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Chapter 1

Introduction

The complex hyperbolic plane is a four-dimensional symmetric space of negative

curvature. A complex hyperbolic triangle group is an isometry group generated

by three complex reflections (Definitions are given below.) Goldman and Parker

introduced these groups in the early 1990’s, and several authors have addressed

them in the intervening years. In particular, Richard Schwartz classified, in terms

of discreteness, the 1-parameter family of so-called ideal complex hyperbolic trian-

gle groups. This classification answered a conjecture posed by Goldman-Parker.

Our focus in this thesis will be the so-called last discrete complex hyperbolic

triangle group, which appears at the nontrivial end of the 1-parameter family of

ideal complex hyperbolic triangle groups

In this thesis we examine a pattern of topological triangles on the boundary

of CH2. We obtained this pattern through extensive computer simulations using

a program we wrote for this purpose. The triangles arise from objects adapted

to the (∞, ∞, ∞) triangle group, using the boundary components of geodesic

subspaces in complex hyperbolic space. We hope that this pattern will eventually

help to explain this group action.

I would like to express my gratitude to Richard Schwartz for steering me into
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the field and the problem. I would also like to thank Bill Goldman for his support

and guidance.

1.1 Summary of Results

This dissertation has four chapters. The first covers the necessary background

material for complex hyperbolic triangle groups. The second deals with the use

and structure of CHAT, a program we created to visualize objects on the ideal

boundary of CH2. In the third chapter, we present empirical evidence, obtained

from CHAT, to support the existence of an octahedral tiling. Lastly we prove

some embedding results for an octahedron in the tiling.

CHAT is designed to draw and manipulate triangles in ∂CH2. In the second

chapter we provide instructions for the reader to use the program. An example

is included to familiarize the user with the interface. Additionally, we describe

CHAT’s construction and methods one may use to program abstract results.

We conclude with a detailed explanation of the projections used to produce two

dimensional images.

Chapter 3 contains convincing visual evidence produced by CHAT to show

that there is a tiling by embedded octahedra. We select a specific octahedron,

discuss its symmetries, and choose representatives from each class of face pairings.

We give detailed pictures to support that each pair of faces is embedded. Lastly,

we show images of the octahedron in relation to certain spheres in ∂CH2. This

collection of images substantiates the claim that the selected octahedron produces

a tiling.

Our goal is to show that the tiling is embedded, and chapter 4 offers partial

results to support this hypothesis. We show that the octahedron consists of two
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embedded halves and prove some results about their union near their common

vertices. The chapter begins with a discussion of some parameterizations of

common objects in CH2. We then employ those tools to ascertain that half of

the octahedron is embedded. We also show, modulo roundoff error, that the two

halves are embedded near two of their joining vertices, and prove that most of

the faces are embedded near the other two vertices.

1.2 Background

To obtain the complex hyperbolic plane CH2, we begin with C2,1, i.e. three

dimensional complex space with the hermitian form 〈 , 〉 given by

〈z, w〉 = z0w̄0 + z1w̄1 − z2w̄2

This breaks C
2,1 into three regions, positive {z ∈ C

2,1 : 〈z, z〉 > 0}, negative

{z ∈ C2,1 : 〈z, z〉 < 0}, and null {z ∈ C2,1 : 〈z, z〉 = 0}. CH2 is the projective

image of the negative region in CP 2, which we identify with the open unit ball in

C2. The ideal boundary, ∂CH2, is the projectivization of the null region, which

we identify with S3 ⊂ C2. For any x ∈ CH2 we will denote any lift of x by x̃. The

holomorphic isometry group of CH2 is PU(2, 1). There are three fundamental

categories for elements of PU(2, 1). Elliptic elements fix at least one point in

CH2, but may fix points on the boundary as well. Parabolic elements have a

unique fixed point and it lies in ∂CH2. Lastly, hyperbolic elements fix two points

in ∂CH2. [Go] is an excellent resource for facts about CH2.

There is an important invariant of three points in ∂CH2.

Definition 1.2.1. Given three points, x, y, and p, in ∂CH2, their angular
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invariant is given by:

arg(−〈x̃, ỹ〉〈ỹ, p̃〉〈p̃, x̃〉) ∈ [−π

2
,
π

2
]

If three points lie on a common geodesic in ∂CH2, their angular invariant will be

0 if the geodesic is real and ±π
2

if it is complex. For more information, see [Go]

pp.210-214.

The abstract (p, q, r) triangle group has the presentation:

〈I0, I1, I2 |I0
2 = I1

2 = I2
2 = (I0I1)

p = (I1I2)
q = (I2I0)

r = Id〉

This presentation mimics the geodesic real hyperbolic triangle with angles (0, 0, 0).

In our case we are interested in p = q = r = ∞, isomorphic to Z

2
∗ Z

2
∗ Z

2
. We de-

note this group by 
. In order to define a representation of 
 into Isom(CH2),

we must define what object we are reflecting through, and how we carry out the

reflection.

Definition 1.2.2. Let x, y ∈ CH2 ∪ ∂CH2. Let C̃ be the complex span of x̃ and

ỹ in C2,1. We define the complex slice C containing x and y by projectiviz-

ing C̃ and then intersecting with CH2 ∪ ∂CH2. C is a complex 1-dimensional

submanifold.

We need two more definitions to proceed. The first is an operation analogous

to the cross product in Euclidean space. This will enable us to find a vector

orthogonal to our complex slice.

Definition 1.2.3. The Box Product

� : C
2,1 × C

2,1 → C
2,1
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is defined by

u � v = (u3v2 − u2v3, u1v3 − u3v1, u1v2 − u2v1)

Definition 1.2.4. The polar vector, unique up to scaling, for a complex slice

C is the vector x̃ � ỹ where C̃ = span(x̃, ỹ).

A quick calculation shows that 〈x̃ � ỹ, ỹ〉 = 0.

〈x̃ � ỹ, ỹ〉 = (x3y2 − x2y3)ȳ1 + (x1y3 − x3y1)ȳ2 − (x1y2 − x2y1)ȳ3)

= x3y2y1 − x3y1y2 + x2y1y3 − x2y3y1 + x1y3y2 − x1y2y3

= 0

(1.1)

and similarly that 〈x̃ � ỹ, x̃〉 = 0. Moreover, this definition does not depend on

the lifts of x and y, since different lifts will result only in a different scaling of

the vector.

Now we are in a position to calculate the reflection in a complex slice.

Definition 1.2.5. The complex reflection in C is given by

IC(ũ) = −ũ +
2〈ũ, p̃〉
〈p̃, p̃〉 p̃

where p is the polar vector for the complex geodesic C.

Now if we choose three distinct points, v0, v1, v2, in ∂CH2 then each pair will

define a polar vector for a complex slice. Let C0, C1, and C2 denote the complex

slices determined by the pairs {v0, v2}, {v1, v2}, and {v0, v1} respectively. We can

then define a representation

ρ : 
 → PU(2, 1)
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by mapping each generator to the complex reflection in the slice with correspond-

ing index. The deformation space of such representations has one real dimension.

The main result of [S0] is that such a representation is discrete and faithful if

and only if the element I0I1I2 is not elliptic. The discrete embeddings can then

be parameterized by the closed interval, [0,
√

125
3

], up to conjugation. This pa-

rameter has a geometric significance described on page 18. We define Γ to be

the image of the representation given by the parameter
√

125
3

where the element

I0I1I2 is parabolic. This is the last faithful, discrete (∞,∞,∞) triangle group.

There are two kinds of totally geodesic subspaces in CH2. We have already

defined one, the complex slice. Its boundary will be of great interest to us, as

will the other kind of subspace.

Definition 1.2.6. The accumulation set of a complex slice on ∂CH2 is a C-

circle. A segment of a C-circle will be called a C-arc

Definition 1.2.7. A real slice is a totally real, totally geodesic subspace of

CH2. An R-circle is the accumulation set of a real slice on ∂CH2.A segment of

an R-circle will be called an R-arc. All real slices are isometric to R2 ∩ CH2.

Given two distinct points on ∂CH2, there is a unique C− circle that contains

them. Every example is PU(2, 1) equivalent to C×0∩∂CH2. Two distinct points

in ∂CH2 do not specify a unique R-circle, however. Instead, they determine a

1-parameter family of R-circles. To obtain a specific circle, B, in this family we

require a third point that lies on B.

There is another setting, permitting easier visual analysis, for ∂CH2. By

removing a point, x, from ∂CH2 and realizing that ∂CH2 is homeomorphic to

S3, we can map ∂CH2−{x} to H eisenberg space, H, via Heisenberg stereographic
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projection (defined below.) Heisenberg space is the set C×R equipped with the

group law:

(z1, t1) · (z2, t2) = (z1 + z2, t1 + t2 + 2Im(z̄1z2))

This setting is advantageous because Heisenberg stereographic projection, an

analogue of the familiar stereographic projection, is a projective transformation.

In particular, any element of Isom(CH2) fixing x gives rise to an automor-

phism of H. Henceforth we will use the term “stereographic projection” to mean

Heisenberg stereographic projection. Here is a standard example of Heisenberg

stereographic projection from S3 − {(1, 0)}.

(z, w) 
→ (
z

1 + w
,−Im(

1 − w

1 + w
)

A C-circle through our point x maps to a vertical line in H, and we can choose

an appropriate stereographic projection to make it the line {0}×C. An R-circle

through x maps to a horizontal line, i.e. it will have constant t-value in H. The

appropriate projection will make it the line R × {0}.
Before defining our tiling, we must describe its location. The limit set, Λ of

our group Γ is the accumulation set on S3 of any orbit Γ(x) for any x in CH2.

The limit set does not depend on the choice of x. The domain of discontinuity of

Γ is the complement, Δ = S3 −{Λ}. The tiling is a subset of Δ that is invariant

under the action of Γ. Each tile is, experimentally, an embedded octahedron with

an order 4 symmetry group.

