
ABSTRACT

Title of Thesis: Leader Based Cyclic Pursuit

Name of degree Candidate: Kenneth L. Miltenberger

Degree and Year: Master of Science, 2016

Thesis directed by: P.S. Krishnaprasad
Professor
Department of Electrical and Computer Engineering

In this work a system of autonomous agents engaged in cyclic pursuit (under

constant bearing (CB) strategy) is considered, for which one informed agent (the

leader) also senses and responds to a stationary beacon. Building on the framework

proposed in a previous work on beacon-referenced cyclic pursuit, necessary and suffi-

cient conditions for the existence of circling equilibria in a system with one informed

agent are derived, with discussion of stability and performance. In a physical test-

bed, the leader (robot) is equipped with a sound sensing apparatus composed of a

real time embedded system, estimating direction of arrival of sound by an Interaural

Level and Phase Difference Algorithm, using empirically determined phase and level

signatures, and breaking front-back ambiguity with appropriate sensor placement.

Furthermore a simple framework for implementing and evaluating the performance

of control laws with the Robot Operating System (ROS) is proposed, demonstrated,

and discussed.

LEADER BASED CYCLIC PURSUIT

by

Kenneth L. Miltenberger

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2016

Advisory Committee:
Professor P.S. Krishnaprasad, Chair/Advisor
Dr. Kevin S. Galloway, Co-Advisor
Professor Andre L. Tits

c© Copyright by
Kenneth L. Miltenberger

2016

Dedication

To my family, friends, and loved ones. I know you probably won’t understand

much of this paper, but I still love you all the same.

ii

Acknowledgments

First I would like to thank Professor Krishnaprasad for all his encouragement

and support. Without him I don’t know if I would have even looked for opportunities

to do research or do a Master’s Thesis.

I would also like to thank Professor Kevin Galloway for all the great work

he’s done, so that I might expand upon it in a small way. Kevin is a great mentor,

from helping me understand his work, to his detailed paper edits and revisions. Of

course, my favorite times were trading sea stories in the lab.

Special thanks to Udit Halder for helping make the video, and being my TA

for far too many classes. Thanks for putting up with me!

Finally, I’d like to thank my friends and family for their ongoing love and

support! It’s been a tough ride, but you’ve helped me through it!

This research was supported in part by the Air Force Office of Scientific Re-

search under AFOSR Grant FA9550-10-1-0250 and FY2012 DURIP Grant from

the AFOSR (FA2386-12-1-3002), and by the ARL/ARO MURI Program Grant No.

W911NF-13-1-0390. Additionally, this research was supported by the U.S. Coast

Guard Advanced Education program

iii

Table of Contents

List of Figures vi

List of Abbreviations ix

1 Introduction 1

2 Leader Based Cyclic Pursuit 5
2.1 Theory . 5

2.1.1 System Modeling . 5
2.1.2 CBL Control Law . 10
2.1.3 Relative Equilibria . 12
2.1.4 Existence Conditions of Relative Equilibria 16
2.1.5 Stability Analysis for Two Agents 19

2.2 Experiments . 27
2.2.1 Two Agent CBL . 28
2.2.2 4 Agent CBL . 32

2.3 Performance vs. CB Beacon . 38
2.3.1 Fixed Lambda and Initial Conditions, Varying Alpha 40
2.3.2 Fixed Alpha and Initial Conditions, Varying Lambda 43

3 Sound Sourced, Leader Based Cyclic Pursuit 45
3.1 Introduction . 45
3.2 Sound Sourced Localization . 46

3.2.1 The ILD IPD Algorithm . 46
3.2.2 Breaking the Symmetry . 49

3.3 Embedded Systems Design and Development 50
3.3.1 Hardware Selection . 51
3.3.2 System Design . 52
3.3.3 Development . 53

3.4 Head Calibration and Angle Recovery 59
3.4.1 Head Setup . 59
3.4.2 ILD/IPD Signature Generation 60

iv

3.4.3 Stationary Beacon Tracking Law 62
3.4.4 Broadband Sound . 65
3.4.5 Building and Checking Signatures 66

3.4.5.1 Recovery Experiment 1: 5 Degree Resolution 67
3.4.5.2 Recovery Experiment 2: 2.5 Degree Resolution . . . 68
3.4.5.3 Recovery Experiment 3: The Manikin Head 72
3.4.5.4 Recovery Experiment 4: Full 360 Signature with Op-

timal Sensor Placement 74
3.5 CBL with Robot Phonotaxis . 77

3.5.0.1 Beacon Configuration 78
3.5.1 Experiments . 79

3.5.1.1 Experiment 1: Anti-Clockwise Circling Equilibrium . 80
3.5.1.2 Experiment 2: Clockwise Circling Equilibrium 83
3.5.1.3 Experiment 3: Change of beacon location 86

4 A Controls Framework for ROS 90
4.1 Introduction . 90
4.2 Lab Configuration . 91
4.3 The Structure of a ROS Program . 93
4.4 A Framework for ROS . 94

5 Conclusion and Further Research 99

Bibliography 102

v

List of Figures

2.1 Attention graph for leader based cyclic pursuit with a beacon. Arrows
denote the direction of an agent’s attention. 6

2.2 Diagram of scalar shape variables ρi, ρiB, κi, θi 9
2.3 Numerical Stability Analysis of the Two Agent System, λ vs. α = αB.

Red indicates instability, blue indicates stability. 26
2.4 Numerical Existence Analysis of the Two Agent System, λ vs. α =

αB. Red indicates non-existence, blue indicates stability. 27
2.5 2 Agent CBL, Plot of Agent Distance to Beacon (Beacon was moved

by hand to a new location at approximately 92 seconds). 29
2.6 2 Agent CBL, Plot of Agent and Beacon Trajectories; squares repre-

sent initial positions, circles represent final positions 30
2.7 2 Agent CBL, Plot of Kappa Angles 30
2.8 2 Agent CBL, Plot of Kappa Beacon angles 31
2.9 2 Agent CBL, Plot of Rho (rho values are the same in the two agent

case) . 31
2.10 4 Agent CBL, lab setup. Agents are circling the cone, which serves

as the beacon. 32
2.11 Plot of Agent Distance to Beacon. Beacon was moved by hand to

a new location at approximately 53 seconds. We see that before the
beacon was moved, ρB was approximately 1.4 for all agents, then once
the beacon was moved, it once again settles to approximately 1.4. . . 34

2.12 Plot of Agent and Beacon Trajectories. Beacon was moved by hand
to a new location at approximately 53 seconds. Squares represent
initial positions, squares represent final positions. 35

2.13 Plot of kappa angles. Prior to movement of the beacon, it appears as
though all agents converge to a κ angle of approximately .78. After
the beacon is moved, the followers maintain this angle, while the
leader (Epsilon) converges to a κ ≈ .8 36

2.14 Plot of kappa beacon angles. Prior to movement of the beacon, all
agents appear to converge to a κB of approximately 1.55. Once the
beacon is moved, the agents once again settle to a κB of approximately
1.55. 37

vi

2.15 Plot of Rho, interagent distances. Prior to movement of the beacon,
ρ values are approximately 2 meters. After the beacon is moved, the
leader ρ converges to approximately 2 meters, while the follower ρ
values converge to approximately 1.9. 38

2.16 Performance Comparison of CBL and CBB, varied over λ, other pa-
rameters fixed. Initial condition parameter 1. 41

2.17 Performance Comparison of CBL and CBB, varied over λ, other pa-
rameters fixed. 43

3.1 Sound Localization Diagram . 47
3.2 Embedded System Design Diagram 53
3.3 Processing diagram of the F28377S ADC. External clocks (triangles)

feed into the ADC. Each ADC conversion cycle is triggered by the
EPWM signal. 54

3.4 The Phonotactic Leader Agent with Optimal Microphone Placement . 59
3.5 ILD/IPD signature database generation. 62
3.6 Stationary Tracking Diagram . 63
3.7 Linearly weighted broadband sound PSD 66
3.8 Captured Unsmoothed ILD and IPD signatures for κB = 90 degrees. . 69
3.9 Captured Unsmoothed ILD and IPD signatures for κB = −90 degrees 69
3.10 Recovery Plot from Experiment 2, 80.82% recovery rate 71
3.11 Recovery Error Variance Plot from Experiment 2, 80.82% recovery

rate . 71
3.12 Recovery Plot from Experiment 3, 84.11% recovery 73
3.13 Recovery Error Variance Plot from Experiment 3, 84.11% recovery . 73
3.14 Recovery Plot from Experiment 4, 85.5% recovery rate 76
3.15 Recovery Error Variance Plot from Experiment 4, 85.5% recovery rate 76
3.16 Information Flow of the CBL-Phonotaxis Embedded Implementation 78
3.17 CBL-Phonotaxis Experiment 1: Plot of leader κB measurements (red)

vs. ground-truth (Vicon based measurements, blue) in degrees. . . . 81
3.18 CBL-Phonotaxis Experiment 1: Plots of system dynamics vs. time

for both the leader (Epsilon) and the follower (Upsilon). 82
3.19 CBL-Phonotaxis Experiment 1: Plot of trajectories. Squares mark

initial positions and circles mark final positions. Epsilon was desig-
nated the leader. 83

3.20 CBL-Phonotaxis Experiment 2: Plot of leader κB measurements (red)
and Vicon measurements (blue) in degrees. 84

3.21 CBL-Phonotaxis Experiment 2: Plots of system dynamics vs. time
for both the leader (Epsilon) and the follower (Upsilon). 85

3.22 CBL-Phonotaxis Experiment 2: Plot of trajectories. Circles indicate
agent final positions, squares indicate initial positions. Epsilon is the
leader, Upsilon is the follower. 86

3.23 CBL-Phonotaxis Experiment 3: Plot of leader κB measurements (red)
and Vicon measurements (blue) in degrees. 87

vii

3.24 CBL-Phonotaxis Experiment 3: Plots of system dynamics vs. time
for both the leader (Epsilon) and the follower (Upsilon). 88

3.25 CBL-Phonotaxis Experiment 4: Trajectory plots of the leader (Ep-
silon) and the follower (Upsilon). Squares indicate initial positions
while circles indicate final positions. 89

4.1 Information flow of lab components. 93
4.2 Example ROS Controls Framework Dataflow 95
4.3 Trajectories of agents using hybrid control law within the proposed

ROS framework, where two followers are performing topological ve-
locity alignment from [1] on each other and cyclic pursuit on the
leader. The leader is performing CB Beacon, paying attention to
only one of the followers. 97

viii

List of Abbreviations

α interagent angle control parameter
αB agent’s beacon angle parameter
β spacial phase information
κi the ith agent’s angle to the i+ 1 agent, relative to the agent’s heading, measured counterclockwise
κiB the ith agent’s angle to the beacon, measured the same as before
θi the angle from agent i to agent i− 1 relative to the agent’s heading
ρi distance from agent i to agent i+ 1
ρiB distance from agent i to the beacon
λ control parameter controlling the leader’s attention to the beacon
µ control parameter for equilibrium scaling
p pressure, experienced by a microphone
ω frequency

CB Constant Bearing
CBB Constant Bearing, Beacon focused
CBL Constant Bearing, beacon focused, with a Leader
ARIA software library for remotely manipulating robots
ROS Robot Operating System
ILD Interaural Level Difference
IPD Interaural Phase Difference
FFT Fast Fourier Transform
TI Texas Instruments
DSP Digital Signal Processing
ADC Analog to Digital Converter
EPWM Enhanced Pulse Width Modulation
SYSCLK System Clock
ADCCLK ADC Clock
ISR Interrupt Service Routine
CLA Control Law Accelerator
DSA Dynamic Signal Analyzer
MDLE Motion Description Language Extended
TVA Topological Velocity Alignment

ix

Chapter 1: Introduction

Missions such as search and rescue, persistent surveillance, and containment

of a hazardous substance may be carried out more effectively by a team of diversely

equipped agents, rather than a single highly-equipped agent. In this way a common

goal can still be achieved, but with sensing redundancy. Specifically, organizations

such as the US Coast Guard can benefit from using autonomous agents to carry out

missions.

Drones and autonomous sea surface vehicles can significantly enhance Coast

Guard rescue efforts by providing long range, persistent searching, with low person-

nel risk. Currently, vast expanses of open ocean such as the South Pacific prove

difficult and costly to patrol and search. For example, in 2013 a sailing vessel was

found adrift approximately 1300 nautical miles west of Oahu, HI. Multiple C-130

manned flights were conducted, while a Coast Guard Cutter with a 50 person crew

was dispatched to board the vessel, and verify if there were any personnel aboard.

The cutter took four days just to reach the vessel and required additional C130

flights to get a precise location of the adrift vessel. Due to fuel limitations, the C130

aircraft could only stay on station for a few hours at a time, requiring subsequent

flights to relocate the adrift vessel. [2]

1

While the mission was accomplished and the vessel was verified to have no

persons aboard, the entire effort was extraordinarily costly. According to U.S.

Coast Guard Commandant Instruction 7310.1Q “Reimbursable Standard Rates”,

the inside government hourly rate was $7,140 and $14,975 for the cutter and C-130

respectively, including personnel cost. Assuming two 10 hour C130 flights and 8

days of cutter deployment, the cost of this search and rescue case exceeded 1.6 mil-

lion dollars. By using Predator drones, with an estimated hourly cost of $3,600 an

hour per drone, a team of drones could be deployed to significantly reduce mission

costs. Thus we establish motivation for using a team of drones with diverse sensing

and target tracking capabilities to perform search and rescue, as well as other Coast

Guard missions.

In the interest of accomplishing missions such as search and rescue, cyclic

pursuit schemes have been shown to be an effective method of controlling teams

of n agents in a decentralized manner, generating desired group motions through

dyadic pursuit interactions of agents interacting over a cycle graph (i.e. agent i

pursues agent i + 1, with nth agent pursuing agent 1.) (See, for example, [3–5]).

Recent work on beacon-referenced (or “target-centric”) cyclic pursuit ([6–8]) has

modified the framework to introduce a stationary beacon to which agents can sense

and respond. However, in practice it is likely that not all agents will have the same

sensor packages or ability to locate targets.

In the context of Coast Guard search and rescue, one drone might have an

infrared sensor, while another might have a radio direction finder, surface radar, or

no sensing equipment due to search and rescue assistance payloads. Constrained by

2

size and weight limitations, it might be advantageous from a payload standpoint to

equip each drone with a different sensor package, with only a subset of the agents

capable of sensing the beacon (or target).

In this thesis, performed in the Intelligent Servosystems Laboratory (ISL),

we consider the setting of a collective of agents, with exactly one member dividing

its attention between a beacon a neighboring agent in the collective: this agent is

designated the “leader”. The other agents of the collective are therefore designated

as “followers”, with each of them sensing a neighboring agent of the team in a

cyclic way. This leader based, beacon focused, cyclic pursuit system is referred to

as “CBL”, in contrast to the works [6] and [9] where “CBB” is used to denote the

setting where each agent has knowledge of the beacon and a neighboring agent of

the collective. In Chapter 2, we demonstrate that under appropriate conditions on

control parameters, circling equilibria still exist for the CBL system, with agent-

beacon distance and shape determined by control parameters.

