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As we increasingly consider resilience as a central strategy for addressing climate 

change, recovery emerges as an important dimension that is often the focus of public 

policy. The progression of global climate change will cause an increase in the scale 

and magnitude of disasters, so it is more important than ever to understand how we 

can not only prevent impacts, but also recover from them. This research was carried 

out with the primary goal of examining recovery at multiple scales, while 

simultaneously considering the social and economic forces and community behaviors 

that influence recovery outcomes. This dissertation proposes new ways of 



 

 

 

 

conceptualizing and quantifying recovery and analyzes the way that neighborhood 

characteristics and community engagement influence the recovery process at multiple 

dimension and temporal scales. The findings emphasize the importance of assessing 

recovery progress on multiple timescales and highlight the opportunities that emerge 

as a result of community engagement with local government throughout the recovery 

process. 

The first analytical chapter considers the interaction between vulnerability and 

recovery by studying power outages and restoration following Hurricane Isaac in 

Louisiana. This approach uses power restoration as a metric by which to better 

understand short-term recovery of a specific infrastructure system, building a model 

for recovery that takes into account antecedent conditions, impact, hazard and 

prioritization. The next chapter considers 311 requests in Houston TX as a potential 

proxy measure for civic engagement and social capital. This chapter analyzes 311 

contact volumes across the City of Houston and identifies the neighborhood 

characteristics that influence proclivity to call. Finally, the 311 data is used to better 

understand system-level recovery and community engagement in the recovery 

process in Houston TX following Hurricane Harvey in 2017. The chapter compares 

neighborhood-level use of 311 services prior to Hurricane Harvey to the way it was 

used for storm-related concerns in the weeks directly following the storm. 
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1. Introduction 
In recent years, resilience has become a prominent concept in climate and 

disaster recovery research, adding a significant new dimension to previous methods 

for assessing and addressing climate and disaster risk. Twigg argues that the main 

difference between resilience and more traditional risk analysis approaches to 

adaptive capacity is that resilience “goes beyond specific behavior, strategies and 

measures… that are generally understood as capacities” (Twigg et al., 2013). It takes 

a broader, more pragmatic approach to addressing risk, where “agility and discipline” 

(Tierney, 2014) collide.  

Traditionally, risk analysis work has put its primary focus on protecting and 

strengthening infrastructure systems so that they can withstand anticipated shocks. In 

contrast, resilience demands a more holistic approach and stresses that resilient 

infrastructure must be complemented by resilient communities and resilient systems 

of governance. In doing so, the resilience approach requires that focus be directed 

towards more than simply withstanding the anticipated hazard; learning and 

organizing in such a way that the system or community will be better prepared to face 

a broad spectrum of potential shocks in the future must also be considered 

(Godschalk, 2003). This is particularly important because the increasing 

interconnectedness of our communities and our reliance on countless interdependent 

infrastructural systems and subsystems creates unprecedented levels of complexity, 

for which it would be nearly impossible and wholly impractical to identify and 
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address the risks and possible failures of each system component (Linkov et al., 

2014).  

The complexity and unpredictability of system and community vulnerabilities 

are even more prominent when climate change is brought to the forefront of the 

resilience conversation. Although climate change is a scientific certainty, there are 

still many unknowns, especially with regards to the anticipated time horizons, 

severity, scale and nature of impacts (Linkov et al., 2014). These unknowns make it 

nearly impossible and economically infeasible for a community to prepare for these 

changes solely by relying on more traditional risk analysis and hazard mitigation 

techniques. Although these traditional hardening and disaster preparedness 

approaches continue to have a valuable place in a strong disaster management 

strategy, they are no longer, and perhaps never were, sufficiently robust on their own 

(Godschalk, 2003). A resilience approach is what is needed to fill in these gaps.  

This dissertation begins with a literature review that will be organized around 

three interconnected concepts: resilience, recovery and social capital (Figure 1.1). It 

begins with an overview of the definitions of resilience as presented in the literature, 

along with a discussion of the ways that resilience is approached and understood. 

After establishing this conceptual groundwork, I will focus on two key elements of 

resilience: recovery and social capital. As will be shown below, a common theme 

among definitions of resilience is that they all include some conception of recovery, 

so this section will outline how recovery is defined, measured and modeled.  
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Figure 1.1: Schematic of Literature Review  

As we think about recovery, we must consider outcome variations and what 

factors underlie these differences. Central among these is social capital, which will be 

the focus of the final section of the literature review. The literature suggests that 

social capital is not only a determinant of recovery, but also a key dimension of 

resilience. This section will define social capital and discuss approaches to 

measurement, with an emphasis on the way it relates to the earlier sections on 

resilience and recovery.  

The literature review will conclude with a brief section discussing the 

questions that emerge from the literature on resilience, recovery and social capital, 

and how these gaps have informed the research questions and research design that are 
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central to this dissertation, before providing an overview of the three analytical 

chapters that follow, each of which use quantitative metrics to better understand the 

impacts of socio-economic inequalities and civic engagement on the recovery process 

at multiple scales.  
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2. Literature Review 
2.1 Resilience 

2.1.1 Defining Resilience: Origins and Evolution 

While the concept of resilience is relatively new to the disaster and climate 

change fields, most literature indicates that the concept had its origin in the field of 

psychology and psychiatry in the 1940s (Johnson & Wiechelt, 2004; Manyena, 2006). 

This conception of resilience is quite different from the way it is used today. It 

referred to the risk of psychological impacts when young children are exposed to 

traumatic life events, such as death and divorce – the coping strategies that the 

children developed because of these events caused negative outcomes as they 

matured (Peek, 2008). 

 In 1973, Holling introduced a different perspective on resilience into the 

ecology literature. He defined the concept as “a measure of the persistence of systems 

and their ability to absorb change and disturbance and still maintain the same 

relationship between populations or state variables” (Holling, 1973). He revisited and 

expanded upon this definition at several points in his career (Holling, 1986), 

eventually settling on the idea that resilience is “the buffer capacity or the ability of a 

system to absorb perturbations, or the magnitude of disturbance that can be absorbed 

before a system changes its structure by changing the variables and processes that 

control behavior” (Holling, 1995).  The common thread that runs through these 

definitions is that in an ecological context, resilience is preoccupied with the overall 

functioning of a system, rather than the persistence or well-being of its component 
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parts (Pisano, 2012). As the definition of resilience evolved, it was recognized that 

after a shock, a system does not necessarily need to return to its initial equilibrium 

state in order to be considered resilient. Populations within the system can change, 

and the system does not even need to produce a steady ecological state as long the 

system as a whole retains its identity (W.N. Adger, 2000).  

 The link between ecological and societal resilience was introduced in Adger’s 

2000 paper “Social and Ecological Resilience”. He argues that the ‘population or 

state variables’ featured in Holling’s 1973 work can be extended to apply to human 

societies rather than just the plant and animal populations to which the original 

definition referred. Nonetheless, there are significant differences between ecological 

and social systems, and therefore they must be separately defined. Adger defines 

social resilience as “the ability of human communities to withstand external shocks to 

their social infrastructure, such as an environmental variability or social, economic 

and political upheaval” (W.N. Adger, 2000). Although certainly not the final word on 

the definition of resilience, this moved the concept from the ecological into the social 

spheres, significantly broadening its potential applications. 

 While ecological and social resilience are related to the concept of resilience 

as it appears in the engineering literature and have overlapping applicability, they are 

also distinct. In engineering, a system’s ability to function efficiently and to return to 

a steady state in the aftermath of a shock is of central importance to the concept of 

resilience (Folke, 2006). This definition appears with some frequency in disaster 

response literature. When applied, it typically involves a consideration of the 
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likelihood that a catastrophic event will occur and a calculation of the likely level of 

loss. In the aftermath of an event, resilience will be measured by how quickly and 

efficiently the city or region returns to its pre-shock functioning (Pendall, Foster, & 

Cowell, 2010).  

 In 1998, Walker argued that any discussion of resilience must “…begin with 

the question: resilience to what” (B. Walker, 1998) (Pendall et al., 2010). However, 

as the definition evolved over time and was embraced in the context of global 

environmental change, there has been the growing acknowledgement that a truly 

resilient system cannot simply be prepared for known threats. As climate change 

encroaches, the environmental unknowns become an increasing threat, and as a result, 

the literature has embraced a version of resilience that produces flexible systems that 

can withstand both the expected and the unexpected (Godschalk, 2003). Resilience 

can no longer simply refer to the ability to plan for and recover from well-defined eve  

nts and hazards.   

The IPCC has included the concept of resilience in its Assessment Reports 

since the third report was published in 2001, however it definitions of the concept 

have, along with the broader resilience literature, evolved over time in terms of both 

content and scope (Table 2.1). The AR3 definition of resilience is very basic, and 

quite similar to Holling’s conception of ecological resilience (IPCC, 2001). By 

contrast, the influence of Adger’s work on the definition in AR4  (2007) is 

undeniable; resilience’s applicability in both social and ecological contexts is clearly 

stated (IPCC, 2007). The A5R definition of resilience is by far the broadest of the 
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three. It expands to include economic, alongside social and ecological, systems. 

Further, it emphasizes the importance of the capacity to adapt, learn and transform. 

This idea that a resilient system is one that can learn from past events and use that 

knowledge to transform for the better is a fairly recent addition to the original 

definition, but one that has quickly become central to the literature. A resilience 

system is not simply one that can withstand shocks, but one that can be built back 

better in the aftermath (IPCC, 2014). 

Table 2.1: IPCC Definitions of Resilience 

Report Date of 
Publication 

Definition 

AR3 2001 “Amount of change a system can undergo without 
changing state”  

AR4 2007 “The ability of a social or ecological system to absorb 
disturbances while retaining the same basic structure and 
ways of functioning, the capacity for self-organisation, 
and the capacity to adapt to stress and change.” (IPCC, 
2007)  

AR5 2014 “The capacity of social, economic and environmental 
systems to cope with a hazardous event or trend or 
disturbance, responding or reorganizing in ways that 
maintain their essential function, identity and structure, 
while also maintaining the capacity for adaptation, 
learning and transformation.”  (IPCC, 2014) 

 
The growth of resilience as a prominent concept and central goal in climate 

policy is also reflected in the text of the UNFCCC climate agreements. The Kyoto 

Accord did not mention resilience at all (UNFCCC, 1998), and it was only mentioned 

briefly and in passing in the Copenhagen Accord (UNFCCC, 2010). By contrast, the 

concept was of central importance in the 2015 Paris Agreement, where it is featured 

as one of the core goals (UNFCCC, 2015). Similarly, we see a growing international 



 

9 

 

focus on resilience from the disaster risk reduction standpoint. The World Conference 

on Disaster Risk Reduction in 2005 named “Building a culture of safety and 

resilience” as one of their five priorities for action. In this framework, they defined 

resilience as “The capacity of a system, community or society potentially exposed to 

hazards to adapt by resisting or changing in order to reach and maintain an acceptable 

functioning and structure. This is determined by the degree to which the social system 

is capable of organizing itself to increase this capacity for learning from past disasters 

for better future protection and to improve risk reduction measures” (UNISDR, 

2005). Despite the fact that disaster risk conceptions can be quite narrow, this 

definition is exceptionally broad and forward thinking for its time. It acknowledges 

that resilience can be achieved through hardening, increased flexibility, and reduced 

risk, and it emphasizes the importance of learning from past experiences to better 

prepare for the future.  

Evidently, there have been many attempts over the years to define resilience, 

and the precise meaning has evolved considerably since it emerged as a key issue in 

the social environmental sphere (Twigg et al., 2013). Different definitions choose to 

include or omit certain elements of resilience, and there often disagreements over 

whether resilience is best seen as an outcome (the ability to recover after a shock), or 

a process (the ongoing act of learning and improving) (Cutter et al., 2008a). Despite 

these differences, there is broad agreement that resilience encompasses the following 

broad characteristics (W. Neil Adger, Arnell, & Tompkins, 2005): 
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• The capacity to absorb: Among the first qualities attributed to resilience was 

the ability of a system to absorb shocks. While the definition has evolved in 

the sense that this is no longer the only focus of resilience, it remains a key 

characteristic  

• The capacity to adapt: One of the major strides in resilience literature has 

been the expansion of the definition to go beyond a system simply returning to 

its baseline level of functioning. A truly resilient system must learn from past 

experiences and adapt so as to better prepare for future hazards. 

• The capacity to recover: This is a multi-scalar, multi-dimensional, multi-

temporal process by which individuals, communities and regions return to 

normal functioning or, ideally, a new, improved normal (Tierney, 2014). 

• The capacity to organize as a society: The development of social networks is 

a key element of resilience, allowing for collective action and flexible 

responses in the aftermath of a shock.  

2.1.2 Approaches to Studying Resilience 

Given that resilience is an important component of disaster preparedness and 

climate change policy, the literature has produced a number of models and 

frameworks designed to better understand resilience as a process and to more 

accurately measure resilience as an output. Engle et al.’s 2014 paper focuses 

primarily on measuring resilience as an output, with the goal of developing methods 

to assess and maximize resilience in development initiatives. It explores the relative 

strengths and weaknesses of quantitative, qualitative and mixed method approaches to 
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measuring resilience. Quantitative measures are attractive due to the ease with which 

such results can be compared, assessed and ranked. However, methodological and 

theoretical challenges to a purely quantitative approach make this analytical strategy 

problematic, because it tends to oversimply a very complex concept. A qualitative 

approach to measuring resilience can solve many of these problems. Case studies, on 

their own or as a comparative study, can provide important insight into local 

resilience strategies. They can also be a useful complement to quantitative research, 

either by validating indicators, or by identifying processes can be used to develop 

better quantitative models (Engle, de Bremond, Malone, & Moss, 2014).  

Ultimately, Engle et al. propose a resilience framework that stresses the 

importance of a multi-scalar “hybrid” approach to quantifying resilience. First, it 

captures the importance of multiple timescales, incorporating short term coping in the 

direct aftermath of a shock as well as long-term adaptation to changing conditions. 

Second, it connects various spatial scales so as to be mindful of the fact that although 

research often happens on the national and international levels, resilience projects are 

more likely to be implemented at the local and regional scale. Finally, it 

acknowledges the complementary value of quantitative and qualitative research, and 

encourages combining the strengths of both (Engle et al., 2014).  

Engle et al.’s resilience framework focused on the outputs of a resilient 

system, but other models concentrate more on the process by which resilience is 

achieved. Cutter’s Disaster Resilience of Place (DROP) Model focuses on clarifying 

the connection between vulnerability and resilience in the context of community 
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responses to an adverse event. Recent literature recognizes that vulnerability and 

resilience exist on a continuum and are complementary concepts. This model 

proposes that prior to an event, antecedent conditions are established based on social 

systems, the built environment and natural conditions.  

When a hazard event strikes, antecedent conditions are combined with coping 

responses, to determine the short-term impact of the hazard. If the impact exceeds the 

community’s absorptive capacity, damage will be done, and recovery will be 

necessary. The effectiveness of the recovery process will depend on the community’s 

level of adaptive resilience, and these outcomes will impact the system’s antecedent 

conditions from that point forward. Cutter emphasizes the difficultly of moving from 

this conceptual model to actual measurement. Quantitative indicators are the most 

commonly used approach, but the difficulty of developing valid, robust measures 

cannot be understated (Schipper & Langston, 2015). Indeed, attempts to quantify 

resilience have been criticized as overly subjective, lacking in key variables and 

unable to be aggregated to different scales. More research in this field is required 

(Cutter et al., 2008a). 
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Figure 2.1: Resilience Management Framework (Linkov et al., 2014) 

Linkov et al. (2014) proposed a resilience management framework (Figure 

2.1) that is in many ways similar to Cutter’s 2008 DROP model. However, this 

approach “…integrat[es] the temporal capacity of a system to absorb and recover 

from adverse events, and then adapt”. While Cutter’s model did acknowledge the 

temporal element of resilience, its impacts are explicitly built into Linkov’s model, as 

the time scale impacts the nature of the absorption slope and the recovery curve. In 

this framework, risk is defined as “the total reduction in critical functionality”, and 

resilience is viewed primarily as the mechanism through which the system recovers, 

not the degree to which the system absorbs the shock. This approach also makes 
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explicit acknowledgment that after a shock, a sufficiently resilient system may 

recover to a better state than the pre-shock baseline, improving overall functioning 

and better preparing the system for future shocks (Linkov et al., 2014). 

While resilience is an important consideration that should be addressed at 

multiple scales, local-level resilience is featured with particular focus in the literature 

(Godschalk, 2003; Leichenko, 2011; Twigg et al., 2013). Although climate change is 

a global phenomenon, its impacts are local (van Aalst, Cannon, & Burton, 2008). 

Cutter explains that “…from the hazards research perspective, natural processes and 

impacts are localized and event-specific” (Cutter et al., 2008a). Approaches to 

resilience are most effective when they are tailored to local experiences and needs, 

and therefore resilience research is best done with a bottom up approach: collecting 

local level data and aggregating upwards to larger spatial scales. 

Cities are particularly vulnerable to changing climate, and therefore present an 

important opportunity for the development and implementation of climate adaptation 

and resilience policy. Indeed, a number of partnerships and initiatives such as the 

ND-GAIN Urban Adaptation Assessment, C40 Cities, and the Rockefeller 

Foundation’s 100 Resilient Cities have emerged that are built to support and 

encourage local-level governments to take a more central role in climate policy and 

tailor resilience and adaptation policies to local needs. A focus on resilience at the 

local level gives cities the tools to proactively strengthen their own capacities and 

address their vulnerabilities rather than relying on higher level of government to 
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address climate change and reactively dealing with shocks and challenges after they 

happen (Corfee-Morlot, Cochran, Hallegatte, & Teasdale, 2011).  

2.2 Recovery  

2.2.1 Recovery as a dimension of resilience 

 Among the various frameworks and definitions discussed in the previous 

section, it is clear throughout that recovery is an essential dimension of resilience, and 

often the focal point of the field as a whole. It is impossible to build a society so 

resilient that it can fully absorb every shock without damage, and as a result, the 

concept of recovery, and particularly resilient recovery is of central importance in the 

resilience literature. Tierny defines resilient recovery as “a series of processes taking 

place at multiple scales that can lead to successful adaption to a new normal or to 

continued dysfunction and poor recovery outcomes” (Tierney, 2014). This effectively 

summarizes several of the themes that are consistent in definitions of resilience more 

broadly. Like resilience, recovery is a process that must occur on many 

interdependent scales simultaneously. This definition also emphasizes the importance 

of not just building back but building back better. A resilient recovery process should 

encourage learning from past experiences and work towards establishing a new, more 

resilient baseline.  

