99 

NC 17.91 78.90 117.27 121.87 

ND 0.00 300.98 861.62 1308.73 

NE 0.00 221.77 495.78 632.73 

NH 0.00 293.01 311.49 371.03 

NJ 0.00 152.53 310.48 342.88 

NM 0.00 91.52 118.93 123.58 

NV 0.00 151.13 184.49 197.50 

NY 0.00 223.08 267.54 314.15 

OH 0.00 207.07 459.84 547.76 

OK 0.00 100.74 171.23 187.91 

OR 0.00 156.30 178.88 183.65 

PA 0.00 205.60 438.89 509.30 
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RI 0.00 220.86 248.76 271.60 

SC 49.17 53.17 81.39 83.70 

SD 0.00 269.53 660.03 933.31 

TN 0.00 96.46 144.79 154.49 

TX 70.05 24.82 34.82 35.10 

UT 0.00 179.03 222.32 238.17 

VA 0.00 115.16 215.35 239.72 

VT 0.00 264.50 335.16 410.45 

WA 0.00 170.77 199.73 206.41 

WI 0.00 271.95 694.36 933.49 

WV 0.00 157.31 356.64 406.25 

WY 0.00 233.87 308.42 359.24 

Data source: Vaishnav and Fatimah (2020) 
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Supplementary Table 3. The fuel cost of space heating per household with the current power 

grid by different heating types 

State 

Fuel cost of natural 

gas furnace heating 

a homeowner has to 

pay (2010$/year) 

Fuel cost of 

electric resistance 

heating a 

homeowner has to 

pay (2010$/year) 

Total fuel cost of heat 

pump and auxiliary 

natural gas furnace 

heating a homeowner 

has to pay (2010$/year) 

Total fuel cost of heat 

pump and auxiliary 

electric resistance 

heating a homeowner 

has to pay (2010$/year) 

AK 1592.02 0.00 3614.93 5393.49 

AL 264.47 147.72 173.85 177.52 

AR 425.02 40.71 292.84 309.03 

AZ 392.54 0.00 262.93 271.55 

CA 248.01 0.00 292.29 296.34 

CO 615.93 0.00 876.37 1002.46 

CT 1115.36 0.00 1388.83 1541.88 

DE 684.29 0.00 600.92 663.70 

FL 42.28 72.53 18.01 18.01 

GA 268.23 152.44 167.90 171.05 

HI 0.68 1.51   

IA 773.22 0.00 1182.93 1487.80 

ID 739.67 0.00 797.55 864.75 

IL 647.04 0.00 824.59 991.14 

IN 616.33 0.00 743.40 884.80 

KS 597.29 0.00 666.39 762.90 

KY 516.89 0.00 416.26 457.26 

LA 79.76 203.08 50.82 50.82 

MA 1127.37 0.00 1405.88 1600.13 

MD 535.50 0.00 521.14 556.94 

ME 1588.92 0.00 1620.93 1974.86 

MI 858.66 0.00 1373.26 1694.89 

MN 983.72 0.00 1558.85 2154.48 

MO 627.64 0.00 583.79 662.43 

MS 194.36 109.63 150.69 153.70 

MT 805.65 0.00 1108.35 1392.80 

NC 365.86 40.25 266.21 274.24 

ND 892.56 0.00 1450.71 2089.12 

NE 731.52 0.00 945.03 1158.72 

NH 1677.72 0.00 1633.15 1930.84 

NJ 489.57 0.00 719.61 787.25 

NM 306.83 0.00 406.44 422.88 

NV 642.98 0.00 597.19 634.35 

NY 959.68 0.00 1315.38 1550.41 

OH 750.53 0.00 867.18 1001.88 

OK 440.19 0.00 333.49 357.65 

OR 750.52 0.00 537.84 549.32 

PA 838.79 0.00 942.09 1065.48 
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RI 1206.12 0.00 1207.13 1311.63 

SC 275.98 164.15 204.28 208.52 

SD 843.82 0.00 1224.93 1648.37 

TN 365.21 0.00 306.55 323.37 

TX 120.50 165.49 84.28 84.81 

UT 678.83 0.00 709.02 755.59 

VA 510.49 0.00 455.32 493.19 

VT 1519.56 0.00 1634.43 1970.93 

WA 751.85 0.00 539.57 553.47 

WI 885.07 0.00 1407.08 1834.49 

WV 595.68 0.00 619.05 686.87 

WY 828.13 0.00 1024.93 1187.24 

Data source: Vaishnav and Fatimah (2020) 

 

 

(2) Annual avoided environmental damage and fuel cost saving for space cooling associated 

with a switch to air-source heat pumps 

 

I estimate the fuel cost saving of space cooling based on the 2015 Energy Information 

Administration (EIA) RECS Data, which includes the annual average energy expenditure on space 

cooling per household in each census division in 2015.  I assume that (1) annual energy expenditure 

for the future years is the same as that in 2015, (2) all the space cooling systems are run by 

electricity, and (3) air-source heat pumps can reduce the cost of space cooling by 50%. DOE 

mentions that heat pumps can save as much as 75% on energy for space cooling 

(https://www.energy.gov/energysaver/heat-and-cool/heat-pump-systems). I take a more 

conservative approach and use 50%. Thus, I use half of the annual average energy expenditure on 

space cooling to represent the fuel cost saving of spacing cooling associated with a switch to heat 

pumps. 

I estimate the annual avoided environmental damage by using the annual average energy 

consumption on space cooling per household from 2015 RECS data and the marginal damage 

https://web.wechat.com/cgi-bin/mmwebwx-bin/webwxcheckurl?requrl=https%3A%2F%2Fwww.energy.gov%2Fenergysaver%2Fheat-and-cool%2Fheat-pump-systems&skey=%40crypt_78a3836a_5b301e9c39d22bc834b3beb7838d40b0&deviceid=e621510576411328&pass_ticket=I0Herd5q2zvUkGZbyD2iehY8LlPDB8MzA93bp5xL%252BzYjaS7BoOI24MExUvjZD2tE&opcode=2&scene=1&username=@b2676286c045537729f3ef88bc7368a7f3916d7fd2d5a3703a13fff93d92f4df
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factors of carbon dioxide and pollutants by NERC regions estimated by Holland et al. (2016). The 

census division of Pacific is located in the Western Electricity Coordinating Council (WECC) 

region. I used the marginal damage factors for the WECC for the division of the Pacific. The 

division of South Atlantic is overlapped with three NERC regions, which are the Florida Reliability 

Coordinating Council (FRCC) region, Reliability First Corporation (RFC) region, and SERC 

Reliability Corporation (SERC) region. Thus, I use the average of the three NERC regions to 

represent the division of South Atlantic. Then, I estimate the avoided environmental damage of 

switching to heat pumps by assuming that heat pumps can reduce the energy consumption of space 

cooling by 50%. 

 

(3) Lifetime fuel cost saving and avoided environmental damage associated with a switch to 

heat pumps. 

 

The present value of the lifetime environmental benefits and fuel cost saving associated with 

a switch to heat pumps are obtained by the following equation 

S × [
𝟏 − (𝟏 + 𝑟)−𝒏

𝑟
] 

where S is the annual fuel cost-saving or environmental benefits of a switch to heat pumps. n 

denotes the number of years that the benefits or savings are assumed to be obtained. I suppose that 

consumers can accrue over 25 years which is the lifetime of a common new air-source heat pump. 

The 𝒓 is the private discount rate, and I assume it to be 7% annually. The discount rate should 

reflect the returns those consumers would accrue from other alternative investments. Thus, 

following Vaishnav and Fatimah (2020), I assume the geometric average of S&P (a stock market 
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index) returns for the past ten years to be consumers’ discount rate, which is just over 7% per 

annum. 

 

(4) The estimation of fuel cost-saving and environmental benefits in Pacific and South 

Atlantic 

 

The total benefit (fuel cost-saving and avoided environmental damage) is the sum of benefit 

on space heating and benefit on space cooling. I estimate the benefit on space heating of these two 

census divisions using the average of each house’s value. I adjust the value into 2018 dollars by 

the inflation rate. 

