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Chapter 1

Introduction
We say that f is a coboundary for a flow {¢; }er if there is a transfer function

u such that

d
ve bl mo = 1,

and for T" > 0, f is a coboundary for the map ¢ if

uopr —u=f.
1t
In this paper we study the discrete analogue of the classical horocycle flow {
0 1
1 T
called the classical horocycle map , each acting by right multiplication on
0 1

(compact) homogeneous spaces of the form I'\PSL(2, R). Motivated by the success
of using cohomological equations to prove quantitative equidistribution of horocycle
flows and nilflows [2], [3], we study the cohomological equation for horocycle maps
and quantitative equidistribution.

Representation theory is a natural tool for cohomological equations on homo-
geneous spaces [2], [3], [10]. Flaminio-Forni’s (2003, [2]) detailed analysis of the
cohomological equation for the horocycle flow was carried out through its represen-
tations in the irreducible, unitary components of L*(T\PSL(2, R)). We take this

approach for the cohomological equation of horocycle maps, but the equation for



maps is different from that of flows in an important sense. Bargman’s well-known
ladder argument allows one to construct a basis in each irreducible component, and
2] shows U represents as an off diagonal matrix in this basis, so that the cohomolog-
ical equation Uu = f can be solved algebraically by a two-step difference equation.
In contrast, the matrix ¢% is very complicated in this basis, so we instead solve us-
ing standard representation models, where vector fields and flows appear as explicit
formulas in explicit Sobolev spaces.

Solutions to cohomological equations on homogeneous spaces may or may not
have distributional obstructions. Results so far indicate cocycles over higher rank
abelian hyperbolic actions of R? or Z% are typically either rigid or the cohomology
classes are finite in number and easy to describe [4], [8], [10], [12], [16], [5].

In contrast, previous results on cohomological equations for homogeneous R
or Z actions show there are infinitely many independent distributional obstructions
to the existence of L? solutions. Consistent with this picture, we find there are
infinitely many distributional obstructions for the horocycle map. Lastly, previous
results also show some finite loss of regularity between the Sobolev estimates of the
transfer function and its coboundary for horocycle maps (see for example [2], [3],
[6]), and we prove this is also true for horocycle maps.

In the second part, we use our analysis of the cohomological equation of horo-
cycle maps to study the equdistribution of the horocycle flow. Horocycle flows are
known to have zero entropy, and precise mixing rates for geodesic and horocycle
flows were obtained by Ratner [17] and Moore [15], and Ratner proved horocycle

flows have polynomial decay of correlations. Concerning ergodicity, Furstenberg [7]



proved the horocycle flow is uniquely ergodic (i.e. every orbit equidistributes) in
1970. M. Burger [18] estimated the rate of unique ergodicity for sufficiently smooth
functions along oribits of horocycle flows on compact surfaces and on open complete
surfaces of positive injectivity radius. P. Sarnak [22] obtained asymptotics for the
rate of unique ergodicity of cuspidal horocycles on noncompact surfaces of finite
area using a method based on Eisenstein series. For sufficiently regular functions,
Flaminio-Forni [2] improved on Burger’s estimate for compact surfaces by establish-
ing precise asymptotics in this setting, and in the case of noncompact, finite area
surfaces, they generalize the result of P. Sarnak to arbitrary horocycle arcs.

Quantitative equidistribution results for horocycle maps are very recent. Shah’s
conjecture states that for all 6 > 0, the horocycle map {(bgg}neZJr equidistributes
in '\PSL(2, R). Venkatesh [23] used a method to upgrade quantitative equidistri-
bution and quantitative mixing to prove upper bounds on the equidistribution rate
of the twisted horocycle flow {¢V x e*™},cp on SM x S'. By an ingenious argu-
ment, he used this to prove {¢V,,s}nez+ equidistributes in I'\PSL(2, R) whenever
0 <6 < dr for some explicit threshold 1 < ér << 2.

We estimate the rate of equidistribution for the horocycle map. As in [2],
we use our estimate of the cohomological equation for the map to obtain a rate
of equidistribution for coboundaries, and we use the analysis of the flow invariant
distributions for the horocycle flow in [2] to estimate the rate of decay for the flow
invariant distributions of the map. We use Venkatesh’s estimate of the equidistri-
bution of the twisted horocycle flow in [23] to estimate the invariant distributions of

the map that are not flow invariant. Then because the ergodic sum of every regular



enough function is either controlled by the cohomological equation or is one of the

invariant distributions, we conclude our quantitative equidistribution result.
Preliminary definitions

The Poincaré upper half plane is
H={z€CI3(z) > 0,|dz*/(32)*}.

IfI' € PSL(2, R) is a discrete subgroup acting without fixed points, then M := T'\ H
is a Riemannian manifold of constant negative curvature. Let SH be the unit

tangent bundle of H. Then fixing (i,7) € SH, the map
PSL(2,R) : (i,i) — SH

gives the identification PSL(2, R) ~ SH. The elements of the Lie algebra sl(2, R)
of PSL(2, R) generate some flows on I'\SH ~ I'\PSL(2, R) := SM.

The matrices

U= andV = : (1.1)
0 0 10

in sl(2, R) are the stable and unstable "horocycle vector fields” in the sense that
they generate flows

Y = eV = andg) = e =

01 t 1
that correspond to the stable and unstable horocycle flows on SH, respectively.

These flows act by right multiplication

&Y () = D(eg)),
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where x € PSL(2,R). Let T > 0. and define
Lpu = uo ¢ — u.
The main result in this paper is to find coboundaries for the cohomological equation
Lyu=f (1.2)

and obtain a Sobolev estimate of the transfer function u in terms of the coboundary

f.

Harmonic analysis
Elements of sl(2, R) generate some area preserving flows on SM, and we choose
a basis for sl(2, R) to be

Y = . 0= , (1.3)

which are generators for the geodesic, orthogonal geodesic and circle vector fields

respectively. These generators satisfy the commutation rules
(X, Y] =20, [0,X]=-2Y, [0,Y]=2X,

and note

_Y+8 G

U andV = 5

Let ‘H be a unitary representation space of PSL(2, R). Each of these vector

fields is an essentially skew-adjoint operator on H, so their square is essentially



self-adjoint on ‘H. The Laplacian A is an essentially self-adjoint operator and the

elliptic element of the enveloping algebra of sl(2, R) is defined by
T+ A :=1—-(X*+Y*+6%.

The Casimir operator

O:= A + 20?2

generates the center of the enveloping algebra for sl(2, R). As such, it acts as a con-
stant © € R on each irreducible, unitary representation space K,,, and its value classi-
fies them into three classes. The representation K, belongs to the principal series if
w > 1, the complementary seriesif 0 < p < 1 and the discrete seriesif p €
{—n? + n|n € ZT}. We note that some authors scale the vector fields so that
IC, with p > 1/4 are in the principal series [2]. We do not use this convention. In
fact, our geodesic flow has speed 2 with respect to the hyperbolic metric of constant
curvature -1.

When SM is compact, standard elliptic theory shows spec(A) is pure point and
discrete, with eigenvalues of finite multiplicity. When SM is not compact, spec(A\)
is Lebesgue on [1, 00) with multiplicity equal to the number of cusps, has possibly
embedded eigenvalues of finite multiplicity in [1, 00), and has at most finitely many
eigenvalues of finite multiplicity in (0, 1) (see [22]).

There is a standard unitary representation of PSL(2, R) on the separable
Hilbert space L?(SM) of square integrable functions with respect to the PSL(2, R)
invariant volume form on SM. As in Flaminio-Forni (2003), the Laplacian gives uni-

tary representation spaces a natural Sobolev structure. The Sobolev space of order r >



0 is the Hilbert space WT(SM) C L*(SM) that is the maximal domain determined

by the inner product
(fs@wrsay = (L + A)"f,9) r2any
for f,g € L*(SM).
The space of infinitely differentiable functions is
C®(SM) :==N>W"(SM).

For r > 0, the distributional dual to W"(SM) is the Sobolev space W~"(SM) =

(W=(SM))". The distributional dual to C*(SM) is
£/(SM) = (C=(SM))".

Because the Casimir operator is the center of the enveloping algebra and acts
as an essentially self-adjoint operator, any non-trivial unitary representation H for

PSL(2,R) has a PSL(2, R)-invariant direct integral decomposition

= IC..d 4
H mew LB (1), (1.4)

where df(p) is a Stiltjes measure over the spectrum spec(O) (see[13], [22]). The
space K, does not need to be irreducible but is generally a direct sum of an at most
countable number of irreducible components given by the spectral multiplicity of
w € spec(O).

Additionally, all operators in the enveloping algebra are decomposable with

respect to the direct integral decomposition (1.4). Then in particular,

L(sM) = [ K,
Du
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and for r € R,

WWSM):ABWWK@. (1.5)

When SM is compact, L*(SM) decomposes into a direct sum.
Statement of results

TheCohomological Equation

Let
po = inf{u € spec(0)|pn > 0}.

We consider manifolds SM with a spectral gap o > 0. Let (x,T) € SM x N and
r > 0. Let

I(SM):={De€ & (SM): LyD =0}

be the space of invariant distributions for Lz, and let

Z, = ISM = I(SM) N EOO(IC#>

w

By (1.5),

T(SM) = /@ T,(SM).

Let € > 0 and po > 0. For all p € spec(0O), the space Z,, has infinite countable

dimension.

For 1 > 0, Z, ¢ W~ ((+RVI=w/2+e()C .



When p < 0, there is an infinite basis {D, ey U {D°} C Z, of T-invariant dis-
tributions such that D° € W—((HRVI=W/2+) ()0 ) is the flow invariant distribution
studied in [2] and ({D,}nen) C W-L/2HI(IC,,).

It will follow from Theorem 1 that the invariant distributions classify the space
of coboundaries that have smooth solutions.

Let go > 0,7 > 0,7 > 0 and f € W3 (SM) N Ann(Z(SM)). Then there is
a unique L*(SM) solution u to

LTU:f

and a constant C,p > 0 such that

ullwrsany < Crrsull fllwsrracsan.- (1.6)

If D is an invariant distribution and v € C*°(SM), then from definitions we

conclude

D(f) = Dlwo ¢%) — D(u) = 0.

In this sense, D obstructs the existence of smooth solutions. Theorem 1 gives the
invariant distributions that obstruct the existence of XC,, solutions for regular enough
coboundaries f.

Let po > 0, f € WP(SM) and D € [~ Z,. If there exists u € L*(SM) such
that Lyu = f, then D(f) = 0. Moreover, this is not true for p < 0.

Theorem 1 was also proven in [2] for the horocycle flow. We prove estimate
(1.6) on every irreducible component, and then glue the solutions together. Explic-
itly, suppose we are given 0 <r <t, {uy},, {fu}, € [5, Ky and a constant C; > 0

9



such that for all u € spec(D),

lwllwr e,y < Crell fullwege,)- (1.7)

Write

uz/@uuu fz/@uf,“

and observe
lulfyisan =11 [ il = [ Tl
< Cf,t/ 1fullivee,y < CRALF e csan:
Dp

It therefore suffices to establish (1.7). We do not rely soley on the algebraic
properties of PSL(2, R), as in [2], [17]. We instead do all calculations in certain

unitarily equivalent, standard models H, ~ K,, where vector fields and flows are

s

given by explicit formulas in explicit Sobolev spaces. The unitary equivalence
Qu:Ky—H,

intertwines vector fields on each space, so that @), preserves Sobolev norms. There-

fore, the Sobolev norms we calculate in H,, pass back to IC,.

The key idea in our calculation is to introduce a finite dimensional space Y
of additional distributions with the property that for all functions in Ann(Y), the
estimate (1.7) is substantially easier to prove. Then we remove these distributions
using dual basis to Y consisting of explicit coboundaries and obtain (1.7) for each

dual basis element. Combining gives the estimate.

10



Horocycle maps and the horocycle flow are heuristically related by statement

that when p € spec(0) and f € C*(KC,), there exists u € K, such that
Uu = fifandonlyifuo ¢ —u = Ap(f), (1.8)

where
Ar(f) = /OTfOQfdt-

In [2], Flaminio-Forni showed that the space of flow invariant distributions is at
most two dimensional in any irreducible component in contrast to Theorem 1, which
states that the space of T- invariant distributions in each irreducible component is
infinite dimensional. Formula (1.8) already suggests this. Roughly speaking, if h

and h are smooth, then the spectral theorem gives
T . T . o
DY / ho gudt) = DY / =2 AN ($)h) = 0, (1.9)
0 0

for some spectral measure \. So D= 0,7 is an invariant distribution for all n € Z.

The statement (1.8) suggests that one can obtain (1.6) from Flaminio-Forni’s
result on the flow. We instead derive (1.6) directly from horocycle maps, because
the approach suggested by (1.8) did not give an advantage in either the length or

simplicity of the argument, nor did it improve the sharpness of (1.6).

Rateof Equidistribution :

As an application to the above analysis of the cohomological equation, we

11



prove a rate of equidistribution for horocycle maps. Let

where i is the spectral gap. For all > 0 and D € {D;} U{D"} C Z,,, define
a(io)if D =Dy, k0
Sp = { LVl D = Dy
IS0 fD = DO,
Let ¢Y be the horocycle map on the unit tangent bundle SM of a compact
hyperbolic Riemann surface M with spectral gap pg > 0, and let s > 6. Then there
is a constant C,; > 0 such that for all (xo, N) € SM x Z* and f € Ws™3(SM), we

have

N-1
v XSl <] @Y eolan Nos)DUIN @ RGN, 5)(f)]
k=0 puEspec(0) DEL,(SM)

(1.10)

where the remainder distribution R(z, N, s) satisfies

Cs
R(xz, N s < =
R (x, N, s)|lw (Ku) = 7
and for all D € Z(SM),

|CD| S Cs.