The triangular faces of an octahedron in our tiling are composed of a single

C-arc and many R-arcs. Suppose we have a C-arc and a point q not on it. We

wish to connect every point of the C-arc to q by an R-arc, thus making a triangle.

To accomplish this, we must utilize additional data. The following definition will
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provide the extra data required.

Definition 1.2.8. A flag is a pair (E, q), where E is a C-circle stabilized by an

element γ ∈ Γ and q is a point on E fixed by γ.

1.2.1 The Coning Process

Finally, we must define the coning construction that creates the surface of a

triangular face. This construction was developed in [S0]. Given a point p on a

C-arc and a flag (E, q) with p �∈ E, there is a unique R-circle, R through p and

q that intersects E at another point, z, distinct from q. R is divided into three

arcs by p, q, and z, and we select the arc containing p and q but not z for our

face. Repeating this procedure for all the points on a C-arc yields a topological

triangle, foliated by R-arcs. Every face of our octahedron is such a triangle.

Lemma 1.2.1. Let p be a point on a C-arc and let (E, q) be a flag, with p �∈ E.

Then there is a unique R-circle, R, such that R ∩ E − {p, q} �= ∅.

Proof. Consider a Heisenberg stereographic projection of S3−{q} to H mapping

E to 0 × t. Under this mapping, all R-circles through q will be horizontal lines.

In particular, any horizontal line through p will be an R-circle through q. There

will be exactly one of these lines that intersects the t-axis. This intersection point

is z, which lies on both the R circle and E. Also, z is distinct from q.

Given a C-arc, C, and a flag (E, q) disjoint from C, the triangle with base C

is the surface formed by coning each point of C to q by the above construction.

The resulting surface is foliated by R-arcs. Such triangles are the faces of our

tiling octahedra.

8



Chapter 2

The Program

2.1 Preliminaries

In the last chapter, we described how three points on the boundary of CH2 can be

used to determine the representation of our triangle group. These three points,

v0, v1, v2 are also critical in specifying the triangles in our tiling. Recall that C0,

C1, and C2 denote the complex slices determined by the pairs {v0, v2}, {v1, v2},
and {v0, v1} respectively. For each of the three complex slices C0, C1, C2, there is

a C-circle boundary, and each one of these contains two of our three boundary

points. Accordingly, each C-circle is divided into two C-arcs joined at these

two points. As we will only be concerned with the circles, we will henceforth use

C0, C1, C2 to denote the C-circles rather than the complex slices that they bound.

There is another transformation in PU(2, 1) that will be helpful to us. This

element has order three and cyclically permutes the three defining points v0, v1, v2

and therefore permutes C0, C1, and C2. We shall call this element σ. The orbit

of σ is v0 → v2 → v1.

We must now differentiate the two arcs of a given C-circle. Consider the C-

circle C1. We define the short and long arcs of C1 relative to the flag (E, q) by

9



the following procedure. Take a map from S3 − {q} to H sending E to the t-

axis. Then observe the images of the two arcs under this map and the projection

(z, t) 
→ z. One of these arcs will be a sector of angle greater than π. This arc we

define to be long. The remaining arc is short. For C2 and C0, we define the long

arcs by the images of the long arc of C1 under the maps σ, σ2 respectively. The

short arcs are determined similarly. We will denote by Ci long and Ci short the

arcs defined relative to the flag for the element I1I0I2.

2.2 An Overview of CHAT

Recall that we form a triangle from a C-arc, and a flag (E, q) associated to an

element of Γ by the coning procedure defined in the previous chapter. We will

say that the C-arc, C is coned to the fixed point, p, of γ ∈ Γ to describe the

construction of a triangle T from C and the flag for γ. We will refer to p as the

cone point for T . We will write C short → pjkl to denote the triangle formed

from the short arc of C and the flag associated to the element IjIkIl. We now

explain the program CHAT that draws these triangles, enabling us to find the

octahedral tiling.

A copy of CHAT is available at http://www.math.umd.edu/∼bpelzer. In-

structions for running CHAT are found in a README file in the directory con-

taining the program. Running the program launches a window labeled CHAT.This

window has three horizontal panes: the menu bar, the display, and the log, from

top to bottom respectively. The user selects a triangle with the left half of the

menu bar, then views the triangle in the display and its label in the log pane.

The right half of the menu bar is primarily for manipulating drawn triangles.

Figure 2.1 shows an approximation of the main window that the user will see.

10



Below is a list of the functions and capabilities of CHAT. The user can:

• Choose a C-arc base and a cone point

• Choose a word in the group Γ and apply it to a triangle

• Select two colors to use when displaying the triangle

• Select a coordinate system to view the triangles

• Save images, generate a tiling, and toggle between displaying surfaces or

arcs

• Zoom in or out on a displayed region

• Show, hide, or erase triangles in the display

We will explain each item in a new subsection.

2.2.1 Choosing C-arcs and cone points

Looking at figure 2.1, we see that the menu bar is immediately underneath the

window title “CHAT.” The leftmost control on the menu bar is a button labeled

“Triangle.” Clicking on “Triangle” with the left mouse button launches a new

window. The left column in this window present a list of potential C-circles and

group elements. Clicking on an item in this column selects the C-circle fixed by

the named element. For example clicking on “I0 coned to ...” selects the C-circle

fixed by the element I0. The additional number in each item specifies an element

γ in the group whose flag will be used in the coning process. The fixed point of

γ will be the cone point of the resulting triangle. For example, “I0 coned to 102”

11



Base Word Base Color Surface  Color Enter Coordinates Options

hideerase erase hide erase hide erase hide

erase hide erase hide erase hide erase hide
Reset

CHAT

Figure 2.1: A representation of the interface for CHAT
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selects the C-circle fixed by I0 as the base and R-arcs coning from it to the fixed

point of the element I1I0I2 as the surface.

The second column in this window has two options: “Short Arc” and “Long

Arc.” Clicking on one of these selects a side of the specified C-circle. Practically,

the left column determines the three vertices of the triangle while the right deter-

mines the base. The coning process determines the rest of the triangle. Once the

selections have been made, clicking on the blue “Enter” button confirms them

and closes the window.

2.2.2 Choosing a word

The next button in the menu bar is labeled “Word.” Clicking on this button

launches a new window titled “Word Entry,” that allows you to type in a word

in the group using the keyboard. This word will then be applied to the triangle.

Valid entries are the numbers 0, 1, 2, and 3. The numbers 0, 1, and 2 represent

the generators I0, I1, and I2, while 3 represents the map σ. A set of these numbers

represents a composition in the generators of the group and the transformation

σ. For example typing the word “0123” will specify that the composition I0I1I2σ

should be applied to the triangle selected using the “Triangle” button. The

backspace key can be used to erase errors. Once a word has been typed, click the

blue “Enter” button to confirm your selection and close the window.

2.2.3 Selecting colors

The “Base Color” and “Surface Color” buttons open pull-down menus with an

array of colors. Clicking on a color in either one of these menus causes the menu

to disappear and the button to be displayed in its respective color. The “Base
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Color” selection will determine the color of the C-arc that forms the base of the

selected triangle. Similarly, “Surface Color” will specify the color of the R-arcs

that comprise the surface of the triangle.

Once the user chooses a C-arc, a cone point, a word, and two colors, he should

left click on the blue “Enter” button in the menu bar. This tells the program to

draw the specified triangle.

2.2.4 Selecting a coordinate system

To the right of the blue “Enter” button in the menu bar is a button labeled

“Coordinates.” The coordinates button brings up a pull down menu listing the

available perspectives for viewing the triangles. These perspectives will be dis-

cussed in detail in a later section. Clicking on an item in this list will immediately

redraw any triangles in the display using the new coordinates. In addition, all

new triangles the user selects will be drawn in these coordinates.

2.2.5 Options

The rightmost button on the menu bar is labeled “Options.” The options button

opens a pull-down menu with three items: “Save”, “Display Tiling”, and “Hide

Surfaces”. “Save” opens a window allowing the user to choose a file and save a

postscript picture of the display pane in that file. “Display tiling” will erase any

currently drawn triangles and draw a section of the tiling. It also changes to a

favorable coordinate system and hides the surfaces of the triangles in the tiling.

Both of these changes can be undone after the tiling is drawn. “Hide Surfaces”

is a toggle switch that allows the user to draw only the C-arc bases of triangles,

omitting the R-arc surfaces. Switching this control will affect both the displayed
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triangles and any new triangles that are selected.

2.2.6 Display

The display pane is the white rectangle directly underneath the menu bar, and

its operation is fairly simple. All the triangles that have been selected are drawn

simultaneously, in the display. Clicking the left mouse button inside the display

will zoom in on the current location of the pointer. Similarly, the right button

will zoom out. The middle button immediately saves the image in the display

pane to a file titled temp.ps, overwriting whatever was there.

2.2.7 Changing drawn triangles

The log pane is beneath the display and shows what triangles the user has entered,

and the tools to change them. The log consists of eighteen slots, each with an

“erase” button, a “hide” button, and a white box that lists the details of the

triangle in that slot. For each triangle, the listed details are the C-circle, the

cone point, the arc, the word applied to it and the selected colors. For example,

I0S → 102 012

indicates that the slot is holding the triangle given by the short arc of I0 coned

to the fixed point of I1I0I2, with the word I0I1I2 applied to it. Note that the

applied word appears in bold font to distinguish it from the cone point. To the

right of the applied word, two vertical bands will appear representing the base

color and the surface color for the triangle, from left to right.

The “erase” and “hide” buttons will affect the triangle whose details appear

in the white box below them. Erase will remove the associated triangle from the

display, and empty the white box below it. The next new triangle selected using
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the menu bar will appear in this slot. The hide button will remove the associated

triangle from the display, but keep it stored in memory and its slot occupied.

The white box will turn gray and the hide button will now read “show.” Clicking

on show will restore the hidden triangle.

Also in the log pane is the red “Reset” button. Clicking on this button will

erase the display completely, return the perspective to “flat 102”, erase all of the

slots, and generally return the program to the state of being originally launched.