 

(5) The cost of installing an air-source heat pump 

 

In the U.S., the majority of installed heat pumps are air-source heat pumps. The cost of 

installing an air-source heat pump and a traditional HVAC system depends on the size of the home 

and type of equipment. The cost of installing an air-source heat pump typically ranges from 4,000 

to 12,000 dollars. The cost of installing a traditional HVAC system typically ranges from 3,000 to 

7,000 dollars.  
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4. Chapter 4: Essay 3 - The Impacts of Special Environmental Events on Short-

run Electricity-Saving Behaviors 
 

Abstract 

Policymakers and academics are increasingly interested in using “social nudge” to influence 

behavior, which are typically inexpensive relative to price-based and mandatory approaches. This 

study provides rigorous empirical evidence of the impacts of three big special environmental 

events, as a specific form of nudges, on short-run electricity-saving behaviors using high-

frequency smart meter data in Shanghai, China, for both residential and commercial consumers. I 

find that World Environment Day and National Energy Saving Publicity Week caused commercial 

users to reduce their electricity consumption by 1.35 kWh/hour and 0.6 kWh/hour intra-event, 

around 17% and 8% reduction compared to average consumption, but the impacts decayed rapidly 

once the events ended. Earth Hour did not lead to significant energy-saving effects for both 

residential and commercial users. I further examine detailed activities implemented during these 

events to understand the heterogeneous impacts using social media and policy documents data.  

 

 

1. Introduction 

 

Traditional energy policy instruments focus on changing relative prices (Allcott, 2011) or 

setting mandatory standards as the major force altering energy demand to improve energy 

efficiency and encourage energy conservation behaviors. These traditional approaches, such as 

carbon and pollution taxes, energy efficiency subsidies, building codes, and mandatory standards, 

suffer from expensive legislation and implementation costs (Allcott, 2011); these instruments can 
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also possibly generate inequitable outcomes (Hahn & Metcalfe, 2021). Academics and 

policymakers are increasingly interested in another complementary approach – “social nudges”, 

such as information provision and persuasion – aimed at altering consumer behaviors. Nudges are 

typically inexpensive compared to price-based approaches and energy efficiency standards. As 

Bertrand et al. (2010) stated, carefully crafted psychological cues can exert significant effects on 

consumer demand that are comparable to large changes in relative prices (LaRiviere et al., 2014). 

Special environmental events, such as Earth Hour, World Environment Day, and Chinese 

National Energy Saving Week, can be regarded as a form of “nudge.” These events have been 

globally popular for decades of history (See detailed introduction in section 2). A large number of 

governments and NGOs have been spending great efforts on organizing them. For example, in the 

policy document of 2017 working arrangements for energy conservation, emission reduction and 

tackling climate change, the Shanghai Development and Reform Commission required 

government institutions at various levels to organize publicity campaigns on the day of big 

environmental events in order to improve citizens’ environmental protection and energy 

conservation awareness. These events aroused significant public attention in Shanghai evidenced 

by social media data (See section 2). However, few studies provide rigorous quantitative evidence 

of the effect of these environmental events on energy-saving behaviors.  

In addition, the practice of Earth Hour provides a new dimension for intervention studies 

aimed at energy conservation and environmental protection. Studies divide the non-pecuniary 

interventions aimed at encouraging energy conservation into the following typical categories 

(Abrahamse et al., 2005): mandatory standards, commitment, goal setting, information provision 

(e.g., workshop, mass media campaign, and energy audits), self-feedback (e.g., energy bill 

reminder), comparative feedback (e.g., Opower letters)(Allcott, 2011). The event of Earth Hour 
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adds a new form of intervention, which organizes a unique symbolic action of switching off lights 

for one hour to arouse people’s awareness of energy conservation and nature protection. Turning 

off lights is a symbolic action and does not change social reality instantly, because the impact of 

turning off lights for a limited number of users for one hour alone on the whole electricity 

consumption is negligible. The final goal of symbolism here is to influence societal perceptions 

by using visual actions in order to obtain a public benefit (Berrone et al., 2009). Few studies 

examined the symbolic actions in information interventions for energy conservation, and 

specifically, in big environmental events/campaigns. The symbolic actions have been increasingly 

widely practiced in the environmental context, such as Earth Hour, “Running to Protect the 

Environment,” and Greta Thunberg’s sail to New York on a zero-emissions yacht. Related research 

on these symbolic environmental actions is lacking. 

This study provides empirical evidence of the impacts of three special environmental events 

on consumers’ short-run electricity consumption behaviors using high-frequency (hourly and daily) 

electricity consumption data in 2017 in Shanghai, China, for both residential and non-residential 

sectors. My high-frequency data (as opposed to monthly data commonly used in previous energy 

behavioral research) makes it possible to study the impact of these events. Specifically, I examine 

three such environmental events that have been very popular in China and around the world: Earth 

Hour, World Environment Day, and National (China) Energy Saving Publicity Week. Here I 

examine the following research questions: Do these environmental events/campaigns arouse 

consumers’ short-run energy-saving behaviors? Do these events show differences in their impacts? 

If so, what are the mechanisms driving these differences? 

Although the final goal of organizers of these environmental events is to improve the public’s 

environmental awareness in the long-run, it is difficult to identify the long-run effects of these 
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events with many confounders. My paper still provides useful insights into the long-run impacts 

even though I focus on short-run energy conservation. The short-run energy-saving behavior can 

be an important prerequisite for the long-run improvement of environmental awareness. If I find a 

larger effect on energy conservation in the short run for one event, it provides crucial suggestive 

evidence that this event has a greater potential to alter people’s long-run environmental awareness. 

I make three contributions to the existing literature on “social nudges” aimed at energy 

conservation and environmental protection. First, very few studies focus on the impacts of special 

environmental events on consumers’ electricity consumption behaviors. Analyzing these special 

events is important because worldwide there have been increasing efforts led by governments and 

NGOs to raise energy-saving awareness through these environmental events. Earth Hour and 

World Environment Day have grown to engage more than 140 countries worldwide annually. It is 

critical to understand whether such efforts could alter consumer energy-conservation behaviors, 

even in the short run. Second, I conduct a comparative analysis of different effects between the 

Earth Hour (symbolic campaign) and other typical information-provision environmental events. 

Third, most studies on nudges and electricity consumption behaviors have only examined 

residential consumers (Allcott, 2011; Costa and Kahn, 2013; Allcott and Rogers, 2014; LaRiviere 

et al., 2014; Ferraro and Price, 2013). My study examines both residential and commercial 

consumers.  

Here I show that World Environment Day and National Energy Saving Week caused 

commercial users to reduce their electricity consumption by 1.35 kWh/hour and 0.6 kWh/hour 

within the event, around 17% and 8% reduction compared to average consumption, but the impacts 

decayed post-event. Earth Hour did not lead to significant electricity-saving behaviors for both 

commercial and residential users. I further explore the mechanisms behind the different impacts 
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by investigating the interventions adopted during these events, evidenced by related policy 

documents and social media tweets located in Shanghai. I find most interventions adopted during 

World Environment Day and National Energy Saving Week directly provided knowledge and 

skills about how to implement energy-saving behaviors. Most activities adopted during Earth Hour 

are symbolic actions (such as turning off lights, running, art performance, etc.). Although the 

symbolic actions cannot directly teach people how to save energy, they have the advantages of fast 

spread evidenced by social media. Policymakers should combine the merits of the two types of 

events/campaigns in future campaign design. 

 

 

2. Introduction to the three special environmental events 

 

Earth Hour is a worldwide movement first initiated by the World Wildlife Fund (WWF) in 

2007, which organizes an inimitable symbolic activity that switches off lights for one hour in order 

to encourage people to protect the environment and save energy. More than 7,000 cities and towns 

across 187 countries and territories have followed and organized the activities of Earth Hour since 

2007. In 2017, the Earth Hour was held at 8:00 PM on 25th March in Shanghai, China. Many 

private companies, residential communities, and landmark buildings volunteered to turn off lights 

for one hour to participate in this event. 

World Environment Day was originally established by United Nations in 1974. It has 

become a global event for encouraging awareness and action on issues from energy saving, human 

overpopulation, marine pollution, and climate change, to sustainable consumption, with the 

participation of more than 140 countries annually. It is celebrated on the 5th of June every year. 
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The Shanghai government has annually organized information-provision activities with the theme 

of World Environment Day for many years. 

The National (China) Energy Saving Publicity Week was established at the Sixth Meeting 

on Energy Conservation of the State Council of China in 1990. Since 1991, the National Energy 

Saving Publicity Week has been held annually. In view of the nationwide shortage of electricity, 

the 2004 National Energy Saving Publicity Week was held from November to June. The purpose 

is to form an intense publicity campaign before the peak of summer electricity consumption, and 

to arouse people's awareness of energy conservation. In 2017, the National Energy Saving 

Publicity Week was held from 11th June to 17th June. Shanghai city carried out 440 information-

provision activities with the theme of energy conservation and emission reduction during the 

National Energy Saving Publicity Week in 2017.  