We control the remainder using the Sobolev estimate for the cohomological
equation of horocycle maps in Theorem 1. For 7 € Z, the decay rate of the invariant

distributions is obtained from the identity

1
N/ 271'17'15 ¢t dt :/0 727rz7't Z 5¢U dt

12



together with Theorem 1.5 of [2] and Lemma 3.1 of [23].
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Chapter 2
Bases and Distributions

2.1 Orthogonal Bases

Let

Principalandcomplementaryseries

For Casimir parameter p > 0, let H,, be a model principal and complementary

series representation space. The group action is defined by

m, : PSL(2,R) — B(H,)

mo(A)f(@) = |z + o D (L0

—Ccx +a
where z € R and v is a representation parameter. When p > 1, then v = /1 —

and

[l = [1flz2r)-

When 0 < p < 1, then v = /1 — p and

W = ([, L0 )

2 |z =yt

14



By the change of variable z = tan(f), we have the circle models

H# = LZ([77 7]7

for the principal series, and

an an ¢’ ! 1/2
1115, = (/[ f(tan @) f(tan 6’) dodo (9/)) .

r/2,7/22 | tan @ — tan 6|17 cos?(6) cos?

Computing derived representations, we get Let p > 0. The vector fields for

the H, model on R are

X =dn,(X)=—-(14v)—2z2

©=dm,(0)=—-1+v)z—(1+2%)2

V=dn,(V)=(1+v)z+2>2.

By the change of variable z = tan(f), the vector fields in the circle model are

15



X =dm,(X)=—(14v)—sin(20)2
O = dn,(0) = —(1 +v)tan(d) — 2

00

Y = dr,(Y) = (14 v) tan(0) — cos(20) 5

V =dn,(V) = (1 +v)tan(f) + sin®(0) 2.

Remark : We denote both the R-model and the circle model by H,,.

Discreteseries

For 1 < 0, we denote L3 ,(H,d)\,) to be the upper half-plane model for the
holomorphic discrete series, where d\, := y*‘dxdy and v = /T — pn € {2n—1},cz+

is the representation parameter. This model has the group action

7« PSL(2,R) — B (L}, (H,d\,))

dz —b
J(A) : — —(v+1) . 2.1
m(A) 1 f(2) = (=ez 4+ a) D () 1)
The anti-holomorphic discrete series case occurs when v = —y/1 —pu < 0, but

we safely restrict ourselves to the holomorphic discrete series case because there

16



is a complex anti-linear isomorphism between the two series of the same Casimir

parameter. The space L7 ;(H,d)\,) is said to be of lowest weight n := HT”

Define

§+1
-1

to be a conformal map between D and H. For each v > 1, the unit disk model

a:D—H:&— —i

for the holomorphic discrete series is denoted L2 ,(D,do,) and has the measure

do, = 47"(1 — |£]*)"dudv. By [21],

o v+1
T, : Lig(H,d\,) — Liy(D,do,) : f(z) = foa(§) (5 _221>

is an isometry between the two models.

Let p1 < 0. Then the vector fields in L2 ,(H,d),) are:

X=dm(X)=—-(1+v)— 22%

O =dr,(0) = —(1+v)z— (1422

V=dr(V)=>10+v)z+ z2£.

17



By changing variables via the linear fractional transformation «, the vector

fields for L2 ,(D,do,) are:
X =dm,(X)=—-(1+v)+ (& - 1)(%5

O =dr,(0) = (1 +v)i(gh) - 2 5

8%

Y =dn, (V) = —(1+0)i(Eh) +i(€ + 1) 2

V=dm,(V)=—(1+ ,/)Z(Eil) + jEHD? d

£-1 2 d¢

The vectors fields in Claim 2.1 and Claim 2.1 yield the commutation relations
(X, Y] =20, [V,0] = -2X, [X,0] =2Y,

which agree with the commutation relations we get by matrix multiplication.

Orthogonalbasis

Given ug € Ker(0), we generate the rest of the basis elements by applying

the annihilation and creation operators X +1¢Y = n,. Here,

[0, n4] = ilny., ©] = i[X +1iY, 6]

18



— i([X,0] +i[Y,0]) = i(2Y — i2X) = 2(X +iY) = 2n,.

The corresponding statement also holds for [—i©,n_]. Suppose —i©f = kf. Then
=10+ f) =+ (—10f) + [—iO, ] f

=0 (—10f) + 204 f(0) = (k + 2)n. f(0). (2.2)

This procedure generates a family {(n+)"f} of orthogonal eigenfunctions for —i©
that is a basis for H, or L} ,(H,d\,) when p > 0 or p < 0, respectively.

We calculate concrete formulas for the orthogonal basis vectors {uy} in Ap-
pendix A, and we present them here.

(i) Let 1 > 0. Then the set {up = e2* cos' " (6) }rcz is an orthogonal basis

for ‘H,,. Moreover, If ;1 > 1, then for all k,
lu]l* = 1.

For 0 < p < 1, there is a constant Csy; > 0 such that

1—v 1-—

—1 - —V< 2< ( V> _V.
Catr (Ton) (4 )™ < ol < s (1) (1K)

- v : 2—i\Fn
(i) Let 4 < 0 and n = 3% be the lowest weight. Then {u), = (sz)

W}?:n is an orthogonal basis, and for all £ > n,

Jelany = o o
kllL2(H,doy) — (V+ 1) .4y (k+n — 1)! .

19



Statement (i) regarding ||ug|| can be shown from the calculations in Appendix
A together with Lemma 2.1 from [2]. The statement (ii) regarding ||ug|| is proven

in Claim .

2.2 Relevant Distributions

Invariant distributions in our model

Principalandcomplementaryseries

Let 4 > 0 and write f = @ - cos’™ € H,, in circle coordinates, where

d(0) = Z e 2o

n=—oo

Then define
T

and now using formula (40) and Theorem 1.1 of [2] one shows that §© € W—((14+1)/249) (3¢ ).

For k € Z and f € C°(R), there are invariant distributions given by

ur(h) = [ Fla)e ™ dr,

Observe that when p > 1, basis vectors are not in L'(R), so the Fourier transform
is not immediately defined on C*°(H,,). Note that 6 is continuous on C*=(H,,) and
for all basis vectors {u,} € Z, 8 (u,) € {—1,1}. On the other hand 6 (f) = 0
for all f € C®(R), so C*(R) is not dense in C*°(H,). Therefore, we cannot

extend Sk/T from C°(R) to C*°(H,) by density. By Proposition 2.2, functions in

20



Ker(6©®) are in L'(R), so we extend the definition of the Fourier transform F to

any f c W(1+%u)/2+e(HH) by

A

f=F(f)=F(f —69(f) cos'* o arctan). (2.3)

With this definition, Proposition 2.2 proves
Let 4> 0,6 > 0,7 >0 and n € Z. Then 5k/T € W (A+3)/24e) (1 ),

discreteseries

The discrete series case is similar to the principal and complementary series
cases. Let p < 0 and n = VTH be the lowest weight. By the change of variable
¢ = (), the basis for L*(H,d),) written in the unit disk model L*(D, do,) is

{eF= (& —1)v*1}2, . Then f = ® - ug € H,, where

[e o]

O(¢) = e

k=n
Then define 5 (f) := ®(1), so 60 € W ((1+1/2+9)(H ) again by formula (40) and
Theorem 1.1 of [2].
For k € Z, there are distributions given by Fourier transforms of delta distri-

butions along R x {iy}. For f € WY2*<(H,), k € Z and y € R*, define
dua(f) = [ fla+iy)e M,
Let u <0,ke Z, T>0ande>0. Then
Onyry € WO (I d,)

is a T-invariant distribution.

21



Lemma 2.2 will follow immediately from Lemma B, which proves some decay
for functions in W/2t¢(H,,). Moreover,

Let p <0, k € Z and y;,y2 > 0. Then 3;{/1?}1 = Sk/T,yZ, and if £ < 0, then

Ox/7y = 0.
Lemma 2.2 follows from Lemma B and Cauchy’s theorem, and the proof is

given in Lemma B. We therefore drop the subscript y and declare
Sk/T = 5k/T,y>
for any y > 0.
Additional distributions at infinity

These distributions are introduced only as a technical tool for making calcu-

lations.

Principalandcomplementaryseries

Let ¢ > 0, and for all » € N, define
6 = (0750).
Then Lemma 6.3 of Nelson, Analytic Vectors ( [11] ) together with (?7) shows
167()] = 160" )] < CO" fllismwy/2re < Crll fllrtmm) 24e-

Hence,
5 g W (r+1+Rv)/2+¢) (H,,).

22



The Key Point in proving our estimate for the cohomological equation is that
functions and their derivatives that annihilate these additional distributions have
additional decay.

Let t > 0,e > 0 and s > 0. Then there is a constant C; . > 0 such that for all

fe WetER)24e (1 )y 0 Ann ({00 }5_,), © € R and integers 0 < r < s, we have

CSE T —(s+r v
= (L ) (L )R flyimo e,

| ()] < V=

We should expect this. If f(6) = ®(6) cos'™(#) is smooth, then ® has a Taylor
series about 7, and all of its derivatives vanish up to some order. So ® decays, which
forces f to decay as well. That said, the proof is somewhat long, and we defer it to

the appendix.

Discreteseries

Let ;4 < 0. Then in the same way, we have
00 = (70 ) ¢ WIrtWHI/2HI ([ q)). (2.4)

Recall that the parameter v tends to infinity. For fixed regularity f € W*(H,,),
when v < s the proof of our estimate follows the proof for the principal and comple-
mentary series estimate. In particular, we use the following proposition to obtain
our estimate: Let u <0, and let r, s € Ny satisfy 0 <r < (s—1)/2 and s > 2. Also

let f € W*(H,d)\,)N Ann({67}3_,). Then there is a constant C, > 0 such that for

23



all z € H,

LF )] < Ol flls(L + [y~ Crzraarraiz,

When s > v, the proof is different, and we do not use the additional distributions.
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Chapter 3

Cohomological equation

3.1 Cohomological equation for the principal and complementary se-
ries
The main theorem of this section is the following: Let ¢ > 0,7 > 0 and r > 0.

Then for all f € W**3/2(H,) N Z,(H,), there exists a unique H, solution u to the

cohomological equation
wo¢pr —u=f. (3.1)

Additionally, there is a constant C, > 0 such that

C,
[ullwr @) < ﬁ”ﬂ‘wh%ﬁ(?ﬁ‘)' (3.2)

Remark : We actually prove the tame estimate

T

‘|u|’WT(HH) S \/m(l + ’V|)T‘|fHWr+3/2(HH)

in each irreducible component. Because there exists infinitely many irreducible
components, the representation parameters v may tend to infinity, so we absorb v

using the Casimir operator O and obtain (3.2).

Estimate using additional distributions at infinity
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The following theorem mostly proves Theorem 3.1.
Let > 0,7 > 0 and f € W¥+3/2(H,) N {6,}52 U {6®}rtl Then there

exists a unique H, solution u to the cohomological equation
u(lzx —T) —u(z) = f(z), (3.3)

and there is a constant C, > 0 such that

C,
||U||WT(HM) < ﬁ”f”w?rw‘zmﬂ)-

To ease notation, define
s(vye) :=s+ (1+Rv)/2+e.

Let # > 0,6 >0, s > 0 and f € W) (H,) N Ann({60 1328 0 {6,012 ).

Let u be defined by

o0

Z f(x +nT).

Then w is a solution to (3.3) and there is a constant Cs . > 0 such that for all x € R

and 0 <r <s,

[ul ()| < (L4 D"+ |2 ) s g,

—_
1S
R

Proof :

Proceeding formally at first, define

Then

u(x —T) —u(z) = f:of(x—i—nT) - if(x—l—nT) = f(x).



So u is formally a solution. We will now show u converges absolutely and uniformly
on compact sets. Suppose x > 0. Using that 7" > 0 and s > 1, Proposition 2.2

shows

— (s+14+Rv)
u(z)] < n; |[f(z +nT)| < \/—Hwas(m(Hu) Z |z +nT|+1)"

o

¢_||f||ws<”) w2 (InT|+1)72 < o0. (3.5)

n=1

For x < 0, note that

[ flleor) < 1fllwswo(x,) < o0

There exists m € N such that x +mT > 0, so

u(@)] < O fllwswoeey +mlfllwseom,) < oo

Hence, the series defining u converges absolutely.
Moreover, calculation (3.5) shows that the series defining u converges uni-
formly on compact sets, and as f € WS(”‘)(HM), we may differentiate under the

sum. Then

™ (z) - T| = Nz +nT)|-T

C o0
< (L WD) N fllso S (|2 + nT| + 1)~ (T2 7, (3.6)
T W g 2

So when x > 0,

[ul ()] <

Cs
< A

L+ |V|> Hf“WS(”f)(HH (|x| + 1) S+T"+§Ry)

by the integral estimate.
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Now we show that u has the same decay for x < 0. Proposition 2.2 shows
that f € L'(R). So the Poisson summation formula applies, and using that f €

Ann({g% 1 o), we have

Therefore,

When z < —T', the integral estimate again shows

W (@) < S 1@ — )|
n=0

Os,e
V1i—v-T

Finally, for =T < z < 0, note that

IN

(1+ |V|)THfHS(V7€)(’x| + 1)*(S+r+§Ry).

1F Mooy < 1 f s,

SO
C?

(7«) < S,€
W) < =

(L + )" f s (2] + 1)—(s+r+§sz)'

Proof of Theorem 3.1 :
First let r € Ny, f € W»+3/2(H,) and recall A = —(X? + Y%+ ©0?), and each

vector field in {X,Y,©} is of the form

l kdj
T + cxr” ——
1 2 d[L‘J’
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where [ € {0,1} and k — j < 1, and ¢, ¢y € C. Therefore, A" consists of terms of

the form mk%, where 0 < k — 7 <.