Hidden triangles are the exception to the reset command. These must be shown

before they can be erased.

2.3 An Example Triangle

Recall that for the short arc of a C-circle fixed by Ij and a flag associated to

IkIlIm, we denote the resulting triangle by C short → pjkl. In this section we

will draw the triangle σ(C1 short → p102) using CHAT. We begin by left clicking

on the “Triangle” button in the upper left corner of the window. When the

new window has opened, we click on “I0 coned to 102” in the left hand column,

followed by “short” in the right hand column. Left clicking on the blue “Enter”

button in this window will finalize these choices and close the window. Next, we

left click the “Word” button and type “3” The number three should appear in

the window, and we can then click its “Enter” button to submit this word.

Clicking on the “Base Color” button in the menu bar opens a pull-down

window. Move the pointer over the second square from the top, black, and left

click to select this color. Following the same procedure for the “Surface Color”

button, move the pointer over the second to last color, gray, and left click. Finally

left click on the “Enter” button located on the menu bar. The resulting image
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Figure 2.2: σ(C1 short → p102)

should be the same as figure 2.2.

We will use a shorthand for constructing images with CHAT, so that the

reader may recreate the figures in this document. Each command will be on a

separate line, and proceed in the left to right order of the menu bar. For example,

I0 to p102, short

021

black

gray

would be the shorthand for drawing I0I2I1(C0 short → p102). The first line gives

the commands to be entered in the “Base” window, followed by the command

for the “Word” window, and lastly the base and surface colors respectively. If no

entry for “Word” is necessary, the second line will display the character “-”

2.4 Drawing C-arcs

There are two primary objects that CHAT draws: C-arcs and R-arcs. We begin

by discussing the methods used to construct C-arcs.
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It is shown in [S0] that, given three distinct points in ∂CH2 not lying on a

common C-circle, they can be normalized to be of the form

(B(s), B(s)) (B(s), ¯B(s)) ( ¯B(s), ¯B(s))

where

B(s) =
s + i√
s + 2s2

s ∈ [0,∞]

The angular invariant of this triple of points will be ± arctan s, depending on

the order taken. These three points may be used to define a representation ρs of

the (∞,∞,∞) triangle group into Isom(CH2). The discrete, faithful represen-

tations correspond to s ∈ [0,
√

125
3

]

The group of interest to us will be the image of the representation at the

endpoint,
√

125
3

. The triple of points will be

v0 = (β, β) v1 = (β, β̄) v2 = (β̄, β̄); where β =
i+
√

125
3√

2+ 250
3

The reader may verify that the angular invariant of these points is± arctan(
√

125
3

).

Let us now consider the C-arc between vi and vj. We know that if we take a

Heisenberg stereographic projection of S3 − {vi} to H that sends vj to (0,0), the

C-circle containing them will be sent to the t-axis in H. This is because infinite

C-circles are mapped to vertical lines in H by such projections, and there is a

unique C-circle between vi and vj . The arcs of this circle will be given by the

positive and negative parts of the t-axis.

This is the basis for the procedure in CHAT to create the C-arcs between

vi and vj in S3. CHAT uses one Heisenberg stereographic projection, Ψ, from
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S3 − {(0, 1)} to H, mapping (1, 0) to (0, 0). It also has a routine that takes two

points, vi and vj , and outputs an element, M of PU(2, 1) that sends vi to (0, 1)

and vj to (1, 0). The points on the C-circle are given (in S3) by M−1Ψ−1((0, t))

for t ∈ [−∞,∞]. The two arcs will then correspond to t < 0 and t > 0.

2.5 Drawing R-arcs

The setup for drawing R-circles is similar, but requires a bit more work. CHAT

must take a point p on a C-arc as well as a flag (E, q) and use the coning process

to create the desired arc between p and q. Using the same routine as the previous

section, CHAT finds an element A of PU(2, 1) that sends q to (0, 1) and another

point on E to (1, 0). Letting Ψ is the Heisenberg stereographic projection of the

previous section, we see that Ψ ◦A will map E to the t-axis in H. Now consider

Ψ(Ap) = (z0, t0) in H. The R-circle specified by the coning procedure intersects

the t-axis at (0, t0). Then o = A−1Ψ((0, t0)) will be a third point in S3 lying

on the R-circle we require. We then parametrize the R-arc, ξ, with parameter

s ∈ [0, 1] by:

ξ̃s(p, q, o) = (1 − s)p̃ + sq̃ + s(s − 1)õ

where the lifts p̃, q̃, õ are chosen so that

〈p̃, q̃〉 = 〈q̃, õ〉 = 〈õ, p̃〉 = r ∈ R

Claim 2.5.1 the projection of ξ̃s to ∂CH2 parameterizes the R-arc through p and

19



q that omits o

Proof : A quick computation shows that

〈ξ̃s, ξ̃s〉 = 2r(s(1 − s) + (1 − s)(s2 − s) + s(s2 − s)) = 2r(0)

and therefore that every point on the parameterization is in N0. By choosing the

lifts to have pairwise real inner products, we know by properties of 〈, 〉 that the

triple product

〈ξ̃s, ξ̃t〉〈ξ̃t, ξ̃n〉〈ξ̃n, ξ̃s〉

will always be real for distinct s, t, n ∈ [0, 1]. This means that any three distinct

points on ξ̃s will satisfy the angular invariant for points on an R-circle.

2.6 Perspectives

In the menu labeled “coordinates” in CHAT is a list of six different options for

viewing the triangles. These options have three flavors. The first three items are

all flat, and the next three are labeled “cyl,” short for cylindrical. A variety of

projections is helpful in determining the intersection behavior of triangles. This

is the most frequent use of CHAT and, as these triangles naturally exist in ∂CH2,

many two dimensional images result in a loss of information. Two triangles that

appear to intersect in one perspective may be disjoint in another. In addition,

viewing several perspectives can help the user build an idea of how the triangles

sit in ∂CH2.

The flat and the cylindrical coordinates are both obtained by using stereo-
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graphic projection to map ∂CH2 to H. As a result, they both involve a choice of

a point to leave out, the infinite point in H. They involve other choices as well,

but the resulting views are so similar that only the infinite point matters. This

choice is reflected in the coordinates menu by the initial part of the label. For

example, “Fix(102) flat” takes the triangle from ∂CH2 to H, mapping the fixed

point of I1I0I2 to ∞ in H. The flat and cylindrical maps then go a step further.

C S1 × R

p102 p102 Flat p102 Cyl

p012 p012 Flat p012 Cyl

p021 p021 Flat p021 Cyl

Table 2.1: A perspective chart of infinite points against range

Table 2.1 lists the six coordinate systems available in CHAT. The top row

gives the ranges of the coordinates, while the left column lists the possible points

mapped to infinity in H. Each entry in the table lists a coordinate chart as it

appears in CHAT.

2.6.1 Flat

Given a collection of points in H, the flat projection simply forgets the second

coordinate, t. Equivalently, it projects all the points onto the set C × 0. In this

perspective, all C-circles that do not go through infinity appear as round circles.

In contrast, finite R-circles appear as lemniscates. Infinite R-circles appear as

straight lines and infinite C-circles are simply dots. See [Go] for more details.

The flat views are typically most revealing for triangles that have a common cone

21



point.

2.6.2 Cylindrical

Slightly more sophisticated is the cylindrical projection. This projection leaves

the t coordinate unaffected, but takes the z coordinate to its unit circle repre-

sentative, i.e., takes reiθ to eiθ. This is equivalent to projecting points in H to

the unit cylinder about the t-axis. We then unwrap the cylinder, giving us a two

dimensional image. In this perspective, infinite R-circles intersecting the t-axis

appear as dots because they are straight lines with constant t-value. Finite C-

circles that link the t-axis, on the other hand, become smooth periodic curves.

This is due to the fact that a finite C-circle in H is an ellipse. When viewing

images in cylindrical coordinates, it is important to remember that the image is

cut in the process of unwrapping the cylinder, so a sufficiently wide zoom should

be imagined glued along the vertical edges. This perspective is frequently helpful

for looking at triangles whose bases share a common point.
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Chapter 3

Empirical Evidence

In this section we present visual evidence from CHAT to support our main con-

jecture.

Conjecture 3.1 There exists a tiling of Ω, the domain of discontinuity for Γ, by

embedded octahedra. The faces of these octahedra are triangles constructed from

C- and R-arcs.

We will proceed to give evidence that a specific octahedron is embedded and

that this octahedron generates the tiling. Throughout this chapter, we will say

that a figure “shows” or “establishes” a result. We do not mean that these figures

constitute a rigorous proof, only that the figure provides evidence that the result

may be true.

3.1 Defining an Octahedron in the tiling

We begin by describing an octahedron as a quadrilateral coned to two points.

Recall that for a point on a C-arc and we may use the flag for an element of
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Figure 3.1: A schematic for an octahedron in the tiling

the group to apply the coning procedure. The edges of the quadrilateral are all

C-arcs, and the each point we cone to is an element of a flag. We may then

connect each edge of the quadrilateral to these points by R-arcs via the coning

procedure. As before, labeling the C-arcs Ij fixes by Cj short and Cj long, our

specific example starts with the C-arcs:

C0 short, I1(C0 short), C2 short, and I1(C2 short)

These arcs make up the quadrilateral for our octahedron. The two cone points

are the fixed point of I1I0I2 and the fixed point of I0I2I1. Figure 3.1 illustrates

this construction schematically on a Euclidean octahedron.

We came to this octahedron by analyzing a set of triangles, specifically the set

generated by taking each C-arc and coning it to four fixed points. One fixed point

came from the structures defined in [S0]. Another came from mapping a different
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(a) (b)

Figure 3.2: The quadrilateral with its symmetric R-circle and C-circle

flag to the t-axis in H. When viewing all the C-arcs in cylindrical coordinates

under this map, the same C-arc appears in a quadrilateral tiling. The remaining

two fixed points were determined by reflecting in the C-arc.

