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By using conical coordinates, exact analytical solutions for three-dimensional side-fringing fields of
recording heads that are beveled in the down-track direction are found. These solutions are derived
under the assumption of zero gap length. The side-fringing fields for the two limiting cases of
infinitesimally narrow heads and semi-infinitely wide heads are presented and compared. ©1997
American Institute of Physics.@S0021-8979~97!29508-3#
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INTRODUCTION

Recently, the focused ion beam micromachining~FIBM!
technique has been introduced for the patterning of the p
tips of recording heads. This technique has already dem
strated the ability to achieve very narrow head geometr
and it is expected to be very instrumental in the patterning
various pole tip configurations.1,2 This suggests the impor
tance of the analysis of side-fringing fields of very narro
heads. In this article, exact analytical solutions for the thr
dimensional side-fringing fields are presented. First, the c
of infinitesimally narrow heads beveled in the down-tra
direction is discussed under the assumption of zero
length. It is apparent that the side fringing fields of fin
width heads may deviate from those which are found
infinitesimally narrow heads. To estimate the range of th
deviations, exact analytical solutions for the thre
dimensional fringing fields of semi-infinitely wide heads a
then derived. Finally, differences in the strength and
cross track extent of the side-fringing fields for these t
head geometries are analyzed for various bevel angles.

INFINITESIMALLY NARROW HEADS

The idealized geometry of such heads is shown in F
1~A!. It is assumed that:~a! the pole tips are semi-infinite in
extent in thex-y plane,~b! the gap length is equal to zero
and ~c! the magnetic scalar potentialC has constant value
of C0 and2C0 on opposite sides of the gap. The speci
value ofC0 is determined by the ampere turns and the e
ciency of the recording head.

It is apparent that the potentialC satisfies the Laplace
equation

¹2C50 ~1!

in the region outside the magnetic head. This potential is a
subject to the boundary conditions:
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whereu andf are spherical coordinates, whileg is the bevel
angle~p/2<g,p!.
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It is clear that the solution of the boundary value pro
lem ~1!–~3! does not depend onr : ]C/]r[0. This is because
the boundary conditions~2! and ~3! do not depend onr . In
other words, there is no dimension in the above probl
against whichr can be scaled. The above fact can be e
ploited in order to reduce the 3D boundary value probl
~1!–~3! to the 2D boundary value problem for the Lapla
equation in the region shown in Fig. 1~B!. This reduction is
achieved by using the conical coordinates:

a15
2z

r1y
, a25

2x

r1y
, a35r , ~4!

and the mathematical details of such a transformation ca
found in previous publications.3,4 Thus, in terms of conical
coordinates,a1 anda2, the boundary value problem~1!–~3!
can be restated as follows: find the solution to the Lapl
equation

]2C

]a1
2 1

]2C

]a2
2 50, ~5!

FIG. 1. ~A! The idealized geometry of the infinitesimally narrow head.~B!
Its conical-coordinate map.
81(8)/4850/3/$10.00 © 1997 American Institute of Physics



be

n

-

m

-
m
:

ig

-

o

lue

si-
ary

nd-
ce

ns
subject to the boundary conditions

C5C0 for a150, 2`,a2,2tan
g

2
, ~6!

C52C0 for a150, tan
g

2
,a2,`. ~7!

The theory of functions of complex variables can now
used to solve the boundary value problem~5!–~7!. To this
end, we introduce the complex variableb5a21ia1,
i 5 A21, and consider the function:

C~b!5
2C0

p
argFb1Ab22tan2

g

2G2C0 . ~8!

This function is the imaginary part of the analytical functio
W(b) 5 (2C0 /p)ln@b 1 Ab22tan2(g/2)# 2 iC0, and,
for this reason, it satisfies the Laplace Eq.~5!. It is also easy
to check thatC~b! given by ~8! satisfies the boundary con
ditions ~6! and~7!. Thus, it is established that expression~8!
is indeed the solution for the boundary value proble
~5!–~7!. By using formulas~8! and ~4! and straightforward
~but somewhat lengthy! transformations, the following ex
plicit expressions can be derived for the magnetic field co
ponentsHx , Hy , andHz in terms of Cartesian coordinates

Hx5C0

&F2yr2~y21z21yr !SA111tan2
g

2D G
pABr~r1y!2

, ~9!

Hy5C0

&xSA2
x21z2

~r1y!2
1tan2

g

2D
pABr~r1y!

, ~10!

Hz5C0

&xzSA111tan2
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2D
pABr~r1y!2

, ~11!

where

A5H F x21z2

~r1y!2
2tan2

g

2G21 4x2z2

~r1y!4 J 1/2, ~12!