These events are a specific form of “nudges” where a substantial amount of information 

and messages are provided about encouraging energy conservation. These messages are 

disseminated by relevant government agencies (e.g., Environmental Protection Agency and local 

district office), non-governmental organizations (NGOs), private companies, and individuals via 

channels such as social media, news reports, and organizing publicity activities. More importantly, 

all the events did not include any mandatory orders, such as requiring users to reduce electricity 

consumption. I further discuss the detailed activities and interventions during these events in 

section 6 of mechanism analysis. 

These environmental events did arouse public attention, evidenced by the tweets of social 

media. Figure 4.1 presents the evolution of public attention to these events on social media in 

Shanghai in 2017. I web-scraped all the tweets including keywords of my interest during the time 

around the events of users located in Shanghai in 2017 from Sina Weibo, the largest social media 
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platform in China (See data details in section 3). I find that the number of tweets with the words 

of the events’ names peaked significantly on the day of these events. Simultaneously, the number 

of tweets with the terms of “energy saving” also peaked during these events. Particularly, Earth 

Hour aroused much greater public attention in Shanghai than the other two events, which could be 

due to the inimitable symbolic activity that switches off lights for one hour. This paper aims to 

investigate further whether these events actually influenced consumers’ energy-consumption 

behavior. 

 

 
Figure 4.1 The evolution of public attention about these events on social media in Shanghai 

in 2017.  

Note: “Earth Hour” tweet means the tweet including the words of “Earth Hour” in Sina Weibo. 

“Env Day” tweet means the tweet including the words of “World Environment Day” in Sina Weibo. 

“Energy-saving Week” tweet means the tweet including the words of “National Energy Saving 
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Publicity Week” in Sina Weibo. “Energy Saving” tweet means the tweet including the words of 

“energy saving” in Sina Weibo. 

 

3. Data 

3.1 Smart meter high-frequency data 

 

To estimate the impact of the events on electricity consumption, I make use of a smart-meter 

high-frequency data on individual commercial and residential electricity use. I obtained the 

individual commercial electricity use data at 15 minutes’ level from The State Grid Corporation 

(SGC), which is a panel data that covers 684 consumers randomly drawn from all the smart-

metered commercial consumers in Pudong, Shanghai over a one-year period from 01/01/2017 to 

02/28/2018. In order to merge with the hourly weather data and reduce data noise, I aggregate the 

15-minute data to hourly frequency. Based on the definition provided by SGC, commercial users 

are the users that conduct profitable activities (e.g., shopping malls, office buildings, factories, 

etc.). I also obtained the individual residential electricity use data at a daily level from SGC 

covering 1780 consumers randomly drawn from all the smart-metered residential consumers in 

Pudong, Shanghai, from 01/01/2017 to 02/28/2018.  Both the commercial and residential data 

provide meter ID, consumer type, timestamps of data records, and hourly/daily electricity 

consumption (kWh). The smart meter data used in my study is anonymous and de-identified. 

Table 4.1 shows the descriptive statistics of electricity consumption data of commercial 

and residential users. For comparison, I aggregate the commercial hourly data to daily frequency 

and list it in the second row of Table 4.1. Figure 4.2 shows the evolution of average daily 

electricity consumption for commercial and residential users from 01/01/2017 to 02/28/2018. I 

further plot the distributions of annual average daily electricity consumption (kWh) for 

commercial and residential users in my sample (See Figure 4.3). I find that residential users’ 
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consumption is more concentrated on small values but also includes more high-consumption users 

than commercial users. 

 

 

Table 4.1 The descriptive statistics of electricity consumption data of commercial and 

residential users. 

Variable Obs Unit Mean Median 
Std. 

Dev. 
Min Max 

Hourly Electricity Usage of 

Commercial users 
5,907,352 kWh 7.97 1.65 17.94 0 200 

 

Daily Electricity Usage of 

Commercial users 

 

247,513 kWh 190.33 63.60 355.87 0 4352 

Daily Electricity Usage of 

Residential users 
669,941 kWh 185.88 8.17 389.76 0 2000 

 

 

 
Figure 4.2 The evolution of average daily electricity consumption for commercial and 

residential users in Shanghai, Pudong, from 01/01/2017 to 02/28/2018. 
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Figure 4.3 The distributions of annual average daily electricity consumption (kWh) for 

commercial and residential users in my sample. 

 

3.2 Hourly weather data 

 

I obtain the weather data from a local weather station in Pudong, Shanghai, from 01/01/2017 to 

02/28/2018 from the National Meteorological Information Center of China. The weather station is 

the only one located in Pudong, Shanghai. The weather data include timestamps of data records, 

the highest pressure (hPa), maximum wind speed (m/s), hourly average temperature (℃), relative 

humidity (%), and hourly precipitation (mm).  Table 4.2 presents the descriptive statistics of the 

weather data. 

 

 

Table 4.2 The descriptive statistics of the weather data 

Variable Obs Unit Mean Std. 

Dev. 

Min Max 

Temperature 1,451,932 ℃ 15.79 9.58   -5.8    39.4 

Air pressure 1,452,096 hPa 1017.9 8.87 997.3 1037.5 

Relative humidity 1,451,932 % 73.06 19.94 12 100 

Maximum wind speed 1,452,096 m/s 1.86 0.98 0 6.0 

Hourly precipitation 1,450,725 Mm 0.139  0.88 0 34.2 
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3.3 Data used for identifying activities during the events 

 

In order to identify activities during the events, I make use of policy documents data and 

social media data. (1) Policy documents data. I sort out 10 Chinese policy documents related to 

the special environmental events in Shanghai, which are 2016-2019 working arrangements for 

energy conservation, emission reduction and tackling climate change introduced by Shanghai 

Development and Reform Commission, 2016-2019 notice on activities of National Energy Saving 

Publicity Week and National Low Carbon Day introduced by National Development and Reform 

Commission, 2017 and 2019 activities arrangement of Energy Saving Publicity Week of Shanghai 

introduced by Shanghai Economic and Information Commission. (2) Social media data. I web-

scraped tweets located in Shanghai published during the time around the event (from 03-15-2017 

to 06-26-2017) using four different keywords (“Earth Hour”, “World Environment Day”, “Energy 

Saving Publicity Week”, and “Energy Saving”) respectively from Sina Weibo, the biggest social 

media platform in China. Table 4.3 presents the description of my scraped tweets.  

 

 

Table 4.3 The description of the web-scraped tweets from Sina Weibo 

Keyword Time range Location Number of tweets 

Earth Hour 2017.3.15-2017.4.4 Shanghai 7,198 

World Environment Day 2017.5.26-2017.6.27 Shanghai 480 

Energy Saving Publicity Week 2017.5.26-2017.6.27 Shanghai 743 

Energy Saving 2017.3.15-2017.6.27 Shanghai 9,830 
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4. Methodology: two-step local linear method  

 

I utilize a two-step local linear method in conjunction with high-frequency data as my main 

approach to estimate the short-run average treatment effect of special environmental events on 

consumers’ electricity consumption.  

My approach comes from two-step Regression Discontinuity in Time (RDiT) (Hausman and 

Rapson, 2018), but is not a Regression Discontinuity (RD). I apply the approach for the following 

reasons. Because there is no cross-sectional difference in treatment to enable us to conduct a 

difference-in-differences analysis, I have to estimate and rule out the effect of confounding factors 

(weather, time periodicity) on electricity consumption. I also need to narrow down the time 

window of observations to control for unobservable time-variant trends, which makes the 

estimation of the effect of weather and time (e.g., day of the week, holiday) infeasible in a narrow 

time window in a single event-study regression. Therefore, I adopt the following two-step 

approach. 

In the first stage of regression, I apply the following econometric model to estimate the 

impacts of weather, seasonality and time-invariant individual-specific factors on electricity 

consumption using all the data from 01/01/2017 to 02/28/2018, which helps control confounding 

factors. 

