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ABSTRACT

User Interface Management Systems have significantly reduced the effort required to build a user
interface.  However, current systems assume a set of standard "widgets" and make no provisions for
defining new ones.  This forces user interface designers to either do without or laboriously build new
widgets with code.  The Interface Object Graph is presented as a method for specifying and
communicating the design of interaction objects or widgets.  Two sample specifications are presented,
one for a secure switch and the other for a two dimensional graphical browser.
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INTRODUCTION

Specification of user interfaces has been used to aid in the design of user-computer dialog and
software.  This work has led to the development of User Interface Management Systems or UIMSs.
These systems significantly reduce the work required to design and specify a user-computer dialog.
They also allow non-programmers to prototype and design complex user interfaces.  However, current
UIMSs assume that a set of primitives (interaction objects or widgets) exist and manipulate the
presentation of these objects.  If none of the interaction objects are quite what the designer wants, then
either the designer must compromise and redesign the dialog with the interaction objects provided or
the desired dialog must be coded in a programming language.  This paper presents the Interaction
Object Graph as an approach to this widget building problem.  IOGs can be used to specify interaction
objects at a higher level than programming languages.  As such they could be the basis for extending
UIMSs to allow design and prototyping of new interaction objects.

PREVIOUS RESEARCH

Over the years a number of methods have been used to specify user interfaces.  These include
grammars, algebraic specifications, task description languages, transition diagrams, statecharts, and
interface representation graphs.

Shneiderman's multiparty grammars[8] are an example of a grammar based specification.  A multiparty
grammar divides non-terminals into three classes:  user-input, computer, and mixed.  User-input and
computer non-terminals represent user actions and computer responses, respectively.  Mixed non-
terminals represent sequences in the human-computer dialogs.  Multiparty grammars are good for
modeling keyboard-based command language interactions, but are very awkward for direct-
manipulation interfaces.

Algebraic specification of window systems was introduced by Guttag and Horning[1].  They proposed
the design of a windowing system based on axiomatic specification of abstract data types.  This
method permits formally proving properties of the user interface.  However, algebraic specifications
have serious drawbacks.  They are very difficult to read and require considerable time and training to
understand.  They are even more difficult to write.  This makes them unsuited for communicating
interface behavior.

Task description languages concentrate on describing user actions.  They were originally developed to
model user performance and most do not provide any provision for describing system actions.  Siochi
and Hartson's User Action Notation (UAN) is one language which also makes a contribution by
specifying computer feedback and interface internal state[2,10].  However, UAN concentrates heavily
on describing user actions and is not well adapted to describing software state.  Specifying system
responses to unexpected user actions is awkward.  In addition, UAN's tabular notation does not
readily show relationships between tasks.

Another approach to modeling user interfaces is the transition diagram[12].  In this approach the
transitions represent user inputs and the nodes represent states of the interface.  Computer outputs are
specified as either annotations to the state or transitions.  However, transition diagrams suffer from a
combinatorial explosion in the number of states and transitions as system complexity increases.  Jacob
solved part of this problem by allowing concurrent states to coexist as parallel machines or co-
routines[5].  Co-routines did not completely solve the transition complexity problems for specifying
some systems (notably those with context sensitive help).

Harel's statecharts[3,13] were designed as a formal solution to the combinatorial problems with
transition diagrams.  The statechart adds the concept of a meta-state.  Meta-states group together sets of
states with common transitions that are inherited by all states enclosed in the meta-state.  Since meta-
states may enclose other meta-states a complete inheritance hierarchy is supported.  A special history
state is supported to return the meta-state to its previous status on return transitions from events such
as invoking help.  Meta-states are divided into two types: parallel or AND-states and sequential or
XOR-states.  Meta-states enclosed within AND-states may execute in parallel and fulfill the function of
co-routines.  As originally defined statecharts do not incorporate data flow or abstraction.
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Interface Representation Graphs (IRGs) used by Rouff[7] as the underlying representation for his
Rapid Program Prototyper (RPP) extend the statechart to represent dialog.  Extensions to statecharts
are:  IRG nodes represent a physical or logical component of the interface as well as a state.  Data flow
as well as control flow can be specified in an IRG.  IRGs support inheritance of interface objects, data
flow, control flow, and attributes.  Constraints on data and control flow are supported.  Finally to
support UIMS functionality, IRGs permit specification of semantic feedback between the application
and the user interface.  However, the IRG specifies interaction between "widgets" and is not designed
to specify new ones.