In the CBL context, the leader agent is equipped with a means to sense the

beacon in a manner possibly different from how the agents sense their neighbors. In

this thesis, we assume the beacon is like an ocean buoy, radially emitting sound, and

we equip the leader to sense the direction of the beacon using only sound, whereas

the agents sense neighbors through an indoor global positioning system (Vicon).

Drawing on the earlier work of Handzel and Krishnaprasad in [10], and Andersson

et. al. in [11], an apparatus for robotic phonotaxis is created and implemented

using embedded systems. While the algorithm used in this thesis to recover the

direction (angle) of a sound source is the same as in the earlier work, the sound

3

sensing apparatus, the method by which sound signatures are generated, and the

way front/back symmetry is broken all constitute a departure from earlier work.

Instead of using theoretical signatures for a perfectly spherical “head” apparatus,

empirical signatures are generated in a calibration experiment for a somewhat realis-

tic (nonspherical) Styrofoam manikin head, using “optimal” microphone placement.

In Chapter 3 we demonstrate that this method of direction finding is good enough

to be used in the CBL system.

And finally, given the broad range of controls experiments performed in this

work, an overview of the lab’s equipment setup is given in Chapter 4. Interactions

between the ViconTM motion capture system, controls software, and robots are de-

scribed and diagrammed in detail, with the hope that new users might become

comfortable with this system quickly. Moreover in an effort to ease and standardize

control software development, a software framework based on the Robot Operat-

ing System (ROS) and inspired by MDLE [12, 13] is proposed, which facilitates

implementation of different control laws in a collective of mobile robots. Such a

framework has the advantage of enabling repeatability of experiments and facili-

tating code maintenance, the results of which are demonstrated through all of the

controls experiments performed in this work. Additionally, the power of the frame-

work is demonstrated by creating hybrid, complex control laws based on individual

control law libraries.

4

Chapter 2: Leader Based Cyclic Pursuit

2.1 Theory

2.1.1 System Modeling

The way we frame our model of interaction will be the same in [6], but with a

small extension to account for the difference in agent attention. First we define the

index set I,

I , {1, 2, 3, ..., n}, (2.1)

where n is the total number of agents. We assign the agents to indices as follows:

the leader is assigned index 1 (thus will be agent 1), the follower paying attention

to the leader is assigned index 2 (agent 2), the follower paying attention to agent 2

will be assigned index 3 (agent 3), and so on until all n agents are assigned indices.

Addition and subtraction within this set should be interpreted as modulo n such

that,

n+ 1 = 1. (2.2)

Thus the leader (agent 1) pays attention to agent n. In addition the leader also pays

attention to the beacon (see Figure 2.1). We will refer to this asymmetric scheme

5

as the CBL system, where L denotes “leader based”.

Figure 2.1: Attention graph for leader based cyclic pursuit with a beacon. Arrows

denote the direction of an agent’s attention.

Each agent is modeled as a unit-mass self-steering particle with a twice-

differentiable motion path in R2. We can then use the natural Frenet frame equa-

tions [14] to describe the motion for a group of n agents. By letting ri denote the

position of the ith agent, the underlying system dynamics can be expressed as,

ṙi = νixi

ẋi = νiuiyi

ẏi = − νiuixi, ∀i ∈ I,

(2.3)

where xi is the normalized velocity, yi is xi rotated π
2

in the counter clockwise

direction, νi is the speed, and ui is the natural curvature which will be the steering

6

control. The variables xi, yi, ri are all in R2. We pack (2.3) into a matrix and

define,

gi =

xi yi ri

0 0 1

 ∈ SE(2), ∀i ∈ I. (2.4)

As in [6] we introduce a beacon, however it will only be referenced (i.e. paid attention

to) by the leader agent. We denote its location as rB ∈ R2, along with a fixed frame

[xB yB] attached to it. Without loss of generality, the frame can be interpreted as

the inertial reference frame. The corresponding element of SE(2) is denoted by gB.

Differentiating gi we write,

ġi = giζi

where ζi = νi

0 −ui 1

ui 0 0

0 0 0

(2.5)

Where from [6], two variables are introduced,

g̃i,i+1 = g−1i+1gi

g̃iB = g−1B gi.

(2.6)

By definition of g̃i,i+1, we derive the cycle closure constraint,

n∏
i=1

g̃i,i+1 = 13 (2.7)

and beacon consistency conditions,

g̃i,i+1 = g̃−1i+1,B g̃iB, ∀i ∈ I (2.8)

7

where 13 is the identity matrix in R3.

Following the same approach as in earlier works [6], the state of an agent

relative to the beacon and neighboring agents is described as a reduction to scalar

shape variables. We denote the counter-clockwise planar rotation by an angle φ ∈ S1

by,

R(φ) =

cos(φ) − sin(φ)

sin(φ) cos(φ)

 ∈ SO(2). (2.9)

Then we define the set of scalar shape variables as,

ρi = |ri+1,i| ρiB = |rB,i|

R(κi)xi =
ri+1,i

|ri+1,i|
R(κiB)xi =

rB,i
|rB,i|

R(θi)xi = − ri,i−1
|ri,i−1|

,

(2.10)

for all i ∈ I, and ri,j , ri − rj, for any agent two agents i, j in the system. Figure

2.2 shows a diagram of the scalar shape variables.

8

Figure 2.2: Diagram of scalar shape variables ρi, ρiB, κi, θi

Using the scalar shape variables, the dynamics of each agent i ∈ I can be

expressed as follows,

ρ̇i = −νi cos(κi)− νi+1 cos(θi+1)

κ̇i = −νiui +
1

ρi
(νi sin(κi) + νi+1 sin(θi+1))

θ̇i = −νiui +
1

ρi−1
(νi−1 sin(κi−1) + νi sin(θi))

ρ̇iB = −νi cos(κiB)

κ̇iB = −νiui +
νi
ρib

sin(κiB),

(2.11)

subject to the cyclic closure constraint derived from (2.7),

R
(n∑
i=1

(π + κi − θi+1)
)

= I2, (2.12)

9

and the beacon closure constraint derived from (2.8),

ρiI2 = ρiBR(κiB − κi) + ρi+1,BR(κi+1,B − θi+1), ∀i ∈ I. (2.13)

The value ρi denotes the distance between agent i and agent i + 1, κi is the

angle between the agent i’s current heading and direction to agent i + 1, and θi

denotes the angle between the heading of agent i and direction to agent i− 1. With

the beacon introduced, ρiB is the distance between agent i and the beacon, and κiB

is the angle between the heading of agent i and direction to the beacon.

It can be shown that if (2.12) and (2.13) are satisfied initially, they are satisfied

for all further time under the dynamics on (2.11), regardless of the controls used.

2.1.2 CBL Control Law

In this section we recall the beacon-referenced, constant bearing (CBB) pursuit

law from [6],

ui = uiCB+B = (1− λ)uiCB + λuiB, λ ∈ [0, 1] (2.14)

and uiCB is the original CB pursuit law from [15]. The CB pursuit law references

agent i + 1, and uiB is based on the deviation from a desired bearing angle to the

beacon, and the λ parameter is the weight of the beacon in the CBB control law.

Now by the attention graph in [6], in terms of scalar shape variables, each agent i

uses,

uiCB = µi sin(κi − αi) +
1

ρi
(sin(κi) + sin(θi+1))

uiB = µB sin(κiB − αiB).

(2.15)

10

Parameter µi > 0 is simply a gain value, which as was shown in [6], can be

used to adjust the radius of encirclement of the beacon. The αi parameters describe

the desired relative angle of the neighboring agent, and αB is the agent’s desired

relative angle of the beacon.

For analysis, we simplify the controls and dynamics obeyed following simpli-

fying assumptions:

1. The speeds of all agents are equal and constant, thus without loss of generality

νi = 1 ∀i ∈ I.

2. Controller gains are equal, µi = µi+1 = µ, ∀i ∈ I.

Then the dynamics simplify to,

ρ̇i = − cos(κi)− cos(θi+1)

κ̇i = −ui +
1

ρi
(sin(κi) + sin(θi+1))

θ̇i = −ui +
1

ρi−1
(sin(κi−1) + sin(θi))

ρ̇iB = − cos(κiB)

κ̇iB = −ui +
1

ρiB
sin(κiB),

(2.16)

for all i ∈ I. The point of departure for this thesis from [6] is that only agent 1,

the leader, is aware of the beacon. Then the CBB control law is modified into CBL

laws: the leader agent employs the CBB pursuit law, but the rest adopt the plain

11

CB law, leading to,

ui =

λµ sin(κiB − αiB) + (1− λ)

(
µ sin(κi − αi) +

1

ρi

(
sin(κi) + sin(θi+1)

))
,

if i = 1

µ sin(κi − αi) +
1

ρi
(sin(κi) + sin(θi+1)),

if i 6= 1,

(2.17)

with the dynamics subject to the cyclic closure constraint (2.12) and beacon closure

constraint (2.13).

2.1.3 Relative Equilibria

Now we analyze the closed loop shape dynamics (2.16) to determine existence

conditions for equilibria, and characterize system behavior at equilibria1. While in

(2.14), λ ranges over the closed interval [0, 1], we do not allow for λ to take the

value 1 or 0 in order to keep the system performing leader based cyclic pursuit with

a beacon. Our approach takes inspiration from [6]. From the form of ρ̇i and ρ̇iB in

(2.16), we obtain the condition,

θi+1 = π ± κi and κiB = ±π
2
, i ∈ I. (2.18)

Now from setting κ̇i, θ̇i equal to zero, we see

1

ρi
(sin(κi) + sin(θi+1)) =

1

ρi−1
(sin(κi−1) + sin(θi)), (2.19)

1Note that equilibria for the shape dynamics (2.16) are relative equilibria for the full dynamics

(2.3).

12

for i ∈ I. Now define,

δi ,
1

ρi
(sin(κi) + sin(θi+1)), (2.20)

where from (2.19) we see the relationship,

δi = δi+1, i ∈ I. (2.21)

Geometrically, δi is a quantity that relates the angle and distance between agents

at equilibrium. Further we define,

ψ , δ1 = δ2 = ... = δn. (2.22)

Looking at the controls from κ̇i, (2.16), and (2.21) we see that at equilibrium,

ui = ui+1, i ∈ I, (2.23)

and more specifically,

u1 = ui, i = 2, 3, ..., n. (2.24)

This is to say that the controls for all agents are the same at equilibrium, despite

the leader having a different control law from the followers. From the κ̇i dynamics,

we also see the relationship,

ui = δi, i ∈ I. (2.25)

Then from (2.22) and (2.25),

ψ = u1

ψ = λµ sin(κ1B − αB) + (1− λ)
(
µ sin(κ1 − α1) +

1

ρ1

(
sin(κ1) + sin(θ2)

))
ψ = λµ sin(κ1B − αB) + (1− λ)

(
µ sin(κ1 − α1) + ψ

)
λψ = λµ sin(κ1B − αB) + (1− λ)

(
µ sin(κ1 − α1)

)
.

(2.26)

13

Now dividing through by lambda,

ψ = µ sin(κ1B − αB) + (
1

λ
− 1)(µ sin(κ1 − α1)). (2.27)

Setting κ̇iB equal to zero and using (2.24) ,

1

ρiB
sin(κiB) =

1

ρi+1,B

sin(κi+1,B), i ∈ I, (2.28)

and from (2.26),

ψ =
1

ρiB
sin(κiB), i ∈ I. (2.29)

Now suppose that in (2.18) we have κi = π + θi+1. Substitution into (2.29)

yields,

1

ρiB
sin(κiB) = ψ =

1

ρi
(sin(π + θi+1) + sin(θi+1)) = 0, (2.30)

for all i ∈ I. This results in a contradiction in (2.18) because ρiB > 0 and sin(κiB) 6=

0. Therefore,

κi = π − θi+1, i ∈ I. (2.31)

Then using (2.20), (2.27), and (2.31),

ψ =
2

ρi
sin(κi), i ∈ I. (2.32)

Solving for ρi using (2.20),

ρi =
2 sin(κi)

ψ
, i ∈ I. (2.33)

Solving for ρiB using (2.29),

ρiB =
sin(κiB)

ψ
, i ∈ I. (2.34)

14

Now looking at the κ̇i dynamics for the followers, i ∈ {2, ..., n}, and using (2.17)

(2.25),

µ sin(κi − αi) = 0, i = 2, 3, ..., n (2.35)

which implies for follower agents (i ∈ I s.t. i ≥ 2),

κi = αi or κi = αi +mπ, m ∈ N (2.36)

As demonstrated in [5], under the CB pursuit law the κi dynamics are self-

contained for i ∈ {2, ...n}, and the trajectories asymptotically approach κi = αi for

all initial conditions that do not start at κi = αi + π. Thus we will restrict our

analysis to the invariant and attractive submanifold MCB (see [5]) corresponding to

all follower agents attaining the CB pursuit strategy (i.e. κi = αi, i ∈ I s.t. i ≥ 2).

Now evaluating solutions for κ1 we use the cyclic closure constraint (2.12) with

(2.31),

I2 = R
(n∑
i=1

(π + κi − θi+1)
)
, i ∈ I

=R
(

(π + κ1 − θ2) + (π + κ2 − θ3) + (π + κ3 − θ4) + ...

+ (π + κn − θ1)
)

=R
(

(π + κ1 − π + κ1) + (π + κ2 − π + κ2) + (π + κ3 − π + κ3) + ...

+ (π + κn − π + κn)
)

=R
(

2(κ1 +
n∑
i=2

κi)
)
.

(2.37)

15

Decomposing the R matrix and substituting with (2.36),

cos(2(κ1 +
n∑
i=2

αi)) =1

sin(2(κ1 +
n∑
i=2

αi)) =0

(2.38)

From which we see that,

2(κ1 +
n∑
i=2

αi) = 0, 2mπ ∀m ∈ Z. (2.39)

Then,

κ1 = mπ −
n∑
i=2

αi, m ∈ Z. (2.40)

This reduces to two possible cases: either m = 0 or m = 1.

2.1.4 Existence Conditions of Relative Equilibria

Recall that we require ρi and ρiB to be strictly positive. From our equilibrium

values ρi and ρiB given by (2.33) and (2.34), we see that for i ≥ 2 if a single αi

is chosen such that sin(αi) > 0, then by (2.33) a constraint is placed on ψ such

that ψ > 0. Then by (2.34) this requires all κiB’s to be the same sign. And by a

similar argument for the case of a single sin(αi) < 0 for i ≥ 2, we form the existence

condition,

sin(κiB) sin(κi) > 0, ∀i ∈ I. (2.41)

Claim 2.1.1. All equilbria are circling equilibria.