 

𝑃𝑜𝑤𝑒𝑟𝑖𝑡 = 𝛽0 + ∑ 𝛽1𝑗𝑓𝑗(𝑇𝐸𝑀𝑃𝑡)

6

𝑗=1

+ 𝛽2𝑃𝑅𝑆𝑡 + 𝛽3𝑅𝐻𝑈𝑡 + 𝛽4𝑊𝐼𝑁𝑡 + 𝛽5𝑃𝑅𝐸𝑡 

+ ∑ 𝜋𝑘 + 𝛾𝑡 + 𝛿𝑡 + 𝜃𝑡 + 𝜇𝑡 + 𝜏𝑡 + 𝜎𝑖 + 𝜀𝑖𝑡                                  …(1) 
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where 𝑃𝑜𝑤𝑒𝑟𝑖𝑡  is hourly/daily power consumption (kWh) for consumer i in time t. 𝑇𝐸𝑀𝑃𝑡  is 

hourly temperature. The functions of 𝑓𝑗 are spline functions because temperature response varies 

flexibly. The spline functions can allow slopes within bins smoothing the temperature response, 

and I obtained five knots both for residential and commercial data after using the spline functions 

(Li et al., 2018). 𝑃𝑅𝑆𝑡 is hourly air pressure. 𝑅𝐻𝑈𝑡 is hourly relative humidity. 𝑊𝐼𝑁𝑡 is hourly 

maximum wind speed. 𝑃𝑅𝐸𝑡  is hourly precipitation. 𝜋𝑘  is a series of fixed effects for all the 

national legal holidays. 𝛾𝑡, 𝛿𝑡, 𝜃𝑡 , 𝜇𝑡 , and 𝜏𝑡 are respectively year fixed effects, month of year 

fixed effects, day of month fixed effects, day of week fixed effects, and hour of day fixed effects 

(only used for commercial hourly data), which control for the impacts of time-variant factors on 

electricity consumption behavior. 𝜎𝑖  is individual fixed effects, which capture all the time-

invariant individual consumer-specific characteristics. 𝜀𝑖𝑡  is an error term. See the first stage 

estimation results in Table 4.4. 
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Table 4.4 First stage estimation results 

 (1)  (2) 

 Commercial  Residential 

temperature 0.026*  1.579 

 (0.015)  (4.323) 

temperature max -0.015  -5.11* 

 (0.012)  (2.62) 

temperature min -0.095***  0.44 

 (0.012)  (2.35) 

temperature spline1 0.328***  2.742 

 (0.032)  (2.16) 

temperature spline2 -1.45***  2.153 

 (0.098)  (5.2) 

temperature spline3 2.74***  -2.278 

 (0.11)  (6.09) 

air pressure -0.006***  0.181* 

 (0.002)  (0.033) 

relative humidity -0.007***  0.019 

 (0.0004)  (0.032) 

maximum wind speed 0.023***  2.586*** 

 (0.007)  (0.545) 

precipitation -2.24e-07  -3.333*** 

 (2.09e-07)  (0.824) 

    

Year FE Yes  Yes 

Month-of-year FE Yes  Yes 

Day-of-month FE Yes  Yes 

Day-of-week FE Yes  Yes 

Hour-of-day FE Yes  No 

Holidays FE Yes  Yes 

Individual FE Yes  Yes 

    

Obs 5,907,352  669,941 

R-square 0.0245  0.0005 

*Note: Standard errors are clustered at individual level, which are in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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In the second stage, I save the residuals from the above model, and then a local linear 

specification is applied using the residuals which are within a narrow bandwidth. I apply a pre-

post event-study regression in my second stage instead of using RD to estimate the single gap in 

the cutoff because of the ambiguous cutoff of receiving the treatment19 in the case of my study. In 

addition, since I have a high-frequency hourly/daily dataset, I could limit the time window into a 

narrow bandwidth (4 days in the pre-treated period and 1 day in the post-treated period) with 

enough observations to relieve shocks of unobservable confounding factors. I use the observations 

of 4 days before the events as baseline control group, and I use the observations on each day since 

the start of events until the fourth day after the event as a treated group respectively, to estimate 

the treatment effect each day since the event. For National Energy Saving Publicity Week, I use 

observations four days before 06-05-2017 (World Environment Day) as the baseline control group, 

because observations four days before 06-11-2017 (Energy Saving Week) could be influenced by 

World Environment Day. My bandwidth is much smaller compared to existing studies that 

generally choose 30 days (Anderson, 2014; Bento et al., 2014; Hausman and Rapson, 2018). I run 

the following local linear specification. 

 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠𝑖𝑡 = 𝛽0 + 𝛽1𝐷𝑡 + 𝜀𝑖𝑡                                                 …(2) 

 

where 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠𝑖𝑡 is the residuals in the first stage regression model, which is power consumption 

(hourly consumption for commercial users and daily consumption for residential users) excluding 

the effects of weather, seasonality, time-invariant consumer specific factors. 𝜀𝑖𝑡 is an error term. 

𝐷𝑡 is a treatment variable that takes value one after the event and takes value zero otherwise. In 

                                                 
19 Although the events start at a specific point in time, different consumers may receive the information of the 
events at different times. 
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order to obtain consistent estimates of standard errors, I implemented a bootstrap procedure in the 

second stage to allow the variance of the first stage to be reflected. Moreover, I cluster standard 

errors at the individual level to allow arbitrary correlations within individual users. 

To further eliminate the concern of contemporaneous confounding factors around the same 

time with special environmental events, I check all the big events around the time of the three 

events. I find no other big events around the same time that may systematically influence 

consumers’ electricity consumption. I do not control the electricity price change, because there is 

no electricity price variation during the time window I investigate.  

 

 

5. Results 

5.1 The average effect of special environmental events on electricity consumption 

 

I aim to investigate whether these environmental events/campaigns arouse consumers’ short-

run energy-saving behaviors and compare the different effects of these events. Figure 4.4 plots 

the average treatment effect of the special environmental events on electricity consumption each 

day. Commercial users had significant energy-saving behaviors within the National Energy Saving 

Publicity Week, but the energy-saving effect decayed rapidly to be insignificant when the week 

ended. Commercial users also had significant energy-saving behaviors on the day of and on the 

second day after the World Environment Day, but the energy-saving effect decayed rapidly over 

the next two days. For residential users, World Environment Day and National Energy Saving 

Publicity Week exert no statistically significant effects on electricity-using behaviors.  

Earth Hour had no significant impact on commercial users’ electricity consumption. At the 

same time, residential users increased electricity consumption on average significantly on the first 
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and second days after Earth Hour. This average increase could be due to the increased consumption 

of some very-high-consumption residential users who had a higher intertemporal consumption 

variance and were not influenced by Earth Hour20.  

To conclude, commercial users saved electricity consumption statistically significantly by 

1.35 kWh/hour and 0.6 kWh/hour on average within World Environment Day and National Energy 

Saving Publicity Week, around 17% and 8% reduction compared to average consumption. 

However, Earth Hour did not lead to significant average energy-saving effects for both residential 

and commercial users. All the statistical estimation results can be found in Appendix A. 

 

 

 

 

 

 

 

 

                                                 
20 I find that residential users’ consumption is more concentrated on small values but also includes much 
more high-consumption users than commercial users, by comparing the distributions of annual average daily 
electricity consumption (kWh) of commercial and residential users (See Figure 4.3). The increased 
residential average electricity consumption after Earth Hour might be due to the increased consumption of 
some high-consumption users who had higher intertemporal consumption variance. The average increased 
usage after Earth Hour only accounts for 2.3% of the average usage of high-consumption users (top 5%). 
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Figure 4.4 The average treatment effect of the special environmental events on electricity 

consumption each day from the start of the event until the fourth day after the event.  

Note: The x-axis is the number of days. For Earth Hour and World Environment Day, day 0 means 

the day of the event. For National Energy Saving Publicity Week, day 1 to day 7 mean the days 

within the event. Y-axis is the amount of treatment effect (electricity consumption change on 

hourly/daily average) of the event on power consumption each day. I use the observations four 

days before the event as a baseline control group. The green bar is the 90% confidence interval. 

 

 

 

I run sensitivity checks by changing the second-stage time window to a different number of 

days (3 days and 5 days) in the pre-event periods in my two-step local linear method. The results 

are consistent with my main results (See Appendix B). In addition, I develop an alternative 

machine learning approach to compute the treatment effects as a robustness check. The results are 

also consistent with my main findings (See Appendix C). 
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5.2 The intraday hourly treatment effects 

 

High-frequency data allows us to investigate the intraday hourly heterogeneity of treatment 

effects. Here I only investigate the hourly heterogeneity for the commercial users on the day/week 

of the events for two reasons. First, the energy-saving behaviors were most likely to happen during 

the events based on above findings. Second, daily residential data cannot allow us to run the hourly 

estimation.  To examine the hourly heterogeneity, I use the same first-stage regression model and 

the following model in the second stage for commercial users: 

 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠𝑖𝑡 = 𝛽0 + ∑ 𝛽𝐻𝐼𝐻 ∙ 𝐷𝑡
24
𝐻=1 + 𝜀𝑖𝑡                            …(3) 

 

where i indicates individual commercial customers. H indicates the hour of the day. 𝐼𝐻  is an 

indicator dummy variable for each hour of the day. 𝐷𝑡 takes value one in the post-treatment period, 

and takes value zero in the pre-treated period. The key coefficients of interest are the series of  𝛽𝐻 

which measures the change in hourly power consumption kWh of commercial users caused by 

special environmental events. 

