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This dissertation is divided into two parts. The first part introduces the p-Holdout
family of validation schemes for minimizing the generalization error rate and improving
forecasting accuracy. More specifically, if one wants to compare different forecasting
methods, or models, based on their performance, one may choose to use “out-of-sample
tests” based on formal hypothesis tests, or “out-of-sample tests” based on data-driven
procedures that directly compare the models using an error measure (e.g., MSE, MASE).
To distinguish between the two “out-of-sample tests” terminologies seen in the literature,
we will use the term “out-of-sample tests” for the former and “out-of-sample validation”
for the latter. Both methods rely on some form of data split. We call these data partition
methods “validation schemes.” We also provide a history of their use with time-series
data, along with their formulas and the formulas for the associated out-of-sample gen-

eralization errors. We also attempt to organize the different terminologies used in the



statistics, econometrics, and machine learning literature into one set of terms. Moreover,
we noticed that the schemes used in a time series context overlook one crucial characteris-
tic of this type of data: its seasonality. We also observed that deseasonalizing is not often
done in the machine learning literature. With this in mind, we introduce the p-Holdout
family of validation schemes. It has three new procedures that we have developed specif-
ically to consider a series’ periodicity. Our results show that when applied to benchmark
data and compared to state-of-the-art schemes, the new procedures are computationally
inexpensive, improve the forecast accuracy, and greatly reduce, on average, the forecast
error bias, especially when applied to non-stationary time series.

In the second part of this dissertation, we introduce a new machine learning strategy
to select forecasting models. We call it the GEARS (generalized and rolling sample)
strategy.

The “generalized” part of the name is because we use generalized linear models
combined with partial likelihood inference to estimate the parameters. It has been shown
that partial likelihood inference enables very flexible conditions that allow for correct time
series analysis using GLMs. With this, it becomes easy for users to estimate multivariate
(or univariate) time series models. All they have to do is provide the right-hand side
variable, the variables that should enter the left-hand side of the model, and their lags.
GLMs also allow for the inclusion of interactions and all sorts of non-linear links. This
easy setup is an advantage over more complicated models like state-space and GARCH.
And the fact that we can include covariates and interactions is an advantage over ARIMA,
Theta-method, and other univariate methods.

The “rolling sample” part relates to estimating the parameters over a sample of



a fixed size that “moves forward” at different “rounds” of estimation (also known as
“folds”). This part resembles the “rolling window” validation scheme, but ours does
not start at 7' = 1. The “best” model is taken from the set with all possible combinations
of covariates - and their respective lags - included in the right-hand side of the forecasting
model. Its selection is based on the minimization of the average error measure over all
folds. Once this is done, the best model’s estimated coefficients are used to get the out-
of-sample forecasts.

We applied the GEARS method to all the 100,000 time-series used in the 2018’s
M-Competition, the M4 Forecasting Competition. We produced one-step-ahead forecasts
for each series and compared our results with the submitted approaches and the bench-
mark methods. The GEARS strategy yielded the best results - in terms of the smallest
overall weighted average of the forecast errors - more often than any of the twenty-five
top methods in that competition. We had the best results in 8,750 cases out of the 100,000,
while the procedure that won the competition had better results in fewer than 7,300 series.

Moreover, the GEARS strategy shows promise when dealing with multivariate time
series. Here, we estimated several forecasting models based on a complex formulation
that includes covariates with variable and fixed lags, quadratic terms, and interaction
terms. The accuracy of the forecasts obtained with GEARS was far superior than the one
observed for the predictions from an ARIMA. This result and the fact that our strategy
for dealing with multivariate series is far simpler than VAR, State Space, or Cointegration
approaches shines a light in the future of our procedure.

An R package was written for the GEARS strategy. A prototype web application -

using the R package “Shiny” - was also developed to disseminate this method.
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Part I

New Validation Procedures to Improve Forecasting Accuracy



Chapter 1: Introduction

Assessment of forecast accuracy is an essential step in evaluating the procedures
used in a given scenario. Such procedures can be divided into two classes: forecasting
methods and forecasting models'. We define a forecasting model as the equation that
represents the relationship (linear, non-linear, or non-parametric) between the variables
in the analysis. In contrast, a forecasting method includes the model, the estimation
procedure (i.e., the learning algorithm) used to fit the model, and the data used for that
estimation.

To compare different forecasting methods, or models, based on their forecasting
ability, one may choose to use “out-of-sample tests” that rely on partitioning the time
series into two (or more) non-overlapping subsamples. The different procedures used to
split a data set belong to a class called validation schemes. Splitting the data is neces-
sary because using the same sample to estimate and check a model’s prediction ability
might lead to over-fitting it without necessarily providing good forecasts. These data-
partitioning procedures also aim at minimizing the combined bias and variance. They do
it by adding some bias in return for a reduction in the sampling variance. This is known

as the bias-variance trade-off.

I Here, we feel that it is helpful to formalize the distinction between forecasting methods and models,
similarly to what was done by Giacomini and White [1].



The mechanics of using validation schemes to evaluate forecast accuracy are quite
simple. If one already has a forecasting model and wants to compare the performance
of different estimation methods (i.e., learning algorithms), the time series is partitioned
into a training set and a test set. The test set is wholly removed from the estimation
phase and used only to compute the “true” out-of-sample forecast errors. The remaining
observations become the training set, which is used to fit the model according to the
selected estimation method and obtain its forecasts.

The description above is usually the approach taken by formal ‘“out-of-sample
tests” to evaluate different forecasting methods. These are procedures based on formal
hypothesis tests created to evaluate the conditional or unconditional predictive ability of
each forecasting method (the former asks “[CJ]an we predict which forecast will be more
accurate at a future date?”’; the latter focuses on finding out “[W]hich forecast was more
accurate on average?’ - both quotes are from Giacomini and White [1, p. 1545]), like the
DM tests [2], or the tests by Giacomini and White [1] or Clark and McCracken [3] 2.

If one wants to compare different forecasting model formulations or optimize a
methods’ hyperparameters, the usual approach is to evaluate the predictions using data-
driven “out-of-sample tests.” In this approach, after splitting the original time series into
the training and test data sets, the training set is partitioned into an estimation set and
a validation set. The validation set is completely removed from the estimation phase
and used only to compute the “pseudo” out-of-sample forecast errors. Different model

formulations (and with distinct hyperparameters, if that is the case) are fit to the data in

2Diebold and Mariano [2], Diebold [4], and Clark and McCracken [3] prefer the term “pseudo-out-of-
sample tests.”



the estimation set, and the validation set is used to calculate the accuracy of their forecasts.
The model formulation (or set of hyperparameters) that yields the smallest error measure
in the validation set is crowned the winner’. The best model is applied to the entire
training set, and the test set is used the obtain the “true” out-of-sample forecast errors.
To distinguish between the two “out-of-sample tests” terminologies seen in the lit-
erature, we will use the term “out-of-sample tests” to refer to the class of procedures
based on formal hypothesis tests. Oppositely, when forecast models are selected based

”4 We want

on data-driven approaches, we will use the term “out-of-sample validation
to stress that the distinction we make here is merely to avoid terminological confusion,
since formal tests and partitioning the time series only into training and test sets can be
used to select forecast models [1], just as data-driven approaches that split the series into
validation and estimation sets can be used to evaluate different forecasting methods [7].
As to which approach is the better one, it is hard to say. For instance, Clark and
McCracken [3] argue that many of the tests of equal predictive ability (like the ones by
Giacomini and White [1] and West [8]) ignore “the real-time nature of the data used in
many applications” [3, p. 15]. Moreover, while Clark and McCracken [9] propose a test
where that nature is taken into account, many results hold only in special cases or are
not robust to the presence of some noise [3, p. 15-16]. Furthermore, Inoue and Kilian

[10] compare in-sample and out-of-sample tests under the null of no predictability and

conclude that the former produces more credible results (and with higher power) than the

3Such assessment would be more in line with the unconditional approach of the formal tests.

“This has a different meaning to the term “out-of-sample evaluation” by Tashman [5, p. 437], and the
expression “last block validation” from Bergmeir and Benitez [6, p. 193]. These authors used those terms
in reference only to a particular group of procedures that we define in Chapter 3 as “forward-validation
schemes” (see also Section 3.2).



latter (provided that the proper critical values are used), especially when data mining”® is
used. Additionally, Diebold and Mariano [2, p. 253] stated that the formal comparison of
forecast accuracy - and, consequently, the development of formal tests - is difficult due to
the dependent nature of the forecast errors over time.

On the other hand, “out-of-sample validation” approaches mainly deal with the
problem of obtaining the best prediction and often do a good job of capturing compli-
cated relationships. Because of this, these methods have been outperforming classical
approaches. For instance, instead of worrying about the data-generating process, the
methods that won the last two M-competitions are machine-learning-based methods that
use validation schemes to select the best forecast model [11, 12].

From our literature review (Chapter 2), what determines which method one should
use is often the area in which one works. On the one side, econometricians seem to pre-
fer to use formal “out-of-sample tests” (based on the econometric, or economic-related,
journals in which they published their work). On the other, machine learning practition-
ers prefer to use “out-of-sample validation” schemes. And it is not like there is a debate
between the two areas to figure out what approach works best. Sometimes, it actually
seems like there is a giant gap between the two. For instance, in 2020, the first version
of a pre-print published by the journal “Data Mining and Knowledge Discovery” started
with the sentence “This paper introduces Time Series Regression (TSR): a little-studied
task of which the aim is to learn the relationship between a time series and a continuous

target variable” (Tan et al. [13] - the latest version has been corrected after these words

>That is, searching among different forecast model specifications and reporting only those with the
highest predictive ability.



received backlash on social media).
In the previous example, it seems that terminology played a vital role in the con-
fusion®. However, in a larger sense, statisticians might be at fault for such a gap. In the

paper “To explain or to predict?”’, Shmueli [15] writes:

“Recognizing that statistical methodology has focused mainly on inference
indicates an important gap to be filled. (...) Currently, the predictive void has
been taken up the field of machine learning and data mining. In fact, the dif-
ferences, and some would say rivalry, between the fields of statistics and data
mining can be attributed to their different goals of explaining versus predict-
ing even more than to factors such as data size. While statistical theory has
focused on model estimation, inference, and fit, machine learning and data
mining have concentrated on developing computationally efficient predictive
algorithms and tackling the bias—variance trade-off in order to achieve high
predictive accuracy.” (Shmueli, 2010, p. 306)

And in the abstract of the paper “Statistical modeling: The two cultures,” Breiman

[16] argues that:

“There are two cultures in the use of statistical modeling to reach conclusions
from data. One assumes that the data are generated by a given stochastic data
model. The other uses algorithmic models and treats the data mechanism as
unknown. The statistical community has been committed to the almost ex-
clusive use of data models. This commitment has led to irrelevant theory,
questionable conclusions, and has kept statisticians from working on a large
range of interesting current problems. Algorithmic modeling, both in theory
and practice, has developed rapidly in fields outside statistics. It can be used
both on large complex data sets and as a more accurate and informative al-
ternative to data modeling on smaller data sets. If our goal as a field is to use
data to solve problems, then we need to move away from exclusive depen-
dence on data models and adopt a more diverse set of tools.” (Breiman, 2001,
p. 199)

For those reasons, we will focus on “out-of-sample validation” schemes and will
provide a discussion that is more practical and less focused on theoretical proofs. Other
factors impacted this decision, and in Chapter 2, we discuss the hardships that dependent

data brings to the development of theoretical results in this literature.

See Hyndman [14].



We also propose new procedures to fill in a gap observed during our literature re-
view. In our survey, we noticed that the validation schemes developed for time series
often overlook one crucial characteristic of this type of data: its seasonality. Since a time
series might contain cycles and seasonal patterns, disregarding them when dividing the
series between training (estimation and validation) and test data might lead to an incor-
rect choice of the best forecasting model. This is the same argument that Bergmeir and
Benitez [6] make when discussing the importance of taking non-stationarity into account.

They write’,

“Non-stationarity has to be taken into account throughout the whole modeling
process, not only during model selection. Depending on the type of stationar-
ity, it can be easily removed by a preprocessing step (...). If non-stationarity
cannot be removed by such a preprocessing step, the model building proce-
dure may require a processing step that determines, which parts of the series
to include in the modeling, as proposed by Deco et al. [22], or prediction of
the series might even be an impossible task [22,33]. Furthermore, for non-
stationary series last block evaluation might be misleading (...), as the block
chosen for testing might be very different from the training data, and the un-
known future may also be different from the training data, the test data, or
from both of these.” (Bergmeir and Benitez, 2012, p. 198)

We could easily replace “non-stationarity” with “seasonality” on this quote. Firstly,
we say that seasonality (when it occurs) must be taken into account. However, in our re-
view, we observed that more than half of the top 20 most cited papers under the keywords
“machine learning time series” completely fail to mention anything about “season” or
“cycles.” Furthermore, a search on Google Scholar for the terms “machine learning time
series deseasonalized” or “machine learning time series deseasonalize” yielded fewer than

1,300 hits (1,240 in the former and 1,230 in the latter). It seems, then, that, in general,

7In the quote, Deco et al. [22] refers to the paper: G. Deco, R. Neuneier, B. Schiirmann, Non-parametric
data selection for neural learning in non-stationary time series, Neural Networks 10 (3) (1997) 401-407.
The citation [33] refers to: T.Y. Kim, K.J. Oh, C. Kim, J.D. Do, Artificial neural networks for non-stationary
time series, Neurocomputing 61 (1-4) (2004) 439-447.



those in Academia who deal with time series methods and machine learning do not con-
sider seasonal patterns. In the industry, the behavior seems the same. Only relatively
recently have we seen a movement towards dealing with seasonal data. For instance,
Google’s TensorFlow - a software library for machine learning - was released in 2015,
and in 2016 Google announced its capabilities to deal with time-series data [17]. How-
ever, only in 2019, they released a library for forecasting time series that accounts for a
series’ seasonality [18].

Secondly, for seasonal time series, last block evaluation might be misleading, as
the block chosen for testing might be very different from the training data. However, we
argue that because a seasonal series display a similar behavior over time, it is possible to
obtain similar validation and test sets in a way that improves model selection and forecast

accuracy, as shown in Figure 1.1.

Training Data Test data of Training Data Test data of
length / length /

Estimation Set of Estimation Set of
sizeT—1— sizeT—1-Iv—
(in-sample estimation) (in-sample estimation)

'
'
1
'
'

Using asthe would make for a better

(more representative of
the test data), but it costs
observations from the Estimation Set

would not be
representative of
the test data

time time

Figure 1.1: Example of splitting a time series without account for its season-
ality (Panel A) and accounting for it (Panel B).
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Based on this, we developed the p-Holdout tfamily of validation schemes. The “p” in



p-Holdout stands for “period,” an inspiration taken from Box et al. [19]®. And “Holdout”
was chosen because our schemes are simple modifications of the last block procedure,
which is more commonly called the holdout scheme since the last part of the data is “held
out” from the training set.

The p-Holdout family has three new validation schemes that take into account a
series’ periodicity. The first one simply called the p-Holdout scheme, is a simple
modification of the Holdout scheme that incorporates the period in an additive way,
while the cp-Holdout does that in a multiplicative manner. In both cases, the period
is obtained using the frequency function from base R°. The cep-Holdout works
similarly as the co-Holdout but uses the dominant frequency of a time series estimated
from a spectral analysis of the data'®. A real-life data example of partitioning a data set
under these procedures is given in Figure 1.2. In Panel A, the famous time series from
Brockwell and Davis [20, p. 557] of the annual numbers of lynx trappings for 1821-1934
in Canada is split into training (70% of the data) and test sets (30%). We would like to
obtain a validation set that is as similar as possible to the test set. Since the frequency
is equal to one (i.e., frequency (1lynx) returns 1), we see in Panels B, C, and D that
the division according to the Holdout , p~-Holdout , and cp-Holdout procedures
yields similar validation sets, and none of them capture the spike seen in the test set. On
the other hand, the cep—-Holdout scheme can capture it, yielding a validation set that

resembles the test set.

8Quoting Box et al. [19, p. 306] in their chapter Analysis of Seasonal Time Series: “In general, we say
that a series exhibits periodic behavior with period s when similarities in the series occur after s basic time
intervals.”

9Here, the “frequency” is the number of sample observations before the seasonal pattern repeats.

10Given by the findfrequency function from the forecast package.
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A: Training and Test sets

B: Holdout

D: cp-Holdout

S

E: cfp-Holdout

Figure 1.2: Time series with the annual number of lynx trapping for 1821-
1934 in Canada, partitioned according to different validation schemes. Panel
A shows the data split into the training set (blue) and the test set (red) us-
ing the holdout scheme. In Panel B, the training data is further divided into
estimation (green) and validation sets (yellow) according to the holdout pro-
cedure. Panels C, D, and E show the division of the training set using the
p-holdout, cp-holdout, and cep-holdout, respectively. In Panels B-E, the max-
imum length of the estimation set is 70% that of the training set.
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To evaluate our procedures, we used an experimental design that was first intro-
duced by Bergmeir and Benitez [6] and augmented by Bergmeir et al. [21] to include sea-
sonal cases. The benchmarking data sets created via Monte Carlo simulation were also
used by Cerqueira et al. [22] to compare the performance of several validation schemes.
These authors also used real-life data sets in their study. Since the work of Cerqueira
and Torgo and Mozeti¢ [22] is the most recent one (2020) and includes more schemes
and time series, we used their methodology to assess our proposed scheme. By using
the same data and the same methodology, we can directly compare our results to theirs.
Henceforth, we will refer to the work of Cerqueira et al. [22] as CTM.

In the experimental design by CTM, the goal is to evaluate the impact in forecast
ability of the different data-splitting methods (the validation schemes). This is done by
calculating the difference in the out-of-sample error in the fest set (also called the “ground
truth loss” [22] or “true out-of-sample generalization error” [23]) and the out-of-sample
error in the validation set (the “pseudo out-of-sample generalization error”).

To do that, we take a time series and split it into the training and test sets using the
classic Holdout scheme. A given forecasting model is fitted to the training set using
a given estimation method, and the forecasts are compared to the out-of-sample obser-
vations in the test set yielding the generalization. Then, the training set is further split
into the estimation and validation sets using each one of the fourteen validation schemes
considered here. The same forecasting model is fit using the same estimation method,
and its forecasts are used to calculate the generalization error based on the validation
set. Once both generalization errors are obtained, the absolute predictive accuracy error
(APAE - which is the absolute difference between the errors) is calculated, and the vali-
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dation schemes are ranked based on it - the scheme that yielded the smallest APAE value
is the “best” for that time series and receives rank = 1, while the scheme with the maxi-
mum APAE is ranked 14-th. After going over this process for all time series, we take the
average of the ranks obtained from each one, and we evaluate which scheme, on average,
yielded the smallest values for the APAE metric.

However, the “pseudo” out-of-sample errors can be very close to the “true” out-of-
sample errors, yet their difference can be far from zero. Ideally, both should be close to
each other and close to zero. The APAE metric evaluates the former, and CTM uses the
the log scaled of the predictive accuracy error (PAE) metric to evaluate the latter. The
PAE metric is essentially the same as the APAE metric, it returns the difference (not the
absolute difference) between the estimation error (obtained by applying a loss function
to the forecasts from the model fit to estimation set and the actual observations from the
validation set) and the “true” error (applying the same loss function to the forecasts from
the model fit to the training set and the actual values from the test set).

Using the data from CTM, we observed that accounting for the periodicity has a
considerable impact on reducing the average forecast error bias (measured by the pre-
dictive accuracy error - PAE - metric, especially in non-stationary series, as shown in
Chapter 6. Moreover, when we focused only on periodic series (with seasons or cycles
greater than 1) taken from a subsample of 1,000 real-life time series randomly selected
from the 100,000 time series in the M4 Forecasting Competition database [24], we no-
ticed that the new schemes yielded better results, both in terms of being the schemes that
yielded the smallest forecast errors (quantified by the absolute predictive accuracy error

- APAE - metric) more often than all of the other methods, and in terms of providing a
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smaller error bias (PAE). And again, the best results were observed when non-stationary
series were considered.

To complement our analysis, we also provide a brief history of the use of validation
schemes with time-series data (Chapter 2). Based on this, we tried to organize all the dif-
ferent terminologies used in the statistics, econometrics, and machine learning literature
into one set of terms.

In Chapter 3, we provide a more comprehensive account of the details for each
validation scheme. Following Schnaubelt [23], who wrote the basic formulas for some of
the validation procedures and how to use them to measure forecast accuracy, we write a
general theory on how to use the schemes to evaluate forecasting methods and models.
We expand on Schnaubelt’s work by detailing each validation scheme and providing the
associated formulas for each procedure’s out-of-sample generalization errors, as Arlot
and Celisse [25] did for the independent case. We also added information on schemes
not covered by Schnaubelt [23], and present schematic illustrations - made specifically
for the time series case - of partitioning the series using each one of them. From our
literature survey, it seems that this is the first time that an organized, detailed, and properly
illustrated survey of (most of) the state-of-the-art validation schemes used in time series
is given within a time series context.

We expand on the motivation behind the creation of the p~-Holdout family of
validation schemes in Chapter 4. Similar to what was done for the other validation pro-
cedures, we provide the formulas for the three new methods that we are proposing and
explain how to use them to evaluate forecasting models.

The methodological approach we used to evaluate our new schemes, including the
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estimation methods (learning algorithms) used to fit the models and the details about the
Monte Carlo simulations we ran, can be found in Chapter 5. In that same chapter, we
give a brief description of the real-life data sets taken from CTM and the M4 Forecast-
ing Competition that we used to complement our analysis. The results are presented in

Chapter 6, and Chapter 7 contains our final remarks and suggestions for future research.
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Chapter 2:  Validation Schemes and Forecast Evaluation - A Brief His-

tory

One approach to evaluate forecast accuracy and compare forecasting methods and
models is to use data-driven procedures to split the original time series into two (or more)
non-overlapping sub-samples and use one part to fit the model and the other to evaluate
its predictive accuracy. The method/model that yields the smallest error measure is con-
sidered the “best” one, as it was validated during this entire process. Thus, we call this

approach “out-of-sample validation,”!

and the class of procedures used to split the data
receives the name “validation schemes.”

The way we call the sub-samples has changed a lot over time. Nowadays, the first
sub-sample is usually called the training data (or the “in-sample data” - IS - as it is of-
ten called in the statistics/econometrics literature). It is used to fit a selected forecasting
model and obtain the regression coefficients of each covariate (i.e., it is used to learn

the weights of the features). We then use the estimated coefficients to obtain the out-

of-sample forecasts and compare these to the observed values in the second sub-sample,

! As mentioned in the Introduction (Chapter 1), some authors call the methods of evaluating the forecast
accuracy based on data splits as “out-of-sample tests.” It seems that this terminology started with Meese
and Rogoff [26]. Other names have been used (for instance, Diebold [4] calls them *“pseudo-out-of-sample
procedures,” Stock and Watson [27] call them “‘simulated out of sample” methods, and Makridakis [28]
calls it “sliding simulation,” to name a few), but “out-of-sample tests” seems to be the most used term.
However, from our review, “out-of-sample tests” seem to encompass only a subset of the procedures, the
ones called “forward-validation” schemes. More on this later.
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the fest data set (or the “out-of-sample data” - OOS). At this step, the method’s forecast-
ing accuracy is calculated based on some error measure selected by the analyst (RMSE,
MAD, MASE). Figure 2.1 - Panel A shows an example of a data set split into a training
set and a test set using the Hol dout validation scheme (more about it in Section 3.2.1).
This is the simplest validation scheme, and it has this name because the test data is “held
out” of the data used for fitting. The same approach can also be used for model selection
and hyperparameters’ optimization. In those cases, the training data is further divided

into an “estimation set” and a non-overlapping “validation set™?

. This procedure is shown
in Figure 2.1 - Panel B.

Splitting the data through validation schemes is necessary because using the same
sample to estimate and to check a model’s prediction ability might lead to over-fitting
the model without necessarily providing good forecasts, a phenomenon that time series
researchers have observed, at least, since the 1930s [30, in the text of Armstrong, 31]°.
More recently, White [32] warned us about the dangers of “data snooping” - when the
same data set is used for model selection and inference.

The history of partitioning a time series to evaluate its forecasts is long. In the
first half of the 1930s, Wilson [33] used data splits in conjunction with periodograms to
search for hidden periods in a time series. To do so, the author used a large series with

1680 months spanning the years of 1790 to 1929 and divided the data into three blocks

(1790-1859, 1825-1894, and 1860-1929), and used each block to obtain the forecasts.

2When these methods started to become popular, these sub-samples were known as “construction sam-
ple” and “validation sample” (Stone [29]). Stone preferred the term “assessment” to “validation” because
the latter “has a ring of excessive confidence about it” [29, p. 111]. We agree with this terminology, but we
shall keep using “validation” since it is the current norm.

3See Armstrong [31, p. 338-339] for more examples of authors that wrote in the first half of the twentieth
century about partitioning a time series to evaluate the quality of the forecasts.
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Regarding the middle block (1825-1894), Wilson [33] wrote that:

“It is further seen that as a backward forecaster the series computed from the
periods and coefficients indicated by the periodogram of the middle half, is
also worse than useless; as a forward forecaster it is not bad, and indeed
forecasts the course of the index during the decade 1900-1909 better than it
fits any decade on which the calculations are based.” (Wilson, 1934, p. 408,
emphasis added)

At the beginning of the 1950s, Ferber [34, in the text of Ferber, 35], used data until
1940 to forecast the value of the annual savings during the 1947-1949 period. The author
calculated the average absolute percentage error of the forecasts and compared it with the
sample coefficient of determination (r?). The goal was to evaluate if 72 could be used as
an indicator of predictive accuracy.

Kirby [36] used data splits to compare the accuracy of forecasting methods (expo-
nential smoothing, moving averages, and least squares) using monthly data that spanned
90 months. The author used 23 real and 23 simulated time series with and without sea-
sonal and trend adjustments to obtain short-term (next month) and intermediate-range (6
months) forecasts. The first 36 months were used to fit the models and “allow the ex-
ponential smoothing bases to settle down” [36, [p. B-203]. Starting at the 4th year, the
author computed forecasts at each month and used the actual observations to calculate the
mean absolute forecast error.

Later, Williams and Goodman [37] used a method that closely resembles one of the
validation schemes that we use today (see Section 3.2.3). To obtain a confidence limit for
economic forecasts, they fitted a model to the first 24 observations and used it to predict
the 25th and obtain its forecast error. Then, a model was fit using the first 25 observations

to obtain the forecasts error of the 26th. This procedure was repeated until 18 forecasts
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Figure 2.1: Possible ways to partition a single data set with observed values
of y. Panel A displays the time series divided into training set and test set,
and shows the relationship between the “true” out-of-sample data and the
associated forecasts. Panel B shows the division of the training set into the
estimation and validation sets.

were obtained, along with a confidence limit for each forecast.
In the following year, Nelson [38] divided his data into “sample” and “post-sample”

sets and used them to respectively estimate and evaluate the prediction performance of the



FRB-MIT-PENN econometric model [39, 40] and of ARIMA models [19, 41] of the U.S.
economy.* Also in 1972, Armstrong and Grohman [7] used a validation-like procedure to
compare different methods® of forecasting the revenue of the U.S. air travel market.

Up until now, the papers that we have reviewed use procedures that keep only ob-
servations from the “future” in their test sets. Several authors kept using this “forward”
approach [1, 2, 3, 8, 26,27, 42, 43, 44]. But after the work of Stone [29], another “branch”
of validation schemes started to be used within a time series context.

Stone [29] provided an extensive study on the use of the cross-validation (CV) ap-
proach that we now call the leave-one-out procedure (Section 3.3.1). It basically does
what the name suggests. It removes one observation from the entire data set and makes
that observation to be the entire test set. All the remaining observations lie in the esti-
mation set. What set Stone’s work apart is that this author was one of the first to use
cross-validation schemes for model selection and prediction evaluation (with indepen-
dent data). Stone [45] also showed that this scheme is asymptotically equivalent to the
AIC (Akaike’s Information Criterion; Akaike [46]). Since then, the use and development
of CV techniques for dependent data have become more popular. Bergmeir and Benitez
[6], Ansley and Kohn [47], Jong [48], Snijders [49], Burman [50], Zhang [51], Yao and
Tong [52], Burman et al. [53], Kohavi [54], Racine [55], Kunst [56] - all these papers
use the explicit terminology of “cross-validation” in a dependent data setting. We discuss
some of these approaches in Chapter 3.3.

We see, then, that the basic idea of splitting the data to fit-and-predict to evaluate

“That is the idea behind the Holdout scheme. See Section 3.2.1.
3 As we have defined on footnote 1. The original authors used “models.”
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a method’s, or model’s, forecasting ability is not new and has been evolving. Since the
publication of the above papers, a lot has been done, and new authors have developed
many schemes for dividing the samples. We classify the procedures into two classes:
cross-validation and forward validation schemes.

Here, the term cross-validation (CV) refers to the group of schemes in which the
time-series observations are randomly selected to be part of the training, estimation, and
test sets. In this resampling procedure, observations from the past become part of the
test set, so the order of the series is destroyed. We distinguish those from the forward-
validation (FV) schemes, the group that encompasses the procedures where the data is
divided in a way that only observations from the “future” are in the test set (i.e., its indexes
are past the indexes of the observations in the training set). In such schemes, the order
of the observations is kept intact within both training and test sets (one example is the
Holdout scheme)®. Here, we consider that both groups comprise the larger class called
validation schemes’ .

We indicate Rao and Wu [59] and Arlot and Celisse [25] for extensive surveys on
cross-validation procedures. It is worth mentioning that since these schemes were not
(at least, initially) developed within a time-series framework, the discussion by Arlot and
Celisse [25] focuses on the cross-sectional uses of these methods, and the authors only

briefly discuss the use of those procedures in a time-series context [25, see Section 8.1,

Qur definition of “forward validation” is different from the one by Hjorth [44]. Hjorth used this name
to describe a procedure similar to the one discussed in Section 3.2.3 (in particular, the one discussed in
Section 3.2.3), while here, we used it to define an entire class of schemes. Hjorth’s procedure would, then,
be a member of this class.

"There are other data validation procedures (for instance, those based on bootstrap methods) that could
be included in this larger class, but they will not be covered here. We refer the reader to the work of Fukuchi
[57], Kitamura [58], and Kunst [56].
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p. 65-66]. Similarly, Rao and Wu [59] discuss cross-validation techniques in several
contexts, but their approach to order selection in time series Rao and Wu [59, p. 31-36]
does not include the schemes discussed here (they rather focus on AIC-like procedures).

Tashman [5] provided the first systematic review in a time-series context. However,
only forward-validation schemes (dubbed as “out-of-sample tests” by the author) were
discussed. Clark and McCracken [60]’s discussion is focused on formal “out-of-sample
tests,” but since these methods depend on some form of data split, the authors discuss
a few of the forward validation schemes. More recently, Schnaubelt [23] wrote a more
theoretically-focused review of validation schemes that includes both groups and used
the schemes to compare the forecasting ability of machine learning models applied to
non-stationary series.

As mentioned earlier, cross-validation schemes were not developed within a time-
series context and often assume independent and identically distributed (i.i.d.) obser-
vations. The reason behind this assumption is that the reshuffling destroys the order-
ing of the observations. This is one of the main criticisms on using cross-validation
with time-dependent data [6]. Moreover, in a data-dependent case, [61] discusses how
cross-validation methods, when used to select a model (the smooth function) in a non-
parametric case, produce an under smoothed estimate and leads to an overfitting of the
data. Practical problems are also observed when dealing with missing observations [6].
These may be the reasons why statisticians do not often use these schemes in traditional
forecasting [6, 62]. On the other hand, forward-validation procedures only use a part of
the information available and might lose potentially important information (a problem
that can also heavily affect cross-validation approaches, like the modified CV method
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discussed in Section 3.3.4).

Given these characteristics, it is really difficult to prove some of the scheme’s the-
oretical results when using dependent data®, and it is fairly difficult to prove some of
the results when applied to time series data because of the “ordered observations” com-
ponent. Especially if one wants to avoid making restrictive assumptions, like assuming
serially uncorrelated forecast errors [3, p. 10].

Nevertheless, it is important to evaluate forecast accuracy using genuine forecasts
alongside data that was not used to obtain said forecasts, and validation schemes provide
a way to do that. Some advocate for the use of these schemes as is (under certain as-
sumptions) [21], other procedures - or, modifications of the usual strategies - have been
developed over the years (Jong [48], Snijders [49], Burman et al. [53], Racine [55], Kunst
[56], Chu and Marron [67]) to properly account for the intrinsic dependency seen in time-
series data. And while no scheme is perfect and free from issues, they seem to work in
various real-life situations. Aside from the several papers already cited, recent papers
have focused on the evaluation and comparison of the validation schemes.

Bergmeir and Benitez [6] have developed a rigorous and extensive experimental

0

design to evaluate the consequences of using different validation schemes'® on model

selection and forecast accuracy. Their ultimate goal was to assess if using cross-validation

8 Arlot and Celisse [25]’s extensive survey on cross-validation procedures presents the results (not their
proofs) of theorems on the asymptotic properties of these schemes, as well as the closed forms of the
expected values and the variance of the estimators of the risk (in the context of our paper, “risk” is the
generalization error given in Eq.(3.4, Chapter 3). However, most of these results were proved under the
assumptions of independent and identically distributed observations. For time-dependent data, only a few
results for cross-validation methods were mentioned by the authors [25, p. 65-66], and these were specifi-
cally related to model selection procedures in a non-parametric setting where the errors are correlated.

9Yet that did not stop Giacomini and White [1], Diebold and Mariano [2], West [8], Clark and Mc-
Cracken [9], Bergmeir et al. [21], Racine [55], Burman and Nolan [63], McCracken [64], Hirano and Wright
[65], McDonald et al. [66], and many others from working on theoretical problems.

19Bergmeir and Benitez [6] used the term “model selection procedures” to refer to validation schemes.
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methods - devised for independent data - on data that present dependencies would unduly
affect the results. In other words, they aimed to assess if it is possible to obtain good
predictions even after the time ordering of the observations was destroyed. The authors
concluded that the theoretical problems that one might expect from using cross-validation
methods with time-series data were not detected in the empirical results. Moreover, the
use of the forward-validation schemes yielded worse results than using cross-validation.

Bergmeir et al. [68] extended [6] by evaluating to what extent cross-validation
schemes are better than forward-validation procedures for directional forecast evalua-
tion!!, using a Monte Carlo analysis. Aside from their results (they recommended using
the blocked k-fold - see Section 3.3.2 - when dealing with directional forecast evaluation),
the main output from Bergmeir et al. [68]’s paper are the data sets that they simulated.
Those data sets were also used by Bergmeir et al. [21] and Cerqueira et al. [22], and their
description can be found in Section 5.1.1.

Bergmeir et al. [21] wrote about the validity of using cross-validation for evaluating
autoregressive time series prediction and mathematically proved that, under the assump-
tion that the rows of the embedded matrix (the matrix with the past values of the covariates
at different lag values and their respective response variables, see Section 5.2.2) are condi-
tionally uncorrelated, the estimated prediction error for the k-fold cross-validation scheme
(Section 3.3.1) converges to the real prediction error. They used this result and empirical
results from Monte Carlo simulations to advocate for using this cross-validation proce-

dure without any modifications. They also expanded on the experimental design from

Directional accuracy measures if the the forecasts have the same direction as the actual “out-of-sample”
values. In a very crude way, it measures if §;41 — y; > 0 when y; 11 — 3¢ > 0.
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Bergmeir and Benitez [6] and Bergmeir et al. [68] and added a simulated time series that
contains seasonal patterns. We discuss the simulated series in Section 5.1.3 and use the
same design to evaluate the p-Holdout family of schemes (Section 6.3).

Schnaubelt [23] compared the effectiveness of validation schemes applied specif-
ically to non-stationary time series data. The author followed the experimental design
from Bergmeir and Benitez [6] and a preprint of Cerqueira et al. [22] [69] and introduced
time-dependent parameters as a perturbation of the stationarity of the process. The goal
was to mimic the changing dynamics observed, for instance, in financial data. The au-
thor concluded that cross-validation schemes yielded estimates with the largest bias and
variance vis-a-vis forward-validation schemes. Moreover, forward-validation procedures

yielded better estimates of the out-of-sample error. In the end, Schnaubelt [23] stated that,

“Using cross-validation for time-series applications comes at a great risk.
While theoretically applicable, we find that cross-validation often is associ-
ated with the largest bias and variance when compared to all other validation
schemes. In most cases, blocked variants of cross-validation have a similar
or better performance, and should therefore be preferred if cross-validation
is to be used. If global stationarity is perturbed by non-periodic changes in
autoregression coefficients, we find that forward-validation may be preferred
over cross-validation.” (Schnaubelt, 2019, p.33)

Cerqueira et al. [22] reached similar conclusions after performing their experiment.
These authors used the same design as Bergmeir et al. [68] and Bergmeir et al. [21] and
added real-life data sets from [70] to their analysis. They also focused on time series
with a high sampling frequency (like hourly and daily data) since this characteristic “is
typically associated with more data, which is important for fitting the predictive models
from a machine learning point of view.”

All authors mentioned above conclude that stationarity is a crucial time series prop-

25



erty to taking into account when selecting the proper validation scheme. However, only
Bergmeir et al. [21] evaluate the impact that the periodicity of a series has on this se-
lection. They used a seasonal AR process as the data-generating process (DGP) with a
significant lag 12 (seasonal lag 1) as a counterexample to show a counterexample where
the cross-validation procedures break down. CTM also used this data set, but their paper

has no mention of the impact that this characteristic has on the results.
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Chapter 3: Validation Schemes and the Selection and Assessment of Fore-

casting Models

3.1 Using Validation Schemes to Evaluate Generalization Performance

Now that we have seen how these validation schemes evolved, it is time to under-
stand their details and learn how we can use them to evaluate the generalization perfor-
mance of a forecasting method or model.

But before getting into its details, let us start by discussing the form of the forecast-
ing models. Let {Y;}Z_, be a time series of interest, and {y;}._, its observed values. We
define the random covariate process Z;_; as the p-dimensional vector of past explanatory

variables:

7, | = (Z(t—l)h T 7Z(t—1)l’)

The observed values of this process are {z;_}, and in the machine learning literature,
this is known as the p-dimensional vector of features used to predict the desired output
y;. The vector Z;_; can also contain past values of the response variable Y; and certain
covariates X;, W;, known at t —1 (e.g., when these are deterministic or shifted processes).

We denote by F;_; the o-algebra generated by all the covariates observed up until time
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To forecast a time series 1;, one may use the available covariates to improve the
results. In the statistics literature regarding generalized linear models [71], this can be

done by defining the conditional expectation of the response given the past, 1, as:
= E Y[ Fi]

At times, and when it is feasible, it is convenient to think of Z, ; as already in-
cluding past values of the response, and the known X;, W, ..., so the time-dependent
random covariate vector process {Z,_; } may represent one or more time series and func-
tions thereof that influence {Y;}. Hence, we can use a monotone function g(+) to relate s

to the covariates:

p
g(m) =2 ,0=> 0;Zu 1

J=1

where 6 is a p-dimensional vector of parameters associated with the covariates. If the
link function ¢(-) is a canonical link and if the data is normally distributed, Fokianos and
Kedem [72] showed that @ could be estimated appropriately through partial likelihood
methods that account for time-dependent data.

When applying machine-learning methods to time-series data, a typical way of rep-

resenting the relationship between the observed y; and the past values of the covariates
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(features) is:

Y = 9(Zi-1,...,2e-p; 0) + & 3.1

where ¢; is a shock or disturbance term, 6 is a p-dimensional parameter vector, and

g(Zt,h e ;thp; 0) = Eg[Yll/]Zt,l, NN thp] (32)

Here, ¢(-) could be any function: linear, nonlinear, or nonparametric, and we often
do not know which one. A “learning procedure” associated with a validation scheme is
often used to search for this function in machine learning approaches.

The learning procedure is a series of steps that allows us to use validation schemes
to calculate the (expected) generalization errors of the methods and models. This method
of evaluating the performance is of paramount importance since it guides us in choosing
the best available forecasting method or model and gives us an idea of the quality of the
final selection. It begins with the choice of a learning algorithm (i.e., a methodology that
includes an embedded covariate/feature selection method, and a method to estimate 0) -
like random forests (RF), the Rule-Based Regression (RBR) algorithm, the Box-Jenkins
approach (ARIMA), or even a generalized linear models (GLM) with partial likelihood
estimation. Then, we split the entire data set into two subsets, the training and test data
sets, which will help us obtain the (expected) generalization errors.

The generalization error of a forecasting model ¢ is the forecast error over an in-

dependent test set. If we partition the original time series into a training set of length /V,
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given by D = {(z, y;) }i-, , and a test set of length' [, defined as Dyest = {(2¢, ve) Honia »

we can write this error as

Lp = Ezyep,.. [((Y,§(Z,6p))| D, 6p)] (3.4)

where Z = {Z;_1,...,Z;_,} and Y = Y; (we dropped the subscript for convenience).
Moreover, 6p is estimated using D, and §(Z, ép) is the out-of-sample prediction of Y
after applying ép to Z € Dy Here, £(-) is the loss function that measures the differences
between Y and g(-)°.

The generalization error given in Equation (3.4) is also known as the fest error. The
quality of the approximation between () and the true forecasting model ¢(-) would, ide-
ally, be measured by it*. However, there is an issue with this metric since it is calculated
for a single fixed training data set, D. Hastie et al. [74, chapter 7] argue that this leads to
a slightly larger mean absolute deviation. Their results show [74, p. 257] that, in practice,

most validation schemes provide better estimates of the expected prediction error £, given

IThere are two ways to define the length of the training and test sets. In the first one, the analyst can
define a constant value, [, for the forecast horizon. In this case, the length of the test set will be just /, and the
length of the training data set will be 7' — [. In a different approach, if we let ¢; € [1/7, 1) be the proportion
of the entire data set that we will use as training data, then the length of the test set willbe I = [(1—q;)-T7°.
Usually, the size of the test set is equal to 20%-30% of the entire data (i.e., (1 — ¢:) € [0.2,0.3)).

Therefore, there are two possibilities for the length of the training data set:

(3.3)

T-1, if [ is a constant forecast horizon
lae - T), ifl=[(1—q) T,V € [1.1)

. N2
3Typical choices are the quadratic loss, ¢ (y, i(z, 99)) = (y — §(z, 01))) ; and, the absolute loss,

£ (1,3(2,00)) = |y~ 3(2.6p)|.

4The risk function is the expected value of the loss function [73, p. 349]. From Equation (3.4), the
generalization error £p might be seen as the risk of §, as mentioned in footnote 8 in the Introduction
(Chapter 1).
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L=Eplt(Y,9(Z,0))] = E[Lp] (3.5)

The above expectation is also known as the expected test error (or true error) and it is
sometimes represented by Err, instead of £ [74, p. 220]. Moreover, it takes the average
over all random components, including the randomness in the estimation set that gener-
ated g.

We can obtain a sample estimator for £ by using validation schemes to partition
the training data into an “estimation set”, D (Z¢), and a non-overlapping “validation set”,
D (Z?). Here, Z¢ is the non-empty proper subset of indexes from {1, ..., N} that identify
the observations used to estimate (hence, the e on Z¢) the parameters and obtain the
forecasts. The set Z" is the complement of Z¢ and returns the index of the observations
used to validate (accordingly, this puts the v on Z”) the model by means of calculating
its forecast accuracy. Thus, Z¥ = Z¢ = {1,..., N}\Z*. One way to find D (Z¢) and
D (Z7) is to take a similar approach to what was done to get D, and D;.. If we take a
proportion ¢, € [1/N, 1) of the training data to form the estimation set, then its length will
be N, = |g.- N |. Consequently, the length of the validation set will be [, = [(1—¢.)-N|.

The above situation is the basis of the Holdout scheme (Section 3.2.1), and it is
trivial to see from the discussion that this procedure partitions the training data only once.
However, most schemes depend on several “rounds” of partitions made at different split

points. The rationality behind this is that if one uses the Holdout scheme with only one

3Since Z°¢ is a non-empty proper subset, then its complement ZV is also non-empty. Moreover, it is
trivial to see that Z¢ N Z" = ()
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split, it is possible that the selected partitions that form the estimation and validation sets
are not “representative.”. Then, the quality of the forecast accuracy will be dependent on
that single split point. By having different split points at each “round,” it is hoped that
the forecast accuracy of a model under a particular scheme (calculated by evaluating the
mean loss of the model over all “rounds”) would improve. But, since the models need
to be estimated at each “round” (and considering that some machine learning algorithms
already take a long time to learn the weights), the computational time of these procedures
is longer than the one for the Holdout scheme.

Formally, these “rounds” are called folds. As discussed, at each fold, the training
data set D is split differently into the estimation and validation sets. This way, the data
sets used to fit and evaluate the forecast model in fold 7 are distinct from the ones used
in fold ¢« + 1. The total number of folds, k&, depends on the scheme (for the Holdout ,
kE=1).

Fori=0,...,k—1, the sets Z{ and Z¢ are the sets of indexes from {1, ..., N} that
indicate which observations will form the estimation and validation sets at the ¢-th fold:
D (Z7) and D (Z7), respectively. Finally, we can define a general form for a validation
scheme, V(D; k), in those terms:

V(D; k) = {(Z¢, )| I and TP C {1,...,N}, It NT¥ = O} (3.6)

1771

Using the general form of a validation scheme from Equation (3.6), we can define

an empirical estimator of £ by taking the average of the mean out-of-sample losses over

32



all k splits [23]:

L(D,V, f)

IMI

m >yt (2.6p0)] 3.7)

(z,y)eD(TY)

1
k4

where the forecast model f belongs to the set of all possible model formulations G, and
Card (Z7) is the cardinality of the i-th validation index set. In essence, the above equation
returns an estimate of the out-of-sample prediction error and can be used to select §(-).
If one uses a winner-takes-all approach to evaluate between all possible f € G
models, then the selection of g is done by selecting the formulation f that yields the

smallest empirical generalization error. That is,

§=argmin £(D,V, f) (3.8)
feG

Then, the estimator of £ for the best forecast model g is

LDV, §) = %; m > (2050 (3.9)

From Equations (3.7) and (3.8), we see that the choice of V' has an impact on the re-
sult. CTM used several estimation methods with the same §° to evaluate the performance
of the different validation schemes. Here, we will use their approach with the addition
of our proposed validation schemes to the analysis. By using the same ¢ and the same

estimation methods, we will be able to properly compare all the validation schemes. But

®However, CTM did not use the approach from Equation (3.8) to select §. They used an auto-regressive
process based on the time delay embedding method created by Takens [75]. More on this in Section 5.2.2.
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before getting into the comparisons, it is essential to understand the characteristics of each

procedure.

3.2 A framework for Forward validation schemes

3.2.1 Holdout

The most straightforward validation scheme is given by the Holdout approach,
as shown in Figure 2.1 in the introduction (and replicated in Figure 3.1 below). It has
this name because the validation data is “held out” of the data used for estimating the
parameters. Some authors used this approach in a time-series context since the 1930s (as
discussed in the Introduction, Sec. 1), but under different names. It probably got the name
Holdout after the work of Devroye and Wagner [76, 77]”. Nowadays, it is also called
the last-block validation scheme [6, p. 193], and it relies on a single data split to create

the sets that will be used to estimate the parameters and validate the forecasting model.
If we take only a proportion ¢, € [1/N, 1) of the training data®, D = {(z, y¢) }Y,,
to create our estimation set, we can use the general validation scheme given in Equation

(3.6) to write the Holdout validation scheme VHO(D; ) °:

VHO(Dy gy = {0, 1) 7 = {1,..., |¢e - N|}, T° = {ge - N| +1,...,N}}  (3.10)

"It is worth mentioning that these authors developed their methodology using independent data.

8Since Equation(3.6) was defined in terms of the estimation set and the validation set, we are assuming
that the data was already split into training data and test data by a proportion that may, or may not, be equal
to g; (this choice depends on the analyst).

9Since i = 0,...,k — 1, then k = 1 (because it is a single split), which implies that i = 0. Hence, we
will suppress the ¢ in the notation for the Holdout scheme.
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D€ED-€DDE€D-D DD @@@@
1

|
f P T
i-th fold Estimation set Validation set

0 Yig Y22 Y a2 VYem Vs Yo uu Y7 2 Yo m Yo = Viogm Y118 Y12

Figure 3.1: Example of a data set divided using the Holdout forward vali-
dation scheme with 7' = 16, ¢, = 0.8, and ¢, = 0.7.

From Equation (3.10) and Figure 3.1, it is trivial to see that the estimation and
validation sets are composed by D (Z2°) = 41, ..., Y|q..~] and D (Z%) = Y|g..N|+1, - - - » UN>
respectively.

There is a different way to write Equation (3.10) that will be useful when we discuss
the p-Holdout family in Chapter 4. Recall from the previous section that the length of the

validation set under the Holdout scheme is:

HO = 11— q.)- N, forg. € [1/N. 1) (3.11)

And if we notice that
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we can substitute |q. - N | in Equation (3.10) for N — /%9, and rewrite this equation as:

VHO(D, ) = {(Ie,m T ={1.... (N =19},

I = {(N—lfo+1),...,N}} (3.12)

Finally, we can then use all this to write Equation (3.7), the average expected out-

of-sample error, for the Holdout case:

£ (VMO f) = m (Z’y);m)e 0.1 (2.0 (3.13)
or
£ (VMO r) = Z;O >ty s (2.600)] (3.14)

Y (2y)eD(TY)

With the results from Equation (3.13) for each forecasting model f, we can find ¢
using Equation (3.8). CTM used a different way to obtain g, as we will discuss in Section
5.2.2. Nevertheless, with g, we move forward to evaluate its forecasting accuracy on
the test data. That is, we fit ¢ using the entire training data D, obtain the forecasts, and
calculate £ <D, VHO, §1> based on Equation (3.14). Then, we evaluate the generalization
performance by comparing this last measure to the error obtained from the test data, D;.,

by calculating:

LD Dwd) =7 S C[19(s00)] (3.15)

(Z7y)€Dtest
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CTM and Schnaubelt [23, p. 11] call the result from the above equation the “ground
truth loss.” Schnaubelt [23, p. 25] also calls it the “true out-of-sample generalization
error.” Both authors use Equation (3.15) as the basis to evaluate the out-of-sample perfor-

mance of the validation schemes (see Section 5.2.6).

3.2.2 Rep-Holdout

The idea behind the repeated holdout validation scheme (or, Rep—-Holdout ) is
based on taking several “rounds” (folds) of the holdout procedure, where the split point,
a;, is randomly selected (without replacement) from a sampling window at each fold.

To get this window’s range, we need to select a proportion ¢. € [1/N,1) of the
training data to be used as the estimation set and a proportion ¢, < (1 — ¢.) for the

validation set. So, in this case, the length of the estimation and validation sets are

NrerHO = g, . N| (3.16)
PO = g, - N| (3.17)
Then, for every fold i = 0, ..., k— 1, possible values of a; are randomly taken from
the window
{(N/PHO 4+ 1) ., (N = PHO + 1)}

The split-point point a; marks the beginning of the validation set for the ¢-th fold,

lrepHO o
v

while the end-point is given by a; + 1. And since the selection is without

replacement, the number of folds £ is, at most, equal to the length of the above sampling
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window. That is,

k S N — N;'epHO _ l;epHO + 1.

The indexes of the observations in the estimation set are also shifted, depending
on a;. This is done to make the length of the estimation set the same across the folds,
and to avoid gaps between the estimation and validation sets. Thus, the last index of the
estimation set is equal to a; — 1, and the first is given by a; — N *?HO_ The final indexes
can be seen in Equation (3.18) below. An example of this scheme applied to a data set is

shown in Figure 3.2.

y Wy, Wy Wy, W, Wy, W, W, Wy, Wy, Wy Wy @@@@

)
i-th fold "Unused Observations  Estimation set Validation set

Available
window for a

|

Figure 3.2: Example of a data set divided using the Rep-Holdout forward
validation scheme with 7" = 16, ¢, = 0.8, ¢. = 0.6, ¢, = 0.2, k = 3. The
selection range for each a; goes from the 8th observation to the 11th, and the
values a; = 10, ay = 9, and a3 = 11 were randomly selected.

Using Equation (3.6), the Rep—Holdout validation scheme, VrepHO(D; Qer Qo)
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1s:

»ﬂmHoax@”%>z{}Eﬁﬂnzfz{u%—L%-Nn,uwau—ln,

L~ fafat o N -0} @9

1=0

The estimated expected out-of-sample prediction error (Equation 3.7) becomes:

£ (D, vrePHO, 1) - Cly f(2.6p00)] @19

=0 (z,y)eD(1?)

| =
—

i)

e

=

| I

where D (Z¢) and D (Z}) use the observations for which the indexes are given in Equation

(3.18).

3.2.3 Rolling Origin and Prequential Growing Window

Small samples can cause problems to the previous procedures. One scheme that
makes a more effective use of data is the successive updating procedure [7, 31], commonly
called the rolling-origin validation scheme [5]. To explain it, we need to introduce the
concept of forecasting origin, and to do so, let us take a data set divided into training
data and test data (Figure 2.1 - A). If we want to produce forecasts for a lead time (or
forecasting horizon) [, then the final time in the fit period is the point from which the
forecasts are originated. This point is called the forecasting origin.

In other words, we first fit the model using all the information up until N (recall
that N = T — [, where T is the total length of the time series) and produce forecasts for

all subsequent periods N + 1, ..., N + [. Then, we take the same model formulation and
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its estimated parameters and apply them to an “updated” data set comprised of all data up
until N + 1, and use it to produce forecasts for the periods N + 2,..., N + [. Because
of that, this scheme is also called the rolling origin update [6]. When the model is re-
estimated (retrained) at each fold, the procedure is called the rolling origin recalibration
scheme. In it, the estimated parameters at fold 7 are applied to the training data in the
same fold only. We keep “rolling” the origins until N 4+ [ — 1 and obtain (in general)
[ - (I 4 1)/2 forecasts. The test data is then used to calculate the forecast accuracy. A
schematic illustration of the rolling origin update scheme was adapted from Armstrong
[31, p. 343] and is shown in Figure 3.3.

Figure 3.3 - Panel A shows the rolling origin update procedure, in which the pa-
rameters estimated from the data in fold ¢ = 0 (blue points and cyan background) and are
applied to the data in folds 1,2, and 3 (blue points and white background) to obtain the
forecasts (pink points). Panel B displays the data split according to the rolling origin re-
calibration scheme, where the parameters are estimated from the data at each fold (blue
points and cyan background).

Both processes can easily be extended to be used with the estimation set and the
validation set. It can also accommodate “rolls” (shifts) larger than 1. If we let ¢. € [%, 1)

be the minimum fraction of the training data used to form the estimation set, then the
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A Training data Test data
i-th fold (fit) (“true” out-of-sample)

0 Yige Y2 2u V3 2u Y4 2 V5 2 Yo g Y7 2u V8 2 Yo au Vi0ge Y11m Y12 @@@@
P e

1 1 Ny, Ny W, W, W, W, W, W, W, Wy Wy -@@@

2 €-O-O-D-O-D--OD-D-D-D-DDE? @@

3 Yigan Yo u Y3 pu Y4 au Vs uu Youu V7 gu Yo uu Yo s Yioga Vi1ga Y12@ Y132 V14 @ Y15 @

B
Training data Test data
i-th fold (fit) (“true” out-of-sample)

o DD MR @@@@

1 DD DD 0DODDDDDLLE @@

el e

2 €D DDDDLDY @@

EIN V1 5 V2 o V3 Vi m Vs m Vo V7 Vo g Vo uf Viom Viise Viz% V13% V142 Vis }@
Figure 3.3: Example of the rolling origin forward validation scheme applied
to a univariate data set with 7' = 16 and [ = 4. Panel A shows the rolling

origin update procedure, and Panel B depicts the rolling origin recalibration
scheme.
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number of shifts can be defined as'®

RO (1 - Qe) - N
—

K

Then, the rolling-origin validation scheme, VRO(D; N, kf9 q.), is written as:

VRO (D 550 ¢.) = {a;,z;)z; ={1,..., lge- N +inO},

k-1

Ifz{Lqe-N+mROJ+1,...,N}} (3.20)
1=0

Both the update and recalibration schemes split the sample using the scheme given
in Equation (3.20). The distinction between the two will be seen in the estimation of ]
inside the loss function from the out-of-sample generalization error equation (Equation

3.7). For the update scheme, éD( 1s used to obtain the loss in all folds, while in the

Ig)

recalibration scheme, we re-estimate éD ( at each fold.

z¢)
The prequential growing window [22, p. 2009], or prequential landmark scheme!’,
is a particular case of the rolling-origin recalibration procedure, where the forward shift

is restricted to 1 (Figure 3.4). Therefore, k¢ =1 = k= [(1 —¢.) - N].

With this, the prequential growing window validation scheme, PG (D; N, q.), can

101f the number of rolls, %°, is a fixed integer instead, then
= RO

"'"The prequential growing window scheme is different from the growing window procedures used by
Hjorth [44] and Makridakis [28]. These authors used only the observation that immediately follows the
estimation set as their validation set.
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Training data

Yigmy2

y3

Ya

¥s

Yo

Y7

Vs

Yo = Yiog Y11

Y12

Test data

|
Estimation set \

f - A
j-th fold Unused Observations Validation set

0 Yim V2 2 V3 m Y4 V5 Yo au Y7 52 V8 am Yo mu Y10 V110 V12
1 Yim Y2 50 V3 Y4 g0 Y5 ou Yo u Y7 ou Y8 g0 Yo am Y100 Y110 Y12
2 Yim Y2 m Vi m Va2 Vs Yo i Y7 5 Y8 2 Yo am Y108 V110 Y12

Figure 3.4: Example of the prequential growing window forward-validation
scheme applied to a single univariate data set with 7' = 16, ¢, = 0.8, ¢. = 0.8
and k = 3.

be written as:

1771

VPO N ) = { @ T T = (1, L N+ il),

k—1
(3.21)

1=0

I;’:{Lqe-N+z'J+1,...,N}}

Using Equation (3.7), the estimated expected out-of-sample prediction error for
the prequential growing window validation scheme (or prequential landmark scheme) is

defined as:

/N

k—1
ﬁ(D’VPG’f>:%Z;(N—Lqel.zvﬂj) >t (#00m)| G2

(z,y)ED(IZ?’)

where D (Z¢) and D (Z}) use the observations for which the indexes are given in Equation

(3.21), and the same model specification f is used in every fold.
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3.2.4 Prequential Sliding Window

The exhaustive prequential sliding window method works as a modification of the
prequential landmark procedure (Section 3.2.3), where the first 7 observations are deleted

at the ¢-th fold. An example is shown in Figure 3.5.