Cutter’s DROP model emphasizes the fact that the recovery process is 

instrumental in establishing a new normal (“antecedent conditions”) that will, along 

with the characteristics of the event itself and the community’s short-term coping 

response, determine the outcome of the next disaster that the community faces.  Her 
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model proposes that the quality of the recovery process is determined by the level of 

adaptive resilience in the community, as expressed by improvisation and social 

learning. Cutter defines improvisation as “impromptu actions which may aid in the 

recovery process” (Cutter et al., 2008a), and social learning is defined as “the 

diversity of adaptations, and the promotion of strong local social cohesion and 

mechanisms for collective action” (W. Neil Adger et al., 2005). According to Cutter, 

social learning occurs “when beneficial impromptu actions are formalized into 

institutional policy for handling future events” (Cutter et al., 2008a). It is the 

mechanism by which a new, better baseline is established. 

2.2.2 Measuring Recovery 

Much like resilience, researchers are constantly looking for new ways to measure 

recovery so that the process can be subjected to ranking and evaluation in order to 

better understand the qualities and characteristics of recovery approaches that produce 

successful outcomes.  When considering the measurement of recovery, it is important 

to identify what exactly is being measured. According to Aldrich, there are five 

dimensions of resilient post-disaster recovery: 

• Personal and familial socio-psychological well-being 

• Organizational and institutional restoration 

• Economic and commercial resumption of services and productivity 

• Restoring infrastructural system integrity 

• Operational regularity of public safety and government. 
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These dimensions range in scale from the individual to the regional level, and 

encompass nearly all spheres of public and private life (Aldrich, 2012a).  

 Recovery also happens along multiple timescales, which Burton breaks down 

into four clear phases: “(1) an emergency period that is characterized by search and 

rescue, sheltering, and the clearing of major arteries; (2) restoration, during which 

repairable essentials of urban life such as utilities are restored; (3) reconstruction, 

during which infrastructure and housing is provided for; and (4) a commemorative or 

betterment reconstruction phase” (Burton, 2014). Each of these phases has different 

goals and different endpoints making it challenging to embed all of them into a single 

analysis. Further, the phases each occur on different timescales with each one likely 

taking considerably longer than the last (Finch, Emrich, & Cutter, 2010).  

Given the multi-scalar, multi-dimensional, and multi-temporal nature of 

recovery, it is difficult to measure in a consistent and complete way that lends itself 

well to comparative analysis. Both quantitative and qualitative approaches are 

common throughout the literature, with quantitative methods having the advantage of 

easy comparability and further analysis. However, they tend to struggle to capture 

recovery in its multiple dimensions and at its many scales, instead focusing on select 

sub-components of the larger recovery process. Alternatively, qualitative methods 

give researchers the ability to study community recovery as a whole rather than 

breaking it down into its component parts, but these approaches lack the easy 

comparability and assessment that comes along with more quantitative outputs.  
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 Burton’s 2014 analysis of recovery in coastal communities post-Hurricane 

Katrina is an excellent example of both the strengths and downfalls of quantitative 

methodology in recovery assessment. Geospatial imaging was used to survey 

reconstruction efforts along the coast between October 2005 and October 2010. The 

images were analyzed for signs of recovery, distinguishing between the markers of 

recovery for the separate phases of the process. This study specifically focuses on 

reconstruction of the built environment, which is only one component of a robust 

recovery process. However, the benefit of such an approach is that it can be used as a 

recovery metric in future quantitative analyses. In this case, Burton uses his recovery 

measure to validate resilience indicators (Burton, 2014). 

 Other papers take a more technical approach to estimating recovery curves. 

For example, Zobel (2014) proposes a technique for mathematically characterizing 

non-linear recovery in the aftermath of disasters that generates a ratio of the area 

above and below a general response curve, summarizing recovery into a single 

calculable value, β. He applied this technique to post-Hurricane Sandy recovery, 

estimating the recovery curve of power restoration for Con Edison Power Company 

in New York City. This allowed him to compare recovery behaviors and make 

conclusions about the relative efficiency of recovery in different boroughs (Zobel, 

2014). This approach shares common strengths and weaknesses with Burton’s 

geospatial measuring. While it has a clear and easily comparable output, it is again 

unable to look at the recovery process as a whole, instead focusing on very limited 

recovery dimensions. 
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 Finch et al. (2010) use population return as a metric for recovery in post-

Hurricane Katrina New Orleans, using USPS delivery data for the time periods 

immediately before and three years after the hurricane. The rate of mail return served 

as a rough estimate for population return (Finch et al., 2010). This is an interesting 

approach to measuring recovery because repopulation captures a number of the 

dimensions that are outlined by Aldrich  as markers of resilient recovery, from 

personal well-being to operational regularity of public safety (Aldrich, 2012a). As a 

result, it succeeds as a fairly multi-dimensional measure. However, it is quite limited 

from a temporal perspective. The analysis only provides a single snapshot of the 

recovery process 3 years after the event occurred.  

In yet another study of New Orleans post-Hurricane Katrina, Elliot et al. 

(2010) used a survey to collect data from a representative sample of approximately 

100 adults in each neighborhood included in their study. The survey questions were 

retrospective in nature, asking participants to recollect their experiences in different 

phases of the disaster. The researchers used previous examples of surveys on disaster 

aid and recovery (Beggs, Haines, & Hurlbert, 1996) to develop their survey 

instrument. Because a close ended survey was employed, the researchers were able to 

perform a quantitative analysis on the role of social ties in the recovery process with 

their data (Elliott, Haney, & Sams-Abiodun, 2010a). This study is an excellent 

example of the strengths of a mixed methods approach when attempting to measure 

complex concepts in social science. 
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Alternatively, many researchers choose to use exclusively qualitative methods 

for collecting data on the recovery process (Aldrich, 2012a; Chamlee-Wright & Storr, 

2011; Consoer & Milman, 2016a; Jordan, 2014). These approaches typically use 

open-ended interviews to talk to community members and stakeholders about their 

experiences throughout the recovery process. This method, of course, leads to the 

development of broader and more expansive narratives, but it also produces results 

that are more difficult to evaluate and compare.   

2.2.3 Explaining Variations in Recovery 

In order to properly understand the causes of uneven recovery outcomes, 

Tierny argues that first we must understand the nature of risk (Tierney, 2014). Beck’s 

risk society theory suggests that modern society is the product of long-term society-

driven change, and that the risks (particularly the environmental risks) to which we 

are exposed today are not the product of natural inevitability but instead of prior 

decision making (Beck & Ritter, 1992). This approach has garnered criticism on the 

basis that it presents modern society as unique in its production of risk, as well as the 

fact that power imbalances and structural injustice are not made central to the theory 

(Tierney, 2014). However, despite these criticisms, his argument that the choices we 

make and policies we adopt as a society are instrumental in producing and enhancing 

risk has merit. Economic losses due to natural disasters have been increasing over 

time, not because the physical shocks themselves are becoming more destructive, but 

because as society grows and evolves, exposure increases as both human populations 
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and infrastructure investment grows and becomes more densely concentrated 

(Tierney, 2014). 

The fact that the majority of risks that are faced by society are manufactured 

through decision-making and power structures is of great relevance to the concept of 

recovery, and more specifically to the question of what causes certain communities to 

bounce back more quickly than others after being subjected to a shock. Wisner et al. 

(2003) describe the physical shocks as the “triggers” for disasters but argue that social 

and historical forces cause risk to build up in such a way that a trigger is able to set it 

off. This gives rise to the inevitability that vulnerable and marginalized populations 

are the most at risk for disasters, not only because they tend to live in the 

neighborhoods and buildings that are more exposed to risk, but also because they lack 

to resources to cope with disaster in the short term (Wisner, Cannon, & Davis, 2003).  

Vulnerability, resilience and recovery are complementary concepts, and just 

as there is variation in levels of exposure to natural disaster, there will also be 

variation in the hardship experienced during the recovery process, resulting for some 

in worse long-term recovery outcomes (Zakour & Swager, 2018). Disasters and their 

resulting damages are often brought on by both the historical and current choices 

made by society, and these differences in recovery outcomes are also not products of 

random chance. There are a number of clear, identifiable factors that determine the 

relative success of the recovery process for individuals and their communities 

(Phillips & Fordham, 2009).  
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Generally speaking, low-income individuals and communities struggle more 

than others during every phase of the recovery process (Fothergill & Peek, 2004a). 

This is in part due to a basic lack of resources and income, which compounds 

hardship and stress (Bolin & Stanford, 1998), and a lack of access to translocal social 

networks of family and friends who are able to provide material and moral support 

during times of stress and hardship (Elliott et al., 2010a). Lower incomes and higher 

levels of income inequality are also found to have a significant and detrimental 

impact on disaster outcomes and recovery at the macro level (Tselios & Tompkins, 

2019). 

Low-income residents are also found to be less capable of navigating the 

bureaucratic systems necessary in order to obtain government-issued aid, whereas 

higher-income residents are better equipped to deal with these sorts of administrative 

obstacles. As a result, they are less likely to apply for and receive disaster recovery 

funds (Fothergill & Peek, 2004a). Low-income residents are also more likely to 

experience severe damage to their homes in the aftermath of disasters. This can lead 

to homelessness and severe shortages of low-incoming housing in the aftermath of 

disaster (Greene, 1992). Indeed, when poorly managed the recovery process is often 

observed to perpetuate and further entrench the disempowerment of marginalized 

groups such as women and minorities while enriching private corporations and 

increasing income inequality (Sovacool, Tan-Mullins, & Abrahamse, 2018). 

Other factors that are commonly thought to influence recovery outcomes 

include the quality of governance, aid allocation, extent of damage and population 
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density. Governance has been found to make macro-level differences in disaster 

outcomes: an analysis of disaster deaths in 73 countries between 1980 and 2002 

found that democracies and other countries with well-functioning institutions 

experience fewer natural disaster deaths (Kahn, 2005). However, on a more micro 

level, this association does not always hold, as nearby neighborhoods under the same 

governance structures that have experienced similar levels of damage often do not 

enjoy similar rates of recovery. Research has failed to find a causal link between the 

amount of aid funding and the rate of recovery, and research on the relationship 

between damage and recovery is inconclusive (Aldrich, 2012a).  

Many studies point to social capital as a significant, and perhaps the most 

significant driver of recovery outcomes (Aldrich, 2012a; Elliott et al., 2010a; 

Kawamoto & Kim, 2016). It is seen as critical to understanding vulnerability 

differentials and is central to coping with risk. Indeed, Aldrich calls social capital the 

“core engine of recovery” and argues that social capital is an even better predictor of 

recovery outcomes than socio-economic status (N. Adger, 2003).  

2.3 Social Capital 

2.3.1 Defining Social Capital 

Social capital emerged as a clearly articulated concept in the 1980s. When it 

was first introduced by Pierre Bourdieu, who defined the term as “the aggregate of 

the actual or potential resources which are linked to possession of a durable network 

of more or less institutionalized relationships of mutual acquaintance or recognition” 

(Bourdieu, 1985). This means that having a social network gives an individual access 
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to more potential and/or realized resources than they would have in isolation. These 

socially-accessible resources are social capital. Coleman expanded on this definition 

in his 1988 work, describing social capital as a “variety of entities with two elements 

in common: they all consist of some aspect of social structures, and they facilitate 

certain actions of actors – whether persons or corporate actors – within the structure” 

(Coleman, 1988). This extends the definition introduced by Bourdieu by clarifying 

that social capital need not simply be limited to the exchange or potential exchange of 

resources, but can take the form of facilitating any action, whether resource-oriented 

or more abstract. This definition also emphasizes that social capital need not take 

place in a person environment, but that corporate relationships can generate social 

capital as well.    

In 2000, Putnam transformed social capital literature by theorizing that it has 

two sub-categories: bonding social capital and bridging social capital. He summarizes 

this distinction by saying “bonding social capital constitutes a kind of sociological 

superglue, whereas bridging social capital provides a sociological WD-40” (Putnam, 

2000). Bonding social capital is gained from relations in more insular settings, 

typically among fairly homogenous groups of people. This helps to foster a strong 

group identity and a great deal of loyalty between group members. However, because 

of the insular nature of these communities, they tend not to have many social relations 

outside of the group. As a result, very little is brought into the network from the 

outside, which limits the group’s potential pool of resources (Putnam, 2000). This 
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type of social capital is more commonly observed in poorer communities (Elliott et 

al., 2010a) and low-functioning states (N. Adger, 2003).  

Bridging social capital tends to develop in more heterogeneous groups that 

have more outside connections, often to more powerful elements of society such as 

governance institutions, civil society, and the private sector. This naturally creates 

significant opportunities for the members of such groups, as they have access to a 

much wider range of outside resources. This is sometimes referred to as networking 

social capital in the literature (N. Adger, 2003). It is associated with wealthier 

communities (Elliott et al., 2010a), well-functioning states, and formal collective 

action (N. Adger, 2003). Evidently, these two different types of social capital bring 

very different forms of benefits and opportunity.  

 Although social capital might seem to arise naturally, Portes (1998) stresses 

that the social networks that foster social capital must not be seen as an inevitability, 

but rather “constructed through investment strategies oriented to the 

institutionalization of group relations, usable as a reliable source of other benefits” 

(Portes, 1998). Although the unequal distribution of social capital in our society is in 

part attributable to unearned privilege, the social networks that provide returns to 

their members have to be developed, fostered and nurtured. Further, it is important to 

recognize that although social capital is a mechanism through which individuals can 

derive gains, there must nonetheless be a transfer of benefits, and such a transfer 

demands both a recipient and a donor (Portes, 1998).  
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2.3.2 Social Capital, Resilience and Recovery 

Social capital has significant explanatory power with regards to community-

level resilience and recovery after a disaster or shock. The primary way that social 

capital impacts recovery trajectories is that it enables community organization in the 

aftermath of a disaster. This is particularly true in groups exhibiting strong bridging 

social capital because they often have networks that reach beyond the disaster-struck 

area, thereby giving them access to the much-needed resources and support necessary 

for a speedy recovery. This is demonstrated in Consoer’s study of the role of social 

capital in Vermont after Tropical Storm Irene, where the organization of informal 

‘recovery groups’ in storm-impacted communities was driven by social capital. As a 

result, these communities enjoyed “proliferating social capital and access to high 

value resources” (Consoer & Milman, 2016a). Although communities that failed to 

organize eventually caught up to the high-social capital communities’ recovery 

progress, they required increased government efforts in order to close the recovery 

gap. 

Bonding social capital also plays a role in the recovery process, but it 

primarily helps residents to cope with the short-term effects of a shock. Communities 

that are exclusively rich in bonding social capital tend to be tightly knit, homogenous 

and closed off. As a result, when a disaster hits, these communities will only have 

networks connecting them to others who are also affected by the disaster. Although 

these connections are certainly important with regards to dealing with the immediate 
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aftermath of a disaster, they are less useful in mobilizing the resources needed for a 

successful recovery effort (Aldrich, 2012a). 

Some literature on social capital takes the position that it has great potential to 

improve social well-being including recovery outcomes (Jordan, 2014). For example, 

Adger (2003) links social capital with health outcomes, stronger governance, and 

economic growth, going so far as to call collective social capital and social networks 

a public good (N. Adger, 2003). A recent study on the recovery process following the 

2010 flooding in Pakistan, found that the levels of social capital and social support 

enjoyed by the victims of the floods was directly correlated with their quality of life, 

ability to readjust and optimism about the future following the natural disaster. As a 

result, the authors stressed that disaster managers must make a concerted effort to 

preserve social networks during the recovery process (Akbar & Aldrich, 2018). 

However, other authors are more reserved in their analysis of the effects of 

social capital, acknowledging that along with its clear benefits as a social transmitter 

of resources, it also has clear drawbacks. Indeed, Aldrich explicitly states that social 

capital ought not be thought of as a public good, because it does not benefit everyone. 

Rather than a solution in itself, it is simply a tool by which a solution can, in some 

cases, be facilitated. It is “a potential source of benefits rather than a benefit in itself” 

(Aldrich, 2012a). 

 In this vein, some argue that viewing social capital as the social networks that 

transmit opportunity and resources is an overly simplistic analysis (Barnshaw & 

Trainor, 2007). The number of social networks to which an individual has access is 
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perhaps less important than the ‘quality’ of their networks, which is largely 

determined by the way that cultural and economic power is distributed throughout 

society. A person who has a very large network that is made up of individuals who 

lack any significant form of power is likely to be worse off than a person whose 

network is smaller but filled with elites. In that respect, social capital is not actually 

capital in itself, but rather the way that social connections can facilitate an 

individual’s access to capital. 

Lin (2001) notes that people’s social networks tend to be filled with others 

who share a similar economic and/or cultural status in society. This creates a system 

in which the most privileged people in society have access to a network full of 

similarly powerful people with whom to share resources and opportunities. While the 

cultural and economically powerful are able to use social capital to secure high-

paying jobs and political influence, social networks in more marginalized 

communities are likely to only have the resources necessary to help each other with 

more basic day-to-day coping. This results in a consolidation of power within the 

upper-echelons of society, thereby exacerbating pre-existing social and economic 

divides (Lin, 2001a). 

 There are also concerns that strong social capital within a community can lead 

to significant social and control exerted over its members (Portes, 1998). Bonding 

social capital in particular can perpetuate narratives within the group, which may 

ultimately reinforce incorrect information and entrench damaging societal norms 

(Chamlee-Wright & Storr, 2011; Wolf, Adger, Lorenzoni, Abrahamson, & Raine, 
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2010). In a similar way, social capital can manifest in negative ways within groups 

that are brought together through shared struggles and feelings of rejection and 

isolation from mainstream society. This can lead to anti-social and even violent 

behavior, which is made more extreme by the social bonds shared among these 

groups. The high prevalence of gangs in poor and disenfranchised neighborhoods is 

an example of this phenomenon (Bourgois, 1995).  