16

Proof. From the ρi and ρiB equilibrium values and positivity constraints, all sin(αi)

must be the same sign for i ≥ 2, else it would contradict the sign of ψ. This

implies that all sin(κiB) terms are the same sign, and by (2.18) all κiB’s must

be the same value. Hence all agents are equidistant from the beacon such that

ρiB = ρjB, ∀i, j ∈ I. All agents are therefore equidistant from the beacon and have

unit speed; thus all equilibria are circling equilibria.

We now state the main result for existence of circling equilibria, based on the

above analysis.

Proposition 2.1.2. Consider a CBL system evolving on the submanifold MCB,

consisting of n − 1 follower agents and one leader agent, whose shape dynamics is

governed by (2.16) and parameterized by µ, λ, and the CB parameters {α1, α2, ..., αn}

and beacon angle parameter αB. The following statements are true:

1. All equilibria are circling equilibria.

2. A circling equilibrium exists if and only if either of the following mutually

exclusive cases are satisfied,

(a)

sin(αi) > 0, ∀i ∈ I s.t. i ≥ 2,

λ cos(αB) + (1− λ) sin(mπ −
n∑
i=1

αi) > 0

where m ∈ Z satisfies sin(mπ −
n∑
i=2

αi) > 0

(2.42)

17

(b)

sin(αi) < 0, ∀i ∈ I s.t. i ≥ 2,

λ cos(αB)− (1− λ) sin(mπ −
n∑
i=1

αi) > 0

where m ∈ Z satisfies sin(mπ −
n∑
i=2

αi) < 0

(2.43)

3. At equilibrium if (2.42) holds,

κiB =
π

2
, ∀i ∈ I

ψ = µ cos(αB) + (
1

λ
− 1)

(
µ sin(mπ −

n∑
i=1

αi)
)
.

(2.44)

Alternatively if at equilibrium (2.43) holds,

κiB = −π
2
, ∀i ∈ I

ψ =− µ cos(αB) + (
1

λ
− 1)

(
µ sin(mπ −

n∑
i=1

αi)
)
.

(2.45)

Then the equilibrium values satisfy,

κ1 = mπ −
n∑
i=2

αi

κi = αi, i ≥ 2

ρ1 =
2 sin(mπ −

∑n
i=2 αi)

ψ

ρi =
2 sin(αi)

ψ
, i ≥ 2

ρiB =
1

ψ
, ∀i ∈ I

(2.46)

Proof. The only part of the proposition that does not directly follow from the pre-

ceding discussion is the requirement that,

λ cos(αB) + (1− λ) sin(κB) sin(mπ −
n∑
i=1

αi) > 0 (2.47)

18

in (2.42) and the analogous constraint in (2.43). We establish this constraint by

starting from the equilibrium value for ρiB (2.34), such that for all i ∈ I,

ρiB =
sin(κiB)

ψ

=
sin(κiB)

µ sin(κiB − αB) + (1
λ
− 1)(µ sin(κ1 − α1))

=
λ

µ(λ cos(αB) + (1−λ) sin(κ1−α1)
sin(κiB)

)

=
λ

µ(λ cos(αB) + (1− λ) sin(κiB) sin(κ1 − α1))

The last line is equivalent because sin(κiB) is required to be ±1 at equilibrium. Since

λ, µ, and ρiB are all required to be positive, the constraint in (2.47) follows.

Remark 2.1.3. If (2.42) is satisfied from Proposition 2.1.2, and if equilibrium is

achieved, the agents will circle the beacon counter-clockwise. If (2.43) is satisfied

and if equilibrium is achieved, the agents will circle the beacon clockwise.

Remark 2.1.4. It can be easily shown that these equilibrium values satisfy the cyclic

closure constraint (2.12) and beacon closure constraint (2.13).

2.1.5 Stability Analysis for Two Agents

Exploring stability for a problem like this is complicated, with results that

are sometimes difficult to interpret. In this section we do our best to discuss the

stability of the system. Lyapunov analysis was attempted, but is so far inconclusive.

We therefore proceed by linearization.

19

The two agent analysis reveals some simplification in dynamics. To start, the

measure of distance between agents, ρi, is the same for both agents, so notation sim-

plifies to using ρ to denote inter agent distance. Due to the cyclic closure constraint,

(2.12) and the relationship between κi and θi+1(2.18),

cos(κ1) + cos(θ2) = cos(κ2) + cos(θ1)

sin(κ1 − θ2 + κ2 − θ1) = 0

cos(κ1 − θ2 + κ2 − θ1) = 1

(2.48)

Suppose θ2 = κ1 and θ1 = κ2, then cos(κ1) = cos(κ2). This is a contradiction

because κ1 need not equal κ2. Therefore,

θ2 = κ2 and θ1 = κ1. (2.49)

Now define,

δ ,
1

ρ
(sin(κ1) + sin(κ2)). (2.50)

And the two agent dynamics follow (not including beacon closure constraint),

κ̇1 =− u1 + δ κ̇1B =− u1 +
1

ρ1B
sin(κ1B)

κ̇2 =− u2 + δ κ̇2B =− u2 +
1

ρ2B
sin(κ2B)

ρ̇ =− (cos(κ1) + cos(κ2)) ρ̇1B =− cos(κ1B)

ρ̇2B =− cos(κ2B).

(2.51)

With the controls,

u1 =(1− λ)
(
µ sin(κ1 − α1) + δ

)
+ λµ sin(κ1B − αB) (2.52)

u2 =µ sin(κ2 − α2) + δ (2.53)

20

The two agent dynamics (2.51) take the form,

ζ̇ = f(ζ), ζ = {κ1, κ2, ρ, κ1B, κ2B, ρLB, ρ2B} (2.54)

Linearizing about the equilibrium values from 2.1.2 yields dynamics of the form,

˙̃ζ = Aζ̃, A ∈ R7x7 (2.55)

Now we show the beacon closure constraint (2.13) yields exactly one pair of imagi-

nary eigenvalues, regardless of the control used. From (2.13) we see,

02x2 = ρ

1 0

0 1

− ρ1B
cos(κ1B − κ1) − sin(κ1B − κL)

sin(κ1B − κ1) cos(κ1B − κ1)

− ρ2B

cos(κ2B − κ2) − sin(κ2B − κ2)

sin(κ2B − κ2) cos(κ2B − κ2)

 (2.56)

which yields the following constraints,

g1(ζ) ,ρ− ρ1B cos(κ1B − κ1)− ρ2B cos(κ2B − κ2) ≡ 0 (2.57)

g2(ζ) ,ρ1B sin(κ1B − κ1) + ρ2B sin(κ2B − κ2) ≡ 0. (2.58)

Now define the pursuit manifold, the space where the constraints (2.57) and (2.58)

are satisfied,

M , {ζ ∈ R7 s.t. g1(ζ) = 0 and g2(ζ) = 0}. (2.59)

Claim 2.1.5. The pursuit manifold M is an invariant manifold under the two agent

dynamics of (2.51).

21

Proof.

ġ1(ζ) =
∂g1(ζ)

∂ζ
f(ζ)

= cos(κ2B) cos(κ2 − κ2B)− cos(κ1)− cos(κ2) + cos(κ1B) cos(κ1 − κ1B)

− ρ1B sin(κ1 − κ1B)
(sin(κ1B)

ρ1B
+ (λ− 1)(δ − µ sin(α1 − κ1)) + λµ sin(αB − κ1B)

)
− ρ2B sin(κ2 − κ2B)

(sin(κ2B)

ρ2B
)− δ + µ sin(α2 − κ2)

)
+ ρ1B sin(κ1 − κ1B)

(
δ + (λ− 1)(δ − µ sin(α1 − κ1))

+ µρ2B sin(κ2 − κ2B) sin(α2 − κ2)
)

= cos(κ2B) cos(κ2 − κ2B)− cos(κ1)− cos(κ2) + cos(κ1B) cos(κ1 − κ1B)

ρ2B sin(κ2 − κ2B)(u2 −
sin(κ2B)

ρ2B
) + ρ1B sin(κ1 − κ1B)(u1 −

sin(κ1B)

ρ1B
)

ρ2B sin(κ2 − κ2B)(u2 − δ)− ρ1B sin(κ1 − κ1B)(u1 − δ)

= cos(κ2B) cos(κ2 − κ2B)− cos(κ1)− cos(κ2) + cos(κ1B) cos(κ1 − κ1B)

ρ2B sin(κ2 − κ2B)(δ − sin(κ2B)

ρ2B
) + ρ1B sin(κ1 − κ1B)(δ − sin(κ1B)

ρ1B
)

=− δg2(ζ)− sin(κ1 − κ1B)− sin(κ2 − κ2B) sin(κ2B)

+ cos(κ1B) cos(κ1 − κ1B) + cos(κ2B) cos(κ2 − κ2B)

− cos(κ2)− cos(κ1)

=− δg2(ζ)

(2.60)

Likewise it can be shown that,

ġ2(ζ) = δg1(ζ) (2.61)

Observe that M is invariant because, on M , ġ1(·) = ġ2(·) ≡ 0. Note from the above

22

calculations that u1 and u2 cancel out in both calculations. Thus M is an invariant

manifold.

From [6], there exists a change of basis for the linearized dynamics such that

the new dynamics take the form,

˙̃ζ = Aζ̃ =

A11 A12

02x5 A22

 ζ̃ , where A22 =

 0 −δeq

δeq 0

 . (2.62)

and using 2.1.2 to substitute for equilibrium values, taking advantage that at equi-

librium ρ1 = ρ2, which means sin(κ1,eq) = sin(α2),

δeq =
sin(κ2) + sin(κ1)

ρ
|ζeq (2.63)

=
2 sin(α2)

ρeq
(2.64)

=
1

ρB,eq
(2.65)

By it’s form, A22 represents a pair of imaginary eigen values on the jw axis s.t.

λ1,2 = ±jδeq. (2.66)

It remains to obtain A11 and A12. To this end, we make the simplification that

23

α1 = α2 = α. Linearizing (2.51) about ζ = ζeq yields,

A11 =

γ1 + (λ−1) cos(κ1,eq)
(2ρB,eq sin(α))

− δeqλ

2 sin(α)ρeq
−λγB 0 0

0 −1 0 0 0

sin(κ1,eq) sin(α) 0 0 0

(1− λ)
(
γ1 + cos(κ1,eq)

2ρB,eq sin(α)

) η(λ−1)
2 sin(α)

(1−λ)δeq
2 sin(α)ρB,eq

−λγB −1
ρ2Beq sin(κB,eq)

0 0 0 sin(κB,eq) 0

A12 = 05x2

Where η =
cos(α)

ρeq
, γ1 = cos(α− κ1,eq), γB = cos(αB − κB,eq).

(2.67)

It can be shown that the resultant characteristic polynomial from (2.62) is,

P (x) =(δ2 + x2)(x+ 1)(a4x
4 + a3x

3 + a2x
2 + a1x+ a0)

s.t. a4 = 1

a3 = (1− λ) cos(α− κ1,eq)−
λ cos(κ1,eq)

2ρB,eq sin(α)
+ λ cos(αB − κB,eq)

a2 =
1

ρ2B,eq
+

λ

2ρ2B,eq
− λ cos(κ1,eq) cos(αB − κB,eq)

2ρB,eq sin(α)

a1 =
−λ cos(κ1,eq)

2ρ3B,eq sin(α)
+ (1− λ)

cos(α− κ1,eq)
ρ2B,eq

+
λ cos(αB − κ1,eq)

2ρ2B,eq

a0 =
λ

2ρ4B,eq

(2.68)

Even though the eigenvalues corresponding with the manifold M are purely

imaginary, because M is invariant, the Center Manifold Theorem can be used to

determine local asymptotic stability of the linearized system. Therefore if the re-

maining eigenvalues have negative real part, we can claim local stability. By the

24

Routh Hurwitz stability criteria for quartic polynomials, the necessary and sufficient

conditions for the quartic polynomial to have no positive roots are,

a1, a2, a3, a4 > 0, (trivially satisfied for a4 and a0)

a3a2 > a1

a3a2a1 > a4 + a23a0

(2.69)

Unfortunately, even the quartic polynomial in its current form is challenging to

analyze. However, a numerical analysis of stability has been performed for varying

λ and α = αB, as seen in Figure 2.3. Surprisingly, for parameter values where

equilibrium exist (see Figure 2.4), high lambda values indicate instability in the

linearized system. However in practice and simulations, high lambda values (of

approximately 2/3) have not affected system stability. The reason this might be

the case is due to the linearized stability result, whereas a nonlinear result might

indicate these regions stable. Note that circling equilibrium does not exist for α = 0,

but is not visible due to the resolution of the figures.

25

Figure 2.3: Numerical Stability Analysis of the Two Agent System, λ vs. α = αB.

Red indicates instability, blue indicates stability.

26

Figure 2.4: Numerical Existence Analysis of the Two Agent System, λ vs. α = αB.

Red indicates non-existence, blue indicates stability.

2.2 Experiments

Experiments were conducted using two agents, with dynamics from 2.1.2. The

agents used were Pioneer 3 DX robots, a compact differential-drive robot with re-

versible DC motors, high-resolution motion encoders, as the experimental platform.

Onboard computation is done via 32-bit Renesas SH2-7144 RISC microprocessors,

including the P3-SH micro-controller with ARCOS. A software library ARIA was

used that translates standardized remote motion commands into robot actions. On

the back end, an Ubuntu server gathers position data from the lab’s sub-millimeter

accuracy Vicon positioning system, then uses open source Robot Operating System

27

(ROS) libraries to compute control laws, and use wireless communications (802.11g)

to communicate to the agents. A more detailed discussion of implementation can

be found in Chapter 4.

2.2.1 Two Agent CBL

The experiment was configured for two agents, circling counter clockwise, with

the pursuit angle parameter α1 = α2 = α = π
3

and αB = π
3
, with a gain of µ = 1,

and a beacon weight λ = 1
2
. In this experiment, the beacon is displaced half way

through by hand, to examine robustness of the equilibria. Based on the chosen

parameters we expect the following equilibrium values,

Agent κ κB ρ ρB

Leader 2.094 1.572 1.267 0.732

Follower 1.047 1.572 1.267 0.732

Table 2.1: 2 Agent CBL, Theoretical Equilibrium Values

A plot of ρB is provided in Figure 2.5, and trajectories of the agents are shown

in Figure 2.6. For the trajectory plot, squares denote initial positions, where circles

denote final positions. In the experiment, we observe that all of our equilibrium

values are reached, even after the beacon is moved half way through the experiment.

Figures 2.7, 2.8, and 2.9 are the κ, κB, and ρ plots respectively. In each plot

we observe convergence towards the predicted equilibrium values, then once the

28

beacon is moved, the system again approaches equilibrium. Indeed near conver-

gence to predicted equilibria is observed after the beacon is moved after 80 seconds,

demonstrating the (empirical) stability of the system.