Training data Test data

i s V2 o Vs o Va Vs ol Vo ol V7 Vo Vo ol VioglVingh Vioid ViR VioRY1s R Y1c
i-th fold "Unused Observations  Estimation ;et Validation set \
0 Y1 Y2 V3 mu Ya au V5 au Yo pu Y7 20 Y8 au Vo au V10 Vi19m Y12
1 Y1m Y2 2u V3 2 Y4 au V5 au Y6 au Y7 au V8 g Vo g V1oge Vi1 0 V12
2 Y1 Y2 pu V3 au Va4 au V5 m Yo uu Y7 20 V8 au Yo gu Y102m V1190 Y12

Figure 3.5: Example of the prequential sliding window validation scheme
applied to a univariate data set with T’ = 16, ¢, = 0.8, ¢. = 0.8, and x®" = 1.
The model is re-estimated at every estimation set (blue dots) and used to find
the one-step-ahead forecast (orange dot).

The prequential sliding window validation scheme, VPSW(D; N, g, 1), is defined

as:

19"

VPSW(D;qe) = {(f INNZi={i+1,...,]ge- N +1i]},

-1
Z? ={lge - N +1] +1,...,N}} (3.23)

()
=0

where k = [(1 —¢.) - N| = L.

And, the estimated expected out-of-sample prediction error for the prequential slid-
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ing window scheme can be written:

£<D’VPSW ) %Z Lqe N +i]) 2. g[y’f(z’ép(ff))} (3-24)

i=0 (z.y)eD(TY)

where D (Z¢) and D (Z}) use the observations for which the indices are given in Equation

(3.21).

3.2.5 Prequential in Blocks

The idea behind the prequential in blocks validation scheme is due to Dawid [78],
and it relies on the partition of the time series into sets of growing cardinality. Let
kPPls ~ N/k be the number of observations that each fold is rolled forward by, and

let Ao, ..., Ax_2, be ordered partitions of the indexes {1, ..., N} of the observations in

D such that Ay C A; C ... C Aj_o with Card(4;) ~ (i + 2) - k7B < N. That is,
Ay~ {1,...,(i+2)-&"P#} fori=0,... k-2 (3.25)

In other words, the sets A; give the indexes of the observations that will comprise
both the estimation and validation sets at each fold. For example, let N = 12 and k£ = 3.

Then, 7P = 4andfori =0,...,k — 2

Ao={1,....,(0+2)-4} = {1,2,3,4,5,6,7,8}

Ar={1,...,(1+2) -4} ={1,2,3,4,5,6,7,8,9,10, 11, 12}
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At the i-th fold, the estimation set is formed of all the indexes of A; up until the
(i + 1) - kPP!5-th case, while the validation set contains all the remaining cases. In the
example above, the estimation sets at folds O and 1 contain the first 4 and 8 indexes,
respectively. This example is represented in Figure 3.6. From it, it is easy to see that the

validation set of the previous fold is incorporated into the estimation set of the current

fold.
Test data
20 DDODDO0OODDDDD2DPDDD
i-th fold 'Unused Observations  Estimation ;et Validation set
0 Y10 Y2 2u V3 au Va 20 V5 pu Y6 au ¥7 u' Y8 g YO g Y100 V110 V12
1 Yigm Y2 V3 m Y4 2 Vs Yo au Y7 V8 au Yo mu Y108 V1120 V12
2 Y1 Y2 5u V3 i Va g Vs Yo uu Y7 5 Ya au Yo g Yioam V1158 Y12

Figure 3.6: Example of a time series partitioned under the prequential in
blocks validation scheme with 7" = 16, ¢; = 0.8, ¢. = 0.8, and &k = 3. Fold
number 2 is not used at all.

We write a general form of VPBIS(D; xPBIs) | the prequential in blocks validation

scheme, as:

VPBIS(p; P Bls) = {(If,I;’)| Tem {1, (i 4 1) - 5PP8Y

k—2
TV ~ A \I;} (3.26)

1=0

We stated that the sets Z7 and Z are approximately equal to their respective sets of
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indexes because the ratio x75!* ~ N/k might not return an integer, and depending on the

computational device used, the value of x7"5% can be either | N/k] or [ N/k]. Moreover,

PBls ;

it is possible that x is different for distinct values of i'2. To account for that, we define

a delta function as:

| N/k], if the computer returns | x5! | for the i-th case
5(N, k,i) = (3.27)

[N/E], otherwise.

Then we can rewrite Equation (3.26) as:

191

VPB]S (D; k‘) _ {(Ie Iv)| Iie = {1,,..,(2'4' 1)-5(N,kf,i)}>

k—2

I;’:{[(i+1)~6(N,k,i)+1},...,(z’+2)-5(N,k,z’)}} (3.28)

1=0

where NV is the number of observations in D.
Using Equation (3.26) to obtain the indices for D (Zf) and D (Z?), the estimated

expected out-of-sample prediction error for the prequential in blocks can be written:

£(p VP8 f) = —1ZCard (14 \ID o) ot (2000
1 =2 .
:k—1;5(zv,m g[ ( ﬂ (3.29)
= (z, y)eD Iv

2While code tracing CTM’s program, we noticed that this is the behavior of the R function that they
used
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3.2.6 Prequential Sliding Blocks

The prequential sliding blocks validation scheme is a modification of the prequen-
tial in blocks procedure. The difference here is that, at each fold, all the observations in
the estimation sets of the previous folds are discarded from the estimation set used in the
current fold. From Figure 3.7, we see that the estimation set “slides” over the training
set. And if we compare this figure with Figure 3.6 seen above, we see that observations
Y1, Y2, Y3, and y4 form the estimation set at the fold 7 = 0 but are unused in the estimation

set at fold 7 = 1.

D€DDD-0O---D-OD-D-D- @@@@

|
i-th fold "Unused Observations  Estimation set Validation set

0 Vim V2 2 V3 5 Va4 2 V5 2 Vo o V7 2 V8 = Vo s Viogs V11 V12

1 Yig Y2 20 Y3 Va g V5 50 Yo au V7 5 V8 u Yo gu Vioge Y110 Y12

2 Vim V2 2 V3 V4 V52 Vo mu V7 22 V8 5 Yo su Y10z Y118 Y12

Figure 3.7: Example of a data set divided using the prequential sliding blocks
forward validation scheme with 1" = 16, ¢; = 0.8, ¢. = 0.8 and k£ = 3. Fold
2 1s not used.

Then, if x7B% ~ N/k is the number of observations that each fold is rolled forward
by, and Ay, ..., Ay_1, are ordered partitions of the indices {1, ..., N} of the observations

in D such that Ay C A; C ... C Aj_; with Card(A;) ~ (i + 2) - kP < N, then we
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VSPBls (D; KPBls)

can write the sliding prequential blocks validation scheme, as:

VSPBls (D' KPBZS)

I

{(If,zm Iy = {1, (i + D" (O@) I~ A\ <UIJ)}

k—2
=0

(3.30)

where Ifl =0

The delta notation (Equation 3.27) greatly simplifies the above equation:

177

VPRI i) = { 1. )

Te={[i - 6(N,k,i)+1],...,(i + 1) - 6(N, k,i)},
TV ={[(i+1)-6(N,k,i)+1],...,(i+2) - 8(N, k,i)}}k_z (3.31)

1=0

where N is the length of the set D.

Taking the indexes from Equation (3.31), the error L (D, VSPBIS, f > is:

L) - S T G B o)

T k- 145N, kD) >, ! [y’f(z’ép(ff)ﬂ (3.32)
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3.2.7 Prequential Blocks with Gaps

Another modification of the prequential in blocks procedure is the prequential
blocks with gaps validation scheme. Here, the same estimation set is used, but the valida-
tion set (as specified for prequential in blocks case) is skipped, and the next set of data is
used instead. Figure 3.8 shows an example of the prequential blocks with gaps scheme.
The rationale behind this procedure is that one may increase the independence between

the estimation and validation sets by adding a gap between the two sets.

2-D-D-D-0O-D-OO-D-DD-D- @@@@

|
i-th fold "Unused Observations  Estimation set Validation set

0 Vim V2 2 V3 V4 V5 Vo mu V7 22 V8 2 Y0 V1o Y110 Y12

1 Vig Y22 Y32 Ve Y5 = Vo i V7 2 V8 m Yo mm V1o Vi1 V12

2 Yim Y22 Y35 Y4 Y5 Yo mu Y7 22 V8 Yo mu Y10 Y118 V12

Figure 3.8: Example of a time series split according to the prequential in
blocks with gaps validation scheme with 7" = 16, ¢, = 0.8, ¢. = 0.8, and
k = 3. Folds 1 and 2 are not used at all.

Take the definitions of x"?! from Section 3.2.5 and A; from Equation (3.25). Add
to those definitions the following partitions of {1,..., N'}:

Bi~{l,....(i+3) &P} fori=0,... k—3. (3.33)

It is easy to see from the definition of A; and B;, that A; C B; with B; \ A; # &,
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forv =0, ...,k — 3. Inside this framework, we define the prequential in blocks with gaps

VPBG(D; HPst)

validation scheme, as:

k—3
VPBG(D;/{PBZS) = {(Ile’:z'zv |Ie ~ {1 Z—|—1 PBls} Iv NB \A}

=0

Using the delta function defined in Equation (3.27), and with /N obtained from D,

the scheme above simplifies to:

YPBG (p. ) — {(Ie INZE={1,....(i+1)-6(N,k,i)},

177

k-3

' =A{[(i+2) - 6(N, ki) +1] ,...,(i+3) - 8(N, k:,z')}} (3.34)

1=0

And the out-of-sample generalization error becomes:

LoV 1) = 5 a2 [ (1)

3.3 A framework for Cross-validation schemes

3.3.1 Leave-one-out and k-Fold Cross-Validation

Cross-validation schemes are frequently used in the field of multivariate statistics

when variables are independent and identically distributed (i.i.d.), especially for model se-
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lection in classification and regression settings. In a regression setting, the leave-one-out
validation scheme (LOO or LOOCV) was used by Stone [29]'%. This is the most classical
exhaustive procedure since the number of folds is equal to the number of observations in

the training set (i.e., k = N).

200000 DD @@@@

)
i-th fold "Unused Observations  Estimation set Validation set

0 Vi Y2m Y3 mYam Vs m Yo uu Y7 Y8 2 Yo mm Y10z Vi1gm V12

1 Yig Y2 = Y3 m Y1 Vs Yo uu Y7 5 Y8 s Yo au Yi02m Y1120 Y12

1 Yim Y22 Y3 m Yam Vs Yo uu Y7 Y8 2 Yo s Yiom Vi1 Y2

Figure 3.9: Example of the leave-one-out cross-validation scheme applied to
a univariate time series with 7' = 16, ¢; = 0.8, and k = [¢,/T'| = 12.

That is, at fold = = 0, ...,k — 1, the validation set is comprised of only one obser-
vation - the one with the index equal to ¢ + 1. The same ¢ + 1-th index is deleted from
the estimation set at each fold « = 0, ...,k — 1. Consequently, the sets of indexes have
the following cardinalities: Card (Zf) = N — 1, and Card (Z}) =1, Vi =0,... N — L.

A schematic example is shown in Figure 3.9. Based on the discussion, the leave-one-out

13Stone [29] called it “ordinary cross-validation.” Independently, [79] used the same approach to create
the extended PRESS (Prediction Sum of Squares) criterion for variable selection. Burman and Nolan [63]
extended it to the dependent case when f is estimated via nonparametric techniques, under the assumption
that the prediction errors are uncorrelated.



cross-validation scheme, VLOO(D; k) is defined as:

N-1
YyLOO(p. ) = {(I.e I T ={1,...,NY\ TV, ' = {i + 1}} (3.36)

1
=0

Breiman et al. [80, in the text of 50, p. 503] proposed the k-fold validation scheme'*
as an alternative to the computationally expensive leave-out-one procedure. It relies on
shuffling the observations in the time series and dividing the shuffled training set into %
mutually exclusive subsets of approximately equal size. Each subset works as the valida-
tion set for the respective fold. Figure 3.10 shows a schematic illustration of this method.

On Panel A in Figure 3.10, we have that y4, y5, y7, and y;o where the observations
were randomly selected to comprise the validation set at fold 0. But since the training set
has been shuffled prior to selection, the actual ordering of the observations is shown in
Panel B. Notice how the indexes in both the estimation and validation sets change in B.
The time series with the ordering shown in B (blue dots) will be the ones used to fit the
forecasting models at each fold, and at fold 0, the forecast errors will be calculated using
Ys, Y10, Y7, Y4, 10 that order.

Formally, let Cy, . .., Cx_; be the sets formed from random partitions of {1,..., N}
taken without replacement, such that each set has approximately N/k elements (i.e.,

Card (C;) = 6(N,k,i),i=0,...,k — 1, where §(IV, k, 7) is the delta function defined

1“Breiman et al. [80] named it “v-fold cross-validation.” We changed it to k to be consistent with the rest
of our notation and also because recent studies [22, 23] use this terminology.
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Training data

Test data

A

i V2 L Vs o Vo ol Vs o Vo ol V7t Vo ol Vo o Viom Vi gl Vol VisgVioRYis i Vic
i-th fold "Unused Observations  Estimation slet Validation set
0 Yim Y2 V3 Ya iu V5 o Yo ou Y7 iu Y3 au Yo s Y10 V11m V12
1 Y1 Y2 2 Y3 @ Ya u V5 Yo uu Y7 22 Y8 5n Yo am Y1028 Y1158 Y12
2 Yig Y2 Y3 m Ya m V5 5u Yo gu Y7 5 Y8 2u Yo au Yioge Y119 V12
Test data
B V1 g V2 2 Vs o Va Vs ol Vil V7 o Vo o Vo ol Yiog!Vingd Voot V1R VioRY1s & Vi

|
Estimation set

[ - .
i-th fold Unused Observations Validation set

0 Y22 Y3 Yo m Ve mYi1im V1 m Y120 Ve m ¥5 mViog ¥7 & Vs
1 Ys mYiom Y7 m Ve mYium V1 Y12 Yo s Y2 m Y3 & Yo = Vs
2 YsmYiom Y7 Y4 0 Y2 u V3 au Yo au ¥8 V1 Yi Y128 Y6

Figure 3.10: Example of the k-fold cross-validation scheme applied to a uni-
variate time series with 7" = 16, ¢; = 0.8, g. = 0.8 and £ = 3. Panel A
shows the selected observations in their original ordering. Panel B shows
them according to their selection order.

in Equation 3.27). Then, we define the k-fold cross-validation scheme as:

VOV (D k) = {(zf,zm If = {1, NI\ IV, TV = C

k—1

C; C Py, CiNC; =@, Vi # j} (3.37)

1=0

where Py is the set of random permutations of {1,..., N'}.
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The out-of-sample error for this scheme is:

E(D’ch’f)%;m > Ut (200m)]

" (zw)eD(TY)

_ %;m > [%f(zaép(zf))]

(z.y)€D(ZY)

S0 2F aw SV URA CLA) BCEY

(z.y)eD(TY)

3.3.2 k-Fold Blocked Cross-Validation

Snijders [49] (in the text of [23, p. 8]) proposed that instead of shuffling the obser-
vations, the validation sets would be created by taking continuous sequences, or blocks,
of observations (the Holdout would be a special case of this approach). Bergmeir and
Benitez [6] extended this idea and developed the k-fold blocked cross-validation scheme
as a simple modification of the k-fold CV scheme. By using the idea of continuous in-
dexes, the order of the time series observations is kept within the blocks but broken across
the folds. A schematic illustration of this scheme is shown in Figure 3.11.

The blocked k-fold cross-validation scheme, VCV'BI(D; k) is:

197

VCV-Blip. 1) = {(I,e I If ={1,...,N}\ I},

k—1

0 ={[i- 0(N,k,i)] +1,...,(i+1) - 6(N, k,z)}} (3.39)

' i=0
where §(V, k, i) is the delta function defined in Equation (3.27) (the same conditions
apply here).
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2--0O-O-0--0-O-O-D-D- @@@@
1

J
i-th fold 'Unused Observations  Estimation set Validation set

0 Yig Y2 2 Y3 = Y4 = Y5 Yo i Y7 25 Y8 2= Yo mu Y1028 Y118 Y12

1 Vi V2 V3 @ Y4 50 Y5 ou Y6 g Y7 gu Y8 gu Yo gu Y10zm Y1158 Y12

2 Vig V2 Y3 m¥Yam Vs m Yo V7 mm Y8 2 Yo m Yiog Vi1 Va2

Figure 3.11: Example of the k-fold blocked cross-validation scheme applied
to a univariate time series with 7' = 16, ¢, = 0.8, ¢. = 0.8 and k& = 3.

The validation error, £ (D, VCV'BI, f), for the blocked k-fold cross-validation

scheme is:

k—1
e P L)

3.3.3 h-Block and Ahv-Block Cross-Validation

Burman et al. [53] developed a modification of the leave-one-out procedure for
dependent data, called h-block cross-validation. Recall from our discussion of the leave-
one-out scheme (Section 3.3.1), that the validation set is Z! = {i + 1} and the estimation
setisZ¢ = {1,..., N} \ Z/, and we have k = N folds.

In the h-block cross-validation procedure, the number of folds is still equal to 1V,

and the validation set remains with only one observation. The difference lies in the defi-
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y Ny, Wy Wy, Wy, Wy, W, W, W, Wy, Wy, Wy, @@@@
|

1

i-th fold "Unused Observations  Estimation set Validation set
0 Y12 V2 2 V3 m Y4 2 Vs Yo mu Y7 2 V8 2u Yo mu Y10z V1150 V12
1 Y12 ¥2 2 Y3 o Ya mu Vs o Yo uu Y7 5 Y8 au Vo s Yioam Vi1gs V12

1 Yim Y2 Y3 m Yam Vs Yo uu Y7 Y8 22 Yo s Y10 Vi1 Y2

Figure 3.12: Example of a univariate time series with 7" = 16 partitioned
accordingly to the h-block cross-validation scheme with ¢; = 0.8, ¢. = 0.8,
p=3,and h = 1.

nition of the estimation set. Now, aside from the deletion of the 7 + 1-th index, 2/ indexes
are also deleted from the estimation set - & to the left of 7 + 1, and A to its right'>. Thus,
it effectively creates “gaps” of size h around the observation 7 + 1, and the estimation set
uses only N — 2h — 1 observations to fit the model, instead of the N — 1 observations
used in the leave-one-out approach (Figure 3.12). Burman et al. [53, p. 352] do this to
achieve what they call a “near independence” setting between the estimation and vali-
dation sets (for large enough h)'®. Burman et al. [53] proposed a rule-of-thumb for the
h-block cross-validation scheme and suggested h = v, with v € (0,0.5)".

Racine [55] proposed an improvement to the h-block procedure called the hv-block
cross-validation scheme. In this scheme, Racine deletes h and v observations from either

side of the ¢ + 1-th index, but instead of completely disregarding the v cases, the author

5If 4 = 0, it takes h from the right side only. Conversely, it takes only from the leftif i = k — 1.
1611 this context, near independence means that E (g; — hej|Z1, e Zj) ~ 0, for i < j [55, p. 47-48].
17See Burman et al. [53, p. 352-354] for a discussion about selecting the proper size of h
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adds them to the validation set. Hence, the sizes of the validation and estimation'® sets

become:

[OG-hCV _ o) 11 (3.41)

NOGHVEY _ o — 9y 1 (3.42)

Racine [55, p. 49] used Burman et al. [53]’s rule-of-thumb for A (i.e., h = yN),
and report obtaining sensible results in the hv-block cross-validation procedure when
v = 0.25. For positive degrees of freedom (N?G'hVCV — p) > 0!, Racine [55, p.
46-47] suggests that the size of the estimation set should be equal to LN ‘5J , wWhere ¢ is
such that the ratio log (p)/log (N) < § < 1. In this case, v = (N — N° — 2h — 1)/2.

The last missing value is the number of folds, k, that one can use. To find it, it helps
to write all the cases for Z”, and to define a sets D;, ¢ = 0,...,k — 1, of indexes from
{1,..., N} that will be deleted from the estimation set. Since we first remove v from
either side and then A from either side, we end up with five different cases.

Fori=1,..., v:

7P ={1,...,2v+1}

D;={1,...,2v4+2h + 1}

18Racine [55] used n, for QG-NVEVY ‘and n, instead of NOG-HVEV,
YRecall that p is the dimension of Z;_1, the vector of past explanatory variables, as defined in Section
3.
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Fori=v+1,...,v+ h:

P ={i—wv,...,i+v}

D;={1,...,2v+2h + 1}

Foro=v+h+1,..., N—v—h:

VP ={i—v,...,i+ v}

Di={i—v—"h,...;i+v+h}

Fortor=N—-v—-h+1,...,N —uw:

Il ={i—v,...,i+ v}

D; = {N —2v—2h,...,N}

Fori=N—-v+1,...,N:

IV ={N—2v,...,N}

D; = {N —2v—2h,...,N}
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Or, simply:

v

and

\

(

{1,...,2v+2h + 1},

{1,...,2v+2h 4+ 1},

{i—v—"h,...;i+v+h},

{N —2v—2h,...,N},

{N —2v—2h,...,N},

{N —2v,...,N}, fori =

{1,...,2v+1}, fori= 1,...v;

{i—v,...;i4+v}, fori= v+1,...,0+h,

v+h+1,...,N—-v—h, (3.43)

N—-—v—h+1,...,N —u;

N—-v+1,...,N.

fort=1,...,v;

fori=v4+1,...,v+h;

fori=v+h+1,...,N—v—h  G44)

foror=N—-v—h+1,...,N —v;

forr=N—-v—-1,...,N.

It is easy to see that the first and last cases are redundant, so we could remove those.

If we remove them, ¢ goes from v + 1 to N — v, when we consider the remaining cases.
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Thus, the maximum number of folds is:

k=N—-v—(v+1)+1

=N-—2 (3.45)

Schnaubelt [23] confirms our calculations. This author wrote that in the hv-block
cross-validation scheme, “the validation block is rolled forward by one observation, such
that a total of & = N — 2v validation folds is considered” [23, p. 9]. However, it is worth
highlighting that in this case, ¢ starts at v + 1, not 1 (nor 0), a remark that Schnaubelt did
not make. An illustration of this scheme is given in Figure 3.13.

Training data

Test data

DD DD @@@@
|

j-th fold i“th fold ' Unused Observations  Estimation set Validation set \
v+l 0 Vig V22 Y3 2V m Vs 2 Ve m V7.2 V8 i Yo au Y10ge Y110 V12
v+2 1 Vi Y22 Y32 Vam V52 Yo ' Y7 2 V8 2 Yo s Yioge Yi1gm Y12
v+3 2 Y12 Y2 = Y3 = Va= V5= Vo = ¥7,21V8 = Yo = Y10a Y11 V12
vi4 3 Vi V2 pu V3 i V4 2 V5 201 Vo o Y7 2n V8 'V 2 Vi gn Y110 V12

v+5 4 Yim V2 Y3 2 Yo V5 5 Ve = V7 2 V8 e Yo = Y10 Y110 V12 77 indicates the 2v

= observations

vtb6=N-v 5 Y1 Y2 2 V3 i Va o Y5 Yo o V7 2 V8 2 Yo m Vi0am V112 V12 a'i'%e':.m thi

validation se

Figure 3.13: Example of the hv-block cross-validation scheme by Rancine
(2000), applied to a univariate time series with 7' = 16, ¢ = 0.8, ¢. = 0.8,
p=3,h=1,6=0.5,and k = 6.

VOG-hVBl(D; k)

Based on the discussion above, , the original hv-block cross-validation
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scheme is defined as:

1771

YOG-vBl(p. ) 1) = {(Z-@ T If = {1,...,N}\ D;,

(

{1,...,2v+1}, fori=1,..., v;

k—1
1 = {i—v,...;i4+v}, fori=v+1,...,N—uv; } (3.46)

{N —-2v,...,N}, fori=N—-v+1,...,N.
\

where N is the length of D, and D); is given by Equation (3.44).

We called the validation scheme VOG'hVBl, where “OG” stands for “original.” We
did this to distinguish it from the way Cerqueira et al. [22] coded the hv-block cross-
validation scheme. The way they programmed it uses different values for k, v, and h,
and it also yields different sets Z¢ and Z/. But before going into the details of those
differences, we would like to stress that these authors did not include any of the validation
equations in their paper, and our remark is the conclusion we reached after tracing their
program. Any errors and omissions regarding the interpretation of their code and its
subsequent translation into the equations seen below (and throughout Sections 3.2 and
3.3) are our own.

Cerqueira et al. [22] set a fixed value for k and used v = (N — k)/(2k) and h =
p + 1, with p being estimated using Takens [75]’s method (more details in Section 5.2.2).
Since we want to compare our results to theirs, we shall use Cerqueira’s, not Rancine’s,

approach.
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With those choices of k and v, the number of observations in the validation set is:

MV =92.9 41

N -k
2k

=2 +1

(3.47)

N
ok
The above equation depends on the ratio between N and k. As discussed before
(Section 3.2.5), this result will depend on the software or function that one uses. Hence,
we define the “nu” function:

(

{lf}”ch , if the computer returns | &' | for the i-th case

V(N ki) = (3.48)

[lf}”cv—‘ , otherwise.
\

Then, fori = 0,...,k — 1, the sets of indexes from {1, ..., N} that will form the

validation sets are given by:

4

{1,...,V(N,k,0)}, ifi=0

I = (3.49)

{[Z;;BU(N,k,j)} +1,...,2§:0y(1\/,k,j)}, if0<i<k—1

\
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Similarly, the indexes that will be deleted from the estimation set are:

(

{1,...,V(N,kf,0)}, ifi=0

Dj = 4 {[z;’.:gy(zv,k,j)} +1—h,..., [z;ﬁzoy(zv,k,j)] +h}, ifo<i<k—1

\

{[Zé’})”w’k’j)} + 1=y 3 (N, k7j)}7 ifi=k—1

(3.50)

The hv-block validation scheme in Cerqueira et al. [22]’s case is defined as:

k-1
YEV-OVBLp g h) = { (I8, I))| I = {1,...,N}\ D}, I} = If*} (3.51)

=0

where NV is the number of observations in D, h = p+ 1, and D} and Z/* are given by the
equations Equation (3.50) and Equation (3.49). An example of this scheme applied to a

time series can be seen in Figure 3.14.

Finally, the validation error used by Cerqueira et al. [22] for the hv-block cross-

validation scheme 1is:

E(DvVCV'hVBl=f):%;m > Ut (#00m)]
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Training data

Test data

D€ DD DD DDD @@@@
i-th fold 1
"Unused Observations  Estimation set Validation set
0 Yia Y22 Y3 m Y42 Y5 Yo Y7 mm Y8 an Yo gu Y10zm Y112 Y12
1 Vig Y2 V3 m Yam Y52 Yo Y7 2 V8 au Yo au Yioge Y11m Y12
2 Vi Y2 Y3 2 V4 2 Y5 2 Vo . V7 Y8 2 Yo au Yioge Vi1 m V12
3 Yim Yo Y3m VYim Vou Yo uu Y7 V8 au Yo au Yiozm Y1158 Y12
4 VigVoamVimVim Ysm Vo mu V7 Y8 Yo o Yiogs Vi1 V2
5 Yigm Y2 = Y3 m Y Vs Yo mu Y7 i Y8 Yo i Yiog Vi1 Va2

Figure 3.14: Example of the hv-block cross-validation scheme used by
Cerqueira et al. (2020), applied to a univariate time series with 7' = 16,
¢ =028,q.=0.8,p=3,and k = 6.

3.3.4 Modified cross-validation

McQuarrie and Tsai [81] showed that it is possible to obtain a better cross-validation
criterion by modifying the k-fold procedure and deleting d observations from the estima-
tion set at each fold. These authors called this scheme the delete-d cross-validation,
CV(d), while Bergmeir and Benitez [6] called it non-dependent cross-validation and [22]
used the term modified cross-validation.

McQuarrie and Tsai [81, p. 254] address the problem of choosing d, and propose
d= [N — N with 0 < a < 1. However, Kastens [82, p. 389] argues that this choice

is not sufficient to indicate a desirable value for d, searches for an optimal value for it (in
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the sense that, with it, CV(d) exhibits the highest rate of selecting the best model*”), and
discusses theuseof d = N —p—1landd = N — p.

In their code, Cerqueira et al. [22] use a different approach and delete at most d <
[(2 . \/m ) + 1} - N/k?! observations. In the way they programmed it, there can be
overlaps in the indexes. Thus, the final value of d depends both on the number of unique
indexes and on the number of indexes greater than 0.

Let us use the same framework as we did in Section 3.3.1 for the k-fold proce-
dure. That is, let Cy, ..., Ck_; be the sets formed from random partitions of {1,..., N}
taken without replacement, such that each set has approximately N/k elements (i.e.,
Card (C;) = 6(N,k,i),i = 0,...,k — 1, where §(V, k,7) is the delta function de-
fined in Equation 3.27). Let cgj ) be the indexes of the j = 1,....8 (N, k,i) elements in
C;. For example, back in the section on the k-fold, in the example shown in Figure 3.10,
we have that Cy = {5,10,7,4}. Then, ¢! =5, ¢ =10, /¥ =7, ¢{") = 4.

()

In the modified cross-validation scheme used by CTM, at each ¢;”’, we delete the

observations in the range

EO={V — |\p+1]-1,....&7 + |\ /p+1] -1} (3.53)

It is easy to see that every set E(‘j), forj = 1,...,0(N,k,1), has cardinality equal

to (2 v |p+ 1j> + 1. And since we have §(V, k, i) =~ N/k sets, the number of deleted

observations at each fold ¢ is (approximately) equal to [<2 v |p+ 1j> + 1] - N/k, as

20That is, the model with all of the predictors that contribute to the response, and only those.
2I'These values were obtained after tracing Cerqueira et al. [22]’s code. Thus, any errors or omissions are
our own.
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we have stated above. Moreover, since this value changes at every fold (because of the

different results for the ratio N/k), we prefer writing this number as

d; < dmax = [ (2-V/[p+1]) +1] - 6(N, £,3) (3.54)

The maximum value of d;, dmax, assumes that Ei(j e Efb) = @, for j # bateach i,

)

and that every element in EZ-(j is greater than zero. We did this to facilitate the definition

of d; and of the sets. In reality, the actual value of d; might be smaller than that since we

take only the unique elements of £ U) that are greater than 0.

1

For instance, let us revisit our example. Recall that we have been using N = 12,
k = 3, and that Cj has the elements cél) = 5, 082) = 10, c(()g) =1, 084) = 4. Then, for

p = 2, the Eéj)s are:

EY = {c" - [vVe+T) -1, + V2 1) -1}
—{5-1-1,....,5+1—1}

= {3,4,5}

EY ={10-1-1,...,10 +1 -1}

= {8,9,10}

EP ={1-1-1,...,7+1-1}

={5,6,7}

67



and

EM={4-1-1,...,4+1-1}

={2,3,4}

Thus, the indexes of the observations that will be deleted from the training set to

form the estimation set are:
{3,4,5} U{8,9,10} U {5,6,7} U{2,3,4}
and it is clear to see that this number matches the value obtained from Equation (3.54),
do < dmax = [(2 2+ u) + 1} 12/3 =12

We would like to take only the unique indexes from the union above, and all the
indexes that are greater than zero. Thus, let us also define a set that represents this union,

but without the undesired indexes:

N,k,i

S(IV, ki)
E; = {(61, ey €d;) € U EZ-(J) |
j=1

Va,b € {1,...,dw},a >0,6, >0, anda #b = ea%eb} (3.55)

In our example,

Ey = {3,4,5,8,9,10,6,7,2}
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and ordering it yields

Eo ={2,3,4,5,6,7,8,9,10}

The above example - with F; and FE» obtained in the same way as FE - is illustrated
in Figure 3.15. This Figure was created exactly like Figure 3.10 for the k-fold scheme.
The only difference is that the deleted observations were grayed out here.

From Equation (3.55) and Equation (3.53), it is easy to see that for every ¢ =
0,...,k —1, the sets C; C E;**. Then, we can modify the definition of the k-fold cross-
validation scheme from Equation (3.37) to account for the deleted observations and write
the modified cross-validation scheme used by Cerqueira et al. [22, 69], VCV'MOd(D; k),

as:

177 (3

YCEV-Mod(p. 1y = {(Ie T I¢={1,.... N}\ E;, IV = C;;

k—1
C; C Py, C;NC; =@, Vi # j} (3.56)

1=0

where Py is the set of random permutations of {1,..., N}, and N is the number of

observations in the training set D.

22 A set C; might not be a proper subset of E;, since it is possible to have C; = E;. For instance, suppose
that in the example given (N = 12, k = 3, p = 2), we obtain the set Cy = {1,2,3,4}. Then,
EMV={1-1-1,...,1+1—1} = {-1,0,1}
EOQ) {2-1-1,....241-1} = {0,1,2}
={3-1-1,...,3+1-1} ={1,2,3}
Vo411, 4411} ={2,3,4}

Thus,
Ey={1,2,3,4} = Cy
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Training data

Test data

A 20 DDOODO0ODDDDDODDDD
i-th fold "Unused Observations  Estimation slet Validation set

0 Y120 Y2 20 Y3 2u Ya g V5 . Y6 gu ¥7 gu V8 gu Y0 gu Yioge V1140 V12

1 YigY2aY3mYim Vo Yo iu Y7 i Y8 m Yo m Y1iom Y1108 V12

2 Yim Y2 5 Y3 g Va gu Y5 au Yo au Y7 u Y8 g Yo g Y10ge Vi1 m V12

B Test data
D DDDODODDDDDDDDD

i-th fold 'Unused Observations  Estimation iet Validation set

0 Y2 = ¥3 &= Yo = Yo Y11 Y1 V125 Yo mu ¥5 mm Viogs V7 2 Va

1 Ys mYiom Y7 Y4 mY11um Y1 V12 Yo mu Y2 5 Y3 o Yo o ¥

2 Ys Y10 Y7 20 Ya au V2 2u V3 20 Yo au Yo muVi1gm Y1 gu Yizge Yo

Figure 3.15: Example of the modified cross-validation scheme used by
Cerqueira et al. (2020), applied to a univariate data set with 7" = 16, ¢ = 0.8,
ge = 0.8, p = 2, and k = 3. Panel A shows the selected observations in their
original ordering. Panel B shows them according to their selection order.

The out-of-sample error for this scheme is similar to the one for the k-fold. The
difference is in the definition of D (Zf) (which impacts the estimates of 6), which now

has fewer observations than the estimation set used in the k-fold procedure. We write this

€Iror as:
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Chapter 4: Introducing the p-Holdout family of schemes

After learning about the history of the validation schemes in Chapter 2 and go-
ing over their methodological details in Chapter 3, we noticed that none consider the
seasonal aspect that a time series may present'. It is true that in the statistical litera-
ture some practitioners deseasonalize the data prior to producing the forecasts, following
Kirby’s suggestion [36, p. B-208], which generally leads to improvements in forecast
accuracy. Yet, the “inconsistent handling of seasonality” [83] in machine learning ap-
plications (especially those based on neural networks) leads to mixed conclusions about
whether deseasonalizing the series improves its forecasts [83, 84, 85]. On the other hand,
when seasonality is properly accounted for, significant improvements can be seen in fore-
cast accuracy [84, 86], and it also reduces the “computational time required to arrive at
optimal weights and, therefore, learn faster” [85, p. 21].

Notwithstanding, recent papers in machine learning usually do not take into account
a series’ seasonal pattern. To arrive at this conclusion, we searched for the terms “machine
learning time series” on Google Scholar and evaluated the top 20 papers in the number of
citations - all published between 2001 and 2019. Out of the 20, eleven of them have no

mention of the word “season” at all, one uses this word outside of a time series context,

't is really difficult to be entirely accurate when affirming this since so many different names for vali-
dation schemes have been used since the 1930s, but to our knowledge, no method specifically accounts for
seasonal or cyclic data.
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and three only mention it in their literature review”. Moreover, a search on Google Scholar
for the terms “machine learning time series deseasonalized” or “machine learning time
series deseasonalize” yields fewer than 1,300 papers (1,240 in the former, and 1,230 in the
latter case). Therefore, machine learning procedures are being used to select forecasting
models, but without proper consideration of a series’ period, a crucial characteristic of a
time series.

Since a time series might contain cycles and seasonal patterns, disregarding them
when preprocessing the data or when dividing between training data and test data might
lead to an incorrect choice of the model. And while we are aware that one needs to
be careful with over-fitting the model to the estimation and validation sets at hand, as
the latter can be very different from the test set, we argue that because the observations
are dependent and because a seasonal series displays a similar behavior over time, it is
possible to obtain similar validation and test sets (Figure 4.1 - Panels D and E) in a way
that improves forecast accuracy and, consequently, model selection.

Based on that, we propose three validation schemes that account for the periodicity
of a time series. Figure 4.1 - Panels B, C, D, and E - returns the results from splitting
the USAccDeaths data set using the Holdout , the p-Holdout , the cp-Holdout
schemes, and the cep—-Holdout , respectively. Another example can be seen in Figure
1.2 in the Introduction. From these pictures, we observe that the validation sets created
by the p—~Holdout and the cp-Holdout schemes are more similar to the test set than
the one obtained from the classic Holdout method. In such cases, we hypothesize that

the differences between the out-of-sample errors obtained with the validation and test sets

’The list of papers is available in Appendix E.
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should be small. In fact, the results shown in Chapter 6 show that this is often the case.

A: Training and Test sets

B: Holdout

D: cp-Holdout

E: cfp-Holdout

Figure 4.1: The Holdout , p-Holdout , cp-Holdout , and
cep-Holdout schemes applied to the USAccDeaths data set. Panel A
shows the entire series (blue) and the observations we would like to fore-
cast (red). In Panel B, the test set was obtained with the Holdout method.
In Panels C, D, and E, the test set was obtained applying the p-Holdout ,
cp-Holdout ,and cep-Holdout schemes, respectively.
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We compare our family of schemes with the procedures used by Bergmeir and
Benitez [6], Bergmeir et al. [68], Cerqueira et al. [69], Bergmeir et al. [21], [23], and
CTM. These papers use techniques to compare several validation schemes’ performance
and provide benchmark data sets that can be used to evaluate a new procedure. From
the results in Chapter 6, our new schemes are computationally inexpensive, improve the
forecast accuracy, and greatly reduce the average forecast bias without increasing the
variability, especially when applied to non-stationary time series. Their details are given

in the following sections.

4.1 The p-Holdout validation scheme

Our first proposal is the simple period-holdout forward-validation scheme or simply
the p-Holdout scheme. It works much like the Holdout procedure in the sense that
we take the last block of the training data to be our validation set. However, there are
some key differences.

For the cases where a series exhibits a periodic behavior, the length of the validation
set is not determined by a split-point chosen by the analyst, as it is done for the Ho1dout
scheme?, but depends directly on the length of the forecasting horizon, /. Hence, when
similarities occur after s basic time intervals, the final length of the validation set is de-
fined by the summation of [ and s. If the series seems aperiodic, then we revert to the

Holdout scheme. Formally, we define lzI,)HO, the length of the validation set under the

3Recall that in the Holdout procedure, I, = [(1 —g.) - N1, for ¢. € [1/N,1).

75



p—-Holdout scheme as,

(1—gq) N, ifs=1
PHO _ .1

[+ s, otherwise.

Recall that the length of the validation set under the Holdout scheme is ZHO =

[(1 —g¢.) - N (see Equation (3.11)). Substituting this in the equation above yields,
MO ifs =1

PHO _ (4.2)

l+ s, otherwise.

In our analysis, the period s is obtained using the frequency function from base
R. If the time series object has information on periodicity, this function returns the number
of observations before the seasonal pattern repeats*. And even though the length of the
validation set does not depend on the choice of ¢., the length of the test set might depend
on the choice of ¢;, as shown in Equation (3.3).

A schematic illustration of the p~Holdout scheme is given in Figure 4.2. For the
sake of the example shown in this picture, take a time series of daily data with length
T = 16. Suppose that this series has a pattern that repeats every 3 days. Thus, s = 3.
If we want to forecast the next four observations, then we use Equation (3.3) to write
N =16 — 4 = 12, and Equation (4.2) to write [P#0 =4 +3 =7,

We have developed the p-Holdout validation scheme to account for time series

“We developed the cep-Holdout (see Section 4.3) to account for the cases where the object does not
have that information.
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Figure 4.2: Example of the p-Holdout forward-validation scheme applied to
a univariate time series with 7' = 16, ¢; = 0.8, and s = 3.

with a period greater than 1. For those cases, VPHO(D; [,s), the p-Holdout validation

scheme, is defined as:

VpHO(D;l,S) = {(Ie’z”ﬂ ¢ ={1,...,(N =1 —s)},

I”:{(N—l—s+1),...,N}} (4.3)

Another way to write Equation (4.3) is to substitute [ + s for 27 from Equation
(4.2). This makes it comparable to the Ho1dout procedure’s equation, given by E.(3.12).

Then, the proposed validation scheme yPHO (D; 1, s) becomes:

VPHO(DJaS) = {(IG,IUN I°= {1, e (N _ lﬁHO)}7

I’ = {(N—lﬁHO—l—l),...,N}} 4.4)

The estimated out-of-sample average error (Eq.3.7) is written as:

ﬁ(p,Vqu f>zlp11{0 3 é[y, f(z,ép(ze)ﬂ 4.5)



From Equations 4.3 and 4.5, it is easy to see that the p~Holdout scheme is not
computationally expensive since it does not depend on several “rounds” of estimation, but

on a single data split.

4.2 The cp-Holdout scheme

The p-Holdout procedure can “waste” many observations, as seen in Figure 4.1
- Panel B. To circumvent that, we developed the cp-Holdout procedure or composite
p-Holdout forward-validation scheme. We called it composite because it considers three
situations. If the series is aperiodic, then it returns the same validation set as the Ho 1l dout
scheme. In the cases where the period is greater than 1, then we calculate the ratio between
the length of the test set and s. If this division has a remainder, we take the ceiling of this
ratio and multiply it by the period of the series. The result is the length of the validation
set. Otherwise, it creates the validation set as the p—Holdout scheme does. In other

words,

(

[HO, ifs=1

cpHO

W = s - [Z/s-‘, if s > 1and/ mod s # 0 (4.6)
[+s, otherwise.

\

Using the same time series and conditions like those in the example from the
p-Holdout scheme, we can show a simplified vision of the cp-Holdout method

in Figure 4.3. In this case, we have that [ /s = 4/3 = 1.3333, s0 [P0 is 3-[1.3333] = 6.
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Figure 4.3: Example of the cp-Holdout forward-validation scheme applied to
a univariate time series with 7' = 16, ¢; = 0.8, and s = 3.

We define the cp-Holdout validation scheme, VCPHO(D; l,s) as

VCPHO(D; l,s) = {(I@,Iv)\ ¢ ={1,..., (N —1P"9)},

TV = {(N — "0 4 1),...,N}} 4.7

And the equation for the average expected out-of-sample error is:

£ (D.vePHO ) cpho S [yt (260 (4.8)

Ly (2,y)€D(Z)

4.3 The cep-Holdout scheme

In both the p-Holdout and cp-Holdout procedures, the period is obtained
using the frequency function from base R. This function returns the number of obser-
vations s before the seasonal pattern repeats (its “frequency’) by capturing an attribute of
the time-series object used in the analysis. However, in some situations, the object might

be of a different class (for instance, a “data.frame”) that does not contain the “frequency”
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attribute or might seem aperiodic (i.e., with the “frequency” attribute equal to one), but,
in reality, it contains a cyclical or seasonal pattern. We developed the cep-Holdout
scheme or composite estimated period-holdout forward validation scheme to account for
these cases.

The cep-Holdout procedure works similarly to the co-Holdout but uses the
dominant frequency of a time series estimated from a spectral analysis of the data. We
use the findfrequency function from the forecast package to obtain this dominant
frequency since this function returns the seasonal period for seasonal data and the average

cycle length for cyclic data. From its manual:

“The dominant frequency is determined from a spectral analysis of the time
series. First, a linear trend is removed, then the spectral density function
is estimated from the best fitting autoregressive model (based on the AIC).
If there is a large (possibly local) maximum in the spectral density function
at frequency f, then the function will return the period 1/f (rounded to the
nearest integer). If no such dominant frequency can be found, the function
will return 1.7

To avoid confusion with the forecasting model f, we shall write the dominant fre-
quency as . With this, we write our first attempt at defining the length of the validation

set for the cep—-Holdout method as:

(

HO, ifs=1

1stcepHO

b P = §~[l/§—‘, if $>1andi/mod3§+#0 (4.9)
[+, otherwise.

When evaluating the results, we noticed that defining the length in the way shown

in Equation (4.9) presented a few challenges. Firstly, we used the entire training data to
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obtain $. Having § = findfrequency(D) yielded some large values of $ that proved
problematic when used with the Random Forest estimation method (see Section 5.2.5).
To obtain smaller values for ZS prO, we had to make two changes.

The first one is that instead of using the length of the test set, [, for all cases, we
defined a condition that returns either [ (1 — ¢;) - N'| (the definition of [) or [(1 — ¢.) - N|
<the definition of l?o) as the new length [*, depending on the ratio between the two. The
other change is a condition imposed on the estimated value § =findfrequency(D). If
it is larger than [*, then we obtain the dominant frequency from the validation set obtained
using the classic Holdout scheme. That is, § = findfrequency (VHO(D; qe)>.

Formally, we have:

HO i HO /1 < 05,
l*

(4.10)

[, otherwise.

and

findfrequency(D), if findfrequency(D) < I*,
4.11)

VA
Il

findfrequency (VHO(D; qe)> ,  otherwise.

81



With these, we write the length of the validation set in the cep—-Holdout scheme:

p

HO, if§=1
cepHO
P =0 P*/éﬂ’ if $> 1and[* mod § # 0 (4.12)
I*+ s, otherwise.
\

Then, VcepHO(D; I*,§), the composite estimated period-holdout forward valida-

tion scheme is defined as:

yeepHO (p, 1+ 5) _ {(ze,zv)| = {1, (NP

7= {(N—zSePHO+1) N}} (4.13)

and the associated out-of-sample generalization error is:

£ (D, veerHO, ) ce;HO >ty s (2600 (4.14)

[ (2,y)€D(Z)
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Chapter 5: Data & Methodology

5.1 Data

5.1.1 Data from Cerqueira et al. (2020)

It is important to notice that the selection of g(-) in Eq.(3.8) does not depend
uniquely on the validation scheme selected. From Equation (3.7), we see that it also
depends on the training data (D), on the learning algorithm (through 6), and the loss
function. Therefore, to compare our results to those from CTM, we will need to use the
same training data, learning algorithm, and loss function that they used.

Out of the 174 real-world data sets used by CTM, 149 univariate time series with
more than 500 observations without missing values were taken from the benchmark
database tsdl from Hyndman and Yang [70]. The remaining 25 were taken from Cerqueira
etal. [87]. CTM selected time series with at least 500 observations (the range for the sam-
ple size goes from 506 to 4000 observations) so that the machine learning algorithms had
enough data to estimate the parameters properly. The 174 series were taken from many
different fields, that include finance, physics, economy, energy, and meteorology [22, p.
2005]. Moreover, 97 are stationary, while the remaining 77 are non-stationary.

As for the seasonality, Table 5.1 shows s (the period from the frequency func-
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tion) and 5 (obtained using the forecast : : findfrequency function). We see from
it that most series (n = 60 in each case) are either aperiodic (s = 1) or with monthly pe-
riodicity (i.e., with frequency s = 12). The function forecast::findfrequency
was able to “correctly” identify 41 of the aperiodic series and 48 of the monthly time
series. The highest period identified by s was 365 (daily), while 5 yielded a maximum

estimated period of 499.

5.1.2 Data from the M4 Competition

The M4 Forecasting Competition took place in 2018. Participants in this compe-
tition had to forecast values for 100,000 real-life time series. The number of forecasts
required was 6 for yearly data (minimum sample size of 13), 8 for quarterly data (mini-
mum sample of 16), 18 for monthly time series (min. sample of 42), 13 for weekly data
(min. sample of 80), 14 for daily (min. sample of 93), and 48 for hourly data (minimum
sample size of 700).

We randomly selected 1,000 time series from these one hundred thousand and used
them to evaluate the performance of the different validation schemes. Since we wanted
to see how they behaved on periodic data alone, we selected only the series with at
least 100 observations, and in which their period was greater than 1, and if this period
was equal to the period of the dominant frequency of a time series (estimated using the
findfrequency from the forecast package!). In the end, we had 164 series with

s = § = 4, 778 with both period and estimated period equal to 12, and 55 with similarities

'For cyclic data, this function returns the average cycle length. For seasonal data, it returns the seasonal
period.
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Table 5.1: Period and estimated periods for the univariate time series in Cerqueira et

in the series occurring after 24 basic time intervals.
al.(2020)’s data set.

\ s| 1 [12]13]24]48]365| Total

59

55

14

48

41

10

11

12
13
15
16
17
21

22
23

24
25

29
30
42

45

48

50
125
143
250
333
499

Total |60 |60 | 1 [25] 5 | 23 | 174
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5.1.3 Monte Carlo Simulation

The third data set, called S3, is a counterexample developed by [21] to work as
a situation where the cross-validation procedures break down. The 1000 time series
with 200 observations were generated following a seasonal AR process with a signifi-
cant lag 12 (seasonal lag 1), that is, a SARIMA(12,0,0) x (1,0,0)12. The authors ob-
tained the parameters for the data generating process by fitting the seasonal AR model to
the USAccDeaths data set shown in Figure 4.1. This dataset is included in a standard
installation of R.

The models used by both CTM and Bergmeir et al. [21] to analyze the simulated
data only use up to the first five lags. By restricting the number of lags, Bergmeir et al.
[21] expected the models to not fit well data. Curiously, CTM’s results show that some
cross-validation procedures yielded good results. We hypothesize that they used different
forms of the validation schemes as we showed in Section 3.3.

We used the S3 dataset but also modified it to include a seasonal integration of
order 1. In other words, we also simulated 1000 time series with 200 observations with
parameters estimated using the USAccDeaths data set, but according to the specifica-
tion SARIMA(12,0,0) x (1,1,0)12. The goal here was to evaluate how the validation

schemes deal with an integrated seasonal process. We called this dataset S4.

5.2  Methodology
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5.2.1 Terminology

To make the names of the schemes defined here compatible with the ones used by
CTM, we use the short names shown in Table 5.2. The short names are also used in the

plots with the final results (Chapter 6 and Appendix B).

Table 5.2: Names and short names of the validation schemes used here, alongside the
number of the Sections with discussions about them, and the exact equation number used
to define the indexes for the estimation and validation sets.

Type \ Name \ Short Name \ Sec. \ Eq. #

Holdout Holdout 3.2.1 | 3.10

Repeated Holdout Rep-Holdout 322 | 3.18
Period-Holdout p—-Holdout 4.1 4.4

Composite Period-Holdout cp—-Holdout 4.2 4.7

Forward | Composite Estimated-Period-Holdout | cep-Holdout 4.3 4.13
Validation | prequential Growing Window Preg-Grow 323 | 3.21
Prequential Sliding Window Preg-Slide 324 | 3.23

Prequential in Blocks Preg-Bls 325 | 3.28

Prequential Sliding Blocks Preg-Slide-Blocks | 3.2.6 | 3.31
Prequential Blocks with Gaps Preg-Bls-Gap 327 | 3.34
Cross-validation (k-Fold CV) CcVv 33.1 | 3.37

Cross- Blocked k-Fold Cross-Validation CV-Bl 332 | 3.39
Validation | py-Block Cross-Validation CV-hvBl 333 | 3.51
Modified cross-validation CV-Mod 334 | 3.56

5.2.2 The Forecasting Model and the Embedded Matrix

Following CTM, we use a univariate autoregressive process to model the series.
This process can be represented by the time delay embedding method proposed by Takens
[75, apud CTM]. In this method, the lag order, p, of the model is estimated (see below),
and the time series is embedded accordingly. The resulting matrix is similar to the one

seen in Eq.(5.1) (this one was created for a lead time [ = 1) and will be used as the input
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for the learning algorithms (see Section 5.2.5).

n Y2 0 Yp Ypn
YV[T,p} == yt—p yt—p+1 e yt—l yt (51)
Yr—p Yr—p+1 - Yr-1 Yr

In the above matrix, we see that each row is of the form [z, , y;|, where z; € R” is
the vector comprised of the lagged values of y;. Thus, the first p columns of the matrix in
Eq. (5.1) contain the predictors for the last column of the matrix.

The optimal embedding dimension, p, is estimated using the False Nearest Neigh-
bor algorithm, developed by Kennel et al. [88]. The idea behind this algorithm is to search
for regression vectors that are close to a vector that produces a good prediction. By sim-
ilarity, it is expected that these regression vectors will produce forecasts that are close to
each other. However, if those regression vectors produce vastly different future outputs,
they are deemed false neighbors [89]. The embedding dimension is selected to be the
one in which the number of false neighbors is dropped to an acceptably small percent-
age’. The algorithm uses the training data to search for p up to a maximum embedding

dimension equal to 30. The tolerance to false nearest neighbors was set to 1% [22, p.

2008].

2In their code, CTM set a minimum value of 8 for the estimated dimension. Furthermore, when creating
the embedded matrix, they added 1 to the estimated value. They did not discuss why they did this.
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5.2.3 Length of the Sets and Number of Folds

Once we have the final embedded matrix for each of the simulated data sets, or the
174 time series from CTM, they will be divided into the training and test sets using the
proportions of 70% and 30%, respectively (that is, ¢; = 0.7). Then, following Bergmeir
et al. [21], we take g. = 0.8 for the simulated series. For the 174 real-life series, we use
ge = 0.7, as did CTM.

For the M4 Competition, the organizers had defined the length of the forecast hori-
zon [ for each type of series, as discussed in Section 5.1.2, so we used the provided lengths
as the lengths of the test and validation sets for each one of the 1,000 selected series. Af-
ter the competition was over, the organizer provided the true out-of-sample observations
(with length [), and these were used as the test sets. The length of the training sets, N,
was the maximum length of the series available before the end of the competition [11].

In all cases (Simulated, Cerqueira and M4), the proportion ¢, used for the estimation
set with the Rep-Holdout scheme was 60% of the training data, while the validation
set contained the last 10% observations from the training data (i.e., ¢, = 0.1), as it was
done by [22, p. 2008]. For the Rep-Holdout and the other schemes that require the

number of folds, this number was set to 10 [22, p. 2008].

5.2.4 Stationarity

We also divided the series into stationary and non-stationary cases to see how the

validation schemes behave in each case. According to the original authors:

“In order to test if a given time series is stationary we follow the wavelet
spectrum test described by Nason (2013). This test starts by computing an
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evolutionary wavelet spectral approximation. Then, for each scale of this ap-
proximation, the coefficients of the Haar wavelet are computed. Any large
Haar coefficient is evidence of a non-stationarity. An hypothesis test is car-
ried out to assess if a coefficient is large enough to reject the null hypothesis
of stationarity. In particular, we apply a multiple hypothesis test with a Bon-
ferroni correction and a false discovery rate (Nason, 2013).” (Cerqueira,
Torgo, and Mozetic, 2020, p. 2005)

5.2.5 Learning Algorithms

The learning algorithms (i.e., the methods used to estimate 6) applied by CTM are

the following:

RBR: arule-based regression algorithm from the Cubist R package [91], which is a variant

of the M5 model tree algorithm [92, 93];
RF: arandom-forest algorithm, which is an ensemble of decision trees [94];

GLM: a generalized linear model with a Gaussian distribution and a Ridge penalty mixing.

Quinlan’s M5 model tree algorithm [93] is a supervised learning method used to
predict continuous values. Tree-based models are constructed by the divide-and-conquer
method. That is, they partition the covariate (feature) space of the training data into a set
of rectangles and then fit independent models in each one (Figure 5.1 - bottom part). The
same model can be represented by the tree in the upper part of Figure 5.1. The partition
is based on the split-points that provide the best fit, i.e. the points that subset the training
data in a way that minimizes the variability inside each rectangle. This metric depends on
the standard deviation of the target/response variable taken into the entire training sample

and taken inside each rectangle.
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Figure 5.1: Example of splitting the input space X; x X, by the M5 model
tree algorithm. Image source: Etemad-Shahidi and Mahjoobi [95, p. 1177].
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Cubist is a rule-based regression (RBR) model that combines the algorithms that
Quinlan [92, 93] developed into an improved approach. The main improvements include
an ensemble method for predictions called committees [96], where iterative model trees
are created in sequence. The model in the first tree (i.e., in the first committee) uses
the original response variable. Subsequent trees (committees) are created using adjusted
versions of this response so that if the model over-predicted the outcome, its adjusted
value becomes larger so that the model is pulled downwards for the next iteration in an
attempt to stop over-predicting. The final prediction is the average of the predictions from
each model tree (that is, “ensemble predictions are made by averaging over the committee
model predictions”, [96]). Following CTM [22, p. 2009], we use 5 committees.

The “Random Forests” (RF) algorithm basically builds a large collection of de-
correlated trees, and takes their average [74, p. 587]. Because of this, it is often defined as
an ensemble of decision tree algorithms. It differs from the model tree algorithms because
the variables are randomly selected as candidates for splitting instead of a rule-based
method. Another major difference is that it evaluates the models in a bootstrap sample of
the training data instead of the rectangles created from a partition of the covariate/feature
space as in the RBR model. This assures that the grown tree in each bootstrap sample
(one tree per sample) yields uncorrelated outcomes from the other trees. We used 100
trees/bootstrap samples>.

Lastly, we used a generalized linear model with a Gaussian distribution and a Ridge

penalty mixing, or simply known as “ridge regression.” This method shrinks the re-

3Due to the random nature of this method, and since Cerqueira et al. [22] did not set a seed in their code,
our results in Chapter 6 are slightly different from theirs. Our discussion about this with the corresponding
author can be seen here: https://github.com/vcerqueira/performance_estimation/
issues/1.
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gression coefficients by imposing a penalty on their size, which alleviates the effects of
multicollinearity[74, p. 61-64]. On the one hand, this adds some degree of bias, but on
the other, it reduces the standard errors. In this bias-variance trade-off, ridge regression,
in general, provides more gains in terms of efficiency in exchange for a tolerable amount

of bias.

5.2.6 Forecast Accuracy Measures

Following the work of Bergmeir et al. [21], CTM wanted to compare the different
validation schemes by evaluating how close £ (D, V, §) would be to £ (D, Dyey, §)*, the
“ground truth loss” [22, p. 2009]. For that, they used the absolute predictive accuracy er-
ror (APAE), and the predictive accuracy error (PAE) metrics. The APAE metric evaluates
the error size of a given validation scheme, and is defined in Eq.(5.2), below. On the other
hand, PAE, as defined in Eq.(5.3), measures the error bias of a validation scheme - that is,

if it is underestimates or overestimates the “true” error.