 Taken together, the literature warns that a blind trust in the positive benefits of 

social capital is unadvisable. Oftentimes, when policy makers rely too heavily on it as 

a vehicle for recovery,“[i]ts utility and practical application are hampered by a lack of 

attention to social relations and power inequalities, which risks reinforcing 

vulnerability” (Jordan, 2014). Like all other forms of capital, its effectiveness will be 

a function of the distribution of power, privilege and wealth in society. Although it is 

certainly a tool that can be incredibly useful if wielded with care, it is crucial for 

policy makers to anticipate its shortfalls and plan for equalization efforts in order to 

ensure that its benefits are enjoyed more equally across society.  

 Aldrich presents an incredibly convincing case for both the importance of 

social capital and its potentially exclusionary nature in disaster recovery in a study of 

differential recovery following the 2004 Indian Ocean Earthquake and Tsunami. 

Different communities experienced differential rates of recovery, and the fast 

recovering communities were all observed to have local councils. These councils had 

long been an important source of bonding social, but in the aftermath of the tsunami 

they transformed into important engines of bridging social capital. They acted an 
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intermediary between their communities and externally-run aid efforts by 

communicating community requests, advocating on behalf of the community, and 

storing and distributing aid. In doing so, they enabled community-level collective 

action. (Aldrich, 2012a). 

The strong bridging social capital facilitated by community councils improved 

the recovery outcomes of the communities as a whole, but not everyone benefited 

equally from their efforts. Prior to the tsunami, the councils had primarily been a 

source of bonding social capital and despite the development of bridging networks 

after the tsunami, the exclusionary nature of the bonding social capital persisted. 

Because the councils took control of aid storage and distribution, they also had the 

power to exclude certain out-groups in the community from receiving aid for which 

they qualified, ultimately reinforcing and exacerbating vulnerability among members 

of these out-groups (Aldrich, 2012a). The same phenomenon was observed following 

a 2009 cyclone in coastal Bangladesh. Although social networks played an important 

role in recovery at all dimensional and temporal scales, it also allowed for funds to be 

funneled to well-connected local elites rather than those who had the greatest need 

(Masud-All-Kamal & Monirul Hassan, 2018). 

 In Elliott’s (2010) study of neighborhood resilience and recovery after 

Hurricane Katrina, social capital manifested in different ways, but produced similar 

results. The study found that inequalities in social capital were magnified as residents 

prepared for the disaster in the days leading up to the hurricane and coped with the 

damages in its aftermath. Residents from wealthier neighborhoods were able to access 
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what is referred to as ‘translocal ties,’ which are effectively bridging social capital – 

connections outside of the city that were able to offer assistance during and 

immediately following the hurricane and support throughout the long-term recovery 

process. The paper hypothesizes that either lower income neighborhoods lack these 

translocal connections altogether, their translocal connections are less equipped to 

help, or they are unable to access these connections during times of crisis (Elliott et 

al., 2010a).   

 In some contexts, social capital has been a driver of exclusively negative 

outcomes. As discussed above, one of the many functions of social capital is the 

proliferation of narratives, which has a significant impact on people’s outlooks, and 

by extension their outcomes (Chamlee-Wright & Storr, 2011). A study of the way 

social networks impact individual responses to heat waves found that bonding social 

capital among the elderly may actually increase their vulnerability to heat waves. 

Interviews with elderly residents of London and Norwich indicated that they did not 

see heat waves as a legitimate threat to their health and wellbeing and felt that they 

were adequately equipped to cope with soaring temperatures. The authors 

hypothesize that narratives of resilience and self-reliance are transmitted and 

reinforced through social networks. This leads to network members over-estimating 

their ability to withstand hazards and being very reluctant to ask for outside help, 

even when it is desperately needed (Wolf et al., 2010). 

 Taken together, the literature demonstrates that social capital can be a 

powerful engine of recovery in the aftermath of disaster. Well-organized communities 
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are capable of collective action that helps them harness outside resources and begin 

the recovery process as quickly as possible. With this in mind, it is important to foster 

the development of community groups prior to disaster in order to build resilience, 

and to prioritize keeping communities intact during the recovery process. However, it 

is unwise to put too much faith in this process. Without oversight and intervention, it 

is likely that social-capital driven recovery will exclude community out-groups and 

favor wealthier individuals that have better access to translocal connections, thereby 

exacerbating the circumstances of society’s most vulnerable (Elliott, Haney, & Sams-

Abiodun, 2010b; Jordan, 2015; Lin, 2001b). In addition, bonding networks can 

proliferate the spread of inaccurate and unsafe information and coping strategies, 

leading members to miscalculate risk and choose not to seek help when needed. 

Efforts must be made to create well-connected bridging networks throughout all 

facets of society to ensure a more equitable flow of information, resources, and aid. 

2.3.3 Measuring Social Capital 

 In order to link the presence of social capital to concrete outcomes, it is 

important to have a conceptual framework for social capital that can be empirically 

evaluated. Measuring social capital is a difficult task, as it requires that the researcher 

operationalize a very abstract idea: the presence and quality of social networks and 

social bonds. As with resilience, taking a quantitative approach to measurement is 

attractive because it can be compared, indexed and applied to quantitative models but 

this necessitates the challenging task of selecting proxies and metrics that can be 

validated and are not overly correlated with other potential influencers of recovery 
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outcomes, such as income. These issues can be more easily addressed with qualitative 

approaches to data collection, but these methods have the downsides of lacking 

scalability, comparability and straightforward applications to quantitative analyses. 

 Questions have been included in a number of large-scale surveys that are used 

by researchers to capture social capital. The World Values Survey (1981-1995) was 

designed by Ronald Inglehart to better understand the impacts of culture on 

development. It asks respondents whether they belong to associations, and whether 

they are actively involved in them, which serves to partially capture social capital. It 

does not, however, ask about the types of groups to which the respondents are 

associated, which would be important in distinguishing between bonding and 

bridging networks (Narayan & Cassidy, 2001).  

 In 2000, the Harvard Kennedy School (Saguaro Seminar) launched a massive 

telephone survey initiative called the Social Capital Community Benchmark Survey, 

asking 30,000 Americans about their civic engagement with the goal of better 

understanding the way that Americans connect to each other. The questions on the 

survey touched upon neighborly trust, local political participation, membership in a 

number of various organizations, and leadership positions within the community. 

Evidently, this survey addresses the lack of specificity that was problematic in the 

World Values Survey. A follow-up survey was performed in 2006 that returned to 11 

of the same communities (KSG, 2000). 

 In recent years, the US Census Bureau has launched the Current Population 

Survey Civic Engagement Supplement, a nation-wide survey that attempts to 
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“provide information on the extent to which our nation’s communities are places 

where individuals are civically active”. The survey is by far the most expansive and 

up to date data set on American social capital, and was performed by telephone in 

November 2008, 2010, 2011, and 2013. Like the Harvard survey discussed above, 

this survey asks participants questions about whether in the last year they had 

involved themselves in local politics, participated in local clubs and organizations 

(distinguishing between different kinds) and taken on leadership roles. Respondents 

are also asked how often they spent time with friends, talked to neighbors and helped 

their neighbors. As a set, these questions paint a fairly accurate picture of the 

presence of bridging and bonding social capital in American communities today 

(Ruggles, Genadek, Goeken, Grover, & Sobek, 2015). 

 An example of operationalizing this sort of survey instrument in order to draw 

quantitative conclusions about the nature of social capital can be found in Guillen et 

al.’s 2010 paper. Questions from the European Social Survey, which focused on the 

amount of formal and informal contact people had with others over a set period of 

time, were used as a proxy for social participation, and the formal/informal distinction 

was used to roughly distinguish between bridging and bonding social capital. This 

was ultimately an imperfect index, because it only measured one component of social 

capital in a fairly simplistic way, but the paper indicates that the measure could likely 

be improved if social trust was included as an indicator of social capital alongside 

participation (Guillen, Coromina, & Saris, 2011). 
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 Other researchers have worked to develop more complex quantitative indices 

for measuring social capital. The Index of National Civic Health was developed in 

2000 in response to concerns that the American population was becoming 

increasingly disengaged. It proposed indicators in the categories of political 

engagement, trust, associational membership, security and crime. Although this 

index, as the name suggests, is designed to measure more than just social capital, its 

associated report explicitly names social capital as a benefit of civic engagement. 

Unfortunately though, this index was only proposed and never fully operationalized 

due to a lack of access to data on associational membership (Bennett & Nunn, 2000). 

 Despite the big data approaches to measuring social capital that were 

described above, often times the literature relies on small primary data in order to get 

a more complete picture of the presence of social capital in a much more localized 

setting (Masud-All-Kamal & Monirul Hassan, 2018; Ruef & Kwon, 2016; Sadri et 

al., 2018). Some researchers use survey instruments in order to collect data that can 

be used for quantitative analysis such as a study on earthquake recovery in Japan, 

which used an online survey to investigate the way that social capital impacted the 

efficiency of waste management and recovery in the aftermath of an earthquake. The 

survey asked questions about trust, interactions with neighbors and friends, and social 

participation (Kawamoto & Kim, 2016). Similarly, a study on the way that social 

capital impacts the public acceptability of different adaptation policies used a mail 

survey to ask questions about social trust, institutional trust, networks and reciprocity. 

Perhaps this study’s most unique contribution was its approach to reciprocity: 
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respondents were asked whether they believed that their neighbors, family and close 

friends would help out if the respondent’s home was in danger of flooding. This 

captures the degree to which an individual feels that they can rely on their 

community, which is central to the concept of social capital (Jones & Clark, 2014). 

Qualitative methods such as open-ended interviews and focus groups remain 

the most common way that researchers study social capital. Although this limits the 

extent to which quantitative analysis is possible, these exploratory approaches allow 

for a more robust understanding of the multidimensional nature of social capital and 

lend themselves well to the theory-building that is necessary in order to strengthen 

and validate more quantitative approaches. For example, as discussed above, Wolfe et 

al. used semi-structured interviews to explore the way that UK seniors and their social 

contacts coped with heat wave. Qualitative coding software was used to draw 

common themes and narratives from the interviews, and illustrative quotes were used 

to emphasize key points (Wolf et al., 2010). Jordan’s study of the role of social 

capital in disaster resilience in Bangladesh also used semi-structured interviews 

accompanied by focus group discussions (Jordan, 2014). Again, no quantitative 

methods were employed, but instead interpretive analysis and illustrative quotes were 

used to develop a narrative.  

2.4 Gaps in the Literature, Emerging Questions and Research Design 

 When taken together, several important and unanswered gaps emerge in the 

literature that was surveyed in this chapter. The literature is unclear on how recovery 

can best me measured so as to capture its multi-scalar nature, and there is a lack of 
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knowledge about the linkages between recovery processes at different scales and the 

nature of their interdependencies. Although the literature has established that in 

generally, socio-economic inequalities impact recovery outcomes, little research has 

been done specific on the impacts of these socio-economic inequalities at specific 

scales of recovery. Finally, the literature would benefit from more focus on how best 

to develop recovery policies that put a clear understanding of multi-scalar recovery at 

the forefront.   

 The literature is clear on the fact that recovery takes place concurrently on 

many dimensional, spatial and temporal scales. This makes it a very challenging 

subject to study quantitatively, because numerical representations of the recovery 

process typically fail to capture the complexity of the operation. As a result, the 

literature has a tendency to focus on specific dimensions of recovery to the exclusion 

of others. This makes it difficult to develop a broad and robust understanding of what 

influences recovery and how communities interact with and engage in the recovery 

process.  

The research design that guided the development of this dissertation seeks to 

expand on the gaps in the literature that have been identified above. In particular, it 

will seek to answer the following questions: (1) What metrics can be used to measure 

recovery at multiple scales? (2) How do socio-economic status, civic engagement and 

social capital, when taken together and as separate concepts, impact recovery at 

multiple scales? (3) How do the different dimensional, temporal and spatial scales of 

recovery interact? (4) How can policy members improve recovery outcomes? 
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The research was designed with the primary goal of examining recovery at 

multiple scales, while simultaneously considering the social and economic forces and 

community behaviors that influence recovery outcomes. As a result, the three 

chapters that follow propose new ways of conceptualizing and quantifying recovery 

and analyze the way that neighborhood characteristics and community engagement 

influence the recovery process at multiple dimensional and temporal scales.  

Chapter 3, the first analytical chapter, considers the interaction between 

vulnerability and recovery by studying power outages and restoration following 

Hurricane Isaac in Louisiana. This approach uses power restoration as a metric by 

which to better understand short-term recovery of a specific infrastructure system, 

building a model for recovery that takes into account antecedent conditions, impact, 

hazard and prioritization.   

Chapter 4 considers 311 requests in Houston TX as a potential proxy measure 

for civic engagement and social capital. This data is spatially precise, detailed and 

publicly available, so it is of great potential utility for social science researchers if it is 

properly understood and utilized. This chapter works to develop a more nuanced 

characterization of this data by analyzing request volumes across the City of Houston 

and identifying the neighborhood characteristics that influence proclivity to contact.  

Finally, in Chapter 5, the 311 data is used to better understand system-level 

recovery and community engagement in the recovery process in Houston TX 

following Hurricane Harvey in 2017. The chapter compares neighborhood level use 

of 311 services prior to Hurricane Harvey to the way it was used for storm-related 
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concerns in the weeks directly following the storm. The temporal scale of the analysis 

is then extended by examining decreases in storm request volume over time, testing 

whether Zip Code Tabulation Areas (ZCTAs) with higher contact volumes 

immediately following the storm continued to make frequent storm-related requests 

as recovery progressed throughout the city.  
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3. Post-Disaster Power Recovery  
 Power outages are a very common impact of hurricanes in the United States, 

so outage data is a valuable tool by which to better understand the way that hurricanes 

affect built infrastructure in United States, and the way that the short-term 

infrastructure recovery process is managed in the aftermath of a natural disaster. In 

this paper, I perform a quantitative analysis on peak outages and total power recovery 

time in a given spatial unit in order to investigate whether the infrastructure damage 

and long recovery times that results from a hurricane disproportionately impacts 

socio-economically vulnerable populations and if so, whether this discrepancy is the 

result of vulnerable populations living in more hazard-prone spaces. 

 The literature indicates that in general, socio-economically vulnerable 

communities tend to experience worse recovery outcomes than their more fortunate 

counterparts. These poor outcomes manifest in the form of slower recovery times, and 

in some cases, a failure to ever return to the pre-disaster baseline. Using power 

restoration data, one would expect to observe that socio-economically vulnerable 

communities experience slower power restoration. This would be particularly 

troubling from a policy standpoint because the hardships caused by power outages are 

greater in low-income neighborhoods, where households have less access to 

generators and do not have the financial means to cope with the power outage by 

eating in restaurants and staying in hotels until their electricity is restored.  

 When approaching the task of restoring widespread outages, utilities claim to 

take a standardized and utilitarian approach, first focusing on fixing the issues that 
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will restore power to the most clients possible as quickly as possible (Xu et al., 2007). 

Earlier efforts are also focused on restoring outages that impact the provision of vital 

services. As a result, neighborhoods on the same grid as local emergency services or 

major grocery stores are likely to enjoy faster restoration times than others in the 

community (Chang, McDaniels, Mikawoz, & Peterson, 2007; Maliszewski & 

Perrings, 2012). However, there is a level of subjectivity inherent to the decision 

making process that could cause inequalities in outcomes beyond those that would be 

expected based on number of outages, proximity to high-priority services, and the 

extent of the damage.  

Further, it is possible that even if the power restoration strategy is followed 

with complete objectivity and impartiality, lower income communities might 

experience systematically slower restoration times if they are less likely to host the 

health, emergency and retail infrastructure that leads to power restoration being 

prioritized. For example, low-income communities are much less likely to be home to 

grocery stores (R. E. Walker, Keane, & Burke, 2010). As a result, it is important to 

consider not only unequal recovery when controlling for impact and infrastructure, 

but also to investigate the possibility that wider and more systematic inequalities and 

injustices impact the recovery process. 

The primary research questions that I seek to answer in this chapter are (1) 

does socio-economic inequality between communities have an effect on the short-

term damages that come about as a result of a natural disaster? (2) If so, are these 

effects largely explained by differences in storm strength between communities? (3) 
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Does socio-economic inequality between communities have an effect on the speed at 

which short-term recovery processes are carried out? (4) If so, can these effects be 

largely explained by differences in storm strength and/or presence of high priority 

infrastructure? 

This paper begins with an overview of the electrical system in the United 

States, with a particular focus on outages and the power restoration process. Next, it 

provides context about the impacts of Hurricane Isaac in Louisiana, and the post-

disaster recovery process in the state. I then discuss the data and methods used in the 

quantitative analysis, along with the results. The paper concludes with a discussion of 

its findings and the potential policy implications of the research.  

3.1.1 The Electric System, Power Outages and Restoration 

 Power system reliability is carefully measured and monitored across the 

United States. Investor-owned, cooperative and municipal utilities are all required to 

report any power outage lasting longer than 5 minutes to the US Energy Information 

Administration (EIA). On average across the United States customers experience 1.3 

interruptions per year, and lose power from the utility for 240 minutes, or four hours 

per year. Although some customers have backup generators that power their 

households during the outage periods, most have no electricity during this time 

(Darling, David & Hoff, Sara, 2018). Major environmental events such as storms, 

floods and heat waves account for more than half of the total average time without 

power; when they are excluded the average customer experiences 112 minutes of 

power outages per year.  
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Power outages stemming from major environmental events tend to be present 

differently than standard interruptions, and as a result require a different restoration 

strategy. Outages that are not caused by a major event tend to be the result of a single 

component failure. As a result, most generation facilities continue to function as 

normal and transmission and distribution infrastructure is unaffected. In contrast, 

natural disaster related outages usually result in multiple faults and disruptions 

occurring concurrently in the generation, transmission and distribution branches due 

to widespread system damage. Meanwhile, other infrastructure systems such as 

transportation and telecommunication networks will likely be damaged as well, and 

the interdependence between infrastructure systems means that this will present a 

significant obstacle in restoring any and all of the damaged systems (Wang, Chen, 

Wang, & Baldick, 2016).  

The Edison Electric Institute outlines the seven general steps of power 

restoration after a major event as follows (Edison Electric Institute, 2014): 

1. The utility ensures that any downed or damaged lines are no longer active, in 

order to prevent fires, injuries or death. 