Time (s)

0 20 40 60 80 100 120 140 160 180

M
e

te
rs

 (
m

)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Beacon Distance (ρ
b
) vs. Time

Follower Agent

Leader Agent

X: 92

Y: 0.7659

Figure 2.5: 2 Agent CBL, Plot of Agent Distance to Beacon (Beacon was moved by

hand to a new location at approximately 92 seconds).

29

Lab X Position (mm)

-1500 -1000 -500 0 500 1000

L
a
b
 Y

 P
o
s
it
io

n
 (

m
m

)

-1200

-1000

-800

-600

-400

-200

0

200

400

600

800

Agent Trajectories

Follower Agent

Leader Agent

Beacon

Figure 2.6: 2 Agent CBL, Plot of Agent and Beacon Trajectories; squares represent

initial positions, circles represent final positions

Time (s)

0 20 40 60 80 100 120 140 160 180

κ
 A

n
g

le

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
κ Angle vs. Time

Gamma

Pi

X: 80

Y: 2.076

X: 80.12

Y: 1.034

X: 173

Y: 2.042

X: 173

Y: 1.053

Figure 2.7: 2 Agent CBL, Plot of Kappa Angles

30

Time (s)

0 20 40 60 80 100 120 140 160 180

κ
B
 A

n
g
le

0.5

1

1.5

2

2.5

3

κ
B
 Angle vs. Time

Follower Agent

Leader Agent

X: 80

Y: 1.594
X: 172.6

Y: 1.582

Figure 2.8: 2 Agent CBL, Plot of Kappa Beacon angles

Time (s)

0 20 40 60 80 100 120 140 160 180

M
e

te
rs

 (
m

)

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
Inter-Agent Distance (ρ) vs. Time

Follower Agent

Leader Agent

Figure 2.9: 2 Agent CBL, Plot of Rho (rho values are the same in the two agent

case)

31

2.2.2 4 Agent CBL

Figure 2.10: 4 Agent CBL, lab setup. Agents are circling the cone, which serves as

the beacon.

This experiment was configured for four agents, circling counter clockwise,

with the pursuit angle parameter αi = α = π
4

and αB = π
4
, with a gain of µ = 1,

and a beacon weight λ = 2
3
. In this experiment, the beacon is moved approximately

.75 meters at 53 seconds by hand, to examine robustness of the equilibria and speed

of convergence. Epsilon is the leader, while Gamma, Upsilon, and Pi are followers

respectively. Based on the chosen parameters, we expect equilibrium values as

detailed in Table 2.2.

Note that due to parameters being chosen in a “symmetrical” way, we expect

a symmetrical circling equilibrium. Figure 2.10 shows the agents circling the beacon

32

Agent κ κB ρ ρB

Epsilon (leader) .7854 1.5708 2 1.4142

Gamma .7854 1.5708 2 1.4142

Upsilon .7854 1.5708 2 1.4142

Pi .7854 1.5708 2 1.4142

Table 2.2: Expected Equilibrium Values for 4 Agent CBL

(cone) at the end of the experiment. In general, the agents converge to the expected

equilibrium values after the beacon is moved. Figure 2.13 and Figure 2.15 depict

slightly different equilibrium values than expected. The most likely explanation for

this difference is that the experiment was cut short, prior to achieving the theoretical

values. In both cases however, these differences are within less than 5% of the

calculated equilibrium value.

33

Time (s)

0 20 40 60 80 100 120 140 160 180 200

M
e

te
rs

 (
m

)

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Beacon Distance (ρ
b
) vs. Time

Epsilon

Gamma

Upsilon

Pi

Figure 2.11: Plot of Agent Distance to Beacon. Beacon was moved by hand to a new

location at approximately 53 seconds. We see that before the beacon was moved,

ρB was approximately 1.4 for all agents, then once the beacon was moved, it once

again settles to approximately 1.4.

34

Lab Position (mm)

-3000 -2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000

L
a
b
 P

o
s
it
io

n
 (

m
m

)

-3000

-2500

-2000

-1500

-1000

-500

0

500

1000
Trajectories

Epsilon

Gamma

Upsilon

Pi

Figure 2.12: Plot of Agent and Beacon Trajectories. Beacon was moved by hand

to a new location at approximately 53 seconds. Squares represent initial positions,

squares represent final positions.

35

Time (s)

0 20 40 60 80 100 120 140 160 180 200

κ
 A

n
g
le

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
κ Angle vs. Time

Epsilon

Gamma

Upsilon

Pi

X: 184.7

Y: 0.7776

X: 36.66

Y: 0.7809

Figure 2.13: Plot of kappa angles. Prior to movement of the beacon, it appears as

though all agents converge to a κ angle of approximately .78. After the beacon is

moved, the followers maintain this angle, while the leader (Epsilon) converges to a

κ ≈ .8 .

36

Time (s)

0 20 40 60 80 100 120 140 160 180 200

κ
B
 A

n
g
le

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

κ
B
 Angle vs. Time

Epsilon

Gamma

Upsilon

Pi

X: 42.58

Y: 1.572
X: 173.2

Y: 1.547

Figure 2.14: Plot of kappa beacon angles. Prior to movement of the beacon, all

agents appear to converge to a κB of approximately 1.55. Once the beacon is

moved, the agents once again settle to a κB of approximately 1.55.

37

Time (s)

0 20 40 60 80 100 120 140 160 180 200

M
e
te

rs
 (

m
)

0.5

1

1.5

2

2.5

3
Inter-Agent Distance (ρ) vs. Time

Epsilon

Gamma

Upsilon

Pi

X: 44.54

Y: 2.008 X: 185.4

Y: 1.939

Figure 2.15: Plot of Rho, interagent distances. Prior to movement of the beacon, ρ

values are approximately 2 meters. After the beacon is moved, the leader ρ converges

to approximately 2 meters, while the follower ρ values converge to approximately

1.9.

2.3 Performance vs. CB Beacon

While discussing performance characteristics of the CBL system, it is prudent

to compare its performance to the CB Beacon (CBB) system, where each agent has

knowledge of the beacon. Due to a reduction of feedback information in the system,

we would expect performance of the CBL system to be inferior in the majority of

38

tests. Because the followers in the CBL system are following the CB pursuit law, we

expect the follower to quickly converge to the κ equilibrium value, while parameters

like ρB and κB should take a longer time to settle than in the CBB system.

In this section we attempt to quantify CBL performance discussed in this

paper vs. CB-Beacon, where every agent has knowledge of the beacon’s location [6].

For comparison, we will use the following criteria:

• Time to Steady State: The time from the beginning of the simulation to when

all agents are within 5% of their predicted equilibrium values.

• Maximum Actuation: The peak control (curvature) that was commanded dur-

ing the experiment for each agent.

• Maximum Beacon Overshoot: The largest distance by which an agent exceeded

the ρB equilibrium value.

These criteria were chosen to characterize and compare nonlinear performance

because they reflect how well the system converges, at the expense of possibly reach-

ing implementation constraints. Time to steady state is used to measure how long

it takes for the system to reach predicted equilibrium values for a given parameter.

Lower time to steady state is considered better. Maximum actuation reflects the

threat of actuator saturation, and maximum actuation characteristics. In some ap-

plications, agent curvature could be limited by physical system characteristics. A

lower maximum actuation is considered better. Finally, maximum beacon overshoot

is inspired by classical PID step response performance. A large beacon overshoot in

39

an operational environment could result in the beacon moving outside of an agent’s

sensing range.

The following comparisons were carried out using MATLAB simulation, using

a script to evaluate the above performance criteria. The first set of comparisons

varies alpha for each simulation, while the second set varies lambda (beacon at-

tention). A single simulation was performed for each data point. As such, the

MATLAB parallel computing toolbox was use to vastly improve computing per-

formance. Agent initial conditions were determined by a pseudo random position

generator, whereby a seed number (Rand Seed) represents a consistent set of initial

conditions.

Due to the peculiar nonlinear nature of these systems, simulations suggest

that over a range of parameters for both α and λ, the CBL system has superior or

similar performance under the above performance metrics.

2.3.1 Fixed Lambda and Initial Conditions, Varying Alpha

For this simulation, the beacon weight λ was chosen to be .5, αB was chosen

to be π/2, while α was varied from .3 to (π/2 − .1) in .01 radian increments. This

range was chosen so circling equilibria would exist for all alpha values. Results for

all performance metrics can be see in Figure 2.16.

40

α Value

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

S
e
tt
le

 T
im

e
 (

1
/1

0
0
 s

e
c
)

0

2000

4000

6000

8000
Rho Settle Time vs. α

CBL Leader

CBL Follower

CBB Agent 1

CBB Agent 2

α Value

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

S
e
tt
le

 T
im

e
 (

1
/1

0
0
 s

e
c
)

2000

4000

6000

8000
RhoB Settle Time vs. α

CBL Leader

CBL Follower

CBB Agent 1

CBB Agent 2

α Value

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

S
e
tt
le

 T
im

e
 (

1
/1

0
0
 s

e
c
)

0

2000

4000

6000

8000
Kappa Settle Time vs. α

CBL Leader

CBL Follower

CBB Agent 1

CBB Agent 2

α Value

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

S
e
tt
le

 T
im

e
 (

1
/1

0
0
 s

e
c
)

0

2000

4000

6000

8000
Kappa Beacon Settle Time vs. α

CBL Leader

CBL Follower

CBB Agent 1

CBB Agent 2

α Value

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

M
a
x
 C

o
n
tr

o
l
V

a
lu

e

0

1

2

3

4
Max Control Value vs. α

CBL Leader

CBL Follower

CBB Agent 1

CBB Agent 2

α Value

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

R
h
o
B

 O
v
e
rs

h
o
o
t
(m

m
)

0

1

2

3
RhoB Overshoot vs. α

CBL Leader

CBL Follower

CBB Agent 1

CBB Agent 2

Performance Plots of α: λ = 0.5, µ =1 ν = 1, Rand Seed=1

Figure 2.16: Performance Comparison of CBL and CBB, varied over λ, other pa-

rameters fixed. Initial condition parameter 1.

As expected, κ for the follower in the CBL system converges faster than all

other agents regardless of the system. For α between .6 and 1.2, CBL performance

appears better across most metrics. Settle times for ρB and κB are consistently

better for CBL, sometimes by at most 30 seconds. For a series of initial conditions

(not pictured), performance remains consistent with that of Figure 2.16. In all cases,

there appears to be a point between .6 and .8 where CBL performance overtakes

41

CBB performance in ρ, ρB, κ, and κB settle times.

In terms of maximum actuation (max control) and beacon overshoot, the CBL

system performs worse, though for α values greater than .8, performance is actually

comparable between the two systems. Additionally the ρB overshoot is generally

higher for the CBL system. This is most likely due to the follower having no knowl-

edge of the beacon and in a sense, distracting the leader from converging to a circling

equilibria about the beacon.

In general, we consider α between .6 and 1.2 to be the “operational range” of

the CBB and CBL systems, where the most desirable circling geometries result from

parameters in this interval. Generally speaking, the CBL system is as good if not

better in terms of performance as compared to the CBB system. This is of course

not necessarily true for all parameter combinations and initial conditions, though

this series of simulations certainly gives insight into the nonlinear performance of

both systems. The reason this might be the case is because the followers do not have

divided attention, they are just following the next agent. In this way the followers

might be more inclined to make more aggressive moves towards the beacon, because

only the leader agent is essentially guiding the collective.

In practice, we noticed that while convergence to near equilibrium appeared

to occur rather quickly, settling to the exact equilibrium values took longer than

expected. This is to say that while the CBL system is faster in some cases to within

5% of theoretical equilibrium values, achieving the last 5% may take longer than

CBB. This is because the leader is the only agent making adjustments specifically

for the beacon’s location, rather than all four agents at once.

42

2.3.2 Fixed Alpha and Initial Conditions, Varying Lambda

For the next set of simulations, λ is varied from .33 to .99, where α is constant,

chosen to be π/4, and αB is chosen to be π/2. The random seed was chosen to be the

same as for Figure 2.16. Figure 2.17 shows the results from this set of simulations.

Lambda Value

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
e
tt
le

 T
im

e
 (

1
/1

0
0
 s

e
c
)

0

5000

10000

15000
Rho Settle Time vs. Lambda

CBL Leader

CBL Follower

CBB Agent 1

CBB Agent 2

Lambda Value

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
S

e
tt
le

 T
im

e
 (

1
/1

0
0
 s

e
c
)

0

5000

10000

15000
RhoB Settle Time vs. Lambda

CBL Leader

CBL Follower

CBB Agent 1

CBB Agent 2

Lambda Value

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
e
tt
le

 T
im

e
 (

1
/1

0
0
 s

e
c
)

0

5000

10000

15000
Kappa Settle Time vs. Lambda

CBL Leader

CBL Follower

CBB Agent 1

CBB Agent 2

Lambda Value

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
e
tt
le

 T
im

e
 (

1
/1

0
0
 s

e
c
)

0

2000

4000

6000

8000
Kappa Beacon Settle Time vs. Lambda

CBL Leader

CBL Follower

CBB Agent 1

CBB Agent 2

Lambda Value

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
a
x
 C

o
n
tr

o
l
V

a
lu

e

0

2

4

6
Max Control Value vs. Lambda

CBL Leader

CBL Follower

CBB Agent 1

CBB Agent 2

Lambda Value

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
h
o
B

 O
v
e
rs

h
o
o
t
(m

m
)

0

20

40

60

80

100
RhoB Overshoot vs. Lambda

CBL Leader

CBL Follower

CBB Agent 1

CBB Agent 2

Performance Plots varying λ: α = 0.7854, µ = 1 ν = 1, Rand Seed=1

Figure 2.17: Performance Comparison of CBL and CBB, varied over λ, other pa-

rameters fixed.

Again for the CBL system, follower κ values converge significantly faster than

43

for the CBB system. Generally speaking, performance across various initial condi-

tions (not pictured) is similar to that of Figure 2.17. Interestingly we see a similar

trend to those of the previous section; there appears to be a λ value between .5

and .6 where CBL settle performance exceeds that of CBB in most metrics for an

interval. Once the λ value exceeds .8 in the CBB system, ρ, ρB, and κB settle times

become much faster than the CBL system, though it is at the expense of κ settle

time, which is essentially the circling geometry. However for all sets of initial condi-

tions, the CBL system has higher maximum actuation. Beacon overshoot appears

consistent across all parameter values, until λ is greater than .9.

The most desirable “operational values” of lambda are between .4 and .7.

These values provide generally the best performance across all metrics for both

CBL and CBB systems, while providing a reasonable balance between beacon and

agent attention.

44

Chapter 3: Sound Sourced, Leader Based Cyclic Pursuit

3.1 Introduction

In this section we demonstrate implementation of a phonotactic robot as the

leader in the CBL system discussed in the previous chapter. The leader is given a

“head”, and uses sound to sense κB, the relative angle between the agent and the

beacon. Sound sourced localization is performed by the Interaural Level Difference

(ILD) and Interaural Phase Difference (IPD) algorithm, as introduced in [10], pro-

totyped in [16], and used with a mobile robot to move to a sound source in [11].

