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This dissertation is divided into two parts. The first part introduces the p-Holdout

family of validation schemes for minimizing the generalization error rate and improving

forecasting accuracy. More specifically, if one wants to compare different forecasting

methods, or models, based on their performance, one may choose to use “out-of-sample

tests” based on formal hypothesis tests, or “out-of-sample tests” based on data-driven

procedures that directly compare the models using an error measure (e.g., MSE, MASE).

To distinguish between the two “out-of-sample tests” terminologies seen in the literature,

we will use the term “out-of-sample tests” for the former and “out-of-sample validation”

for the latter. Both methods rely on some form of data split. We call these data partition

methods “validation schemes.” We also provide a history of their use with time-series

data, along with their formulas and the formulas for the associated out-of-sample gen-

eralization errors. We also attempt to organize the different terminologies used in the



statistics, econometrics, and machine learning literature into one set of terms. Moreover,

we noticed that the schemes used in a time series context overlook one crucial characteris-

tic of this type of data: its seasonality. We also observed that deseasonalizing is not often

done in the machine learning literature. With this in mind, we introduce the p-Holdout

family of validation schemes. It has three new procedures that we have developed specif-

ically to consider a series’ periodicity. Our results show that when applied to benchmark

data and compared to state-of-the-art schemes, the new procedures are computationally

inexpensive, improve the forecast accuracy, and greatly reduce, on average, the forecast

error bias, especially when applied to non-stationary time series.

In the second part of this dissertation, we introduce a new machine learning strategy

to select forecasting models. We call it the GEARS (generalized and rolling sample)

strategy.

The “generalized” part of the name is because we use generalized linear models

combined with partial likelihood inference to estimate the parameters. It has been shown

that partial likelihood inference enables very flexible conditions that allow for correct time

series analysis using GLMs. With this, it becomes easy for users to estimate multivariate

(or univariate) time series models. All they have to do is provide the right-hand side

variable, the variables that should enter the left-hand side of the model, and their lags.

GLMs also allow for the inclusion of interactions and all sorts of non-linear links. This

easy setup is an advantage over more complicated models like state-space and GARCH.

And the fact that we can include covariates and interactions is an advantage over ARIMA,

Theta-method, and other univariate methods.

The “rolling sample” part relates to estimating the parameters over a sample of



a fixed size that “moves forward” at different “rounds” of estimation (also known as

“folds”). This part resembles the “rolling window” validation scheme, but ours does

not start at T = 1. The “best” model is taken from the set with all possible combinations

of covariates - and their respective lags - included in the right-hand side of the forecasting

model. Its selection is based on the minimization of the average error measure over all

folds. Once this is done, the best model’s estimated coefficients are used to get the out-

of-sample forecasts.

We applied the GEARS method to all the 100,000 time-series used in the 2018’s

M-Competition, the M4 Forecasting Competition. We produced one-step-ahead forecasts

for each series and compared our results with the submitted approaches and the bench-

mark methods. The GEARS strategy yielded the best results - in terms of the smallest

overall weighted average of the forecast errors - more often than any of the twenty-five

top methods in that competition. We had the best results in 8,750 cases out of the 100,000,

while the procedure that won the competition had better results in fewer than 7,300 series.

Moreover, the GEARS strategy shows promise when dealing with multivariate time

series. Here, we estimated several forecasting models based on a complex formulation

that includes covariates with variable and fixed lags, quadratic terms, and interaction

terms. The accuracy of the forecasts obtained with GEARS was far superior than the one

observed for the predictions from an ARIMA. This result and the fact that our strategy

for dealing with multivariate series is far simpler than VAR, State Space, or Cointegration

approaches shines a light in the future of our procedure.

An R package was written for the GEARS strategy. A prototype web application -

using the R package “Shiny” - was also developed to disseminate this method.
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New Validation Procedures to Improve Forecasting Accuracy

2



Chapter 1: Introduction

Assessment of forecast accuracy is an essential step in evaluating the procedures

used in a given scenario. Such procedures can be divided into two classes: forecasting

methods and forecasting models1. We define a forecasting model as the equation that

represents the relationship (linear, non-linear, or non-parametric) between the variables

in the analysis. In contrast, a forecasting method includes the model, the estimation

procedure (i.e., the learning algorithm) used to fit the model, and the data used for that

estimation.

To compare different forecasting methods, or models, based on their forecasting

ability, one may choose to use “out-of-sample tests” that rely on partitioning the time

series into two (or more) non-overlapping subsamples. The different procedures used to

split a data set belong to a class called validation schemes. Splitting the data is neces-

sary because using the same sample to estimate and check a model’s prediction ability

might lead to over-fitting it without necessarily providing good forecasts. These data-

partitioning procedures also aim at minimizing the combined bias and variance. They do

it by adding some bias in return for a reduction in the sampling variance. This is known

as the bias-variance trade-off.
1 Here, we feel that it is helpful to formalize the distinction between forecasting methods and models,

similarly to what was done by Giacomini and White [1].
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The mechanics of using validation schemes to evaluate forecast accuracy are quite

simple. If one already has a forecasting model and wants to compare the performance

of different estimation methods (i.e., learning algorithms), the time series is partitioned

into a training set and a test set. The test set is wholly removed from the estimation

phase and used only to compute the “true” out-of-sample forecast errors. The remaining

observations become the training set, which is used to fit the model according to the

selected estimation method and obtain its forecasts.

The description above is usually the approach taken by formal “out-of-sample

tests” to evaluate different forecasting methods. These are procedures based on formal

hypothesis tests created to evaluate the conditional or unconditional predictive ability of

each forecasting method (the former asks “[C]an we predict which forecast will be more

accurate at a future date?”; the latter focuses on finding out “[W]hich forecast was more

accurate on average?’ - both quotes are from Giacomini and White [1, p. 1545]), like the

DM tests [2], or the tests by Giacomini and White [1] or Clark and McCracken [3] 2.

If one wants to compare different forecasting model formulations or optimize a

methods’ hyperparameters, the usual approach is to evaluate the predictions using data-

driven “out-of-sample tests.” In this approach, after splitting the original time series into

the training and test data sets, the training set is partitioned into an estimation set and

a validation set. The validation set is completely removed from the estimation phase

and used only to compute the “pseudo” out-of-sample forecast errors. Different model

formulations (and with distinct hyperparameters, if that is the case) are fit to the data in

2Diebold and Mariano [2], Diebold [4], and Clark and McCracken [3] prefer the term “pseudo-out-of-
sample tests.”
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the estimation set, and the validation set is used to calculate the accuracy of their forecasts.

The model formulation (or set of hyperparameters) that yields the smallest error measure

in the validation set is crowned the winner3. The best model is applied to the entire

training set, and the test set is used the obtain the “true” out-of-sample forecast errors.

To distinguish between the two “out-of-sample tests” terminologies seen in the lit-

erature, we will use the term “out-of-sample tests” to refer to the class of procedures

based on formal hypothesis tests. Oppositely, when forecast models are selected based

on data-driven approaches, we will use the term “out-of-sample validation”4. We want

to stress that the distinction we make here is merely to avoid terminological confusion,

since formal tests and partitioning the time series only into training and test sets can be

used to select forecast models [1], just as data-driven approaches that split the series into

validation and estimation sets can be used to evaluate different forecasting methods [7].

As to which approach is the better one, it is hard to say. For instance, Clark and

McCracken [3] argue that many of the tests of equal predictive ability (like the ones by

Giacomini and White [1] and West [8]) ignore “the real-time nature of the data used in

many applications” [3, p. 15]. Moreover, while Clark and McCracken [9] propose a test

where that nature is taken into account, many results hold only in special cases or are

not robust to the presence of some noise [3, p. 15-16]. Furthermore, Inoue and Kilian

[10] compare in-sample and out-of-sample tests under the null of no predictability and

conclude that the former produces more credible results (and with higher power) than the

3Such assessment would be more in line with the unconditional approach of the formal tests.
4This has a different meaning to the term “out-of-sample evaluation” by Tashman [5, p. 437], and the

expression “last block validation” from Bergmeir and Benı́tez [6, p. 193]. These authors used those terms
in reference only to a particular group of procedures that we define in Chapter 3 as “forward-validation
schemes” (see also Section 3.2).
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latter (provided that the proper critical values are used), especially when data mining5 is

used. Additionally, Diebold and Mariano [2, p. 253] stated that the formal comparison of

forecast accuracy - and, consequently, the development of formal tests - is difficult due to

the dependent nature of the forecast errors over time.

On the other hand, “out-of-sample validation” approaches mainly deal with the

problem of obtaining the best prediction and often do a good job of capturing compli-

cated relationships. Because of this, these methods have been outperforming classical

approaches. For instance, instead of worrying about the data-generating process, the

methods that won the last two M-competitions are machine-learning-based methods that

use validation schemes to select the best forecast model [11, 12].

From our literature review (Chapter 2), what determines which method one should

use is often the area in which one works. On the one side, econometricians seem to pre-

fer to use formal “out-of-sample tests” (based on the econometric, or economic-related,

journals in which they published their work). On the other, machine learning practition-

ers prefer to use “out-of-sample validation” schemes. And it is not like there is a debate

between the two areas to figure out what approach works best. Sometimes, it actually

seems like there is a giant gap between the two. For instance, in 2020, the first version

of a pre-print published by the journal “Data Mining and Knowledge Discovery” started

with the sentence “This paper introduces Time Series Regression (TSR): a little-studied

task of which the aim is to learn the relationship between a time series and a continuous

target variable” (Tan et al. [13] - the latest version has been corrected after these words

5That is, searching among different forecast model specifications and reporting only those with the
highest predictive ability.
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received backlash on social media).

In the previous example, it seems that terminology played a vital role in the con-

fusion6. However, in a larger sense, statisticians might be at fault for such a gap. In the

paper “To explain or to predict?”, Shmueli [15] writes:

“Recognizing that statistical methodology has focused mainly on inference
indicates an important gap to be filled. (...) Currently, the predictive void has
been taken up the field of machine learning and data mining. In fact, the dif-
ferences, and some would say rivalry, between the fields of statistics and data
mining can be attributed to their different goals of explaining versus predict-
ing even more than to factors such as data size. While statistical theory has
focused on model estimation, inference, and fit, machine learning and data
mining have concentrated on developing computationally efficient predictive
algorithms and tackling the bias–variance trade-off in order to achieve high
predictive accuracy.” (Shmueli, 2010, p. 306)

And in the abstract of the paper “Statistical modeling: The two cultures,” Breiman

[16] argues that:

“There are two cultures in the use of statistical modeling to reach conclusions
from data. One assumes that the data are generated by a given stochastic data
model. The other uses algorithmic models and treats the data mechanism as
unknown. The statistical community has been committed to the almost ex-
clusive use of data models. This commitment has led to irrelevant theory,
questionable conclusions, and has kept statisticians from working on a large
range of interesting current problems. Algorithmic modeling, both in theory
and practice, has developed rapidly in fields outside statistics. It can be used
both on large complex data sets and as a more accurate and informative al-
ternative to data modeling on smaller data sets. If our goal as a field is to use
data to solve problems, then we need to move away from exclusive depen-
dence on data models and adopt a more diverse set of tools.” (Breiman, 2001,
p. 199)

For those reasons, we will focus on “out-of-sample validation” schemes and will

provide a discussion that is more practical and less focused on theoretical proofs. Other

factors impacted this decision, and in Chapter 2, we discuss the hardships that dependent

data brings to the development of theoretical results in this literature.
6See Hyndman [14].
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We also propose new procedures to fill in a gap observed during our literature re-

view. In our survey, we noticed that the validation schemes developed for time series

often overlook one crucial characteristic of this type of data: its seasonality. Since a time

series might contain cycles and seasonal patterns, disregarding them when dividing the

series between training (estimation and validation) and test data might lead to an incor-

rect choice of the best forecasting model. This is the same argument that Bergmeir and

Benı́tez [6] make when discussing the importance of taking non-stationarity into account.

They write7,

“Non-stationarity has to be taken into account throughout the whole modeling
process, not only during model selection. Depending on the type of stationar-
ity, it can be easily removed by a preprocessing step (...). If non-stationarity
cannot be removed by such a preprocessing step, the model building proce-
dure may require a processing step that determines, which parts of the series
to include in the modeling, as proposed by Deco et al. [22], or prediction of
the series might even be an impossible task [22,33]. Furthermore, for non-
stationary series last block evaluation might be misleading (...), as the block
chosen for testing might be very different from the training data, and the un-
known future may also be different from the training data, the test data, or
from both of these.” (Bergmeir and Benitez, 2012, p. 198)

We could easily replace “non-stationarity” with “seasonality” on this quote. Firstly,

we say that seasonality (when it occurs) must be taken into account. However, in our re-

view, we observed that more than half of the top 20 most cited papers under the keywords

“machine learning time series” completely fail to mention anything about “season” or

“cycles.” Furthermore, a search on Google Scholar for the terms “machine learning time

series deseasonalized” or “machine learning time series deseasonalize” yielded fewer than

1,300 hits (1,240 in the former and 1,230 in the latter). It seems, then, that, in general,
7In the quote, Deco et al. [22] refers to the paper: G. Deco, R. Neuneier, B. Schürmann, Non-parametric

data selection for neural learning in non-stationary time series, Neural Networks 10 (3) (1997) 401–407.
The citation [33] refers to: T.Y. Kim, K.J. Oh, C. Kim, J.D. Do, Artificial neural networks for non-stationary
time series, Neurocomputing 61 (1–4) (2004) 439–447.
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those in Academia who deal with time series methods and machine learning do not con-

sider seasonal patterns. In the industry, the behavior seems the same. Only relatively

recently have we seen a movement towards dealing with seasonal data. For instance,

Google’s TensorFlow - a software library for machine learning - was released in 2015,

and in 2016 Google announced its capabilities to deal with time-series data [17]. How-

ever, only in 2019, they released a library for forecasting time series that accounts for a

series’ seasonality [18].

Secondly, for seasonal time series, last block evaluation might be misleading, as

the block chosen for testing might be very different from the training data. However, we

argue that because a seasonal series display a similar behavior over time, it is possible to

obtain similar validation and test sets in a way that improves model selection and forecast

accuracy, as shown in Figure 1.1.

Figure 1.1: Example of splitting a time series without account for its season-
ality (Panel A) and accounting for it (Panel B).

Based on this, we developed the p-Holdout family of validation schemes. The “p” in
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p-Holdout stands for “period,” an inspiration taken from Box et al. [19]8. And “Holdout”

was chosen because our schemes are simple modifications of the last block procedure,

which is more commonly called the holdout scheme since the last part of the data is “held

out” from the training set.

The p-Holdout family has three new validation schemes that take into account a

series’ periodicity. The first one simply called the p-Holdout scheme, is a simple

modification of the Holdout scheme that incorporates the period in an additive way,

while the cp-Holdout does that in a multiplicative manner. In both cases, the period

is obtained using the frequency function from base R9. The cep-Holdout works

similarly as the cp-Holdout but uses the dominant frequency of a time series estimated

from a spectral analysis of the data10. A real-life data example of partitioning a data set

under these procedures is given in Figure 1.2. In Panel A, the famous time series from

Brockwell and Davis [20, p. 557] of the annual numbers of lynx trappings for 1821–1934

in Canada is split into training (70% of the data) and test sets (30%). We would like to

obtain a validation set that is as similar as possible to the test set. Since the frequency

is equal to one (i.e., frequency(lynx) returns 1), we see in Panels B, C, and D that

the division according to the Holdout , p-Holdout , and cp-Holdout procedures

yields similar validation sets, and none of them capture the spike seen in the test set. On

the other hand, the cep-Holdout scheme can capture it, yielding a validation set that

resembles the test set.
8Quoting Box et al. [19, p. 306] in their chapter Analysis of Seasonal Time Series: “In general, we say

that a series exhibits periodic behavior with period s when similarities in the series occur after s basic time
intervals.”

9Here, the “frequency” is the number of sample observations before the seasonal pattern repeats.
10Given by the findfrequency function from the forecast package.

10



Figure 1.2: Time series with the annual number of lynx trapping for 1821-
1934 in Canada, partitioned according to different validation schemes. Panel
A shows the data split into the training set (blue) and the test set (red) us-
ing the holdout scheme. In Panel B, the training data is further divided into
estimation (green) and validation sets (yellow) according to the holdout pro-
cedure. Panels C, D, and E show the division of the training set using the
p-holdout, cp-holdout, and cep-holdout, respectively. In Panels B-E, the max-
imum length of the estimation set is 70% that of the training set.
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To evaluate our procedures, we used an experimental design that was first intro-

duced by Bergmeir and Benı́tez [6] and augmented by Bergmeir et al. [21] to include sea-

sonal cases. The benchmarking data sets created via Monte Carlo simulation were also

used by Cerqueira et al. [22] to compare the performance of several validation schemes.

These authors also used real-life data sets in their study. Since the work of Cerqueira

and Torgo and Mozetič [22] is the most recent one (2020) and includes more schemes

and time series, we used their methodology to assess our proposed scheme. By using

the same data and the same methodology, we can directly compare our results to theirs.

Henceforth, we will refer to the work of Cerqueira et al. [22] as CTM.

In the experimental design by CTM, the goal is to evaluate the impact in forecast

ability of the different data-splitting methods (the validation schemes). This is done by

calculating the difference in the out-of-sample error in the test set (also called the “ground

truth loss” [22] or “true out-of-sample generalization error” [23]) and the out-of-sample

error in the validation set (the “pseudo out-of-sample generalization error”).

To do that, we take a time series and split it into the training and test sets using the

classic Holdout scheme. A given forecasting model is fitted to the training set using

a given estimation method, and the forecasts are compared to the out-of-sample obser-

vations in the test set yielding the generalization. Then, the training set is further split

into the estimation and validation sets using each one of the fourteen validation schemes

considered here. The same forecasting model is fit using the same estimation method,

and its forecasts are used to calculate the generalization error based on the validation

set. Once both generalization errors are obtained, the absolute predictive accuracy error

(APAE - which is the absolute difference between the errors) is calculated, and the vali-
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dation schemes are ranked based on it - the scheme that yielded the smallest APAE value

is the “best” for that time series and receives rank = 1, while the scheme with the maxi-

mum APAE is ranked 14-th. After going over this process for all time series, we take the

average of the ranks obtained from each one, and we evaluate which scheme, on average,

yielded the smallest values for the APAE metric.

However, the “pseudo” out-of-sample errors can be very close to the “true” out-of-

sample errors, yet their difference can be far from zero. Ideally, both should be close to

each other and close to zero. The APAE metric evaluates the former, and CTM uses the

the log scaled of the predictive accuracy error (PAE) metric to evaluate the latter. The

PAE metric is essentially the same as the APAE metric, it returns the difference (not the

absolute difference) between the estimation error (obtained by applying a loss function

to the forecasts from the model fit to estimation set and the actual observations from the

validation set) and the “true” error (applying the same loss function to the forecasts from

the model fit to the training set and the actual values from the test set).

Using the data from CTM, we observed that accounting for the periodicity has a

considerable impact on reducing the average forecast error bias (measured by the pre-

dictive accuracy error - PAE - metric, especially in non-stationary series, as shown in

Chapter 6. Moreover, when we focused only on periodic series (with seasons or cycles

greater than 1) taken from a subsample of 1,000 real-life time series randomly selected

from the 100,000 time series in the M4 Forecasting Competition database [24], we no-

ticed that the new schemes yielded better results, both in terms of being the schemes that

yielded the smallest forecast errors (quantified by the absolute predictive accuracy error

- APAE - metric) more often than all of the other methods, and in terms of providing a
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smaller error bias (PAE). And again, the best results were observed when non-stationary

series were considered.

To complement our analysis, we also provide a brief history of the use of validation

schemes with time-series data (Chapter 2). Based on this, we tried to organize all the dif-

ferent terminologies used in the statistics, econometrics, and machine learning literature

into one set of terms.

In Chapter 3, we provide a more comprehensive account of the details for each

validation scheme. Following Schnaubelt [23], who wrote the basic formulas for some of

the validation procedures and how to use them to measure forecast accuracy, we write a

general theory on how to use the schemes to evaluate forecasting methods and models.

We expand on Schnaubelt’s work by detailing each validation scheme and providing the

associated formulas for each procedure’s out-of-sample generalization errors, as Arlot

and Celisse [25] did for the independent case. We also added information on schemes

not covered by Schnaubelt [23], and present schematic illustrations - made specifically

for the time series case - of partitioning the series using each one of them. From our

literature survey, it seems that this is the first time that an organized, detailed, and properly

illustrated survey of (most of) the state-of-the-art validation schemes used in time series

is given within a time series context.

We expand on the motivation behind the creation of the p-Holdout family of

validation schemes in Chapter 4. Similar to what was done for the other validation pro-

cedures, we provide the formulas for the three new methods that we are proposing and

explain how to use them to evaluate forecasting models.

The methodological approach we used to evaluate our new schemes, including the
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estimation methods (learning algorithms) used to fit the models and the details about the

Monte Carlo simulations we ran, can be found in Chapter 5. In that same chapter, we

give a brief description of the real-life data sets taken from CTM and the M4 Forecast-

ing Competition that we used to complement our analysis. The results are presented in

Chapter 6, and Chapter 7 contains our final remarks and suggestions for future research.
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Chapter 2: Validation Schemes and Forecast Evaluation - A Brief His-

tory

One approach to evaluate forecast accuracy and compare forecasting methods and

models is to use data-driven procedures to split the original time series into two (or more)

non-overlapping sub-samples and use one part to fit the model and the other to evaluate

its predictive accuracy. The method/model that yields the smallest error measure is con-

sidered the “best” one, as it was validated during this entire process. Thus, we call this

approach “out-of-sample validation,”1 and the class of procedures used to split the data

receives the name “validation schemes.”

The way we call the sub-samples has changed a lot over time. Nowadays, the first

sub-sample is usually called the training data (or the “in-sample data” - IS - as it is of-

ten called in the statistics/econometrics literature). It is used to fit a selected forecasting

model and obtain the regression coefficients of each covariate (i.e., it is used to learn

the weights of the features). We then use the estimated coefficients to obtain the out-

of-sample forecasts and compare these to the observed values in the second sub-sample,

1As mentioned in the Introduction (Chapter 1), some authors call the methods of evaluating the forecast
accuracy based on data splits as “out-of-sample tests.” It seems that this terminology started with Meese
and Rogoff [26]. Other names have been used (for instance, Diebold [4] calls them “pseudo-out-of-sample
procedures,” Stock and Watson [27] call them “simulated out of sample” methods, and Makridakis [28]
calls it “sliding simulation,” to name a few), but “out-of-sample tests” seems to be the most used term.
However, from our review, “out-of-sample tests” seem to encompass only a subset of the procedures, the
ones called “forward-validation” schemes. More on this later.
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the test data set (or the “out-of-sample data” - OOS). At this step, the method’s forecast-

ing accuracy is calculated based on some error measure selected by the analyst (RMSE,

MAD, MASE). Figure 2.1 - Panel A shows an example of a data set split into a training

set and a test set using the Holdout validation scheme (more about it in Section 3.2.1).

This is the simplest validation scheme, and it has this name because the test data is “held

out” of the data used for fitting. The same approach can also be used for model selection

and hyperparameters’ optimization. In those cases, the training data is further divided

into an “estimation set” and a non-overlapping “validation set”2. This procedure is shown

in Figure 2.1 - Panel B.

Splitting the data through validation schemes is necessary because using the same

sample to estimate and to check a model’s prediction ability might lead to over-fitting

the model without necessarily providing good forecasts, a phenomenon that time series

researchers have observed, at least, since the 1930s [30, in the text of Armstrong, 31]3.

More recently, White [32] warned us about the dangers of “data snooping” - when the

same data set is used for model selection and inference.

The history of partitioning a time series to evaluate its forecasts is long. In the

first half of the 1930s, Wilson [33] used data splits in conjunction with periodograms to

search for hidden periods in a time series. To do so, the author used a large series with

1680 months spanning the years of 1790 to 1929 and divided the data into three blocks

(1790-1859, 1825-1894, and 1860-1929), and used each block to obtain the forecasts.
2When these methods started to become popular, these sub-samples were known as “construction sam-

ple” and “validation sample” (Stone [29]). Stone preferred the term “assessment” to “validation” because
the latter “has a ring of excessive confidence about it” [29, p. 111]. We agree with this terminology, but we
shall keep using “validation” since it is the current norm.

3See Armstrong [31, p. 338-339] for more examples of authors that wrote in the first half of the twentieth
century about partitioning a time series to evaluate the quality of the forecasts.
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Regarding the middle block (1825-1894), Wilson [33] wrote that:

“It is further seen that as a backward forecaster the series computed from the
periods and coefficients indicated by the periodogram of the middle half, is
also worse than useless; as a forward forecaster it is not bad, and indeed
forecasts the course of the index during the decade 1900-1909 better than it
fits any decade on which the calculations are based.” (Wilson, 1934, p. 408,
emphasis added)

At the beginning of the 1950s, Ferber [34, in the text of Ferber, 35], used data until

1940 to forecast the value of the annual savings during the 1947-1949 period. The author

calculated the average absolute percentage error of the forecasts and compared it with the

sample coefficient of determination (r2). The goal was to evaluate if r2 could be used as

an indicator of predictive accuracy.

Kirby [36] used data splits to compare the accuracy of forecasting methods (expo-

nential smoothing, moving averages, and least squares) using monthly data that spanned

90 months. The author used 23 real and 23 simulated time series with and without sea-

sonal and trend adjustments to obtain short-term (next month) and intermediate-range (6

months) forecasts. The first 36 months were used to fit the models and “allow the ex-

ponential smoothing bases to settle down” [36, [p. B-203]. Starting at the 4th year, the

author computed forecasts at each month and used the actual observations to calculate the

mean absolute forecast error.

Later, Williams and Goodman [37] used a method that closely resembles one of the

validation schemes that we use today (see Section 3.2.3). To obtain a confidence limit for

economic forecasts, they fitted a model to the first 24 observations and used it to predict

the 25th and obtain its forecast error. Then, a model was fit using the first 25 observations

to obtain the forecasts error of the 26th. This procedure was repeated until 18 forecasts
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Figure 2.1: Possible ways to partition a single data set with observed values
of y. Panel A displays the time series divided into training set and test set,
and shows the relationship between the “true” out-of-sample data and the
associated forecasts. Panel B shows the division of the training set into the
estimation and validation sets.

were obtained, along with a confidence limit for each forecast.

In the following year, Nelson [38] divided his data into “sample” and “post-sample”

sets and used them to respectively estimate and evaluate the prediction performance of the
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FRB-MIT-PENN econometric model [39, 40] and of ARIMA models [19, 41] of the U.S.

economy.4 Also in 1972, Armstrong and Grohman [7] used a validation-like procedure to

compare different methods5 of forecasting the revenue of the U.S. air travel market.

Up until now, the papers that we have reviewed use procedures that keep only ob-

servations from the “future” in their test sets. Several authors kept using this “forward”

approach [1, 2, 3, 8, 26, 27, 42, 43, 44]. But after the work of Stone [29], another “branch”

of validation schemes started to be used within a time series context.

Stone [29] provided an extensive study on the use of the cross-validation (CV) ap-

proach that we now call the leave-one-out procedure (Section 3.3.1). It basically does

what the name suggests. It removes one observation from the entire data set and makes

that observation to be the entire test set. All the remaining observations lie in the esti-

mation set. What set Stone’s work apart is that this author was one of the first to use

cross-validation schemes for model selection and prediction evaluation (with indepen-

dent data). Stone [45] also showed that this scheme is asymptotically equivalent to the

AIC (Akaike’s Information Criterion; Akaike [46]). Since then, the use and development

of CV techniques for dependent data have become more popular. Bergmeir and Benı́tez

[6], Ansley and Kohn [47], Jong [48], Snijders [49], Burman [50], Zhang [51], Yao and

Tong [52], Burman et al. [53], Kohavi [54], Racine [55], Kunst [56] - all these papers

use the explicit terminology of “cross-validation” in a dependent data setting. We discuss

some of these approaches in Chapter 3.3.

We see, then, that the basic idea of splitting the data to fit-and-predict to evaluate

4That is the idea behind the Holdout scheme. See Section 3.2.1.
5As we have defined on footnote 1. The original authors used “models.”
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a method’s, or model’s, forecasting ability is not new and has been evolving. Since the

publication of the above papers, a lot has been done, and new authors have developed

many schemes for dividing the samples. We classify the procedures into two classes:

cross-validation and forward validation schemes.

Here, the term cross-validation (CV) refers to the group of schemes in which the

time-series observations are randomly selected to be part of the training, estimation, and

test sets. In this resampling procedure, observations from the past become part of the

test set, so the order of the series is destroyed. We distinguish those from the forward-

validation (FV) schemes, the group that encompasses the procedures where the data is

divided in a way that only observations from the “future” are in the test set (i.e., its indexes

are past the indexes of the observations in the training set). In such schemes, the order

of the observations is kept intact within both training and test sets (one example is the

Holdout scheme)6. Here, we consider that both groups comprise the larger class called

validation schemes7.

We indicate Rao and Wu [59] and Arlot and Celisse [25] for extensive surveys on

cross-validation procedures. It is worth mentioning that since these schemes were not

(at least, initially) developed within a time-series framework, the discussion by Arlot and

Celisse [25] focuses on the cross-sectional uses of these methods, and the authors only

briefly discuss the use of those procedures in a time-series context [25, see Section 8.1,

6Our definition of “forward validation” is different from the one by Hjorth [44]. Hjorth used this name
to describe a procedure similar to the one discussed in Section 3.2.3 (in particular, the one discussed in
Section 3.2.3), while here, we used it to define an entire class of schemes. Hjorth’s procedure would, then,
be a member of this class.

7There are other data validation procedures (for instance, those based on bootstrap methods) that could
be included in this larger class, but they will not be covered here. We refer the reader to the work of Fukuchi
[57], Kitamura [58], and Kunst [56].
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p. 65-66]. Similarly, Rao and Wu [59] discuss cross-validation techniques in several

contexts, but their approach to order selection in time series Rao and Wu [59, p. 31-36]

does not include the schemes discussed here (they rather focus on AIC-like procedures).

Tashman [5] provided the first systematic review in a time-series context. However,

only forward-validation schemes (dubbed as “out-of-sample tests” by the author) were

discussed. Clark and McCracken [60]’s discussion is focused on formal “out-of-sample

tests,” but since these methods depend on some form of data split, the authors discuss

a few of the forward validation schemes. More recently, Schnaubelt [23] wrote a more

theoretically-focused review of validation schemes that includes both groups and used

the schemes to compare the forecasting ability of machine learning models applied to

non-stationary series.

As mentioned earlier, cross-validation schemes were not developed within a time-

series context and often assume independent and identically distributed (i.i.d.) obser-

vations. The reason behind this assumption is that the reshuffling destroys the order-

ing of the observations. This is one of the main criticisms on using cross-validation

with time-dependent data [6]. Moreover, in a data-dependent case, [61] discusses how

cross-validation methods, when used to select a model (the smooth function) in a non-

parametric case, produce an under smoothed estimate and leads to an overfitting of the

data. Practical problems are also observed when dealing with missing observations [6].

These may be the reasons why statisticians do not often use these schemes in traditional

forecasting [6, 62]. On the other hand, forward-validation procedures only use a part of

the information available and might lose potentially important information (a problem

that can also heavily affect cross-validation approaches, like the modified CV method
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discussed in Section 3.3.4).

Given these characteristics, it is really difficult to prove some of the scheme’s the-

oretical results when using dependent data8, and it is fairly difficult to prove some of

the results when applied to time series data because of the “ordered observations” com-

ponent. Especially if one wants to avoid making restrictive assumptions, like assuming

serially uncorrelated forecast errors [3, p. 10].9

Nevertheless, it is important to evaluate forecast accuracy using genuine forecasts

alongside data that was not used to obtain said forecasts, and validation schemes provide

a way to do that. Some advocate for the use of these schemes as is (under certain as-

sumptions) [21], other procedures - or, modifications of the usual strategies - have been

developed over the years (Jong [48], Snijders [49], Burman et al. [53], Racine [55], Kunst

[56], Chu and Marron [67]) to properly account for the intrinsic dependency seen in time-

series data. And while no scheme is perfect and free from issues, they seem to work in

various real-life situations. Aside from the several papers already cited, recent papers

have focused on the evaluation and comparison of the validation schemes.

Bergmeir and Benı́tez [6] have developed a rigorous and extensive experimental

design to evaluate the consequences of using different validation schemes10 on model

selection and forecast accuracy. Their ultimate goal was to assess if using cross-validation

8 Arlot and Celisse [25]’s extensive survey on cross-validation procedures presents the results (not their
proofs) of theorems on the asymptotic properties of these schemes, as well as the closed forms of the
expected values and the variance of the estimators of the risk (in the context of our paper, “risk” is the
generalization error given in Eq.(3.4, Chapter 3). However, most of these results were proved under the
assumptions of independent and identically distributed observations. For time-dependent data, only a few
results for cross-validation methods were mentioned by the authors [25, p. 65-66], and these were specifi-
cally related to model selection procedures in a non-parametric setting where the errors are correlated.

9Yet that did not stop Giacomini and White [1], Diebold and Mariano [2], West [8], Clark and Mc-
Cracken [9], Bergmeir et al. [21], Racine [55], Burman and Nolan [63], McCracken [64], Hirano and Wright
[65], McDonald et al. [66], and many others from working on theoretical problems.

10Bergmeir and Benı́tez [6] used the term “model selection procedures” to refer to validation schemes.
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methods - devised for independent data - on data that present dependencies would unduly

affect the results. In other words, they aimed to assess if it is possible to obtain good

predictions even after the time ordering of the observations was destroyed. The authors

concluded that the theoretical problems that one might expect from using cross-validation

methods with time-series data were not detected in the empirical results. Moreover, the

use of the forward-validation schemes yielded worse results than using cross-validation.

Bergmeir et al. [68] extended [6] by evaluating to what extent cross-validation

schemes are better than forward-validation procedures for directional forecast evalua-

tion11, using a Monte Carlo analysis. Aside from their results (they recommended using

the blocked k-fold - see Section 3.3.2 - when dealing with directional forecast evaluation),

the main output from Bergmeir et al. [68]’s paper are the data sets that they simulated.

Those data sets were also used by Bergmeir et al. [21] and Cerqueira et al. [22], and their

description can be found in Section 5.1.1.

Bergmeir et al. [21] wrote about the validity of using cross-validation for evaluating

autoregressive time series prediction and mathematically proved that, under the assump-

tion that the rows of the embedded matrix (the matrix with the past values of the covariates

at different lag values and their respective response variables, see Section 5.2.2) are condi-

tionally uncorrelated, the estimated prediction error for the k-fold cross-validation scheme

(Section 3.3.1) converges to the real prediction error. They used this result and empirical

results from Monte Carlo simulations to advocate for using this cross-validation proce-

dure without any modifications. They also expanded on the experimental design from

11Directional accuracy measures if the the forecasts have the same direction as the actual “out-of-sample”
values. In a very crude way, it measures if ŷt+1 − yt > 0 when yt+1 − yt > 0.
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Bergmeir and Benı́tez [6] and Bergmeir et al. [68] and added a simulated time series that

contains seasonal patterns. We discuss the simulated series in Section 5.1.3 and use the

same design to evaluate the p-Holdout family of schemes (Section 6.3).

Schnaubelt [23] compared the effectiveness of validation schemes applied specif-

ically to non-stationary time series data. The author followed the experimental design

from Bergmeir and Benı́tez [6] and a preprint of Cerqueira et al. [22] [69] and introduced

time-dependent parameters as a perturbation of the stationarity of the process. The goal

was to mimic the changing dynamics observed, for instance, in financial data. The au-

thor concluded that cross-validation schemes yielded estimates with the largest bias and

variance vis-à-vis forward-validation schemes. Moreover, forward-validation procedures

yielded better estimates of the out-of-sample error. In the end, Schnaubelt [23] stated that,

“Using cross-validation for time-series applications comes at a great risk.
While theoretically applicable, we find that cross-validation often is associ-
ated with the largest bias and variance when compared to all other validation
schemes. In most cases, blocked variants of cross-validation have a similar
or better performance, and should therefore be preferred if cross-validation
is to be used. If global stationarity is perturbed by non-periodic changes in
autoregression coefficients, we find that forward-validation may be preferred
over cross-validation.” (Schnaubelt, 2019, p.33)

Cerqueira et al. [22] reached similar conclusions after performing their experiment.

These authors used the same design as Bergmeir et al. [68] and Bergmeir et al. [21] and

added real-life data sets from [70] to their analysis. They also focused on time series

with a high sampling frequency (like hourly and daily data) since this characteristic “is

typically associated with more data, which is important for fitting the predictive models

from a machine learning point of view.”

All authors mentioned above conclude that stationarity is a crucial time series prop-
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erty to taking into account when selecting the proper validation scheme. However, only

Bergmeir et al. [21] evaluate the impact that the periodicity of a series has on this se-

lection. They used a seasonal AR process as the data-generating process (DGP) with a

significant lag 12 (seasonal lag 1) as a counterexample to show a counterexample where

the cross-validation procedures break down. CTM also used this data set, but their paper

has no mention of the impact that this characteristic has on the results.
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Chapter 3: Validation Schemes and the Selection and Assessment of Fore-

casting Models

3.1 Using Validation Schemes to Evaluate Generalization Performance

Now that we have seen how these validation schemes evolved, it is time to under-

stand their details and learn how we can use them to evaluate the generalization perfor-

mance of a forecasting method or model.

But before getting into its details, let us start by discussing the form of the forecast-

ing models. Let {Yt}Tt=1 be a time series of interest, and {yt}Tt=1 its observed values. We

define the random covariate process Zt−1 as the p-dimensional vector of past explanatory

variables:

Zt−1 ≡
(
Z(t−1)1, · · · , Z(t−1)p

)

The observed values of this process are {zt−1}, and in the machine learning literature,

this is known as the p-dimensional vector of features used to predict the desired output

yt. The vector Zt−1 can also contain past values of the response variable Yt and certain

covariatesXt,Wt, known at t−1 (e.g., when these are deterministic or shifted processes).

We denote by Ft−1 the σ-algebra generated by all the covariates observed up until time
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t− 1:

Ft−1 ≡ (Yt−1, Yt−2, . . . , Xt,Wt, . . . ,Zt−1,Zt−2, · · · )

To forecast a time series yt, one may use the available covariates to improve the

results. In the statistics literature regarding generalized linear models [71], this can be

done by defining the conditional expectation of the response given the past, µt, as:

µt ≡ E [Yt|Ft−1]

At times, and when it is feasible, it is convenient to think of Zt−1 as already in-

cluding past values of the response, and the known Xt,Wt, . . ., so the time-dependent

random covariate vector process {Zt−1} may represent one or more time series and func-

tions thereof that influence {Yt}. Hence, we can use a monotone function g(·) to relate µt

to the covariates:

g (µt) = Z>t−1θ =

p∑
j=1

θjZ(t−1)j

where θ is a p-dimensional vector of parameters associated with the covariates. If the

link function g(·) is a canonical link and if the data is normally distributed, Fokianos and

Kedem [72] showed that θ could be estimated appropriately through partial likelihood

methods that account for time-dependent data.

When applying machine-learning methods to time-series data, a typical way of rep-

resenting the relationship between the observed yt and the past values of the covariates
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(features) is:

yt = g(zt−1, . . . , zt−p;θ) + εt (3.1)

where εt is a shock or disturbance term, θ is a p-dimensional parameter vector, and

g(zt−1, . . . , zt−p;θ) = Eθ[Yt|Zt−1, . . . ,Zt−p] (3.2)

Here, g(·) could be any function: linear, nonlinear, or nonparametric, and we often

do not know which one. A “learning procedure” associated with a validation scheme is

often used to search for this function in machine learning approaches.

The learning procedure is a series of steps that allows us to use validation schemes

to calculate the (expected) generalization errors of the methods and models. This method

of evaluating the performance is of paramount importance since it guides us in choosing

the best available forecasting method or model and gives us an idea of the quality of the

final selection. It begins with the choice of a learning algorithm (i.e., a methodology that

includes an embedded covariate/feature selection method, and a method to estimate θ) -

like random forests (RF), the Rule-Based Regression (RBR) algorithm, the Box-Jenkins

approach (ARIMA), or even a generalized linear models (GLM) with partial likelihood

estimation. Then, we split the entire data set into two subsets, the training and test data

sets, which will help us obtain the (expected) generalization errors.

The generalization error of a forecasting model ĝ is the forecast error over an in-

dependent test set. If we partition the original time series into a training set of length N ,
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given byD ≡ {(zt, yt)}Nt=1 , and a test set of length1 l, defined asDtest ≡ {(zt, yt)}Tt=N+1 ,

we can write this error as

LD ≡ EZ,Y ∈Dtest [` (Y, ĝ(Z,θD))| D,θD] (3.4)

where Z = {Zt−1, . . . ,Zt−p} and Y = Yt (we dropped the subscript for convenience).

Moreover, θD is estimated using D, and ĝ(Z, θ̂D) is the out-of-sample prediction of Y

after applying θ̂D to Z ∈ Dtest. Here, `(·) is the loss function that measures the differences

between Y and ĝ(·)3.

The generalization error given in Equation (3.4) is also known as the test error. The

quality of the approximation between ĝ(·) and the true forecasting model g(·) would, ide-

ally, be measured by it4. However, there is an issue with this metric since it is calculated

for a single fixed training data set, D. Hastie et al. [74, chapter 7] argue that this leads to

a slightly larger mean absolute deviation. Their results show [74, p. 257] that, in practice,

most validation schemes provide better estimates of the expected prediction errorL, given

1There are two ways to define the length of the training and test sets. In the first one, the analyst can
define a constant value, l, for the forecast horizon. In this case, the length of the test set will be just l, and the
length of the training data set will be T − l. In a different approach, if we let qt ∈ [1/T, 1) be the proportion
of the entire data set that we will use as training data, then the length of the test set will be l ≡ d(1−qt)·T e2.
Usually, the size of the test set is equal to 20%-30% of the entire data (i.e., (1− qt) ∈ [0.2, 0.3]).

Therefore, there are two possibilities for the length of the training data set:

N ≡

{
T − l, if l is a constant forecast horizon
bqt · T c, if l = d(1− qt) · T e,∀qt ∈

[
1
T , 1

) (3.3)

3Typical choices are the quadratic loss, `
(
y, ĝ(z, θ̂D)

)
=
(
y − ĝ(z, θ̂D)

)2
; and, the absolute loss,

`
(
y, ĝ(z, θ̂D)

)
=
∣∣∣y − ĝ(z, θ̂D)∣∣∣.

4The risk function is the expected value of the loss function [73, p. 349]. From Equation (3.4), the
generalization error LD might be seen as the risk of ĝ, as mentioned in footnote 8 in the Introduction
(Chapter 1).

30



by:

L ≡ Eθ [` (Y, ĝ(Z,θ))] = E [LD] (3.5)

The above expectation is also known as the expected test error (or true error) and it is

sometimes represented by Err, instead of L [74, p. 220]. Moreover, it takes the average

over all random components, including the randomness in the estimation set that gener-

ated ĝ.

We can obtain a sample estimator for L by using validation schemes to partition

the training data into an “estimation set”, D (Ie), and a non-overlapping “validation set”,

D (Iv). Here, Ie is the non-empty proper subset of indexes from {1, . . . , N} that identify

the observations used to estimate (hence, the e on Ie) the parameters and obtain the

forecasts. The set Iv is the complement of Ie and returns the index of the observations

used to validate (accordingly, this puts the v on Iv) the model by means of calculating

its forecast accuracy. Thus, Iv ≡ Īe = {1, . . . , N}\Ie5. One way to find D (Ie) and

D (Iv) is to take a similar approach to what was done to get D, and Dtest. If we take a

proportion qe ∈ [1/N, 1) of the training data to form the estimation set, then its length will

beNe ≡ bqe ·Nc. Consequently, the length of the validation set will be lv ≡ d(1−qe)·Ne.

The above situation is the basis of the Holdout scheme (Section 3.2.1), and it is

trivial to see from the discussion that this procedure partitions the training data only once.

However, most schemes depend on several “rounds” of partitions made at different split

points. The rationality behind this is that if one uses the Holdout scheme with only one

5Since Ie is a non-empty proper subset, then its complement Iv is also non-empty. Moreover, it is
trivial to see that Ie ∩ Iv = ∅
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split, it is possible that the selected partitions that form the estimation and validation sets

are not “representative.”. Then, the quality of the forecast accuracy will be dependent on

that single split point. By having different split points at each “round,” it is hoped that

the forecast accuracy of a model under a particular scheme (calculated by evaluating the

mean loss of the model over all “rounds”) would improve. But, since the models need

to be estimated at each “round” (and considering that some machine learning algorithms

already take a long time to learn the weights), the computational time of these procedures

is longer than the one for the Holdout scheme.

Formally, these “rounds” are called folds. As discussed, at each fold, the training

data set D is split differently into the estimation and validation sets. This way, the data

sets used to fit and evaluate the forecast model in fold i are distinct from the ones used

in fold i + 1. The total number of folds, k, depends on the scheme (for the Holdout ,

k = 1).

For i = 0, . . . , k−1, the sets Iei and Iei are the sets of indexes from {1, . . . , N} that

indicate which observations will form the estimation and validation sets at the i-th fold:

D (Iei ) and D (Ivi ), respectively. Finally, we can define a general form for a validation

scheme, V(D; k), in those terms:

V(D; k) ≡ {(Iei , Ivi )| Iei and Ivi ⊆ {1, . . . , N}, Iei ∩ Ivi = ∅}k−1i=0 (3.6)

Using the general form of a validation scheme from Equation (3.6), we can define

an empirical estimator of L by taking the average of the mean out-of-sample losses over
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all k splits [23]:

L̂(D,V , f) ≡ 1

k

k−1∑
i=0

1

Card (Ivi )

∑
(z,y)∈D(Ivi )

`
[
y, f

(
z, θ̂D(Iei )

)]
(3.7)

where the forecast model f belongs to the set of all possible model formulations G, and

Card (Ivi ) is the cardinality of the i-th validation index set. In essence, the above equation

returns an estimate of the out-of-sample prediction error and can be used to select ĝ(·).

If one uses a winner-takes-all approach to evaluate between all possible f ∈ G

models, then the selection of ĝ is done by selecting the formulation f that yields the

smallest empirical generalization error. That is,

ĝ = arg min
f∈G

L̂(D,V , f) (3.8)

Then, the estimator of L for the best forecast model ĝ is

L̂(D,V , ĝ) ≡ 1

k

k−1∑
i=0

1

Card (Ivi )

∑
(z,y)∈D(Ivi )

`
[
y, ĝ

(
z, θ̂D(Iei )

)]
(3.9)

From Equations (3.7) and (3.8), we see that the choice of V has an impact on the re-

sult. CTM used several estimation methods with the same ĝ6 to evaluate the performance

of the different validation schemes. Here, we will use their approach with the addition

of our proposed validation schemes to the analysis. By using the same ĝ and the same

estimation methods, we will be able to properly compare all the validation schemes. But

6However, CTM did not use the approach from Equation (3.8) to select ĝ. They used an auto-regressive
process based on the time delay embedding method created by Takens [75]. More on this in Section 5.2.2.
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before getting into the comparisons, it is essential to understand the characteristics of each

procedure.

3.2 A framework for Forward validation schemes

3.2.1 Holdout

The most straightforward validation scheme is given by the Holdout approach,

as shown in Figure 2.1 in the introduction (and replicated in Figure 3.1 below). It has

this name because the validation data is “held out” of the data used for estimating the

parameters. Some authors used this approach in a time-series context since the 1930s (as

discussed in the Introduction, Sec. 1), but under different names. It probably got the name

Holdout after the work of Devroye and Wagner [76, 77]7. Nowadays, it is also called

the last-block validation scheme [6, p. 193], and it relies on a single data split to create

the sets that will be used to estimate the parameters and validate the forecasting model.

If we take only a proportion qe ∈ [1/N, 1) of the training data8, D = {(zt, yt)}Nt=1,

to create our estimation set, we can use the general validation scheme given in Equation

(3.6) to write the Holdout validation scheme VHO(D; qe)
9:

VHO(D; qe) ≡ {(Ie, Iv)| Ie = {1, . . . , bqe ·Nc}, Iv = {bqe ·Nc+ 1, . . . , N}} (3.10)

7It is worth mentioning that these authors developed their methodology using independent data.
8Since Equation(3.6) was defined in terms of the estimation set and the validation set, we are assuming

that the data was already split into training data and test data by a proportion that may, or may not, be equal
to qt (this choice depends on the analyst).

9Since i = 0, . . . , k − 1, then k = 1 (because it is a single split), which implies that i = 0. Hence, we
will suppress the i in the notation for the Holdout scheme.
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Figure 3.1: Example of a data set divided using the Holdout forward vali-
dation scheme with T = 16, qt = 0.8, and qe = 0.7.

From Equation (3.10) and Figure 3.1, it is trivial to see that the estimation and

validation sets are composed byD (Ie) = y1, . . . , ybqe·Nc andD (Iv) = ybqe·Nc+1, . . . , yN ,

respectively.

There is a different way to write Equation (3.10) that will be useful when we discuss

the p-Holdout family in Chapter 4. Recall from the previous section that the length of the

validation set under the Holdout scheme is:

lHO
v ≡ d(1− qe) ·Ne, for qe ∈ [1/N, 1) (3.11)

And if we notice that

N − lHOv = N − d(1− qe) ·Ne

= N −N + bqe ·Nc

= bqe ·Nc
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we can substitute bqe ·Nc in Equation (3.10) for N − lHOv , and rewrite this equation as:

VHO(D; qe) =

{
(Ie, Iv)| Ie =

{
1, . . . ,

(
N − lHOv

)}
,

Iv =
{(
N − lHOv + 1

)
, . . . , N

}}
(3.12)

Finally, we can then use all this to write Equation (3.7), the average expected out-

of-sample error, for the Holdout case:

L̂
(
D,VHO, f

)
≡ 1

d(1− qe) ·Ne
∑

(z,y)∈D(Iv)

`
[
y, f

(
z, θ̂D(Ie)

)]
(3.13)

or

L̂
(
D,VHO, f

)
≡ 1

lHOv

∑
(z,y)∈D(Iv)

`
[
y, f

(
z, θ̂D(Ie)

)]
(3.14)

With the results from Equation (3.13) for each forecasting model f , we can find ĝ

using Equation (3.8). CTM used a different way to obtain ĝ, as we will discuss in Section

5.2.2. Nevertheless, with ĝ, we move forward to evaluate its forecasting accuracy on

the test data. That is, we fit ĝ using the entire training data D, obtain the forecasts, and

calculate L̂
(
D,VHO, ĝ

)
based on Equation (3.14). Then, we evaluate the generalization

performance by comparing this last measure to the error obtained from the test data,Dtest,

by calculating:

L̂(D,Dtest, ĝ) =
1

l

∑
(z,y)∈Dtest

`
[
y, ĝ

(
z, θ̂D

)]
(3.15)
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CTM and Schnaubelt [23, p. 11] call the result from the above equation the “ground

truth loss.” Schnaubelt [23, p. 25] also calls it the “true out-of-sample generalization

error.” Both authors use Equation (3.15) as the basis to evaluate the out-of-sample perfor-

mance of the validation schemes (see Section 5.2.6).

3.2.2 Rep-Holdout

The idea behind the repeated holdout validation scheme (or, Rep-Holdout ) is

based on taking several “rounds” (folds) of the holdout procedure, where the split point,

ai, is randomly selected (without replacement) from a sampling window at each fold.

To get this window’s range, we need to select a proportion qe ∈ [1/N, 1) of the

training data to be used as the estimation set and a proportion qv < (1 − qe) for the

validation set. So, in this case, the length of the estimation and validation sets are

N repHO
e ≡ bqe ·Nc (3.16)

lrepHOv ≡ bqv ·Nc (3.17)

Then, for every fold i = 0, . . . , k−1, possible values of ai are randomly taken from

the window {(
N repHO
e + 1

)
, . . . ,

(
N − lrepHOv + 1

)}
The split-point point ai marks the beginning of the validation set for the i-th fold,

while the end-point is given by ai + lrepHOv − 1. And since the selection is without

replacement, the number of folds k is, at most, equal to the length of the above sampling
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window. That is,

k ≤ N −N repHO
e − lrepHOv + 1.

The indexes of the observations in the estimation set are also shifted, depending

on ai. This is done to make the length of the estimation set the same across the folds,

and to avoid gaps between the estimation and validation sets. Thus, the last index of the

estimation set is equal to ai − 1, and the first is given by ai −N repHO
e . The final indexes

can be seen in Equation (3.18) below. An example of this scheme applied to a data set is

shown in Figure 3.2.

Figure 3.2: Example of a data set divided using the Rep-Holdout forward
validation scheme with T = 16, qt = 0.8, qe = 0.6, qv = 0.2, k = 3. The
selection range for each ai goes from the 8th observation to the 11th, and the
values a1 = 10, a2 = 9, and a3 = 11 were randomly selected.

Using Equation (3.6), the Rep-Holdout validation scheme, VrepHO(D; qe, qv),
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is:

VrepHO(D; qe, qv) ≡
{

(Iei , Ivi )| Iei = {(ai − bqe ·Nc) , . . . , (ai − 1)} ,

Ivi = {ai, . . . , (ai + bqv ·Nc − 1)}
}k−1
i=0

(3.18)

The estimated expected out-of-sample prediction error (Equation 3.7) becomes:

L̂
(
D,VrepHO, f

)
=

1

k
· 1

bqv ·Nc
·
k−1∑
i=0

∑
(z,y)∈D(Ivi )

`
[
y, f

(
z, θ̂D(Iei )

)]
(3.19)

whereD (Iei ) andD (Ivi ) use the observations for which the indexes are given in Equation

(3.18).

3.2.3 Rolling Origin and Prequential Growing Window

Small samples can cause problems to the previous procedures. One scheme that

makes a more effective use of data is the successive updating procedure [7, 31], commonly

called the rolling-origin validation scheme [5]. To explain it, we need to introduce the

concept of forecasting origin, and to do so, let us take a data set divided into training

data and test data (Figure 2.1 - A). If we want to produce forecasts for a lead time (or

forecasting horizon) l, then the final time in the fit period is the point from which the

forecasts are originated. This point is called the forecasting origin.

In other words, we first fit the model using all the information up until N (recall

that N ≡ T − l, where T is the total length of the time series) and produce forecasts for

all subsequent periods N + 1, . . . , N + l. Then, we take the same model formulation and
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its estimated parameters and apply them to an “updated” data set comprised of all data up

until N + 1, and use it to produce forecasts for the periods N + 2, . . . , N + l. Because

of that, this scheme is also called the rolling origin update [6]. When the model is re-

estimated (retrained) at each fold, the procedure is called the rolling origin recalibration

scheme. In it, the estimated parameters at fold i are applied to the training data in the

same fold only. We keep “rolling” the origins until N + l − 1 and obtain (in general)

l · (l + 1)/2 forecasts. The test data is then used to calculate the forecast accuracy. A

schematic illustration of the rolling origin update scheme was adapted from Armstrong

[31, p. 343] and is shown in Figure 3.3.

Figure 3.3 - Panel A shows the rolling origin update procedure, in which the pa-

rameters estimated from the data in fold i = 0 (blue points and cyan background) and are

applied to the data in folds 1, 2, and 3 (blue points and white background) to obtain the

forecasts (pink points). Panel B displays the data split according to the rolling origin re-

calibration scheme, where the parameters are estimated from the data at each fold (blue

points and cyan background).

Both processes can easily be extended to be used with the estimation set and the

validation set. It can also accommodate “rolls” (shifts) larger than 1. If we let qe ∈
[
1
N
, 1
)

be the minimum fraction of the training data used to form the estimation set, then the
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Figure 3.3: Example of the rolling origin forward validation scheme applied
to a univariate data set with T = 16 and l = 4. Panel A shows the rolling
origin update procedure, and Panel B depicts the rolling origin recalibration
scheme.
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number of shifts can be defined as10

κRO ≡ (1− qe) ·N
k

.

Then, the rolling-origin validation scheme, VRO(D;N, κRO, qe), is written as:

VRO (D;κRO, qe) ≡ {(Iei , Ivi )| Iei =
{
1, . . . , bqe ·N + iκROc

}
,

Ivi =
{
bqe ·N + iκROc+ 1, . . . , N

}}k−1
i=0

(3.20)

Both the update and recalibration schemes split the sample using the scheme given

in Equation (3.20). The distinction between the two will be seen in the estimation of θ̂

inside the loss function from the out-of-sample generalization error equation (Equation

3.7). For the update scheme, θ̂D(Ie0)
is used to obtain the loss in all folds, while in the

recalibration scheme, we re-estimate θ̂D(Iei )
at each fold.

The prequential growing window [22, p. 2009], or prequential landmark scheme11,

is a particular case of the rolling-origin recalibration procedure, where the forward shift

is restricted to 1 (Figure 3.4). Therefore, κRO = 1 =⇒ k = d(1− qe) ·Ne.

With this, the prequential growing window validation scheme, VPG(D;N, qe), can

10If the number of rolls, κRO, is a fixed integer instead, then

k =

⌈
(1− qe) ·N

κRO

⌉
11The prequential growing window scheme is different from the growing window procedures used by

Hjorth [44] and Makridakis [28]. These authors used only the observation that immediately follows the
estimation set as their validation set.
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Figure 3.4: Example of the prequential growing window forward-validation
scheme applied to a single univariate data set with T = 16, qt = 0.8, qe = 0.8
and k = 3.

be written as:

VPG(D;N, qe) ≡
{

(Iei , Ivi )| Iei = {1, . . . , bqe ·N + ic} ,

Ivi = {bqe ·N + ic+ 1, . . . , N}
}k−1
i=0

(3.21)

Using Equation (3.7), the estimated expected out-of-sample prediction error for

the prequential growing window validation scheme (or prequential landmark scheme) is

defined as:

L̂
(
D,VPG, f

)
=

1

k

k−1∑
i=0

1

(N − bqe ·N + 1c)
∑

(z,y)∈D(Ivi )

`
[
y, f

(
z, θ̂D(Iei )

)]
(3.22)

whereD (Iei ) andD (Ivi ) use the observations for which the indexes are given in Equation

(3.21), and the same model specification f is used in every fold.
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3.2.4 Prequential Sliding Window

The exhaustive prequential sliding window method works as a modification of the

prequential landmark procedure (Section 3.2.3), where the first i observations are deleted

at the i-th fold. An example is shown in Figure 3.5.

Figure 3.5: Example of the prequential sliding window validation scheme
applied to a univariate data set with T = 16, qt = 0.8, qe = 0.8, and κRW = 1.
The model is re-estimated at every estimation set (blue dots) and used to find
the one-step-ahead forecast (orange dot).