2. Power generation plants are assessed for damage and repaired as necessary. 

3. Transmission lines are assessed for damage and repaired. 

4. Substations are brought online. 

5. Power is restored to essential services. 

6. Lines to large service areas are repaired. 

7. Lines to small groups and individual homes are repaired.  
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Power outages are a common impact of natural hazard events, but they are 

also very disruptive and even dangerous. Having access to reliable power is critical 

for both short and long-term recovery efforts, as well as the normal functioning of 

nearly every sector of society; a UK Department of Health study concluded that 

electricity is “the most vital of all infrastructure services… without it most other 

services will not function”. Even brief outages can cause negative health, social and 

economic outcomes (Campbell, 2012).  

A study on the impacts of a major, extended power outage in New York City 

in early August 2003 found that during the blackout, mortality increased for 

accidental and non-accidental (such as disease related) deaths. Further, mortality 

remained slightly increased for the rest of the month even after the power was 

restored, indicating that the outages did not just speed up eminent deaths (G. B. 

Anderson & Bell, 2012). Carbon monoxide poisonings increase during power outages 

due to incorrect operation of backup generators, and without power it becomes 

difficult to maintain proper food safety standards, causing an increase in 

gastrointestinal diseases. Power outages put people in danger of overheating or 

freezing, depending on the climate, and they can lead to social isolation of vulnerable 

groups, which compounds all other present risks (Klinger, Landeg, & Murray, 2014).  

Disruption to power supply also causes economic losses to firms, households 

and the government. They cause firms to produce less, and in some cases lose prior 

output, such as computer files due to an unexpected shutdown. Food spoilage is a 

significant loss for some businesses and nearly all households, and households also 
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will experience losses of their leisure time. Although the economic losses brought 

about by outages will vary greatly depending on the length of the outage and the 

season and time of day at which the outage occurs, a Dutch study found that the 

losses associated with a power disruptions far exceeded the cost of the electricity that 

failed to be delivered (de Nooij, Koopmans, & Bijvoet, 2007). 

Due to the costs, risks and inconveniences associated with power outages, 

efforts are made to reduce their frequency and duration making power infrastructure 

harder and more resilient. Hardening in this context refers to activities that physically 

change the infrastructure in order to make it more durable in the face of specific 

threats. To prevent outages due to flooding, equipment is elevated and pumps are 

installed and to make the system more capable of enduring high winds, power lines 

will be rebuilt and reinforced (Wang et al., 2016).  

After major storms, there is often also talk from electricity customers, local 

officials and utility commissions about whether utility companies in the United States 

should work to phase in undergrounding, which is the process of burying power lines, 

making them less vulnerable to outages. However, the undergrounding process is 

very expensive (Hall 2013). Studies have estimated that on average, underground 

cables are 10-20 times more expensive to install (Campbell, 2012). Further, although 

underground lines are generally less vulnerable to extreme weather, they are not 

immune. In areas where flooding and storm surges are more of a concern than high 

winds, undergrounding actually increases the risk of damage, and when underground 

lines are damaged, the repairs are lengthier and more expensive. As a result, studies 
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conclude that in many cases, undergrounding is simply not worth the cost (Edison 

Electric Institute, 2014).  

 Vegetation management is a hardening technique wherein utilities proactively 

clear tree and plant growth near power lines to reduce the likelihood of the vegetation 

disrupting the power supply, usually caused by trees and branches falling and 

damaging lines. This is the most expensive recurring maintenance practice for 

utilities, but research indicates that the benefits outweigh the costs. It is also 

recommended that an effort be made to plant vegetation that is specifically known not 

to cause problems near power lines, generally because it does not grow to be very tall. 

This requires that utilities coordinate with municipalities and private property owners 

in consultation with trained arborists (Edison Electric Institute, 2014).  

Broadly speaking, it is found that US utilities take appropriate action on 

infrastructure hardening, but even their best efforts cannot completely eliminate 

outages caused by extreme weather incidents. As a result, resilience measures must be 

taken to ensure that following an interruption power restoration happens as efficiently 

and effectively as possible. The most important action that utilities can take in this 

regard is ensuring that they have a sufficiently large labor force and available 

equipment so as to quickly make the necessary repairs. This requires accurate 

predictions of upcoming weather events, and the securing of additional crews as 

needed. The additional labor force can be generated by hiring contractors, or by 

mutual assistance agreements (MAAs). MAAs are voluntary agreements made 

between electrical utilities from across the country wherein members commit that in 
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the event of a major electrical outage the unaffected utilities will deploy their linemen 

to assist in restoration efforts. There are seven Regional Mutual Assistance Groups 

throughout the United States that manage the majority of the country’s mutual 

assistance agreements. These groups take on a valuable coordination role by 

identifying available workers and assisting in the logistics of moving them to where 

they are needed (Campbell, 2012).  

3.1.2 Hurricane Isaac 

Hurricane Isaac began as a tropical storm on August 21, 2012 in the Atlantic 

Ocean. On August 28, the tropical storm was upgraded to a Hurricane, and a few 

hours later it made its first US landfall on Louisiana’s southeast coast in Plaqumines 

Parish (Berg, 2013). The following day on August 29, it made landfall for a second 

time west of Port Fouchon. The storm moved slowly through the state, causing rain 

and high winds to persist for up to 56 hours (Miles 2014).  

The persistent high winds caused massive power outages throughout 

Louisiana that peaked on August 30 when 43% of utility customers were without 

power. In total, 900,000 customers experienced power outages. This is on par with 

the number of outages following Hurricane Katrina in 2006 and Hurricane Gustav in 

2008. Some of the hardest hit parishes experienced up to 90% power loss and 

restoration efforts took over 10 days.  

Despite the fact that Hurricane Isaac caused power outages on a comparable 

scale to some of the region’s most destructive and devastating storms, its other 

impacts were relatively mild.  Wind damage to buildings was minor and although 
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some flooding did occur, the federal levee system, which was put to the test for the 

first time since Hurricane Katrina, generally worked as intended, protecting the more 

populated area of the state from high waters, so water damage was isolated and 

minimal. As a result, there was no wide-spread evacuation of the region, so people 

generally remained in their homes for the duration of the storm and recovery period 

(S B Miles, Jagielo, & Gallagher, 2016). 

The fact that the electric system was severely damaged but other infrastructure 

systems survived the storm relatively unscathed makes Hurricane Isaac a unique case 

study. When a hurricane causes more widespread and varied damage, power 

restoration becomes a much more complex and interdependent process. Power crews 

must wait for flood waters to subside in order to safely restore electricity, and they 

must work amid the breakdown of various other infrastructure systems. In most 

regions, those were not significant obstacles after Hurricane Isaac (Scott B. Miles & 

Jagielo, 2014). 

 The power restoration process was a massive undertaking, which involved 

over 12,000 utility workers and 4,000 support personnel from 25 states, 20 mutual aid 

companies and 138 contractor companies. The fact that residents remained in their 

home during the restoration process added an extra layer of scrutiny to the process, 

and the utilities were criticized for poor planning and coordination. For example, 

Entergy did properly coordinate feeding and housing for the outside crews, and 

ultimately gave them lodging that was a two-hour commute from their primary work 
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sites. As a result, four hours were wasted every day as crews were bused back and 

forth from work (S B Miles et al., 2016).   

Federal regulations prohibit utilities from using bucket trucks when winds are 

above the wind ratings provided by the truck manufacturers. The fleet used the 

utilities in Isaac restoration efforts were rated at 30 mi/h. The hurricane lingered over 

the state for an extended period of time, so it took 2.5 days for the wind speeds to 

subside so that the repair efforts could get underway. The crews used this time to 

scout out damages and stage themselves so they could begin repairs as soon as 

permitted by federal regulations (S B Miles et al., 2016).  

 The fact that people stayed in their homes during the hurricane caused 

widespread traffic congestion following the storm. This congestion slowed down the 

restoration process, because it hindered the utilities’ ability to move crews and 

supplies around the region. Stuck in the Louisiana August heat without power, people 

took to their cars to enjoy air conditioning, observe the extent of the damages in their 

communities and search for operational gas stations.  

Indeed, the power outage created a major fuel shortage in the region. Almost 

all gas stations in the New Orleans region were without power, and most did not have 

generators, so their pumps were inoperable. Grocery stores faced similar problems, 

and it is estimated at least $10 million of stock was lost to spoilage. In response, the 

state government spent a considerable amount of money supplying and delivering 

fuel and generators to local businesses so that they could reopen and supply their 

communities (Scott B. Miles & Jagielo, 2014). 
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Utilities and emergency services in the region had learned from Hurricane 

Katrina and Gustav and were generally well prepared with generators in order to 

minimize disturbances caused by power outages. There were no boil orders in the 

region, because water treatment plants made it policy to have a generator, fuel and a 

staff member on site during major weather events to ensure the continuation of 

services. Tier 1 hospitals were also all equipped with generators and 2-3 days of fuel 

and they proactively began running their generators before the storm began. 

However, some Tier 2 hospitals did not have generators and were required to 

evacuate, along with many nursing homes across the region (Scott B. Miles & 

Jagielo, 2014).  

Hurricane Isaac ultimately caused five direct deaths in the United States, three 

of which were in Louisiana. Despite the fact that the storm was quite limited in its 

geographical scope, it is estimated to have caused $2.35 billion in damages across the 

United States, $970 million of which was insured. A further $407 million was paid 

out through the National Flood Insurance Program. In response to the hurricane, the 

USDA issued over 263,000 Disaster Supplemental Nutritional Assistance Program 

(DSNAP) cards, valued at over $100 million and unemployment claims peaked at 

10,000 which is on par with the levels of claims filed after Hurricane Gustav. The 

storm damaged or destroyed 4500 distribution poles, 2000 distribution transformers, 

95 transmission lines and 144 substations belonging to Entergy, costing an estimated 

$500 million in repairs (Scott B. Miles & Jagielo, 2014).  
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3.2 Data 

 This paper utilizes power outage data that was scraped from utility websites in 

Louisiana in the aftermath of Hurricane Isaac. The data collection was performed by 

Dr. Seth Guikema from University of Michigan. During major outages, utilities are 

required to regularly update their website with the number of customers without 

power in a given region, and using scraping techniques, Dr. Guikema’s team retrieved 

this data from Entergy, the electrical utility that provides power to the majority of the 

state of Louisiana in real time, providing a detailed view of power restoration 

following Hurricane Isaac. The data outlines the number of households without power 

in 15-minute intervals at the zip code level. I was provided with a cleaned version of 

the data which included, at the Zip Code level, the total number of households 

without power and the time in minutes that it took to return to three bench marks: 

50% restored, 80% restored and 95% restored.  

Although this data was measured at the Zip Code level, socio-economic data 

collected by the US government is spatially aggregated by Zip Code Tabulation Areas 

(ZCTAs). Similarly, the hazard data is spatially generated and modeled using the 

longitude and latitude of ZCTA centroids. The ZCTA is a geographical unit that was 

developed by the Census Bureau for the 2000 Census in response to continued user 

requests for statistical data by Zip Code. Zip Codes are not necessarily continuous 

polygons, as they are assigned by the US Postal Service and designed to optimize 

postal delivery routes rather than to facilitate the collection of data or spatial analysis. 

As a result, the Census Bureau converted Zip Codes into polygons that can be used 
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for spatial analysis by defining all the Zip Codes on a block, and then using the most 

frequently appearing Zip Code as the entire block’s ZCTA.  

The Zip Code and the ZCTA for a given address are the same the vast 

majority of the time, but in some cases, multiple Zip Codes are combined into a 

single ZCTA. Initially, this presented some problems during the data cleaning process 

because some Zip Code level dependent variable observations did not have a 

corresponding ZCTA and therefore did not have socio-economic and hazard data. In 

order to harmonize these discrepancies, I created a dataset with each Zip Code and its 

corresponding ZCTA and then merged this with the data set that included Zip Codes 

and the outage data.  

The data used to generate the independent variables came from a variety of 

sources, designed to consider the role of socio-economic inequalities on impact and 

recovery. The rest of the variables were included to control for other factors 

influencing the speed of recovery, and are sorted into four categories: hazard, 

exposure, priority, and spatial (Table 3.1). Variable selection was carried out in 

consultation with the relevant literature on modelling power outages and restoration 

(Guikema, Quiring, & Han, 2010; Han et al., 2009; Mcroberts, Quiring, & Guikema, 

2016). 
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Table 3.1: Data Sources for Independent Variables  

Variable name Variable source Variable type Analysis 
Unemployment rate Bureau of Labor 

Statistics 
Socioeconomic 1,2 

Median household income American 
Community Survey 

Socioeconomic 1,2 

Population 65+ years  American 
Community Survey 

Socioeconomic 1,2 

Educational attainment American 
Community Survey 

Socioeconomic 1,2 

Percent below poverty rate American 
Community Survey 

Socioeconomic 1,2 

Maximum wind gusts (m/s) Stormwindmodel  Hazard 1,2 
Gust duration Stormwindmodel  Hazard 1,2 
Precipitation NASA Giovani Hazard 1,2 
Flood Gauge Ratio USGS Storm Gauges Hazard 1,2 
Soil moisture NASA Giovani Exposure 1,2 
Total Households US Census/ Exposure 1 
Maximum outages Dr. Guikema Priority 2 
Emergency Infrastructure USGS Priority 2 
Health Infrastructure USGS Priority 2 
Grocery stores Zip Codes Business 

Patterns 
Priority 2 

Queen’s contiguity lag of 
maximum outage 

Generated  Spatial 1 

Queen’s contiguity lag of 
time until 95% restored 
(continuous) 

Generated  Spatial 2 

 

3.3 Methods 

3.3.1 Analysis 1: Determinants of Maximum Outages 

 The models in this analysis examine the effects of community socio-economic 

well-being on the extent of damages caused by of Hurricane Isaac to electricity 

infrastructure across Louisiana. Specifically, they seek to identify whether any of the 

socio-economic indicators outlined in Table 3.2 will have an effect on the number of 
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power outages that occurred at the ZCTA level. We test this both while controlling 

for the storm strength, and while omitting these controls in order to assess whether 

differential impacts are because communities of a given socio-economic status are 

clustered in areas that experienced more intense weather as a result of the hurricane.  

The dependent variable used in this analysis is the Maximum Outage measure 

that was included in Dr. Guikema’s scraped data. This represents the total number of 

customers that experienced a power outage during the measurement period.  As 

discussed, above, when converting Dr. Guikema’s data from Zip Codes to ZCTAS, 

there were cases when multiple Zip Codes were assigned to a single ZCTA. To fix 

this discrepancy, I summed the maximum number of outages for each Zip Code in the 

ZCTA, generating a ZCTA level total outage figure. 

Maximum Outage is a count measure, and as is often the case with count 

variables it is both right skewed and over dispersed, meaning that the conditional 

variance is greater than the conditional mean. As a result, the negative binomial 

regression is the most appropriate model for this analysis. The negative binomial 

regression is a generalized version of the Poisson regression that includes a dispersion 

term to account for the fact that the data does not meet the Poisson assumption of 

equality between mean and variance (Lawless, 1987). 

The econometric specifications of the models are: 

 𝑌" = 𝛽% + 𝛽'𝑋'" + 𝛽)𝑋)" + 𝛽*𝑊," + 𝜀  (1) 

 𝑌" = 𝛽% + 𝛽'𝑋'" + 𝛽)𝑋)" + 𝛽*𝑋*" + 𝛽.𝑊," + 𝜀  (2) 
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Where Y is the maximum number of outages in ZCTA i. In both models 1 and 

2, X1 represents the socio-economic variable of interest in ZCTA i, of which there are 

three in total (Table 3.2). Each was tested individually. Both models also include X2, 

which represents the number of total housing units and businesses within a given 

ZCTA. This is meant to serve as an approximation of the total number of electric 

customers within the unit of analysis. The actual number of customers is not publicly 

available, which is why this proxy was required.  

Table 3.2: Detailed Overview of Socio-Economic Independent Variables 

Variable Year ACS Description 
Education 2012 (5-year 

estimate) 
Total; Estimate; High school graduate (includes 
equivalency 

Poverty 2012 (5-year 
estimate) 

Percent below poverty level; Estimate; Population 
for whom poverty status is determined 

Median income  2012 (5-year 
estimate) 

Median income (dollars); Estimate; Households 

 
Model 2 also includes X3, which represents a series of hazard variables that 

were included because Hurricane Isaac hit ZCTAs with varying levels of force. These 

differences can be anticipated to have an effect on the number of resultant power 

outages. However, the literature indicates that low-income and otherwise 

disadvantaged communities are more likely to be located in high-risk areas. So even 

if differential outage rates among ZCTAs can be explained by differences in storm 

strength, this does not necessarily preclude the conclusion that socio-economic 

inequality effects disaster impacts.  

As discussed above, Hurricane Isaac’s primary meteorological threat was its 

high winds, but the storm also produced rain and flooding, so those measures were 
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included in the analysis as well. Maximum wind gusts and sustained wind duration 

where both generated using the stormwindmodel package for R (B. Anderson, 

Schumacher, Guikema, Quiring, & Ferreri, 2018). Flood gauge ratio was calculated 

using the available USGS flood gauges within the ZCTA. (Table 6). 

Table 3.3: Detailed Overview of Hazard and Exposure Independent Variables 

Variable Unit Description 
Maximum wind 
gusts  

Meters/second Maximum value of surface-level (10 meters) 
gust winds, in meters per second, over the 
length of the storm at the given location 

Sustained wind 
duration 

Minutes Length of time, in minutes, that surface-level  
winds were above a specified speed (30 
mi/h) 

Precipitation Millimeters Accumulated amount of precipitation in 5 
days (1 day before disaster arrival through 3 
days after)  

Flood gauge ratio No unit Maximum value of observed flood ratios 
Soil moisture Kilogram per 

meter squared 
Average amount of soil moisture for three 
days preceding the disaster arrival 

Total customers Customers Estimate of total number of households in 
ZCTA plus the number of business 
establishments. 

 

Finally, models 1 and 2 each include Wy, which is a spatial lag of the 

dependent variable Y. Spatial autocorrelation is a potential problem in any model that 

uses geographic spaces as units of analysis. Similarities tend to be geographically 

clustered, meaning that the variables of interest in one ZCTA may be influenced by 

other ZCTAs in its proximity. This violates assumptions of independence, so it is 

advisable to create a spatially lagged version of the dependent variable to include in 

the analysis, thereby controlling for spatial autocorrelation. A Moran’s I test was 

performed to test for spatial autocorrelation in the dependent variable, and as shown 
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in Table 3.4 the results indicated that spatial autocorrelation is indeed present. 