APAE = |£ (D, V, §) — L(D, Dyest, §) (5.2)

A

PAE = £ (D,V,§) — L(D, Dyss, §) (5.3)

4That is, Eq.(3.7) with D;.,; in place of V.
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where V is any of the validation schemes presented in Sections 3.2 and 3.3

The first loss function, ¢, used inside each L was the quadratic loss. We used
it because it is a metric traditionally used to evaluate forecast accuracy. With it, the
generalization error £ becomes the mean square error, MSE. To control for its size, we
calculated the root mean square error (RMSE). Using this error measure makes our results
comparable to the ones by Bergmeir et al. [21]. These are the results shown in Chapter 6.

However, since the main paper that we are using to compare our results is the one
by [22], we also use the mean absolute scaled error as calculated for the estimation and

validation set as follows (that is, £ (D, V, §):

le+l N
tjﬁzﬂ Ye — D4l

MASE
(ﬁ) Zi\is-‘,—l Y — Ye—s]

(5.4)

1
Ly

Calculating ﬁ(D, Diest, §) using the MASE metric is similar. This metric is suitable
since it allows us to consider the periodicity of a time series. Moreover, since it is scale-
invariant, it “can be used to compare forecast methods on a single series and also to
compare forecast accuracy between series” [97, 43].

Our final evaluation consists of taking the APAE metrics for all the validation
schemes and sorting these values for a given time-series. The procedure that yields the
smallest APAE values will receive a rank equal to 1 (meaning, it is the best for that
specific series), while the “worst” scheme (with highest APAE) will be ranked the 14th
method (i.e., the last place, since we have 14 procedures). Then, we take the average rank
among all series and sort the procedures according to this average rank. These sorted

ranks comprise the first set of results shown in Chapter 6 and Appendix B.
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The second set of results is based on the PAE metric. For that we will calculate
the log percentage difference of the estimated loss, L (D, V, f), relative to the true loss,
ﬁ(D, Diest, §). Values below zero represent under-estimations of the error. Conversely,

values above it represent over-estimations of the error. Ideally, a scheme would produce

a log percentage difference close to zero.

5.2.7 Hypothesis Testing and Comparisonwise Error Rate

Let us briefly review the types of errors. Recall that we have two types of errors
related to hypothesis testing: Type I and Type II. Consider the case where we are testing a
hypothesis about the mean of a population, and someone states that the real mean is equal
to some value 14, and say that our alternative hypothesis is that this mean is different from

1o In this case, we have the following:

Hy:p=po

Hy:p# po

From the way we have defined our hypotheses, H| is false if the real parameter p is
anything but 1iy. Since we have many possibilities for that (i.e., many possible values for
the real parameter, p, as long as it is different from 1), we say that H 4 is a composite
hypothesis. On the other hand, in the case , has only one value and we say that it is a
simple hypothesis.

Now, we define the Type II error as the error we make when we do not reject H

when it is false. Because ;. can be anything but 1, the probability of making a Type II
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error will be a function of all y that are different from 1y, and this function is usually

denoted by A(-):

P(Do not Reject Hy|H, false) = B(u), Vi # 1o

Type 1 error is the one we make when we reject [, when it is true, and the proba-
bility of making such error in that situation depends, in general, on the value specified in

Hj. In other words,

P(Reject Hy|Hois true) = P(Type L error |1 = puo)

And if the probability of type I error satisfies

P(Typelerror ) < o, when p = py,

Then we say that the test has a significance level «, and « is the ceiling for the probability
of a Type I error.

Now, we have seen how to use the two-sample t-test to compare the means of two
samples. In such case, we could have a null hypothesis that looks like this: Hy : p1 = po,
where 11 and po are the population means for groups 1 and 2, respectively. However,
when you have more groups, it is of interest to examine the differences between these

groups. In such cases, we can have two types of null hypothesis: a complete null hypoth-
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esis, or a partial null hypothesis: One example of a complete null hypothesis is:

Ho:p=po=...= i,

where K is the number of groups/levels/factors/categories that is, we are evaluating if all

group means are the same. On the other hand, an example of a partial null hypothesis is:

Hy:py=po=...= ug—1 # Ik,

and, in this case, we are testing if the mean of one group is different from all other groups
and that all other groups have the same mean.

To evaluate the probability of type I error in such cases, we could break apart these
hypotheses into several simple hypothesis. In this case, we would have several probabili-
ties of making a Type I error, one for each individual test between two means.

In a multiple comparison setting, we would be looking for the value of « at each
simple case. One could use the same « for each simple case, and let us take a look at what

happens when we do that. Recall our partial null hypothesis example and let us say that

K = 3. Then,

Hy:py = pa # p3

Breaking this up into three hypothesis yields:

Hy:pno=poy HY o # ps; HY o po # s
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If we use the o = 0.05 for each of them - and, to ease the calculations, assume
that the probabilities of a Type I error are independent among all comparisons -, then the
probability that at least one of these tests yields an erroneous rejection raises to 0.143 (see

below).

1 — P(not one test yield an erroneous rejection of the null) = 1 — 0.95

~ 0.143

Thus, the above probability increases with the number of comparisons (single hy-
pothesis) that we make. This is the multiple comparison problem. One way we can solve
it is by controlling the overall type 1 error rate for all the comparisons. This overall Type
1 error rate is called experimentwise error rate.

It is difficult to calculate an experimentwise error rate’s exact probability, but we
can derive a pessimistic approximation by assuming that the comparisons are independent

and giving an upper bound to it:

1—(1—acw)” < apw (5.5)

where a gy 1s the experimentwise error rate, acywy 1s the comparisonwise error rate (i.e.,
the error rate between two comparisons), and C' is the total number of comparisons.

In an experiment, if one wants to control the overall Type I error rate for all the
comparisons, they are controlling the experimentwise error rate, agyy. On the other hand,

if they decide to control the individual type I error rates for each comparison, they are
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controlling the individual or comparisonwise error rate, ccyy .

In situations where incorrectly rejecting one comparison may jeopardize the entire
experiment or where the consequence of incorrectly rejecting one comparison is as serious
as incorrectly rejecting a number of comparisons, the control of experimentwise error rate
is more important. Now, when one erroneous conclusion will not affect other inferences
in an experiment, the comparisonwise error rate is more pertinent.

One can control gy at the « level by setting oy to a sufficiently small value.

The Bonferroni inequality has been widely used for this purpose. If

Q

acw = =,

Q

then oy 1s less than o.

In the end, we choose what we will control by choosing the test we use. We have
that individual tests (like individual two-sample t-tests) control acy. On the other hand,
tests that yield confidence inequalities or confidence intervals (like Scheffe’s) control
apw under any complete or partial null hypotheses. Moreover, a preliminary F test con-
trols a gy under the complete null hypothesis but not under the partial null hypothesis.

Our evaluation of the PAE metric will be similar to a simple t-test with Hy = 0.
We do this because we are interested in knowing if the average log PAE metric for a
scheme is close to zero. Here, we are interested in evaluating between the groups (the
validation schemes), and incorrectly rejecting one comparison will not jeopardize our
entire evaluation. Thus, we will control for the comparisonwise error rate, avcyy. We will

use a non-parametric alternative to the t-test, called the Sign test. This non-parametric
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test makes no assumptions regarding the distribution of the parameter, and is suitable for
our case.

The number of comparisons is equal to the number of validation schemes. That
is, C' = 14. Moreover, the maximum value of « is set to 0.15. Then, gy = 0.15/
14 ~ 0.011.

Furthemore, we analyzed the statistical significance of the APAE metric using the

same approach as CTM. According to these authors:

“We also study the statistical significance of the obtained results in terms of
error size (APAE) according to a Bayesian analysis [98]. Particularly, we ap-
plied the Bayes signed-rank test to compare pairs of methods across multiple
problems. We arbitrarily define the region of practical equivalence (Benavoli
et al. 2017) (ROPE) to be the interval [-2.5%, 2.5%] in terms of APAE. Es-
sentially, this means that two methods show indistinguishable performance if
the difference in performance between them falls within this interval. For a
thorough description of the Bayesian analysis for comparing predictive mod-
els we refer to the work by Benavoli et al. (2017). In this analysis, it is
necessary to use a scale invariant measure of performance. Therefore, we
transform the metric APAE into the percentage difference of APAE relative
to a baseline.” (Cerqueira, Torgo, and Mozetic, 2020, p. 2013. Emphasis in
the original.)

5.2.8 The Complete Experimental Design

In summary, CTM’s experimental design (and the one used here), has the following

steps for each one of the time series:

» Step O1: For the RF and GLM methods, calculate the number of differences re-
quired to make the series stationary, and take the differences. Otherwise, use the

series as is;
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Step 02: Estimate p and get the embedded matrix. The columns of this matrix

(other than the “target” column) yields g;

Step 03: Split the entire data set into training set (D) and test data set (Diest),

following the Holdout validation scheme;

Step 04: For each one of the estimation methods above (RBR, RF, GLM), calculate

the “true loss,” ﬁ(D, Diest, ) (as both the RMSE and the MASE);

Step 05: For each estimation method, partition the training data into the estimation
and validation sets according to each validation scheme, and calculate L (D,V,g)

(using both RMSE and MASE);

Step 06: For each method calculate the APAE (Eq.5.2) metric, and rank the valida-
tion schemes from smaller APAE (better, rank = 1) to higher (worse, rank = 14, as

we evaluate 14 schemes);

Step 07: For each method calculate the average rank (over the time series in the

category’) based on the APAE measure;

Step 08: Evaluate if the difference in the average ranks between the schemes is

statistically significant using the Bayes signed-rank test;

Step 09: For each method calculate the PAE (Eq. 5.3) metric;

>We have three major categories: data from CTM, from the M4 Competition sample, and from our
Monte Carlo simulations. For the first two, we calculated the overall average, the average amongst only
the stationary series, and the average over the non-stationary ones. For the latter, we divided it between
S3: SARIMA(12,0,0) x (1,0,0)12 and S4 : SARIMA(12,0,0) x (1,1,0);2 and calculated the averages
inside each one of those.
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A

* Step 10: Calculate the log percentage difference of the estimated loss, £ (D, V, g),

relative to the true loss, ﬁ(D, Diest, 4);

» Step 11: Evaluate if the (median) log percentage difference is statistically different

from zero using the Sign test;

» Step 12: Plot the results from steps 07, 08 and 10. The plots are displayed in

Chapter 6 for £ calculated using the RMSE, and in the Appendix B for the MASE;

The entire process described above was conducted in the software R. The final code
used is a modification of the code from CTM, and it is fully available on our paper’s
corresponding author’s GitHub repository ©. All the data sets, results, and plots are also
included inside this repository. The functions created specifically for this paper (i.e., the
functions for the p-Holdout family and the evaluation of its results) can also be found in

Appendix C.

Shttps://github.com/gu-stat/validation_schemes
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Chapter 6: Results

6.1 Data from Cerqueira et al. (2020)

6.1.1 Results from the RBR learning algorithm

We start by analyzing the results for the RBR estimation method. Regarding all 174
real-life time-series and the RMSE as error measure, the cep-Holdout scheme came
in fourth place, behind cross-validation methods like the CV-hvB1 , CV-RB1 , and CV
(Figure 6.1). These procedures also yielded an average error bias closer to zero (Figure
6.2). The medians were also close to zero with p-values for the sign test greater than
acw = 0.011 (Table A.1).

However, when we use the MASE, this scenario changes (Figure B.1). For instance,
CV now is the last-placed procedure, and the cep-Holdout comes in second place
behind the Rep-Holdout (which came in 10th place with the RMSE). But this last
procedure had a much larger average (log) error bias (0.1775, median = —0.7885 with p-
value = 0.7048; Table B.1) than the cep—Holdout scheme (0.0498, median = —0.4583
with p-value = 0.5958). Only the CV-B1 and cp-Holdout schemes had an average log
error smaller than the cep-Holdout procedure (0.0244 and 0.0362, respectively; Table

B.1).
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Plot by: Varela-Alvarenga and Kedem (2021).
Data source: Cerqueira et al. (2020).

Figure 6.1: Average APAE rank of each validation scheme on 174 real-world
time series using the RBR learning algorithm and RMSE as the error func-
tion. The black line represents -+ 1 standard deviation from the average.
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Figure 6.2: Log percentage difference of the estimated loss relative to the
true loss for each validation scheme applied to 174 real-world time series
using the RBR learning algorithm. Values below the zero (red) line represent
under-estimations of the error. Conversely, values above it represent over-
estimations of the error.
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Figure 6.3: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep—-Holdout and the respective
validation scheme when applied to the stationary time-series from Cerqueira
et al. (2020), with parameters estimated via the RBR learning algorithm and
error calculated using the RMSE. The probabilities are computed using the
Bayes signed-rank test.

When we evaluate only the non-stationary series, the cep-Holdout scheme is the
procedure that often returns the smallest prediction error (measured by the APAE metric)
for both error measures (RMSE and MASE) (Figures 6.1 and B.1). The cep-Holdout
yields a fairly large error bias under the RMSE (0.3344, 8th place), but a very small
bias for when using the MASE (0.0263). In fact, all schemes in the p-Holdout family
produced much smaller error bias under the MASE measure, than the other methods.
For instance, the log percentage difference for the p-Holdout , cep-Holdout and
cp-Holdout were equal to 0.0108, 0.0263, and -0.0263, respectively. In 4th place

comes the Rep-Holdout scheme, with an average error bias of 0.2071.
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Figure 6.4: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep—-Holdout and the respec-
tive validation schemes when applied to the non-stationary time-series from
Cerqueira et al. (2020), with parameters estimated via the RBR learning algo-
rithm and error calculated using the RMSE. The probabilities are computed
using the Bayes signed-rank test.

The plot in Figure 6.4 also shows the superiority of the cep-Holdout procedure
in the non-stationary case. According to this plot, the cep-Holdout scheme has a
significantly better estimation ability, since its probability of winning is larger then the
ones for the cross-validation procedures. Based on Figure 6.4, the Preq-Grow and
Preg-Slide schemes seem to be good competitors. However, these are computation-

ally expensive and also yield a larger error bias (Table A.3).

6.1.2 Results from the RF learning algorithm

The results for the Rf learning algorithm are very similar to the ones for the RBR.
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Plot by: Varela-Alvarenga and Kedem (2021).
Data source: Cerqueira et al. (2020).

Figure 6.5: Average APAE rank of each validation scheme on 174 real-world
time series using the RF learning algorithm and RMSE as the error function.
The black line represents -+ 1 standard deviation from the average.

Overall, the cep-Holdout method ended up behind the CV-hvB1 , CV-B1 ,
and CV schemes in terms of the average APAE metric when used in conjunction with the
RMSE (Figure 6.5). In terms of the MASE, the cep-Holdout ended up in first place
(versus the 2nd place it ended up when the RBR was used - Figure B.5).

When looking only at the 77 non-stationary series, the cep-Holdout scheme
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Figure 6.6: Log percentage difference of the estimated loss relative to the
true loss for each validation scheme applied to 174 real-world time series
using the RF learning algorithm. Values below the zero (red) line represent
under-estimations of the error. Conversely, values above it represent over-
estimations of the error.

was the first, again (Figures 6.5 and B.5 - “Non-Stationary” panel), with the lowest APAE

on average. However, it displayed, on average, a much larger bias than cross-

validation procedures when the RMSE was used (Figures 6.6 - “Non-Stationary” panel).

On the other hand, when MASE was used (Figure B.6), our schemes had a per-
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Figure 6.7: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep—-Holdout and the respective
validation scheme when applied to the stationary time-series from Cerqueira
et al. (2020), with parameters estimated via the RF learning algorithm and
error calculated using the RMSE. The probabilities are computed using the
Bayes signed-rank test.

centual difference to the true loss very close to zero, with the p-Holdout being the clos-
est (0.0494), behind only to the Hol dout scheme (-0.0273). Moreover, all three schemes
in the p-Holdout family returned slightly pessimistic results (i.e., they over-estimated the
error), with the average log percentages being equal to 0.0494, 0.1832, 0.1680, and for the
p-Holdout , cp-Holdout , and cep-Holdout , respectively. The Preg-Slide
procedure, that ended in second place when either the RMSE or MASE were used, yielded
larger values of the error bias (-0.4075 in the RMSE case, and -0.3931 when the MASE

was employed).
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Figure 6.8: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep—-Holdout and the respec-
tive validation schemes when applied to the non-stationary time-series from
Cerqueira et al. (2020), with parameters estimated via the RF learning algo-
rithm and error calculated using the RMSE. The probabilities are computed
using the Bayes signed-rank test.

6.1.3 Results from the GLM learning algorithm

The average APAE results for the 174 real-life time series using GLM-Ridge as the
estimation method and the RMSE as error measure are shown in Figure 6.9. The novelty
now is the presence of the p-Holdout scheme in second place in the “All” case and in
third place in the “Non-Stationary” case. However, it ended up in 6th place, overall, in
terms of the error bias, and in 10th place when only non-stationary series were evaluated
(Figure 6.10), Another important result for our family is related to the cep-Holdout
method. Not only did it yielded the best forecast accuracy in terms of the APAE metric
when the RMSE was used, but also produced forecasts with the smallest average error
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Plot by: Varela-Alvarenga and Kedem (2021).
Data source: Cerqueira et al. (2020).

Figure 6.9: Average APAE rank of each validation scheme on 174 real-world
time series using the RIDGE learning algorithm and RMSE as the error func-
tion. The black line represents -+ 1 standard deviation from the average.

When looking at the results with the MASE as error metric, the cep-Holdout
was again first place in terms of the smallest rank. But, unlike the RMSE case, it did not
provide the smallest log percentage difference. Here, using the CV-B1 , the CV-B1 and
the p-Holdout schemes resulted in smaller error bias (Figure B.10). However, these
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methods did poorly in terms of the APAE rank (Figure B.9).
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Figure 6.10: Log percentage difference of the estimated loss relative to the
true loss for each validation scheme applied to 174 real-world time series
using the GLM-Ridge learning algorithm. Values below the zero (red) line
represent under-estimations of the error. Conversely, values above it represent
over-estimations of the error.
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Figure 6.11: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation scheme when applied to the stationary time-series from Cerqueira
et al. (2020), with parameters estimated via the GLM-Ridge learning algo-
rithm and error calculated using the RMSE. The probabilities are computed
using the Bayes signed-rank test.

114



Result . cep-Holdout wins . draw . cep-Holdout loses

1.0

o

=
5075
o
o
(o]
s
6 0.50
c
el
£
2
5025
a
0.00
\. Q \ QS ] ©
o> O B 1° ot ot 2% o (B ot
\ o OQX\ \kY\O\c ~<\°° o ! 6«0«66‘(@ ~<\°
(o ? X ¢t ? ?@

Figure 6.12: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep—-Holdout and the respec-
tive validation schemes when applied to the non-stationary time-series from
Cerqueira et al. (2020), with parameters estimated via the GLM-Ridge learn-
ing algorithm and error calculated using the RMSE. The probabilities are
computed using the Bayes signed-rank test.

6.2 Data from the M4 Competition

6.2.1 Results from the RBR learning algorithm

When evaluating the sample of periodic time series taken from the M4 Competi-
tion data set, we see that the procedures from the p-Holdout family perform quite well.
Results using the RBR method indicate that, overall and for non-stationary series, the
cp-Holdout and the cep-Holdout schemes are capable of producing the smallest

forecast errors when both the RMSE (Figure 6.13) and the MASE (Figure B.13) error
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metrics are used.
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Plot by: Varela-Alvarenga and Kedem (2021).
Data source: Sample from the M4 Competition data sets (Makridakis, Spiliotis and Assimakopoulos, 2020).

Figure 6.13: Average APAE rank of each validation scheme to the sample of
1,000 time series from the M4 competition using the RBR learning algorithm
and RMSE as the error function. The black line represents -+ 1 standard
deviation from the average.

For the “Stationary” case, the CV-Mod procedure yielded slightly better results in
the RMSE case, albeit its error bias was larger (Figure 6.14). When MASE was used, the

CV-B1 and the CV-hvB1 placed better in terms of the average rank, but their error bias
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was much larger (Figure B.14). For instance, the log percentage for the cp-Holdout
and cep-Holdout were both equal to 0.0997, while the CV-hvB1 and CV-B1 proce-

dures produced an error bias equal to -0.4888 and -0.7591, respectively.

All

p-holdout  cp-holdout  cep-holdout cv CV-BI CV-Mod CV-hvBI Preq-Bls  Preq-Sld-Bls Preq-Bls-Gap  Holdout ~ Rep-Holdout Preq-Grow  Preg-Slide
10 .
5
—
0 === ey Py ——— e T T T T e et T e
-5
Stationary
p-holdout  cp-holdout  cep-holdout cv CV-BI CV-Mod CV-hvBI Preq-Bls  Preg-Sld-Bls Preq-Bls-Gap  Holdout ~ Rep-Holdout Preq-Grow  Preg-Slide
3
173
o
© 5
=
H
E
o
8 I—
L A A A e O I A A A AR N N N SUSS— N SP—
Qo
s A0t It | k----d
S R S — R N A R O e AR A R O M N SRR
£ O 11— o
T
K]
2
c L]
8 ]
S | ] |
s I
o .
-5
Non-Stationary
p-holdout cp-holdout  cep-holdout cv Cv-BI CV-Mod CV-hvBI Preg-Bls Preg-Sld-Bls Preg-Bls-Gap Holdout Rep-Holdout Preq-Grow Preg-Slide
10 .
5
[ ]
(R ELELE o i e i —
-5

Solid line: Median. Dashed line: Mean

Plot by: Varela-Alvarenga and Kedem (2021).
is, Spiliotis and , 2020).

Data source: Sample from the M4 Cc ion data sets

Figure 6.14: Log percentage difference of the estimated loss relative to the
true loss for each validation scheme applied to the sample of 1,000 time series
from the M4 competition using the RBR learning algorithm. Values below
the zero (red) line represent under-estimations of the error. Conversely, values
above it represent over-estimations of the error.
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6.2.2 Results from the RF learning algorithm

When the RF learning algorithm was used with the sample of series from the M4
competition, the procedures in the p-Holdout family were unbeatable (according to the

ranks based on the APAE metric - Figure 6.15).
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Plot by: Varela-Alvarenga and Kedem (2021).
Data source: Sample from the M4 Competition data sets (Makridakis, Spiliotis and Assimakopoulos, 2020).

Figure 6.15: Average APAE rank of each validation scheme to the sample of
1,000 time series from the M4 competition using the RF learning algorithm
and RMSE as the error function. The black line represents -+ 1 standard
deviation from the average.
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In particular, the p-Holdout scheme dominated all the results when the RMSE
metric was used, and only lost to the cp-Holdout and cep-Holdout in the “Station-

ary” case with the MASE error (Figure B.17).
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Figure 6.16: Log percentage difference of the estimated loss relative to the
true loss for each validation scheme applied to the sample of 1,000 time series
from the M4 competition using the RF learning algorithm. Values below the
zero (red) line represent under-estimations of the error. Conversely, values
above it represent over-estimations of the error.

The results regarding the error bias indicate that the Holdout performed a little
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better than our schemes when we evaluate all series and only the non-stationary ones with
the RMSE (Figure 6.16). However, our procedures provided a smaller log percentage

difference for non-stationary series under the MASE error (Figure B.18).

6.2.3 Results from the GLM learning algorithm

With the GLM-Ridge regression as the estimation method, the new cp-Holdout
scheme performed the best in all but stationary cases (according to the average APAE
metric), followed by the cep-Holdout and the p-Holdout schemes (Figures 6.17
and B.21). As for the error bias, the holdout-based schemes provided values very close to
zero in both the “All” and “Non-stationary” cases (Figure 6.18).

When evaluating only the 97 stationary series and the RMSE error, the CV-Mod
scheme yielded the smallest average rank but only the 8th smallest value of the log per-
centage difference given by the PAE metric (Figure 6.18).

When the MASE was used, overall the CV-B1 procedure ended up in first place in
terms of the average rank based on the APAE metric (Figure B.21), but had an error bias
equal to -0.4889 (Figure B.22). The cp-Holdout , which ended up in second place,

had a much smaller error (0.0997).
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Data source: Sample from the M4 Competition data sets (Makridakis, Spiliotis and Assimakopoulos, 2020).

Figure 6.17: Average APAE rank of each validation scheme to the sample of
1,000 time series from the M4 competition using the GLM-Ridge learning
algorithm and RMSE as the error function. The black line represents -+ 1
standard deviation from the average.
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Percentual difference to true loss
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Figure 6.18: Log percentage difference of the estimated loss relative to the
true loss for each validation scheme applied to the sample of 1,000 time series
from the M4 competition using the GLM-Ridge learning algorithm. Values
below the zero (red) line represent under-estimations of the error. Conversely,
values above it represent over-estimations of the error.
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6.3 Monte Carlo Simulation

6.3.1 Results from the RBR learning algorithm

When Bergmeir et al. [21] devised their experimental design, they constrained the
estimation methods to allow only for p = 5, and expected the models to not fit well data,
regardless of the validation scheme used.

Indeed, when we evaluate the sample of periodic time series taken from the Monte
Carlo simulation, we see that the methods that previously did well start to break down
(Figures 6.19 and B.25).

In the case of the RBR algorithm, we see that this is indeed the case when we
evaluate the plots of the error bias (Figures 6.20 and B.26). From them, we see that cross-
validation methods provided poor results for the S3 data set, and much worse results
when integrated seasonal processes were evaluated (5S4). On the other hand, the schemes
in the p-Holdout family were the ones that yielded the smallest percentage differences to

the true loss in both cases, and for both error measures (RMSE and MASE).
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Figure 6.19: Average APAE rank of each validation scheme to the sample of
1,000 simulated time series using the RBR learning algorithm and RMSE as
the error function. The black line represents -+ 1 standard deviation from the
average.
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Figure 6.20: Log percentage difference of the estimated loss relative to the
true loss for each validation scheme applied to the sample of 1,000 simulated
time series using the RBR learning algorithm and error calculated using the
RMSE. Values below the zero (red) line represent under-estimations of the
error. Conversely, values above it represent over-estimations of the error.
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Result . cep-Holdout wins . draw . cep-Holdout loses
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Figure 6.21: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation schemes when applied to the time-series from the S3 simulated
data set, with parameters estimated via the RBR learning algorithm and error
calculated using the RMSE. The probabilities are computed using the Bayes
signed-rank test.
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Figure 6.22: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation schemes when applied to the time-series from the S4 simulated
data set, with parameters estimated via the RBR learning algorithm and error
calculated using the RMSE. The probabilities are computed using the Bayes
signed-rank test.
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6.3.2 Results from the RF learning algorithm

The same problems on the error bias related to constraining the covariate space
were observed when the RF learning algorithm was used (Figures 6.24 and B.30). Yet
again, the procedures in the p-Holdout family were able to mitigate these effects. The
cp—Holdout scheme provided the smallest percentage difference to the true loss when
the RMSE was used in the S3 data set, and the second smallest when the S4 was used.
The procedure that yielded the smaller error bias for S4 was the p-Holdout scheme
(which was the 4th best method in terms of the average rank based on the APAE metric -
Figure 6.23).

When evaluating the methods under the MASE error measure, the Preg—B1s pro-
cedure yielded the smallest error considering the SARIMA(12,0,0) x (1,0,0);, case. In
terms of the average rank, the CV-hvB1 procedure ended up in first place (Figure B.29),
but the boxplot in Figure B.30 shows that the majority of the distribution of its error bias
does not cover the zero (red) line. The results for the S4 data set (SARIMA(12,0,0) x
(1,1,0)12) show that the cep-Holdout was able to provide smaller forecasts errors
more often (Figure B.29), and with the fourth smallest error bias (Figure B.30). In this
metric, the p—~Holdout provided the smallest log percentage difference to the true loss

(-0.0880), followed by the Preg-Bls—-Gap (0.2515), and the cp-Holdout (-0.3104).
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Figure 6.23: Average APAE rank of each validation scheme to the sample of
1,000 simulated time series using the RF learning algorithm and RMSE as
the error function. The black line represents -+ 1 standard deviation from the

average.
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Figure 6.24: Log percentage difference of the estimated loss relative to the
true loss for each validation scheme applied to the sample of 1,000 simulated
time series using the RF learning algorithm and error calculated using the
RMSE. Values below the zero (red) line represent under-estimations of the
error. Conversely, values above it represent over-estimations of the error.
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Figure 6.25: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation schemes when applied to the time-series from the S3 simulated
data set, with parameters estimated via the RF learning algorithm and error
calculated using the RMSE. The probabilities are computed using the Bayes
signed-rank test.
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Figure 6.26: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation schemes when applied to the time-series from the S4 simulated
data set, with parameters estimated via the RF learning algorithm and error
calculated using the RMSE. The probabilities are computed using the Bayes
signed-rank test.
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6.3.3 Results from the GLM learning algorithm

Finally, the last results come from applying the GLM-Ridge regression as learning
algorithm to the data sets from our Monte Carlo experiment with constrains on the co-
variate space. The most interesting result is related to the log percentage difference to the
true loss with the S4 : SARIMA(12,0,0) x (1,1,0);5 data set. From the bottom plots
in Figures 6.28 and B.34, we see that all validation schemes provided poor results, with
cross-validation methods being the worse ones. The schemes in the p-Holdout family
also behaved poorly, despite showing good results for the rank (bottom part of Figures
6.27 and B.33). In this scenario, the Preq-Grow scheme was the one that provided the
smallest percentage differences in both RMSE and MASE cases.

Much better results were obtained with the S3 data set. The cp—Holdout was
the scheme that yielded the smallest error bias considering both error measures (RMSE
- Figure 6.28, and MASE - Figure B.34). However, it did not do well in terms of the

average rank based on the APAE metric (Figures 6.27 and B.33).
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Figure 6.27: Average APAE rank of each validation scheme to the sample
of 1,000 simulated time series using the GLM-Ridge learning algorithm and
RMSE as the error function. The black line represents -+ 1 standard deviation
from the average.
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Figure 6.28: Log percentage difference of the estimated loss relative to the
true loss for each validation scheme applied to the sample of 1,000 simulated
time series using the GLM-Ridge learning algorithm and error calculated us-
ing the RMSE. Values below the zero (red) line represent under-estimations
of the error. Conversely, values above it represent over-estimations of the
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Figure 6.29: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation schemes when applied to the time-series from the S3 simulated
data set, with parameters estimated via the GLM-Ridge learning algorithm
and error calculated using the RMSE. The probabilities are computed using
the Bayes signed-rank test.
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Figure 6.30: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation schemes when applied to the time-series from the S4 simulated
data set, with parameters estimated via the GLM-Ridge learning algorithm
and error calculated using the RMSE. The probabilities are computed using
the Bayes signed-rank test.
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Chapter 7: Final Remarks

One approach to evaluate forecast accuracy and compare forecasting methods and
models is to use data-driven procedures to split the original time series into two (or more)
non-overlapping sub-samples, and use one part to fit the model and the other to evaluate
its predictive accuracy. These procedures are called “validation schemes.”

We can divide the validation schemes usually associated with time-series data into
two “main” categories: forward validation (or out-of-sample methods) and cross-validation
schemes. The schemes in the former group preserve the time-ordering of the data, but do
not use all the available data to “train” the model (i.e., to estimate its parameters), which
complicates their implementation in small samples. On the other hand, cross-validation
procedures use all available data, but they have to be adapted to deal with dependent
data, as the “original” cross-validation schemes assume that the data are independent and
identically distributed.

Notwithstanding, all these schemes fail to consider one important characteristic of
a time-series, its periodicity. We argue that if the goal is to find a way to obtain more
accurate forecasts and to decrease the error bias, one should consider the periodic behav-
ior that a series might present. If a time-series does display such similar behavior over

time, we argue that it is possible to obtain validation and test sets that have approximately
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the same structure, which would lead to an improvement in model selection and forecast
accuracy.

With that in mind, we proposed the p—Holdout family of validation schemes. The
p-Holdout , cp—Holdout , and cep—-Holdout schemes are the three members of
this family, and were developed to take into account a series’ periodicity. To assess their

quality we followed [6]’s approach to evaluating new validation schemes. They said,

“(...) researchers proposing a new method are interested in the question,
whether the new method performs better than the state-of-the-art methods.
This is usually determined by the application and comparison of all the meth-
ods on a set of benchmarking data or within competitions.” (Bergmeir and
Benitez, 2012, p. 192)

We evaluated our schemes using the benchmark data sets from Cerqueira et al. [22]
and the Monte Carlo approach by Bergmeir et al. [21]. We also added a new simulated
data set to see how the validation schemes deal with seasonal integrated processes. The
last group of time-series that we evaluated came from the data sets of the M4 Forecasting
Competition [11]. With those, we cover all types of data suggested by Bergmeir and
Benitez [6].

In the end, we assessed the impact of 14 validation schemes on the forecast accuracy
and forecast error bias. Since the out-of-sample error not only depends on the validation
schemes, but also on the learning algorithm used, we used three estimation methods.
The first one is known as RBR, and it is a rule-based regression based on the M5 model
tree algorithm [92, 93]. The second one was the traditional Random Forest algorithm
(RF). Lastly, we used a generalized linear model with a Gaussian distribution and a Ridge
penalty mixing (GLM-Ridge).

Moreover, we considered two error metrics, the root mean square error (RMSE)
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and the mean absolute scaled error (MASE). The former is a metric traditionally used
to evaluate forecast accuracy, while the latter allows us to incorporate the seasonality
into the calculation. Following Cerqueira et al. [22] (CTM), we wanted to compare the
different validation schemes by evaluating how close the generalization error would be to
the “ground truth loss.” For that, we used the absolute predictive accuracy error (APAE)
and the predictive accuracy error (PAE) metrics. The APAE metric evaluates the size of
the forecast error of a given validation scheme, and gives us a metric of forecast accuracy.
As a complement measure, the PAE metric returns the error bias of a validation scheme -
that is, if it is underestimates or overestimates the “true” error.

After assessing all 14 schemes under 18 different scenarios (3 sets of time-series, 3
estimation methods, and 2 error measures), we concluded that our new schemes are com-
putationally inexpensive, improve the forecast accuracy, and greatly reduce the average
forecast bias without increasing the variability, specially when applied to non-stationary
time series.

More specifically, the cep—Holdout validation scheme was the procedure that
more often yielded the smallest average forecast error when applied to non-stationary time
series (this result was observed in 7 out of the 18 scenarios), followed by the cp-Holdout
procedure (4 times), and the p-Holdout scheme (2 out of 18). The remaining five
cases were divided amongst the Holdout procedure (3 times), and the prequential grow
(Preg-Grow ) and prequential sliding blocks (Preg-S1ide-Blocks ) schemes. The
last two are more computationally expensive and also do not provide large improvements
in the error bias. Thus, when considering all aspects, the cep—-Holdout seems to be a
very good data-splitting scheme.
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When it comes to the forecast error bias, the results show that our schemes usually
tend to be pessimist, in the sense that they provide over-estimation of the errors (i.e.,
errors greater than zero). However, when assessing the series with integrated seasonality,
our procedures tend to be more optimistic and under-estimate the bias.

Lastly, a careful evaluation of the equation for the Holdout scheme (Eq. 3.12)
shows that it has the exact same structure as the equations for the p—-Holdout (Eq.
4.4), the cpo-Holdout (Eq. 4.7), and cep-Holdout (Eq. 4.13) schemes. The only
difference is in the value of [, that each procedure uses. By having the same structure,
we argue that the theoretical results obtained for the Holdout procedure, including the
asymptotic properties, proved by West [8] could be extended to the schemes in the p-

Holdout family. We leave this for our future research.
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Part 11

A Novel Machine Learning Strategy for Forecasting Model Selection
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Chapter 8: Introduction

There is an old saying that goes like this “a good craftsperson never blames their
tools.” This proverb might be true or not, depending on how one sees the world. What
is undeniably true, though, is that selecting the proper tool greatly facilitates one’s work
and heavily influences the quality of the outcome. This is true for life and also for data
analysis.

Sometimes, however, we might be in a situation where we do not know which tool
is the best for a given task. This is especially true for data analysis and even more so for
time-series forecasting.

When faced with such situations in life, we tend to use our previous knowledge to
narrow down a set of tools that might work for a task. The next usual step is to go and try
them all. Finally, we select the one that yields the best results in a cost-benefit analysis
between the amount of work required and the outcome’s quality.

That is the basic idea behind the Box-Jenkins procedure [41]'. One uses their (usu-

ally incomplete) theoretical knowledge to indicate a suitable set of forecast models (i.e.,

'In the Box-Jenkins procedure, all model forms are based on a general linear process. Throughout
this text, forecast model, or simply model, might also refer to the non-linear relationships. We assume
an automatic distinction by the reader based on context. Furthermore, we distinguish forecast models
from forecast methods, as did Giacomini and White [1]. Whenever we use the entire expression forecast
methods, we mean the entire methodology to obtain the forecasts, which includes the selected forecast
model, the method of parameter estimation and the data used for it.
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the mathematical equations that indicate how many variables should be used as inputs and
their relationship to the output) for evaluation.

Then, one fits these models using all the available data. Finally, one selects the
model form that is both parsimonious (uses the smallest number of input variables) and
fits the model well (through some criterion like the AIC — Akaike Information Criteria),
and that ideally yields forecasts with sufficiently small forecast errors.

The problem with our analogy, and the reason we wrote the word “ideally” in the
previous sentence, is that the craftsperson is able to evaluate the result of their work
throughout and at the end of the process. In contrast, in the Box-Jenkins procedure, one
must monitor future cases to evaluate the model’s forecast performance. Moreover, the
same data that is used to fit and evaluate a model adequateness is also used to obtain its
forecasts.

One possible solution to this conundrum is to use data-split techniques. The basic
idea behind these procedures is not new. It dates back at least to the 1930s when Wilson
[33] used it in conjunction with periodograms to search for hidden periods in a time series.
Here, the forecasting models are estimated recursively using parts of the data. Then, their
one-period-ahead? predictions are calculated and compared with “future uses” (i.e., one-
step-ahead observations that are out of the sample used to fit the model). The model
specification that maximizes the predictive likelihood is selected, and its final parameters
are then estimated using the entire dataset.

It is hard to say if current authors stood on Wilson’s shoulders to develop the “learn-

ing procedures” used in the Machine Learning literature, but it is undeniable that there are

21t is worth mentioning that Wilson [33] calculated multi-step-ahead forecasts.
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striking similarities between the two approaches.

A learning procedure can be summarized as an approach that uses data-split tech-
niques called validation schemes to find the forecasting model that yields the smallest av-
erage out-of-sample prediction error and the hyperparameters associated with it according
to the Empirical Risk Minimization principle (ERM - see Chapter 9).

In Machine Learning, the parameters (or weights) of the forecasting models are
estimated (learned) using methods like backpropagated gradient-descent for feedforward
neural networks or rule-based regression algorithms. However, such methods have been
labeled black-box algorithms, since “we know what goes in, we know what comes out,
but very few understand what happens in-between” [99, p. 35]. The authors from the

previous quote also argue that,

“If the data do not contain problematic sampling biases, then building the
black boxes — the predictive models that mathematically elucidate a relation-
ship between the outcome and the predictors — can significantly benefit from
the large amount of information available about the underlying population.
Exploratory statistical methods — restricted cubic splines[100] for example —
can help empirically derive the functional form of a predictor within a model
which may be difficult to obtain with moderate to small sample sizes. Big
data, in short, with good statistical methodology, help to find the form of
a mathematical relationship which can usefully sit within the black box.”
(Kuhn and Johnson, 2014, p. 36)

However, we often see in the news [101] and in Academia [102, 103] cases of sam-
pling bias and the problematic outcomes yielded by machine learning algorithms when
that happens. Granted that most of those cases lie outside the time series context, but
we argue that we still need to be careful with these black box methods, and that hybrid
methods that combine aspects from both the machine learning and the statistics literature

- like the ones that won the last two M competitions [12, 24] - should be preferred.
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In light of this discussion, we introduce a new machine learning strategy for fore-
casting model selection. One that uses a modification of the prequential sliding window
forward validation scheme (see Section 3.2.4) - that we call rolling sample validation
scheme - and results from the theory behind generalized linear models (GLM) with par-
tial likelihood estimation developed by Kedem and Fokianos [71, 72].

We call our new strategy the generalized and rolling sample method - or GEARS,
for short - since it combines the benefits of the validation schemes and the GLM approach.
With the latter, it is easy to accommodate many functional forms for the forecasting meth-
ods, including those with covariates and interaction terms. It is so simple to use that we
have developed a web application where anyone can upload their data set and obtain fore-
casts for univariate and multivariate time series in a manner of seconds using statistically
sound methods.

We apply the GEARS strategy to the 100,000 time series from the M4 Forecasting
Competition and compare its results against the other methods submitted to competition.
We had the best results in 8,750 cases out of the 100,000, and the method that won the
competition had better results in fewer than 7,300 series.

Moreover, traditional statistical approaches like VAR, State Space, or cointegration
methods are often overly complicated and require many steps until a forecasting model is
finally ready to be estimated. One of the advantages of the GEARS strategy over those
methods is its simplicity in dealing with multivariate series. Our approach allows us
to estimate simple models with one covariate as well as more complex model formula-
tions that include covariates with variable and fixed lags, quadratic terms, and interaction

terms. The accuracy of the forecasts obtained with GEARS was far superior than the one
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observed for the predictions obtained using the ARIMA method.

In Chapter 9 we go over the details of the learning procedure in machine learning
and how it can be used to selected the best forecasting model. We introduce the GEARS
strategy in Chapter 10. In Chapter 11 we briefly describe the M4 Competition data set
and the details related to the partial likelihood estimation of generalized linear models, as
developed by Kedem and Fokianos [71]. We display the results of applying GEARS to
the 100,000 time series in Chapter 12. Finally, we present our final remarks in Chapter

13.
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Chapter 9: The Learning Procedure in Machine Learning

Fort=1,...,T,let {Y;} be a time series of interest, and {y;} its observed values.

We define the covariate process Z;_; as:

z, | = (Z(tfl)lv T 7Z(t71)m)

The observed values of this process are z;, and in the ML literature this is known
as the m-dimensional vector of features used to predict the desired output. Z; ; can also
contain past values of the response variable Y;.

A typical way of representing the relationship between {y; } and the past values of

the covariates is:

Y = g(24-1,0) + & 9.1)

where ¢; is a shock or disturbance term, 6 is a parameter vector, and

9(2-1,0) = Eg[Yi|Zy 1] 9.2)

Here, g(-) could be any function: linear, nonlinear, or nonparametric, but we often
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do not know which one. The forecasting problem, then, can be stated in terms of g(-),
and it will the same in both the Statistics field and the Machine Learning field: how do
we relate g(-) to the covariates?

In statistics, the definition of g(-) often depends on the type of Y variable that we are
evaluating (continuous, binary, count, etc.), how it behaves, and on the characteristics of Z
(univariate, multivariate). The decision to look at the type, behavior, and characteristics
of the data is important here because the statistical properties of the data points us in
the direction of which estimation method [STAT] - learning algorithm/learner [ML] - we
should use (non-linear least squares, Random Forests, rule-based regression, to name a
few).

In machine learning, we search for a model specification through a process called

“learning procedure”, which has two goals [104]:

* Structural identification: the algorithm needs to choose among a parametric family
of model specifications f : Z;_; — Y; the one that gives a good approximation of

the unknown function g(+);

* Parametric identification : within the family f(-), the algorithm needs to estimate

on the basis of the training set, D, the parameters 8p which best approximates g.

In the case where machine learning algorithms are used to accomplish the above
tasks, the learning procedure consists of two nested loops: i) an inner parametric identi-
fication loop which searches for the best parameter vector within a model specification;
i) an external structural identification loop which goes through different model specifica-
tions and returns the one that yields the smallest forecast error.
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For each f in the set G of all possible model specifications, the parametric identifi-

cation is done according to the Empirical Risk Minimization (ERM) principle where

Op = arg min err(6p) (9.3)
0cO

where ert(0p) is the training error, calculated as

1

where / is a loss function selected by the analyst and Card(D) is the cardinality of the
training set, usually described as N.

Ultimately, we are interested in finding the forecasting model g with the “best”
generalization performance. That is, we aim to assess its capacity to produce accurate
forecasts using new and independent data. Such performance can be measured by the test

error,
Lp = Ezyep,.. [((Y,§(Z,6p))| D, 6p)] (9.5)

where D, refers to the test set. We omitted the ¢ subscripts for easiness.

A related quantity is the estimated test error,

One could try to use the training error to estimate the test error, but err consistently
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decreases with model complexity, and may reach zero if we increase the model complex-
ity enough (Figure 9.1). But, selecting a model with zero training error does not mean that
the generalization performance in a new data set will be any good. Usually, those models
overfit to the training data and generalize poorly [74, p. 221]. Hastie et al. [ 74, chapter 7]
argue that Eq.(9.5) leads to a slightly larger mean absolute deviation. Their results show
[74, p. 257] that, in practice, better estimations are obtained using the expected test error

L with validation schemes.

High Bias Low Bias
Low Variance High Variance
P - —_———— e e e mEme -

Test Sample

/

Prediction Error

A

Training Sample

Low High
Model Complexity

Figure 9.1: Example of the expected test and expected training error curves
as a function of model complexity. Image source: Hastie et al. [74, p. 38].

In a data-rich environment, we can partition the training set into an estimation set
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and a validation set at each of the k folds. For¢ = 0,...,k — 1, the sets Z{ and Z are the
sets of indexes from {1, ..., N'} that indicate which observations will form the estimation
and validation sets at the i-th fold: D (Zf) and D (Z}), respectively. Finally, we can define

a general form for a validation scheme, V(D; k), in those terms:

1771

V(Dik) = {(Z0. )| Trand I C {1,... N}, ZE0Z0 =010 D)

Using the general form of a validation scheme from Eq.(9.7), we can define an
empirical estimator of £ by taking the average of the mean out-of-sample losses over all

k splits [23]:

k—
L(D,V.f)= %; Card (Z Z ¢ [y, / (Z ép(ze)ﬂ ©-8)

(z,y)eD(If)

where the forecast model f belongs to the set of all possible model formulations G, and

Card (Z7) is the cardinality of the i-th validation index set. In essence, the above equation

returns an estimate of the out-of-sample prediction error and can be used to select §(-).
If one uses a winner-takes-all approach to evaluate between all possible f € G

models, then:

g =argmin £(D,V, f) (9.9)
feG

Here is a pseudo-code for the winner-takes-all approach:

1. Structural identification loop: for each f in G
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Parametric identification loop:

a)foreach:=0,... ., k—1

Ohtary = Gz O[S (30

oeer (z,y)eD(If)

b) calculate ﬁ(D, V, f) using éé(z;)

2. Model selection: g = argmin g ﬁ(D, V. f)

3. Final parametric identification:

é% = arg min i Z 14 [y,g (z,ép)]

ocof (2,y)€D

An

4. The final forecasting model is : §(z:, 0%)

The “parametric identification” part is done differently from what is shown in Eq.(9.3)
if one uses a statistical procedure. Instead of obtaining 0p by trying different values (the
attempts can either be based on a rule or not) that minimize the training error, there are
estimation methods that depend on the maximization of the likelihood. If it is possible
to obtain a form for the likelihood function, statistical procedures like iterated reweighed
least squares tend to be more computationally efficient than traditional machine learning
methods. This happens because, for the latter, the complexity of the optimization depends

on the form of f(-) and the optimization problem may very well be an NP-hard problem'

'In theoretical computer science, and in mathematical complexity theory, nondeterministic polynomial
(NP) time problems is a class of problems for which the solutions can be checked in polynomial time by a
nondeterministic Turing machine. They are opposed to the class of P problems, which can be solved by a
deterministic Turing machine in polynomial time. An NP-hard problem is a part of the NP set that contains
its hardest problems.
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[104]. Moreover, statistical methods might be preferred to traditional machine learning
algorithms because these are sometimes deemed as “black boxes,” as discussed in the
previous chapter.

For the above reasons, we chose to use Kedem and Fokianos’s methodology [71,
72] as our “learning algorithm.” By taking advantage of the GLM formulation, we are
able to accommodate several types of (linear) model specifications while speeding up the

computations.
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Chapter 10:  The new GEARS strategy

10.1 The Basic Idea

The idea behind the GEARS strategy is to train our model by breaking down the
time series in sections of length s, taking the last ¢ sections and fitting/predicting the
model at each of these sections. Then, we use the prediction errors to calculate the mean
absolute deviation (MAD) and select the covariates that minimize MAD. Once we have
done it, we will take the estimated coefficients from the last fitted model and use it to
predict out-of-sample values.

To clarify this idea, say we have y;, a response variable for £ = 1,2,..., and a
vector of covariates z; = [ @1 - - mmk]T, which might include a constant, past values
of y, and/or other exogenous covariates. The main problem is that we observe y1, ..., y,
and zy, ..., z,, and want to predict ¥, 1. To do so, let us define the relationship between

y and z to be the following:

Y1 = Bz + &4 t=1...,n—1

Now, suppose n = 100, s = 12, ¢ = 20, and take one of the possible combinations of the

k covariates. Then:
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1. Fity1 =Bz +e5, t =68,...,68+19 = 8.

AT
Get the prediction yg9 = 8 zgs. Get the prediction error ygg — ¥g9.

2.Fity, .1 =BTz, +e, t =69,...,69+19 = 88.

AT
Get the prediction 399 = 8 zg9. Get prediction error 399 — ¥go.

3. Fity, =B 2z +ep, t =70,...,70 + 19 = 89.

AT
Get the prediction 991 = 8 zg0. Get Y91 — Yo1.

12. Fity,py =Bz +6, t=79,...,79 4+ 19 = 98.
AT
Get the prediction 190 = 8 zg9. Get the prediction error 4100 — Y100-

From the 12 prediction errors, get

100

1
MAD = — S jys — 4
12i§,|y il

Do this for all possible combinations of k covariates and select the one that min-
imizes the MAD (other measures like the MSE, MASE, and SMAPE can also be used).

Then, finally, get B from No. 12 and set

. AT
Y101 = B Z100 (10.1)

Observe that this ,3 was estimated using the observations yso, . . . Y99 and Zzg, . . . , Zgs, and
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provided the out-of-sample residual 3109 — 7100 (Which we are calling prediction error),
which was used to select the best model. Had we used s, ... %100 and zsgg, . . ., Zgg tO
estimate 3, we would have gotten the in-sample residual 1,09 — 9100, and should not use
this to select the best model. If we use this in-sample residual in selecting the best set of
covariates this would defeat the purpose of training the model to select the best S.

An R package was written for the GEARS strategy. It can be installed using the

following piece of code,

Listing 10.1: R code to install the GEARS package.

# install.packages ("devtools")
library (devtools)

# Install the GEARS package
## Access Token:
GITHUB_PAT <- "b907b8b9d384£f£f89000d1bad40cb0d2e761c273b3"

install_github ("gu-stat/gears", auth_token = GITHUB_PAT)

## Call the package
library (gears)

An example of its use can be seen in Section 12.2. A prototype web application
was also developed to democratize the access to this method. In it, anyone, regardless
of their knowledge in programming, can forecast the values of a time series using the
GEARS method with just a few clicks. There are a few things that need to be done, and
some other bugs that need fixing, but the prototype is available at https://shiny.

ogustavo.com/gears.

10.2 A General Framework

For a time series y observed up until some time 7" > 0 and for each forecast lead
h = 1,..., H and forecast horizon H € N, we want to find the out-of-sample forecast
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Y7+ . We define the following model to accomplish such task:

yrin = BiXer + er4n (10.2)

where c is the c-th element from the o-algebra € that contains all combinations of &
covariates - i.e., all possible combinations of elements from the set {x; 7, . . ., x;@T}, with
each x. 7 being a vector of variables observed up until time 7". Therefore, € is given by
{Ix17), s [Xe1)s -y X1y Xpe1)s -+ - X170+ - - X |} and has cardinality G = #€ =
Zf:o (’:) From this, we have X, r = [x1 7], and X r = [x17 - - - X),r|. Moreover, 3, is
the set of parameters associated with the set of covariates X 7, and 7., is a mean zero
error.

The selection of X, 7 is made by estimating an ex-ante version of Eq. 10.2 (given

by Eq. 10.4) for all ¢ € € and selecting the set of covariates that minimizes a given error

measure (that can be MSE, SsMAPE, MASE, MAD) for M subsamples of size S taken

sequentially and in order from the set of indexes {1,--- ,7 — 1}. Because they are taken
sequentially and in order, we call each subsample m = 1,..., M a rolling sample.
For each rolling sample m = 1, ..., M, we define the starting time ¢,, as an index

from {1,...,T — 1} given by:

tm=(T—-h)—M—S+m, h=1,... H (10.3)

For example, take 7' = 15 and h = H = 1. If we have M = 5 rolling samples of

size S = 6, their starting times ¢,,, willbe t; = 4,1, = 5,13 =6, t, = 7, t5 = 8, where
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{4,5,6,7,8} are indexes from {1,...,7T — 1} (see Figure 10.1).

Figure 10.1: Example of M = 5 rolling samples of size S = 6, for "= 15 and H = 1.

Fit 2 model using y4 through y3 Roll over to all other samples and Multiply the
{and 2 vector of covariates X3 through X8). Get the do the same. coefficients of the
prediction This will yield the prediction errors for | best model by the
Use the coefficients on X3 to get the srrorfor y1l, .., y14, respective
out-of-sample prediction of y10, 10 for all Then, select the model (i.e., the set of | covariates at time
ymodelﬁ covariates and lags) that minimizes the 14 [vector X14) to
Do this for all possible combinations of covariates and their : selected error measure (using the get the out-of-
lags prediction errors for y10, y11,..,y14). | sample forecast of
(all possible models). vis
4
Rolling Sample 1 ¥l y2 ¥3 |oviz y13 yld
| X1 X2 X1 K12 | W3 ¥14
4
Rolling Sample 2 ¥l y2 y3 y13 ¥l |
- x| oa | B X2 | 3 X14
4 a
Rolling Sample 3 1 v2 ¥3 v y13 yia |
|- x| ¥ | ¥a | xa ¥12 | W13 X14
4 4
Rolling Sample 4 v v2 v ¥ ¥3 vl
|- w1 | ¥ | %3 | xa X5 X14
rl
Rolling Sample 5 v v2 v3 v ¥s ve
- X1 | ¥z | %3 | ¥ 5 X14

Under this theoretical framework, we write the ex-ante version of Eq. 10.2 for a
rolling sample m € 1,..., M and forecast lead h € {1,..., H}:
T
|

Y(tm+s)+h = B (tm,S)Cs(tm+s) + E(tmts)+hy S = 0,....,5—-1 (10.4)

where X, ;,,+5) 18 the vector of covariates from X7 observed at time ¢,, + s for s =
0,...,8 —1, and B,¢,,s) is the vector of parameters associated with X, 1. !

We can write model 10.4 in matrix form for each m € 1,..., M and forecast lead

he{l,...,H} as:

Yitmm)s = B

(tm,S)X(CatM)ls + E(tm.h)|S (10.5)

't is also worth mentioning that when m = M and s = S — 1, we have that t,,, + s = t5; + (S — 1),
and using ¢5s from Eq. 10.3 weseethatty +(S—1)=(T—h) - M-S+ M+ (S—-1)=(T—-h)—1.
Substituting this in the index for y in Eq.10.4 yields y(r_p—1)4+n = yr—1. Doing the same in the index
for x gives X, (7_p—1). If we define T'"=T—-1-—h = T =T + 1+ h, then the indexes for Y
and x become Yy 4 yyp, 1 =Yg/ 4y A Xy (77 4y 41y = X - With these, we ca re-write Eq.10.4 as
Y ap = /BZ|(tM,S)Xc,T’ + €77, 4, and this ex-post model is similar to the model given by Eq.10.2.
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where

Y(tm+0)+h

Y (tm h)|S b X@etn)lS = |Xe (trnr0) - -+ Xe(tmt5-1)

Y(tm+S—1)+h

The estimates ,éc|(tm75) are obtained via partial likelihood? using S observations that
start at the index t,,,. The indexes ¢, ¢,,,, S, albeit cumbersome, serve as reminders that for
each set of covariates ¢ € €, each rolling sample m € {1,..., M} and each sample size
S, we have different estimates 3. In other words, the 3’s are function of ¢, S, and M.

After obtaining Bcl(tm, sy, we move on to calculate the out-of-estimation-sample *

prediction error for h € {1,..., H} for each rolling sample m =1, ..., M:

éh‘(cvt"hs) = y(tm+s)+h - Z)(tm-‘rS)-Fh (10.6)

A

where §(t,,+5)+n = B

(ts8) X, (tm+5) Therefore, Eq.10.6 becomes

Ehl(ctm,S) = Y(tm+S)+h — B;(tm,S)Xc,(tmw) (10.7)

Having €p(c.t,,5), - - - €n|(c,tar,5)» WE can calculate the selected error measure that we

need to minimize. We define a generic function f, (éh‘(qth )y« -+ Chl(cit M,S)) to account for

2Using the methodology defined in [71].

3We wrote “out-of-estimation-sample” because we wanted to emphasize that this prediction error uses
information on y that is observed in the complete sample - y(;, . ys)+» -, but that lies outside the estimation
sample used to get Bcl(tm, 5> which uses information up until y(;,. ys—1)+x (see Eq.10.5 and comments
below). We also want to stress that this out-of-estimation-sample prediction error is different from the out-
of-sample prediction error, defined as ér(h) = yryn — §r+r. To avoid confusion, we will refer to ér(h)
as the out-of-sample forecast error.
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any selected error measure e. In the case of the MSE:

frse (Enl(er,8)s - - Enl(etns.)) Vi

2

Z (eh‘ ctm,S)>2
Z

37
[ Y(tm+S)+h — ﬂc‘(tmﬁ)xc,(tm—l—S)

A (10.8)

Finally, we want to find the set of covariates ¢ € € that, given M and .S, minimizes

the selected error measure:

= arg min fe (éh|(c,t1,5)a N éh|(c,tM,S)) (109)
ceC|M,S

For the MSE, the above becomes:

2

M ~
" . Zm:l |:y(tm+s)+h - ﬁ.cr\(tm,S)Xcv(tm“’s)
C = argimin

i i (10.10)
ceC€|M,

To get the ex-post forecast based on the best ex-ante forecasts, we calculate the

expected value of y7,, in the out-of-sample forecast equation, Eq.10.2:

Jran = B pyarsyXerr (10.11)

where BC*M( Mm,s) 1s either Bc*,h|tM,S’ obtained from estimating Eq.10.5 using the last
rolling sample only, 5,; or, the average of the ,éc*,hhsm, s estimated for all rolling sam-

ples.
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10.3 Hyperparameters’ Optimization

The results from the GEARS method vary significantly for different numbers of
samples (M) and different sample sizes (S). While trying to mitigate these effects, we
developed an optimization algorithm that borrows ideas from strategies used by Machine-
Learning methods and uses validation schemes to search for the “best” values of these
hyperparameters. The entire flowchart of the process can be seen in Figure 10.2.