The fact that these are all short arcs is not coincidental. While the long arcs

do arrange themselves in a pattern as well, they do not result in an octahedral

tiling. As no long arcs appear in this or any other octahedron in our tiling, we

assume all C-arcs to be short for the duration of the section and omit the labels.

For simplicity of notation, we will label the six projections from Heisenberg space

that CHAT uses, and refer to them by number.

Projection I ≡ p102 
→ ∞, (z, t) 
→ z

Projection II ≡ p012 
→ ∞, (z, t) 
→ z

Projection III ≡ p021 
→ ∞, (z, t) 
→ z

Projection IV ≡ p102 
→ ∞, (z, t) 
→ (arg(z), t)

Projection V ≡ p012 
→ ∞, (z, t) 
→ (arg(z), t)

Projection VI ≡ p021 
→ ∞, (z, t) 
→ (arg(z), t)
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3.2 Symmetries of the Octahedron

Our octahedron has two natural symmetries we wish to take advantage of. Note

that the C-circle C1 does not appear in the C-arc quadrilateral of our octahedron.

Instead, it bisects the quadrilateral, intersecting it at exactly two vertices, as

shown in Figure 3.2 (a) with the quadrilateral in black and C1 in gray. This

picture is in cylindrical coordinates, so the left edge of the image is actually

glued to the right edge, thus completing the gray circle. The cone point p102 is

mapped to infinity in this picture. Reflection in C1 sends this quadrilateral to

itself and swaps p102 with p021.

Given an R-circle, R, there is a unique inversion, O, in Isom(CH2). This

inversion has R as its fixed point set and has order 2. It is also anti-holomorphic,

having the form O((z, w)) = P (z̄, w̄) with P ∈ PU(2, 1)

The second symmetry is an isometry of this form. There is a R-circle which

intersects the quadrilateral at the vertices missed by C1. The inversion in this

circle is the other symmetry of our octahedron, and we will refer to it as the

R-reflection. Figure 3.2 (b) shows the R-circle in gray and the quadrilateral in

black, with p102 mapped to infinity. This symmetry also swaps the cone points of

the octahedron, but swaps the vertices of the quadrilateral fixed by C1. Although

not clear in the figure, the R-circle intersects the quadrilateral only at its vertices.

We list the actions of both symmetries below.

The I1 action The R-reflection action

C0 → p102 
−→ I1(C0) → p021 C0 → p102 
−→ C2 → p021

I1(C0) → p102 
−→ C0 → p021 I1(C0) → p102 
−→ I1(C2) → p021

C0 → p021 
−→ I1(C0) → p102 C0 → p021 
−→ C2 → p102
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I1(C0) → p021 
−→ C0 → p102 I1(C0) → p021 
−→ I1(C2) → p102

C2 → p102 
−→ I1(C2) → p021 C2 → p102 
−→ C0 → p021

I1(C2) → p102 
−→ C2 → p021 I1(C2) → p102 
−→ I1(C0) → p021

C2 → p021 
−→ I1(C2) → p102 C2 → p021 
−→ C0 → p102

I1(C2) → p021 
−→ C2 → p102 I1(C2) → p021 
−→ I1(C0) → p102

Three facts about these symmetries help to distinguish their actions

• They both transpose cone points

• I1 transposes itself with the identity

• R-reflection transposes C0 with C2 in the notation for each triangle

3.3 Showing the octahedron is embedded

In order to provide evidence that the octahedron is embedded we take pairs of

faces and show they have disjoint interiors. There are 28 such pairings for an

octahedron. Using the two symmetries discussed above and their product, we

can simplify this to ten inequivalent pairs. Because each symmetry will fix four

pairs, we have four equivalence classes with four pairs and six equivalence classes

with two pairs. These cases are analyzed in seven subsections. Below we list all

28 pairs, grouped by the subsection dealing with those pairs. The representatives

which each subsection analyzes in detail are listed in bold.

3.3.1: Opposite Faces 3.3.2: Common C-arc

C0 → p102 and I1(C2) → p021 C0 → p102 and I1(C2) → p021

C2 → p102 and I1(C0) → p021 C2 → p102 and I1(C0) → p021
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C2 → p021 and I1(C0) → p102 C2 → p021 and I1(C0) → p102

C0 → p021 and I1(C2) → p102 C0 → p021 and I1(C2) → p102

3.3.3: Common R-arc and I1 3.3.4: Common R-arc and R-ref.

C0 → p102 and C0 → p021 C0 → p102 and I1(C0) → p102

I1(C0) → p021 and I1(C0) → p102 I1(C0) → p021 and C0 → p021

C2 → p021 and C2 → p102 C2 → p021 and I1(C2) → p021

I1(C2) → p102 and I1(C2) → p021 I1(C2) → p102 and C2 → p102

3.3.5: Pairs Fixed by Compos. 3.3.6: Pairs fixed by I1

C0 → p102 and I1(C2) → p102 C0 → p021 and I1(C0) → p102

I1(C0) → p021 and C2 → p021 C2 → p102 and I1(C2) → p021

C0 → p021 and I1(C2) → p021 C0 → p102 and I1(C0) → p021

I1(C0) → p102 and C2 → p102 C2 → p021 and I1(C2) → p102

3.3.7: Pairs Fixed by R-reflection

C0 → p102 and C2 → p021

I1(C0) → p021 and I1(C2) → p102

C0 → p021 and C2 → p102

I1(C0) → p102 and I1(C2) → p021
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Figure 3.3: C0 → p102 and I1(C2) → p021

3.3.1 Opposite Faces

There are four pairs of opposite faces on an octahedron, and they are all equivalent

to the pair

C0 → p102 and I1(C2) → p021

by symmetry. Figure 3.3 shows this pair in Projection IV. C0 is drawn in black,

and I1(C2) → p021 is drawn in gray. Note that we do not see the surface of

C0 → p102 because this projection maps p102 to infinity, hence the R-arcs of

the surface are perpendicular to the plane of the image. We see that these two

triangles are completely disjoint.

3.3.2 A Common C-arc

We have four pairs of faces that intersect along a C-arc of the quadrilateral,

represented by the pair
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Figure 3.4: C0 → p102 and C0 → p021

C0 → p102 and C0 → p021

Figure 3.4 shows this pair in Projection VI. C0 → p102 is drawn in black, while

C0 → p021 is drawn in gray. As before, the surface arcs of the gray triangle

are straight lines perpendicular to the page in this perspective, since the cone

point p021 is mapped to infinity. By definition, these triangles intersect along the

C-arc C0. The image allows us to see that all the black arcs are monotonically

increasing in the t coordinate, up to p102, hence they do not intersect the surface

of the gray triangle other than their common endpoints.

3.3.3 A Common R-arc and I1

The next class of pairs is characterized by intersecting along an R-arc and sharing

a vertex fixed by I1. We choose

C0 → p102 and I1(C0) → p102
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Figure 3.5: C0 → p102 and I1(C0) → p102

as a representative, shown in Figure 3.5 using Projection IV. C0 → p102 is drawn

in black and the other triangle is drawn in gray. In this case, both triangles share

a cone point, p102 that is mapped to infinity, so neither surface is drawn. This

picture highlights the fact that the two triangles also share an endpoint of their

respective bases, v2. Accordingly, we can conclude that the two triangles have a

common R-arc from v2 to p102, but all the other arcs meet only at infinity.

3.3.4 A Common R-arc and R-reflection

The final equivalence class of cardinality four contains pairs of faces intersect-

ing along an R-arc with an endpoint fixed by reflection in the R-circle. The

representative is the pair

C0 → p102 and C2 → p102

Figure 3.6 displays this pair in Projection IV, with C0 → p102 drawn in black. As

in the last class, no R-arcs are shown because the common cone point is mapped
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Figure 3.6: C0 → p102 and C2 → p102

to infinity. As a result, all the R-arcs are lines perpendicular to the plane of the

page. The fact that the C-arcs do not overlap suggests that the two faces have

no interior intersections. The two triangles share the vertex v0, which is fixed

by reflection in the R-circle, and thus they share an R-arc from v0 to p102. The

two C-arcs diverge away from v0, so their common R-arc and p102 are the only

intersections of these two triangles.

3.3.5 Pairs Fixed by the Composition

There are four pairs fixed by the composition of the R-reflection with I1. These

four pairs are divided into two equivalence classes, each of order two. As a

representative for the first class, we take

C0 → p102 and I1(C2) → p102

This pair is shown in Figure 3.7 (a) using Projection IV. C0 → p102 is in black,

while I1(C2) → p102 is drawn in gray. We can see immediately from this image
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(a) (b)

Figure 3.7: Pairs fixed by the product of the two reflections

that the two C-arcs are completely disjoint. As they share the cone point p102

which is mapped to infinity, we know that the unique intersection of these surfaces

is that point.

Figure 3.7 (b) displays a representative for the other class fixed by this sym-

metry in Projection VI. Similarly to 3.7 (a), the two C-arcs are obviously disjoint

and we may conclude again that the two triangles intersect only at their common

cone point, p021. The representative for this class is

C0 → p021 and I1(C2) → p021

3.3.6 Pairs fixed by I1

The equivalence classes fixed under reflection in C1 are slightly more difficult to

see. We begin with Figures 3.8 (a) and (b), which is the easier case of the pair
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(a) (b)

Figure 3.8: C0 → p021 and I1(C0) → p102 (a) and a closer view near v2 (b)

C0 → p021 and I1(C0) → p102

These pictures are in Projection VI, with C0 → p021 pictured in black. Figure

3.8 (a) gives an overall view of the two triangles. We can see that the region of

concern is near their common vertex, v2. It is clear that the C-arcs diverge away

from this point, but the behavior of the R-arcs is less certain. Figure 3.8 (b)

gives a close-up of the region near v2, from which we can see that the gray R-arcs

remain disjoint from the black C-arc. Because the surface of the black triangle is

perpendicular to the image, we may conclude that the only intersection of these

triangles is v2.