The above specification methods concentrate on describing interface behavior.  However, interface
layout and spatial relations between objects are also important.  One approach to layout is simply to
draw the interface.  However, this method does not do very well when run-time re-sizing is allowed.
Recent research has settled on constraint grammars[11] to solve this problem.  Hudson's Apogee
UIMS[4] has a particularly clever method for setting layout constraints graphically.

INTERACTION OBJECT GRAPHS

Interaction Object Graphs (IOGs) are designed to add widget specification to Interface Representation
Graphs.  They combine the data flow and constraint specifications of IRGs with the statechart
transition diagram execution model.  This expands the statechart to show data relationships as well as
control flow.  It also permits specification of low level interaction objects which cannot be specified by
Interface Representation Graphs.  Below is a brief description of the IOG state diagram and a transition
description language used to specify transition conditions.

Interaction Object Graph State Diagrams

The IOG state diagram traces its lineage from traditional state diagrams, Harel's statecharts, and
Rouff's IRGs.  Statecharts added four new state types to the traditional state diagram.  These states are
used in IOGs.  They are:  the XOR meta-state, the AND meta-state, and two types of history state.

The meta-states can contain both normal states and other meta-states.  Transitions from meta-states are
inherited by all contained states.  This helps reduce the problem of arc explosion.  The XOR meta-state
contains a sequential transition network.  Only one state inside of an XOR meta-state can be active at
one time.  On the other hand, an AND meta-state contains more than one transition network.  Each of
these networks executes in parallel.

A history state can only be contained in an XOR meta-state.  Whenever a transition transfers control
from a meta-state, the history state remembers which state was active immediately before the transition.
If a later transition returns control to the history state, the meta-state is returned to the remembered
status.  History states help control state explosion.  To see this, consider a specification of a help
system which is independent of the user interface.  An ordinary transition network would require
replicating the help system specification once for every state in the user interface.  Otherwise, there
would be no way to return to the user interface state that was active before help was requested.  A
statechart history state could receive the return transition from the help system and only one copy
would be required.  There are two types of history states.  They differ in how they treat a return when
the last active state was a meta-state.  The H state restarts meta-states at their start state and provides
one level of history.  On the other hand, the H* state restarts meta-states at their history state when
they have one, thus, allowing multilevel history.  Figure 1 shows the representation of the new states.

IOGs add two additional state types to the statechart, data objects and display states.  Both of these
state types were present in IRGs.  However, their meaning is slightly different in IOGs.  Data objects
are represented as parallelograms.  (See Figure 1.)  In IOGs they represent the storage of a data item
and control is never passed to them.  They can only be destinations for the constraint and data arcs
discussed below.  Display states are control states that have a change in the display associated with
them.  In IOG diagrams a picture of the display change is used whenever possible instead of a program
like statement such as "draw(ActiveON)".
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H
History States

AND Meta-state
XOR Meta-state

H*
object name DataObject State

Display StateStandard State

Figure 1 -- IOG state symbols.

IOGs also add three new transition arc types.  These are:  the event arc, data arc, and constraint arc.

Events allow the designer to define "messages" which may be lacking in the underlying specification
model.  For example when specifying the trash can in the MacIntosh interface, one needs to know
when a file is being dragged over it as opposed to when the pointer is being dragged over it.  One way
to do this would be for the file icon to generate a "dragging started" event and a "dropped" event.  The
trash can would then highlight whenever the pointer was over it between a "dragging started" event
and a "dropped" event.  An event is represented by a special transition passing through an E in a
diamond.  (See Figure 2.)  The user defined event is not present in either IRGs or statecharts, but was
used in Jacob's transition diagrams.  The purpose of an event transition is to create new symbols for
use when describing transitions.