B5FA1
z22x2

~r1y!2
1tan2

g

2G1/2. ~13!

SEMI-INFINITELY WIDE HEADS

The idealized geometry of such heads is shown in F
2~A!. It is assumed that:~a! the pole tips are semi-infinite in
extent in thez direction as well as in thex-y plane,~b! the
gap length is equal to zero, and~c! the magnetic scalar po
tential has constant values ofC0 and2C0 on opposite sides
of the gap. This leads to the boundary value problem
finding the solution to the Laplace equation

¹2C50, ~14!

subject to the boundary conditions
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Again, it is apparent that the solution of the boundary va
problem ~14!–~16! does not depend onr : ]C/]r[0. This
suggests that an approach similar to that for the infinite
mally narrow head can be taken to solve the above bound
value problem.

As before, by using conical coordinates:

a15
x

r1z
, a25

y

r1z
, a35r , ~17!

and the symmetry with respect to the planex50, the above
3D boundary value problem can be reduced to the 2D bou
ary value problem of finding the solution to the Lapla
equation

]2C

]a1
2 1

]2C

]a2
2 50 ~18!

FIG. 2. ~A! The idealized geometry of the semi-infinitely wide head.~B! Its
conical-coordinate map.~C! The resulting conformal map. Shaded regio
map volume external to head.
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in the shaded region of Fig. 2~B! subject to the boundary
conditions indicated in the same figure.

To solve the latter boundary value problem, we intr
duce complex variables:

b5a21 ia1 , j5n21 in1 . ~19!

It can be shown5 that the functionb~j! defined by the ex-
pressions

b5
11al

12al S l21

l11D
a

, l5A j

11a2j
, a5

g

p
, ~20!

conformally maps the upper half-plane shown in Fig. 2~C!
into the upper half-plane with a sector bulge shown in F
2~B!. The boundary conditions forC~j! are indicated in Fig.
2~C!.

By invoking the same line of reasoning as before, it c
be demonstrated thatC~j! is given by the expression

C~j!5
C0

p
argS j2

1

12a2

j1
1

a2
D . ~21!

By using the last expression and coordinate transformat
~17!, ~19!, and ~20!, the magnetic scalar potential and ma
netic field can be computed in terms of Cartesian coo
nates. For the sake of brevity, mathematical details of th
calculations are omitted.

NUMERICAL RESULTS

Using the analytical solutions for the magnetic fields d
rived above for the two head geometries, the writing char
teristics of the narrow beveled head have been studied.
down-track magnetic field components,Hx , have been com-
puted and compared for different bevel angles. First, for
zero-width head, the decay ofHx in the cross-track (ẑ) di-
rection was considered as a function of bevel angle. Th
Hx as a function of the down-track (x̂) direction was com-
puted for several bevel angles in order to study the fi
gradient in the down-track direction. And finally, the dec
of Hx in the ẑ direction was compared with that of the sem
infinite head width geometry.

FIG. 3. uHxu of the infinitesimally narrow head decaying over the cro
track directionz, for various bevel anglesg, at y050.1mm.
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Figure 3 presentsHx created by the zero-width head as
function of z, for various values of the bevel angleg. Here
Hx is shown to decay somewhat slower overz as the bevel
angle increases.

Since computations also show thatHz decays slower inz
asg increases for the infinitesimally narrow head, the qu
tion arises as to the purpose of beveling. Computations s
that Hx drops off faster inx as g increases, whereC0 is
scaled appropriately to allow the maximum ofHx to be in-
dependent ofg. This increase in field gradient allows na
rower transitions to be written in the recording mediu
thereby increasing the down-track density. Therefore,
fact that the magnetic fields decrease slower withg in the
cross-track direction and decay faster withg in the down-
track direction is an issue that must be deliberated w
beveling is considered.

Although beveling is a foreseeable application of FIBM
decreasing the width of thin-film heads has been the m
use of this technique in the patterning of these heads. Th
fore, another issue is the head width dependence of the fr
ing fields. In Fig. 4, the ratio ofHx created by the zero-width
head toHx created by the semi-infinitely wide head varyin
over z is displayed. The magnetic field ratio decreases a
function of bevel angle; forz50.5mm, it varies from a rela-
tive difference of about 10% atg5p/2 to a difference of
about 55% atg57p/8. For a head of finite width, the curve
would lie somewhere between unity and the curves of
figure. Also, by showing that the aforementioned ratio
creases away from the side of the head, the figure reveals
the semi-infinitely wide head creates fields that decay m
rapidly in z than the fields created by the zero-width hea
This fact must be taken into account when considering
increase of track density.
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- FIG. 4. Hx~zero width!/Hx~semi-infinite width! decaying overz for various
g, at y050.1mm.
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