These previous implementations have been carried out using MATLAB for signature

acquisition and angle recovery. By modeling a head as a sphere, a database of theo-

retical signatures was utilized for angle recovery. Additionally, sensor placement on

the head apparatus was traditional, with the microphones placed at ± 90 degrees

on the head.

We build on these works in a several ways. First, signal acquisition, signature

generation, and wireless communication is all done by fast controls-oriented em-

bedded systems. Embedded systems have several advantages over Windows/Linux

implementations; with an embedded system, real time deadlines can be met, with

low cost, low profile, and energy efficient processing.

45

In terms of the sensing apparatus, instead of using a perfectly spherical head,

we use a Styrofoam manikin head. The non-spherical nature of the manikin head

means that theoretical signatures calculated based on a spherical head might not

be valid for angle recovery. As such, we show that an empirical signature database

generated by leveraging the accuracy of the Vicon positioning system can be used

for angle recovery. To break front back symmetry, rather than use robot odometry

and additional differential metrics as implemented in [11], we show in Section 3.2.2

that “optimal sensor placement” as discussed in [10] can be implemented to solve

this problem in a more computationally efficient way.

3.2 Sound Sourced Localization

3.2.1 The ILD IPD Algorithm

In this work, we use the Interaural Level Difference (ILD) and Interaurel Phase

Difference (IPD) algorithm, the rich theory and physics of which are introduced and

discussed in [10]. In the works of Handzel and Krishnaprasad [10] the (acoustic)

wave equation is solved, which is separate in time and space. By analytically finding

a solution to this equation, the spacial information for a sound source at angle θ,

with a head modeled as a sphere, can be computed. From this, theoretical signatures

for source angles are generated. As we will not be using theoretical signatures, we

will not delve into the physics involved in obtaining these equations. We only note

that there are unique phase and magnitude signatures that exist based on source

angles, where uniqueness is determined based on microphone placement. As in these

46

papers, we concern ourselves with recovery of the azimuthal angle of a sound source,

rather than the inclination angle. A simple diagram of the head apparatus relative

to the sound source can be seen in Figure 3.1.

Figure 3.1: Sound Localization Diagram

The algorithm works as follows: microphones mounted on either side of a head

are sampled simultaneously. For each set of samples, the microphone measures sound

pressure, expressed as a complex response to excitation by a source,

p(ω, θS) = A(ω, θS)ejβ(ω,θS), j =
√
−1, (3.1)

where A is the magnitude of the response, ω is the angular frequency of the sound

source, β is the phase information, and θS is the source angle (more discussion

in [10]). In practice for a set of samples, A(ω) is the magnitude response after

a Fast Fourier Transform (FFT), and β(ω) is the phase response. The head has

47

both left and right microphones, so we define the Interaural Level Difference and

Interaural Phase Difference as such,

ILD = logAL − logAR, IPD = βL − βR. (3.2)

Both ILD and IPD are smooth functions of ω when a broadband sound source is used.

When a signal is received at the head, a specific ILD and IPD curve is generated

based on the azimuthal angle of the source, which means that the IPD and ILD

are also functions of the source angle θS. The angle recovery problem now becomes

one of matching a sampled ILD and IPD function to the closest ILD/IPD signature

associated with an azimuth angle θ, which we will call the “angle signature”. In

terms of notation, we purposefully refer to the actual sound source angle as θS and

any arbitrary angle as θ. To accomplish angle recovery, we define the squared L2

norm distance between the sampled ILD(ω) and IPD(ω) functions and the angle

signature functions, IPDs(θ, ω) and ILDs(θ, ω). Then for each θ the IPD metric is,

DIPD
2 (θ) = ||IPDs(θ, ω)− IPD(ω)||22 =

∑
ω

(
IPDS(θ, ω)− IPD(ω)

)2
, (3.3)

and likewise for ILD. Each metric is normalized over θ such that,

D(θ)→ 1

M
D(θ), where M = max

θ
D(θ). (3.4)

The IPD and ILD metrics are combined,

DComb
2 (θ) = DIPD

2 (θ) +DILD
2 (θ) (3.5)

and the recovered angle θR corresponds to the smallest combined metric value,

θR = arg min
θ
DComb

2 (θ). (3.6)

48

In practice this optimization is done by simply picking the smallest value of a real

(discrete) vector. However, when microphones are mounted on either side of the

head at ±90, angle recovery is only accurate to a front/back symmetry [10].

Ideally, θS will equal θR. Realistically, because signatures need to be generated

for each θ, the recovered angle θR is only accurate up to a predetermined resolu-

tion. The resolution is determination is generally based on application necessity

and limitations on processing and memory availability. For example, if a 512 point

FFT is chosen and a 2 degree θ resolution is desired, there are 180 DIPD
2 and DILD

2

metrics that need to be calculated every sample, each of which involves 256 subtrac-

tions, additions, and multiplications. In terms of memory requirements, assuming

each floating point is 4 bytes, the signature database would occupy 458,752 bytes

of memory. While this memory requirement is not significant for modern desktop

computers, it is significant for an embedded system, in which a large amount of flash

memory is on the order of 1 MB.

3.2.2 Breaking the Symmetry

Several methods exist to break the symmetry problem associated with mi-

crophone placement at ±90 degrees on the head. In [11], the symmetry problem

is broken by taking the difference between subsequent ILD and IPD samples, and

creating two additional metrics based of these differences, ILD′ and IPD′. This

method relies on a “flow” in the signature curves that is induced when the head

is turned relative to a sound source. Using this method, angle signatures for these

49

two new functions are created, and by using odometry from a moving robot, the

front/back ambiguity can be broken.

There are few disadvantages to this method, however. First, if there is no

change in heading, there is a “divide by zero” scenario which occurs when calculating

IPD′ and ILD′ quantities in practice. The second disadvantage is computational;

two additional metrics (DILD′
2 andDIPD′

2) are required to be calculated for each angle

signature, effectively doubling the amount of computation and memory required to

recover an angle.

Rather than using the difference (flow) method, we propose using “optimal

sensor placement for localization”, as discussed in [10]. Optimality in this case has

been determined empirically, with respect to the ability to uniquely recover angles

for the entire 360 degree spectrum. By mounting the microphones at ±50 degrees,

the combined metric (3.5) has a unique minima for each source direction angle θ.

3.3 Embedded Systems Design and Development

Embedded systems development can span the breadth of electrical engineer-

ing knowledge; it requires computer engineering knowledge for CPU management

and peripheral configuration, digital signal processing for sampling data and ma-

nipulation, communications for data transmission, controls for feedback processing,

and networking for TCP/IP and 802.11 communications. With such complex and

capable systems, good software design principles should be followed throughout de-

velopment. This section discusses the design and development of the embedded

50

systems used in implementing the ILD/IPD algorithm.

3.3.1 Hardware Selection

A Texas Instruments (TI) LAUNCHXL-F28377S was chosen as the primary

computing platform. This microcontroller features several key features that are nec-

essary to achieving proper implementation of the ILD/IPD algorithm for use in a

control system. The F28377S is computationally fast, with a 200 MHz processor,

a 200 MHz “control law accelerator” dedicated to computation, and a whole 1 MB

of on-board flash memory. Several DSP libraries are supplied and maintained by

TI, with support for floating point computation, and implemented in such a way

that results can be directly compared with those from MATLAB. The microcon-

troller can run Real Time Operating Systems (RTOS), which can ease development

complexity, while not sacrificing the real time capabilities of the system. Further-

more, this microcontroller has two analog to digital converters (ADC), many pins

for general purpose input/output (GPIO), and multiple serial interfaces for external

communication.

Unfortunately at the time of development, this microcontroller did not have

direct support for 802.11 WIFI modules. As such, a TI MSP430 low power micro-

controller with a CC3100 WIFI booster back was chosen as an intermediary between

the F28377S and the lab’s control server. The MSP430 is a slower microcontroller

running at 20 MHz with significantly less RAM and flash memory.

51

3.3.2 System Design

The overall system design is as such - the MSP430 signals the F28377S to

sample the microphones and calculate ILD/IPD values. The sampled signatures are

sent back to the MSP430 via a serial connection, then transmitted over WIFI to the

lab’s control server, where MATLAB parses the transmission and performs an angle

lookup based on the received data. Once κB is determined, the angle is published to

the Robot Operating System (ROS) server. Then, the control program subscribes

to MATLAB published κB angle, using that value in the control law calculation for

the leader agent, and subsequently commanding the robots to execute the control

laws. Figure 3.2 shows a detailed system design diagram. Each blue box is a module

that was designed and tested independent of the rest of the other modules. In this

way organized development could take place for this complex system.

52

Figure 3.2: Embedded System Design Diagram

3.3.3 Development

Development started with ADC sampling on the F28377S microcontroller.

Instead of using multiple pins of the same ADC to sample the left and right channel

sequentially, two separate ADC’s were using to sample the left and right channels

in parallel. One advantage to this method is that no adjustment needs to be made

for sampling delay between channels. In order to meet real time requirements,

53

precise timing and sampling is necessary. As such, a 20 kHz sampling rate for both

ADC’s was desired. 16 bit ADC sampling was chosen over 12 bit for enhanced

sampling resolution, despite additional processing requirements. Figure 3.3 shows

the information flow and timing for a single ADC. What is important to note, is that

multiple on-board clocks control different aspects of ADC performance, including

processing and sampling rates.

Figure 3.3: Processing diagram of the F28377S ADC. External clocks (triangles)

feed into the ADC. Each ADC conversion cycle is triggered by the EPWM signal.

The maximum frequency of the broadband sound source was chosen to be 10

kHz, so by Nyquist, the sampling rate of each ADC was chosen to be be 20 kHz.

The signal to begin analog to digital conversion essentially controls the sampling

rate of the ADC, which is separate from the clock used to sample and convert the

54

data. Enhanced Pulse Width Modulation (EPWM) was configured on the F28377S

to generate a 20 kHz square wave and supply both ADC’s with the same trigger

signal to start conversion. The EPWM signal was also output to a GPIO pin and

checked with an oscilloscope to ensure proper frequency characteristics.

Once the 20kHz EWPM signal triggers the ADC to start conversion, there are

approximately 50µs to sample and hold the voltage on the input pin, convert the

voltage to an integer, trigger an ADC interrupt, and store the integer value in a

memory buffer via an Interrupt Service Routine (ISR) before the next trigger signal

occurs. While sampling, conversion, and interrupt triggering happen in parallel for

each ADC, while servicing each ADC’s interrupt is handled by the main processor,

and therefore is executed sequentially.

The system clock (SYSCLK) was configured to run at its advertised maxi-

mum speed of 200 MHz, yielding a period of 5ns per cycle. As such, the ADC’s

Clock (ADCCLK) is based off the SYSCLOCK, and was configured at its maximum

speed of SYSCLK/4. By design, the sample and hold duration must exceed both

1 ADCCLK period and the minimum sample and hold duration, 320 ns (for 16-bit

conversion). The sample and hold time parameter ACQPS was chosen to be the

minimal value 63, making the sample and hold duration,

S&H = (ACQPS + 1) ∗ T SY SCLK

= (63 + 1) ∗ 5ns

= 320ns.

(3.7)

55

And the conversion time (CT) is approximately,

CT = 29.5 ADCCLK cycles

= 29.5 ADCCLK cycles ∗ 5ns

1 SYSCLK cycle
∗ 4 SYSCLK cycles

1 ADC cycle

= 590ns

(3.8)

The total time for each ADC to sample and convert a pin voltage is,

ADCT , S&H + CT

= 320ns+ 590ns

= 910ns.

(3.9)

Then the remaining time to trigger an interrupt and service two ISR’s is,

50µs− 0.910µs = 49.09µs (3.10)

or 9818 SYSCLK cycles, which is more than enough to be ready for the next con-

version cycle.

In order to implement the ILD/IPD algorithm, Fast Fourier Transforms (FFT)

of each channel must be performed to retrieve phase and level information as a

function of frequency (ω). A 512 point FFT for each channel was chosen as a

balance between memory usage, computational requirements, and data transmission

size. According to TI’s DSP library data sheets, one 512 point FFT takes 13675

SYSCLK cycles, which means that two sets of FFT’s cost 27350 cycles or 136.75µs.

The immediate consequence of this processing time means ADC conversions cannot

occur continuously, else ADC buffers will be overwritten during FFT computation.

Therefore after 512 samples have been collected for each channel, EPWM triggering

was configured to cease until the ILD/IPD information was sent to the MSP430.

56

Serial output was configured for both debugging (to a desktop computer) and

data transmission (to the MSP430). The BAUD was configured for a rate of 460,800

bits per second, a fast rate which could be attained by both the F28377S and the

less powerful MSP430, with low error.

Using the serial debugging feature, TI’s FFT library was tested against MAT-

LAB’s to ensure proper results. After carefully aligning FFT buffers in memory on

the microcontroller, the FFT results were nearly identical to MATLAB’s.

Texas Instruments’ Real Time Operating System (TIRTOS) was used on the

F28377S to take advantage of a scheduler, to simplify development, and allow for

extendibility of the code if necessary. Tasks (threads) can easily be added and

managed, with precise control over priority of execution and interrupts. While the

finished program on the F28337S only had one task, semaphores, hardware inter-

rupts, and boot control modules were used considerably throughout development.

The MSP430 was configured to communicate with the F28377S via a serial con-

nection at the same rate of 460,800 bits per second. The structure of the MSP430’s

program was as such,

1. Initialize network connection with static IP.

2. Send a signal to the F28377S to sample.

3. Fill transmission buffers until an “end of signal” character is received.

4. Transmit the buffer data over WIFI to the control server.

5. Repeat from step 2.

57

The MSP430 runs at a maximum clock speed of 20 MHz and has significantly

less RAM and flash memory than the F28377S. As such, the MSP430 needs to

control when it receives sampled data, because its transmission speeds act as a

bottleneck for the whole system (this was determined empirically). Therefore the

above algorithm ensures that the MSP430 is operating at maximal speeds, with the

F28377S operating in sync.

The TCPIP toolbox in MATLAB was used to receive and parse the ILD/IPD

signatures. After some testing, it was determined that the speed of the MATLAB

angle recovery caused a bottleneck even slower than that of the MSP430. Given the

MATLAB bottleneck, angle recovery was still achieved at a rate of approximately

3-5 Hz, which proved sufficient for implementation in the CBL system. However

if faster speeds were necessary, the angle recovery procedure could be done on the

F28377S. This would require angle signatures to be loaded into flash memory of the

microcontroller, and calculations done in the C language. Moreover the microcon-

troller’s Control Law Accelerator (CLA) could be used in parallel with the primary

processor to increase computation speed.