The prequential sliding window validation scheme, VPSW(D;N, qe, l), is defined

as:

VPSW(D; qe) ≡
{

(Iei , Ivi )| Iei = {i+ 1, . . . , bqe ·N + ic} ,

Ivi = {bqe ·N + ic+ 1, . . . , N}
}l−1
i=0

(3.23)

where k = d(1− qe) ·Ne = l.

And, the estimated expected out-of-sample prediction error for the prequential slid-
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ing window scheme can be written:

L̂
(
D,VPSW, f

)
=

1

l

l−1∑
i=0

1

(N − bqe ·N + ic)
∑

(z,y)∈D(Ivi )

`
[
y, f

(
z, θ̂D(Iei )

)]
(3.24)

whereD (Iei ) andD (Ivi ) use the observations for which the indices are given in Equation

(3.21).

3.2.5 Prequential in Blocks

The idea behind the prequential in blocks validation scheme is due to Dawid [78],

and it relies on the partition of the time series into sets of growing cardinality. Let

κPBls ≈ N/k be the number of observations that each fold is rolled forward by, and

let A0, . . . , Ak−2, be ordered partitions of the indexes {1, . . . , N} of the observations in

D such that A0 ⊂ A1 ⊂ . . . ⊂ Ak−2 with Card(Ai) ≈ (i+ 2) · κPBls ≤ N . That is,

Ai ≈ {1, . . . , (i+ 2) · κPBls}, for i = 0, . . . , k − 2. (3.25)

In other words, the sets Ai give the indexes of the observations that will comprise

both the estimation and validation sets at each fold. For example, let N = 12 and k = 3.

Then, κPBls = 4 and for i = 0, . . . , k − 2:

A0 = {1, . . . , (0 + 2) · 4} = {1, 2, 3, 4, 5, 6, 7, 8}

A1 = {1, . . . , (1 + 2) · 4} = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
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At the i-th fold, the estimation set is formed of all the indexes of Ai up until the

(i + 1) · κPBls-th case, while the validation set contains all the remaining cases. In the

example above, the estimation sets at folds 0 and 1 contain the first 4 and 8 indexes,

respectively. This example is represented in Figure 3.6. From it, it is easy to see that the

validation set of the previous fold is incorporated into the estimation set of the current

fold.

Figure 3.6: Example of a time series partitioned under the prequential in
blocks validation scheme with T = 16, qt = 0.8, qe = 0.8, and k = 3. Fold
number 2 is not used at all.

We write a general form of VPBls(D;κPBls), the prequential in blocks validation

scheme, as:

VPBls(D;κPBls) ≡
{

(Iei , Ivi )| Iei ≈
{

1, . . . , (i+ 1) · κPBls
}
,

Ivi ≈ Ai \ Iei
}k−2
i=0

(3.26)

We stated that the sets Iei and Ivi are approximately equal to their respective sets of
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indexes because the ratio κPBls ≈ N/k might not return an integer, and depending on the

computational device used, the value of κPBls can be either bN/kc or dN/ke. Moreover,

it is possible that κPBls is different for distinct values of i12. To account for that, we define

a delta function as:

δ(N, k, i) =


bN/kc, if the computer returns bκPBlsc for the i-th case

dN/ke, otherwise.

(3.27)

Then we can rewrite Equation (3.26) as:

VPBls (D; k) =

{
(Iei , Ivi )| Iei = {1, . . . , (i+ 1) · δ(N, k, i)} ,

Ivi = {[(i+ 1) · δ(N, k, i) + 1] , . . . , (i+ 2) · δ(N, k, i)}
}k−2
i=0

(3.28)

where N is the number of observations in D.

Using Equation (3.26) to obtain the indices for D (Iei ) and D (Ivi ), the estimated

expected out-of-sample prediction error for the prequential in blocks can be written:

L̂
(
D,VPBls, f

)
=

1

k − 1

k−2∑
i=0

1

Card (Ai \ Iei )
∑

(z,y)∈D(Ivi )

`
[
y, f

(
z, θ̂D(Iei )

)]

=
1

k − 1

k−2∑
i=0

1

δ(N, k, i)

∑
(z,y)∈D(Ivi )

`
[
y, f

(
z, θ̂D(Iei )

)]
(3.29)

12While code tracing CTM’s program, we noticed that this is the behavior of the R function that they
used
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3.2.6 Prequential Sliding Blocks

The prequential sliding blocks validation scheme is a modification of the prequen-

tial in blocks procedure. The difference here is that, at each fold, all the observations in

the estimation sets of the previous folds are discarded from the estimation set used in the

current fold. From Figure 3.7, we see that the estimation set “slides” over the training

set. And if we compare this figure with Figure 3.6 seen above, we see that observations

y1, y2, y3, and y4 form the estimation set at the fold i = 0 but are unused in the estimation

set at fold i = 1.

Figure 3.7: Example of a data set divided using the prequential sliding blocks
forward validation scheme with T = 16, qt = 0.8, qe = 0.8 and k = 3. Fold
2 is not used.

Then, if κPBls ≈ N/k is the number of observations that each fold is rolled forward

by, and A0, . . . , Ak−1, are ordered partitions of the indices {1, . . . , N} of the observations

in D such that A0 ⊂ A1 ⊂ . . . ⊂ Ak−1 with Card(Ai) ≈ (i + 2) · κPBls ≤ N , then we
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can write the sliding prequential blocks validation scheme, VSPBls(D;κPBls) as:

VSPBls(D;κPBls) ≡{
(Iei , Ivi )| Iei ≈

{
1, . . . , (i+ 1)κPBls

}
\

(
i−1⋃
j=0

Iej

)
, Ivi ≈ Ai \

(
i⋃

j=0

Iej

)}k−2
i=0

(3.30)

where If−1 = ∅.

The delta notation (Equation 3.27) greatly simplifies the above equation:

VSPBls(D;N, k) =

{
(Iei , Ivi )|

Iei = {[i · δ(N, k, i) + 1] , . . . , (i+ 1) · δ(N, k, i)} ,

Ivi = {[(i+ 1) · δ(N, k, i) + 1] , . . . , (i+ 2) · δ(N, k, i)}
}k−2
i=0

(3.31)

where N is the length of the set D.

Taking the indexes from Equation (3.31), the error L̂
(
D,VSPBls, f

)
is:

L̂
(
D,VSPBls, f

)
=

1

k − 1

k−2∑
i=0

1

Card
[
Ai \

(⋃i
j=0 I

f
j

)] ∑
(z,y)∈D(Ivi )

`
[
y, f

(
z, θ̂D(Iei )

)]

=
1

k − 1

k−2∑
i=0

1

δ(N, k, i)

∑
(z,y)∈D(Ivi )

`
[
y, f

(
z, θ̂D(Iei )

)]
(3.32)
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3.2.7 Prequential Blocks with Gaps

Another modification of the prequential in blocks procedure is the prequential

blocks with gaps validation scheme. Here, the same estimation set is used, but the valida-

tion set (as specified for prequential in blocks case) is skipped, and the next set of data is

used instead. Figure 3.8 shows an example of the prequential blocks with gaps scheme.

The rationale behind this procedure is that one may increase the independence between

the estimation and validation sets by adding a gap between the two sets.

Figure 3.8: Example of a time series split according to the prequential in
blocks with gaps validation scheme with T = 16, qt = 0.8, qe = 0.8, and
k = 3. Folds 1 and 2 are not used at all.

Take the definitions of κPBls from Section 3.2.5 and Ai from Equation (3.25). Add

to those definitions the following partitions of {1, . . . , N}:

Bi ≈ {1, . . . , (i+ 3) · κPBls}, for i = 0, . . . , k − 3. (3.33)

It is easy to see from the definition of Ai and Bi, that Ai ⊂ Bi with Bi \ Ai 6= ∅,
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for i = 0, . . . , k− 3. Inside this framework, we define the prequential in blocks with gaps

validation scheme, VPBG(D;κPBls) as:

VPBG(D;κPBls) ≡
{

(Iei , Ivi )| Iei ≈
{

1, . . . , (i+ 1)κPBls
}
, Ivi ≈ Bi \ Ai

}k−3
i=0

Using the delta function defined in Equation (3.27), and with N obtained from D,

the scheme above simplifies to:

VPBG (D; k) =

{
(Iei , Ivi )| Iei = {1, . . . , (i+ 1) · δ(N, k, i)} ,

Ivi = {[(i+ 2) · δ(N, k, i) + 1] , . . . , (i+ 3) · δ(N, k, i)}
}k−3
i=0

(3.34)

And the out-of-sample generalization error becomes:

L̂
(
D,VPBG, f

)
=

1

k − 2

k−3∑
i=0

1

Card (Bi \ Ai)
∑

(z,y)∈D(Ivi )

`
[
y, f

(
z, θ̂D(Iei )

)]

=
1

k − 2

k−3∑
i=0

1

δ(N, k, i)

∑
(z,y)∈D(Ivi )

`
[
y, f

(
z, θ̂D(Iei )

)]
(3.35)

3.3 A framework for Cross-validation schemes

3.3.1 Leave-one-out and k-Fold Cross-Validation

Cross-validation schemes are frequently used in the field of multivariate statistics

when variables are independent and identically distributed (i.i.d.), especially for model se-
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lection in classification and regression settings. In a regression setting, the leave-one-out

validation scheme (LOO or LOOCV) was used by Stone [29]13. This is the most classical

exhaustive procedure since the number of folds is equal to the number of observations in

the training set (i.e., k = N ).

Figure 3.9: Example of the leave-one-out cross-validation scheme applied to
a univariate time series with T = 16, qt = 0.8, and k = bqtT c = 12.

That is, at fold i = 0, . . . , k − 1, the validation set is comprised of only one obser-

vation - the one with the index equal to i + 1. The same i + 1-th index is deleted from

the estimation set at each fold i = 0, . . . , k − 1. Consequently, the sets of indexes have

the following cardinalities: Card (Iei ) = N − 1, and Card (Ivi ) = 1, ∀i = 0, . . . N − 1.

A schematic example is shown in Figure 3.9. Based on the discussion, the leave-one-out

13Stone [29] called it “ordinary cross-validation.” Independently, [79] used the same approach to create
the extended PRESS (Prediction Sum of Squares) criterion for variable selection. Burman and Nolan [63]
extended it to the dependent case when f is estimated via nonparametric techniques, under the assumption
that the prediction errors are uncorrelated.
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cross-validation scheme, VLOO(D; k) is defined as:

VLOO(D; k) ≡
{

(Iei , Ivi )| Iei = {1, . . . , N} \ Ivi , Ivi = {i+ 1}
}N−1
i=0

(3.36)

Breiman et al. [80, in the text of 50, p. 503] proposed the k-fold validation scheme14

as an alternative to the computationally expensive leave-out-one procedure. It relies on

shuffling the observations in the time series and dividing the shuffled training set into k

mutually exclusive subsets of approximately equal size. Each subset works as the valida-

tion set for the respective fold. Figure 3.10 shows a schematic illustration of this method.

On Panel A in Figure 3.10, we have that y4, y5, y7, and y10 where the observations

were randomly selected to comprise the validation set at fold 0. But since the training set

has been shuffled prior to selection, the actual ordering of the observations is shown in

Panel B. Notice how the indexes in both the estimation and validation sets change in B.

The time series with the ordering shown in B (blue dots) will be the ones used to fit the

forecasting models at each fold, and at fold 0, the forecast errors will be calculated using

y5, y10, y7, y4, in that order.

Formally, letC0, . . . , Ck−1 be the sets formed from random partitions of {1, . . . , N}

taken without replacement, such that each set has approximately N/k elements (i.e.,

Card (Ci) = δ(N, k, i), i = 0, . . . , k − 1, where δ(N, k, i) is the delta function defined

14Breiman et al. [80] named it “v-fold cross-validation.” We changed it to k to be consistent with the rest
of our notation and also because recent studies [22, 23] use this terminology.
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Figure 3.10: Example of the k-fold cross-validation scheme applied to a uni-
variate time series with T = 16, qt = 0.8, qe = 0.8 and k = 3. Panel A
shows the selected observations in their original ordering. Panel B shows
them according to their selection order.

in Equation 3.27). Then, we define the k-fold cross-validation scheme as:

VCV(D; k) ≡
{

(Iei , Ivi )| Iei = {1, . . . , N} \ Ivi , Ivi = Ci ;

Ci ⊆ PN , Ci ∩ Cj = ∅, ∀i 6= j

}k−1
i=0

(3.37)

where PN is the set of random permutations of {1, . . . , N}.

54



The out-of-sample error for this scheme is:

L̂
(
D,VCV, f

)
=

1

k

k−1∑
i=0

1

Card (Ivi )

∑
(z,y)∈D(Ivi )

`
[
y, f

(
z, θ̂D(Iei )

)]

=
1

k

k−1∑
i=0

1

Card (Ci)

∑
(z,y)∈D(Ivi )

`
[
y, f

(
z, θ̂D(Iei )

)]

=
1

k

k−1∑
i=0

1

δ(N, k, i)

∑
(z,y)∈D(Ivi )

`
[
y, f

(
z, θ̂D(Iei )

)]
(3.38)

3.3.2 k-Fold Blocked Cross-Validation

Snijders [49] (in the text of [23, p. 8]) proposed that instead of shuffling the obser-

vations, the validation sets would be created by taking continuous sequences, or blocks,

of observations (the Holdout would be a special case of this approach). Bergmeir and

Benı́tez [6] extended this idea and developed the k-fold blocked cross-validation scheme

as a simple modification of the k-fold CV scheme. By using the idea of continuous in-

dexes, the order of the time series observations is kept within the blocks but broken across

the folds. A schematic illustration of this scheme is shown in Figure 3.11.

The blocked k-fold cross-validation scheme, VCV-Bl(D; k) is:

VCV-Bl(D; k) ≡
{

(Iei , Ivi )| Iei = {1, . . . , N} \ Ivi ,

Ivi = {[i · δ(N, k, i)] + 1, . . . , (i+ 1) · δ(N, k, i)}
}k−1
i=0

(3.39)

where δ(N, k, i) is the delta function defined in Equation (3.27) (the same conditions

apply here).
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Figure 3.11: Example of the k-fold blocked cross-validation scheme applied
to a univariate time series with T = 16, qt = 0.8, qe = 0.8 and k = 3.

The validation error, L̂
(
D,VCV-Bl, f

)
, for the blocked k-fold cross-validation

scheme is:

L̂
(
D,VCV-Bl, f

)
=

1

k

k−1∑
i=0

1

Card (Ivi )

∑
(z,y)∈D(Ivi )

`
[
y, f

(
z, θ̂D(Iei )

)]

=
1

k

k−1∑
i=0

1

δ(N, k, i)

∑
(z,y)∈D(Ivi )

`
[
y, f

(
z, θ̂D(Iei )

)]
(3.40)

3.3.3 h-Block and hv-Block Cross-Validation

Burman et al. [53] developed a modification of the leave-one-out procedure for

dependent data, called h-block cross-validation. Recall from our discussion of the leave-

one-out scheme (Section 3.3.1), that the validation set is Ivi = {i+ 1} and the estimation

set is Iei = {1, . . . , N} \ Ivi , and we have k = N folds.

In the h-block cross-validation procedure, the number of folds is still equal to N ,

and the validation set remains with only one observation. The difference lies in the defi-
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Figure 3.12: Example of a univariate time series with T = 16 partitioned
accordingly to the h-block cross-validation scheme with qt = 0.8, qe = 0.8,
p = 3, and h = 1.

nition of the estimation set. Now, aside from the deletion of the i+ 1-th index, 2h indexes

are also deleted from the estimation set - h to the left of i + 1, and h to its right15. Thus,

it effectively creates “gaps” of size h around the observation i+ 1, and the estimation set

uses only N − 2h − 1 observations to fit the model, instead of the N − 1 observations

used in the leave-one-out approach (Figure 3.12). Burman et al. [53, p. 352] do this to

achieve what they call a “near independence” setting between the estimation and vali-

dation sets (for large enough h)16. Burman et al. [53] proposed a rule-of-thumb for the

h-block cross-validation scheme and suggested h = γN , with γ ∈ (0, 0.5)17.

Racine [55] proposed an improvement to the h-block procedure called the hv-block

cross-validation scheme. In this scheme, Racine deletes h and v observations from either

side of the i + 1-th index, but instead of completely disregarding the v cases, the author

15If i = 0, it takes h from the right side only. Conversely, it takes only from the left if i = k − 1.
16In this context, near independence means that E (εi − hεj |Z1, . . . , Zj) ≈ 0, for i < j [55, p. 47-48].
17See Burman et al. [53, p. 352-354] for a discussion about selecting the proper size of h
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adds them to the validation set. Hence, the sizes of the validation and estimation18 sets

become:

lOG-hvCV
v = 2v + 1 (3.41)

NOG-hvCV
e = N − 2h− 2v − 1 (3.42)

Racine [55, p. 49] used Burman et al. [53]’s rule-of-thumb for h (i.e., h = γN ),

and report obtaining sensible results in the hv-block cross-validation procedure when

γ = 0.25. For positive degrees of freedom
(
NOG-hvCV
e − p

)
> 019, Racine [55, p.

46-47] suggests that the size of the estimation set should be equal to
⌊
N δ
⌋
, where δ is

such that the ratio log (p)/ log (N) < δ < 1. In this case, v = (N −N δ − 2h− 1)/2.

The last missing value is the number of folds, k, that one can use. To find it, it helps

to write all the cases for Ivi , and to define a sets Di, i = 0, . . . , k − 1, of indexes from

{1, . . . , N} that will be deleted from the estimation set. Since we first remove v from

either side and then h from either side, we end up with five different cases.

For i = 1, . . . , v:

Ivi = {1, . . . , 2v + 1}

Di = {1, . . . , 2v + 2h+ 1}

18Racine [55] used nv for lOG-hvCV
v , and nc instead of NOG-hvCV

e .
19Recall that p is the dimension of Zt−1, the vector of past explanatory variables, as defined in Section

3.
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For i = v + 1, . . . , v + h:

Ivi = {i− v, . . . , i+ v}

Di = {1, . . . , 2v + 2h+ 1}

For i = v + h+ 1, . . . , N − v − h:

Ivi = {i− v, . . . , i+ v}

Di = {i− v − h, . . . , i+ v + h}

For i = N − v − h+ 1, . . . , N − v:

Ivi = {i− v, . . . , i+ v}

Di = {N − 2v − 2h, . . . , N}

For i = N − v + 1, . . . , N :

Ivi = {N − 2v, . . . , N}

Di = {N − 2v − 2h, . . . , N}
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Or, simply:

Ivi =



{1, . . . , 2v + 1}, for i = 1, . . . , v;

{i− v, . . . , i+ v}, for i = v + 1, . . . , v + h,

v + h+ 1, . . . , N − v − h,

N − v − h+ 1, . . . , N − v;

{N − 2v, . . . , N}, for i = N − v + 1, . . . , N.

(3.43)

and

Di =



{1, . . . , 2v + 2h+ 1}, for i = 1, . . . , v;

{1, . . . , 2v + 2h+ 1}, for i = v + 1, . . . , v + h;

{i− v − h, . . . , i+ v + h}, for i = v + h+ 1, . . . , N − v − h;

{N − 2v − 2h, . . . , N}, for i = N − v − h+ 1, . . . , N − v;

{N − 2v − 2h, . . . , N}, for i = N − v − 1, . . . , N.

(3.44)

It is easy to see that the first and last cases are redundant, so we could remove those.

If we remove them, i goes from v + 1 to N − v, when we consider the remaining cases.
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Thus, the maximum number of folds is:

k = N − v − (v + 1) + 1

= N − 2v (3.45)

Schnaubelt [23] confirms our calculations. This author wrote that in the hv-block

cross-validation scheme, “the validation block is rolled forward by one observation, such

that a total of k = N − 2v validation folds is considered” [23, p. 9]. However, it is worth

highlighting that in this case, i starts at v + 1, not 1 (nor 0), a remark that Schnaubelt did

not make. An illustration of this scheme is given in Figure 3.13.

Figure 3.13: Example of the hv-block cross-validation scheme by Rancine
(2000), applied to a univariate time series with T = 16, qt = 0.8, qe = 0.8,
p = 3, h = 1, δ = 0.5, and k = 6.

Based on the discussion above, VOG-hvBl(D; k), the original hv-block cross-validation
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scheme is defined as:

VOG-hvBl(D; v, h) ≡

{
(Iei , Ivi )| Iei = {1, . . . , N} \Di,

Ivi =



{1, . . . , 2v + 1}, for i = 1, . . . , v;

{i− v, . . . , i+ v}, for i = v + 1, . . . , N − v;

{N − 2v, . . . , N}, for i = N − v + 1, . . . , N.

}k−1

i=0

(3.46)

where N is the length of D, and Di is given by Equation (3.44).

We called the validation scheme VOG-hvBl, where “OG” stands for “original.” We

did this to distinguish it from the way Cerqueira et al. [22] coded the hv-block cross-

validation scheme. The way they programmed it uses different values for k, v, and h,

and it also yields different sets Iei and Ivi . But before going into the details of those

differences, we would like to stress that these authors did not include any of the validation

equations in their paper, and our remark is the conclusion we reached after tracing their

program. Any errors and omissions regarding the interpretation of their code and its

subsequent translation into the equations seen below (and throughout Sections 3.2 and

3.3) are our own.

Cerqueira et al. [22] set a fixed value for k and used v = (N − k)/(2k) and h =

p+ 1, with p being estimated using Takens [75]’s method (more details in Section 5.2.2).

Since we want to compare our results to theirs, we shall use Cerqueira’s, not Rancine’s,

approach.
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With those choices of k and v, the number of observations in the validation set is:

lhvCVv ≡ 2 · v + 1

= 2
N − k

2k
+ 1

=
N

k
(3.47)

The above equation depends on the ratio between N and k. As discussed before

(Section 3.2.5), this result will depend on the software or function that one uses. Hence,

we define the “nu” function:

ν(N, k, i) =



⌊
lhvCVv

⌋
, if the computer returns

⌊
N
k

⌋
for the i-th case

⌈
lhvCVv

⌉
, otherwise.

(3.48)

Then, for i = 0, . . . , k − 1, the sets of indexes from {1, . . . , N} that will form the

validation sets are given by:

Iv∗i ≡



{
1, . . . , ν(N, k, 0)

}
, if i = 0

{[∑i−1
j=0 ν(N, k, j)

]
+ 1, . . . ,

∑i
j=0 ν(N, k, j)

}
, if 0 < i ≤ k − 1

(3.49)
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Similarly, the indexes that will be deleted from the estimation set are:

D∗i ≡



{
1, . . . , ν(N, k, 0)

}
, if i = 0

{[∑i−1
j=0 ν(N, k, j)

]
+ 1− h, . . . ,

[∑i
j=0 ν(N, k, j)

]
+ h

}
, if 0 < i < k − 1

{[∑i−1
j=0 ν(N, k, j)

]
+ 1− h, . . . ,

∑i
j=0 ν(N, k, j)

}
, if i = k − 1

(3.50)

The hv-block validation scheme in Cerqueira et al. [22]’s case is defined as:

VCV-hvBl(D; k, h) ≡

{
(Iei , Ivi )| Iei ≈ {1, . . . , N} \D∗i , Ivi = Iv∗i

}k−1

i=0

(3.51)

where N is the number of observations in D, h = p+ 1, and D∗i and Iv∗i are given by the

equations Equation (3.50) and Equation (3.49). An example of this scheme applied to a

time series can be seen in Figure 3.14.

Finally, the validation error used by Cerqueira et al. [22] for the hv-block cross-

validation scheme is:

L̂
(
D,VCV-hvBl, f

)
=

1

k

k−1∑
i=0

1

Card (Ivi )

∑
(z,y)∈D(Ivi )

`
[
y, f

(
z, θ̂D(Iei )

)]

=
1

k

k−1∑
i=0

1

ν(N, k, i)

∑
(z,y)∈D(Ivi )

`
[
y, f

(
z, θ̂D(Iei )

)]
(3.52)
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Figure 3.14: Example of the hv-block cross-validation scheme used by
Cerqueira et al. (2020), applied to a univariate time series with T = 16,
qt = 0.8, qe = 0.8, p = 3, and k = 6.

3.3.4 Modified cross-validation

McQuarrie and Tsai [81] showed that it is possible to obtain a better cross-validation

criterion by modifying the k-fold procedure and deleting d observations from the estima-

tion set at each fold. These authors called this scheme the delete-d cross-validation,

CV(d), while Bergmeir and Benı́tez [6] called it non-dependent cross-validation and [22]

used the term modified cross-validation.

McQuarrie and Tsai [81, p. 254] address the problem of choosing d, and propose

d = dN − Nαe with 0 < α < 1. However, Kastens [82, p. 389] argues that this choice

is not sufficient to indicate a desirable value for d, searches for an optimal value for it (in
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the sense that, with it, CV(d) exhibits the highest rate of selecting the best model20), and

discusses the use of d = N − p− 1 and d = N − p.

In their code, Cerqueira et al. [22] use a different approach and delete at most d ≤[(
2 ·
√
bp+ 1c

)
+ 1
]
·N/k21 observations. In the way they programmed it, there can be

overlaps in the indexes. Thus, the final value of d depends both on the number of unique

indexes and on the number of indexes greater than 0.

Let us use the same framework as we did in Section 3.3.1 for the k-fold proce-

dure. That is, let C0, . . . , Ck−1 be the sets formed from random partitions of {1, . . . , N}

taken without replacement, such that each set has approximately N/k elements (i.e.,

Card (Ci) = δ(N, k, i), i = 0, . . . , k − 1, where δ(N, k, i) is the delta function de-

fined in Equation 3.27). Let c(j)i be the indexes of the j = 1, . . . , δ(N, k, i) elements in

Ci. For example, back in the section on the k-fold, in the example shown in Figure 3.10,

we have that C0 = {5, 10, 7, 4}. Then, c(1)0 = 5, c
(2)
0 = 10, c

(3)
0 = 7, c

(4)
0 = 4.

In the modified cross-validation scheme used by CTM, at each c(j)i , we delete the

observations in the range

E
(j)
i ≡

{
c
(j)
i − b

√
p+ 1c − 1, . . . , c

(j)
i + b

√
p+ 1c − 1

}
(3.53)

It is easy to see that every set E(j)
i , for j = 1, . . . , δ(N, k, i), has cardinality equal

to
(

2 ·
√
bp+ 1c

)
+ 1. And since we have δ(N, k, i) ≈ N/k sets, the number of deleted

observations at each fold i is (approximately) equal to
[(

2 ·
√
bp+ 1c

)
+ 1
]
· N/k, as

20That is, the model with all of the predictors that contribute to the response, and only those.
21These values were obtained after tracing Cerqueira et al. [22]’s code. Thus, any errors or omissions are

our own.
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we have stated above. Moreover, since this value changes at every fold (because of the

different results for the ratio N/k), we prefer writing this number as

di ≤ dmax ≡
[(

2 ·
√
bp+ 1c

)
+ 1
]
· δ(N, k, i) (3.54)

The maximum value of di, dmax, assumes that E(j)
i ∩E

(b)
i = ∅, for j 6= b at each i,

and that every element in E(j)
i is greater than zero. We did this to facilitate the definition

of di and of the sets. In reality, the actual value of di might be smaller than that since we

take only the unique elements of E(j)
i that are greater than 0.

For instance, let us revisit our example. Recall that we have been using N = 12,

k = 3, and that C0 has the elements c(1)0 = 5, c
(2)
0 = 10, c

(3)
0 = 7, c

(4)
0 = 4. Then, for

p = 2, the E(j)
0 s are:

E
(1)
0 =

{
c
(1)
0 − b

√
2 + 1c − 1, . . . , c

(1)
0 + b

√
2 + 1c − 1

}
=
{

5− 1− 1, . . . , 5 + 1− 1
}

=
{

3, 4, 5}

E
(2)
0 =

{
10− 1− 1, . . . , 10 + 1− 1

}
=
{

8, 9, 10}

E
(3)
0 =

{
7− 1− 1, . . . , 7 + 1− 1

}
=
{

5, 6, 7}
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and

E
(4)
0 =

{
4− 1− 1, . . . , 4 + 1− 1

}
=
{

2, 3, 4}

Thus, the indexes of the observations that will be deleted from the training set to

form the estimation set are:

{3, 4, 5} ∪ {8, 9, 10} ∪ {5, 6, 7} ∪ {2, 3, 4}

and it is clear to see that this number matches the value obtained from Equation (3.54),

d0 ≤ dmax =
[(

2 ·
√
b2 + 1c

)
+ 1
]
· 12/3 = 12

We would like to take only the unique indexes from the union above, and all the

indexes that are greater than zero. Thus, let us also define a set that represents this union,

but without the undesired indexes:

Ei ≡
{

(e1, ..., edi) ∈
δ(N,k,i)⋃
j=1

E
(j)
i |

∀a, b ∈ {1, . . . , dmax}, ea > 0, eb > 0, and a 6= b =⇒ ea 6= eb

}
(3.55)

In our example,

E0 = {3, 4, 5, 8, 9, 10, 6, 7, 2}
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and ordering it yields

E0 = {2, 3, 4, 5, 6, 7, 8, 9, 10}

The above example - with E1 and E2 obtained in the same way as E0 - is illustrated

in Figure 3.15. This Figure was created exactly like Figure 3.10 for the k-fold scheme.

The only difference is that the deleted observations were grayed out here.

From Equation (3.55) and Equation (3.53), it is easy to see that for every i =

0, . . . , k − 1, the sets Ci ⊂ Ei
22. Then, we can modify the definition of the k-fold cross-

validation scheme from Equation (3.37) to account for the deleted observations and write

the modified cross-validation scheme used by Cerqueira et al. [22, 69], VCV-Mod(D; k),

as:

VCV-Mod(D; k) ≡
{

(Iei , Ivi )| Iei = {1, . . . , N} \ Ei, Ivi = Ci ;

Ci ⊆ PN , Ci ∩ Cj = ∅, ∀i 6= j

}k−1
i=0

(3.56)

where PN is the set of random permutations of {1, . . . , N}, and N is the number of

observations in the training set D.

22A set Ci might not be a proper subset of Ei, since it is possible to have Ci = Ei. For instance, suppose
that in the example given (N = 12, k = 3, p = 2), we obtain the set C0 = {1, 2, 3, 4}. Then,

E
(1)
0 =

{
1− 1− 1, . . . , 1 + 1− 1

}
=
{
−1, 0, 1}

E
(2)
0 =

{
2− 1− 1, . . . , 2 + 1− 1

}
=
{
0, 1, 2}

E
(3)
0 =

{
3− 1− 1, . . . , 3 + 1− 1

}
= {1, 2, 3}

E
(4)
0 =

{
4− 1− 1, . . . , 4 + 1− 1

}
=
{
2, 3, 4}

Thus,
E0 = {1, 2, 3, 4} = C0
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Figure 3.15: Example of the modified cross-validation scheme used by
Cerqueira et al. (2020), applied to a univariate data set with T = 16, qt = 0.8,
qe = 0.8, p = 2, and k = 3. Panel A shows the selected observations in their
original ordering. Panel B shows them according to their selection order.

The out-of-sample error for this scheme is similar to the one for the k-fold. The

difference is in the definition of D (Iei ) (which impacts the estimates of θ̂), which now

has fewer observations than the estimation set used in the k-fold procedure. We write this

error as:
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L̂
(
D,VCV-Mod, f

)
=

1

k

k−1∑
i=0

1

Card (Ivi )

∑
(z,y)∈D(Ivi )

`
[
y, f

(
z, θ̂D(Iei )

)]

=
1

k

k−1∑
i=0

1

Card (Ci)

∑
(z,y)∈D(Ivi )

`
[
y, f

(
z, θ̂D(Iei )

)]

=
1

k

k−1∑
i=0

1

δ(N, k, i)

∑
(z,y)∈D(Ivi )

`
[
y, f

(
z, θ̂D(Iei )

)]
(3.57)
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Chapter 4: Introducing the p-Holdout family of schemes

After learning about the history of the validation schemes in Chapter 2 and go-

ing over their methodological details in Chapter 3, we noticed that none consider the

seasonal aspect that a time series may present1. It is true that in the statistical litera-

ture some practitioners deseasonalize the data prior to producing the forecasts, following

Kirby’s suggestion [36, p. B-208], which generally leads to improvements in forecast

accuracy. Yet, the “inconsistent handling of seasonality” [83] in machine learning ap-

plications (especially those based on neural networks) leads to mixed conclusions about

whether deseasonalizing the series improves its forecasts [83, 84, 85]. On the other hand,

when seasonality is properly accounted for, significant improvements can be seen in fore-

cast accuracy [84, 86], and it also reduces the “computational time required to arrive at

optimal weights and, therefore, learn faster” [85, p. 21].

Notwithstanding, recent papers in machine learning usually do not take into account

a series’ seasonal pattern. To arrive at this conclusion, we searched for the terms “machine

learning time series” on Google Scholar and evaluated the top 20 papers in the number of

citations - all published between 2001 and 2019. Out of the 20, eleven of them have no

mention of the word “season” at all, one uses this word outside of a time series context,
1It is really difficult to be entirely accurate when affirming this since so many different names for vali-

dation schemes have been used since the 1930s, but to our knowledge, no method specifically accounts for
seasonal or cyclic data.
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and three only mention it in their literature review2. Moreover, a search on Google Scholar

for the terms “machine learning time series deseasonalized” or “machine learning time

series deseasonalize” yields fewer than 1,300 papers (1,240 in the former, and 1,230 in the

latter case). Therefore, machine learning procedures are being used to select forecasting

models, but without proper consideration of a series’ period, a crucial characteristic of a

time series.

Since a time series might contain cycles and seasonal patterns, disregarding them

when preprocessing the data or when dividing between training data and test data might

lead to an incorrect choice of the model. And while we are aware that one needs to

be careful with over-fitting the model to the estimation and validation sets at hand, as

the latter can be very different from the test set, we argue that because the observations

are dependent and because a seasonal series displays a similar behavior over time, it is

possible to obtain similar validation and test sets (Figure 4.1 - Panels D and E) in a way

that improves forecast accuracy and, consequently, model selection.

Based on that, we propose three validation schemes that account for the periodicity

of a time series. Figure 4.1 - Panels B, C, D, and E - returns the results from splitting

the USAccDeaths data set using the Holdout , the p-Holdout , the cp-Holdout

schemes, and the cep-Holdout , respectively. Another example can be seen in Figure

1.2 in the Introduction. From these pictures, we observe that the validation sets created

by the p-Holdout and the cp-Holdout schemes are more similar to the test set than

the one obtained from the classic Holdout method. In such cases, we hypothesize that

the differences between the out-of-sample errors obtained with the validation and test sets

2The list of papers is available in Appendix E.
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should be small. In fact, the results shown in Chapter 6 show that this is often the case.

Figure 4.1: The Holdout , p-Holdout , cp-Holdout , and
cep-Holdout schemes applied to the USAccDeaths data set. Panel A
shows the entire series (blue) and the observations we would like to fore-
cast (red). In Panel B, the test set was obtained with the Holdout method.
In Panels C, D, and E, the test set was obtained applying the p-Holdout ,
cp-Holdout , and cep-Holdout schemes, respectively.
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We compare our family of schemes with the procedures used by Bergmeir and

Benı́tez [6], Bergmeir et al. [68], Cerqueira et al. [69], Bergmeir et al. [21], [23], and

CTM. These papers use techniques to compare several validation schemes’ performance

and provide benchmark data sets that can be used to evaluate a new procedure. From

the results in Chapter 6, our new schemes are computationally inexpensive, improve the

forecast accuracy, and greatly reduce the average forecast bias without increasing the

variability, especially when applied to non-stationary time series. Their details are given

in the following sections.

4.1 The p-Holdout validation scheme

Our first proposal is the simple period-holdout forward-validation scheme or simply

the p-Holdout scheme. It works much like the Holdout procedure in the sense that

we take the last block of the training data to be our validation set. However, there are

some key differences.

For the cases where a series exhibits a periodic behavior, the length of the validation

set is not determined by a split-point chosen by the analyst, as it is done for the Holdout

scheme3, but depends directly on the length of the forecasting horizon, l. Hence, when

similarities occur after s basic time intervals, the final length of the validation set is de-

fined by the summation of l and s. If the series seems aperiodic, then we revert to the

Holdout scheme. Formally, we define lpHO
v , the length of the validation set under the

3Recall that in the Holdout procedure, lv = d(1− qe) ·Ne, for qe ∈ [1/N, 1).
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p-Holdout scheme as,

l
pHO
v ≡


d(1− qe) ·Ne, if s = 1

l + s, otherwise.

(4.1)

Recall that the length of the validation set under the Holdout scheme is lHO
v =

d(1− qe) ·Ne (see Equation (3.11)). Substituting this in the equation above yields,

l
pHO
v ≡


lHO
v , if s = 1

l + s, otherwise.

(4.2)

In our analysis, the period s is obtained using the frequency function from base

R. If the time series object has information on periodicity, this function returns the number

of observations before the seasonal pattern repeats4. And even though the length of the

validation set does not depend on the choice of qe, the length of the test set might depend

on the choice of qt, as shown in Equation (3.3).

A schematic illustration of the p-Holdout scheme is given in Figure 4.2. For the

sake of the example shown in this picture, take a time series of daily data with length

T = 16. Suppose that this series has a pattern that repeats every 3 days. Thus, s = 3.

If we want to forecast the next four observations, then we use Equation (3.3) to write

N = 16− 4 = 12, and Equation (4.2) to write lpHOv = 4 + 3 = 7.

We have developed the p-Holdout validation scheme to account for time series

4We developed the cep-Holdout (see Section 4.3) to account for the cases where the object does not
have that information.
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Figure 4.2: Example of the p-Holdout forward-validation scheme applied to
a univariate time series with T = 16, qt = 0.8, and s = 3.

with a period greater than 1. For those cases, VpHO(D; l, s), the p-Holdout validation

scheme, is defined as:

VpHO(D; l, s) ≡
{

(Ie, Iv)| Ie = {1, . . . , (N − l − s)},

Iv = {(N − l − s+ 1) , . . . , N}
}

(4.3)

Another way to write Equation (4.3) is to substitute l + s for lpHOv from Equation

(4.2). This makes it comparable to the Holdout procedure’s equation, given by E.(3.12).

Then, the proposed validation scheme VpHO(D; l, s) becomes:

VpHO(D; l, s) =

{
(Ie, Iv)| Ie =

{
1, . . . ,

(
N − lpHOv

)}
,

Iv =
{(
N − lpHOv + 1

)
, . . . , N

}}
(4.4)

The estimated out-of-sample average error (Eq.3.7) is written as:

L̂
(
D,VpHO, f

)
≡ 1

lpHOv

∑
(z,y)∈D(Iv)

`
[
y, f

(
z, θ̂D(Ie)

)]
(4.5)
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From Equations 4.3 and 4.5, it is easy to see that the p-Holdout scheme is not

computationally expensive since it does not depend on several “rounds” of estimation, but

on a single data split.

4.2 The cp-Holdout scheme

The p-Holdout procedure can “waste” many observations, as seen in Figure 4.1

- Panel B. To circumvent that, we developed the cp-Holdout procedure or composite

p-Holdout forward-validation scheme. We called it composite because it considers three

situations. If the series is aperiodic, then it returns the same validation set as the Holdout

scheme. In the cases where the period is greater than 1, then we calculate the ratio between

the length of the test set and s. If this division has a remainder, we take the ceiling of this

ratio and multiply it by the period of the series. The result is the length of the validation

set. Otherwise, it creates the validation set as the p-Holdout scheme does. In other

words,

l
cpHO
v ≡



lHOv , if s = 1

s ·
⌈
l/s

⌉
, if s > 1 and l mod s 6= 0

l + s, otherwise.

(4.6)

Using the same time series and conditions like those in the example from the

p-Holdout scheme, we can show a simplified vision of the cp-Holdout method

in Figure 4.3. In this case, we have that l/s = 4/3 = 1.3333, so lcpHOv is 3 · d1.3333e = 6.
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Figure 4.3: Example of the cp-Holdout forward-validation scheme applied to
a univariate time series with T = 16, qt = 0.8, and s = 3.

We define the cp-Holdout validation scheme, VcpHO(D; l, s) as:

VcpHO(D; l, s) =

{
(Ie, Iv)| Ie =

{
1, . . . ,

(
N − lcpHOv

)}
,

Iv =
{(
N − lcpHOv + 1

)
, . . . , N

}}
(4.7)

And the equation for the average expected out-of-sample error is:

L̂
(
D,VcpHO, f

)
≡ 1

l
cpHO
v

∑
(z,y)∈D(Iv)

`
[
y, f

(
z, θ̂D(Ie)

)]
(4.8)

4.3 The cep-Holdout scheme

In both the p-Holdout and cp-Holdout procedures, the period is obtained

using the frequency function from base R. This function returns the number of obser-

vations s before the seasonal pattern repeats (its “frequency”) by capturing an attribute of

the time-series object used in the analysis. However, in some situations, the object might

be of a different class (for instance, a “data.frame”) that does not contain the “frequency”
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attribute or might seem aperiodic (i.e., with the “frequency” attribute equal to one), but,

in reality, it contains a cyclical or seasonal pattern. We developed the cep-Holdout

scheme or composite estimated period-holdout forward validation scheme to account for

these cases.

The cep-Holdout procedure works similarly to the cp-Holdout but uses the

dominant frequency of a time series estimated from a spectral analysis of the data. We

use the findfrequency function from the forecast package to obtain this dominant

frequency since this function returns the seasonal period for seasonal data and the average

cycle length for cyclic data. From its manual:

“The dominant frequency is determined from a spectral analysis of the time
series. First, a linear trend is removed, then the spectral density function
is estimated from the best fitting autoregressive model (based on the AIC).
If there is a large (possibly local) maximum in the spectral density function
at frequency f, then the function will return the period 1/f (rounded to the
nearest integer). If no such dominant frequency can be found, the function
will return 1.”

To avoid confusion with the forecasting model f , we shall write the dominant fre-

quency as ŝ. With this, we write our first attempt at defining the length of the validation

set for the cep-Holdout method as:

l
1stcepHO
v ≡



lHO
v , if ŝ = 1

ŝ ·
⌈
l/ŝ

⌉
, if ŝ > 1 and l mod ŝ 6= 0

l + ŝ, otherwise.

(4.9)

When evaluating the results, we noticed that defining the length in the way shown

in Equation (4.9) presented a few challenges. Firstly, we used the entire training data to
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obtain ŝ. Having ŝ = findfrequency(D) yielded some large values of ŝ that proved

problematic when used with the Random Forest estimation method (see Section 5.2.5).

To obtain smaller values for lcfpHO
v , we had to make two changes.

The first one is that instead of using the length of the test set, l, for all cases, we

defined a condition that returns either d(1− qt) ·Ne (the definition of l) or d(1− qe) ·Ne(
the definition of lHO

v

)
as the new length l∗, depending on the ratio between the two. The

other change is a condition imposed on the estimated value ŝ =findfrequency(D). If

it is larger than l∗, then we obtain the dominant frequency from the validation set obtained

using the classic Holdout scheme. That is, ŝ = findfrequency
(
VHO(D; qe)

)
.

Formally, we have:

l∗ ≡


lHO
v , if lHO

v /l < 0.5,

l, otherwise.

(4.10)

and

ŝ ≡


findfrequency(D), if findfrequency(D) < l∗,

findfrequency
(
VHO(D; qe)

)
, otherwise.

(4.11)
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With these, we write the length of the validation set in the cep-Holdout scheme:

l
cepHO
v ≡



lHO
v , if ŝ = 1

ŝ ·
⌈
l∗/ŝ

⌉
, if ŝ > 1 and l∗ mod ŝ 6= 0

l∗ + ŝ, otherwise.

(4.12)

Then, VcepHO(D; l∗, ŝ), the composite estimated period-holdout forward valida-

tion scheme is defined as:

VcepHO(D; l∗, ŝ) =

{
(Ie, Iv)| Ie =

{
1, . . . ,

(
N − lcepHO

v

)}
,

Iv =
{(
N − lcepHO

v + 1
)
, . . . , N

}}
(4.13)

and the associated out-of-sample generalization error is:

L̂
(
D,VcepHO, f

)
≡ 1

l
cepHO
v

∑
(z,y)∈D(Iv)

`
[
y, f

(
z, θ̂D(Ie)

)]
(4.14)
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Chapter 5: Data & Methodology

5.1 Data

5.1.1 Data from Cerqueira et al. (2020)

It is important to notice that the selection of ĝ(·) in Eq.(3.8) does not depend

uniquely on the validation scheme selected. From Equation (3.7), we see that it also

depends on the training data (D), on the learning algorithm (through θ̂), and the loss

function. Therefore, to compare our results to those from CTM, we will need to use the

same training data, learning algorithm, and loss function that they used.

Out of the 174 real-world data sets used by CTM, 149 univariate time series with

more than 500 observations without missing values were taken from the benchmark

database tsdl from Hyndman and Yang [70]. The remaining 25 were taken from Cerqueira

et al. [87]. CTM selected time series with at least 500 observations (the range for the sam-

ple size goes from 506 to 4000 observations) so that the machine learning algorithms had

enough data to estimate the parameters properly. The 174 series were taken from many

different fields, that include finance, physics, economy, energy, and meteorology [22, p.

2005]. Moreover, 97 are stationary, while the remaining 77 are non-stationary.

As for the seasonality, Table 5.1 shows s (the period from the frequency func-
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tion) and ŝ (obtained using the forecast::findfrequency function). We see from

it that most series (n = 60 in each case) are either aperiodic (s = 1) or with monthly pe-

riodicity (i.e., with frequency s = 12). The function forecast::findfrequency

was able to “correctly” identify 41 of the aperiodic series and 48 of the monthly time

series. The highest period identified by s was 365 (daily), while ŝ yielded a maximum

estimated period of 499.

5.1.2 Data from the M4 Competition

The M4 Forecasting Competition took place in 2018. Participants in this compe-

tition had to forecast values for 100,000 real-life time series. The number of forecasts

required was 6 for yearly data (minimum sample size of 13), 8 for quarterly data (mini-

mum sample of 16), 18 for monthly time series (min. sample of 42), 13 for weekly data

(min. sample of 80), 14 for daily (min. sample of 93), and 48 for hourly data (minimum

sample size of 700).

We randomly selected 1,000 time series from these one hundred thousand and used

them to evaluate the performance of the different validation schemes. Since we wanted

to see how they behaved on periodic data alone, we selected only the series with at

least 100 observations, and in which their period was greater than 1, and if this period

was equal to the period of the dominant frequency of a time series (estimated using the

findfrequency from the forecast package1). In the end, we had 164 series with

s = ŝ = 4, 778 with both period and estimated period equal to 12, and 55 with similarities

1For cyclic data, this function returns the average cycle length. For seasonal data, it returns the seasonal
period.
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in the series occurring after 24 basic time intervals.

Table 5.1: Period and estimated periods for the univariate time series in Cerqueira et
al.(2020)’s data set.

ŝ \ s 1 12 13 24 48 365 Total
1 41 6 0 4 0 8 59
3 1 0 0 0 0 1 2
4 3 0 0 0 0 0 3
5 0 0 0 0 0 1 1
6 0 4 0 0 1 1 6
7 2 0 0 0 0 2 4

10 1 0 0 0 0 0 1
11 0 0 0 0 0 2 2
12 1 48 0 6 0 0 55
13 0 0 1 0 0 1 2
15 0 0 0 0 0 1 1
16 0 0 0 0 0 2 2
17 0 0 0 0 0 1 1
21 0 0 0 0 0 1 1
22 1 0 0 0 0 0 1
23 1 0 0 1 0 0 2
24 1 0 0 13 0 0 14
25 0 0 0 0 0 1 1
29 2 0 0 0 0 0 2
30 0 0 0 0 0 1 1
42 1 0 0 0 0 0 1
45 1 0 0 0 0 0 1
48 1 0 0 0 2 0 3
50 0 0 0 0 2 0 2

125 0 2 0 0 0 0 2
143 1 0 0 0 0 0 1
250 0 0 0 1 0 0 1
333 1 0 0 0 0 0 1
499 1 0 0 0 0 0 1

Total 60 60 1 25 5 23 174
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5.1.3 Monte Carlo Simulation

The third data set, called S3, is a counterexample developed by [21] to work as

a situation where the cross-validation procedures break down. The 1000 time series

with 200 observations were generated following a seasonal AR process with a signifi-

cant lag 12 (seasonal lag 1), that is, a SARIMA(12, 0, 0) × (1, 0, 0)12. The authors ob-

tained the parameters for the data generating process by fitting the seasonal AR model to

the USAccDeaths data set shown in Figure 4.1. This dataset is included in a standard

installation of R.

The models used by both CTM and Bergmeir et al. [21] to analyze the simulated

data only use up to the first five lags. By restricting the number of lags, Bergmeir et al.

[21] expected the models to not fit well data. Curiously, CTM’s results show that some

cross-validation procedures yielded good results. We hypothesize that they used different

forms of the validation schemes as we showed in Section 3.3.

We used the S3 dataset but also modified it to include a seasonal integration of

order 1. In other words, we also simulated 1000 time series with 200 observations with

parameters estimated using the USAccDeaths data set, but according to the specifica-

tion SARIMA(12, 0, 0) × (1, 1, 0)12. The goal here was to evaluate how the validation

schemes deal with an integrated seasonal process. We called this dataset S4.

5.2 Methodology
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5.2.1 Terminology

To make the names of the schemes defined here compatible with the ones used by

CTM, we use the short names shown in Table 5.2. The short names are also used in the

plots with the final results (Chapter 6 and Appendix B).

Table 5.2: Names and short names of the validation schemes used here, alongside the
number of the Sections with discussions about them, and the exact equation number used
to define the indexes for the estimation and validation sets.

Type Name Short Name Sec. Eq. #

Forward
Validation

Holdout Holdout 3.2.1 3.10
Repeated Holdout Rep-Holdout 3.2.2 3.18
Period-Holdout p-Holdout 4.1 4.4
Composite Period-Holdout cp-Holdout 4.2 4.7
Composite Estimated-Period-Holdout cep-Holdout 4.3 4.13
Prequential Growing Window Preq-Grow 3.2.3 3.21
Prequential Sliding Window Preq-Slide 3.2.4 3.23
Prequential in Blocks Preq-Bls 3.2.5 3.28
Prequential Sliding Blocks Preq-Slide-Blocks 3.2.6 3.31
Prequential Blocks with Gaps Preq-Bls-Gap 3.2.7 3.34

Cross-
Validation

Cross-validation (k-Fold CV) CV 3.3.1 3.37
Blocked k-Fold Cross-Validation CV-Bl 3.3.2 3.39
hv-Block Cross-Validation CV-hvBl 3.3.3 3.51
Modified cross-validation CV-Mod 3.3.4 3.56

5.2.2 The Forecasting Model and the Embedded Matrix

Following CTM, we use a univariate autoregressive process to model the series.

This process can be represented by the time delay embedding method proposed by Takens

[75, apud CTM]. In this method, the lag order, p, of the model is estimated (see below),

and the time series is embedded accordingly. The resulting matrix is similar to the one

seen in Eq.(5.1) (this one was created for a lead time l = 1) and will be used as the input
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for the learning algorithms (see Section 5.2.5).

Y[T,p] =



y1 y2 · · · yp yp+1

...
...

...
...

...

yt−p yt−p+1 · · · yt−1 yt

...
...

...
...

...

yT−p yT−p+1 · · · yT−1 yT


(5.1)

In the above matrix, we see that each row is of the form [z>t , yt], where z>t ∈ Rp is

the vector comprised of the lagged values of yt. Thus, the first p columns of the matrix in

Eq. (5.1) contain the predictors for the last column of the matrix.

The optimal embedding dimension, p, is estimated using the False Nearest Neigh-

bor algorithm, developed by Kennel et al. [88]. The idea behind this algorithm is to search

for regression vectors that are close to a vector that produces a good prediction. By sim-

ilarity, it is expected that these regression vectors will produce forecasts that are close to

each other. However, if those regression vectors produce vastly different future outputs,

they are deemed false neighbors [89]. The embedding dimension is selected to be the

one in which the number of false neighbors is dropped to an acceptably small percent-

age2. The algorithm uses the training data to search for p up to a maximum embedding

dimension equal to 30. The tolerance to false nearest neighbors was set to 1% [22, p.

2008].
2In their code, CTM set a minimum value of 8 for the estimated dimension. Furthermore, when creating

the embedded matrix, they added 1 to the estimated value. They did not discuss why they did this.
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5.2.3 Length of the Sets and Number of Folds

Once we have the final embedded matrix for each of the simulated data sets, or the

174 time series from CTM, they will be divided into the training and test sets using the

proportions of 70% and 30%, respectively (that is, qt = 0.7). Then, following Bergmeir

et al. [21], we take qe = 0.8 for the simulated series. For the 174 real-life series, we use

qe = 0.7, as did CTM.

For the M4 Competition, the organizers had defined the length of the forecast hori-

zon l for each type of series, as discussed in Section 5.1.2, so we used the provided lengths

as the lengths of the test and validation sets for each one of the 1,000 selected series. Af-

ter the competition was over, the organizer provided the true out-of-sample observations

(with length l), and these were used as the test sets. The length of the training sets, N ,

was the maximum length of the series available before the end of the competition [11].

In all cases (Simulated, Cerqueira and M4), the proportion qe used for the estimation

set with the Rep-Holdout scheme was 60% of the training data, while the validation

set contained the last 10% observations from the training data (i.e., qv = 0.1), as it was

done by [22, p. 2008]. For the Rep-Holdout and the other schemes that require the

number of folds, this number was set to 10 [22, p. 2008].

5.2.4 Stationarity

We also divided the series into stationary and non-stationary cases to see how the

validation schemes behave in each case. According to the original authors:

“In order to test if a given time series is stationary we follow the wavelet
spectrum test described by Nason (2013). This test starts by computing an
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evolutionary wavelet spectral approximation. Then, for each scale of this ap-
proximation, the coefficients of the Haar wavelet are computed. Any large
Haar coefficient is evidence of a non-stationarity. An hypothesis test is car-
ried out to assess if a coefficient is large enough to reject the null hypothesis
of stationarity. In particular, we apply a multiple hypothesis test with a Bon-
ferroni correction and a false discovery rate (Nason, 2013).” (Cerqueira,
Torgo, and Mozetič, 2020, p. 2005)

5.2.5 Learning Algorithms

The learning algorithms (i.e., the methods used to estimate θ) applied by CTM are

the following:

RBR: a rule-based regression algorithm from the Cubist R package [91], which is a variant

of the M5 model tree algorithm [92, 93];

RF: a random-forest algorithm, which is an ensemble of decision trees [94];

GLM: a generalized linear model with a Gaussian distribution and a Ridge penalty mixing.

Quinlan’s M5 model tree algorithm [93] is a supervised learning method used to

predict continuous values. Tree-based models are constructed by the divide-and-conquer

method. That is, they partition the covariate (feature) space of the training data into a set

of rectangles and then fit independent models in each one (Figure 5.1 - bottom part). The

same model can be represented by the tree in the upper part of Figure 5.1. The partition

is based on the split-points that provide the best fit, i.e. the points that subset the training

data in a way that minimizes the variability inside each rectangle. This metric depends on

the standard deviation of the target/response variable taken into the entire training sample

and taken inside each rectangle.
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Figure 5.1: Example of splitting the input space X1 × X2 by the M5 model
tree algorithm. Image source: Etemad-Shahidi and Mahjoobi [95, p. 1177].
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Cubist is a rule-based regression (RBR) model that combines the algorithms that

Quinlan [92, 93] developed into an improved approach. The main improvements include

an ensemble method for predictions called committees [96], where iterative model trees

are created in sequence. The model in the first tree (i.e., in the first committee) uses

the original response variable. Subsequent trees (committees) are created using adjusted

versions of this response so that if the model over-predicted the outcome, its adjusted

value becomes larger so that the model is pulled downwards for the next iteration in an

attempt to stop over-predicting. The final prediction is the average of the predictions from

each model tree (that is, “ensemble predictions are made by averaging over the committee

model predictions”, [96]). Following CTM [22, p. 2009], we use 5 committees.

The “Random Forests” (RF) algorithm basically builds a large collection of de-

correlated trees, and takes their average [74, p. 587]. Because of this, it is often defined as

an ensemble of decision tree algorithms. It differs from the model tree algorithms because

the variables are randomly selected as candidates for splitting instead of a rule-based

method. Another major difference is that it evaluates the models in a bootstrap sample of

the training data instead of the rectangles created from a partition of the covariate/feature

space as in the RBR model. This assures that the grown tree in each bootstrap sample

(one tree per sample) yields uncorrelated outcomes from the other trees. We used 100

trees/bootstrap samples3.

Lastly, we used a generalized linear model with a Gaussian distribution and a Ridge

penalty mixing, or simply known as “ridge regression.” This method shrinks the re-

3Due to the random nature of this method, and since Cerqueira et al. [22] did not set a seed in their code,
our results in Chapter 6 are slightly different from theirs. Our discussion about this with the corresponding
author can be seen here: https://github.com/vcerqueira/performance_estimation/
issues/1.
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gression coefficients by imposing a penalty on their size, which alleviates the effects of

multicollinearity[74, p. 61-64]. On the one hand, this adds some degree of bias, but on

the other, it reduces the standard errors. In this bias-variance trade-off, ridge regression,

in general, provides more gains in terms of efficiency in exchange for a tolerable amount

of bias.

5.2.6 Forecast Accuracy Measures

Following the work of Bergmeir et al. [21], CTM wanted to compare the different

validation schemes by evaluating how close L̂ (D,V , ĝ) would be to L̂ (D,Dtest, ĝ)4, the

“ground truth loss” [22, p. 2009]. For that, they used the absolute predictive accuracy er-

ror (APAE), and the predictive accuracy error (PAE) metrics. The APAE metric evaluates

the error size of a given validation scheme, and is defined in Eq.(5.2), below. On the other

hand, PAE, as defined in Eq.(5.3), measures the error bias of a validation scheme - that is,

if it is underestimates or overestimates the “true” error.

APAE ≡
∣∣∣L̂ (D,V , ĝ)− L̂(D,Dtest, ĝ)

∣∣∣ (5.2)

PAE ≡ L̂ (D,V , ĝ)− L̂(D,Dtest, ĝ) (5.3)

4That is, Eq.(3.7) with Dtest in place of V .
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where V is any of the validation schemes presented in Sections 3.2 and 3.3

The first loss function, `, used inside each L̂ was the quadratic loss. We used

it because it is a metric traditionally used to evaluate forecast accuracy. With it, the

generalization error L becomes the mean square error, MSE. To control for its size, we

calculated the root mean square error (RMSE). Using this error measure makes our results

comparable to the ones by Bergmeir et al. [21]. These are the results shown in Chapter 6.