We start the optimization algorithm by checking if the time series needs to be de-
seasonalized. We follow the same procedures as the organizers of the M4 Competition
used (see Section 11.1). That is, we first check the periodicity of the series using the
frequency function from R. Then, a 90% autocorelation test is performed to decide
whether the data are seasonal. If it is, we apply a classical multiplicative decomposition.

After that first step, we split the data into training and test sets using the holdout
forward validation scheme. The former set is used for parameter estimation and calcula-
tion of the forecasts via GEARS using different numbers of samples and different sample
sizes.

Then, the algorithm performs a “modified” grid search on the range of numbers of
samples and sample sizes provided by the user. Grid search algorithms are not always
the best option, since they can waste a lot of computational power exploring non-optimal
value for the hyperparameters.

However, we feel that this approach works better than a random search strategy
because we do not have a probability distribution for the hyperparameters, and even if we

had, we would not be able to define an optimal point upon which the search algorithm
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would stop. This issue arises from the fact that the algorithm selects the best values of S
and M that minimizes the forecast error using a measure chosen by the user (MSE, MAD,
MASE, or sSsMAPE - see Section 11.1 for the last two). Since some of these metrics are
scale-dependent — or have problems with values of Y that are close to zero — an optimal
point is data set-dependent, and setting its value beforehand may be unfeasible (as it is
the case when we apply the GEARS strategy to the 100,000 time series from the M4
Forecasting Competition - see Chapter 11).

Due to the limitation of not being able to define an optimal stopping point, we say
that our algorithm is a “modified” grid search algorithm. Instead of stopping when the
error is sufficiently small, our algorithm evaluates all possible combinations of the given
hyperparameters and obtains the best model specification for each one of them. Then, it
calculates the desired error measure for all of them and returns the values for .S and M
associated with the smallest error.

Moreover, the algorithm is also capable of evaluating whether the best model should
contain an intercept term, and if we should use the last set of B ’s or their average.

It is worth noting that the optimization algorithm is not worried about issues with
adequacy”* and diversity” since the it returns the number of samples and the sizes that best
reflect the characteristics seen in the data set. And while these characteristics may not
be present in future data, the purpose of this optimization approach is to give the user
a workable solution to the problem of defining the “correct” values for the number of

samples and the sample sizes.

4The number of forecasts at each lead time.
SForecast error measures do not depend on special events and specific phases within the data set.
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Figure 10.2: Flowchart of the optimization algorithm for the GEARS strategy.
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Chapter 11: Data and Methodology

11.1 The M4 Competition and its data sets

The M4 Forecasting Competition took place in 2018. Participants in this compe-
tition had to forecast values for 100,000 real-life time series. It is a continuation of the
competitions that started almost half a decade ago with the purpose of finding new models
and methods to improve forecast accuracy.

The organizers had made available 100,000 univariate time series from different
areas (demographic, finance, industry, macro, micro, and others) and different periodicity
(yearly, quarterly, monthly, weekly, daily, and hourly), and participants were tasked with
providing forecasts for each one of them. The number of forecasts varied by periodicity.
Table 11.1 shows the number of series in each category along with the number of forecasts
required by the organizers, and the minimum and maximum sample size of the series.

Forecast accuracy was measured by the Overall Weighted Average (OWA) of two
accuracy measures: the Mean Absolute Scaled Error (MASE) and the symmetric Mean

Absolute Percentage Error (SMAPE). These two metrics were calculated as

h A

1 _

SMAPE = — Y=Y (11.1)
h = Vi + Y]
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Table 11.1: Number of M4 series, minimum and maximum sample sizes, and forecast
horizon per data periodicity.

Periodicity | Number of Series | Min. Sample Size | Max. Sample Size | Forecast Horizon

Yearly 23,000 13 835 6
Quarterly 24,000 16 866 8
Monthly 48,000 42 2794 18
Weekly 359 80 2597 13

Daily 4,227 93 9919 14

Hourly 414 700 960 48

Total 100,000 - - -
and

1 S A,
MASE = — — fol ¥ — ¥i (11.2)
W 2t |Ye = Yiem

where Y} is the true out-of-sample value of a time series at point ¢ (not available to par-
ticipants at the time of estimation), and Y, is the respective forecast. The number of
observations in the training set available to the competitors is given by n, while A stands
for the forecast horizon, and m is the periodicity of the data (i.e., 12 for monthly series).

After calculating the MASE and sMAPE for each submitted forecasting method,
the organizers divided all errors by that of the Naive 2 forecasting method to obtain the
Relative MASE and the Relative sMAPE. Then, the average between the Relative MASE
and Relative SMAPE yields the OWA.

In the Naive 2 method, the forecasts are simply }Afnﬂ- =Y, for:. =1,...,h,
“but the data are seasonally adjusted, if needed, by applying a classical multiplicative
decomposition. A 90% autocorrelation test is performed to decide whether the data are

seasonal” [24, p. 57].
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Other important statistical benchmark methods used in this competition include!:

» SES: Exponentially smoothing the data and extrapolating assuming no trend. Sea-
sonal adjustments are considered as per Naive 2;

* Holt: Holt’s Exponential Smoothing method. The data are exponentially smoothed
and extrapolated assuming a linear trend. Seasonal adjustments are considered as
per Naive 2,

e Damped: Exponentially smoothing the data and extrapolating assuming a damped
trend. Seasonal adjustments are considered as per Naive 2;

* Comb: The simple arithmetic average of the SES, Hold, and Damped methods. It
is used as the single benchmark for evaluating all other methods.

A total of 49 valid forecasting methods were submitted, and several used a combi-
nation approach, in which several forecasts are obtained for a time series - either using
different forecasting methods or distinct forecasting models - and the final forecast is the
average between them. However, the method that won the 9,000€ first prize is a “hybrid*
approach that utilized both statistical (exponential smoothing) and machine learning (“a

‘black-box’ recurrent neural network™ [11, p. 2]) features.

11.2 The multivariate “commodities” data set

Traditional statistical approaches like VAR, State Space, or cointegration methods
are often overly complicated and require many steps until a forecasting model is finally
ready to be estimated. One of the advantages of the GEARS strategy over those methods
is its simplicity in dealing with multivariate series. As long as the model is linear, GEARS
is able to accommodate any model specification, including those with interaction terms.

Moreover, by allowing covariates in its forecasting equation, the GEARS strat-

egy may present more accurate forecasts when compared to univariate approaches like

IThe full list can be seen at Makridakis et al. [24, p- 571.
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ARIMA or recurrent neural networks.

To evaluate if that is the case, we have included the “commodities_prices” data
set as part of the gears package. It was created by taking price data (US$) on beef,
swine (pork) meat, poultry (chicken) meat, maize (corn), and wheat from the International
Monetary Fund on Primary Commodities Prices data set>. The data set has monthly data
from January, 1980 until March, 2020 (483 time points). For more information, run the

command gears: :commodities prices_data.dictionaryinR.

11.3 Partial Likelihood Estimation

Partial likelihood inference for time series following generalized linear models is
the natural extension of GLM methods to deal with dependent data. One of the main
outcomes from the theory devised by Kedem and Fokianos [71, 72] is that the main infer-
ential features appropriate for independent data can be transported to time series data.

Such transportation is enabled by the use of partial likelihood methods, since it
allows for “temporal or sequential conditional inference with respect to a filtration gen-
erated by all that is known to the observer at the time of observation” [71, p. 1]. This
means that the main difference between “regular” GLM inference and inference based on
partial likelihood (PL) lies in the interpretation of the results. That is, the same estimation
procedures are carried out in both methods, but, in the latter, the outcome needs to be
interpreted as the response conditioned to the all that it is observed at time ¢. This works

well for our purposes, since we want to use data-driven methods to obtain forecasts for a

https://www.imf.org/~/media/Files/Research/CommodityPrices/Monthly/
Table3.ashx . Access on April 17, 2020.
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specific training set, and we are only interested in making predictions - not inference.

Another advantage gained by resorting to PL inference is that “[t] he definition of
PL does not require the joint distribution of the response and the covariates. Thus, in
PL inference, the joint distribution of the response and covariates is left unspecified. In
addition, any stationarity assumptions may be dropped” [72, p. 174].

The combination of PL and GLMs provide a suitable framework to our GEARS
strategy, since it is easy to implement (since a number of existing software packages can
already be used to analyze GLMs) and does not require stationarity. The use of this
method is a more transparent way to estimate the parameters of the forecasting models,
than traditional machine learning methods. This contributes for a more reproducible ap-

proach to the learning procedure seen in Chapter 9.
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Chapter 12: Results

12.1 One-Step Ahead - All 100,000 series from the M4 Competition

The GEARS strategy can be a data-expensive method if the total sample size of the
series is relatively small when compared to the forecast horizon, and also if one wants to
include larger lags on the right-hand side of the forecasting model. We observe the former
issue in the “Yearly” series, for example. The minimum sample size is equal to 13 and
we need to provide six-steps ahead forecasts (Table 11.1) for those series. The GEARS
strategy cannot produce forecasts with that few observations, so we restricted our analysis
to one-step ahead forecasts only. For the number of lags, due to the limitation in the
sample sizes, we also had to restrict the maximum number of lags. Here, the maximum
was equal to 2.

To obtain the forecasts for the time series from the M4 Competition, we had to
select the initial values for the sample sizes and number of rolling samples for each type
of data (based on their periodicitity). Since the computational time to perform a grid
search considering several values of .S (sample size) and M (number of rolling samples)
for all 100,000 series would be exorbitant, we randomly selected only a few series for a
first round of evaluation. After that, we selected the set of initial values used here.

For “Hourly* series, we used 24, 36, and 48 as the number of rolling samples, with
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sizes equal to 144 450 as starting points for the optimization algorithm.

The numbers of sample sizes used for the “Daily” data sets were equal to 30 and
60, and the number of rolling samples was fixed in 12.

When evaluating the “Weekly” series, we had to break it down by the length of the
time series. For those series with total length equal to 80, we used S = 47 and the number
of sample equal to 5 and 6. Otherwise, we tested the values S = 156 and M = 52. Since
we have only one value for S and M when 7" > 80, the optimization algorithm was used
to decide whether the model should have an intercept, and if we should consider the last
betas or their average.

The “Yearly” and “Quarterly” series were complicated ones. With some series
being short, we had to make several adjustments to the values of S and M.

For the “Yearly” cases, when 7" < 15, weused S = 6 and M = 3. For 16 < T' <
50, M = 5 and the sample sizes were equal to 5 and 6. In the cases where 50 < 7" < 100,
M was also equal to 5, while S = 10, 20. For the other cases, M = 30 and S = 20, 60.

In the case of the “Quarterly” series, we used S = 5 and M = 3 when 7" < 18. For
the cases where 18 < T' < 25, we used four rolling samples with size equal to 8. The
same number of rolling samples (M = 4) was used in the cases where 25 < T' < 50, but
with S = 14. For all other cases, we used S = 20 and M = 4, 12.

Despite the fact that “Monthly” series had time series with minimum lengths larger
than the ones for the “Yearly” and “Quarterly” series (Table 11.1), these were the most
complicated ones in terms of adjusting the sample sizes and the number of rolling sam-
ples. We ended up setting M = 4 for all series with 7" < 100; and M = 10, otherwise.
For series with 7" > 100, S = 48. In the cases where 59 < T' < 100, the sample size
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used was equal to 36. The value S = 30 was used when 53 < T' < 59, and .S = 22 when
45 < T < 53. Finally, for the cases with T" < 45, S = 18.

The order of the methods in the rows of Table 12.1 is the same as the final or-
der (considering the multi-step ahead forecasts). Our method was only able to beat one
method (the purely statistical method with user ID number equal to 239). This means
that it did not perform better than the simple Naive 2 method or the “Comb’” method (the

overall benchmark considered by the organizers - see Section 11.1).

The results using the GEARS strategy with the M4 Forecasting Competition data
were not great (Table 12.1). However, the GEARS strategy produced the smallest results
more often (Table 12.1). Out of the 100,000 cases, the GEARS strategy was the best
method in 8,750. However, when it misses, it produces very large values of the OWA.

We believe that the problematic cases are due to the initial choice of hyperparam-
eters, or the many adjustments that we did, or because we had to restrict the maximum
number of lags to 2. For example, we selected 59 cases of daily series that had a numer-
ical value for the OWA greater than 10, and we optimized them using a range for S and
M greater than what was used before. We observed major reductions in the OWA for all
series, with some cases going from an OWA equal to 137.91 to 1.31 (Table D.1). Only
in four out of the 59 cases we were not able to reduce the OWA to values smaller than
10. However, we were able to obtain a reduction of at least 65% in those cases. Since the
number of optimized cases (59) is small compared to the number of series evaluated, the

result of the optimization had no impact on the results from Figure 12.1.
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Figure 12.1: One-step ahead forecast accuracy of the top 25 methods from the M4 Com-

petition and the GEARS strategy considering all 100,000 time series from the competi-

tion.
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Table 12.1: Number of times a method yielded the smallest OWA, per series periodicity

type.
Method ID \ Hourly \ Daily \ Yearly \ Weekly \ Quarterly \ Monthly \ TOTAL
118 20 451 1108 35 1460 4187 7261
245 19 55 566 11 683 1350 2684
237 14 751 404 9 436 1247 2861
72 18 27 300 15 434 829 1623
69 7 8 320 2 366 760 1463
36 21 32 296 5 364 618 1336
78 9 213 472 12 725 2505 3936
260 5 15 484 2 438 648 1592
238 21 208 1170 22 1320 3025 5766
39 52 11 317 1 886 1542 2809
5 2 12 399 1 441 860 1715
132 9 387 1036 11 1411 2827 5681
251 5 16 446 3 389 503 1362
250 23 227 1406 38 1573 2403 5670
243 24 120 614 19 527 1131 2435
235 19 59 649 16 1083 2219 4045
104 20 272 1397 20 1296 2932 5937
Theta 1 10 1494 1 428 492 2426
Com 8 11 555 3 383 523 1483
ARIMA 18 95 803 14 1286 2860 5076
223 17 160 709 14 1065 2094 4059
Damped 17 19 535 2 643 1044 2260
ETS 22 15 601 9 666 1243 2556
239 12 184 2468 15 1415 2707 6801
211 19 385 2229 45 2167 3568 8413
GEARS 12 484 2222 34 2115 3883 8750
TOTAL 414 4227 | 23000 359 24000 48000 100000
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12.2  One-Step Ahead - The multivariate “commodities prices” data set

The goal with the “commodities_prices” data set is to find the forecasts for the pork

price variable. The “maximum” tentative model is:

PORK_PRICE,. , = Intercept + PORK_PRICE; + PORK_PRICE,_,
+ BEEF_PRICE, + BEEF_PRICE, , + BEEF_PRICE, ,
+ CORN_PRICE,_, + POULTRY_PRICE,_;

+ CORNPRICE%_l + WHEAT _PRICE,_» - BEEF_PRICE,_3 (12.1)

Here, the lags up to ¢ — 1 of the variable PORK_PRICE are included in the right-
hand side of the forecasting model. The covariate BEEF_PRICE also has a “variable”
lag count, with values up to ¢ — 2 being included in the above equation. The covariates
CORN_PRICE and POULTRY _PRICE have “fixed” lags, with only the ¢ — 4 and t — 5
values - respectively - being included in Eq.(12.1). A quadratic term for CORN_PRICE
is also included. Finally, we also have an interaction term between WHEAT _PRICE (at
the “fixed” lag t — 2) and BEEF_PRICE (lat ¢ — 3).

We wrote “maximum” because the GEARS strategy works by going over all pos-
sible combinations of the variables in the right-hand side of Eq.(12.1) - a total of 1022
distinct equations - in the search for the best forecasting model formulation. The “maxi-

mum” tentative model is the one that includes all variables (shown in Eq.(12.1), and the
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5

“minimum’” models are the ones that have only one covariate. For example,

PORK_PRICE,,; = PORK_PRICE;

or

PORK _PRICE,,, = CORN_PRICE>_,.

We can easily obtain the forecasts for the above models using the gears package.
For instance, if we want to obtain the one-step-ahead forecast (h = 1) for 7' = 150 using
M = 5 random samples with size S = 25, we only need to provide the following piece

of code,

Listing 12.1: R code to run the GEARS strategy with the “commodities prices” multivari-

ate time series.

example_gears <- gears(

DATA
forecast.horizon
size.rs
number.rs

y .name
y.max.lags

X .names
x.max.lags

x.fixed.names
x.fixed.lags

X.lnteraction.names

gears::commodities_prices,
1,

25,

5’

"PORK_PRICE",
1,

list ("BEEF_PRICE"),
list (2),

list ("CORN_PRICE", "POULTRY_PRICE"),
list (4, 5),

1ist ("CORN_PRICE*CORN_PRICE", "WHEAT_ PRICE«BEEF_PRICE"),

X.interaction.lags

error.measure

last.obs

list(c(1, 1), c(2,3)),

mse",

150

When considering 5 random samples, the total number of estimated models is equal

to 5 - 1022 = 5110. It took 3.5 seconds to estimate all these models using a Intel Core

17 with 4.8 GHz turbo frequency. If the number of models that need to be estimated is
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large, the user could benefit from using parallel computing. To do so, simply add the code

use.parallel = TRUE, and specify the number of cores with num.cores = the

desired number.

The “best” selected model using the GEARS strategy is

PORK_PRICE;; = PORK_PRICE, + BEEF_PRICE, + BEEF_PRICE,_, (12.2)

The results from applying the GEARS strategy to the “commodities prices” data

set can be viewed in Table 12.2, below. For comparison, we added the results from an

automatically selected ARIMA model' and from the Theta-method, the method that won

the M3 Forecasting Competition [105].

Table 12.2: Observed future values and respective forecasts with a 95% prediction inter-
val, and forecast errors for the price of pork meat obtained from a multivariate GEARS
strategy and an ARIMA model.

Procedure Observed | Forecast | Lower | Upper | Absolute | Squared
95PI | 95PI Error Error
ARIMA 61.04 64.28 | 41.31 | 87.25 3.24 10.49
Theta-Method 61.04 60.87 37.21 | 84.52 0.17 0.03
GEARS - Last betas 61.04 60.75 | 42.09 | 79.42 0.29 0.08
GEARS - Avg. betas 61.04 60.82 | 42.16 | 79.49 0.22 0.05

We see that the forecasts from the GEARS strategy are closer to the observed value

of PORK_PRICE at T' = 151 and yielded a smaller forecast error than the one from the

ARIMA method. Also, the 95% prediction interval from the ARIMA procedure seems to

be more conservative than the one from the GEARS strategy. However, the Theta-Method

!Obtained from the function forecast::auto.arima and with the option stationary =
TRUE. The selected model was an AR(2).
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produced a more precise forecast, albeit with the most conservative prediction interval.
Its range was equal to 47.3 versus 43.94 from the ARIMA and 37.33 from the GEARS

strategy.
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Chapter 13:  Final Remarks

One of the issues with time series modeling is selecting the covariates that will pro-
vide the best out-of-sample forecasts. The development of information criteria (AIC, BIC)
facilitated selecting predictors and their lags. However, not always the chosen model by
minimizing information criteria is the one that provides the best forecasts. With the above
in mind, we propose the GEARS method, a Generalized And Rolling Sample method that
focuses on selecting the best set of covariates (and their lags) for forecasting.

The “generalized” part of the name is because we use generalized linear models
combined with partial likelihood inference to estimate the parameters. It was showed that
partial likelihood inference enables very flexible conditions that allow for correct time
series analysis using GLMs. With this, it becomes easy for users to estimate multivariate
(or univariate) time series models. All they have to do is provide the right-hand side
variable, the variables that should enter the left-hand side of the model, and their lags.
GLMs also allow for the inclusion of interactions and all sorts of non-linear links. This
easy setup 1s an advantage over more complicated models like state-space and GARCH.
And the fact that we can include covariates and interactions is an advantage over ARIMA,
Theta-method, and other univariate methods.

The “rolling sample” part relates to estimating the parameters over a rolling window
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of a fixed size. The idea is to “train” our model by breaking down our sample in sections
of length S, taking the last M sections, and fitting/predicting several models at each of
these sections. Each fitted model is taken from the set with all possible combinations of
covariates and lags included in the right-hand side of the forecasting model. Then, we
use the out-of-sample prediction errors to calculate an error measure (e.g., MSE) for all
the models in that set, and select the one that minimizes this error measure. Once this is
done, the best model’s estimated coefficients are used to get the out-of-sample forecasts.

An R package was written for the GEARS method. A prototype web application
was also developed to democratize the access to this method. In it, anyone, regardless
of their knowledge in programming, can forecast the values of a time series using the
GEARS method with just a few clicks. There are a few things that need to be done, but
the prototype is available at https://shiny.ogustavo.com/gears.

We applied the GEARS method to all the time series used in the 2018’s M-Competition,
the M4 Competition. Participants in this competition had to forecast values for 100,000
real-life time series. Due to the nature of the GEARS strategy, we had to focus on one-step
ahead forecasts. Given the supplied hyperparameters, the performance of the GEARS
strategy on these data sets was not great. After optimizing the hyperparameters for a
subset of daily series, we were able to detect significant decreases in the OWA values.
Moreover, we had the best results in 8,750 cases out of the 100,000, and the method that
won the competition had better results in fewer than 7,300 series.

Due to these problems in performance, we learned about the limitations of the
GEARS strategy. First, it is important to observe that BC*M( u,s) directly depends on
the number of rolling samples M and the size of each sample S. Hence, finding proper
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values for M and S is a major concern.

Using a grid search approach - like we did - is inefficient since the size of the grid
is given by #€ X #M x #S x H, where # M is the cardinality of the set of all numbers
of rolling samples considered, and #S is the cardinality of the set of sample sizes to use.
Testing for all possible combinations of M and S would take an unreasonable long time,
and selecting values at random is not a good approach.

Finding a formula for the expected (effective) sample size given M could improve
this search. Maybe we could use adaptive sampling methods to find a predictor g that
is model-unbiased for ¥, - i.e., given a sample s, the conditional expectation of 7,
equals the expectation of vy, 5, given s. We leave these topics for future research.

On the other hand, the GEARS strategy shows promise when dealing with multi-
variate time series, but caution is needed when dealing with a high-dimensional space of
covariates. The way GEARS was developed goes over all possible model specifications,
and if several covariates need to be included, the computational cost makes the entire pro-
cess unfeasible. If one wants to use the GEARS strategy in such scenario, a prior selection
of the variables - either by the user or by some sort of principal component analysis on
dependent data - is advised.

Here, we estimated several forecasting models based on a complex formulation that
includes covariates with variable and fixed lags, quadratic terms, and interaction terms.
Despite its complexity, the full model had ten covariates only. The accuracy of the fore-
casts obtained with GEARS was far superior than the one observed for the predictions
from an ARIMA. This result and the fact that our strategy for dealing with multivariate

series is far simpler than VAR, State Space, or Cointegration approaches shines a light in
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the future of our procedure. Further investigation is required to confirm this.
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Appendix A: Part I - Complementary Results using RMSE

A.1 Data from Cerqueira et al. (2020)

A.1.1 Results from the RBR learning algorithm

Scheme Min. Ist Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout  -4.5788 -2.4769 0.7705 0.3224 2.7703 7.1041 0.3244
cp-holdout -4.5788 -2.5268 0.7124 0.2834 2.7403 7.1041 0.4044

Ccv -4.5566 -2.4297 0.7087 0.2096 2.6315 7.8831 0.3244
CV-BI -4.5587 -2.4710 0.8332 0.1645 2.5098 7.6575 0.4044
CV-hvBI -4.5583 -2.4183 0.8541 0.2035 2.5845 7.6305 0.2554
CV-Mod -4.5538 -2.1114 1.3502 0.5835 2.7296 7.9304 0.0577
Holdout -4.5788 -2.6061 -0.4060 0.1219 2.7191 5.7406 0.8202
p-holdout -4.5788 -2.3682 -0.5929 0.1993 2.7437 7.0945 0.8202
Preq-Bls -4.5534 -2.0508 1.5375 0.6307 2.7773 7.6699 0.0185

Preq-Bls-Gap -4.5398 -2.1370 1.7604 0.6832 29142 7.5973 0.0049
Preq-Grow -4.5785 -2.8729 -1.6308 -0.3656 2.2195 4.7890 0.1973
Preq-Sld-Bls  -4.5432 0.8633 25709 1.7509 3.5157 7.7528 < 0.0001
Preq-Slide -4.5786 -2.8526 -1.5470 -0.3395 2.2411 4.8812 0.1973
Rep-Holdout -4.5788 -2.5204 -0.5614 0.0150 2.5947 5.3605 0.4952

Table A.1: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to all 174
real-world time series using the RBR learning algorithm and the RMSE as error measure.
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Scheme Min. Ist Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout  -3.4843 -2.2082 0.8286 0.3128 2.6194 4.5326 0.3099
cp-holdout -3.4843 -2.2082 0.7124  0.2245 2.5758 4.2740 0.5426

Cv -3.5890 -2.0057 0.9418 0.3637 2.5654 3.7063 0.1548
CV-BI -3.5337 -1.8785 1.1798 0.3838 2.3944 3.6755 0.1038
CV-hvBI -3.5185 -1.9562 1.2119 0.4209 2.4671 3.6849 0.0417
CV-Mod -3.4540 -1.2981 1.4713 0.7854 2.6299 3.8795 0.025

Holdout -3.6721 -2.2363 -0.7761 0.1008 2.5885 4.0479 0.6849
p-holdout -3.5380 -2.2363 -1.0056 -0.0368 2.5758 4.3604 0.4168
Preq-Bls -3.3461 -1.1780 1.8384 0.8788 2.7570 4.6476 0.0042

Preq-Bls-Gap -3.3830 -1.8530 1.9774 009172 2.8406 4.3903 0.0022
Preq-Grow -3.7929 -2.8638 -1.2456 -0.2775 2.2045 4.3903 0.6849
Preg-SId-Bls  -3.1020 1.4224 27139 1.9799 3.3774 4.8757 < 0.0001
Preq-Slide -3.7788 -2.7395 -0.7522 -0.2288 2.1604 4.3266 0.8392
Rep-Holdout -3.5789 -2.3903 -1.0569 -0.1022 2.5010 4.0311 0.3099

Table A.2: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to the 97
stationary time series using the RBR learning algorithm and the RMSE as error measure.

Scheme Min. Ist Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout  -4.5788 -2.6355 0.5254 0.3344 3.0704 7.1041 0.8199
cp-holdout -4.5788 -2.8427 0.6184 03576 3.0397 7.1041 0.6488

Ccv -4.5566 -2.8861 -0.3445 0.0153 2.6861 7.8831 1

CV-Bl -4.5587 -2.9603 -1.2855 -0.1117 2.6442 7.6575 0.6488
CV-hvBl -4.5583 -2.9789 -0.5433 -0.0705 2.6183 7.6305 0.6488
CV-Mod -4.5538 -2.8987 1.1487 0.3293 3.0322 7.9304 0.8199
Holdout -4.5788 -2.8135 0.2651 0.1485 3.0514 5.7406 1

p-holdout -4.5788 -2.6204 0.6928 0.4967 3.2208 7.0945 0.6488
Preq-Bls -4.5534 -2.7940 1.0798 0.3182 3.0166 7.6699 0.8199

Preq-Bls-Gap -4.5398 -2.7024 1.2664 0.3884 2.9698 7.5973 0.4944
Preq-Grow -4.5785 -3.0528 -1.6551 -0.4766 2.2246 4.7890 0.1711
Preq-Sld-Bls  -4.5432 -1.8865 2.2544 1.4625 3.6415 7.7528 0.0013
Preq-Slide -4.5786 -3.0522 -1.6592 -0.4790 2.4350 4.8812 0.11
Rep-Holdout -4.5788 -2.6724 0.0236 0.1626 2.7651 5.3605 1

Table A.3: P-value for the Sign Test and summary of the log percentage difference of the
estimated loss relative to the true loss for each validation scheme applied to the 77 non-
stationary time series using the RBR learning algorithm and the RMSE as error measure.
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A.1.2 Results from the RF learning algorithm

Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout  -4.0289 -2.4280 1.1269 0.3841 2.7261 6.1486 0.4952
cp-holdout -4.0289 -2.4744 1.1721 03907 2.7452 6.1486 0.3244

Cv -3.8173 -2.4167 0.5600 0.1630 2.6019 7.0524 0.7048
CV-B1 -3.9369 -2.4460 0.6234 0.1531 2.6130 6.7960 0.9396
CV-hvBI -3.9409 -2.4121 0.6709 0.1804 2.6401 6.8141 0.4952
CV-Mod -3.8067 -2.0778 1.7031 0.7264 2.8666 7.0800 0.0078
Holdout -4.3271  -2.5913 0.1077 0.1426  2.6562 5.5521 1

p-holdout -4.0280 -2.4584 1.2800 0.4463 2.7606 6.2120 0.3244
Preq-Bls -3.9760 -1.9701 19670 0.8140 3.0358 6.8069 0.0049

Preq-Bls-Gap -4.1050 -1.9836 1.9569 0.8191 2.9756 6.7653 0.0078
Preq-Grow -4.3603 -2.8352 -1.9490 -0.4130 2.4588 4.9343 0.0809
Preq-SId-Bls  -3.9794 0.9916 2.7371 19242 3.5376 6.8094 < 0.0001
Preqg-Slide -4.3595 -2.8067 -1.6564 -0.3204 2.4035 4.9139 0.1973
Rep-Holdout -4.2271 -2.4835 -0.8393 0.1260 2.8689 6.2388 0.8202

Table A.4: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to all 174
real-world time series using the RF learning algorithm and the RMSE as error measure.

Scheme Min. IstQu. Median Mean 3rd Qu. Max.  p-value

cep-holdout ~ -3.0703 -2.3338 1.8007 0.3984 2.6378 4.1409 0.4168
cp-holdout -3.0703 -2.3338 1.2271 0.3527 25942  4.1311 0.4168

Cv -3.3534  -2.1897 0.9031 0.3218 2.5391 3.6503 0.2229
CV-BI -3.3433  -2.0402 09381 0.3419 2.4884 3.5695 0.4168
CV-hvBI1 -3.3019 -1.9557 1.0256 0.3877 2.5289 3.5988 0.1548
CV-Mod -3.1564 -1.3374 1.8047 0.9337 2.8042 4.0367 0.0042
Holdout -3.4415 -2.5109 0.4072 0.0861 2.6289 4.1311 1

p-holdout -3.0930 -2.2421 1.2271 03879 2.6114 4.1395 0.4168
Preq-Bls -3.0050 -1.3642 2.0852 1.0505 2.9536 4.2071 0.0042

Preq-Bls-Gap -2.9122 -1.4770 2.2479 1.0610 2.9335 4.3786 0.008
Preq-Grow -3.7775  -2.8086 -1.8606 -0.3640 2.2594 4.1543 0.5426
Preq-Sld-Bls  -2.7243 1.7439 2.8032 23567 3.3309 5.6070 < 0.0001
Preqg-Slide -3.7930 -2.8035 -1.6217 -0.2512 2.1638 4.1357 0.8392
Rep-Holdout -3.3054 -2.4382 -0.9957 0.0345 2.6665 3.9545 0.6849

Table A.5: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to the 97
stationary time series using the RF learning algorithm and the RMSE as error measure.
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Scheme Min. Ist Qu. Median Mean 3rd Qu. Max.  p-value

cep-holdout  -4.0289 -2.6097 0.1735 0.3661 3.2044 6.1486 1
cp-holdout -4.0289 -2.8292 1.0996 0.4385 3.2888 6.1486 0.6488

Cv -3.8173 -2.9534 -0.9368 -0.0370 2.7629 7.0524 0.4944
CV-Bl1 -3.9369 -2.9977 -0.7905 -0.0848 2.7430 6.7960 0.4944
CV-hvBl -3.9409 -2.9798 -0.8663 -0.0809 2.7158 6.8141 0.6488
CV-Mod -3.8067 -2.7064 0.9095 0.4652 3.0445 7.0800 0.4944
Holdout -4.3271 -2.7599 -0.3439 0.2139 3.1521 5.5521 1
p-holdout -4.0289 -2.8292 1.5567 0.5198 3.1075 6.2120 0.6488
Preq-Bls -3.9760 -2.7673 1.4814 0.5161 3.2158 6.8069 0.362

Preq-Bls-Gap -4.1050 -2.6992 1.7053 0.5145 3.2062 6.7653 0.362
Preq-Grow -4.3603 -2.8647 -2.0801 -0.4748 2.6105 4.9343 0.0675
Preq-Sld-Bls  -3.9794 -2.4177 2.5796 13793 3.8962 6.8094 0.0059
Preqg-Slide -4.3595 -2.8840 -2.0627 -0.4075 2.7179 49139 0.11
Rep-Holdout -4.2271 -2.6409 0.0567 0.2412 3.2395 6.2388 1

Table A.6: P-value for the Sign Test and summary of the log percentage difference of the
estimated loss relative to the true loss for each validation scheme applied to the 77 non-
stationary time series using the RF learning algorithm and the RMSE as error measure.
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A.1.3 Results from the GLM learning algorithm

Scheme Min. IstQu. Median Mean 3rd Qu. Max.  p-value

cep-holdout  -4.1097 -2.4885 -0.3307 0.0999 25174 6.8405 0.7048
cp-holdout -4.1097 -2.4778 0.3881 0.1270 2.5355 6.8405 0.9396

Cv -3.8529 -2.2680 0.9806 0.3183 2.5502 7.7182 0.2554
CV-B1 -3.9883 -2.3304 0.5779 0.1493  2.4375 7.4567 0.9396
CV-hvBI1 -3.9870 -2.3300 0.6453 0.1563 2.4486 7.4569 0.9396
CV-Mod -3.8457 -2.1897 1.2392 0.4596 2.6485 7.7211 0.0809
Holdout -4.3466 -2.5133 -0.6838 -0.0265 2.5251 5.2947 0.4044
p-holdout -4.1097 -2.3760 0.3347 0.1527 2.5054 6.9337 0.8202
Preg-Bls -3.9943  -2.2698 09435 0.2885 2.4859 7.4220 0.1973

Preq-Bls-Gap -4.1550 -2.2828 1.0548 0.2872 2.5160 7.3584 0.1973
Preq-Grow -4.3757 -2.8720 -1.5454 -0.4517 2.2089 4.4979 0.0404
Preq-SId-Bls  -3.9882 -1.6415 1.9821 1.0318 29126 7.4408 < 0.0001
Preq-Slide -4.3726  -2.8197 -1.4889 -0.4261 2.2856 4.4965 0.0809
Rep-Holdout -4.2393 -2.5412 -1.1865 -0.0915 2.5811 5.3116 0.1973

Table A.7: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to all 174
real-world time series using the GLM-Ridge learning algorithm and the RMSE as error
measure.
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Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout  -3.4215 -2.2602 0.5296 0.1625 2.6610 4.2216 1
cp-holdout -3.4215 -2.2602 0.5296 0.1170 25131 4.2792 1

Cv -3.4883 -1.9162 15736 04770 2.4733 4.3768 0.1038
CV-B1 -3.5159 -2.0807 1.3440 0.3502 2.2331 4.3234 0.5426
CV-hvBI -3.5080 -1.9543 1.3448 0.3617 2.2395 4.3234 0.5426
CV-Mod -3.4576  -1.8785 1.5837 0.5964 2.6087 4.3612 0.0417
Holdout -3.5140 -2.4918 -0.6650 0.0129 2.5333 4.2792 0.8392
p-holdout -3.4504  -2.2624 0.2833 0.1105 2.5714 4.2792 1

Preq-Bls -3.5115 -1.7991 1.6316 0.5850 2.4859 4.3430 0.0417

Preq-Bls-Gap -3.4693 -1.9625 1.4428 0.5510 2.5334 43204 0.0671
Preq-Grow -3.7284 -2.8298 -0.8587 -0.2543 2.3485 4.2259 0.5426
Preq-SId-Bls  -3.2465 0.3720 2.2441 1.4564 29481 4.3573 < 0.0001
Preq-Slide -3.7171 -2.7939  -0.7888 -0.2195 2.3978 4.2331 0.8392
Rep-Holdout -3.3519 -2.3796 -1.2021 -0.1237 2.5447 4.1333 0.3099

Table A.8: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to the 97
stationary time series using the GLM-Ridge learning algorithm and the RMSE as error
measure.

Scheme Min. IstQu. Median Mean 3rd Qu. Max.  p-value

cep-holdout  -4.1097 -2.6411 -0.5686 0.0210 24112 6.8405 0.4944
cp-holdout -4.1097 -2.7000 0.2465 0.1396  2.5357 6.8405 1

Ccv -3.8529 -2.7582 -0.3675 0.1184 2.6423 7.7182 1
CV-Bl1 -3.9883 -2.8749 -0.8770 -0.1039 2.4703 7.4567 0.6488
CV-hvBl -3.9870 -2.8746 -0.8727 -0.1026 2.5037 7.4569 0.6488
CV-Mod -3.8457 -2.6583 0.6001 0.2873 2.7284 7.7211 0.8199
Holdout -4.3466 -2.5977 -0.7025 -0.0763 2.4665 5.2947 0.362
p-holdout -4.1097 -2.7132  0.7382  0.2058 2.4525 6.9337 0.8199
Preq-Bls -3.9943  -2.7387 -0.4579 -0.0850 2.6817 7.4220 0.8199

Preq-Bls-Gap -4.1550 -2.6879 -0.7946 -0.0451 2.4428 7.3584 1
Preq-Grow -4.3757 -2.8852 -1.9598 -0.7003 1.8648 4.4979 0.022
Preq-Sld-Bls  -3.9882 -2.5803 1.4863 0.4971 2.8625 7.4408 0.362
Preq-Slide -4.3726 -2.8671 -1.8560 -0.6865 1.9331 4.4965 0.022
Rep-Holdout -4.2393 -2.6826 -1.1710 -0.0510 2.8502 5.3116 0.4944

Table A.9: P-value for the Sign Test and summary of the log percentage difference of the
estimated loss relative to the true loss for each validation scheme applied to the 77 non-
stationary time series using the GLM-Ridge learning algorithm and the RMSE as error
measure.
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A.2 Data from the M4 Competition

A.2.1 Results from the RBR learning algorithm

Scheme Min. IstQu. Median Mean 3rd Qu. Max. p-value
cep-holdout  -4.5917 -2.9524 0.4796 0.2035 3.2303 7.0715 0.5909
cp-holdout -4.5917 -2.9524 04796 0.2035 3.2303 7.0715 0.5909
Cv -4.5951 -3.2729 -1.6629 -0.1237 3.2978 8.4690 0.0149
CV-BI -4.5976 -3.2546 -1.4026 -0.0889 3.2973 8.8001  0.0341
CV-hvBI -4.5902 -3.1541 -0.5491 0.0937 3.3798 9.4853  0.548
CV-Mod -4.5948 -3.0814 0.3085 0.2503 3.5211 8.8682 0.776
Holdout -4.5856 -3.1060 -0.3559 0.0864 3.1924 7.2647 0.681
p-holdout -4.5883 -2.9078 0.8380 0.3108 3.3620 7.0715  0.1067
Preq-Bls -4.5420 -2.6779 24471 1.0198 3.8298 9.1734 < 0.0001
Preq-Bls-Gap -4.3151 -0.4799 3.4204 2.1198 4.3714 10.1493 < 0.0001
Preq-Grow -4.5834 -3.4204 -2.2355 -0.5813 2.9223 7.4561 < 0.0001
Preq-Sld-Bls  -4.5243 2.1373 3.7232 2.5694 4.5144 9.6810 < 0.0001
Preg-Slide -4.5835 -3.3925 -2.1972 -0.5741 29363 7.2773 < 0.0001
Rep-Holdout -4.5495 -2.6693 2.0504 0.8187 3.7284 8.5748 < 0.0001

Table A.10: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to the time
series from the M4 Competition sample using the RBR learning algorithm and the RMSE

as error measure.
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Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout  -4.3651 -2.9729 -0.6754 0.0763 3.2617 6.0731 0.559%4
cp-holdout -4.3651 -2.9729 -0.6754 0.0763 3.2617 6.0731 0.559%4

Cv -4.3742 -3.2596 -1.8215 -0.2359 3.1845 6.3080 0.0097
CV-B1 -4.3722 -3.2406 -1.6933 -0.1922 3.2827 5.9256 0.0097
CV-hvBI -4.3651 -3.1577 -1.2666 -0.0223 3.3595 6.4974 0.1332
CV-Mod -4.2688 -3.0755 -1.0444 0.1054 3.4307 6.4068 0.4043
Holdout -4.4864 -3.1084 -1.0543 -0.0057 3.2012 5.4942 0.2782
p-holdout -4.3651 -2.9523 0.8292 0.2720 3.3354 6.0731 0.1332
Preqg-Bls -4.3515 -2.7069 2.1134 0.9098 3.8038 6.6895 < 0.0001

Preq-Bls-Gap -4.3151 -0.7745 3.3990 2.0736 4.2897 7.2154 < 0.0001
Preq-Grow -4.4693 -3.4250 -2.3280 -0.6457 2.8993 5.9318 < 0.0001
Preq-SId-Bls  -4.2280 1.9815 3.6946 2.5404 4.4395 7.0249 < 0.0001
Preq-Slide -4.4352  -3.3977 -2.2750 -0.6483 2.8767 5.7708 < 0.0001
Rep-Holdout -4.3582 -2.6007 19663 0.7639 3.6361 5.7947 2e-04

Table A.11: P-value for the Sign Test and summary of the log percentage difference of the
estimated loss relative to the true loss for each validation scheme applied to the stationary
time series from the M4 Competition sample using the RBR learning algorithm and the
RMSE as error measure.

Scheme Min. IstQu. Median Mean 3rd Qu. Max. p-value

cep-holdout  -4.5917 -2.8732 1.1455 03755 3.2279 7.0715 0.1205
cp-holdout -4.5917 -2.8732 1.1455 0.3755 3.2279 7.0715  0.1205

Ccv -4.5951 -3.2736 -1.0673 0.0282 3.3835 8.4690 0.4971
CV-Bl1 -4.5976 -3.2757 -0.7363 0.0508 3.3257 8.8001  0.8462
CV-hvBl -4.5902 -3.1441 1.3322 0.2506 3.4265 9.4853  0.4377
CV-Mod -4.5948 -3.1310 1.6525 0.4463 3.5802 8.8682  0.1455
Holdout -4.5856 -3.0823 0.5553 0.2109 3.1462 7.2647  0.5606
p-holdout -4.5883 -2.8815 0.8779 0.3634 3.4116 7.0715 0.4971
Preq-Bls -4.5420 -2.6060 2.5388 1.1685 3.9087 9.1734 < 0.0001

Preq-Bls-Gap -4.1520 -0.3619 3.4230 2.1824 4.4196 10.1493 < 0.0001
Preq-Grow -4.5834 -3.4047 -2.1696 -0.4941 3.0458 7.4561 2e-04
Preq-Sld-Bls  -4.5243 2.2839 3.7803 2.6087 4.5558 9.6810 < 0.0001
Preq-Slide -4.5835 -3.3875 -2.1384 -0.4738 3.0533 7.2773  Te-04
Rep-Holdout -4.5495 -2.8358 2.3129 0.8928 3.8142 8.5748 7e-04

Table A.12: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to the non-
stationary time series from the M4 Competition sample using the RBR learning algorithm
and the RMSE as error measure.
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A.2.2 Results from the RF learning algorithm

Scheme Min. IstQu. Median Mean 3rd Qu. Max.  p-value
cep-holdout  -4.3683 -3.0737 -0.6461 0.0688 3.2951 6.0577 0.467
cp-holdout -4.3683 -3.0737 -0.6461 0.0688 3.2951 6.0577 0.467
Cv -4.4250 -3.2524 -1.5849 -0.1394 3.2530 7.5430 0.0072
CV-B1 -4.4575 -3.3073 -1.8755 -0.2461 3.2232 7.0328 2e-04
CV-hvBI -4.4479 -3.2402 -1.4783 -0.0806 3.3213 7.0533 0.0177
CV-Mod -4.3865 -3.0975 0.9363 0.2963 3.5030 7.5706 0.3591
Holdout -4.4038 -3.2678 -0.3064 0.0215 3.2229 5.9394 0.681
p-holdout -4.3635 -3.0606 -0.5523 0.1048 3.3173 6.0577 0.728
Preq-Bls -4.4013 -3.0282 1.4613 0.4588 3.5884 6.8916 0.0247
Preq-Bls-Gap -4.3270 -2.8070 2.1684 0.8229 3.8514 6.9983 < 0.0001
Preq-Grow -4.4057 -3.4788 -2.2655 -0.5930 2.7636 5.4483 < 0.0001
Preq-SId-Bls  -4.3769 -2.6465 2.5897 1.1209 4.0041 7.3619 < 0.0001
Preqg-Slide -4.4137 -3.4869 -2.2331 -0.6032 2.7851 5.4307 < 0.0001
Rep-Holdout -4.4260 -2.9519 1.3120 0.4891 3.5840 7.5171 0.0537

Table A.13: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to the time
series from the M4 Competition sample using the RF learning algorithm and the RMSE
as error measure.
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Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout  -4.3043 -3.1987 -1.5933 -0.1646 3.1744 59160 0.0155
cp-holdout -4.3043  -3.1987 -1.5933 -0.1646 3.1744 59160 0.0155

Cv -4.2817 -3.2947 -2.0440 -0.3159 3.1582 6.1654 0.0026
CV-B1 -4.3362 -3.3144 -2.1401 -0.4187 3.0935 6.0249 1le-04

CV-hvBI -4.3347 -3.2661 -1.8480 -0.2544 3.1771 6.0669 0.0035
CV-Mod -4.2475 -3.1135 -0.6095 0.1169 3.4445 6.2005 0.6168
Holdout -4.3509 -3.3500 -1.2457 -0.1452 3.2025 5.7655 0.2109
p-holdout -4.2477 -3.1269 -1.3553 -0.0949 3.2705 5.9160 0.055

Preq-Bls -4.2799 -3.0590 1.3166 0.3428 3.5348 6.0778 0.3589

Preq-Bls-Gap -4.2192 -2.8326 2.0478 0.7161 3.7489 6.2391 0.0011
Preq-Grow -4.4025 -3.5273 -2.4453 -0.7135 2.6991 5.3743 < 0.0001
Preq-SId-Bls  -4.2519 -2.7275 2.5094 1.0169 3.9954 6.6408 < 0.0001
Preq-Slide -4.4044 -3.5383 -2.3937 -0.7330 2.6827 5.4106 < 0.0001
Rep-Holdout -4.2662 -2.9519 0.3998 0.3400 3.4846 5.6100 0.7387

Table A.14: P-value for the Sign Test and summary of the log percentage difference of the
estimated loss relative to the true loss for each validation scheme applied to the stationary
time series from the M4 Competition sample using the RF learning algorithm and the
RMSE as error measure.

Scheme Min. IstQu. Median Mean 3rd Qu. Max.  p-value

cep-holdout  -4.3683 -2.9742 1.4114 03846 3.3915 6.0577 0.099
cp-holdout -4.3683 -29742 1.4114 03846 3.3915 6.0577 0.099

Cv -4.4250 -3.1955 -0.5468 0.0994 3.4132 7.5430 0.5606
CV-Bl -4.4575 -3.2916 -1.3597 -0.0126 3.3664 7.0328 0.2072
CV-hvBI -4.4479 -3.1977 -0.3026 0.1544 3.4206 7.0533 0.8462
CV-Mod -4.3865 -3.0466 1.5635 0.5390 3.6121 7.5706 0.0415
Holdout -4.4038 -3.1633 1.2192 0.2471 3.2266 5.9394 0.4377
p-holdout -4.3635 -2.9742 1.4312 0.3751 3.3486 6.0577 0.099

Preq-Bls -4.4013 -29815 1.8266 0.6157 3.7150 6.8916 0.0198

Preq-Bls-Gap -4.3270 -2.7253 23016 0.9673 3.9106 6.9983 2e-04
Preq-Grow -4.4057 -3.3027 -1.9308 -0.4300 2.8436 5.4483 0.0026
Preq-SId-Bls  -4.3769 -2.5138 2.8276 1.2615 4.0176 7.3619 < 0.0001
Preqg-Slide -4.4137  -3.3177 -1.9453 -0.4277 29269 5.4307 0.0036
Rep-Holdout -4.4260 -2.9433 1.8410 0.6909 3.7233 7.5171 0.0116

Table A.15: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to the non-
stationary time series from the M4 Competition sample using the RF learning algorithm
and the RMSE as error measure.
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A.2.3 Results from the GLM learning algorithm

Scheme Min. IstQu. Median Mean 3rd Qu. Max.  p-value
cep-holdout  -4.4977 -2.8912 -0.4528 0.0732 3.0518 6.4250 0.728
cp-holdout -4.4977 -2.8912 -0.4528 0.0732 3.0518 6.4250 0.728
Cv -4.5206 -3.0319 0.1078 0.2050 3.3758 6.7023 0.9748
CV-B1 -4.5365 -3.1370 -1.0369 0.0134 3.2443 6.6840 0.242
CV-hvBI -4.5364 -3.1415 -0.8752 0.0348 3.2662 6.7793 0.1739
CV-Mod -4.5164 -29614 09986 0.3407 3.4187 6.8172 0.1547
Holdout -4.5034 -3.0210 -1.0939 -0.0116 3.1119 6.5797 0.2174
p-holdout -4.4770 -2.8949 -0.2615 0.0941 3.0318 6.3170 0.8744
Preq-Bls -4.5331 -2.9391 1.0874 0.3435 3.4257 6.6791 0.1547
Preq-Bls-Gap -4.5159 -2.8224 1.4500 0.5113 3.5327 6.6856 0.0086
Preq-Grow -4.5384 -3.3441 -2.2116 -0.5346 29187 6.0797 < 0.0001
Preq-SId-Bls  -4.5266 -2.4489 2.5382 1.1617 3.8156 6.7809 < 0.0001
Preg-Slide -4.5385 -3.3454 -2.1871 -0.5346 29195 6.0475 < 0.0001
Rep-Holdout -4.4537 -2.7598 1.5774 0.5079 3.4454 7.4545 0.0014

Table A.16: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to the time
series from the M4 Competition sample using the GLM-RIDGE learning algorithm and
the RMSE as error measure.
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Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout  -4.2659 -2.9836 -1.1778 -0.0672 2.9599 5.3166 0.2109
cp-holdout -4.2659 -2.9836 -1.1778 -0.0672 2.9599 5.3166 0.2109

Cv -4.2877 -3.0369 -0.8544 0.0718 3.2285 5.5304 0.4529
CV-B1 -4.3250 -3.1219 -1.4217 -0.1360 3.0995 5.4313 0.037
CV-hvBI -4.3256 -3.1321 -1.4177 -0.1135 3.1153 5.4581 0.03
CV-Mod -4.2682 -2.9674 0.1940 0.2023 3.3175 5.5615 0.9335
Holdout -4.3536 -3.0675 -1.5334 -0.1383 3.0812 5.3572 0.0952
p-holdout -4.2659 -2.9588 -0.4276 0.0072 2.9694 5.3799 0.6168
Preq-Bls -4.2987 -2.9501 0.4977 0.2228 3.2572 6.1020 0.8675

Preq-Bls-Gap -4.2787 -2.7929 1.0189 0.4031 3.4084 5.7739 0.1562
Preq-Grow -4.3647 -3.3884 -2.2890 -0.6418 27972 5.3904 < 0.0001
Preq-SId-Bls  -4.2516 -2.4848 23662 1.0462 3.6985 6.4157 < 0.0001
Preq-Slide -4.3541 -3.3845 -2.2934 -0.6399 2.7989 5.3897 < 0.0001
Rep-Holdout -4.1904 -2.7529 1.5253 0.4469 3.3204 5.4815 0.0242

Table A.17: P-value for the Sign Test and summary of the log percentage difference of the
estimated loss relative to the true loss for each validation scheme applied to the stationary
time series from the M4 Competition sample using the GLM-RIDGE learning algorithm
and the RMSE as error measure.

Scheme Min. IstQu. Median Mean 3rd Qu. Max.  p-value

cep-holdout  -4.4977 -2.7566 1.0714 0.2632 3.1635 6.4250 0.3826
cp-holdout -4.4977 -2.77566 1.0714 0.2632 3.1635 6.4250 0.3826

Ccv -4.5206 -3.0287 1.0267 0.3852 3.5113 6.7023 0.332
CV-Bl -4.5365 -3.1703 0.9397 0.2157 3.3868 6.6840 0.5606
CV-hvBl -4.5364 -3.1520 0.9020 0.2355 3.4068 6.7793 0.698
CV-Mod -4.5164 -29511 1.5349 0.5280 3.5557 6.8172 0.0415
Holdout -4.5034 -29102 0.2526 0.1598 3.1941 6.5797 1
p-holdout -4.4770 -2.8551 0.7024 0.2118 3.1478 6.3170 0.7711
Preq-Bls -4.5331 -2.9201 1.7547 0.5067 3.5152 6.6791 0.0522

Preq-Bls-Gap -4.5159 -2.8557 1.8345 0.6578 3.6286 6.6856 0.0198
Preq-Grow -4.5384 -3.2556 -2.0411 -0.3894 3.0444 6.0797 0.0087
Preq-Sld-Bls  -4.5266 -2.4197 2.7623 13180 3.9452 6.7809 O

Preq-Slide -4.5385 -3.2392 -2.0483 -0.3921 3.0220 6.0475 0.0087
Rep-Holdout -4.4537 -2.7662 1.6796 0.5904 3.5620 7.4545 0.0255

Table A.18: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to the non-
stationary time series from the M4 Competition sample using the GLM-RIDGE learning
algorithm and the RMSE as error measure.
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Appendix B:

B.1 Data from Cerqueira et al. (2020)

B.1.1 Results from the RBR learning algorithm

Part I - Results for all cases using MASE

Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value
cep-holdout  -4.5723 -2.5755 -0.4583 0.0498 2.6956 6.4568 0.5958
cp-holdout -4.5723 -2.6252 -0.0724 0.0244  2.7307 5.9954 0.8202
CvV -4.6032 -4.0570 -3.6145 -3.1518 -3.0563 6.5720 < 0.0001
CV-BI -4.5371 -2.5622 0.3650 0.0362 2.4823 7.3776 0.8202
CV-hvBI -4.5368 -2.5481 0.8733 0.1204 2.4952 7.3856 0.4044
CV-Mod -4.6031 -3.9966 -3.5288 -2.9220 -2.9475 6.6844 < 0.0001
Holdout -4.5723 -2.7067 -1.2840 -0.1086 2.7038 5.2328 0.4952
p-holdout -4.5723 -2.7051 -0.5560 -0.0509 2.6577 7.2400 0.4952
Preq-Bls -4.5376 -2.2538 1.4321 0.6898 3.0297 6.9546 0.0577
Preq-Bls-Gap -4.5146 -2.2472 1.5659 0.8087 3.0944 6.9282 0.0185
Preq-Grow -4.5684 -2.8964 -1.5932 -0.3239 2.6028 5.1708 0.0577
Preq-Sld-Bls  -4.5120 2.0185 3.2030 2.5119 3.8669 7.8570 < 0.0001
Preq-Slide -4.5678 -2.8132 -1.4559 -0.1874 2.5851 4.7553 0.2554
Rep-Holdout -4.5689 -2.4770 -0.7885 0.1775 2.7797 8.1900 0.7048

Table B.1: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to all 174
real-world time series using the RBR learning algorithm and the MASE as error measure.
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Plot by: Varela-Alvarenga and Kedem (2021).
Data source: Cerqueira et al. (2020).

Figure B.1: Average APAE rank of each validation scheme on 174 real-world
time series using the RBR learning algorithm and MASE as the error func-
tion. The black line represents -+ 1 standard deviation from the average.
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Figure B.2: Log percentage difference of the estimated loss relative to the
true loss for each validation scheme applied to 174 real-world time series
using the RBR learning algorithm. Values below the zero (red) line represent
under-estimations of the error. Conversely, values above it represent over-
estimations of the error.
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Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout ~ -3.3569 -2.5759 0.8053 0.0685 2.6573 4.8705 0.8392
cp-holdout -3.4879 -2.5978 0.8502 0.0647 2.6573 4.2869 0.8392

Cv -4.5798 -3.9461 -3.5451 -3.3124 -3.1427 29898 < 0.0001
CV-BI -3.5970 -2.0139 1.0152 0.3116 2.3736 3.5332 0.2229
CV-hvBI -3.5050 -1.9978 1.1456 0.3812 2.3974 3.5029 0.0671
CV-Mod -4.5784 -39155 -3.4674 -3.1014 -3.0201 2.9640 < 0.0001
Holdout -3.5652 -2.6615 0.2044 0.0420 2.6910 4.2043 0.8392
p-holdout -3.5163 -2.6819 -0.4311 -0.0999 2.4360 4.2740 0.8392
Preq-Bls -3.1065 -1.7238 1.4364 0.8289 3.0096 4.1937 0.025

Preq-Bls-Gap -3.1673 -1.7219 1.2271 0.8062 2.9538 4.8129 0.0417
Preq-Grow -3.7782 -2.8400 -1.3461 -0.1705 2.6928 4.7301 0.4168
Preq-Sld-Bls  -3.2078 2.3659 3.3821 2.6636 3.8145 4.9703 < 0.0001
Preq-Slide -3.8148 -2.7149 -0.9317 0.0281 2.5935 4.5225 0.8392
Rep-Holdout  -3.5285 -2.3827 0.1644 0.1540 2.6671 4.1948 1

Table B.2: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to the 97
stationary time series using the RBR learning algorithm and the MASE as error measure.

Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout  -4.5723 -2.5744 -0.7677 0.0262 2.8260 6.4568 0.2543
cp-holdout -4.5723  -2.8068 -1.3651 -0.0263 2.8931 5.9954 0.4944

Ccv -4.6032 -4.1921 -3.7528 -2.9495 -2.8750 6.5720 < 0.0001
CV-Bl -4.5371 -29674 -1.9399 -0.3107 2.5136 7.3776 0.362
CV-hvBlI -4.5368 -2.9361 -1.8853 -0.2081 2.6890 7.3856 0.4944
CV-Mod -4.6031 -4.1438 -3.6161 -2.6960 -2.7501 6.6844 < 0.0001
Holdout -4.5723 -2.8068 -1.7653 -0.2982 2.7208 5.2328 0.1711
p-holdout -4.5723 -2.8645 -0.6571 0.0108 3.0075 7.2400 0.4944
Preq-Bls -4.5376 -2.6173 1.0564 0.5146 3.2786 6.9546 0.8199

Preq-Bls-Gap -4.5146 -2.6292 1.5972 0.8118 3.3487 6.9282 0.2543
Preq-Grow -4.5684 -3.0365 -1.8800 -0.5171 2.5575 5.1708 0.0675
Preg-SId-Bls  -4.5120 1.3117 29447 23208 4.2867 7.8570 < 0.0001
Preg-Slide -4.5678 -2.9212 -1.9325 -0.4589 2.5488 4.7553 0.1711
Rep-Holdout -4.5689 -2.6525 -1.1010 0.2071 2.9921 8.1900 0.4944

Table B.3: P-value for the Sign Test and summary of the log percentage difference of the
estimated loss relative to the true loss for each validation scheme applied to the 77 non-
stationary time series using the RBR learning algorithm and the MASE as error measure.
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Figure B.3: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation scheme when applied to the stationary time-series from Cerqueira
et al. (2020), with parameters estimated via the RBR learning algorithm and
error calculated using the MASE. The probabilities are computed using the
Bayes signed-rank test.
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Figure B.4: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respec-
tive validation schemes when applied to the non-stationary time-series from
Cerqueira et al. (2020), with parameters estimated via the RBR learning algo-
rithm and error calculated using the MASE. The probabilities are computed
using the Bayes signed-rank test.
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B.1.2 Results from the RF learning algorithm
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Plot by: Varela-Alvarenga and Kedem (2021).
Data source: Cerqueira et al. (2020).

Figure B.5: Average APAE rank of each validation scheme on 174 real-world
time series using the RF learning algorithm and MASE as the error function.
The black line represents -+ 1 standard deviation from the average.
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Figure B.6: Log percentage difference of the estimated loss relative to the
true loss for each validation scheme applied to 174 real-world time series
using the RF learning algorithm. Values below the zero (red) line represent
under-estimations of the error. Conversely, values above it represent over-
estimations of the error.
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Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout ~ -4.0452 -2.4522 0.3085 0.2351 2.5787 6.6253 0.9396
cp-holdout -4.0452 -2.5129 0.2852 0.2385 2.7101 6.2548 0.9396

Cv -4.4630 -3.8328 -3.4115 -2.5006 -2.5318 6.3957 < 0.0001
CV-BI -3.8252 -2.4927 0.8222 0.1678 2.5070 6.8520 0.5958
CV-hvBI -3.9305 -2.4889 1.0221 0.2055 2.5698 6.8748 0.4044
CV-Mod -4.4020 -3.7744 -3.3154 -2.2574 -2.2897 6.4808 < 0.0001
Holdout -4.3119 -2.5707 -0.8383 -0.0218 2.5054 5.5194 0.4044
p-holdout -4.2242  -2.5608 0.5651 0.2440 2.7810 7.4009 0.8202
Preq-Bls -3.5924 -1.9985 1.9680 0.9066 3.0526 6.6564 0.0276

Preq-Bls-Gap -3.8724 -1.9149 1.9625 0.9909 3.1372 7.4208 0.0018
Preq-Grow -4.3438  -2.6949 -1.6014 -0.4246 2.3988 5.0591 0.0049
Preq-Sld-Bls  -3.7184 2.0250 3.1501 2.4896 3.8825 7.0703 < 0.0001
Preq-Slide -4.3054 -2.6757 -0.9839 -0.1257 2.6327 5.0239 0.3244
Rep-Holdout -4.0041 -2.1707 1.2788 0.5159 2.7481 7.8342 0.1111

Table B.4: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to all 174
real-world time series using the RF learning algorithm and the MASE as error measure.

Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout  -3.1095 -2.2424 0.7032 0.2884 2.5763 4.5045 0.5426
cp-holdout -3.4183 -2.2424 0.5624 0.2824 2.5840 4.3126 0.6849

Ccv -4.4630 -3.8117 -3.4638 -2.9477 -3.0641 3.7423 < 0.0001
CV-Bl -3.4676 -1.9974 1.1986 0.4503 2.4156 3.6555 0.0671
CV-hvBlI -3.3622  -1.7943 13768 0.4983 2.4567 3.6569 0.025
CV-Mod -4.4020 -3.7769 -3.3695 -2.7922 -2.8163 3.8111 < 0.0001
Holdout -3.4967 -2.5562 -0.5759 -0.0175 24578 4.3126 0.6849
p-holdout -3.4183 -2.0544 0.8605 0.3984 2.7218 4.3473 0.4168
Preqg-Bls -2.6844 -1.4435 23501 1.2073 3.0260 4.7647 0.0022

Preq-Bls-Gap -3.0378 -1.1133 2.4090 1.2532 3.0296 5.1751 2e-04
Preq-Grow -3.8047 -2.5800 -1.2784 -0.2463 24587 4.2873 0.2229
Preq-SId-Bls  -2.8833 2.5048 3.2367 2.8247 3.7576 6.2192 < 0.0001
Preg-Slide -3.8732 -2.5286 0.5847 0.0867 27369 4.2021 1
Rep-Holdout -3.4561 -1.8441 1.1751 0.4732 2.6233 4.1358 0.2229

Table B.5: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to the 97
stationary time series using the RF learning algorithm and the MASE as error measure.
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Scheme Min. Ist Qu. Median Mean 3rd Qu. Max.  p-value

cep-holdout  -4.0452 -2.4738 -0.8212 0.1680 2.5795 6.6253 0.6488
cp-holdout -4.0452 -2.7016 -0.4780 0.1832 2.8407 6.2548 0.8199

Cv -4.4349 -39084 -3.2907 -1.9375 -2.0436 6.3957 < 0.0001
CV-BI -3.8252  -2.8252 -2.0090 -0.1881 2.6622 6.8520 0.2543
CV-hvBI -3.9305 -2.8449 -2.0086 -0.1634 2.6417 6.8748 0.2543
CV-Mod -4.3899 -3.7237 -3.0123 -1.5838 1.1190 6.4808 1e-04
Holdout -43119 -2.6419 -1.1363 -0.0273 2.8362 5.5194 0.4944
p-holdout -4.2242  -2.8313 -0.8212 0.0494 29837 7.4009 0.6488
Preq-Bls -3.5924  -2.4026 -0.3275 0.5278 33873 6.6564 1

Preq-Bls-Gap -3.8724 -2.3902 0.6579 0.6605 3.3713 7.4208 0.6488
Preq-Grow -4.3438 -2.9261 -1.7716 -0.6492 2.3009 5.0591 0.0059
Preq-SIld-Bls  -3.7184 -0.4954 2.9643 2.0674 4.2547 7.0703 2e-04
Preq-Slide -4.3054 -2.7906 -1.5958 -0.3931 2.4499 5.0239 0.11
Rep-Holdout -4.0041 -2.5025 1.3845 0.5697 3.0195 7.8342 0.362

Table B.6: P-value for the Sign Test and summary of the log percentage difference of the
estimated loss relative to the true loss for each validation scheme applied to the 77 non-
stationary time series using the RF learning algorithm and the MASE as error measure.
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Figure B.7: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation scheme when applied to the stationary time-series from Cerqueira
et al. (2020), with parameters estimated via the RF learning algorithm and
error calculated using the MASE. The probabilities are computed using the
Bayes signed-rank test.
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Figure B.8: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respec-
tive validation schemes when applied to the non-stationary time-series from
Cerqueira et al. (2020), with parameters estimated via the RF learning algo-
rithm and error calculated using the MASE. The probabilities are computed
using the Bayes signed-rank test.
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B.1.3 Results from the GLM learning algorithm
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Plot by: Varela-Alvarenga and Kedem (2021).
Data source: Cerqueira et al. (2020).

Figure B.9: Average APAE rank of each validation scheme on 174 real-world
time series using the GLM-Ridge learning algorithm and MASE as the error
function. The black line represents -+ 1 standard deviation from the average.
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Percentual difference to true loss
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Figure B.10: Log percentage difference of the estimated loss relative to the
true loss for each validation scheme applied to 174 real-world time series
using the GLM-Ridge learning algorithm. Values below the zero (red) line
represent under-estimations of the error. Conversely, values above it represent
over-estimations of the error.
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Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout  -4.1262 -2.3978 -0.8995 -0.0050 2.3076 6.4257 0.4952
cp-holdout -4.1684 -2.4256 -0.5627 0.0300 2.4157 6.0219 0.9396

Cv -4.4242  -3.8497 -3.3711 -2.5201 -2.5901 6.7832 < 0.0001
CV-BI -3.8388 -2.3461 0.6500 0.2179 2.3389 7.2172 0.4044
CV-hvBI -4.0557 -2.2928 0.8862 0.2763 23101 7.2266 0.2554
CV-Mod -4.4182 -3.8203 -3.3385 -2.3392 -2.4087 6.8601 < 0.0001
Holdout -4.3088 -2.5386 -0.7634 -0.0761 2.4826 4.9240 0.3244
p-holdout -4.2708 -2.4840 -0.7346 -0.0037 2.5280 6.6673 0.8202
Preq-Bls -3.6326 -2.0697 13126 0.5568 2.8058 6.6408 0.0577

Preq-Bls-Gap -3.8718 -2.2742 1.4629 0.5459 2.8698 6.7019 0.1495
Preq-Grow -4.2664 -2.7134 -1.0482 -0.2447 23046 4.7756 0.1973
Preq-Sld-Bls  -3.7203 1.0490 2.7238 1.9278 3.5816 7.0618 < 0.0001
Preg-Slide -4.2744  -2.6599 -1.1299 -0.2039 2.5963 4.7368 0.0577
Rep-Holdout  -4.0829 -2.2367 0.3946 0.3300 2.7330 6.8926 0.4952

Table B.7: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to all 174
real-world time series using the GLM-Ridge learning algorithm and the MASE as error
measure.

Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout  -3.2664 -2.3362 -0.1756 0.0642 23076 4.5735 1
cp-holdout -3.3877 -2.3362 0.0433 0.1147 23076 4.4372 0.8392

Ccv -4.4242  -3.8393 -3.4945 -2.8789 -3.0264 3.7327 < 0.0001
CV-Bl -3.2845 -1.8304 0.6528 0.3967 2.4292 4.6228 0.2229
CV-hvBI -3.2481 -1.6781 0.9926 0.4802 2.3321 4.6151 0.1038
CV-Mod -4.4056 -3.8203 -3.4606 -2.7840 -2.8449 3.7268 < 0.0001
Holdout -3.6792  -2.5392 -0.4265 0.0207 2.5320 4.4372 0.6849
p-holdout -3.3877 -2.1372 0.0512 0.1114 24562 4.4372 0.8392
Preq-Bls -3.1709 -2.0364 1.5484 0.7446 29908 4.4556 0.0144

Preq-Bls-Gap -3.1587 -2.0941 1.8076 0.6553 2.8919 4.5238 0.1548
Preq-Grow -3.77711  -2.6346  -0.6020 -0.0445 2.5094 4.3157 0.8392
Preg-SId-Bls  -3.4167 1.6307 29361 22190 3.6136 4.9646 < 0.0001
Preqg-Slide -3.7827 -2.6011 -0.8803 -0.0132 2.6988 4.3486 0.3099
Rep-Holdout -3.5104 -2.1471 0.3885 0.3048 2.6758 4.5017 0.5426

Table B.8: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to the 97
stationary time series using the GLM-Ridge learning algorithm and the MASE as error
measure.
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Scheme Min. Ist Qu. Median Mean 3rd Qu. Max.  p-value

cep-holdout  -4.1262 -2.4093 -1.3489 -0.0922 2.3649 6.4257 0.362
cp-holdout -4.1684 -2.5962 -1.3524 -0.0767 2.6464 6.0219 0.6488

Cv -4.4221 -3.8500 -3.2538 -2.0682 -1.9150 6.7832 < 0.0001
CV-B1 -3.8388 -2.7446 -1.0385 -0.0073 2.2603 7.2172 1
CV-hvBI -4.0557 -2.7451 -1.0170 0.0195 2.1431 7.2266 1
CV-Mod -4.4182 -3.8205 -3.1421 -1.7790 -1.3468 6.8601 < 0.0001
Holdout -4.3088 -2.5367 -1.2467 -0.1981 2.3459 4.9240 0.362
p-holdout -4.2708 -2.5962 -1.3489 -0.1486 2.6464 6.6673 0.4944
Preq-Bls -3.6326 -2.4664 1.0140 0.3202 2.6854 6.6408 1

Preq-Bls-Gap -3.8718 -2.4985 1.1515 0.4080 2.6962 6.7019 0.6488
Preq-Grow -4.2664 -2.8632 -1.5121 -0.4969 2.1151 4.7756 0.11
Preq-SIld-Bls  -3.7203 -1.2861 2.4418 1.5610 3.4472 7.0618 0.0028
Preq-Slide -4.2744  -2.6991 -1.7563 -0.4441 2.3450 4.7368 0.11
Rep-Holdout -4.0829 -2.4284 0.4007 0.3617 29647 6.8926 0.8199

Table B.9: P-value for the Sign Test and summary of the log percentage difference of the
estimated loss relative to the true loss for each validation scheme applied to the 77 non-
stationary time series using the GLM-Ridge learning algorithm and the MASE as error
measure.
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Figure B.11: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation scheme when applied to the stationary time-series from Cerqueira
et al. (2020), with parameters estimated via the GLM-Ridge learning algo-
rithm and error calculated using the MASE. The probabilities are computed
using the Bayes signed-rank test.
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Figure B.12: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respec-
tive validation schemes when applied to the non-stationary time-series from
Cerqueira et al. (2020), with parameters estimated via the GLM-Ridge learn-
ing algorithm and error calculated using the MASE. The probabilities are
computed using the Bayes signed-rank test.

212



B.2 Data from the M4 Competition

B.2.1 Results from the RBR learning algorithm
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Plot by: Varela-Alvarenga and Kedem (2021).
Data source: Sample from the M4 Competition data sets (Makridakis, Spiliotis and Assimakopoulos, 2020).

Figure B.13: Average APAE rank of each validation scheme to the sample of
1,000 time series from the M4 competition using the RBR learning algorithm
and MASE as the error function. The black line represents -+ 1 standard
deviation from the average.
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Plot by: Varela-Alvarenga and Kedem (2021).

Figure B.14: Log percentage difference of the estimated loss relative to the
true loss for each validation scheme applied to the sample of 1,000 time series
from the M4 competition using the RBR learning algorithm. Values below
the zero (red) line represent under-estimations of the error. Conversely, values
above it represent over-estimations of the error.
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Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout ~ -4.5795 -2.9299 0.4439 0.2002 3.3110 6.5327 0.728
cp-holdout -4.5795 -2.9299 0.4439 0.2002 3.3110 6.5327 0.728

Cv -4.6127 -4.4619 -4.2972 -4.0383 -4.0521 5.6846 < 0.0001
CV-BI -4.5921 -3.4503 -2.4319 -0.6585 2.8523 8.4530 < 0.0001
CV-hvBlI -4.5828 -3.4265 -2.3631 -0.5729 29685 9.6575 < 0.0001
CV-Mod -4.6125 -4.4393 -4.2651 -3.9442 -3.9949 6.7614 < 0.0001
Holdout -4.5670 -3.1529 -0.8269 0.0633 3.2760 6.6033 0.3269
p-holdout -4.5770 -2.9895 0.4232 0.2575 3.3777 6.5327 0.728
Preq-Bls -4.2153 -19776 3.0625 Inf 4.1987 Inf < 0.0001
Preq-Bls-Gap -4.1389 2.3808 3.9618 Inf 49054 Inf < 0.0001
Preq-Grow -4.5664 -3.3398 -1.7586 -0.2818 3.1555 6.9907 3e-04
Preg-SId-Bls  -4.3239 3.4905 4.4786 Inf 5.1546  Inf < 0.0001

Preg-Slide -4.5672 -3.3333 -1.8415 -0.2882 3.1405 6.8414 2e-04
Rep-Holdout -4.4875 -2.6319 2.3265 0.9898 3.7825 8.5848 < 0.0001

Table B.10: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to the time
series from the M4 Competition sample using the RBR learning algorithm and the MASE
as error measure.

Scheme Min. Ist Qu. Median Mean 3rd Qu. Max.  p-value

cep-holdout  -4.3782 -3.0349 0.7064 0.1731 3.2642 6.2152 0.5594
cp-holdout -4.3782 -3.0349 0.7064 0.1731 3.2642 6.2152 0.5594

Ccv -4.6075 -4.4570 -4.2995 -4.0783 -4.0629 4.1261 < 0.0001
CV-Bl -4.3540 -3.4315 -2.4488 -0.7868 2.7848 5.7453 < 0.0001
CV-hvBI -4.3552 -3.4406 -2.4373 -0.7001 2.9438 6.8117 < 0.0001
CV-Mod -4.6055 -4.4397 -4.2717 -3.9866 -4.0087 4.4632 < 0.0001
Holdout -4.4533  -3.2102 -1.2202 0.0159 3.2687 5.4386 0.3169
p-holdout -4.3782 -29805 0.6429 0.2667 3.3628 6.2152 0.5594
Preqg-Bls -4.1195 -2.0404 2.9020 Inf 4.1680 Inf < 0.0001
Preq-Bls-Gap -4.0964 2.3304 3.8976 Inf 4.8378 Inf < 0.0001
Preq-Grow -4.4095 -3.3232 -1.9077 -0.3468 3.1293 5.8924 Se-04
Preq-Sld-Bls  -4.1638 3.4625 4.4048 Inf 5.1176  Inf < 0.0001

Preqg-Slide -4.4010 -3.2943 -2.0541 -0.3623 3.0805 5.7150 6e-04
Rep-Holdout -4.2533 -2.6187 2.1759 0.9416 3.6959 5.9270 < 0.0001

Table B.11: P-value for the Sign Test and summary of the log percentage difference of the
estimated loss relative to the true loss for each validation scheme applied to the stationary
time series from the M4 Competition sample using the RBR learning algorithm and the
MASE as error measure.
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Scheme Min. Ist Qu. Median Mean 3rd Qu. Max.  p-value

cep-holdout  -4.5795 -2.8861 -0.1334 0.2367 3.3895 6.5327 0.9227
cp-holdout -4.5795 -2.8861 -0.1334 0.2367 3.3895 6.5327 0.9227

Cv -4.6127 -4.4660 -4.2871 -3.9841 -4.0465 5.6846 < 0.0001
CV-BI -4.5921 -3.4549 -2.2261 -0.4849 3.0126 8.4530 7e-04
CV-hvBlI -4.5828 -3.4195 -2.2488 -0.4007 2.9722 9.6575 0.0036
CV-Mod -4.6125 -4.4384 -4.2571 -3.8868 -3.9864 6.7614 < 0.0001
Holdout -4.5670 -3.0770 -0.3140 0.1274 3.2925 6.6033 0.7711
p-holdout -4.5770 -3.0064 -0.1444 0.2450 3.4087 6.5327 0.9227
Preq-Bls -4.2153 -1.7258 3.1894 Inf 42764 Inf < 0.0001
Preq-Bls-Gap -4.1389 2.4127 4.0944 Inf 49702 Inf < 0.0001
Preq-Grow -4.5664 -3.3644 -1.5904 -0.1939 3.2264 6.9907 0.1455
Preq-SIld-Bls  -4.3239 3.5347 4.5208 Inf 5.2419 Inf < 0.0001

Preq-Slide -4.5672 -3.3816 -1.4619 -0.1880 3.2122 6.8414 0.0806
Rep-Holdout -4.4875 -2.7016 2.5831 1.0551 3.8375 8.5848 < 0.0001

Table B.12: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to the non-
stationary time series from the M4 Competition sample using the RBR learning algorithm
and the MASE as error measure.
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Figure B.15: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation scheme when applied to the stationary series from the sample of
1,000 time series from the M4 competition, with parameters estimated via
the RBR learning algorithm and error calculated using the MASE. The prob-
abilities are computed using the Bayes signed-rank test.
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Figure B.16: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation schemes when applied to the non-stationary series from the sample
of 1,000 time series from the M4 competition, with parameters estimated
via the RBR learning algorithm and error calculated using the MASE. The
probabilities are computed using the Bayes signed-rank test.
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B.2.2 Results from the RF learning algorithm
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Plot by: Varela-Alvarenga and Kedem (2021).
Data source: Sample from the M4 Competition data sets (Makridakis, Spiliotis and Assimakopoulos, 2020).

Figure B.17: Average APAE rank of each validation scheme to the sample of
1,000 time series from the M4 competition using the RF learning algorithm
and MASE as the error function. The black line represents -+ 1 standard
deviation from the average.
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Figure B.18: Log percentage difference of the estimated loss relative to the
true loss for each validation scheme applied to the sample of 1,000 time series
from the M4 competition using the RF learning algorithm. Values below the
zero (red) line represent under-estimations of the error. Conversely, values
above it represent over-estimations of the error.

220



Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout  -4.2983 -3.1091 -1.0897 0.0606 3.3269 5.8987 0.1372
cp-holdout -4.2983 -3.1091 -1.0897 0.0606 3.3269 5.8987 0.1372

Cv -4.6085 -4.2654 -3.9484 -3.0992 -3.2894 5.9089 < 0.0001
CV-BI -4.4149 -3.4521 -2.4935 -0.7465 2.8318 7.5705 < 0.0001
CV-hvBlI -4.3938 -3.3676 -2.2907 -0.4448 3.0375 7.5050 < 0.0001
CV-Mod -4.6061 -4.2261 -3.8989 -2.9506 -3.2134 6.1251 < 0.0001
Holdout -4.3359 -3.2810 -0.7936 0.0024 3.3012 5.7206 0.2967
p-holdout -4.2959 -3.0869 -0.8786 0.0963 3.3718 5.8987 0.4292
Preq-Bls -4.2431 -2.5343 2.6466 Inf 3.8444  Inf < 0.0001
Preq-Bls-Gap -4.2402 -2.1717 3.0450 Inf 4.1573 Inf < 0.0001
Preq-Grow -4.3496 -3.3386 -1.8420 -0.2990 3.1477 5.6790 1le-04
Preq-SId-Bls  -4.3476 -1.7305 3.2492 Inf 4.2864 Inf < 0.0001

Preg-Slide -4.3784 -3.3586 -1.8682 -0.3127 3.1398 5.6314 6e-04
Rep-Holdout -4.3369 -2.9182 1.8753 0.5943 3.6380 8.4230 0.0021

Table B.13: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to the time
series from the M4 Competition sample using the RF learning algorithm and the MASE
as error measure.

Scheme Min. Ist Qu. Median Mean 3rd Qu. Max.  p-value

cep-holdout  -4.2349 -3.1597 -1.5520 -0.1749 3.1855 5.8670 0.0045
cp-holdout -4.2349  -3.1597 -1.5520 -0.1749 3.1855 5.8670 0.0045

Cv -4.5946 -4.2664 -3.9402 -3.1472 -3.3302 5.8738 < 0.0001
CV-Bl -4.3784 -3.4575 -2.6338 -0.9461 2.5268 6.2103 < 0.0001
CV-hvBI -4.3616 -3.4037 -2.3897 -0.5990 2.8557 6.3341 < 0.0001
CV-Mod -4.5924 -4.2279 -3.9012 -3.0118 -3.2881 6.1251 < 0.0001
Holdout -4.2365 -3.3622 -1.6271 -0.1974 3.2322 5.6221 0.0242
p-holdout -4.1936 -3.2117 -1.3326 -0.0703 3.3215 5.8670 0.0952
Preqg-Bls -4.1395 -2.5679 2.4032 Inf 3.8008 Inf < 0.0001
Preq-Bls-Gap -4.1408 -2.2138 2.9716 Inf 4.0569 Inf < 0.0001
Preq-Grow -4.3496 -3.4518 -2.2136 -0.4522 3.0672 5.5024 1le-04
Preq-Sld-Bls  -4.1313 -1.9038 3.1774 Inf 4.2404 Inf < 0.0001

Preqg-Slide -4.3784 -3.4595 -2.2320 -0.4758 3.0557 5.4900 1le-04
Rep-Holdout -4.1757 -2.9393 1.8670 0.5242 3.6121 5.4169 0.037

Table B.14: P-value for the Sign Test and summary of the log percentage difference of the
estimated loss relative to the true loss for each validation scheme applied to the stationary
time series from the M4 Competition sample using the RF learning algorithm and the
MASE as error measure.
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Scheme Min. Ist Qu. Median Mean 3rd Qu. Max.  p-value

cep-holdout  -4.2983 -3.0472 1.3112 03791 3.5300 5.8987 0.332
cp-holdout -4.2983 -3.0472 13112 0.3791 3.5300 5.8987 0.332

Cv -4.6085 -4.2635 -3.9562 -3.0343 -3.2110 5.9089 < 0.0001
CV-BI -4.4149 -3.4144 -2.3632 -0.4764 3.1236 7.5705 1le-04
CV-hvBl -4.3938 -3.2903 -2.0566 -0.2362 3.2332 7.5050 0.0116
CV-Mod -4.6061 -4.2207 -3.8754 -2.8679 -3.0584 6.0848 < 0.0001
Holdout -4.3359 -3.1674 1.0748 0.2728 3.3662 5.7206 0.332
p-holdout -4.2959 -29685 1.1562 03218 3.4358 5.8987 0.4971
Preq-Bls -4.2431 -2.4978 2.8488 Inf 3.9256 Inf < 0.0001
Preq-Bls-Gap -4.2402 -2.1024 3.2511 Inf 42180 Inf < 0.0001
Preq-Grow -4.3357 -3.1889 -1.1992 -0.0916 3.2590 5.6790 0.2072
Preq-Sld-Bls  -4.3476 -1.2746 3.3340 Inf 4.3000 Inf < 0.0001

Preq-Slide -4.3419 -3.2304 -1.1612 -0.0920 3.2743 5.6314 0.4377
Rep-Holdout -4.3369 -2.8443 1.9072 0.6892 3.7113 8.4230 0.0255

Table B.15: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to the non-
stationary time series from the M4 Competition sample using the RF learning algorithm
and the MASE as error measure.
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Figure B.19: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation scheme when applied to the stationary series from the sample of
1,000 time series from the M4 competition, with parameters estimated via
the RF learning algorithm and error calculated using the MASE. The proba-
bilities are computed using the Bayes signed-rank test.
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Figure B.20: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation schemes when applied to the non-stationary series from the sample
of 1,000 time series from the M4 competition, with parameters estimated
via the RF learning algorithm and error calculated using the MASE. The
probabilities are computed using the Bayes signed-rank test.
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B.2.3 Results from the GLM learning algorithm
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Plot by: Varela-Alvarenga and Kedem (2021).
Data source: Sample from the M4 Competition data sets (Makridakis, Spiliotis and Assimakopoulos, 2020).

Figure B.21: Average APAE rank of each validation scheme to the sample
of 1,000 time series from the M4 competition using the GLM-Ridge learning
algorithm and MASE as the error function. The black line represents -+ 1
standard deviation from the average.
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Percentual difference to true loss
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Figure B.22: Log percentage difference of the estimated loss relative to the
true loss for each validation scheme applied to the sample of 1,000 time series
from the M4 competition using the GLM-Ridge learning algorithm. Values
below the zero (red) line represent under-estimations of the error. Conversely,
values above it represent over-estimations of the error.
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Scheme Min. 1st Qu. Median Mean 3rd Qu. Max. p-value

cep-holdout  -4.4369 -2.9482 -0.3593 0.0753 3.1487 6.1833 0.6353
cp-holdout -4.4369 -2.9482 -0.3593 0.0753 3.1487 6.1833 0.6353

Cv -4.6080 -4.2246 -3.9029 -3.1556 -3.3146 5.3390 < 0.0001
CV-BI -4.4894 -33111 -2.2039 -0.5091 2.8751 6.4085 < 0.0001
CV-hvBI -4.4857 -3.2638 -2.0213 -0.3347 3.0985 6.6908 < 0.0001
CV-Mod -4.6080 -4.2182 -3.8798 -3.0229 -3.2666 5.6017 < 0.0001
Holdout -4.4450 -3.0800 -0.9980 -0.0145 3.1733 5.9277 0.1067
p-holdout -4.3981 -2.9781 -0.1149 0.0914 3.1477 6.2853 0.9748
Preq-Bls -4.0868 -2.5359 2.3808 Inf 3.8261 Inf < 0.0001
Preq-Bls-Gap -4.0577 -2.2591 2.6912 Inf 3.9889 Inf < 0.0001
Preq-Grow -4.4962 -3.3039 -1.7719 -0.2620 3.1069 5.7649 6e-04
Preq-SId-Bls  -4.4441 -0.6312 3.2135 Inf 4.2300 Inf < 0.0001

Preg-Slide -4.4978 -3.2934 -1.7861 -0.2714 3.1019 5.7528 9e-04
Rep-Holdout -4.3486 -2.7494 1.8906 0.6691 3.4315 8.2590 < 0.0001

Table B.16: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to the time
series from the M4 Competition sample using the GLM-RIDGE learning algorithm and
the MASE as error measure.

Scheme Min. Ist Qu. Median Mean 3rd Qu. Max.  p-value

cep-holdout  -4.2143 -3.0228 -0.7194 0.0035 3.1446 5.4322 0.5594
cp-holdout -4.2143  -3.0228 -0.7194 0.0035 3.1446 5.4322 0.5594

Ccv -4.5905 -4.2298 -3.9028 -3.2043 -3.3862 4.9959 < 0.0001
CV-Bl -4.3598 -3.3194 -2.3067 -0.6650 2.7220 5.3448 < 0.0001
CV-hvBl -4.3563 -3.2559 -2.0800 -0.4417 2.9847 5.4041 1le-04
CV-Mod -4.5904 -4.2194 -3.8786 -3.0766 -3.3251 5.1343 < 0.0001
Holdout -4.3058 -3.1390 -1.2557 -0.0848 3.1758 5.6044 0.1562
p-holdout -4.2105 -3.0428 0.3155 0.0917 3.1055 5.4322 0.8024
Preq-Bls -4.0350 -2.4423 23805 Inf 3.6871 Inf < 0.0001
Preq-Bls-Gap -4.0577 -2.1914 2.6608 Inf 3.8643  Inf < 0.0001
Preq-Grow -4.3190 -3.3190 -1.9690 -0.3262 3.0765 5.6249 0.0035
Preq-Sld-Bls  -4.1751 -0.9669 3.0659 Inf 4.1745 Inf < 0.0001

Preg-Slide -4.3060 -3.3008 -1.9052 -0.3520 3.0457 5.5836 0.0011
Rep-Holdout -4.2346 -2.7547 1.8915 0.6762 3.3913 5.7761 1e-04

Table B.17: P-value for the Sign Test and summary of the log percentage difference of the
estimated loss relative to the true loss for each validation scheme applied to the stationary
time series from the M4 Competition sample using the GLM-RIDGE learning algorithm
and the MASE as error measure.
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Scheme Min. Ist Qu. Median Mean 3rd Qu. Max.  p-value

cep-holdout  -4.4369 -2.8636 -0.0162 0.1723 3.1615 6.1833 1
cp-holdout -4.4369 -2.8636 -0.0162 0.1723 3.1615 6.1833 1

Cv -4.6080 -4.2204 -3.9068 -3.0896 -3.2042 5.3390 < 0.0001
CV-BI -4.4894  -3.2961 -2.0105 -0.2982 3.0637 6.4085 0.0327
CV-hvBI -4.4857 -3.2693 -1.9145 -0.1899 3.1964 6.6908 0.0255
CV-Mod -4.6080 -4.2167 -3.8918 -2.9503 -3.1429 5.6017 < 0.0001
Holdout -4.4450 -3.0093 -0.7491 0.0805 3.1692 5.9277 0.4377
p-holdout -4.3981 -2.9435 -0.5265 0.0909 3.1696 6.2853 0.698
Preq-Bls -4.0868 -2.5515 2.4396 Inf 3.9269 Inf < 0.0001
Preq-Bls-Gap -4.0222 -2.4000 2.7617 Inf 4.1009 Inf < 0.0001
Preq-Grow -4.4962 -3.2706 -1.4496 -0.1751 3.1947 5.7649 0.0652
Preq-Sld-Bls  -4.4441 0.3797 3.3660 Inf 4.3153 Inf < 0.0001

Preq-Slide -4.4978 -3.2783 -1.4777 -0.1624 3.1607 5.7528 0.2072
Rep-Holdout -4.3486 -2.7329 1.8832 0.6595 3.5244 8.2590 0.0152

Table B.18: P-value for the Sign Test and summary of the log percentage difference of
the estimated loss relative to the true loss for each validation scheme applied to the non-
stationary time series from the M4 Competition sample using the GLM-RIDGE learning
algorithm and the MASE as error measure.
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Figure B.23: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation scheme when applied to the stationary series from the sample of
1,000 time series from the M4 competition, with parameters estimated via
the GLM-Ridge learning algorithm and error calculated using the MASE.
The probabilities are computed using the Bayes signed-rank test.
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Figure B.24: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation schemes when applied to the non-stationary series from the sample
of 1,000 time series from the M4 competition, with parameters estimated via
the GLM-Ridge learning algorithm and error calculated using the MASE.
The probabilities are computed using the Bayes signed-rank test.
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B.3 Monte Carlo Simulation

B.3.1 Results from the RBR learning algorithm
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Plot by: Varela-Alvarenga and Kedem (2021).

Figure B.25: Average APAE rank of each validation scheme to the sample of
1,000 simulated time series using the RBR learning algorithm and MASE as
the error function. The black line represents -+ 1 standard deviation from the
average.
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Percentual difference to true loss
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Figure B.26: Log percentage difference of the estimated loss relative to the
true loss for each validation scheme applied to the sample of 1,000 simu-
lated time series using the RBR learning algorithm. Values below the zero
(red) line represent under-estimations of the error. Conversely, values above
it represent over-estimations of the error.
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Figure B.27: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation schemes when applied to the time-series from the S3 simulated
data set, with parameters estimated via the RBR learning algorithm and error
calculated using the MASE. The probabilities are computed using the Bayes
signed-rank test.
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Figure B.28: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation schemes when applied to the time-series from the S4 simulated
data set, with parameters estimated via the RBR learning algorithm and error
calculated using the MASE. The probabilities are computed using the Bayes
signed-rank test.
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B.3.2 Results from the RF learning algorithm
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Figure B.29: Average APAE rank of each validation scheme to the sample of
1,000 simulated time series using the RF learning algorithm and MASE as
the error function. The black line represents -+ 1 standard deviation from the
average.
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Percentual difference to true loss

S3  pholdout cp-holdout  cep-holdout cv cv-BI CV-Mod ~ CV-hvBI  Preg-Bls Preq-Sld-Bls ’req-Bls-Gaj  Holdout ~Rep-Holdout Preq-Grow Preq-Slide

.
10
[}
H
H
.
0 ......
.
. % ‘
-5
S4  pnodout  cp-holdout  cep-holdout cv cv-BI CV-Mod ~ CV-hvBI  Preg-Bls Preq-Sld-Bls ’req-Bls-Gaj  Holdout ~ Rep-Holdout Preq-Grow —Preq-Slide
.
.
H
10
5
. ———-
S
.
]
L[]
.
L]
.
.
0 .
e L 1 v | -
e o F----4 0 LAl A beeed b
-’ ......
-5
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Figure B.30: Log percentage difference of the estimated loss relative to the
true loss for each validation scheme applied to the sample of 1,000 simulated
time series using the RF learning algorithm. Values below the zero (red) line
represent under-estimations of the error. Conversely, values above it represent
over-estimations of the error.
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Figure B.31: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation schemes when applied to the time-series from the S3 simulated
data set, with parameters estimated via the RF learning algorithm and error
calculated using the MASE. The probabilities are computed using the Bayes
signed-rank test.
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Figure B.32: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation schemes when applied to the time-series from the S4 simulated
data set, with parameters estimated via the RF learning algorithm and error
calculated using the MASE. The probabilities are computed using the Bayes
signed-rank test.
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B.3.3 Results from the GLM learning algorithm
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Figure B.33: Average APAE rank of each validation scheme to the sample of
1,000 simulated time series using the RIDGE learning algorithm and MASE
as the error function. The black line represents -+ 1 standard deviation from
the average.
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Percentual difference to true loss
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Figure B.34: Log percentage difference of the estimated loss relative to the
true loss for each validation scheme applied to the sample of 1,000 simu-
lated time series using the RIDGE learning algorithm. Values below the zero
(red) line represent under-estimations of the error. Conversely, values above
it represent over-estimations of the error.
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Figure B.35: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation schemes when applied to the time-series from the S3 simulated
data set, with parameters estimated via the RIDGE learning algorithm and
error calculated using the MASE. The probabilities are computed using the
Bayes signed-rank test.
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Figure B.36: Proportion of probability of winning outcome when comparing
the performance estimation ability of the cep-Holdout and the respective
validation schemes when applied to the time-series from the S4 simulated
data set, with parameters estimated via the RIDGE learning algorithm and
error calculated using the MASE. The probabilities are computed using the
Bayes signed-rank test.
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Appendix C: R Code

C.1 Motivation

code/motivation_p_holdout_V2021082001.R

#7
#7
#I
#I
#’
#’
#7
#I
#I

#’
#7
#7
#I
#’
#’
#7
#7
#I
#I
#’
#’
#7
#I
#I
#’
#’
#7
#7
#I
#’

Motivation for the new p-Holdout family of validation schemes

Creates the plots that show the motivation behind the p-holdout, the
cp-holdout, and the cep-holdout validation schemes.

@author Gustavo Varela-Alvarenga

@param og_TS an object with the original time series

@param g_e numeric value between 0 and 1. It is the percentage of

the
training data that will be used as the estimation set (i.e.,
the inner split).

@param g numeric value between 0 and 1. It is the percentage of the
original time series that will be used as the training data
(i.e., the outer split). If \code{NULL}, then \code{forecast.h}
must be specified.

@param forecast.h integer. It is the length of the forecast horizon.
To be used when the test data has a specific length, instead of
being defined by \code{ceiling(length (og_TS) *q) }.

If \code{NULL}, then \code{g} must be specified.

@return a panel with five plots. The first one shows the time series

split into training data and test data using the Holdout scheme.
The second displays the test data, and the training data split
into estimation set and validation set via the original holdout
validation scheme.
The third, fourth, and fifth plots use the procedures in the
p-Holdout family. Respectively, they display the training set
partitioned into the estimation and validation sets using the
p-Holdout, cp-Holdout, and cep-Holdout schemes.

plot_motivation_p_holdout <- function(og_TS,

a_e,
g = NULL,
forecast.h = NULL) {

== == - == == #

# Length of the Training Data and the Test Data ———————————————————~
if (is.null (forecast.h)) {
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if (is.null(qg)) {
error ("You must provide either ’'gq’ or ’forecast.h’.")

}
length.test.data <- ceiling(length(og_TS)* (1-qg))
length.train.data <- floor (length (og_TS) *q)

} else {
length.test.data <- forecast.h
length.train.data <- length(og_TS) - length.test.data

# Create the Training Data and Test Data set ———————--—-——--—————

trainingData <- head(og_TS, length.train.data)
testData <- tail(og_TS, length.test.data)

# Priodicity/frequency ——————————""""""""""—"—"—"————(——(—(————————————

## number of samples (observations) per unit of time
tmpFrequency <- stats::frequency (og_TS)

tmpPeriod <—- forecast::findfrequency (og_TS)

# Holdout Scheme: Lengths of the sets ———————-

length.validation.set .HO <- ceiling(length(trainingData)x* (l-q_e))

length.estimation.set .HO <- floor (length(trainingData) xqg_e)

# Holdout Scheme: Create the Estimation and Validation Sets ————-—

estimationSetHO <- head(trainingData, length.estimation.set.HO)
validationSetHO <- tail (trainingData, length.validation.set.HO)

# p-Holdout: Length of the Estimation Set and the Validation Set
if (tmpFrequency > 1) {

length.validation.set.PHO <- length.test.data + tmpFrequency
} else {

length.validation.set.PHO <- length.validation.set.HO

length.estimation.set .PHO <-
length.train.data - length.validation.set.PHO

# p—Holdout: Create the Estimation Set and the Validation Set —-—-

estimationSetSPHO <- head(trainingData, length.estimation.set.PHO)
validationSetSPHO <- tail (trainingData, length.validation.set.PHO)

#
# cp—-Holdout: Length of the Estimation and Validation Sets —--——-—
if (tmpFrequency == 1) {
length.validation.set.CPHO <- length.validation.set.HO
} else if (isFALSE((length.test.data/tmpFrequency)$%$%l == 0)) {
length.validation.set .CPHO <-

tmpFrequency*ceiling (length.test.data/tmpFrequency)
} else {
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length.validation.set.CPHO <- length.test.data + tmpFrequency

length.estimation.set .CPHO <-
length.train.data - length.validation.set.CPHO

# cp-Holdout: Create the Estimation Set and the Validation Set —-————-
estimationSetCPHO <- head(trainingData, length.estimation.set.CPHO)
validationSetCPHO <- tail (trainingData, length.validation.set.CPHO)

# cep-Holdout: Priodicity/frequency —————-——-—————————————————
## Create the test set

length.test.og <- ceiling(length(og_TS)*(1-q))

test.set.og <- tail(og_TS, length.test.oq)

period.test <—- forecast::findfrequency (validationSetHO)
## Get Length
tmpLength <- ifelse(length.validation.set.HO/length.test.data < 0.5,

length.validation.set.HO, length.test.data)

## Get Frequency
tmpFrequency <- ifelse (tmpPeriod < tmpLength, tmpPeriod, period.test)

# cep-Holdout: Length of the Estimation and Validation Sets —-———————-

if (tmpFrequency == 1) {
length.validation.set.CEPHO <- length.validation.set.HO
} else if (isFALSE ( (tmpLength/tmpFrequency)%%1 == 0)) {

length.validation.set.CEPHO <-
tmpFrequency*ceiling (tmpLength/tmpFrequency)
} else {
length.validation.set.CEPHO <- tmpLength + tmpFrequency

length.estimation.set.CEPHO <-
length.train.data - length.validation.set.CEPHO

# cep-Holdout: Create the Estimation Set and the Validation Set ————-
estimationSetCEPHO <- head(trainingData, length.estimation.set.CEPHO)
validationSetCEPHO <- tail(trainingData, length.validation.set.CEPHO)

# ==== ==== ===== ===== ==== ==== == 4
# Plots ————

original_pars <- par('mfrow’, ’'mar’, ’oma’)

par (mfrow = c¢(5, 1), mar = ¢c(0, 0, 0, 1), oma = c(2, 2, 2, 2))
on.exit (par (original_pars)) # return par to original values

## TRAINING DATA AND TEST DATA —————————————————

plot (0og_TS, col = "gray’, t = "1", 1lty = 2, xaxt = 'n’, yaxt = 'n’)
mtext (text = "A: Training and Test sets", side = 2)
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col
col

lines (trainingData,
lines (testData,

## Holdout: ESTIMATION SET, VALIDATION SET AND TEST DATA ————-—
plot (og_TS, col = ’'gray’, t = "p", xaxt = 'n’, yaxt = 'n’)
lines(og_TS, col = 'gray’, t = "1", lty = 2, xaxt = 'n’, yaxt
mtext (text = "B: Holdout", side = 2)

lines (estimationSetHO, col = "darkgreen’)
lines(validationSetHO, col = ’'orange’)

lines (testData, col = "red’)

## p-Holdout: ESTIMATION SET,

plot (og_TS, col = ’'gray’, t =
lines(og_TS, col = ’'gray’, t =
mtext (text = "C: p—-Holdout",
lines (estimationSetSPHO, col =
lines (validationSetSPHO, col =
lines (testData, col =

# ## cp-Holdout:

plot (og_TS, col = ’'gray’, t = "p", xaxt = 'n’, yaxt = 'n’)
lines(og_TS, col = 'gray’, t = "1", lty = 2, xaxt = 'n’, yaxt
mtext (text = "D: cp-Holdout", side = 2)

lines (estimationSetCPHO, col = "darkgreen’)
lines(validationSetCPHO, col = ’orange’)

lines (testData, col = ’'red’)

# ## cfp-Holdout: ESTIMATION SET, VALIDATION SET AND TEST DATA
plot (0g_TS, col = "gray’, t = "p", xaxt = 'n’, yaxt = 'n’)
lines(og_TS, col = ’'gray’, t = "1", lty = 2, xaxt = 'n’, yaxt
mtext (text = "E: cfp-Holdout", side = 2)

lines (estimationSetCEPHO, col = ’'darkgreen’)

lines (validationSetCEPHO, col = 'orange’)

lines (testData, col = "red’)

VALIDATION SET AND TEST DATA

"blue’)
"red’)

"p"’

"l",
side
"dar
"ora

xaxt = 'n’, yaxt = ’'n’)
lty = 2, xaxt = 'n’, yaxt
= 2)

kgreen’)

nge’)

"red’)

ESTIMATION SET,

VALIDATION SET AND TEST DATA

AN R R R R N R R N R R R N S N N N N N N N NN NN 23

## > Path to save plots to ———-

s|tmpPath <- "results/plots/"

tmpVersion <- "v2021082001"

ATV L VLDV VAN AAANAANANANANNNNNNN g4

## > Final Plots

## USAccDeaths — Monthly data

## > Export as png —-——-

png (
filename = pastel (
tmpPath, "motivation_USAccDeaths_plot_",
)I
type "cairo",
width = 8,
height =12,
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201 units = "in",

res = 300
203] )
plot_motivation_p_holdout (og_TS = USAccDeaths, g = 0.85, g e = 0.8)
20s5|dev.off ()

07| # ## > Export as eps ———-
setEPS ()

29| postscript (

file = pasteO(

211 tmpPath, "motivation_USAccDeaths_plot_", tmpVersion, ".eps"
) 14

213 width = 8,
height =12,

215 horizontal = F
)
27l plot_motivation_p_holdout (og_TS = USAccDeaths, g = 0.85, g_e = 0.8)
dev.off ()

219
## ——— ##
221

## taylor (forecast library) - Half-Hourly data

## > Export as png ———-—

25| png (
filename = pasteO(
227 tmpPath, "motivation_taylor_half_hour_plot_", tmpVersion, ".png"
) 14
229 type = "cairo",
width = 8,
231 height =12,
units = "in",
233 res = 300

)
25| plot_motivation_p_holdout (og_TS = forecast::taylor, g = 0.8, g_e = 0.8)
dev.off ()

# ## > Export as eps ————

239 setEPS ()
postscript (
241 file = pasteO(

tmpPath, "motivation_taylor_half hour_plot_", tmpVersion, ".eps"

243 ),

width = 8,
245 height =12,
horizontal = F

247( )
plot_motivation_p_holdout (og_TS = forecast::taylor, g = 0.8, g_e = 0.8)
uoldev.off ()

1| ## lynx - Annual data

53| ## > Export as png ————
png (

247




255 filename = pastel (

tmpPath, "motivation_linx_annual_plot_", tmpVersion, ".png"
257 ),
type = "cairo",
259 width = 8,
height =12,
261 units = "in",
res = 300

263| )
plot_motivation_p_holdout (og_TS = lynx, g = 0.7, g.e = 0.7)
25| dev.off ()

27| # ## > Export as eps ———-—

setEPS ()
60| postscript (
file = pasteO(
271 tmpPath, "motivation_linx_annual_plot_", tmpVersion, ".eps"
) 14
273 width = 8,
height =12,

275 horizontal F

)
plot_motivation_p_holdout (og_TS = lynx, g = 0.7, g.e = 0.7)
dev.off ()
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C.

2 The p-Holdout Family

code/p_holdout_v2021082001.R

#7
#I
#I
#’
#7
#7
#I
#I
#I
#’
#7
#V
#I

P_

The p-Holdout family of validation schemes

Partitions the time series according to the p-Holdout, cp-Holdout,
and cep-Holdout validation schemes.

@author Gustavo Varela-Alvarenga
@inheritParams performance_estimation
@details These are the same functions seen in the

motivation_p_holdout.R file, but adapted to receive the
parameter values from the performance_estimation function (inside

the workflows.R file).
S ——— ——— —— ——— ——— = #
holdout <- function (DATA, test, FUN, form, inner_split, freq, seed,
0og_TS, error_metric,...){

# Length of the Training Data and the Test Data —————————----——————
length.test.data <- nrow(test)
length.train.data <- nrow (DATA)
# Holdout: Length of the Training Data and the Test Data ————————————
length.validation.set.HO <-

ceiling(length.train.data* (l-inner_split))
# Priodicity/frequency —————————————————
tmpFrequency <- freq
# sp-Holdout: Length of the Estimation Set and the Validation Set—--—-
if (tmpFrequency > 1) {

length.validation.set.SPHO <- length.test.data + tmpFrequency
} else {

length.validation.set.SPHO <- length.validation.set.HO
}
length.estimation.set.SPHO <-

length.train.data - length.validation.set.SPHO
# sp-Holdout: Create the Estimation Set and the Validation Set —-————-—
estimationSetSPHO <- head(DATA, length.estimation.set.SPHO)
validationSetSPHO <- tail (DATA, length.validation.set.SPHO)
# Run the pred_model on the split data set -————----———
FUN (estimationSetSPHO, validationSetSPHO, form, seed = seed,

0g_TS = 0g_TS, error_metric = error_metric)

Smm=mmmmmmmmmeeeesesss s e e e e e
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cp_holdout <- function (DATA, test, FUN, form, inner_split, freq, seed,
og_TS, error_metric,...){

# Length of the Training Data and the Test Data ————————————--—-————~
length.test.data <- nrow(test)
length.train.data <- nrow(DATA) # floor (length (og_TS)outer_split)
# Holdout: Length of the Training Data and the Test Data —-——————————-
length.validation.set .HO <-

ceiling(length.train.data* (l-inner_split))
# Priodicity/frequency —————————————— - ——— o

tmpFrequency <- freq

# cp-Holdout: Length of the Estimation Set and the Validation Set —-—-

if (tmpFrequency == 1) {
length.validation.set.CPHO <- length.validation.set.HO
} else if (isFALSE((length.test.data/tmpFrequency) %%l == 0)) {

length.validation.set.CPHO <-
tmpFrequency*ceiling (length.test.data/tmpFrequency)
} else {
length.validation.set.CPHO <- length.test.data + tmpFrequency

length.estimation.set.CPHO <-
length.train.data - length.validation.set.CPHO

trainingData <- head(DATA, length.estimation.set.CPHO)
testData <- tail (DATA, length.validation.set.CPHO)

FUN (trainingData, testData, form, seed = seed, og_TS = og_TS,
error_metric = error_metric)

cep_holdout <- function (DATA, test, FUN, form, inner_split, freq,
period, seed,
outer_split, og_TS, error_metric, ...){

# Length of the Training Data and the Test Data —————————-————————
length.test.data <- nrow(test)
length.train.data <- nrow (DATA) # floor (length(og_TS)xouter_split)

# Holdout: Length of the Validation Set - —----------—-———
length.validation.set .HO <-

ceiling(length.train.datax (l-inner_split))

# Holdout Scheme: Create the Validation Set - ————-—----------———
validationSetHO <- tail (DATA, length.validation.set.HO)

# Periodicity/frequency ———————————"""""""—"———————————————————————————
## Create the test set
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length.test.og <- ceiling(length (og_TS) * (l-outer_split))
test.set.og <- tail(og_TS, length.test.oq)

period.test <- forecast::findfrequency(validationSetHO)
## Get Length
tmpLength <- ifelse(length.validation.set.HO/length.test.data < 0.5,

length.validation.set.HO, length.test.data)

## Get Frequency
tmpFrequency <- ifelse(period < tmpLength, period, period.test)

# cep-Holdout: Length of the Estimation and Validation SetS —-————————

if (tmpFrequency == 1) {
length.validation.set .CEPHO <- length.validation.set.HO
} else if (1isFALSE ((tmpLength/tmpFrequency)$%1 == 0)) {

length.validation.set.CEPHO <-
tmpFrequency*ceiling (tmpLength/tmpFrequency)
} else {
length.validation.set .CEPHO <- tmpLength + tmpFrequency

length.estimation.set .CEPHO <-
length.train.data - length.validation.set.CEPHO

trainingData <- head(DATA, length.estimation.set.CEPHO)
testData <- tail (DATA, length.validation.set.CEPHO)

FUN (trainingData, testData, form, seed = seed, o0g_TS = og_TS,
error_metric = error_metric)
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C.3 Forecasts - Cerqueira et al. (2020)

code/perfestimation—rw_v2021082201.R

#

#
# Files ———-
load("../data/tsl_uni_90_mix.rdata")
#source ("../src/utils.r")
#source ("../src/estimation-procedures.r")
#source ("../src/workflows.r")
#source ("../src/metrics.r")
#source ("../src/learning-models.r")

source ("src/utils_gus.r")
source ("src/metrics_Vv2021071201.r")

source ("src/workflows_v2021082001.r"™)

source ("src/p_holdout_v2021082001.r")

source ("src/get_ranks_v2021070901.r")

source ("src/learning-models_v2021082001.r")
source ("src/estimation-procedures_v2021082001.r")

# Packages ————
library (tsensembler)
library (ranger)
library (Cubist)
library (glmnet)
library (kernlab)
library (nnet)

library (RcppRoll)
library (tseriesChaos)
library (forecast)

#library (parallel)
library ("future.apply")

# install.packages ("beepr")
# library ("beepr") # plays notification sound when R finishes running

# Initial options

form <- target’”.
nfolds <- 10
tmpSeed <- 3L
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tmpOuter <- 0.7 # g_t (percentual of the data that will be training

data)
tmpInner <- 0.7 # g_e (percentual of the training data that will be

used

# for estimation)
#
#
# RBR ————
tmpVersionRBR <- "v2021082201"
tmpFileRBR <- pasteO(
"results/results_cerqueira_RMSE_rbr_", tmpVersionRBR, ".rdata"

)
plan (multisession, workers = 16)

time_rbr_174 <- system.time ({
results_cerqueira_rbr <- future_lapply(
l:length(ts_1list),
function (i) {
#cat (i, "\n\n")
ds <— ts_list[[i]]

x <— workflow (

ds = ds,

form = form,
predictive_algorithm = "rbr",
nfolds = nfolds,
outer_split = tmpOuter,
inner_split = tmpInner,
set_seed = tmpSeed,
error_metric = "rmse"

X
}I
future.seed = O0xXBEEF
)
})
plan (sequential)
time_rbr_174[3]1/3600 # new system + future_lapply: ~1.404739 hrs, 1.987
with 10 workers

results_cerqueira_RMSE_rbr_ranks <- get_ranks_gus (results_cerqueira
_rbr)

results_cerqueira_RMSE_rbr mean_rank <- rowMeans (results_cerqueira_ RMSE
_rbr ranksS$fr_abs_rank)

sort (results_cerqueira_RMSE_rbr_mean_rank)

save (results_cerqueira_rbr, file = tmpFileRBR)
beepr::beep("fanfare")
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2| # RF ————

tmpVersionRF <- "v2021082201"
tmpFileRF <- pasteO (

"results/results_cerqueira_RMSE_rf_", tmpVersionRF, ".rdata"

plan(multisession, workers = 16)

time_rf_174 <- system.time ({
results_cerqueira_rf <- future_lapply (
l:length(ts_list),
function (i) {
#cat (i, "\n\n")
ds <— ts_list[[i1]]

x <— workflow(

ds = ds,

form = form,
predictive_algorithm = "rf",
nfolds = nfolds,
outer_split = tmpOuter,
inner_split = tmpInner,
set_seed = tmpSeed,
error_metric = "rmse"

X
bo
future.seed = 0xXBEEF
)
})

plan (sequential)

time_rf_174[3]/60 # new system + future_lapply: ~ 33.25 min (54.76 if
half power)

results_cerqueira_RMSE_rf_ranks <- get_ranks_gus (results_cerqueira_
rf)

results_cerqueira RMSE_rf mean_rank <- rowMeans (results_cerqueira RMSE_

rf ranksS$fr_abs_rank)
sort (results_cerqueira_RMSE_rf_mean_rank)

save (results_cerqueira_rf, file = tmpFileRF)
beepr::beep("fanfare")

#
#
# RIDGE —-———
tmpVersionRIDGE <- "v2021082201"
tmpFileRIDGE <- paste0 (
"results/results_cerqueira_RMSE_ridge_", tmpVersionRIDGE,
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plan (multisession, workers = 16)

time_ridge_174 <- system.time ({
results_cerqueira_ridge <- future_lapply (
l:length(ts_list),
function (i) {
#cat (1, "\n\n")
ds <— ts_list[[i]]

x <— workflow (

ds = ds,

form = form,

predictive_algorithm = "lasso", # name is lasso, but it’s
running ridge

nfolds = nfolds,

outer_split = tmpOuter,

inner_split = tmpInner,

set_seed = tmpSeed,

error_metric = "rmse"

X
}I
future.seed = 0xXBEEF
)
)
plan (sequential)
time_ridge_174[3]/60 # new system + future_lapply: ~9.297 min

results_cerqueira_RMSE_ridge_ranks <- get_ranks_gus (results_
cerqueira_ridge)

results_cerqueira_RMSE_ridge_mean_rank <- rowMeans (results_cerqueira_
RMSE_ridge_ranks$fr_abs_rank)

sort (results_cerqueira RMSE_ridge_mean_rank)

save (results_cerqueira_ridge, file = tmpFileRIDGE)
beepr::beep("fanfare")
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C.4 M4 Competition Sample Selection and Forecasts

code/get_ M4 _datasets_v2021071001.R

# Install the M4comp2018 package

#install.packages ("https://github.com/carlanetto/Md4comp2018/releases/
download/0.2.0/Mdcomp2018_0.2.0.tar.gz",

# repos=NULL)

# Load the M4 list with all 100k data sets
Md4data <- M4comp2018::M4

# Get sample sizes
M4_sample <- sapply(
X = 1l:length (M4data),
function (X) M4datal[[X]]1S%n

# Get their frequencies
M4_fregs <- sapply(

X = 1l:length (M4data),

function (X) stats::frequency (M4datal[X]]5$x)
)
#table (M4_freqgs) # frequency > 1: freqgs 4, 12, 24

# Get estimated frequencies
M4_freqgs_forecast <- sapply(

X = 1l:length (M4data),

function (X) forecast::findfrequency (M4ddatal[X]]S$x)
)
#table (M4_freqs_forecast)

# Get series with either period greater than 1,
# and minimum sample size of 100
M4_periodicd4d <- which(
M4_freqgs_forecast == M4_fregs & M4_sample >= 100 & M4_fregs > 1

head (sort (M4_periodic))
head (sort (M4_periodic2))
head (sort (M4_periodic3))
head (sort (M4_periodic4d))

# Randomly select 1,000 series from the list of series
tmpSeed <- 3

3| set.seed (tmpSeed)

M4_periodic_sample_number_v02 <-
sample (M4_periodic, size = 1000, replace = F)

# Get the selected time series

M4_periodic_sample_series_v02 <- lapply(
X = l:length(M4_periodic_sample_number_v02),
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55

57

59

63

65

67

6

16

20

)
¥

24

26

function (X) {
i <- M4_periodic_sample_number_ v02[[X]]
Mddata[[1i]]

# Save

## Sample Numbers
save (
M4_periodic_sample_number_v02,
file = "data/M4_periodic_sample_number_v02.rdata"

## Selected series
save (
M4_periodic_sample_series_v02,

file = "data/M4_periodic_sample_series_v02.rdata"
)
code/perfestimation-rw_M4 v2021082201.R
#
#
# Files ———-

load ("data/M4_periodic_sample_series_v02.rdata")

#source ("../src/utils.r")

#source ("../src/estimation—-procedures.r")
#source ("../src/workflows.r")

#source ("../src/metrics.r")

#source ("../src/learning-models.r")

source ("src/utils_gus.r")
source ("src/metrics_Vv2021071201.x")

source ("src/workflows_v2021082001.r")

source ("src/p_holdout_v2021082001.r")

source ("src/get_ranks_v2021070901.r")

source ("src/learning-models_v2021082001.r")
source ("src/estimation-procedures_v2021082001.r")

# Packages ————
library (tsensembler)
library (ranger)
library (Cubist)
library (glmnet)
library (kernlab)
library (nnet)
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library (RcppRoll)
library (tseriesChaos)
library (forecast)

#library (parallel)
library ("future.apply")

# install.packages ("beepr")

# library ("beepr") # plays notification sound when R finishes running

# Initial options —————

form <- target”.
nfolds <- 10
tmpSeed <- 3L

# RBR ———-

tmpM4VersionRBR <- "v2021082201"

tmpM4FileRBR <- paste0(
"results/results_M4_RMSE_rbr_",

plan (multisession, workers = 8)

time_RMSE_rbr_ M4 <- system.time ({

results_M4_rbr <- future_lapply (

tmpM4VersionRBR,

seq_along (M4_periodic_sample_series_v02),

function (i) {
#cat (i, "\n\n")

M4.ds <- M4_periodic_sample_

ds <- ts(
c(M4.ds$x, M4.dsS$Sxx),
start = tsp(M4.dsS$x) [
end = tsp(M4.ds$xx)
frequency = tsp(M4.ds$x) [

X <— workflow (

series_vO02[[i]]

11,
[2], ## xx not x
31

".rdata"

ds = ds,

form = form,
predictive_algorithm = "rbr",

nfolds = nfolds,

outer_split =1 - (M4.dsSh/length(ds)),
inner_split =1 - (M4.dsSh/M4.dsSn),
set_seed = tmpSeed,

n_M4 = M4.ds$n,

error_metric = "rmse"
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114

116

118

120

122

124

126

128

X
bo
future.seed = 0xXBEEF
)
)

plan (sequential)

time_RMSE_rbr M4[3]/60 # new system + future_lapply: ~ 7.777 min (11.8
min)

results_M4_RMSE_rbr_ranks <- get_ranks_gus (results_M4_rbr)

results_M4_RMSE_rbr mean_rank <- rowMeans (results_M4 RMSE_rbr_ranksS$Sfr_
abs_rank)

sort (results_M4_RMSE_rbr_mean_rank)

save (results_M4_rbr, file = tmpM4FileRBR)
beepr::beep("fanfare")

tmpM4VersionREF <- "v2021082201"
tmpM4FileRF <- pasteO(
"results/results_M4_RMSE_rf_", tmpM4VersionRF, ".rdata"

plan(multisession, workers = 16)

time_RMSE_rf_ M4 <- system.time ({
results_M4_rf <- future_lapply (
seq_along (M4_periodic_sample_series_v02),
function (i) {
#cat (1, "\n\n")
M4.ds <- M4_periodic_sample_series_vO02([[i]]

ds <- ts(
c(M4.ds$x, M4.dsS$xx),
start = tsp(M4.ds$x) [1],
end = tsp(M4.ds$xx) [2], ## xx not x
frequency = tsp(M4.ds$x) [3]

)

x <— workflow (
ds = ds,
form = form,
predictive_algorithm = "rf",
nfolds = nfolds,
outer_split =1 - (M4.ds$h/length(ds)),
inner_split =1 - (M4.ds$Sh/M4.dsSn),
set_seed = tmpSeed,
n_M4 = M4.ds$Sn,
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176

178

error_metric = "rmse"

X
bo
future.seed = 0xXBEEF
)
})

plan (sequential)

time_RMSE_rf_M4([3]/60 # new system + future_lapply: ~ 5.319 min (8 min)

results_M4_RMSE_rf ranks <- get_ranks_gus (results_M4_rf)

results_M4_RMSE_rf mean_rank <- rowMeans (results_M4_RMSE_rf ranksS$Sfr_
abs_rank)

sort (results_M4_RMSE_rf_mean_rank)

save (results_M4_rf, file = tmpM4FileRF)
beepr::beep("fanfare")

# RIDGE ———-

tmpM4VersionRIDGE <- "v2021082201"
tmpM4FileRIDGE <- pasteO(
"results/results_M4_RMSE_ridge_", tmpM4VersionRIDGE, ".rdata"

plan(multisession, workers = 16)

time_RMSE_ridge_M4 <- system.time ({
results_M4_ridge <- future_lapply (
seq_along (M4_periodic_sample_series_v02),
function (i) {
#cat (1, "\n\n")
M4.ds <- M4_periodic_sample_series_vO02([[i]]

ds <- ts(
c(M4.ds$x, M4.dsS$xx),
start = tsp(M4.ds$x) [1],
end = tsp(M4.ds$xx) [2], ## xx not x
frequency = tsp(M4.ds$x) [3]

)

x <— workflow (
ds = ds,
form = form,
predictive_algorithm = "lasso", # name is lasso, but it’s

running ridge

nfolds = nfolds,
outer_split =1 - (M4.ds$h/length(ds)),
inner_split =1 - (M4.dsSh/M4.dsS$n),
set_seed = tmpSeed,
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182

184

186
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192

194

n_M4 M4 .ds$n,
error_metric = "rmse"
)
X
}I
future.seed = 0xXBEEF
)
})
plan (sequential)
time_RMSE_ridge_M4[3]/60 # new system + future_lapply: 1.82 min (2.71
min)

results_M4_RMSE_ridge_ranks <- get_ranks_gus (results_M4_ridge)

results_M4_RMSE_ridge_mean_rank <- rowMeans (results_M4_ RMSE_ridge_ranks
Sfr_abs_rank)

sort (results_M4_RMSE_ridge_mean_rank)

save (results_M4_ridge, file = tmpM4FileRIDGE)
beepr::beep("fanfare")
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C.5 Monte Carlo Simulations and Forecasts

code/perfestimation—-TS3_v2021070901.R

I| # ===================================================================
# Files ————

3
#source ("../src/utils.r")

s|#source ("../src/estimation-procedures.r")

(
(
#source ("../src/workflows.r")
7| #source ("../src/metrics.r")
#source ("../src/learning-models.r")
source ("src/utils_gus.r")
1| source ("src/metrics_gus.r")
13 source ("src/workflows_v2021070901.r")

source ("src/p_holdout_v2021070901.r")
15| source ("src/get_ranks_v2021070901.r")

source ("src/learning-models_v2021070901.r")
17| source ("src/estimation-procedures_v2021070901.r")

# Packages —-———

21| library (tsensembler)

library (ranger)

3| library (Cubist)
library (glmnet)

5| library (kernlab)

library (nnet)

library (RcppRoll)

| library (tseriesChaos)
library (forecast)

31
#library (parallel)

3| library ("future.apply")

35| # install.packages ("beepr")
# library ("beepr") # plays notification sound when R finishes running
9|# Initial options ————-

4

form <- target”.
nfolds <- 10
tmpSeed <- 3L
tmpOuter <- 0.
ss|tmpInner <— 0.