The configuration used in this work requires the transmission of 512 float-

ing points once by serial, then again by WIFI, then parsing by MATLAB. With

on-board angle recovery, the MSP430 would only have to perform one 3 character

transmission per sample cycle, and could potentially publish directly to ROS. This

would shift the system’s bottleneck to the speed of the F28377S, and would be sig-

nificantly faster than the current setup. Due to the substantial size of the ILD/IPD

signature database, flash memory would have to be used instead of RAM, which

58

would adversely affect computation speeds. Due to time constraints, this will be

left to later work.

.

3.4 Head Calibration and Angle Recovery

3.4.1 Head Setup

Two Electret Microphone/Amplifier combination boards were mounted on a

Styrofoam manikin head at ±50 degrees from a 0 degree heading. Each microphone

was wired into 3.3V DC power, and an oscilloscope was used to calibrate the mi-

crophone gain to where voltage was roughly equivalent between the two channels.

Figure 3.4 shows the leader agent setup with the two on-board microcontrollers.

Figure 3.4: The Phonotactic Leader Agent with Optimal Microphone Placement

A dynamic signal analyzer (DSA) was used to verify microphone response

59

in the frequency domain, and compare with FFT results from the F28377S. Note

there was no pre-ADC filtering performed with this setup, nor were the microphones

embedded flush into the head. The microphones were simply mounted on the surface

of the head.

3.4.2 ILD/IPD Signature Generation

In order for angles to be recovered and metrics computed, there must be a

“database” of ILD and IPD signatures corresponding to a range of θS, the sound

source direction. In the works of [10], [16], and [11], theoretical ILD and IPD

signatures were generated for this database by solving the Helmholtz equation for

a perfectly spherical head. While this method was very effective in angle recovery,

it was done for a perfectly spherical head. Shape variations of the head and sound

characteristics of a testing space may significantly impact the ability to use these

theoretical signatures.

In this work, the lab’s Vicon high precision indoor motion capture system was

leveraged in conjunction with the Robot Operating System (ROS), and MATLAB

ROS Toolkit to automate the creation of an empirical signature database (a detailed

account of the the lab’s setup and system intercommunication can be found in

Chapter 4). The calibration algorithm works follows, assuming the speaker (source)

location is the same as the beacon location,

1. Input the angle resolution, samples per angle, and start angle.

2. In MATLAB, publish the desired κB to ROS.

60

3. In the robot control program, subscribe to Matlab’s published angle and

change robot’s κB to the desired angle.

4. Open a TCP server and await ILD/IPD data from the MSP430. Save the

signature. Repeat for as many samples per angle as desired.

5. Repeat 2-4 until all samples have been taken.

6. In a post processing MATLAB script, smooth each sample with a moving

average, then average all samples for each angle.

As a note, the phase samples are wrapped to 2π. This means when the IPD

is calculated, the difference of phase between the left and right channel must again

be wrapped to 2π, the rate of success that a κB angle will be recovered, will be

extremely low. We refer to this success rate as the angle recovery rate, or just

recovery rate for short.

Figure 3.5 shows the robot generating an ILD/IPD signature database. Note

that the orange beacon (cone) is placed on top of the speaker, so as to provide the

Vicon system with positioning data of the speaker, which is then used to position

the robot appropriately.

61

Figure 3.5: ILD/IPD signature database generation.

3.4.3 Stationary Beacon Tracking Law

In this section we discuss a stationary beacon tracking law, where an agent is

stationary, and needs to track a target by changing its heading alone. The purpose

of this is twofold, the first is to precisely change the heading of an agent equipped

with a sound localization apparatus for ILD/IPD calibration. The second reason is

to simulate a perfectly radial (omnidirectional) sound source; if a stationary agent

with a speaker tracks (by heading alone) the position of the circling leader agent

from the CBL system, then from the leader’s perspective, the beacon (agent) is

radially emitting sound.

62

Figure 3.6: Stationary Tracking Diagram

Unfortunately, the dynamical model used for the CBL system (2.11) cannot be

used to model the stationary agent, because that model assumes non-zero velocity.

In this case there will be assumed zero translational velocity, so the system can be

modeled as a simple unicycle [17],

ẋ = uT sin(κB)

ẏ = uT cos(κB)

κ̇B = −uω,

(3.11)

where x and y are scalar coordinates in the lab’s frame of reference. Here we assume

without loss of generality that the coordinate frame is the vector that connects

the leader at the beacon on the x axis. Figure 3.6 shows the simple diagram for

the beacon tracking problem. Assuming the beacon and the robot are stationary

63

(uT = 0), the dynamics simplify,

ẋ = 0

ẏ = 0

κ̇B = −uω,

(3.12)

Now drawing inspiration from the beacon tracking portion of the CBL control

law (2.15) and using Vicon feedback, the beacon tracking control law and dynamics

are,

κ̇B = −uω

uω = µ sin(κB − αB)

(3.13)

where αB is the desired κB angle. This is a separable ODE, and can be solved:

dκB
sin(κB − αB)

= −µ dt∫ κB

κB0

dκ̃B
sin(κ̃B − αB)

= −µ
∫ t

0

dt̃

log tan(
αB − κ̃B

2
)|κBκB0

= −µt

tan(
αB − κB

2
) = e−µt tan(

αB − κB0

2
)

κB = αB − 2 tan−1
(
e−µt tan(

αB − κB0

2
)
)

(3.14)

Where κB0 is the initial condition, and t is time. If αB = π + κB0, then κB =

αB − π, ∀t. This is however an unstable equilibrium point, because for all other

initial conditions such that tan(α−κB0

2
) = c ∈ R,

lim
t→∞

2 tan−1
(
ce−µt

)
= 0 (3.15)

And indeed κB asymptotically converges to α for initial conditions such that κB0 6=

αB − π.

64

In practice, this control law works for tracking a circling agent if µ is chosen

large enough, though we will not prove stability for this case. For experiments, µ

was chosen to be 1000.

3.4.4 Broadband Sound

MATLAB was used to generate broadband sound for the experiments, to carry

out phonotaxis. As discussed in previous sections, true broadband sound generates

smooth ILD and IPD curves because they are functions of ω. In practice, perfectly

broadband sound cannot be generated, but higher density will yield smoother sig-

nature curves. For the majority of experiments the broadband sound ranged from

200 to 10,000 Hz, at 43 Hz increments.

It was noticed over the course of head calibration and signature generation

experiments that frequencies from 6.5kHz to 10 kHz were not being captured with

a high enough magnitude response. As such, magnitudes of higher frequencies were

increased relative to the magnitudes of lower frequencies. A linear frequency weight-

ing was chosen to solve this issue, and the power spectral density estimate of the

broadband source can be seen in Figure 3.7, where the total signal is given by,

BB(t) =
M∑
i=1

i

M
sin(ωit), (3.16)

where M is the total number of frequency components, and ωi is the ith individual

frequency component.

65

Figure 3.7: Linearly weighted broadband sound PSD

One distinct advantage to shifting the majority of the signature information

to higher frequencies is lack of interference with human speech and other sounds.

Humans normally speak at less than 300 Hz, and the majority of interfering envi-

ronmental sounds are below 3 kHz (determined empirically in the lab).

For calibration experiments (signature generation), the sound was played from

a computer speaker. For later implementation in the CBL system, due to the need

for wireless sound, the broadband sound was played from a portable Bluetooth

speaker. The sound itself was saved and compressed as a “.flac” file in MATLAB,

and played over Bluetooth.

3.4.5 Building and Checking Signatures

Calibration experiments were carried out as follows; a signature database was

generated from a set of data, a second set of signatures was collected using the same

angles that generated the signature database from the first set of data. Then in a

66

MATLAB script, the signature database generated from the first set of samples was

used to recover the angles for the second set of samples.

We define the ability to successfully match an ILD/IPD signature to the actual

angle of incidence as “angle recovery”. The rate of success that an angle will be

recovered from a signature is called the “recovery rate”.

A suite of experiments were run, most of which are left out of this section.

Angle recovery was generally poor in initial experiments because IPD was not being

wrapped to 2π.

3.4.5.1 Recovery Experiment 1: 5 Degree Resolution

This experiment was carried out with a 512 point FFT, from κB = −90 to

90 degrees, at 5 degree resolution, 25 samples per angle, and the broadband signal

spanned from 200 Hz to 10 kHz, at 43 Hz steps, with no frequency weighting. This

experiment was performed with the exact sound sensing apparatus from [11], not

a styrofoam manikin head. This apparatus was used for a closer “ground truth”,

to test if the spherical head, with low pass filtering, and extremely high quality

microphones would produce signatures capable of being recovered empirically. Due

to the angles tested in this experiment, symmetry was not an issue.

Experiment results can be seen in Figure 3.1. “9 point DB averaging” denotes

that each captured IPD/ILD signature was smoothed with a 9 point moving aver-

age, before every sample per angle was averaged to create the signature database.

Recovery rates in this experiment are considered good - where the desired recovery

67

Experiment Conditions and Notes Recovery Rate

No Smoothing 86.05%

9 point DB averaging 89.08%

Table 3.1: Recovery Experiment 1 Recovery Rates

rate would be greater than 80% with a low variance. This experiment suggests that

smoothing the DB is advantageous to recovery.

3.4.5.2 Recovery Experiment 2: 2.5 Degree Resolution

This experiment was carried out with a 512 point FFT, from κB = −90 to

90 degrees, at 5 degree resolution, 50 samples per angle, and the broadband signal

spanned from 200 Hz to 10 kHz, in 43 Hz steps, with linear frequency weighting.

The second data set was captured at 5 samples per angle. This experiment was

carried out using the same sound sensing apparatus as Recovery Experiment 1.

Figure 3.8 and 3.9 show plots for each of the 50 signatures for κB = 90 degrees

and -90 degrees respectively; each color corresponds to a different sample. Clearly

there are phase and level difference trends, which allow for unique angle identifi-

cation. For the IPD in these plots, the majority of the unique phase information

appears to be from 3 kHz to 8 kHz. Ideally the spacial information would be good

throughout the entire frequency spectrum, but the 5 kHz interval proves sufficient

for angle recovery. Table 3.2 shows the recovery results of the experiment.

68

Figure 3.8: Captured Unsmoothed ILD and IPD signatures for κB = 90 degrees.

Figure 3.9: Captured Unsmoothed ILD and IPD signatures for κB = −90 degrees

69

Experiment Conditions and Notes Recovery Rate

No DB Averaging 78.90%

9 point DB averaging 80.82%

9 point DB averaging, 5 point sample averaging 79.72%

9 point DB averaging, 9 point sample averaging 79.45%

9 point DB averaging, self check 89.17%

Table 3.2: Recovery Experiment 2 Recovery Rates

In the “Experiment Conditions and Notes” section of Table 3.2, “n point

sample averaging” refers to smoothing samples prior to angle recovery. The “self

check” refers to an experiment where samples used to create the database were

checked against the database itself.

The recovery rate only decreased approximately 9% from the previous experi-

ment, despite doubling the angle resolution. Figure 3.10 shows a plot of the recovered

angles versus the actual angle. The blue line in the plot denotes the desired recovery

curve. Figure 3.11 shows the variance of the error, per angle. Generally speaking

the variance is low enough to be useful in controls experiments, with more error

towards the poles ±90 degrees.

70

Figure 3.10: Recovery Plot from Experiment 2, 80.82% recovery rate

Figure 3.11: Recovery Error Variance Plot from Experiment 2, 80.82% recovery rate

71

Experiment Conditions and Notes Recovery Rate

9 Point DB averaging 82.19%

9 Point DB averaging, 5 point sample averaging 84.11%

9 Point DB averaging, self check, 5 point sample averaging 92.35%

Table 3.3: Experiment 3, Manikin Head Recovery Rates

3.4.5.3 Recovery Experiment 3: The Manikin Head

In this experiment, the Manikin head was used with microphone placement at

±90 degrees. Similar to the previous experiment the following conditions and pa-

rameters were used: 512 point FFT, -90 degrees to 90 degrees, 2.5 degree increments,

50 samples per angle, broadband sound from 200-10000 kHz at 43 Hz increments,

with linear frequency weighting. The second data set collected was the same, but 5

samples per angle. Table 3.3 shows the recovery results.

From the recovery rates, it appears that the non-low pass filtered, moderately

priced microphones, and the styrofoam head perform just as well as the head appa-

ratus from the previous experiments. While overall error remained low, Figure 3.12

and 3.13 show three distinct samples (out of 365) that were considerably inaccurate.

72

Figure 3.12: Recovery Plot from Experiment 3, 84.11% recovery

Figure 3.13: Recovery Error Variance Plot from Experiment 3, 84.11% recovery

73

To see if manikin head signatures were comparable with spherical head sig-

natures from Experiment 2, another angle recovery test was performed. In this

test, the samples that generated the signature DB (50 per angle) from the manikin

head were tested against the signature DB from the spherical head in the previous

experiment. The same test was also performed in reverse, where the signature DB

from the manikin head experiment was used to recover angles from the spherical

head experiment. Table 3.4 shows the results from this test. From this test it is

abundantly clear that proper calibration is required based on the head shape and

microphone type.

Experiment Conditions and Notes Recovery Rate

Spherical Head DB vs Manikin Samples .02739%

Manikin DB vs Spherical Head Samples 0%

Table 3.4: Experiment 3, Manikin and spherical recovery rates. For each recovery

experiment, samples were taken with one agent and the database of the opposing

agent was used for recovery.

3.4.5.4 Recovery Experiment 4: Full 360 Signature with Optimal

Sensor Placement

The microphones were “optimally” placed at±50 degrees on the manikin head.

The parameters for the experiment were as follows: 512 point FFT, 0 degrees to

74

358 degrees, 2 degree increments, 50 samples per angle, broadband sound from 200-

10000 kHz at 43 Hz increments, with linear frequency weighting. The second set of

samples was taken at 5 samples per angle. Table 3.5 shows the recovery rates for

this experiment.

Experiment Conditions and Notes Recovery Rate

9 point DB averaging 84%

9 point DB averaging, 5 point sample averaging 85.55%

Table 3.5: Experiment 4 Recovery Rates

Given the increased angle resolution and increased number of total DB signa-

tures from breaking front/back ambiguity, the results are very strong. Figure 3.14

shows no “spurious” angle recoveries, and Figure 3.15 shows a very low error vari-

ance. These results indicate that CBL implementation with the phonotactic robot

is plausible. Moreover there were no recovery problems due to front/back ambigu-

ity. These results also indicate that smoothing samples before checking against the

database is advantageous, but not required.

75

Figure 3.14: Recovery Plot from Experiment 4, 85.5% recovery rate

Figure 3.15: Recovery Error Variance Plot from Experiment 4, 85.5% recovery rate

76

3.5 CBL with Robot Phonotaxis

To show robustness of the phonotactic robot, we demonstrate the CBL system

as discussed previously, but where the leader is guiding the collective through sound

sourced localization of the beacon. This is intended to show that the ILD/IPD

algorithm is indeed suitable for real-time control, and is reliable enough to be used

in real controls systems.