Then
[ellwr ez, < > lz D, < > I(lz] + 1) u 3,
0<k<2r 0<k<2r
0<5<r 0<j<r
0<k—-—j<r 0<k—j<r
<L a4 D [ llwsee 24, > I(J] + 1)+ gy
Vi—v-T o "
0<k<2r
0<j<r
0<k—-j5<r
Spu T DI lwstwa g (L] + 1) gy,
Vi—v.T . g
Note that if 4 > 1, then || - |5, = || - || z2(r) takes the L?(R) norm and Rv = 0.

Soforall 0 <r <s—1/2,
(] 4+ 1), < o0,

which means

Ci e .
[ullwr @, < ﬁ(l + VD) lwss/2e 2,

In particular, this holds for r = s —1/2 — €. Then replacing s with r+1/2+ € proves

Theorem 1 for p > 1 and r € N,.
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When 0 < p < 1, we have

[ullwr 3,y < > [2*uD |15,
0<k<2r
0<j<r
0<k—j5<r
< L(1 D) f lwseo @l (2] + 1) gy,
Vi—v-T » "

Here, H,, is defined by the norm

o e 5.)

Let n=2 —y, so

+
(37 < [ loty \/'9”7|Ifddy

< /R l9(y)| </|n<1 de + /|n|>1 W%) dy. (3.8)

Notice

lg(n +y)|
[y < Cllglli iy
mi<t |7

and
[ oG+ y)ldn = llgllzs
[n|>1

There are only finitely many values in spec(0d) C (0, 1), so C), < C for some absolute

constant C', and therefore,

(3:8) < Cligllm (I9llry + llgllim)) -
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Observe that for all 0 <r < s+v —1,
(Jz| + 1)"~) e LY(R) N L®(R).
As before, this holds for r = s+ v — 1 — €. Setting s =r 4+ 1+ ¢ — Rv, we see
s(voe)=r+1—v+(1+v)/2+2e<r+3/2

This proves the estimate in Theorem 1 for r € N.
Finally, observe that for all 0 < r <s, W*(H,) is a dense subset of W"(H,).
Additionally, A is an essentially self-adjoint operator. Then the family {W"(H,)},>o

is an interpolation family in the sense that for « € [0, 1], the interpolation space
(W, W o~ Wrts—re, (3.9)

Because the estimate in Theorem 1 holds for all integers r, Theorem 5.1 from [9]

completes the proof. O

Estimate of coboundaries
Theorem 3.1 holds under the restricted hypothesis that

f e W S2H,) N Ann ({0,352 U{6©}).

To begin, set xo := ug(= cos'™(0)), and recursively define {xx},_; by

X1 7= (Xk © OF — Xi)- (3.10)
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Then xj is a coboundary for all & > 1. We show {xx},_; is a basis in the dual
space to ({6™};_) and obtain a bound for each ||x||wr(,). For this, we study the
distributions ¢%5®).

Let £ >0, >0 and f € C*(H,). If r is even then

[5]-1

(207 + 1)(=20)% (3141) = (=20)"0 D (5141))) 87571,

N3

<.
I
o

and if r is odd, then

LodD(f) = i(v+1)(=2i)" 6

511

+ ;} (2(7/ + 1)(—22’)2j(5j+1) i (_21-)2(j+1)(g(j+1))> §r=2i-1)

We defer the proof of Lemma 3.1 to the appendix (see Corollary B). This

gives coefficients {c;x}o<jr<r C C such that

0 coq co2 -+ Co,r

0 0 cip -+ C1,r
Lol _y =

0 0 0 ¢y

o 0 --- 0 0

Exponentiating, we get coefficients {e; x }o<jr<r C C such that

1 ep1 eo2 -+ eop
0 I ep -+ €1,r
&7 (50 ry= Sl
0 0 1 e 1,
0 0 0 1



where the dependence on T' is given by e;; = )aj  for all 7, k and some coeffi-

(k J
cients {a;;} C C.
Let xo = cos' () and for all 0 < k < r, define x; as in (3.10). Then for all

1<j<kand 0<k<r, we have
09 (x) = 0.

Proof :

For each 0 < k <r, let P(k) be the statement
foralll < j <k, 09V (xz) = 0.

We will show by induction that P(k) holds for all k. The statement P(0) holds
trivially. Now suppose that P(k) holds, and we show P(k + 1) holds as well. Let

1<j<k+1. Then
0D (xkr1) = 09 (o — xi) = (9269 (xn) — 09 (xx)

J
= Z €m0 (xi) — 09 (x)

7j—1

= Z em, ;0 =0,
because P(k) holds by the induction assumption. 0O

Let {xx}r_o be defined by (3.10). Then for all 1 < k < r,

A hjejjiifj =k
59 () ={ o0 (3.11)
0 ifj <k

Proof
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By Lemma 3.1, it remains to examine the case j = k, and we again go by

induction. Observe
0 (x1) = 0 (xo 0 7 — x0)
- (00,15(0) + 5(1))(X0) - 5(1)(X0) = Co,1-
Now suppose that (3.11) holds for £ < r — 1 and we show that it holds for k& + 1.

Then

S5 (Xpg1) = 6% (i 0 7 — xa)

k+1 )
=3 €109 (xi) — S* (x)

=0
k .
= ein109 (). (3.12)
=0

By Lemma 3.1 followed by the induction assumption, we conclude
(3.12) = eppr10™ () = I _gej 1. O

For convenience, we define P, = II¥j|e; ;41| for all k > 0. Let p € spec(D),
e >0and f € W' (H,) N Ann({6®}). Then there are coefficients {f;.};_, and a

constant C). satisfying

TARS { Tk<k+1>/2||f||k+ 1) 24t fT < 1
kl =

Cr(10) || f |k (143) 2+ cOt herwise

and
fo=1f = fixx € Ann({0®};_,.
k=1

Proof:
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From Lemma 3.1, we see by exponentiating the matrix £U|<{§(k)}z_0> that

2T v+ 1)ifj =0
€jj+1 = 141 = :
2T(j + 1)[2) + (v + 1)otherwise.
In fact, Lemma 3.2 proves the same identity when g < 0. Then for p € spec(0d),

there is a constant C, > 0 such that
I, > C,T".

Now recursively define f; = %Ef) and if f; have been defined for 1 < j < &,

define

We prove by induction that for all 1 < k < r,

Cr(po)
w7 [ f ko) i fT 1 1
= { o (3.13)

OT(M0)||f||k+(l+§?u)/2+e'

We consider the case T' < 1, and the case T" > 1 will then be clear. For the base

case notice that

Co(f1o)

Jo < T £l (190 2

Then assuming (3.13) holds for 1 < j < k, observe

Cilpto) 5 Gl f 1l 2
Je < Tk (Ck”f”k-i— 1+Rv /2+5+ T](]Jz;;;;r )/ 5(k)(X )

Culpt) g
>~ W k+(14+Rv)/2+€-

Finally, we prove by induction that for all 0 < j < k, §Y)(f;) = 0. By assump-
tion 6 (f) = 0, and by flow invariance, 6(°)(x;) = 0 for & > 1. So §O(f;) =0
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Assume that 6™ (f;) = 0 for 0 < m < j. Moreover, by construction and Lemma

3.1,if 0 < 5 <k, then by
U(fa) = ka

ka '(xe) =8V (f ka — fiIl; =0,

from the definition of f;. O

Now we prove Theorem 3.1. Let f; be defined as in Lemma 3.1. Because
fa € Ann({69W}7_y), Theorem 3.1 shows that f; has a transfer function uy and

there is a constant C, > 0 such that

[uallwr ) < Crllfallwrirrezn,)-
For each 1 < k < r, x} is a coboundary by construction, and there is a constant
Cye > 0 such that
Xk [wr ) < Cre
Then define
U= Ug + Zr: JrXk—1-

k=1

Then
e =) = ) = wale = T) = wale) + 3 felxa 1 = T) = xe1(0)]

= fa+ > fuxu(z) = f.
k=1
Moreover,

r—1
lully < llualle + > [flllxxll-
k=0
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C, 14+ Trr+1)/2
oz Il

<
— (1 - \/m) . T <‘|de2'f‘+3/2 + T,r 7._,'_1
Cyr

\/7”f||27‘+3/2

Lastly, u is the unique H,, solution, because if w is any H, solution to (3.3),

then w — v € H, and is T-periodic, which means w = v in ‘H,. O

The proof of Theorem 3.1 follows from Theorem 3.1 by showing the space of
T-invariant distributions is precisely Sy = ({0, 17 nez U{6@}). Section 3 shows the
elements of Sy are T-invariant, and for the other inclusion, suppose there exists
D eZ,—Sp. Thenlet f € Ann(Sy) be such that D(f) # 0. Note that coboundaries
are in the kernel of all invariant distributions, so f is not a coboundary. But by

Theorem 3.1, f is a coboundary. Contradiction. O

3.2 Cohomological Equation for the Discrete Series

Our main theorem of this section is Let 4 < 0, T" > 0, r > 0, and f €
W3 *4(H,) N Z,(H,). Then there is a constant C,r > 0 and a unique H,, transfer
function u satisfying
wo Y —u=f, (3.14)
and

ullwrag,) < Crrllfllwsr+acm,)-

We remind the reader that we safely restrict our attention to the holomorphic
discrete series. Additionally, for fixed v > 1, we have the biholomorphic map
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a:D—H:{— —i (?_’—}) := z and the isometry

o v+1
T Li(H,d\) = L3,(D,doy) : f(2) = f o af€) ( : _221) (3.15)

linking the holomorphic unit disk model with the holomorphic upper half-plane
model.

The argument is divided into two similar cases, when v < s and when v > s.
When v < s, the function f does not have enough decay to easily estimate its
transfer function, so we use the additional distributions at infinity as we did in our
estimate for the principal and complementary series. It turns out that we do not

need them when v > s.
Case v < s

Our immediate goal is to prove
Let 4 < 0,7 > 0,7 >0, and f € W32(H, d\,)NAnn({0k /7 }rez+ U{0W }10).
Then there is a constant C,7 > 0 and a unique L?*(H,d)\,) transfer function such
that for all z € H,
uw(z—=T) —u(z) = f(2), (3.16)
and

Nullwrman) < Crrll fllwsrr2(man,)-

Our method of proving this is the same as we did for the principal and com-

plementary series. Throughout, let s = L%J Let 4 < 0 and 7, s be integers that
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satisfy 0 < r < 5§ and s > 2. Then there is a constant Cy > 0 such that for all

feWs(H,d\,) N Ann({67}3_,) we have

[FD )] < Cr - V| Fllws (aran, (1 4 [2])7C/2F75872),

We show this in Appendix B, and it allows is to prove
Let p < 0, r, s be integers that satisfy 0 < r < § and s > 2. Also let T" > 0,
f e Ws(H,d\,) N Ann({gk/T}keer U {6}:.,). Then there is a constant Cy > 0

and a unique solution u to the cohomological equation

such that for all z € H,

Crs
()] < =°

=7 V' || fllws(rangy (1 + |2])~ /2T 1/2),

Proof :

For all z € 'H, define

u(z) = i f(z+nT).

Then formally,

u(z = T) — ulz) = iﬂ (2 +nT) — fjl F(z4nT) = £(2).

Sobolev embedding gives that || f|lcosy < Cel|f|l14v)/24¢ < C||f|s for some fixed

constant C' := C, > 0.Hence, u is an actual solution. Additionally, if 8z > 0,

u(2)] < i (= +nT)]
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< O ||f|| Z 1+ |Z—|—TLT|) s/2+u+7"+3/2) < 00.

n=1

This also shows that the series defining u converges uniformly on compact sets
for Rz > 0, and because fis holomorphic, we can differentiate under the sum. Then

for Rz > 0, Proposition 3.2 gives

| Z|f (z+nT)|-T

< I flls Z(l + |z + nT|)*(5/2+1’+T+3/2) .T

n=1
< CroV" || Flls(L 4 [2]) /212, (3.17)
where we get the last inequality by the integral estimate.
Now consider the case Rz < 0. Proposition B together with the fact that f is
uniformly bounded on H shows that for all y > 0, f(-+iy) = L'(R). By assumption
fe Ann({gk/T}n€Z+) = Ann({gn/T}nez), so for each y > 0, the Poisson summation

formula gives

Z f((z+nT) +iy) = Z 5n/Ty flezmin/Te — .

Therefore,
=> flx+nT +1iy) = fo—nT+@y)
n=1 n=0
So

()] < 3 1f (@ — nT + i)

n=0

The sum > 02, f(z — nT') also converges uniformly on compact sets and differenti-

ating under the sum, we get that whenever Rz < 0,
C"’S r —(s/24v+r+1/2)
|<Z!f (z =nD)| < == | flls(1 +[2]) :
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Finally, if w € L*(H,d),) is any solution to (3.16), then u — w € L*(H,d\,)

and is T-periodic, so v = w in L*(H,d\,) O.

Now we prove Theorem 3.2 :
It remains to estimate |[ulwr(man,). Recall A = —(X? +Y? + ©?), and each
vector field in {X,Y,©} is of the form

k dj

l
Z 42—
dzi’

where | € {0,1} and k — j < 1. Therefore, A" consists of terms of the form zk%,

where 0 < k—j5 <r. So

Jull, < > szu(j)HLZ(H,dAy)

0<k—j<r

IN
=~
&
+
[u—
SN—
=
S
5
=
[ V]
s
U
>
S

¢ (L+ |z

S 7*: v ||f||8|| (1 + ‘Z|)S/2+V+T+1/2 ||L2(H,d)\u)

< C;SV’"Hst (/H(l + \z|)2T_s_2”_1%(z)”_1d:rdy) v : (3.18)

Note (3.18) < 0 if 2r —s—2v —1+v —1=2r —s—v —2 < —1, which

holds whenever 2r —2 < s. This always holds given our assumption that 2r4+1 < s.
Then choose s = 2r + 2.
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Finally, Claim A shows that Of = (1 — v2)f, so that v2f = (1 — O)f. Then

17" Fllarte = (L= 072 fllars2 < Crl| fllarso,

by Lemma 6.3 of Nelson [16]. Finally, interpolation gives the estimate for all » € R™.

the solution is unique for the same reason as in Lemma 3.2. 0O O
Remove additional distributions at infinity

In this subsection, we prove Theorem 3.2 holds under the restricted hypothesis
that f €
W3 H2(H, d\,) N Ann({6,/7 tnez N {60}).