Data flow is represented in a manner similar to events – an arc passing through a D in a diamond.  (See
Figure 2.)  A data flow arc may have any state as a source and can only terminate at a data object or
have an unspecified termination.  In addition, at least one end must be attached to a data object.  Data
flow arcs with data objects as a source, whose destination arrow is unspecified, and whose destination
is outside of the containing interactor object, are considered to be exported.  The data may be used by
the application or attached to other user interface components as a more complete specification is
constructed.  Data flow arcs with data objects as destinations represent updating the data object.  If the
arc's source is a control state, it represents a change in the value when the arc conditional is satisfied.
In this case, the data flow arc is labeled with the new object value.  An arc without a source represents
a possible external update of the object.  IRGs have a similar mechanism, but data arcs only represent
data interchange with the application.

Constraints are useful in specifying one attribute of the user interface in terms of others.  With
constraints it is simple to restrict an icon to be contained within a window or to map the values of a
slider to a specific range.  Constraints are restricted to interactions between two data objects.  A
constraint is shown with an arc passing through a C in a diamond.  (See Figure 2.)  The arc indicates
that the destination data object is dependent on the source data object.  Constraint arcs come from IRGs
and are not present in statecharts.

E

Event Arc

event name

D

Data Flow Arc

 data value
C

Constraint Arc

constraint name

Control Arc

condition

Figure 2 -- IOG arc symbols.
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IOG Transition Descriptions

In order to describe the transitions between states an abstract model of the user interface and a
description language for that model are required.  IOGs abstract the interface into the following objects:
Booleans, numbers, points, regions, icons, view ports, windows, and user inputs.  A brief
description of these objects follows.

Booleans and numbers are the usual abstractions with the usual operations.  It should be noted that
numbers contain both the real and integer data types.

Points are an ordered pair of two numbers (x,y).  Points have the algebraic operators which are
normally associated with them.  A point may be assigned a value by writing p=(x,y).  In addition,
p.x and p.y represent the x and y coordinates from the point p.

A region is a set of display points defined relative to an origin called the location.  The location of the
region is always the point (minx,miny) where minx and miny are the smallest x and y coordinates in
the region.  Regions have a size operator which returns a point giving the height and width of the
smallest rectangle which covers the region.  Regions also have an in operator which tests if a point is
in the region.  This is written Region.in(pt) and returns a Boolean value.  Although regions are not
restricted to be rectangular, rectangles are the most commonly used.  Note, a region cannot be visible
on the display.  There is no drawing operation associated with a region.

Icons are regions with pictures.  That is some points in the region have a color number attached to
them and are shown on the display.  Icons add the operations draw and erase.  In addition, if the
origin of the icon is changed, there is an implicit erase-draw operation sequence.  Unless otherwise
specified the region associated with an icon is a rectangle.

A view port is a region with an associated mapping function for some underlying application data.  The
mapping would be in two parts: conversion to a world coordinate system and graphics representation;
and projection onto the display.  For example, text would first be converted from ASCII to a font
representation and a location on a page.  The page would then be projected onto the display.  The
projection is controlled by a point named translate and its scale change is controlled by a point name
scale.  If convert is the conversion function for some object in some view port, then the function
translate + proj(scale, (convert(object))) would be the view port mapping.  Parts of objects
projected to points not in the region are not displayed and objects in view ports are addressed relative
to the view port location.

Windows group the above objects together and add a level relative to other windows.  They can be
viewed as view ports containing only objects already mapped to display coordinates.  A window with
a lower level obscures an overlapping window with a higher level.

Objects are addressed in the specification using a dot notation.  For example, "win.icon1.location.x"
would be the x coordinate of the location of icon "icon1" in window "win".

User inputs are mapped to numbers, points, and Boolean variables.  Keyboard input events are
represented by quoted strings ("quit↵" when the word quit is typed and followed by a carriage return)
or key events similar to those in UAN (LShiftv for left shift key pressed).  The mouse is mapped into a
point for location (M@), a point for relative change (M), a Boolean indicating it moved (M), button
change events (Mv, M^, M2v, ...), and button status variables (Mdn, Mup, M2dn, ...).  Since
the value of the mouse location is tested frequently, in[Region] is written as a shorthand for
Region.in(M@).

EXAMPLE SPECIFICATIONS

Below are two examples of how IOGs would be used to specify components of a user interface.  The
first example is a special form of a toggle switch which models the behavior of a rocker switch.  The
second example is the specification of a two dimensional graphical browser and shows how the IOGs
might be used to build a visual description language for browsers.  Both of these examples concentrate
on the behavior of the components.  Many details such as colors, fonts, and actual locations are not
given.  These details would only serve to make the examples more complex and less illustrative.  In
addition, these details would normally be determined when the widget is incorporated into a complete
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user interface.  These properties are also very simple to specify with a property list, while behavior
cannot be so specified.