The high level design of the CBL phonotactic leader system is shown in Figure

3.16. The MSP430 drives sampling, as it acts as a processing bottleneck for the rest

of the system. No true design changes were necessary other than modifying the

C++ control program to subscribe to MATLAB’s published κB angles, so that the

angle could be used in computations of the leader’s control law for the CBL system.

77

Figure 3.16: Information Flow of the CBL-Phonotaxis Embedded Implementation

3.5.0.1 Beacon Configuration

Due to the difficulties with fabricating a speaker or baffle configuration that

radially emits sound adequately, a “simpler” more controls focused solution was

carried out by creating a beacon agent. A speaker was fixed to the top of a robot,

which was in turn assigned the Stationary Beacon Tracking Law from the head

calibration section (3.13). The chosen αB for the control law was 0, while the κB

angle used for feedback was the κ angle between the beacon agent and the leader

agent. The beacon agent has zero translational velocity, while its rotational velocity

78

is being changed by the stationary beacon tracking law. As per previous analysis,

if the leader agent has reached circling equilibrium, the beacon agent’s heading

will asymptotically converge to tracking the leader agent if µ is chosen such that

µBA >
νL
ρLB

and κBA0 6= π.

A “DKnight MagicBox II” portable Bluetooth speaker was chosen as the bea-

con agent’s sound source. The speaker had a 10W power output, and was connected

to a mobile phone, playing a FLAC encoded audio file of the 10 kHz broadband sig-

nal as discussed above.

3.5.1 Experiments

Experiments were performed with the leader using an empirically determined

signature DB for localization of the beacon, and an “asymmetrical” microphone

configuration, whereby both microphones were offset from a 0 degree heading by 50

degrees. The beacon used was a “beacon agent” to simulate radially emitted sound.

Recall that while only κB is being provided by sound localization, it is in fact the

only piece of beacon information required by the control law,

uL = λµ sin(κLB−αLB)+(1−λ)

(
µ sin(κL−αL)+

1

ρL

(
sin
(
κL+sin(θf1)

))
, (3.17)

and the inter-agent information is being provided by Vicon. All experiments were

carried out using two agents.

A video of 3 agent CBL performed in the lab can be viewed online at [18].

During the video, the sound source is stopped for several seconds, yet the collective

79

is able to keep the leader from straying too far from the equilibrium. Once the

sound source is reenabled, the system reaches equilibrium.

3.5.1.1 Experiment 1: Anti-Clockwise Circling Equilibrium

Initial conditions for both agents were chosen such that the leader was facing

away from the beacon, and neither agent was at equilibria. Parameters were chosen

so as to achieve an anti-clockwise circling equilibrium. Both agents were assigned

α = αB = π
4
. The leader’s beacon attention, λ, was chosen to be 2

3
, and µ was chosen

to be 0.8. Based on these parameters we expect equilibrium values as follows,

κ1 = 2.356 κ2 = .785

κB = 1.570

ρ = 1.462 ρB = 1.034

(3.18)

A 5 point moving average was used to smooth recovered angles, adding ro-

bustness in the event of “spurious” angle changes. Figure 3.17 shows the recovered

κB in degrees, comparing both leader and Vicon measurements. The angle recovery

is reliable enough for the system to achieve equilibrium, and converge from the non-

ideal initial conditions. Performance of the angle recovery is consistent, except at a

few samples after 200, where there there appears to be a vertical line of leader sam-

ples. This was due to a small break in continuity of the broad band sound source.

While this interrupt in the sound source occurred, it was not substantial enough to

prevent the system from achieving equilibrium - or near equilibrium at 90 degrees.

It is noteworthy to mention that the leader’s recovered angles are slightly shifted

80

right in time compared to the Vicon angles (see samples 100-200). This shift is most

likely due to MATLAB processing and communication delays associated with the

embedded/MATLAB combined implementation, and the 5 point moving average for

angle recovery.

Sample Number

0 100 200 300 400 500 600

κ
B
 R

e
c
o

v
e

re
d

0

50

100

150

200

250

300

350

κ
B
 Recovered, Phonotaxis and Vicon Measurements

Figure 3.17: CBL-Phonotaxis Experiment 1: Plot of leader κB measurements (red)

vs. ground-truth (Vicon based measurements, blue) in degrees.

Figure 3.18 shows the plots of ρ, ρB, κ, κB for both the leader (Upsilon) and

the follower (Epsilon). This figure shows convergence of all dynamics to their ap-

proximate theoretical values. There is a small amount of oscillation once the system

has achieved equilibrium, due to the resolution of the leader’s angle recovery and

recovery error. However given the error, the equilibrium appears quite stable across

all measurements.

81

Time (s)

0 50 100 150 200 250 300

M
e

te
rs

 (
m

)

1

1.5

2

2.5

3
Inter-Agent Distance (ρ) vs. Time (s)

Epsilon

Upsilon

Time (s)

0 50 100 150 200 250 300

M
e

te
rs

 (
m

)

0

0.5

1

1.5

2

2.5

Beacon Distance (ρ
b
) vs. Time (s)

Epsilon

Upsilon

Time (s)

0 50 100 150 200 250 300

κ
 A

n
g

le

0

1

2

3

4
κ Angle vs. Time (s)

Epsilon

Upsilon

Time (s)

0 50 100 150 200 250 300

κ
B
 A

n
g

le

0.5

1

1.5

2

2.5

3

κ
B
 Angle vs. Time (s)

Epsilon

Upsilon

X: 267.9

Y: 1.495
X: 255.8

Y: 1.024

X: 250.4

Y: 2.325

X: 249.6

Y: 0.75

X: 256.8

Y: 1.557

Figure 3.18: CBL-Phonotaxis Experiment 1: Plots of system dynamics vs. time for

both the leader (Epsilon) and the follower (Upsilon).

Figure 3.19 shows the trajectories of the agents. Squares mark the initial

positions of the agents, while circles mark the final positions. The agents clearly

converge to a circling equilibria about the beacon.

82

-1500 -1000 -500 0 500 1000 1500 2000

Lab Position (mm)

-2500

-2000

-1500

-1000

-500

0

500

L
a
b
 P

o
s
it
io

n
 (

m
m

)

Trajectories

Epsilon (leader)

Upsilon

Figure 3.19: CBL-Phonotaxis Experiment 1: Plot of trajectories. Squares mark

initial positions and circles mark final positions. Epsilon was designated the leader.

3.5.1.2 Experiment 2: Clockwise Circling Equilibrium

Initial conditions for both agents were again chosen in such a way that the

leader was facing away from the beacon, and neither agent was at equilibria. Pa-

rameters were chosen so as to achieve a clockwise circling equilibrium. Both agents

were assigned α = αB = −π
4

, the leader’s beacon attention, λ was chosen to be 2
3
,

and µ was chosen to be 0.8. Based on these parameters we expect equilibrium values

83

as follows,

κL = 3.927 or − 2.356

κB = −1.570 κF = −0.785

ρ = 1.462 ρB = 1.034

(3.19)

Figure 3.17 shows the recovered κB in degrees, comparing both leader and

Vicon measurements. The angle recovery is reliable enough to achieve equilibrium,

and adjust to the non-ideal initial conditions. Initial error in this experiment was

due to a break in the audio file, which then transitioned into reliable recovery. Again,

there is a significant amount of recovery error around sample 350 due to a break in

the audio file.

Sample Number

0 50 100 150 200 250 300 350 400 450

κ
B
 R

e
c
o

v
e

re
d

0

50

100

150

200

250

300

350

κ
B
 Recovered, Phonotaxis and Vicon Measurements

Figure 3.20: CBL-Phonotaxis Experiment 2: Plot of leader κB measurements (red)

and Vicon measurements (blue) in degrees.

84

Figure 3.21 shows the plots of ρ, ρB, κ, κB for both the leader (Epsilon) and

the follower (Upsilon). This figure shows convergence of all dynamics to their ap-

proximate theoretical values.

Time (s)

0 50 100 150 200 250

M
e

te
rs

 (
m

)

1

1.5

2

2.5

3
Inter-Agent Distance (ρ) vs. Time (s)

Epsilon

Upsilon

Time (s)

0 50 100 150 200 250

M
e

te
rs

 (
m

)

0

0.5

1

1.5

2

2.5

Beacon Distance (ρ
b
) vs. Time (s)

Epsilon

Upsilon

Time (s)

0 50 100 150 200 250

κ
 A

n
g

le

-4

-2

0

2

4
κ Angle vs. Time (s)

Epsilon

Upsilon

Time (s)

0 50 100 150 200 250

κ
B
 A

n
g

le

-3

-2.5

-2

-1.5

-1

-0.5

κ
B
 Angle vs. Time (s)

Epsilon

Upsilon

X: 197.4

Y: 1.668

X: 208.1

Y: 1.108

X: 199.7

Y: -0.7938

X: 197.5

Y: -2.219

X: 198

Y: -1.554

Figure 3.21: CBL-Phonotaxis Experiment 2: Plots of system dynamics vs. time for

both the leader (Epsilon) and the follower (Upsilon).

Figure 3.22 shows the trajectories of the agents, with squares marking ini-

tial positions, and circles marking final positions. Again, a circling equilibrium is

achieved and the system can be said to be at least (locally) stable.

85

-1500 -1000 -500 0 500 1000 1500 2000 2500

Lab Position (mm)

-2000

-1500

-1000

-500

0

500

1000

L
a
b
 P

o
s
it
io

n
 (

m
m

)

Trajectories

Epsilon

Upsilon

Figure 3.22: CBL-Phonotaxis Experiment 2: Plot of trajectories. Circles indicate

agent final positions, squares indicate initial positions. Epsilon is the leader, Upsilon

is the follower.

3.5.1.3 Experiment 3: Change of beacon location

Parameters were chosen to be the same as Experiment 1. As such, equilibrium

values are the same as in (3.18). The experiment was started with the agents at

near equilibrium positions. Once adequately settled at near equilibrium (at 190

seconds), the beacon was moved approximately 0.6 meters by hand. The purpose

of this experiment was see if the system would still converge to equilibrium, given a

change of beacon position.

Figure 3.23 shows the κB angle, red is the leader’s recovered angle and blue

is the actual Vicon angle. Again, angle recovery is good, and does not impede

86

convergence. Figure 3.24 shows the plots of the relevant dynamics. Again we see

convergence across all parameters, though there appears to be a small oscillation in

ρ by less than a tenth of a meter.

Sample Number

0 100 200 300 400 500 600 700 800 900 1000

κ
B
 R

e
c
o

v
e

re
d

0

50

100

150

200

250

300

350

κ
B
 Recovered, Phonotaxis and Vicon Measurements

Figure 3.23: CBL-Phonotaxis Experiment 3: Plot of leader κB measurements (red)

and Vicon measurements (blue) in degrees.

87

Time (s)

0 100 200 300 400 500 600

M
e
te

rs
 (

m
)

1.2

1.4

1.6

1.8

2

2.2
Inter-Agent Distance (ρ) vs. Time (s)

Epsilon

Upsilon

Time (s)

0 100 200 300 400 500 600

M
e
te

rs
 (

m
)

0.5

1

1.5

2

Beacon Distance (ρ
b
) vs. Time (s)

Epsilon

Upsilon

Time (s)

0 100 200 300 400 500 600

κ
 A

n
g
le

0.5

1

1.5

2

2.5

3
κ Angle vs. Time (s)

Epsilon

Upsilon

Time (s)

0 100 200 300 400 500 600

κ
B
 A

n
g
le

1

1.5

2

2.5

κ
B
 Angle vs. Time (s)

Epsilon

Upsilon

X: 503.8

Y: 1.511

X: 486.2

Y: 1.084

X: 468.3

Y: 2.355

X: 478.7

Y: 1.567

Figure 3.24: CBL-Phonotaxis Experiment 3: Plots of system dynamics vs. time for

both the leader (Epsilon) and the follower (Upsilon).

88

-1500 -1000 -500 0 500 1000 1500

Lab Position (mm)

-2500

-2000

-1500

-1000

-500

0

L
a
b
 P

o
s
it
io

n
 (

m
m

)

Trajectories

Epsilon

Upsilon

X: 44.44

Y: -979.2

X: 23.85

Y: -1584

Figure 3.25: CBL-Phonotaxis Experiment 4: Trajectory plots of the leader (Epsilon)

and the follower (Upsilon). Squares indicate initial positions while circles indicate

final positions.

89

Chapter 4: A Controls Framework for ROS

4.1 Introduction

In this section we describe a simple object-oriented, extendable framework for

implementing control theory experiments in ROS that is inspired by the Motion

Description Language Extended (MDLe). This framework was utilized and realized

in all experiments conducted in this paper. First, we will discuss some tools and

concepts used in this chapter.

The Robot Operating System (ROS) is an open source set of tools for program-

ming robots in C++ on a Linux based platform. It supports a number of different

robots, positioning systems, and sensors. ROS itself is described as a toolbox rather

than a framework. Because of how many options the developer has to implement

control systems with ROS, structure issues can arise that directly impact software

maintainability, extendibility, and portability.

The Motion Description Language Extended (MDLE) is an approach to trans-

lating control theory into software to interact effectively with the physical world.

Generally speaking MDLE allows for complex, interrupt driven control, where an

agent’s actions are composed of a series of “atoms” consisting of a control law, sen-

sor inputs, and timing information. In depth discussion and implementation details

90

of MDL and MDLe can be found in [12], [19], [13], and [20]. While specific devel-

opment tools have utilized the MDLE structure in the past, none currently exist in

conjunction with the ROS toolkit. Here we work toward an MDLE style framework

for control using ROS.

In our framework, scalable actions, which can take the form of a control law

or any movement, are compartmentalized and can be assigned in any combination

to any number of agents. Each agent acts individually, determining what action to

take via a “resolver” which is similar to a scheduler of an operating system. The

resolver itself can be modified to consider timing information, scaling control inputs,

sensor interrupts, and can even combine different actions into hybrid controls. All

of these features can be utilized to provide a depth of motion planning similar to

that of MDLe.

4.2 Lab Configuration

To best understand why certain decisions were made in the framework design,

it is important to understand the lab configuration in which it’s being used.

Robotic agents used in the lab were Pioneer 3 DX robots, a compact differential-

drive robot with reversible DC motors, high-resolution motion encoders, as the ex-

perimental platform. Onboard computation is done via 32-bit Renesas SH2-7144

RISC microprocessors, including the P3-SH micro-controller with ARCOS. Upon

each agent was placed a unique configuration of infrared sensitive “dots”, detectable

to the Vicon system.

91

Vicon was used as the motion capture system, providing sub-millimeter track-

ing accuracy of agents. The Vicon system consists of a series of infrared cameras,

a digital signal processor, and a backend server. Each camera detects infrared ob-

jects within its field of view, sending the image data to the digital signal processor.

The server works with the digital signal processor to compute three dimensional

positions for each point in the lab’s frame of reference. On the server itself, an

application called Vicon Tracker or Vicon Nexus recognizes geometry of dots and

combines them into objects. Each agent’s unique dot geometry was used to create

agent objects with associated positioning data. The positioning data is then sent

over TCP IP to the controls server.