Our proof goes the same way as the proof of Theorem 3.1 for the principal
and complementary series. As a first step, we have

Let 4 <0,7>0and f € W2(H,). If r is even then

1

LodD(f) = X0 (204 0) (i) (20 = (5500 (20)2070) 607270(f) — (2375,

oIS
|

.
Il
=)

and if r is odd, then
(5] , . .
Lo (f) =37 (2004 ) (5,41)(20)%0) = (20)750-270(f)) . O

j=0

Lemma 3.2 shows the matrix

0 co1 co2 - cCop

0 0 co2 - Clpr
Lulgaoy_ =

0 0 0 c_1,

0 0 0 0
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is strictly upper triangular. Exponentiating, we again get coefficients

{€jr}o<jr<r C C such that

1 ep1 eo2 -+ eop

0 1 €12 - €1,r
Ol sy =

0 0 1 e,

0 0 0 1

As before, we recursively define a basis of coboundaries {xx};_, in the dual

space to ({§®}7_,). Set xo := u, and given Yy, define

Xk+1 ‘= Xk © ¢¥ — Xk- (3-19)

Lemmas 3.1, 3.1 and 3.1 do not depend on the particular representation space, so
we have
Let u < 0,7 € Ny and {xx}}_, be defined by (3.19). Then {x}}_, is a linearly

independent set of coboundaries, and for all 1 < j <k <,

, M le, . qifj =k
5(])(Xk) — I, = { j=0¢4.j '
0 ofj <k

Additionally Let 4 <0, e > 0 and f € W"(H,) N Ann({6©}). Then there are
coefficients { fi}}_, and a constant C, > 0 satisfying

c, :
W(ﬁ?/znfﬂm(um)/zﬂlfT <1

| fx] S{

Cr (o) Hf!\k+(1+§ny)/z+eotherwz’se
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and
fa=f— Z fexr € Ann({é(k)}zzo.
k=1

Proof:
Proof of Theorem 3.2 : This follows in the same way as the proof of Theorem
3.1 for the principal and complementary series. Using Lemma 3.2 and the fact that
v > 1, we conclude
lCjjral =1 =2vj+1] > 1.
Hence,
I, = Vg€ 01 = TMZgcj 0 > T

Recall f € Ann({6,}2°__N{6©}) and let f; be defined as in Lemma 3.2. By
Lemma 3.2, f; € Ann({6*™}7_,), and as each y; is a coboundary for k > 1, f; is
also a coboundary, so it is in the kernel of all invariant distributions. Then we apply
Theorem 3.2 and conclude there is a constant C, . > 0 and a transfer function u4 to

fa such that

C .,
Juallr < 207 full
Define

U= Uq + Z JeXr—1
k=1

and again note that

w(z —=T) —u(z) = [ug(z = T) — uq(2)] + Zi: frlxe—1(z =T) — xx—1(2)] = f.

Note there is a constant C,. > 0 such that for all £ > 0, ||xx||, < C,, and the estimate
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of fr then proves

1+Tr(r+1)/2
lull: < Cr(no) { I fallsr+2 + —mmmmym—f 1 | < Crr(po) [ fllsrre. (3.20)

Case v > s

We let HM = {z € H|Rz > 0} and H~ = {z € H|Rz < 0}. In this subsection
we prove

Let p <0,v>57r>0andT > 0,and let f € W3 T(H, d/\,,)ﬁAnn({gk/T}gO:l).
Then there is a unique L*(H,d)\,) transfer function u to the cohomological equation
(3.16), which satisfies

C,

||U||W“" Hd ) > 7||f||W3T+4(Hd>\ )-

Let {ug}x>n C L?*(H,d),) be the basis discussed in Section 2, and for k > 0,

write

o () ()

Let 4 < 0. Then for all integers k£ > 0,

/2
Jr oo KWL\
lssnllwecerany = =5 (U n 8k +n)) P | 22 |

This is proved in Claim B in the appendix.

Let ¢ <0,T >,r € Ny,s € 2N and 2r +4 < s. Then
Zf (z+mT)

m=1

is a solution to the cohomological equation

u(z —T) —u(z) = f(2), (3.21)



and for all 0 <r < s, u™ is defined Proof

Let f(2) = 3%, crur(2), and define

Zf (z+mT).
m=1

Then we formally have

Lemma B shows in particular that if s > 1/2 and z = x + iy € H, then

1
z)| < Cr v S74 T 1 \92s "
|f( )| — 77y||f|| (1+’ZD28
Hence, the series — > °°_ f(z + mT') converges uniformly on compact sets, and be-
cause f is holomorphic, we may differentiate under the sum. Lemma B also shows

that u((2) = —3°_, f(z + mT) converges uniformly on compact sets, so u is

holomorphic and the decay estimate proves u”) € L2(H,d)\,). O

Let p# < 0 be such that » > 0. Then for all £ > n,

1o k! (v+1)! -
S G G D L e
where we set
k!
=0 —m) =0 (3.22)

if k <j—m. Proof:
Let o : D — H be the analytic isomorphism between the unit disk and the
upper half-plane given in section 2. For f € W7"(H,d\,), we switch to unit disk

coordinates and get

1) = 0(f o)) = (S Ty 0 ale) (3.23)
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By formula (B.16), there are constants {c;,}7_, C C such that

U'(foa) Zcﬂ — 1) (f o) (8). (3.24)

In unit disk coordinates, we have that for all £ > 0,

1_5 v+1
Uppsn 0 0 = & (—2@) '

Using the notation in (3.22), we get

v dl v
wil](§) = (=20)" ¢+ Z Cae-
Ny k! (v+1)! -
= ]—fk (G- l)ig_ll/-i-l I
T TR AR A
Combining this with (B.16) allows us to conclude
a, k! (v+1)!

. ] (-1 _ i
DD B iy T e kS A

r+1 j . k! (v+1)! z — i\ j
= Cip(] N —(v+1—l+j+7)
DO I o T ey ) MG
i k! v+ 1) .
DI R e NI CR R
j=11=0

Given k,q,j € Ny, define

Vkingir(2) = S (14 |z +mT)uf), (z + mT)|.
m=1
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Let £ < 0,7 > 0,r € Ny, and s € 2N be such that 2r +4 < s, and let

f € W*(H,). Then there is a constant Cy > 0 such that

wllwr e+ an) <

o0 1/2
1 £1ls Z Iz <k§:0 ||uk+nHI;/25(H,d)\y)||Uk+n,lZuj,T||%2(H+,d)\,,)> .
0<g<2r )
0<j<r
0<qg—j<r
Proof

Let f(2) = 352, crug(z), and let w € L?(H, d),) be a solution to (3.21), given
by Claim 3.2. Recall the vector fields X,Y,© that make up (14 A) take the form

(14 v)k2d + ez 5 for j,k,m € {0,1} and I € {0, 1,2}. Then one can show

(14 &) ul| L2 are an,) < > V(1 + |2) %Y (2) |2+ an,)-

For z € H*, we have

(1 + [2)*u ()] = (1 + [2])? Z Z Chpntii Ly (2 +mT)|

<SS ekl (1 + |2 +mT D u), (2 +mT)]

k=0m=1

= 3 (ovenllunsall) (owenl* 321+ s+ TGz + )
k=0

m=1

o\ 1/2
<1Ifll (z e (Zu f ]z 4+ mT)y rummmm) ) .

m=1
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Now observe that

(1 + |Z|)qu(j)(2)||%2(H+,d)\y)

00 o0 ) 2
<A [ 3 a2 (Z (Lt |2+ mT )l (2 +mT>\) g~ dedy
k=0 m=1
00 00 . 2
sHfH?ZIlan!I;z/H+ (Z(u\z+mT\)q|u,?jn(z+mT)y> Y dady. O
k=0 m=1

With assumptions as in Lemma 3.2, there exists a constant C; > 0 such that

. /2

, , 1 (k—j+s/2v—s"\'
-l < Ci(k + v) .

[Orsngsrll2cman,) < W('+www—s+1QWSQk—j+ﬂ2+V—$!

Proof :

The triangle inequality gives

[k snasrllizgrs any = | 32 Q0+ [z +mT)ul), (2 + mD)| || 2+ an)
m=0
<ST |2+ mT) %), (2 + mT)|| 2+ an)- (3.25)
m=0

Lemma 3.2 shows

(1 + |2+ mT ), (2 + mT) | 2+ an)

io® k! (v +1)! L
<C; (1 T "Ugsnt1—w T T+i)™ )
<O o 1 g T ) )

(14 |z + mT)) uksnt1—w(z +mT)(z +mT + z')_jHLQ(th,\V)

s 1/2
<t [ I
— Uz mT st R
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. _ e 1/2
. +m_Z 2(k+l w) yV s—1
1 T[)2(9—7)—s+4 ( crm=r ) drd )
</H+( + |z +mT) ‘z+mT+i| |z 4+ mT + i[2v=s+D) v

(3.26)
Moreover, because s is even and v — s > 1, it follows that L?(H,d\,_,) is a

model for the discrete series representation with parameter v — s. Define

. . y— k+l—w 1
uk+n+l—w(z) = (Z+Z) m’

and notice that k+n+1{—w > n+ 152 == > 0,50 uf,, 1, € L*(H,d\—s11).

Let n, = %1’5 Because 2r +4 < s and ¢ < 2r, we know that 2(¢ —r) —s+4 <0,

and then using Claim 3.2,

. _ o 1/2
—i—mT—z 2(k+1—w) yy s—1
1 T|)2(a—7)—s+4 < grmi —1 > dxd
</H+( + |z 4+ mT) |z+mT+z'| Iz - mT + i@ xdy

S
< ”U(k+l—w+s/2)+n5 L2(H,d\y—s)

B NZS <(k:—|—l—w+s/2)!(l/—s)!>1/2
o Vr—s+1- 2 \(k+l—-w+s/2+v—3s)

VT (k—j+s/2)(v— s\
Sm.zvs< (k—j—s/24v)! ) ' (3.27)

Y 1/2
(H |z +mT +i|s+3 HL‘X’(H*’dzdy))

Next,

1 1/2 1
< 0o <
= <H(1+\z+mT\)|3HL Wﬂdwdy)) = (1+mT)3/?

Combining this with (3.27) and (3.26), we conclude

(325)<C 3 Y

k! (v+ 1) 1




VT ((k—j—|—3/2)!(y_s>!>l/2

Vv—s+1-2v5\ (k—j—s/2+v)
j°° 1
<O 2
i (k+v)! 1 <(k:—j+s/2)!(u—s)!>1/2
Zk+rv—i)Vr—s+1-2vs (k—j7—s/2+v)!
0 ; 1 (k—j+s/2)(v—s1\""
S?y<k+y) m~2”—5< (k—j—s/2+v)! ) -

With assumptions as in Lemma 3.2, there is a constant C; ; > 0 such that

- -2 2 Cj,s j
Z [fo7as ‘|Uk+n,qaj7T||L2(H+,d>\,,) < T v
k=0

Proof :

Using Claim 3.2, we have

1
htpenll;? = &
v

k+v)!
AY(1+ p+ 8(k +n)*)~° <(V)> :
and by (B.21), we have

(1+p+8k+n)*) < (k+v) .

Therefore,

[ (e ||Uk+n,q,j,T||%2(H+,dAV)

C; 2 (v+1)- 47 (k+v)! 2(js (k—j+s/2)l(v—s)!
S?V (y—s+1)-4VS< Elv! >.(k+y)( )< (k—7—s/2+v)! )
Ui (vH1) -4

ST (v—s41) -4

(k+v+2(—9))! (k—j4s/2) (v —s)!
< a7 >'<(kzj—ﬁ2+M!>' (3:28)

Using —s < —2r — 4, one can show 2(j — s) + 1 < —j — s/2, and noting that v > s,

it follows that

Cj’SVQj v+1 (v—2s)!

(3:28) < (v—s+1)
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. (k—j+s/2)---(k+1)
((k+V—j—S/2)~~(k+1/—j—2(5_j)_|_1)> (3.29)

Cis o (k—j+s/2)---(k+1) Cis oj_ 1
(3.29) < TV ((k_j+s/2)..-(k:+1—s+j)>§ TV (1+k)* .

Proof of Theorem 3.2 :
Let F1f be the Fourier transform of f in the real coordinate. Let y > 0. Then
Proposition B proves in particular that for all z = x + iy € H and s > %, then

1
< —.

|f(Z)| — CT,V,y”f“S(l + |Z|)28
Because f € W*(H,), we know that f(-+ iy) € L'(R), which means the Poisson

summation formula applies. Using the assumption that f € Ann({gk/T}k21) =

Ann({gk/T}g‘;_w we get

Z f Z+mT Z fl m/T 27Timm =0.

m=—0oQ

Therefore,

o0

o0
= > flz4+mTl) = Zfz—mT)
m=1
The same argument used to estimate ||ul[yr g+ 4y,) Proves there is a constant Cy > 0

such that

- any < 201

Then combining the estimates for H* and H~, and setting s = 2r + 4 proves

C
lullr < ="l fll2ra < ||f||37«+4

when r € Ny. The estimate for » > 0 and real follows by interpolation.
Finally, the solution u is unique for the same reason discussed at the end of
Lemma 3.2, which completes the proof of Theorem 3.2. O
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Remark: Rapidly decreasing functions are not dense in L*(H,,) (see, for example, the
discussion around Lemma 2.2). Therefore, we cannot simply consider a subspace of
such functions for which the Poisson summation formula holds, and then estimate
and extend by density.