Figure 4.5 presents the intraday hourly treatment effects on commercial users. I find that all 

the significant electricity-saving behaviors under the events’ influences happened in the peak time, 

because meaningful human activities are a significant source of electricity usage change. 

Policymakers should pay special attention to the energy-saving measures during the off-peak 

times, which can also be a source of energy saving. For instance, shopping malls can switch off 

all unnecessary lighting equipment to save energy during off-peak hours. Policymakers should pay 

more attention to encourage energy-saving behaviors during some easily overlooked time windows. 
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Figure 4.5 The intra-day treatment effects (electricity savings, hourly kWh change) by 

hour-of-day on commercial users.  

Note: The black line represents the coefficients of interaction terms of treatment dummy variable 

and dummy variables indicating the hour of the day. The green line is the 90% confidence interval. 

 

 

 

6. A mechanism analysis 

 

The above findings suggest two opposite effects. World Environment Day and National 

Energy Saving Publicity Week caused commercial consumers to decrease electricity use 

significantly on average. In contrast, Earth Hour led to a significant increase in electricity use on 

average for residential users post-event and had no significant effect on commercial users. To 

explain the different effects, I conduct a mechanism analysis by investigating what measures were 

actually implemented during these events. 

I reviewed all the related policy documents and web-scraped tweets in 2017 from Sina Weibo 

(the largest social media platform in China). Policy documents include the requirements and 

arrangements for certain activities in China. Subordinate government departments and state-owned 
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enterprises organize the activities following the policy documents. Social media users (including 

both individual and institutional users) voluntarily publish the activities that they have done.  

World Environment Day and National Energy Saving Publicity Week in China are 

government-lead events while Earth Hour is a voluntary event. In the policy document of 2017 

working arrangements for energy conservation, emission reduction and tackling climate change 

introduced by Shanghai Development and Reform Commission, World Environment Day and 

National Energy Saving Publicity Week were listed as two key events aiming to improve the 

public’s environmental awareness. However, Earth Hour did not appear in any government policy 

documents.  

For Earth Hour, I only use social media data. I web-scraped 7,198 tweets including the words 

of “Earth Hour” published by users located in Shanghai during the time around the event (from 

03-15-2017 to 04-04-2017). I summarize all the activities conducted during the event of “Earth 

Hour” based on social media texts (See Table 4.5). For World Environment Day and National 

Energy Saving Publicity Week, Shanghai city government organized these two events together 

because the dates of the two events are close, according to the policy document activities 

arrangement for 2017 Energy Saving Publicity Week of Shanghai (introduced by Shanghai 

Economic and Information Commission). Thus, I treat these two events as one analysis unit and 

use the data from both policy documents and social media texts. I sorted out ten related policy 

documents, and web-scraped 1,223 tweets including the words of “World Environment Day” and 

“Energy Saving Publicity Week” published by users located in Shanghai during the time around 

the event (from 05-27-2017 to 06-26-2017). I summarize all the activities related to the World 

Environment Day and National Energy Saving Publicity Week (See Table 4.5). The details of 

policy documents and social media data are in section 3. To conclude, I find most activities during 
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the World Environment Day and National Energy Saving Publicity Week are directly related to 

the knowledge and skills of environmental protection and energy saving, while most activities 

during the Earth Hour are only symbolic behaviors (like turning off lights). My analysis provides 

suggestive evidence that activities providing knowledge and skills may promote more energy-

saving behaviors compared to symbolic activities. Future studies could utilize experimental 

approaches to provide more rigorous evidence on the comparative effects of the symbolic 

information and the knowledge-based information.   

 

Table 4.5 The activities conducted during the events in 2017, Shanghai. 

2017 Earth Hour 
2017 World Environmental Day & 

National Energy Saving Week 

Voluntary Symbolic Campaigns: 
Government-lead Knowledge-based 
Campaigns: 

Turning off lights Expert speech 

Night running Workshop 

Cycling Environmental knowledge competition 

Composition contest Distribution of brochures and advertisements 

Art performance Soliciting opinions on energy saving 

Celebrity endorsements on social media Technology Innovation Competition 

 Environmental policy information session 

 Exhibition 

 Displaying energy-saving cases & products 

 Celebrity endorsements on social media 

Data sources: 10 related policy documents, web-scribed social media (Sina Weibo) tweets. 
 

One concern of this mechanism analysis is that the duration of the events might influence 

their effects. Although turning off lights during the event of Earth Hour happened within only one 

hour, related information about energy saving and turning off lights was spread all over the day 

based on my social media data. Thus, the duration of treatment in Earth Hour is similar to that of 

World Environment Day. Also, although National Energy Saving Week lasted for seven days, 
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World Environment Day only lasted for one day but exerted a bigger energy-saving effect. 

Moreover, I find that Earth Hour aroused much more public attention in total than the other two 

events, according to social media data. Therefore, I cannot attribute the diverse effects to the events’ 

duration. 

 

 

 

7. Discussion and policy implications 

 

Worldwide, governments and environmental communities have paid increasing attention 

and efforts to using the environmental events as a way of nudging consumers to save energy. Given 

the pressing challenge of climate change, policymakers need to evaluate the effectiveness of 

various types of instruments (e.g., taxes, standards, or nudges) on reducing energy use and 

associated carbon and environmental emissions. No prior research has analyzed the effects of 

special environmental events. I provide the first empirical analysis of the treatment effects of three 

special environmental events on short-run electricity consumption behaviors for both residential 

and non-residential consumers. More importantly, I summarize all the activities (including 

symbolic activities and knowledge-based activities) conducted during these events in the 

mechanism analysis. It provides practical implications for social-nudge activity organizers in the 

future. I use data from Shanghai China but my findings can be extended to other cities in the 

Yangtze River Delta of China because of the similarity in climate, economy, and political 

institutions. My estimations also have implications for other cities in other emerging markets in 

which the estimates are hard to conduct. Since a large amount of CO2 emissions in China comes 

from heavy industry, future studies on policies to induce behavioral change can be broadened to 
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include heavy industry regions (e.g., northeastern provinces of China) and also investigate the 

heterogeneous effects across different industrial and commercial sectors.  

Here, I find two major results. On the one hand, commercial users saved electricity 

consumption statistically significantly by 1.35 kWh/hour and 0.6 kWh/hour on average during the 

events of World Environment Day and National Energy Saving Publicity Week, around 17% and 

8% reduction compared to average consumption. On the other hand, Earth Hour did not lead to 

any significant energy-saving effects on average for both commercial and residential users.  

Moreover, although the World Environment Day and National Energy Saving Publicity 

Week led to a short-run average energy-saving effect, the effect decayed rapidly once these two 

events ended. 

This study has several implications for policymakers and environmental communities. First, 

policymakers should combine the merits of the symbolic campaigns and knowledge-based 

campaigns when they aim to organize large-scale environmental campaigns to arouse people’s 

awareness and behavior of energy conservation and environmental protection. The symbolic 

campaigns show advantages in faster and wider information dissemination. For instance, Earth 

Hour arouses much greater public attention on social media than the other two events by organizing 

a unique and impressive symbolic action – switching off lights for one hour. The knowledge-based 

campaigns show more advantages in promoting behavioral change. Policymakers should combine 

the merits of the two types of campaigns. For instance, the organizers of Earth Hour should adopt 

more activities that directly distribute procedure knowledge about environmental protection and 

energy saving in the future, in addition to its symbolic action of switching off lights. 

Second, policymakers and environmental communities should pay more attention to 

residential users. I find that commercial users are more likely to respond to the events, while there 
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are no significant energy-saving effects on residential users. More policy mechanisms as well as 

targeted strategies (such as providing energy saving tips for residential users, informing residents 

of their and their neighbors’ energy consumptions, and others) should be adopted to facilitate 

energy-saving behaviors of residential users when organizing the environmental events. 

Third, my study contributes to the literature on “demand side management” (DSM) (Zhang 

et al., 2011; Esther & Kumar, 2016; Barbato & Capone, 2014). Policymakers are increasingly 

interested in utilizing the DSM to balance energy demand. Special environmental events can be 

used to increase the willingness of consumers to accept smart appliances to apply the DSM more 

effectively. Also, I find the electricity demand during the off-peak period should be paid more 

attention to. There are no significant electricity savings during midnight and early morning. 

Policymakers should pay more attention to the off-peak period, which could also be a source of 

energy saving. For instance, shopping malls and office buildings can turn off all the unnecessary 

lights to save energy during midnight.  