However, since the main paper that we are using to compare our results is the one

by [22], we also use the mean absolute scaled error as calculated for the estimation and

validation set as follows (that is, L̂ (D,V , ĝ):

MASE ≡ 1

lv
·

∑le+lv
t=le+1 |yt − ŷt|(

1
N−s

)∑N
t=s+1 |yt − yt−s|

(5.4)

Calculating L̂(D,Dtest, ĝ) using the MASE metric is similar. This metric is suitable

since it allows us to consider the periodicity of a time series. Moreover, since it is scale-

invariant, it “can be used to compare forecast methods on a single series and also to

compare forecast accuracy between series” [97, 43].

Our final evaluation consists of taking the APAE metrics for all the validation

schemes and sorting these values for a given time-series. The procedure that yields the

smallest APAE values will receive a rank equal to 1 (meaning, it is the best for that

specific series), while the “worst” scheme (with highest APAE) will be ranked the 14th

method (i.e., the last place, since we have 14 procedures). Then, we take the average rank

among all series and sort the procedures according to this average rank. These sorted

ranks comprise the first set of results shown in Chapter 6 and Appendix B.
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The second set of results is based on the PAE metric. For that we will calculate

the log percentage difference of the estimated loss, L̂ (D,V , f), relative to the true loss,

L̂(D,Dtest, ĝ). Values below zero represent under-estimations of the error. Conversely,

values above it represent over-estimations of the error. Ideally, a scheme would produce

a log percentage difference close to zero.

5.2.7 Hypothesis Testing and Comparisonwise Error Rate

Let us briefly review the types of errors. Recall that we have two types of errors

related to hypothesis testing: Type I and Type II. Consider the case where we are testing a

hypothesis about the mean of a population, and someone states that the real mean is equal

to some value µ0, and say that our alternative hypothesis is that this mean is different from

µ0. In this case, we have the following:

H0 : µ = µ0

HA : µ 6= µ0

From the way we have defined our hypotheses, H0 is false if the real parameter µ is

anything but µ0. Since we have many possibilities for that (i.e., many possible values for

the real parameter, µ, as long as it is different from µ0), we say that HA is a composite

hypothesis. On the other hand, in the case H0 has only one value and we say that it is a

simple hypothesis.

Now, we define the Type II error as the error we make when we do not reject H0

when it is false. Because µ can be anything but µ0, the probability of making a Type II
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error will be a function of all µ that are different from µ0, and this function is usually

denoted by β(·):

P (Do not Reject H0|H0 false) = β(µ),∀µ 6= µ0

Type I error is the one we make when we reject H0 when it is true, and the proba-

bility of making such error in that situation depends, in general, on the value specified in

H0. In other words,

P (Reject H0|H0is true) = P (Type I error |µ = µ0)

And if the probability of type I error satisfies

P (Type I error ) ≤ α, when µ = µ0,

Then we say that the test has a significance level α, and α is the ceiling for the probability

of a Type I error.

Now, we have seen how to use the two-sample t-test to compare the means of two

samples. In such case, we could have a null hypothesis that looks like this: H0 : µ1 = µ2,

where µ1 and µ2 are the population means for groups 1 and 2, respectively. However,

when you have more groups, it is of interest to examine the differences between these

groups. In such cases, we can have two types of null hypothesis: a complete null hypoth-
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esis, or a partial null hypothesis: One example of a complete null hypothesis is:

H0 : µ1 = µ2 = . . . = µK ,

where K is the number of groups/levels/factors/categories that is, we are evaluating if all

group means are the same. On the other hand, an example of a partial null hypothesis is:

H0 : µ1 = µ2 = . . . = µK−1 6= µK ,

and, in this case, we are testing if the mean of one group is different from all other groups

and that all other groups have the same mean.

To evaluate the probability of type I error in such cases, we could break apart these

hypotheses into several simple hypothesis. In this case, we would have several probabili-

ties of making a Type I error, one for each individual test between two means.

In a multiple comparison setting, we would be looking for the value of α at each

simple case. One could use the same α for each simple case, and let us take a look at what

happens when we do that. Recall our partial null hypothesis example and let us say that

K = 3. Then,

H0 : µ1 = µ2 6= µ3

Breaking this up into three hypothesis yields:

H1
0 : µ1 = µ2; H2

0 : µ1 6= µ3; H3
0 : µ2 6= µ3
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If we use the α = 0.05 for each of them - and, to ease the calculations, assume

that the probabilities of a Type I error are independent among all comparisons -, then the

probability that at least one of these tests yields an erroneous rejection raises to 0.143 (see

below).

1− P (not one test yield an erroneous rejection of the null) = 1− 0.953

≈ 0.143

Thus, the above probability increases with the number of comparisons (single hy-

pothesis) that we make. This is the multiple comparison problem. One way we can solve

it is by controlling the overall type 1 error rate for all the comparisons. This overall Type

1 error rate is called experimentwise error rate.

It is difficult to calculate an experimentwise error rate’s exact probability, but we

can derive a pessimistic approximation by assuming that the comparisons are independent

and giving an upper bound to it:

1− (1− αCW )C ≤ αEW (5.5)

where αEW is the experimentwise error rate, αCW is the comparisonwise error rate (i.e.,

the error rate between two comparisons), and C is the total number of comparisons.

In an experiment, if one wants to control the overall Type I error rate for all the

comparisons, they are controlling the experimentwise error rate, αEW . On the other hand,

if they decide to control the individual type I error rates for each comparison, they are
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controlling the individual or comparisonwise error rate, αCW .

In situations where incorrectly rejecting one comparison may jeopardize the entire

experiment or where the consequence of incorrectly rejecting one comparison is as serious

as incorrectly rejecting a number of comparisons, the control of experimentwise error rate

is more important. Now, when one erroneous conclusion will not affect other inferences

in an experiment, the comparisonwise error rate is more pertinent.

One can control αEW at the α level by setting αCW to a sufficiently small value.

The Bonferroni inequality has been widely used for this purpose. If

αCW =
α

C
,

then αEW is less than α.

In the end, we choose what we will control by choosing the test we use. We have

that individual tests (like individual two-sample t-tests) control αCW . On the other hand,

tests that yield confidence inequalities or confidence intervals (like Scheffe’s) control

αEW under any complete or partial null hypotheses. Moreover, a preliminary F test con-

trols αEW under the complete null hypothesis but not under the partial null hypothesis.

Our evaluation of the PAE metric will be similar to a simple t-test with H0 = 0.

We do this because we are interested in knowing if the average log PAE metric for a

scheme is close to zero. Here, we are interested in evaluating between the groups (the

validation schemes), and incorrectly rejecting one comparison will not jeopardize our

entire evaluation. Thus, we will control for the comparisonwise error rate, αCW . We will

use a non-parametric alternative to the t-test, called the Sign test. This non-parametric
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test makes no assumptions regarding the distribution of the parameter, and is suitable for

our case.

The number of comparisons is equal to the number of validation schemes. That

is, C = 14. Moreover, the maximum value of α is set to 0.15. Then, αCW = 0.15/

14 ≈ 0.011.

Furthemore, we analyzed the statistical significance of the APAE metric using the

same approach as CTM. According to these authors:

“We also study the statistical significance of the obtained results in terms of
error size (APAE) according to a Bayesian analysis [98]. Particularly, we ap-
plied the Bayes signed-rank test to compare pairs of methods across multiple
problems. We arbitrarily define the region of practical equivalence (Benavoli
et al. 2017) (ROPE) to be the interval [-2.5%, 2.5%] in terms of APAE. Es-
sentially, this means that two methods show indistinguishable performance if
the difference in performance between them falls within this interval. For a
thorough description of the Bayesian analysis for comparing predictive mod-
els we refer to the work by Benavoli et al. (2017). In this analysis, it is
necessary to use a scale invariant measure of performance. Therefore, we
transform the metric APAE into the percentage difference of APAE relative
to a baseline.” (Cerqueira, Torgo, and Mozetič, 2020, p. 2013. Emphasis in
the original.)

5.2.8 The Complete Experimental Design

In summary, CTM’s experimental design (and the one used here), has the following

steps for each one of the time series:

• Step 01: For the RF and GLM methods, calculate the number of differences re-

quired to make the series stationary, and take the differences. Otherwise, use the

series as is;
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• Step 02: Estimate p and get the embedded matrix. The columns of this matrix

(other than the “target” column) yields ĝ;

• Step 03: Split the entire data set into training set (D) and test data set (Dtest),

following the Holdout validation scheme;

• Step 04: For each one of the estimation methods above (RBR, RF, GLM), calculate

the “true loss,” L̂(D,Dtest, ĝ) (as both the RMSE and the MASE);

• Step 05: For each estimation method, partition the training data into the estimation

and validation sets according to each validation scheme, and calculate L̂ (D,V , ĝ)

(using both RMSE and MASE);

• Step 06: For each method calculate the APAE (Eq.5.2) metric, and rank the valida-

tion schemes from smaller APAE (better, rank = 1) to higher (worse, rank = 14, as

we evaluate 14 schemes);

• Step 07: For each method calculate the average rank (over the time series in the

category5) based on the APAE measure;

• Step 08: Evaluate if the difference in the average ranks between the schemes is

statistically significant using the Bayes signed-rank test;

• Step 09: For each method calculate the PAE (Eq. 5.3) metric;

5We have three major categories: data from CTM, from the M4 Competition sample, and from our
Monte Carlo simulations. For the first two, we calculated the overall average, the average amongst only
the stationary series, and the average over the non-stationary ones. For the latter, we divided it between
S3 : SARIMA(12, 0, 0)× (1, 0, 0)12 and S4 : SARIMA(12, 0, 0)× (1, 1, 0)12 and calculated the averages
inside each one of those.
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• Step 10: Calculate the log percentage difference of the estimated loss, L̂ (D,V , ĝ),

relative to the true loss, L̂(D,Dtest, ĝ);

• Step 11: Evaluate if the (median) log percentage difference is statistically different

from zero using the Sign test;

• Step 12: Plot the results from steps 07, 08 and 10. The plots are displayed in

Chapter 6 for L̂ calculated using the RMSE, and in the Appendix B for the MASE;

The entire process described above was conducted in the software R. The final code

used is a modification of the code from CTM, and it is fully available on our paper’s

corresponding author’s GitHub repository 6. All the data sets, results, and plots are also

included inside this repository. The functions created specifically for this paper (i.e., the

functions for the p-Holdout family and the evaluation of its results) can also be found in

Appendix C.

6https://github.com/gu-stat/validation_schemes
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Chapter 6: Results

6.1 Data from Cerqueira et al. (2020)

6.1.1 Results from the RBR learning algorithm

We start by analyzing the results for the RBR estimation method. Regarding all 174

real-life time-series and the RMSE as error measure, the cep-Holdout scheme came

in fourth place, behind cross-validation methods like the CV-hvBl , CV-Bl , and CV

(Figure 6.1). These procedures also yielded an average error bias closer to zero (Figure

6.2). The medians were also close to zero with p-values for the sign test greater than

αCW = 0.011 (Table A.1).

However, when we use the MASE, this scenario changes (Figure B.1). For instance,

CV now is the last-placed procedure, and the cep-Holdout comes in second place

behind the Rep-Holdout (which came in 10th place with the RMSE). But this last

procedure had a much larger average (log) error bias (0.1775, median = −0.7885 with p-

value = 0.7048; Table B.1) than the cep-Holdout scheme (0.0498, median =−0.4583

with p-value = 0.5958). Only the CV-Bl and cp-Holdout schemes had an average log

error smaller than the cep-Holdout procedure (0.0244 and 0.0362, respectively; Table

B.1).
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Figure 6.1: Average APAE rank of each validation scheme on 174 real-world
time series using the RBR learning algorithm and RMSE as the error func-
tion. The black line represents -+ 1 standard deviation from the average.
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Figure 6.2: Log percentage difference of the estimated loss relative to the
true loss for each validation scheme applied to 174 real-world time series
using the RBR learning algorithm. Values below the zero (red) line represent
under-estimations of the error. Conversely, values above it represent over-
estimations of the error.
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Figure 6.3: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation scheme when applied to the stationary time-series from Cerqueira
et al. (2020), with parameters estimated via the RBR learning algorithm and
error calculated using the RMSE. The probabilities are computed using the
Bayes signed-rank test.

When we evaluate only the non-stationary series, the cep-Holdout scheme is the

procedure that often returns the smallest prediction error (measured by the APAE metric)

for both error measures (RMSE and MASE) (Figures 6.1 and B.1). The cep-Holdout

yields a fairly large error bias under the RMSE (0.3344, 8th place), but a very small

bias for when using the MASE (0.0263). In fact, all schemes in the p-Holdout family

produced much smaller error bias under the MASE measure, than the other methods.

For instance, the log percentage difference for the p-Holdout , cep-Holdout and

cp-Holdout were equal to 0.0108, 0.0263, and -0.0263, respectively. In 4th place

comes the Rep-Holdout scheme, with an average error bias of 0.2071.
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Figure 6.4: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respec-
tive validation schemes when applied to the non-stationary time-series from
Cerqueira et al. (2020), with parameters estimated via the RBR learning algo-
rithm and error calculated using the RMSE. The probabilities are computed
using the Bayes signed-rank test.

The plot in Figure 6.4 also shows the superiority of the cep-Holdout procedure

in the non-stationary case. According to this plot, the cep-Holdout scheme has a

significantly better estimation ability, since its probability of winning is larger then the

ones for the cross-validation procedures. Based on Figure 6.4, the Preq-Grow and

Preq-Slide schemes seem to be good competitors. However, these are computation-

ally expensive and also yield a larger error bias (Table A.3).

6.1.2 Results from the RF learning algorithm

The results for the Rf learning algorithm are very similar to the ones for the RBR.
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Figure 6.5: Average APAE rank of each validation scheme on 174 real-world
time series using the RF learning algorithm and RMSE as the error function.
The black line represents -+ 1 standard deviation from the average.

Overall, the cep-Holdout method ended up behind the CV-hvBl , CV-Bl ,

and CV schemes in terms of the average APAE metric when used in conjunction with the

RMSE (Figure 6.5). In terms of the MASE, the cep-Holdout ended up in first place

(versus the 2nd place it ended up when the RBR was used - Figure B.5).

When looking only at the 77 non-stationary series, the cep-Holdout scheme
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Figure 6.6: Log percentage difference of the estimated loss relative to the
true loss for each validation scheme applied to 174 real-world time series
using the RF learning algorithm. Values below the zero (red) line represent
under-estimations of the error. Conversely, values above it represent over-
estimations of the error.

was the first, again (Figures 6.5 and B.5 - “Non-Stationary” panel), with the lowest APAE

score, on average. However, it displayed, on average, a much larger bias than cross-

validation procedures when the RMSE was used (Figures 6.6 - “Non-Stationary” panel).

On the other hand, when MASE was used (Figure B.6), our schemes had a per-
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Figure 6.7: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation scheme when applied to the stationary time-series from Cerqueira
et al. (2020), with parameters estimated via the RF learning algorithm and
error calculated using the RMSE. The probabilities are computed using the
Bayes signed-rank test.

centual difference to the true loss very close to zero, with the p-Holdout being the clos-

est (0.0494), behind only to the Holdout scheme (-0.0273). Moreover, all three schemes

in the p-Holdout family returned slightly pessimistic results (i.e., they over-estimated the

error), with the average log percentages being equal to 0.0494, 0.1832, 0.1680, and for the

p-Holdout , cp-Holdout , and cep-Holdout , respectively. The Preq-Slide

procedure, that ended in second place when either the RMSE or MASE were used, yielded

larger values of the error bias (-0.4075 in the RMSE case, and -0.3931 when the MASE

was employed).
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Figure 6.8: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respec-
tive validation schemes when applied to the non-stationary time-series from
Cerqueira et al. (2020), with parameters estimated via the RF learning algo-
rithm and error calculated using the RMSE. The probabilities are computed
using the Bayes signed-rank test.

6.1.3 Results from the GLM learning algorithm

The average APAE results for the 174 real-life time series using GLM-Ridge as the

estimation method and the RMSE as error measure are shown in Figure 6.9. The novelty

now is the presence of the p-Holdout scheme in second place in the “All” case and in

third place in the “Non-Stationary” case. However, it ended up in 6th place, overall, in

terms of the error bias, and in 10th place when only non-stationary series were evaluated

(Figure 6.10), Another important result for our family is related to the cep-Holdout

method. Not only did it yielded the best forecast accuracy in terms of the APAE metric

when the RMSE was used, but also produced forecasts with the smallest average error
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bias.

Figure 6.9: Average APAE rank of each validation scheme on 174 real-world
time series using the RIDGE learning algorithm and RMSE as the error func-
tion. The black line represents -+ 1 standard deviation from the average.

When looking at the results with the MASE as error metric, the cep-Holdout

was again first place in terms of the smallest rank. But, unlike the RMSE case, it did not

provide the smallest log percentage difference. Here, using the CV-Bl , the CV-Bl and

the p-Holdout schemes resulted in smaller error bias (Figure B.10). However, these
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methods did poorly in terms of the APAE rank (Figure B.9).

Figure 6.10: Log percentage difference of the estimated loss relative to the
true loss for each validation scheme applied to 174 real-world time series
using the GLM-Ridge learning algorithm. Values below the zero (red) line
represent under-estimations of the error. Conversely, values above it represent
over-estimations of the error.

113



Figure 6.11: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation scheme when applied to the stationary time-series from Cerqueira
et al. (2020), with parameters estimated via the GLM-Ridge learning algo-
rithm and error calculated using the RMSE. The probabilities are computed
using the Bayes signed-rank test.
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Figure 6.12: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respec-
tive validation schemes when applied to the non-stationary time-series from
Cerqueira et al. (2020), with parameters estimated via the GLM-Ridge learn-
ing algorithm and error calculated using the RMSE. The probabilities are
computed using the Bayes signed-rank test.

6.2 Data from the M4 Competition

6.2.1 Results from the RBR learning algorithm

When evaluating the sample of periodic time series taken from the M4 Competi-

tion data set, we see that the procedures from the p-Holdout family perform quite well.

Results using the RBR method indicate that, overall and for non-stationary series, the

cp-Holdout and the cep-Holdout schemes are capable of producing the smallest

forecast errors when both the RMSE (Figure 6.13) and the MASE (Figure B.13) error
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metrics are used.

Figure 6.13: Average APAE rank of each validation scheme to the sample of
1,000 time series from the M4 competition using the RBR learning algorithm
and RMSE as the error function. The black line represents -+ 1 standard
deviation from the average.

For the “Stationary” case, the CV-Mod procedure yielded slightly better results in

the RMSE case, albeit its error bias was larger (Figure 6.14). When MASE was used, the

CV-Bl and the CV-hvBl placed better in terms of the average rank, but their error bias
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was much larger (Figure B.14). For instance, the log percentage for the cp-Holdout

and cep-Holdout were both equal to 0.0997, while the CV-hvBl and CV-Bl proce-

dures produced an error bias equal to -0.4888 and -0.7591, respectively.

Figure 6.14: Log percentage difference of the estimated loss relative to the
true loss for each validation scheme applied to the sample of 1,000 time series
from the M4 competition using the RBR learning algorithm. Values below
the zero (red) line represent under-estimations of the error. Conversely, values
above it represent over-estimations of the error.
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6.2.2 Results from the RF learning algorithm

When the RF learning algorithm was used with the sample of series from the M4

competition, the procedures in the p-Holdout family were unbeatable (according to the

ranks based on the APAE metric - Figure 6.15).

Figure 6.15: Average APAE rank of each validation scheme to the sample of
1,000 time series from the M4 competition using the RF learning algorithm
and RMSE as the error function. The black line represents -+ 1 standard
deviation from the average.
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In particular, the p-Holdout scheme dominated all the results when the RMSE

metric was used, and only lost to the cp-Holdout and cep-Holdout in the “Station-

ary” case with the MASE error (Figure B.17).

Figure 6.16: Log percentage difference of the estimated loss relative to the
true loss for each validation scheme applied to the sample of 1,000 time series
from the M4 competition using the RF learning algorithm. Values below the
zero (red) line represent under-estimations of the error. Conversely, values
above it represent over-estimations of the error.

The results regarding the error bias indicate that the Holdout performed a little
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better than our schemes when we evaluate all series and only the non-stationary ones with

the RMSE (Figure 6.16). However, our procedures provided a smaller log percentage

difference for non-stationary series under the MASE error (Figure B.18).

6.2.3 Results from the GLM learning algorithm

With the GLM-Ridge regression as the estimation method, the new cp-Holdout

scheme performed the best in all but stationary cases (according to the average APAE

metric), followed by the cep-Holdout and the p-Holdout schemes (Figures 6.17

and B.21). As for the error bias, the holdout-based schemes provided values very close to

zero in both the “All” and “Non-stationary” cases (Figure 6.18).

When evaluating only the 97 stationary series and the RMSE error, the CV-Mod

scheme yielded the smallest average rank but only the 8th smallest value of the log per-

centage difference given by the PAE metric (Figure 6.18).

When the MASE was used, overall the CV-Bl procedure ended up in first place in

terms of the average rank based on the APAE metric (Figure B.21), but had an error bias

equal to -0.4889 (Figure B.22). The cp-Holdout , which ended up in second place,

had a much smaller error (0.0997).
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Figure 6.17: Average APAE rank of each validation scheme to the sample of
1,000 time series from the M4 competition using the GLM-Ridge learning
algorithm and RMSE as the error function. The black line represents -+ 1
standard deviation from the average.
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Figure 6.18: Log percentage difference of the estimated loss relative to the
true loss for each validation scheme applied to the sample of 1,000 time series
from the M4 competition using the GLM-Ridge learning algorithm. Values
below the zero (red) line represent under-estimations of the error. Conversely,
values above it represent over-estimations of the error.
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6.3 Monte Carlo Simulation

6.3.1 Results from the RBR learning algorithm

When Bergmeir et al. [21] devised their experimental design, they constrained the

estimation methods to allow only for p = 5, and expected the models to not fit well data,

regardless of the validation scheme used.

Indeed, when we evaluate the sample of periodic time series taken from the Monte

Carlo simulation, we see that the methods that previously did well start to break down

(Figures 6.19 and B.25).

In the case of the RBR algorithm, we see that this is indeed the case when we

evaluate the plots of the error bias (Figures 6.20 and B.26). From them, we see that cross-

validation methods provided poor results for the S3 data set, and much worse results

when integrated seasonal processes were evaluated (S4). On the other hand, the schemes

in the p-Holdout family were the ones that yielded the smallest percentage differences to

the true loss in both cases, and for both error measures (RMSE and MASE).
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Figure 6.19: Average APAE rank of each validation scheme to the sample of
1,000 simulated time series using the RBR learning algorithm and RMSE as
the error function. The black line represents -+ 1 standard deviation from the
average.
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Figure 6.20: Log percentage difference of the estimated loss relative to the
true loss for each validation scheme applied to the sample of 1,000 simulated
time series using the RBR learning algorithm and error calculated using the
RMSE. Values below the zero (red) line represent under-estimations of the
error. Conversely, values above it represent over-estimations of the error.

125



Figure 6.21: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation schemes when applied to the time-series from the S3 simulated
data set, with parameters estimated via the RBR learning algorithm and error
calculated using the RMSE. The probabilities are computed using the Bayes
signed-rank test.
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Figure 6.22: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation schemes when applied to the time-series from the S4 simulated
data set, with parameters estimated via the RBR learning algorithm and error
calculated using the RMSE. The probabilities are computed using the Bayes
signed-rank test.
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6.3.2 Results from the RF learning algorithm

The same problems on the error bias related to constraining the covariate space

were observed when the RF learning algorithm was used (Figures 6.24 and B.30). Yet

again, the procedures in the p-Holdout family were able to mitigate these effects. The

cp-Holdout scheme provided the smallest percentage difference to the true loss when

the RMSE was used in the S3 data set, and the second smallest when the S4 was used.

The procedure that yielded the smaller error bias for S4 was the p-Holdout scheme

(which was the 4th best method in terms of the average rank based on the APAE metric -

Figure 6.23).

When evaluating the methods under the MASE error measure, the Preq-Bls pro-

cedure yielded the smallest error considering the SARIMA(12, 0, 0)× (1, 0, 0)12 case. In

terms of the average rank, the CV-hvBl procedure ended up in first place (Figure B.29),

but the boxplot in Figure B.30 shows that the majority of the distribution of its error bias

does not cover the zero (red) line. The results for the S4 data set (SARIMA(12, 0, 0) ×

(1, 1, 0)12) show that the cep-Holdout was able to provide smaller forecasts errors

more often (Figure B.29), and with the fourth smallest error bias (Figure B.30). In this

metric, the p-Holdout provided the smallest log percentage difference to the true loss

(-0.0880), followed by the Preq-Bls-Gap (0.2515), and the cp-Holdout (-0.3104).
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Figure 6.23: Average APAE rank of each validation scheme to the sample of
1,000 simulated time series using the RF learning algorithm and RMSE as
the error function. The black line represents -+ 1 standard deviation from the
average.
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Figure 6.24: Log percentage difference of the estimated loss relative to the
true loss for each validation scheme applied to the sample of 1,000 simulated
time series using the RF learning algorithm and error calculated using the
RMSE. Values below the zero (red) line represent under-estimations of the
error. Conversely, values above it represent over-estimations of the error.
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Figure 6.25: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation schemes when applied to the time-series from the S3 simulated
data set, with parameters estimated via the RF learning algorithm and error
calculated using the RMSE. The probabilities are computed using the Bayes
signed-rank test.
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Figure 6.26: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation schemes when applied to the time-series from the S4 simulated
data set, with parameters estimated via the RF learning algorithm and error
calculated using the RMSE. The probabilities are computed using the Bayes
signed-rank test.
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6.3.3 Results from the GLM learning algorithm

Finally, the last results come from applying the GLM-Ridge regression as learning

algorithm to the data sets from our Monte Carlo experiment with constrains on the co-

variate space. The most interesting result is related to the log percentage difference to the

true loss with the S4 : SARIMA(12, 0, 0) × (1, 1, 0)12 data set. From the bottom plots

in Figures 6.28 and B.34, we see that all validation schemes provided poor results, with

cross-validation methods being the worse ones. The schemes in the p-Holdout family

also behaved poorly, despite showing good results for the rank (bottom part of Figures

6.27 and B.33). In this scenario, the Preq-Grow scheme was the one that provided the

smallest percentage differences in both RMSE and MASE cases.

Much better results were obtained with the S3 data set. The cp-Holdout was

the scheme that yielded the smallest error bias considering both error measures (RMSE

- Figure 6.28, and MASE - Figure B.34). However, it did not do well in terms of the

average rank based on the APAE metric (Figures 6.27 and B.33).
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Figure 6.27: Average APAE rank of each validation scheme to the sample
of 1,000 simulated time series using the GLM-Ridge learning algorithm and
RMSE as the error function. The black line represents -+ 1 standard deviation
from the average.
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Figure 6.28: Log percentage difference of the estimated loss relative to the
true loss for each validation scheme applied to the sample of 1,000 simulated
time series using the GLM-Ridge learning algorithm and error calculated us-
ing the RMSE. Values below the zero (red) line represent under-estimations
of the error. Conversely, values above it represent over-estimations of the
error.
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Figure 6.29: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation schemes when applied to the time-series from the S3 simulated
data set, with parameters estimated via the GLM-Ridge learning algorithm
and error calculated using the RMSE. The probabilities are computed using
the Bayes signed-rank test.
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Figure 6.30: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation schemes when applied to the time-series from the S4 simulated
data set, with parameters estimated via the GLM-Ridge learning algorithm
and error calculated using the RMSE. The probabilities are computed using
the Bayes signed-rank test.
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Chapter 7: Final Remarks

One approach to evaluate forecast accuracy and compare forecasting methods and

models is to use data-driven procedures to split the original time series into two (or more)

non-overlapping sub-samples, and use one part to fit the model and the other to evaluate

its predictive accuracy. These procedures are called “validation schemes.”

We can divide the validation schemes usually associated with time-series data into

two “main” categories: forward validation (or out-of-sample methods) and cross-validation

schemes. The schemes in the former group preserve the time-ordering of the data, but do

not use all the available data to “train” the model (i.e., to estimate its parameters), which

complicates their implementation in small samples. On the other hand, cross-validation

procedures use all available data, but they have to be adapted to deal with dependent

data, as the “original” cross-validation schemes assume that the data are independent and

identically distributed.

Notwithstanding, all these schemes fail to consider one important characteristic of

a time-series, its periodicity. We argue that if the goal is to find a way to obtain more

accurate forecasts and to decrease the error bias, one should consider the periodic behav-

ior that a series might present. If a time-series does display such similar behavior over

time, we argue that it is possible to obtain validation and test sets that have approximately

138



the same structure, which would lead to an improvement in model selection and forecast

accuracy.

With that in mind, we proposed the p-Holdout family of validation schemes. The

p-Holdout , cp-Holdout , and cep-Holdout schemes are the three members of

this family, and were developed to take into account a series’ periodicity. To assess their

quality we followed [6]’s approach to evaluating new validation schemes. They said,

“(...) researchers proposing a new method are interested in the question,
whether the new method performs better than the state-of-the-art methods.
This is usually determined by the application and comparison of all the meth-
ods on a set of benchmarking data or within competitions.” (Bergmeir and
Benitez, 2012, p. 192)

We evaluated our schemes using the benchmark data sets from Cerqueira et al. [22]

and the Monte Carlo approach by Bergmeir et al. [21]. We also added a new simulated

data set to see how the validation schemes deal with seasonal integrated processes. The

last group of time-series that we evaluated came from the data sets of the M4 Forecasting

Competition [11]. With those, we cover all types of data suggested by Bergmeir and

Benı́tez [6].

In the end, we assessed the impact of 14 validation schemes on the forecast accuracy

and forecast error bias. Since the out-of-sample error not only depends on the validation

schemes, but also on the learning algorithm used, we used three estimation methods.

The first one is known as RBR, and it is a rule-based regression based on the M5 model

tree algorithm [92, 93]. The second one was the traditional Random Forest algorithm

(RF). Lastly, we used a generalized linear model with a Gaussian distribution and a Ridge

penalty mixing (GLM-Ridge).

Moreover, we considered two error metrics, the root mean square error (RMSE)
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and the mean absolute scaled error (MASE). The former is a metric traditionally used

to evaluate forecast accuracy, while the latter allows us to incorporate the seasonality

into the calculation. Following Cerqueira et al. [22] (CTM), we wanted to compare the

different validation schemes by evaluating how close the generalization error would be to

the “ground truth loss.” For that, we used the absolute predictive accuracy error (APAE)

and the predictive accuracy error (PAE) metrics. The APAE metric evaluates the size of

the forecast error of a given validation scheme, and gives us a metric of forecast accuracy.

As a complement measure, the PAE metric returns the error bias of a validation scheme -

that is, if it is underestimates or overestimates the “true” error.

After assessing all 14 schemes under 18 different scenarios (3 sets of time-series, 3

estimation methods, and 2 error measures), we concluded that our new schemes are com-

putationally inexpensive, improve the forecast accuracy, and greatly reduce the average

forecast bias without increasing the variability, specially when applied to non-stationary

time series.

More specifically, the cep-Holdout validation scheme was the procedure that

more often yielded the smallest average forecast error when applied to non-stationary time

series (this result was observed in 7 out of the 18 scenarios), followed by the cp-Holdout

procedure (4 times), and the p-Holdout scheme (2 out of 18). The remaining five

cases were divided amongst the Holdout procedure (3 times), and the prequential grow

(Preq-Grow ) and prequential sliding blocks (Preq-Slide-Blocks ) schemes. The

last two are more computationally expensive and also do not provide large improvements

in the error bias. Thus, when considering all aspects, the cep-Holdout seems to be a

very good data-splitting scheme.
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When it comes to the forecast error bias, the results show that our schemes usually

tend to be pessimist, in the sense that they provide over-estimation of the errors (i.e.,

errors greater than zero). However, when assessing the series with integrated seasonality,

our procedures tend to be more optimistic and under-estimate the bias.

Lastly, a careful evaluation of the equation for the Holdout scheme (Eq. 3.12)

shows that it has the exact same structure as the equations for the p-Holdout (Eq.

4.4), the cp-Holdout (Eq. 4.7), and cep-Holdout (Eq. 4.13) schemes. The only

difference is in the value of lv that each procedure uses. By having the same structure,

we argue that the theoretical results obtained for the Holdout procedure, including the

asymptotic properties, proved by West [8] could be extended to the schemes in the p-

Holdout family. We leave this for our future research.
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Part II

A Novel Machine Learning Strategy for Forecasting Model Selection
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Chapter 8: Introduction

There is an old saying that goes like this “a good craftsperson never blames their

tools.” This proverb might be true or not, depending on how one sees the world. What

is undeniably true, though, is that selecting the proper tool greatly facilitates one’s work

and heavily influences the quality of the outcome. This is true for life and also for data

analysis.

Sometimes, however, we might be in a situation where we do not know which tool

is the best for a given task. This is especially true for data analysis and even more so for

time-series forecasting.

When faced with such situations in life, we tend to use our previous knowledge to

narrow down a set of tools that might work for a task. The next usual step is to go and try

them all. Finally, we select the one that yields the best results in a cost-benefit analysis

between the amount of work required and the outcome’s quality.

That is the basic idea behind the Box-Jenkins procedure [41]1. One uses their (usu-

ally incomplete) theoretical knowledge to indicate a suitable set of forecast models (i.e.,

1In the Box-Jenkins procedure, all model forms are based on a general linear process. Throughout
this text, forecast model, or simply model, might also refer to the non-linear relationships. We assume
an automatic distinction by the reader based on context. Furthermore, we distinguish forecast models
from forecast methods, as did Giacomini and White [1]. Whenever we use the entire expression forecast
methods, we mean the entire methodology to obtain the forecasts, which includes the selected forecast
model, the method of parameter estimation and the data used for it.
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the mathematical equations that indicate how many variables should be used as inputs and

their relationship to the output) for evaluation.

Then, one fits these models using all the available data. Finally, one selects the

model form that is both parsimonious (uses the smallest number of input variables) and

fits the model well (through some criterion like the AIC – Akaike Information Criteria),

and that ideally yields forecasts with sufficiently small forecast errors.

The problem with our analogy, and the reason we wrote the word ”ideally” in the

previous sentence, is that the craftsperson is able to evaluate the result of their work

throughout and at the end of the process. In contrast, in the Box-Jenkins procedure, one

must monitor future cases to evaluate the model’s forecast performance. Moreover, the

same data that is used to fit and evaluate a model adequateness is also used to obtain its

forecasts.

One possible solution to this conundrum is to use data-split techniques. The basic

idea behind these procedures is not new. It dates back at least to the 1930s when Wilson

[33] used it in conjunction with periodograms to search for hidden periods in a time series.

Here, the forecasting models are estimated recursively using parts of the data. Then, their

one-period-ahead2 predictions are calculated and compared with “future uses” (i.e., one-

step-ahead observations that are out of the sample used to fit the model). The model

specification that maximizes the predictive likelihood is selected, and its final parameters

are then estimated using the entire dataset.

It is hard to say if current authors stood on Wilson’s shoulders to develop the “learn-

ing procedures” used in the Machine Learning literature, but it is undeniable that there are

2It is worth mentioning that Wilson [33] calculated multi-step-ahead forecasts.
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striking similarities between the two approaches.

A learning procedure can be summarized as an approach that uses data-split tech-

niques called validation schemes to find the forecasting model that yields the smallest av-

erage out-of-sample prediction error and the hyperparameters associated with it according

to the Empirical Risk Minimization principle (ERM - see Chapter 9).

In Machine Learning, the parameters (or weights) of the forecasting models are

estimated (learned) using methods like backpropagated gradient-descent for feedforward

neural networks or rule-based regression algorithms. However, such methods have been

labeled black-box algorithms, since “we know what goes in, we know what comes out,

but very few understand what happens in-between” [99, p. 35]. The authors from the

previous quote also argue that,

“If the data do not contain problematic sampling biases, then building the
black boxes – the predictive models that mathematically elucidate a relation-
ship between the outcome and the predictors – can significantly benefit from
the large amount of information available about the underlying population.
Exploratory statistical methods – restricted cubic splines[100] for example –
can help empirically derive the functional form of a predictor within a model
which may be difficult to obtain with moderate to small sample sizes. Big
data, in short, with good statistical methodology, help to find the form of
a mathematical relationship which can usefully sit within the black box.”
(Kuhn and Johnson, 2014, p. 36)

However, we often see in the news [101] and in Academia [102, 103] cases of sam-

pling bias and the problematic outcomes yielded by machine learning algorithms when

that happens. Granted that most of those cases lie outside the time series context, but

we argue that we still need to be careful with these black box methods, and that hybrid

methods that combine aspects from both the machine learning and the statistics literature

- like the ones that won the last two M competitions [12, 24] - should be preferred.
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In light of this discussion, we introduce a new machine learning strategy for fore-

casting model selection. One that uses a modification of the prequential sliding window

forward validation scheme (see Section 3.2.4) - that we call rolling sample validation

scheme - and results from the theory behind generalized linear models (GLM) with par-

tial likelihood estimation developed by Kedem and Fokianos [71, 72].

We call our new strategy the generalized and rolling sample method - or GEARS,

for short - since it combines the benefits of the validation schemes and the GLM approach.

With the latter, it is easy to accommodate many functional forms for the forecasting meth-

ods, including those with covariates and interaction terms. It is so simple to use that we

have developed a web application where anyone can upload their data set and obtain fore-

casts for univariate and multivariate time series in a manner of seconds using statistically

sound methods.

We apply the GEARS strategy to the 100,000 time series from the M4 Forecasting

Competition and compare its results against the other methods submitted to competition.

We had the best results in 8,750 cases out of the 100,000, and the method that won the

competition had better results in fewer than 7,300 series.

Moreover, traditional statistical approaches like VAR, State Space, or cointegration

methods are often overly complicated and require many steps until a forecasting model is

finally ready to be estimated. One of the advantages of the GEARS strategy over those

methods is its simplicity in dealing with multivariate series. Our approach allows us

to estimate simple models with one covariate as well as more complex model formula-

tions that include covariates with variable and fixed lags, quadratic terms, and interaction

terms. The accuracy of the forecasts obtained with GEARS was far superior than the one
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observed for the predictions obtained using the ARIMA method.

In Chapter 9 we go over the details of the learning procedure in machine learning

and how it can be used to selected the best forecasting model. We introduce the GEARS

strategy in Chapter 10. In Chapter 11 we briefly describe the M4 Competition data set

and the details related to the partial likelihood estimation of generalized linear models, as

developed by Kedem and Fokianos [71]. We display the results of applying GEARS to

the 100,000 time series in Chapter 12. Finally, we present our final remarks in Chapter

13.
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Chapter 9: The Learning Procedure in Machine Learning

For t = 1, . . . , T , let {Yt} be a time series of interest, and {yt} its observed values.

We define the covariate process Zt−1 as:

Zt−1 ≡ (Z(t−1)1, · · · , Z(t−1)m)

The observed values of this process are zt, and in the ML literature this is known

as the m-dimensional vector of features used to predict the desired output. Zt−1 can also

contain past values of the response variable Yt.

A typical way of representing the relationship between {yt} and the past values of

the covariates is:

yt = g(zt−1,θ) + εt (9.1)

where εt is a shock or disturbance term, θ is a parameter vector, and

g(zt−1,θ) = Eθ[Yt|Zt−1] (9.2)

Here, g(·) could be any function: linear, nonlinear, or nonparametric, but we often
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do not know which one. The forecasting problem, then, can be stated in terms of g(·),

and it will the same in both the Statistics field and the Machine Learning field: how do

we relate g(·) to the covariates?

In statistics, the definition of g(·) often depends on the type of Y variable that we are

evaluating (continuous, binary, count, etc.), how it behaves, and on the characteristics of Z

(univariate, multivariate). The decision to look at the type, behavior, and characteristics

of the data is important here because the statistical properties of the data points us in

the direction of which estimation method [STAT] - learning algorithm/learner [ML] - we

should use (non-linear least squares, Random Forests, rule-based regression, to name a

few).

In machine learning, we search for a model specification through a process called

“learning procedure”, which has two goals [104]:

• Structural identification: the algorithm needs to choose among a parametric family

of model specifications f : Zt−1 7→ Yt the one that gives a good approximation of

the unknown function g(·);

• Parametric identification : within the family f(·), the algorithm needs to estimate

on the basis of the training set, D, the parameters θD which best approximates g.

In the case where machine learning algorithms are used to accomplish the above

tasks, the learning procedure consists of two nested loops: i) an inner parametric identi-

fication loop which searches for the best parameter vector within a model specification;

ii) an external structural identification loop which goes through different model specifica-

tions and returns the one that yields the smallest forecast error.
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For each f in the set G of all possible model specifications, the parametric identifi-

cation is done according to the Empirical Risk Minimization (ERM) principle where

θ̂D = arg min
θ∈Θ

err(θD) (9.3)

where err(θD) is the training error, calculated as

err(θD) ≡ 1

Card(D)

∑
(zt−1,yt)∈D

` [yt, f(zt−1,θD)] (9.4)

where ` is a loss function selected by the analyst and Card(D) is the cardinality of the

training set, usually described as N .

Ultimately, we are interested in finding the forecasting model ĝ with the “best”

generalization performance. That is, we aim to assess its capacity to produce accurate

forecasts using new and independent data. Such performance can be measured by the test

error,

LD ≡ EZ,Y ∈Dtest [` (Y, ĝ(Z,θD))| D,θD] (9.5)

where Dtest refers to the test set. We omitted the t subscripts for easiness.

A related quantity is the estimated test error,

L ≡ Eθ [` (Y, ĝ(Z,θ))] = E [LD] (9.6)

One could try to use the training error to estimate the test error, but err consistently
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decreases with model complexity, and may reach zero if we increase the model complex-

ity enough (Figure 9.1). But, selecting a model with zero training error does not mean that

the generalization performance in a new data set will be any good. Usually, those models

overfit to the training data and generalize poorly [74, p. 221]. Hastie et al. [74, chapter 7]

argue that Eq.(9.5) leads to a slightly larger mean absolute deviation. Their results show

[74, p. 257] that, in practice, better estimations are obtained using the expected test error

L with validation schemes.

Figure 9.1: Example of the expected test and expected training error curves
as a function of model complexity. Image source: Hastie et al. [74, p. 38].

In a data-rich environment, we can partition the training set into an estimation set
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and a validation set at each of the k folds. For i = 0, . . . , k− 1, the sets Iei and Iei are the

sets of indexes from {1, . . . , N} that indicate which observations will form the estimation

and validation sets at the i-th fold: D (Iei ) andD (Ivi ), respectively. Finally, we can define

a general form for a validation scheme, V(D; k), in those terms:

V(D; k) ≡ {(Iei , Ivi )| Iei and Ivi ⊆ {1, . . . , N}, Iei ∩ Ivi = ∅}k−1i=0 (9.7)

Using the general form of a validation scheme from Eq.(9.7), we can define an

empirical estimator of L by taking the average of the mean out-of-sample losses over all

k splits [23]:

L̂(D,V , f) ≡ 1

k

k−1∑
i=0

1

Card (Ivi )

∑
(z,y)∈D(Ivi )

`
[
y, f

(
z, θ̂D(Iei )

)]
(9.8)

where the forecast model f belongs to the set of all possible model formulations G, and

Card (Ivi ) is the cardinality of the i-th validation index set. In essence, the above equation

returns an estimate of the out-of-sample prediction error and can be used to select ĝ(·).

If one uses a winner-takes-all approach to evaluate between all possible f ∈ G

models, then:

ĝ = arg min
f∈G

L̂(D,V , f) (9.9)

Here is a pseudo-code for the winner-takes-all approach:

1. Structural identification loop: for each f in G
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Parametric identification loop:

a) for each i = 0, . . . , k − 1

θ̂f
D(Iei )

= arg min
θ∈Θf

1

Card (Iei )
∑

(z,y)∈D(Iei )

`
[
y, f

(
z, θ̂D(Iei )

)]

b) calculate L̂(D,V , f) using θ̂f
D(Iei )

2. Model selection: ĝ = arg minf∈G L̂(D,V , f)

3. Final parametric identification:

θ̂ĝD = arg min
θ∈Θf

1

N

∑
(z,y)∈D

`
[
y, ĝ

(
z, θ̂D

)]

4. The final forecasting model is : ĝ(zt, θ̂
ĝ
D)

The “parametric identification” part is done differently from what is shown in Eq.(9.3)

if one uses a statistical procedure. Instead of obtaining θ̂D by trying different values (the

attempts can either be based on a rule or not) that minimize the training error, there are

estimation methods that depend on the maximization of the likelihood. If it is possible

to obtain a form for the likelihood function, statistical procedures like iterated reweighed

least squares tend to be more computationally efficient than traditional machine learning

methods. This happens because, for the latter, the complexity of the optimization depends

on the form of f(·) and the optimization problem may very well be an NP-hard problem1

1In theoretical computer science, and in mathematical complexity theory, nondeterministic polynomial
(NP) time problems is a class of problems for which the solutions can be checked in polynomial time by a
nondeterministic Turing machine. They are opposed to the class of P problems, which can be solved by a
deterministic Turing machine in polynomial time. An NP-hard problem is a part of the NP set that contains
its hardest problems.
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[104]. Moreover, statistical methods might be preferred to traditional machine learning

algorithms because these are sometimes deemed as “black boxes,” as discussed in the

previous chapter.

For the above reasons, we chose to use Kedem and Fokianos’s methodology [71,

72] as our “learning algorithm.” By taking advantage of the GLM formulation, we are

able to accommodate several types of (linear) model specifications while speeding up the

computations.
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Chapter 10: The new GEARS strategy

10.1 The Basic Idea

The idea behind the GEARS strategy is to train our model by breaking down the

time series in sections of length s, taking the last ` sections and fitting/predicting the

model at each of these sections. Then, we use the prediction errors to calculate the mean

absolute deviation (MAD) and select the covariates that minimize MAD. Once we have

done it, we will take the estimated coefficients from the last fitted model and use it to

predict out-of-sample values.

To clarify this idea, say we have yt, a response variable for t = 1, 2, . . ., and a

vector of covariates zt = [ xt,1 · · · xt,k]>, which might include a constant, past values

of y, and/or other exogenous covariates. The main problem is that we observe y1, . . . , yn

and z1, . . . , zn, and want to predict yn+1. To do so, let us define the relationship between

y and z to be the following:

yt+1 ≡ βββ>zt + εt; t = 1, . . . , n− 1

Now, suppose n = 100, s = 12, ` = 20, and take one of the possible combinations of the

k covariates. Then:
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1. Fit yt+1 = βββ>zt + εt, t = 68, . . . , 68 + 19 = 87.

Get the prediction ŷ89 = β̂ββ
>
z88. Get the prediction error y89 − ŷ89.

2. Fit yt+1 = βββ>zt + εt, t = 69, . . . , 69 + 19 = 88.

Get the prediction ŷ90 = β̂ββ
>
z89. Get prediction error y90 − ŷ90.

3. Fit yt+1 = βββ>zt + εt, t = 70, . . . , 70 + 19 = 89.

Get the prediction ŷ91 = β̂ββ
>
z90. Get y91 − ŷ91.

...

12. Fit yt+1 = βββ>zt + εt, t = 79, . . . , 79 + 19 = 98.

Get the prediction ŷ100 = β̂ββ
>
z99. Get the prediction error y100 − ŷ100.

From the 12 prediction errors, get

MAD =
1

12

100∑
i=89

|yi − ŷi|

Do this for all possible combinations of k covariates and select the one that min-

imizes the MAD (other measures like the MSE, MASE, and sMAPE can also be used).

Then, finally, get β̂ββ from No. 12 and set

ŷ101 = β̂ββ
>
z100 (10.1)

Observe that this β̂ββ was estimated using the observations y80, . . . y99 and z79, . . . , z98, and
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provided the out-of-sample residual y100 − ŷ100 (which we are calling prediction error),

which was used to select the best model. Had we used y81, . . . y100 and z80, . . . , z99 to

estimate βββ, we would have gotten the in-sample residual y100 − ŷ100, and should not use

this to select the best model. If we use this in-sample residual in selecting the best set of

covariates this would defeat the purpose of training the model to select the best βββ.

An R package was written for the GEARS strategy. It can be installed using the

following piece of code,

Listing 10.1: R code to install the GEARS package.
1 # install.packages("devtools")
library(devtools)

3

# Install the GEARS package
5

## Access Token:
7 GITHUB_PAT <- "b9b7b8b9d384ff89000d1ba40cb0d2e761c273b3"
install_github("gu-stat/gears", auth_token = GITHUB_PAT)

9

## Call the package
11 library(gears)

An example of its use can be seen in Section 12.2. A prototype web application

was also developed to democratize the access to this method. In it, anyone, regardless

of their knowledge in programming, can forecast the values of a time series using the

GEARS method with just a few clicks. There are a few things that need to be done, and

some other bugs that need fixing, but the prototype is available at https://shiny.

ogustavo.com/gears.

10.2 A General Framework

For a time series y observed up until some time T > 0 and for each forecast lead

h = 1, . . . , H and forecast horizon H ∈ N, we want to find the out-of-sample forecast
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ŷT+H . We define the following model to accomplish such task:

yT+h = βᵀ
cXc,T + εT+h (10.2)

where c is the c-th element from the σ-algebra C that contains all combinations of k

covariates - i.e., all possible combinations of elements from the set {x1,T , . . . ,xk,T}, with

each x·,T being a vector of variables observed up until time T . Therefore, C is given by

{[x1,T ], . . . , [xk,T ], . . . , [x1,T ,xk,T ], . . . , [x1,T · · ·xk,T ]} and has cardinality G ≡ #C =∑k
i=0

(
k
i

)
. From this, we have X1,T ≡ [x1,T ], and XG,T ≡ [x1,T · · ·xk,T ]. Moreover, βc is

the set of parameters associated with the set of covariates Xc,T , and εT+h is a mean zero

error.

The selection of Xc,T is made by estimating an ex-ante version of Eq. 10.2 (given

by Eq. 10.4) for all c ∈ C and selecting the set of covariates that minimizes a given error

measure (that can be MSE, sMAPE, MASE, MAD) for M subsamples of size S taken

sequentially and in order from the set of indexes {1, · · · , T − 1}. Because they are taken

sequentially and in order, we call each subsample m = 1, . . . ,M a rolling sample.

For each rolling sample m = 1, . . . ,M , we define the starting time tm as an index

from {1, . . . , T − 1} given by:

tm ≡ (T − h)−M − S +m, h = 1, . . . , H (10.3)

For example, take T = 15 and h = H = 1. If we have M = 5 rolling samples of

size S = 6, their starting times tm will be t1 = 4, t2 = 5, t3 = 6, t4 = 7, t5 = 8, where
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{4, 5, 6, 7, 8} are indexes from {1, . . . , T − 1} (see Figure 10.1).

Figure 10.1: Example of M = 5 rolling samples of size S = 6, for T = 15 and H = 1.

Under this theoretical framework, we write the ex-ante version of Eq. 10.2 for a

rolling sample m ∈ 1, . . . ,M and forecast lead h ∈ {1, . . . , H}:

y(tm+s)+h = βᵀ
c|(tm,S)xc,(tm+s) + ε(tm+s)+h, s = 0, . . . , S − 1 (10.4)

where xc,(tm+s) is the vector of covariates from Xc,T observed at time tm + s for s =

0, . . . , S − 1, and βc|(tm,S) is the vector of parameters associated with xc,tm+s. 1

We can write model 10.4 in matrix form for each m ∈ 1, . . . ,M and forecast lead

h ∈ {1, . . . , H} as:

y(tm,h)|S = βᵀ
c|(tm,S)X(c,tM )|S + ε(tm,h)|S (10.5)

1It is also worth mentioning that when m = M and s = S − 1, we have that tm + s = tM + (S − 1),
and using tM from Eq. 10.3 we see that tM +(S− 1) = (T −h)−M −S+M +(S− 1) = (T −h)− 1.
Substituting this in the index for y in Eq.10.4 yields y(T−h−1)+h = yT−1. Doing the same in the index
for x gives xc,(T−h−1). If we define T

′ ≡ T − 1 − h =⇒ T = T
′
+ 1 + h, then the indexes for y

and x become yT ′+1+h−1 = yT ′+h and xc,(T ′+1+h−h−1) = xc,T ′ . With these, we ca re-write Eq.10.4 as
yT ′+h = βᵀ

c|(tM ,S)xc,T ′ + εT ′+h, and this ex-post model is similar to the model given by Eq.10.2.
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where

y(tm,h)|S ≡


y(tm+0)+h

...

y(tm+S−1)+h

 ; X(c,tM )|S ≡
[
xc,(tm+0) . . . xc,(tm+S−1)

]

The estimates β̂c|(tm,S) are obtained via partial likelihood2 using S observations that

start at the index tm. The indexes c, tm, S, albeit cumbersome, serve as reminders that for

each set of covariates c ∈ C, each rolling sample m ∈ {1, . . . ,M} and each sample size

S, we have different estimates β. In other words, the β’s are function of c, S, and M .

After obtaining β̂c|(tm,S), we move on to calculate the out-of-estimation-sample 3

prediction error for h ∈ {1, . . . , H} for each rolling sample m = 1, . . . ,M :

êh|(c,tm,S) ≡ y(tm+S)+h − ŷ(tm+S)+h (10.6)

where ŷ(tm+S)+h = β̂ᵀ
c|(tm,S)xc,(tm+S). Therefore, Eq.10.6 becomes

êh|(c,tm,S) = y(tm+S)+h − β̂ᵀ
c|(tm,S)xc,(tm+S) (10.7)

Having êh|(c,t1,S), . . . êh|(c,tM ,S), we can calculate the selected error measure that we

need to minimize. We define a generic function fe
(
êh|(c,t1,S), . . . êh|(c,tM ,S)

)
to account for

2Using the methodology defined in [71].
3We wrote “out-of-estimation-sample” because we wanted to emphasize that this prediction error uses

information on y that is observed in the complete sample - y(tm+S)+h -, but that lies outside the estimation
sample used to get β̂c|(tm,S), which uses information up until y(tm+S−1)+h (see Eq.10.5 and comments
below). We also want to stress that this out-of-estimation-sample prediction error is different from the out-
of-sample prediction error, defined as êT (h) ≡ yT+h − ŷT+h. To avoid confusion, we will refer to êT (h)
as the out-of-sample forecast error.
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any selected error measure e. In the case of the MSE:

fMSE

(
êh|(c,t1,S), . . . êh|(c,tM ,S)

)
≡
∑M

m=1

(
êh|(c,tm,S)

)2
M

=

∑M
m=1

[
y(tm+S)+h − β̂ᵀ

c|(tm,S)xc,(tm+S)

]2
M

(10.8)

Finally, we want to find the set of covariates c ∈ C that, given M and S, minimizes

the selected error measure:

c∗ ≡ arg min
c∈C|M,S

fe
(
êh|(c,t1,S), . . . êh|(c,tM ,S)

)
(10.9)

For the MSE, the above becomes:

c∗ ≡ arg min
c∈C|M,S

∑M
m=1

[
y(tm+S)+h − β̂ᵀ

c|(tm,S)xc,(tm+S)

]2
M

(10.10)

To get the ex-post forecast based on the best ex-ante forecasts, we calculate the

expected value of yT+h in the out-of-sample forecast equation, Eq.10.2:

ŷT+h = β̂ᵀ
c∗,h|(M,S)Xc∗,T (10.11)

where β̂c∗,h|(M,S) is either β̂c∗,h|tM ,S , obtained from estimating Eq.10.5 using the last

rolling sample only, tM ; or, the average of the β̂c∗,h|tm,S estimated for all rolling sam-

ples.
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10.3 Hyperparameters’ Optimization

The results from the GEARS method vary significantly for different numbers of

samples (M ) and different sample sizes (S). While trying to mitigate these effects, we

developed an optimization algorithm that borrows ideas from strategies used by Machine-

Learning methods and uses validation schemes to search for the “best” values of these

hyperparameters. The entire flowchart of the process can be seen in Figure 10.2.

We start the optimization algorithm by checking if the time series needs to be de-

seasonalized. We follow the same procedures as the organizers of the M4 Competition

used (see Section 11.1). That is, we first check the periodicity of the series using the

frequency function from R. Then, a 90% autocorelation test is performed to decide

whether the data are seasonal. If it is, we apply a classical multiplicative decomposition.

After that first step, we split the data into training and test sets using the holdout

forward validation scheme. The former set is used for parameter estimation and calcula-

tion of the forecasts via GEARS using different numbers of samples and different sample

sizes.

Then, the algorithm performs a “modified” grid search on the range of numbers of

samples and sample sizes provided by the user. Grid search algorithms are not always

the best option, since they can waste a lot of computational power exploring non-optimal

value for the hyperparameters.

However, we feel that this approach works better than a random search strategy

because we do not have a probability distribution for the hyperparameters, and even if we

had, we would not be able to define an optimal point upon which the search algorithm
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would stop. This issue arises from the fact that the algorithm selects the best values of S

andM that minimizes the forecast error using a measure chosen by the user (MSE, MAD,

MASE, or sMAPE - see Section 11.1 for the last two). Since some of these metrics are

scale-dependent – or have problems with values of Y that are close to zero – an optimal

point is data set-dependent, and setting its value beforehand may be unfeasible (as it is

the case when we apply the GEARS strategy to the 100,000 time series from the M4

Forecasting Competition - see Chapter 11).

Due to the limitation of not being able to define an optimal stopping point, we say

that our algorithm is a “modified” grid search algorithm. Instead of stopping when the

error is sufficiently small, our algorithm evaluates all possible combinations of the given

hyperparameters and obtains the best model specification for each one of them. Then, it

calculates the desired error measure for all of them and returns the values for S and M

associated with the smallest error.

Moreover, the algorithm is also capable of evaluating whether the best model should

contain an intercept term, and if we should use the last set of β̂’s or their average.

It is worth noting that the optimization algorithm is not worried about issues with

adequacy4 and diversity5 since the it returns the number of samples and the sizes that best

reflect the characteristics seen in the data set. And while these characteristics may not

be present in future data, the purpose of this optimization approach is to give the user

a workable solution to the problem of defining the “correct” values for the number of

samples and the sample sizes.

4The number of forecasts at each lead time.
5Forecast error measures do not depend on special events and specific phases within the data set.
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Figure 10.2: Flowchart of the optimization algorithm for the GEARS strategy.
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Chapter 11: Data and Methodology

11.1 The M4 Competition and its data sets

The M4 Forecasting Competition took place in 2018. Participants in this compe-

tition had to forecast values for 100,000 real-life time series. It is a continuation of the

competitions that started almost half a decade ago with the purpose of finding new models

and methods to improve forecast accuracy.

The organizers had made available 100,000 univariate time series from different

areas (demographic, finance, industry, macro, micro, and others) and different periodicity

(yearly, quarterly, monthly, weekly, daily, and hourly), and participants were tasked with

providing forecasts for each one of them. The number of forecasts varied by periodicity.