Therefore, a first order Queen’s Contiguity Matrix was generated using GeoDa 

(Anselin, Syabri, & Kho, Youngihn, 2006) and used to create a lag variable that takes 

an average of each neighboring ZCTA’s value of Y (Jeanty, 2010). Within the data 

set, there is one neighborless, or island, observation. Rather than removing that 

observation from the dataset, its closest ZCTA was assigned to be its weight.  

Table 3.4: Moran's I Test for Maximum Outage 

Statistics Normal Approximation Randomization 
Moran’s I 0.7374 0.7374 
Mean -0.0034 -0.0034 
Standard Deviation 0.0391 0.0391 
Z-Score 18.9387 19.1150 
P-value 0.0000 0.0000 

 
3.3.2 Analysis 2: Determinants of Recovery Time 

The dependent variable used in the second analysis is the time at which the 

ZCTA in question experienced a 50%, 80% and 95% threshold of power restoration. 

This variable’s purpose is to measure recovery and to compare the speed at which a 

basic level of power restoration is achieved in different communities. This is an 

important area of study because of the fact that many other recovery processes require 

electricity, so power restoration is central to making recovery progress on a wider 

scale.   

While developing this variable, it was observed that in some cases a Zip Code 

would reach a restoration benchmark, and then some customers would lose power 

again, bringing the Zip Code back below the benchmark. As a result, some Zip Codes 
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reached a benchmark multiple times as they regained electricity, lost it again and then 

had it restored to the benchmark for a second time or even third time. In such cases, 

the analysis uses the number of minutes before the community reached the 

benchmark for the final time. The goal of this analysis is to measure reliable and 

permanent restoration, because that is what brings a sense of stability and wellbeing 

to a community   

 The initial dataset included observations for 389 different Zip Codes. Of 

these, 82 zip codes reported less than 20 maximum outages, these were removed from 

the data set because with fewer than 20 households without power, a 95% restoration 

benchmark is not a meaningful or useful metric. This left a total of 305 observations.  

As with the dependent variable in Analysis 1 it was necessary to manipulate 

the data so that the spatial unit of analysis was the ZCTA rather than the Zip Code. 

When multiple Zip Codes were assigned to a single ZCTA, an average of the 

restoration times for each Zip Code was taken, weighted by the maximum outage: 

𝑟𝑒𝑠𝑡𝑜𝑟𝑎𝑡𝑖𝑜𝑛789: =
𝑟𝑒𝑠𝑡𝑜𝑟𝑎𝑡𝑖𝑜𝑛7' × 𝑚𝑎𝑥𝑜𝑢𝑡𝑎𝑔𝑒7' + 𝑟𝑒𝑠𝑡𝑜𝑟𝑎𝑡𝑖𝑜𝑛7) × 𝑚𝑎𝑥𝑜𝑢𝑡𝑎𝑔𝑒7)

𝑚𝑎𝑥𝑜𝑢𝑡𝑎𝑔𝑒7' + 𝑚𝑎𝑥𝑜𝑢𝑡𝑎𝑔𝑒7)
 

In most cases, the differences between combined Zip Codes were fairly small, 

which was expected because they were neighbors and spatially proximate polygons 

tend to be more similar. In any case, a weighted average provides the closest 

approximation to the actual restoration time within the larger ZCTA. The process of 

converting Zip Codes to ZCTAs, as well as dropping observations for which no 
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demographic data was available caused the total number of observations within the 

data set to be further reduced to n=289.  

Professor Guikema and his team scraped the utility website for a total of 

13760 minutes beginning on August 27, 2012 at 12:00 pm. This is equal to 229 hours 

or roughly 9.5 days. Some zip codes did not reach the benchmark of 50%, 80% or 

95% restoration at that point, so for these observations, it can simply be said that 

restoration time was greater than 13760 minutes. In total, nine of the 289 observations 

did not reach 95% restoration during the data collection period. Of those, seven did 

not even reach 50% restoration during this time frame, indicating that there was 

substantial work yet to be done.  

Table 3.5: Summary Statistics For Zip Codes that Reached 95% Restored 

Variable Mean Std. Deviation Min Max Median 
Maximum Outage 2625.073 4138.772 25 21343 911 
Time95 8828.785 2730.881 2815 13760 8460 

 
The fact that the dependent variables are primarily continuous, with a limited 

number of undefined results is challenging from an analytical perspective. Several 

options were investigated. First, I considered simply using a truncated continuous 

variable that dropped the observations with an undefined recovery.  

Table 3.6: Summary Statistics for Zip Codes that did not reach 95% Restored  

Variable Mean Std. Deviation Min Max Median 
Maximum Outages 2464.778 4432.46 219 14122 895 

 
However, it is problematic from an analytical perspective to remove the most 

extreme cases because the goal of this project is to identify the characteristics that 

make recovery succeed in some communities and fail in others. To ignore the 
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communities that were among the worst off in the power restoration process defeats 

the purpose of this research. A review of the summary statistics for the maximum 

outages in these very slow recovery ZCTAs indicates that these spatial units 

experienced a significant number of outages, and are very similar by this measure to 

ZCTAs that recovered more quickly (Table 3.6). Therefore, there is no real 

theoretical basis for removing them from the analysis.  

 

Figure 3.1: Histogram of Time to 95% Restored 

Further, an examination of the distribution of the continuous restoration 

variables indicated that it would be challenging from a modeling perspective. A 

histogram of Time to 95% restored (Figure 3.1) indicates that the data does not follow 

any conventional distribution. Log, root and power transformations yielded no better 

results. The same was true for the 50% and 80% restoration times.  
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 It is evident that a continuous variable is not the best option for analyzing this 

data set, particularly given the presence of numerically undefined observations. As a 

result, it was determined that the best path forward would be to create an ordinal 

categorical variable that separated the ZCTAs into five groups based on the relative 

speed of their restorations. Although there are downsides to using an ordinal 

categorical variable rather than a continuous one, most notably the loss of precision, 

in this case it was the best available option.  

Table 3.7: Categorical Variable Construction for Restoration Time in Minutes 

 Time to 95% Time to 80% Time to 50% 
Category N Time Range N Time Range N Time Range 
1 50 3815-5605 84 3815-5634 121 2465-5647 
2 73 6151-7912 78 6151-7889 90 6151-7820 
3 78 8100-9770  73 8100-9770  50 8100-9770  
4 58 12020-12235 49 12030-12235 26 12039-12045 
5 36 12540-13760+ 11 12540-13760+ 8 13760-13760+ 

 
The dataset has natural breaks between large waves of restoration during 

which no ZCTAs reached the restoration benchmarks. The gaps in the 95% recovery 

dataset were used as a guide by which to divide the data into ordinal categories, with 

category 1 representing the fastest recovery times and category 5 representing the 

ZCTAs that were slowest to recover (Table 3.7). These same categorical boundaries 

were used to create categorical variables for time to 50% and 80% restoration. The 

same natural breaks that were used to guide the categorical boundaries for Time to 

95% restoration were present for the other two thresholds as well.   

Due to the fact that the dependent variable is in the form of categories that are 

ordered, the most appropriate model is an ordered Probit model. An OLS analysis 
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will not work because the dependent variable does not have a cardinal meaning: 

movement from category 1 to category 2 is not quantitatively equal to movement 

from category 2 to category 3.  

 

Figure 3.2: Determinants of Recovery 

When conceptualizing the model that would be used for this portion of the 

analysis, I considered the literature on the determinants of recovery. Recovery 

outcomes are known to be a product of a variety of inputs, as is detailed in Figure 3.2. 

These include antecedent conditions, the extent of the damage to the system being 

recovered, obstacles to recovery such as flooding or debris, the point at which the 

recovery process is able to begin in a given spatial unit, and the extent to which a 

given unit is prioritized within the broader recovery operations (Cutter et al., 2008a; 

Cutter, Schumann, & Emrich, 2014; Tierney, 2014).  

With this in mind, the model specifications are as follows: 
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 𝑌" = 𝛽% + 𝛽'𝑋'" + 𝛽)𝑋)" + 𝛽*𝑊," + 𝜀  (3) 

 𝑌" = 𝛽% + 𝛽'𝑋'" + 𝛽)𝑋)" + 𝛽*𝑋*" + 𝛽.𝑊," + 𝜀  (4) 

 𝑌" = 𝛽% + 𝛽'𝑋'" + 𝛽)𝑋)" + 𝛽*𝑋*" + 𝛽.𝑋." + 𝛽@𝑊," + 𝜀  (5) 

 𝑌" = 𝛽% + 𝛽'𝑋'" + 𝛽)𝑋)" + 𝛽*𝑋*" + 𝛽.𝑋." + 𝛽@𝑋@" + 	𝛽B𝑊," + 𝜀  (6) 

 Where Y is an ordinal categorical variable that describes the speed at which 

ZCTA i reaches 95%, 80% and 50% power restoration following Hurricane Isaac. 

The limits of each category are outlined in Table 3.7. 

As in Analysis 1, X1 represents the socio-economic variable of interest in 

ZCTA i, of which there are three in total (Table 3.2). Each will be used separately and 

represents the antecedent conditions that influence recovery. All three models also 

include X2, which represents Maximum Outages. This was the dependent variable in 

Analysis 1 and quantifies the extent of the damages in a given ZCTA. It is possible 

that Maximum Outages could influence recovery time in either direction, because 

although there is more damage for the power crews to repair, it is also likely that 

communities with many outages will be prioritized. 

X3 is introduced in Model 4 and represents the duration of sustained winds 

over 30 miles per hour, which, due to federal regulations is the speed over which 

elevated power restoration trucks were forbidden to operate. This means that it 

represents the length of time before which power restoration crews were unable to 

begin the recovery process. This measure was introduced in Analysis 1 Model 2, 

along with several other hazard variables that are represented by X4. These variables 

measure wind speed, precipitation levels and flooding and were included in Model 5 
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because all of these variables present obstacles to the recovery process, such as 

inundation and fallen tree branches (Table 6). 

Table 3.8: Priority Variables 

Variable Unit Description 
Emergency Services Count Ambulance services, American red cross 

facilities, emergency response facilities, fire 
stations, EMS stations, law enforcement 
stations, offices of emergency management.  

Health Services Count Hospitals, medical centers. 
Grocery Stores Count Grocery stores (excludes corner stores) 

 
As discussed above, utilities have formal policies in place for determining 

high priority areas for power restoration. As a result, variables were introduced in 

order to identify whether a ZCTA experienced faster restoration due to the 

concentration of high-priority infrastructure in the spatial unit. These prioritization 

variables are represented by X5 in Model 6. The literature indicates that emergency 

services like fire stations and hospitals and retail facilities like grocery stores may be 

prioritized so these were introduced into the analysis as independent count variables 

(Table 3.8).  

Similar to Analysis 1, it was likely that the dependent variable in Analysis 2 

would be spatially autocorrelated. A Moran’s I test was performed on a truncated 

version of the continuous variable, and spatial autocorrelation was indeed observed 

(Table 3.9).  
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Table 3.9: Moran's I Test for Time to 95% Restored 

 

 
However, it not possible to create an accurate spatial lag of an ordinal variable 

because it is not cardinal. As a result, the continuous Time to 95% restored variable 

was used create the spatial lag. Within this continuous variable some values at the 

upper limits are undefined. For the purposes of the spatial lag variable, the undefined 

variables were coded with the maximum defined value within the data set. While not 

an ideal strategy, it is preferable to removing the very slow recovery ZCTAs from the 

analysis altogether.  

3.4 Results 

3.4.1 Analysis 1: Determinants of Maximum Outages 

Descriptive Statistics 

 The mean maximum outages at the ZCTA level was 2282.159, and the median 

was 620, indicating a strong right skew. This is confirmed in the histogram seen in 

Figure 3.3, where we again observe a strong right skew with the majority of ZCTAS 

having between 1 and 1250 outages. This distribution is common to both count data 

in general and power outage data in particular, and it is why a negative binomial 

regression model is the most appropriate analytical approach.  

Statistics Normal Approximation Randomization 
Moran’s I 0.6803 0.6803 
Mean -0.0034 -0.0034 
Standard Deviation 0.0391 0.0392 
Z-Score 17.4768 17.4398 
P-value 0.0000 0.0000 
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Figure 3.3: Maximum Outages At ZCTA Level 

 A series of maps were produced in order to visualize and better understand the 

way that Hurricane Isaac’s damages and impacts were distributed across Louisiana. 

All maps include only the ZCTAs for which outage data is available. As can be seen 

in Figure 3.4, the flooding caused by the storm was centralized in a few ZCTAs in the 

southeastern region of the state. The 5-day precipitation trends followed a very 

similar pattern to the flooding, as seen in Figure 3.5. 

When examining the distribution of peak wind gust speeds across the state 

(Figure 3.6), a similar pattern emerges. The most extreme winds were located in the 

southeastern region of the states, and the wind speeds decreased as the storm moved 

north and west. This falls in line with what would be expected given the official 

NOAA reporting on the storm. 
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Figure 3.4: Distribution of Maximum Flood Ratio 

  

 

Figure 3.5: Distribution of 5-Day Precipitation 
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Figure 3.6: Distribution of Maximum Wind Gust Speed 

 

 

Figure 3.7: Distribution of Maximum Outages(Log) 

However, when a map is created tracking the maximum outages at the ZCTA 

level, the results do not take on a clear pattern. Figure 3.7 shows a heat map of the log 

of Maximum Outages. There does appear to be some concentration of high-outages 

ZCTAs in the southeast where the most extensive flooding, heaviest precipitation and 

highest winds were also observed. However, the pattern is certainly not as consistent. 
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Maps were also created that attempted to normalize the maximum outages to the 

number of customers, but this exhibited even less of a coherent spatial pattern than 

the map displayed below. 

 

Figure 3.8: Distribution of Median Household Income 

Maps were also created in order to visualize the distribution of the socio-

economic variables across the state. As seen in Figure 3.8 below, household income 

tends to be somewhat higher in the southeast region of the state where we also 

observed more extreme weather as a result of Hurricane Isaac.  

Regression Analysis 

 Table 3.10 reports the results for the negative binomial regression model that 

examines the effects of socio-economic indicators on the ZCTA-level maximum 

outages without controlling for Hurricane Isaac’s meteorological conditions. We find 

that none of the three socio-economic indicators under examination had a statistically 

significant relationship with maximum outages. In all three models, we can observe 
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that there is a significant, positive relationship between the estimated number of total 

customers in the region and the number of outages.   

Table 3.10: Determinants of Maximum Outages (Model 1) 

Max Outage 
   

% Below Poverty 0.0000619 
(0.0000578) 

  

Median Income  2.53E-06 
(5.32E-06) 

 

% With Bachelor’s Degree   -0.02253 
(0.0001651) 

Estimated Customers 0.0001295*** 
(0.0000303) 

0.0001461*** 
(0.0000186) 

0.0001651*** 
(0.0000209) 

Wy Maxoutage 0.0001957*** 
(0.0000283) 

0.000203*** 
(0.0000282) 

0.000211*** 
(0.000029) 

Constant 5.8087*** 
(0.1087) 

5.7571*** 
(0.2520) 

5.9960*** 
(0.1450) 

Log Alpha  0.4817*** 
(0.06683) 

0.4338102*** 
(0.06681) 

0.4476*** 
(0.06620) 

Observations 339 328 334 
Pseudo R2 0.0433 0.0438 0.0441 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

  
Table 3.11, shows the results for the negative binomial regressions that 

examine the effects of socio-economic indicators on the ZCTA level maximum 

outages while controlling for the meteorological impacts of the storm. In the model 

that uses the percentage of the population below the poverty level as the socio-

economic indicator, we observe that a one percentage point increase in proportion of 

the population below the poverty level corresponds to a 0.001283 unit increase in the 

maximum number of power outages. A similar pattern is observed in Model 2, 

wherein a one-unit decrease in median income corresponds to a small but significant 

increase in the maximum number of outages at the ZCTA level. No statistically 
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significant relationship is observed between the percentage of adults with a bachelor’s 

degree and the maximum number of outages.  

We also observe that both maximum wind gust velocity and maximum flood 

ratio are significantly and positively correlated with the number of power outages in 

all three of the models. When the gust velocity increases by one unit, the number of 

power outages increases by approximately 0.05, depending on the model. Similarly, 

when the maximum flood ratio increases by 1 unit, the maximum number of outages 

increases by between 1.31 and 1.45. Neither 5-day precipitation nor gust duration are 

statistically significant in any of the models.  

Table 3.11: Determinants of Maximum Outages (Model 2) 
 

   
% Below Poverty 0.0001283* 

(0.0000519) 

  

Median Income  -9.88E-06* 
(4.76E-06) 

 

% With Bachelor’s Degree   -0.01377 
(0.01265) 

Max Gust Velocity 0.0586879** 
(0.01839) 

0.0575678** 
(0.01834) 

0.05166* 
(0.1819) 

Gust Duration -0.0002164 
(0.002817) 

-0.0001826 
(0.002798) 

-0.0001929 
(0.0002832) 

5-Day Precipitation 0.00255 
(0.002031) 

0.0023005 
(0.002004) 

0.002278 
(0.002012) 

Maximum Flood Ratio 1.307236** 
(0.4173) 

1.377633** 
(0.4244) 

1.4458*** 
(0.4282) 

Estimated Customers 0.0000995*** 
(0.000271) 

0.0001527*** 
(0.0000174) 

0.0001595*** 
(0.0000181) 

Wy  0.0000816** 
(0.0000816) 

0.000086** 
(0.0000301) 

0.0000948*** 
(0.0000315) 

Constant 3.689055*** 
(0.3467) 

4.133963*** 
(0.3611) 

3.9923*** 
(0.312) 

Log Alpha  0.234869*** 
(0.6830) 

0.2250765** 
(0.06868) 

0.2305*** 
(0.06852) 

Observations 329 326 327 
Pseudo R2 0.0593 0.0593 0.0588 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 
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Similar to the models outlined in Table 3.10, the estimated number of 

customers has a positively and statistically significantly relationship with the 

maximum outages, and the spatial lag of the dependent variable remains significant. 

Table 3.12: Correlation Between Median Income and Hazard Variables 

 
It is interesting to note that the socio-economic independent variables of 

interest only become significant when the model controls for the meteorological 

variation of Hurricane Isaac. This would indicate that in this case the socio-economic 

variation in power outages is not because low-income communities tend to be located 

in more meteorological vulnerable spaces. Indeed, that median household income is 

positively correlated with all of the hazard variables, which suggests that higher-

income ZCTAs actually experienced the storm’s most severe impacts. 