Policymakers and environmental communities should continue to support the special 

environmental events. Although the short-run energy-saving effect caused by the events decayed 

post-event, we should acknowledge that the short-run behavior change reflects a change in 

people’s awareness. Only the change in awareness can determine people’s long-run behavior. Also, 

“social nudge” is a good supplement to the established price-based and mandatory policies. The 

Chinese government is planning to reduce subsidies on residential electricity consumption 

(Reuters, 2021). Public campaigns can be used as a complement to such a price reform and to help 

alter residential consumers’ energy demand. Public campaigns can also help promote the 

legislation of other “green” policies, such as carbon and pollution taxes, which are politically 

difficult to implement. The government and environmental communities should continue 
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organizing special environmental events to improve people’s energy conservation and 

environmental protection awareness.
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Appendix 

 

Appendix A. The average treatment effect of special environmental events on electricity 

consumption 

 

Supplementary Table 1 presents all the daily treatment effects caused by the National 

Energy Saving Publicity Week. The coefficients of treatment variable measure the treatment effect, 

or in other words, consumers’ change in electricity (kWh) on hourly/daily average after the 

influence of the events controlling for the confounding factors of weather, seasonality, and time-

invariant consumer-specific factors. Standard errors are obtained by a bootstrap procedure and are 

clustered at the individual level. Day 1 means the first day of the week, day 7 means the last day 

of the week, day 8 means the first day after the week, and day 11 means the fourth day after the 

week. 

Supplementary Table 2 presents all the daily treatment effects caused by the Earth Hour and 

the World Environment Day. The coefficients of treatment variable measure the treatment effect, 

or in other words, consumers’ change in electricity (kWh) on hourly/daily average after the 

influence of the events controlling for the confounding factors of weather, seasonality, and time-

invariant consumer-specific factors. Standard errors are obtained by a bootstrap procedure and are 

clustered at the individual level. Day 0 means the day of the event, day 1 means the first day after 

the event, day 4 means the fourth day after the event.  

I also calculate the average treatment effect within the Energy Saving Publicity Week. I use 

the observations of seven days within the event as a treated group, and Supplementary Table 3 

presents the estimated results.  
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Supplementary Table 1. The daily average treatment effects of the Energy Saving Week 

Type Event Coef. StdErr P_Value Obs Day 

commercial Energy Saving Week -0.8873061 0.390787 0.023 65,702 1 

commercial Energy Saving Week 0.1831917 0.5285 0.729 65,698 2 

commercial Energy Saving Week -1.234467 0.384156 0.001 65,714 3 

commercial Energy Saving Week -0.6630916 0.426845 0.12 65,742 4 

commercial Energy Saving Week -0.4773306 0.475547 0.315 65,827 5 

commercial Energy Saving Week -0.6354886 0.370606 0.086 66,064 6 

commercial Energy Saving Week -0.6798988 0.456799 0.137 66,028 7 

commercial Energy Saving Week 0.0706964 0.45693 0.877 66,141 8 

commercial Energy Saving Week -0.556253 0.471616 0.238 66,082 9 

commercial Energy Saving Week 0.0779607 0.408803 0.849 66,045 10 

commercial Energy Saving Week 0.3443088 0.509415 0.499 66,084 11 

residential Energy Saving Week -9.81473 5.348632 0.067 7,909 1 

residential Energy Saving Week 4.896253 6.904359 0.478 7,945 2 

residential Energy Saving Week 0.0752327 5.996007 0.99 7,935 3 

residential Energy Saving Week 6.358507 5.085761 0.211 7,938 4 

residential Energy Saving Week -0.402408 5.388365 0.94 7,928 5 

residential Energy Saving Week 0.3864754 6.274323 0.951 7,929 6 

residential Energy Saving Week -1.598501 6.814249 0.815 7,907 7 

residential Energy Saving Week 15.01335 7.986738 0.011 7,919 8 

residential Energy Saving Week 20.66428 7.606922 0.007 7,925 9 

residential Energy Saving Week 1.80813 5.239599 0.73 7,926 10 

residential Energy Saving Week -7.259525 6.702474 0.279 7,913 11 

* Standard errors are clustered at the individual level. 
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Supplementary Table 2. The daily average treatment effects of the Earth Hour, the World 

Environment Day 
Type Event Coef. StdErr P_Value Obs Day 

commercial Earth Hour 0.293 0.46427 0.528 75,134 0 

commercial Earth Hour 0.574 0.444414 0.197 75,118 1 

commercial Earth Hour -0.056 0.418928 0.894 75,075 2 

commercial Earth Hour 1.117 0.390452 0.004 75,110 3 

commercial Earth Hour 0.405 0.416879 0.331 75,088 4 

commercial World Environment Day -1.350 0.459776 0.003 65,557 0 

commercial World Environment Day 0.369 0.369334 0.318 68,060 1 

commercial World Environment Day -1.107 0.411017 0.007 65,738 2 

commercial World Environment Day 0.109 0.479376 0.82 65,795 3 

commercial World Environment Day 0.273 0.420201 0.516 65,805 4 

residential Earth Hour 7.045 7.968497 0.377 7,783 0 

residential Earth Hour 36.575 7.253746 0 7,828 1 

residential Earth Hour 35.214 7.800103 0 7,826 2 

residential Earth Hour 2.981 5.518044 0.589 7,831 3 

residential Earth Hour -3.868 5.481434 0.48 7,829 4 

residential World Environment Day 9.899 6.249725 0.113 7,949 0 

residential World Environment Day 4.427 5.209712 0.396 7,935 1 

residential World Environment Day -2.836 4.964722 0.568 7,925 2 

residential World Environment Day 5.062 4.993851 0.311 7,930 3 

residential World Environment Day -4.740 5.279331 0.369 7,919 4 

* Standard errors are clustered at the individual level. 

 

Supplementary Table 3. The average treatment effect within the Energy Saving Publicity Week 
Type Event Coef. StdErr P_Value Obs 

Commercial Energy Saving Week -.627909 .25877 0.016 145,307 

Residential Energy Saving Week .0186377 4.28219 0.997 17,535 

* Standard errors are clustered at the individual level. 
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Appendix B. Robustness Check I – Changing Time Window 

I do robustness checks by changing the time window in my two-stage local linear method.  

I first change the time window to 5 days in the pre-treated period and follow the same method to 

estimate the daily treatment effects of the events. Supplementary Figure 1 shows the estimated 

daily treatment effects using observations 5 days before the event as the baseline control group. I 

find that all the results in Supplementary Figure 1 are consistent with my main results. 

 

 

Supplementary Figure 1. The average treatment effect of the special environmental events on 

electricity consumption on each day from the start of the event until the fourth day after the event. 

The x-axis is the number of days. For Earth Hour and World Environment Day, day 0 means the 

day of the event. For National Energy Saving Publicity Week, day 1 to day 7 means the days within 

the event. Y-axis is the amount of treatment effect (electricity consumption change on hourly/daily 

average) of the event on power consumption each day. I use the observations five days before 

the event as a baseline control group. The green error bar is the 90% confidence interval. 
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Secondly, I change the time window to 3 days in the pre-treated period and follow the same 

method to estimate the daily treatment effects of the events. Supplementary Figure 2 shows the 

estimated daily treatment effects using observations 3 days before the event as the baseline control 

group. I find that all the results in Supplementary Figure 2 are consistent with our main results. 

 

 

Supplementary Figure 2. The average treatment effect of the special environmental events on 

electricity consumption on each day from the start of the event until the fourth day after the event. 

The x-axis is the number of days. For Earth Hour and World Environment Day, day 0 means the 

day of the event. For National Energy Saving Publicity Week, day 1 to day 7 means the days within 

the event. Y-axis is the amount of treatment effect (electricity consumption change on hourly/daily 

average) of the event on power consumption each day. I use the observations three days before 

the event as a baseline control group. The green error bar is the 90% confidence interval. 
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Appendix C. Robustness Check II – Alternative Machine Learning Approach 

 

I applied an alternative machine learning approach to estimate the average treatment effect 

of the special environmental events on commercial users’ electricity consumption as another 

robustness check.  

Machine learning algorithms perform much better compared to traditional linear regression 

in terms of prediction accuracy. I use observations that exclude the information about the events 

to train the machine learning model, and then use the fitted model to predict “counterfactual” 

electricity consumption during the time of the events if these events had not happened. I only 

predict the “counterfactual” hourly electricity consumption for commercial users, which have 

enough observations to allow us to train the machine learning models. However, although I can 

provide bounds on my predictions, it is impossible for us to derive standard error for my 

predictions given that there is no randomization of control and treated groups in machine learning 

models (Wager & Athey, 2018). Therefore, I only use the machine learning approach as a 

robustness check. 