Table 11.1 shows the number of series in each category along with the number of forecasts

required by the organizers, and the minimum and maximum sample size of the series.

Forecast accuracy was measured by the Overall Weighted Average (OWA) of two

accuracy measures: the Mean Absolute Scaled Error (MASE) and the symmetric Mean

Absolute Percentage Error (sMAPE). These two metrics were calculated as

sMAPE =
1

h

h∑
t=1

2|Yt − Ŷt|
|Yt|+ |Ŷt|

(11.1)
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Table 11.1: Number of M4 series, minimum and maximum sample sizes, and forecast
horizon per data periodicity.
Periodicity Number of Series Min. Sample Size Max. Sample Size Forecast Horizon

Yearly 23,000 13 835 6
Quarterly 24,000 16 866 8
Monthly 48,000 42 2794 18
Weekly 359 80 2597 13
Daily 4,227 93 9919 14

Hourly 414 700 960 48

Total 100,000 - - -

and

MASE =
1

h

∑h
t=1 |Yt − Ŷt|

1
n−m

∑n
t=m+1 |Yt − Yt−m

(11.2)

where Yt is the true out-of-sample value of a time series at point t (not available to par-

ticipants at the time of estimation), and Ŷt is the respective forecast. The number of

observations in the training set available to the competitors is given by n, while h stands

for the forecast horizon, and m is the periodicity of the data (i.e., 12 for monthly series).

After calculating the MASE and sMAPE for each submitted forecasting method,

the organizers divided all errors by that of the Naı̈ve 2 forecasting method to obtain the

Relative MASE and the Relative sMAPE. Then, the average between the Relative MASE

and Relative sMAPE yields the OWA.

In the Naı̈ve 2 method, the forecasts are simply Ŷn+i = Yn, for i = 1, . . . , h,

“but the data are seasonally adjusted, if needed, by applying a classical multiplicative

decomposition. A 90% autocorrelation test is performed to decide whether the data are

seasonal” [24, p. 57].
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Other important statistical benchmark methods used in this competition include1:

• SES: Exponentially smoothing the data and extrapolating assuming no trend. Sea-
sonal adjustments are considered as per Naı̈ve 2;

• Holt: Holt’s Exponential Smoothing method. The data are exponentially smoothed
and extrapolated assuming a linear trend. Seasonal adjustments are considered as
per Naı̈ve 2;

• Damped: Exponentially smoothing the data and extrapolating assuming a damped
trend. Seasonal adjustments are considered as per Naı̈ve 2;

• Comb: The simple arithmetic average of the SES, Hold, and Damped methods. It
is used as the single benchmark for evaluating all other methods.

A total of 49 valid forecasting methods were submitted, and several used a combi-

nation approach, in which several forecasts are obtained for a time series - either using

different forecasting methods or distinct forecasting models - and the final forecast is the

average between them. However, the method that won the 9,000C first prize is a “hybrid“

approach that utilized both statistical (exponential smoothing) and machine learning (“a

‘black-box’ recurrent neural network” [11, p. 2]) features.

11.2 The multivariate “commodities” data set

Traditional statistical approaches like VAR, State Space, or cointegration methods

are often overly complicated and require many steps until a forecasting model is finally

ready to be estimated. One of the advantages of the GEARS strategy over those methods

is its simplicity in dealing with multivariate series. As long as the model is linear, GEARS

is able to accommodate any model specification, including those with interaction terms.

Moreover, by allowing covariates in its forecasting equation, the GEARS strat-

egy may present more accurate forecasts when compared to univariate approaches like
1The full list can be seen at Makridakis et al. [24, p. 57].
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ARIMA or recurrent neural networks.

To evaluate if that is the case, we have included the “commodities prices” data

set as part of the gears package. It was created by taking price data (US$) on beef,

swine (pork) meat, poultry (chicken) meat, maize (corn), and wheat from the International

Monetary Fund on Primary Commodities Prices data set2. The data set has monthly data

from January, 1980 until March, 2020 (483 time points). For more information, run the

command gears::commodities prices data dictionary in R.

11.3 Partial Likelihood Estimation

Partial likelihood inference for time series following generalized linear models is

the natural extension of GLM methods to deal with dependent data. One of the main

outcomes from the theory devised by Kedem and Fokianos [71, 72] is that the main infer-

ential features appropriate for independent data can be transported to time series data.

Such transportation is enabled by the use of partial likelihood methods, since it

allows for “temporal or sequential conditional inference with respect to a filtration gen-

erated by all that is known to the observer at the time of observation” [71, p. 1]. This

means that the main difference between “regular” GLM inference and inference based on

partial likelihood (PL) lies in the interpretation of the results. That is, the same estimation

procedures are carried out in both methods, but, in the latter, the outcome needs to be

interpreted as the response conditioned to the all that it is observed at time t. This works

well for our purposes, since we want to use data-driven methods to obtain forecasts for a

2https://www.imf.org/˜/media/Files/Research/CommodityPrices/Monthly/
Table3.ashx . Access on April 17, 2020.
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specific training set, and we are only interested in making predictions - not inference.

Another advantage gained by resorting to PL inference is that “[t] he definition of

PL does not require the joint distribution of the response and the covariates. Thus, in

PL inference, the joint distribution of the response and covariates is left unspecified. In

addition, any stationarity assumptions may be dropped” [72, p. 174].

The combination of PL and GLMs provide a suitable framework to our GEARS

strategy, since it is easy to implement (since a number of existing software packages can

already be used to analyze GLMs) and does not require stationarity. The use of this

method is a more transparent way to estimate the parameters of the forecasting models,

than traditional machine learning methods. This contributes for a more reproducible ap-

proach to the learning procedure seen in Chapter 9.
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Chapter 12: Results

12.1 One-Step Ahead - All 100,000 series from the M4 Competition

The GEARS strategy can be a data-expensive method if the total sample size of the

series is relatively small when compared to the forecast horizon, and also if one wants to

include larger lags on the right-hand side of the forecasting model. We observe the former

issue in the “Yearly” series, for example. The minimum sample size is equal to 13 and

we need to provide six-steps ahead forecasts (Table 11.1) for those series. The GEARS

strategy cannot produce forecasts with that few observations, so we restricted our analysis

to one-step ahead forecasts only. For the number of lags, due to the limitation in the

sample sizes, we also had to restrict the maximum number of lags. Here, the maximum

was equal to 2.

To obtain the forecasts for the time series from the M4 Competition, we had to

select the initial values for the sample sizes and number of rolling samples for each type

of data (based on their periodicitity). Since the computational time to perform a grid

search considering several values of S (sample size) and M (number of rolling samples)

for all 100,000 series would be exorbitant, we randomly selected only a few series for a

first round of evaluation. After that, we selected the set of initial values used here.

For “Hourly“ series, we used 24, 36, and 48 as the number of rolling samples, with
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sizes equal to 144 450 as starting points for the optimization algorithm.

The numbers of sample sizes used for the “Daily” data sets were equal to 30 and

60, and the number of rolling samples was fixed in 12.

When evaluating the “Weekly” series, we had to break it down by the length of the

time series. For those series with total length equal to 80, we used S = 47 and the number

of sample equal to 5 and 6. Otherwise, we tested the values S = 156 and M = 52. Since

we have only one value for S and M when T > 80, the optimization algorithm was used

to decide whether the model should have an intercept, and if we should consider the last

betas or their average.

The “Yearly” and “Quarterly” series were complicated ones. With some series

being short, we had to make several adjustments to the values of S and M .

For the “Yearly” cases, when T ≤ 15, we used S = 6 and M = 3. For 16 < T <

50, M = 5 and the sample sizes were equal to 5 and 6. In the cases where 50 ≤ T < 100,

M was also equal to 5, while S = 10, 20. For the other cases, M = 30 and S = 20, 60.

In the case of the “Quarterly” series, we used S = 5 and M = 3 when T ≤ 18. For

the cases where 18 < T ≤ 25, we used four rolling samples with size equal to 8. The

same number of rolling samples (M = 4) was used in the cases where 25 < T ≤ 50, but

with S = 14. For all other cases, we used S = 20 and M = 4, 12.

Despite the fact that “Monthly” series had time series with minimum lengths larger

than the ones for the “Yearly” and “Quarterly” series (Table 11.1), these were the most

complicated ones in terms of adjusting the sample sizes and the number of rolling sam-

ples. We ended up setting M = 4 for all series with T ≤ 100; and M = 10, otherwise.

For series with T > 100, S = 48. In the cases where 59 < T < 100, the sample size
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used was equal to 36. The value S = 30 was used when 53 < T ≤ 59, and S = 22 when

45 < T ≤ 53. Finally, for the cases with T ≤ 45, S = 18.

The order of the methods in the rows of Table 12.1 is the same as the final or-

der (considering the multi-step ahead forecasts). Our method was only able to beat one

method (the purely statistical method with user ID number equal to 239). This means

that it did not perform better than the simple Naı̈ve 2 method or the “Comb” method (the

overall benchmark considered by the organizers - see Section 11.1).

The results using the GEARS strategy with the M4 Forecasting Competition data

were not great (Table 12.1). However, the GEARS strategy produced the smallest results

more often (Table 12.1). Out of the 100,000 cases, the GEARS strategy was the best

method in 8,750. However, when it misses, it produces very large values of the OWA.

We believe that the problematic cases are due to the initial choice of hyperparam-

eters, or the many adjustments that we did, or because we had to restrict the maximum

number of lags to 2. For example, we selected 59 cases of daily series that had a numer-

ical value for the OWA greater than 10, and we optimized them using a range for S and

M greater than what was used before. We observed major reductions in the OWA for all

series, with some cases going from an OWA equal to 137.91 to 1.31 (Table D.1). Only

in four out of the 59 cases we were not able to reduce the OWA to values smaller than

10. However, we were able to obtain a reduction of at least 65% in those cases. Since the

number of optimized cases (59) is small compared to the number of series evaluated, the

result of the optimization had no impact on the results from Figure 12.1.
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Figure 12.1: One-step ahead forecast accuracy of the top 25 methods from the M4 Com-
petition and the GEARS strategy considering all 100,000 time series from the competi-
tion.
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Table 12.1: Number of times a method yielded the smallest OWA, per series periodicity
type.
Method ID Hourly Daily Yearly Weekly Quarterly Monthly TOTAL

118 20 451 1108 35 1460 4187 7261
245 19 55 566 11 683 1350 2684
237 14 751 404 9 436 1247 2861
72 18 27 300 15 434 829 1623
69 7 8 320 2 366 760 1463
36 21 32 296 5 364 618 1336
78 9 213 472 12 725 2505 3936
260 5 15 484 2 438 648 1592
238 21 208 1170 22 1320 3025 5766
39 52 11 317 1 886 1542 2809
5 2 12 399 1 441 860 1715

132 9 387 1036 11 1411 2827 5681
251 5 16 446 3 389 503 1362
250 23 227 1406 38 1573 2403 5670
243 24 120 614 19 527 1131 2435
235 19 59 649 16 1083 2219 4045
104 20 272 1397 20 1296 2932 5937

Theta 1 10 1494 1 428 492 2426
Com 8 11 555 3 383 523 1483

ARIMA 18 95 803 14 1286 2860 5076
223 17 160 709 14 1065 2094 4059

Damped 17 19 535 2 643 1044 2260
ETS 22 15 601 9 666 1243 2556
239 12 184 2468 15 1415 2707 6801
211 19 385 2229 45 2167 3568 8413

GEARS 12 484 2222 34 2115 3883 8750
TOTAL 414 4227 23000 359 24000 48000 100000

174



12.2 One-Step Ahead - The multivariate “commodities prices” data set

The goal with the “commodities prices” data set is to find the forecasts for the pork

price variable. The “maximum” tentative model is:

PORK PRICE t+h = Intercept + PORK PRICE t + PORK PRICE t−1

+ BEEF PRICE t + BEEF PRICE t−1 + BEEF PRICE t−2

+ CORN PRICE t−4 + POULTRY PRICE t−5

+ CORN PRICE2
t−1 + WHEAT PRICE t−2 · BEEF PRICE t−3 (12.1)

Here, the lags up to t − 1 of the variable PORK PRICE are included in the right-

hand side of the forecasting model. The covariate BEEF PRICE also has a “variable”

lag count, with values up to t − 2 being included in the above equation. The covariates

CORN PRICE and POULTRY PRICE have “fixed” lags, with only the t − 4 and t − 5

values - respectively - being included in Eq.(12.1). A quadratic term for CORN PRICE

is also included. Finally, we also have an interaction term between WHEAT PRICE (at

the “fixed” lag t− 2) and BEEF PRICE (lat t− 3).

We wrote “maximum” because the GEARS strategy works by going over all pos-

sible combinations of the variables in the right-hand side of Eq.(12.1) - a total of 1022

distinct equations - in the search for the best forecasting model formulation. The “maxi-

mum” tentative model is the one that includes all variables (shown in Eq.(12.1), and the
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“minimum” models are the ones that have only one covariate. For example,

PORK PRICE t+h = PORK PRICE t

or

PORK PRICE t+h = CORN PRICE2
t−1.

We can easily obtain the forecasts for the above models using the gears package.
For instance, if we want to obtain the one-step-ahead forecast (h = 1) for T = 150 using
M = 5 random samples with size S = 25, we only need to provide the following piece
of code,

Listing 12.1: R code to run the GEARS strategy with the “commodities prices” multivari-
ate time series.

1 example_gears <- gears(
DATA = gears::commodities_prices,

3 forecast.horizon = 1,
size.rs = 25,

5 number.rs = 5,

7 y.name = "PORK_PRICE",
y.max.lags = 1,

9

x.names = list("BEEF_PRICE"),
11 x.max.lags = list(2),

13 x.fixed.names = list("CORN_PRICE", "POULTRY_PRICE"),
x.fixed.lags = list(4, 5),

15

x.interaction.names =
17 list("CORN_PRICE*CORN_PRICE", "WHEAT_PRICE*BEEF_PRICE"),

x.interaction.lags = list(c(1, 1), c(2,3)),
19

error.measure = "mse",
21

last.obs = 150
23 )

When considering 5 random samples, the total number of estimated models is equal

to 5 · 1022 = 5110. It took 3.5 seconds to estimate all these models using a Intel Core

i7 with 4.8 GHz turbo frequency. If the number of models that need to be estimated is
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large, the user could benefit from using parallel computing. To do so, simply add the code

use.parallel = TRUE, and specify the number of cores with num.cores = the

desired number.

The “best” selected model using the GEARS strategy is

PORK PRICE t+1 = PORK PRICE t + BEEF PRICE t + BEEF PRICE t−2 (12.2)

The results from applying the GEARS strategy to the “commodities prices” data

set can be viewed in Table 12.2, below. For comparison, we added the results from an

automatically selected ARIMA model1 and from the Theta-method, the method that won

the M3 Forecasting Competition [105].

Table 12.2: Observed future values and respective forecasts with a 95% prediction inter-
val, and forecast errors for the price of pork meat obtained from a multivariate GEARS
strategy and an ARIMA model.

Procedure Observed Forecast Lower Upper Absolute Squared
95 PI 95 PI Error Error

ARIMA 61.04 64.28 41.31 87.25 3.24 10.49
Theta-Method 61.04 60.87 37.21 84.52 0.17 0.03

GEARS - Last betas 61.04 60.75 42.09 79.42 0.29 0.08
GEARS - Avg. betas 61.04 60.82 42.16 79.49 0.22 0.05

We see that the forecasts from the GEARS strategy are closer to the observed value

of PORK PRICE at T = 151 and yielded a smaller forecast error than the one from the

ARIMA method. Also, the 95% prediction interval from the ARIMA procedure seems to

be more conservative than the one from the GEARS strategy. However, the Theta-Method

1Obtained from the function forecast::auto.arima and with the option stationary =
TRUE. The selected model was an AR(2).
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produced a more precise forecast, albeit with the most conservative prediction interval.

Its range was equal to 47.3 versus 43.94 from the ARIMA and 37.33 from the GEARS

strategy.
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Chapter 13: Final Remarks

One of the issues with time series modeling is selecting the covariates that will pro-

vide the best out-of-sample forecasts. The development of information criteria (AIC, BIC)

facilitated selecting predictors and their lags. However, not always the chosen model by

minimizing information criteria is the one that provides the best forecasts. With the above

in mind, we propose the GEARS method, a Generalized And Rolling Sample method that

focuses on selecting the best set of covariates (and their lags) for forecasting.

The “generalized” part of the name is because we use generalized linear models

combined with partial likelihood inference to estimate the parameters. It was showed that

partial likelihood inference enables very flexible conditions that allow for correct time

series analysis using GLMs. With this, it becomes easy for users to estimate multivariate

(or univariate) time series models. All they have to do is provide the right-hand side

variable, the variables that should enter the left-hand side of the model, and their lags.

GLMs also allow for the inclusion of interactions and all sorts of non-linear links. This

easy setup is an advantage over more complicated models like state-space and GARCH.

And the fact that we can include covariates and interactions is an advantage over ARIMA,

Theta-method, and other univariate methods.

The “rolling sample” part relates to estimating the parameters over a rolling window
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of a fixed size. The idea is to “train” our model by breaking down our sample in sections

of length S, taking the last M sections, and fitting/predicting several models at each of

these sections. Each fitted model is taken from the set with all possible combinations of

covariates and lags included in the right-hand side of the forecasting model. Then, we

use the out-of-sample prediction errors to calculate an error measure (e.g., MSE) for all

the models in that set, and select the one that minimizes this error measure. Once this is

done, the best model’s estimated coefficients are used to get the out-of-sample forecasts.

An R package was written for the GEARS method. A prototype web application

was also developed to democratize the access to this method. In it, anyone, regardless

of their knowledge in programming, can forecast the values of a time series using the

GEARS method with just a few clicks. There are a few things that need to be done, but

the prototype is available at https://shiny.ogustavo.com/gears.

We applied the GEARS method to all the time series used in the 2018’s M-Competition,

the M4 Competition. Participants in this competition had to forecast values for 100,000

real-life time series. Due to the nature of the GEARS strategy, we had to focus on one-step

ahead forecasts. Given the supplied hyperparameters, the performance of the GEARS

strategy on these data sets was not great. After optimizing the hyperparameters for a

subset of daily series, we were able to detect significant decreases in the OWA values.

Moreover, we had the best results in 8,750 cases out of the 100,000, and the method that

won the competition had better results in fewer than 7,300 series.

Due to these problems in performance, we learned about the limitations of the

GEARS strategy. First, it is important to observe that β̂c∗,h|(M,S) directly depends on

the number of rolling samples M and the size of each sample S. Hence, finding proper
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values for M and S is a major concern.

Using a grid search approach - like we did - is inefficient since the size of the grid

is given by #C×#M×#S ×H , where #M is the cardinality of the set of all numbers

of rolling samples considered, and #S is the cardinality of the set of sample sizes to use.

Testing for all possible combinations of M and S would take an unreasonable long time,

and selecting values at random is not a good approach.

Finding a formula for the expected (effective) sample size given M could improve

this search. Maybe we could use adaptive sampling methods to find a predictor ŷt+h that

is model-unbiased for yt+h - i.e., given a sample s, the conditional expectation of ŷt+h

equals the expectation of yt+h, given s. We leave these topics for future research.

On the other hand, the GEARS strategy shows promise when dealing with multi-

variate time series, but caution is needed when dealing with a high-dimensional space of

covariates. The way GEARS was developed goes over all possible model specifications,

and if several covariates need to be included, the computational cost makes the entire pro-

cess unfeasible. If one wants to use the GEARS strategy in such scenario, a prior selection

of the variables - either by the user or by some sort of principal component analysis on

dependent data - is advised.

Here, we estimated several forecasting models based on a complex formulation that

includes covariates with variable and fixed lags, quadratic terms, and interaction terms.

Despite its complexity, the full model had ten covariates only. The accuracy of the fore-

casts obtained with GEARS was far superior than the one observed for the predictions

from an ARIMA. This result and the fact that our strategy for dealing with multivariate

series is far simpler than VAR, State Space, or Cointegration approaches shines a light in
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the future of our procedure. Further investigation is required to confirm this.

182



Appendix A: Part I - Complementary Results using RMSE

A.1 Data from Cerqueira et al. (2020)

A.1.1 Results from the RBR learning algorithm

Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout -4.5788 -2.4769 0.7705 0.3224 2.7703 7.1041 0.3244
cp-holdout -4.5788 -2.5268 0.7124 0.2834 2.7403 7.1041 0.4044
CV -4.5566 -2.4297 0.7087 0.2096 2.6315 7.8831 0.3244
CV-Bl -4.5587 -2.4710 0.8332 0.1645 2.5098 7.6575 0.4044
CV-hvBl -4.5583 -2.4183 0.8541 0.2035 2.5845 7.6305 0.2554
CV-Mod -4.5538 -2.1114 1.3502 0.5835 2.7296 7.9304 0.0577
Holdout -4.5788 -2.6061 -0.4060 0.1219 2.7191 5.7406 0.8202
p-holdout -4.5788 -2.3682 -0.5929 0.1993 2.7437 7.0945 0.8202
Preq-Bls -4.5534 -2.0508 1.5375 0.6307 2.7773 7.6699 0.0185
Preq-Bls-Gap -4.5398 -2.1370 1.7604 0.6832 2.9142 7.5973 0.0049
Preq-Grow -4.5785 -2.8729 -1.6308 -0.3656 2.2195 4.7890 0.1973
Preq-Sld-Bls -4.5432 0.8633 2.5709 1.7509 3.5157 7.7528 < 0.0001
Preq-Slide -4.5786 -2.8526 -1.5470 -0.3395 2.2411 4.8812 0.1973
Rep-Holdout -4.5788 -2.5204 -0.5614 0.0150 2.5947 5.3605 0.4952

Table A.1: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to all 174
real-world time series using the RBR learning algorithm and the RMSE as error measure.
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Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout -3.4843 -2.2082 0.8286 0.3128 2.6194 4.5326 0.3099
cp-holdout -3.4843 -2.2082 0.7124 0.2245 2.5758 4.2740 0.5426
CV -3.5890 -2.0057 0.9418 0.3637 2.5654 3.7063 0.1548
CV-Bl -3.5337 -1.8785 1.1798 0.3838 2.3944 3.6755 0.1038
CV-hvBl -3.5185 -1.9562 1.2119 0.4209 2.4671 3.6849 0.0417
CV-Mod -3.4540 -1.2981 1.4713 0.7854 2.6299 3.8795 0.025
Holdout -3.6721 -2.2363 -0.7761 0.1008 2.5885 4.0479 0.6849
p-holdout -3.5389 -2.2363 -1.0056 -0.0368 2.5758 4.3604 0.4168
Preq-Bls -3.3461 -1.1780 1.8384 0.8788 2.7570 4.6476 0.0042
Preq-Bls-Gap -3.3830 -1.8530 1.9774 0.9172 2.8406 4.3903 0.0022
Preq-Grow -3.7929 -2.8638 -1.2456 -0.2775 2.2045 4.3903 0.6849
Preq-Sld-Bls -3.1020 1.4224 2.7139 1.9799 3.3774 4.8757 < 0.0001
Preq-Slide -3.7788 -2.7395 -0.7522 -0.2288 2.1604 4.3266 0.8392
Rep-Holdout -3.5789 -2.3903 -1.0569 -0.1022 2.5010 4.0311 0.3099

Table A.2: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to the 97
stationary time series using the RBR learning algorithm and the RMSE as error measure.

Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout -4.5788 -2.6355 0.5254 0.3344 3.0704 7.1041 0.8199
cp-holdout -4.5788 -2.8427 0.6184 0.3576 3.0397 7.1041 0.6488
CV -4.5566 -2.8861 -0.3445 0.0153 2.6861 7.8831 1
CV-Bl -4.5587 -2.9603 -1.2855 -0.1117 2.6442 7.6575 0.6488
CV-hvBl -4.5583 -2.9789 -0.5433 -0.0705 2.6183 7.6305 0.6488
CV-Mod -4.5538 -2.8987 1.1487 0.3293 3.0322 7.9304 0.8199
Holdout -4.5788 -2.8135 0.2651 0.1485 3.0514 5.7406 1
p-holdout -4.5788 -2.6204 0.6928 0.4967 3.2208 7.0945 0.6488
Preq-Bls -4.5534 -2.7940 1.0798 0.3182 3.0166 7.6699 0.8199
Preq-Bls-Gap -4.5398 -2.7024 1.2664 0.3884 2.9698 7.5973 0.4944
Preq-Grow -4.5785 -3.0528 -1.6551 -0.4766 2.2246 4.7890 0.1711
Preq-Sld-Bls -4.5432 -1.8865 2.2544 1.4625 3.6415 7.7528 0.0013
Preq-Slide -4.5786 -3.0522 -1.6592 -0.4790 2.4350 4.8812 0.11
Rep-Holdout -4.5788 -2.6724 0.0236 0.1626 2.7651 5.3605 1

Table A.3: P-value for the Sign Test and summary of the log percentage difference of the
estimated loss relative to the true loss for each validation scheme applied to the 77 non-
stationary time series using the RBR learning algorithm and the RMSE as error measure.
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A.1.2 Results from the RF learning algorithm

Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout -4.0289 -2.4280 1.1269 0.3841 2.7261 6.1486 0.4952
cp-holdout -4.0289 -2.4744 1.1721 0.3907 2.7452 6.1486 0.3244
CV -3.8173 -2.4167 0.5600 0.1630 2.6019 7.0524 0.7048
CV-Bl -3.9369 -2.4460 0.6234 0.1531 2.6130 6.7960 0.9396
CV-hvBl -3.9409 -2.4121 0.6709 0.1804 2.6401 6.8141 0.4952
CV-Mod -3.8067 -2.0778 1.7031 0.7264 2.8666 7.0800 0.0078
Holdout -4.3271 -2.5913 0.1077 0.1426 2.6562 5.5521 1
p-holdout -4.0289 -2.4584 1.2800 0.4463 2.7606 6.2120 0.3244
Preq-Bls -3.9760 -1.9701 1.9670 0.8140 3.0358 6.8069 0.0049
Preq-Bls-Gap -4.1050 -1.9836 1.9569 0.8191 2.9756 6.7653 0.0078
Preq-Grow -4.3603 -2.8352 -1.9490 -0.4130 2.4588 4.9343 0.0809
Preq-Sld-Bls -3.9794 0.9916 2.7371 1.9242 3.5376 6.8094 < 0.0001
Preq-Slide -4.3595 -2.8067 -1.6564 -0.3204 2.4035 4.9139 0.1973
Rep-Holdout -4.2271 -2.4835 -0.8393 0.1260 2.8689 6.2388 0.8202

Table A.4: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to all 174
real-world time series using the RF learning algorithm and the RMSE as error measure.

Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout -3.0703 -2.3338 1.8007 0.3984 2.6378 4.1409 0.4168
cp-holdout -3.0703 -2.3338 1.2271 0.3527 2.5942 4.1311 0.4168
CV -3.3534 -2.1897 0.9031 0.3218 2.5391 3.6503 0.2229
CV-Bl -3.3433 -2.0402 0.9381 0.3419 2.4884 3.5695 0.4168
CV-hvBl -3.3019 -1.9557 1.0256 0.3877 2.5289 3.5988 0.1548
CV-Mod -3.1564 -1.3374 1.8047 0.9337 2.8042 4.0367 0.0042
Holdout -3.4415 -2.5109 0.4072 0.0861 2.6289 4.1311 1
p-holdout -3.0930 -2.2421 1.2271 0.3879 2.6114 4.1395 0.4168
Preq-Bls -3.0050 -1.3642 2.0852 1.0505 2.9536 4.2071 0.0042
Preq-Bls-Gap -2.9122 -1.4770 2.2479 1.0610 2.9335 4.3786 0.008
Preq-Grow -3.7775 -2.8086 -1.8606 -0.3640 2.2594 4.1543 0.5426
Preq-Sld-Bls -2.7243 1.7439 2.8032 2.3567 3.3309 5.6070 < 0.0001
Preq-Slide -3.7930 -2.8035 -1.6217 -0.2512 2.1638 4.1357 0.8392
Rep-Holdout -3.3054 -2.4382 -0.9957 0.0345 2.6665 3.9545 0.6849

Table A.5: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to the 97
stationary time series using the RF learning algorithm and the RMSE as error measure.
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Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout -4.0289 -2.6097 0.1735 0.3661 3.2044 6.1486 1
cp-holdout -4.0289 -2.8292 1.0996 0.4385 3.2888 6.1486 0.6488
CV -3.8173 -2.9534 -0.9368 -0.0370 2.7629 7.0524 0.4944
CV-Bl -3.9369 -2.9977 -0.7905 -0.0848 2.7430 6.7960 0.4944
CV-hvBl -3.9409 -2.9798 -0.8663 -0.0809 2.7158 6.8141 0.6488
CV-Mod -3.8067 -2.7064 0.9095 0.4652 3.0445 7.0800 0.4944
Holdout -4.3271 -2.7599 -0.3439 0.2139 3.1521 5.5521 1
p-holdout -4.0289 -2.8292 1.5567 0.5198 3.1075 6.2120 0.6488
Preq-Bls -3.9760 -2.7673 1.4814 0.5161 3.2158 6.8069 0.362
Preq-Bls-Gap -4.1050 -2.6992 1.7053 0.5145 3.2062 6.7653 0.362
Preq-Grow -4.3603 -2.8647 -2.0801 -0.4748 2.6105 4.9343 0.0675
Preq-Sld-Bls -3.9794 -2.4177 2.5796 1.3793 3.8962 6.8094 0.0059
Preq-Slide -4.3595 -2.8840 -2.0627 -0.4075 2.7179 4.9139 0.11
Rep-Holdout -4.2271 -2.6409 0.0567 0.2412 3.2395 6.2388 1

Table A.6: P-value for the Sign Test and summary of the log percentage difference of the
estimated loss relative to the true loss for each validation scheme applied to the 77 non-
stationary time series using the RF learning algorithm and the RMSE as error measure.
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A.1.3 Results from the GLM learning algorithm

Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout -4.1097 -2.4885 -0.3307 0.0999 2.5174 6.8405 0.7048
cp-holdout -4.1097 -2.4778 0.3881 0.1270 2.5355 6.8405 0.9396
CV -3.8529 -2.2680 0.9806 0.3183 2.5502 7.7182 0.2554
CV-Bl -3.9883 -2.3304 0.5779 0.1493 2.4375 7.4567 0.9396
CV-hvBl -3.9870 -2.3300 0.6453 0.1563 2.4486 7.4569 0.9396
CV-Mod -3.8457 -2.1897 1.2392 0.4596 2.6485 7.7211 0.0809
Holdout -4.3466 -2.5133 -0.6838 -0.0265 2.5251 5.2947 0.4044
p-holdout -4.1097 -2.3760 0.3347 0.1527 2.5054 6.9337 0.8202
Preq-Bls -3.9943 -2.2698 0.9435 0.2885 2.4859 7.4220 0.1973
Preq-Bls-Gap -4.1550 -2.2828 1.0548 0.2872 2.5160 7.3584 0.1973
Preq-Grow -4.3757 -2.8720 -1.5454 -0.4517 2.2089 4.4979 0.0404
Preq-Sld-Bls -3.9882 -1.6415 1.9821 1.0318 2.9126 7.4408 < 0.0001
Preq-Slide -4.3726 -2.8197 -1.4889 -0.4261 2.2856 4.4965 0.0809
Rep-Holdout -4.2393 -2.5412 -1.1865 -0.0915 2.5811 5.3116 0.1973

Table A.7: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to all 174
real-world time series using the GLM-Ridge learning algorithm and the RMSE as error
measure.
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Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout -3.4215 -2.2602 0.5296 0.1625 2.6610 4.2216 1
cp-holdout -3.4215 -2.2602 0.5296 0.1170 2.5131 4.2792 1
CV -3.4883 -1.9162 1.5736 0.4770 2.4733 4.3768 0.1038
CV-Bl -3.5159 -2.0807 1.3440 0.3502 2.2331 4.3234 0.5426
CV-hvBl -3.5080 -1.9543 1.3448 0.3617 2.2395 4.3234 0.5426
CV-Mod -3.4576 -1.8785 1.5837 0.5964 2.6087 4.3612 0.0417
Holdout -3.5140 -2.4918 -0.6650 0.0129 2.5333 4.2792 0.8392
p-holdout -3.4504 -2.2624 0.2833 0.1105 2.5714 4.2792 1
Preq-Bls -3.5115 -1.7991 1.6316 0.5850 2.4859 4.3430 0.0417
Preq-Bls-Gap -3.4693 -1.9625 1.4428 0.5510 2.5334 4.3204 0.0671
Preq-Grow -3.7284 -2.8298 -0.8587 -0.2543 2.3485 4.2259 0.5426
Preq-Sld-Bls -3.2465 0.3720 2.2441 1.4564 2.9481 4.3573 < 0.0001
Preq-Slide -3.7171 -2.7939 -0.7888 -0.2195 2.3978 4.2331 0.8392
Rep-Holdout -3.3519 -2.3796 -1.2021 -0.1237 2.5447 4.1333 0.3099

Table A.8: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to the 97
stationary time series using the GLM-Ridge learning algorithm and the RMSE as error
measure.

Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout -4.1097 -2.6411 -0.5686 0.0210 2.4112 6.8405 0.4944
cp-holdout -4.1097 -2.7000 0.2465 0.1396 2.5357 6.8405 1
CV -3.8529 -2.7582 -0.3675 0.1184 2.6423 7.7182 1
CV-Bl -3.9883 -2.8749 -0.8770 -0.1039 2.4703 7.4567 0.6488
CV-hvBl -3.9870 -2.8746 -0.8727 -0.1026 2.5037 7.4569 0.6488
CV-Mod -3.8457 -2.6583 0.6001 0.2873 2.7284 7.7211 0.8199
Holdout -4.3466 -2.5977 -0.7025 -0.0763 2.4665 5.2947 0.362
p-holdout -4.1097 -2.7132 0.7382 0.2058 2.4525 6.9337 0.8199
Preq-Bls -3.9943 -2.7387 -0.4579 -0.0850 2.6817 7.4220 0.8199
Preq-Bls-Gap -4.1550 -2.6879 -0.7946 -0.0451 2.4428 7.3584 1
Preq-Grow -4.3757 -2.8852 -1.9598 -0.7003 1.8648 4.4979 0.022
Preq-Sld-Bls -3.9882 -2.5803 1.4863 0.4971 2.8625 7.4408 0.362
Preq-Slide -4.3726 -2.8671 -1.8560 -0.6865 1.9331 4.4965 0.022
Rep-Holdout -4.2393 -2.6826 -1.1710 -0.0510 2.8502 5.3116 0.4944

Table A.9: P-value for the Sign Test and summary of the log percentage difference of the
estimated loss relative to the true loss for each validation scheme applied to the 77 non-
stationary time series using the GLM-Ridge learning algorithm and the RMSE as error
measure.
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A.2 Data from the M4 Competition

A.2.1 Results from the RBR learning algorithm

Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout -4.5917 -2.9524 0.4796 0.2035 3.2303 7.0715 0.5909
cp-holdout -4.5917 -2.9524 0.4796 0.2035 3.2303 7.0715 0.5909
CV -4.5951 -3.2729 -1.6629 -0.1237 3.2978 8.4690 0.0149
CV-Bl -4.5976 -3.2546 -1.4026 -0.0889 3.2973 8.8001 0.0341
CV-hvBl -4.5902 -3.1541 -0.5491 0.0937 3.3798 9.4853 0.548
CV-Mod -4.5948 -3.0814 0.3085 0.2503 3.5211 8.8682 0.776
Holdout -4.5856 -3.1060 -0.3559 0.0864 3.1924 7.2647 0.681
p-holdout -4.5883 -2.9078 0.8380 0.3108 3.3620 7.0715 0.1067
Preq-Bls -4.5420 -2.6779 2.4471 1.0198 3.8298 9.1734 < 0.0001
Preq-Bls-Gap -4.3151 -0.4799 3.4204 2.1198 4.3714 10.1493 < 0.0001
Preq-Grow -4.5834 -3.4204 -2.2355 -0.5813 2.9223 7.4561 < 0.0001
Preq-Sld-Bls -4.5243 2.1373 3.7232 2.5694 4.5144 9.6810 < 0.0001
Preq-Slide -4.5835 -3.3925 -2.1972 -0.5741 2.9363 7.2773 < 0.0001
Rep-Holdout -4.5495 -2.6693 2.0504 0.8187 3.7284 8.5748 < 0.0001

Table A.10: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to the time
series from the M4 Competition sample using the RBR learning algorithm and the RMSE
as error measure.
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Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout -4.3651 -2.9729 -0.6754 0.0763 3.2617 6.0731 0.5594
cp-holdout -4.3651 -2.9729 -0.6754 0.0763 3.2617 6.0731 0.5594
CV -4.3742 -3.2596 -1.8215 -0.2359 3.1845 6.3080 0.0097
CV-Bl -4.3722 -3.2406 -1.6933 -0.1922 3.2827 5.9256 0.0097
CV-hvBl -4.3651 -3.1577 -1.2666 -0.0223 3.3595 6.4974 0.1332
CV-Mod -4.2688 -3.0755 -1.0444 0.1054 3.4307 6.4068 0.4043
Holdout -4.4864 -3.1084 -1.0543 -0.0057 3.2012 5.4942 0.2782
p-holdout -4.3651 -2.9523 0.8292 0.2720 3.3354 6.0731 0.1332
Preq-Bls -4.3515 -2.7069 2.1134 0.9098 3.8038 6.6895 < 0.0001
Preq-Bls-Gap -4.3151 -0.7745 3.3990 2.0736 4.2897 7.2154 < 0.0001
Preq-Grow -4.4693 -3.4250 -2.3280 -0.6457 2.8993 5.9318 < 0.0001
Preq-Sld-Bls -4.2280 1.9815 3.6946 2.5404 4.4395 7.0249 < 0.0001
Preq-Slide -4.4352 -3.3977 -2.2750 -0.6483 2.8767 5.7708 < 0.0001
Rep-Holdout -4.3582 -2.6007 1.9663 0.7639 3.6361 5.7947 2e-04

Table A.11: P-value for the Sign Test and summary of the log percentage difference of the
estimated loss relative to the true loss for each validation scheme applied to the stationary
time series from the M4 Competition sample using the RBR learning algorithm and the
RMSE as error measure.

Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout -4.5917 -2.8732 1.1455 0.3755 3.2279 7.0715 0.1205
cp-holdout -4.5917 -2.8732 1.1455 0.3755 3.2279 7.0715 0.1205
CV -4.5951 -3.2736 -1.0673 0.0282 3.3835 8.4690 0.4971
CV-Bl -4.5976 -3.2757 -0.7363 0.0508 3.3257 8.8001 0.8462
CV-hvBl -4.5902 -3.1441 1.3322 0.2506 3.4265 9.4853 0.4377
CV-Mod -4.5948 -3.1310 1.6525 0.4463 3.5802 8.8682 0.1455
Holdout -4.5856 -3.0823 0.5553 0.2109 3.1462 7.2647 0.5606
p-holdout -4.5883 -2.8815 0.8779 0.3634 3.4116 7.0715 0.4971
Preq-Bls -4.5420 -2.6060 2.5388 1.1685 3.9087 9.1734 < 0.0001
Preq-Bls-Gap -4.1520 -0.3619 3.4230 2.1824 4.4196 10.1493 < 0.0001
Preq-Grow -4.5834 -3.4047 -2.1696 -0.4941 3.0458 7.4561 2e-04
Preq-Sld-Bls -4.5243 2.2839 3.7803 2.6087 4.5558 9.6810 < 0.0001
Preq-Slide -4.5835 -3.3875 -2.1384 -0.4738 3.0533 7.2773 7e-04
Rep-Holdout -4.5495 -2.8358 2.3129 0.8928 3.8142 8.5748 7e-04

Table A.12: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to the non-
stationary time series from the M4 Competition sample using the RBR learning algorithm
and the RMSE as error measure.
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A.2.2 Results from the RF learning algorithm

Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout -4.3683 -3.0737 -0.6461 0.0688 3.2951 6.0577 0.467
cp-holdout -4.3683 -3.0737 -0.6461 0.0688 3.2951 6.0577 0.467
CV -4.4250 -3.2524 -1.5849 -0.1394 3.2530 7.5430 0.0072
CV-Bl -4.4575 -3.3073 -1.8755 -0.2461 3.2232 7.0328 2e-04
CV-hvBl -4.4479 -3.2402 -1.4783 -0.0806 3.3213 7.0533 0.0177
CV-Mod -4.3865 -3.0975 0.9363 0.2963 3.5030 7.5706 0.3591
Holdout -4.4038 -3.2678 -0.3064 0.0215 3.2229 5.9394 0.681
p-holdout -4.3635 -3.0606 -0.5523 0.1048 3.3173 6.0577 0.728
Preq-Bls -4.4013 -3.0282 1.4613 0.4588 3.5884 6.8916 0.0247
Preq-Bls-Gap -4.3270 -2.8070 2.1684 0.8229 3.8514 6.9983 < 0.0001
Preq-Grow -4.4057 -3.4788 -2.2655 -0.5930 2.7636 5.4483 < 0.0001
Preq-Sld-Bls -4.3769 -2.6465 2.5897 1.1209 4.0041 7.3619 < 0.0001
Preq-Slide -4.4137 -3.4869 -2.2331 -0.6032 2.7851 5.4307 < 0.0001
Rep-Holdout -4.4260 -2.9519 1.3120 0.4891 3.5840 7.5171 0.0537

Table A.13: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to the time
series from the M4 Competition sample using the RF learning algorithm and the RMSE
as error measure.
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Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout -4.3043 -3.1987 -1.5933 -0.1646 3.1744 5.9160 0.0155
cp-holdout -4.3043 -3.1987 -1.5933 -0.1646 3.1744 5.9160 0.0155
CV -4.2817 -3.2947 -2.0440 -0.3159 3.1582 6.1654 0.0026
CV-Bl -4.3362 -3.3144 -2.1401 -0.4187 3.0935 6.0249 1e-04
CV-hvBl -4.3347 -3.2661 -1.8480 -0.2544 3.1771 6.0669 0.0035
CV-Mod -4.2475 -3.1135 -0.6095 0.1169 3.4445 6.2005 0.6168
Holdout -4.3509 -3.3500 -1.2457 -0.1452 3.2025 5.7655 0.2109
p-holdout -4.2477 -3.1269 -1.3553 -0.0949 3.2705 5.9160 0.055
Preq-Bls -4.2799 -3.0590 1.3166 0.3428 3.5348 6.0778 0.3589
Preq-Bls-Gap -4.2192 -2.8326 2.0478 0.7161 3.7489 6.2391 0.0011
Preq-Grow -4.4025 -3.5273 -2.4453 -0.7135 2.6991 5.3743 < 0.0001
Preq-Sld-Bls -4.2519 -2.7275 2.5094 1.0169 3.9954 6.6408 < 0.0001
Preq-Slide -4.4044 -3.5383 -2.3937 -0.7330 2.6827 5.4106 < 0.0001
Rep-Holdout -4.2662 -2.9519 0.3998 0.3400 3.4846 5.6100 0.7387

Table A.14: P-value for the Sign Test and summary of the log percentage difference of the
estimated loss relative to the true loss for each validation scheme applied to the stationary
time series from the M4 Competition sample using the RF learning algorithm and the
RMSE as error measure.

Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout -4.3683 -2.9742 1.4114 0.3846 3.3915 6.0577 0.099
cp-holdout -4.3683 -2.9742 1.4114 0.3846 3.3915 6.0577 0.099
CV -4.4250 -3.1955 -0.5468 0.0994 3.4132 7.5430 0.5606
CV-Bl -4.4575 -3.2916 -1.3597 -0.0126 3.3664 7.0328 0.2072
CV-hvBl -4.4479 -3.1977 -0.3026 0.1544 3.4206 7.0533 0.8462
CV-Mod -4.3865 -3.0466 1.5635 0.5390 3.6121 7.5706 0.0415
Holdout -4.4038 -3.1633 1.2192 0.2471 3.2266 5.9394 0.4377
p-holdout -4.3635 -2.9742 1.4312 0.3751 3.3486 6.0577 0.099
Preq-Bls -4.4013 -2.9815 1.8266 0.6157 3.7150 6.8916 0.0198
Preq-Bls-Gap -4.3270 -2.7253 2.3016 0.9673 3.9106 6.9983 2e-04
Preq-Grow -4.4057 -3.3027 -1.9308 -0.4300 2.8436 5.4483 0.0026
Preq-Sld-Bls -4.3769 -2.5138 2.8276 1.2615 4.0176 7.3619 < 0.0001
Preq-Slide -4.4137 -3.3177 -1.9453 -0.4277 2.9269 5.4307 0.0036
Rep-Holdout -4.4260 -2.9433 1.8410 0.6909 3.7233 7.5171 0.0116

Table A.15: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to the non-
stationary time series from the M4 Competition sample using the RF learning algorithm
and the RMSE as error measure.
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A.2.3 Results from the GLM learning algorithm

Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout -4.4977 -2.8912 -0.4528 0.0732 3.0518 6.4250 0.728
cp-holdout -4.4977 -2.8912 -0.4528 0.0732 3.0518 6.4250 0.728
CV -4.5206 -3.0319 0.1078 0.2050 3.3758 6.7023 0.9748
CV-Bl -4.5365 -3.1370 -1.0369 0.0134 3.2443 6.6840 0.242
CV-hvBl -4.5364 -3.1415 -0.8752 0.0348 3.2662 6.7793 0.1739
CV-Mod -4.5164 -2.9614 0.9986 0.3407 3.4187 6.8172 0.1547
Holdout -4.5034 -3.0210 -1.0939 -0.0116 3.1119 6.5797 0.2174
p-holdout -4.4770 -2.8949 -0.2615 0.0941 3.0318 6.3170 0.8744
Preq-Bls -4.5331 -2.9391 1.0874 0.3435 3.4257 6.6791 0.1547
Preq-Bls-Gap -4.5159 -2.8224 1.4500 0.5113 3.5327 6.6856 0.0086
Preq-Grow -4.5384 -3.3441 -2.2116 -0.5346 2.9187 6.0797 < 0.0001
Preq-Sld-Bls -4.5266 -2.4489 2.5382 1.1617 3.8156 6.7809 < 0.0001
Preq-Slide -4.5385 -3.3454 -2.1871 -0.5346 2.9195 6.0475 < 0.0001
Rep-Holdout -4.4537 -2.7598 1.5774 0.5079 3.4454 7.4545 0.0014

Table A.16: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to the time
series from the M4 Competition sample using the GLM-RIDGE learning algorithm and
the RMSE as error measure.
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Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout -4.2659 -2.9836 -1.1778 -0.0672 2.9599 5.3166 0.2109
cp-holdout -4.2659 -2.9836 -1.1778 -0.0672 2.9599 5.3166 0.2109
CV -4.2877 -3.0369 -0.8544 0.0718 3.2285 5.5304 0.4529
CV-Bl -4.3250 -3.1219 -1.4217 -0.1360 3.0995 5.4313 0.037
CV-hvBl -4.3256 -3.1321 -1.4177 -0.1135 3.1153 5.4581 0.03
CV-Mod -4.2682 -2.9674 0.1940 0.2023 3.3175 5.5615 0.9335
Holdout -4.3536 -3.0675 -1.5334 -0.1383 3.0812 5.3572 0.0952
p-holdout -4.2659 -2.9588 -0.4276 0.0072 2.9694 5.3799 0.6168
Preq-Bls -4.2987 -2.9501 0.4977 0.2228 3.2572 6.1020 0.8675
Preq-Bls-Gap -4.2787 -2.7929 1.0189 0.4031 3.4084 5.7739 0.1562
Preq-Grow -4.3647 -3.3884 -2.2890 -0.6418 2.7972 5.3904 < 0.0001
Preq-Sld-Bls -4.2516 -2.4848 2.3662 1.0462 3.6985 6.4157 < 0.0001
Preq-Slide -4.3541 -3.3845 -2.2934 -0.6399 2.7989 5.3897 < 0.0001
Rep-Holdout -4.1904 -2.7529 1.5253 0.4469 3.3204 5.4815 0.0242

Table A.17: P-value for the Sign Test and summary of the log percentage difference of the
estimated loss relative to the true loss for each validation scheme applied to the stationary
time series from the M4 Competition sample using the GLM-RIDGE learning algorithm
and the RMSE as error measure.

Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout -4.4977 -2.7566 1.0714 0.2632 3.1635 6.4250 0.3826
cp-holdout -4.4977 -2.7566 1.0714 0.2632 3.1635 6.4250 0.3826
CV -4.5206 -3.0287 1.0267 0.3852 3.5113 6.7023 0.332
CV-Bl -4.5365 -3.1703 0.9397 0.2157 3.3868 6.6840 0.5606
CV-hvBl -4.5364 -3.1520 0.9020 0.2355 3.4068 6.7793 0.698
CV-Mod -4.5164 -2.9511 1.5349 0.5280 3.5557 6.8172 0.0415
Holdout -4.5034 -2.9102 0.2526 0.1598 3.1941 6.5797 1
p-holdout -4.4770 -2.8551 0.7024 0.2118 3.1478 6.3170 0.7711
Preq-Bls -4.5331 -2.9201 1.7547 0.5067 3.5152 6.6791 0.0522
Preq-Bls-Gap -4.5159 -2.8557 1.8345 0.6578 3.6286 6.6856 0.0198
Preq-Grow -4.5384 -3.2556 -2.0411 -0.3894 3.0444 6.0797 0.0087
Preq-Sld-Bls -4.5266 -2.4197 2.7623 1.3180 3.9452 6.7809 0
Preq-Slide -4.5385 -3.2392 -2.0483 -0.3921 3.0220 6.0475 0.0087
Rep-Holdout -4.4537 -2.7662 1.6796 0.5904 3.5620 7.4545 0.0255

Table A.18: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to the non-
stationary time series from the M4 Competition sample using the GLM-RIDGE learning
algorithm and the RMSE as error measure.
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Appendix B: Part I - Results for all cases using MASE

B.1 Data from Cerqueira et al. (2020)

B.1.1 Results from the RBR learning algorithm

Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout -4.5723 -2.5755 -0.4583 0.0498 2.6956 6.4568 0.5958
cp-holdout -4.5723 -2.6252 -0.0724 0.0244 2.7307 5.9954 0.8202
CV -4.6032 -4.0570 -3.6145 -3.1518 -3.0563 6.5720 < 0.0001
CV-Bl -4.5371 -2.5622 0.3650 0.0362 2.4823 7.3776 0.8202
CV-hvBl -4.5368 -2.5481 0.8733 0.1204 2.4952 7.3856 0.4044
CV-Mod -4.6031 -3.9966 -3.5288 -2.9220 -2.9475 6.6844 < 0.0001
Holdout -4.5723 -2.7067 -1.2840 -0.1086 2.7038 5.2328 0.4952
p-holdout -4.5723 -2.7051 -0.5560 -0.0509 2.6577 7.2400 0.4952
Preq-Bls -4.5376 -2.2538 1.4321 0.6898 3.0297 6.9546 0.0577
Preq-Bls-Gap -4.5146 -2.2472 1.5659 0.8087 3.0944 6.9282 0.0185
Preq-Grow -4.5684 -2.8964 -1.5932 -0.3239 2.6028 5.1708 0.0577
Preq-Sld-Bls -4.5120 2.0185 3.2030 2.5119 3.8669 7.8570 < 0.0001
Preq-Slide -4.5678 -2.8132 -1.4559 -0.1874 2.5851 4.7553 0.2554
Rep-Holdout -4.5689 -2.4770 -0.7885 0.1775 2.7797 8.1900 0.7048

Table B.1: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to all 174
real-world time series using the RBR learning algorithm and the MASE as error measure.
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Plot by: Varela−Alvarenga and Kedem (2021). 

Data source: Cerqueira et al. (2020).

Figure B.1: Average APAE rank of each validation scheme on 174 real-world
time series using the RBR learning algorithm and MASE as the error func-
tion. The black line represents -+ 1 standard deviation from the average.
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Figure B.2: Log percentage difference of the estimated loss relative to the
true loss for each validation scheme applied to 174 real-world time series
using the RBR learning algorithm. Values below the zero (red) line represent
under-estimations of the error. Conversely, values above it represent over-
estimations of the error.
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Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout -3.3569 -2.5759 0.8053 0.0685 2.6573 4.8705 0.8392
cp-holdout -3.4879 -2.5978 0.8502 0.0647 2.6573 4.2869 0.8392
CV -4.5798 -3.9461 -3.5451 -3.3124 -3.1427 2.9898 < 0.0001
CV-Bl -3.5970 -2.0139 1.0152 0.3116 2.3736 3.5332 0.2229
CV-hvBl -3.5050 -1.9978 1.1456 0.3812 2.3974 3.5029 0.0671
CV-Mod -4.5784 -3.9155 -3.4674 -3.1014 -3.0201 2.9640 < 0.0001
Holdout -3.5652 -2.6615 0.2044 0.0420 2.6910 4.2043 0.8392
p-holdout -3.5163 -2.6819 -0.4311 -0.0999 2.4360 4.2740 0.8392
Preq-Bls -3.1065 -1.7238 1.4364 0.8289 3.0096 4.1937 0.025
Preq-Bls-Gap -3.1673 -1.7219 1.2271 0.8062 2.9538 4.8129 0.0417
Preq-Grow -3.7782 -2.8400 -1.3461 -0.1705 2.6928 4.7301 0.4168
Preq-Sld-Bls -3.2078 2.3659 3.3821 2.6636 3.8145 4.9703 < 0.0001
Preq-Slide -3.8148 -2.7149 -0.9317 0.0281 2.5935 4.5225 0.8392
Rep-Holdout -3.5285 -2.3827 0.1644 0.1540 2.6671 4.1948 1

Table B.2: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to the 97
stationary time series using the RBR learning algorithm and the MASE as error measure.

Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout -4.5723 -2.5744 -0.7677 0.0262 2.8260 6.4568 0.2543
cp-holdout -4.5723 -2.8068 -1.3651 -0.0263 2.8931 5.9954 0.4944
CV -4.6032 -4.1921 -3.7528 -2.9495 -2.8750 6.5720 < 0.0001
CV-Bl -4.5371 -2.9674 -1.9399 -0.3107 2.5136 7.3776 0.362
CV-hvBl -4.5368 -2.9361 -1.8853 -0.2081 2.6890 7.3856 0.4944
CV-Mod -4.6031 -4.1438 -3.6161 -2.6960 -2.7501 6.6844 < 0.0001
Holdout -4.5723 -2.8068 -1.7653 -0.2982 2.7208 5.2328 0.1711
p-holdout -4.5723 -2.8645 -0.6571 0.0108 3.0075 7.2400 0.4944
Preq-Bls -4.5376 -2.6173 1.0564 0.5146 3.2786 6.9546 0.8199
Preq-Bls-Gap -4.5146 -2.6292 1.5972 0.8118 3.3487 6.9282 0.2543
Preq-Grow -4.5684 -3.0365 -1.8800 -0.5171 2.5575 5.1708 0.0675
Preq-Sld-Bls -4.5120 1.3117 2.9447 2.3208 4.2867 7.8570 < 0.0001
Preq-Slide -4.5678 -2.9212 -1.9325 -0.4589 2.5488 4.7553 0.1711
Rep-Holdout -4.5689 -2.6525 -1.1010 0.2071 2.9921 8.1900 0.4944

Table B.3: P-value for the Sign Test and summary of the log percentage difference of the
estimated loss relative to the true loss for each validation scheme applied to the 77 non-
stationary time series using the RBR learning algorithm and the MASE as error measure.
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Figure B.3: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation scheme when applied to the stationary time-series from Cerqueira
et al. (2020), with parameters estimated via the RBR learning algorithm and
error calculated using the MASE. The probabilities are computed using the
Bayes signed-rank test.
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Figure B.4: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respec-
tive validation schemes when applied to the non-stationary time-series from
Cerqueira et al. (2020), with parameters estimated via the RBR learning algo-
rithm and error calculated using the MASE. The probabilities are computed
using the Bayes signed-rank test.
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B.1.2 Results from the RF learning algorithm
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Plot by: Varela−Alvarenga and Kedem (2021). 

Data source: Cerqueira et al. (2020).

Figure B.5: Average APAE rank of each validation scheme on 174 real-world
time series using the RF learning algorithm and MASE as the error function.
The black line represents -+ 1 standard deviation from the average.
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Figure B.6: Log percentage difference of the estimated loss relative to the
true loss for each validation scheme applied to 174 real-world time series
using the RF learning algorithm. Values below the zero (red) line represent
under-estimations of the error. Conversely, values above it represent over-
estimations of the error.
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Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout -4.0452 -2.4522 0.3085 0.2351 2.5787 6.6253 0.9396
cp-holdout -4.0452 -2.5129 0.2852 0.2385 2.7101 6.2548 0.9396
CV -4.4630 -3.8328 -3.4115 -2.5006 -2.5318 6.3957 < 0.0001
CV-Bl -3.8252 -2.4927 0.8222 0.1678 2.5070 6.8520 0.5958
CV-hvBl -3.9305 -2.4889 1.0221 0.2055 2.5698 6.8748 0.4044
CV-Mod -4.4020 -3.7744 -3.3154 -2.2574 -2.2897 6.4808 < 0.0001
Holdout -4.3119 -2.5707 -0.8383 -0.0218 2.5054 5.5194 0.4044
p-holdout -4.2242 -2.5608 0.5651 0.2440 2.7810 7.4009 0.8202
Preq-Bls -3.5924 -1.9985 1.9680 0.9066 3.0526 6.6564 0.0276
Preq-Bls-Gap -3.8724 -1.9149 1.9625 0.9909 3.1372 7.4208 0.0018
Preq-Grow -4.3438 -2.6949 -1.6014 -0.4246 2.3988 5.0591 0.0049
Preq-Sld-Bls -3.7184 2.0250 3.1501 2.4896 3.8825 7.0703 < 0.0001
Preq-Slide -4.3054 -2.6757 -0.9839 -0.1257 2.6327 5.0239 0.3244
Rep-Holdout -4.0041 -2.1707 1.2788 0.5159 2.7481 7.8342 0.1111

Table B.4: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to all 174
real-world time series using the RF learning algorithm and the MASE as error measure.

Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout -3.1095 -2.2424 0.7032 0.2884 2.5763 4.5045 0.5426
cp-holdout -3.4183 -2.2424 0.5624 0.2824 2.5840 4.3126 0.6849
CV -4.4630 -3.8117 -3.4638 -2.9477 -3.0641 3.7423 < 0.0001
CV-Bl -3.4676 -1.9974 1.1986 0.4503 2.4156 3.6555 0.0671
CV-hvBl -3.3622 -1.7943 1.3768 0.4983 2.4567 3.6569 0.025
CV-Mod -4.4020 -3.7769 -3.3695 -2.7922 -2.8163 3.8111 < 0.0001
Holdout -3.4967 -2.5562 -0.5759 -0.0175 2.4578 4.3126 0.6849
p-holdout -3.4183 -2.0544 0.8605 0.3984 2.7218 4.3473 0.4168
Preq-Bls -2.6844 -1.4435 2.3501 1.2073 3.0260 4.7647 0.0022
Preq-Bls-Gap -3.0378 -1.1133 2.4090 1.2532 3.0296 5.1751 2e-04
Preq-Grow -3.8047 -2.5800 -1.2784 -0.2463 2.4587 4.2873 0.2229
Preq-Sld-Bls -2.8833 2.5048 3.2367 2.8247 3.7576 6.2192 < 0.0001
Preq-Slide -3.8732 -2.5286 0.5847 0.0867 2.7369 4.2021 1
Rep-Holdout -3.4561 -1.8441 1.1751 0.4732 2.6233 4.1358 0.2229

Table B.5: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to the 97
stationary time series using the RF learning algorithm and the MASE as error measure.
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Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout -4.0452 -2.4738 -0.8212 0.1680 2.5795 6.6253 0.6488
cp-holdout -4.0452 -2.7016 -0.4780 0.1832 2.8407 6.2548 0.8199
CV -4.4349 -3.9084 -3.2907 -1.9375 -2.0436 6.3957 < 0.0001
CV-Bl -3.8252 -2.8252 -2.0090 -0.1881 2.6622 6.8520 0.2543
CV-hvBl -3.9305 -2.8449 -2.0086 -0.1634 2.6417 6.8748 0.2543
CV-Mod -4.3899 -3.7237 -3.0123 -1.5838 1.1190 6.4808 1e-04
Holdout -4.3119 -2.6419 -1.1363 -0.0273 2.8362 5.5194 0.4944
p-holdout -4.2242 -2.8313 -0.8212 0.0494 2.9837 7.4009 0.6488
Preq-Bls -3.5924 -2.4026 -0.3275 0.5278 3.3873 6.6564 1
Preq-Bls-Gap -3.8724 -2.3902 0.6579 0.6605 3.3713 7.4208 0.6488
Preq-Grow -4.3438 -2.9261 -1.7716 -0.6492 2.3009 5.0591 0.0059
Preq-Sld-Bls -3.7184 -0.4954 2.9643 2.0674 4.2547 7.0703 2e-04
Preq-Slide -4.3054 -2.7906 -1.5958 -0.3931 2.4499 5.0239 0.11
Rep-Holdout -4.0041 -2.5025 1.3845 0.5697 3.0195 7.8342 0.362

Table B.6: P-value for the Sign Test and summary of the log percentage difference of the
estimated loss relative to the true loss for each validation scheme applied to the 77 non-
stationary time series using the RF learning algorithm and the MASE as error measure.
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Figure B.7: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation scheme when applied to the stationary time-series from Cerqueira
et al. (2020), with parameters estimated via the RF learning algorithm and
error calculated using the MASE. The probabilities are computed using the
Bayes signed-rank test.
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Figure B.8: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respec-
tive validation schemes when applied to the non-stationary time-series from
Cerqueira et al. (2020), with parameters estimated via the RF learning algo-
rithm and error calculated using the MASE. The probabilities are computed
using the Bayes signed-rank test.
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B.1.3 Results from the GLM learning algorithm

0

5

10

15

CV−hvB
l

CV−Bl

ce
p−holdout

Rep−Holdout

Pre
q−Bls

cp
−holdout

Holdout

Pre
q−Bls−

Gap

p−holdout

Pre
q−Gro

w

Pre
q−Slid

e

Pre
q−Sld−Bls

CV−Mod CV

A
v
g

. 
ra

n
k
 &

 S
td

 d
e
v
.

All

0

5

10

15

CV−hvB
l

CV−Bl

Rep−Holdout

cp
−holdout

ce
p−holdout

Pre
q−Bls

p−holdout

Holdout

Pre
q−Gro

w

Pre
q−Bls−

Gap

Pre
q−Slid

e

Pre
q−Sld−Bls

CV−Mod CV

A
v
g

. 
ra

n
k
 &

 S
td

 d
e
v
.

Stationary

0

5

10

ce
p−holdout

Holdout

Pre
q−Bls

Pre
q−Bls−

Gap

Rep−Holdout

CV−Bl

cp
−holdout

CV−hvB
l

Pre
q−Slid

e

Pre
q−Gro

w

p−holdout

Pre
q−Sld−Bls

CV−Mod CV

A
v
g

. 
ra

n
k
 &

 S
td

 d
e
v
.

Non−Stationary

Plot by: Varela−Alvarenga and Kedem (2021). 

Data source: Cerqueira et al. (2020).

Figure B.9: Average APAE rank of each validation scheme on 174 real-world
time series using the GLM-Ridge learning algorithm and MASE as the error
function. The black line represents -+ 1 standard deviation from the average.
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Figure B.10: Log percentage difference of the estimated loss relative to the
true loss for each validation scheme applied to 174 real-world time series
using the GLM-Ridge learning algorithm. Values below the zero (red) line
represent under-estimations of the error. Conversely, values above it represent
over-estimations of the error.
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Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout -4.1262 -2.3978 -0.8995 -0.0050 2.3076 6.4257 0.4952
cp-holdout -4.1684 -2.4256 -0.5627 0.0300 2.4157 6.0219 0.9396
CV -4.4242 -3.8497 -3.3711 -2.5201 -2.5901 6.7832 < 0.0001
CV-Bl -3.8388 -2.3461 0.6500 0.2179 2.3389 7.2172 0.4044
CV-hvBl -4.0557 -2.2928 0.8862 0.2763 2.3101 7.2266 0.2554
CV-Mod -4.4182 -3.8203 -3.3385 -2.3392 -2.4087 6.8601 < 0.0001
Holdout -4.3088 -2.5386 -0.7634 -0.0761 2.4826 4.9240 0.3244
p-holdout -4.2708 -2.4840 -0.7346 -0.0037 2.5280 6.6673 0.8202
Preq-Bls -3.6326 -2.0697 1.3126 0.5568 2.8058 6.6408 0.0577
Preq-Bls-Gap -3.8718 -2.2742 1.4629 0.5459 2.8698 6.7019 0.1495
Preq-Grow -4.2664 -2.7134 -1.0482 -0.2447 2.3046 4.7756 0.1973
Preq-Sld-Bls -3.7203 1.0490 2.7238 1.9278 3.5816 7.0618 < 0.0001
Preq-Slide -4.2744 -2.6599 -1.1299 -0.2039 2.5963 4.7368 0.0577
Rep-Holdout -4.0829 -2.2367 0.3946 0.3300 2.7330 6.8926 0.4952

Table B.7: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to all 174
real-world time series using the GLM-Ridge learning algorithm and the MASE as error
measure.

Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout -3.2664 -2.3362 -0.1756 0.0642 2.3076 4.5735 1
cp-holdout -3.3877 -2.3362 0.0433 0.1147 2.3076 4.4372 0.8392
CV -4.4242 -3.8393 -3.4945 -2.8789 -3.0264 3.7327 < 0.0001
CV-Bl -3.2845 -1.8304 0.6528 0.3967 2.4292 4.6228 0.2229
CV-hvBl -3.2481 -1.6781 0.9926 0.4802 2.3321 4.6151 0.1038
CV-Mod -4.4056 -3.8203 -3.4606 -2.7840 -2.8449 3.7268 < 0.0001
Holdout -3.6792 -2.5392 -0.4265 0.0207 2.5320 4.4372 0.6849
p-holdout -3.3877 -2.1372 0.0512 0.1114 2.4562 4.4372 0.8392
Preq-Bls -3.1709 -2.0364 1.5484 0.7446 2.9908 4.4556 0.0144
Preq-Bls-Gap -3.1587 -2.0941 1.8076 0.6553 2.8919 4.5238 0.1548
Preq-Grow -3.7711 -2.6346 -0.6020 -0.0445 2.5094 4.3157 0.8392
Preq-Sld-Bls -3.4167 1.6307 2.9361 2.2190 3.6136 4.9646 < 0.0001
Preq-Slide -3.7827 -2.6011 -0.8803 -0.0132 2.6988 4.3486 0.3099
Rep-Holdout -3.5104 -2.1471 0.3885 0.3048 2.6758 4.5017 0.5426

Table B.8: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to the 97
stationary time series using the GLM-Ridge learning algorithm and the MASE as error
measure.
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Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout -4.1262 -2.4093 -1.3489 -0.0922 2.3649 6.4257 0.362
cp-holdout -4.1684 -2.5962 -1.3524 -0.0767 2.6464 6.0219 0.6488
CV -4.4221 -3.8500 -3.2538 -2.0682 -1.9150 6.7832 < 0.0001
CV-Bl -3.8388 -2.7446 -1.0385 -0.0073 2.2603 7.2172 1
CV-hvBl -4.0557 -2.7451 -1.0170 0.0195 2.1431 7.2266 1
CV-Mod -4.4182 -3.8205 -3.1421 -1.7790 -1.3468 6.8601 < 0.0001
Holdout -4.3088 -2.5367 -1.2467 -0.1981 2.3459 4.9240 0.362
p-holdout -4.2708 -2.5962 -1.3489 -0.1486 2.6464 6.6673 0.4944
Preq-Bls -3.6326 -2.4664 1.0140 0.3202 2.6854 6.6408 1
Preq-Bls-Gap -3.8718 -2.4985 1.1515 0.4080 2.6962 6.7019 0.6488
Preq-Grow -4.2664 -2.8632 -1.5121 -0.4969 2.1151 4.7756 0.11
Preq-Sld-Bls -3.7203 -1.2861 2.4418 1.5610 3.4472 7.0618 0.0028
Preq-Slide -4.2744 -2.6991 -1.7563 -0.4441 2.3450 4.7368 0.11
Rep-Holdout -4.0829 -2.4284 0.4007 0.3617 2.9647 6.8926 0.8199

Table B.9: P-value for the Sign Test and summary of the log percentage difference of the
estimated loss relative to the true loss for each validation scheme applied to the 77 non-
stationary time series using the GLM-Ridge learning algorithm and the MASE as error
measure.
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Figure B.11: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation scheme when applied to the stationary time-series from Cerqueira
et al. (2020), with parameters estimated via the GLM-Ridge learning algo-
rithm and error calculated using the MASE. The probabilities are computed
using the Bayes signed-rank test.
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Figure B.12: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respec-
tive validation schemes when applied to the non-stationary time-series from
Cerqueira et al. (2020), with parameters estimated via the GLM-Ridge learn-
ing algorithm and error calculated using the MASE. The probabilities are
computed using the Bayes signed-rank test.
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B.2 Data from the M4 Competition

B.2.1 Results from the RBR learning algorithm
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Plot by: Varela−Alvarenga and Kedem (2021). 

Data source: Sample from the M4 Competition data sets (Makridakis, Spiliotis and Assimakopoulos, 2020).

Figure B.13: Average APAE rank of each validation scheme to the sample of
1,000 time series from the M4 competition using the RBR learning algorithm
and MASE as the error function. The black line represents -+ 1 standard
deviation from the average.
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Figure B.14: Log percentage difference of the estimated loss relative to the
true loss for each validation scheme applied to the sample of 1,000 time series
from the M4 competition using the RBR learning algorithm. Values below
the zero (red) line represent under-estimations of the error. Conversely, values
above it represent over-estimations of the error.
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Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout -4.5795 -2.9299 0.4439 0.2002 3.3110 6.5327 0.728
cp-holdout -4.5795 -2.9299 0.4439 0.2002 3.3110 6.5327 0.728
CV -4.6127 -4.4619 -4.2972 -4.0383 -4.0521 5.6846 < 0.0001
CV-Bl -4.5921 -3.4503 -2.4319 -0.6585 2.8523 8.4530 < 0.0001
CV-hvBl -4.5828 -3.4265 -2.3631 -0.5729 2.9685 9.6575 < 0.0001
CV-Mod -4.6125 -4.4393 -4.2651 -3.9442 -3.9949 6.7614 < 0.0001
Holdout -4.5670 -3.1529 -0.8269 0.0633 3.2760 6.6033 0.3269
p-holdout -4.5770 -2.9895 0.4232 0.2575 3.3777 6.5327 0.728
Preq-Bls -4.2153 -1.9776 3.0625 Inf 4.1987 Inf < 0.0001
Preq-Bls-Gap -4.1389 2.3808 3.9618 Inf 4.9054 Inf < 0.0001
Preq-Grow -4.5664 -3.3398 -1.7586 -0.2818 3.1555 6.9907 3e-04
Preq-Sld-Bls -4.3239 3.4905 4.4786 Inf 5.1546 Inf < 0.0001
Preq-Slide -4.5672 -3.3333 -1.8415 -0.2882 3.1405 6.8414 2e-04
Rep-Holdout -4.4875 -2.6319 2.3265 0.9898 3.7825 8.5848 < 0.0001

Table B.10: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to the time
series from the M4 Competition sample using the RBR learning algorithm and the MASE
as error measure.

Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout -4.3782 -3.0349 0.7064 0.1731 3.2642 6.2152 0.5594
cp-holdout -4.3782 -3.0349 0.7064 0.1731 3.2642 6.2152 0.5594
CV -4.6075 -4.4570 -4.2995 -4.0783 -4.0629 4.1261 < 0.0001
CV-Bl -4.3540 -3.4315 -2.4488 -0.7868 2.7848 5.7453 < 0.0001
CV-hvBl -4.3552 -3.4406 -2.4373 -0.7001 2.9438 6.8117 < 0.0001
CV-Mod -4.6055 -4.4397 -4.2717 -3.9866 -4.0087 4.4632 < 0.0001
Holdout -4.4533 -3.2102 -1.2202 0.0159 3.2687 5.4386 0.3169
p-holdout -4.3782 -2.9805 0.6429 0.2667 3.3628 6.2152 0.5594
Preq-Bls -4.1195 -2.0404 2.9020 Inf 4.1680 Inf < 0.0001
Preq-Bls-Gap -4.0964 2.3304 3.8976 Inf 4.8378 Inf < 0.0001
Preq-Grow -4.4095 -3.3232 -1.9077 -0.3468 3.1293 5.8924 5e-04
Preq-Sld-Bls -4.1638 3.4625 4.4048 Inf 5.1176 Inf < 0.0001
Preq-Slide -4.4010 -3.2943 -2.0541 -0.3623 3.0805 5.7150 6e-04
Rep-Holdout -4.2533 -2.6187 2.1759 0.9416 3.6959 5.9270 < 0.0001

Table B.11: P-value for the Sign Test and summary of the log percentage difference of the
estimated loss relative to the true loss for each validation scheme applied to the stationary
time series from the M4 Competition sample using the RBR learning algorithm and the
MASE as error measure.
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Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout -4.5795 -2.8861 -0.1334 0.2367 3.3895 6.5327 0.9227
cp-holdout -4.5795 -2.8861 -0.1334 0.2367 3.3895 6.5327 0.9227
CV -4.6127 -4.4660 -4.2871 -3.9841 -4.0465 5.6846 < 0.0001
CV-Bl -4.5921 -3.4549 -2.2261 -0.4849 3.0126 8.4530 7e-04
CV-hvBl -4.5828 -3.4195 -2.2488 -0.4007 2.9722 9.6575 0.0036
CV-Mod -4.6125 -4.4384 -4.2571 -3.8868 -3.9864 6.7614 < 0.0001
Holdout -4.5670 -3.0770 -0.3140 0.1274 3.2925 6.6033 0.7711
p-holdout -4.5770 -3.0064 -0.1444 0.2450 3.4087 6.5327 0.9227
Preq-Bls -4.2153 -1.7258 3.1894 Inf 4.2764 Inf < 0.0001
Preq-Bls-Gap -4.1389 2.4127 4.0944 Inf 4.9702 Inf < 0.0001
Preq-Grow -4.5664 -3.3644 -1.5904 -0.1939 3.2264 6.9907 0.1455
Preq-Sld-Bls -4.3239 3.5347 4.5208 Inf 5.2419 Inf < 0.0001
Preq-Slide -4.5672 -3.3816 -1.4619 -0.1880 3.2122 6.8414 0.0806
Rep-Holdout -4.4875 -2.7016 2.5831 1.0551 3.8375 8.5848 < 0.0001

Table B.12: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to the non-
stationary time series from the M4 Competition sample using the RBR learning algorithm
and the MASE as error measure.
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Figure B.15: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation scheme when applied to the stationary series from the sample of
1,000 time series from the M4 competition, with parameters estimated via
the RBR learning algorithm and error calculated using the MASE. The prob-
abilities are computed using the Bayes signed-rank test.
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Figure B.16: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation schemes when applied to the non-stationary series from the sample
of 1,000 time series from the M4 competition, with parameters estimated
via the RBR learning algorithm and error calculated using the MASE. The
probabilities are computed using the Bayes signed-rank test.
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B.2.2 Results from the RF learning algorithm
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Plot by: Varela−Alvarenga and Kedem (2021). 

Data source: Sample from the M4 Competition data sets (Makridakis, Spiliotis and Assimakopoulos, 2020).

Figure B.17: Average APAE rank of each validation scheme to the sample of
1,000 time series from the M4 competition using the RF learning algorithm
and MASE as the error function. The black line represents -+ 1 standard
deviation from the average.
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Figure B.18: Log percentage difference of the estimated loss relative to the
true loss for each validation scheme applied to the sample of 1,000 time series
from the M4 competition using the RF learning algorithm. Values below the
zero (red) line represent under-estimations of the error. Conversely, values
above it represent over-estimations of the error.
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Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout -4.2983 -3.1091 -1.0897 0.0606 3.3269 5.8987 0.1372
cp-holdout -4.2983 -3.1091 -1.0897 0.0606 3.3269 5.8987 0.1372
CV -4.6085 -4.2654 -3.9484 -3.0992 -3.2894 5.9089 < 0.0001
CV-Bl -4.4149 -3.4521 -2.4935 -0.7465 2.8318 7.5705 < 0.0001
CV-hvBl -4.3938 -3.3676 -2.2907 -0.4448 3.0375 7.5050 < 0.0001
CV-Mod -4.6061 -4.2261 -3.8989 -2.9506 -3.2134 6.1251 < 0.0001
Holdout -4.3359 -3.2810 -0.7936 0.0024 3.3012 5.7206 0.2967
p-holdout -4.2959 -3.0869 -0.8786 0.0963 3.3718 5.8987 0.4292
Preq-Bls -4.2431 -2.5343 2.6466 Inf 3.8444 Inf < 0.0001
Preq-Bls-Gap -4.2402 -2.1717 3.0450 Inf 4.1573 Inf < 0.0001
Preq-Grow -4.3496 -3.3386 -1.8420 -0.2990 3.1477 5.6790 1e-04
Preq-Sld-Bls -4.3476 -1.7305 3.2492 Inf 4.2864 Inf < 0.0001
Preq-Slide -4.3784 -3.3586 -1.8682 -0.3127 3.1398 5.6314 6e-04
Rep-Holdout -4.3369 -2.9182 1.8753 0.5943 3.6380 8.4230 0.0021

Table B.13: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to the time
series from the M4 Competition sample using the RF learning algorithm and the MASE
as error measure.

Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout -4.2349 -3.1597 -1.5520 -0.1749 3.1855 5.8670 0.0045
cp-holdout -4.2349 -3.1597 -1.5520 -0.1749 3.1855 5.8670 0.0045
CV -4.5946 -4.2664 -3.9402 -3.1472 -3.3302 5.8738 < 0.0001
CV-Bl -4.3784 -3.4575 -2.6338 -0.9461 2.5268 6.2103 < 0.0001
CV-hvBl -4.3616 -3.4037 -2.3897 -0.5990 2.8557 6.3341 < 0.0001
CV-Mod -4.5924 -4.2279 -3.9012 -3.0118 -3.2881 6.1251 < 0.0001
Holdout -4.2365 -3.3622 -1.6271 -0.1974 3.2322 5.6221 0.0242
p-holdout -4.1936 -3.2117 -1.3326 -0.0703 3.3215 5.8670 0.0952
Preq-Bls -4.1395 -2.5679 2.4032 Inf 3.8008 Inf < 0.0001
Preq-Bls-Gap -4.1408 -2.2138 2.9716 Inf 4.0569 Inf < 0.0001
Preq-Grow -4.3496 -3.4518 -2.2136 -0.4522 3.0672 5.5024 1e-04
Preq-Sld-Bls -4.1313 -1.9038 3.1774 Inf 4.2404 Inf < 0.0001
Preq-Slide -4.3784 -3.4595 -2.2320 -0.4758 3.0557 5.4900 1e-04
Rep-Holdout -4.1757 -2.9393 1.8670 0.5242 3.6121 5.4169 0.037

Table B.14: P-value for the Sign Test and summary of the log percentage difference of the
estimated loss relative to the true loss for each validation scheme applied to the stationary
time series from the M4 Competition sample using the RF learning algorithm and the
MASE as error measure.
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Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout -4.2983 -3.0472 1.3112 0.3791 3.5300 5.8987 0.332
cp-holdout -4.2983 -3.0472 1.3112 0.3791 3.5300 5.8987 0.332
CV -4.6085 -4.2635 -3.9562 -3.0343 -3.2110 5.9089 < 0.0001
CV-Bl -4.4149 -3.4144 -2.3632 -0.4764 3.1236 7.5705 1e-04
CV-hvBl -4.3938 -3.2903 -2.0566 -0.2362 3.2332 7.5050 0.0116
CV-Mod -4.6061 -4.2207 -3.8754 -2.8679 -3.0584 6.0848 < 0.0001
Holdout -4.3359 -3.1674 1.0748 0.2728 3.3662 5.7206 0.332
p-holdout -4.2959 -2.9685 1.1562 0.3218 3.4358 5.8987 0.4971
Preq-Bls -4.2431 -2.4978 2.8488 Inf 3.9256 Inf < 0.0001
Preq-Bls-Gap -4.2402 -2.1024 3.2511 Inf 4.2180 Inf < 0.0001
Preq-Grow -4.3357 -3.1889 -1.1992 -0.0916 3.2590 5.6790 0.2072
Preq-Sld-Bls -4.3476 -1.2746 3.3340 Inf 4.3000 Inf < 0.0001
Preq-Slide -4.3419 -3.2304 -1.1612 -0.0920 3.2743 5.6314 0.4377
Rep-Holdout -4.3369 -2.8443 1.9072 0.6892 3.7113 8.4230 0.0255

Table B.15: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to the non-
stationary time series from the M4 Competition sample using the RF learning algorithm
and the MASE as error measure.
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Figure B.19: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation scheme when applied to the stationary series from the sample of
1,000 time series from the M4 competition, with parameters estimated via
the RF learning algorithm and error calculated using the MASE. The proba-
bilities are computed using the Bayes signed-rank test.

223



Figure B.20: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation schemes when applied to the non-stationary series from the sample
of 1,000 time series from the M4 competition, with parameters estimated
via the RF learning algorithm and error calculated using the MASE. The
probabilities are computed using the Bayes signed-rank test.
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B.2.3 Results from the GLM learning algorithm
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Plot by: Varela−Alvarenga and Kedem (2021). 

Data source: Sample from the M4 Competition data sets (Makridakis, Spiliotis and Assimakopoulos, 2020).

Figure B.21: Average APAE rank of each validation scheme to the sample
of 1,000 time series from the M4 competition using the GLM-Ridge learning
algorithm and MASE as the error function. The black line represents -+ 1
standard deviation from the average.
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Figure B.22: Log percentage difference of the estimated loss relative to the
true loss for each validation scheme applied to the sample of 1,000 time series
from the M4 competition using the GLM-Ridge learning algorithm. Values
below the zero (red) line represent under-estimations of the error. Conversely,
values above it represent over-estimations of the error.
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Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout -4.4369 -2.9482 -0.3593 0.0753 3.1487 6.1833 0.6353
cp-holdout -4.4369 -2.9482 -0.3593 0.0753 3.1487 6.1833 0.6353
CV -4.6080 -4.2246 -3.9029 -3.1556 -3.3146 5.3390 < 0.0001
CV-Bl -4.4894 -3.3111 -2.2039 -0.5091 2.8751 6.4085 < 0.0001
CV-hvBl -4.4857 -3.2638 -2.0213 -0.3347 3.0985 6.6908 < 0.0001
CV-Mod -4.6080 -4.2182 -3.8798 -3.0229 -3.2666 5.6017 < 0.0001
Holdout -4.4450 -3.0800 -0.9980 -0.0145 3.1733 5.9277 0.1067
p-holdout -4.3981 -2.9781 -0.1149 0.0914 3.1477 6.2853 0.9748
Preq-Bls -4.0868 -2.5359 2.3808 Inf 3.8261 Inf < 0.0001
Preq-Bls-Gap -4.0577 -2.2591 2.6912 Inf 3.9889 Inf < 0.0001
Preq-Grow -4.4962 -3.3039 -1.7719 -0.2620 3.1069 5.7649 6e-04
Preq-Sld-Bls -4.4441 -0.6312 3.2135 Inf 4.2300 Inf < 0.0001
Preq-Slide -4.4978 -3.2934 -1.7861 -0.2714 3.1019 5.7528 9e-04
Rep-Holdout -4.3486 -2.7494 1.8906 0.6691 3.4315 8.2590 < 0.0001

Table B.16: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to the time
series from the M4 Competition sample using the GLM-RIDGE learning algorithm and
the MASE as error measure.

Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout -4.2143 -3.0228 -0.7194 0.0035 3.1446 5.4322 0.5594
cp-holdout -4.2143 -3.0228 -0.7194 0.0035 3.1446 5.4322 0.5594
CV -4.5905 -4.2298 -3.9028 -3.2043 -3.3862 4.9959 < 0.0001
CV-Bl -4.3598 -3.3194 -2.3067 -0.6650 2.7220 5.3448 < 0.0001
CV-hvBl -4.3563 -3.2559 -2.0800 -0.4417 2.9847 5.4041 1e-04
CV-Mod -4.5904 -4.2194 -3.8786 -3.0766 -3.3251 5.1343 < 0.0001
Holdout -4.3058 -3.1390 -1.2557 -0.0848 3.1758 5.6044 0.1562
p-holdout -4.2105 -3.0428 0.3155 0.0917 3.1055 5.4322 0.8024
Preq-Bls -4.0350 -2.4423 2.3805 Inf 3.6871 Inf < 0.0001
Preq-Bls-Gap -4.0577 -2.1914 2.6608 Inf 3.8643 Inf < 0.0001
Preq-Grow -4.3190 -3.3190 -1.9690 -0.3262 3.0765 5.6249 0.0035
Preq-Sld-Bls -4.1751 -0.9669 3.0659 Inf 4.1745 Inf < 0.0001
Preq-Slide -4.3060 -3.3008 -1.9052 -0.3520 3.0457 5.5836 0.0011
Rep-Holdout -4.2346 -2.7547 1.8915 0.6762 3.3913 5.7761 1e-04

Table B.17: P-value for the Sign Test and summary of the log percentage difference of the
estimated loss relative to the true loss for each validation scheme applied to the stationary
time series from the M4 Competition sample using the GLM-RIDGE learning algorithm
and the MASE as error measure.
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Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout -4.4369 -2.8636 -0.0162 0.1723 3.1615 6.1833 1
cp-holdout -4.4369 -2.8636 -0.0162 0.1723 3.1615 6.1833 1
CV -4.6080 -4.2204 -3.9068 -3.0896 -3.2042 5.3390 < 0.0001
CV-Bl -4.4894 -3.2961 -2.0105 -0.2982 3.0637 6.4085 0.0327
CV-hvBl -4.4857 -3.2693 -1.9145 -0.1899 3.1964 6.6908 0.0255
CV-Mod -4.6080 -4.2167 -3.8918 -2.9503 -3.1429 5.6017 < 0.0001
Holdout -4.4450 -3.0093 -0.7491 0.0805 3.1692 5.9277 0.4377
p-holdout -4.3981 -2.9435 -0.5265 0.0909 3.1696 6.2853 0.698
Preq-Bls -4.0868 -2.5515 2.4396 Inf 3.9269 Inf < 0.0001
Preq-Bls-Gap -4.0222 -2.4000 2.7617 Inf 4.1009 Inf < 0.0001
Preq-Grow -4.4962 -3.2706 -1.4496 -0.1751 3.1947 5.7649 0.0652
Preq-Sld-Bls -4.4441 0.3797 3.3660 Inf 4.3153 Inf < 0.0001
Preq-Slide -4.4978 -3.2783 -1.4777 -0.1624 3.1607 5.7528 0.2072
Rep-Holdout -4.3486 -2.7329 1.8832 0.6595 3.5244 8.2590 0.0152

Table B.18: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to the non-
stationary time series from the M4 Competition sample using the GLM-RIDGE learning
algorithm and the MASE as error measure.
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Figure B.23: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation scheme when applied to the stationary series from the sample of
1,000 time series from the M4 competition, with parameters estimated via
the GLM-Ridge learning algorithm and error calculated using the MASE.
The probabilities are computed using the Bayes signed-rank test.
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Figure B.24: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation schemes when applied to the non-stationary series from the sample
of 1,000 time series from the M4 competition, with parameters estimated via
the GLM-Ridge learning algorithm and error calculated using the MASE.
The probabilities are computed using the Bayes signed-rank test.
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B.3 Monte Carlo Simulation

B.3.1 Results from the RBR learning algorithm
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Plot by: Varela−Alvarenga and Kedem (2021).

Figure B.25: Average APAE rank of each validation scheme to the sample of
1,000 simulated time series using the RBR learning algorithm and MASE as
the error function. The black line represents -+ 1 standard deviation from the
average.
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Figure B.26: Log percentage difference of the estimated loss relative to the
true loss for each validation scheme applied to the sample of 1,000 simu-
lated time series using the RBR learning algorithm. Values below the zero
(red) line represent under-estimations of the error. Conversely, values above
it represent over-estimations of the error.
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Figure B.27: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation schemes when applied to the time-series from the S3 simulated
data set, with parameters estimated via the RBR learning algorithm and error
calculated using the MASE. The probabilities are computed using the Bayes
signed-rank test.
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Figure B.28: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation schemes when applied to the time-series from the S4 simulated
data set, with parameters estimated via the RBR learning algorithm and error
calculated using the MASE. The probabilities are computed using the Bayes
signed-rank test.
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B.3.2 Results from the RF learning algorithm
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Plot by: Varela−Alvarenga and Kedem (2021).

Figure B.29: Average APAE rank of each validation scheme to the sample of
1,000 simulated time series using the RF learning algorithm and MASE as
the error function. The black line represents -+ 1 standard deviation from the
average.
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Figure B.30: Log percentage difference of the estimated loss relative to the
true loss for each validation scheme applied to the sample of 1,000 simulated
time series using the RF learning algorithm. Values below the zero (red) line
represent under-estimations of the error. Conversely, values above it represent
over-estimations of the error.
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Figure B.31: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation schemes when applied to the time-series from the S3 simulated
data set, with parameters estimated via the RF learning algorithm and error
calculated using the MASE. The probabilities are computed using the Bayes
signed-rank test.
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Figure B.32: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation schemes when applied to the time-series from the S4 simulated
data set, with parameters estimated via the RF learning algorithm and error
calculated using the MASE. The probabilities are computed using the Bayes
signed-rank test.

238



B.3.3 Results from the GLM learning algorithm
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Plot by: Varela−Alvarenga and Kedem (2021).

Figure B.33: Average APAE rank of each validation scheme to the sample of
1,000 simulated time series using the RIDGE learning algorithm and MASE
as the error function. The black line represents -+ 1 standard deviation from
the average.
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Figure B.34: Log percentage difference of the estimated loss relative to the
true loss for each validation scheme applied to the sample of 1,000 simu-
lated time series using the RIDGE learning algorithm. Values below the zero
(red) line represent under-estimations of the error. Conversely, values above
it represent over-estimations of the error.
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Figure B.35: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation schemes when applied to the time-series from the S3 simulated
data set, with parameters estimated via the RIDGE learning algorithm and
error calculated using the MASE. The probabilities are computed using the
Bayes signed-rank test.

241



Figure B.36: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation schemes when applied to the time-series from the S4 simulated
data set, with parameters estimated via the RIDGE learning algorithm and
error calculated using the MASE. The probabilities are computed using the
Bayes signed-rank test.
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Appendix C: R Code

C.1 Motivation

code/motivation p holdout V2021082001.R
1 #’ Motivation for the new p-Holdout family of validation schemes
#’

3 #’ Creates the plots that show the motivation behind the p-holdout, the
#’ cp-holdout, and the cep-holdout validation schemes.

5 #’
#’ @author Gustavo Varela-Alvarenga

7 #’
#’ @param og_TS an object with the original time series

9 #’ @param q_e numeric value between 0 and 1. It is the percentage of
the

#’ training data that will be used as the estimation set (i.e.,
11 #’ the inner split).
#’ @param q numeric value between 0 and 1. It is the percentage of the

13 #’ original time series that will be used as the training data
#’ (i.e., the outer split). If \code{NULL}, then \code{forecast.h}

15 #’ must be specified.
#’ @param forecast.h integer. It is the length of the forecast horizon.

17 #’ To be used when the test data has a specific length, instead of
#’ being defined by \code{ceiling(length(og_TS)*q)}.

19 #’ If \code{NULL}, then \code{q} must be specified.
#’

21 #’ @return a panel with five plots. The first one shows the time series
#’ split into training data and test data using the Holdout scheme.

23 #’ The second displays the test data, and the training data split
#’ into estimation set and validation set via the original holdout

25 #’ validation scheme.
#’ The third, fourth, and fifth plots use the procedures in the

27 #’ p-Holdout family. Respectively, they display the training set
#’ partitioned into the estimation and validation sets using the

29 #’ p-Holdout, cp-Holdout, and cep-Holdout schemes.
#’

31 plot_motivation_p_holdout <- function(og_TS,
q_e,

33 q = NULL,
forecast.h = NULL){

35

# ================================================================= #
37 # Length of the Training Data and the Test Data ---------------------

if (is.null(forecast.h)){
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39 if (is.null(q)) {
error("You must provide either ’q’ or ’forecast.h’.")

41 }
length.test.data <- ceiling(length(og_TS)*(1-q))

43 length.train.data <- floor(length(og_TS)*q)
} else {

45 length.test.data <- forecast.h
length.train.data <- length(og_TS) - length.test.data

47 }

49 # Create the Training Data and Test Data set ------------------------
trainingData <- head(og_TS, length.train.data)

51 testData <- tail(og_TS, length.test.data)

53 # ================================================================= #
# Priodicity/frequency ----------------------------------------------

55 ## number of samples (observations) per unit of time
tmpFrequency <- stats::frequency(og_TS)

57

tmpPeriod <- forecast::findfrequency(og_TS)
59

# ================================================================= #
61 # Holdout Scheme: Lengths of the sets --------

length.validation.set.HO <- ceiling(length(trainingData)*(1-q_e))
63 length.estimation.set.HO <- floor(length(trainingData)*q_e)

65 # Holdout Scheme: Create the Estimation and Validation Sets ---------
estimationSetHO <- head(trainingData, length.estimation.set.HO)

67 validationSetHO <- tail(trainingData, length.validation.set.HO)

69 # ================================================================= #
# p-Holdout: Length of the Estimation Set and the Validation Set ----

71 if (tmpFrequency > 1) {
length.validation.set.PHO <- length.test.data + tmpFrequency

73 } else {
length.validation.set.PHO <- length.validation.set.HO

75 }

77 length.estimation.set.PHO <-
length.train.data - length.validation.set.PHO

79

# p-Holdout: Create the Estimation Set and the Validation Set -------
81 estimationSetSPHO <- head(trainingData, length.estimation.set.PHO)

validationSetSPHO <- tail(trainingData, length.validation.set.PHO)
83

# ================================================================= #
85 # cp-Holdout: Length of the Estimation and Validation Sets ----

87 if (tmpFrequency == 1){
length.validation.set.CPHO <- length.validation.set.HO

89 } else if (isFALSE((length.test.data/tmpFrequency)%%1 == 0)){
length.validation.set.CPHO <-

91 tmpFrequency*ceiling(length.test.data/tmpFrequency)
} else {
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93 length.validation.set.CPHO <- length.test.data + tmpFrequency
}

95

length.estimation.set.CPHO <-
97 length.train.data - length.validation.set.CPHO

99 # cp-Holdout: Create the Estimation Set and the Validation Set ------
estimationSetCPHO <- head(trainingData, length.estimation.set.CPHO)

101 validationSetCPHO <- tail(trainingData, length.validation.set.CPHO)

103 # ================================================================= #
# cep-Holdout: Priodicity/frequency ---------------------------------

105 ## Create the test set
length.test.og <- ceiling(length(og_TS)*(1-q))

107 test.set.og <- tail(og_TS, length.test.og)

109 period.test <- forecast::findfrequency(validationSetHO)

111 ## Get Length
tmpLength <- ifelse(length.validation.set.HO/length.test.data < 0.5,

113 length.validation.set.HO, length.test.data)

115 ## Get Frequency
tmpFrequency <- ifelse(tmpPeriod < tmpLength, tmpPeriod, period.test)

117

# cep-Holdout: Length of the Estimation and Validation Sets ---------
119

if (tmpFrequency == 1){
121 length.validation.set.CEPHO <- length.validation.set.HO

} else if (isFALSE((tmpLength/tmpFrequency)%%1 == 0)){
123 length.validation.set.CEPHO <-

tmpFrequency*ceiling(tmpLength/tmpFrequency)
125 } else {

length.validation.set.CEPHO <- tmpLength + tmpFrequency
127 }

129 length.estimation.set.CEPHO <-
length.train.data - length.validation.set.CEPHO

131

# cep-Holdout: Create the Estimation Set and the Validation Set -----
133 estimationSetCEPHO <- head(trainingData, length.estimation.set.CEPHO)

validationSetCEPHO <- tail(trainingData, length.validation.set.CEPHO)
135

# ================================================================= #
137 # Plots ----

original_pars <- par(’mfrow’, ’mar’, ’oma’)
139

par(mfrow = c(5, 1), mar = c(0, 0, 0, 1), oma = c(2, 2, 2, 2))
141

on.exit(par(original_pars)) # return par to original values
143

## TRAINING DATA AND TEST DATA --------------------------------------
145 plot(og_TS, col = ’gray’, t = "l", lty = 2, xaxt = ’n’, yaxt = ’n’)

mtext(text = "A: Training and Test sets", side = 2)
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147 lines(trainingData, col = ’blue’)
lines(testData, col = ’red’)

149

## Holdout: ESTIMATION SET, VALIDATION SET AND TEST DATA ------------
151 plot(og_TS, col = ’gray’, t = "p", xaxt = ’n’, yaxt = ’n’)

lines(og_TS, col = ’gray’, t = "l", lty = 2, xaxt = ’n’, yaxt = ’n’)
153 mtext(text = "B: Holdout", side = 2)

lines(estimationSetHO, col = ’darkgreen’)
155 lines(validationSetHO, col = ’orange’)

lines(testData, col = ’red’)
157

## p-Holdout: ESTIMATION SET, VALIDATION SET AND TEST DATA ----------
159 plot(og_TS, col = ’gray’, t = "p", xaxt = ’n’, yaxt = ’n’)

lines(og_TS, col = ’gray’, t = "l", lty = 2, xaxt = ’n’, yaxt = ’n’)
161 mtext(text = "C: p-Holdout", side = 2)

lines(estimationSetSPHO, col = ’darkgreen’)
163 lines(validationSetSPHO, col = ’orange’)

lines(testData, col = ’red’)
165

# ## cp-Holdout: ESTIMATION SET, VALIDATION SET AND TEST DATA -------
167 plot(og_TS, col = ’gray’, t = "p", xaxt = ’n’, yaxt = ’n’)

lines(og_TS, col = ’gray’, t = "l", lty = 2, xaxt = ’n’, yaxt = ’n’)
169 mtext(text = "D: cp-Holdout", side = 2)

lines(estimationSetCPHO, col = ’darkgreen’)
171 lines(validationSetCPHO, col = ’orange’)

lines(testData, col = ’red’)
173

# ## cfp-Holdout: ESTIMATION SET, VALIDATION SET AND TEST DATA ------
175 plot(og_TS, col = ’gray’, t = "p", xaxt = ’n’, yaxt = ’n’)

lines(og_TS, col = ’gray’, t = "l", lty = 2, xaxt = ’n’, yaxt = ’n’)
177 mtext(text = "E: cfp-Holdout", side = 2)

lines(estimationSetCEPHO, col = ’darkgreen’)
179 lines(validationSetCEPHO, col = ’orange’)

lines(testData, col = ’red’)
181 }

183 # \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ####
## > Path to save plots to ----

185 tmpPath <- "results/plots/"
tmpVersion <- "v2021082001"

187

# \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ####
189 ## > Final Plots ----

191 ## USAccDeaths - Monthly data

193 ## > Export as png ----
png(

195 filename = paste0(
tmpPath, "motivation_USAccDeaths_plot_", tmpVersion, ".png"

197 ),
type = "cairo",

199 width = 8,
height = 12,
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201 units = "in",
res = 300

203 )
plot_motivation_p_holdout(og_TS = USAccDeaths, q = 0.85, q_e = 0.8)

205 dev.off()

207 # ## > Export as eps ----
setEPS()

209 postscript(
file = paste0(

211 tmpPath, "motivation_USAccDeaths_plot_", tmpVersion, ".eps"
),

213 width = 8,
height = 12,

215 horizontal = F
)

217 plot_motivation_p_holdout(og_TS = USAccDeaths, q = 0.85, q_e = 0.8)
dev.off()

219

## --- ##
221

## taylor (forecast library) - Half-Hourly data
223

## > Export as png ----
225 png(

filename = paste0(
227 tmpPath, "motivation_taylor_half_hour_plot_", tmpVersion, ".png"

),
229 type = "cairo",

width = 8,
231 height = 12,

units = "in",
233 res = 300

)
235 plot_motivation_p_holdout(og_TS = forecast::taylor, q = 0.8, q_e = 0.8)

dev.off()
237

# ## > Export as eps ----
239 setEPS()

postscript(
241 file = paste0(

tmpPath, "motivation_taylor_half_hour_plot_", tmpVersion, ".eps"
243 ),

width = 8,
245 height = 12,

horizontal = F
247 )

plot_motivation_p_holdout(og_TS = forecast::taylor, q = 0.8, q_e = 0.8)
249 dev.off()

251 ## lynx - Annual data

253 ## > Export as png ----
png(
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255 filename = paste0(
tmpPath, "motivation_linx_annual_plot_", tmpVersion, ".png"

257 ),
type = "cairo",

259 width = 8,
height = 12,

261 units = "in",
res = 300

263 )
plot_motivation_p_holdout(og_TS = lynx, q = 0.7, q_e = 0.7)

265 dev.off()

267 # ## > Export as eps ----
setEPS()

269 postscript(
file = paste0(

271 tmpPath, "motivation_linx_annual_plot_", tmpVersion, ".eps"
),

273 width = 8,
height = 12,

275 horizontal = F
)

277 plot_motivation_p_holdout(og_TS = lynx, q = 0.7, q_e = 0.7)
dev.off()
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C.2 The p-Holdout Family

code/p holdout v2021082001.R
#’ The p-Holdout family of validation schemes

2 #’
#’ Partitions the time series according to the p-Holdout, cp-Holdout,

4 #’ and cep-Holdout validation schemes.
#’

6 #’ @author Gustavo Varela-Alvarenga
#’

8 #’ @inheritParams performance_estimation
#’

10 #’ @details These are the same functions seen in the
#’ motivation_p_holdout.R file, but adapted to receive the

12 #’ parameter values from the performance_estimation function (inside
#’ the workflows.R file).

14

# =================================================================== #
16 p_holdout <- function(DATA, test, FUN, form, inner_split, freq, seed,

og_TS, error_metric,...){
18

# Length of the Training Data and the Test Data ---------------------
20 length.test.data <- nrow(test)

length.train.data <- nrow(DATA)
22

# Holdout: Length of the Training Data and the Test Data ------------
24 length.validation.set.HO <-

ceiling(length.train.data*(1-inner_split))
26

# Priodicity/frequency ----------------------------------------------
28

tmpFrequency <- freq
30

# sp-Holdout: Length of the Estimation Set and the Validation Set----
32 if (tmpFrequency > 1) {

length.validation.set.SPHO <- length.test.data + tmpFrequency
34 } else {

length.validation.set.SPHO <- length.validation.set.HO
36 }

38 length.estimation.set.SPHO <-
length.train.data - length.validation.set.SPHO

40

# sp-Holdout: Create the Estimation Set and the Validation Set ------
42 estimationSetSPHO <- head(DATA, length.estimation.set.SPHO)

validationSetSPHO <- tail(DATA, length.validation.set.SPHO)
44

# Run the pred_model on the split data set -------------------------
46 FUN(estimationSetSPHO, validationSetSPHO, form, seed = seed,

og_TS = og_TS, error_metric = error_metric)
48 }

50 # =================================================================== #
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cp_holdout <- function(DATA, test, FUN, form, inner_split, freq, seed,
52 og_TS, error_metric,...){

54 # Length of the Training Data and the Test Data ---------------------
length.test.data <- nrow(test)

56 length.train.data <- nrow(DATA) # floor(length(og_TS)*outer_split)

58 # Holdout: Length of the Training Data and the Test Data ------------
length.validation.set.HO <-

60 ceiling(length.train.data*(1-inner_split))

62 # Priodicity/frequency ----------------------------------------------

64 tmpFrequency <- freq

66 # cp-Holdout: Length of the Estimation Set and the Validation Set ---

68 if (tmpFrequency == 1){
length.validation.set.CPHO <- length.validation.set.HO

70 } else if (isFALSE((length.test.data/tmpFrequency)%%1 == 0)){
length.validation.set.CPHO <-

72 tmpFrequency*ceiling(length.test.data/tmpFrequency)
} else {

74 length.validation.set.CPHO <- length.test.data + tmpFrequency
}

76

length.estimation.set.CPHO <-
78 length.train.data - length.validation.set.CPHO

80 trainingData <- head(DATA, length.estimation.set.CPHO)
testData <- tail(DATA, length.validation.set.CPHO)

82

FUN(trainingData, testData, form, seed = seed, og_TS = og_TS,
84 error_metric = error_metric)
}

86

# =================================================================== #
88 cep_holdout <- function(DATA, test, FUN, form, inner_split, freq,

period, seed,
90 outer_split, og_TS, error_metric, ...){

92 # Length of the Training Data and the Test Data ---------------------
length.test.data <- nrow(test)

94 length.train.data <- nrow(DATA) # floor(length(og_TS)*outer_split)

96 # Holdout: Length of the Validation Set -----------------------------
length.validation.set.HO <-

98 ceiling(length.train.data*(1-inner_split))

100 # Holdout Scheme: Create the Validation Set -------------------------
validationSetHO <- tail(DATA, length.validation.set.HO)

102

# Periodicity/frequency ---------------------------------------------
104 ## Create the test set
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length.test.og <- ceiling(length(og_TS)*(1-outer_split))
106 test.set.og <- tail(og_TS, length.test.og)

108 period.test <- forecast::findfrequency(validationSetHO)

110 ## Get Length
tmpLength <- ifelse(length.validation.set.HO/length.test.data < 0.5,

112 length.validation.set.HO, length.test.data)

114 ## Get Frequency
tmpFrequency <- ifelse(period < tmpLength, period, period.test)

116

# cep-Holdout: Length of the Estimation and Validation SetS ---------
118

if (tmpFrequency == 1){
120 length.validation.set.CEPHO <- length.validation.set.HO

} else if (isFALSE((tmpLength/tmpFrequency)%%1 == 0)){
122 length.validation.set.CEPHO <-

tmpFrequency*ceiling(tmpLength/tmpFrequency)
124 } else {

length.validation.set.CEPHO <- tmpLength + tmpFrequency
126 }

128 length.estimation.set.CEPHO <-
length.train.data - length.validation.set.CEPHO

130

trainingData <- head(DATA, length.estimation.set.CEPHO)
132 testData <- tail(DATA, length.validation.set.CEPHO)

134 FUN(trainingData, testData, form, seed = seed, og_TS = og_TS,
error_metric = error_metric)

136 }
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C.3 Forecasts - Cerqueira et al. (2020)

code/perfestimation–rw v2021082201.R
#

============================================================================
#

2 # Files ----

4 load("../data/tsl_uni_90_mix.rdata")

6 #source("../src/utils.r")
#source("../src/estimation-procedures.r")

8 #source("../src/workflows.r")
#source("../src/metrics.r")

10 #source("../src/learning-models.r")

12 source("src/utils_gus.r")
source("src/metrics_V2021071201.r")

14

source("src/workflows_v2021082001.r")
16 source("src/p_holdout_v2021082001.r")
source("src/get_ranks_v2021070901.r")

18 source("src/learning-models_v2021082001.r")
source("src/estimation-procedures_v2021082001.r")

20 #
============================================================================
#

# Packages ----
22 library(tsensembler)
library(ranger)

24 library(Cubist)
library(glmnet)

26 library(kernlab)
library(nnet)

28

library(RcppRoll)
30 library(tseriesChaos)
library(forecast)

32

#library(parallel)
34 library("future.apply")

36 # install.packages("beepr")
# library("beepr") # plays notification sound when R finishes running

38

#
============================================================================
#

40 # Initial options -----

42 form <- target˜.
nfolds <- 10

44 tmpSeed <- 3L
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tmpOuter <- 0.7 # q_t (percentual of the data that will be training
data)

46 tmpInner <- 0.7 # q_e (percentual of the training data that will be
used

# for estimation)
48

#
============================================================================
#

50 # RBR ----
tmpVersionRBR <- "v2021082201"

52 tmpFileRBR <- paste0(
"results/results_cerqueira_RMSE_rbr_", tmpVersionRBR, ".rdata"

54 )

56 plan(multisession, workers = 16)

58 time_rbr_174 <- system.time({
results_cerqueira_rbr <- future_lapply(

60 1:length(ts_list),
function(i) {

62 #cat(i, "\n\n")
ds <- ts_list[[i]]

64

x <- workflow(
66 ds = ds,

form = form,
68 predictive_algorithm = "rbr",

nfolds = nfolds,
70 outer_split = tmpOuter,

inner_split = tmpInner,
72 set_seed = tmpSeed,

error_metric = "rmse"
74 )

76 x
},

78 future.seed = 0xBEEF
)

80 })
plan(sequential)

82 time_rbr_174[3]/3600 # new system + future_lapply: ˜1.404739 hrs, 1.987
with 10 workers

84 results_cerqueira_RMSE_rbr_ranks <- get_ranks_gus(results_cerqueira
_rbr)

results_cerqueira_RMSE_rbr_mean_rank <- rowMeans(results_cerqueira_RMSE
_rbr_ranks$fr_abs_rank)

86 sort(results_cerqueira_RMSE_rbr_mean_rank)

88 save(results_cerqueira_rbr, file = tmpFileRBR)
beepr::beep("fanfare")

90
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#
============================================================================
#

92 # RF ----
tmpVersionRF <- "v2021082201"

94 tmpFileRF <- paste0(
"results/results_cerqueira_RMSE_rf_", tmpVersionRF, ".rdata"

96 )

98 plan(multisession, workers = 16)

100 time_rf_174 <- system.time({
results_cerqueira_rf <- future_lapply(

102 1:length(ts_list),
function(i) {

104 #cat(i, "\n\n")
ds <- ts_list[[i]]

106

x <- workflow(
108 ds = ds,

form = form,
110 predictive_algorithm = "rf",

nfolds = nfolds,
112 outer_split = tmpOuter,

inner_split = tmpInner,
114 set_seed = tmpSeed,

error_metric = "rmse"
116 )

118 x
},

120 future.seed = 0xBEEF
)

122 })
plan(sequential)

124 time_rf_174[3]/60 # new system + future_lapply: ˜ 33.25 min (54.76 if
half power)

126 results_cerqueira_RMSE_rf_ranks <- get_ranks_gus(results_cerqueira_
rf)

results_cerqueira_RMSE_rf_mean_rank <- rowMeans(results_cerqueira_RMSE_
rf_ranks$fr_abs_rank)

128 sort(results_cerqueira_RMSE_rf_mean_rank)

130 save(results_cerqueira_rf, file = tmpFileRF)
beepr::beep("fanfare")

132

#
============================================================================
#

134 # RIDGE ----
tmpVersionRIDGE <- "v2021082201"

136 tmpFileRIDGE <- paste0(
"results/results_cerqueira_RMSE_ridge_", tmpVersionRIDGE, ".rdata"
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138 )

140 plan(multisession, workers = 16)

142 time_ridge_174 <- system.time({
results_cerqueira_ridge <- future_lapply(

144 1:length(ts_list),
function(i) {

146 #cat(i, "\n\n")
ds <- ts_list[[i]]

148

x <- workflow(
150 ds = ds,

form = form,
152 predictive_algorithm = "lasso", # name is lasso, but it’s

running ridge
nfolds = nfolds,

154 outer_split = tmpOuter,
inner_split = tmpInner,

156 set_seed = tmpSeed,
error_metric = "rmse"

158 )

160 x
},

162 future.seed = 0xBEEF
)

164 })
plan(sequential)

166 time_ridge_174[3]/60 # new system + future_lapply: ˜9.297 min

168 results_cerqueira_RMSE_ridge_ranks <- get_ranks_gus(results_
cerqueira_ridge)

results_cerqueira_RMSE_ridge_mean_rank <- rowMeans(results_cerqueira_
RMSE_ridge_ranks$fr_abs_rank)

170 sort(results_cerqueira_RMSE_ridge_mean_rank)

172 save(results_cerqueira_ridge, file = tmpFileRIDGE)
beepr::beep("fanfare")
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C.4 M4 Competition Sample Selection and Forecasts

code/get M4 datasets v2021071001.R
1 # =================================================================== #

3 # Install the M4comp2018 package
#install.packages("https://github.com/carlanetto/M4comp2018/releases/

download/0.2.0/M4comp2018_0.2.0.tar.gz",
5 # repos=NULL)

7 # Load the M4 list with all 100k data sets
M4data <- M4comp2018::M4

9

# Get sample sizes
11 M4_sample <- sapply(

X = 1:length(M4data),
13 function(X) M4data[[X]]$n
)

15

# Get their frequencies
17 M4_freqs <- sapply(

X = 1:length(M4data),
19 function(X) stats::frequency(M4data[[X]]$x)
)

21 #table(M4_freqs) # frequency > 1: freqs 4, 12, 24

23 # Get estimated frequencies
M4_freqs_forecast <- sapply(

25 X = 1:length(M4data),
function(X) forecast::findfrequency(M4data[[X]]$x)

27 )
#table(M4_freqs_forecast)

29

# Get series with either period greater than 1,
31 # and minimum sample size of 100
M4_periodic4 <- which(

33 M4_freqs_forecast == M4_freqs & M4_sample >= 100 & M4_freqs > 1
)

35

head(sort(M4_periodic))
37 head(sort(M4_periodic2))
head(sort(M4_periodic3))

39 head(sort(M4_periodic4))

41 # Randomly select 1,000 series from the list of series
tmpSeed <- 3

43 set.seed(tmpSeed)
M4_periodic_sample_number_v02 <-

45 sample(M4_periodic, size = 1000, replace = F)

47 # Get the selected time series
M4_periodic_sample_series_v02 <- lapply(

49 X = 1:length(M4_periodic_sample_number_v02),
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function(X) {
51 i <- M4_periodic_sample_number_v02[[X]]

M4data[[i]]
53 }
)

55

# Save
57

## Sample Numbers
59 save(

M4_periodic_sample_number_v02,
61 file = "data/M4_periodic_sample_number_v02.rdata"
)

63

## Selected series
65 save(

M4_periodic_sample_series_v02,
67 file = "data/M4_periodic_sample_series_v02.rdata"
)

code/perfestimation–rw M4 v2021082201.R
#

============================================================================
#

2 # Files ----

4 load("data/M4_periodic_sample_series_v02.rdata")

6 #source("../src/utils.r")
#source("../src/estimation-procedures.r")

8 #source("../src/workflows.r")
#source("../src/metrics.r")

10 #source("../src/learning-models.r")

12 source("src/utils_gus.r")
source("src/metrics_V2021071201.r")

14

source("src/workflows_v2021082001.r")
16 source("src/p_holdout_v2021082001.r")
source("src/get_ranks_v2021070901.r")

18 source("src/learning-models_v2021082001.r")
source("src/estimation-procedures_v2021082001.r")

20

#
============================================================================
#

22 # Packages ----
library(tsensembler)

24 library(ranger)
library(Cubist)

26 library(glmnet)
library(kernlab)

28 library(nnet)
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30 library(RcppRoll)
library(tseriesChaos)

32 library(forecast)

34 #library(parallel)
library("future.apply")

36

# install.packages("beepr")
38 # library("beepr") # plays notification sound when R finishes running
#

============================================================================
#

40 # Initial options -----

42 form <- target˜.
nfolds <- 10

44 tmpSeed <- 3L

46 #
============================================================================
#

# RBR ----
48 tmpM4VersionRBR <- "v2021082201"
tmpM4FileRBR <- paste0(

50 "results/results_M4_RMSE_rbr_", tmpM4VersionRBR, ".rdata"
)

52

plan(multisession, workers = 8)
54

time_RMSE_rbr_M4 <- system.time({
56 results_M4_rbr <- future_lapply(

seq_along(M4_periodic_sample_series_v02),
58 function(i) {

#cat(i, "\n\n")
60 M4.ds <- M4_periodic_sample_series_v02[[i]]

62 ds <- ts(
c(M4.ds$x, M4.ds$xx),

64 start = tsp(M4.ds$x)[1],
end = tsp(M4.ds$xx)[2], ## xx not x

66 frequency = tsp(M4.ds$x)[3]
)

68

x <- workflow(
70 ds = ds,

form = form,
72 predictive_algorithm = "rbr",

nfolds = nfolds,
74 outer_split = 1 - (M4.ds$h/length(ds)),

inner_split = 1 - (M4.ds$h/M4.ds$n),
76 set_seed = tmpSeed,

n_M4 = M4.ds$n,
78 error_metric = "rmse"
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)
80

x
82 },

future.seed = 0xBEEF
84 )
})

86 plan(sequential)
time_RMSE_rbr_M4[3]/60 # new system + future_lapply: ˜ 7.777 min (11.8

min)
88

results_M4_RMSE_rbr_ranks <- get_ranks_gus(results_M4_rbr)
90 results_M4_RMSE_rbr_mean_rank <- rowMeans(results_M4_RMSE_rbr_ranks$fr_

abs_rank)
sort(results_M4_RMSE_rbr_mean_rank)

92

save(results_M4_rbr, file = tmpM4FileRBR)
94 beepr::beep("fanfare")

96 #
============================================================================
#