43

e}

(percentual of the data used training data)
(percentual of the training data that will be
used for estimation)

7 # g _t
8 # g_e
#

47
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5

mcreps <- 1000

seq. <- seqg_len (mcreps)
s3lts.len <= 200

55| data (USAccDeaths)

s7|# TS3 ———-—

s9larima.fit <- forecast::Arima (

y = USAccDeaths,
61 order = c(12,0,0),
seasonal = list (order = c(1, 0, 0), period = frequency (USAccDeaths))

63] )

65| set .seed (tmpSeed)

TS3 <- lapply(

67 seq.,

function(j) simulate (object = arima.fit, nsim = ts.len)

69 )

#check_freq TS3 <- sapply(TS3, frequency)
#table (check_freq_TS3)

7

73
#check_period_TS3 <- sapply(TS3, forecast::findfrequency)
75| #table (check_period_TS3)

T # T #

79
arima.fit2 <- forecast::Arima (

81 y = USAccDeaths,
order = c(12,0,0),
83 seasonal = list (order = c(1, 1, 0), period = frequency (USAccDeaths))

set.seed (tmpSeed)
871 TS4 <— lapply (

seq.,
89 function(j) simulate(object = arima.fit2, nsim = ts.len)

)
91

# ===================================================================
| # RBR ————

tmpVersionRBR <- "v2021070901"
95| tmpFileRBR <- paste0(

"results/results_TS3_rbr_", tmpVersionRBR, ".rdata"

97] )
wlplan(multisession, workers = 12)

01| time_rbr_174 <- system.time ({
results_TS3_rbr <- future_lapply (
103 seq_along (TS3),

function (i) {
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107
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133

137

139

141

147

149

151

157

#cat (1, "\n\n")
ds <- TS3[[i]]

x <— workflow(

ds = ds,

form = form,
predictive_algorithm = "rbr",
nfolds = nfolds,
outer_split = tmpOuter,
inner_split = tmpInner,
set_seed = tmpSeed,
is_embedded = TRUE,
is_TS3 = TRUE,
is_TS4 = FALSE

x
}I
future.seed = 0xBEEF
)
})
#plan (sequential)

time_rbr_174[3]1/60 # new system + future_lapply: “4.681667 min

results_TS3_rbr_ranks <- get_ranks_gus (results_TS3_rbr)

results_TS3_rbr_mean_rank <- rowMeans (
results_TS3 rbr ranks$fr_abs_rank

)

sort (results_TS3_rbr_mean_rank)

save (results_TS3_rbr, file = tmpFileRBR)
beepr: :beep ("fanfare")

time_rbr_174 <- system.time ({
results_TS4_rbr <- future_lapply (
seqg_along(TS4),
function (i) {
#cat (1, "\n\n")
ds <— TS4[[i]]

X <— workflow (

ds = ds,
form = form,
predictive_algorithm = "rbr",
nfolds = nfolds,

264

# ====== N [ [ R [
# RBR ———-
tmpVersionRBR <- "v2021070901"
tmpFileRBR <- pasteO (
"results/results_TS4_rbr_", tmpVersionRBR, ".rdata"
)
5| #fplan (multisession, workers = 16)




159

161

163

165

167

169

177

179

181

183

185

187

189

191

193

195

197

199

201

203

205

207

209

)
1)
plan

5l resu

resu

outer_split
inner_split
set_seed
is_embedded
is_TS3
is_TS4

X

by

future.seed = 0xBEEF

(sequential)

sltime_rbr_174[3]1/60 # new system + future_lapply:

lts_TS4_rbr_ranks
lts_TS4_rbr_mean_rank <-

= tmpOuter,

tmpInner,
tmpSeed,
TRUE,
FALSE,

= TRUE

<- get_ranks_gus (results_TS4_rbr)
rowMeans (

results_TS4_ rbr_ ranks$fr_abs_rank

)

sort (results_TS4_rbr_mean_rank)

save
beep

tmpVersionRF <- "v2021070901"

tmpF
"r

plan

time

(results_TS4_rbr, file =

r::beep("fanfare")

ileRF <- pasteO(

esults/results_TS3_rf ",

(multisession, workers =

_rf 174 <- system.time ({

tmpVersionRF,

tmpFileRBR)

".rdata"

16)

results_TS3_rf <- future_lapply (

seqg_along (TS3),

function (i) {
#cat (1, "\n\n")
ds <— TS3[[i]]

x <— workflow(
ds
form
predictive_algorithm
nfolds
outer_split
inner_split
set_seed
is_embedded
is_TS3
is_TS4

= ds,

form,
"rf",
nfolds,
tmpOuter,
tmpInner,
tmpSeed,
TRUE,
TRUE,

= FALSE
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213 X

b

215 future.seed = 0xBEEF

)

217 })

plan (sequential)

ool time_rf_174[3]1/60 # new system + future_lapply: ~4.332667min

»i|results_TS3_rf_ranks <- get_ranks_gus (results_TS3_rf)
results_TS3 rf mean_rank <- rowMeans (results_TS3 rf ranksS$Sfr_abs_rank)
3| sort (results_TS3_rf mean_rank)

»s5| save (results_TS3_rf, file = tmpFileRF)
beepr::beep("fanfare")

227

B ommmmmmmm e e
29| # RE ————
tmpVersionRF <- "v2021070901"
21| tmpFileRF <—- paste0(
"results/results_TS4_rf_ ", tmpVersionRF, ".rdata"
233] )
»3s5|plan (multisession, workers = 16)

»71time_rf_174 <- system.time ({
results_TS4_rf <- future_lapply(

239 seqg_along(TS4),
function (i) {
241 #cat (1, "\n\n")

ds <- TS4[[1]]
243

x <— workflow (

245 ds = ds,
form = form,

247 predictive_algorithm = "rf",
nfolds = nfolds,

249 outer_split = tmpOuter,
inner_split = tmpInner,

251 set_seed = tmpSeed,
is_embedded = TRUE,

253 is_TS3 = FALSE,
is_TS4 = TRUE

255 )

257 X

} 4
259 future.seed = 0xBEEF

)

21| })

plan (sequential)

263 time_rf_174[3]1/60 # new system + future_lapply: ~4.225 min

w5\ results_TS4_rf ranks <—- get_ranks_gus (results_TS4_rf)
results_TS4 rf mean_rank <- rowMeans (results_TS4_rf ranksS$Sfr_ abs_rank)
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67| sort (results_TS4_rf mean_rank)

69| save (results_TS4_rf, file = tmpFileRF)
beepr::beep("fanfare")

273l # RIDGE ————

tmpVersionRIDGE <- "v2021070901"

275| tmpF1i1eRIDGE <- pasteO(

"results/results_TS3_ridge_", tmpVersionRIDGE, ".rdata"
277( )

9| plan (multisession, workers = 16)

%i|time_ridge_174 <- system.time ({
results_TS3_ridge <- future_lapply(

283 seqg_along (TS3),
function (i) {
285 #cat (1, "\n\n")

ds <- TS3[[i]]
287
x <— workflow (

289 ds = ds,
form = form,
291 predictive_algorithm = "lasso", # name is lasso, but it’s
# running ridge
293 nfolds = nfolds,
outer_split = tmpOuter,
295 inner_split = tmpInner,
set_seed = tmpSeed,
297 is_embedded = TRUE,
is_TS3 = TRUE,
299 is_TS4 = FALSE
)
301
X

303 },

future.seed = 0xXBEEF

305 )

})

37| plan (sequential)

time_ridge_174[3]/60 # new system + future_lapply: “1.6025 min
309
results_TS3_ridge_ranks <- get_ranks_gus (results_TS3_ridge)
siffresults_TS3_ridge_mean_rank <- rowMeans (
results_TS3_ridge_ranks$fr_abs_rank

313] )
sort (results_TS3_ridge_mean_rank)

save (results_TS3_ridge, file = tmpFileRIDGE)
3171 beepr: :beep ("fanfare")

39| # ===================================================================
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2| tmpVersionRIDGE <- "v2021070901"

tmpFileRIDGE <- pasteO(

323 "results/results_TS4_ridge_", tmpVersionRIDGE, ".rdata"
)

325
plan (multisession, workers = 16)

327
time_ridge_174 <- system.time ({

329 results_TS4_ridge <- future_lapply(
seq_along(TS4),

331 function (i) {
#cat (1, "\n\n")
333 ds <— TS4[[1]]
335 x <— workflow
ds = ds,
337 form = form,
predictive_algorithm = "lasso", # name is lasso, but it’s
339 # running ridge
nfolds = nfolds,
341 outer_split = tmpOuter,
inner_split = tmpInner,
343 set_seed = tmpSeed,
is_embedded = TRUE,
345 is_TS3 = FALSE,
is_TS4 = TRUE
347 )
349 X
}I
351 future.seed = 0xBEEF

)

3530 1)

plan (sequential)

35| time_ridge_174[3]/60 # new system + future_lapply: ~1.6025 min

3571 results_TS4_ridge_ranks <- get_ranks_gus (results_TS4_ridge)
results_TS4_ridge_mean_rank <- rowMeans (
359 results_TS4_ridge_ranksS$Sfr_abs_rank

)

31| sort (results_TS4_ridge_mean_rank)

33| save (results_TS4_ridge, file = tmpFileRIDGE)
beepr::beep("fanfare")
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C.6 Create Plots - Cerqueira et al. and M4 Competition

code/rw_analysis_v2021_08_22_01.R

#
FE A R R
#
#’ Evaluating the performance of estimation methods
#

#’ This is an extension of the code from Cerqueira, Torgo, and Mozetic.
#’ "Evaluating time series forecasting models: an empirical study

#’ on performance estimation methods".

#’ In: Machine Learning (2020) 109:1997-2028

#I

#’ Modified by: Gustavo Varela-Alvarenga

#’ Date: 05/30/2021

#
FH A R R R R
#

#

R N N R N N N N N R N N N N N N R R R AR R R RN
#H#H#
# > Packages

# library (forecast)

# library (tsensembler)

# library (ranger)

# load code for ‘avg_rank_plot?
source ("src/plots_v2021071301.r")
#library (scmamp)

# —— #

#
R S N N R N N N N N R N N N N N N N N N N N R N R R R R SRR Y
#HH#H

## > Path to save plots to ———-

tmpSavePath <- "results/plots"

tmpSavePathTables <- "results/tables/"

#
R N R N R N R N N N R N N N N R N N N N N N R N R R R R RN
#HEH
# > Helpers
LR
# |_ Helper Function: get_ranks_p_holdout

# Gets final estimation errors, and ranks
get_ranks_p_holdout <- function(final_ results_data) {
# —— #
# get estimation errors
err_estimation <- lapply (
X = final_ results_data,
function (X) tryCatch (XSerr_estimation, error =function(e) {NULL})
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86

err_estimation <- err_estimation[!sapply(err_estimation, is.null) ]
# —— #

# create df with final estimation errors

fr <- do.call (rbind, err_estimation)

fr <- as.data.frame (fr)

rownames (fr) <- NULL

colnames (fr) <-

c("p-holdout™", # <———- new method
"cp-holdout", # <———— new method
"cep-holdout", # <———- new method

"cv", "CV-Bl", "CV-Mod","CV-hvBl",
"Preg-Bls", "Preg-Sld-Bls",
"Preg-Bls—-Gap", "Holdout", "Rep—-Holdout",
# "Preg-Slide", "Preg-Grow" # the order in the original is
switched
"Pregq-Grow", "Preg-Slide"
)
# —— #
# get ranks for each estimation procedure
fr abs <- abs (fr)
fr_abs_rank <- apply(fr_abs, 1, rank)

¥ —— #
# return df with final estimation errors, and another one with the
ranks
return(list (fr = fr, fr_abs_rank = fr_abs_ rank))
}
# |_ Helper Function: plot_avg_ranks_ts_types

plot_avg_ranks_ts_types <- function(results, is_stat = NULL, df.source)

{

# break data into stationary data or not (or both)

tmpAll <- results
if(!is.null (is_stat)) {
tmpStationary <— results[is_stat]

tmpNonStationary <- results[!is_stat]

# ——— #
# get ranks
ranksAll <- get_ranks_p_holdout (tmpAll)
if(!is.null(is_stat)){
ranksStationary <- get_ranks_p_holdout (tmpStationary)
ranksNonStationary <- get_ranks_p_holdout (tmpNonStationary)

# —— #
# plot ranks
## function ’'avg_rank_plot’ comes from
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138

## source(".
## I’ve chan
method’ s
## results’
pRanksAll <-

./src/plots_gus.r")

ged the original ’'plots.r’ to add a greeb color to my

bar plot.
avg_rank_plot (

avg = rowMeans (ranksAllS$Sfr_abs_rank),
sdev = apply(ranksAllS$fr_abs_rank, 1, sd)

if(!is.null (
pRanksStat

is_stat)) {
ionary <- avg_rank_plot (

avg = rowMeans (ranksStationaryS$fr_abs_rank),
sdev = apply (ranksStationary$fr_abs_rank,1l, sd)

pRanksNonS

tationary <- avg_rank_plot (

avg = rowMeans (ranksNonStationary$fr_abs_rank),
sdev = apply (ranksNonStationary$fr_abs_rank,1,

finalPlotRanks <- ggpubr::ggarrange (

plotlist

ncol

nrow

labels
)

} else {

= list (pRanksAll, pRanksStationary, pRanksNonStationary)

4

1
- 3
C

finalPlotRanks <- ggpubr::ggarrange (

plotlist
ncol
nrow
labels

}
b &

= list (pRanksAll),
=1,

=1,

= c("Al11l"™)

# return plot with annotations
ggpubr: :annotate_figure (
finalPlotRanks,
bottom = ggpubr::text_grob(

label =
"Plot
"Data
) 14
hjust =
x =
face =
size =

pastel (

by: Varela-Alvarenga and Kedem (2021).
source: ", df.source

1!

ll

"italic",

10

sd)

14
("A1ll", "Stationary", "Non-Stationary")

\n",
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#
# helper function - get data and plot ————
plot_log diff ts_types <- function(results, is_stat = NULL, df.source) {

# break data into stationary data or not (or both)

tmpAll <- results
if(!is.null(is_stat)) {
tmpStationary <- results[is_stat]

tmpNonStationary <- results[!is_stat]

}

# ——— #
# get ranks
ranksAll <- get_ranks_p_holdout (tmpAll)
if(!is.null (is_stat)) {
ranksStationary <- get_ranks_p_holdout (tmpStationary)

ranksNonStationary <- get_ranks_p_holdout (tmpNonStationary)
}
# —— #
# plot log diff

## function ’'percdiff_plot_log’ comes from
## source("../src/plots_gus.r")
pLogDiffAll <- percdiff_plot_log(ranksAlls$fr)
if(!'is.null(is_stat)){
pLogDiffStationary <—- percdiff_plot_log(ranksStationary$fr)
pLogDiffNonStationary <-
percdiff_plot_log(ranksNonStationaryS$fr) +
labs(x = "Solid line: Median. Dashed line: Mean")

finalPlotLogDiff <- ggpubr::ggarrange (
plotlist = list (pLogDiffAll, pLogDiffStationary,
pLogDiffNonStationary),

ncol =1,
nrow = 3,
labels = list ("All", "Stationary", "Non-Stationary"),
hjust = c(-1, -0.25, -0.15),
vijust = c(l.5, 0.25, 0.25)
)
} else {

finalPlotLogDiff <- ggpubr::ggarrange (
plotlist = list (pLogDiffAll),

ncol =1,
nrow =1,
labels = c("ALl")
)
}
L
i

# return plot with annotations
ggpubr: :annotate_figure (
finalPlotLogDiff,
bottom = ggpubr::text_grob(
label = pasteO(

272




192

194

196

198

202

204

206

208

210

o
S

216

220

222

224

226

228

230

)
]

236

"Plot by: Varela-Alvarenga and Kedem (2021). \n",

"Data source: ", df.source
) 14
hjust = 1,
X =1,
face = "italic",
size = 10

),
left = ggpubr::text_grob(

label = "Percentual difference to true loss",
face = "bold",
size =12,
rot = 90
)
)
}
#
#
# helper function - returns log diff values ———-

log_diff_ts_types <- function(results,

is_stat,
statistic = c("Mean", "Median", "Std.Dev.
", "IQR")
) {
# break data into stationary data or not (or both)
tmpAll <- results
tmpStationary <- results[is_stat]
tmpNonStationary <- results[!is_stat]
A
# get ranks
ranksAll <- get_ranks_p_holdout (tmpAll)
ranksStationary <- get_ranks_p_holdout (tmpStationary)
ranksNonStationary <- get_ranks_p_holdout (tmpNonStationary)
e
# calculate log diff
log_trans <- function(x) sign(x) * log(abs(x) + 1)
rAll <- reshape2::melt (ranksAllSfr, id.vars = NULL)
rAllslog <- log_trans (rAlls$value)
rStationary <—- reshape2::melt (ranksStationary$fr, id.vars =
NULL)
rStationary$log <- log_trans (rStationaryS$value)
rNonStationary <— reshape2::melt (ranksNonStationary$fr, id.vars
NULL)

rNonStationary$log <- log_trans (rNonStationary$value)

b &

# calculate summary by scheme
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240 summaryAll <- aggregate(

X = rAlls$log,
242 by = list(scheme = rAllS$variable),
FUN = summary

244 )
summaryStationary <- aggregate (

246 X = rStationary$log,
by = list(scheme = rStationary$variable),
248 FUN = summary
)
250 summaryNonStationary <- aggregate (
X = rNonStationary$log,
252 by = list(scheme = rNonStationary$variable),

FUN = summary

256 # — #
# calculate std dev by scheme
258 sdAll <- aggregate(

X = rAllslog,
260 by = list (scheme = rAll$variable),
FUN = sd

262 )

sdStationary <- aggregate (

264 X = rStationary$log,
by = list(scheme = rStationary$variable),
266 FUN = sd

)

268 sdNonStationary <- aggregate (

X = rNonStationary$log,
270 by = list (scheme = rNonStationaryS$variable),
FUN = sd
272 )
- #

274 # calculate IQR by scheme
igrAll <- aggregate (

276 X = rAlls$log,
by = list(scheme = rAllS$Svariable),
278 FUN = IQR
)
280 igrStationary <- aggregate (
X = rStationary$log,
282 by = list(scheme = rStationaryS$variable),
FUN = IQR

284 )

igrNonStationary <- aggregate (

286 X = rNonStationary$log,

by = list (scheme = rNonStationaryS$Svariable),
288 FUN = IQR

)

290 ¥ — #

# Get final summary table (with std dev and IQR)
292 summaryAll <- cbind.data.frame (

summaryAll,
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294

296

298

300

302

304

306

308

310

314

316

320

322

324

326

328

330

332

334

"Std.Dev."
n IQR"
)
summaryStationary <- cbind.data.frame (
summaryStationary,
"Std.Dev." = sdStationary$x,
"IQR" = igrStationarys$x
)
summaryNonStationary <- cbind.data.frame (
summaryNonStationary,
"Std.Dev." = sdNonStationary$x,

sdAllS$x,
1grAllsSx

"IQR" = igrNonStationary$x
)
# —— #
# Order final summary table by statistic
summaryAll <- summaryAll [order (abs (summaryAllS$x[, statistic]l)), 1

summaryStationary <-
summaryStationary[order (abs (summaryStationary$x[, statistic]l)), 1

summaryNonStationary <-

summaryNonStationary[order (abs (summaryNonStationary$x[, statistic])
), ]
e
# return final list
list(
All = summaryAll,
Stationary = summaryStationary,
NonStationary = summaryNonStationary

#
R R N N N N N N R N N N N N N N N R N R N N N N N N N R R N R R R R R} R RN
#HH#
#
#
#
#
#HHHH Stationary data
#HHHH
#
#
#
#
# |_ Import Original Data set




load ("../stationarity_tsdl.rdata")
336
# |_ Indicator if the series is stationary

38| tmp_is_stat <- is_stationary_Z2ensemble
#table (is_stationary_2ensemble) # 97 stationary time series (out of

174, 756%)
340
#
R N N N N N N R R N N N N N R N N N R N R N N N N N N N N R S R SN SRR
#HH#
342
#
RN N N N R N N N N N N N N N N N N N N N N N R N N N N N N N R N R N R RN SRR
#HEH
344| #
#
#
#
46| #H ## Results RBR
FH#4#
#
#
48| #
#
## \___ Import Data

350 tmpVersionRBR <— "v2021082201"

tmpFileRBR <— pasteO(

352 "results/results_cerqueira_RMSE_rbr_", tmpVersionRBR, ".rdata"
)
354 tmpRBR <— get (load (tmpFileRBR))

56| # |_ Plot the average ranks

plot_RBR_avg_rank <- plot_avg_ranks_ts_types

358 results = tmpRBR,
is_stat = tmp_1is_stat,
360 df.source = "Cerqueira et al. (2020)."

)
32| plot_RBR_avg_rank

soal ##\ Export as PNG

ggplot2: :ggsave (
366 filename = pasteO ("RBR_ranks_plot_RMSE_",tmpVersionRBR,".png"),

path = tmpSavePath,

368 plot = plot_RBR_avg_rank,
device = "png",

370 type = "cairo",
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width = 8,

372 height =12,
units = "in"

374| )

36| ## \____ Export as EPS

ggplot2::ggsave (
378 filename = pastelO ("RBR_ranks_plot_RMSE_",tmpVersionRBR, ".eps"),

path = tmpSavePath,
380 plot = plot_RBR_avg_rank,
device = "eps",
382 width = 8,
height =12,
384 units = "in"
)
386
# |_ Plot the Log-Diff

results = tmpRBR,

390 is_stat = tmp_is_stat,

df.source = "Cerqueira et al. (2020)."
392| )
plot_RBR log_diff
304
## \___ Export as PNG

96| ggplot2: :ggsave (

filename = pastelO("RBR_log_diff plot_RMSE_", tmpVersionRBR,".png"),

398 path = tmpSavePath,
plot = plot_RBR_log_ diff,
400 device = "png",
type = "cairo",
402 width =12,
height =12,
404 units = "in"
)
406
## \___ Export as EPS

48| ggplot2: :ggsave (
filename = pastelO ("RBR_log_diff_plot_RMSE_", tmpVersionRBR,".eps"),

410 path = tmpSavePath,
plot = plot_RBR_log_diff,
412 device = "eps",
width =12,
414 height =12,
units = "in"
116 )
s8] # |_ Table with values of the Log-Diff

log_diff_ RBR_Mean <- log_diff_ts_types (tmpRBR, tmp_is_stat, "Mean")
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420

422

424

428

430

432

434

436

438

440

442

444

446

448

450

452

454

456

log_diff_RBR_Median <- log_diff_ts_types (tmpRBR, tmp_is_stat, "Median")

## \___ Export as TXT
capture.output (
log_diff_ RBR_Mean,
file = pastel (tmpSavePathTables, "RBR_log_diff_Mean_RMSE_",
tmpVersionRBR, ".txt")
)
capture.output (
log_diff_RBR_Median,
file = pastel (tmpSavePathTables, "RBR_log_diff_Median_RMSE_",
tmpVersionRBR, ".txt")

#
R N N N N N R N N N N N N R R N N R N R N N N N N N N R N R RN SRR
A
#
#
#
#
##H44 Results RF
HaH A
#
#
#
#
#H# 0\ Import Data

tmpVersionRF <- "v2021082201"
tmpFileRF <—- paste0(
"results/results_cerqueira_RMSE_rf_", tmpVersionRF, ".rdata"

)
tmpREF <- get (load (tmpFileRF))

# |_ Plot the average ranks

plot_RF_avg_rank <- plot_avg_ranks_ts_types/(
results = tmpRF,
is_stat tmp_1is_stat,
df.source = "Cerqueira et al. (2020)."

)
plot_RF_avg_rank

## \___ Export as PNG

ggplot2::ggsave (
filename = pasteO ("RF_ranks_plot_RMSE_",tmpVersionRF,".png"),
path = tmpSavePath,
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458

460

462

464

466

468

470

472

474

476

478

480

48

]

484

486

488

490

492

494

496

498

500

502

504

506

plot = plot_RF_avg_rank,

device = "png",
type = "cairo",
width = 8,
height =12,
units = "in"

)

## \____ Export as EPS

ggplot2: :ggsave (

filename = pastel ("RF_ranks_plot_RMSE_",tmpVersionRF,".

path = tmpSavePath,
plot = plot_RF_avg_rank,
device = "eps",
width = 8,
height =12,
units = "in"
)
# |_ Plot the Log-Diff

plot_RF_log_diff <- plot_log_diff_ ts_types/(
results = tmpRF,
is_stat = tmp_1is_stat,
df.source = "Cerqueira et al. (2020)."
)
plot_RF_log_diff

## 0\ Export as PNG

ggplot2::ggsave (

filename = pastelO ("RF_log_diff_plot_RMSE_",tmpVersionRF,".

path = tmpSavePath,
plot = plot_RF_log_diff,
device = "png",
type = "cairo",
width =12,
height =12,
units = "in"
)
## \____ Export as EPS

ggplot2: :ggsave (

filename = pastelO("RF_log_diff plot_RMSE_",tmpVersionRF,".

path = tmpSavePath,

plot = plot_RF_log_diff,
device = "eps",

width =12,

height =12,

units = "in"
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508

510

514

516

518

520

522

524

526

528

530

534

536

538

540

# |_ Table with values of the Log-Diff

log_diff_ RF_Mean <- log_diff_ ts_types (tmpRF, tmp_is_stat, "Mean")
log_diff RF_Median <- log_diff ts_types (tmpRF, tmp_is_stat, "Median")

## \___ Export as TXT

2| capture.output (

log_diff_ RF_Mean,
file = pastel(tmpSavePathTables, "RF_log_diff_ Mean RMSE_",
tmpVersionRF, ".txt")
)
capture.output (
log_diff RF_Median,
file = pasteO(tmpSavePathTables, "RF_log_diff Median_RMSE_",
tmpVersionRF, ".txt")

#
RN N N N N N N N R N N N N N N N R N N N R N N N N N N R N N N R N R SN SRR
#HEH
#
#
#
#
#H#H# Results RIDGE
FH#4#
#
#
#
#
## \_ Import Data

tmpVersionRIDGE <- "v2021082201"
tmpFileRIDGE <- pasteO(
"results/results_cerqueira_RMSE_ridge_", tmpVersionRIDGE, ".rdata"

)

2| tmpRIDGE <- get (load (tmpFileRIDGE))

# |_ Plot the average ranks

plot_RIDGE_avg_rank <- plot_avg_ranks_ts_types/(
results = tmpRIDGE,
is_stat = tmp_is_stat,
df.source = "Cerqueira et al. (2020)."
)
plot_RIDGE_avg_rank

2 ## \____ Export as PNG




ggplot2: :ggsave (
544 filename pastel ("RIDGE_ranks_plot_RMSE_", tmpVersionRIDGE, ".png"),

path = tmpSavePath,
546 plot = plot_RIDGE_avg_rank,
device = "png",
548 type = "cairo",
width = 8,
550 height =12,
units = "in"
552( )
ssa| ## \___ Export as EPS

ggplot2::ggsave (
556 filename = pasteO ("RIDGE_ranks_plot_RMSE_", tmpVersionRIDGE, ".eps"),

path = tmpSavePath,
558 plot = plot_RIDGE_avg_rank,
device = "eps",
560 width = 83,
height =12,
562 units = "in"
)
564
# |_ Plot the Log-Diff

se6| plot_RIDGE_log_diff <- plot_log_diff ts_types|(

results = tmpRIDGE,

568 is_stat = tmp_is_stat,

df.source = "Cerqueira et al. (2020)."

570( )
plot_RIDGE_log_diff

## \___ Export as PNG

57

=

ggplot2: :ggsave (
filename = pasteO ("RIDGE_log_diff plot_RMSE_",tmpVersionRIDGE, ".png")

4

576 path = tmpSavePath,
plot = plot_RIDGE_log_diff,
578 device = "png",
type = "cairo",
580 width =12,
height =12,
582 units = "in"
)
584
## \___ Export as EPS

ss6| ggplot2: :ggsave (
filename = pasteO ("RIDGE_log_diff_ plot_RMSE_", tmpVersionRIDGE, ".eps")

14

588 path = tmpSavePath,
plot = plot_RIDGE_log_diff,
590 device = "eps",
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592

594

596

598

600

602

604

606

608

610

612

614

616

618

620

622

width =12,

height =12,
units = "in"
)

# |_ Table with values of the Log-Diff

log_diff_ RIDGE_Mean
"w
)
log_diff RIDGE_Median <- log_diff_ ts_types (tmpRIDGE, tmp_is_stat, "
Median")

## \___ Export as TXT
capture.output (
log_diff_ RIDGE_Mean,
file = pasteO(
tmpSavePathTables, "RIDGE_log_diff_ Mean_RMSE_", tmpVersionRIDGE, ".
txt"

)
capture.output (
log_diff_RIDGE_Median,
file = pasteO(
tmpSavePathTables, "RIDGE_log_diff Median_ RMSE_",tmpVersionRIDGE, ".
txt"

#
R N N N N N N N N N R N N N R N N N R N N N N N R N N R R A R R R R R} R RN
#H##
#
#
#
#
#HHHH Stationary data — M4
#H#HH
#
#
#
#
# |_ Import Original Data set

tmp_is_stat_M4 <- is_stationary_2ensemble_M4_v02
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626

628

630

634

636

638

640

642

644

646

648

650

652

654

656

658

660

662

#table (is_stationary_2ensemble) # 97 stationary time series (out of

174, 756%)
#
R N R N N N S N R N N R N N N N N N R N N N N N N N N R N R S R R R} R RN
#HH#
#
#
#
#
4 Results RBR - M4
FH A
#
#
#
#
## \__ Import Data

tmpM4VersionRBR <- "v2021082201"
tmpM4FileRBR <—- pasteO(

"results/results_M4_RMSE_rbr_", tmpM4VersionRBR, ".rdata"
)
tmpRBR_M4 <- get (load (tmpM4FileRBR))

# |_ Plot the average ranks

plot_M4_RMSE_rbr_avg_rank <- plot_avg_ranks_ts_types

results = tmpRBR_M4,

is_stat = tmp_is_stat_M4,

df.source = pastel ("Sample from the M4 Competition data sets ",

" (Makridakis, Spiliotis and Assimakopoulos, 2020).
")

)
plot_M4_RMSE_rbr_avg_rank

## \___ Export as PNG

ggplot2::ggsave (
filename = pastel ("M4_RBR_ranks_plot_RMSE_", tmpM4VersionRBR, ".png"),
path = tmpSavePath,

plot = plot_M4_RMSE_rbr_avg_rank,
device = "png",
type = "cairo",
width = 8,
height =12,
units = "in"
)
## \___ Export as EPS




664

666

668

670

672

674

676

678

680

682

684

686

688

690

692

694

696

698

700

702

704

706

ggplot2: :ggsave (

filename = pastel ("M4_RBR_ranks_plot_RMSE_", tmpM4VersionRBR, ".eps"),
path = tmpSavePath,
plot = plot_M4_RMSE_rbr_avg_rank,
device = "eps",
width = 8,
height =12,
units = "in"
)
# |_ Plot the Log-Diff

results = tmpRBR_M4,
is_stat = tmp_is_stat_M4,
df.source = pastel("Sample from the M4 Competition data sets ",
" (Makridakis, Spiliotis and Assimakopoulos, 2020).
")

)
plot_M4_RBR_log_diff

## \___ Export as PNG
ggplot2::ggsave (
filename = pasteO("M4_RBR_log_diff plot_RMSE_",tmpM4VersionRBR, ".png"
)y

path = tmpSavePath,
plot = plot_M4_RBR_log_diff,
device = "png",
type = "cairo",
width =12,
height =12,
units = "in"
)
## \___ Export as EPS

ggplot2::ggsave (
filename = pasteO("M4_RBR_log_diff_ plot_RMSE_",tmpM4VersionRBR, ".eps"
)y

path = tmpSavePath,
plot = plot_M4_RBR_log_diff,
device = "eps",
width =12,
height =12,
units = "in"
)

# |_ Table with values of the Log-Diff

log_diff_ M4 RMSE_rbr_Mean <- log_diff_ ts_types (tmpRBR_M4, tmp_is_stat
_M4, "Mean")

284




708

710

712

714

716

718

720

722

724

726

728

730

734

736

738

740

742

log_diff_M4_RMSE_rbr_Median <- log_diff_ts_types (tmpRBR_M4, tmp_is_stat
_ M4, "Median")

## \___ Export as TXT
capture.output (
log_diff_M4_RMSE_rbr_Mean,
file = pasteO(
tmpSavePathTables, "M4_RBR_log_diff Mean_ RMSE_",tmpM4VersionRBR, ".
txt"

)
capture.output (
log_diff M4 RMSE_rbr_Median,
file = pasteO(
tmpSavePathTables, "M4_RBR_log_diff Median RMSE_",tmpM4VersionRBR, "
.Ext"

#
R N N N N N R R N N N N N N R R N N N N R N N N N R N N N R N R RN SRR
A
#
#
#
#
#H## Results RF - M4
FHHH
#
#
#
#
#4# 0\ Import Data

tmpM4VersionREF <- "v2021082201"
tmpM4FileRF <—- paste0(

"results/results_M4_RMSE_rf_", tmpM4VersionRF, ".rdata"
)
tmpRF_M4 <- get (load (tmpM4FileRF))

# |_ Plot the average ranks

plot_M4_RMSE_rf_ avg_rank <- plot_avg_ranks_ts_types
results = tmpRF_M4,
is_stat = tmp_is_stat_M4,
df.source = pastel("Sample from the M4 Competition data sets ",
" (Makridakis, Spiliotis and Assimakopoulos, 2020).
")
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744| )
plot_M4_RMSE_rf_ avg_rank
746
## \___ Export as PNG

74

%

ggplot2: :ggsave (

filename = pastelO ("M4_RF_ranks_plot_RMSE_", tmpM4VersionRF, " .png"),
750 path = tmpSavePath,
plot = plot_M4_RMSE_rf_ avg_rank,
752 device = "png",
type = "cairo",
754 width = 8,
height =12,
756 units = "in"
)
758
## \___ Export as EPS

760l ggplot2: :ggsave (
filename = pastelO ("M4_RF_ranks_plot_RMSE_", tmpM4VersionRF,".eps"),

762 path = tmpSavePath,
plot = plot_M4_RMSE_rf_avg_rank,
764 device = "eps",
width = 8,
766 height =12,
units = "in"
768 )
70l # |_ Plot the Log-Diff

plot_M4_RF_log_ diff <- plot_log_ diff_ts_types(
772 results = tmpRF_M4,
is_stat = tmp_is_stat_M4,
774 df.source = pastel("Sample from the M4 Competition data sets ",

" (Makridakis, Spiliotis and Assimakopoulos, 2020).
")
776
)
778l plot_M4_RF_log_diff

7o #4 \ Export as PNG

ggplot2: :ggsave (
782 filename = paste0("M4_RF_log_diff_plot_RMSE_",tmpM4VersionRF,".png"),

path = tmpSavePath,
784 plot = plot_M4_RF_log_diff,
device = "png",
786 type = "cairo",
width =12,
788 height =12,
units = "in"

790/ )
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792

794

796

798

800

802

804

806

808

810

812

814

816

818

824

826

Export as EPS

ggplot2::ggsave (
filename = pasteO("M4_RF_log_diff plot_RMSE_",tmpM4VersionRF,".eps"),
path = tmpSavePath,
plot = plot_M4_RF_log_diff,
device = "eps",
width =12,
height =12,
units = "in"
)
# |_ Table with values of the Log-Diff
log_diff M4 RMSE_rf Mean <- log_diff_ ts_types (tmpRF_M4, tmp_1is_stat_
M4, "Mean")
log_diff_M4_RMSE_rf_Median <- log_diff_ts_types (tmpRF_M4, tmp_is_stat_
M4, "Median")
## \___ Export as TXT

capture.output (

log_diff_M4_RMSE_rf_ Mean,
file = pasteO(

tmpSavePathTables,

"M4_RF_log_diff_ Mean_ RMSE_",tmpM4VersionRF, ".txt

)

capture.output (
log_diff M4 RMSE_rf Median,

file = pasteO(
tmpSavePathTables, "M4_RF_log_diff Median_ RMSE_",tmpM4VersionRF,".
txt"

#
RN N N R R R N R N N R N N R N N N R N R N N R N R R N N R N R R R R R R R R R R R RS
#HH##
#
#
#
#
#4349 Results RIDGE - M4
#HE#
#
#
#
#
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832
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860
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864

866

868

870

#4# \___ Import Data

;| tmpM4VersionRIDGE <- "v2021082201"

tmpM4FileRIDGE <- pasteO(
"results/results_M4_RMSE_ridge_", tmpM4VersionRIDGE, ".rdata"

)
tmpRIDGE_M4 <- get (load (tmpM4FileRIDGE))

# |_ Plot the average ranks

plot_M4_RMSE_ridge_avg_rank <- plot_avg_ranks_ts_types(
results tmpRIDGE_M4,
is_stat = tmp_is_stat_M4,
df.source = pastel("Sample from the M4 Competition data sets ",
" (Makridakis, Spiliotis and Assimakopoulos, 2020).

")

)
plot_M4_RMSE_ridge_avg_rank

## \___ Export as PNG
ggplot2::ggsave (
filename = pastelO ("M4_RIDGE_ranks_plot_RMSE_", tmpM4VersionRIDGE, ".png

"),

path = tmpSavePath,
plot = plot_M4_RMSE_ridge_avg_rank,
device = "png",
type = "cairo",
width = 8,
height =12,
units = "in"
)
## \____ Export as EPS

ggplot2::ggsave (
filename = pasteO ("M4_RIDGE_ranks_plot_RMSE_", tmpM4VersionRIDGE, ".eps

")’

path = tmpSavePath,
plot = plot_M4_RMSE_ridge_avg_rank,
device = "eps",
width = 8,
height =12,
units = "in"
)
# |_ Plot the Log-Diff

plot_M4_RIDGE_log_diff <- plot_log diff_ts_types/(
results = tmpRIDGE_M4,
is_stat = tmp_is_stat_M4,
df.source = pastel("Sample from the M4 Competition data sets ",
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874
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902

904

906

908

910

912
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916

" (Makridakis, Spiliotis and Assimakopoulos, 2020).
")

)
plot_M4_RIDGE_log_diff

## \___ Export as PNG

ggplot2::ggsave (
filename = pasteO("M4_RIDGE_log_diff_plot_RMSE_",tmpM4VersionRIDGE, ".

png"),
path = tmpSavePath,
plot = plot_M4_RIDGE_log_diff,
device = "png",
type = "cairo",
width =12,
height =12,
units = "in"
)
## \___ Export as EPS

ggplot2::ggsave (
filename = pasteO ("M4_RIDGE_log_diff_plot_ RMSE_",tmpM4VersionRIDGE, ".

eps"),
path = tmpSavePath,
plot = plot_M4_RIDGE_log_diff,
device = "eps",
width =12,
height =12,
units = "in"
)

# |_ Table with values of the Log-Diff

log_diff_ M4 RMSE_ridge_Mean <- log_diff_ ts_types(
tmpRIDGE_M4, tmp_is_stat_M4, "Mean"

log_diff_ M4 _RMSE_ridge_Median <- log_diff_ ts_types/
tmpRIDGE_M4, tmp_is_stat_M4, "Median"

#4# \___ Export as TXT
capture.output (
log_diff M4 RMSE_ridge_Mean,
file = pasteO(
tmpSavePathTables, "M4_RIDGE_log_diff_Mean_RMSE_", tmpM4VersionRIDGE
, "otxt"

)

capture.output (
log_diff_M4_RMSE_ridge_Median,
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918 file = pasteO(
tmpSavePathTables, "M4_RIDGE_log_diff_Median_RMSE_",
tmpM4VersionRIDGE, ".txt"
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C.7 Create Plots - Simulated Data

code/rw_analysis_TS3_v2021_07_09_01.R

S i
#’ Evaluating the performance of estimation methods

#

#’ This is an extension of the code from ts3, Torgo, and Mozetic.

#’ "Evaluating time series forecasting models: an empirical study

#’ on performance estimation methods".

#’ In: Machine Learning (2020) 109:1997-2028

#I
#’ Modified by: Gustavo Varela-Alvarenga
#’ Date: 07/09/2021

#ORHH A R #
R R N N R N R N N R N R R N N N N N R N N N N N N N N N N R RN 2 3%
> Packages ===== ==== ==== ==== ==== ===
library (forecast)

library (tsensembler)

library (ranger)

# load code for ‘avg_rank_plot®

source ("src/plots_gus.r")

#library (scmamp)

#o-—— 4

S o o 3 3

N R N N N N R R R N N N N R N N N N N N N N R N R R RN £ 5
## > Path to save plots to ———-
tmpSavePath <- "results/plots"

5| tmpSavePathTables <- "results/tables/"

N R R N N N R R N N N R N N N N N N N R N N N N R N N N R R RN = 3.2
# > Helpers #HH#
# |_ Helper Function: get_ranks_p_holdout ==== ==== ===
# Gets final estimation errors, and ranks
get_ranks_p_holdout_sim <- function(final_results_data) {

¥ —— #

# get estimation errors

err_estimation <- lapply(
X = final_results_data,
function (X) tryCatch (X$Serr_estimation, error =function(e) {NULL})

)

err_estimation <- err_estimation([!sapply(err_estimation, is.null)]
# —— #

# create df with final estimation errors

fr <- do.call(rbind, err_estimation)

fr <- as.data.frame(fr)

rownames (fr) <- NULL

colnames (fr) <-

c("p-holdout™", # <———— new method
"cp—-holdout", # <-——— new method
"cep-holdout™", # <-——— new method

"Ccy", "CV-Bl", "CV-Mod","CV-hvBl",
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51

55

59

61

63

65

69

71

73

75

77

79

81

83

87

89

91

93

95

97

99

101

103

"Preg-Bls", "Preg-Sld-Bls",
"Preg-Bls—-Gap", "Holdout", "Rep—-Holdout",
# "Preg-Slide","Preq-Grow" f#the order in the original is switched
"Pregq-Grow", "Preg-Slide"
)
- #
# get ranks for each estimation procedure
fr_abs <- abs(fr)
fr_abs_rank <- apply(fr_abs, 1, rank)

- &
# return df with final estimation errors,

# and another one with the ranks

return(list (fr = fr, fr_abs_rank = fr_abs_rank))

# |_ Helper Function: plot_avg_ranks_ts_types ==== ==== ===
plot_avg_ranks_ts_types <- function(results_ts3, results_ts4) {

i

# get ranks

ranksTS3 <- get_ranks_p_holdout_sim(results_ts3)
ranksTS4 <- get_ranks_p_holdout_sim(results_ts4)

# ——— #
# plot ranks
## function ’'avg_rank_plot’ comes from
## source("../src/plots_gus.r")
## I’ve changed the original ’'plots.r’ to add a green color to my
## schemes’ results’ bar plot.
PRanksTS3 <- avg_rank_plot (
avg = rowMeans (ranksTS3$fr_abs_rank),
sdev = apply(ranksTS3S$fr_abs_rank, 1, sd)
)
PRanksTS4 <- avg_rank_plot (
avg = rowMeans (ranksTS4S$fr_abs_rank),
sdev = apply(ranksTS4$fr_abs_rank, 1, sd)

finalPlotRanks <- ggpubr::ggarrange (
plotlist = list (pRanksTS3, pRanksTS4),

ncol =1,
nrow = 2,
labels = c(

"S3: SARIMA(12,0,0) (1,0,0)12", "S4: SARIMA(12,0,0) (1,1,0)12"

# ——— #
# return plot with annotations
ggpubr: :annotate_figure (

finalPlotRanks,
bottom = ggpubr::text_grob (
label = "Plot by: Varela-Alvarenga and Kedem (2021).",
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105

107

109

113

115

117

119

125

127

131

133

137

139

141

143

145

147

149

151

153

157

hjust = 1,

X =1,
face = "italic",
size = 10

# helper function - get data and plot —--——-

plot_log_diff ts_types <- function(results_ts3, results_ts4) {

# - #

# get ranks

ranksTS3 <- get_ranks_p_holdout_sim(results_ts3)
ranksTS4 <- get_ranks_p_holdout_sim(results_ts4)
- #

# plot log diff

## function 'percdiff plot_log’ comes from

## source("../src/plots_gus.r")
pLogDiffTS3 <—- percdiff_plot_log(ranksTS3S$fr)
pLogDiffTS4 <- percdiff_plot_log(ranksTS4$fr)

finalPlotLogDiff <- ggpubr::ggarrange (
plotlist = list (pLogDiffTS3, pLogDiffTS4),

ncol =1,

nrow = 2,

labels = list ("S3","S4")
)
# —— #
i

# return plot with annotations
ggpubr: :annotate_figure (
finalPlotLogDiff,
bottom = ggpubr::text_grob(

label = "Plot by: Varela-Alvarenga and Kedem (2021).
hjust = 1,

X =1,

face = "italic",

size = 10

),
left = ggpubr::text_grob(

label = "Percentual difference to true loss",
face = "bold",
size = 12,
rot = 90
)
)
}
# ________________________________________________________
# helper function - returns log diff values ———-
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log_diff_ts_types <- function(results_ts3, results_ts4,

statistic = c(

"Mean", "Median", "Std.Dev."