3.4.2 Analysis 2: Determinants of Recovery Time 

Descriptive Statistics  

As discussed in the previous section, the fact that the dependent variable, 

restoration time was not normally distributed and has an undefined upper boundary 

meant that it was required to be transformed into an ordinal categorical variable for 

the purposes of analysis. However, it is still useful to examine the descriptive 

statistics of the continuous variable. Table 3.13 provides as overview of the summary 

statistics for Time to 50%, 80% and 95% restored in minutes, using both a complete 

 Gust Velocity Gust Duration Flood Ratio Precipitation 
Median Income 0.3148 0.2821 0.1713 0.2123 
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set of the data which includes the upper undefined values, and a truncated data set in 

which the undefined values are removed. 

The fastest any ZCTA arrived at 50% restoration is 2465 minutes, or roughly 

41 hours, and the first ZCTAs to reach 80% and 95% restoration arrived at those 

benchmarks after 3815 minutes or approximately 68.5 hours. This slow start to 

recovery is likely because Hurricane Isaac lingered over Louisiana for an extended 

period of time and federal regulations prohibited the use of elevated machinery until 

wind speeds fell below 30 miles per hour. As a result, there was a considerable delay 

between when the outages occurred and when the linemen were able to begin the 

recovery process.  

Table 3.13: Descriptive Statistics for Restoration Times 

 N Mean Std. Deviation Min Max Median 
Time to 50% 295 -- -- 2465 >13760 6540 
Time to 80% 295 -- -- 3815 >13760 7705 
Time to 95%  295 -- -- 3815 >13760 8460 
Time to 50% 
Truncated 

288 6972.50 2193.21 2465 13760 6450 

Time to 80% 
Truncated 

288 7884.00 2475.18 3815 13760 7040 

Time to 95% 
Truncated 

286 8828.79 2730.88 3815 13760 8460 

 
The number of observations in each of the three truncated datasets is very 

similar. The truncated datasets exclude values that are greater than 13760 because 

they are undefined. The 9 ZCTAs that did not reach 95% restoration in 13760 

minutes or less, only two reached 50% and 80% within that time frame. Closer 

examination reveals that both of these ZCTAs reached 50% restoration at 12045 
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minutes. One reached 80% at 12540 minutes and the other at 13520. This indicates 

that most of the ZCTAs that were very slow to reach 95% restoration also reached 

50% and 80% restoration very slowly.  

 

Figure 3.9: Scatter Plot of Time to 95% Restoration   

As discussed above, the Time to 95% continuous measure was not normally 

distributed. The problem with the data became clear after creating a scatter plot of the 

individual observations (Figure 3.9). The restoration time has a step-like distribution, 

indicating that restoration progress happened in waves. For example, it is clear that 

many ZCTAs reached the 95% restoration benchmark at approximately 12000 

minutes following a stretch of 2000 minutes wherein no ZCTAs reached 95% 

restored. This pattern is consistent with what is known about the power restoration 

process; it is likely that when many customers were restored at once it was because a 

repair was made to the upstream infrastructure upon which many neighborhoods rely. 
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Once this fix was made, a huge amount of households all got power at once, pushing 

many Zip Codes to the 95% completion benchmark at the same time. Further lending 

credence to this theory is the fact that over 25% of ZCTAs reached the 80% and 95% 

restoration benchmarks at the same time.   

However, it is important not to ignore the possibility that this issue may be the 

result of unreliable reporting rather than the actual pattern of restoration. Perhaps 

ZCTAs were reaching the 80% and 95% benchmarks at a steadier pace, and Entergy 

simply failed to update their outage numbers in real time, instead releasing bulk 

updates at less frequent intervals.  

 

Figure 3.10: Distribution of Time to 95% Restored in Minutes 

Figure 3.10 shows the time in minutes to 95% restored across the Louisiana at 

the ZCTA level. ZCTAs with an undefined restoration time greater than 13760 were 

coded as 15000 for illustrative purposes. A visual analysis indicates that these time 

distributions closely match the distribution of flooding, precipitation and wind speeds 

(Figure 3.4; Figure 3.5; Figure 3.6) across the state. Indeed, the outage restoration 
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time appears to follow distribution of the weather patterns caused by the Hurricane 

much more closely than maximum outage did (Figure 3.3). 

Regression Analysis 

 Although the regression models were run using three socio-economic 

variables, percent below the poverty level, median income and percent of the adult 

population with a bachelor degree, the focus will be on the results for percent below 

the poverty level and median income, because third variable did not yield any results 

of interest.  

Table 3.14: Percent Below Poverty Level as a Determinant of Recovery (Model 3) 

  95%  80%  50%  

% Below Poverty  -.00141 .00427 .00165 .00753 -.00185 -.00024 
 (.00632) (.00662) (.00639) (.00695) (.00654) (.00711) 

Maximum Outages  .00018*** 5.9e-05** .00013*** 1.9e-05 9.5e-05*** -2.7e-05 
 (1.9e-05) (2.1e-05) (1.6e-05) (2.0e-05) (1.5e-05) (2.0e-05) 

Wy   .00053***  .00069***  .00077*** 
   (4.2e-05)  (5.0e-05)  (6.0e-05) 

/cut 1   -.73857*** 3.224*** -.30195* 4.4268*** -.04759 4.7333*** 
  (.15667) (.34758) (.15166) (.37916) (.15279) (.40304) 

/cut 2  .13823 4.491*** .48849** 5.7458*** .8298*** 6.1385*** 
  (.15101) (.37688) (.1529) (.42358) (.15857) (.45085) 

/cut 3  .97494*** 5.9223*** 1.3549*** 7.4153*** 1.5595*** 7.634*** 
  (.1586) (.44101) (.16761) (.51241) (.17588) (.54426) 

/cut 4  1.9208*** 7.338*** 2.5531*** 9.5257*** 2.4253*** 10.066*** 
  (.18452) (.49541) (.22183) (.61342) (.22437) (.78327) 

Observations  285 285 285 285 285 285 
Pseudo R2  0.116 0.327 0.083 0.379 0.051 0.363 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

  
Table 3.14 and Table 3.15 display the results of the ordered probit models that 

test the impacts of the percentage of households below the poverty level and the 
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median income of the ZCTA on recovery time, only controlling for the maximum 

number of outages. 

Table 3.15: Median Income as a Determinant of Recovery (Model 3) 

  95%  80%  50%  
Median Income  7.8e-06 3.4e-06 5.7e-06 -4.7e-07 2.7e-06 -4.9e-06 

 (4.3e-06) (4.5e-06) (4.3e-06) (4.8e-06) (4.5e-06) (4.9e-06) 

Maximum Outages  .00018*** 5.7e-05** .00013*** 1.9e-05 9.2e-05*** -2.5e-05 

 (1.9e-05) (2.1e-05) (1.6e-05) (2.0e-05) (1.5e-05) (1.9e-05) 

Wy   .00053***  .00068***  .00077*** 
   (4.2e-05)  (4.9e-05)  (5.9e-05) 

/cut 1   -.39349 3.2693*** -.09374 4.2547*** .09781 4.5565*** 
  (.20866) (.35776) (.21017) (.38374) (.21638) (.416) 

/cut 2  .49033* 4.536*** .70375*** 5.5831*** .96603*** 5.9552*** 
  (.20977) (.38814) (.21314) (.42784) (.22046) (.45897) 

/cut 3  1.3461*** 5.9882*** 1.5619*** 7.236*** 1.6883*** 7.4709*** 
  (.21845) (.4501) (.22243) (.5038) (.23251) (.5453) 

/cut 4  2.2639*** 7.3801*** 2.6997*** 9.3343*** 2.4968*** 9.8599*** 
  (.23534) (.49863) (.26166) (.6062) (.26892) (.78331) 

Observations  290 290 290 290 290 290 
Pseudo R2  0.116 0.327 0.081 0.380 0.048 0.367 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

  
The tables both show that neither independent variable of interest has any 

statistically significant impact on the time to 95%, 80% or 50% recovery regardless of 

whether or not the spatial lag is included in the model. All of the models indicate that 

the maximum number of outages has a significant and positive effect on the 

restoration time. Also of note, the pseudo R2 measures are much higher for the 

unlagged model at the 95% threshold than for the other two, suggesting that 

Maximum Outage explains more of the variation in 95% recovery times than it does 

at the 80% and 50% levels.  
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Following this, variables were added to the models to control for the length of 

time following the outages before power restoration was allowed to begin.  Table 

3.16 and Table 3.17 display the results of these models, using percent below poverty 

level and median income as the socio-economic variables of interest respectively.  

Table 3.16: Percent Below Poverty Level as a Determinant of Recovery (Model 4) 

  95%  80%  50%  
% Below Poverty  .00807 .00573 .01234 .00987 .00565 .00233 

 (.0065) (.00671) (.00663) (.00707) (.00679) (.00722) 
Maximum Outages  .00013*** 5.7e-05** 7.7e-05*** 1.4e-05 4.0e-05* -3.6e-05 

 (2.0e-05) (2.1e-05) (1.7e-05) (2.0e-05) (1.7e-05) (2.0e-05) 

Sustained Wind Duration  .00091*** .00018 .00103*** .00024 .00094*** .00031* 
  (.00011) (.00013) (.00011) (.00013) (.00011) (.00012) 

Wy   .0005***  .00064***  .00071*** 
   (4.9e-05)  (5.6e-05)  (6.3e-05) 

/cut 1   .68705** 3.2298*** 1.4178*** 4.4842*** 1.5972*** 4.8944*** 
  (.22818) (.34799) (.24082) (.37975) (.2548) (.40645) 

/cut 2  1.7634*** 4.5127*** 2.4541*** 5.8446*** 2.6524*** 6.3384*** 
  (.24438) (.37804) (.26717) (.42858) (.27803) (.45774) 

/cut 3  2.8109*** 5.9601*** 3.5073*** 7.5112*** 3.4778*** 7.8157*** 
  (.2721) (.44384) (.29439) (.51514) (.29879) (.54603) 

/cut 4  3.8583*** 7.3628*** 4.7925*** 9.566*** 4.4194*** 10.108*** 
  (.29764) (.49659) (.33555) (.61122) (.33898) (.76545) 

Observations  285 285 285 285 285 285 
Pseudo R2  0.205 0.329 0.196 0.383 0.150 0.371 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 
Very few of the independent variables are statistically significant when the 

spatial lag is included in the model. This a phenomenon that is commonly reported in 

the literature, attributable both to the extremely strong significance of the lag variable, 

and the fact that many of the other independent variables also spatially biased, 
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meaning that the spatial lag controls for some of the effects of the other variables 

(Minkoff, 2016). 

Table 3.17: Median Income as a Determinant of Recovery (Model 4) 

  95%  80%  50%  
Median Income  -2.1e-06 2.0e-06 -5.7e-06 -2.6e-06 -8.2e-06 -8.6e-06 

 (4.5e-06) (4.7e-06) (4.6e-06) (4.9e-06) (4.8e-06) (5.2e-06) 

Maximum Outages  .00012*** 5.6e-05** 7.6e-05*** 1.6e-05 3.8e-05* -3.4e-05 

 (2.0e-05) (2.1e-05) (1.7e-05) (2.0e-05) (1.7e-05) (1.9e-05) 

Sustained Wind Duration  .00091*** .00015 .00103*** .00021 .00098*** .00034** 
  (.00011) (.00013) (.00011) (.00013) (.00012) (.00013) 

Wy   .0005***  .00064***  .00071*** 
   (4.9e-05)  (5.5e-05)  (6.3e-05) 

/cut 1   .43374 3.1957*** .93929*** 4.1794*** 1.1956*** 4.5366*** 
  (.23278) (.36326) (.24377) (.38403) (.26274) (.41111) 

/cut 2  1.5066*** 4.4747*** 1.9739*** 5.542*** 2.2467*** 5.9801*** 
  (.24742) (.39201) (.26452) (.42828) (.27943) (.45557) 

/cut 3  2.5667*** 5.9389*** 3.0122*** 7.1926*** 3.0719*** 7.4821*** 
  (.27053) (.45307) (.28327) (.50272) (.2971) (.53949) 

/cut 4  3.5877*** 7.3205*** 4.2406*** 9.2416*** 3.9539*** 9.717*** 
  (.29135) (.50153) (.32072) (.60457) (.33322) (.76089) 

Observations  290 290 290 290 290 290 
Pseudo R2  0.201 0.328 0.191 0.383 0.150 0.377 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 
The maximum number of outages continues to be a strong predictor of 

recovery time to 95% and 80% restoration, but it becomes less significant at the 50% 

recovery threshold. Like in Table 3.14 and Table 3.15, neither socio-economic 

variable is a significantly correlated with recovery time. However, sustained wind 

duration has a consistently positive and significant relationship with recovery time, 

indicating that the longer the period of time before recovery crews can begin their 

recovery efforts, the longer it takes for recovery efforts to be successfully carried out.  
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Next, variables were added to the models to control for weather conditions 

during the storm. In earlier models, maximum outages consistently had a strong 

positive statistically significant impact on the restoration time. This relationship is 

weaker and less consistent in the models that control for hazard (Table 3.18 and Table 

3.19). It has a positive and significant effect on the time until 95% restored and no 

significant effect on time until 80% restored in the models using both percent below 

poverty level and median income. It had a significant negative effect on the spatially 

lagged model for 50% restored when percent below poverty is used as a variable, and 

no significance when median income is used as the variable of interest.  

The weather-related control variables that were introduced have more of a 

statistically significant effect in the unlagged models. Within this subsection, 

maximum wind gust velocity and five-day precipitation have a consistently 

significant and positive impact on power restoration time across the recovery 

thresholds. Maximum flood ratio has a significant positive relationship with 95% and 

80% recovery, but no such relationship exists for 50% recovery. Sustained wind 

duration remains significant in the unweighted models, but the coefficient, which was 

positive in Model 4, has become negative.   
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Table 3.18: Percent Below Poverty Level as a Determinant of Recovery (Model 5) 

  95%  80%  50%  

% Below Poverty  .00639 .00591 .0147* .01274 .00798 .00481 

 (.00676) (.00686) (.0069) (.00722) (.00707) (.00742) 

Maximum Outages  5.9e-05** 4.5e-05* 2.6e-05 1.8e-05 -1.5e-05 -4.4e-05* 

 (2.2e-05) (2.2e-05) (2.0e-05) (2.1e-05) (1.9e-05) (2.1e-05) 

Sustained Wind Duration  -.00059* -.0004 -.00065* -.00035 -.00075** -.00036 
  (.00026) (.00026) (.00027) (.00027) (.00029) (.0003) 

Maximum Flood Ratio  1.422*** .71297 1.0008* .50755 .57986 .28038 
  (.41169) (.43246) (.41257) (.43337) (.41899) (.43694) 

5-Day Precipitation  .015*** .00635** .0131*** .00098 .01402*** .00493* 
  (.00194) (.00238) (.00191) (.00239) (.00195) (.00227) 

Maximum Wind   .04684* .02899 .07763*** .04903* .07535*** .04032 
  (.01898) (.01952) (.01927) (.02013) (.01992) (.02115) 

Wy   .00039***  .0006***  .00062*** 
   (6.1e-05)  (6.7e-05)  (6.9e-05) 

/cut 1   .84987* 2.8885*** 2.2506*** 5.0986*** 2.3223*** 5.0255*** 
  (.4129) (.5302) (.43046) (.55799) (.44887) (.56565) 

/cut 2  2.11*** 4.2218*** 3.5141*** 6.519*** 3.6205*** 6.525*** 
  (.43543) (.55748) (.46471) (.60142) (.47406) (.6016) 

/cut 3  3.4378*** 5.7249*** 4.7833*** 8.1817*** 4.6124*** 8.013*** 
  (.46488) (.60603) (.48824) (.66138) (.4891) (.66268) 

/cut 4  4.6612*** 7.1218*** 6.1827*** 10.17*** 5.6225*** 10.103*** 
  (.47461) (.63121) (.51547) (.73798) (.52155) (.85088) 

Observations  285 285 285 285 285 285 
Pseudo R2  0.294 0.341 0.284 0.391 0.247 0.382 

 Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 
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Table 3.19: Median Income as a Determinant of Recovery Time (Model 5) 

  95%  80%  50%  

Median Income  -3.6e-06 3.2e-07 -9.6e-06* -4.9e-06 -1.3e-05* -1.1e-05* 

 (4.6e-06) (4.8e-06) (4.8e-06) (5.1e-06) (5.0e-06) (5.3e-06) 

Maximum Outages  5.9e-05** 4.5e-05* 2.5e-05 1.9e-05 -1.5e-05 -4.0e-05 

 (2.2e-05) (2.2e-05) (2.0e-05) (2.1e-05) (1.9e-05) (2.1e-05) 

Sustained Wind Duration  -.00056* -.00037 -.00061* -.00031 -.00071* -.00033 
  (.00026) (.00026) (.00027) (.00027) (.00029) (.0003) 

Maximum Flood Ratio  1.392*** .68732 .98543* .51648 .54275 .26914 
  (.41015) (.43007) (.41105) (.43167) (.41834) (.43663) 

5-Day Precipitation  .01505*** .00617** .01334*** .0009 .01409*** .00479* 
  (.00193) (.00236) (.0019) (.00237) (.00194) (.00226) 

Maximum Wind   .0442* .02462 .07339*** .04238* .07662*** .04185* 
  (.01882) (.01938) (.01909) (.02003) (.01979) (.02105) 

Wy   .0004***  .0006***  .00063*** 
   (6.0e-05)  (6.6e-05)  (6.8e-05) 

/cut 1   .52616 2.7448*** 1.4897*** 4.5579*** 1.7197*** 4.5611*** 
  (.36976) (.50749) (.3773) (.52078) (.39444) (.52289) 

/cut 2  1.7805*** 4.0705*** 2.7463*** 5.9733*** 3.0152*** 6.0613*** 
  (.39168) (.5334) (.40871) (.56061) (.41642) (.55586) 

/cut 3  3.1124*** 5.5835*** 3.9984*** 7.619*** 4.0116*** 7.5752*** 
  (.41972) (.58076) (.42628) (.61381) (.43087) (.61817) 

/cut 4  4.3079*** 6.9618*** 5.3436*** 9.602*** 4.9647*** 9.6184*** 
  (.42858) (.60694) (.45264) (.70013) (.46138) (.81253) 