A greater challenge is posed by the second equivalence class, as no single

image yields the desired result. Figure 3.9 (a) and (b) show two perspectives of

the same pair

C0 → p102 and I1(C0) → p021
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(a) (b)

Figure 3.9: Two perspectives of C0 → p102 and I1(C0) → p021

Figure 3.9 (a) shows that the two triangles are disjoint sufficiently far away

from their common vertex v2, using Projection VI. C0 → p102 is drawn in black

while the other triangle is in gray. The region that requires further analysis is

near v2. This image makes it seem as though the interiors of the surface intersect

in this region. Fortunately this is not the case.

Figure 3.9 (b) is drawn with Projection I. It shows that the questionable

region is in fact not an interior intersection. The two triangles are converging

to the point v2, but they remain disjoint aside from this point. It would appear

that there is another possible intersection on the other end of the gray C-arc, but

we were able to establish otherwise with Figure 3.9 (a). Together, these images

show that the pair is disjoint, save v2.

The reader may observe that the surface R-arcs are not uniformly spaced

along the C-arcs in Figure 3.9. To resolve detail near the endpoints of the C-arc

and detail along the rest of the arc, CHAT changes the way it samples points

along the arc. This phenomenon will reappear in figures throughout the chapter.
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(a) (b)

Figure 3.10: Pairs fixed by the R reflection

3.3.7 Pairs Fixed by R-reflection

The last two equivalence classes are pairs fixed by reflection in the symmetric

R-circle. The representatives are

C0 → p102 and C2 → p021 Figure 3.10 (a)

C0 → p021 and C2 → p102 Figure 3.10 (b)

Figure 3.10 (a) is in Projection IV, while 3.10 (b) is in Projection VI. 3.10 (a)

shows C0 → p102 in black, but again its surface is not drawn since p102 is mapped

to infinity. Accordingly, the R-arcs of the surface are lines perpendicular to the

plane containing the figure. We can see that the gray arcs stay well away from

the black C-arc, except for their common point v0. As no R-arcs overlap the

black C-arc, we may conclude that v0 is their only intersection.

Figure 3.10 (b) has C0 → p021 drawn in black. Again, its cone point is mapped

to infinity, so we see only the gray surface. These two triangles share the same
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vertex, v0, as the previous two. We see that the gray R-arcs remain disjoint

from the black arc away from this point. As there is no part of the gray surface

overlapping the black arc, we conclude that v0 is the only intersection of these

surfaces.

3.4 Generating the Tiling

Having provided evidence that the octahedron is indeed embedded, we produce

the tiling by taking the orbit of this octahedron under the group Γ. We will

provide images from CHAT that support the conjecture that the octahedra in

the orbit are pairwise disjoint, i.e. that we have a bona-fide tiling. From [S0] we

know there are three special topological spheres with disjoint interiors in ∂CH2.

The group action of Γ moves these spheres around the domain of discontinuity

while preserving this relation. We claim that each of our octahedra is divided

into two parts by one of these spheres. Moreover, each face in the 2-skeleton

of an octahedron intersects its dividing sphere along an R-arc. Employing the

symmetries of our octahedra mentioned above, it will suffice to show that two

of the triangular faces of our selected octahedra each intersect a specific sphere

along an R-arc, and that, aside from this intersection, the faces are outside the

sphere. In addition, we must show the same two triangles do not intersect the

interiors of the remaining two spheres

The three special spheres are simple to describe. We simply take one of our

three generating C-circles, Cj, and cone it to the fixed points of IjIj−1Ij+1 and

IjIj+1Ij−1 using the same coning process as the octahedron. The specific sphere

that divides our chosen octahedron is C1 coned to p102 and p120. Note that

p120 = p021 since their corresponding elements are inverses. We will denote this
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Figure 3.11: A schematic for an octahedron in the tiling

sphere by S1, and in general denote the sphere of Cj by Sj . We will write “the

pklm half of Sj” to mean the portion of Sj given by coning Cj to pklm. We will use

the two triangles C0 → p102 and C2 → p102 as representative faces of our specific

octahedron.

We reprint the schematic of the octahedron in Figure 3.11 for the convenience

of the reader.

3.5 The Dividing Sphere

Let S◦
1 denote the three dimensional topological ball that S1 bounds in ∂CH2.

We wish to support the claim that four faces of our octahedron are contained

in S1 ∪ S◦
1 and the remaining four are contained in ∂CH2 − {S◦

1}. Consider the

following lemma
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Lemma 3.5.1. Suppose we have the following information about the intersections

of C0 → p102 and C2 → p102 with S1

• (C0 → p102) ∩S1 contains an R-arc, R1, joining v2 and p102.

• (C2 → p102) ∩S1 contains an R-arc, R2, joining v1 and p102.

• (C0 → p102) − {R1} and (C2 → p102) − {R2} are disjoint from the p102 half

of S1.

• (C0 → p102) − {R1} and (C2 → p102) − {R2} are disjoint from the p021 half

of S1

• C0 → p102 and C2 → p102 are disjoint from S◦
1

Then four faces of our octahedron are contained in S1 ∪ S◦
1 and the remaining

four faces are contained in ∂CH2 − {S◦
1}.

Proof. The suppositions of the lemma establish that C0 → p102 and C2 → p102

are contained in ∂CH2 − {S◦
1}. The R-reflection symmetry of the octahedron

will map these faces to C2 → p021 and C0 → p021 and stabilize S1 ∪ S◦
1 . This

proves the second conclusion of the lemma. To show that the other four faces are

contained in S1 ∪ S◦
1 , we need only note that the map I1 stabilizes S1 and maps

S◦
1 to ∂CH2−{S◦

1 ∪S1}. Since I1 is a symmetry of our octahedron, it maps these

four faces contained in ∂CH2 − {S◦
1} to the remaining four faces, which must

then lie in S1 ∪ S◦
1 .

The first two suppositions of the lemma follow from the definitions of our

objects. Note that v2 is an endpoint of C0 short, hence a vertex of C0 → p102.

Similarly, v1 is a vertex of C2 → p102. Both v1 and v2 lie on C1 and are coned
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to p102 in S1. It follows that the faces intersect S1 along the arcs v1 → p102 and

v2 → p102, as desired. We handle the remaining suppositions in subsections

3.5.1 The p102 half

We have already shown the visual evidence supporting the third supposition of

the lemma. Recall that Figure 3.2 (a) adequately shows that the two triangles

do not additionally intersect the p102 half of S1. In this image p102 is mapped to

infinity and all the R-arcs are straight lines perpendicular to the page. Since the

C-arcs of the image do not overlap, the figure demonstrates the third supposition

of the lemma.

3.5.2 The p021 half

The fourth supposition of the lemma involves the intersection of the triangles

with the p021 half of S1. We will break the p021 half of S1 into two triangles,

C1 long → p021 and C1 short → p021, defined by separating the two arcs of C1

at v1 and v2. We will treat our two faces in separate sets of images.

Figures 3.12 (a) and (b) both utilize Projection III. In 3.12 (a) we see the

face C0 short → p102 in black, and the triangle C1long → p021 of S1 in gray.

The surface of the gray triangle has a vertex at infinity in this projection, so the

norms of its constituent R-arcs are monotonically increasing. The black surface,

in contrast, is finite and its interior is separated from that of the gray triangle.

Figure 3.12 (b) is quite similar,using the same projection and color scheme,

but displaying the triangle C1 short → p021 instead. Again, the image makes

it clear that the interiors of the surfaces are disjoint. These two pictures, along

with the earlier discussion of the p102 half of S1. complete our understanding of
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(a) (b)

Figure 3.12: C0 → p102 with long (a) and short triangles (b) from the p021 half of

S1

the intersection of our face C0 → p102 with S1

Next we discuss the intersection of our face C2 → p102 with the p021 half of S1.

As before, we break up this half of S1 into C1 long → p021 and C1 short → p021

and analyze them separately.

Figures 3.13 (a) and (b) are both in Projection IV with the face of our octa-

hedron in black, and the triangle from S1 in gray. Figure 3.13 (a) gives an overall

idea of how the two triangles intersect. The surface arcs of the black triangle are

coned to infinity in 3.13 and thus not shown. We can see that the black arc is

noticeably distinct from the gray surface away from the vertex v1. Figure 3.13

(b) displays a closer view of the area near v1. The gray surface converges to the

black arc, but never crosses it. From this we determine that the surface interiors

do not intersect.

We see the remaining triangle, C1 short → p102, in gray in Figures 3.14 (a)

and (b). These figures are in Projection VI, so the gray surface is not shown.

Figure 3.14 (a) provides reasonably convincing evidence that the two triangles
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(a) (b)

Figure 3.13: C2 → p102 with the long triangle from the p021 half of S1 (a) and the

region near v1 (b)

(a) (b)

Figure 3.14: C2 → p102 with the short triangle from the p021 half of S1 (a) and

the region near v1 (b)
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Figure 3.15: The sphere S1 in gray with the two triangles in black

have disjoint interiors, as the black surface always remains on the left side of the

gray arc. We also give Figure 3.14 (b) to show the region near v1 in greater detail,

which makes it clear that the black surface interior never touches the gray arc.

This picture concludes the analysis of the intersection of C2 → p102 with S1.

3.5.3 Disjointness from S◦
1

Finally, we must support the fifth supposition of Lemma 3.5.1 that these two faces

of our octahedron, C0 → p102 and C2 → p102, are outside of S1. Demonstrating

the claim is slightly tricky, as no picture will nicely reveal what we want. Instead

we must realize that if a picture of S1 with finite cone points shows any region

of the two triangles outside of S1, then the interiors of the faces must lie entirely

outside S1, since we understand the intersections of these faces with the sphere.