Model Selection. There are many different machine learning algorithms, so I need to select 

the most accurate model in terms of prediction for my dataset. I tried five different machine 

learning algorithms, which are ridge regression, lasso regression, decision tree, bagging trees, and 

random forest. I randomly draw 80% of observations from the dataset of commercial users’ 

average hourly electricity consumption as training data and the remaining 20% of data as test data. 

I train different models using the same training dataset and test the performance of each model by 

calculating the mean absolute error using the same test data. Supplementary Table 4 presents the 
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mean absolute errors of different models. The random forest algorithm has the least mean absolute 

error (0.53 kWh/hour), so I select it as my main machine learning model. 

 

 

Supplementary Table 4. The mean absolute error of different machine learning models 

Model Mean Absolute Error 

Unit: kWh/hour 

Ridge Regression 1.04 

Lasso Regression 1.03 

Decision Tree 0.94 

Bagging Trees 0.88 

Random Forest 0.53 

 

 

Model Validation. I utilize the random forest algorithm to train the model using the data 

that exclude the information about the event of my interest, and then predict the “counterfactual” 

electricity consumption during the time of the event. For Earth Hour, I delete the observations 

from 2017-03-25 to 2017-04-07 from the dataset and then use the remaining data to train the model. 

Similarly, for the World Environmental Day and National Energy Saving Week, I delete the 

observations from 2017-06-05 to 2017-06-30 from the dataset and then use the remaining data to 

train the model. Based on the findings of my previous main approach (the two-stage local liner 

method), I find the effect of the events decayed rapidly, so I believe the information about the 

event has been excluded when I train the model. I train the machine learning model for each 

individual user respectively. The outcome of my model is individual hourly electricity 

consumption (kWh/hour), while the input variables are same as my main method including the 

highest pressure (hPa), maximum wind speed (m/s), hourly average temperature (℃), relative 

humidity (%), hourly precipitation (mm), year, month of year, day of month, day of week, hour of 

day, holiday, and so on. 
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The random forest model performs very well in terms of prediction accuracy. For the Earth 

Hour, the mean absolute error (MAE) for predicting individual consumption is 0.68, and the 

Adjusted R2 is 0.98. I will primarily compare the “counterfactual” predictions with true values at 

average hourly level (the average of all the users), so I also evaluate the performance of the model 

at this aggregation level. I find the performance of the model is further improved at the average 

hourly level. The mean absolute error (MAE) falls to 0.13, and the Adjusted R2 rises to 0.99. 

Supplementary Figures 3, 4, and 5 plot the predicted values versus true values, which indicate 

the accuracy of the prediction by our machine learning model for the data excluding the Earth 

Hour. 

 
Supplementary Figure 3. The predicted individual hourly electricity consumption versus the true 

values by the machine learning model using the data excluding the Earth Hour. Values on the 45-

degree line mean perfect accuracy. 
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Supplementary Figure 4. The predicted average hourly electricity consumption versus the true 

values by the machine learning model using data excluding the Earth Hour. Values on the 45-

degree line mean perfect accuracy. 

 

 

 
Supplementary Figure 5. The predicted average hourly electricity consumption versus the true 

values by the machine learning model using data excluding the Earth Hour. The red line is 

predicted values; the blue line is actual values, while the green line is the difference between the 

predicted values and true values. 
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For the World Environmental Day and National Energy Saving Week, my random forest 

model also performs very well. The mean absolute error (MAE) for predicting individual 

consumption is 0.66, and the Adjusted R2 is 0.98. While I evaluate the model at the average level, 

the mean absolute error (MAE) falls to 0.124, and the Adjusted R2 rises to 0.99. Supplementary 

Figures 6, 7, and 8 plot the predicted values versus true values, which indicate the accuracy of the 

prediction by my machine learning model for the data excluding the World Environmental Day 

and National Energy Saving Week. 

 

 
Supplementary Figure 6. The predicted individual hourly electricity consumption versus the true 

values by the machine learning model using the data excluding World Environmental Day and 

National Energy Saving Week. Values on the 45-degree line mean perfect accuracy. 
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Supplementary Figure 7. The predicted average hourly electricity consumption versus the true 

values by the machine learning model using the data excluding World Environmental Day and 

National Energy Saving Week. Values on the 45-degree line mean perfect accuracy. 

 

 

 
Supplementary Figure 8. The predicted average hourly electricity consumption versus the true 

values by the machine learning model using the data excluding World Environmental Day and 

National Energy Saving Week. The red line is predicted values; the blue line is actual values, 

while the green line is the difference between the predicted values and true values. 
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Average Treatment Effect. I utilize my machine learning model to predict the average 

hourly electricity consumption if the event had not happened as counterfactuals. The difference 

between the actual average electricity consumption and the predicted counterfactuals is the average 

treatment effect. Supplementary Table 5 shows the intra-event and post-event (4 days post-event) 

average treatment effects. Although my machine learning algorithm still has prediction errors, the 

magnitude of my model’s mean absolute error is much smaller compared with the treatment effect. 

I find that the results of the machine learning approach are consistent with my main approach 

(two-stage local linear method). World Environment Day and National Energy Saving Week 

aroused larger electricity savings during the events, but the saving effects decayed post-event. 

After Earth Hour, the commercial users’ electricity consumption increased significantly post-event.  

 

 

Supplementary Table 5. Average treatment effects on electricity consumption using machine-

learning method 

Events Period 

Actual 

Average 

Electricity 

Consumption 

(kWh/h) 

Predicted 

Average 

Electricity 

Consumption 

(kWh/h) 

Average 

Treatment 

Effects 

(kWh/h) 

ATE + Mean 

Absolute 

Error 

ATE - Mean 

Absolute 

Error 

Earth Hour 
intra-event 7.84 8.03 -0.19 -0.06 -0.32 

post-event 8.61 7.89 0.72 0.85 0.59 

World Environment Day 
intra-event 6.89 7.49 -0.60 -0.48 -0.72 

post-event 7.84 7.97 -0.13 -0.01 -0.25 

  Energy Saving Week 
intra-event 7.39 7.66 -0.27 -0.15 -0.39 

post-event 7.63 7.41 0.22 0.34 0.10 

*note: The mean absolute error in this table is obtained by the random forest model using the training data excluding 

the event of my interest.  “Post-event” means four days after the event. 
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5. Chapter 5:  Conclusion and Implications 
 

 

1. Summary of findings 

 

Climate change is becoming widespread, rapid, and intensifying (IPCC, 2021), which could 

lead to irreversible and serious consequences to society and the natural environment if we do not 

take action. To address the problem of global warming and climate change, we need to stop or 

capture emissions from burning fossil fuels. Governments and communities are spending large 

efforts on constructing more renewable power plants, promoting electrification and energy 

efficiency to decarbonize end-use applications, and enhancing carbon storage capacity. Many 

policy tools have been utilized, such as subsidies, tax credits, feed-in-tariff, renewable portfolio 

standard, building construction code, mandated energy efficiency standard, information-provision 

campaigns, and many others, to promote the clean energy transition from both sides of demand 

and supply.  

In my dissertation, the three essays are focused on policy tools that promote electrification 

and energy efficiency in the buildings sector from the demand side. Particularly, I study two types 

of policy tools, namely the price-based approach and the information-provision approach, which 

have been widely applied by policymakers and local communities for promoting decarbonization. 

My dissertation provides the first empirical evidence of the impact of subsidies on heat pump 

adoption, new private benefits after installing the heat pump in the resale housing market, and the 

impact of special environment events (a new type of “social nudge”) on consumers’ energy 
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efficiency behaviors. These three essays provide implications for policymakers on how to better 

utilize policy tools to facilitate electrification and energy efficiency from three dimensions. 

The first essay leverages the geographical discontinuity of incentives by different local 

utilities in North Carolina to estimate the impact of a rebate program ($300-400 per system 

installed) on air source heat pump (a key technology to achieve electrification in space heating) 

adoption, and I also compare the effect of the rebate with that of two loan programs (with different 

annual interest rates: 9% and 3.9%). Results show that the rebate program can increase the 

adoption density by 13% in a year. The rebate is more effective in increasing the heat pump 

adoption rate compared to the two loan programs under the assumption of comparable demand for 

replacing heating equipment within the buffer area in my sample. In addition, I also conduct a 

heterogeneity analysis about the rebate effects by different income groups, which shows that the 

rebate program is much less effective for lower-income groups compared to higher-income groups. 

Based on back-of-envelope calculations, I also find that the rebate program can be more cost-

effective than the two loan programs.  

My second essay still focuses on heat pumps. In addition to direct subsidies (rebate and low-

interest loans), providing consumers with information about the private benefits of installing a heat 

pump can also encourage adopting it. In the second essay, I utilize a nation-wide large dataset on 

property transaction records and assessed building characteristics (obtained from the Zillow group) 

to estimate the change in home sales prices after the adoption of air source heat pumps in the U.S. 