Proof of Theorem 5.1: From Theorems 3.2 and 3.2, it remains to show the
space of invariant distributions Z,, is modeled by ({4 /7 teez+ U{6}), which follows

by definitions and Theorems 3.2 and 3.2. O
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Chapter 4

Obstructions to L? Solutions

We prove Theorem 1, which states that ({Z,,},>0) is the space of distributional
obstructions to the existence of L?*(SM) solutions.

Let p € spec(0), T > 0 and n € Z. If f € W?(H,) has a transfer function
u € ‘H,. Then 5n/T(f) = 0. Proof:

First suppose that © > 1, and let u € H, be such that f = v o ¢r — u. By
extending the Fourier transform on W' (H,,) as in definition (2.3), we see that f is

continuous. Note that H,, takes the L*(R) norm, so
f=Fluodf —u)= (e ~1)a,

in L*(R). Therefore,

f

U= (e-2mTE — 1)

in L2(R). Because f is continuous and @ € L*(R), we conclude f(%) = 0.

For the case 0 < p < 1, suppose to the contrary that 5n/T( f) # 0. In circle

coordinates, let

where ®(0) = 32 ce?*?. Then

1@l conszmay < D lexl < I f]l-

k=—o00

o4



So back in R-coordinates,

/1]

2 1

[f(2)] <

So f is again in L2(R), which means (4.1) holds, and as f is continuous, we conclude

that near Z,

1
E—n/T

(&) ~ (4.2)

Contradiction
When p < 0, again suppose 5n/T( f) # 0, and recall the norm for the model
L*(H,d),) is
Flizmany = [, [ FGo + i)y dady.
Note that because f € W'(H,), Lemma B shows f(- +iy) € L*(R) N L*(R). By

Lemma 2.2 we may fix any y > 0, and let F; be the Fourier transform along R+ iy.

Then
0= /R (/R lu(x — T +iy) —u(x +iy) — f(z + iy)\de) v tdy
= [ ([T~ )Fu(C +iy)  FFC o+ iy) ) gy,
SO
Fru(C +iy) = m
in L*(R).
Note F; f is continuous, so Fru ~ ﬁ in an e-neighborhood (% — ¢, % +¢€) x

{y}. Hence, [Jul|3, = oo, which is a contradiction as before. O
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Let > 0 and f € W5(H,). The operator Ar defined in (1.8) represents as

Arf(r)= [ fGot by

in the H, model, and when p < 0, it similarly represents as

Arf(z) = /O_T Flx+t)dt

in the L?(H,d\,) model.
Let u € spec(O). If p > 0, then (distributional) Ker(Ar) = <{<§n/T}n€Z_{O})
in the H, model. If u <0, then (distributional) Ker(Ay) = <{5n/T}n€N). Proof
First let ¢ > 0. Let D € &'(H,) and h € C*(H,). Then taking Fourier

transforms, we see

(A7D)h = —D(Arh)

R 6—27r7,T§ —1-

= B[ risari(e) = Dy h(E))
So

<{5n/T}neZ7{0}> C Ker(Ar).

—2miTE _q
2mi&

e

For the other direction, calculus shows € C*(R) and is invertible on
Unez(%,241). Soif D € Ker(Ar)NE'(H,), supp(D) C {%# }nez—{0- One checks that
D+ 557T for any r > 1, so we conclude that D € {02 tnez—{0}-

For the case p < 0, recall Fif(xz + iy) = 0 for all x < 0. Then the same

argument with h(-) replaced by h(- + i) proves

Ker(Ar) = ({0u/rtnez = ({007 tnen),

where the last equality holds because 5n/T( f)=0foraln<0. O
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Let pu € spec(0)—{0},s > 1 and f € W*(H,). Then there exists u € H, such
that

Lyu = fifandonlyifuo ¢5 —u = Arf.

The left equality implies the right by the fundamental theorem of calculus.

For the converse,

-T T
/ fo¢tUdt:ATf:uo¢g—u:/ Louo dUdt,
0 0

which implies

AT(EUU — f) = 0.

By Claim 4, the (distributional) Ker(Ar) = <{(§n/T}n€Z,{O}>. So there exists {¢p nez C

C such that

EUU, — f =D = Z Cngn/T- (43)

n=-—o0o
When p > 1, we take Fourier transforms and conclude
o

omicti— f = Y epduyr

n=—oo

Because u, f € L%(R), it follows that &a, f € L2 (R).

loc

For 0 < < 1, let g € C°(R) be a bump function supported on [—1,1] with

§(0) = 1. Additionally, fix n € Z, and for all m € Z, define

Gnm(§) == g(n(§ —m)).

Notice that

8

l 2mime

Gnm(T) = ne 9(=).

3
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Then

|Cn| = | ( i Ckék) (gnm)| = |<‘CUU gnm>Hu| + |<f gnm>Hu|

k=—o0

< s G )|+ 1 ), | < Nl NGl + 1 e, l1gnm 15, (4.4)

where the last equality holds because Ly is skew-adjoint on L?*(SM) and therefore
also on H,,.
We will estimate the values (g, ,,[[#,; [|gn,m|l#, with the following lemma.
Let 0 < p < 1and h € H,. Then there exists ¢ > 0 and a constant C,, > 0

such that

1A, < Cyullhllo (IRl Lacga>1y) + 1Bl Lo ((lz1<1}))-

Proof :

For a given function h € 'H,,

I, = [ MO gy
o R v

T

—/ (/ T|l+f)d )dm. (4.5)

Observe that

h h h
/ (Tj_x)drg/ | (7‘1+1‘)|dr+/ | (T;Lx)ldn
R |r| (riz1y || (ri<1y  |r|t

and notice
h(r+z
[ Dl < Gl (4.6)
{Irl<1}

-

Additionally, let p, g > 0 satisfy % + % = 1. Then Holder’s inequality gives

/p
\h(r + z)] ( 1 )1 ( )
—dr < / dr / h(r + x|)|%dr
/{|r21} |r[1= {Ir>1} |r[pt=») (r>1) I Dl

o8
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Let p > 0 such that

p(l—v)>1,

sothat (1 —v) >+ =1-— %, and therefore ¢ < % Because v < 1, we can choose p

1
P

such that 1 < ¢ < %, and conclude

h(r +x
[ B G < Gyl il (A7)
{Ir|=1}

|/’~|1—I/

Then

(4.5) < Cyullhllrmy (Il Lacqziz1y) + 1Al Lo ((z1<1y)). O

This means there exists ¢ > 1 such that

(44) S OV#]H“”H;L

Il 2 (1G5l o+ |G 222)

N f . gnml 21 ([ gnmllza + | gnmllzee)- (4.8)
Notice
d 1 / T 2mimax 2mim 2mimax T
() = 3 (et S g ()

Then there is a constant C' > 0 such that

g mllzt + lgnamll < Cm, llgp iz + llgngmller < Crant/~,

m
197 mllz= + I gnmllze < O
Therefore,

lim (|gf, g, = 0.

n—oo
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From (4.8) and by letting n — oo we conclude
Ccm = 0.

Finally, the case p < 0 is clear, because v and f are holomorphic functions, so
Lyu— f is still holomorphic, but given (4.3), this only happens when Lyu—f = 0. O
Let u >0, T > 0, and f € WY(H,), and suppose there exists u € H,, such
that
f=uo¢¥ —u. (4.9)
Then 6 (f) =0. Proof:
First let 4 > 0. By [11] we have Uf € W®(H,), and by flow invariance

U6© = 0. Proposition 4 shows f € Ann({6,}22__.) so

~

Sy (Uf) = Qm%(sn/T( f)=0.

Then Theorem 3.1 shows there exists g € W*3(H,,) such that

Uf(z) = g(x =T) = g(x).

Then for every M € R,
f@) = ) = [ up@at = [ gt 1) = (0]t

_/;g(t—T)dt—/;g(t)dt—/:Tg(t)dt—/MTg(t)dt_

M
Write g(f) = ®(0) cos'™(6). Then by Sobolev embedding, ||®||cor) < |9/,

so that for all x € R,
llgll

l9(z)] < \/ﬁ
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Hence,

M——oco JM—T
and for the same reason,

lim f(M) =0,

M——o0

which means
-7
() :/0 g(z + t)dt.

Now Lemma 4 gives a solution u to Lyu = ¢g. By Lemmas 4.7 and 4.8 of [2],

we get 6(0)(g) = 0. Then flow invariance of §(*, gives that for all ¢ € [0, 1]

0V (gog¢) =0"(g) =0.

So
—-T =T
0= [ 50— )dt=5([ g~ t)dt) = 5O
0 0
For p = 0, the same argument gives us a function g such that f(x + iy) =
Ji T g(x — t 4 dy)dt. Lemma 4 again gives a solution u to Lyu = g. Because

u € L*(H,d)\,), Lemma 4.9 of [2] shows §(”(g) = 0, and again flow invariance

of 0 proves 5 (f) = 0.

Let p < 0. Then there exists f € W3(H,) with a solution u to the cohomo-
logical equation (4.9) such that §(f) # 0. Proof:

We safely restrict ourselves to the holomorphic discrete series, so 1 < 0 implies
n = >2 Let f € W3H,) be such that 6 (f) # 0. Then Lemma 4.5 of [2]

shows there is a solution u € H,, such that Lyu = f. Consider Apf = [ f(z+t)dt,
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and note Lemma 4 applies, so we conclude that f(-) = u(-—T)—u(-). Finally, notice

that 6 is flow invariant, so

SO(f) = 6O /O_Tf(-+t)dt=/U_Té(o)(f(-th))dt%O- D

Proof of Theorem 1: Combining Lemmas 4, 4 and Proposition 4, we conclude.
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Chapter 5

Equidistribution of Horocycle Maps

In this section we assume that SM is compact, so the Laplacian has only pure
point spectrum. In each irreducible component K, we correspond to the invariant
distributions {D,, },cz U {D"} C Z,, the invariant distributions {&,}nez u{6®} c

7, (H,) by the formulas

for all n € Z.

Let

Oé( ): (1_\/1_H0)2
M B = VT=—mo)

where 1 is the spectral gap. For all > 0 and D € {D} U{D"} C Z,, define

alp)ifD =Dy, k#0

Sp = { IVl D = Dy

IS0 D = DO,
Let ¢Y be the horocycle map on the unit tangent bundle SM of a compact
hyperbolic Riemann surface M with spectral gap pg > 0, and let s > 6. Then there
is a constant Cy > 0 such that for all (zg, N) € SM x Z and f € W**2(SM), we

have

1 N-1

S Sl <] B X enlwn, Noa)DIN T &R, N,s)(f)

k=0 pu€Espec(0) DEL, (SM)

(5.1)
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where the remainder distribution R(z, N, s) satisfies

Cs
N, < —
IR N, o) < 5

and for all D € Z(SM),

’CD| S Cs.

Remainder distribution
Let 4 > 0 and s > 6. Then there exists a constant C; > 0 such that for all

(xo,N)ESMXN,

HR(Z'OaN?LS)HW s(SM) < g
N N

Proof
Let f € W*(SM). Because R(zg, N, 1,s) € Z(SM)*, we can write f = fz® fe,
where fr € (Ann(Z(SM))* c Ker(R(zo,N,1,s)), and fe € Ann(Z(SM)) is the

coboundary component. Then by the splitting in (5.1),

R(ZL‘(), N, 1, S)
N

R(:B,N,l,s 1 3=

f=

1

Theorem 77 and Sobolev embedding show there exists ; < r < 5,0, > 0 and a

(unique) transfer function u € W”(SM) to the cohomological equation (1.2) satis-
fying

[ullcogsan < Crllullr < Csl[ fells-

Therefore,

1 N
(5.2) < N Z WPt 1yro) — u(Ppro)]

n=0
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1

Cs Cs
= lu(@rw0) — ulwo)] < S2lfells < 2 F

where the last inequality holds by orthogonal projection. O

Flow invariant distributions

We remark that in Theorem 1.5 of [6] Flaminio-Forni proved asymptotics for
the decay of the invariant distributions of the horocycle flow in each irreducible

representation K, to be

co(zo, N, s)Dy ~ N~/207)

) (5.3)
d()(:IZ'O,N,S)'DO ~ N—1/2(1+u)

First we need a Lemma.

Let £ >0, s > 1and Y02 _cu(x,N,1,5)D,, € W*°(K,). Then there is a

n=-—oo N

constant Cs > 0 such that for all n,
|Cn(.1', N7 17 S)| S 08(1 + ’VDSTLS'

Proof :

First suppose that s € N and let f, € C°(R) be supported in [—1, 1] and
satisfy [4 fo(z)dz = 1, and let . = 2™ f; € C®(R) be such that d,(y,) = 1
and for all 7 # n, 8n(XT) = 0. Note that because x, € C°(R), we get for free that

5@ (x,) = 0. Then Sobolev embedding gives
|cn| = |CnDn<Q,:1Xn>|

< (( S D+ dDDO) @R> Q)] + [R(Qs )]

n=—oo
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1 N-1

- N Z Q;1Xn<¢7l{(x0)) + CS”Q;anHs < Csllxnlls-
k=0

We can estimate ||x,||s using our concrete formulas for X,Y,0 in (1 + A)%/? =

(1— (X2 +Y?%+4062%)*2 Because supp(fo) C [-1,1] and n > 1, we have
Ixnlls < CoX+ )1+ U%)xallo < Cn®|[ folls-

Then the Lemma for real s > 1 follows by interpolation. O

Let 4 > 0 and s > 6. Then there exists a constant C; > 0 such that for all
(g, N) € SM x N,

|co(wo, N, 1, 5)| < N~ RVI=0/2,
and
|do(z0, N, 1, 5)| < C,N~UFRVI=0)/2

Proof :

We prove the decay estimate for co(xg, N, 1,s). Let fo € C*(K,) N Ker(D®)

be such that D°(fy) = 1 and Dy(fy) = 0.