Figure 3.15 shows us both faces in black and the entire sphere S1 in gray using

Projection II, so that all cone points are finite. If the black faces were inside the

sphere, then this picture would show them fully surrounded by gray arc. We can

clearly see, however, that some of the black surfaces remain totally separated

from the gray sphere. This suggests that the last supposition of the lemma holds.
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3.6 The S0 Intersections

We proceed similarly on the S0 case, giving a lemma and then offering evidence

that the conditions of the lemma are satisfied. As before we denote the topological

ball S0bounds by S◦
0 .

Lemma 3.6.1. Suppose we have the following information about the intersections

of C0 → p102 and C2 → p102 with S0

• (C0 → p102) ∩S0 contains an C-arc, C0 short, joining v0 and v2.

• (C2 → p102) ∩S0 contains the vertex v0.

• (C0 → p102) − {C0 short} is disjoint from S0.

• (C2 → p102) − {v2} is disjoint from S0

• C0 → p102 and C2 → p102 are disjoint from S◦
0

Then our octahedron is disjoint from S◦
0 .

Proof. The last condition of the lemma establishes that C0 → p102 and C2 → p102

lie in the complement of S◦
0 . As the symmetries of the octahedron do not send

∂CH2 − {S◦
0} to S◦

0 , the remaining faces must also be disjoint from S◦
0 .

First we must note that C0 short lies on one of our faces and the equator of

S0, giving us one C-arc intersection. Also v0 is an endpoint of C2 shortand lies

on C0, hence on S0. Since p102 is not a cone point of S0, we expect no R-arc

intersections. We proceed to show the remaining three conditions of the lemma

in subsections.
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(a) (b)

Figure 3.16: C0 → p102 with the p012 half (a) and the p021 (b) of S0

3.6.1 C0 → p102 − {C0 short}

We analyze the intersection of C0 → p102 − {C0 short} with the two halves of

S0 separately. Figures 3.16 (a) and (b) each show half of the sphere, drawn in

gray and the face C0 → p102 drawn in black. Figure 3.16 (a) employs Projection

V, so this entire half of the sphere is coned to infinity. The black surface always

remains underneath the gray arc in this image, and the gray arc covers the base

of the black surface since they intersect along that portion of C0.

Figure 3.16 (b) uses Projection IV to cone the other half of S0 to infinity.

Again we see that the black surface does not cross the gray arc, always remaining

above it. Combining the information gleaned from these pictures, we can see that

C0 → p102 intersects S0 only along the short half of C0.

3.6.2 C2 → p102 − {v2}

Turning our attention to C2 → p102 and S0, we analyze Figures 3.17 (a) and

(b). Both of these images use Projection V and show S0 in gray. 3.17 (a) allows
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(a) (b)

Figure 3.17: C2 → p102 with the p012 half of S0 (a) and the region near v0 (b)

us to see that the black surface remains underneath the gray arc outside of a

neighborhood of v0. Figure 3.17 (b) gives a better picture of the behavior near

v0, confirming that the black arcs do not cross the S0.

We study the intersection behavior of this face with the other half of S0 in

Figures 3.18 (a) and (b). As in 3.17, we cone this half of S0 to infinity, this time

using Projection VI, and draw it in gray. Figure 3.18 (a) suggests that the black

surface is always above the gray arc, but the behavior near v0 is questionable.

Figure 3.18 (b) provides greater detail of this region, showing that the black

surface does not cross. This shows that there is reason to believe that the only

intersection of C2 → p102 with S0 is the point v0.

3.6.3 Disjointness from S◦
0

Next, we show that the two faces are outside S0 just as we did in the last section.

Figure 3.19 is in Projection I and depicts S0 in gray with neither cone point

mapped to infinity. The cone point of our faces, shown in black, is mapped to

infinity and thus the black arcs radiate away from the sphere. The aim of this
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(a) (b)

Figure 3.18: C2 → p102 with the p021 half of S0 (a) and the region near v0 (b)

picture is to establish that the gray sphere does not surround the black surfaces.

Accordingly, we can say with confidence that the faces of our octahedron do not

intersect the interior of S0, having already established their intersections with the

sphere itself.

Figure 3.19: S0 in gray and the two faces in black
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3.7 The S2 Intersections

The intersections of our faces with S2 are slightly different from the other two

spheres. In particular, the face C2 → p102 is part of S2, so its intersection behavior

is already known. We give the following shorter lemma to deal with C0 → p102

Lemma 3.7.1. Suppose we have the following information about the intersections

of C0 → p102 with S2

• (C0 → p102) ∩S2 contains an R-arc, R, joining v0 and p102.

• (C0 → p102) − {R} is disjoint from S2.

• C0 → p102 is disjoint from S◦
2

Then our octahedron is disjoint from S◦
2 .

Proof. As we know the sphere S2 is embedded, and C2 → p102 is on S2, we can

conclude that C2 → p102 is disjoint from S◦
2 . The conditions of the lemma give

us the same result for C0 → p102. As the octahedral symmetries do not send

∂CH2 − {S◦
2} to S◦

2 , the remaining faces will be disjoint from S◦
2 .

C0 → p102 has one common R-arc with S2, arising from the shared points

v0 and p102, so the first supposition is valid. We treat the second and third

suppositions in the following subsections.

3.7.1 C0 → p102 and S2

We begin by analyzing images of C0 → p102 and the p012 half of S1.

Figures 3.20 (a) and (b) are in Projection II, so the arcs of the gray surface

are coning to infinity. The image on the left shows the triangle C2 long → p012 in
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(a) (b)

Figure 3.20: C0 → p102 with the long triangle (a) and the short triangle (b) from

the p012 half of S2

gray, and clearly displays that the two surfaces converge near v0 but are otherwise

quite distinct. Figure 3.20 (b) depicts C2 short → p012 in gray, again displaying

that the two surfaces do not intersect away from v0. These images suggest that

C0 → p102 − {R} is disjoint from the p012 half of S2.

For the other half of S2, we need only look at C2 long → p102, since we

C2 short → p102 is a face of our octahedron and its intersections have already

Figure 3.21: C0 → p102 with the long triangle from the p102 half of S2
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Figure 3.22: S2 in gray and the face in black

been studied. Figure 3.21 shows C2 long → p102 in gray and C0 → p102 in black

using Projection IV. Since both arcs are coning to infinity and the image is in

cylindrical coordinates we do not see either surface. Nonetheless, the displayed

arcs seem to remain disjoint until their point of intersection, v0. It is likely that

the only intersection of C0 → p102 and S2 is the R-arc from v0 to p102.

3.7.2 Disjointness from S◦
0

Finally we show evidence that part of the face C0 → p102 lies outside S2. Figure

3.22 is in Projection II, so no cone points are mapped to infinity. It shows that

part of C0 → p102, in black, escapes S2, in gray. Together with the earlier evidence

of how the face intersects the sphere, it is reasonable to think that the C0 → p102

lies outside of S◦
0 , as desired.

3.8 Summary of Evidence

We have presented the reader with evidence supporting the following conclusions:

• The octahedron formed by coning the edges of the quadrilateral defined by
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C0 short, I1(C0 short), C2 short, and and I1(C2 short) to the fixed

points p102 and p021 is embedded.

• Four of the faces of this octahedron lie in S1 ∪ S◦
1 , and four are in ∂CH2 −

{S◦
1}.

• This octahedron is disjoint from both S◦
0 and S◦

2 .

51



Chapter 4

Embedding a Tile

In this chapter we will prove some embedding results for the octahedron. We

will use the four C-arcs of the octahedron to decompose it into two embedded

halves. We will then analyze the behavior near the vertices where the two halves

are joined. First, we give some tools that will be useful in our discussions.

4.1 Points and Parameterizations

There are several calculations that require more concrete formulas for our struc-

tures. More information about these equations are available in [S0, Sections 2.3

and 2.4]. Throughout this section, we use Θ to denote the projection from C2,1

taking (w1, w2, w3) to (w1

w3
, w2

w3
).

As stated in Chapter 1, two distinct points uniquely determine a C-circle

through them. However, parameterizing these circles simply requires a third

point. We obtain this point by carefully combining the other two.

Lemma 4.1.1. The projective image, Θ(ŵ), of the point ŵ is on the C-circle

through x1, x2 and is distinct from x1 and x2. Where

ŵ = cos(
−π

4
)

i

〈q1, q2〉q1 + λ sin(
−π

4
)q2 (4.1)
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and

q1 = x1 + i
〈x1, x2〉

‖ 〈x1, x2〉 ‖x2 q2 = x1 − i
〈x1, x2〉

‖ 〈x1, x2〉 ‖x2 and λ ∈ R

Proof. First we show that 〈ŵ, ŵ〉 = 0, and thus that w ∈ ∂CH2. Note that

〈q1, q1〉 = 0 = 〈q2, q2〉

so we are left with only the middle terms. Computing these yields:

〈ŵ, ŵ〉 = λ sin(
−π

4
) cos(

−π

4
)

i

〈q1, q2〉〈q1, q2〉

+λ sin(
−π

4
) cos(

−π

4
)

−i

〈q2, q1〉〈q2, q1〉

= 0

as desired. To show that w is on the C-circle through x1 and x2, consider 〈ŵ, y〉
where y is the polar vector for this C-circle. By construction, this will be a sum

with terms of the form aj〈xi, y〉. Since x1 and x2 lie on the C-circle, each of these

terms must be zero. Finally, w must be distinct from x1 and x2 because 〈ŵ, xi〉 �=
0 by a quick calculation. This completes the proof. We find it convenient to set

λ = 33
10

In order to show that the C-arcs form an embedded quadrilateral in Heisen-

berg space, we will need exact parameterizations for the arcs in cylindrical coor-

dinates. Recall that the cylindrical projection sends (z, t) to (arg(z), t). For a

C-circle K, we will need to associate several constants. First, let PC(z, t) = z be

projection to the plane C× 0 in H. Also let PR(z, t) = t denote the projection to

the t-coordinate. Lastly, recall that if K is finite in H, then K is an ellipse and

PC(K) is a circle. Let k0 denote the center of mass for this ellipse and let r be

the radius of PC(K). Define:
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A = 2|PC(k0)|2 B = PR(k0) E =
r2

|PC(k0)|2 − 1 φ = ∠ �0PC(k0)R
+

Lemma 4.1.2. Let K be a finite C-circle in H that links the t axis. Then the

image of K in the cylindrical projection of H is the graph of the function

f(θ) = B + A sin(θ − φ)
(
cos(θ − φ) +

√
E + cos2(θ − φ)

)
(4.2)

Proof. Using Heisenberg isometries if necessary, we may assume that k0 is equal

to (s, 0) with s ∈ R+. Accordingly, we assume that B = 0 = φ. Now let (x, y)

denote the point on PC of K making an angle of θ with the positive R-axis. K

must lie in the contact plane at (s, 0), so the lift of (x, y) will have height Ay. The

form above then reduces to A times the expression for y from the simultaneous

equations x2 + y2 = r2 and x = y cot(θ).