Secure Toggle Switch

The first example will be a "secure" switch based on the designs by Plaisant[6].  This switch is
designed to prevent accidental manipulation of a device under computer control.  For example, this
switch could be use for the master power switch for factory machinery.  The switch requires that the
operator point at its current state and drag the switch to its new state in order to operate it.  This
prevents inadvertently changing the switch position (and the controlled system).  In order to turn the
switch on, the operator would have to move the mouse to the "Off" region of the switch, press the
mouse button, drag the mouse into an intermediate region, drag the mouse into the "On" region, and
release the button.  Releasing the mouse button in any region other than "On" will return the switch to
the off state.  Turning the switch off is similar.  Each step in the operation sequence corresponds to a
similar state in the user interface.

In order to specify the user interface we need to define three regions and five icons.  The regions relate
the mouse position to the corresponding side of the switch image.  (See figure 3.)  The icons provide
feedback to the user about the switch value and about its operation.  Figure 4 shows the specification
and the icons.

On Mid Off

Figure 3 -- Regions used in specification of a secure switch

To get a better idea of how the specification is interpreted let's trace a user turning the switch on.  At
startup, "Static States" is entered at the start state.  A test is made on the initial value of "switch" and
either the "on" image or the "off" image is displayed.   In this case, assume the system starts with the
value of switch as OFF. So, the IOG initially moves to the "Static States - Off" and displays the icon
shown.  The user now positions the mouse in the Off region and presses the mouse button.  This
satisfies the in[Off] Mv condition and the IOG moves to "Operating States - Off".  This move causes
the switch display to light up.  Next, the user drags into the middle of the switch.  This activates the
~[Mid] event and causes the transition to "Operating States - Mid" to be taken.  Again the display
changes when this occurs.  The user continues and drags into the On region, the ~[On] event occurs,
and the transition to "Operating States - On" occurs.  At this point the user releases the mouse button.
This enables two transitions in[On] M^ on the data arc to "switch" and M^ from "Operating States"
to "Static States".  By convention all data arcs are evaluated first.  So, the value of "switch" changes to
ON.  Since the M^ transition is to the meta-state and not to a contained state, "Static States" is restarted
at its start state.  The transition to "Static States - On" is taken and the display updated to the on switch
which is not lit up.  If the user had moved the mouse out of the On region before releasing the mouse
button, then only the M^ transition would have been enabled.  Thus, when "Static States" was
restarted the "switch" would have been OFF and the display would have returned to the off state.

It is interesting to note that specifying the secure switch with UAN takes about a page.  A transition
diagram requires 9 states and 20 transitions, and a statechart is about the same as figure 4.  However,
none of these methods give the reader a clear idea of the switches appearance or the dynamic changes
in its appearance.
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ON OFF

in[On] Mv

in[On] M^

in[Off] Mv

in[Off] M^

~[Mid] ~[Mid]

~[On] ~[Off]

M^

switch

SecureSwitch

D

DD

(switch==ON) (switch==OFF)

Static States

Operating States

Figure 4 -- Specification of a secure switch

Two Window Graphical Browser

In this example we wish to specify a two-window graphical browser with coordination between the
two windows.  Figure 5 shows the coordination in a diagram patterned after DM Sketch[9].  This
browser consists of two parts.  The window on the left is called the overview.  It shows the entire
graphical image.  (i.e., If the application were to browse a US road map, then the entire US would be
in the overview.)  The right hand window is called the detailed view it shows a magnified view of
some portion of the overview.  (i.e., The detailed view might contain a rectangle enclosing Maryland.)