We have

| > D R N, 1
/ Qﬁ] (( E Cn(lL’OaN,LS) n+d0(fL’0,N,1,s)’D0> @(.’BO,]V,,S)> @t
0

n=—0oo

1 N-1

_ [t ) dt = L *dt
—/0 o an:% ®Y (x0) _N/o <¢t (xo)) .

Additionally, using Proposition 5, we get
1
|6 (dofwo, N1, )P + Riwo, N, 1,5)) dt € W(SM),
0
and Sobolev embedding shows

- [ @y e wesa)
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Hence,

oo

/01 o7 ( Z cn(xo, N, 1,3)1)”) dt € W*(SM).

n=—oo

Then we may separate the integral and conclude

1
[ dolizo, N, 1, 5)01 Dot
0

N/ ¢t o) dt—/ <25t (ch n)dt+/01¢f7zdt,

nez

In the same way one shows Y72 ¢,D,, € W*(K,), so Lemma 5 shows

n=—oo

lcn| < Csn®. Because the unitary equivalence @), intertwines vector fields, it also

intertwines the flow ¢V. Therefore, we get
(6 D) (fo) = (@30) (fo 0 0%)) = 6(Qu(fo 0 0%)) = 3((Qufo) 0 87,)

= 0n((Qufo) (- + 1)) = € 80 (Qufo) = 7™ Dyl fo). (5.4)

Notice the Fourier transform F(Q),, fo) decays faster than the reciprocal of any poly-

nomial, so we get

zz:cnz) 2: Qz (Qujb

nez nez

converges absolutely. Then using (5.4),

/cbt S eaDu(f)dt = ch/ (@) Dy (f,)dt = 0. (5.5)

nez nez
Next, because Dy is horocycle flow invariant, and D°(fy) = 1, Proposition 5
together with Theorem 1.5 of [2] give a constant Cs > 0 such that for all (z, N) €

SM x N,

1 N 1
do(ao, N, 1, )| < |7 [ fold (o))t + | [ o (R) (o, N, 1, 5)(fo)d
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< ON-HRVI=D)2,

The estimate for the coefficient c¢q(xg, N, 1, s) follows in the same way. O

Invariant Distributions for the Map
Let u € spec(0d) and 7 € Z. Then

ler (29, N, 1, 5)| < C’TTO‘(“O),

where a(p) = &;_7 ”1;\/%, and pp > 0 is again the spectral gap of the Laplacian

Agpr on SM.  Proof :

As in the proof of Proposition 5, we isolate the coefficients ¢, by

1 .
c-(0,N,1,5)D, = ¥ / e~ (1 N1, 5) ¢V Dyudt
0

nez

1 ) 1 )
= / e 2Tt gl <Z cn(z,N,1,5)D, & R) dt — / e 2T oV R At
0 0

nez
1 , 1 N1 1 .
= [l =Y (ol ) dt — [ e Rat
0 N = 0
1 N —2mitt [ LU * ! —2mitt U
-+ /0 =27 (U (20)) dt — /0 2T GUR . (5.6)

Define
1 N —2miTt U *
V= N/ e (¢f (o))" dt.
0

By Proposition 5 and Minkowski’s integral inequality,

1 , 1 C,
||/0 e~ 2T GUR (0, N, 1, 8)dt || g/o IR (o, N,1,5) -t < =

Therefore, it remains to estimate the integral for the twisted horocycle flow, which
is given to us by a recent result of Venkatesh.
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[Venkatesh (2010)] Let [g,, fdvol = 0. Then there exists a constant C' > 0

such that for all (zg, N) € SM x N and 7 € R, we have

s ()] < Cll fllw sany N4,
where a(py) = él(;i Vl;\/%, and jp > 0 is again the spectral gap.

Proof of 916:

Combining this with (5.6) and Proposition 5, we conclude
er (2, N, 1, ) [ D,y < CN =),

Then Proposition 5 follows by showing there is a constant C' > 0 such that |D,||_; =

16,]|-y < Cr. O

Venkatesh’s proof of Theorem 5 is short, and we reproduce it here for the

convenience of the reader.

Proof of Theorem 5 :

Let
0ifro > 1

V1I—poifO < pp <1
Let H > 1. Let py be a distribution on W?(SM) defined by

pulf) =5z [ A (o))

where f € W2(SM). So

_l H —2miTh U
Frprla) = 5 [ e (0] (zo))dh.
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and f* py € W2(SM).
Let f € C*(T'\G) and denote f x oy the right convolution of f by py. One

checks there is a constant C' > 0 such that

H
Yo, (f) = vr-(f * pu)| < C?Hf“WQ(SM)y

and by Cauchy Schwartz we also have

vr(f % pe) |2 < vro(If * pl?).

Theorem 1.5 of [6] proves

(vro(1f * pul?) = vol(|f  pul*)) < CT™V2ONTT| f s ppllwaisnry,  (5.7)

where g is the spectral gap of the laplacian Agjy.

Notice

1

1 % pnoo) P = 75

/[0 AP 6—27rz"r(h1—h2)f(¢gl (xo))mdhldh,

and applying (5.7), we have

H 1 1/2
(Hl<oZ 4i/ U U f)dhydh
1< ORI (5 [, roloh S Tyt

1

I 1/2
< (C—= — v v dhidh
S CT £l + <H2 /hl’hﬁ[()’HP((/ﬁhlf; Gn, [) r2(sarydhidhy

o 1/2
n (T 1/2(1—/T=po) (’YT,0(|f * prr|?) — vol(|f * pH|2)|))

H 1 1/2
<0 4i/ U Pdhydh
< ORI (g5 [, o e Pt

N2
v (o s L)

(h1,h2)€[0,H]?
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Then using quantitative mixing of the horocycle flow (see [17]) and basic prop-

erties of Sobolev norms, we conclude

(@h £, f) < C(L+ R £113

for some C, > 0 and

sup |6k, f - 0, fll2 < (L4 [ha| + [R2])?[ £15-

(h1,h2)€[0,H]?
This implies

vz (f )|<C( + HE R PR AAEE) | £,

Then choosing H*~1/2 = HT-Y/*1-%) gives the result. O

We have now given an upper bound for the rate of decay of the remainder
distribution and all invariant distributions. To finally prove Theorem 77, we need a
Lemma.

Let 4> 0,5 > 2 and f € W*(H,). Then for all £ € R,

£ < Cull Fllwsr20,) (1 + [€))~CHD.
Proof :
Observe that
16 Flonimy < 6 Flazcmy + 11 3 (€ Dl
< DNz + e f N 2 my- (5.8)

Next, Lemma B shows that under the change of variable 2 = tan(9),

@) = [T F(0)] < C 3 cos™ (0)[ 19 (6),

Jj=1
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and formula (B.6) proves
[FPO)] < Co(1+ [v])’ Z!q’(k )| cos'~7(0),

where ®(0) = S0°__ ¢ ™™ By Sobolev’s inequality, each [®®) (8)| < || f[lwr+2r,.)-
Combining and switching back to R coordinates, we find a constant Cy > 0 such

that for all z € R,
[fO @) < Co(@+ W) X+ [a) TV fll oo (5.9)
By Lemma 6.3 of [11], we conclude
(5.9) < Cs(L+ [2) "V fllasse.

Therefore,

(58) S Cr||f||2$+2 O

Now we prove Theorem 5. Recall that a(uy) = &3__7 Vl;\/%g By Lemma 5, there

is a constant C > 0 such that
D) = (@) < oMz,

Therefore, the series

Rz, N, S)(f)|
N

HfH

X Skl =) (Z (0, N, $YDo(f) + dofz. . S)D“(f)> &

nez

< 3 Il INTOCO fllagpg|n] T+ Ol fllasp2 N 7O 4

nez

converges absolutely, and Theorem 5 follows.
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Appendix A

Appendix A

Formulas for the Principal and Complementary series
Vector fields

The models for the principal and complementary series are discussed in Section

Let o > 0. The vector fields for the H, model on R are

X=dm(X)=—-1+v)— 2:16%

O =dm,(0) = —(1+v)z — (1+2%)Z

V=dn,(V)=(1+v)z+a2*L.
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By the change of variable = = tan(f), the vector fields in the circle model are

X =dm,(X)=—(1+v) —sin(20) 2
O =dr,(0) = —(1 +v)tan(d) — 2

o0

Y =dm,(Y) = (1+v)tan(d) — cos(20) 2

V =dr, (V) = (1+v)tan(f) + sin*(0) 2.

Remark : We denote both the R-model and the circle model by H,,.

Discreteseries

The following commutations relations of the formulas in Claim 2.1 hold:

[X,Y] = (XY —YX) =20, [0,Y] =2X, [0,X] = -2, [X,U] =2U.

These formulas agree with the commutation relations of the matrices.

Construction of basis

The goal of this subsection is to construct an orthogonal basis of vectors
{un}22_ . € C°(H,) for the irreducible represention space H,, which we do using
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the annihilation and creation operators X 4 Y.
We have cos't(0) € Ker(0).

For all n € Z, define
Uy, = e 2™ cos T (6).

Let n € Z*. Then

{ (X +iY)u, = —(1+ v+ 2n)u,qq

(X —iY)u, = [—(1+v) + 2n]u,_;.

We have

X+iY =—w+1)(1 —itan(f) — iemaae,

and then note

-(X 41 Y)cos”(h)
= [(v 4+ 1) —i(v + 1) tan(9)] cos” () + ie~ 2 (cos"* ()’
= (v 4 1) cos” () — i(v + 1) sin(f) cos” () — ie 2 (v + 1) cos”(f) sin(h)
= (v +1)cos”™(0) —i(v + 1) sin(f) cos”(A)(1 + €*?)
= (v 4 1) cos" H()(1 — 2isin(6)e®).

Check that

(1 — 2isin(h)e) = e~

Hence,

(X +iY) cos”"(0) = —(1 +v) cos” ! (§)e 7.
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Observe
(X +iY)u, = (X + 1Y) (cos" ™ (0)e ")
— [ 1) cos P (0)]e=5 — i cos 1 (B) e~
= —(v+ 1) cos" T (B)e20e=2m0 _ je=20(_2jn) cos1(f)e2m

= —(v+1)cos” T (H)e 2D _ 9n cos"H(0)eHM TV — (1 4+ v 4 2n)up .

We similarly have

X —iY = —(v+1)(1 +itan(d) + iemaae,

and one shows

(X —iY)cos" ™ (0) = —(1 + v) cos' ™ ()e*®.

In the same way it follows that
(X —iY)u,=(—(v+1)+2n)u,_,. O

Let > 0. Recall the Casimir operator O := —X? — Y2+ 6? and the Laplacian

N = (—X?—-Y?—0?). Then for all n € Z,

Ou, = (1 — 1)y, andAu, = (1 — v* + 8n?)u,,.

Let > 0. The set {u,}>*,, C C*°(H,) is an orthogonal basis for H,. Proof:

By construction ({u,}>) C H, is irreducible, and therefore ({u, }* ) = H,.
Additionally, general theory shows it is an orthogonal basis. One checks that u, €
H,, for each n. Finally, Claim A shows that each u, is an eigenfunction for A, so
u, € C*°(H,). O
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Formulas for the Discrete series
The upper half-plane models are discussed in Section 2.
Vector fields

Let 4 < 0. The vector field formulas for the upper half-plane are:

X =dm,(X) = —(1+v) - 224
O =dm,(0)=—(1+v)z—(1+22)2

Y =dm,(Y)=(1+v)z—(1-22)2

V=dn,(V)=(1+v)z+222.
Our remaining goal is to construct an orthogonal basis {uy}3>,, € C*(H,) for
the holomorphic irreducible representation space L*(H,d\,).
Construction of basis

Given the © derivative in the upper half-plane representation, the function

N 1} 1 v+1
Uy = (Z Z) ( ) € Kero.
Z+1 Z+1
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Bargmann’s well-known ladder argument (see (2.2)) gives For all k € N,

—iO((X — i) uy) = —2k (X — 1Y) up. O

For all integers k > n, define

U = 5 . .
Z+1 Z+1

Note that

1 v+1
w=(53)
Z+1

and each wuy, = ( ! )VH € L*(H,d\,).

z+i
We have
{ (X —iY)u, =2(v + Dups
(X +Y)u, = 0.
Proof
We have

(X —iY)u, = (—(1 +v)— 225) —1 ((1 +v)z—(1— 22)592) Up,

z

= <_(1 +v)(1+iz) —i(z — z’)zaaz> Un,

= —i(1+v)(z—1) (Z_lH.)VH +i(1+v)(z — 1) (j ; z) (Ziiyﬂ

=(—i(l+v)(z—9)+i(z = )1+ V) ups1 =2 + Du, = (1 + v + 2n)u,.

On the other hand,

(X Y Jup = <i(1 o) (i +2) iz + i)Q(fZ) (5 i i)m
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=i+ )i+ 2) (- i Z,)VH i)+ i Z,)M —0. O

Let £ > n be an integer. Then

{ (X +iY)up = (1+v —2k)ugp_y

(X —iY)up, = (1 + v+ 2k)upyq.

Proof :
We have
. . z— i\
(X —iY)up = (X —3Y) (Z+Z> Up,
z— i\ 0 (z—i\F™
_ X — ¥ — i _.2n< >
(z~|—i) ( ¥ —i(z Z)“az z+1
z—i\F™m z—i\Fmt 24
_ o o e Pt (20)
<z+i) (I+v+2n)u, —i(z — i) u,(k —n) P TP
= (14+v+2n)ugsr + 2(k — n)ugrr = (1 + v + 2k)ugy1.
Next,
z—i\F" 0 (z—i\F™"
JO X 4V 44 'Zn( )
(X + 1Y )uy, <z+z) (X +1 )u)+z(z+z)uaz "

i\ k—mn-1 2
z Z) L —2(k —n)up—1 = (1+v—2k)u, ;. O

:z’(k—n)(z—l—i)Qun(Z_i_Z, PR

Lastly, Bargmann’s ladder argument proves For all integers k£ > n,

—iO((X — iY)*ug) = —2k (X — 1Y) up. O

Therefore, the set {uj}r>n is a basis for L?(H,d),). Moreover, {u.} C
C*(H,,), which is proven from the following formulas:

Let ;1 < 0. Then for all integers k > n, we have

Ouy, = (1 — )y,
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and

Auk = (1 - V2 + 8k2)uk |
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Appendix B

Appendix B
In this section, we prove the lemmas we needed in section 3 and Proposition

4.3 from section 4.