This equation appeared originally in [S1, Lemma 2.3], and was discussed again

in [FP, Section 4.2].

Additionally, we will make use of two parameterizations of circles in ∂CH2.

The first is for a C-circle.

Lemma 4.1.3. Let X, Y, and Z be distinct points that lie on a common C-circle.

We may take lifts X̂, Ŷ , and Ẑ such that

〈X̂, Ẑ〉 = 1 = 〈Ŷ , Ẑ〉 and 〈X̂, Ŷ 〉 = i

Next, let

W (t) = iX̂ + tẐ (4.3)

Then Θ(W (t)) with t ∈ [0, 1] parameterizes the arc of the C-circle through X and

Y that avoids Z.
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Proof. Computing 〈W (t), W (t)〉, it is apparent that W (t) is on ∂CH2. Similarly,

one can easily check that 〈W (t), O〉, where O is the polar vector for the desired

C-circle, is zero for all t ∈ [0, 1].

The next parametrization is for an R-circle in ∂CH2.

Lemma 4.1.4. Let X, Y, and Z be distinct points that lie on a common R-circle.

We may take lifts X̂, Ŷ , and Ẑ such that

〈X̂, Ŷ 〉 = 〈Ŷ , Ẑ〉 = 〈Ẑ, X̂〉 = r ∈ R

Let

U(t) = (1 − t)X̂ + tŶ + (t2 − t)Ẑ (4.4)

Then Θ(U(t)) with t ∈ [0, 1] parameterizes the arc of the R-circle through X and

Y that avoids Z.

Proof. This follows from the fact that the arc is given by the convex combination

of X and Y in H, for a suitable mapping of ∂CH2 to H.

4.2 The embedded C-arcs

We will show in this section that the four C-arcs of our octahedron form an

embedded quadrilateral, Q. More specifically, we will show that this quadrilateral

is embedded when viewed in cylindrical coordinates with p102 mapped to infinity.

This result allows us to prove the following theorem.

Theorem 4.2.1. Let Q be the quadrilateral formed by the C-arcs of the octa-

hedron. Let Σ102 be the result of coning each side of Q to p102 and Σ021 be the

analogous surface for p021. Then Σ102 and Σ021 are embedded Q-based pyramids

and the octahedron equals Σ102 ∪ Σ102.
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Figure 4.1: Three sides of Q

We will demonstrate that Σ102 is embedded and Σ021 will be embedded by

symmetry. Q has six distinct pairs of sides to check for it to be embedded.

The symmetries of the octahedron allow us to look at three representative pairs.

Figure 4.1 will shows the three sides of Q that we will consider.

The first two of the three representative pairs do not require the explicit

forms for their corresponding functions. The last pair will require them, however.

Throughout this section, we will need to refer to a few angles. We list these below.

θ0 = Arg(PC(v0)) = π − arctan(
√

15) θ1 = Arg(PC(v1)) = 0

θ2 = Arg(PC(v2)) = π − arctan(

√
15

7
)

We will also frequently refer to the function associated to an arc. Below is a

list of functions and their corresponding arcs.

f(θ) ↔ C0 g(θ) ↔ C2 h(θ) ↔ I1(C0)
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4.2.1 C0 and C2

We find that C0 short in cylindrical coordinates is the graph of f(θ) for θ ∈
[−θ0, θ0 + 2π]. Similarly, C2 short is the graph of g(θ) on [θ1,−θ0] This is all we

need to establish their intersection behavior

Lemma 4.2.1. The graphs of f(θ) and g(θ) on [0, θ0 +2π] intersect only at −θ0.

Proof. Computing θ0 ≈ −1.823 shows that 0 = θ1 < −θ0 < θ0 +2π < 2π, so that

C0 short and C2 short are graphed in the same period. Since they are defined

on different domains elsewhere, the only possible intersection is at θ0. Since the

parametrization is accurate, the two graphs do intersect at θ0.

4.2.2 I1(C0) and C2

The graphs of I1(C0) short and C2 short should be completely disjoint. This is

easy to see without knowing the explicit parametrization for either one.

Lemma 4.2.2. The graphs of g(θ) and h(θ) corresponding to I1(C0) short and

C2 short do not intersect.

Proof. We compute θ2 ≈ 2.63623 and find that I1(C0) short is the graph of h(θ)

for θ ∈ [θ2, θ0 + 2π]. We have already established that C2 short is the graph of

g(θ) for θ ∈ [0,−θ0]. Since [0,−θ0] ∩ [θ2, θ0 + 2π] = ∅ and both intervals are

contained in [0, 2π], the graphs must be disjoint.

4.2.3 C0 and I1(C0)

These arcs present a greater challenge because their corresponding graphs are

valued on overlapping intervals. We will show their intersection behavior in two

steps, the first using concavity and the second using monotonicity.
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We require the explicit formulation of both h(θ) and f(θ). Constructing

additional points for each arc by the method of the previous section, we are able

to compute the constants for the cylindrical parameterizations of the C-arcs.

Both of these formulations employ the parameterization of equation 4.2, found

oringinally in [S0]. We first define f(θ).

f(θ) =
8

9
sin(θ − π)

(
cos(θ − π) +

√
3

2
+ cos2(θ − π)

)

for θ ∈ [−θ0, θ0 + 2π]

(4.5)

Next we give the constants required for h(θ).

φ = arctan(
12335

√
6 + 16268

√
15

146412 + 22203
√

10
) A =

1

3
E = 9 B ≈ 1.93649

We approximate B here for brevity, but its exact value is easily deduced.

I1(C0) short is then the graph of h(θ) given by

h(θ) = B +
1

3
sin(θ − φ)

(
cos(θ − φ) +

√
9 + cos2(θ − φ)

)
(4.6)

for θ ∈ [θ2, θ0 +2π], where θ2 = π− arctan(
√

15
7

) as before. We may now state

our result.

Lemma 4.2.3. The graphs of f(θ) and h(θ) for θ ∈ [θ2, θ0 + 2π] intersect only

at θ0 + 2π.

Proof. The graphs are known to intersect at θ0 + 2π by their construction. This

leaves us to determine the behavior on [θ2, θ0 + 2π). We will accomplish this in

two steps.

58



Case 1 (π + φ, θ0 + 2π) First, we analyze the graphs on (π + φ, θ0 + 2π). We

will need information about the second derivatives for f and h. We provide f ′′(θ)

below. We do not give h′′(θ) due to its length, but it is of similar form.

f ′′(θ) =
4 sin θ(27

√
2 + 26

√
2 cos 2θ − 36η cos θ − 4η cos 3θ + 2

√
2 cos 4θ

9(4 + cos 2θ)
3
2

where η =
√

4 + cos 2θ

(4.7)

We compute that h′′(θ) = 0 and f ′′(θ) = 0 at θ = π + φ ≈ 3.56 and θ = π,

respectively. Also we observe that these are the unique zeroes of the second

derivatives on [π + φ, θ0 + 2π] and that it has no singularities. Next we compute

f ′′(θ0 + 2π) and h′′(θ0 + 2π), approximating for brevity

f ′′(θ0 + 2π) ≈ −1.44591 h′′(θ0 + 2π) ≈ 0.206559

We may then safely conclude that

f ′′(θ) < 0 and h′′(θ) > 0 for θ ∈ (π + φ, θ0 + 2π] (4.8)

Since f is concave down on this interval and h is concave up, h(θ) > f(θ) for

θ ∈ (π + φ, θ0 + 2π).

Case 2 Next we consider the interval [θ2, π + φ]. We compute that the zeroes of

h′(θ) on [0, 2π] occur at

2π − 2 arctan(

√
6 −√

11

5
) + φ and 2 arctan(

√
6 −√

11

5
) + φ

Neither of these points lies in [θ2, π + φ]. Also, h′(π + φ) < 0, so h(θ) must be

decreasing for all θ ∈ [θ1, π + φ]. Hence, the global minimum of h(θ) on this

interval is h(π + φ).
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Performing a similar computation, we find the zeroes of f ′(θ) occur at:

2π − 2 arctan(

√
9 + 2

√
14

5
and 2 arctan(

√
9 + 2

√
14

5

Both of these values lie outside [θ2, π + φ]. We also note that f ′(π + φ) > 0,

so that f must be increasing on this interval. We can conclude that the global

maximum of f(θ) on this interval occurs at f(π +φ). Approximating for brevity,

we obtain

f(θ) < f(π + φ) ≈ 0.8606630 < 1.93649 ≈ h(π + φ) < h(θ)

for θ ∈ [θ1, π + φ]

(4.9)

Statements 4.6 and 4.7 taken together prove the lemma.

As stated, these three lemmas together with the octahedral symmetries show

that the quadrilateral is embedded in cylindrical coordinates. Since the R-arcs

of Σ102 are straight lines perpendicular to Q in this perspective, we know that

Σ102 is embedded. Symmetry gives the same result for Σ021 and thus proves the

theorem.

4.3 Behavior Near the Vertices

We now consider what happens near a vertex of Q when we join Σ102 and Σ021.