# RF ----
98

tmpM4VersionRF <- "v2021082201"
100 tmpM4FileRF <- paste0(

"results/results_M4_RMSE_rf_", tmpM4VersionRF, ".rdata"
102 )

104 plan(multisession, workers = 16)

106 time_RMSE_rf_M4 <- system.time({
results_M4_rf <- future_lapply(

108 seq_along(M4_periodic_sample_series_v02),
function(i) {

110 #cat(i, "\n\n")
M4.ds <- M4_periodic_sample_series_v02[[i]]

112

ds <- ts(
114 c(M4.ds$x, M4.ds$xx),

start = tsp(M4.ds$x)[1],
116 end = tsp(M4.ds$xx)[2], ## xx not x

frequency = tsp(M4.ds$x)[3]
118 )

120 x <- workflow(
ds = ds,

122 form = form,
predictive_algorithm = "rf",

124 nfolds = nfolds,
outer_split = 1 - (M4.ds$h/length(ds)),

126 inner_split = 1 - (M4.ds$h/M4.ds$n),
set_seed = tmpSeed,

128 n_M4 = M4.ds$n,
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error_metric = "rmse"
130 )

132 x
},

134 future.seed = 0xBEEF
)

136 })
plan(sequential)

138 time_RMSE_rf_M4[3]/60 # new system + future_lapply: ˜ 5.319 min (8 min)

140 results_M4_RMSE_rf_ranks <- get_ranks_gus(results_M4_rf)
results_M4_RMSE_rf_mean_rank <- rowMeans(results_M4_RMSE_rf_ranks$fr_

abs_rank)
142 sort(results_M4_RMSE_rf_mean_rank)

144 save(results_M4_rf, file = tmpM4FileRF)
beepr::beep("fanfare")

146

#
============================================================================
#

148 # RIDGE ----

150 tmpM4VersionRIDGE <- "v2021082201"
tmpM4FileRIDGE <- paste0(

152 "results/results_M4_RMSE_ridge_", tmpM4VersionRIDGE, ".rdata"
)

154

plan(multisession, workers = 16)
156

time_RMSE_ridge_M4 <- system.time({
158 results_M4_ridge <- future_lapply(

seq_along(M4_periodic_sample_series_v02),
160 function(i) {

#cat(i, "\n\n")
162 M4.ds <- M4_periodic_sample_series_v02[[i]]

164 ds <- ts(
c(M4.ds$x, M4.ds$xx),

166 start = tsp(M4.ds$x)[1],
end = tsp(M4.ds$xx)[2], ## xx not x

168 frequency = tsp(M4.ds$x)[3]
)

170

x <- workflow(
172 ds = ds,

form = form,
174 predictive_algorithm = "lasso", # name is lasso, but it’s

running ridge
nfolds = nfolds,

176 outer_split = 1 - (M4.ds$h/length(ds)),
inner_split = 1 - (M4.ds$h/M4.ds$n),

178 set_seed = tmpSeed,
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n_M4 = M4.ds$n,
180 error_metric = "rmse"

)
182 x

},
184 future.seed = 0xBEEF

)
186 })

plan(sequential)
188 time_RMSE_ridge_M4[3]/60 # new system + future_lapply: 1.82 min (2.71

min)

190 results_M4_RMSE_ridge_ranks <- get_ranks_gus(results_M4_ridge)
results_M4_RMSE_ridge_mean_rank <- rowMeans(results_M4_RMSE_ridge_ranks

$fr_abs_rank)
192 sort(results_M4_RMSE_ridge_mean_rank)

194 save(results_M4_ridge, file = tmpM4FileRIDGE)
beepr::beep("fanfare")
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C.5 Monte Carlo Simulations and Forecasts

code/perfestimation–TS3 v2021070901.R
1 # =================================================================== #
# Files ----

3

#source("../src/utils.r")
5 #source("../src/estimation-procedures.r")
#source("../src/workflows.r")

7 #source("../src/metrics.r")
#source("../src/learning-models.r")

9

source("src/utils_gus.r")
11 source("src/metrics_gus.r")

13 source("src/workflows_v2021070901.r")
source("src/p_holdout_v2021070901.r")

15 source("src/get_ranks_v2021070901.r")
source("src/learning-models_v2021070901.r")

17 source("src/estimation-procedures_v2021070901.r")

19 # =================================================================== #
# Packages ----

21 library(tsensembler)
library(ranger)

23 library(Cubist)
library(glmnet)

25 library(kernlab)
library(nnet)

27

library(RcppRoll)
29 library(tseriesChaos)
library(forecast)

31

#library(parallel)
33 library("future.apply")

35 # install.packages("beepr")
# library("beepr") # plays notification sound when R finishes running

37

# =================================================================== #
39 # Initial options -----

41 form <- target˜.
nfolds <- 10

43 tmpSeed <- 3L
tmpOuter <- 0.7 # q_t (percentual of the data used training data)

45 tmpInner <- 0.8 # q_e (percentual of the training data that will be
# used for estimation)

47

# =================================================================== #
49 # Simulate the data set -----
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51 mcreps <- 1000
seq. <- seq_len(mcreps)

53 ts.len <- 200

55 data(USAccDeaths)

57 # TS3 ----

59 arima.fit <- forecast::Arima(
y = USAccDeaths,

61 order = c(12,0,0),
seasonal = list(order = c(1, 0, 0), period = frequency(USAccDeaths))

63 )

65 set.seed(tmpSeed)
TS3 <- lapply(

67 seq.,
function(j) simulate(object = arima.fit, nsim = ts.len)

69 )

71 #check_freq_TS3 <- sapply(TS3, frequency)
#table(check_freq_TS3)

73

#check_period_TS3 <- sapply(TS3, forecast::findfrequency)
75 #table(check_period_TS3)

77 # ------------------------------------------------------------------- #
# TS4 ----

79

arima.fit2 <- forecast::Arima(
81 y = USAccDeaths,

order = c(12,0,0),
83 seasonal = list(order = c(1, 1, 0), period = frequency(USAccDeaths))
)

85

set.seed(tmpSeed)
87 TS4 <- lapply(

seq.,
89 function(j) simulate(object = arima.fit2, nsim = ts.len)
)

91

# =================================================================== #
93 # RBR ----
tmpVersionRBR <- "v2021070901"

95 tmpFileRBR <- paste0(
"results/results_TS3_rbr_", tmpVersionRBR, ".rdata"

97 )

99 plan(multisession, workers = 12)

101 time_rbr_174 <- system.time({
results_TS3_rbr <- future_lapply(

103 seq_along(TS3),
function(i) {
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105 #cat(i, "\n\n")
ds <- TS3[[i]]

107

x <- workflow(
109 ds = ds,

form = form,
111 predictive_algorithm = "rbr",

nfolds = nfolds,
113 outer_split = tmpOuter,

inner_split = tmpInner,
115 set_seed = tmpSeed,

is_embedded = TRUE,
117 is_TS3 = TRUE,

is_TS4 = FALSE
119 )

121 x
},

123 future.seed = 0xBEEF
)

125 })
#plan(sequential)

127 time_rbr_174[3]/60 # new system + future_lapply: ˜4.681667 min

129 results_TS3_rbr_ranks <- get_ranks_gus(results_TS3_rbr)
results_TS3_rbr_mean_rank <- rowMeans(

131 results_TS3_rbr_ranks$fr_abs_rank
)

133 sort(results_TS3_rbr_mean_rank)

135 save(results_TS3_rbr, file = tmpFileRBR)
beepr::beep("fanfare")

137

# =================================================================== #
139 # RBR ----

tmpVersionRBR <- "v2021070901"
141 tmpFileRBR <- paste0(

"results/results_TS4_rbr_", tmpVersionRBR, ".rdata"
143 )

145 #plan(multisession, workers = 16)

147 time_rbr_174 <- system.time({
results_TS4_rbr <- future_lapply(

149 seq_along(TS4),
function(i) {

151 #cat(i, "\n\n")
ds <- TS4[[i]]

153

x <- workflow(
155 ds = ds,

form = form,
157 predictive_algorithm = "rbr",

nfolds = nfolds,
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159 outer_split = tmpOuter,
inner_split = tmpInner,

161 set_seed = tmpSeed,
is_embedded = TRUE,

163 is_TS3 = FALSE,
is_TS4 = TRUE

165 )

167 x
},

169 future.seed = 0xBEEF
)

171 })
plan(sequential)

173 time_rbr_174[3]/60 # new system + future_lapply: ˜4.68 min

175 results_TS4_rbr_ranks <- get_ranks_gus(results_TS4_rbr)
results_TS4_rbr_mean_rank <- rowMeans(

177 results_TS4_rbr_ranks$fr_abs_rank
)

179 sort(results_TS4_rbr_mean_rank)

181 save(results_TS4_rbr, file = tmpFileRBR)
beepr::beep("fanfare")

183

# =================================================================== #
185 # RF ----

tmpVersionRF <- "v2021070901"
187 tmpFileRF <- paste0(

"results/results_TS3_rf_", tmpVersionRF, ".rdata"
189 )

191 plan(multisession, workers = 16)

193 time_rf_174 <- system.time({
results_TS3_rf <- future_lapply(

195 seq_along(TS3),
function(i) {

197 #cat(i, "\n\n")
ds <- TS3[[i]]

199

x <- workflow(
201 ds = ds,

form = form,
203 predictive_algorithm = "rf",

nfolds = nfolds,
205 outer_split = tmpOuter,

inner_split = tmpInner,
207 set_seed = tmpSeed,

is_embedded = TRUE,
209 is_TS3 = TRUE,

is_TS4 = FALSE
211 )
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213 x
},

215 future.seed = 0xBEEF
)

217 })
plan(sequential)

219 time_rf_174[3]/60 # new system + future_lapply: ˜4.332667min

221 results_TS3_rf_ranks <- get_ranks_gus(results_TS3_rf)
results_TS3_rf_mean_rank <- rowMeans(results_TS3_rf_ranks$fr_abs_rank)

223 sort(results_TS3_rf_mean_rank)

225 save(results_TS3_rf, file = tmpFileRF)
beepr::beep("fanfare")

227

# =================================================================== #
229 # RF ----

tmpVersionRF <- "v2021070901"
231 tmpFileRF <- paste0(

"results/results_TS4_rf_", tmpVersionRF, ".rdata"
233 )

235 plan(multisession, workers = 16)

237 time_rf_174 <- system.time({
results_TS4_rf <- future_lapply(

239 seq_along(TS4),
function(i) {

241 #cat(i, "\n\n")
ds <- TS4[[i]]

243

x <- workflow(
245 ds = ds,

form = form,
247 predictive_algorithm = "rf",

nfolds = nfolds,
249 outer_split = tmpOuter,

inner_split = tmpInner,
251 set_seed = tmpSeed,

is_embedded = TRUE,
253 is_TS3 = FALSE,

is_TS4 = TRUE
255 )

257 x
},

259 future.seed = 0xBEEF
)

261 })
plan(sequential)

263 time_rf_174[3]/60 # new system + future_lapply: ˜4.225 min

265 results_TS4_rf_ranks <- get_ranks_gus(results_TS4_rf)
results_TS4_rf_mean_rank <- rowMeans(results_TS4_rf_ranks$fr_abs_rank)
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267 sort(results_TS4_rf_mean_rank)

269 save(results_TS4_rf, file = tmpFileRF)
beepr::beep("fanfare")

271

# =================================================================== #
273 # RIDGE ----

tmpVersionRIDGE <- "v2021070901"
275 tmpFileRIDGE <- paste0(

"results/results_TS3_ridge_", tmpVersionRIDGE, ".rdata"
277 )

279 plan(multisession, workers = 16)

281 time_ridge_174 <- system.time({
results_TS3_ridge <- future_lapply(

283 seq_along(TS3),
function(i) {

285 #cat(i, "\n\n")
ds <- TS3[[i]]

287

x <- workflow(
289 ds = ds,

form = form,
291 predictive_algorithm = "lasso", # name is lasso, but it’s

# running ridge
293 nfolds = nfolds,

outer_split = tmpOuter,
295 inner_split = tmpInner,

set_seed = tmpSeed,
297 is_embedded = TRUE,

is_TS3 = TRUE,
299 is_TS4 = FALSE

)
301

x
303 },

future.seed = 0xBEEF
305 )

})
307 plan(sequential)

time_ridge_174[3]/60 # new system + future_lapply: ˜1.6025 min
309

results_TS3_ridge_ranks <- get_ranks_gus(results_TS3_ridge)
311 results_TS3_ridge_mean_rank <- rowMeans(

results_TS3_ridge_ranks$fr_abs_rank
313 )

sort(results_TS3_ridge_mean_rank)
315

save(results_TS3_ridge, file = tmpFileRIDGE)
317 beepr::beep("fanfare")

319 # =================================================================== #
# RIDGE ----
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321 tmpVersionRIDGE <- "v2021070901"
tmpFileRIDGE <- paste0(

323 "results/results_TS4_ridge_", tmpVersionRIDGE, ".rdata"
)

325

plan(multisession, workers = 16)
327

time_ridge_174 <- system.time({
329 results_TS4_ridge <- future_lapply(

seq_along(TS4),
331 function(i) {

#cat(i, "\n\n")
333 ds <- TS4[[i]]

335 x <- workflow(
ds = ds,

337 form = form,
predictive_algorithm = "lasso", # name is lasso, but it’s

339 # running ridge
nfolds = nfolds,

341 outer_split = tmpOuter,
inner_split = tmpInner,

343 set_seed = tmpSeed,
is_embedded = TRUE,

345 is_TS3 = FALSE,
is_TS4 = TRUE

347 )

349 x
},

351 future.seed = 0xBEEF
)

353 })
plan(sequential)

355 time_ridge_174[3]/60 # new system + future_lapply: ˜1.6025 min

357 results_TS4_ridge_ranks <- get_ranks_gus(results_TS4_ridge)
results_TS4_ridge_mean_rank <- rowMeans(

359 results_TS4_ridge_ranks$fr_abs_rank
)

361 sort(results_TS4_ridge_mean_rank)

363 save(results_TS4_ridge, file = tmpFileRIDGE)
beepr::beep("fanfare")
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C.6 Create Plots - Cerqueira et al. and M4 Competition

code/rw analysis v2021 08 22 01.R
#

############################################################################
#

2 #’ Evaluating the performance of estimation methods
#

4 #’ This is an extension of the code from Cerqueira, Torgo, and Mozetic.
#’ "Evaluating time series forecasting models: an empirical study

6 #’ on performance estimation methods".
#’ In: Machine Learning (2020) 109:1997-2028

8 #’
#’ Modified by: Gustavo Varela-Alvarenga

10 #’ Date: 05/30/2021
#

############################################################################
#

12 #
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
####

# > Packages
===================================================================

14 # library(forecast)
# library(tsensembler)

16 # library(ranger)
# load code for ‘avg_rank_plot‘

18 source("src/plots_v2021071301.r")
#library(scmamp)

20 # --- #

22 #
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
####

## > Path to save plots to ----
24 tmpSavePath <- "results/plots"
tmpSavePathTables <- "results/tables/"

26

#
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
####

28 # > Helpers
####

# |_ Helper Function: get_ranks_p_holdout
======================================

30 # Gets final estimation errors, and ranks
get_ranks_p_holdout <- function(final_results_data){

32 # --- #
# get estimation errors

34 err_estimation <- lapply(
X = final_results_data,

36 function(X) tryCatch(X$err_estimation, error =function(e) {NULL})
)
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38

err_estimation <- err_estimation[!sapply(err_estimation, is.null)]
40 # --- #

# create df with final estimation errors
42 fr <- do.call(rbind, err_estimation)

fr <- as.data.frame(fr)
44 rownames(fr) <- NULL

46 colnames(fr) <-
c("p-holdout", # <---- new method

48 "cp-holdout", # <---- new method
"cep-holdout", # <---- new method

50 "CV", "CV-Bl", "CV-Mod","CV-hvBl",
"Preq-Bls", "Preq-Sld-Bls",

52 "Preq-Bls-Gap","Holdout", "Rep-Holdout",
# "Preq-Slide","Preq-Grow" # the order in the original is

switched
54 "Preq-Grow", "Preq-Slide"

)
56 # --- #

# get ranks for each estimation procedure
58 fr_abs <- abs(fr)

fr_abs_rank <- apply(fr_abs, 1, rank)
60

# --- #
62 # return df with final estimation errors, and another one with the

ranks
return(list(fr = fr, fr_abs_rank = fr_abs_rank))

64 }

66 # |_ Helper Function: plot_avg_ranks_ts_types
==================================

plot_avg_ranks_ts_types <- function(results, is_stat = NULL, df.source)
{

68

# break data into stationary data or not (or both)
70 tmpAll <- results

if(!is.null(is_stat)){
72 tmpStationary <- results[is_stat]

tmpNonStationary <- results[!is_stat]
74 }

76

# ---- #
78 # get ranks

ranksAll <- get_ranks_p_holdout(tmpAll)
80 if(!is.null(is_stat)){

ranksStationary <- get_ranks_p_holdout(tmpStationary)
82 ranksNonStationary <- get_ranks_p_holdout(tmpNonStationary)

}
84

# ---- #
86 # plot ranks

## function ’avg_rank_plot’ comes from
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88 ## source("../src/plots_gus.r")
## I’ve changed the original ’plots.r’ to add a greeb color to my
method’s

90 ## results’ bar plot.
pRanksAll <- avg_rank_plot(

92 avg = rowMeans(ranksAll$fr_abs_rank),
sdev = apply(ranksAll$fr_abs_rank,1, sd)

94 )

96 if(!is.null(is_stat)){
pRanksStationary <- avg_rank_plot(

98 avg = rowMeans(ranksStationary$fr_abs_rank),
sdev = apply(ranksStationary$fr_abs_rank,1, sd)

100 )

102 pRanksNonStationary <- avg_rank_plot(
avg = rowMeans(ranksNonStationary$fr_abs_rank),

104 sdev = apply(ranksNonStationary$fr_abs_rank,1, sd)
)

106

finalPlotRanks <- ggpubr::ggarrange(
108 plotlist = list(pRanksAll, pRanksStationary, pRanksNonStationary)

,
ncol = 1,

110 nrow = 3,
labels = c("All", "Stationary", "Non-Stationary")

112 )
} else {

114 finalPlotRanks <- ggpubr::ggarrange(
plotlist = list(pRanksAll),

116 ncol = 1,
nrow = 1,

118 labels = c("All")
)

120 }
# ---- #

122 # return plot with annotations
ggpubr::annotate_figure(

124 finalPlotRanks,
bottom = ggpubr::text_grob(

126 label = paste0(
"Plot by: Varela-Alvarenga and Kedem (2021). \n",

128 "Data source: ", df.source
),

130 hjust = 1,
x = 1,

132 face = "italic",
size = 10

134 )
)

136 }

138 #
----------------------------------------------------------------------------
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#
# helper function - get data and plot ----

140 plot_log_diff_ts_types <- function(results, is_stat = NULL, df.source){

142 # break data into stationary data or not (or both)
tmpAll <- results

144 if(!is.null(is_stat)){
tmpStationary <- results[is_stat]

146 tmpNonStationary <- results[!is_stat]
}

148 # ---- #
# get ranks

150 ranksAll <- get_ranks_p_holdout(tmpAll)
if(!is.null(is_stat)){

152 ranksStationary <- get_ranks_p_holdout(tmpStationary)
ranksNonStationary <- get_ranks_p_holdout(tmpNonStationary)

154 }
# ---- #

156 # plot log diff

158 ## function ’percdiff_plot_log’ comes from
## source("../src/plots_gus.r")

160 pLogDiffAll <- percdiff_plot_log(ranksAll$fr)
if(!is.null(is_stat)){

162 pLogDiffStationary <- percdiff_plot_log(ranksStationary$fr)
pLogDiffNonStationary <-

164 percdiff_plot_log(ranksNonStationary$fr) +
labs(x = "Solid line: Median. Dashed line: Mean")

166

finalPlotLogDiff <- ggpubr::ggarrange(
168 plotlist = list(pLogDiffAll, pLogDiffStationary,

pLogDiffNonStationary),
ncol = 1,

170 nrow = 3,
labels = list("All", "Stationary", "Non-Stationary"),

172 hjust = c(-1, -0.25, -0.15),
vjust = c(1.5, 0.25, 0.25)

174 )
} else {

176 finalPlotLogDiff <- ggpubr::ggarrange(
plotlist = list(pLogDiffAll),

178 ncol = 1,
nrow = 1,

180 labels = c("All")
)

182 }
# ---- #

184

# ---- #
186 # return plot with annotations

ggpubr::annotate_figure(
188 finalPlotLogDiff,

bottom = ggpubr::text_grob(
190 label = paste0(
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"Plot by: Varela-Alvarenga and Kedem (2021). \n",
192 "Data source: ", df.source

),
194 hjust = 1,

x = 1,
196 face = "italic",

size = 10
198 ),

left = ggpubr::text_grob(
200 label = "Percentual difference to true loss",

face = "bold",
202 size = 12,

rot = 90
204 )

)
206 }

208 #
----------------------------------------------------------------------------
#

# helper function - returns log diff values ----
210

log_diff_ts_types <- function(results,
212 is_stat,

statistic = c("Mean", "Median", "Std.Dev.
", "IQR")

214 ){

216 # break data into stationary data or not (or both)
tmpAll <- results

218 tmpStationary <- results[is_stat]
tmpNonStationary <- results[!is_stat]

220

# ---- #
222 # get ranks

ranksAll <- get_ranks_p_holdout(tmpAll)
224 ranksStationary <- get_ranks_p_holdout(tmpStationary)

ranksNonStationary <- get_ranks_p_holdout(tmpNonStationary)
226

# ---- #
228 # calculate log diff

log_trans <- function(x) sign(x) * log(abs(x) + 1)
230

rAll <- reshape2::melt(ranksAll$fr, id.vars = NULL)
232 rAll$log <- log_trans(rAll$value)

rStationary <- reshape2::melt(ranksStationary$fr, id.vars =
NULL)

234 rStationary$log <- log_trans(rStationary$value)
rNonStationary <- reshape2::melt(ranksNonStationary$fr, id.vars =

NULL)
236 rNonStationary$log <- log_trans(rNonStationary$value)

238 # ---- #
# calculate summary by scheme
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240 summaryAll <- aggregate(
x = rAll$log,

242 by = list(scheme = rAll$variable),
FUN = summary

244 )
summaryStationary <- aggregate(

246 x = rStationary$log,
by = list(scheme = rStationary$variable),

248 FUN = summary
)

250 summaryNonStationary <- aggregate(
x = rNonStationary$log,

252 by = list(scheme = rNonStationary$variable),
FUN = summary

254 )

256 # ---- #
# calculate std dev by scheme

258 sdAll <- aggregate(
x = rAll$log,

260 by = list(scheme = rAll$variable),
FUN = sd

262 )
sdStationary <- aggregate(

264 x = rStationary$log,
by = list(scheme = rStationary$variable),

266 FUN = sd
)

268 sdNonStationary <- aggregate(
x = rNonStationary$log,

270 by = list(scheme = rNonStationary$variable),
FUN = sd

272 )
# ---- #

274 # calculate IQR by scheme
iqrAll <- aggregate(

276 x = rAll$log,
by = list(scheme = rAll$variable),

278 FUN = IQR
)

280 iqrStationary <- aggregate(
x = rStationary$log,

282 by = list(scheme = rStationary$variable),
FUN = IQR

284 )
iqrNonStationary <- aggregate(

286 x = rNonStationary$log,
by = list(scheme = rNonStationary$variable),

288 FUN = IQR
)

290 # ---- #
# Get final summary table (with std dev and IQR)

292 summaryAll <- cbind.data.frame(
summaryAll,
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294 "Std.Dev." = sdAll$x,
"IQR" = iqrAll$x

296 )
summaryStationary <- cbind.data.frame(

298 summaryStationary,
"Std.Dev." = sdStationary$x,

300 "IQR" = iqrStationary$x
)

302 summaryNonStationary <- cbind.data.frame(
summaryNonStationary,

304 "Std.Dev." = sdNonStationary$x,
"IQR" = iqrNonStationary$x

306 )
# ---- #

308 # Order final summary table by statistic
summaryAll <- summaryAll[order(abs(summaryAll$x[, statistic])), ]

310

summaryStationary <-
312 summaryStationary[order(abs(summaryStationary$x[, statistic])), ]

314 summaryNonStationary <-
summaryNonStationary[order(abs(summaryNonStationary$x[, statistic])
), ]

316

# ---- #
318 # return final list

list(
320 All = summaryAll,

Stationary = summaryStationary,
322 NonStationary = summaryNonStationary

)
324 }

326 #
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
####

328 #
============================================================================
#

#
============================================================================
#

330 ##### Stationary data
#####

#
============================================================================
#

332 #
============================================================================
#

334 # |_ Import Original Data set
==================================================
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load("../stationarity_tsdl.rdata")
336

# |_ Indicator if the series is stationary
=====================================

338 tmp_is_stat <- is_stationary_2ensemble
#table(is_stationary_2ensemble) # 97 stationary time series (out of

174, ˜56%)
340

#
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
####

342

#
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
####

344 #
============================================================================
#

#
============================================================================
#

346 #### Results RBR
####

#
============================================================================
#

348 #
============================================================================
#

## \___ Import Data
------------------------------------------------------------

350 tmpVersionRBR <- "v2021082201"
tmpFileRBR <- paste0(

352 "results/results_cerqueira_RMSE_rbr_", tmpVersionRBR, ".rdata"
)

354 tmpRBR <- get(load(tmpFileRBR))

356 # |_ Plot the average ranks
====================================================

plot_RBR_avg_rank <- plot_avg_ranks_ts_types(
358 results = tmpRBR,

is_stat = tmp_is_stat,
360 df.source = "Cerqueira et al. (2020)."

)
362 plot_RBR_avg_rank

364 ## \___ Export as PNG
----------------------------------------------------------

ggplot2::ggsave(
366 filename = paste0("RBR_ranks_plot_RMSE_",tmpVersionRBR,".png"),

path = tmpSavePath,
368 plot = plot_RBR_avg_rank,

device = "png",
370 type = "cairo",
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width = 8,
372 height = 12,

units = "in"
374 )

376 ## \___ Export as EPS
----------------------------------------------------------

ggplot2::ggsave(
378 filename = paste0("RBR_ranks_plot_RMSE_",tmpVersionRBR,".eps"),

path = tmpSavePath,
380 plot = plot_RBR_avg_rank,

device = "eps",
382 width = 8,

height = 12,
384 units = "in"

)
386

# |_ Plot the Log-Diff
=========================================================

388 plot_RBR_log_diff <- plot_log_diff_ts_types(
results = tmpRBR,

390 is_stat = tmp_is_stat,
df.source = "Cerqueira et al. (2020)."

392 )
plot_RBR_log_diff

394

## \___ Export as PNG
----------------------------------------------------------

396 ggplot2::ggsave(
filename = paste0("RBR_log_diff_plot_RMSE_",tmpVersionRBR,".png"),

398 path = tmpSavePath,
plot = plot_RBR_log_diff,

400 device = "png",
type = "cairo",

402 width = 12,
height = 12,

404 units = "in"
)

406

## \___ Export as EPS
----------------------------------------------------------

408 ggplot2::ggsave(
filename = paste0("RBR_log_diff_plot_RMSE_",tmpVersionRBR,".eps"),

410 path = tmpSavePath,
plot = plot_RBR_log_diff,

412 device = "eps",
width = 12,

414 height = 12,
units = "in"

416 )

418 # |_ Table with values of the Log-Diff
=========================================

log_diff_RBR_Mean <- log_diff_ts_types(tmpRBR, tmp_is_stat, "Mean")
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420 log_diff_RBR_Median <- log_diff_ts_types(tmpRBR, tmp_is_stat, "Median")

422 ## \___ Export as TXT
----------------------------------------------------------

capture.output(
424 log_diff_RBR_Mean,

file = paste0(tmpSavePathTables, "RBR_log_diff_Mean_RMSE_",
tmpVersionRBR,".txt")

426 )
capture.output(

428 log_diff_RBR_Median,
file = paste0(tmpSavePathTables, "RBR_log_diff_Median_RMSE_",
tmpVersionRBR,".txt")

430 )

432 #
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
####

#
============================================================================
#

434 #
============================================================================
#

#### Results RF
####

436 #
============================================================================
#

#
============================================================================
#

438 ## \___ Import Data
------------------------------------------------------------

tmpVersionRF <- "v2021082201"
440 tmpFileRF <- paste0(

"results/results_cerqueira_RMSE_rf_", tmpVersionRF, ".rdata"
442 )

tmpRF <- get(load(tmpFileRF))
444

# |_ Plot the average ranks
====================================================

446 plot_RF_avg_rank <- plot_avg_ranks_ts_types(
results = tmpRF,

448 is_stat = tmp_is_stat,
df.source = "Cerqueira et al. (2020)."

450 )
plot_RF_avg_rank

452

## \___ Export as PNG
----------------------------------------------------------

454 ggplot2::ggsave(
filename = paste0("RF_ranks_plot_RMSE_",tmpVersionRF,".png"),

456 path = tmpSavePath,
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plot = plot_RF_avg_rank,
458 device = "png",

type = "cairo",
460 width = 8,

height = 12,
462 units = "in"

)
464

## \___ Export as EPS
----------------------------------------------------------

466 ggplot2::ggsave(
filename = paste0("RF_ranks_plot_RMSE_",tmpVersionRF,".eps"),

468 path = tmpSavePath,
plot = plot_RF_avg_rank,

470 device = "eps",
width = 8,

472 height = 12,
units = "in"

474 )

476 # |_ Plot the Log-Diff
=========================================================

plot_RF_log_diff <- plot_log_diff_ts_types(
478 results = tmpRF,

is_stat = tmp_is_stat,
480 df.source = "Cerqueira et al. (2020)."

)
482 plot_RF_log_diff

484 ## \___ Export as PNG
----------------------------------------------------------

ggplot2::ggsave(
486 filename = paste0("RF_log_diff_plot_RMSE_",tmpVersionRF,".png"),

path = tmpSavePath,
488 plot = plot_RF_log_diff,

device = "png",
490 type = "cairo",

width = 12,
492 height = 12,

units = "in"
494 )

496 ## \___ Export as EPS
----------------------------------------------------------

ggplot2::ggsave(
498 filename = paste0("RF_log_diff_plot_RMSE_",tmpVersionRF,".eps"),

path = tmpSavePath,
500 plot = plot_RF_log_diff,

device = "eps",
502 width = 12,

height = 12,
504 units = "in"

)
506
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# |_ Table with values of the Log-Diff
=========================================

508 log_diff_RF_Mean <- log_diff_ts_types(tmpRF, tmp_is_stat, "Mean")
log_diff_RF_Median <- log_diff_ts_types(tmpRF, tmp_is_stat, "Median")

510

## \___ Export as TXT
----------------------------------------------------------

512 capture.output(
log_diff_RF_Mean,

514 file = paste0(tmpSavePathTables, "RF_log_diff_Mean_RMSE_",
tmpVersionRF,".txt")

)
516 capture.output(

log_diff_RF_Median,
518 file = paste0(tmpSavePathTables, "RF_log_diff_Median_RMSE_",

tmpVersionRF,".txt")
)

520

#
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
####

522 #
============================================================================
#

#
============================================================================
#

524 #### Results RIDGE
####

#
============================================================================
#

526 #
============================================================================
#

## \___ Import Data
------------------------------------------------------------

528 tmpVersionRIDGE <- "v2021082201"
tmpFileRIDGE <- paste0(

530 "results/results_cerqueira_RMSE_ridge_", tmpVersionRIDGE, ".rdata"
)

532 tmpRIDGE <- get(load(tmpFileRIDGE))

534 # |_ Plot the average ranks
====================================================

plot_RIDGE_avg_rank <- plot_avg_ranks_ts_types(
536 results = tmpRIDGE,

is_stat = tmp_is_stat,
538 df.source = "Cerqueira et al. (2020)."

)
540 plot_RIDGE_avg_rank

542 ## \___ Export as PNG
----------------------------------------------------------
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ggplot2::ggsave(
544 filename = paste0("RIDGE_ranks_plot_RMSE_",tmpVersionRIDGE,".png"),

path = tmpSavePath,
546 plot = plot_RIDGE_avg_rank,

device = "png",
548 type = "cairo",

width = 8,
550 height = 12,

units = "in"
552 )

554 ## \___ Export as EPS
----------------------------------------------------------

ggplot2::ggsave(
556 filename = paste0("RIDGE_ranks_plot_RMSE_",tmpVersionRIDGE,".eps"),

path = tmpSavePath,
558 plot = plot_RIDGE_avg_rank,

device = "eps",
560 width = 8,

height = 12,
562 units = "in"

)
564

# |_ Plot the Log-Diff
=========================================================

566 plot_RIDGE_log_diff <- plot_log_diff_ts_types(
results = tmpRIDGE,

568 is_stat = tmp_is_stat,
df.source = "Cerqueira et al. (2020)."

570 )
plot_RIDGE_log_diff

572

## \___ Export as PNG
----------------------------------------------------------

574 ggplot2::ggsave(
filename = paste0("RIDGE_log_diff_plot_RMSE_",tmpVersionRIDGE,".png")
,

576 path = tmpSavePath,
plot = plot_RIDGE_log_diff,

578 device = "png",
type = "cairo",

580 width = 12,
height = 12,

582 units = "in"
)

584

## \___ Export as EPS
----------------------------------------------------------

586 ggplot2::ggsave(
filename = paste0("RIDGE_log_diff_plot_RMSE_",tmpVersionRIDGE,".eps")
,

588 path = tmpSavePath,
plot = plot_RIDGE_log_diff,

590 device = "eps",
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width = 12,
592 height = 12,

units = "in"
594 )

596 # |_ Table with values of the Log-Diff
=========================================

log_diff_RIDGE_Mean <- log_diff_ts_types(tmpRIDGE, tmp_is_stat, "Mean
")

598 log_diff_RIDGE_Median <- log_diff_ts_types(tmpRIDGE, tmp_is_stat, "
Median")

600 ## \___ Export as TXT
----------------------------------------------------------

capture.output(
602 log_diff_RIDGE_Mean,

file = paste0(
604 tmpSavePathTables, "RIDGE_log_diff_Mean_RMSE_",tmpVersionRIDGE,".

txt"
)

606 )
capture.output(

608 log_diff_RIDGE_Median,
file = paste0(

610 tmpSavePathTables, "RIDGE_log_diff_Median_RMSE_",tmpVersionRIDGE,".
txt"

)
612 )

614 #
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
####

#
============================================================================
#

616 #
============================================================================
#

##### Stationary data - M4
#####

618 #
============================================================================
#

#
============================================================================
#

620

# |_ Import Original Data set
==================================================

622 load("results/stationarity_tsdl_M4_v02.rdata")

624 # |_ Indicator if the series is stationary
=====================================

tmp_is_stat_M4 <- is_stationary_2ensemble_M4_v02
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626 #table(is_stationary_2ensemble) # 97 stationary time series (out of
174, ˜56%)

628 #
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
####

#
============================================================================
#

630 #
============================================================================
#

#### Results RBR - M4
####

632 #
============================================================================
#

#
============================================================================
#

634 ## \___ Import Data
------------------------------------------------------------

tmpM4VersionRBR <- "v2021082201"
636 tmpM4FileRBR <- paste0(

"results/results_M4_RMSE_rbr_", tmpM4VersionRBR, ".rdata"
638 )

tmpRBR_M4 <- get(load(tmpM4FileRBR))
640

# |_ Plot the average ranks
====================================================

642 plot_M4_RMSE_rbr_avg_rank <- plot_avg_ranks_ts_types(
results = tmpRBR_M4,

644 is_stat = tmp_is_stat_M4,
df.source = paste0("Sample from the M4 Competition data sets ",

646 "(Makridakis, Spiliotis and Assimakopoulos, 2020).
")

)
648 plot_M4_RMSE_rbr_avg_rank

650 ## \___ Export as PNG
----------------------------------------------------------

ggplot2::ggsave(
652 filename = paste0("M4_RBR_ranks_plot_RMSE_",tmpM4VersionRBR,".png"),

path = tmpSavePath,
654 plot = plot_M4_RMSE_rbr_avg_rank,

device = "png",
656 type = "cairo",

width = 8,
658 height = 12,

units = "in"
660 )

662 ## \___ Export as EPS
----------------------------------------------------------
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ggplot2::ggsave(
664 filename = paste0("M4_RBR_ranks_plot_RMSE_",tmpM4VersionRBR,".eps"),

path = tmpSavePath,
666 plot = plot_M4_RMSE_rbr_avg_rank,

device = "eps",
668 width = 8,

height = 12,
670 units = "in"

)
672

# |_ Plot the Log-Diff
=========================================================

674 plot_M4_RBR_log_diff <- plot_log_diff_ts_types(
results = tmpRBR_M4,

676 is_stat = tmp_is_stat_M4,
df.source = paste0("Sample from the M4 Competition data sets ",

678 "(Makridakis, Spiliotis and Assimakopoulos, 2020).
")

680 )
plot_M4_RBR_log_diff

682

## \___ Export as PNG
----------------------------------------------------------

684 ggplot2::ggsave(
filename = paste0("M4_RBR_log_diff_plot_RMSE_",tmpM4VersionRBR,".png"
),

686 path = tmpSavePath,
plot = plot_M4_RBR_log_diff,

688 device = "png",
type = "cairo",

690 width = 12,
height = 12,

692 units = "in"
)

694

## \___ Export as EPS
----------------------------------------------------------

696 ggplot2::ggsave(
filename = paste0("M4_RBR_log_diff_plot_RMSE_",tmpM4VersionRBR,".eps"
),

698 path = tmpSavePath,
plot = plot_M4_RBR_log_diff,

700 device = "eps",
width = 12,

702 height = 12,
units = "in"

704 )

706 # |_ Table with values of the Log-Diff
=========================================

log_diff_M4_RMSE_rbr_Mean <- log_diff_ts_types(tmpRBR_M4, tmp_is_stat
_M4, "Mean")
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708 log_diff_M4_RMSE_rbr_Median <- log_diff_ts_types(tmpRBR_M4, tmp_is_stat
_M4, "Median")

710 ## \___ Export as TXT
----------------------------------------------------------

capture.output(
712 log_diff_M4_RMSE_rbr_Mean,

file = paste0(
714 tmpSavePathTables, "M4_RBR_log_diff_Mean_RMSE_",tmpM4VersionRBR,".

txt"
)

716 )
capture.output(

718 log_diff_M4_RMSE_rbr_Median,
file = paste0(

720 tmpSavePathTables, "M4_RBR_log_diff_Median_RMSE_",tmpM4VersionRBR,"
.txt"

)
722 )

724 #
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
####

#
============================================================================
#

726 #
============================================================================
#

#### Results RF - M4
####

728 #
============================================================================
#

#
============================================================================
#

730 ## \___ Import Data
------------------------------------------------------------

tmpM4VersionRF <- "v2021082201"
732 tmpM4FileRF <- paste0(

"results/results_M4_RMSE_rf_", tmpM4VersionRF, ".rdata"
734 )

tmpRF_M4 <- get(load(tmpM4FileRF))
736

# |_ Plot the average ranks
====================================================

738 plot_M4_RMSE_rf_avg_rank <- plot_avg_ranks_ts_types(
results = tmpRF_M4,

740 is_stat = tmp_is_stat_M4,
df.source = paste0("Sample from the M4 Competition data sets ",

742 "(Makridakis, Spiliotis and Assimakopoulos, 2020).
")
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744 )
plot_M4_RMSE_rf_avg_rank

746

## \___ Export as PNG
----------------------------------------------------------

748 ggplot2::ggsave(
filename = paste0("M4_RF_ranks_plot_RMSE_",tmpM4VersionRF,".png"),

750 path = tmpSavePath,
plot = plot_M4_RMSE_rf_avg_rank,

752 device = "png",
type = "cairo",

754 width = 8,
height = 12,

756 units = "in"
)

758

## \___ Export as EPS
----------------------------------------------------------

760 ggplot2::ggsave(
filename = paste0("M4_RF_ranks_plot_RMSE_",tmpM4VersionRF,".eps"),

762 path = tmpSavePath,
plot = plot_M4_RMSE_rf_avg_rank,

764 device = "eps",
width = 8,

766 height = 12,
units = "in"

768 )

770 # |_ Plot the Log-Diff
=========================================================

plot_M4_RF_log_diff <- plot_log_diff_ts_types(
772 results = tmpRF_M4,

is_stat = tmp_is_stat_M4,
774 df.source = paste0("Sample from the M4 Competition data sets ",

"(Makridakis, Spiliotis and Assimakopoulos, 2020).
")

776

)
778 plot_M4_RF_log_diff

780 ## \___ Export as PNG
----------------------------------------------------------

ggplot2::ggsave(
782 filename = paste0("M4_RF_log_diff_plot_RMSE_",tmpM4VersionRF,".png"),

path = tmpSavePath,
784 plot = plot_M4_RF_log_diff,

device = "png",
786 type = "cairo",

width = 12,
788 height = 12,

units = "in"
790 )
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792 ## \___ Export as EPS
----------------------------------------------------------

ggplot2::ggsave(
794 filename = paste0("M4_RF_log_diff_plot_RMSE_",tmpM4VersionRF,".eps"),

path = tmpSavePath,
796 plot = plot_M4_RF_log_diff,

device = "eps",
798 width = 12,

height = 12,
800 units = "in"

)
802

# |_ Table with values of the Log-Diff
=========================================

804 log_diff_M4_RMSE_rf_Mean <- log_diff_ts_types(tmpRF_M4, tmp_is_stat_
M4, "Mean")

log_diff_M4_RMSE_rf_Median <- log_diff_ts_types(tmpRF_M4, tmp_is_stat_
M4, "Median")

806

## \___ Export as TXT
----------------------------------------------------------

808 capture.output(
log_diff_M4_RMSE_rf_Mean,

810 file = paste0(
tmpSavePathTables, "M4_RF_log_diff_Mean_RMSE_",tmpM4VersionRF,".txt
"

812 )
)

814 capture.output(
log_diff_M4_RMSE_rf_Median,

816 file = paste0(
tmpSavePathTables, "M4_RF_log_diff_Median_RMSE_",tmpM4VersionRF,".
txt"

818 )
)

820

#
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
####

822 #
============================================================================
#

#
============================================================================
#

824 #### Results RIDGE - M4
####

#
============================================================================
#

826 #
============================================================================
#
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## \___ Import Data
------------------------------------------------------------

828 tmpM4VersionRIDGE <- "v2021082201"
tmpM4FileRIDGE <- paste0(

830 "results/results_M4_RMSE_ridge_", tmpM4VersionRIDGE, ".rdata"
)

832 tmpRIDGE_M4 <- get(load(tmpM4FileRIDGE))

834 # |_ Plot the average ranks
====================================================

plot_M4_RMSE_ridge_avg_rank <- plot_avg_ranks_ts_types(
836 results = tmpRIDGE_M4,

is_stat = tmp_is_stat_M4,
838 df.source = paste0("Sample from the M4 Competition data sets ",

"(Makridakis, Spiliotis and Assimakopoulos, 2020).
")

840

)
842 plot_M4_RMSE_ridge_avg_rank

844 ## \___ Export as PNG
----------------------------------------------------------

ggplot2::ggsave(
846 filename = paste0("M4_RIDGE_ranks_plot_RMSE_",tmpM4VersionRIDGE,".png

"),
path = tmpSavePath,

848 plot = plot_M4_RMSE_ridge_avg_rank,
device = "png",

850 type = "cairo",
width = 8,

852 height = 12,
units = "in"

854 )

856 ## \___ Export as EPS
----------------------------------------------------------

ggplot2::ggsave(
858 filename = paste0("M4_RIDGE_ranks_plot_RMSE_",tmpM4VersionRIDGE,".eps

"),
path = tmpSavePath,

860 plot = plot_M4_RMSE_ridge_avg_rank,
device = "eps",

862 width = 8,
height = 12,

864 units = "in"
)

866

# |_ Plot the Log-Diff
=========================================================

868 plot_M4_RIDGE_log_diff <- plot_log_diff_ts_types(
results = tmpRIDGE_M4,

870 is_stat = tmp_is_stat_M4,
df.source = paste0("Sample from the M4 Competition data sets ",
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872 "(Makridakis, Spiliotis and Assimakopoulos, 2020).
")

874 )
plot_M4_RIDGE_log_diff

876

## \___ Export as PNG
----------------------------------------------------------

878 ggplot2::ggsave(
filename = paste0("M4_RIDGE_log_diff_plot_RMSE_",tmpM4VersionRIDGE,".
png"),

880 path = tmpSavePath,
plot = plot_M4_RIDGE_log_diff,

882 device = "png",
type = "cairo",

884 width = 12,
height = 12,

886 units = "in"
)

888

## \___ Export as EPS
----------------------------------------------------------

890 ggplot2::ggsave(
filename = paste0("M4_RIDGE_log_diff_plot_RMSE_",tmpM4VersionRIDGE,".
eps"),

892 path = tmpSavePath,
plot = plot_M4_RIDGE_log_diff,

894 device = "eps",
width = 12,

896 height = 12,
units = "in"

898 )

900 # |_ Table with values of the Log-Diff
=========================================

log_diff_M4_RMSE_ridge_Mean <- log_diff_ts_types(
902 tmpRIDGE_M4, tmp_is_stat_M4, "Mean"

)
904

log_diff_M4_RMSE_ridge_Median <- log_diff_ts_types(
906 tmpRIDGE_M4, tmp_is_stat_M4, "Median"

)
908

## \___ Export as TXT
----------------------------------------------------------

910 capture.output(
log_diff_M4_RMSE_ridge_Mean,

912 file = paste0(
tmpSavePathTables, "M4_RIDGE_log_diff_Mean_RMSE_",tmpM4VersionRIDGE
,".txt"

914 )
)

916 capture.output(
log_diff_M4_RMSE_ridge_Median,
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918 file = paste0(
tmpSavePathTables, "M4_RIDGE_log_diff_Median_RMSE_",
tmpM4VersionRIDGE,".txt"

920 )
)
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C.7 Create Plots - Simulated Data

code/rw analysis TS3 v2021 07 09 01.R
1 # ################################################################### #
#’ Evaluating the performance of estimation methods

3 #
#’ This is an extension of the code from ts3, Torgo, and Mozetic.

5 #’ "Evaluating time series forecasting models: an empirical study
#’ on performance estimation methods".

7 #’ In: Machine Learning (2020) 109:1997-2028
#’

9 #’ Modified by: Gustavo Varela-Alvarenga
#’ Date: 07/09/2021

11 # ################################################################### #
# \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ####

13 # > Packages ==========================================================
# library(forecast)

15 # library(tsensembler)
# library(ranger)

17 # load code for ‘avg_rank_plot‘
source("src/plots_gus.r")

19 #library(scmamp)
# --- #

21

# \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ####
23 ## > Path to save plots to ----
tmpSavePath <- "results/plots"

25 tmpSavePathTables <- "results/tables/"

27 # \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ####
# > Helpers ####

29 # |_ Helper Function: get_ranks_p_holdout =============================
# Gets final estimation errors, and ranks

31 get_ranks_p_holdout_sim <- function(final_results_data){
# --- #

33 # get estimation errors
err_estimation <- lapply(

35 X = final_results_data,
function(X) tryCatch(X$err_estimation, error =function(e) {NULL})

37 )

39 err_estimation <- err_estimation[!sapply(err_estimation, is.null)]
# --- #

41 # create df with final estimation errors
fr <- do.call(rbind, err_estimation)

43 fr <- as.data.frame(fr)
rownames(fr) <- NULL

45

colnames(fr) <-
47 c("p-holdout", # <---- new method

"cp-holdout", # <---- new method
49 "cep-holdout", # <---- new method

"CV", "CV-Bl", "CV-Mod","CV-hvBl",
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51 "Preq-Bls", "Preq-Sld-Bls",
"Preq-Bls-Gap","Holdout", "Rep-Holdout",

53 # "Preq-Slide","Preq-Grow" #the order in the original is switched
"Preq-Grow", "Preq-Slide"

55 )
# --- #

57 # get ranks for each estimation procedure
fr_abs <- abs(fr)

59 fr_abs_rank <- apply(fr_abs, 1, rank)

61 # --- #
# return df with final estimation errors,

63 # and another one with the ranks
return(list(fr = fr, fr_abs_rank = fr_abs_rank))

65 }

67 # |_ Helper Function: plot_avg_ranks_ts_types =========================
plot_avg_ranks_ts_types <- function(results_ts3, results_ts4){

69

# ---- #
71 # get ranks

ranksTS3 <- get_ranks_p_holdout_sim(results_ts3)
73 ranksTS4 <- get_ranks_p_holdout_sim(results_ts4)

75 # ---- #
# plot ranks

77 ## function ’avg_rank_plot’ comes from
## source("../src/plots_gus.r")

79 ## I’ve changed the original ’plots.r’ to add a green color to my
## schemes’ results’ bar plot.

81 pRanksTS3 <- avg_rank_plot(
avg = rowMeans(ranksTS3$fr_abs_rank),

83 sdev = apply(ranksTS3$fr_abs_rank,1, sd)
)

85 pRanksTS4 <- avg_rank_plot(
avg = rowMeans(ranksTS4$fr_abs_rank),

87 sdev = apply(ranksTS4$fr_abs_rank,1, sd)
)

89

finalPlotRanks <- ggpubr::ggarrange(
91 plotlist = list(pRanksTS3, pRanksTS4),

ncol = 1,
93 nrow = 2,

labels = c(
95 "S3: SARIMA(12,0,0)(1,0,0)12", "S4: SARIMA(12,0,0)(1,1,0)12"

)
97 )

99 # ---- #
# return plot with annotations

101 ggpubr::annotate_figure(
finalPlotRanks,

103 bottom = ggpubr::text_grob(
label = "Plot by: Varela-Alvarenga and Kedem (2021).",
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105 hjust = 1,
x = 1,

107 face = "italic",
size = 10

109 )
)

111 }

113 # ------------------------------------------------------------------- #
# helper function - get data and plot ----

115 plot_log_diff_ts_types <- function(results_ts3, results_ts4){

117 # ---- #
# get ranks

119 ranksTS3 <- get_ranks_p_holdout_sim(results_ts3)
ranksTS4 <- get_ranks_p_holdout_sim(results_ts4)

121 # ---- #
# plot log diff

123

## function ’percdiff_plot_log’ comes from
125 ## source("../src/plots_gus.r")

pLogDiffTS3 <- percdiff_plot_log(ranksTS3$fr)
127 pLogDiffTS4 <- percdiff_plot_log(ranksTS4$fr)

129 finalPlotLogDiff <- ggpubr::ggarrange(
plotlist = list(pLogDiffTS3, pLogDiffTS4),

131 ncol = 1,
nrow = 2,

133 labels = list("S3","S4")
)

135 # ---- #

137 # ---- #
# return plot with annotations

139 ggpubr::annotate_figure(
finalPlotLogDiff,

141 bottom = ggpubr::text_grob(
label = "Plot by: Varela-Alvarenga and Kedem (2021).",

143 hjust = 1,
x = 1,

145 face = "italic",
size = 10

147 ),
left = ggpubr::text_grob(

149 label = "Percentual difference to true loss",
face = "bold",

151 size = 12,
rot = 90

153 )
)

155 }

157 # ------------------------------------------------------------------- #
# helper function - returns log diff values ----
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159

log_diff_ts_types <- function(results_ts3, results_ts4,
161 statistic = c(

"Mean", "Median", "Std.Dev.", "IQR"
163 )

){
165

# get ranks
167 ranksTS3 <- get_ranks_p_holdout_sim(results_ts3)

ranksTS4 <- get_ranks_p_holdout_sim(results_ts4)
169 # ---- #

171 # ---- #
# calculate log diff

173 log_trans <- function(x) sign(x) * log(abs(x) + 1)

175 rTS3 <- reshape2::melt(ranksTS3$fr, id.vars = NULL)
rTS3$log <- log_trans(rTS3$value)

177 rTS4 <- reshape2::melt(ranksTS4$fr, id.vars = NULL)
rTS4$log <- log_trans(rTS4$value)

179 # ---- #
# calculate summary by scheme

181 summaryTS3 <- aggregate(
x = rTS3$log,

183 by = list(scheme = rTS3$variable),
FUN = summary

185 )
summaryTS4 <- aggregate(

187 x = rTS4$log,
by = list(scheme = rTS4$variable),

189 FUN = summary
)

191 # ---- #
# calculate std dev by scheme

193 sdTS3 <- aggregate(
x = rTS3$log,

195 by = list(scheme = rTS3$variable),
FUN = sd

197 )
sdTS4 <- aggregate(

199 x = rTS4$log,
by = list(scheme = rTS4$variable),

201 FUN = sd
)

203 # ---- #
# calculate IQR by scheme

205 iqrTS3 <- aggregate(
x = rTS3$log,

207 by = list(scheme = rTS3$variable),
FUN = IQR

209 )
iqrTS4 <- aggregate(

211 x = rTS4$log,
by = list(scheme = rTS4$variable),
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213 FUN = IQR
)

215 # ---- #
# Get final summary table (with std dev and IQR)

217 summaryTS3 <- cbind.data.frame(
summaryTS3,

219 "Std.Dev." = sdTS3$x,
"IQR" = iqrTS3$x

221 )
summaryTS4 <- cbind.data.frame(

223 summaryTS4,
"Std.Dev." = sdTS4$x,

225 "IQR" = iqrTS4$x
)

227 # ---- #
# Order final summary table by statistic

229 summaryTS3 <- summaryTS3[order(abs(summaryTS3$x[, statistic])), ]

231 summaryTS4 <- summaryTS4[order(abs(summaryTS4$x[, statistic])), ]
# ---- #

233 # return final list
list(

235 TS3 = summaryTS3,
TS4 = summaryTS4

237 )
}

239

# \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ####
241 # =================================================================== #

# =================================================================== #
243 #### Results RBR ####

# =================================================================== #
245 # =================================================================== #

## \___ Import Data ---------------------------------------------------
247 tmpVersionRBR <- "v2021070901"

249 tmpFileRBR_TS3 <- paste0(
"results/results_ts3_rbr_", tmpVersionRBR, ".rdata"

251 )
tmpRBR_TS3 <- get(load(tmpFileRBR_TS3))

253

tmpFileRBR_TS4 <- paste0(
255 "results/results_ts4_rbr_", tmpVersionRBR, ".rdata"

)
257 tmpRBR_TS4 <- get(load(tmpFileRBR_TS4))

259 # |_ Plot the average ranks ===========================================
plot_RBR_avg_rank <- plot_avg_ranks_ts_types(

261 results_ts3 = tmpRBR_TS3,
results_ts4 = tmpRBR_TS4

263 )
plot_RBR_avg_rank

265

## \___ Export as PNG -------------------------------------------------
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267 ggplot2::ggsave(
filename = paste0("SIM_RBR_ranks_plot_MSE_",tmpVersionRBR,".png"),

269 path = tmpSavePath,
plot = plot_RBR_avg_rank,

271 device = "png",
type = "cairo",

273 width = 8,
height = 12,

275 units = "in"
)

277

## \___ Export as EPS ------------------------------------------------
279 ggplot2::ggsave(

filename = paste0("SIM_RBR_ranks_plot_MSE_",tmpVersionRBR,".eps"),
281 path = tmpSavePath,

plot = plot_RBR_avg_rank,
283 device = "eps",

width = 8,
285 height = 12,

units = "in"
287 )

289 # |_ Plot the Log-Diff ================================================
plot_RBR_log_diff <- plot_log_diff_ts_types(

291 results_ts3 = tmpRBR_TS3,
results_ts4 = tmpRBR_TS4

293 )
plot_RBR_log_diff

295

## \___ Export as PNG -------------------------------------------------
297 ggplot2::ggsave(

filename = paste0("SIM_RBR_log_diff_plot_MSE_",tmpVersionRBR,".png"),
299 path = tmpSavePath,

plot = plot_RBR_log_diff,
301 device = "png",

type = "cairo",
303 width = 12,

height = 12,
305 units = "in"

)
307

## \___ Export as EPS -------------------------------------------------
309 ggplot2::ggsave(

filename = paste0("SIM_RBR_log_diff_plot_MSE_",tmpVersionRBR,".eps"),
311 path = tmpSavePath,

plot = plot_RBR_log_diff,
313 device = "eps",

width = 12,
315 height = 12,

units = "in"
317 )

319 # |_ Table with values of the Log-Diff ================================
log_diff_RBR_Mean <-
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321 log_diff_ts_types(tmpRBR_TS3, tmpRBR_TS4, "Mean")

323 log_diff_RBR_Median <-
log_diff_ts_types(tmpRBR_TS3, tmpRBR_TS4, "Median")

325

## \___ Export as TXT -------------------------------------------------
327 capture.output(

log_diff_RBR_Mean,
329 file = paste0(tmpSavePathTables,

"SIM_log_diff_Mean_MSE_",tmpVersionRBR,".txt")
331 )

capture.output(
333 log_diff_RBR_Median,

file = paste0(tmpSavePathTables,
335 "SIM_RBR_log_diff_Median_MSE_",tmpVersionRBR,".txt")

)
337

# \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ####
339 # =================================================================== #

# =================================================================== #
341 #### Results RF ####

# =================================================================== #
343 # =================================================================== #

## \___ Import Data ---------------------------------------------------
345 tmpVersionRF <- "v2021070901"

347 tmpFileRF_TS3 <- paste0(
"results/results_ts3_rf_", tmpVersionRF, ".rdata"

349 )
tmpRF_TS3 <- get(load(tmpFileRF_TS3))

351

tmpFileRF_TS4 <- paste0(
353 "results/results_ts4_rf_", tmpVersionRF, ".rdata"

)
355 tmpRF_TS4 <- get(load(tmpFileRF_TS4))

357 # |_ Plot the average ranks ===========================================
plot_RF_avg_rank <- plot_avg_ranks_ts_types(

359 results_ts3 = tmpRF_TS3,
results_ts4 = tmpRF_TS4

361 )
plot_RF_avg_rank

363

## \___ Export as PNG -------------------------------------------------
365 ggplot2::ggsave(

filename = paste0("SIM_RF_ranks_plot_MSE_",tmpVersionRF,".png"),
367 path = tmpSavePath,

plot = plot_RF_avg_rank,
369 device = "png",

type = "cairo",
371 width = 8,

height = 12,
373 units = "in"

)
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375

## \___ Export as EPS -------------------------------------------------
377 ggplot2::ggsave(

filename = paste0("SIM_RF_ranks_plot_MSE_",tmpVersionRF,".eps"),
379 path = tmpSavePath,

plot = plot_RF_avg_rank,
381 device = "eps",

width = 8,
383 height = 12,

units = "in"
385 )

387 # |_ Plot the Log-Diff ================================================
plot_RF_log_diff <- plot_log_diff_ts_types(

389 results_ts3 = tmpRF_TS3,
results_ts4 = tmpRF_TS4

391 )
plot_RF_log_diff

393

## \___ Export as PNG -------------------------------------------------
395 ggplot2::ggsave(

filename = paste0("SIM_RF_log_diff_plot_MSE_",tmpVersionRF,".png"),
397 path = tmpSavePath,

plot = plot_RF_log_diff,
399 device = "png",

type = "cairo",
401 width = 12,

height = 12,
403 units = "in"

)
405

## \___ Export as EPS -------------------------------------------------
407 ggplot2::ggsave(

filename = paste0("SIM_RF_log_diff_plot_MSE_",tmpVersionRF,".eps"),
409 path = tmpSavePath,

plot = plot_RF_log_diff,
411 device = "eps",

width = 12,
413 height = 12,

units = "in"
415 )

417 # |_ Table with values of the Log-Diff ================================
log_diff_RF_Mean <- log_diff_ts_types(tmpRF_TS3, tmpRF_TS4, "Mean")

419 log_diff_RF_Median <- log_diff_ts_types(tmpRF_TS3, tmpRF_TS4, "Median")

421 ## \___ Export as TXT -------------------------------------------------
capture.output(

423 log_diff_RF_Mean,
file = paste0(tmpSavePathTables,

425 "SIM_RF_log_diff_Mean_MSE_",tmpVersionRF,".txt")
)

427 capture.output(
log_diff_RF_Median,
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429 file = paste0(tmpSavePathTables,
"SIM_RF_log_diff_Median_MSE_",tmpVersionRF,".txt")

431 )

433 # \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ####
# =================================================================== #

435 # =================================================================== #
#### Results RIDGE ####

437 # =================================================================== #
# =================================================================== #

439 ## \___ Import Data ---------------------------------------------------
tmpVersionRIDGE <- "v2021070901"

441

tmpFileRIDGE_TS3 <- paste0(
443 "results/results_ts3_ridge_", tmpVersionRIDGE, ".rdata"

)
445 tmpRIDGE_TS3 <- get(load(tmpFileRIDGE_TS3))

447 tmpFileRIDGE_TS4 <- paste0(
"results/results_ts4_ridge_", tmpVersionRIDGE, ".rdata"

449 )
tmpRIDGE_TS4 <- get(load(tmpFileRIDGE_TS4))

451

# |_ Plot the average ranks ===========================================
453 plot_RIDGE_avg_rank <- plot_avg_ranks_ts_types(

results_ts3 = tmpRIDGE_TS3,
455 results_ts4 = tmpRIDGE_TS4

)
457 plot_RIDGE_avg_rank

459 ## \___ Export as PNG -------------------------------------------------
ggplot2::ggsave(

461 filename = paste0(
"SIM_RIDGE_ranks_plot_MSE_",tmpVersionRIDGE,".png"

463 ),
path = tmpSavePath,

465 plot = plot_RIDGE_avg_rank,
device = "png",

467 type = "cairo",
width = 8,

469 height = 12,
units = "in"

471 )

473 ## \___ Export as EPS -------------------------------------------------
ggplot2::ggsave(

475 filename = paste0(
"SIM_RIDGE_ranks_plot_MSE_",tmpVersionRIDGE,".eps"

477 ),
path = tmpSavePath,

479 plot = plot_RIDGE_avg_rank,
device = "eps",

481 width = 8,
height = 12,
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483 units = "in"
)

485

# |_ Plot the Log-Diff ================================================
487 plot_RIDGE_log_diff <- plot_log_diff_ts_types(

results_ts3 = tmpRIDGE_TS3,
489 results_ts4 = tmpRIDGE_TS4

)
491 plot_RIDGE_log_diff

493 ## \___ Export as PNG -------------------------------------------------
ggplot2::ggsave(

495 filename = paste0(
"SIM_RIDGE_log_diff_plot_MSE_",tmpVersionRIDGE,".png"

497 ),
path = tmpSavePath,

499 plot = plot_RIDGE_log_diff,
device = "png",

501 type = "cairo",
width = 12,

503 height = 12,
units = "in"

505 )

507 ## \___ Export as EPS -------------------------------------------------
ggplot2::ggsave(

509 filename = paste0(
"SIM_RIDGE_log_diff_plot_MSE_",tmpVersionRIDGE,".eps"

511 ),
path = tmpSavePath,

513 plot = plot_RIDGE_log_diff,
device = "eps",

515 width = 12,
height = 12,

517 units = "in"
)

519

# |_ Table with values of the Log-Diff ================================
521 log_diff_RIDGE_Mean <- log_diff_ts_types(

tmpRIDGE_TS3, tmpRIDGE_TS4, "Mean"
523 )

log_diff_RIDGE_Median <- log_diff_ts_types(
525 tmpRIDGE_TS3, tmpRIDGE_TS4, "Median"

)
527

## \___ Export as TXT -------------------------------------------------
529 capture.output(

log_diff_RIDGE_Mean,
531 file = paste0(

tmpSavePathTables, "SIM_RIDGE_log_diff_Mean_MSE_",tmpVersionRIDGE,
533 ".txt"

)
535 )

capture.output(
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537 log_diff_RIDGE_Median,
file = paste0(

539 tmpSavePathTables, "SIM_RIDGE_log_diff_Median_MSE_",
tmpVersionRIDGE,

541 ".txt"
)

543 )

301



C.8 Create Tables - Cerqueira and M4

code/hypothesis tests SignedRank v2021071502.R
1 # ################################################################### #
#’ Evaluating the performance of estimation methods

3 #
#’ This is an extension of the code from Cerqueira, Torgo, and Mozetic.