Principal and complementary series

Relevantdistributions

Additional distributions at infinity

Recall from section 3 that §(0 € W~1+%)/2+¢(1 ) is the flow invariant dis-
tribution. We prove the important proposition listed previously as Proposition
4.3: Let 4 > 0 and s > 0. Then there is a constant Cs. > 0 such that for all

f c WS+1/2+§RV/2+E<H#) N Ann({é(r)}i;é), re€ Randr > 0, we have

Cs,e

1—v

[f7 ()] <

(14 )" (4 |2 fllysraemszre oy, -

This will require several steps.

There exists constants 0 < ¢ < C such that for all [0] € [3%, 5] and a € (0,1],

T T T
(07 _7Oé< o - < (07 _704.
0 2\ < |cos™(0 2)]_0\(9 2\

Proof :
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First let o = 1. Expanding the Taylor series of cos(f) about 7, we see

cos” 3) m > cos(@nH) (1) 7r
g_f — 0T \N27 9_771: R 2/ N2n+l
o0 (2n+1)(g)
i cos T
=0 — = — 20— —)*. B.1
Notice the coefficients satisfy
(2n+1)(m
R (2)! <1,
(2n + 1)!
so there is a constant C' > 0 such that
(Bngcw—g.
Also notice that |35 — 7| = § and so
(2n+1)(£ 9] ()
cos“" T (3) 2 s T
0—=)" < —)" < - 1<1
DRy D B P P U

So there is a constant ¢ > 0 such that
cm—;g(gu

Then the result follows for o € (0,1] by taking powers. 0O
Let > 0,5 >0,€>0and f € WsH/2®/2¢(H Y0 Ann({§")}525). Then

there is a constant Cy . > 0 such that for all |f] € [3F, 2] and integers 0 < j < s —1,

we have

. Cs € s—j
|¢.(])(9)| < m coSs 3(9)||f||Ws+1/2+nfeu/2+e(Hu).

Proof
Let 0 < j < [s] be an integer. Sobolev embedding gives

1/2
[@llers < Co ( S 1+ |n\>2<s-f'>+1+*rcn|2) . (B2)

n=—oo
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Then using Lemma 2.1 of [2], we see that

Cse
(32) S ﬁ||f||Ws_j+(1+§Ru)/2+e(HH) < Q. (B3)
Let
: 0 ™
g(tr) := @Y (t:1(6 — 5) + 5)‘

Then the Fundamental Theorem of Calculus gives
09 () = g(1) — ¢(0) = /01 g (t)dt = (0 —7/2) /01 UV (1,0 — 7/2) + 7/2)dt.
Now for ¢ € [0, 1], let 6, = ¢(0 — 7/2) + 7/2, and we see in the same way that
U (6,) = (6 — 1/2) /0 6, - 1) /0 LU (150, — 7/2) + 7/2)dtadty.

Notice that 6;, — /2 = t,(0 — 7/2), and define ﬁ,j,l =t,_j_1---t1. Then iterating
proves

DU ()] < |6 — 7r/2|§_7“/ |(I>(T)(9; )|dt_;~—j—1- (B.4)

[0,1]+= T

Then

200, ) =120(0;_,_,) — 2" (n/2)]

r—j—1

< (frjer (0 = 7/2))* 197 | ca(njamjapy < 10— /217D

C3([=m/2,m/2])-

Combining this with (B.3) and (B.4) gives

@D (0)] < 07| 2|

Os,e —q
Cs([—-m/2,m/2]) S ﬁw — 7T/2|S ]||f||Ws—j+(1+§Rl/)/2+s(Hu).

Finally, Claim B allows us to conclude. O

Let 4 > 0 and 7 > 0. Then there is a constant C; > 0 such that for all

&’

| g7 008" (O)] < C5(1 + [v])’] cos™ ™ (6)).
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Proof -
The claim is immediate for v = 0.

If v # 0, then taking j derivatives gives a term
I_,(1 — k + v) sin(f) cos" 7% () (B.5)

plus terms with a higher power of cos(f). Because cos(5) = 0, the term (B.5)

dominates. Finally, note there is a constant C'; > 0 such that
(B.5)] < Cy(1 + ]} cos™™™=i(9). O

Let o > 0 and s > 0. There is a constant C's > 0 such that for all u > 0,
0<j<sand feWstaH/2He(H YN Ann({6(M}:20), we have

Cs,e

()
F0)] <

(14 ] cos™ R B)] flyperrrmzseg,

Proof :

There are constants {ck}izo C Z such that

d’ i dR d* ,

0= o) (Wq><9>) (da <9>) | (B.6)
By Lemma B and Claim B, we have

Ci.e J s—(j— v
7m|]f||ws+(1+m>/2+e(m) > er(L+ |v])F cos =R+ =k )
k=0
< Cs,e
T V1I-—Rv

Let r > 0 be an integer, u > 0 and f € C"([~7, 5]). Then there is a constant

(B.6) <

(1 + |V|)j||f||Ws+(l+§Ry)/2+e(HH) COSS_j—H—HRV(Q). O

C, > 0 such that for all 6 € [-F, 7],

U £(0)] < C, 3 cos™(0) 9 (0)].

Jj=1
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Proof -

In circle coordinates, we know

d
U = cos’—.
COS d 9

Proceeding by induction, suppose r > 1 and there are constants {c;;} C C such

that

U f(0) = > ¢ cos” TR () sin"~ R (9) £ (6).

J+kE<r

Notice this holds for r = 0 (and r = 1). The induction assumption gives

U™t f(6) = (cos? 6’;0) > ¢;x cos TIHR() sin™=UTR) () £9)(9)

l<j<r

0<k

0<j+k<r

Sl) X e (=l B os ) i) 10 o)

1<j<r
0<k
0<j+k<r

+(r — j + k) cos" L) sin = UFR 1) F0)(9) + cos™HHE g sin™=UHR) g D) ()
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= > ik - (—(r + 7 + k) cos L) sin™UHRFL(9) 1) (9)
Il<j=<r
0<k
0<j+k<r
+(r — § + k) cos FHRE3(9) sin"~UTR=L(9) £ (9)

+ cos" L (9) sin’ 0P (9) FUHD (). (B.7)
The only concerning term is
cos" T3 (g) Sinr—(j+k:)—1(9)f(j) (9),
which occurs when r — (j + k) # 0. In this case the assumption j + k < r gives
Jj+k<r—1,so
r+j+k+3<2r+1).

This completes the induction.

Finally, for all £ > 0 and j > 1 such that j + k <r,

cos™ IR () sin™ R (9) < cos™(h). D

Proof of Proposition B :

Let > 1and 0 <r <s. Combining Lemma B with Lemma B gives

U7 F(B)] < C()(1+ W) 3 cos™ 54 )| |yt
j=1
Cs.e

< Té)%y(l + )" COSSHJFH?RV@)HfHWs+<1+mu)/2+e(Hu). (B.8)
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Now observe that cos(f) = \/1i7’ so in R-coordinates, for all |z| > tan(3Z),

1

05,6 r
(B.8) < ——==(1+1v]) e [ lwecamarzeeg,,

v1—-Rv

(1 4[]

When |z| < tan(2F), there a constant \/% > () such that

r Cs,e
1F o < ﬁ||f||ws+<l+%w/2+e(m)-

Soforall 0 <r <sandzé€ R,

Cs.e . 1
A M) e [ lweosmorsegy,)- O

[f7 ()] <

The distributions ¢%5)

Let r > 0 be an integer, i > 0, and f € C*°(H,). If r is even, then

-1

LysO(f) = 3 (0 + D(=2)(=20)% (551) = (=200 (51.y)) 607570 — 504D,

N3

<
Il
o

and if r is odd, then

Lyd(f) = —i(v 4 1)(=2i)"6© — g0+

[5]-1

+ ;) (=2) ((V + 1)(_2i)2j<§j+1) - (—2i)2(j+1)(g(j+1))) sr—2i-1).
Proof:

Write f(6) = ®(0) cos” ™ (6), so we have

LydO(f) = 6D (=Y f) = 8" (=Y 3 cuun)

nez
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e (; S (X 4 iY) - (X — z’Y)]un>

nez

=0 (; Z cl(—(v+1)— 2n)e_2i(”+1)9 —(—(w+1)+ 2%)6_%(”_1)6] cos”“(@))

nez

chn (v+1)—2n)(=2i(n+1))"(—=1)" " — (= (v+1)+2n)(—2i(n—1))"(=1)"]

_ é(-zz)r 5 (=1 (v 4 1) = 2m) (4 1) — ({4 1)+ 20)(n = 1)
= L2 Y a1 (4 (1)~ (0= 1)) — 20((n+ 1) + (0 — 1))

nez

The binomial theorem gives

(n+1)"—(n-1)"= 2:0(}7)(nr_j —(=1Yn"7) =2 ;) (340027 (B.9)
and
r (3]
n+1)"+(n—-1) Z_%)(;)(n’"_j +(=1)Yn"77)=2 ) (;J)n’“—% (B.10)
Hence
Lys"(f)
(557 (5]

= 52 X e+ 12 3 Gy = 2023 (g )

(]

=i(=2i)" Y ca(=1)"(v+1) Y (QJ_H)nT_Qj_l

nez 7=0
(5]
+i(=2)" ) ¢, Z n’ AT
nez 7=0
=
=iy W+ 1(=20)7"(54) D (—2in) %1
) nez
(5] '
+20 ) " (—20)%~ 1(2]) > (=1 (—2in) . (B.11)
j=0 nez
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By definition,

So
[55]
(BA1) =i Y (v 4+ 1)(=20)%* (540 ())
j=0
(5]
+20 Y (=2i) 77 (5,)6 " FI(f)

=0

Z v 1)(=20)Y(3;,)00 ()

(3]

(~20)% (5,)8¢ -2+ f). (B.12)

(B.12) =i(v + 1)(_21')?“5(0) _ g+

[5]-1

+ > (2(V + 1)(=2i)% (5;4,) — (—Qi)2(j+1)(§(j+1))) sr=2-1)

J=0

Let £ > 0,7 >0 and f € C*(H,). If r is even then

1
(2(V+1)< 20)% (3511) — (= Qi)z(ﬂl)(g(ﬂl))) o2,

(5]

(M

<.
Il
o

and if r is odd, then

L6 (f) = iy + 1)(=2i)76©

[5]-1
+ Z( (v 1)(=20)% (554) — (=202 (5,0)) 857D,

Proof:
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Let > 1 and f € W2(H,,). Notice that U = (Y + ©), so

Lu80 (1) = 6 -Uf) = 260V f = OF) = S(Lx3(f) + Lod ()

Finally, observe that by definition of 6"+, we have

ﬁeé(r)(f) — 5(r)(_@f) _ 5(r+1)(f)‘ m

Invariant distributions

Let w > 0,n € Z, T > 0and ¢ > 0. Then 6,7 € W (IH)/2+)(} ) is a
T-invariant distribution. Proof:

First let f := f — 0©(f) cos'*(arctan x). Proposition B gives

bosr(F)] = busr (P < [ 1F(x)ldo

Cs.e .
S\/S’T (L4 [a) = 9da| fll a - 2e

||f §O(f) cost” Y oarctan || (1-sw)/2-e

< 576 4 €
> m“f“(lJrﬂ? )/2+

where the last step holds because |6 (f)] < Ce| f|l(145w)/2+¢ by Section 3.

Clearly, Sn/T is linear, and it is T-invariant, because
Surf(-+T) = [ Jla+ D)=/ Tdy
R

:/Rff(a:)e%ri(xfT)n/de:/Rf<m)€27rixn/de:(§n/T(f). 0
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Let £ < 0,n € Zand T > 0. Then 6,0, € W-1/25)(H,) is a T-invariant
distribution.

In the same way, one shows that on /T,y 18 @ T-invariant distribution.

Discreteseries

For 1 > 2, define

and let {uy}x>n C L?(H,d),) be the basis discussed in section 2 and discussed

further in Appendix A. Let

&:D—>H:§—>—i<§ti) =z

be the conformal map between D and H.

Let p <0, and let 7,5 € Ny satisfy 0 < r < (s —1)/2 and s > 2. Also let
feWs(H,d\,) N Ann({6}3_,). Then there is a constant Cy > 0 such that for all
z € H,

[FP )] < CllFlls (1 + [2])7Cr2r2rrear2,

Define the space

M
Pu(-D) = {Z Ckuk‘|M S N7 {Ck}ljyzn - Oag S D}
k=n

Let p < 0 and r,s € Nyg,s > 2and 0 < r < 5. Also let f € P, (D) N

Ann({0"}:28). Then for all integers 0 < r < 3,

o (1) = 0.
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Proof -

Because f € P,(D), we may differentiate ® term by term. Then

d" (I) 271'19

27rzn9 2win)" 27Tin9'
T d@ = ca(2min)e

n>v n>v

With this, we have

dr
dor

B2 g_y = 3 e, (2min)" = (—1)787) () = 0.

n>v

Note that ® has a Taylor series expansion about £ = 1 given by

= Z kn(£ -
n=0

where {k, }22, C C. Hence,

27r19 Z k 271'10

Observe

Then for 0 <r <s§5—1,

n! dr

(27i) "k, o

Let j € N and given t1,...,t; € R, let

(B.13)

Let £ < 0and r,s € No,s > 2and 0 < r < 5. Also let T,,f € P,(D) N

Ann({6"}:2§). Then for all £ € D, we have

@O < lg =11 [ @O~ 1)+ Dld T

[0,1]*=
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Proof
Let
gi(t) = ROV (A(E — 1) + 1)
and
g2(1) = SOV (H(E — 1) + 1)

and let g(t) = ¢g1(t) + ¢2(t). Then Lemma B and the Fundamental Theorem of

Calculus show
! /
RO () = 9i(1) = :(0) = [ gi(t)ds,
and
L /
SO0 (€) = 92(1) — 92(0) = | gh(tr)dnr.
So

20(€) = [ g/t = (6~ 1) [ SV (ta(e 1)+ .