) {

# get ranks

ranksTS3 <- get_ranks_p_holdout_sim(results_ts3)
ranksTS4 <- get_ranks_p_holdout_sim(results_ts4)
# —— #

# —— #
# calculate log diff
log_trans <- function(x) sign(x) * log(abs(x) + 1)

rTS3 <—- reshape2::melt (ranksTS3S$fr, id.vars = NULL)
rTS3$log <- log_trans (rTS3Svalue)

rTS4 <- reshape2::melt (ranksTS4$fr, id.vars = NULL)
rTS4$log <- log_trans (rTS4Svalue)

i

# calculate summary by scheme
summaryTS3 <- aggregate (

X = rTS3$log,
by = list(scheme = rTS3S$variable),
FUN = summary

)

summaryTS4 <- aggregate (

b = rTS4$log,
by = list(scheme = rTS4S$variable),
FUN = summary

)

# ——— #

# calculate std dev by scheme
sdTS3 <- aggregate (
X = rTS3$log,
by list (scheme

FUN = sd

rTS3Svariable),

)

sdTS4 <- aggregate(
X = rTS4s$log,
by list (scheme
FUN = sd

rTS4Svariable),

)

# —— #

# calculate IQR by scheme
igrTS3 <- aggregate (

X = rTS3$log,
by = list(scheme = rTS3S$variable),
FUN = IQR

)
iqrTS4 <- aggregate (
X = rTS4$log,
by list (scheme = rTS4S$Svariable),

294

n IQR"




213

223

227

229
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241

243

245

247

249

251
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261
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FUN = IQR
)
# —— #
# Get final summary table (with std dev and IQR)
summaryTS3 <- cbind.data.frame (

summaryTS3,
"Std.Dev." = sdTS3$x,
"IQR" = iqrTS3sx

)

summaryTS4 <- cbind.data.frame(

summaryTS4,
"Std.Dev." = sdTS4$x,
"IQR" = 1iqrTS4sx
)
# —— #
# Order final summary table by statistic
summaryTS3 <- summaryTS3[order (abs (summaryTS3$x[, statistic]l)), ]
summaryTS4 <- summaryTS4[order (abs (summaryTS4$x[, statisticl)), 1
# —— #
# return final list
list(
TS3 = summaryTS3,
TS4 = summaryTS4

A R R R R R N N R N S N N N N N N N N N N R R RN RN 223

# ===== ==== ==== === ==== ==== = #
# ====== ==== ===== ===== ==== ===== = #
i Results RBR A
# ================================s==========s=========================
# ===== ==== ==== ===== ==== ==== = &
## \_ Import Data ————————————————— -

tmpVersionRBR <- "v2021070901"

tmpFileRBR_TS3 <- pasteO(
"results/results_ts3_rbr_", tmpVersionRBR, ".rdata"

)
tmpRBR_TS3 <- get (load (tmpFileRBR_TS3))

tmpFileRBR_TS4 <- pasteO(
"results/results_ts4_rbr_", tmpVersionRBR, ".rdata"

)
tmpRBR_TS4 <- get (load (tmpFileRBR_TS4))

# |_ Plot the average ranks ===========================================
plot_RBR_avg_rank <- plot_avg_ranks_ts_types

results_ts3 = tmpRBR_TS3,

results_ts4 tmpRBR_TS4

)
plot_RBR_avg_rank

## 0\ Export as PNG —————————— -
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ggplot2: :ggsave (

filename = pastel ("SIM_RBR_ranks_plot_MSE_", tmpVersionRBR, ".png"),
path = tmpSavePath,
plot = plot_RBR_avg_rank,
device = "png",
type = "cairo",
width = 8,
height =12,
units = "in"
)
## \__ Export as EPS ————————— -

ggplot2: :ggsave (
filename = pastelO ("SIM_RBR_ranks_plot_MSE_", tmpVersionRBR,".eps"),
path = tmpSavePath,

plot = plot_RBR_avg_rank,
device = "eps",
width = 8,
height =12,
units = "in"
)
# |_ Plot the Log-Diff ====== ===== ==== ==== ===

plot_RBR _log_diff <- plot_log_diff_ ts_types|(
results_ts3 = tmpRBR_TS3,
results_ts4 tmpRBR_TS4

)
plot_RBR_log_diff

## \_ Export as PNG ——————————————— -
ggplot2::ggsave (
filename pasteO("SIM_RBR_log_diff plot_MSE_",tmpVersionRBR, ".png"),
path = tmpSavePath,

plot = plot_RBR_log_diff,
device = "png",
type = "cairo",
width =12,
height =12,
units = "in"
)
## \__ Export as EPS ————————

ggplot2: :ggsave (
filename = pasteO("SIM_RBR_log_diff_plot_MSE_",tmpVersionRBR,".eps"),
path = tmpSavePath,

plot = plot_RBR_log_diff,
device = "eps",
width =12,
height =12,
units = "in"
)
# |_ Table with values of the Log-Diff ================================

log_diff_ RBR_Mean <—
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327

331

333

335

337

339

341

343

345
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349
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357

359

361
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367
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373

log_diff_ts_types (tmpRBR_TS3, tmpRBR_TS4, "Mean")

log_diff_ RBR_Median <-
log_diff_ts_types (tmpRBR_TS3, tmpRBR_TS4, "Median")

## \___ Export as TXT ——————————— -~
capture.output (
log_diff_ RBR_Mean,
file = pasteO(tmpSavePathTables,
"SIM_ log_diff Mean_ MSE_",tmpVersionRBR,".txt")
)
capture.output (
log_diff_ RBR_Median,
file = pasteO(tmpSavePathTables,
"SIM_RBR_log_diff_ Median_MSE_",tmpVersionRBR,".txt")

N N S N N N N R N N N N R N N N N N N N N NN 3 3 5

# ================ ==== s=s=s===s====ss=== ==== = #
# ===================================================================
#AH Results RF ik E i
# ============= ==== ===== ===== ===== ===== == #
# ===== ==== ==== === ==== ==== = #
## \_ Import Data ————————————————— -

tmpVersionRF <- "v2021070901"

tmpFileRF_TS3 <— pastel(
"results/results_ts3_rf_ ", tmpVersionRF, ".rdata"

)
tmpRF_TS3 <- get (load(tmpFileRF_TS3))

tmpFileRF_TS4 <- pasteO(
"results/results_tsd4_rf_ ", tmpVersionRF, ".rdata"

)

5| tmpRE_TS4 <- get (load(tmpFileRF_TS4))

# |_ Plot the average ranks ===========================================
plot_RF_avg_rank <- plot_avg_ranks_ts_types/(

results_ts3 = tmpRF_TS3,

results_ts4 = tmpRF_TS4
)
plot_RF_avg_rank

## \__ Export as PNG ————————————— -
ggplot2::ggsave (

filename = pasteO("SIM_RF_ranks_plot_MSE_",tmpVersionRF,".png"),

path = tmpSavePath,

plot = plot_RF_avg_rank,
device = "png",

type = "cairo",

width = 8,

height =12,

units = "in"
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## 0\ Export as EPS ——————————————————— -
ggplot2: :ggsave (
filename = pasteO("SIM_RF_ranks_plot_MSE_",tmpVersionRF,".eps"),

path = tmpSavePath,
plot = plot_RF_avg_rank,
device = "eps",
width = 8,
height =12,
units = "in"
)
# |_ Plot the Log-Diff ====== ===== ==== ==== ===

plot_RF_log_diff <- plot_log_diff_ ts_types/(
results_ts3 = tmpRF_TS3,
results_ts4 tmpRF_TS4

)
plot_RF_log_diff

## \___ Export as PNG —————————— -
ggplot2::ggsave (
filename = pasteO("SIM_RF_log_diff_plot_MSE_",tmpVersionRF,".png"),
path = tmpSavePath,
plot = plot_RF_log_diff,
device = "png",
type = "cairo",
width =12,
height =12,
units = "in"
)
## \___ Export as EPS —————————-——"—"————

ggplot2: :ggsave (
filename = pasteO("SIM_RF_log_diff_plot_MSE_",tmpVersionRF,".eps"),

path = tmpSavePath,
plot = plot_RF_log_diff,
device = "eps",
width =12,
height =12,
units = "in"
)
# |_ Table with values of the Log-Diff ================================

log_diff_RF_Mean <- log_diff_ts_types (tmpRF_TS3, tmpRF_TS4, "Mean")
log_diff_RF_Median <- log_diff_ts_types (tmpRF_TS3, tmpRF_TS4, "Median")

## \___ Export as TXT ——————————
capture.output (

log_diff_RF_Mean,

file = pasteO(tmpSavePathTables,

"SIM_RF_log_diff_Mean_ MSE_",tmpVersionRF,".txt")

)
capture.output (

log_diff_ RF_Median,
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481

file = pastelO (tmpSavePathTables,

"SIM_RF_log_diff_Median_MSE_", tmpVersionRF,".txt")

ATV VLDV VDV VNV VAN ANAAAANANANNNNNNN 44

# ====== ==== ===== ===== ===== ===== =t
# ===== ==== ==== === ==== ==== =
4 Results RIDGE A4
# ============================ ===== ========================{
# ===================================================================
## \__ Import Data ——————————————— -

tmpVersionRIDGE <- "v2021070901"

tmpFileRIDGE_TS3 <- pastel(
"results/results_ts3_ridge_", tmpVersionRIDGE, ".rdata"

)

tmpRIDGE_TS3 <- get (load (tmpFileRIDGE_TS3))

tmpFileRIDGE_TS4 <- pastel(
"results/results_ts4_ridge_", tmpVersionRIDGE, ".rdata"

)

tmpRIDGE_TS4 <- get (load (tmpFileRIDGE_TS4))

# o1 =
plot_RIDGE_avg_rank <- plot_avg_ranks_ts_types/(

Plot the average ranks = ==== ==== ====

results_ts3 = tmpRIDGE_TS3,

results_ts4

)

tmpRIDGE_TS4

plot_RIDGE_avg_rank

#4# 0\ Export as PNG —————————————————————————————————————————————

ggplot2::ggsave (
filename = pasteO (

)y

path = tmpSavePath,
plot = plot_RIDGE_avg_rank,
device = "png",
type = "cairo",
width = 8,
height =12,
units = "in"
)
## \_ Export as EPS —————————————————— -

"SIM_RIDGE_ranks_plot_MSE_",tmpVersionRIDGE, ".png"

ggplot2: :ggsave (
filename = pasteO (

),

"SIM_RIDGE_ranks_plot_MSE_",tmpVersionRIDGE, " .eps"

path = tmpSavePath,

plot = plot_RIDGE_avg_rank,
device = "eps",

width = 8,

height =12,
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485

487
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493

495

497

499

501
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505

507

509

513
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519

525

527

529

531

535

ll’l"

units =

# |_ Plot the Log-Diff ================================================
plot_RIDGE_log_diff <- plot_log_diff_ts_types(

results_ts3 = tmpRIDGE_TS3,

results_ts4 tmpRIDGE_TS4

)
plot_RIDGE_log_diff

## \__ Export as PNG ——————————— -
ggplot2: :ggsave (
filename = pasteO (
"SIM_RIDGE_log_diff plot_MSE_",tmpVersionRIDGE, ".png"
)I

path = tmpSavePath,
plot = plot_RIDGE_log_diff,
device = "png",
type = "cairo",
width =12,
height =12,
units = "in"
)
## \___ Export as EPS —————————m
ggplot2: :ggsave (
filename = pasteO (

"SIM_RIDGE_log_diff_plot_MSE_", tmpVersionRIDGE, " .eps"
)y

path = tmpSavePath,
plot = plot_RIDGE_log_diff,
device = "eps",
width =12,
height =12,
units = "in"
)
# |_ Table with values of the Log-Diff ================================

log_diff_RIDGE_Mean <- log_diff_ts_types/(
tmpRIDGE_TS3, tmpRIDGE_TS4, "Mean"

)

log_diff RIDGE_Median <- log_diff_ ts_types/(
tmpRIDGE_TS3, tmpRIDGE_TS4, "Median"

## \___ Export as TXT ———————————————— =
capture.output (
log_diff_ RIDGE_Mean,
file = pasteO(
tmpSavePathTables, "SIM_RIDGE_log_diff_Mean_ MSE_",tmpVersionRIDGE,
"otxt"

)

capture.output (
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537 log_diff_RIDGE_Median,
file = pasteO(

539 tmpSavePathTables, "SIM_RIDGE_log_diff Median_MSE_",
tmpVersionRIDGE,
541 "otxt"

543] )
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C.8 Create Tables - Cerqueira and M4

code/hypothesis_tests_SignedRank _v2021071502.R

S i
#’ Evaluating the performance of estimation methods

#

#’ This is an extension of the code from Cerqueira, Torgo, and Mozetic.
#’ "Evaluating time series forecasting models: an empirical study

#’ on performance estimation methods".

#’ In: Machine Learning (2020) 109:1997-2028

#I
#’ Modified by: Gustavo Varela-Alvarenga
#’ Date: 07/15/2021

CE i A
N R N R R N N R R N N N N N R R R N N N R N R N N R RN 2.5
# > Packages ===== ==== ==== ==== ==== ===
#install.packages ("devtools", dependencies = TRUE)
#devtools::install_github (’alanarnholt/BSDA’)

#install.packages ("xtable")

N N R N R N R R N R R N N N N N R N N N R N N R N R N R N RN 2.3
## > Path to save tables to ———-
tmpSavePathTables <- "results/tables/"

N R N N N N R R N N R N N S R N N R N N N R N N N S N R N RN £ 2.2
# > Helpers #HH#
# |_ Helper Function: get_ranks_p_holdout === === ===

s|# Gets final estimation errors, and ranks

get_ranks_p_holdout <- function(final_results_data) {
# —— #
# get estimation errors
err_estimation <- lapply(
X = final_results_data,
function (X) tryCatch (X$Serr_estimation, error =function(e) {NULL})

)

err_estimation <- err_estimation([!sapply(err_estimation, is.null)]
e

# create df with final estimation errors

fr <- do.call(rbind, err_estimation)

fr <- as.data.frame(fr)

rownames (fr) <- NULL

colnames (fr) <-

c("p-holdout™", # <———— new method
"cp—-holdout", # <-——— new method
"cep-holdout", # <———— new method

"Ccv", "CV-Bl", "CV-Mod","CV-hvBl",

"Preg-Bls", "Preg-Sld-Bls",

"Preg-Bls—-Gap", "Holdout", "Rep-Holdout",

# "Preg-Slide","Preq-Grow" f#the order in the original is switched
"Preg-Grow", "Preg-Slide"
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51 # —— #

# get ranks for each estimation procedure
53 fr_abs <- abs (fr)

fr_abs_rank <- apply(fr_abs, 1, rank)

55
# —— #

57 # return df with final estimation errors,

# and another one with the ranks

59 return(list (fr = fr, fr_abs_rank = fr_abs_rank))

61
63| # helper function - returns log diff values —--—-

65| hypothesis_tests_schemes <- function(results, is_stat) {
67 # break data into stationary data or not (or both)
tmpAll <- results

69 tmpStationary <- results[is_stat]

tmpNonStationary <- results[!is_stat]
71

# ——— #
73 # get ranks
ranksAll <- get_ranks_p_holdout (tmpAll)
75 ranksStationary <- get_ranks_p_holdout (tmpStationary)

ranksNonStationary <- get_ranks_p_holdout (tmpNonStationary)
77
# - 4

79 # calculate log diff

log_trans <- function(x) sign(x) * log(abs(x) + 1)
81

rAll <—- reshape2::melt (ranksAllSfr, id.vars = NULL)
83 rAllslog <- log_trans (rAll$value)
rStationary <- reshape2::melt (
85 ranksStationary$fr, id.vars = NULL
)
87 rStationary$log <- log_trans (rStationaryS$Svalue)
rNonStationary <- reshape2::melt (
89 ranksNonStationary$fr, id.vars = NULL

)

91 rNonStationary$log <- log_trans (rNonStationary$value)

o3| H# ———— F
# calculate summary by scheme
95 summaryAll <- aggregate (

X = rAllslog,
97 by = list(scheme = rAllS$Svariable),
FUN = summary

99 )

summaryAll[,-1] <- round(summaryAllf[,-1], 4)
101
summaryStationary <- aggregate (

103 b = rStationary$log,

by = list(scheme = rStationaryS$variable),
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105 FUN = summary

)

107 summaryStationaryl[,-1] <- round(summaryStationaryl[,-1]1, 4)

109 summaryNonStationary <- aggregate (

b = rNonStationary$log,
i by = list (scheme = rNonStationary$variable),
FUN = summary

113 )
summaryNonStationary([,-1] <- round(summaryNonStationaryl[,-11, 4)
115

# ——— #
17 # calculate p-value by scheme

119 tmpSchemes <- as.character (unique (rAllSvariable))

121 pvalueAll <- lapply(
seq_along (tmpSchemes),

123 function (X) {
tmpScheme <- tmpSchemes [X]

125 tmpDF <- rAll[rAllSvariable == tmpScheme, ]
tmpTest <— wilcox.test (

127 tmpDF$log, mu = 0, alternative = "two.sided"
)

129 list(

"scheme" = tmpScheme,
131 "WMW_pvalue" = round (tmpTestSp.value, 4)

133 }
)
135 pvalueAll <- do.call(rbind, pvalueAll)

137 pvalueStationary <- lapply (
seq_along (tmpSchemes),

139 function (X) {

tmpScheme <- tmpSchemes [X]

141 tmpDF <—- rStationary[rStationary$variable == tmpScheme, ]
tmpTest <— wilcox.test (
143 tmpDF$log, mu = 0, alternative = "two.sided"
)
145 list (
"scheme" = tmpScheme,
147 "WMW_pvalue" = round (tmpTestS$Sp.value, 4)
)
149 }
)
151 pvalueStationary <- do.call(rbind, pvalueStationary)

153 pvalueNonStationary <- lapply (
seq_along (tmpSchemes),

155 function (X) {
tmpScheme <- tmpSchemes [X]
157 tmpDF <-
rNonStationary[rNonStationary$variable == tmpScheme, ]
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159

161

163

165

167

169

177

179

181

187

189

191

193

195

197

199

201

203

205

207

209

)

tmpTest <-

wilcox.test (tmpDF$log, mu = 0, alternative = "two.sided")
list (

"scheme" = tmpScheme,

"WMW_pvalue" = round(tmpTestS$Sp.value, 4)

)

pvalueNonStationary <- do.call (rbind, pvalueNonStationary)

# ——— #
# calculate p-value by scheme
pvalueAllSign <- lapply(
seq_along (tmpSchemes),
function (X) {
tmpScheme <- tmpSchemes [X]
tmpDF <- rAll[rAll$variable == tmpScheme, ]

tmpTest <-
BSDA::SIGN.test (tmpDF$log, mu = 0, alternative = "two.sided")

c("scheme" = tmpScheme, "p_value" = round(tmpTestS$Sp.value, 4))

)
pvalueAllSign <- do.call (rbind, pvalueAllSign)

pvalueStationarySign <- lapply(
seq_along (tmpSchemes),
function (X) {
tmpScheme <- tmpSchemes [X]
tmpDF <—- rStationary[rStationaryS$Svariable == tmpScheme, ]

tmpTest <-
BSDA: :SIGN.test (tmpDFS$Slog, mu = 0, alternative = "two.sided")

c("scheme" = tmpScheme, "p_value" = round(tmpTestS$Sp.value, 4))

)

pvalueStationarySign <- do.call(rbind, pvalueStationarySign)
pvalueNonStationarySign <- lapply (

seq_along (tmpSchemes),

function (X) {

tmpScheme <- tmpSchemes [X]

tmpDF <-—
rNonStationary[rNonStationary$variable == tmpScheme, ]

tmpTest <-
BSDA: :SIGN.test (tmpDFS$Slog, mu = 0, alternative = "two.sided")

c("scheme" = tmpScheme, "p_value" = round(tmpTestS$Sp.value, 4))
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213

217

219

221

223

229

235

237

239

243

245

249

251

253

255

261

263

)

pvalueNonStationarySign <- do.call (rbind, pvalueNonStationarySign)

# ———— #
# Final Sets
finalAll <- merge (summaryAll, pvalueAllSign, by="scheme")

finalStationary <-
merge (summaryStationary, pvalueStationarySign, by="scheme")

finalNonStationary <-
merge (summaryNonStationary, pvalueNonStationarySign, by="scheme")

# ———— #

# return final list

list(
All = finalAll,
Stationary = finalStationary,
NonStationary = finalNonStationary

}
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# ===== ==== ==== ===== ==== ==== = #
# ===== == === === == == #
#HHHH Stationary data #HHHH
# ================ === === ==== ==== = #
# ===================================================================
# |_ Import Original Data set === === === ==
load("../stationarity_tsdl.rdata")

# |_ Indicator if the series is stationary ======== ===== ====

tmp_is_stat <- is_stationary_Z2ensemble
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# ===== == === === == == #
# ===== ==== ==== ==== ==== ==== = #
#ae Results RBR ik E i
# ====== ==== ===== ===== ==== ==== = &
# ===== == === === == == #
## 0\ Import Data ———————————————————— -

tmpVersionRBR_MSE <- "v2021070901"
tmpVersionRBR_MASE <- "v2021071201"

tmpFileRBR_MSE <- paste0 (
"results/results_cerqueira_rbr_", tmpVersionRBR_MSE, ".rdata"

)
tmpRBR_MSE <- get (load (tmpFileRBR_MSE) )
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267

269

275

279

281

283

285

291

293

295

297

299

301

303

305

307

309

311

313

315

319

tmpFileRBR_MASE <—- pasteO (

"results/results_cerqueira_MASE_rbr_", tmpVersionRBR_MASE, ".rdata"
)
tmpRBR_MASE <- get (load (tmpFileRBR_MASE))

# |_ Table with values of the Log-Diff ======= ===== ===== ===

3l test_RBR_MSE <- hypothesis_tests_schemes (

results = tmpRBR_MSE,
is_stat = tmp_is_stat

test_RBR_MASE <- hypothesis_tests_schemes (
results = tmpRBR_MASE,

is_stat = tmp_is_stat
)
#4# \ Export as Latex Table ———————-—————————————————————————————————
print (

xtable: :xtable (

x = t(t(test_RBR_MSES$All)),

type = "latex",

label = "tab:RBR:cerqueira:bias:all",

caption = paste0 (
"Summary of the log percentage difference of the estimated loss",
" relative to the true loss for each validation scheme applied ",
"to all 174 real-world time series ",

"using the ",

"RBR "’
"learning algorithm and the ",
"MSE ",

"as error measure."

)
),
file = pasteO(

tmpSavePathTables, "RBR_test_MSE_All_",tmpVersionRBR_MSE, ".txt"
)y
booktabs = TRUE,
include.rownames=FALSE

print (
xtable: :xtable(
x = t(t(test_RBR_MSESStationary)),
type = "latex",
label = "tab:RBR:cerqueira:bias:stationary",
caption = pasteO (
"Summary of the log percentage difference of the estimated loss",

" relative to the true loss for each validation scheme applied ",

"to the 97 stationary time series ",

"using the ",

"RBR ",
"learning algorithm and the ",
"MSE ",

"as error measure."
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323

325

327

33

333

335

337

339

341

343

345

347

349

351

353

357

359

361

363

365

367

369

373

)

)I

file = pasteO(
tmpSavePathTables, "RBR_test_ MSE_Stationary_ ",tmpVersionRBR_MSE,
"otxt"

),

booktabs = TRUE,

include.rownames=FALSE

print (
xtable: :xtable (
x = t(t(test_RBR_MSES$NonStationary)),

type = "latex",
label = "tab:RBR:cerqueira:bias:nonstationary",
caption = pasteO (

"Summary of the log percentage difference of the estimated loss",
" relative to the true loss for each validation scheme applied ",
"to the 77 non-stationary time series ",

"using the ",

"RBR ",
"learning algorithm and the ",
"MSE "’

"as error measure."
)
)I
file = pasteO(
tmpSavePathTables, "RBR_test_MSE_NonStationary_",tmpVersionRBR_MSE,
"Ltxt"
)I
booktabs = TRUE,
include.rownames=FALSE

print (
xtable::xtable(
X = t (t(test_RBR_MASESAll)),

type = "latex",
label = "tab:RBR:cerqueira:bias:all:mase",
caption = pasteO (

"Summary of the log percentage difference of the estimated loss",
"relative to the true loss for each validation scheme applied ",
"to all 174 real-world time series ",
"using the ",
"RBR ",
"learning algorithm and the ",
"MASE ",
"as error measure."
)
),
file = pasteO(

308




375

379

381

383

385

389
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393

395

397

399

401

403

405

407

409

411

413

415

417

419

423

427

tmpSavePathTables, "RBR_test_MASE_All_",tmpVersionRBR_MASE,".txt"
)I
booktabs = TRUE,
include.rownames=FALSE

print (
xtable: :xtable (
x = t(t(test_RBR_MASES$Stationary)),
type = "latex",
label = "tab:RBR:cerqueira:bias:stationary:mase",
caption = paste0 (
"Summary of the log percentage difference of the estimated loss",
"relative to the true loss for each validation scheme applied ",
"to the 97 stationary time series ",
"using the ",
"RBR ",
"learning algorithm and the ",
"MASE ",
"as error measure."
)
),
file = pasteO(
tmpSavePathTables, "RBR_test_ MASE_Stationary_",tmpVersionRBR_MASE,
"otxt"
)I
booktabs = TRUE,
include.rownames=FALSE

print (
xtable: :xtable (
x = t(t(test_RBR_MASESNonStationary)),
type = "latex",
label = "tab:RBR:cerqueira:bias:nonstationary:mase",
caption = pasteO (
"Summary of the log percentage difference of the estimated loss",
"relative to the true loss for each validation scheme applied ",
"to the 77 non-stationary time series ",
"using the ",
"RBR ",
"learning algorithm and the ",
"MASE ",
"as error measure."
)
)I
file = pasteO(
tmpSavePathTables, "RBR_test_MASE_NonStationary_",
tmpVersionRBR_MASE,
"otxt"
)I
booktabs = TRUE,
include.rownames=FALSE
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# ================ ==== s==s===s===ss==== ==== = #
# ===================================================================
#Ha Results RF ik E i
# ====== ==== ===== ===== ==== ===== = #
# ===== ==== === === ==== ==== = #
## 0\ Import Data ———————————————————— -~

tmpVersionRF_MSE <- "v2021070901"
tmpVersionRF_MASE <- "v2021071201"

tmpFileRF_MSE <- pasteO(
"results/results_cerqueira_rf_", tmpVersionRF_MSE,

)
tmpRF_MSE <- get (load (tmpFileRF_MSE))

tmpFileRF_MASE <- pasteO(

".rdata"

"results/results_cerqueira_MASE_rf_", tmpVersionRF_MASE, ".rdata"

)
tmpRF_MASE <- get (load (tmpFileRF_MASE))

# |_ Table with values of the Log-Diff ====
test_RF_MSE <- hypothesis_tests_schemes (

results = tmpRF_MSE,

is_stat = tmp_is_stat

test_RF_MASE <- hypothesis_tests_schemes (
results = tmpRF_MASE,

is_stat = tmp_is_stat
)
#4# \ Export as Latex Table ———————--—""""""""""———"—"——————————————————
print (

xtable: :xtable(
x = t(t(test_RF_MSESAll)),
type = "latex",
label = "tab:RF:cerqueira:bias:all",
caption = pasteO (

"Summary of the log percentage difference of the estimated loss",
"relative to the true loss for each validation scheme applied ",

"to all 174 real-world time series ",

"using the ",
"RF "w ,
"learning algorithm and the ",
"MSE ",
"as error measure."
)
),
file = pasteO(

tmpSavePathTables, "RF_test_MSE_All_ ", tmpVersionRF_MSE, ".txt"

)
booktabs = TRUE,
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483 include.rownames=FALSE
485
print (

487 xtable: :xtable (

x = t(t(test_RF_MSES$Stationary)),
489 type = "latex",
label = "tab:RF:cerqueira:bias:stationary",
491 caption = pasteO (
"Summary of the log percentage difference of the estimated loss",
493 "relative to the true loss for each validation scheme applied ",
"to the 97 stationary time series ",
495 "using the ",
"RF ",
497 "learning algorithm and the ",
"MSE ",
499 "as error measure."
)
501 ),
file = pasteO(
503 tmpSavePathTables, "RF_test_MSE_Stationary_", tmpVersionRF_MSE,
"otxt"
505 ),
booktabs = TRUE,

507 include.rownames=FALSE

509

print (
xtable::xtable(

x = t(t(test_RF_MSES$NonStationary)),
513 type = "latex",
label = "tab:RF:cerqueira:bias:nonstationary",
515 caption = paste0 (
"Summary of the log percentage difference of the estimated loss",
517 "relative to the true loss for each validation scheme applied ",
"to the 77 non-stationary time series ",
519 "using the ",
"RF ",
521 "learning algorithm and the ",
"MSE ",
523 "as error measure."
)
525 ),
file = pastel(
527 tmpSavePathTables, "RF_test_MSE_NonStationary_", tmpVersionRF_MSE,
"otxt"
529 ),
booktabs = TRUE,

531

535

include.rownames=FALSE
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583

587

589

print (
xtable: :xtable (

x = t(t(test_RF_MASES$All)),

type = "latex",

label = "tab:RF:cerqueira:bias:all:mase",

caption = paste0 (
"Summary of the log percentage difference of the estimated loss",
"relative to the true loss for each validation scheme applied ",
"to all 174 real-world time series ",
"using the ",

"RF " ,
"learning algorithm and the ",
"MASE " ,

"as error measure."

)
)4
file = pasteO(

tmpSavePathTables, "RF_test_MASE_All_",tmpVersionRF_MASE, ".txt"
)I
booktabs = TRUE,
include.rownames=FALSE

print (
xtable: :xtable (

x = t(t(test_RF_MASES$Stationary)),

type = "latex",

label = "tab:RF:cerqueira:bias:stationary:mase",

caption = paste0 (
"Summary of the log percentage difference of the estimated loss",
"relative to the true loss for each validation scheme applied ",

"to the 97 stationary time series ",

"using the ",

"RF n ,
"learning algorithm and the ",
"MASE " ,

"as error measure."
)
)I
file = pasteO(
tmpSavePathTables, "RF_test_MASE_Stationary_",tmpVersionRF_MASE,
"otxt"
),
booktabs = TRUE,
include.rownames=FALSE

print (
xtable: :xtable (
x = t(t(test_RF_MASESNonStationary)),
type = "latex",
label = "tab:RF:cerqueira:bias:nonstationary:mase",
caption = pasteO(
"Summary of the log percentage difference of the estimated loss",
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605
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615

617

619
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627

629

631

633

635

637

639

641

643

"relative to the true loss for each validation scheme applied ",
"to the 77 non-stationary time series ",
"using the ",
"RF ",
"learning algorithm and the ",
"MASE ",
"as error measure."
)
)I
file = pasteO(
tmpSavePathTables, "RF_test_MASE_NonStationary_",tmpVersionRF_MASE,
"otxt"
)I
booktabs = TRUE,
include.rownames=FALSE

i

tmpVersionGLM_MSE <- "v2021070901"
tmpVersionGLM_MASE <- "v2021071201"

tmpFileGLM_MSE <—- pasteO(

"results/results_cerqueira_ridge_", tmpVersionGLM_MSE, ".rdata"
)
tmpGLM_MSE <- get (load (tmpFileGLM_MSE))

tmpFileGLM_MASE <—- pasteO (

"results/results_cerqueira_MASE_ridge_", tmpVersionGLM_MASE, ".rdata"
)
tmpGLM_MASE <- get (load(tmpFileGLM_MASE))

# |_ Table with values of the Log-Diff ==== ==== ===
test_GLM_MSE <- hypothesis_tests_schemes (

results = tmpGLM_MSE,

is_stat = tmp_is_stat

test_GLM_MASE <- hypothesis_tests_schemes (
results = tmpGLM_MASE,

is_stat = tmp_is_stat
)
#4# 0\ Export as Latex Table ———————-"""""""""""——"—"—"—"—~—"—"——(————————————
print (

xtable: :xtable(
X = t(t(test_GLM_MSESAll)),
type = "latex",
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647
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659
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665
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675

677
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685

687

689

691

693

695

697

),

label = "tab:GLM:cerqueira:bias:all",

caption = paste0 (
"Summary of the log percentage difference of the estimated loss",
"relative to the true loss for each validation scheme applied ",
"to all 174 real-world time series ",
"using the ",
"GLM-Ridge ",
"learning algorithm and the ",
"MSE ",
"as error measure."

)

file = pasteO(

)y

tmpSavePathTables, "GLM_test_MSE_All_",tmpVersionGLM _MSE,".txt"

booktabs = TRUE,
include.rownames=FALSE

print (
xtable: :xtable (

)y

x = t(t(test_GLM_MSES$Stationary)),
type = "latex",
label = "tab:GLM:cerqueira:bias:stationary",
caption = pasteO (
"Summary of the log percentage difference of the estimated loss",
"relative to the true loss for each validation scheme applied ",
"to the 97 stationary time series ",
"using the ",
"GLM-Ridge ",
"learning algorithm and the ",
"MSE " ,
"as error measure."

)

file = pasteO(

),

tmpSavePathTables, "GLM_test_MSE_Stationary_",tmpVersionGLM_MSE,
" .txt"

booktabs = TRUE,
include.rownames=FALSE

print (
xtable::xtable(

x = t(t(test_GLM_MSES$NonStationary)),

type = "latex",

label = "tab:GLM:cerqueira:bias:nonstationary",

caption = paste0 (
"Summary of the log percentage difference of the estimated loss",
"relative to the true loss for each validation scheme applied ",
"to the 77 non-stationary time series ",
"using the ",
"GLM-Ridge ",
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701
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705
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709
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713

7

[

717

719

721

725

729

731

735

737

741

743

745

747

749

751

n

"learning algorithm and the ",
"MSE "’
"as error measure."
)
)y
file = pasteO(
tmpSavePathTables, "GLM_test_MSE_NonStationary_",tmpVersionGLM_MSE,
n . tXt mw
)y
booktabs = TRUE,
include.rownames=FALSE

print (

xtable: :xtable (
x = t(t(test_GLM_MASES$All)),
type = "latex",
label = "tab:GLM:cerqueira:bias:all:mase",
caption = pasteO (
"Summary of the log percentage difference of the estimated loss",
"relative to the true loss for each validation scheme applied ",
"to all 174 real-world time series ",
"using the ",
"GLM-Ridge ",
"learning algorithm and the ",
"MASE ",
"as error measure."
)
)4
file = pasteO(
tmpSavePathTables, "GLM_test_MASE_All_",tmpVersionGLM_MASE,".txt"
)I
booktabs = TRUE,
include.rownames=FALSE

print (

xtable: :xtable (

x = t(t(test_GLM_MASES$Stationary)),

type = "latex",

label = "tab:GLM:cerqueira:bias:stationary:mase",

caption = pasteO (
"Summary of the log percentage difference of the estimated loss",
"relative to the true loss for each validation scheme applied ",
"to the 97 stationary time series ",
"using the ",
"GLM-Ridge ",
"learning algorithm and the ",
"MASE ",
"as error measure."
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775

777

779
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783

785

787

789

791

793

795

797

799

801

803

805

),

file = pasteO(
tmpSavePathTables, "GLM_test_MASE_Stationary_",tmpVersionGLM_MASE,
"ooxt"

)

booktabs = TRUE,

include.rownames=FALSE

print (
xtable: :xtable (
x = t(t(test_GLM_MASESNonStationary)),
type = "latex",
label = "tab:GLM:cerqueira:bias:nonstationary:mase",
caption = pasteO (
"Summary of the log percentage difference of the estimated loss",
"relative to the true loss for each validation scheme applied ",
"to the 77 non-stationary time series ",
"using the ",
"GLM-Ridge ",
"learning algorithm and the ",
"MASE ",
"as error measure."
)
)I
file = pasteO(
tmpSavePathTables, "GLM_test_MASE_NonStationary_",
tmpVersionGLM_MASE,
"otxt"
)I
booktabs = TRUE,
include.rownames=FALSE

ATV LV A AN A A AAAANANANANNNNNNN g4

# ================= ===== ===== ===== ===== = #
# =================================================================== §
#HEHH Stationary data — M4 #HHHH
———e — —— ——— — —— #
N — —— S — —— #
# |_ Import Original Data set =================————————————————————————

load ("results/stationarity_tsdl_M4_v02.rdata")

# |_ Indicator if the series is stationary == == ==
tmp_is_stat_M4 <- is_stationary_Z2ensemble_M4_v02

ATV LDV VA ANAAANANANNNNNNNNN g4

# ===== == === === === === #

e —= —= —= —— —— #
#HH#H Results M4-RBR FHH#H
# ====== ==== ===== ===== ==== ===== = #
# =================================================================== #§
## \___ Import Data ———————————"""""""""""——




807

809

811

813

815

817

819

821

823

827

829

833
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841

843

845

847

849

851

853

855

857

859

tmpVersionM4_RBR_MSE <- "v2021070901"
tmpVersionM4_RBR_MASE <- "v2021071201"

tmpFileM4_RBR_MSE <—- paste0(
"results/results_M4_rbr_", tmpVersionM4_RBR_MSE, ".rdata"

)
tmpM4_RBR_MSE <- get (load(tmpFileM4_RBR_MSE))

tmpFileM4_RBR_MASE <- paste0 (
"results/results_M4_MASE_rbr_", tmpVersionM4_RBR_MASE, ".rdata"

)
tmpM4_RBR_MASE <- get (load (tmpFileM4_RBR_MASE))

# |_ Table with values of the Log-Diff ================================
test_M4_ RBR_MSE <- hypothesis_tests_schemes (

results = tmpM4_RBR_MSE,

is_stat = tmp_is_stat

test_M4_RBR_MASE <- hypothesis_tests_schemes (
results = tmpM4_RBR_MASE,

is_stat = tmp_is_stat
)
#4 \ Export as Latex Table - ———"—""""""""""""""""""""“""""—"—————
print (

xtable: :xtable (
X = t(t(test_M4_RBR_MSESAlL)),

type = "latex",
label = "tab:RBR:M4:bias:all",
caption = paste0 (

"Summary of the log percentage difference of the estimated loss",
"relative to the true loss for each validation scheme applied ",
"to the time series from the M4 Competition sample ",

"using the ",

"RBR ",
"learning algorithm and the ",
"MSE "’

"as error measure."
)
)I
file = pasteO(
tmpSavePathTables, "M4_RBR_test_MSE_All_",tmpVersionM4_RBR_MSE,
"LoExt"
)I
booktabs = TRUE,
include.rownames=FALSE

print (
xtable: :xtable(
x = t(t(test_M4_RBR_MSES$Stationary)),
type = "latex",
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863

865

867

869

871
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877
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887

889
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901
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label = "tab:RBR:M4:bias:stationa
caption pastel (
"Summary of the log percentage
"relative to the true loss for
"to the stationary time series

"using the ",

"RBR "’
"learning algorithm and the ",
"MSE ",

"as error measure."
)y

file = pasteO(
tmpSavePathTables, "M4_RBR_test_M
tmpVersionM4_RBR_MSE,
"otxt"

),

booktabs = TRUE,

include.rownames=FALSE

print (
xtable: :xtable(
t (t (test_M4_RBR_MSESNonStatio
type = "latex",
label "tab:RBR:M4:bias:nonstati
caption paste (
"Summary of the log percentage
"relative to the true loss for
"to the non-stationary time ser
"sample using the ",
"RBR u,
"learning algorithm and the ",
"MSE ",
"as error measure."
)
)y
file pastel (
tmpSavePathTables, "M4_RBR_test_M
tmpVersionM4_RBR_MSE,
"otxt"
)I
booktabs TRUE,
include.rownames=FALSE

X

print (
xtable: :xtable(

X = t(t(test_M4_RBR_MASESAllL)),
type = "latex",
label = "tab:RBR:M4d:bias:all:mase
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915

917
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933
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941
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caption = paste0 (
"Summary of the log percentage difference of the estimated loss",
"relative to the true loss for each validation scheme applied ",
"to the time series from the M4 Competition sample ",
"using the ",
"RBR ",
"learning algorithm and the ",
"MASE ",
"as error measure."
)
),
file = pasteO(
tmpSavePathTables, "M4_RBR_test_MASE_All_",tmpVersionM4_RBR_MASE,
"Ltxt"
)I
booktabs = TRUE,
include.rownames=FALSE

print (
xtable: :xtable (
x = t(t(test_M4_RBR_MASESStationary)),
type = "latex",
label = "tab:RBR:M4:bias:stationary:mase",
caption = pasteO (
"Summary of the log percentage difference of the estimated loss",
"relative to the true loss for each validation scheme applied ",
"to the stationary time series from the M4 Competition sample ",
"using the ",
"RBR ",
"learning algorithm and the ",
"MASE ",
"as error measure."
)
)I
file = pasteO(
tmpSavePathTables, "M4_RBR_test_MASE_Stationary_",
tmpVersionM4_RBR_MASE,
"otxt"
)I
booktabs = TRUE,
include.rownames=FALSE

print (
xtable: :xtable (

x = t(t(test_M4_RBR_MASES$NonStationary)),

type = "latex",

label = "tab:RBR:M4:bias:nonstationary:mase",

caption = paste0 (
"Summary of the log percentage difference of the estimated loss",
"relative to the true loss for each validation scheme applied ",
"to the non-stationary time series from the M4 Competition ",

"sample using the ",
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969

971

973

975

977

979

981

983

985

987

989

991

993

995

997

999

1001

1003

1005

1007

1009

1011

1013

1015

1017

1019

1021

"RBR ",
"learning algorithm and the ",
"MASE ",
"as error measure."
)
),
file = pasteO(
tmpSavePathTables, "M4_RBR_test_MASE_NonStationary_ ",
tmpVersionM4_RBR_MASE,
"otxt"
),
booktabs = TRUE,
include.rownames=FALSE

N R R R R R N R R N R R R N N S R R N N N N N N S NN £ 2.5
# ===== S S S S S =

=

tmpVersionM4_RF_MSE <- "v2021070901"
tmpVersionM4_RF_MASE <- "v2021071201"

tmpFileM4_RF_MSE <—- pasteO (
"results/results_M4_rf_ ", tmpVersionM4_RF_MSE, ".rdata"

)
tmpM4_RF_MSE <- get (load(tmpFileM4_ RF_MSE))

tmpFileM4_RF_MASE <—- paste0(
"results/results_M4_MASE_rf_", tmpVersionM4_RF_MASE, ".rdata"

)
tmpM4_RF_MASE <- get (load(tmpFileM4_RF_MASE))

# |_ Table with values of the Log-Diff ================================
test_M4_RF_MSE <— hypothesis_tests_schemes (

results = tmpM4_RF_MSE,

is_stat = tmp_is_stat

test_M4_RF_MASE <- hypothesis_tests_schemes (
results = tmpM4_RF_MASE,

is_stat = tmp_is_stat
)
#4+ \ Export as Latex Table - —"—+—""—"""""""""""""""""""""""-"———
print (

xtable: :xtable(
X = t(t(test_M4_RF_MSESAll)),
type = "latex",
label = "tab:RF:M4:bias:all",
caption = paste0 (
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1023

1025

1027

1029

1031

1033

1035

1037

1039

1041

1043

1045

1047

1049

1051

1053

1055

1057

1059

1061

1063

1065

1067

1069

1071

1073

1075

"Summary of the log percentage difference of the estimated loss",
"relative to the true loss for each validation scheme applied ",
"to the time series from the M4 Competition sample ",
"using the ",
"RF ",
"learning algorithm and the ",
"MSE ",
"as error measure."
)
)y
file = pasteO (
tmpSavePathTables, "M4_RF_test_MSE_All_",tmpVersionM4_RF_MSE,
n . tXt Al
)y
booktabs = TRUE,
include.rownames=FALSE

print (
xtable: :xtable (
x = t(t(test_M4_RF_MSES$Stationary)),
type = "latex",
label = "tab:RF:M4:bias:stationary",
caption = paste0 (
"Summary of the log percentage difference of the estimated loss",
"relative to the true loss for each validation scheme applied ",
"to the stationary time series from the M4 Competition sample ",
"using the ",
"RF ",
"learning algorithm and the ",
"MSE ",
"as error measure."
)
)I
file = pastel(
tmpSavePathTables, "M4_RF_test_MSE_Stationary_",
tmpVersionM4_RF_MSE,
"otxt"
)I
booktabs = TRUE,
include.rownames=FALSE

print (
xtable: :xtable (

x = t(t(test_M4_RF_MSESNonStationary)),

type = "latex",

label = "tab:RF:M4:bias:nonstationary",

caption = paste0 (
"Summary of the log percentage difference of the estimated loss",
"relative to the true loss for each validation scheme applied ",
"to the non-stationary time series from the M4 Competition ",
"sample using the ",
"RF ",
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1077

1079

1081

1083

1085

1087

1089

1091

1093

1095

1097

1099

1101

1103

1105

1107

1109

1111

1113

1115

1117

1119

1123

1125

1127

1129

"learning algorithm and the ",
"MSE "’
"as error measure."
)
)y
file = pasteO(
tmpSavePathTables, "M4_RF_test_MSE_NonStationary_",
tmpVersionM4_RF_MSE,
" . tXt m”
)y
booktabs = TRUE,
include.rownames=FALSE

print (
xtable: :xtable (

x = t(t(test_M4_RF_MASES$All)),

type = "latex",

label = "tab:RF:M4:bias:all:mase",

caption = paste0 (
"Summary of the log percentage difference of the estimated loss",
"relative to the true loss for each validation scheme applied ",
"to the time series from the M4 Competition sample ",

"using the ",

n RF " ,
"learning algorithm and the ",
"MASE ",

"as error measure."
)
),
file = pasteO(
tmpSavePathTables, "M4_RF_test_MASE_All_",tmpVersionM4_RF_MASE,
"otxt"
)y
booktabs = TRUE,
include.rownames=FALSE

print (
xtable: :xtable (

x = t(t(test_M4_RF_MASESStationary)),

type = "latex",

label = "tab:RF:M4:bias:stationary:mase",

caption = pasteO (
"Summary of the log percentage difference of the estimated loss",
"relative to the true loss for each validation scheme applied ",
"to the stationary time series from the M4 Competition sample ",
"using the ",

"RF n ,
"learning algorithm and the ",
"MASE " ,
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1131

1135

1137

1139

1141

1143

1145

1147

1149

1151

1153

1155

1157

1159

1161

1163

1165

1167

1169

1171

1173

1175

1177

1179

1181

1183

"as error measure."
)
)I
file = pasteO(
tmpSavePathTables, "M4_RF_test_MASE_Stationary_",
tmpVersionM4_RF_MASE,
"otxt"
)I
booktabs = TRUE,
include.rownames=FALSE

print (
xtable: :xtable (
x = t(t(test_M4_RF_MASES$NonStationary)),
type = "latex",
label = "tab:RF:M4:bias:nonstationary:mase",
caption = pasteO (
"Summary of the log percentage difference of the estimated loss",
"relative to the true loss for each validation scheme applied ",
"to the non-stationary time series from the M4 Competition ",
"sample using the ",
"RF ",
"learning algorithm and the ",
"MASE ",
"as error measure."
)
)I
file = pasteO(
tmpSavePathTables, "M4_RF_test_MASE_NonStationary_ ",
tmpVersionM4_RF_MASE,
"otxt"
),
booktabs = TRUE,
include.rownames=FALSE

ATV VLDV VDV VNN AAAAANAANANNNNNNN a4

tmpVersionM4_GLM_MSE <- "v2021070901"
tmpVersionM4_GLM_MASE <- "v2021071201"

tmpFileM4_GLM_MSE <- pastel(

"results/results_M4_ridge_", tmpVersionM4_GLM_MSE, ".rdata"
)
tmpM4_GLM_MSE <- get (load(tmpFileM4_GLM_MSE))

tmpFileM4_GLM_MASE <- pastel(
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1185

1187

1189

1191

1193

1195

1197

1199

1201

1203

1205

1207

1209

1215

1217

1219

1233

1235

1237

"results/results_M4_MASE_ridge_", tmpVersionM4_GLM_MASE, ".rdata"

)
tmpM4_GLM_MASE <- get (load (tmpFileM4_GLM_MASE))

# |_ Table with values of the Log-Diff ================================
test_M4_GLM_MSE <- hypothesis_tests_schemes (

results = tmpM4_GLM_MSE,

is_stat = tmp_is_stat

test_M4_GLM_MASE <- hypothesis_tests_schemes (
results = tmpM4_GLM_MASE,

is_stat = tmp_is_stat
)
#4 \ Export as Latex Table - —"++—"F—"—"—"—""""""""""""""""""""""-"-"——
print (

xtable: :xtable (
x = t(t(test_M4_GLM_MSESAll)),
type = "latex",
label = "tab:GLM:M4d:bias:all",
caption = pasteO (
"Summary of the log percentage difference of the estimated loss",
"relative to the true loss for each validation scheme applied ",
"to the time series from the M4 Competition sample ",
"using the ",
"GLM-RIDGE ",
"learning algorithm and the ",
"MSE ",
"as error measure."
)
)
file = pasteO(
tmpSavePathTables, "M4_GLM_test_MSE_All_",tmpVersionM4_GLM_MSE,
"Lotxt"
)I
booktabs = TRUE,
include.rownames=FALSE

25| print (

xtable: :xtable(
x = t(t(test_M4_GLM _MSESStationary)),
type = "latex",
label = "tab:GLM:M4:bias:stationary",
caption = pasteO (
"Summary of the log percentage difference of the estimated loss",

"relative to the true loss for each validation scheme applied ",

"to the stationary time series from the M4 Competition sample ",
"using the ",

"GLM-RIDGE ",

"learning algorithm and the ",

"MSE ",

"as error measure."
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1239

1241

1243

1247

1249

1251

1253

1255

1257

1259

1261

1263

1265

1267

1269

1271

1273

1275

1277

1279

1283

1285

1287

1289

1291

)
)I
file = pasteO(
tmpSavePathTables, "M4_GLM_test_MSE_Stationary_",
tmpVersionM4_GLM_MSE,
"otxt"
)I
booktabs = TRUE,
include.rownames=FALSE

print (
xtable: :xtable (
x = t(t(test_M4_GLM MSESNonStationary)),
type = "latex",
label = "tab:GLM:M4:bias:nonstationary",
caption = pasteO (
"Summary of the log percentage difference of the estimated loss",
"relative to the true loss for each validation scheme applied ",
"to the non-stationary time series from the M4 Competition ",
"sample using the ",
"GLM-RIDGE ",
"learning algorithm and the ",
"MSE ",
"as error measure."
)
),
file = pastel(
tmpSavePathTables, "M4_GLM_test_MSE_NonStationary_ ",
tmpVersionM4_GLM_MSE,
"otxt"
)
booktabs = TRUE,
include.rownames=FALSE

print (
xtable: :xtable (

x = t(t(test_M4_GLM _MASESAll)),

type = "latex",

label = "tab:GLM:M4:bias:all:mase",

caption = pasteO (
"Summary of the log percentage difference of the estimated loss",
"relative to the true loss for each validation scheme applied ",

"to the time series from the M4 Competition sample ",

"using the ",

"GLM-RIDGE ",

"learning algorithm and the ",
"MASE ",

"as error measure."
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1293

1295

1297

1299

1301

1303

1305

1307

1309

1311

1313

1315

1317

1319

1323

1325

1327

1329

1331

1335

1337

1339

1341

1343

1345

),

file = pasteO(
tmpSavePathTables, "M4_GLM_test_MASE_All_",tmpVersionM4_GLM_MASE,
"otxt"

)

booktabs = TRUE,

include.rownames=FALSE

print (
xtable: :xtable (
x = t(t(test_M4_GLM _MASES$SStationary)),
type = "latex",
label = "tab:GLM:M4:bias:stationary:mase",
caption = pasteO (
"Summary of the log percentage difference of the estimated loss",
"relative to the true loss for each validation scheme applied ",
"to the stationary time series from the M4 Competition sample ",
"using the ",
"GLM-RIDGE ",
"learning algorithm and the ",
"MASE ",
"as error measure."
)
)l
file = pasteO(
tmpSavePathTables, "M4_GLM_test_MASE_Stationary_",
tmpVersionM4_GLM_MASE,
"otxt"
)I
booktabs = TRUE,
include.rownames=FALSE

print (
xtable: :xtable (
x = t(t(test_M4_GLM_MASES$NonStationary)),
type = "latex",
label = "tab:GLM:M4:bias:nonstationary:mase",
caption = pasteO (
"Summary of the log percentage difference of the estimated loss",
"relative to the true loss for each validation scheme applied ",
"to the non-stationary time series from the M4 Competition ",
"sample using the ",
"GLM-RIDGE ",
"learning algorithm and the ",
"MASE ",
"as error measure."
)
)I
file = pastel(
tmpSavePathTables, "M4_GLM_test_MASE_NonStationary_ ",
tmpVersionM4_GLM_MASE,
"otxt"
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1347 ) s
booktabs = TRUE,
1349 include.rownames=FALSE
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C.9 Create Bayesian Plots

code/bayesian_plots_v2021071601.R

S i
#’ Evaluating the performance of estimation methods

#

#’ This is an extension of the code from Cerqueira, Torgo, and Mozetic.
#’ "Evaluating time series forecasting models: an empirical study

#’ on performance estimation methods".

#’ In: Machine Learning (2020) 109:1997-2028

#I

#’ Modified by: Gustavo Varela-Alvarenga

#’ Date: 07/16/2021

S i A
ATV VLV VAV VAN AN N AN NN NANANANANNN N ##
> Packages ===== ==== === ==== ==== ===
install.packages ("remotes")

remotes: :install_github ("bOrxa/scmamp")

=

install.packages ("ggplot2")

install.packages ("Cairo")

SHE SR S S S S S 3 3 o

install.packages ("beepr")

library ("scmamp")
library ("ggplot2")
library ("Cairo")

# load code for ‘proportion_plot?
source ("src/plots_v2021071301.r")

N R R R N R N N N N R R N N N N N R N N N R R R N N R N RN 2.5
## > Path to save plots to ———-
tmpSavePath <- "results/plots"

NN S S R R S N R R N N N N N N N R R N N N N N N N N NN 3.3 £
# > Helpers #HH#
# |_ Helper Function: get_proportion_plot == == ==
get_proportion_plot <- function(final_results_data, baseline) {

# —— #
# get estimation errors
err_estimation <- lapply (
X = final_results_data,
function (X) tryCatch (XSerr_estimation, error =function(e) {NULL})

)

err_estimation <- err_estimation([!sapply(err_estimation, is.null)]
# —— #

# create df with final estimation errors

fr <- do.call(rbind, err_estimation)

fr <- as.data.frame (fr)
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54

56

58
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74

76

78
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82

84

86

88

90

96

100

104

rownames (fr) <- NULL

colnames (fr) <-

c("p-Holdout", # <———- new method
"cp-Holdout", # <———— new method
"cep-Holdout", # <————- new method
"Cv", "CV-Bl", "CV-Mod","CvV-hvBl",
"Preg-Bls", "Preg-Sld-Bls",
"Preg-Bls—-Gap", "Holdout", "Rep-Holdout",
# "Preg-Slide", "Preg-Grow" #the order in the original is switched
"Preg-Grow", "Preg-Slide"

)

# —— #

# get ranks for each estimation procedure
fr_abs <- abs(fr)

# —— #
cID <- which(colnames (fr_abs) %in% baseline)

PerfDiff <- lapply(as.data.frame (fr_abs),
function(x) x-fr_abs|[,cID,drop=T])

PerfDiff <- as.data.frame (PerfDiff[-cID])

rope <- 2.5
baout <- lapply(
PerfDiff,
function (u) {
bSignedRankTest (u, rope=c (-rope,rope)) Sposterior.probabilities

baout <- lapply (baout,unlist)

baout <- do.call (rbind, baout)

rownames (baout) <- gsub("\\.","-",rownames (baout))

colnames (baout) <- c("probLeft", "probRope", "probRight")
proportion_plot (baout, baseline) + scale_fill brewer (palette="Set2")

ATV A A A A A A ANAANANNNNNNNN g4

# ===================================================================
# ================= ===== ===== ====================== == #
#HHHH Stationary data #HHHH
# ===== ==== === === === === = #
# ===== ==== ==== ===== ==== ==== = #
# |_ Import Original Data set =========================================
load ("../stationarity_tsdl.rdata")

# |_ Indicator if the series is stationary ======= ==== ===

2lis_stat <- is_stationary_Z2ensemble

# 97 stationary time series (out of 174, 756%)
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#table (is_stationary_2ensemble)
106

ATV L LV AN NAANANANANANANNNNNNN 44

18| # =================================================================== §
# =================================================================== #§
vo| ###4# Results RBR #HH#
# ===== ==== ==== === ==== ==== = 4
| # ===== ==== ==== ==== ==== ==== = #
nal #4 \ MSE ——————————

16| tmpVersionRBR_MSE <- "v2021070901"

18| tmpFileRBR_MSE <- pasteO (

"results/results_cerqueira_rbr_", tmpVersionRBR_MSE, ".rdata"
120] )
tmpRBR_MSE <- get (load (tmpFileRBR_MSE))
122
# ——— #

24| # Stationary —--——-

ggsave (

126 filename = pasteO (

tmpSavePath, "/RBR_bayes_MSE_Stationary_", tmpVersionRBR_MSE,
128 ".png"

) 4

130 plot = get_proportion_plot (tmpRBR_MSE[is_stat], "cep-Holdout"),
device = "png",
132 type = "cairo",
width = 6,
134 height =4
)
136
el
38| # NonStationary —--——-—
ggsave (
140 filename = pasteO (
tmpSavePath, "/RBR_bayes_MSE_NonStationary_", tmpVersionRBR_MSE,
142 ".png"
) 14
144 plot = get_proportion_plot (tmpRBR_MSE[!is_stat], "cep-Holdout"),
device = "png",
146 type = "cairo",
width = 6,
148 height = 4
)
150
## 0\ MASE ——— e m e

152
tmpVersionRBR_MASE <- "v2021071201"
154
tmpFileRBR_MASE <- pasteO (

156 "results/results_cerqueira_MASE_rbr_", tmpVersionRBR_MASE, ".rdata"
)
53| tmpRBR_MASE <- get (load (tmpFileRBR_MASE))
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164
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204

206

208

210

212

# —— #
# Stationary —--——-—

ggsave (
filename = pasteO (
tmpSavePath, "/RBR_bayes_MASE_Stationary_", tmpVersionRBR_MASE,
".png"
)I
plot = get_proportion_plot (tmpRBR_MASE[is_stat], "cep-Holdout"),
device = "png",
type = "cairo",
width = 6,
height =4
)
# — #
# NonStationary —--——-—
ggsave (
filename = pastel (
tmpSavePath,

"/RBR_bayes_MASE_NonStationary_",
tmpVersionRBR_MASE,

".png"

)I

plot = get_proportion_plot (
tmpRBR_MASE[!is_stat], "cep-Holdout"

),

device = "png",

type = "cairo",

width = 6,

height =4

AN N S N R S R N N R N N N N R N N N N N N N N N NN 3 34 i

# ================ ==== =============== ==== = #
#f =================================================================== {
#H4H Results RF #HH#
# ================= ===== ===== ===== ===== == #
# ===== ==== ==== === ==== ==== = #
#H 0\ MSE —————— -

tmpVersionRF_MSE <- "v2021070901"

tmpFileRF_MSE <- pasteO(
"results/results_cerqueira_rf_", tmpVersionRF_MSE, ".rdata"

)
tmpRF_MSE <- get (load (tmpFileRF_MSE))

$ oo
# Stationary —--——-
ggsave (
filename = pasteO(
tmpSavePath, "/RF_bayes_MSE_Stationary_", tmpVersionRF_MSE, ".png"
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216

220

224

226

230

236

240

242

246

248

250

252

256

258

260

262

264

266

),
plot = get_proportion_plot (tmpRF_MSE[is_stat], "cep-Holdout"),

device = "png",
type = "cairo",
width = 6,
height =4

)

# —— #

# NonStationary ————

ggsave (

filename = pastel (
tmpSavePath, "/RF_bayes_MSE_NonStationary_", tmpVersionRF_MSE,

n . png"
)y
plot = get_proportion_plot (tmpRF_MSE[!is_stat], "cep-Holdout"),
device = "png"
type = "cairo",
width = o,
height =4
)
#H O\ MASE —— ===

tmpVersionRF_MASE <- "v2021071201"

tmpFileRF_MASE <—- pastel (
"results/results_cerqueira_MASE_rf_", tmpVersionRF_MASE, ".rdata"

)
tmpRF_MASE <- get (load (tmpFileRF_MASE))

# ——— #
# Stationary —--—-—-
ggsave (
filename = pasteO (
tmpSavePath, "/RF_bayes_MASE_Stationary_ ", tmpVersionRF_MASE,

n . png"
),
plot = get_proportion_plot (tmpRF_MASE[is_stat], "cep-Holdout"),
device = "png",
type = "cairo",
width = o,
height =4
)
# ——— #
# NonStationary ————
ggsave (

filename = pastel (

tmpSavePath, "/RF_bayes_MASE_NonStationary_", tmpVersionRF_MASE,

n mw

-png

)y
plot = get_proportion_plot (tmpRF_MASE[!is_stat], "cep-Holdout"),
"
png

device
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type = "cairo",
width = o,
height =4

ATV LV VLV VDV VNNV VA NAAANAANANNNNNNN 44

# ===== ==== ==== === ==== ==== = #
# ===== ==== ==== ==== ==== ==== = #
#H#H44 Results GLM #HH#
# ===================================================================
# ============================ ===== ======================== §
#4\ MSE ————m e

tmpVersionGLM_MSE <- "v2021070901"

tmpFileGLM_MSE <—- pasteO (

"results/results_cerqueira_ridge_", tmpVersionGLM_MSE, ".rdata"
)
tmpGLM_MSE <- get (load (tmpFileGLM_MSE) )

# —— #
# Stationary —-——-—
ggsave (
filename = pasteO(
tmpSavePath, "/RIDGE_bayes_MSE_Stationary_", tmpVersionGLM_MSE,
n .png"
)I
plot = get_proportion_plot (tmpGLM_MSE[is_stat], "cep-Holdout"),
device = "png",
type = "cairo",
width = 6,
height =4
)
# — #
# NonStationary ———-—
ggsave (
filename = pasteO (
tmpSavePath, "/RIDGE_bayes_MSE_NonStationary_", tmpVersionGLM_MSE,
n ‘png"
)I
plot = get_proportion_plot (tmpGLM_MSE[!is_stat], "cep-Holdout"),
device = "png",
type = "cairo",
width = 6,
height = 4
)
## 0\ MASE

tmpVersionGLM_MASE <- "v2021071201"

tmpFileGLM_MASE <—- pasteO (
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"results/results_cerqueira_MASE_ridge_", tmpVersionGLM_MASE, ".rdata"

)
tmpGLM_MASE <- get (load (tmpFileGLM_MASE))

# —— #
# Stationary —--——-
ggsave (
filename = pastel (
tmpSavePath, "/RIDGE_bayes_MASE_Stationary_ ", tmpVersionGLM_MASE,
n . png"
),
plot = get_proportion_plot (tmpGLM_MASE[is_stat], "cep-Holdout"),
device = "png",
type = "cairo",
width = 6,
height = 4
)
# ——— #
# NonStationary —-——-
ggsave (

filename = pasteO (
tmpSavePath, "/RIDGE_bayes_MASE_NonStationary_",
tmpVersionGLM_MASE,

n . png"
)y
plot = get_proportion_plot (tmpGLM_MASE[!is_stat], "cep-Holdout"),
device = "png",
type = "cairo",
width = o,
height =4
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# ===== == === === == == #
# ================= ===== ===== ===== ===== = #
#HEHH Stationary data — M4 #HEH4
# ===== ==== === === ==== ==== = #
# ==== == == === == == #
# |_ Import Original Data set === ==== ==== ===

load("results/stationarity_tsdl_M4_v02.rdata")