Observations  290 290 290 290 290 290 
Pseudo R2  0.290 0.339 0.277 0.389 0.246 0.388 

 Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

   
The percent below poverty level independent variable of interest has a 

significant positive relationship with 80% recovery time when the spatial lag is 

omitted from the model, suggesting that as the percentage of households below the 

federal poverty level increases, the recovery time does as well. However, this 

relationship does not hold true at either the 50% or 95% recovery thresholds.  
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Table 3.20: Percent Below Poverty Level as a Determinant of Recovery (Model 6) 

  95%  80%  50%  

% Below Poverty Level  .00554 .00396 .01523* .01141 .0095 .00453 

 (.00682) (.00693) (.00697) (.00731) (.00714) (.00751) 

Maximum Outages  5.1e-05* 2.7e-05 3.2e-05 8.3e-06 -3.3e-06 -4.6e-05 

 (2.3e-05) (2.4e-05) (2.2e-05) (2.3e-05) (2.2e-05) (2.3e-05) 

Sustained Wind Duration  -.00061* -.00045 -.00063* -.00037 -.00073* -.00036 
  (.00026) (.00026) (.00027) (.00027) (.00029) (.0003) 

Maximum Flood Ratio  1.4167*** .66723 .98278* .47745 .58786 .28238 
  (.41261) (.43383) (.41414) (.43521) (.4213) (.43867) 

5-Day Precipitation  .0155*** .00695** .01287*** .00129 .01339*** .00497* 
  (.00201) (.0024) (.00196) (.0024) (.002) (.00229) 

Maximum Wind   .04758* .03048 .07662*** .04928* .07483*** .04051 
  (.01904) (.01957) (.01931) (.02013) (.01999) (.02117) 

Emergency Services  -3.7675 -3.7828 .05861 -.28435 .07254 .08898 
  (119.73) (105.56) (1.1361) (1.2377) (1.0918) (1.1521) 

Health Services  -3.8265 -3.8534 -.0232 -.33719 .04103 .126 
  (119.73) (105.56) (1.1387) (1.2398) (1.0951) (1.1554) 

Grocery Stores  3.8003 3.8473 -.0578 .32488 -.1054 -.08874 
  (119.73) (105.56) (1.1368) (1.2386) (1.0927) (1.1531) 

Wy   .00041***  .00061***  .00063*** 
   (6.2e-05)  (6.9e-05)  (7.1e-05) 

/cut 1   .92888* 3.2046*** 2.2036*** 5.2758*** 2.2106*** 5.0693*** 
  (.42184) (.55293) (.43803) (.57951) (.45499) (.58207) 

/cut 2  2.1971*** 4.5641*** 3.4677*** 6.7045*** 3.517*** 6.5676*** 
  (.44601) (.58365) (.47209) (.62339) (.47935) (.61664) 

/cut 3  3.5279*** 6.0862*** 4.7429*** 8.3691*** 4.5149*** 8.0571*** 
  (.47534) (.63379) (.49462) (.68178) (.49388) (.67755) 

/cut 4  4.7493*** 7.4819*** 6.152*** 10.366*** 5.5344*** 10.158*** 
  (.4838) (.65727) (.52068) (.7575) (.52568) (.86791) 

Observations  285 285 285 285 285 285 
Pseudo R2  0.296 0.347 0.285 0.393 0.250 0.383 

 Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 
Similarly, in Table 3.19, there is a significant negative relationship between 

median income and the time to reach the 80% threshold without spatial legs and the 



 

84 

 

50% recovery thresholds in both models. However, the same relationship is not 

observed for 95% recovery.  

Table 3.21: Median Income as a Determinant of Recovery (Model 6) 

  95%  80%  50%  

Median Income  -2.8e-06 2.2e-06 -9.5e-06* -3.5e-06 -1.3e-05** -1.1e-05* 

 (4.7e-06) (4.8e-06) (4.8e-06) (5.2e-06) (5.0e-06) (5.4e-06) 

Maximum Outages  5.0e-05* 2.5e-05 2.9e-05 7.2e-06 -3.5e-06 -4.3e-05 

 (2.3e-05) (2.4e-05) (2.2e-05) (2.3e-05) (2.1e-05) (2.3e-05) 

Sustained Wind Duration  -.00058* -.00042 -.0006* -.00034 -.00069* -.00034 
  (.00026) (.00026) (.00027) (.00027) (.00029) (.0003) 

Maximum Flood Ratio  1.3859*** .63551 .96925* .48072 .55489 .27291 
  (.41099) (.4315) (.41253) (.43365) (.42058) (.43841) 

5-Day Precipitation  .01558*** .00676** .01321*** .00123 .01349*** .00481* 
  (.00199) (.00238) (.00195) (.00239) (.00198) (.00228) 

Maximum Wind   .0451* .02632 .07244*** .04283* .07574*** .0424* 
  (.01889) (.01945) (.01914) (.02006) (.01988) (.02109) 

Emergency Services  -3.9862 -3.7876 .10223 -.26022 .11415 .15635 
  (203.91) (105.61) (1.1286) (1.2366) (1.092) (1.1555) 

Health Services  -4.0446 -3.8654 .03464 -.30995 .09978 .20703 
  (203.91) (105.61) (1.1314) (1.239) (1.0955) (1.1591) 

Grocery Stores  4.0209 3.857 -.09867 .3073 -.1496 -.15872 
  (203.91) (105.61) (1.1294) (1.2376) (1.0929) (1.1566) 

Wy   .00042***  .00062***  .00063*** 
   (6.2e-05)  (6.8e-05)  (6.9e-05) 

/cut 1   .6644 3.2093*** 1.4514*** 4.8694*** 1.5356*** 4.6153*** 
  (.39226) (.54838) (.39928) (.56253) (.41386) (.55518) 

/cut 2  1.9282*** 4.5632*** 2.7081*** 6.2957*** 2.8386*** 6.1143*** 
  (.41627) (.57797) (.42992) (.60245) (.43362) (.58578) 

/cut 3  3.2631*** 6.0984*** 3.9639*** 7.9437*** 3.8413*** 7.6297*** 
  (.44381) (.62698) (.44541) (.65315) (.44655) (.64667) 

/cut 4  4.4556*** 7.4754*** 5.3156*** 9.9353*** 4.8029*** 9.6869*** 
  (.45062) (.65067) (.46917) (.73635) (.47516) (.84083) 

Observations  290 290 290 290 290 290 
Pseudo R2  0.292 0.345 0.278 0.392 0.249 0.388 

 Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 
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Finally, Table 3.20 and Table 3.21 show the results for Model 5, which adds 

variables to control for the presence of high-priority infrastructure such as hospitals, 

police stations and grocery stores. However, this infrastructure has no observed 

significant effect on the speed at which a ZCTA reaches any of the recovery 

thresholds under study, except in the 95% threshold weighted models wherein we 

observe a significant positive relationship between the presence of emergency service 

infrastructure and recovery time.    

Otherwise, the effects that were observed in the unlagged model results 

displayed in Table 3.18 and Table 3.19 generally remain in effect in Model 6. Percent 

of households below the poverty level has a positive relationship with recovery time 

at the 80% threshold, while median income has a significant negative effect on the 

time it takes for a ZCTA to reach both 50% and 80% restoration. Table 3.21 indicates 

that the negative effect of median income on time to reach 50% recovery remains 

significant even in the weighted model.  

Consistently significant and positive relationships between the recovery time 

and wind gust speed, precipitation, and maximum flood ratio are observed. 

Conversely, sustained wind duration is found to have significant a negative 

relationship with recovery time at all the recovery thresholds. Maximum number of 

outages has a positive relationship with recovery time at only the 95% threshold. 
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3.5 Discussion and Policy Implications  

3.5.1 Maximum Outages, Hazards and Recovery 

Analysis 1 finds that impact, measured as the maximum number of outages 

occurring within a given ZCTA is closely related to both hazard and vulnerability. 

The severity of the hazard in a given ZCTA, as measured by peak wind gust speeds 

and flooding, has a significant and positive impact on the number of customers 

without power, meaning that as wind speeds and flooding increase, the number of 

outages will increase as well.  

 Similarly, socio-economic vulnerability, as measured by the percentage of 

households below the federal poverty level and the ZCTA median income, is found to 

also have an impact on the maximum number of households without power. As 

median income increases and the percentage of households below the federal poverty 

level decreases, the number of customers without power decreases. This is in line 

with the existing literature on environmental justice and disaster vulnerability, which 

suggests that the socio-economically disadvantaged tend to be faced with a 

disproportionate amount of harm (Bolin & Stanford, 1998; Elliott et al., 2010a; 

Fothergill & Peek, 2004a).  

 However, the literature also suggests that a major reason why socio-

economically disadvantaged populations experience more harm during disasters is 

because of increased exposure (Tierney, 2014). Poor communities are often located in 

more high-risk locations like flood plains because people with more financial 

resources will tend to avoid settling in these areas (Fielding, 2018). This was not the 
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case with Hurricane Isaac. Wealthier communities were found to have experienced 

the most extreme weather from the storm. As a result, the relationship between 

number of outages and socio-economic inequalities only emerged in the models after 

hazard control variables were introduced.  

 Given that the income-based differences in outage volume cannot be 

attributed to weather patterns, further research is needed in order to identify the 

source of this gap. One likely possibility is that routine maintenance, infrastructure 

hardening such as tree trimming and resilience efforts are not prioritized in low-

income communities, which results in severe outages when extreme weather events 

occur. In any case, it is clear that the antecedent conditions that were discussed in 

Cutter’s DROP model had an effect on this hurricane’s impacts (Cutter et al., 2008b). 

 In order to observe the relationship between impact and recovery, the 

maximum number of outages was included as an independent variable in Analysis 2, 

in which the dependent variable was the time it took for a ZCTA to reach 50%, 80% 

and 95% power restoration. The impacts of maximum outages were mixed.  

Throughout this analysis, it was found that the maximum number of outages 

at the ZCTA level had a significant and positive relationship with the time it takes for 

a ZCTA to reach 95% restoration, meaning that impact and recovery are closely 

related. However, the maximum number of outages has less of an impact on the time 

that it takes for a ZCTA to reach 80% and 50% restoration. A significant positive 

relationship is observed at all thresholds when the model does not control for hazards 
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or priority variables, but as soon as these variables are introduced, the significance is 

lost.  

A possible explanation for these findings is that in the early stages of 

recovery, prioritization of some communities over others in the deployment of 

recovery crews is more present, whereas later in the process the head starts that some 

communities get due to being the early focus of recovery efforts becomes less 

relevant, because the process becomes largely determined by the volume left to 

restore. Based on what is known about power restoration prioritization, utilities will 

typically focus their early efforts on the repairs that will restore power to the largest 

number of people as quickly as possible. Therefore, once ZCTAs reach 90-95% 

restoration, all of the easy fixes have already been finished, and the more difficult 

jobs that will restore power to a small number of households are left. This is a much 

slower process, in which the volume of outages will become the determining factor.  

3.5.2 Socio-economic inequalities and Recovery 

 Analysis 2 investigated the impact of socio-economic inequalities on power 

restoration time, focusing on two socio-economic variables of interest: percent of 

households below the federal poverty level and the median household income. The 

analysis examines the impact of these socio-economic variables on recovery time at 

three recovery thresholds: 95%, 80% and 50% restored.  

 Model 3 does not control for any hazard or priority variables, and no 

significant relationship between the socio-economic independent variables and 

recovery is found at any of the three thresholds under study. However, in Model 5, 
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which introduces hazard variables, and Model 6, which includes prioritization 

variables, a significant positive relationship between the percentage of households 

below the poverty level and 80% recovery time is observed. This would suggest that 

as the proportion of households below the poverty level increases, the time it takes for 

a ZCTA to reach 80% recovered also increases when we control for hazard 

characteristics. Similarly, a significant negative relationship between median 

household income and recovery is observed at both the 50% and 80% thresholds. This 

suggests that as ZCTA median household income increases, the time that it takes for 

the ZCTA to reach 50% and 80% power recovery will decrease.  

 No significant relationship exists between the socio-economic variables and 

recovery time at the 95% threshold in any of the models. Perhaps this is caused by the 

same phenomenon that was proposed above with regards to the significance of the 

maximum outage variable at the 95% threshold. It would appear as though wealthier 

neighborhoods are early targets for power restoration efforts, which brings them to 

the 50% and 80% recovery thresholds more quickly. However, at some point after 

80% restoration is achieved, restoration progress shifts and becomes primarily 

determined by volume of remaining outages rather than socio-economic concerns. 

This is perhaps because the most difficult and small-impact restoration work is saved 

until the end of the process, and the slower pace of recovery allows neighborhoods 

that lagged behind but had fewer total outages to catch up with the others.  
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3.5.3 Hazard Characteristics and Recovery 

 The sustained wind duration variable that was introduced in Model 4 had a 

positive effect on recovery time. As discussed above, this variable specifically 

measures the length of time before sustained wind speeds dropped below 30 miles per 

hour. This is the federally mandated wind speed above which power restoration crews 

were not allowed to work in elevated trucks to fix the power lines. As a result, 

sustained wind speeds measured the time at which recovery was allowed to start in a 

given ZCTA, and one would expect that the longer a power crew must wait before 

being allowed to begin the recovery process, the longer before power will be restored.  

The hazard variables introduced in Model 5 had effects on recovery time that 

were very similar to the way that they impacted Maximum Outages in Analysis 1. 

Maximum wind gust velocity was consistently positively correlated with power 

restoration time at all restoration thresholds in the unlagged models, and in some of 

the weighted models. This would indicate that the higher the wind velocity within a 

ZCTA, the longer it will take for that ZCTA to reach a given recovery threshold.  

Similarly, 5-day precipitation levels and maximum flood ratio were generally 

found to be positively correlated with recovery time in the unlagged models, and the 

significant positive relationship between precipitation and recovery time persisted 

even in the weighted models. This means that in ZCTAs with more extensive 

flooding and higher rainfall, recovery times tended to be slower, which is logically 

consistent with the theoretical framework established for this model. 
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A more unexpected finding is the fact that after the hazard variables were 

added, sustained wind duration remained significant but switched from a positive to a 

negative coefficient. This means that after the model controlled for other hazard 

characteristics, ZCTAs where sustained winds persisted for longer periods of time 

had their power restored more quickly. Perhaps most of the effects that were observed 

from the longer high wind speeds were actually related to the damage done by the 

hazard and not then recovery start time, and that in reality the delay gave the power 

crews time to plan their approach and get set up on the ground. In the end this 

preparation time might have resulted in a more efficient recovery process. However, 

more research is needed to fully explain this finding. 

3.5.4 Prioritization Characteristics and Recovery 

 Model 6 introduced count measures for emergency and health services and 

grocery stores, as the literature suggests that these types of infrastructure are targets 

for early recovery efforts. However, these were not found to have a significant impact 

on recovery time. The one exception is that the presence of emergency services was 

significantly positively correlated with the recovery time in the weighted models at 

the 95% threshold, suggesting that as the amount of emergency service infrastructure 

increased, recovery time increased as well. This is contrary to what theory would 

suggest. 

 Otherwise, it would seem as though the prioritization of recovery is more 

complex and nuanced than a simple count of infrastructure. Attempts were also made 

to normalize the infrastructure variables so that they reflected infrastructure counts 



 

92 

 

per 1000 inhabitants and infrastructure counts per square mile, but it did not change 

the significance of the results. 

3.5.5  Policy Recommendations 

 One of the most important findings in this paper is that judging recovery 

outcomes by looking at a single threshold, such as 95% recovered is insufficient. 

Recovery is a process, not an end point, and researchers and policy makers must 

consider the path that communities take in order to reach full recovery. Even if two 

communities reach a recovery end point at the same time, one cannot assume that the 

paths they took to arrive at this point in the recovery process were remotely similar.  

The industry standard threshold for power restoration is 95% restored, but if 

this analysis had been limited to that threshold, most of the nuance in the discussion 

above would have been lost. Based on the analysis above, it appears that in the earlier 

stages of power restoration, higher income ZCTAs recovered more quickly, and it 

was only in the later stages, between 80-95% restored, that the lower income ZCTAs 

began to catch up and restoration progress became a product of outage volume rather 

than socio-economic status.  

One of the weaknesses of this study is that it did not control for infrastructure 

characteristics such as the percentage of power lines in a given ZCTA that are 

undergrounded. This could have a significant impact on both the rate of outages and 

recovery time, but this data is simply not available. Greater transparency on the part 

of utilities with regard to this information would vastly improve the quality of the 

research that is possible on this important subject. 
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Further study is needed in order to identify whether these findings are unique 

to power restoration following Hurricane Isaac, a problem that is specific to the state 

of Louisiana and Entergy, or a more widespread phenomenon. However, it is difficult 

to apply these models to other hurricanes because electric utilities are very guarded 

with their detailed outage data. Despite the fact that this data is temporarily available 

to the public on their websites, utilities make it very difficult for the data to be 

compiled for statistical analysis. Not only are researchers required to scrape the data 

themselves, the utilities are known to change the format in which the data are 

presented mid-restoration. This poses a real challenge for the scraping algorithms, 

which are programmed to be able to navigate a set layout.  

Given that power utilities are government-regulated natural monopolies, this 

information should be made more easily available to researchers, particularly because 

it appears as though vulnerable communities are currently the losers in power 

restoration efforts. This data is crucial in order to further define these recovery 

disparities, both the extent to which they exist, and what motivates the decision-

making that prioritizes some communities over others, so that processes can be 

improved and made more equitable in the future. 
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4. Measuring Social Capital and Civic Engagement  
 In the literature, social capital is clearly linked to community resilience and 

recovery but in order to further study the relationship between social capital and 

concrete recovery outcomes, it is necessary to have a conceptual framework of social 

capital that can be empirically evaluated (Aldrich, 2012b; Elliott et al., 2010a). 

Measuring social capital is an incredibly difficult task because it requires that the 

researcher operationalize a very abstract idea: the presence and quality of social 

networks and social bonds. As with the study of resilience more broadly, taking a 

quantitative approach to measurement is attractive because it can be compared, 

indexed and applied to quantitative models. However, this necessitates the 

challenging task of selecting proxies and metrics that can be validated and are not 

overly correlated with other potential influencers of recovery outcomes, such as 

income. As discussed in Chapter 2.3, commonly used proxies for social capital 

include participation in community groups, volunteerism and civic engagement. 