Now let &, =t1(§ — 1) 4+ 1, and we see in the same way that

2 (e,) = (€~ 1) [ (6, ~1) [ @ta(e, — 1)+ Diadty

Notice that &, — 1 =t;(£ — 1). Then iterating gives the lemma. O
Define

P,(H):={f € L*(H,d)\,)|f oa € P,(D)}.

Let 1 < 0,7 € No,s >2and 0 <r < 3. Alsolet f € P,(H)N Ann({0T}i;).

Then there is a constant C;.; > 0 such that for all 2 € H,
£ (2)] < Crgll Flls (1 + |2]) s 0/2vrs2),
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Proof

Notice f oa € P,(D), so

foal€) = (E)(E — 1),

Then
T d]
(foa)(©) = 2 ()P 5 (€~ )"

J=0

- 7«”—'_1))' (el = e q|vtl—j+5—r+j

Tl LW R
'y B (e, e q|Fvt+l-r
<Cw'y S 12 € T syl =17 (B.14)

Because D is convex, we know that & € D for all ts_j. Recall that v < s

and let 0 < e = 55”

29 (&, I < D2 lealn®

n=—oo

00 1/2
<C. < Z |Cn|2n25+1+e> < C’€||f||§+%1JrE (B.15)

n=—0oo

Because v is odd, we have

v+1 s—14+v+1
+e=|— =

Then

(B.14) < Cov|| f]](§ — 1)§+V—H_ra

By way of induction, we prove that for » > 1, there are constants {c;} C C

such that

T

U'(foa)&) = c(¢—1)(foa)d (). (B.16)
7=1
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By Claim A,

Then

Ui oa)e) = () St =) (f o)

_ - Z ((r+ )€ = 171 4 (¢ — 1) pUD)

1@(5 1) (foa)V,

1

<
+

.
Il

for some constants {¢;} C C, which proves formula (B.16) holds for all 0 < r < 5.

In particular,

[GIEYe zm 119](f 0 @)9(¢))
< Ot 11 1€ = 14147 < G| £l Y016 — e, (BaT)

Then the Lemma follows from the change of variable given by the linear fractional

transformation « : £ — —i% (see (B.23)). O

Proof of Proposition B :
Clearly, P,(H) is dense in W*(H,d\,). Thenlet n > 0 and f, € (P(H,d\,))N
Ann({6M}5_,) satisfy

1f = follwsan) < n-

Asr < 5;21 and v < s, take 0 < € = *5* and conclude that for all z € H,

K (- (2] < H (- @l jare < I = Folls <,

dz" dz"
where we use Nelson [9] in the second inequality.
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Hence,
dT‘
-

10 < |

(f = fD @+ £ ()]

<0+ Crs V(|2 + 1)7CVEEAEI g,y O

The case v > s

Let 4 < 0. Then for all integers k > 0,

/2
Jr oo [ KW\
L o e LR OR V )

Proof :
The unit disc model L?(D, do,) has the measure do, := 477(1 — [£|?)"dudv,

and there is an isometry

_9 v+1
T, : L*(H,d\,) — L*(D,do,) : u, — uy, o o) <§_Zl> ;

where a(¢) = —i (£) . One checks that u, o a(§) = (L VH, so T,u, =1, and
&—-1 2i

therefore

||un|’%2(H,dAV) = HTUUHH%Q(D,day) =47 [ (1- |£|2)Vdf
D

27 1 9 dde 1 d T
:4*”/ / 1 —r2) - 4*”/#/15:7.
0 o( ) rdr " 0 (v+1)4v

Let {@x} be the basis studied in [2]. Lemma 2.1 of [2] gives that for all k& > n,

(k—n)lw!

|2 = Tl = =
ol =1hs = G~

In particular,
@, |? = T, = 1.
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Hence,

\/_

[l = OEpD

We generate the other basis vectors from the creation operator. For all & > n,

1
Uk—mn-&-uk—la
and
N 1 N
Uy = ————— N Up—1.-
k V+2k_177+k1

By iterating we conclude

- k— )] 1/2
e N (==

The Claim follows by Claim A. O

Let 1 < 0 and r, s be integers such that 0 < r < s < w. If f € W¥(H,d\,),
then

FO( 4 iy) € LY(R).

The first step is to prove Let ;4 < 0 and r, s be integers such that 0 <r < s < v.

If feWs(H,d\,), then for all £ € D,

|(foa)(&)]

> n—1)!
Cr i g1, Z( >

k=r—j

1/2
<k+v>—25+27‘|§|2’“) €771 — g|¢ -
(B.18)
Proof :
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We have

foaf) = (=2i)~+D Z Cran&®(1 — &)V
k=0

Therefore
(f 0 ) (€) = w4 Z:: (kz;]ckmd;‘jj k) jgjj“ g
]z% (k;]%m ]:'Jrj) 3 ’”ﬂ) m(_l)j(l gy
= SZ”T;O (kzij ’Ck*"’M\flk> [ = g (B.19)

Using Lemma 3.2 we multiply and divide by ||ug||s = \/%71?_2,, (1+p+-8(k+n)?)*/? ((kkﬁ)!

to get

C,
(B.19) = ;0"

= — k —r v4+1—j
( > |Ck+n|||uk+n||s||uk+n||sl(kj_)|§‘k) €17 — g

k=r—j

< CovVr+ 1 fls

. . , 1/2
;} ( > k]:,r (L 8(k + n)?)* (U{;%) ’§|2k)

k=r—j

fE1TTHL = g (B.20)

Notice that

14+ pu+8k+n)?=1+1—v>+8(k+n)

=1+1—2n—1)2+8(k+n)?
= 14 4n® + 4n + 16kn + 8k > k? + 4kn + 4n?
= (k+ (v +1)*> (k+v)% (B.21)
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Additionally, 0 < j <r < v, so

k! ? k+uv)! \?
— ) <|[——=) <k+v)"
((/{;—r—i-j)!) _<(k+v—r)! < (k4 v)
Combing this with (B.20) and (B.21), we conclude. 0O
Now let

Br:={z€ H:|z—i| <T/3}andB$’ := int(H — Br).

Let 4 <0 and r, s be integers such that 0 <r < s <wv. Also let z € B%’O and

feWs(H,d\,). f v/2+r < s, the

T or+1)2 1/2
|f(r)(z)| < Cr (1 +T> v / Hf”s (1) | 1 ’(l/+7'+1)/27
- T V! 3z 14122 4+ 23(%)

and if v/2 +r > s, then

1 +T T 1 v/2—s+r+1/2 1 s—r/2
(r) < r+1/4 ( ) < ) ‘
1) < Crv —— ) Ifls ®

Sz 1+ |22 + 29

In particular, if r =0, s > 1/2 and z = x + iy € H, then

1

|f(Z)| < Cr,u,y”f”sm'

Proof :

Then by (B.16) and Lemma B we have

£ = UT(f 0a)(©) < O3 le 17179

1/2
VT+1/2 - /{—}-V' —2s42r —r v r
<Cr Hst< > ( )(k-+L0 2*2|£Fk) €71 =g (B.22)
k

V! !

=r—j
For the following case 1) and case 2), let ¢ = |¢]2.
Case 1:v/24r < s. Then v — 2s + 2r < 0, which means

(k+v)!
k!

(k 4+ I/)72s+2r S (k 4 V)zxf2s+2r S 17
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and therefore

> v)! 1/2
(Z (k —]:' ) <k+V)_2S+2T|§|2k>

k=0
o 1/2 1 1/2
<(Zr) ()
Observe that
r+i(y—1) 2 432

q=|

1 - )
r+i(y+1) 14 |2)% + 29z

SO
I 1422429z
1—q 432 '

Next, because z € B%, we may write it as 2 = i + awT where > 1 and w € S*,

which means

_1 zZ+1 2+ awT 1+T
Ny |z—z| | awT < T '

for some constant C' > 0 Therefore,

e ()
Lastly,
I e
1/2
- (1 T |zy24+2<5(z)> | (B.23)

Combining these facts gives

1+ T)T prL/2 T 1+ |22 4+ 23(2) |/ 4 (v14r)/2
T V! 3 413z 1+ 22 +23(2)

14T\ vt/ 1\!? 1 (v4r41)/2
<0 () T (52) s
T N 3z 1+ |22 +25(2)

(B.22) < C, (
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Case 2:v/2+4r > s. Then v — 2s + 2r > 0, so that

S (k4+v—2s+2r)! > k! .
B.22) < E — E: v+25—2r)
( )—< k! a (k—l/+25—2r)!q

k=0 k=v—2s+2r

dl/72s+r o] L dl/728+27‘ 1
o dqu—25+2r (koq ) o dqy—25+2r (1 _ q>

v—2s+2r+1
1
= (v—2s+2r) [ —— .
(v —2s+2r) (1—(])

Hence,

14+7TN\" /(v—2s+2r)!
)

1+ |22 4 23 (z) \ @222 4 (v414r)/2
43z 14 2% +23(2)

< c r1/4 <1 4 T)T ”fH < 1 )I//2—S+7’+1/2 1 s—r/2 .
v — o — )
- T Sz 1+ |22 +25(2)

(B.22) = Cu /4 (

Now we prove Proposition B. Because f is holomorphic, it is bounded com-
pact sets, so it is bounded on By N (—o0,00) X {y}. Then the proposition follows

from Lemma B. O

Now we prove

Let £ <0, k € Z and y;,y2 > 0. Then 5k/T7y1 = Sk/T,yZ, and if £ < 0, then
5k/T7y1 =0. Proof:

Say y1 > Yo, and let s > 1/2. Additionally, or all n € N, let T',, be the closed

curve with sides

[, = {[—n+iy1, ntiy | JU{[n+iy1, ntiys] JU{[n+iys, —n+iys] JU{[—n+iys, —n+iy]|}.

101



Let f € W*(H,,), and note that f is holomorphic. Then by Cauchy’s theorem,

0= / f(2>6_2ﬂ.ik/Tde.
T

By Lemma B, there is a constant C,,, ,, > 0 such that

| / ' ' f(z)e—ka/Tzdzl + | / ' ' f(z)e—ka/Tzdz|
[—n+iye,—n-+iy1] [n+iy2,n+iy1]

< Coyrelflls (1 + In) 7.

Letting n — oo, we conclude 4, /Ty = O JTya

The second statement is proved in the same way. O

The matrix of ¢%(6%);_, is determined by calculating ¢%.6®).

Let p < 0, and r > 0. Also, let f =32 c,v_, € WT2(H,) . If r is even
then

Ly (f) = —(20)7 ()

— >0 (207w (5,,)80 Y 4 (20)%(3,)00 75 ().

§=0
If r is odd, then

]
Ly60(f) = — 3 (Z-(Qz-)zﬂly . (gﬂl)é(um’fl) + (22’)21'(12"].)5(1”72#1)) (f).

Jj=0

N3

Proof.

Let f € W™?(H,). Then Lemma 6.3 of [11] implies

1Y fllwr+ie,) < NAfllwreri e,y < A fllwr2,,)-

Hence,
Y WT+2(HM) — Wt (Hu)
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is a bounded operator. Additionally, observe that

Y FI < I fllwregy < C D kel

k=n
So the series defining Y f converges absolutely. So we may move Y under the sum.

Therefore, we have

Ly5 (f -Y Z ckuk

_ ;}s(r)(i el(X +Y) — (X — iV )|u

k=n
- %25(*)(2 (L4 v — 2k ey — (14 v + 2K) ey (B.24)
k=n

By (2.4), 6@ € W=+ (H,) so we may move ) under the sum. So

(B.24) fick =2k = 1) — (1 4+ v+ 2k)(k + 1)

[\DN

e o}

5 A+ ) (k1) = (k—1)] —2k[(k—1)" + (k+1)]). (B.25)

@

The Binomial Theorem gives

[55]
(k+1)—(k—1)) =2 (5j+1)E" A

§=0

and

7=0
So
;o (5] 5 '
(B.25) = (20)' 523 e | ~(14 1) 3 (k27" = 2k Y (5)k
k=n 7=0 7=0
[554] oo
— —i(?i)r(l 4 V) Z (5j+1> Z ke 25— 1 2Z r+1 Z 5 Z L 2]+1
7=0 k=n



(5] 00

(5 %
—i(1+v) 3 (50)(20)77 3 0(20k) e = D0 (5,)(20)7 32 (2ik) ey
j=0 k=n =0 k=n
[ 5] -
=2(1+v) D (5,1)(20)760V(F) = 30 (5,)(20) 602D (f). (B.26)
=0 =0
If r is even, then ["51] = [£] — 1, so

[3]-1
(200 4+ ) (5541)(20)7 = (5541))(20)2070) 50270 ( )= (24)7 6 =50+,

(B.26) =
=0
If r is odd, then [*5*] = [£], so
5] ‘ . .
(B.26) = > (201 +v)(3;,1)(20)% — (20)?0060=270(f)) — 60+ O
=0

Let £ <0,7>0and f € W2(H,). If r is even then

[5)-1
o0 (1) = X (204 0) ) 2 = (351 (2020) 0070 (p) = (2078,

J=0

and if r is odd, then
]

N3

(200 + ) (3342)(20)°07) = (20280 7(f) . O

0

EU(S(T)(f) =

J

Proof.
Notice that U = (Y + ©), so

Lod () = (L3 () + Lod (1)), (B.27)

Observe
Lo6" (f) =TT (f),

by definition of 6"+ so the Corollary follows by combining this with Lemma B. O
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