5 #’ "Evaluating time series forecasting models: an empirical study
#’ on performance estimation methods".

7 #’ In: Machine Learning (2020) 109:1997-2028
#’

9 #’ Modified by: Gustavo Varela-Alvarenga
#’ Date: 07/15/2021

11 # ################################################################### #
# \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ####

13 # > Packages ==========================================================
#install.packages("devtools", dependencies = TRUE)

15 #devtools::install_github(’alanarnholt/BSDA’)
#install.packages("xtable")

17

# \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ####
19 ## > Path to save tables to ----
tmpSavePathTables <- "results/tables/"

21

# \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ####
23 # > Helpers ####
# |_ Helper Function: get_ranks_p_holdout =============================

25 # Gets final estimation errors, and ranks
get_ranks_p_holdout <- function(final_results_data){

27 # --- #
# get estimation errors

29 err_estimation <- lapply(
X = final_results_data,

31 function(X) tryCatch(X$err_estimation, error =function(e) {NULL})
)

33

err_estimation <- err_estimation[!sapply(err_estimation, is.null)]
35 # --- #

# create df with final estimation errors
37 fr <- do.call(rbind, err_estimation)

fr <- as.data.frame(fr)
39 rownames(fr) <- NULL

41 colnames(fr) <-
c("p-holdout", # <---- new method

43 "cp-holdout", # <---- new method
"cep-holdout", # <---- new method

45 "CV", "CV-Bl", "CV-Mod","CV-hvBl",
"Preq-Bls", "Preq-Sld-Bls",

47 "Preq-Bls-Gap","Holdout", "Rep-Holdout",
# "Preq-Slide","Preq-Grow" #the order in the original is switched

49 "Preq-Grow", "Preq-Slide"
)
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51 # --- #
# get ranks for each estimation procedure

53 fr_abs <- abs(fr)
fr_abs_rank <- apply(fr_abs, 1, rank)

55

# --- #
57 # return df with final estimation errors,

# and another one with the ranks
59 return(list(fr = fr, fr_abs_rank = fr_abs_rank))
}

61

# ------------------------------------------------------------------- #
63 # helper function - returns log diff values ----

65 hypothesis_tests_schemes <- function(results, is_stat){

67 # break data into stationary data or not (or both)
tmpAll <- results

69 tmpStationary <- results[is_stat]
tmpNonStationary <- results[!is_stat]

71

# ---- #
73 # get ranks

ranksAll <- get_ranks_p_holdout(tmpAll)
75 ranksStationary <- get_ranks_p_holdout(tmpStationary)

ranksNonStationary <- get_ranks_p_holdout(tmpNonStationary)
77

# ---- #
79 # calculate log diff

log_trans <- function(x) sign(x) * log(abs(x) + 1)
81

rAll <- reshape2::melt(ranksAll$fr, id.vars = NULL)
83 rAll$log <- log_trans(rAll$value)

rStationary <- reshape2::melt(
85 ranksStationary$fr, id.vars = NULL

)
87 rStationary$log <- log_trans(rStationary$value)

rNonStationary <- reshape2::melt(
89 ranksNonStationary$fr, id.vars = NULL

)
91 rNonStationary$log <- log_trans(rNonStationary$value)

93 # ---- #
# calculate summary by scheme

95 summaryAll <- aggregate(
x = rAll$log,

97 by = list(scheme = rAll$variable),
FUN = summary

99 )
summaryAll[,-1] <- round(summaryAll[,-1], 4)

101

summaryStationary <- aggregate(
103 x = rStationary$log,

by = list(scheme = rStationary$variable),
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105 FUN = summary
)

107 summaryStationary[,-1] <- round(summaryStationary[,-1], 4)

109 summaryNonStationary <- aggregate(
x = rNonStationary$log,

111 by = list(scheme = rNonStationary$variable),
FUN = summary

113 )
summaryNonStationary[,-1] <- round(summaryNonStationary[,-1], 4)

115

# ---- #
117 # calculate p-value by scheme

119 tmpSchemes <- as.character(unique(rAll$variable))

121 pvalueAll <- lapply(
seq_along(tmpSchemes),

123 function(X){
tmpScheme <- tmpSchemes[X]

125 tmpDF <- rAll[rAll$variable == tmpScheme, ]
tmpTest <- wilcox.test(

127 tmpDF$log, mu = 0, alternative = "two.sided"
)

129 list(
"scheme" = tmpScheme,

131 "WMW_pvalue" = round(tmpTest$p.value, 4)
)

133 }
)

135 pvalueAll <- do.call(rbind, pvalueAll)

137 pvalueStationary <- lapply(
seq_along(tmpSchemes),

139 function(X){
tmpScheme <- tmpSchemes[X]

141 tmpDF <- rStationary[rStationary$variable == tmpScheme, ]
tmpTest <- wilcox.test(

143 tmpDF$log, mu = 0, alternative = "two.sided"
)

145 list(
"scheme" = tmpScheme,

147 "WMW_pvalue" = round(tmpTest$p.value, 4)
)

149 }
)

151 pvalueStationary <- do.call(rbind, pvalueStationary)

153 pvalueNonStationary <- lapply(
seq_along(tmpSchemes),

155 function(X){
tmpScheme <- tmpSchemes[X]

157 tmpDF <-
rNonStationary[rNonStationary$variable == tmpScheme, ]
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159

tmpTest <-
161 wilcox.test(tmpDF$log, mu = 0, alternative = "two.sided")

163 list(
"scheme" = tmpScheme,

165 "WMW_pvalue" = round(tmpTest$p.value, 4)
)

167 }
)

169 pvalueNonStationary <- do.call(rbind, pvalueNonStationary)

171 # ---- #
# calculate p-value by scheme

173 pvalueAllSign <- lapply(
seq_along(tmpSchemes),

175 function(X){
tmpScheme <- tmpSchemes[X]

177 tmpDF <- rAll[rAll$variable == tmpScheme, ]

179 tmpTest <-
BSDA::SIGN.test(tmpDF$log, mu = 0, alternative = "two.sided")

181

c("scheme" = tmpScheme, "p_value" = round(tmpTest$p.value, 4))
183 }

)
185 pvalueAllSign <- do.call(rbind, pvalueAllSign)

187 pvalueStationarySign <- lapply(
seq_along(tmpSchemes),

189 function(X){
tmpScheme <- tmpSchemes[X]

191 tmpDF <- rStationary[rStationary$variable == tmpScheme, ]

193 tmpTest <-
BSDA::SIGN.test(tmpDF$log, mu = 0, alternative = "two.sided")

195

c("scheme" = tmpScheme, "p_value" = round(tmpTest$p.value, 4))
197 }

)
199 pvalueStationarySign <- do.call(rbind, pvalueStationarySign)

201 pvalueNonStationarySign <- lapply(
seq_along(tmpSchemes),

203 function(X){
tmpScheme <- tmpSchemes[X]

205

tmpDF <-
207 rNonStationary[rNonStationary$variable == tmpScheme, ]

209 tmpTest <-
BSDA::SIGN.test(tmpDF$log, mu = 0, alternative = "two.sided")

211

c("scheme" = tmpScheme, "p_value" = round(tmpTest$p.value, 4))
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213 }
)

215 pvalueNonStationarySign <- do.call(rbind, pvalueNonStationarySign)

217 # ---- #
# Final Sets

219 finalAll <- merge(summaryAll, pvalueAllSign, by="scheme")

221 finalStationary <-
merge(summaryStationary, pvalueStationarySign, by="scheme")

223

finalNonStationary <-
225 merge(summaryNonStationary, pvalueNonStationarySign, by="scheme")

227

# ---- #
229 # return final list

list(
231 All = finalAll,

Stationary = finalStationary,
233 NonStationary = finalNonStationary

)
235 }

237 # \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ####

239 # =================================================================== #
# =================================================================== #

241 ##### Stationary data #####
# =================================================================== #

243 # =================================================================== #

245 # |_ Import Original Data set =========================================
load("../stationarity_tsdl.rdata")

247

# |_ Indicator if the series is stationary ============================
249 tmp_is_stat <- is_stationary_2ensemble

251 # \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ####
# =================================================================== #

253 # =================================================================== #
#### Results RBR ####

255 # =================================================================== #
# =================================================================== #

257 ## \___ Import Data ---------------------------------------------------

259 tmpVersionRBR_MSE <- "v2021070901"
tmpVersionRBR_MASE <- "v2021071201"

261

tmpFileRBR_MSE <- paste0(
263 "results/results_cerqueira_rbr_", tmpVersionRBR_MSE, ".rdata"

)
265 tmpRBR_MSE <- get(load(tmpFileRBR_MSE))
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267 tmpFileRBR_MASE <- paste0(
"results/results_cerqueira_MASE_rbr_", tmpVersionRBR_MASE, ".rdata"

269 )
tmpRBR_MASE <- get(load(tmpFileRBR_MASE))

271

# |_ Table with values of the Log-Diff ================================
273 test_RBR_MSE <- hypothesis_tests_schemes(

results = tmpRBR_MSE,
275 is_stat = tmp_is_stat

)
277

test_RBR_MASE <- hypothesis_tests_schemes(
279 results = tmpRBR_MASE,

is_stat = tmp_is_stat
281 )

283 ## \___ Export as Latex Table -----------------------------------------
print(

285 xtable::xtable(
x = t(t(test_RBR_MSE$All)),

287 type = "latex",
label = "tab:RBR:cerqueira:bias:all",

289 caption = paste0(
"Summary of the log percentage difference of the estimated loss",

291 " relative to the true loss for each validation scheme applied ",
"to all 174 real-world time series ",

293 "using the ",
"RBR ",

295 "learning algorithm and the ",
"MSE ",

297 "as error measure."
)

299 ),
file = paste0(

301 tmpSavePathTables, "RBR_test_MSE_All_",tmpVersionRBR_MSE,".txt"
),

303 booktabs = TRUE,
include.rownames=FALSE

305 )

307 print(
xtable::xtable(

309 x = t(t(test_RBR_MSE$Stationary)),
type = "latex",

311 label = "tab:RBR:cerqueira:bias:stationary",
caption = paste0(

313 "Summary of the log percentage difference of the estimated loss",
" relative to the true loss for each validation scheme applied ",

315 "to the 97 stationary time series ",
"using the ",

317 "RBR ",
"learning algorithm and the ",

319 "MSE ",
"as error measure."
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321 )
),

323 file = paste0(
tmpSavePathTables, "RBR_test_MSE_Stationary_",tmpVersionRBR_MSE,

325 ".txt"
),

327 booktabs = TRUE,
include.rownames=FALSE

329 )

331 print(
xtable::xtable(

333 x = t(t(test_RBR_MSE$NonStationary)),
type = "latex",

335 label = "tab:RBR:cerqueira:bias:nonstationary",
caption = paste0(

337 "Summary of the log percentage difference of the estimated loss",
" relative to the true loss for each validation scheme applied ",

339 "to the 77 non-stationary time series ",
"using the ",

341 "RBR ",
"learning algorithm and the ",

343 "MSE ",
"as error measure."

345 )
),

347 file = paste0(
tmpSavePathTables, "RBR_test_MSE_NonStationary_",tmpVersionRBR_MSE,

349 ".txt"
),

351 booktabs = TRUE,
include.rownames=FALSE

353 )

355 # ---- #
# MASE ----

357

print(
359 xtable::xtable(

x = t(t(test_RBR_MASE$All)),
361 type = "latex",

label = "tab:RBR:cerqueira:bias:all:mase",
363 caption = paste0(

"Summary of the log percentage difference of the estimated loss",
365 "relative to the true loss for each validation scheme applied ",

"to all 174 real-world time series ",
367 "using the ",

"RBR ",
369 "learning algorithm and the ",

"MASE ",
371 "as error measure."

)
373 ),

file = paste0(
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375 tmpSavePathTables, "RBR_test_MASE_All_",tmpVersionRBR_MASE,".txt"
),

377 booktabs = TRUE,
include.rownames=FALSE

379 )

381 print(
xtable::xtable(

383 x = t(t(test_RBR_MASE$Stationary)),
type = "latex",

385 label = "tab:RBR:cerqueira:bias:stationary:mase",
caption = paste0(

387 "Summary of the log percentage difference of the estimated loss",
"relative to the true loss for each validation scheme applied ",

389 "to the 97 stationary time series ",
"using the ",

391 "RBR ",
"learning algorithm and the ",

393 "MASE ",
"as error measure."

395 )
),

397 file = paste0(
tmpSavePathTables, "RBR_test_MASE_Stationary_",tmpVersionRBR_MASE,

399 ".txt"
),

401 booktabs = TRUE,
include.rownames=FALSE

403 )

405 print(
xtable::xtable(

407 x = t(t(test_RBR_MASE$NonStationary)),
type = "latex",

409 label = "tab:RBR:cerqueira:bias:nonstationary:mase",
caption = paste0(

411 "Summary of the log percentage difference of the estimated loss",
"relative to the true loss for each validation scheme applied ",

413 "to the 77 non-stationary time series ",
"using the ",

415 "RBR ",
"learning algorithm and the ",

417 "MASE ",
"as error measure."

419 )
),

421 file = paste0(
tmpSavePathTables, "RBR_test_MASE_NonStationary_",

423 tmpVersionRBR_MASE,
".txt"

425 ),
booktabs = TRUE,

427 include.rownames=FALSE
)
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429

# \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ####
431 # =================================================================== #

# =================================================================== #
433 #### Results RF ####

# =================================================================== #
435 # =================================================================== #

## \___ Import Data ---------------------------------------------------
437

tmpVersionRF_MSE <- "v2021070901"
439 tmpVersionRF_MASE <- "v2021071201"

441 tmpFileRF_MSE <- paste0(
"results/results_cerqueira_rf_", tmpVersionRF_MSE, ".rdata"

443 )
tmpRF_MSE <- get(load(tmpFileRF_MSE))

445

tmpFileRF_MASE <- paste0(
447 "results/results_cerqueira_MASE_rf_", tmpVersionRF_MASE, ".rdata"

)
449 tmpRF_MASE <- get(load(tmpFileRF_MASE))

451 # |_ Table with values of the Log-Diff ================================
test_RF_MSE <- hypothesis_tests_schemes(

453 results = tmpRF_MSE,
is_stat = tmp_is_stat

455 )

457 test_RF_MASE <- hypothesis_tests_schemes(
results = tmpRF_MASE,

459 is_stat = tmp_is_stat
)

461

## \___ Export as Latex Table -----------------------------------------
463 print(

xtable::xtable(
465 x = t(t(test_RF_MSE$All)),

type = "latex",
467 label = "tab:RF:cerqueira:bias:all",

caption = paste0(
469 "Summary of the log percentage difference of the estimated loss",

"relative to the true loss for each validation scheme applied ",
471 "to all 174 real-world time series ",

"using the ",
473 "RF ",

"learning algorithm and the ",
475 "MSE ",

"as error measure."
477 )

),
479 file = paste0(

tmpSavePathTables, "RF_test_MSE_All_", tmpVersionRF_MSE, ".txt"
481 ),

booktabs = TRUE,
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483 include.rownames=FALSE
)

485

print(
487 xtable::xtable(

x = t(t(test_RF_MSE$Stationary)),
489 type = "latex",

label = "tab:RF:cerqueira:bias:stationary",
491 caption = paste0(

"Summary of the log percentage difference of the estimated loss",
493 "relative to the true loss for each validation scheme applied ",

"to the 97 stationary time series ",
495 "using the ",

"RF ",
497 "learning algorithm and the ",

"MSE ",
499 "as error measure."

)
501 ),

file = paste0(
503 tmpSavePathTables, "RF_test_MSE_Stationary_", tmpVersionRF_MSE,

".txt"
505 ),

booktabs = TRUE,
507 include.rownames=FALSE

)
509

print(
511 xtable::xtable(

x = t(t(test_RF_MSE$NonStationary)),
513 type = "latex",

label = "tab:RF:cerqueira:bias:nonstationary",
515 caption = paste0(

"Summary of the log percentage difference of the estimated loss",
517 "relative to the true loss for each validation scheme applied ",

"to the 77 non-stationary time series ",
519 "using the ",

"RF ",
521 "learning algorithm and the ",

"MSE ",
523 "as error measure."

)
525 ),

file = paste0(
527 tmpSavePathTables, "RF_test_MSE_NonStationary_", tmpVersionRF_MSE,

".txt"
529 ),

booktabs = TRUE,
531 include.rownames=FALSE

)
533

# ---- #
535 # MASE ----

311



537 print(
xtable::xtable(

539 x = t(t(test_RF_MASE$All)),
type = "latex",

541 label = "tab:RF:cerqueira:bias:all:mase",
caption = paste0(

543 "Summary of the log percentage difference of the estimated loss",
"relative to the true loss for each validation scheme applied ",

545 "to all 174 real-world time series ",
"using the ",

547 "RF ",
"learning algorithm and the ",

549 "MASE ",
"as error measure."

551 )
),

553 file = paste0(
tmpSavePathTables, "RF_test_MASE_All_",tmpVersionRF_MASE, ".txt"

555 ),
booktabs = TRUE,

557 include.rownames=FALSE
)

559

print(
561 xtable::xtable(

x = t(t(test_RF_MASE$Stationary)),
563 type = "latex",

label = "tab:RF:cerqueira:bias:stationary:mase",
565 caption = paste0(

"Summary of the log percentage difference of the estimated loss",
567 "relative to the true loss for each validation scheme applied ",

"to the 97 stationary time series ",
569 "using the ",

"RF ",
571 "learning algorithm and the ",

"MASE ",
573 "as error measure."

)
575 ),

file = paste0(
577 tmpSavePathTables, "RF_test_MASE_Stationary_",tmpVersionRF_MASE,

".txt"
579 ),

booktabs = TRUE,
581 include.rownames=FALSE

)
583

print(
585 xtable::xtable(

x = t(t(test_RF_MASE$NonStationary)),
587 type = "latex",

label = "tab:RF:cerqueira:bias:nonstationary:mase",
589 caption = paste0(

"Summary of the log percentage difference of the estimated loss",
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591 "relative to the true loss for each validation scheme applied ",
"to the 77 non-stationary time series ",

593 "using the ",
"RF ",

595 "learning algorithm and the ",
"MASE ",

597 "as error measure."
)

599 ),
file = paste0(

601 tmpSavePathTables, "RF_test_MASE_NonStationary_",tmpVersionRF_MASE,
".txt"

603 ),
booktabs = TRUE,

605 include.rownames=FALSE
)

607

# \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ####
609 # =================================================================== #

# =================================================================== #
611 #### Results GLM ####

# =================================================================== #
613 # =================================================================== #

## \___ Import Data ---------------------------------------------------
615

tmpVersionGLM_MSE <- "v2021070901"
617 tmpVersionGLM_MASE <- "v2021071201"

619 tmpFileGLM_MSE <- paste0(
"results/results_cerqueira_ridge_", tmpVersionGLM_MSE, ".rdata"

621 )
tmpGLM_MSE <- get(load(tmpFileGLM_MSE))

623

tmpFileGLM_MASE <- paste0(
625 "results/results_cerqueira_MASE_ridge_", tmpVersionGLM_MASE, ".rdata"

)
627 tmpGLM_MASE <- get(load(tmpFileGLM_MASE))

629 # |_ Table with values of the Log-Diff ================================
test_GLM_MSE <- hypothesis_tests_schemes(

631 results = tmpGLM_MSE,
is_stat = tmp_is_stat

633 )

635 test_GLM_MASE <- hypothesis_tests_schemes(
results = tmpGLM_MASE,

637 is_stat = tmp_is_stat
)

639

## \___ Export as Latex Table -----------------------------------------
641 print(

xtable::xtable(
643 x = t(t(test_GLM_MSE$All)),

type = "latex",
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645 label = "tab:GLM:cerqueira:bias:all",
caption = paste0(

647 "Summary of the log percentage difference of the estimated loss",
"relative to the true loss for each validation scheme applied ",

649 "to all 174 real-world time series ",
"using the ",

651 "GLM-Ridge ",
"learning algorithm and the ",

653 "MSE ",
"as error measure."

655 )
),

657 file = paste0(
tmpSavePathTables, "GLM_test_MSE_All_",tmpVersionGLM_MSE,".txt"

659 ),
booktabs = TRUE,

661 include.rownames=FALSE
)

663

print(
665 xtable::xtable(

x = t(t(test_GLM_MSE$Stationary)),
667 type = "latex",

label = "tab:GLM:cerqueira:bias:stationary",
669 caption = paste0(

"Summary of the log percentage difference of the estimated loss",
671 "relative to the true loss for each validation scheme applied ",

"to the 97 stationary time series ",
673 "using the ",

"GLM-Ridge ",
675 "learning algorithm and the ",

"MSE ",
677 "as error measure."

)
679 ),

file = paste0(
681 tmpSavePathTables, "GLM_test_MSE_Stationary_",tmpVersionGLM_MSE,

".txt"
683 ),

booktabs = TRUE,
685 include.rownames=FALSE

)
687

print(
689 xtable::xtable(

x = t(t(test_GLM_MSE$NonStationary)),
691 type = "latex",

label = "tab:GLM:cerqueira:bias:nonstationary",
693 caption = paste0(

"Summary of the log percentage difference of the estimated loss",
695 "relative to the true loss for each validation scheme applied ",

"to the 77 non-stationary time series ",
697 "using the ",

"GLM-Ridge ",
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699 "learning algorithm and the ",
"MSE ",

701 "as error measure."
)

703 ),
file = paste0(

705 tmpSavePathTables, "GLM_test_MSE_NonStationary_",tmpVersionGLM_MSE,
".txt"

707 ),
booktabs = TRUE,

709 include.rownames=FALSE
)

711

# ---- #
713 # MASE ----

715 print(
xtable::xtable(

717 x = t(t(test_GLM_MASE$All)),
type = "latex",

719 label = "tab:GLM:cerqueira:bias:all:mase",
caption = paste0(

721 "Summary of the log percentage difference of the estimated loss",
"relative to the true loss for each validation scheme applied ",

723 "to all 174 real-world time series ",
"using the ",

725 "GLM-Ridge ",
"learning algorithm and the ",

727 "MASE ",
"as error measure."

729 )
),

731 file = paste0(
tmpSavePathTables, "GLM_test_MASE_All_",tmpVersionGLM_MASE,".txt"

733 ),
booktabs = TRUE,

735 include.rownames=FALSE
)

737

print(
739 xtable::xtable(

x = t(t(test_GLM_MASE$Stationary)),
741 type = "latex",

label = "tab:GLM:cerqueira:bias:stationary:mase",
743 caption = paste0(

"Summary of the log percentage difference of the estimated loss",
745 "relative to the true loss for each validation scheme applied ",

"to the 97 stationary time series ",
747 "using the ",

"GLM-Ridge ",
749 "learning algorithm and the ",

"MASE ",
751 "as error measure."

)
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753 ),
file = paste0(

755 tmpSavePathTables, "GLM_test_MASE_Stationary_",tmpVersionGLM_MASE,
".txt"

757 ),
booktabs = TRUE,

759 include.rownames=FALSE
)

761

print(
763 xtable::xtable(

x = t(t(test_GLM_MASE$NonStationary)),
765 type = "latex",

label = "tab:GLM:cerqueira:bias:nonstationary:mase",
767 caption = paste0(

"Summary of the log percentage difference of the estimated loss",
769 "relative to the true loss for each validation scheme applied ",

"to the 77 non-stationary time series ",
771 "using the ",

"GLM-Ridge ",
773 "learning algorithm and the ",

"MASE ",
775 "as error measure."

)
777 ),

file = paste0(
779 tmpSavePathTables, "GLM_test_MASE_NonStationary_",

tmpVersionGLM_MASE,
781 ".txt"

),
783 booktabs = TRUE,

include.rownames=FALSE
785 )

787 # \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ####
# =================================================================== #

789 # =================================================================== #
##### Stationary data - M4 #####

791 # =================================================================== #
# =================================================================== #

793

# |_ Import Original Data set =========================================
795 load("results/stationarity_tsdl_M4_v02.rdata")

797 # |_ Indicator if the series is stationary ============================
tmp_is_stat_M4 <- is_stationary_2ensemble_M4_v02

799

# \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ####
801 # =================================================================== #

# =================================================================== #
803 #### Results M4-RBR ####

# =================================================================== #
805 # =================================================================== #

## \___ Import Data ---------------------------------------------------
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807

tmpVersionM4_RBR_MSE <- "v2021070901"
809 tmpVersionM4_RBR_MASE <- "v2021071201"

811 tmpFileM4_RBR_MSE <- paste0(
"results/results_M4_rbr_", tmpVersionM4_RBR_MSE, ".rdata"

813 )
tmpM4_RBR_MSE <- get(load(tmpFileM4_RBR_MSE))

815

tmpFileM4_RBR_MASE <- paste0(
817 "results/results_M4_MASE_rbr_", tmpVersionM4_RBR_MASE, ".rdata"

)
819 tmpM4_RBR_MASE <- get(load(tmpFileM4_RBR_MASE))

821 # |_ Table with values of the Log-Diff ================================
test_M4_RBR_MSE <- hypothesis_tests_schemes(

823 results = tmpM4_RBR_MSE,
is_stat = tmp_is_stat

825 )

827 test_M4_RBR_MASE <- hypothesis_tests_schemes(
results = tmpM4_RBR_MASE,

829 is_stat = tmp_is_stat
)

831

## \___ Export as Latex Table -----------------------------------------
833 print(

xtable::xtable(
835 x = t(t(test_M4_RBR_MSE$All)),

type = "latex",
837 label = "tab:RBR:M4:bias:all",

caption = paste0(
839 "Summary of the log percentage difference of the estimated loss",

"relative to the true loss for each validation scheme applied ",
841 "to the time series from the M4 Competition sample ",

"using the ",
843 "RBR ",

"learning algorithm and the ",
845 "MSE ",

"as error measure."
847 )

),
849 file = paste0(

tmpSavePathTables, "M4_RBR_test_MSE_All_",tmpVersionM4_RBR_MSE,
851 ".txt"

),
853 booktabs = TRUE,

include.rownames=FALSE
855 )

857 print(
xtable::xtable(

859 x = t(t(test_M4_RBR_MSE$Stationary)),
type = "latex",
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861 label = "tab:RBR:M4:bias:stationary",
caption = paste0(

863 "Summary of the log percentage difference of the estimated loss",
"relative to the true loss for each validation scheme applied ",

865 "to the stationary time series from the M4 Competition sample ",
"using the ",

867 "RBR ",
"learning algorithm and the ",

869 "MSE ",
"as error measure."

871 )
),

873 file = paste0(
tmpSavePathTables, "M4_RBR_test_MSE_Stationary_",

875 tmpVersionM4_RBR_MSE,
".txt"

877 ),
booktabs = TRUE,

879 include.rownames=FALSE
)

881

print(
883 xtable::xtable(

x = t(t(test_M4_RBR_MSE$NonStationary)),
885 type = "latex",

label = "tab:RBR:M4:bias:nonstationary",
887 caption = paste0(

"Summary of the log percentage difference of the estimated loss",
889 "relative to the true loss for each validation scheme applied ",

"to the non-stationary time series from the M4 Competition ",
891 "sample using the ",

"RBR ",
893 "learning algorithm and the ",

"MSE ",
895 "as error measure."

)
897 ),

file = paste0(
899 tmpSavePathTables, "M4_RBR_test_MSE_NonStationary_",

tmpVersionM4_RBR_MSE,
901 ".txt"

),
903 booktabs = TRUE,

include.rownames=FALSE
905 )

907 # ---- #
# MASE ----

909

print(
911 xtable::xtable(

x = t(t(test_M4_RBR_MASE$All)),
913 type = "latex",

label = "tab:RBR:M4:bias:all:mase",
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915 caption = paste0(
"Summary of the log percentage difference of the estimated loss",

917 "relative to the true loss for each validation scheme applied ",
"to the time series from the M4 Competition sample ",

919 "using the ",
"RBR ",

921 "learning algorithm and the ",
"MASE ",

923 "as error measure."
)

925 ),
file = paste0(

927 tmpSavePathTables, "M4_RBR_test_MASE_All_",tmpVersionM4_RBR_MASE,
".txt"

929 ),
booktabs = TRUE,

931 include.rownames=FALSE
)

933

print(
935 xtable::xtable(

x = t(t(test_M4_RBR_MASE$Stationary)),
937 type = "latex",

label = "tab:RBR:M4:bias:stationary:mase",
939 caption = paste0(

"Summary of the log percentage difference of the estimated loss",
941 "relative to the true loss for each validation scheme applied ",

"to the stationary time series from the M4 Competition sample ",
943 "using the ",

"RBR ",
945 "learning algorithm and the ",

"MASE ",
947 "as error measure."

)
949 ),

file = paste0(
951 tmpSavePathTables, "M4_RBR_test_MASE_Stationary_",

tmpVersionM4_RBR_MASE,
953 ".txt"

),
955 booktabs = TRUE,

include.rownames=FALSE
957 )

959 print(
xtable::xtable(

961 x = t(t(test_M4_RBR_MASE$NonStationary)),
type = "latex",

963 label = "tab:RBR:M4:bias:nonstationary:mase",
caption = paste0(

965 "Summary of the log percentage difference of the estimated loss",
"relative to the true loss for each validation scheme applied ",

967 "to the non-stationary time series from the M4 Competition ",
"sample using the ",
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969 "RBR ",
"learning algorithm and the ",

971 "MASE ",
"as error measure."

973 )
),

975 file = paste0(
tmpSavePathTables, "M4_RBR_test_MASE_NonStationary_",

977 tmpVersionM4_RBR_MASE,
".txt"

979 ),
booktabs = TRUE,

981 include.rownames=FALSE
)

983

# \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ####
985 # =================================================================== #

# =================================================================== #
987 #### Results M4-RF ####

# =================================================================== #
989 # =================================================================== #

## \___ Import Data ---------------------------------------------------
991

tmpVersionM4_RF_MSE <- "v2021070901"
993 tmpVersionM4_RF_MASE <- "v2021071201"

995 tmpFileM4_RF_MSE <- paste0(
"results/results_M4_rf_", tmpVersionM4_RF_MSE, ".rdata"

997 )
tmpM4_RF_MSE <- get(load(tmpFileM4_RF_MSE))

999

tmpFileM4_RF_MASE <- paste0(
1001 "results/results_M4_MASE_rf_", tmpVersionM4_RF_MASE, ".rdata"

)
1003 tmpM4_RF_MASE <- get(load(tmpFileM4_RF_MASE))

1005 # |_ Table with values of the Log-Diff ================================
test_M4_RF_MSE <- hypothesis_tests_schemes(

1007 results = tmpM4_RF_MSE,
is_stat = tmp_is_stat

1009 )

1011 test_M4_RF_MASE <- hypothesis_tests_schemes(
results = tmpM4_RF_MASE,

1013 is_stat = tmp_is_stat
)

1015

## \___ Export as Latex Table -----------------------------------------
1017 print(

xtable::xtable(
1019 x = t(t(test_M4_RF_MSE$All)),

type = "latex",
1021 label = "tab:RF:M4:bias:all",

caption = paste0(
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1023 "Summary of the log percentage difference of the estimated loss",
"relative to the true loss for each validation scheme applied ",

1025 "to the time series from the M4 Competition sample ",
"using the ",

1027 "RF ",
"learning algorithm and the ",

1029 "MSE ",
"as error measure."

1031 )
),

1033 file = paste0(
tmpSavePathTables, "M4_RF_test_MSE_All_",tmpVersionM4_RF_MSE,

1035 ".txt"
),

1037 booktabs = TRUE,
include.rownames=FALSE

1039 )

1041 print(
xtable::xtable(

1043 x = t(t(test_M4_RF_MSE$Stationary)),
type = "latex",

1045 label = "tab:RF:M4:bias:stationary",
caption = paste0(

1047 "Summary of the log percentage difference of the estimated loss",
"relative to the true loss for each validation scheme applied ",

1049 "to the stationary time series from the M4 Competition sample ",
"using the ",

1051 "RF ",
"learning algorithm and the ",

1053 "MSE ",
"as error measure."

1055 )
),

1057 file = paste0(
tmpSavePathTables, "M4_RF_test_MSE_Stationary_",

1059 tmpVersionM4_RF_MSE,
".txt"

1061 ),
booktabs = TRUE,

1063 include.rownames=FALSE
)

1065

print(
1067 xtable::xtable(

x = t(t(test_M4_RF_MSE$NonStationary)),
1069 type = "latex",

label = "tab:RF:M4:bias:nonstationary",
1071 caption = paste0(

"Summary of the log percentage difference of the estimated loss",
1073 "relative to the true loss for each validation scheme applied ",

"to the non-stationary time series from the M4 Competition ",
1075 "sample using the ",

"RF ",
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1077 "learning algorithm and the ",
"MSE ",

1079 "as error measure."
)

1081 ),
file = paste0(

1083 tmpSavePathTables, "M4_RF_test_MSE_NonStationary_",
tmpVersionM4_RF_MSE,

1085 ".txt"
),

1087 booktabs = TRUE,
include.rownames=FALSE

1089 )

1091 # ---- #
# MASE ----

1093

print(
1095 xtable::xtable(

x = t(t(test_M4_RF_MASE$All)),
1097 type = "latex",

label = "tab:RF:M4:bias:all:mase",
1099 caption = paste0(

"Summary of the log percentage difference of the estimated loss",
1101 "relative to the true loss for each validation scheme applied ",

"to the time series from the M4 Competition sample ",
1103 "using the ",

"RF ",
1105 "learning algorithm and the ",

"MASE ",
1107 "as error measure."

)
1109 ),

file = paste0(
1111 tmpSavePathTables, "M4_RF_test_MASE_All_",tmpVersionM4_RF_MASE,

".txt"
1113 ),

booktabs = TRUE,
1115 include.rownames=FALSE

)
1117

print(
1119 xtable::xtable(

x = t(t(test_M4_RF_MASE$Stationary)),
1121 type = "latex",

label = "tab:RF:M4:bias:stationary:mase",
1123 caption = paste0(

"Summary of the log percentage difference of the estimated loss",
1125 "relative to the true loss for each validation scheme applied ",

"to the stationary time series from the M4 Competition sample ",
1127 "using the ",

"RF ",
1129 "learning algorithm and the ",

"MASE ",
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1131 "as error measure."
)

1133 ),
file = paste0(

1135 tmpSavePathTables, "M4_RF_test_MASE_Stationary_",
tmpVersionM4_RF_MASE,

1137 ".txt"
),

1139 booktabs = TRUE,
include.rownames=FALSE

1141 )

1143 print(
xtable::xtable(

1145 x = t(t(test_M4_RF_MASE$NonStationary)),
type = "latex",

1147 label = "tab:RF:M4:bias:nonstationary:mase",
caption = paste0(

1149 "Summary of the log percentage difference of the estimated loss",
"relative to the true loss for each validation scheme applied ",

1151 "to the non-stationary time series from the M4 Competition ",
"sample using the ",

1153 "RF ",
"learning algorithm and the ",

1155 "MASE ",
"as error measure."

1157 )
),

1159 file = paste0(
tmpSavePathTables, "M4_RF_test_MASE_NonStationary_",

1161 tmpVersionM4_RF_MASE,
".txt"

1163 ),
booktabs = TRUE,

1165 include.rownames=FALSE
)

1167

# \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ####
1169 # =================================================================== #

# =================================================================== #
1171 #### Results M4-GLM ####

# =================================================================== #
1173 # =================================================================== #

## \___ Import Data ---------------------------------------------------
1175

tmpVersionM4_GLM_MSE <- "v2021070901"
1177 tmpVersionM4_GLM_MASE <- "v2021071201"

1179 tmpFileM4_GLM_MSE <- paste0(
"results/results_M4_ridge_", tmpVersionM4_GLM_MSE, ".rdata"

1181 )
tmpM4_GLM_MSE <- get(load(tmpFileM4_GLM_MSE))

1183

tmpFileM4_GLM_MASE <- paste0(
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1185 "results/results_M4_MASE_ridge_", tmpVersionM4_GLM_MASE, ".rdata"
)

1187 tmpM4_GLM_MASE <- get(load(tmpFileM4_GLM_MASE))

1189 # |_ Table with values of the Log-Diff ================================
test_M4_GLM_MSE <- hypothesis_tests_schemes(

1191 results = tmpM4_GLM_MSE,
is_stat = tmp_is_stat

1193 )

1195 test_M4_GLM_MASE <- hypothesis_tests_schemes(
results = tmpM4_GLM_MASE,

1197 is_stat = tmp_is_stat
)

1199

## \___ Export as Latex Table -----------------------------------------
1201 print(

xtable::xtable(
1203 x = t(t(test_M4_GLM_MSE$All)),

type = "latex",
1205 label = "tab:GLM:M4:bias:all",

caption = paste0(
1207 "Summary of the log percentage difference of the estimated loss",

"relative to the true loss for each validation scheme applied ",
1209 "to the time series from the M4 Competition sample ",

"using the ",
1211 "GLM-RIDGE ",

"learning algorithm and the ",
1213 "MSE ",

"as error measure."
1215 )

),
1217 file = paste0(

tmpSavePathTables, "M4_GLM_test_MSE_All_",tmpVersionM4_GLM_MSE,
1219 ".txt"

),
1221 booktabs = TRUE,

include.rownames=FALSE
1223 )

1225 print(
xtable::xtable(

1227 x = t(t(test_M4_GLM_MSE$Stationary)),
type = "latex",

1229 label = "tab:GLM:M4:bias:stationary",
caption = paste0(

1231 "Summary of the log percentage difference of the estimated loss",
"relative to the true loss for each validation scheme applied ",

1233 "to the stationary time series from the M4 Competition sample ",
"using the ",

1235 "GLM-RIDGE ",
"learning algorithm and the ",

1237 "MSE ",
"as error measure."
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1239 )
),

1241 file = paste0(
tmpSavePathTables, "M4_GLM_test_MSE_Stationary_",

1243 tmpVersionM4_GLM_MSE,
".txt"

1245 ),
booktabs = TRUE,

1247 include.rownames=FALSE
)

1249

print(
1251 xtable::xtable(

x = t(t(test_M4_GLM_MSE$NonStationary)),
1253 type = "latex",

label = "tab:GLM:M4:bias:nonstationary",
1255 caption = paste0(

"Summary of the log percentage difference of the estimated loss",
1257 "relative to the true loss for each validation scheme applied ",

"to the non-stationary time series from the M4 Competition ",
1259 "sample using the ",

"GLM-RIDGE ",
1261 "learning algorithm and the ",

"MSE ",
1263 "as error measure."

)
1265 ),

file = paste0(
1267 tmpSavePathTables, "M4_GLM_test_MSE_NonStationary_",

tmpVersionM4_GLM_MSE,
1269 ".txt"

),
1271 booktabs = TRUE,

include.rownames=FALSE
1273 )

1275 # ---- #
# MASE ----

1277

print(
1279 xtable::xtable(

x = t(t(test_M4_GLM_MASE$All)),
1281 type = "latex",

label = "tab:GLM:M4:bias:all:mase",
1283 caption = paste0(

"Summary of the log percentage difference of the estimated loss",
1285 "relative to the true loss for each validation scheme applied ",

"to the time series from the M4 Competition sample ",
1287 "using the ",

"GLM-RIDGE ",
1289 "learning algorithm and the ",

"MASE ",
1291 "as error measure."

)
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1293 ),
file = paste0(

1295 tmpSavePathTables, "M4_GLM_test_MASE_All_",tmpVersionM4_GLM_MASE,
".txt"

1297 ),
booktabs = TRUE,

1299 include.rownames=FALSE
)

1301

print(
1303 xtable::xtable(

x = t(t(test_M4_GLM_MASE$Stationary)),
1305 type = "latex",

label = "tab:GLM:M4:bias:stationary:mase",
1307 caption = paste0(

"Summary of the log percentage difference of the estimated loss",
1309 "relative to the true loss for each validation scheme applied ",

"to the stationary time series from the M4 Competition sample ",
1311 "using the ",

"GLM-RIDGE ",
1313 "learning algorithm and the ",

"MASE ",
1315 "as error measure."

)
1317 ),

file = paste0(
1319 tmpSavePathTables, "M4_GLM_test_MASE_Stationary_",

tmpVersionM4_GLM_MASE,
1321 ".txt"

),
1323 booktabs = TRUE,

include.rownames=FALSE
1325 )

1327 print(
xtable::xtable(

1329 x = t(t(test_M4_GLM_MASE$NonStationary)),
type = "latex",

1331 label = "tab:GLM:M4:bias:nonstationary:mase",
caption = paste0(

1333 "Summary of the log percentage difference of the estimated loss",
"relative to the true loss for each validation scheme applied ",

1335 "to the non-stationary time series from the M4 Competition ",
"sample using the ",

1337 "GLM-RIDGE ",
"learning algorithm and the ",

1339 "MASE ",
"as error measure."

1341 )
),

1343 file = paste0(
tmpSavePathTables, "M4_GLM_test_MASE_NonStationary_",

1345 tmpVersionM4_GLM_MASE,
".txt"
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1347 ),
booktabs = TRUE,

1349 include.rownames=FALSE
)
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C.9 Create Bayesian Plots

code/bayesian plots v2021071601.R
# ################################################################### #

2 #’ Evaluating the performance of estimation methods
#

4 #’ This is an extension of the code from Cerqueira, Torgo, and Mozetic.
#’ "Evaluating time series forecasting models: an empirical study

6 #’ on performance estimation methods".
#’ In: Machine Learning (2020) 109:1997-2028

8 #’
#’ Modified by: Gustavo Varela-Alvarenga

10 #’ Date: 07/16/2021
# ################################################################### #

12 # \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ####
# > Packages ==========================================================

14 # install.packages("remotes")
# remotes::install_github("b0rxa/scmamp")

16 #
# install.packages("ggplot2")

18 #
# install.packages("Cairo")

20 #
# install.packages("beepr")

22

library("scmamp")
24 library("ggplot2")
library("Cairo")

26

# load code for ‘proportion_plot‘
28 source("src/plots_v2021071301.r")

30 # \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ####
## > Path to save plots to ----

32 tmpSavePath <- "results/plots"

34 # \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ####
# > Helpers ####

36 # |_ Helper Function: get_proportion_plot =============================
get_proportion_plot <- function(final_results_data, baseline){

38

# --- #
40 # get estimation errors

err_estimation <- lapply(
42 X = final_results_data,

function(X) tryCatch(X$err_estimation, error =function(e) {NULL})
44 )

46 err_estimation <- err_estimation[!sapply(err_estimation, is.null)]
# --- #

48 # create df with final estimation errors
fr <- do.call(rbind, err_estimation)

50 fr <- as.data.frame(fr)
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rownames(fr) <- NULL
52

colnames(fr) <-
54 c("p-Holdout", # <---- new method

"cp-Holdout", # <---- new method
56 "cep-Holdout", # <---- new method

"CV", "CV-Bl", "CV-Mod","CV-hvBl",
58 "Preq-Bls", "Preq-Sld-Bls",

"Preq-Bls-Gap","Holdout", "Rep-Holdout",
60 # "Preq-Slide","Preq-Grow" #the order in the original is switched

"Preq-Grow", "Preq-Slide"
62 )

# --- #
64 # get ranks for each estimation procedure

fr_abs <- abs(fr)
66

# --- #
68 cID <- which(colnames(fr_abs) %in% baseline)

70 PerfDiff <- lapply(as.data.frame(fr_abs),
function(x) x-fr_abs[,cID,drop=T])

72

PerfDiff <- as.data.frame(PerfDiff[-cID])
74

rope <- 2.5
76 baout <- lapply(

PerfDiff,
78 function(u) {

bSignedRankTest(u, rope=c(-rope,rope))$posterior.probabilities
80 }

)
82

baout <- lapply(baout,unlist)
84 baout <- do.call(rbind, baout)

rownames(baout) <- gsub("\\.","-",rownames(baout))
86 colnames(baout) <- c("probLeft","probRope","probRight")

proportion_plot(baout, baseline) + scale_fill_brewer(palette="Set2")
88 }

90 # \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ####

92 # =================================================================== #
# =================================================================== #

94 ##### Stationary data #####
# =================================================================== #

96 # =================================================================== #

98 # |_ Import Original Data set =========================================
load("../stationarity_tsdl.rdata")

100

# |_ Indicator if the series is stationary ============================
102 is_stat <- is_stationary_2ensemble

104 # 97 stationary time series (out of 174, ˜56%)
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#table(is_stationary_2ensemble)
106

# \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ####
108 # =================================================================== #

# =================================================================== #
110 #### Results RBR ####

# =================================================================== #
112 # =================================================================== #

114 ## \___ MSE -----------------------------------------------------------

116 tmpVersionRBR_MSE <- "v2021070901"

118 tmpFileRBR_MSE <- paste0(
"results/results_cerqueira_rbr_", tmpVersionRBR_MSE, ".rdata"

120 )
tmpRBR_MSE <- get(load(tmpFileRBR_MSE))

122

# ---- #
124 # Stationary ----

ggsave(
126 filename = paste0(

tmpSavePath, "/RBR_bayes_MSE_Stationary_", tmpVersionRBR_MSE,
128 ".png"

),
130 plot = get_proportion_plot(tmpRBR_MSE[is_stat], "cep-Holdout"),

device = "png",
132 type = "cairo",

width = 6,
134 height = 4

)
136

# ---- #
138 # NonStationary ----

ggsave(
140 filename = paste0(

tmpSavePath, "/RBR_bayes_MSE_NonStationary_", tmpVersionRBR_MSE,
142 ".png"

),
144 plot = get_proportion_plot(tmpRBR_MSE[!is_stat], "cep-Holdout"),

device = "png",
146 type = "cairo",

width = 6,
148 height = 4

)
150

## \___ MASE ----------------------------------------------------------
152

tmpVersionRBR_MASE <- "v2021071201"
154

tmpFileRBR_MASE <- paste0(
156 "results/results_cerqueira_MASE_rbr_", tmpVersionRBR_MASE, ".rdata"

)
158 tmpRBR_MASE <- get(load(tmpFileRBR_MASE))
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160 # ---- #
# Stationary ----

162 ggsave(
filename = paste0(

164 tmpSavePath, "/RBR_bayes_MASE_Stationary_", tmpVersionRBR_MASE,
".png"

166 ),
plot = get_proportion_plot(tmpRBR_MASE[is_stat], "cep-Holdout"),

168 device = "png",
type = "cairo",

170 width = 6,
height = 4

172 )

174 # ---- #
# NonStationary ----

176 ggsave(
filename = paste0(

178 tmpSavePath,
"/RBR_bayes_MASE_NonStationary_",

180 tmpVersionRBR_MASE,
".png"

182 ),
plot = get_proportion_plot(

184 tmpRBR_MASE[!is_stat], "cep-Holdout"
),

186 device = "png",
type = "cairo",

188 width = 6,
height = 4

190 )

192 # \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ####
# =================================================================== #

194 # =================================================================== #
#### Results RF ####

196 # =================================================================== #
# =================================================================== #

198

## \___ MSE -----------------------------------------------------------
200

tmpVersionRF_MSE <- "v2021070901"
202

tmpFileRF_MSE <- paste0(
204 "results/results_cerqueira_rf_", tmpVersionRF_MSE, ".rdata"

)
206 tmpRF_MSE <- get(load(tmpFileRF_MSE))

208 # ---- #
# Stationary ----

210 ggsave(
filename = paste0(

212 tmpSavePath, "/RF_bayes_MSE_Stationary_", tmpVersionRF_MSE, ".png"
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),
214 plot = get_proportion_plot(tmpRF_MSE[is_stat], "cep-Holdout"),

device = "png",
216 type = "cairo",

width = 6,
218 height = 4

)
220

# ---- #
222 # NonStationary ----

ggsave(
224 filename = paste0(

tmpSavePath, "/RF_bayes_MSE_NonStationary_", tmpVersionRF_MSE,
226 ".png"

),
228 plot = get_proportion_plot(tmpRF_MSE[!is_stat], "cep-Holdout"),

device = "png",
230 type = "cairo",

width = 6,
232 height = 4

)
234

## \___ MASE ----------------------------------------------------------
236

tmpVersionRF_MASE <- "v2021071201"
238

tmpFileRF_MASE <- paste0(
240 "results/results_cerqueira_MASE_rf_", tmpVersionRF_MASE, ".rdata"

)
242 tmpRF_MASE <- get(load(tmpFileRF_MASE))

244 # ---- #
# Stationary ----

246 ggsave(
filename = paste0(

248 tmpSavePath, "/RF_bayes_MASE_Stationary_", tmpVersionRF_MASE,
".png"

250 ),
plot = get_proportion_plot(tmpRF_MASE[is_stat], "cep-Holdout"),

252 device = "png",
type = "cairo",

254 width = 6,
height = 4

256 )

258 # ---- #
# NonStationary ----

260 ggsave(
filename = paste0(

262 tmpSavePath, "/RF_bayes_MASE_NonStationary_", tmpVersionRF_MASE,
".png"

264 ),
plot = get_proportion_plot(tmpRF_MASE[!is_stat], "cep-Holdout"),

266 device = "png",
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type = "cairo",
268 width = 6,

height = 4
270 )

272 # \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ####
# =================================================================== #

274 # =================================================================== #
#### Results GLM ####

276 # =================================================================== #
# =================================================================== #

278

## \___ MSE -----------------------------------------------------------
280

tmpVersionGLM_MSE <- "v2021070901"
282

tmpFileGLM_MSE <- paste0(
284 "results/results_cerqueira_ridge_", tmpVersionGLM_MSE, ".rdata"

)
286 tmpGLM_MSE <- get(load(tmpFileGLM_MSE))

288 # ---- #
# Stationary ----

290 ggsave(
filename = paste0(

292 tmpSavePath, "/RIDGE_bayes_MSE_Stationary_", tmpVersionGLM_MSE,
".png"

294 ),
plot = get_proportion_plot(tmpGLM_MSE[is_stat], "cep-Holdout"),

296 device = "png",
type = "cairo",

298 width = 6,
height = 4

300 )

302 # ---- #
# NonStationary ----

304 ggsave(
filename = paste0(

306 tmpSavePath, "/RIDGE_bayes_MSE_NonStationary_", tmpVersionGLM_MSE,
".png"

308 ),
plot = get_proportion_plot(tmpGLM_MSE[!is_stat], "cep-Holdout"),

310 device = "png",
type = "cairo",

312 width = 6,
height = 4

314 )

316 ## \___ MASE ----------------------------------------------------------

318 tmpVersionGLM_MASE <- "v2021071201"

320 tmpFileGLM_MASE <- paste0(
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"results/results_cerqueira_MASE_ridge_", tmpVersionGLM_MASE, ".rdata"
322 )

tmpGLM_MASE <- get(load(tmpFileGLM_MASE))
324

# ---- #
326 # Stationary ----

ggsave(
328 filename = paste0(

tmpSavePath, "/RIDGE_bayes_MASE_Stationary_", tmpVersionGLM_MASE,
330 ".png"

),
332 plot = get_proportion_plot(tmpGLM_MASE[is_stat], "cep-Holdout"),

device = "png",
334 type = "cairo",

width = 6,
336 height = 4

)
338

# ---- #
340 # NonStationary ----

ggsave(
342 filename = paste0(

tmpSavePath, "/RIDGE_bayes_MASE_NonStationary_",
344 tmpVersionGLM_MASE,

".png"
346 ),

plot = get_proportion_plot(tmpGLM_MASE[!is_stat], "cep-Holdout"),
348 device = "png",

type = "cairo",
350 width = 6,

height = 4
352 )

354 # \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ####
# =================================================================== #

356 # =================================================================== #
##### Stationary data - M4 #####

358 # =================================================================== #
# =================================================================== #

360

# |_ Import Original Data set =========================================
362 load("results/stationarity_tsdl_M4_v02.rdata")

364 # |_ Indicator if the series is stationary ============================
is_stat_M4 <- is_stationary_2ensemble_M4_v02

366

# 91 stationary time series (out of 1000, ˜0.091%)
368 #table(is_stationary_2ensemble_M4_v02)

370 # \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ####
# =================================================================== #

372 # =================================================================== #
#### Results M4-RBR ####

374 # =================================================================== #
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# =================================================================== #
376

## \___ MSE -----------------------------------------------------------
378

tmpVersionM4_RBR_MSE <- "v2021070901"
380

tmpFileM4_RBR_MSE <- paste0(
382 "results/results_M4_rbr_", tmpVersionM4_RBR_MSE, ".rdata"

)
384 tmpM4_RBR_MSE <- get(load(tmpFileM4_RBR_MSE))

386 # ---- #
# Stationary ----

388 ggsave(
filename = paste0(

390 tmpSavePath, "/M4_RBR_bayes_MSE_Stationary_", tmpVersionM4_RBR_MSE,
".png"

392 ),
plot = get_proportion_plot(

394 tmpM4_RBR_MSE[is_stat_M4], "cep-Holdout"
),

396 device = "png",
type = "cairo",

398 width = 6,
height = 4

400 )

402 # ---- #
# NonStationary ----

404 ggsave(
filename = paste0(

406 tmpSavePath, "/M4_RBR_bayes_MSE_NonStationary_",
tmpVersionM4_RBR_MSE,

408 ".png"
),

410 plot = get_proportion_plot(
tmpM4_RBR_MSE[!is_stat_M4], "cep-Holdout"

412 ),
device = "png",

414 type = "cairo",
width = 6,

416 height = 4
)

418

## \___ MASE
-------------------------------------------------------------------

420

tmpVersionM4_RBR_MASE <- "v2021071201"
422

tmpFileM4_RBR_MASE <- paste0(
424 "results/results_M4_MASE_rbr_", tmpVersionM4_RBR_MASE, ".rdata"