Based on a difference-in-differences model and a lower bound analysis, I find that the heat pump 

adoption increases the home value by 4%-7% across 23 states of the U.S. Environmentally 

conscious people, middle class, and residents live in regions with mild climate are more likely to 

pay a higher price premium for the houses with heat pumps. Particularly, based on my calculations, 
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I find that the estimated price premium is larger than the installation cost of a typical air source 

heat pump. This positive message is particularly important in the re-sale market with old buildings, 

since most new installations of heat pumps are in newly constructed buildings. Policymakers can 

use the information of positive price premium to encourage the adoption of heat pumps in old 

buildings in the U.S. 

My last essay is focused on the impacts of special environmental events on consumers’ 

energy-saving behaviors based on high-frequency electricity-use data from both residential and 

commercial users located in Shanghai, China. Particularly, I study three important large-scale 

events, which are World Environment Day, Earth Hour, and Chinese National Energy Saving 

Week. Results show that the World Environment Day and National Energy Saving Publicity Week 

caused commercial users to reduce their electricity consumption by 1.35 kWh/hour and 0.6 

kWh/hour intra-event, around 17% and 8% reduction compared to average consumption. Earth 

Hour did not lead to significant energy-saving effects for both residential and commercial users. I 

further collect information about the detailed activities implemented during these events to 

understand the different impacts based on social media and policy documents data. I find that most 

activities during the World Environment Day and National Energy Saving Week are directly 

related to the knowledge and skills of environmental protection and energy-saving, while most 

activities during the Earth Hour are only symbolic behaviors (such as turning off lights, running, 

and art performances). 
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2. Study limitations 

 

These three essays have several limitations in terms of data, research design, and 

representativeness, which are illustrated as following in detail: 

In the first essay, one important limitation is the research design of the second and third 

samples. Because of data limitations, I am not able to obtain observations before the 

implementation of the two loan programs so I can only estimate the difference in differential trends 

across the borderline between two utilities, which is not a typical difference-in-differences 

approach. In the estimation of difference in differential trends, this study is based on an assumption 

of comparable time-variant demand for replacing heating equipment within the narrow buffer area 

in my samples. However, I am not able to provide empirical evidence to support this assumption. 

Interpreting the results from samples 2 and 3 should be cautious. Nevertheless, this study still 

provides a new framework for future studies to estimate and compare the differential impacts of 

different incentives for new low-carbon technology adoption. Second, due to the data limitation, I 

am not able to isolate the impact of loan programs on heat pump adoption, which is an important 

topic to be studied. While I find that the rebate is less effective for low-income groups, it is worth 

studying the heterogeneous impacts of loan programs on different income groups. The loan 

programs could be more effective for low-income groups with credit/liquidity constraints since the 

upfront cost of new low-carbon technologies (e.g., heat pumps, solar panels, and others) is much 

higher than typical old technologies. Third, the broader applicability in the first essay is limited. 

My study is focused on narrow buffer areas between utilities, which could lead to the problem of 

selection. The characteristics of my samples could be different from residents in other areas. 

Interpreting the broader applicability of my results should be cautious. Futures studies can conduct 
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randomized controlled experiments by selecting a representative sample to better enhance the 

external validity of the study.  

In the second essay, there are also several limitations. First, I am not able to observe building 

attributes before 2016 so I cannot directly control for the time-variant building attributes in the 

difference-in-differences model to fully rule out the influence of contemporaneous building 

retrofits on my estimation. Although I utilize a second-best approach - the lower bound analysis, 

future studies with more data of building attributes over longer time scales can address this issue 

of omitted variables. Second, although I obtain a nationwide large dataset, there are many missing 

values in some states (such as New York state) which have a larger number of heat pump 

installations in reality. My estimations are based on the sample of 23 states, while these states with 

many missing values cannot be included. Future studies with a more comprehensive dataset can 

provide analysis across all the states of the U.S. and a detailed heterogeneity analysis by different 

areas. 

In my last essay, the limitations are as follows. First, it is hard to find a comparable control 

group when studying the impact of big environmental events, since all the areas use the same time 

in China and I am not able to identify consumers who were influenced by the events and who were 

not influenced. Without a comparable control group, I use a second-best approach, the two-step 

local linear method based on high-frequency electricity-use data, to estimate the impacts of these 

events. Future studies can conduct field experiments to create comparable treated and control 

groups to better estimate the impacts of public campaigns on human behaviors. Last, my 

estimations are based on an urban sample in Shanghai, which is the largest city in China. 

Interpreting the broader applicability of my results should be with caution. Nevertheless, my study 
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provides a new framework for future studies to explore the impacts of the big environmental events 

in other areas. 

 

 

3. Policy implications 

 

My dissertation provides broader implications for policymakers and local communities. 

The first and second essays provide important implications for promoting electrification in 

space heating. Space heating makes a significant contribution to carbon emissions from the 

buildings sector. More than half of U.S. residents are utilizing fossil fuels (e.g., natural gas, oil, 

and others) for space heating. Electrifying the space heating with electrical heat pumps plays a 

more and more important role in deep decarbonization. The U.S. government is planning to 

provide more funding for subsidies to facilitate building electrification. My study demonstrates 

that these policies can effectively increase the adoption of heat pumps. Rebate programs could be 

more effective and cost-effective than loan programs based on evidence of North Carolina under 

the assumption of comparable demand for replacing heating equipment in my samples. More 

importantly, I find that the rebate is less effective for lower-income groups. Lower-income groups 

are less likely to adopt clean energy technology with a high upfront cost. Policymakers need to 

explore more innovative policies to address the need of low-income people. In addition, based on 

my second essay, I find a new private benefit, the positive home sales price premium, after the 

installation of heat pumps, which can reduce consumers’ risk when deciding to install the heat 

pumps. Since the positive price premium is estimated based on a re-sale housing market, 
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policymakers can introduce targeted information programs for owners of old houses to further 

facilitate the adoption of heat pumps in old buildings. 

Price-based policy tools have been widely applied by policymakers but they have some 

shortcomings such as expensive implementation costs and unequal outcomes across different 

groups. Policymakers and researchers are paying more attention to information-provision policy 

tools. My third essay provides the first empirical evidence of the impact of special environmental 

events on consumers’ energy-saving behaviors. My results imply that the World Environmental 

Day and National Energy Saving Week led to significant short-run energy-saving effects while 

Earth Hour did not arouse significant energy-saving effects. It could be due to that most activities 

that happened in the first two events directly provide the information and knowledge of energy-

saving for consumers while the last event did not. However, I also find that the Earth Hour raised 

much more public attention in social media compared to the other two events, which could be due 

to the attractive symbolic activities (e.g., switching off lights for one hour). These results provide 

important implications for policymakers in organizing environmental public campaigns. 

Campaign organizers should combine the merits of these two types of events to better encourage 

consumers’ behavior changes. On one hand, public campaigns should provide detailed information 

and knowledge about the benefits and procedures of behavior changes; On the other hand, public 

campaigns could involve impressive and iconic activities (e.g., switching off lights for one hour) 

that can be spread fast among the public to further expand the reach of the campaign. 
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4. Future studies 

 

Future studies can be conducted from several perspectives. First, more studies need to focus 

on the equity issue in new energy technology adoption (e.g., heat pump, residential solar panel, 

home battery, and others). The upfront cost of these new technologies is high and vulnerable 

groups (e.g., social minorities and lower-income groups) are harder to adopt. More studies need to 

explore the heterogeneity of policy impacts on new technology adoption by different groups of 

people. Academics and policymakers should consider more innovative policy tools to address the 

needs of vulnerable groups. Second, more studies need to be conducted in developing countries. 

The heating and cooling demand in developing countries is projected to be much higher in the 

coming decades, while fewer studies investigated the issue of energy technology adoption in 

developing countries compared to those in developed countries. Particularly, the Chinese 

government has set up an ambitious goal to phase out coal-fired heating in the next ten years in 

North China. More studies can explore the benefits and costs of heat pump adoption as well as the 

policy impacts on encouraging heat pump adoption in North China. Third, future studies need to 

evaluate the long-run effect of public campaigns on people’s behavior change. Public campaigns 

are being used more and more frequently with the aim of influencing people’s behavior in the long 

run, while very few studies provided rigorous estimations on their long-run impacts with empirical 

evidence. Fourth, to better understand the impacts of public campaigns, future studies could link 

the campaigns to the theoretical models of psychological and social behavior changes. Last but not 

least, futures studies can explore the impacts of “social nudge” on encouraging heat pump adoption. 
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