# |_ Indicator if the series is stationary == == ==
is_stat_M4 <- is_stationary_Z2ensemble_M4_v02

# 91 stationary time series (out of 1000, ~0.091%)
#table (is_stationary_2ensemble_M4_v02)
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# ===== == === === == == #
# ====== ==== ===== ===== ==== ===== = #
#444F Results M4-RBR FaHH
# ===== ==== ==== === ==== ==== = &
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tmpVersionM4_RBR_MSE <- "v2021070901"

tmpFileM4_RBR_MSE <- pasteO(
"results/results_M4_rbr_", tmpVersionM4_RBR_MSE, ".rdata"

)
tmpM4_RBR_MSE <- get (load(tmpFileM4_RBR_MSE))

Al
# Stationary —--——-—
ggsave (
filename = pastel (
tmpSavePath, "/M4_RBR_bayes_MSE_Stationary_", tmpVersionM4_RBR_MSE,
".png
)I
plot = get_proportion_plot (
tmpM4_RBR _MSE[is_stat_M4], "cep-Holdout"
)I

device = "png"
type = "cairo",
width = 6,
height =4
)
# ——— #
# NonStationary ———-—
ggsave (
filename = pasteO (
tmpSavePath, "/M4_RBR_bayes_MSE_NonStationary_ ",
tmpVersionM4_RBR_MSE,
n .png"
)I
plot = get_proportion_plot (
tmpM4_RBR_MSE[!is_stat_M4], "cep-Holdout"
),
device = "png",
type = "cairo",
width = 6,
height = 4
)
#4# \ MASE

tmpVersionM4_RBR_MASE <- "v2021071201"

tmpFileM4_RBR_MASE <- pasteO(
"results/results_M4_MASE_rbr_", tmpVersionM4_RBR_MASE, ".rdata"

)
tmpM4_RBR_MASE <- get (load (tmpFileM4_RBR_MASE))
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# —— #
# Stationary —--——-—
ggsave (
filename = pasteO (
tmpSavePath, "/M4_RBR_bayes_MASE_Stationary_",
tmpVersionM4_RBR_MASE,

".png"
)I
plot = get_proportion_plot (
tmpM4_RBR_MASE[is_stat_M4], "cep-Holdout"
),
device = "png",
type = "cairo",
width = 6,
height =4
)
# —— #
# NonStationary ———-—
ggsave (
filename = pasteO (

tmpSavePath, "/M4_RBR_bayes_MASE_NonStationary_",
tmpVersionM4_RBR_MASE,

".png"

)l

plot = get_proportion_plot (
tmpM4_RBR_MASE[!is_stat_M4], "cep-Holdout"

)I

device = "png",

type = "cairo",

width = 6,

height = 4
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tmpVersionM4_RF_MSE <- "v2021070901"

tmpFileM4_RF_MSE <- pastel(
"results/results_M4_rf_", tmpVersionM4_RF_MSE, ".rdata"

)
tmpM4_RF_MSE <- get (load (tmpFileM4_RF_MSE))

# —— #
# Stationary —--——-—
ggsave (

filename = pastel (
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tmpSavePath, "/M4_RF_bayes_MSE_Stationary_", tmpVersionM4_RF_MSE,
n mw
-png
)y
plot = get_proportion_plot (
tmpM4_RF_MSE[is_stat_M4], "cep-Holdout"
),

device = "png",
type = "cairo",
width = 6,
height =4
)
b ¢
# NonStationary ———-—
ggsave (
filename = pasteO (
tmpSavePath, "/M4_RF_bayes_MSE_NonStationary_",
tmpVersionM4_RF_MSE,
n .png"
)I
plot = get_proportion_plot (
tmpM4_RF_MSE([!is_stat_M4], "cep-Holdout"
)I
device = "png",
type = "cairo",
width = o,
height = 4
)
## \ MASE ———m o

tmpVersionM4_RF_MASE <- "v2021071201"

tmpFileM4_RF_MASE <- pasteO (
"results/results_M4_MASE_rf_", tmpVersionM4_RF_MASE, ".rdata"

)
tmpM4_RE_MASE <- get (load(tmpFileM4_RF_MASE))

el
# Stationary —-——-—
ggsave (
filename = pasteO (
tmpSavePath, "/M4_RF_bayes_MASE_Stationary_", tmpVersionM4_RF_MASE,
".png
)I
plot = get_proportion_plot (
tmpM4_RF_MASE[is_stat_M4], "cep-Holdout"
)I

device png",
type = "cairo",
width = 6,
height =4
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# —— #
# NonStationary —--——-—
ggsave (
filename = pasteO (
tmpSavePath, "/M4_RF_bayes_MASE_NonStationary_",
tmpVersionM4_RF_MASE,
n .png"
)I
plot = get_proportion_plot (
tmpM4_RF_MASE[!is_stat_M4], "cep-Holdout"
),

device = "png",
type = "cairo",
width = 6,
height =4
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#44F4 Results M4-GLM FaH#
# ============= ==== ===== ===== ===== ===== == #
# ===== ==== ==== === ==== ==== = #
#4 \ MSE ————————
tmpVersionM4_RIDGE_MSE <- "v2021070901"

tmpFileM4_RIDGE_MSE <- pasteO(

"results/results_M4_ridge_", tmpVersionM4_RIDGE_MSE, ".rdata"

)
tmpM4_RIDGE_MSE <- get (load (tmpFileM4_RIDGE_MSE) )

# —— #
# Stationary —--—-
ggsave (
filename = pasteO(
tmpSavePath, "/M4_RIDGE_bayes_MSE_Stationary_",
tmpVersionM4_RIDGE_MSE,
n .png"
)l
plot = get_proportion_plot (

tmpM4_RIDGE_MSE [is_stat_M4],
),

"cep-Holdout"

device = "png",
type = "cairo",
width = 6,
height = 4

)

# ——— #

# NonStationary —--——-—

ggsave (
filename = pastel (
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590 tmpSavePath, "/M4_RIDGE_bayes_MSE_NonStationary_",
tmpVersionM4_RIDGE_MSE,

592 ".png"

)I

594 plot = get_proportion_plot (
tmpM4_RIDGE_MSE[!is_stat_M4], "cep-Holdout"

596 ),

device = "png",
598 type = "cairo",
width = o,
600 height =4
)
602
## 0\ MASE

604
tmpVersionM4_RIDGE_MASE <- "v2021071201"
606
tmpFileM4_RIDGE_MASE <- pasteO(

608 "results/results_M4_MASE_rf_ ", tmpVersionM4_RIDGE_MASE, ".rdata"

)
610 tmpM4_RIDGE_MASE <- get (load(tmpFileM4_RIDGE_MASE))

612 # -0 #

# Stationary —--—-—

614l ggsave (

filename = pasteO (

616 tmpSavePath, "/M4_RIDGE_bayes_MASE_Stationary_ ",
tmpVersionM4_RIDGE_MASE,

618 ".png"
) 4
620 plot = get_proportion_plot (
tmpM4_RIDGE_MASE [is_stat_M4], "cep-Holdout"
622 ),
device = "png",
624 type = "cairo",
width = o,
626 height =4
)
628
# —— #
630| # NonStationary —---—-
ggsave (

632 filename = pasteO (
tmpSavePath, "/M4_RIDGE_bayes_MASE_NonStationary_",

634 tmpVersionM4_RIDGE_MASE,
n .pngu
636 ) s
plot = get_proportion_plot (
638 tmpM4_RIDGE_MASE[!is_stat_M4], "cep-Holdout"
) 14
640 device = "png",
type = "cairo",
642 width = 6,
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height =4

R S S R N R N N N R N N N R N R N N N N N N N RN 2.3 £
# =================================================================== §
# ====== ==== ===== ===== ===== ===== = #
3 4 4 Results SIM-RBR 4 4 4
# ================ ==== ==== ==== ==== = #
# ============================ ===== ========================
## O\ MSE ==
# —— #
# S3 ———
tmpVersionS3_RBR_MSE <- "v2021070901"
tmpFileS3_RBR_MSE <- paste0 (

"results/results_ts3_rbr_", tmpVersionS3_RBR_MSE, ".rdata"
)
tmpS3_RBR_MSE <- get (load(tmpFileS3_RBR_MSE))
ggsave (

filename = pastel (

tmpSavePath, "/SIM_RBR_bayes_MSE_S3_", tmpVersionS3_RBR_MSE, ".png"

)y

plot = get_proportion_plot (tmpS3_RBR_MSE, "cep-Holdout"),

device = "png",

type = "cairo",

width = o,

height =4
)
# —— #
# S4 ———-
tmpVersionS4_RBR_MSE <- "v2021070901"
tmpFileS4_RBR_MSE <- pastel(

"results/results_tsd_rbr_", tmpVersionS4_RBR_MSE, ".rdata"
)
tmpS4_RBR_MSE <- get (load (tmpFileS4_RBR_MSE))
ggsave (

filename = pasteO (

tmpSavePath, "/SIM_RBR_bayes_MSE_S4_", tmpVersionS4_RBR_MSE, ".png"

)y

plot = get_proportion_plot (tmpS4_RBR_MSE, "cep-Holdout"),

device = "png",

type = "cairo",

width = o,

height =4
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# O\ MASE —— o

# ——— #
# 83 ———-
tmpVersionS3_RBR_MASE <- "v2021071201"
tmpFileS3_RBR_MASE <- paste0(
"results/results_TS3_MASE_rbr_", tmpVersionS3_RBR_MASE, ".rdata"

)
tmpS3_RBR_MASE <- get (load (tmpFileS3_RBR_MASE))

ggsave (
filename = pastel (
tmpSavePath, "/SIM_RBR_bayes_MASE_S3_", tmpVersionS3_RBR_MASE,
".png"
)I
plot = get_proportion_plot (tmpS3_RBR_MASE, "cep-Holdout"),
device = "png",
type = "cairo",
width = 6,
height =4
)
Al
# S4 ————
tmpVersionS4_RBR_MASE <- "v2021071201"
tmpFileS4_RBR_MASE <- paste0(

"results/results_TS4_MASE_rbr_", tmpVersionS4_RBR_MASE, ".rdata"

)
tmpS4_RBR_MASE <- get (load (tmpFileS4_RBR_MASE))

ggsave (

filename = pasteO(
tmpSavePath, "/SIM_RBR_bayes_MASE_S4_", tmpVersionS4_RBR_MASE,
".png"

)I

plot = get_proportion_plot (tmpS4_RBR_MASE, "cep-Holdout"),

device = "png",

type = "cairo",

width = 6,

height =4

# ===== ==== ==== ===== ==== ==== = 4
# ===== ==== ==== === ==== ==== = 4
#4349 Results SIM-RF FaaH
# ===================================================================
# =================================================================== {
## 0\ MSE ————
# —— #

# 83 ———-

tmpVersionS3_RF_MSE <- "v2021070901"
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tmpFileS3_RF_MSE <- pastel (
"results/results_ts3_rf_ ", tmpVersionS3_RF_MSE, ".rdata"

)
tmpS3_REF_MSE <- get (load (tmpFileS3_RF_MSE))

ggsave (
filename = pastel (
tmpSavePath, "/SIM_RF_bayes_MSE_S3_", tmpVersionS3_RF_MSE, ".png"
),

plot = get_proportion_plot (tmpS3_RF_MSE, "cep-Holdout"),
device = "png"
type = "cairo",
width = 6,
height =4
)
# —— #
# S4 ———-

tmpVersionS4_RF_MSE <- "v2021070901"

tmpFileS4_RF_MSE <- paste0 (
"results/results_tsd4_rf_ ", tmpVersionS4_RF_MSE, ".rdata"

)
tmpS4_RF_MSE <- get (load (tmpFileS4_RF_MSE))

ggsave (
filename = pastel (
tmpSavePath, "/SIM_RF_bayes_MSE_S4_", tmpVersionS4_RF_MSE, ".png"
),

plot = get_proportion_plot (tmpS4_RF_MSE, "cep-Holdout"),
device = "png",
type = "cairo",
width = 6,
height =4
)
0\ MASE — o
el
# S3 ———~-
tmpVersionS3_RF_MASE <- "v2021071201"
tmpFileS3_RF_MASE <- pasteO(

"results/results_TS3_MASE_rf_", tmpVersionS3_RF_MASE, ".rdata"

)
tmpS3_RF_MASE <- get (load(tmpFileS3_RF_MASE))

ggsave (
filename = pasteO (
tmpSavePath, "/SIM_RF_bayes_MASE_S3_", tmpVersionS3_RF_MASE, ".png"
)y

plot = get_proportion_plot (tmpS3_RF_MASE, "cep-Holdout"),
device = "png",

type = "cairo",

width = 6,
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height =4

# = #

# 5S4 ————

tmpVersionS4_RF_MASE <- "v2021071201"
tmpFileS4_RF_MASE <- pasteO (

"results/results_TS4_MASE_rf_ ", tmpVersionS4_RF_MASE, ".rdata"

)
tmpS4_RF_MASE <- get (load(tmpFileS4_RF_MASE))

ggsave (
filename = pasteO (
tmpSavePath, "/SIM_RF_bayes_MASE_S4_", tmpVersionS4_RF_MASE, ".png"
),

plot = get_proportion_plot (tmpS4_RF_MASE, "cep-Holdout"),
device = "png",

type = "cairo",

width = 6,

height =4
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$ 53 ———

tmpVersionS3_RIDGE_MSE <- "v2021070901"

tmpFileS3_RIDGE_MSE <- pasteO(
"results/results_ts3_ridge_", tmpVersionS3_RIDGE_MSE, ".rdata"

)
tmpS3_RIDGE_MSE <- get (load (tmpFileS3_RIDGE_MSE) )

ggsave (
filename = pasteO (
tmpSavePath, "/SIM_RIDGE_bayes_MSE_S3_", tmpVersionS3_RIDGE_MSE,

n .png"
)I
plot = get_proportion_plot (tmpS3_RIDGE_MSE, "cep-Holdout"),
device = "png",
type = "cairo",
width = 6,
height = 4
)
# —— #
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# S4 ————
tmpVersionS4_RIDGE_MSE <- "v2021070901"

tmpFileS4_RIDGE_MSE <- pasteO(

"results/results_ts4_ridge_", tmpVersionS4_RIDGE_MSE, ".rdata"
)

tmpS4_RIDGE_MSE <- get (load(tmpFileS4_RIDGE_MSE) )

ggsave (
filename = pasteO (
tmpSavePath, "/SIM_RIDGE_bayes_MSE_S4_", tmpVersionS4_RIDGE_MSE,
n .png"
)I
plot = get_proportion_plot (tmpS4_RIDGE_MSE, "cep-Holdout"),
device = "png",
type = "cairo",
width = 6,
height = 4
)
0\ MASE — o
Al
# S3 ———~-
tmpVersionS3_RIDGE_MASE <- "v2021071201"
tmpFileS3_RIDGE_MASE <- pasteO(

"results/results_TS3_MASE_ridge_", tmpVersionS3_RIDGE_MASE, ".rdata"
)

tmpS3_RIDGE_MASE <- get (load (tmpFileS3_RIDGE_MASE))

ggsave (
filename = pasteO (
tmpSavePath, "/SIM_RIDGE_bayes_MASE_S3_", tmpVersionS3_RIDGE_MASE,
n .png"
)I
plot = get_proportion_plot (tmpS3_RIDGE_MASE, "cep-Holdout"),
device = "png",
type = "cairo",
width = 6,
height =4
)
# —— #
# S4 ————

tmpVersionS4_RIDGE_MASE <- "v2021071201"
tmpFileS4_RIDGE_MASE <- pasteO(

"results/results_TS4_MASE_ridge_", tmpVersionS4_RIDGE_MASE, ".rdata"
)

tmpS4_RIDGE_MASE <- get (load(tmpFileS4_RIDGE_MASE))

ggsave (
filename = pasteO(
tmpSavePath, "/SIM_RIDGE_bayes_MASE_S4_", tmpVersionS4_RIDGE_MASE,

n . png
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),

plot = get_proportion_plot (tmpS4_RIDGE_MASE,
device = "png",

type = "cairo",

width = o,

height = 4

)

beepr::beep("fanfare")

"cep-Holdout"),
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C.10 Forecasts for the M4 Competition series using the GEARS strategy

code/evaluation_M4_v2020080702.R

#’ Applying the GEARS strategy to the 100,000 time series from the

#’ M4 Forecasting Competition

# > Packages ===== === —

# install.packages ("devtools")
library (devtools)

# Install the GEARS package

## Access Token:

GITHUB_PAT <- "b9b7b8b9d384£f£89000d1ba40cb0d2e761c273b3"

install_github ("gu-stat/gears",

## Call the package
library (gears)

auth_token

GITHUB_PAT)

# Install the M4comp2018 package with data from the M4 Competition

# install.packages (

# "https://github.com/carlanetto/Mdcomp2018/releases/download/0.2.0/
M4comp2018_0.2.0.tar.gz",

# repos=NULL

# )

## Call the package
library (M4comp2018)

# Install the future.apply package
# install.packages ("future.apply")

## Call the package
library ("future.apply")

# > Path ==================================

tmpPathM4 <- "./M4GearsResults"

# AR KA AR A AR A AR A A AR A A A A IR A AL A A A A I A A I A R A A A A A IR A AN A RN A A A A A A A XA Ax A ————

# DATA
# >

# |__ M4 Data Sets ==== ===

# M4 <— Mdcomp2018::M4

# "st" series_name

# "period" periodicity

# "n" : sample_size

# "h" : forecast.horizon
# o"x" : data_train
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# "xx" : data_test

# "pt_ff" : Point Forecasts (top 25 submissions, one on each row)

# "low_ff" : Prediction Interval - Lower Bound (top 25 submissions)

# "up_ff" : Prediction Interval - Upper Bound (top 25 submissions)

# 0\ Hourly —————————— o
M4 .Hourly <- Filter (function(l) 1l$period == "Hourly", M4comp2018::M4)

M4 .Hourly.forecasts <- Map (function(l) 1$pt_£ff, M4.Hourly)

# \____ Daily ——————————
M4 .Daily <- Filter (function(l) 1lS$period == "Daily", M4comp2018::M4)

M4 .Daily.forecasts <- Map (function(l) 1S$pt_ff, M4.Daily)

# \___ Yearly ———————m
M4 .Yearly <- Filter (function(l) 1l$period == "Yearly", Mdcomp2018::M4)
M4 .Yearly.forecasts <- Map (function(l) 1Spt_ff, M4.Yearly)

# \___ Weekly ——————————m
M4 .Weekly <- Filter (function(l) lS$period == "Weekly", M4comp2018::M4)
M4 .Weekly.forecasts <- Map (function(l) 1Spt_ff, M4.Weekly)

# \___ Quarterly ————————— oo

M4 .Quarterly <-
Filter (function(l) 1l$period == "Quarterly", Mdcomp2018::M4)

M4 .Quarterly.forecasts <- Map (function(l) 1S$pt_ff, M4.Quarterly)
# 0\ Monthly - - —————-"""""—""""""""——

M4 .Monthly <-
Filter (function(l) 1l$period == "Monthly", M4comp2018::M4)

M4 .Monthly.forecasts <- Map(function(l) 1Spt_ff, M4.Monthly)

# KA A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A AR dA A A A A A A Ak k) ————
# Analysis ———
# > -

tmpVersionHourly <- "v2020080702"
tmpFileHourlyAll <—- paste0(
tmpPathM4, "/Hourly_ All_One_Step_", tmpVersionHourly, ".rdata"
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138
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142
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146
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150

152

154

156

tmpFileHourlySummary <- pasteO (
tmpPathM4, "/Hourly_Summary_One_Step_", tmpVersionHourly, ".rdata"

plan (multisession, workers = 16)

timeHourly <- system.time ({
hourlyOptim <- future_lapply (
X = l:length(M4.Hourly),
function (X) {

tmpDeseason <- deseason (

ts.data = M4 .Hourly[[X]]$x%,
ts.frequency = stats::frequency (M4.Hourly [ [X]]$x),
alpha.level = 0.05,

forecast.horizon = 1 #M4.Hourly[[X]]S$h

tmpOptim <- gears_optim(
DATA = tmpDeseasonS$deseasonTsS,
forecast.horizon 1, #M4.Hourly[[X]]S$h

search.size.rs = c(144, 450),
search.number.rs = c(24, 36, 48),
last.obs = M4.Hourly[[X]]$n,
y.max.lags = 2,

use.intercept = "poth",
error.measure = "smape",
betas.selection = "both",
use.parallel = FALSE

# Estimation
tmpGears <- gears (

DATA = tmpDeseasonS$deseasonTsS,
forecast.horizon = 1, #M4.Hourly[[X]]S$h,

size.rs = tmpOptim[l, "size.rs"],

number.rs = tmpOptim[1l, "number.rs"],

last.obs = M4 .Hourly[[X]]$n,

y.max.lags = 2,

use.lintercept = as.character (tmpOptim[l, "intercept"]),
error.measure = "smape",

betas.selection = as.character (tmpOptim[l, "betas"]),
use.parallel = FALSE

return (list(
forecasts =
tmpGearsS$Sout_sample_forecasts * tmpDeseason$seasonalComp,

lower = tmpGears$lower x tmpDeseasonS$seasonalComp,
upper tmpGears$upper * tmpDeseason$seasonalComp

))

by
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future.seed = 0xBEEF
)
})

plan (sequential)
timeHourly[3]/60 # =~ 5.477333 min
save (hourlyOptim, file = tmpFileHourlyAll)
# \___ OWA Results — M4 + Gears ——————————————————————————
allHourlyForecasts <- lapply (
X = 1l:length (hourlyOptim),

function (X) {
t(t(c(M4.Hourly.forecasts[[X]][, 1], hourlyOptim[[X]]$forecasts)))

allResultsHourly <- evaluationM4_One_Step (
DATA = M4.Hourly,
forecast.list = allHourlyForecasts,
alpha = 0.05

rownames (allResultsHourly) <-
c(as.character (M4comp2018::submission_info$ID[1:25]), "GEARS")
# allResultsHourly

save (allResultsHourly, file = tmpFileHourlySummary)
beepr: :beep ("fanfare")

# 0\ Forecasts Naive2 ————————-——————————————————————— -
plan(multisession, workers = 16)
tmpForecastsHourlyNaive2 <- future_lapply (

X = 1l:length(M4.Hourly),

function (X) {
forecast_naive2 (

ts.data = M4 .Hourly[[X]]$x,

ts.frequency = stats::frequency (M4.Hourly[ [X]]S$x),
forecast.horizon = 1,

alpha.level = 0.05

)

b
future.seed = 0xBEEF

## SMAPE for naive?2

smapeM4HourlyNaive2 <- future_lapply (
X = 1l:length(M4.Hourly),

349




212 function (X) {

214 tmp <- error_measures (
forecasts = tmpForecastsHourlyNaive2 [ [X]],
216 outsample = M4.Hourly[[X]]$xx[1],
insample = M4 .Hourly[[X]]$x,
218 ts.frequency = stats::frequency (M4.Hourly[[X]]$x),
forecast.horizon = 1,
220 alpha.level = 0.05,
error.measure = "smape"
222 )
224 unlist (tmp)

b
226 future.seed = 0xBEEF

228
smapeM4HourlyNaive2 <- mean (unlist (smapeM4HourlyNaive?2))
230

## MASE for naive?2

maseM4HourlyNaive2 <- future_lapply (
234 X = 1l:length(M4.Hourly),
function (X) {

236

tmp <- error_measures (

238 forecasts = tmpForecastsHourlyNaive2 [ [X]],
outsample = M4.Hourly[[X]]1S$xx[1],
240 insample = M4 .Hourly[[X]]$x%,
ts.frequency = stats::frequency (M4.Hourly[[X]]$x),
242 forecast.horizon = 1,
alpha.level = 0.05,
244 error.measure = "mase"

246
unlist (tmp)

248 b,

future.seed = 0xBEEF

250| )
22| maseM4HourlyNaive2 <- mean (unlist (maseM4HourlyNaive?2))

»4lplan (sequential)

x| # |__ Weekly ====== ———ee ———ee ————e ———e =

38| tmpVersionWeekly <— "v2020080702"
tmpFileWeeklyAll <- paste0 (
260 tmpPathM4, "/Weekly_ All_One_Step_", tmpVersionWeekly, ".rdata"

262
tmpFileWeeklySummary <- pasteO(
264 tmpPathM4, "/Weekly_ Summary_One_Step_", tmpVersionWeekly, ".rdata"
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266
x| plan (multisession, workers = 16)

0l timeWeekly <— system.time ({
weeklyOptim <- future_lapply (
272 X = l:length (M4.Weekly),
function (X) {

274

if (M4.Weekly[[X]]Sn == 80) {
276 tmp.search.size.rs <- c(26, 43)
tmp.search.number.rs <- c (5, 10)
278 } else {
tmp.search.size.rs <- c (80, 150)
280 tmp.search.number.rs <- c (26, 52)

282

tmpDeseason <— deseason (

284 ts.data = M4 .Weekly[[X]]$x%,
ts.frequency = stats::frequency (M4.Weekly[[X]]S$x),
286 alpha.level = 0.05,

forecast.horizon = 1 #M4.Weekly[[X]]S$h
288 )

290 tmpOptim <- gears_optim(
DATA = tmpDeseasonS$SdeseasonTsS,
292 forecast.horizon = 1, #M4.Weekly[[X]]S$h
search.size.rs = tmp.search.size.rs,
294 search.number.rs = tmp.search.number.rs,
last.obs = M4.Weekly[[X]]$n,
296 y.max.lags = 2,
use.intercept = "poth",
298 error.measure = "smape",
betas.selection = "both",
300 use.parallel = FALSE

302

# Estimation

304 tmpGears <- gears(

DATA = tmpDeseasonS$SdeseasonTsS,
306 forecast.horizon = 1, #M4.Weekly[[X]]$h,

size.rs = tmpOptim([l, "size.rs"],
308 number.rs = tmpOptim[1l, "number.rs"],

last.obs = M4 .Weekly[[X]]$n,
310 y.max.lags = 2,

use.lintercept = as.character (tmpOptim[l, "intercept"]),
312 error.measure = "smape",

betas.selection = as.character (tmpOptim[l, "betas"]),
314 use.parallel = FALSE

316
return (list (

318 forecasts =

tmpGearsSout_sample_forecasts * tmpDeseason$seasonalComp,

351




320

322

324

326

328

330

332

336

338

340

342

344

346

348

350

352

354

356

358

360

362

364

366

368

370

372

lower = tmpGears$lower x tmpDeseasonS$SseasonalComp,
upper tmpGears$upper * tmpDeseason$seasonalComp

))

b
future.seed = 0xBEEF

)
})

plan(sequential)
timeWeekly[3]/60 # =~ 5.477333 min
save (weeklyOptim, file = tmpFileWeeklyAll)
# \___ OWA Results - M4 + Gears ————————————————————————————
allWeeklyForecasts <- lapply(
X = l:length(weeklyOptim),

function (X) {
t(t(c(M4.Weekly.forecasts[[X]][, 1], weeklyOptim[[X]]Sforecasts)))

allResultsWeekly <- evaluationM4_One_Step (
DATA = M4.Weekly,
forecast.list = allWeeklyForecasts,
alpha = 0.05

rownames (allResultsWeekly) <-
c(as.character (M4comp2018::submission_info$ID[1:25]), "GEARS")
# allResultsWeekly

save (allResultsWeekly, file = tmpFileWeeklySummary)
beepr::beep("fanfare")

#\ Forecasts Naive2 —————————————————
plan(multisession, workers = 16)
tmpForecastsWeeklyNaive2 <- future_lapply (

X = l:length (M4.Weekly),

function (X) {
forecast_naive2 (

ts.data = M4 .Weekly[[X]]Sx,

ts.frequency = stats::frequency (M4 .Weekly [ [X]]$x),
forecast.horizon = 1,

alpha.level = 0.05

)

b
future.seed = 0xBEEF
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374

376

380

382

384

386

390

392

394

396

398

400

402

404

406

408

414

416

418

420

422

424

426

## SMAPE for naive?2

smapeM4WeeklyNaive2 <- future_lapply (
X = l:length (M4.Weekly),
function (X) {

tmp <- error_measures (

forecasts = tmpForecastsWeeklyNaive2 [ [X]],
outsample = M4 .Weekly[[X]]1Sxx[1],

insample = M4 .Weekly[[X]]$x,

ts.frequency = stats::frequency (M4.Weekly[[X]]S$x),
forecast.horizon = 1,

alpha.level = 0.05,

error.measure = "smape"

unlist (tmp)
by

future.seed = O0xXBEEF
smapeM4WeeklyNaive2 <- mean (unlist (smapeM4WeeklyNaive?2))
## MASE for naive?2
maseM4WeeklyNaive2 <- future_lapply (

X = l:length (M4.Weekly),

function (X) {

tmp <- error_measures (

forecasts = tmpForecastsWeeklyNaive2 [ [X]],
outsample = M4 .Weekly[[X]]Sxx[1],

insample = M4 .Weekly[[X]]$x%,

ts.frequency = stats::frequency (M4.Weekly[[X]]$x),
forecast.horizon = 1,

alpha.level = 0.05,

error.measure = "mase"

unlist (tmp)

b
future.seed = 0xBEEF

maseM4WeeklyNaive2 <- mean (unlist (maseM4WeeklyNaive2))

plan (sequential)

tmpVersionDaily <- "v2020080702"
tmpFileDailyAll <- paste0 (
tmpPathM4, "/Daily_All_One_Step_", tmpVersionDaily, ".rdata"
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428

430

432

4

)
B

436

438

440

442

444

446

448

450

452

454

456

460

462

464

466

468

470

474

476

478

480

tmpFileDailySummary <- pasteO(

tmpPathM4, "/Daily_Summary_One_Step_", tmpVersionDaily,

# Sample sizes

tmpNDaily <- sapply(
X = l:length(M4.Daily),
function (X) M4.Daily[[X]]Sn

table (tmpNDaily)
plan(multisession, workers = 16)
timeDaily <- system.time ({
dailyOptim <- future_lapply (
X = l:length(M4.Daily),
function (X) {

tmp.search.size.rs <- c (30, 60)
tmp.search.number.rs <- c(12)

".rdata"

if (X %in% c(34, 2211)) {

tmp.search.betas = "last"
} else {
tmp.search.betas = "both"
}
if (X %in% c(131, 2085, 2211, 2219) ) {
tmp.intercept = "without"
} else {
tmp.intercept = "both"

tmpDeseason <- deseason (

ts.data
ts.frequency =
alpha.level =
forecast.horizon

M4 .Daily[[X]]Sx,

stats::frequency (M4.Daily[[X]]$x),
0.05,

1 #M4.Daily[[X]]S$h

tmpOptim <- gears_optim(

DATA =
forecast.horizon
search.size.rs =

search.number.rs =
last.obs =
y.max.lags =
use.lintercept =
error.measure =
betas.selection =

tmpDeseason$deseasonTs,
1, #M4.Daily[[X]]S$h
tmp.search.size.rs,
tmp.search.number.rs,
M4 .Daily[[X]]$n,

2/

tmp.intercept,

"smape",
tmp.search.betas,
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482 use.parallel = FALSE

484
# Estimation

486 tmpGears <- gears (
DATA = tmpDeseason$SdeseasonTsS,
488 forecast.horizon = 1, #M4.Daily[[X]]S$h,
size.rs = tmpOptim([l, "size.rs"],
490 number.rs = tmpOptim([l, "number.rs"],
last.obs = M4.Daily[[X]]$n,
492 y.max.lags = 2,
use.intercept = as.character (tmpOptim[1l, "intercept"]),
494 error.measure = "smape",
betas.selection = as.character (tmpOptim[1l, "betas"]),
496 use.parallel = FALSE
)
498 #cat (X)
return (list (
500 forecasts =

tmpGears$out_sample_forecasts * tmpDeseason$seasonalComp,

502

lower tmpGears$lower * tmpDeseason$seasonalComp,
504 upper = tmpGearsS$Supper * tmpDeseasonS$seasonalComp
))

506 },

future.seed = 0xBEEF

508 )

})

510
plan (sequential)

timeDaily[3]/60 # ~ 6.286167 min
514
save (dailyOptim, file = tmpFileDailyAll)
516
# 0\ OWA Results - M4 + Gears ————————————————————————————

allDailyForecasts <- lapply (

520 X = 1l:length(dailyOptim),

function (X) {

522 t(t(c(M4.Daily.forecasts[[X]][, 1], dailyOptim[[X]]S$forecasts)))

54| )

26| allResultsDaily <- evaluationM4_One_Step (
DATA = M4.Daily,

528 forecast.list = allDailyForecasts,
alpha = 0.05
s300) # 7 7 min

53| rownames (allResultsDaily) <-—
c(as.character (M4comp2018: :submission_info$ID[1:25]), "GEARS")

# allResultsDaily
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536

540

542

544

546

548

550

552

554

556

558

560

562

564

566

568

570

572

576

578

580

584

586

588

save (allResultsDaily, file = tmpFileDailySummary)
beepr::beep("fanfare")

# \ Forecasts Naive2 — -
plan (multisession, workers = 16)

tmpForecastsDailyNaive2 <- future_lapply (
X = l:length(M4.Daily),
function (X) {
forecast_naive?2 (
ts.data = M4.Daily[[X]]$x%,
ts.frequency stats::frequency (M4.Daily[[X]]$x),
forecast.horizon = 1,
alpha.level = 0.05
)

b
future.seed = 0xBEEF

## SMAPE for naive?2

smapeM4DailyNaive2 <- future_lapply (
X = l:length(M4.Daily),
function (X) {

tmp <- error_measures (

forecasts = tmpForecastsDailyNaive2[[X]],
outsample = M4.Daily[[X]]S$xx[1],

insample = M4.Daily[[X]]8x%,

ts.frequency = stats::frequency (M4.Daily[[X]]S$x),
forecast.horizon = 1,

alpha.level = 0.05,

error.measure = "smape"

unlist (tmp)

I
future.seed = 0xBEEF

smapeM4DailyNaive2 <- mean (unlist (smapeM4DailyNaive?2))

## MASE for naive2

2lmaseM4DailyNaive2 <- future_lapply (

X = l:length(M4.Daily),
function (X) {

tmp <- error_measures (
forecasts tmpForecastsDailyNaive2[[X]],
outsample = M4.Daily[[X]]$xx[1],
insample M4 .Daily[[X]]$x,
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590

592

594

596

598

600

602

604

606

608

610

612

614

616

618

620

622

624

626

628

630

632

634

636

638

640

642

ts.frequency = stats::frequency (M4.Daily[[X]]S$x),

forecast.horizon = 1,
alpha.level = 0.05,
error.measure = "mase"

unlist (tmp)

b
future.seed = 0xBEEF

maseM4DailyNaive2 <- mean (unlist (maseM4DailyNaive2))

plan (sequential)

# |__ Yearly ===============================================

tmpVersionYearly <- "v2020080702"
tmpFileYearlyAll <- paste0 (

tmpPathM4, "/Yearly_ All_One_Step_", tmpVersionYearly, ".rdata"

tmpFileYearlySummary <- pasteO (
tmpPathM4, "/Yearly_Summary_One_Step_", tmpVersionYearly,

# Sample sizes

tmpNYearly <- sapply (
X = l:length(M4.Yearly),
function(X) M4.Yearly[[X]]$n

table (tmpNYearly)
which (tmpNYearly == 13)

plan(multisession, workers = 16)

beepr: :beep_on_error ({timeYearly <- system.time ({
yearlyOptim <- future_lapply (
X = l:length(M4.Yearly),
#lapply (
#X = 21547,
function (X) {

if (M4.Yearly[[X]]$Sn <= 15) {
tmp.search.size.rs <- c(6)
tmp.search.number.rs <- c(3)

} else if (M4.Yearly[[X]]1Sn < 50) {
tmp.search.size.rs <- c (5, o)

tmp.search.number.rs <- c(5)

} else if (M4.Yearly[[X]]$Sn < 100) {
tmp.search.size.rs <- c (10, 20)
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644

646

648

650

652

654

656

658

660

662

664

666

668

670

672

674

676

678

680

682

684

686

688

690

692

694

696

#tmp.search.size

.rs <-= c(20)

tmp.search.number.rs <- c(5)

} else {

tmp.search.size.rs

#tmp.search.size

<- c (20, 60)
.rs <= c(60)

tmp.search.number.rs <- c(30)

if (X %in% c(609,
17087
tmp.search.betas
} else {
tmp.search.betas

if (X %in% c(3472,
12149
17084
21168
tmp.intercept =

} else {
tmp.intercept =

9012, 9875, 10289, 10033, 12143, 12147, 15088,
, 21124)) |
"last"

= "pboth"

3792, 9012, 9861, 10289, 10033, 12143, 12146,
, 13143, 13332, 13335, 14244, 14833, 15088,

, 17086, 17087, 21124,

, 21547, 22380, 22466) ) {

"without"

"both"

#tmp.search.betas = "both"
#tmp.intercept = "both"

tmpDeseason <— deseason (

ts.data
ts.frequency
alpha.level
forecast.horizon

tmpOptim <- gears_.

DATA
forecast.horizon
search.size.rs
search.number.rs
last.obs
y.max.lags
use.lintercept
error.measure
betas.selection
use.parallel

# Estimation

tmpGears <- gears (
DATA
forecast.horizon
size.rs
number.rs
last.obs

= M4.Yearly[[X]]$x%,

= stats::frequency (M4.Yearly[[X]]$x),
= 0.05,

1 #M4.Yearly[[X]]1Sh

optim (

= tmpDeseasonS$deseasonTs,
1, #M4.Yearly[[X]]S$h
= tmp.search.size.rs,

= tmp.search.number.rs,
= M4.Yearly[[X]]$n,

= 2,

= tmp.intercept,

= "smape",

= tmp.search.betas,

= FALSE

= tmpDeseason$deseasonTsS,

= 1, #M4.Yearly[[X]]$h,

= tmpOptim([l, "size.rs"],

= tmpOptim[1l, "number.rs"],
= M4.Yearly[[X]]$n,
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698 y.max.lags = 2,

use.intercept = as.character (tmpOptim[l, "intercept"]),
700 error.measure = "smape",
betas.selection = as.character (tmpOptim[l, "betas"]),
702 use.parallel = FALSE
)
704 cat (pastelO (X, "."))
return (list (
706 forecasts =

tmpGears$out_sample_forecasts * tmpDeseason$seasonalComp,

708

lower = tmpGearsS$lower x tmpDeseasonS$SseasonalComp,
710 upper = tmpGearsS$upper * tmpDeseason$seasonalComp
))
712 }
#)
714 , future.seed = O0xBEEF
)
716 })
}l
718 sound = 9)

70l plan (sequential)
72| timeYearly [3]/60 # 7 12.75983 min

74| save (yearlyOptim, file = tmpFileYearlyAll)
beepr::beep("fanfare")

726
#\ OWA Results - M4 + Gears ——————————————————————————————————————
728
allYearlyForecasts <- lapply(

730 X = 1l:length(yearlyOptim),

function (X) {

732 t(t(c(M4.Yearly.forecasts[[X]]I[, 1], yearlyOptim[[X]]Sforecasts)))

734] )

736l allResultsYearly <- evaluationM4_One_Step (
DATA = M4.Yearly,

738 forecast.list = allYearlyForecasts,
alpha = 0.05

740 ) # 7 7 min

742l rownames (allResultsYearly) <-
c(as.character (M4comp2018: :submission_info$ID[1:25]), "GEARS")
744
# allResultsYearly
746
save (allResultsYearly, file = tmpFileYearlySummary)
143| beepr: :beep ("fanfare")

750 # 0\ Forecasts Naive2 - -
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72|plan (multisession, workers = 16)
754l options (future.globals.maxSize= 891289600)

756| tmpForecastsYearlyNaive2 <- future_lapply (
X = l:length(M4.Yearly),

758 function (X) {

forecast_naive2 (

760 ts.data = M4 .Yearly[[X]]$x,
ts.frequency = stats::frequency (M4d.Yearly[[X]]$x),
762 forecast.horizon = 1,
alpha.level = 0.05
764 )
} 14
766 future.seed = 0xXBEEF

768
## SMAPE for naive?2
770
smapeM4YearlyNaive2 <- future_lapply (
772 X = l:length(M4.Yearly),
function (X) {

tmp <- error_measures (

776 forecasts = tmpForecastsYearlyNaive2 [ [X]],
outsample = M4 .Yearly[[X]]1Sxx[1],
778 insample = M4.Yearly[[X]]$x,
ts.frequency = stats::frequency (M4.Yearly[[X]]S$x),
780 forecast.horizon = 1,
alpha.level = 0.05,
782 error.measure = "smape"

784
unlist (tmp)

786 },

future.seed = 0xXBEEF
788 )

790| smapeM4YearlyNaive2 <- mean (unlist (smapeM4YearlyNaiveZ2))
792| ## MASE for naive?2

94| maseM4YearlyNaive2 <- future_lapply (
X = l:length(M4.Yearly),

796 function (X) {
798 tmp <- error_measures (
forecasts = tmpForecastsYearlyNaive2[[X]],
800 outsample = M4d.Yearly[[X]]S$xx[1],
insample = M4.Yearly[[X]]$x%,
802 ts.frequency = stats::frequency (M4.Yearly[[X]]$x),
forecast.horizon = 1,
804 alpha.level = 0.05,
error.measure = "mase"
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806 )

808 unlist (tmp)

b
810 future.seed = 0xBEEF

812
maseM4YearlyNaive2 <- mean (unlist (maseM4YearlyNaive2))
814
plan(sequential)

816

# |_ Quarterly === ===== ===== ===== ===== ===
818
tmpVersionQuarterly <- "v2020080702"

g0 tmpFileQuarterlyAll <— paste0(

tmpPathM4, "/Quarterly_ All_One_Step_", tmpVersionQuarterly, ".rdata"
822 )

g4 tmpFileQuarterlySummary <- pasteO(
tmpPathM4,

826 "/Quarterly_Summary_One_Step_",
tmpVersionQuarterly,

828 ".rdata"

830
# Sample sizes

82| tmpNQuarterly <- sapply (

X = 1l:length(M4.Quarterly),

834 function (X) M4.Quarterly[[X]]$n

836
table (tmpNQuarterly)
33 which (tmpNQuarterly == 26)

g0l plan (multisession, workers = 16)

s42| beepr: :beep_on_error ({timeQuarterly <- system.time ({
quarterlyOptim <- future_lapply (

844 X = l:length(M4.Quarterly),
#lapply (
846 #X = 19636,

function (X) {
848
if (M4.Quarterly[[X]]Sn <= 18) {
850 tmp.search.size.rs <- c(5)
tmp.search.number.rs <- c(3)
852

} else if (M4.Quarterly[[X]]$n <= 25) ({

854 tmp.search.size.rs <- c(8)
tmp.search.number.rs <- c(4)

856 } else if (M4.Quarterly[[X]]$n <= 50) {
tmp.search.size.rs <- c(14)

858 #tmp.search.size.rs <- c(20)

tmp.search.number.rs <- c(4)
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860

862

864

866

868

870

874

876

878

880

882

884

886

888

890

892

894

896

898

900

902

904

906

908

910

912

} else {
tmp.search.size.rs <- c(20)
#tmp.search.size.rs <- c(60)
tmp.search.number.rs <- c(4, 12)

if (X %in% c (19636, 19680)) {

tmp.search.betas = "last"
} else {

tmp.search.betas = "both"
}
if (X %in% c (5619, 14727, 19636, 19680) ) {

tmp.intercept = "without"
} else {

tmp.intercept = "both"
}
#tmp.search.betas = "both"
#tmp.intercept = "both"

tmpDeseason <- deseason (

ts.data = M4.Quarterly[[X]]$x,
ts.frequency = stats::frequency (M4.Quarterly[[X]]$x),
alpha.level = 0.05,

forecast.horizon = 1 #M4.Quarterly[[X]]S$h

tmpOptim <- gears_optim(

DATA = tmpDeseasonS$deseasonTsS,
forecast.horizon = 1, #M4.Quarterly[[X]]S$h
search.size.rs = tmp.search.size.rs,
search.number.rs = tmp.search.number.rs,
last.obs = M4.Quarterly[[X]]1$n,
y.max.lags = 2,

use.lintercept = tmp.intercept,
error.measure = "smape",
betas.selection = tmp.search.betas,
use.parallel = FALSE

# Estimation
tmpGears <- gears (

DATA = tmpDeseasonS$SdeseasonTsS,
forecast.horizon = 1, #M4.Quarterly[[X]]$h,

size.rs = tmpOptim([l, "size.rs"],

number.rs = tmpOptim([1l, "number.rs"],

last.obs = M4.Quarterly[[X]]$n,

y.max.lags = 2,

use.intercept = as.character (tmpOptim[l, "intercept"]),
error.measure = "smape",

betas.selection = as.character (tmpOptim[l, "betas"]),
use.parallel = FALSE
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914 cat (pasteO (X, "."))

return (list (

916 forecasts =

tmpGears$out_sample_forecasts * tmpDeseason$seasonalComp,

918

lower = tmpGearsS$lower x tmpDeseasonS$SseasonalComp,
920 upper = tmpGearsS$Supper * tmpDeseasonS$seasonalComp
))
922 }
#)
924 , future.seed = 0xXBEEF
)
926] })
}l
og| sound = 9)

9s0lplan (sequential)
o3| timeQuarterly[3]/60 # ~ 7.161167 min (2: 720.094 min)

934| save (quarterlyOptim, file = tmpFileQuarterlyAll)
beepr: :beep("fanfare")

936
# 0\ OWA Results — M4 + Gears ——————————————————————————————————————
938
allQuarterlyForecasts <- lapply(

940 X = l:length(quarterlyOptim),

function (X) {

942 t (t(c(

M4 .Quarterly.forecasts[[X]][, 1], quarterlyOptim[[X]]S$forecasts
44 )))

9461 )

aug|l allResultsQuarterly <- evaluationM4_One_Step (
DATA = M4.Quarterly,

950 forecast.list = allQuarterlyForecasts,
alpha = 0.05
92| ) # T 7 min

954 rownames (allResultsQuarterly) <-

c(as.character (M4comp2018::submission_info$ID[1:25]), "GEARS")
956
# allResultsQuarterly
958
save (allResultsQuarterly, file = tmpFileQuarterlySummary)
90| beepr: :beep ("fanfare")

962 # \ Forecasts Naive2 ——————————"————————————————
94| plan (multisession, workers = 16)

96| options (future.globals.maxSize= 891289600)

363




968

970

972

974

976

978

980

982

984

986

988

990

992

994

996

998

1000

1002

1004

1006

1008

1010

1012

1014

1020

tmpForecastsQuarterlyNaive2 <- future_lapply (
X = 1l:length(M4.Quarterly),
function (X) {
forecast_naive2(
ts.data = M4.Quarterly[[X]]S$x,
ts.frequency stats::frequency (M4.Quarterly[[X]]S$x),
forecast.horizon = 1,
alpha.level = 0.05
)

by
future.seed = 0xXBEEF
## SMAPE for naive?
smapeM4QuarterlyNaive2 <- future_lapply (
X = 1l:length (M4.Quarterly),

function (X) {

tmp <- error_measures (

forecasts = tmpForecastsQuarterlyNaive2 [ [X]],
outsample = M4.Quarterly[[X]]1$xx[1],

insample = M4.Quarterly[[X]]$x,

ts.frequency = stats::frequency (M4.Quarterly[[X]]$x),
forecast.horizon = 1,

alpha.level = 0.05,

error.measure = "smape"

unlist (tmp)
by

future.seed = OxBEEF
smapeM4QuarterlyNaive2 <- mean (unlist (smapeM4QuarterlyNaive2))
## MASE for naive2
maseM4QuarterlyNaive2 <- future_lapply (

X = 1l:length (M4.Quarterly),

function (X) {

tmp <- error_measures (

forecasts = tmpForecastsQuarterlyNaive2 [ [X]],
outsample = M4.Quarterly[[X]]$xx[1],

insample = M4.Quarterly[[X]]$x,

ts.frequency = stats::frequency (M4.Quarterly[[X]]S$x),
forecast.horizon =1,

alpha.level = 0.05,

error.measure = "mase"

unlist (tmp)
¥
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1022

1024

1026

1028

1030

1032

1034

1036

1038

1040

1042

1044

1046

1048

1050

1052

1054

1056

1060

1062

1064

1066

1068

1070

1072

future.seed = 0xBEEF

maseM4QuarterlyNaive2 <- mean(unlist (maseM4QuarterlyNaive?2))

plan (sequential)

# |__ Monthly ===== ===== ===== ===== ==

tmpVersionMonthly <- "v2020080702"
tmpFileMonthlyAll <- pastel (
tmpPathM4, "/Monthly_ All_One_Step_", tmpVersionMonthly,

tmpFileMonthlySummary <—- paste0(
tmpPathM4,
"/Monthly_Summary_One_Step_",
tmpVersionMonthly,
".rdata"

# Sample sizes

tmpNMonthly <- sapply (
X = l:length(M4.Monthly),
function (X) M4.Monthly[[X]]$n

table (tmpNMonthly)

which (tmpNMonthly == 26)

options (future.globals.maxSize= 891289600)
plan(multisession, workers = 16)

beepr: :beep_on_error ({timeMonthly <- system.time ({

monthlyOptim <- future_lapply (
X = l:length (M4 .Monthly),

#lapply (
#X = 47981:1length (M4 .Monthly),
#X = 47810,

function (X) {

if (M4.Monthly[[X]1Sn <= 45) {
tmp.search.size.rs <- c(18)
tmp.search.number.rs <- c(8)

} else if (M4.Monthly[[X]]$n <= 53) {
tmp.search.size.rs <— c(22)
tmp.search.number.rs <- c(8)

} else if (M4.Monthly[[X]]$n <= 59) ({
tmp.search.size.rs <= c(30)
tmp.search.number.rs <- c(8)

} else if (M4.Monthly[[X]]$n <= 100) {
tmp.search.size.rs <— c(36)
tmp.search.number.rs <- c(8)
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".rdata"




1076

1078

1080

1082

1084

1086

1088

1090

1092

1094

1096

1098

1100

1102

1104

1106

1108

1110

1112

1114

1116

1118

1120

1124

1128

} else {
tmp.search.size.rs <- c(48)
tmp.search.number.rs <- c(10)

# } else if (M4.Monthly[[X]]$n <= 25) {

# tmp.search.size.rs <- ¢ (8)

# tmp.search.number.rs <— c(4)

# } else if (M4.Monthly[[X]]$n <= 50) {

# tmp.search.size.rs <= c(14)

# #tmp.search.size.rs <— c(20)

# tmp.search.number.rs <— c(4)

# } else {

# tmp.search.size.rs <- ¢ (20)

# #tmp.search.size.rs <- c(60)

# tmp.search.number.rs <- c(4, 12)

# )

#

if (X %in% c(3006, 16993, 34815, 38911)) {
tmp.search.betas = "last"

} else {
tmp.search.betas = "both"

}

if (X %in% c(3006, 16993, 34815, 38911) ) {
tmp.intercept = "without"

} else {
tmp.intercept = "both"

}

#tmp.search.betas = "both"

#tmp.intercept = "both"

tmpDeseason <— deseason (

ts.data = M4.Monthly[[X]]$x,
ts.frequency = stats::frequency (M4 .Monthly[[X]]S$x),
alpha.level = 0.05,

forecast.horizon = 1 #M4.Monthly[[X]]S$h

tmpOptim <- gears_optim(

DATA = tmpDeseason$deseasonTs,
forecast.horizon = 1, #M4.Monthly[[X]]S$h
search.size.rs = tmp.search.size.rs,
search.number.rs = tmp.search.number.rs,
last.obs = M4.Monthly[[X]]$n,
y.max.lags = 2,

use.intercept = tmp.intercept,
error.measure = "smape",
betas.selection = tmp.search.betas,
use.parallel = FALSE

# Estimation
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1130

1132

1134

1136

1138

1140

1142

1144

1146

1148

1150

1152

1154

1156

1158

1160

1162

1164

1166

1168

1170

1172

1174

1176

1178

1180

1182

tmpGears <- gears(

DATA = tmpDeseason$deseasonTsS,
forecast.horizon = 1, #M4.Monthly[[X]]$h,

size.rs = tmpOptim([l, "size.rs"],

number.rs = tmpOptim[1l, "number.rs"],

last.obs = M4.Monthly[[X]]$n,

y.max.lags = 2,

use.intercept = as.character (tmpOptim[l, "intercept"]),
error.measure = "smape",

betas.selection = as.character (tmpOptim[l, "betas"]),
use.parallel = FALSE

)
#1f (X %in% c(seq(1:48)%1000)) cat (pastel (X, "."))
cat (pasteO(X, "."))
return (list (
forecasts =
tmpGearsS$Sout_sample_forecasts * tmpDeseason$seasonalComp,

lower = tmpGears$lower x tmpDeseasonS$seasonalComp,
upper = tmpGears$upper * tmpDeseason$seasonalComp

))

, future.seed O0xXBEEF
)
})

by

sound = 9)
plan (sequential)
timeMonthly[3]/60 # =~ 7.161167 min (2: ~20.094 min)

save (monthlyOptim, file = tmpFileMonthlyAll)
beepr::beep("fanfare")

#\ OWA Results - M4 + Gears ————————————————————————

allMonthlyForecasts <- lapply(
X = 1l:length (monthlyOptim),
function (X) {
t(t(c(
M4 .Monthly.forecasts[[X]][, 1], monthlyOptim[[X]]S$forecasts
)))

allResultsMonthly <- evaluationM4_One_Step (
DATA = M4.Monthly,
forecast.list = allMonthlyForecasts,
alpha = 0.05

)y # 7 7 min

rownames (allResultsMonthly) <-
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1184

1186

1188

1190

1192

1194

1196

1198

1200

1202

1204

1206

1208

1212

1216

1220

1222

1224

1226

1230

1232

1234

1236

c(as.character (M4comp2018::submission_info$ID[1:25]), "GEARS")
# allResultsMonthly

save (allResultsMonthly, file = tmpFileMonthlySummary)
beepr: :beep("fanfare")

# 0\ Forecasts Naive2 —————-—--—-——————————————————————
plan(multisession, workers = 16)
options (future.globals.maxSize= 891289600)

tmpForecastsMonthlyNaive2 <- future_lapply (
X = l:length(M4.Monthly),
function (X) {
forecast_naive?2 (
ts.data = M4 .Monthly[[X]]$x,
ts.frequency stats::frequency (M4.Monthly[[X]]$x),
forecast.horizon = 1,
alpha.level = 0.05
)

b
future.seed = O0xXBEEF
## SMAPE for naive?2
smapeM4MonthlyNaive2 <- future_lapply (
X = l:length(M4.Monthly),

function (X) {

tmp <- error_measures (

forecasts = tmpForecastsMonthlyNaive2 [ [X]],
outsample = M4.Monthly[[X]]$xx[1],

insample = M4.Monthly[[X]]$x,

ts.frequency = stats::frequency (M4.Monthly[ [X]]$x),
forecast.horizon =1,

alpha.level = 0.05,

error.measure = "smape"

unlist (tmp)
b

future.seed = O0xBEEF
smapeM4MonthlyNaive2 <- mean (unlist (smapeM4MonthlyNaive2))
## MASE for naive2
maseM4MonthlyNaive2 <- future_lapply (

X = l:length (M4.Monthly),
function (X) {
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1238

1240

1242

1244

1246

1248

1250

1254

1256

tmp <- error_measures (

forecasts = tmpForecastsMonthlyNaive2 [ [X]],
outsample = M4 .Monthly[[X]]S$xx[1],

insample = M4 .Monthly[[X]]$x,

ts.frequency = stats::frequency (M4.Monthly[[X]]S$x),
forecast.horizon = 1,

alpha.level = 0.05,

error.measure = "mase"

unlist (tmp)

b
future.seed = 0xBEEF

maseM4MonthlyNaive2 <- mean (unlist (maseM4MonthlyNaive?2))

plan (sequential)
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Appendix D: Optimized results for a subset of Daily time series from

the M4 Competition

Table D.1: Daily time-series case number and their respec-
tive new and old values of the OWA, alongside the new val-
ues for S, M, intercept choice, and betas choice.

TS Number | New OWA | Previous OWA | New S | New M | Intercept | Betas
38 5.86 115.80 7 90 without | average
261 5.81 16.19 8 5 without | last

493 4.21 26.31 8 10 with average
681 4.09 11.65 50 19 without | last

697 1.31 137.91 50 20 without | average
700 4.56 12.42 50 17 without | last

701 1.47 92.17 8 15 without | average
704 5.36 14.35 50 17 without | last

709 4.85 13.11 50 17 without | last

809 7.19 12.82 50 17 without | last
838 3.90 10.06 50 16 without | last

863 4.97 12.88 21 16 without | last
1025 4.96 29.98 7 14 with average
1063 8.71 25.65 9 12 without | average
1289 1.16 32.81 50 15 without | last
1451 0.32 29.17 13 12 without | last
1681 6.34 11.85 50 15 without | last
1686 6.11 12.02 50 15 without | last
1948 7.31 10.77 50 18 without | average
1993 8.23 23.70 50 19 with average
2116 2.94 13.12 50 15 without | last
2218 4.29 12.54 11 14 without | average
2232 2.27 33.30 11 16 without | average
2256 0.44 14.56 50 16 without | last
2317 5.78 38.35 80 7 without | last
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2378
2463
2487
2504
2532
2543
2548
2566
2569
2583
2640
2642
2691
2697
2744
2766
2789
2845
2974
3002
3016
3022
3023
3064
3102
3160
3232
3292
3398
3457
3559
3649
3706
4207

6.06
10.26
7.26
6.45
1.00
4.17
0.36
3.90
2.34
2.25
14.21
11.19
1.78
4.78
242
8.48
4.70
4.87
7.99
4.19
1.40
7.55
0.44
4.02
11.87
7.56
4.34
0.15
1.74
0.99
1.52
2.64
5.94
0.96

103.47
63.12
81.69
53.99
30.56
10.26
21.30
34.56
16.56
11.40
40.93
54.54
11.35
13.68
13.08
19.52
15.62
13.59
11.85
16.04
38.48
37.97
20.05
14.49
86.32
13.60
36.83
22.29
49.56
14.68
39.14
18.10
10.17
12.14

12
11
11

11
50

13
50
50
80
80
50
50

60
30
13
50
11
50

120
50

50

14

50

50
50

14
14
20
14
20

10
15
20

15
15
10
13
15

19
14
15
10

16

16
30

20
15
30
20
15

with
with
without
with
without
without
with
with
without
with
without
without
without
with
with
with
with
without
with
with
with
with
without
with
with
without
with
with
with
with
with
with
with
without

last
last
average
average
last
average
average
average
last
average
last
last
last
average
average
last
last
last
average
last
average
last
last
last
average
last
last
average
average
average
average
last
average
last
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Appendix E: List of the top 20 papers found under the keywords *ma-
chine learning time series’ in number of citations, and whether

they mention seasonality in their text.
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