There are four vertices of Q, but only two up to symmetry. We choose v0 and

v2 as representatives. At each of these vertices there are (up to symmetry) three

pairs of faces we must consider. We obtain the following results
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Statement 4.3.1. Modulo roundoff error, The following pairs of faces in Σ102 ∪
Σ021 are embedded in a neighborhood of v0.

• C0 → p102 and C2 → p021

• C0 → p021 and C2 → p102

• C0 → p021 and C0 → p102

Statement 4.3.2. Modulo roundoff error, there is a neighborhood of v2, and a

neighborhood of v1, where the following two pairs of faces are embedded.

• C0 → p102 and I1(C0) → p021

• C0 → p102 and C0 → p021

Statement 4.3.1 and symmetry assert that, modulo roundoff error, Σ102∪Σ021

is embedded in a neighborhood of v0 and in a neighborhood of I1(v0). We will

prove each theorem in a different subsection.

4.3.1 Methods

Let K be a C-arc with an endpoint v and (E, q) be a flag. Let T be the surface

formed from K via the coning process for (E, q). We wish to approximate T near

v.

Recall that we may take a Heisenberg stereographic projection sending q to

∞ and E to the t-axis in H. The C-circle containing K will be an ellipse in

H under this map. Accordingly, there is some smooth parameterization of K,

g(r) : [0, 1] → R
3 with g(0) = v. Also recall the R-arcs of T will be lines with

constant t value in H.
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Figure 4.2: Two arcs and their tangent vectors

Now define F (r, s) : [0, 1] × [1,∞) → H by F (r, s) = (sg1(r), sg2(r), g3(r)),

where gi is the ith component function of g. Observe that F parameterizes the

surface T and is differentiable at v. As a result, the tangent plane at v is well

defined. It is spanned by the vectors ∂F
∂r

and ∂F
∂s

evaluated at (0, 1). These are

the tangent vectors at v to the C-arc, K, and the R-arc of T joining v and q.

We can then conclude that a first order approximation to T near v is given

by the positive span, denoted span+ of the tangent vectors at v to the C-arc and

the R-arc based at v. Given two faces, we will compare their approximations to

determine if there is a non-trivial intersection. If the approximations associated

to a pair of faces have no improper intersections, we may conclude that there

is a neighborhood of the vertex where the two faces are embedded. Figure 4.2

shows two arcs based at v2 in black and their tangent vectors in gray. The picture

was made in Mathematica using the projection (z, t) 
→ z. The approximating

surface in this case would be the positive span of the gray vectors.
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4.3.2 Near v0

We will prove Statement 4.3.1 by considering the approximating surfaces for the

three pairs of faces at v0. The result follows for I1(v0) by symmetry.

We parameterize the C-arcs and the R-arcs based at v0 by equations 3 and

4 in section 1. Due to the nature of the calculations, it was impractical to find

exact values for the tangent vectors. There are four tangent vectors we associate

to v0, we label them WC , WR, YC, and YR. The subscripts indicate whether the

vector is tangent to a C-circle or an R-circle. We list the values of these vectors

in ambient coordinates for S3 before proceeding.

WC ≈ (−0.0980843, 0.633131, −0.0980843, 0.633131)

WR ≈ (−0.0419263, 0.270633, 0.0419263,−0.270633)

YC ≈ (0, 0, 0.000171704, −0.00110834)

YR ≈ (−0.314447, 0.297696, 0.314447, −0.297696)

(4.10)

We begin with the pair C0 → p102 and C2 → p021.

Lemma 4.3.1. There is a neighborhood of v0 where C0 → p102 and C2 → p021

intersect only at v0.

Proof. The vectors YC and YR are the tangent vectors to the initial C-arc and

R-arc of C2 → p021. Similarly, the tangent vectors associated to C0 → p102

are WC and WR. We approximate the two faces near v0 by span+(YC , YR) and

span+(WC , WR). We compute the dependencies of the four vectors to obtain:

−0.000875287WC + 0.00204769WR = YC (4.11)
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Since the left hand side is not in span+(WC , WR), we see that the approxi-

mating surfaces do not intersect. This proves the lemma.

Next we look at C0 → p021 and C2 → p102. This involves the same collection

of vectors with the same dependencies as the previous case, just in a different

arrangement. Now the vectors WC and YR correspond to C0 → p102, while YC

and WR are with C2 → p021. We obtain a similar result.

Lemma 4.3.2. There is a neighborhood of v0 where C0 → p021 and C2 → p102

intersect only at v0.

Proof. Rearranging equation 4.8 , we have

−YC + 0.00204769WR = 0.000875287WC (4.12)

Which proves the lemma.

Lastly we consider the pair C0 → p021 and C0 → p102. These faces share a

C-arc, so we have only three tangent vectors to consider, WC , WR, and YR. The

two faces have disjoint interiors in a neighborhood of v0 if aWC + bWR + cYR = 0

has no nontrivial solution.

Lemma 4.3.3. There is a neighborhood of v0 where C0 → p021 and C0 → p102

have disjoint interiors.

Proof. The two faces have disjoint interiors in a neighborhood of v0 if aWC +

bWR + cYR = 0 has no nontrivial solution. We find that YR �∈ span(WC , WR),

completing the proof.

The three lemmas together prove the statement.
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4.3.3 Near v2

We repeat the same analysis for v2 to prove Statement 4.3.2. This result is not as

strong as Theorem 4.1. We believe the stronger result to be true, but the nature of

their intersection makes one pair significantly harder to show. We again associate

four vectors to v2, EC , ER, DC , and DR. We list their approximate values

EC ≈ (−0.0112009, −0.0723015, −0.0112009, −0.0723015)

ER ≈ (0.0419263, 0.270633, −0.0419263, −0.270633)

DC ≈ (−0.0336027, −0.216905, 0.0112009, 0.0723015)

DR ≈ (−0.209631, −0.487139, 0.209631, 0.487139)

(4.13)

In this case, the E vectors come from C0 → p102 and the D vectors correspond

to I1(C0) → p021. As before, we obtain our desired result.

Lemma 4.3.4. There is a neighborhood of v2 where C0 → p102 and I1(C0) → p021

intersect only at v2.

Proof. Solving the system yields the following equation.

EC − 0.534314ER = DC (4.14)

This shows that the approximating surfaces intersect only at v2.

Finally, we consider the faces C0 → p102 and C0 → p021. Near v2, their

approximating surfaces are given by span+(EC , ER) and span+(EC , DR). We

show that they intersect only along their common C-arc.

Lemma 4.3.5. There is a neighborhood of v2 where C0 → p102 and C0 → p021

have disjoint interiors.
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Proof. As equation 4.11 shows, DR is not in span(EC , ER).

The two lemmas suffice to prove the statement.
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Appendix A

Appendix - Recreating Figures

We offer the reader the shorthand described in chapter 2 for recreating the images

in chapter 3.

Figure 3.2 (a)

I0 to p102, short I2 to p012, short

- 2

black black

black black

I0 to p021, short I2 to p021, short

1 1

black black

black black

I1 to p102, short I1 to p102, long

- -

gray gray

gray gray

Figure 3.3
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I0 to p102, short I2 to p021, short

- 21

black gray

black gray

Figure 3.4

I0 to p102, short I0 to p021, short

- -

black gray

black gray

Figure 3.5

I0 to p102, short I0 to p021, short

- 1

black gray

black gray

Figure 3.6

I0 to p102, short I2 to p012, short

- 2

black gray

black gray

Figure 3.7 (a)
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I0 to p102, short I2 to p021, short

- 1

black gray

black gray

Figure 3.7 (b)

I0 to p021, short I2 to p021, short

- 21

black gray

black gray

Figure 3.8

I0 to p021, short I0 to p021, short

1 -

gray black

gray black

Figure 3.9

I0 to p102, short I0 to p102, short

- 1

black gray

black gray

Figure 3.10 (a)
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I0 to p102, short I2 to p021, short

- -

black gray

black gray

Figure 3.10 (b)

I0 to p021, short I2 to p012, short

- 2

black gray

black gray

Figure 3.12 (a)

I0 to p102, short I1 to p102, long

- 1

black gray

black gray

Figure 3.12 (b)

I0 to p102, short I1 to p102, short

- 1

black gray

black gray

Figure 3.13
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I2 to p012, short I1 to p102, long

2 1

black gray

black gray

Figure 3.14

I2 to p012, short I1 to p102, short

2 1

black gray

black gray

Figure 3.15

I0 to p102, short I2 to p012, short

- 2

black black

black black

I1 to p102, short I1 to p102, long

- -

gray gray

gray gray

I1 to p102, short I1 to p102, long

1 1

gray gray

gray gray
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Figure 3.16 (a)

I0 to p102, short I0 to p021, short

- 0

black gray

black gray

I0 to p021, long

0

gray

gray

Figure 3.16 (b)

I0 to p102, short I0 to p021, short

- -

black gray

black gray

I0 to p021, long

-

gray

gray

Figure 3.17

I2 to p012, short I0 to p021, short

2 0

black gray
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black gray

I0 to p021, long

0

gray

gray

Figure 3.18

I2 to p012, short I0 to p021, short

2 -

black gray

black gray

I0 to p021, long

-

gray

gray

Figure 3.19

I0 to p102, short I2 to p012, short

- 2

black black

black black

I0 to p021, long I0 to p021, short

- -

gray gray
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gray gray

I0 to p021, short I0 to p021, long

0 0

gray gray

gray gray

Figure 3.20 (a)

I0 to p102, short I2 to p012, long

- -

black gray

black gray

Figure 3.20 (b)

I0 to p102, short I2 to p012, short

- -

black gray

black gray

Figure 3.21

I0 to p102, short I2 to p012, long

- 2

black gray

black gray
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Figure 3.22

I0 to p102, short I2 to p012, long

- -

black gray

black gray

I2 to p012, short I2 to p012, long

- 2

gray gray

gray gray

I2 to p012, short

2

gray

gray
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