)
426 tmpM4_RBR_MASE <- get(load(tmpFileM4_RBR_MASE))
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428 # ---- #
# Stationary ----

430 ggsave(
filename = paste0(

432 tmpSavePath, "/M4_RBR_bayes_MASE_Stationary_",
tmpVersionM4_RBR_MASE,

434 ".png"
),

436 plot = get_proportion_plot(
tmpM4_RBR_MASE[is_stat_M4], "cep-Holdout"

438 ),
device = "png",

440 type = "cairo",
width = 6,

442 height = 4
)

444

# ---- #
446 # NonStationary ----

ggsave(
448 filename = paste0(

tmpSavePath, "/M4_RBR_bayes_MASE_NonStationary_",
450 tmpVersionM4_RBR_MASE,

".png"
452 ),

plot = get_proportion_plot(
454 tmpM4_RBR_MASE[!is_stat_M4], "cep-Holdout"

),
456 device = "png",

type = "cairo",
458 width = 6,

height = 4
460 )

462 # \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ####
# =================================================================== #

464 # =================================================================== #
#### Results M4-RF ####

466 # =================================================================== #
# =================================================================== #

468

## \___ MSE -----------------------------------------------------------
470

tmpVersionM4_RF_MSE <- "v2021070901"
472

tmpFileM4_RF_MSE <- paste0(
474 "results/results_M4_rf_", tmpVersionM4_RF_MSE, ".rdata"

)
476 tmpM4_RF_MSE <- get(load(tmpFileM4_RF_MSE))

478 # ---- #
# Stationary ----

480 ggsave(
filename = paste0(
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482 tmpSavePath, "/M4_RF_bayes_MSE_Stationary_", tmpVersionM4_RF_MSE,
".png"

484 ),
plot = get_proportion_plot(

486 tmpM4_RF_MSE[is_stat_M4], "cep-Holdout"
),

488 device = "png",
type = "cairo",

490 width = 6,
height = 4

492 )

494 # ---- #
# NonStationary ----

496 ggsave(
filename = paste0(

498 tmpSavePath, "/M4_RF_bayes_MSE_NonStationary_",
tmpVersionM4_RF_MSE,

500 ".png"
),

502 plot = get_proportion_plot(
tmpM4_RF_MSE[!is_stat_M4], "cep-Holdout"

504 ),
device = "png",

506 type = "cairo",
width = 6,

508 height = 4
)

510

## \___ MASE ----------------------------------------------------------
512

tmpVersionM4_RF_MASE <- "v2021071201"
514

tmpFileM4_RF_MASE <- paste0(
516 "results/results_M4_MASE_rf_", tmpVersionM4_RF_MASE, ".rdata"

)
518 tmpM4_RF_MASE <- get(load(tmpFileM4_RF_MASE))

520 # ---- #
# Stationary ----

522 ggsave(
filename = paste0(

524 tmpSavePath, "/M4_RF_bayes_MASE_Stationary_", tmpVersionM4_RF_MASE,
".png"

526 ),
plot = get_proportion_plot(

528 tmpM4_RF_MASE[is_stat_M4], "cep-Holdout"
),

530 device = "png",
type = "cairo",

532 width = 6,
height = 4

534 )
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536 # ---- #
# NonStationary ----

538 ggsave(
filename = paste0(

540 tmpSavePath, "/M4_RF_bayes_MASE_NonStationary_",
tmpVersionM4_RF_MASE,

542 ".png"
),

544 plot = get_proportion_plot(
tmpM4_RF_MASE[!is_stat_M4], "cep-Holdout"

546 ),
device = "png",

548 type = "cairo",
width = 6,

550 height = 4
)

552

# \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ####
554 # =================================================================== #

# =================================================================== #
556 #### Results M4-GLM ####

# =================================================================== #
558 # =================================================================== #

560 ## \___ MSE -----------------------------------------------------------

562 tmpVersionM4_RIDGE_MSE <- "v2021070901"

564 tmpFileM4_RIDGE_MSE <- paste0(
"results/results_M4_ridge_", tmpVersionM4_RIDGE_MSE, ".rdata"

566 )
tmpM4_RIDGE_MSE <- get(load(tmpFileM4_RIDGE_MSE))

568

# ---- #
570 # Stationary ----

ggsave(
572 filename = paste0(

tmpSavePath, "/M4_RIDGE_bayes_MSE_Stationary_",
574 tmpVersionM4_RIDGE_MSE,

".png"
576 ),

plot = get_proportion_plot(
578 tmpM4_RIDGE_MSE[is_stat_M4], "cep-Holdout"

),
580 device = "png",

type = "cairo",
582 width = 6,

height = 4
584 )

586 # ---- #
# NonStationary ----

588 ggsave(
filename = paste0(
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590 tmpSavePath, "/M4_RIDGE_bayes_MSE_NonStationary_",
tmpVersionM4_RIDGE_MSE,

592 ".png"
),

594 plot = get_proportion_plot(
tmpM4_RIDGE_MSE[!is_stat_M4], "cep-Holdout"

596 ),
device = "png",

598 type = "cairo",
width = 6,

600 height = 4
)

602

## \___ MASE
-------------------------------------------------------------------

604

tmpVersionM4_RIDGE_MASE <- "v2021071201"
606

tmpFileM4_RIDGE_MASE <- paste0(
608 "results/results_M4_MASE_rf_", tmpVersionM4_RIDGE_MASE, ".rdata"

)
610 tmpM4_RIDGE_MASE <- get(load(tmpFileM4_RIDGE_MASE))

612 # ---- #
# Stationary ----

614 ggsave(
filename = paste0(

616 tmpSavePath, "/M4_RIDGE_bayes_MASE_Stationary_",
tmpVersionM4_RIDGE_MASE,

618 ".png"
),

620 plot = get_proportion_plot(
tmpM4_RIDGE_MASE[is_stat_M4], "cep-Holdout"

622 ),
device = "png",

624 type = "cairo",
width = 6,

626 height = 4
)

628

# ---- #
630 # NonStationary ----

ggsave(
632 filename = paste0(

tmpSavePath, "/M4_RIDGE_bayes_MASE_NonStationary_",
634 tmpVersionM4_RIDGE_MASE,

".png"
636 ),

plot = get_proportion_plot(
638 tmpM4_RIDGE_MASE[!is_stat_M4], "cep-Holdout"

),
640 device = "png",

type = "cairo",
642 width = 6,
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height = 4
644 )

646 # \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ####
# =================================================================== #

648 # =================================================================== #
#### Results SIM-RBR ####

650 # =================================================================== #
# =================================================================== #

652

## \___ MSE -----------------------------------------------------------
654

# ---- #
656 # S3 ----

tmpVersionS3_RBR_MSE <- "v2021070901"
658

tmpFileS3_RBR_MSE <- paste0(
660 "results/results_ts3_rbr_", tmpVersionS3_RBR_MSE, ".rdata"

)
662 tmpS3_RBR_MSE <- get(load(tmpFileS3_RBR_MSE))

664 ggsave(
filename = paste0(

666 tmpSavePath, "/SIM_RBR_bayes_MSE_S3_", tmpVersionS3_RBR_MSE, ".png"
),

668 plot = get_proportion_plot(tmpS3_RBR_MSE, "cep-Holdout"),
device = "png",

670 type = "cairo",
width = 6,

672 height = 4
)

674

676 # ---- #
# S4 ----

678 tmpVersionS4_RBR_MSE <- "v2021070901"

680 tmpFileS4_RBR_MSE <- paste0(
"results/results_ts4_rbr_", tmpVersionS4_RBR_MSE, ".rdata"

682 )
tmpS4_RBR_MSE <- get(load(tmpFileS4_RBR_MSE))

684

ggsave(
686 filename = paste0(

tmpSavePath, "/SIM_RBR_bayes_MSE_S4_", tmpVersionS4_RBR_MSE, ".png"
688 ),

plot = get_proportion_plot(tmpS4_RBR_MSE, "cep-Holdout"),
690 device = "png",

type = "cairo",
692 width = 6,

height = 4
694 )

696
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## \___ MASE ----------------------------------------------------------
698

# ---- #
700 # S3 ----

tmpVersionS3_RBR_MASE <- "v2021071201"
702 tmpFileS3_RBR_MASE <- paste0(

"results/results_TS3_MASE_rbr_", tmpVersionS3_RBR_MASE, ".rdata"
704 )

tmpS3_RBR_MASE <- get(load(tmpFileS3_RBR_MASE))
706

ggsave(
708 filename = paste0(

tmpSavePath, "/SIM_RBR_bayes_MASE_S3_", tmpVersionS3_RBR_MASE,
710 ".png"

),
712 plot = get_proportion_plot(tmpS3_RBR_MASE, "cep-Holdout"),

device = "png",
714 type = "cairo",

width = 6,
716 height = 4

)
718

# ---- #
720 # S4 ----

tmpVersionS4_RBR_MASE <- "v2021071201"
722 tmpFileS4_RBR_MASE <- paste0(

"results/results_TS4_MASE_rbr_", tmpVersionS4_RBR_MASE, ".rdata"
724 )

tmpS4_RBR_MASE <- get(load(tmpFileS4_RBR_MASE))
726

ggsave(
728 filename = paste0(

tmpSavePath, "/SIM_RBR_bayes_MASE_S4_", tmpVersionS4_RBR_MASE,
730 ".png"

),
732 plot = get_proportion_plot(tmpS4_RBR_MASE, "cep-Holdout"),

device = "png",
734 type = "cairo",

width = 6,
736 height = 4

)
738

# \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ####
740 # =================================================================== #

# =================================================================== #
742 #### Results SIM-RF ####

# =================================================================== #
744 # =================================================================== #

746 ## \___ MSE -----------------------------------------------------------

748 # ---- #
# S3 ----

750 tmpVersionS3_RF_MSE <- "v2021070901"
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752 tmpFileS3_RF_MSE <- paste0(
"results/results_ts3_rf_", tmpVersionS3_RF_MSE, ".rdata"

754 )
tmpS3_RF_MSE <- get(load(tmpFileS3_RF_MSE))

756

ggsave(
758 filename = paste0(

tmpSavePath, "/SIM_RF_bayes_MSE_S3_", tmpVersionS3_RF_MSE, ".png"
760 ),

plot = get_proportion_plot(tmpS3_RF_MSE, "cep-Holdout"),
762 device = "png",

type = "cairo",
764 width = 6,

height = 4
766 )

768 # ---- #
# S4 ----

770 tmpVersionS4_RF_MSE <- "v2021070901"

772 tmpFileS4_RF_MSE <- paste0(
"results/results_ts4_rf_", tmpVersionS4_RF_MSE, ".rdata"

774 )
tmpS4_RF_MSE <- get(load(tmpFileS4_RF_MSE))

776

ggsave(
778 filename = paste0(

tmpSavePath, "/SIM_RF_bayes_MSE_S4_", tmpVersionS4_RF_MSE, ".png"
780 ),

plot = get_proportion_plot(tmpS4_RF_MSE, "cep-Holdout"),
782 device = "png",

type = "cairo",
784 width = 6,

height = 4
786 )

## \___ MASE ----------------------------------------------------------
788

# ---- #
790 # S3 ----

tmpVersionS3_RF_MASE <- "v2021071201"
792 tmpFileS3_RF_MASE <- paste0(

"results/results_TS3_MASE_rf_", tmpVersionS3_RF_MASE, ".rdata"
794 )

tmpS3_RF_MASE <- get(load(tmpFileS3_RF_MASE))
796

ggsave(
798 filename = paste0(

tmpSavePath, "/SIM_RF_bayes_MASE_S3_", tmpVersionS3_RF_MASE, ".png"
800 ),

plot = get_proportion_plot(tmpS3_RF_MASE, "cep-Holdout"),
802 device = "png",

type = "cairo",
804 width = 6,
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height = 4
806 )

808 # ---- #
# S4 ----

810 tmpVersionS4_RF_MASE <- "v2021071201"
tmpFileS4_RF_MASE <- paste0(

812 "results/results_TS4_MASE_rf_", tmpVersionS4_RF_MASE, ".rdata"
)

814 tmpS4_RF_MASE <- get(load(tmpFileS4_RF_MASE))

816 ggsave(
filename = paste0(

818 tmpSavePath, "/SIM_RF_bayes_MASE_S4_", tmpVersionS4_RF_MASE, ".png"
),

820 plot = get_proportion_plot(tmpS4_RF_MASE, "cep-Holdout"),
device = "png",

822 type = "cairo",
width = 6,

824 height = 4
)

826

# \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ ####
828 # =================================================================== #

# =================================================================== #
830 #### Results SIM-RIDGE ####

# =================================================================== #
832 # =================================================================== #

834 ## \___ MSE -----------------------------------------------------------

836 # ---- #
# S3 ----

838 tmpVersionS3_RIDGE_MSE <- "v2021070901"

840 tmpFileS3_RIDGE_MSE <- paste0(
"results/results_ts3_ridge_", tmpVersionS3_RIDGE_MSE, ".rdata"

842 )
tmpS3_RIDGE_MSE <- get(load(tmpFileS3_RIDGE_MSE))

844

ggsave(
846 filename = paste0(

tmpSavePath, "/SIM_RIDGE_bayes_MSE_S3_", tmpVersionS3_RIDGE_MSE,
848 ".png"

),
850 plot = get_proportion_plot(tmpS3_RIDGE_MSE, "cep-Holdout"),

device = "png",
852 type = "cairo",

width = 6,
854 height = 4

)
856

858 # ---- #
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# S4 ----
860 tmpVersionS4_RIDGE_MSE <- "v2021070901"

862 tmpFileS4_RIDGE_MSE <- paste0(
"results/results_ts4_ridge_", tmpVersionS4_RIDGE_MSE, ".rdata"

864 )
tmpS4_RIDGE_MSE <- get(load(tmpFileS4_RIDGE_MSE))

866

ggsave(
868 filename = paste0(

tmpSavePath, "/SIM_RIDGE_bayes_MSE_S4_", tmpVersionS4_RIDGE_MSE,
870 ".png"

),
872 plot = get_proportion_plot(tmpS4_RIDGE_MSE, "cep-Holdout"),

device = "png",
874 type = "cairo",

width = 6,
876 height = 4

)
878

## \___ MASE ----------------------------------------------------------
880

# ---- #
882 # S3 ----

tmpVersionS3_RIDGE_MASE <- "v2021071201"
884 tmpFileS3_RIDGE_MASE <- paste0(

"results/results_TS3_MASE_ridge_", tmpVersionS3_RIDGE_MASE, ".rdata"
886 )

tmpS3_RIDGE_MASE <- get(load(tmpFileS3_RIDGE_MASE))
888

ggsave(
890 filename = paste0(

tmpSavePath, "/SIM_RIDGE_bayes_MASE_S3_", tmpVersionS3_RIDGE_MASE,
892 ".png"

),
894 plot = get_proportion_plot(tmpS3_RIDGE_MASE, "cep-Holdout"),

device = "png",
896 type = "cairo",

width = 6,
898 height = 4

)
900

# ---- #
902 # S4 ----

tmpVersionS4_RIDGE_MASE <- "v2021071201"
904 tmpFileS4_RIDGE_MASE <- paste0(

"results/results_TS4_MASE_ridge_", tmpVersionS4_RIDGE_MASE, ".rdata"
906 )

tmpS4_RIDGE_MASE <- get(load(tmpFileS4_RIDGE_MASE))
908

ggsave(
910 filename = paste0(

tmpSavePath, "/SIM_RIDGE_bayes_MASE_S4_", tmpVersionS4_RIDGE_MASE,
912 ".png"

344



),
914 plot = get_proportion_plot(tmpS4_RIDGE_MASE, "cep-Holdout"),

device = "png",
916 type = "cairo",

width = 6,
918 height = 4

)
920 beepr::beep("fanfare")
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C.10 Forecasts for the M4 Competition series using the GEARS strategy

code/evaluation M4 v2020080702.R
#’ Applying the GEARS strategy to the 100,000 time series from the

2 #’ M4 Forecasting Competition

4 # > Packages ==========================================================

6 # install.packages("devtools")
library(devtools)

8

# Install the GEARS package
10

## Access Token:
12 GITHUB_PAT <- "b9b7b8b9d384ff89000d1ba40cb0d2e761c273b3"
install_github("gu-stat/gears", auth_token = GITHUB_PAT)

14

## Call the package
16 library(gears)

18 # Install the M4comp2018 package with data from the M4 Competition
# install.packages(

20 # "https://github.com/carlanetto/M4comp2018/releases/download/0.2.0/
M4comp2018_0.2.0.tar.gz",

# repos=NULL
22 # )

24 ## Call the package
library(M4comp2018)

26

# Install the future.apply package
28 # install.packages("future.apply")

30 ## Call the package
library("future.apply")

32

# > Path ==============================================================
34

tmpPathM4 <- "./M4GearsResults"
36

# **************************************************************** ----
38 # DATA ----
# > ----

40

# |__ M4 Data Sets ====================================================
42

# M4 <- M4comp2018::M4
44

# "st" : series_name
46 # "period" : periodicity
# "n" : sample_size

48 # "h" : forecast.horizon
# "x" : data_train
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50 # "xx" : data_test
# "pt_ff" : Point Forecasts (top 25 submissions, one on each row)

52 # "low_ff" : Prediction Interval - Lower Bound (top 25 submissions)
# "up_ff" : Prediction Interval - Upper Bound (top 25 submissions)

54

# \____ Hourly --------------------------------------------------------
56

M4.Hourly <- Filter(function(l) l$period == "Hourly", M4comp2018::M4)
58

M4.Hourly.forecasts <- Map(function(l) l$pt_ff, M4.Hourly)
60

# \____ Daily ---------------------------------------------------------
62

M4.Daily <- Filter(function(l) l$period == "Daily", M4comp2018::M4)
64

M4.Daily.forecasts <- Map(function(l) l$pt_ff, M4.Daily)
66

# \____ Yearly --------------------------------------------------------
68

M4.Yearly <- Filter(function(l) l$period == "Yearly", M4comp2018::M4)
70

M4.Yearly.forecasts <- Map(function(l) l$pt_ff, M4.Yearly)
72

# \____ Weekly --------------------------------------------------------
74

M4.Weekly <- Filter(function(l) l$period == "Weekly", M4comp2018::M4)
76

M4.Weekly.forecasts <- Map(function(l) l$pt_ff, M4.Weekly)
78

# \____ Quarterly -----------------------------------------------------
80

M4.Quarterly <-
82 Filter(function(l) l$period == "Quarterly", M4comp2018::M4)

84 M4.Quarterly.forecasts <- Map(function(l) l$pt_ff, M4.Quarterly)

86 # \____ Monthly -------------------------------------------------------

88 M4.Monthly <-
Filter(function(l) l$period == "Monthly", M4comp2018::M4)

90

M4.Monthly.forecasts <- Map(function(l) l$pt_ff, M4.Monthly)
92

# **************************************************************** ----
94 # Analysis ----
# > ----

96

# |__ Hourly ==========================================================
98

tmpVersionHourly <- "v2020080702"
100 tmpFileHourlyAll <- paste0(

tmpPathM4, "/Hourly_All_One_Step_", tmpVersionHourly, ".rdata"
102 )
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104 tmpFileHourlySummary <- paste0(
tmpPathM4, "/Hourly_Summary_One_Step_", tmpVersionHourly, ".rdata"

106 )

108

plan(multisession, workers = 16)
110

timeHourly <- system.time({
112 hourlyOptim <- future_lapply(

X = 1:length(M4.Hourly),
114 function(X) {

116 tmpDeseason <- deseason(
ts.data = M4.Hourly[[X]]$x,

118 ts.frequency = stats::frequency(M4.Hourly[[X]]$x),
alpha.level = 0.05,

120 forecast.horizon = 1 #M4.Hourly[[X]]$h
)

122

tmpOptim <- gears_optim(
124 DATA = tmpDeseason$deseasonTS,

forecast.horizon = 1, #M4.Hourly[[X]]$h
126 search.size.rs = c(144, 450),

search.number.rs = c(24, 36, 48),
128 last.obs = M4.Hourly[[X]]$n,

y.max.lags = 2,
130 use.intercept = "both",

error.measure = "smape",
132 betas.selection = "both",

use.parallel = FALSE
134 )

136 # Estimation
tmpGears <- gears(

138 DATA = tmpDeseason$deseasonTS,
forecast.horizon = 1, #M4.Hourly[[X]]$h,

140 size.rs = tmpOptim[1, "size.rs"],
number.rs = tmpOptim[1, "number.rs"],

142 last.obs = M4.Hourly[[X]]$n,
y.max.lags = 2,

144 use.intercept = as.character(tmpOptim[1, "intercept"]),
error.measure = "smape",

146 betas.selection = as.character(tmpOptim[1, "betas"]),
use.parallel = FALSE

148 )

150 return(list(
forecasts =

152 tmpGears$out_sample_forecasts * tmpDeseason$seasonalComp,

154 lower = tmpGears$lower * tmpDeseason$seasonalComp,
upper = tmpGears$upper * tmpDeseason$seasonalComp

156 ))
},
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158 future.seed = 0xBEEF
)

160 })

162 plan(sequential)

164 timeHourly[3]/60 # ˜ 5.477333 min

166 save(hourlyOptim, file = tmpFileHourlyAll)

168 # \____ OWA Results - M4 + Gears --------------------------------------

170 allHourlyForecasts <- lapply(
X = 1:length(hourlyOptim),

172 function(X) {
t(t(c(M4.Hourly.forecasts[[X]][, 1], hourlyOptim[[X]]$forecasts)))

174 }
)

176

allResultsHourly <- evaluationM4_One_Step(
178 DATA = M4.Hourly,

forecast.list = allHourlyForecasts,
180 alpha = 0.05

)
182

rownames(allResultsHourly) <-
184 c(as.character(M4comp2018::submission_info$ID[1:25]), "GEARS")

186 # allResultsHourly

188 save(allResultsHourly, file = tmpFileHourlySummary)
beepr::beep("fanfare")

190

# \____ Forecasts Naive2 ----------------------------------------------
192

plan(multisession, workers = 16)
194

tmpForecastsHourlyNaive2 <- future_lapply(
196 X = 1:length(M4.Hourly),

function(X) {
198 forecast_naive2(

ts.data = M4.Hourly[[X]]$x,
200 ts.frequency = stats::frequency(M4.Hourly[[X]]$x),

forecast.horizon = 1,
202 alpha.level = 0.05

)
204 },

future.seed = 0xBEEF
206 )

208 ## SMAPE for naive2

210 smapeM4HourlyNaive2 <- future_lapply(
X = 1:length(M4.Hourly),
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212 function(X) {

214 tmp <- error_measures(
forecasts = tmpForecastsHourlyNaive2[[X]],

216 outsample = M4.Hourly[[X]]$xx[1],
insample = M4.Hourly[[X]]$x,

218 ts.frequency = stats::frequency(M4.Hourly[[X]]$x),
forecast.horizon = 1,

220 alpha.level = 0.05,
error.measure = "smape"

222 )

224 unlist(tmp)
},

226 future.seed = 0xBEEF
)

228

smapeM4HourlyNaive2 <- mean(unlist(smapeM4HourlyNaive2))
230

## MASE for naive2
232

maseM4HourlyNaive2 <- future_lapply(
234 X = 1:length(M4.Hourly),

function(X) {
236

tmp <- error_measures(
238 forecasts = tmpForecastsHourlyNaive2[[X]],

outsample = M4.Hourly[[X]]$xx[1],
240 insample = M4.Hourly[[X]]$x,

ts.frequency = stats::frequency(M4.Hourly[[X]]$x),
242 forecast.horizon = 1,

alpha.level = 0.05,
244 error.measure = "mase"

)
246

unlist(tmp)
248 },

future.seed = 0xBEEF
250 )

252 maseM4HourlyNaive2 <- mean(unlist(maseM4HourlyNaive2))

254 plan(sequential)

256 # |__ Weekly ==========================================================

258 tmpVersionWeekly <- "v2020080702"
tmpFileWeeklyAll <- paste0(

260 tmpPathM4, "/Weekly_All_One_Step_", tmpVersionWeekly, ".rdata"
)

262

tmpFileWeeklySummary <- paste0(
264 tmpPathM4, "/Weekly_Summary_One_Step_", tmpVersionWeekly, ".rdata"

)
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266

268 plan(multisession, workers = 16)

270 timeWeekly <- system.time({
weeklyOptim <- future_lapply(

272 X = 1:length(M4.Weekly),
function(X) {

274

if (M4.Weekly[[X]]$n == 80) {
276 tmp.search.size.rs <- c(26, 43)

tmp.search.number.rs <- c(5, 10)
278 } else {

tmp.search.size.rs <- c(80, 150)
280 tmp.search.number.rs <- c(26, 52)

}
282

tmpDeseason <- deseason(
284 ts.data = M4.Weekly[[X]]$x,

ts.frequency = stats::frequency(M4.Weekly[[X]]$x),
286 alpha.level = 0.05,

forecast.horizon = 1 #M4.Weekly[[X]]$h
288 )

290 tmpOptim <- gears_optim(
DATA = tmpDeseason$deseasonTS,

292 forecast.horizon = 1, #M4.Weekly[[X]]$h
search.size.rs = tmp.search.size.rs,

294 search.number.rs = tmp.search.number.rs,
last.obs = M4.Weekly[[X]]$n,

296 y.max.lags = 2,
use.intercept = "both",

298 error.measure = "smape",
betas.selection = "both",

300 use.parallel = FALSE
)

302

# Estimation
304 tmpGears <- gears(

DATA = tmpDeseason$deseasonTS,
306 forecast.horizon = 1, #M4.Weekly[[X]]$h,

size.rs = tmpOptim[1, "size.rs"],
308 number.rs = tmpOptim[1, "number.rs"],

last.obs = M4.Weekly[[X]]$n,
310 y.max.lags = 2,

use.intercept = as.character(tmpOptim[1, "intercept"]),
312 error.measure = "smape",

betas.selection = as.character(tmpOptim[1, "betas"]),
314 use.parallel = FALSE

)
316

return(list(
318 forecasts =

tmpGears$out_sample_forecasts * tmpDeseason$seasonalComp,
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320

lower = tmpGears$lower * tmpDeseason$seasonalComp,
322 upper = tmpGears$upper * tmpDeseason$seasonalComp

))
324 },

future.seed = 0xBEEF
326 )

})
328

plan(sequential)
330

timeWeekly[3]/60 # ˜ 5.477333 min
332

save(weeklyOptim, file = tmpFileWeeklyAll)
334

# \____ OWA Results - M4 + Gears --------------------------------------
336

allWeeklyForecasts <- lapply(
338 X = 1:length(weeklyOptim),

function(X) {
340 t(t(c(M4.Weekly.forecasts[[X]][, 1], weeklyOptim[[X]]$forecasts)))

}
342 )

344 allResultsWeekly <- evaluationM4_One_Step(
DATA = M4.Weekly,

346 forecast.list = allWeeklyForecasts,
alpha = 0.05

348 )

350 rownames(allResultsWeekly) <-
c(as.character(M4comp2018::submission_info$ID[1:25]), "GEARS")

352

# allResultsWeekly
354

save(allResultsWeekly, file = tmpFileWeeklySummary)
356 beepr::beep("fanfare")

358 # \____ Forecasts Naive2 ----------------------------------------------

360 plan(multisession, workers = 16)

362 tmpForecastsWeeklyNaive2 <- future_lapply(
X = 1:length(M4.Weekly),

364 function(X) {
forecast_naive2(

366 ts.data = M4.Weekly[[X]]$x,
ts.frequency = stats::frequency(M4.Weekly[[X]]$x),

368 forecast.horizon = 1,
alpha.level = 0.05

370 )
},

372 future.seed = 0xBEEF
)
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374

## SMAPE for naive2
376

smapeM4WeeklyNaive2 <- future_lapply(
378 X = 1:length(M4.Weekly),

function(X) {
380

tmp <- error_measures(
382 forecasts = tmpForecastsWeeklyNaive2[[X]],

outsample = M4.Weekly[[X]]$xx[1],
384 insample = M4.Weekly[[X]]$x,

ts.frequency = stats::frequency(M4.Weekly[[X]]$x),
386 forecast.horizon = 1,

alpha.level = 0.05,
388 error.measure = "smape"

)
390

unlist(tmp)
392 },

future.seed = 0xBEEF
394 )

396 smapeM4WeeklyNaive2 <- mean(unlist(smapeM4WeeklyNaive2))

398 ## MASE for naive2

400 maseM4WeeklyNaive2 <- future_lapply(
X = 1:length(M4.Weekly),

402 function(X) {

404 tmp <- error_measures(
forecasts = tmpForecastsWeeklyNaive2[[X]],

406 outsample = M4.Weekly[[X]]$xx[1],
insample = M4.Weekly[[X]]$x,

408 ts.frequency = stats::frequency(M4.Weekly[[X]]$x),
forecast.horizon = 1,

410 alpha.level = 0.05,
error.measure = "mase"

412 )

414 unlist(tmp)
},

416 future.seed = 0xBEEF
)

418

maseM4WeeklyNaive2 <- mean(unlist(maseM4WeeklyNaive2))
420

plan(sequential)
422

# |__ Daily ==========================================================
424

tmpVersionDaily <- "v2020080702"
426 tmpFileDailyAll <- paste0(

tmpPathM4, "/Daily_All_One_Step_", tmpVersionDaily, ".rdata"
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428 )

430 tmpFileDailySummary <- paste0(
tmpPathM4, "/Daily_Summary_One_Step_", tmpVersionDaily, ".rdata"

432 )

434 # Sample sizes
tmpNDaily <- sapply(

436 X = 1:length(M4.Daily),
function(X) M4.Daily[[X]]$n

438 )

440 table(tmpNDaily)

442 plan(multisession, workers = 16)

444 timeDaily <- system.time({
dailyOptim <- future_lapply(

446 X = 1:length(M4.Daily),

448 function(X) {

450 tmp.search.size.rs <- c(30, 60)
tmp.search.number.rs <- c(12)

452

if (X %in% c(34, 2211)) {
454 tmp.search.betas = "last"

} else {
456 tmp.search.betas = "both"

}
458

if (X %in% c(131, 2085, 2211, 2219) ) {
460 tmp.intercept = "without"

} else {
462 tmp.intercept = "both"

}
464

tmpDeseason <- deseason(
466 ts.data = M4.Daily[[X]]$x,

ts.frequency = stats::frequency(M4.Daily[[X]]$x),
468 alpha.level = 0.05,

forecast.horizon = 1 #M4.Daily[[X]]$h
470 )

472 tmpOptim <- gears_optim(
DATA = tmpDeseason$deseasonTS,

474 forecast.horizon = 1, #M4.Daily[[X]]$h
search.size.rs = tmp.search.size.rs,

476 search.number.rs = tmp.search.number.rs,
last.obs = M4.Daily[[X]]$n,

478 y.max.lags = 2,
use.intercept = tmp.intercept,

480 error.measure = "smape",
betas.selection = tmp.search.betas,
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482 use.parallel = FALSE
)

484

# Estimation
486 tmpGears <- gears(

DATA = tmpDeseason$deseasonTS,
488 forecast.horizon = 1, #M4.Daily[[X]]$h,

size.rs = tmpOptim[1, "size.rs"],
490 number.rs = tmpOptim[1, "number.rs"],

last.obs = M4.Daily[[X]]$n,
492 y.max.lags = 2,

use.intercept = as.character(tmpOptim[1, "intercept"]),
494 error.measure = "smape",

betas.selection = as.character(tmpOptim[1, "betas"]),
496 use.parallel = FALSE

)
498 #cat(X)

return(list(
500 forecasts =

tmpGears$out_sample_forecasts * tmpDeseason$seasonalComp,
502

lower = tmpGears$lower * tmpDeseason$seasonalComp,
504 upper = tmpGears$upper * tmpDeseason$seasonalComp

))
506 },

future.seed = 0xBEEF
508 )

})
510

plan(sequential)
512

timeDaily[3]/60 # ˜ 6.286167 min
514

save(dailyOptim, file = tmpFileDailyAll)
516

# \____ OWA Results - M4 + Gears --------------------------------------
518

allDailyForecasts <- lapply(
520 X = 1:length(dailyOptim),

function(X) {
522 t(t(c(M4.Daily.forecasts[[X]][, 1], dailyOptim[[X]]$forecasts)))

}
524 )

526 allResultsDaily <- evaluationM4_One_Step(
DATA = M4.Daily,

528 forecast.list = allDailyForecasts,
alpha = 0.05

530 ) # ˜ 7 min

532 rownames(allResultsDaily) <-
c(as.character(M4comp2018::submission_info$ID[1:25]), "GEARS")

534

# allResultsDaily
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536

save(allResultsDaily, file = tmpFileDailySummary)
538 beepr::beep("fanfare")

540 # \____ Forecasts Naive2 ----------------------------------------------

542 plan(multisession, workers = 16)

544 tmpForecastsDailyNaive2 <- future_lapply(
X = 1:length(M4.Daily),

546 function(X) {
forecast_naive2(

548 ts.data = M4.Daily[[X]]$x,
ts.frequency = stats::frequency(M4.Daily[[X]]$x),

550 forecast.horizon = 1,
alpha.level = 0.05

552 )
},

554 future.seed = 0xBEEF
)

556

## SMAPE for naive2
558

smapeM4DailyNaive2 <- future_lapply(
560 X = 1:length(M4.Daily),

function(X) {
562

tmp <- error_measures(
564 forecasts = tmpForecastsDailyNaive2[[X]],

outsample = M4.Daily[[X]]$xx[1],
566 insample = M4.Daily[[X]]$x,

ts.frequency = stats::frequency(M4.Daily[[X]]$x),
568 forecast.horizon = 1,

alpha.level = 0.05,
570 error.measure = "smape"

)
572

unlist(tmp)
574 },

future.seed = 0xBEEF
576 )

578 smapeM4DailyNaive2 <- mean(unlist(smapeM4DailyNaive2))

580 ## MASE for naive2

582 maseM4DailyNaive2 <- future_lapply(
X = 1:length(M4.Daily),

584 function(X) {

586 tmp <- error_measures(
forecasts = tmpForecastsDailyNaive2[[X]],

588 outsample = M4.Daily[[X]]$xx[1],
insample = M4.Daily[[X]]$x,
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590 ts.frequency = stats::frequency(M4.Daily[[X]]$x),
forecast.horizon = 1,

592 alpha.level = 0.05,
error.measure = "mase"

594 )

596 unlist(tmp)
},

598 future.seed = 0xBEEF
)

600

maseM4DailyNaive2 <- mean(unlist(maseM4DailyNaive2))
602

plan(sequential)
604

# |__ Yearly ==========================================================
606

tmpVersionYearly <- "v2020080702"
608 tmpFileYearlyAll <- paste0(

tmpPathM4, "/Yearly_All_One_Step_", tmpVersionYearly, ".rdata"
610 )

612 tmpFileYearlySummary <- paste0(
tmpPathM4, "/Yearly_Summary_One_Step_", tmpVersionYearly, ".rdata"

614 )

616 # Sample sizes
tmpNYearly <- sapply(

618 X = 1:length(M4.Yearly),
function(X) M4.Yearly[[X]]$n

620 )

622 table(tmpNYearly)
which(tmpNYearly == 13)

624

plan(multisession, workers = 16)
626

beepr::beep_on_error({timeYearly <- system.time({
628 yearlyOptim <- future_lapply(

X = 1:length(M4.Yearly),
630 #lapply(

#X = 21547,
632 function(X) {

634 if (M4.Yearly[[X]]$n <= 15) {
tmp.search.size.rs <- c(6)

636 tmp.search.number.rs <- c(3)

638 } else if (M4.Yearly[[X]]$n < 50) {
tmp.search.size.rs <- c(5, 6)

640 tmp.search.number.rs <- c(5)

642 } else if (M4.Yearly[[X]]$n < 100) {
tmp.search.size.rs <- c(10, 20)
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644 #tmp.search.size.rs <- c(20)
tmp.search.number.rs <- c(5)

646 } else {
tmp.search.size.rs <- c(20, 60)

648 #tmp.search.size.rs <- c(60)
tmp.search.number.rs <- c(30)

650 }

652 if (X %in% c(609, 9012, 9875, 10289, 10033, 12143, 12147, 15088,
17087, 21124)) {

654 tmp.search.betas = "last"
} else {

656 tmp.search.betas = "both"
}

658

if (X %in% c(3472, 3792, 9012, 9861, 10289, 10033, 12143, 12146,
660 12149, 13143, 13332, 13335, 14244, 14833, 15088,

17084, 17086, 17087, 21124,
662 21168, 21547, 22380, 22466) ) {

tmp.intercept = "without"
664 } else {

tmp.intercept = "both"
666 }

668 #tmp.search.betas = "both"
#tmp.intercept = "both"

670

tmpDeseason <- deseason(
672 ts.data = M4.Yearly[[X]]$x,

ts.frequency = stats::frequency(M4.Yearly[[X]]$x),
674 alpha.level = 0.05,

forecast.horizon = 1 #M4.Yearly[[X]]$h
676 )

678 tmpOptim <- gears_optim(
DATA = tmpDeseason$deseasonTS,

680 forecast.horizon = 1, #M4.Yearly[[X]]$h
search.size.rs = tmp.search.size.rs,

682 search.number.rs = tmp.search.number.rs,
last.obs = M4.Yearly[[X]]$n,

684 y.max.lags = 2,
use.intercept = tmp.intercept,

686 error.measure = "smape",
betas.selection = tmp.search.betas,

688 use.parallel = FALSE
)

690

# Estimation
692 tmpGears <- gears(

DATA = tmpDeseason$deseasonTS,
694 forecast.horizon = 1, #M4.Yearly[[X]]$h,

size.rs = tmpOptim[1, "size.rs"],
696 number.rs = tmpOptim[1, "number.rs"],

last.obs = M4.Yearly[[X]]$n,

358



698 y.max.lags = 2,
use.intercept = as.character(tmpOptim[1, "intercept"]),

700 error.measure = "smape",
betas.selection = as.character(tmpOptim[1, "betas"]),

702 use.parallel = FALSE
)

704 cat(paste0(X, "."))
return(list(

706 forecasts =
tmpGears$out_sample_forecasts * tmpDeseason$seasonalComp,

708

lower = tmpGears$lower * tmpDeseason$seasonalComp,
710 upper = tmpGears$upper * tmpDeseason$seasonalComp

))
712 }

#)
714 , future.seed = 0xBEEF

)
716 })

},
718 sound = 9)

720 plan(sequential)

722 timeYearly[3]/60 # ˜ 12.75983 min

724 save(yearlyOptim, file = tmpFileYearlyAll)
beepr::beep("fanfare")

726

# \____ OWA Results - M4 + Gears --------------------------------------
728

allYearlyForecasts <- lapply(
730 X = 1:length(yearlyOptim),

function(X) {
732 t(t(c(M4.Yearly.forecasts[[X]][, 1], yearlyOptim[[X]]$forecasts)))

}
734 )

736 allResultsYearly <- evaluationM4_One_Step(
DATA = M4.Yearly,

738 forecast.list = allYearlyForecasts,
alpha = 0.05

740 ) # ˜ 7 min

742 rownames(allResultsYearly) <-
c(as.character(M4comp2018::submission_info$ID[1:25]), "GEARS")

744

# allResultsYearly
746

save(allResultsYearly, file = tmpFileYearlySummary)
748 beepr::beep("fanfare")

750 # \____ Forecasts Naive2 ----------------------------------------------
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752 plan(multisession, workers = 16)

754 options(future.globals.maxSize= 891289600)

756 tmpForecastsYearlyNaive2 <- future_lapply(
X = 1:length(M4.Yearly),

758 function(X) {
forecast_naive2(

760 ts.data = M4.Yearly[[X]]$x,
ts.frequency = stats::frequency(M4.Yearly[[X]]$x),

762 forecast.horizon = 1,
alpha.level = 0.05

764 )
},

766 future.seed = 0xBEEF
)

768

## SMAPE for naive2
770

smapeM4YearlyNaive2 <- future_lapply(
772 X = 1:length(M4.Yearly),

function(X) {
774

tmp <- error_measures(
776 forecasts = tmpForecastsYearlyNaive2[[X]],

outsample = M4.Yearly[[X]]$xx[1],
778 insample = M4.Yearly[[X]]$x,

ts.frequency = stats::frequency(M4.Yearly[[X]]$x),
780 forecast.horizon = 1,

alpha.level = 0.05,
782 error.measure = "smape"

)
784

unlist(tmp)
786 },

future.seed = 0xBEEF
788 )

790 smapeM4YearlyNaive2 <- mean(unlist(smapeM4YearlyNaive2))

792 ## MASE for naive2

794 maseM4YearlyNaive2 <- future_lapply(
X = 1:length(M4.Yearly),

796 function(X) {

798 tmp <- error_measures(
forecasts = tmpForecastsYearlyNaive2[[X]],

800 outsample = M4.Yearly[[X]]$xx[1],
insample = M4.Yearly[[X]]$x,

802 ts.frequency = stats::frequency(M4.Yearly[[X]]$x),
forecast.horizon = 1,

804 alpha.level = 0.05,
error.measure = "mase"
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806 )

808 unlist(tmp)
},

810 future.seed = 0xBEEF
)

812

maseM4YearlyNaive2 <- mean(unlist(maseM4YearlyNaive2))
814

plan(sequential)
816

# |__ Quarterly =======================================================
818

tmpVersionQuarterly <- "v2020080702"
820 tmpFileQuarterlyAll <- paste0(

tmpPathM4, "/Quarterly_All_One_Step_", tmpVersionQuarterly, ".rdata"
822 )

824 tmpFileQuarterlySummary <- paste0(
tmpPathM4,

826 "/Quarterly_Summary_One_Step_",
tmpVersionQuarterly,

828 ".rdata"
)

830

# Sample sizes
832 tmpNQuarterly <- sapply(

X = 1:length(M4.Quarterly),
834 function(X) M4.Quarterly[[X]]$n

)
836

table(tmpNQuarterly)
838 which(tmpNQuarterly == 26)

840 plan(multisession, workers = 16)

842 beepr::beep_on_error({timeQuarterly <- system.time({
quarterlyOptim <- future_lapply(

844 X = 1:length(M4.Quarterly),
#lapply(

846 #X = 19636,
function(X) {

848

if (M4.Quarterly[[X]]$n <= 18) {
850 tmp.search.size.rs <- c(5)

tmp.search.number.rs <- c(3)
852

} else if (M4.Quarterly[[X]]$n <= 25) {
854 tmp.search.size.rs <- c(8)

tmp.search.number.rs <- c(4)
856 } else if (M4.Quarterly[[X]]$n <= 50) {

tmp.search.size.rs <- c(14)
858 #tmp.search.size.rs <- c(20)

tmp.search.number.rs <- c(4)
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860 } else {
tmp.search.size.rs <- c(20)

862 #tmp.search.size.rs <- c(60)
tmp.search.number.rs <- c(4, 12)

864 }

866 if (X %in% c(19636, 19680)) {
tmp.search.betas = "last"

868 } else {
tmp.search.betas = "both"

870 }

872 if (X %in% c(5619, 14727, 19636, 19680) ) {
tmp.intercept = "without"

874 } else {
tmp.intercept = "both"

876 }

878 #tmp.search.betas = "both"
#tmp.intercept = "both"

880

tmpDeseason <- deseason(
882 ts.data = M4.Quarterly[[X]]$x,

ts.frequency = stats::frequency(M4.Quarterly[[X]]$x),
884 alpha.level = 0.05,

forecast.horizon = 1 #M4.Quarterly[[X]]$h
886 )

888 tmpOptim <- gears_optim(
DATA = tmpDeseason$deseasonTS,

890 forecast.horizon = 1, #M4.Quarterly[[X]]$h
search.size.rs = tmp.search.size.rs,

892 search.number.rs = tmp.search.number.rs,
last.obs = M4.Quarterly[[X]]$n,

894 y.max.lags = 2,
use.intercept = tmp.intercept,

896 error.measure = "smape",
betas.selection = tmp.search.betas,

898 use.parallel = FALSE
)

900

# Estimation
902 tmpGears <- gears(

DATA = tmpDeseason$deseasonTS,
904 forecast.horizon = 1, #M4.Quarterly[[X]]$h,

size.rs = tmpOptim[1, "size.rs"],
906 number.rs = tmpOptim[1, "number.rs"],

last.obs = M4.Quarterly[[X]]$n,
908 y.max.lags = 2,

use.intercept = as.character(tmpOptim[1, "intercept"]),
910 error.measure = "smape",

betas.selection = as.character(tmpOptim[1, "betas"]),
912 use.parallel = FALSE

)
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914 cat(paste0(X, "."))
return(list(

916 forecasts =
tmpGears$out_sample_forecasts * tmpDeseason$seasonalComp,

918

lower = tmpGears$lower * tmpDeseason$seasonalComp,
920 upper = tmpGears$upper * tmpDeseason$seasonalComp

))
922 }

#)
924 , future.seed = 0xBEEF

)
926 })

},
928 sound = 9)

930 plan(sequential)

932 timeQuarterly[3]/60 # ˜ 7.161167 min (2: ˜20.094 min)

934 save(quarterlyOptim, file = tmpFileQuarterlyAll)
beepr::beep("fanfare")

936

# \____ OWA Results - M4 + Gears --------------------------------------
938

allQuarterlyForecasts <- lapply(
940 X = 1:length(quarterlyOptim),

function(X) {
942 t(t(c(

M4.Quarterly.forecasts[[X]][, 1], quarterlyOptim[[X]]$forecasts
944 )))

}
946 )

948 allResultsQuarterly <- evaluationM4_One_Step(
DATA = M4.Quarterly,

950 forecast.list = allQuarterlyForecasts,
alpha = 0.05

952 ) # ˜ 7 min

954 rownames(allResultsQuarterly) <-
c(as.character(M4comp2018::submission_info$ID[1:25]), "GEARS")

956

# allResultsQuarterly
958

save(allResultsQuarterly, file = tmpFileQuarterlySummary)
960 beepr::beep("fanfare")

962 # \____ Forecasts Naive2 ----------------------------------------------

964 plan(multisession, workers = 16)

966 options(future.globals.maxSize= 891289600)
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968 tmpForecastsQuarterlyNaive2 <- future_lapply(
X = 1:length(M4.Quarterly),

970 function(X) {
forecast_naive2(

972 ts.data = M4.Quarterly[[X]]$x,
ts.frequency = stats::frequency(M4.Quarterly[[X]]$x),

974 forecast.horizon = 1,
alpha.level = 0.05

976 )
},

978 future.seed = 0xBEEF
)

980

## SMAPE for naive2
982

smapeM4QuarterlyNaive2 <- future_lapply(
984 X = 1:length(M4.Quarterly),

function(X) {
986

tmp <- error_measures(
988 forecasts = tmpForecastsQuarterlyNaive2[[X]],

outsample = M4.Quarterly[[X]]$xx[1],
990 insample = M4.Quarterly[[X]]$x,

ts.frequency = stats::frequency(M4.Quarterly[[X]]$x),
992 forecast.horizon = 1,

alpha.level = 0.05,
994 error.measure = "smape"

)
996

unlist(tmp)
998 },

future.seed = 0xBEEF
1000 )

1002 smapeM4QuarterlyNaive2 <- mean(unlist(smapeM4QuarterlyNaive2))

1004 ## MASE for naive2

1006 maseM4QuarterlyNaive2 <- future_lapply(
X = 1:length(M4.Quarterly),

1008 function(X) {

1010 tmp <- error_measures(
forecasts = tmpForecastsQuarterlyNaive2[[X]],

1012 outsample = M4.Quarterly[[X]]$xx[1],
insample = M4.Quarterly[[X]]$x,

1014 ts.frequency = stats::frequency(M4.Quarterly[[X]]$x),
forecast.horizon = 1,

1016 alpha.level = 0.05,
error.measure = "mase"

1018 )

1020 unlist(tmp)
},
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1022 future.seed = 0xBEEF
)

1024

maseM4QuarterlyNaive2 <- mean(unlist(maseM4QuarterlyNaive2))
1026

plan(sequential)
1028

# |__ Monthly =======================================================
1030

tmpVersionMonthly <- "v2020080702"
1032 tmpFileMonthlyAll <- paste0(

tmpPathM4, "/Monthly_All_One_Step_", tmpVersionMonthly, ".rdata"
1034 )

1036 tmpFileMonthlySummary <- paste0(
tmpPathM4,

1038 "/Monthly_Summary_One_Step_",
tmpVersionMonthly,

1040 ".rdata"
)

1042

# Sample sizes
1044 tmpNMonthly <- sapply(

X = 1:length(M4.Monthly),
1046 function(X) M4.Monthly[[X]]$n

)
1048

table(tmpNMonthly)
1050 which(tmpNMonthly == 26)

1052 options(future.globals.maxSize= 891289600)

1054 plan(multisession, workers = 16)

1056 beepr::beep_on_error({timeMonthly <- system.time({
monthlyOptim <- future_lapply(

1058 X = 1:length(M4.Monthly),
#lapply(

1060 #X = 47981:length(M4.Monthly),
#X = 47810,

1062 function(X) {

1064 if (M4.Monthly[[X]]$n <= 45) {
tmp.search.size.rs <- c(18)

1066 tmp.search.number.rs <- c(8)
} else if (M4.Monthly[[X]]$n <= 53) {

1068 tmp.search.size.rs <- c(22)
tmp.search.number.rs <- c(8)

1070 } else if (M4.Monthly[[X]]$n <= 59) {
tmp.search.size.rs <- c(30)

1072 tmp.search.number.rs <- c(8)
} else if (M4.Monthly[[X]]$n <= 100) {

1074 tmp.search.size.rs <- c(36)
tmp.search.number.rs <- c(8)
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1076 } else {
tmp.search.size.rs <- c(48)

1078 tmp.search.number.rs <- c(10)
}

1080

# } else if (M4.Monthly[[X]]$n <= 25) {
1082 # tmp.search.size.rs <- c(8)

# tmp.search.number.rs <- c(4)
1084 # } else if (M4.Monthly[[X]]$n <= 50) {

# tmp.search.size.rs <- c(14)
1086 # #tmp.search.size.rs <- c(20)

# tmp.search.number.rs <- c(4)
1088 # } else {

# tmp.search.size.rs <- c(20)
1090 # #tmp.search.size.rs <- c(60)

# tmp.search.number.rs <- c(4, 12)
1092 # }

#
1094 if (X %in% c(3006, 16993, 34815, 38911)) {

tmp.search.betas = "last"
1096 } else {

tmp.search.betas = "both"
1098 }

1100 if (X %in% c(3006, 16993, 34815, 38911) ) {
tmp.intercept = "without"

1102 } else {
tmp.intercept = "both"

1104 }

1106 #tmp.search.betas = "both"
#tmp.intercept = "both"

1108

tmpDeseason <- deseason(
1110 ts.data = M4.Monthly[[X]]$x,

ts.frequency = stats::frequency(M4.Monthly[[X]]$x),
1112 alpha.level = 0.05,

forecast.horizon = 1 #M4.Monthly[[X]]$h
1114 )

1116 tmpOptim <- gears_optim(
DATA = tmpDeseason$deseasonTS,

1118 forecast.horizon = 1, #M4.Monthly[[X]]$h
search.size.rs = tmp.search.size.rs,

1120 search.number.rs = tmp.search.number.rs,
last.obs = M4.Monthly[[X]]$n,

1122 y.max.lags = 2,
use.intercept = tmp.intercept,

1124 error.measure = "smape",
betas.selection = tmp.search.betas,

1126 use.parallel = FALSE
)

1128

# Estimation
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1130 tmpGears <- gears(
DATA = tmpDeseason$deseasonTS,

1132 forecast.horizon = 1, #M4.Monthly[[X]]$h,
size.rs = tmpOptim[1, "size.rs"],

1134 number.rs = tmpOptim[1, "number.rs"],
last.obs = M4.Monthly[[X]]$n,

1136 y.max.lags = 2,
use.intercept = as.character(tmpOptim[1, "intercept"]),

1138 error.measure = "smape",
betas.selection = as.character(tmpOptim[1, "betas"]),

1140 use.parallel = FALSE
)

1142 #if (X %in% c(seq(1:48)*1000)) cat(paste0(X, "."))
cat(paste0(X, "."))

1144 return(list(
forecasts =

1146 tmpGears$out_sample_forecasts * tmpDeseason$seasonalComp,

1148 lower = tmpGears$lower * tmpDeseason$seasonalComp,
upper = tmpGears$upper * tmpDeseason$seasonalComp

1150 ))
}

1152 #)
, future.seed = 0xBEEF

1154 )
})

1156 },
sound = 9)

1158

plan(sequential)
1160

timeMonthly[3]/60 # ˜ 7.161167 min (2: ˜20.094 min)
1162

save(monthlyOptim, file = tmpFileMonthlyAll)
1164 beepr::beep("fanfare")

1166 # \____ OWA Results - M4 + Gears --------------------------------------

1168 allMonthlyForecasts <- lapply(
X = 1:length(monthlyOptim),

1170 function(X) {
t(t(c(

1172 M4.Monthly.forecasts[[X]][, 1], monthlyOptim[[X]]$forecasts
)))

1174 }
)

1176

allResultsMonthly <- evaluationM4_One_Step(
1178 DATA = M4.Monthly,

forecast.list = allMonthlyForecasts,
1180 alpha = 0.05

) # ˜ 7 min
1182

rownames(allResultsMonthly) <-
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1184 c(as.character(M4comp2018::submission_info$ID[1:25]), "GEARS")

1186 # allResultsMonthly

1188 save(allResultsMonthly, file = tmpFileMonthlySummary)
beepr::beep("fanfare")

1190

# \____ Forecasts Naive2 ----------------------------------------------
1192

plan(multisession, workers = 16)
1194

options(future.globals.maxSize= 891289600)
1196

tmpForecastsMonthlyNaive2 <- future_lapply(
1198 X = 1:length(M4.Monthly),

function(X) {
1200 forecast_naive2(

ts.data = M4.Monthly[[X]]$x,
1202 ts.frequency = stats::frequency(M4.Monthly[[X]]$x),

forecast.horizon = 1,
1204 alpha.level = 0.05

)
1206 },

future.seed = 0xBEEF
1208 )

1210 ## SMAPE for naive2

1212 smapeM4MonthlyNaive2 <- future_lapply(
X = 1:length(M4.Monthly),

1214 function(X) {

1216 tmp <- error_measures(
forecasts = tmpForecastsMonthlyNaive2[[X]],

1218 outsample = M4.Monthly[[X]]$xx[1],
insample = M4.Monthly[[X]]$x,

1220 ts.frequency = stats::frequency(M4.Monthly[[X]]$x),
forecast.horizon = 1,

1222 alpha.level = 0.05,
error.measure = "smape"

1224 )

1226 unlist(tmp)
},

1228 future.seed = 0xBEEF
)

1230

smapeM4MonthlyNaive2 <- mean(unlist(smapeM4MonthlyNaive2))
1232

## MASE for naive2
1234

maseM4MonthlyNaive2 <- future_lapply(
1236 X = 1:length(M4.Monthly),

function(X) {
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1238

tmp <- error_measures(
1240 forecasts = tmpForecastsMonthlyNaive2[[X]],

outsample = M4.Monthly[[X]]$xx[1],
1242 insample = M4.Monthly[[X]]$x,

ts.frequency = stats::frequency(M4.Monthly[[X]]$x),
1244 forecast.horizon = 1,

alpha.level = 0.05,
1246 error.measure = "mase"

)
1248

unlist(tmp)
1250 },

future.seed = 0xBEEF
1252 )

1254 maseM4MonthlyNaive2 <- mean(unlist(maseM4MonthlyNaive2))

1256 plan(sequential)
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Appendix D: Optimized results for a subset of Daily time series from

the M4 Competition

Table D.1: Daily time-series case number and their respec-
tive new and old values of the OWA, alongside the new val-
ues for S, M , intercept choice, and betas choice.

TS Number New OWA Previous OWA New S New M Intercept Betas
38 5.86 115.80 7 90 without average
261 5.81 16.19 8 5 without last
493 4.21 26.31 8 10 with average
681 4.09 11.65 50 19 without last
697 1.31 137.91 50 20 without average
700 4.56 12.42 50 17 without last
701 1.47 92.17 8 15 without average
704 5.36 14.35 50 17 without last
709 4.85 13.11 50 17 without last
809 7.19 12.82 50 17 without last
838 3.90 10.06 50 16 without last
863 4.97 12.88 21 16 without last
1025 4.96 29.98 7 14 with average
1063 8.71 25.65 9 12 without average
1289 1.16 32.81 50 15 without last
1451 0.32 29.17 13 12 without last
1681 6.34 11.85 50 15 without last
1686 6.11 12.02 50 15 without last
1948 7.31 10.77 50 18 without average
1993 8.23 23.70 50 19 with average
2116 2.94 13.12 50 15 without last
2218 4.29 12.54 11 14 without average
2232 2.27 33.30 11 16 without average
2256 0.44 14.56 50 16 without last
2317 5.78 38.35 80 7 without last
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2378 6.06 103.47 12 6 with last
2463 10.26 63.12 11 14 with last
2487 7.26 81.69 11 14 without average
2504 6.45 53.99 7 20 with average
2532 1.00 30.56 11 14 without last
2543 4.17 10.26 50 20 without average
2548 0.36 21.30 9 7 with average
2566 3.90 34.56 13 10 with average
2569 2.34 16.56 50 15 without last
2583 2.25 11.40 50 20 with average
2640 14.21 40.93 80 7 without last
2642 11.19 54.54 80 7 without last
2691 1.78 11.35 50 15 without last
2697 4.78 13.68 50 15 with average
2744 2.42 13.08 8 10 with average
2766 8.48 19.52 60 13 with last
2789 4.70 15.62 30 15 with last
2845 4.87 13.59 13 8 without last
2974 7.99 11.85 50 19 with average
3002 4.19 16.04 11 14 with last
3016 1.40 38.48 50 15 with average
3022 7.55 37.97 8 10 with last
3023 0.44 20.05 120 7 without last
3064 4.02 14.49 50 16 with last
3102 11.87 86.32 6 8 with average
3160 7.56 13.60 50 16 without last
3232 4.34 36.83 7 30 with last
3292 0.15 22.29 14 8 with average
3398 1.74 49.56 6 7 with average
3457 0.99 14.68 7 20 with average
3559 1.52 39.14 50 15 with average
3649 2.64 18.10 7 30 with last
3706 5.94 10.17 50 20 with average
4207 0.96 12.14 50 15 without last
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Appendix E: List of the top 20 papers found under the keywords ’ma-

chine learning time series’ in number of citations, and whether

they mention seasonality in their text.
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Figure E.1: List of the top 20 papers found under the keywords ’machine learning time
series’ in number of citations, and whether they mention seasonality in their text.
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