The relationships between the detailed view and the overview are indicated by the gray symbols and
the browser elements are shown in black. The springy arrow represents movement constraints on the
object at its tail.  In particular it means that object is free to move in the context of the object at its head.
The crossed box in the overview means that it is a view box which is used to mark the view in another
window.  The view box is tied to the detailed view by three symbols.  The first is the "%=" line
between the view box's horizontal movement indicator and the right window's slider movement
indicator.  The second is a similar line between the vertical slider and the vertical movement indicator.
The meaning of these symbols is that the two objects are constrained to move together proportionately.
That is if the view box is moved to 50% of its free area, then the sliders move 50% of their travel and
visa versa.  The final symbol is the "P" arrow.  This is the graphical projection symbol and means that
the items in the view box are magnified and displayed in the target window.
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 %=

 %=
P

Overview Detailed View

Figure 5 -- Coordination between windows in a two window graphical browser.

Now the browser needs to be specified with IOGs.  First, let's start with a horizontal slider.  The
slider consists of an indicator which has two icons Idle and Active.  It has a two regions associated
with the indicator FreeArea and ActiveArea.  FreeArea is that region in which the indicator will
follow the mouse.  ActiveArea is a region that includes FreeArea.  Going outside of ActiveArea
and releasing the mouse button will reset the slider to its previous value.  (Thus, FreeArea allows the
user to drift out of the slider and still operate it.)  Figure 6 specifies the behavior of the indicator.  The
value of the slider is related to the indicator through the three constraints cDrag, cChg, and cMove.
cDrag relates the mouse location to the indicator location and is only valid when the indicator is active
and the mouse is in FreeArea.  The actual constraint would be "location.x = location.x+M.x".  cChg
is valid only when the indicator is selected and propagates the location changes to the slider value (not
shown).  Assuming the slider had a base value of "BASE" and a range of "RANGE" then cChg
would be:

SCALE = (location.x - FreeArea.location.x) /
FreeArea.size.x

value = BASE + RANGE * SCALE

cMove is the inverse of cChg and moves the indicator when the value of the slider is changed by the
application program.

It is obvious that by changing any '.x' to '.y' in all of the constraints and laying out the regions
appropriately we can convert this specification to be a vertical slider indicator.  What is not so obvious
is that this same specification can be modified and used for the view box as well.

Consider what happens when we define the value to be a point.  Now, the FreeArea is defined to be
the part of the left window that can contain the view box location while the view box is visible in the
window.  Furthermore, let the ActiveArea be the window itself.  Now, let cDrag be "location =
location + M", cChg be "value = location", and cMove be "location = value".  If the icons are
defined to be a rectangle filled transparently, then one has a draggable rectangle whose value is its
location.  (It should be noted that the specification just described can be used for a general 2D
draggable icon which selects two values.)
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Figure 6 -- Specification of a horizontal slider indicator

Now that the view box and sliders have been defined, the coordination between the windows needs to
be specified.  The proportional constraints can be specified as conditional constraints on the view box
value.  Let vb be the view box, hs be the horizontal slider, and vs be the vertical slider.  Then:

if (vb.selected) thenhs.value = vb.value.x;
vs.value = vb.value.y;

if (¬vb.selected) then vb.value = (hs.value,vs.value);

specifies the necessary relationships.  If rw is the right-hand window (detailed view) and lw is the left-
hand window (overview), we can characterize the mapping function for its view port vp with:

rw.vp.translate = lw.vp.translate - vb.location;
rw.vp.scale = lw.vp.scale * lw.size / vb.size;

As long as both windows use the same conversion function, this completes the specification of the
graphical browser.

The above example shows how IOGs may be used to succinctly specify the essential behavior of a two
window browser.  It shows the similarities between vertical sliders, horizontal sliders, and a two
dimensional value selector such as the view box.  Finally, it demonstrates the power of combining
constraint equations with a hierarchical state diagram.

CONCLUSION

The IOG shows promise as a method to specify and communicate designs of new user interface
interaction objects.  It has been used at the Human Computer Interaction Laboratory to specify a library
of new interaction objects.  This effort has shown two shortcomings.  First, the level of detail needed
to completely specify an interaction object quickly swamps the specification.  This makes it difficult to
see both "the forest" and "the important trees".  Flexible interaction objects can have several dozen data
attributes and an IOG for one becomes dominated by a large number of parallelograms.  The
preliminary solution to this has been to only show those attributes which affect dynamic behavior in
the IOG and to define the rest in a property list.  The second problem is that we are still coding the new
interaction objects.  It would be very useful to have a tool which allowed one to edit an IOG and
directly execute it.  A project to do this has been started at the NASA Goddard Space Flight Center.
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