A “controls server” was used to handle all communications with robots, Vicon,

and other peripherals. A C++ program was run on the controls server to listen for

Vicon data on TCP IP, publishing agent positioning data to ROS. The ROS master

server was also configured to run on the controls server, as well as all robot control

programs. In this paper, the controls server was a Dell Precision T5600 running

Ubuntu Linux. Figure 4.1 shows the overall information flow of communication

between components in the lab. Within the C++ program, a software library called

ARIA was used, which translates standardized remote motion commands into robot

actions and manages the physical robots.

In addition to C++ programs interacting with ROS, the MATLAB ROS tool-

box was used to process data, communicate to peripherals, and publish data to the

ROS master server.

92

Figure 4.1: Information flow of lab components.

4.3 The Structure of a ROS Program

A control program for a collective of robots using ROS has some essential com-

ponents regardless of its purpose. First the program needs to load run-time settings

- specifying the number of agents, IP addresses of agents, control parameters, and

any other relevant information. Then ARIA libraries are used to connect and ini-

tialize the robots over a wireless connection. Once the program has communication

with the agents, they are configured to have a set of actions. The system itself must

subscribe (using ROS functionality) to the published positioning data provided by

an external system. After the control program is receiving data, the agents may then

officially “start” and execute their control laws in a loop, with movement commands

being sent via ARIA. Concurrent to the control law execution, the control program

must continuously update the subscribed position data, placing it into appropriate

93

objects.

4.4 A Framework for ROS

The proposed framework is essentially a simple class structure that takes ad-

vantage of the native functionality of both ROS and ARIA libraries. A general

information flow diagram of the framework is shown in Figure 4.2.

First the system must have a class for managing all the incoming positioning

data and robot connections. We propose a “SystemData” class to do exactly this.

Within the main loop of the program, the SystemData class should provide a means

of managing all position data subscription, update agent position data structures

within the class itself, and provide key handler functions for exiting and real time

user input. Handles to the physical robots in the form of the ArRobot class should

be managed within the SystemData class as well.

The ArRobot class is provided by ARIA and contains broad functionality.

Each ArRobot represents one physical robot, and can manage the IP connection

to the robot, issue motion commands, as well as a suite of other features. During

configuration, “actions” can be added to each ArRobot individually in the form of

an ArAction class provided by ARIA.

During program execution, each ArRobot object runs in its own thread. In a

general sense the ArRobot and ArAction classes function as such: the ArRobot is

configured and actions are added. For every control loop cycle, within each ArRobot,

every assigned action “fires”. Firing constitutes computing an action independent

94

of the other assigned actions, and passing the “desired action” to a “resolver” in the

form of the ArResolver class (provided by ARIA). The resolver acts like a scheduler

in an operating system, looking at each desired action, then deciding which action

the robot should take for the cycle.

A key aspect to this framework is overloading the ArAction class in a standard-

ized way to compute control laws. Each control law should be fully encompassed in

an ArAction class and should act as a control-law library. Each ArAction should

itself “subscribe” to only the position data structures it needs from the SystemData

class. To avoid threading issues, each cycle the control ArAction should copy the

relevant position data into local storage for computation.

Figure 4.2: Example ROS Controls Framework Dataflow

95

By adding actions, we can give each robot a variety of control laws and general

actions. Each action can be assigned a priority for the resolver to take into account.

The resolver itself may be modified or overloaded for any or all robots to allow

for interesting actions and motion planning. By doing so, this configuration easily

supports sensor driven interrupt actions such as sonar based collision avoidance, time

dependent behavior, and complex control laws. More interesting configurations of

the resolver are also possible, allowing the resolver to return combinations of assigned

actions.

96

-1500 -1000 -500 0 500 1000

-1500

-1000

-500

0

Trajectories

Delta

Upsilon

Pi

Beacon

Figure 4.3: Trajectories of agents using hybrid control law within the proposed

ROS framework, where two followers are performing topological velocity alignment

from [1] on each other and cyclic pursuit on the leader. The leader is performing

CB Beacon, paying attention to only one of the followers.

For example, a topological velocity alignment (TVA) control law from [1] can

be combined with the CBL Beacon system discussed in this paper, using a hybrid

resolver to decide on a robot’s actions based on an assigned weight. Additionally

we can have two followers both pursuing the leader, while attempting to align their

velocities with each other. This modification can be done in several lines of code,

while keeping the core control law actions compartmentalized and unmodified. The

resulting agent trajectories for this hybrid CBL-TVA system are shown in Figure

97

4.3.

The proposed framework has a number of benefits, mostly relating to repeat-

ability of experiments and maintainability of code. By compartmentalizing control

laws into libraries in the form of ArActions, agents can be configured with different

actions such that the actions can be easily reused in separate experiments without

the need for re-implementing the control law. Thinking of control laws as individual

libraries also reduces overall code complexity and greatly enhances the debugging

process.

By creating a custom resolver, MDLe style behavior can be achieved. The re-

solver can be configured to prioritize certain actions as interrupts, as well as execute

sequences of control laws or actions as if they were “atoms” in MDLe. Even more

complex collective behavior can be achieved by leveraging ROS and ARIA’s inher-

ent flexibility by assigning different robots with different actions, and even different

resolvers if desired. In a sense, the resolver becomes a configurable motion planner.

98

Chapter 5: Conclusion and Further Research

We have explored many aspects of the leader based cyclic pursuit system. First

we were able to show conditions for existence of circling equilibria for an n agent CBL

system. Based on desired circling geometry and circling radius, control parameters

can be chosen and equilibrium values explicitly calculated from derived formulas.

A linear stability analysis was performed, with formulas given to determine local

stability for a set of parameters. From there, we implemented the CBL system in

the two and four agent case, using the Vicon motion capture system for feedback. It

was shown that the agents’ behavior was as expected, and robust to different initial

conditions and changes in the beacon location. Performance of the CBL system

was analyzed in a series of simulations, varying both λ and α parameters, showing

that the CBL system generally performed similarly, if not sometimes better than

the CBB system. From here we changed gears to using sound to sense the target,

rather than the ViconTM motion capture system.

Taking advantage of the leader not needing to know its distance to the beacon,

we explored sensing the beacon through sound. The inter-aural level difference and

inter-aural phase difference algorithm was used to determine the beacon’s location.

We were able to show that this direction finding method could be implemented with

99

embedded systems, using an empirically determined signature database, a “realistic”

styrofoam head, and optimal microphone placement to break front/back symmetry.

In the processes of doing so, we showed that a beacon agent could track the circling

leader with error asymptotically going to zero. It was then shown that the direction

finding apparatus could be used in the CBL system, and was again robust to beacon

position changes and different initial conditions.

Finally the implementation of the robotic experiments was discussed in detail.

The lab setup was described, with information flow and dependencies addressed. A

simple and standardized framework for implementing control laws was put forth,

and used in all experiments in this paper. The flexibility of the framework was

shown by easily combining two different controls libraries in a hybrid way. Thus a

powerful, repeatable, and maintainable controls framework was demonstrated.

There are multiple ways one can proceed to expand upon this thesis for fu-

ture work. First and foremost, a strong nonlinear stability result using Lyapunov

analysis is desired. Given the strong empirical results and linear stability analysis,

we would very much like to claim global asymptotic stability for sets of parameters.

Unfortunately this result has escaped the CBB system as well, but is certainly worth

the effort of exploration.

Further, it would be interesting to explore if a subset of agents had knowledge

of the beacon, but perhaps with different (probabilistic) confidence levels. If multiple

agents have beacon information, does their order in the circling equilibria matter?

How does the amount of total beacon information in the system affect stability,

robustness, and performance?

100

In regards to the phonotactic leader, it would be nice to implement the ILD/IPD

algorithm fully on an embedded system, with angle recovery being performed on

board the robot. An exploration of how little broadband sound is necessary to

locate a target would be interesting to see. Can a sufficiently broadband piece of

music be used to successfully locate the beacon? If the beacon only makes sound

periodically, can estimation be used while not locating the beacon to successfully

reach equilibrium?

For the ROS framework, it would be desirable to work towards a more complete

MDLe implementation, while maintaining flexibility and simplicity of the current

system. From a usability perspective, it would be advantageous to design a universal

GUI for control law creation, as well as running experiments, and capturing data.

101

Bibliography

[1] U. Halder and B. Dey, “Biomimetic algorithms for coordinated motion: The-
ory and implementation,” in Robotics and Automation (ICRA), 2015 IEEE
International Conference on. IEEE, 2015, pp. 5426–5432.

[2] USCGD14, “Vessel missing since october located adrift in pacific, unmanned,”
Nov 2013. [Online]. Available: http://www.uscgnews.com/go/doc/4007/
1963974/vessel-missing-since-october-located-adrift-in-pacific-unmanned

[3] J. A. Marshall, M. E. Broucke, and B. A. Francis, “Formations of vehicles in
cyclic pursuit,” IEEE Transactions on Automatic Control, vol. 49, no. 11, pp.
246–251, 2004.

[4] M. Pavone and E. Frazzoli, “Decentralized policies for geometric pattern for-
mation and path coverage,” Journal of Dynamic Systems, Measurement, and
Control, vol. 129, no. 5, pp. 633–643, 2007.

[5] K. S. Galloway, E. W. Justh, and P. Krishnaprasad, “Symmetry and reduction
in collectives: cyclic pursuit strategies,” Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Science, vol. 469, no. 2158, 2013.

[6] K. Galloway and B. Dey, “Station keeping through beacon-referenced cyclic
pursuit,” in American Control Conference (ACC), 2015, July 2015, pp. 4765–
4770.

[7] S. Daingade, A. Sinha, A. V. Borkar, and H. Arya, “A variant of cyclic pur-
suit for target tracking applications: theory and implementation,” Autonomous
Robots, pp. 1–18, Online: 23 August, 2015.

[8] G. R. Mallik, S. Daingade, and A. Sinha, “Consensus based deviated cyclic
pursuit for target tracking applications,” in Proceedings of the European Control
Conference (ECC), Linz, Austria, 2015.

[9] B. D. Kevin S. Galloway, “Stability and pure shape equilibria for beacon-
referenced cyclic pursuit,” 2016, to appear in Proceedings of the American
Control Conference, 2016.

102

http://www.uscgnews.com/go/doc/4007/1963974/vessel-missing-since-october-located-adrift-in-pacific-unmanned
http://www.uscgnews.com/go/doc/4007/1963974/vessel-missing-since-october-located-adrift-in-pacific-unmanned

[10] A. A. Handzel and P. S. Krishnaprasad, “Biomimetic sound-source localiza-
tion,” IEEE Sensors Journal, vol. 2, no. 6, pp. 607–616, Dec 2002.

[11] S. B. Andersson, A. A. Handzel, V. Shah, and P. S. Krishnaprasad, “Robot
phonotaxis with dynamic sound-source localization,” in Robotics and Automa-
tion, 2004. Proceedings. ICRA ’04. 2004 IEEE International Conference on,
vol. 5, April 2004, pp. 4833–4838 Vol.5.

[12] R. W. Brockett, “Formal languages for motion description and map making,”
Robotics, pp. 181–193, 1990.

[13] V. Manikonda, P. Krishnaprasad, and J. Hendler, “Languages, behaviors,
hybrid architectures, and motion control,” in Mathematical Control Theory,
J. Baillieul and J. Willems, Eds. Springer New York, 1999, pp. 199–226.
[Online]. Available: http://dx.doi.org/10.1007/978-1-4612-1416-8 6

[14] R. L. Bishop, “There is more than one way to frame a curve,” The American
Mathematical Monthly, vol. 82, no. 3, pp. pp. 246–251, 1975. [Online].
Available: http://www.jstor.org/stable/2319846

[15] E. Wei, E. W. Justh, and P. Krishnaprasad, “Pursuit and an evolutionary
game,” Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, 2009. [Online]. Available: http:
//rspa.royalsocietypublishing.org/content/early/2009/02/23/rspa.2008.0480

[16] A. A. Handzel, S. B. Andersson, M. Gebremichael, and P. S. Krishnaprasad, “A
biomimetic apparatus for sound-source localization,” in Decision and Control,
2003. Proceedings. 42nd IEEE Conference on, vol. 6, Dec 2003, pp. 5879–5884
Vol.6.

[17] P. S. Krishnaprasad. (2015, jan) Lie brackets in control, enee661 spring
2015. [Online]. Available: http://www.ece.umd.edu/class/enee661.S2015/
enee661 2011 lecture 2 b.pdf

[18] K. Miltenberger. (2016, apr) Leader-based beacon-focused cyclic pursuit using
sound localization. [Online]. Available: https://www.youtube.com/watch?v=
vJ-mZdeYoX0

[19] R. W. Brockett, H. Trentelman, and J. Willems, “Hybrid models for motion
control systems,” Perspectives in Control, pp. 181–193, 1993.

[20] Z. Kulis, V. Manikonda, B. Azimi-Sadjadi, and P. Ranjan, “The distributed
control framework: A software infrastructure for agent-based distributed con-
trol and robotics,” in American Control Conference, 2008, June 2008, pp. 1329–
1336.

103

http://dx.doi.org/10.1007/978-1-4612-1416-8_6
http://www.jstor.org/stable/2319846
http://rspa.royalsocietypublishing.org/content/early/2009/02/23/rspa.2008.0480
http://rspa.royalsocietypublishing.org/content/early/2009/02/23/rspa.2008.0480
http://www.ece.umd.edu/class/enee661.S2015/enee661_2011_lecture_2_b.pdf
http://www.ece.umd.edu/class/enee661.S2015/enee661_2011_lecture_2_b.pdf
https://www.youtube.com/watch?v=vJ-mZdeYoX0
https://www.youtube.com/watch?v=vJ-mZdeYoX0

	List of Figures
	List of Abbreviations
	Introduction
	Leader Based Cyclic Pursuit
	Theory
	System Modeling
	CBL Control Law
	Relative Equilibria
	Existence Conditions of Relative Equilibria
	Stability Analysis for Two Agents

	Experiments
	Two Agent CBL
	4 Agent CBL

	Performance vs. CB Beacon
	Fixed Lambda and Initial Conditions, Varying Alpha
	Fixed Alpha and Initial Conditions, Varying Lambda

	Sound Sourced, Leader Based Cyclic Pursuit
	Introduction
	Sound Sourced Localization
	The ILD IPD Algorithm
	Breaking the Symmetry

	Embedded Systems Design and Development
	Hardware Selection
	System Design
	Development

	Head Calibration and Angle Recovery
	Head Setup
	ILD/IPD Signature Generation
	Stationary Beacon Tracking Law
	Broadband Sound
	Building and Checking Signatures

	CBL with Robot Phonotaxis
	Experiments

	A Controls Framework for ROS
	Introduction
	Lab Configuration
	The Structure of a ROS Program
	A Framework for ROS

	Conclusion and Further Research
	Bibliography