While some measures for civic engagement are collected by the US Census Bureau, 

they are aggregated to the county level. As a result, they are not suitable for 

community-level analyses.  

 This chapter explores the potential for using 311 contact data as a proxy for 

community civic engagement. 311 requests are a low-cost way for community 

members to directly engage with local government to either request information or 

alert representatives of a problem in need of their attention. The mechanisms that 

would fuel the decision to reach out to local government through a dedicated phone 



 

95 

 

line differ in some ways from the mechanisms that allow individuals to foster 

bridging connections within and outside their communities, so this measure is not 

directly analogous to the traditional definition of social capital. However, the 

willingness of a community to engage in information transfer with local government 

is a characteristic that is directly relevant to potential recovery outcomes.  

 This analysis explores the neighborhood characteristics influencing 311 use in 

Houston TX between 2016 and 2017 prior to Hurricane Harvey using publicly 

available logs of Houston 311 requests. In it, I will position 311 data as a valuable 

tool for understanding civic engagement and the way that neighborhoods interact with 

the government. The chapter begins with a brief introduction to 311 services and a 

review of the relevant literature, with a focus on how 311 data has been used in social 

sciences research. I will then introduce the data being used in this chapter and provide 

a description of the methods and results. The chapter will conclude with a discussion 

of the findings and potential policy implications and applications for this research.   

4.1 311 Services: Background and Literature 

 In 1996, Baltimore became the first city in the United States to use 311 as a 

city hotline through which citizens could contact the police service for non-

emergency problems such as graffiti and illegal dumping. The experiment was a 

success, and the following year 311 was reserved nationwide by the US Federal 

Communications Commissions to act as a toll-free line that citizens could call to 

make non-emergency inquiries and complaints to the police (Wheeler, 2017). In the 

1970s, 911 was reserved as an emergency call line, but it had become over-burdened 
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by calls, many of which were of a non-emergency nature. As a result, government 

officials felt that providing a second toll-free number that citizens could use in non-

emergencies would increase the efficiency of 911 by reducing the number of non-

urgent calls placed on the service (Wiseman, 2014). Further, it was designed to be 

tool for community policing, because it would help departments identify areas that 

were in need of services (Wheeler, 2017).  

 In 1999, Chicago launched its own 311 service, which expanded on the 

Baltimore model by making it so that the toll-free number allowed citizens to not only 

make non-emergency complaints to the police, but also to contact the city about a 

wide variety of municipal services. The service could be used for everything from 

requesting a bulk trash pick-up to inquiring about city services. This soon became the 

standard model for 311 lines, and many other major cities began launching similar 

programs, including Los Angeles in 2002 and New York City in 2003. Since then, 

cities have expanded their services to allow for online and even app service requests, 

although voice calls remain the most popular mode of contact. Now, more than 200 

cities across the United States have their own 311 services, and hundreds more, 

smaller municipalities are paying to use private sector companies and apps to help 

them manage service requests (citylab 311 calls).  

Applications to Social Science Research 

 As 311 services have become more pervasive across major US cities in the 

past 15 years, they have generated interest within social sciences research for their 

potential as a valuable source of data. On a very basic level, 311 systems provide 
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citizens with a low-cost, low-effort way to engage with their local government about 

a wide range of very specific issues related to low-level non-emergency crime and 

municipal services in real time; Fleming refers to them as a “front door for citizen 

access to government” (Fleming, 2008). They also provide a mechanism for city 

elected officials to better understand what their constituents care about, and provides 

a tool for performance measurement. 311 requests are an especially exciting tool for 

social science research because 311 logs are often publicly available through city 

websites. Given that cities receive hundreds, if not thousands of requests every day, 

this produces a very large dataset with extreme spatial and temporal disaggregation. 

The literature tends to use 311 data in one of two ways. Some researchers use 

these service requests as a proxy measurement for physical neighborhood disorder. 

When used as a measure of disorder, researchers focus on the fact that the hotline 

provides citizens with an opportunity to alert the police to problems in the community 

like graffiti and illegal dumping. O’Brien et al. used data from Boston’s 311 hotline 

to test the broken window theory1 by looking at 311 requests that reference “private 

neglect and public denigration” and used investigator-initiated neighborhood audits to 

test whether the hotline data was a valid and reliable measure of physical disorder 

(O’Brien, Sampson, & Winship, 2015).  Boggess et al. similarly used 311 data in 

Reno, NV, to investigate the reciprocal relationship between physical neighborhood 

                                                
1 A criminology theory introduced James Q. Wilson and George L. Kelling (1982) that introduced the 
idea that visible signs of crime and disorder in urban environments will encourage further and more 
extreme crime and disorder.  
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disorder and violent crime (Boggess & Maskaly, 2014), and Wheeler used 311 data in 

Washington DC to test the relationship between requests for service and crime at the 

street intersection level (Wheeler, 2017).  

A second group of researchers use 311 requests as a proxy measurement for 

civic engagement. Civic engagement is an important consideration in many fields of 

research, but it can be a frustrating area of investigation because it is difficult to 

measure accurately, especially at disaggregated spatial scales (Kerr, 2018). Other 

civic engagement measurement strategies include voter turnout and rate of census 

return, as well as less widely available data such as rates of volunteerism and 

participation in civil society groups (Haney, 2018; Portney & Berry, 2010; Ruef & 

Kwon, 2016). 

 Lerman et al. used New York City 311 data to investigate the impact of stop-

and-frisk policies on neighborhood likeliness to engage with government via 311 

service requests (Lerman & Weaver, 2014). Similarly, Levine et al. used 311 data to 

study the way that neighborhood racial makeups impact political participation 

(Levine & Gershenson, 2014) and Minkoff performed a tract-level analysis of 311 

requests in New York City to broadly identify the neighborhood characters that led to 

higher rates of civic engagement (Minkoff, 2016). 

White is more skeptical about the use of 311 requests as a proxy for civic 

engagement. This paper compares rates of 311 requests within New York City census 

tracts and precincts to three other measures of civic engagement: voter turnout, 

census return rate and political donations. Like making contact with a 311 line, voter 
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turnout and census return rate are relatively low cost forms of political participation, 

whereas political donations are a higher cost way of participating, so the paper 

expected to find a strong correlation between 311 requests and the two former 

comparative measures, and a weaker relationship between 311 requests and the latter. 

However, the paper found that neighborhoods that used 311 in higher volumes were 

less likely to complete their censuses and vote but were more likely to donate 

politically. The author hypothesizes that perhaps what is being observed is a small 

number of 311 ‘super-users’ who are contacting 311 so frequently that they are 

driving trends.  However, the author omits a number of control variables such as 

home ownership and spatial lags that were considered essential in other analyses, 

which may have also played a role in driving these unusual results (White & Trump, 

2018).   

Taken together, these papers provide important insights into the opportunities 

and challenges of using 311 data as a research tool. When approaching research using 

311 data, one must be mindful of the fact that any 311 call is the “coincidence of two 

events” (O’Brien et al., 2015): the issue that prompts the call, and the decision to 

report it. These calls cannot be taken as an unbiased measure of disturbances because 

in order for the call to be logged, it requires that someone decide to report it to 

municipal services, and the proclivity to report varies across neighborhoods. 

Similarly, the calls cannot be taken as unbiased measures of civic engagement, 

because disturbances that prompt 311 calls are not evenly distributed across 

neighborhoods. However, the papers suggest solutions for both of these problems.  
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Minkoff’s tract-level analysis of proclivity to contact in New York City 

provides insight into the social and economic characteristics that influence the degree 

to which different neighborhoods contact 311 services, all other things held equal. In 

his analysis, he looks at three different categories of 311 service requests: government 

goods, graffiti complaints and noncommercial noise complaints, where government 

goods refer to municipal services that are available to everyone, such as garbage 

pickup and streetlights. Government goods are expected to vary less across 

neighborhoods than the latter two categories, which are caused by human behavior 

and are likely experience more inter-neighborhood variation (Minkoff, 2016). Levine 

and Gershenson’s paper focused exclusively on snowplow requests after snowstorms 

in Boston. Throughout the paper the authors emphasize the importance of focusing on 

the right category of request.  Their strategy of only analyzing snowplow requests 

helps to address the ‘condition problem’, which refers to the fact that the volume of 

requests in a given spatial boundary is influenced by the amount of disorder within 

that space. If there are more problems to call about, one can assume that more 

requests will be logged (Levine & Gershenson, 2014).  

Minkoff finds that an increase in percentage of owner-occupied households 

and the percentage of households with children under the age of 18 both cause an 

increase in calls about government goods, but a decrease in calls about graffiti and 

noise complaints. This would suggest that neighborhoods with these conditions have 

a higher propensity to call but lower levels of disorderly conditions, which is 

intuitively logical, given that homeownership and young children would both cause 
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households to have a higher degree of investment in their surroundings. Minkoff also 

finds that calls about government goods increase in neighborhoods that have higher 

median incomes. 

4.2 Data 

 The analyses in this paper use 311 log data from the city of Houston Texas to 

build the dependent variable. Houston’s 311 services are available 24 hours per day in 

both English and Spanish. Though the majority of the requests are made via voice 

call, they are also accepted and recorded through a wide variety of other mediums 

including SMS text message, mobile app, email and online. The data is publicly 

available to be downloaded from the City of Houston’s website.2 This data is very 

detailed; Table 1 provides a small sample of the data categories that are included in 

the logs.  

Table 4.1: 311 Log Data Categories 

Label Description 
casenumber Unique identifying number assigned to each request 
srlocation Street address or intersection of complaint or inquiry 
department Municipal department relevant to the request 
division Division of department relevant to the request 
type Description of the reason for the request 
srcreatedate Date and time that the request was placed 
latitude Y coordinate of the complaint or inquiry 
longitude X coordinate of the complaint or inquiry. 
channel Channel by which contact was initiated 

 

                                                
2 http://www.houstontx.gov/311/ 
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The spatial unit of analysis for this paper is Census Zip Code Tabulation Area 

(ZCTA). The ZCTA is a geographical unit that was developed by the Census Bureau 

for the 2000 Census in response to continued requests by data users for statistical data 

by ZIP Code. ZIP Codes are assigned by the United States Postal Services based on 

postal delivery routes, but they are not all continuous polygons, so the Census Bureau 

converted them into polygons that can be used for spatial analysis by defining all the 

ZIP Codes on a block, and then using the mode as the entire block’s ZCTA.  

Although the majority of the 311 logs included a Zip Code in the srlocation 

column, this was not always the case, because some requests were linked to 

intersections rather than home addresses. However, nearly all of the logs included 

spatial information about the site of the complaint in the form of latitude and 

longitudinal coordinates, the coordinates were mapped and joined to the Census 

Bureau’s 2010 ZCTA shapefile. Each request was then tagged with the ZCTA within 

which it was located. In the two-year span under study between 2016 and 2017, over 

644,000 311 requests were logged in 146 ZCTAs. During the data cleaning process, 

approximately 10,000 requests were removed because they did not contain any form 

of geographical data, making it impossible to link them to a ZCTA.    

As shown in Table 1, there are several columns in the 311 logs that give 

specific information about the nature of the inquiry or complaint: department, 

division, and type. For example, if someone calls to complain that their garbage was 

not picked up as scheduled, the entry in the 311 log will indicate that the department 

is ‘Solid Waste Management’, the division is ‘Collections’ and the type is ‘Missed 
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Garbage Pickup’. During the two-year span under study, requests were directed to 17 

unique departments and 31 divisions, and they were categorized as 159 different 

types. This level of specificity is important, because it allows for a significant level of 

control when determining which categories of 311 requests are relevant for the 

analysis.  

In addition to the dependent variables, variables were included in the analysis 

in order to control for demographic, neighborhood and spatial conditions that would 

impact the volume of 311 requests that were placed. These variables came from a 

variety of data sources as outlined in Table 4.2.  

Table 4.2: Independent Variable Overview and Sources 

Category Description Source 
Socio-
economic 

Median income American Community 
Survey (ACS) 

% Below Poverty Line ACS 
% Limited English ACS 
% 65 years and over ACS 
Total households ACS 

Investment  % Owner occupied ACS 
% With children under 18 ACS 

Spatial Distance from city center TIGER/Line 
Population density TIGER/Line, ACS 
Queen's contiguity lag of 
dependent variable 

TIGER/Line, Houston 311 

 
Selection of the variables was guided by the literature on 311 requests that 

was discussed above. These included socio-economic variables such median income, 

population size, racial demographics, education level, and age. The literature also 

suggested that certain characteristics like having children or being a homeowner 
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rather than a renter impacted the level of investment that people have in their 

neighborhood, thereby influencing the frequency of their requests, so these 

characteristics were also included in the analysis. Population density and ZCTA area 

could impact the likelihood that problems are noticed and reported in, so those were 

considered for inclusion as well. 

4.3 Methods 

4.3.1 Analysis 1: Neighborhood Characteristics Determining 311 Request Volume 

The dependent variable used in this analysis is a count of the total number of 

311 requests within a given category per ZCTA in a specified time frame. As is often 

the case with count variables, it is skewed and over dispersed, meaning that the 

conditional variance is greater than the conditional mean. As a result, the negative 

binomial regression is the most appropriate model for this analysis. The negative 

binomial regression is a generalized version of the Poisson regression that includes a 

dispersion term to account for the fact that the data does not meet the Poisson 

assumption of equality between mean and variance. It has been used in the literature 

for estimations involving 311 requests (Levine & Gershenson, 2014; Wheeler, 2017). 

 Requests were grouped together to form a ZCTA-level count that was used as 

the dependent variable. In this analysis I am assessing the volume of requests made to 

311 services under normal conditions, and as a result, the dependent variable was 

designed to be analogous to the government services measure that Minkoff developed 

to analyze 311 requests in New York (Minkoff, 2016). This will be used to analyze 

the way that the 311 services are used by different Houston ZCTAs under normal 
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circumstances, seeking to identify the neighborhood characteristics that influence 

contact volume.  

Table 4.3: Government Services Requests: January 1, 2016 - August 20, 2017 

Department Division Type Freq. 
Public Works 
Engineering 

Public 
Utilities 

Fire Hydrant 4,680 
Water Leak 45,223 
Water Main Valve 7,632 
Water Quality 4,657 
Water Service 23,029 

Solid Waste 
Management 

Collections Container Problem 47,692 
Missed Garbage Pickup 45,708 
Missed Heavy Trash Pickup 14,265 

Recycling Missed Recycling Pickup 20,556 
Recycling Cart Repair or Replace 12,602 

 
The variable includes types of requests that are related to government services 

that can be expected to cause problems evenly across neighborhoods (see Table 4.3). 

Requests related to problems that are caused by direct actions, like nuisance 

complaints or graffiti were excluded, as were requests requesting services like yard 

waste pickup, as these would be more prevalent in suburban neighborhoods where 

most residents have yards. Requests about road conditions were also excluded, as 

those are more likely to have been made by non-residents, and also would be more 

prevalent in neighborhoods with more through-traffic. This approach to aggregating 

the requests helps to manage the ‘condition problem’ that was described above; it can 

be assumed that the conditions prompting the complaints arise at a roughly equal rate 

across neighborhoods, then differences in call volume must be explained by other 

neighborhood characteristics.    
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In addition, a second 311 call count variable was created that included 

nuisance complaints or requests about problems that are hypothesized to arise more 

frequently in lower-income neighborhoods (Table 4.4).  

Table 4.4: Nuisance Call Categories 

Department Division Type Freq. 
Neighborhood 
Services 

Investigations  Nuisance on Property 23,762 
Junk Motor Vehicle 3528 

Public Works 
Engineering 

PDS Planning 
Development Services 

Multifamily 
Habitability Violation 

3909 

Various Various Graffiti 1,017 
 

The ZCTAs were then divided into income-based quartiles in order to 

compare the proportion of government services, nuisance, and other complaints made 

in the lowest income quartile ZCTAs and the highest income quartile (Table 4.5). As 

predicted, the proportion of nuisance complaints is significantly higher in the lowest 

income ZCTAs, and the proportion of uncategorized requests is higher in the highest 

income ZCTA. Due to the large sample size, the proportional difference between the 

volume of government services requests in the first and fourth quartile ZCTAs is 

significantly different, they are nonetheless quite similar, at 28.24% vs. 29.59% 

respectively. This adds credibility to the claim that the government services variable 

is an appropriate tool with which to analyze citizen engagement at the ZCTA level 

across Houston.  
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Table 4.5: Call Volume by Category 

 Income Quartile 1 Income Quartile 4 
Total Percentage Total Percentage 

Government Services 42,249 28.24 17,807 29.59 
Nuisance 18,706 12.5 3,149 5.23 
Other 88,670 59.26 39,230 65.18 

 
Given that the data takes the form of a count and has a right-skew, I 

considered both negative binomial regression models and ordinary least squared 

regression models in order to perform the analysis. The econometric specifications of 

the negative binomial and regression models respectively are as follows: 

 𝑌" = 𝛽% + 𝛽'𝑋'" + 𝛽)𝑋)" + 𝛽*𝑋*"+	𝛽.𝑊," + 𝜀  (1) 
 𝑠𝑞𝑟𝑡(𝑌") = 𝛽% + 𝛽'𝑋'" + 𝛽)𝑋)" + 𝛽*𝑋*" + 𝛽.𝑊," + 𝜀  (2) 

 
Where Yi is the count of government services requests in ZCTA i within the 

previously defined time period. For the OLS regression model, a square root 

transformation of the count variable was used in order to better fit the data to the 

model.  

Table 4.6: Socio-economic covariates 

Variable Year Description 
Poverty 2016 (5-year 

estimate) 
Percent below poverty level; Estimate; Population 
for whom poverty status is determined 

Median 
income  

2016 (5-year 
estimate) 

Median income (dollars); Estimate; Households 

Limited 
English 

2016 (5-year 
estimate) 

Percent limited English-speaking households; 
Estimate; All Households 

Aged 65+ 2016 (5-year 
estimate) 

Percent of population over 65; Estimate 

 
 X1 represents population characteristics within ZCTA i and includes both total 

number of households and population density. X2 represents the socio-economic 
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variables of interest in ZCTA i, which are outlined in Table 4.6. The models were run 

separately using median ZCTA income and percent below the poverty level. The 

other socio-economic covariates were included every time the model was run. Several 

other socio-economic variables were considered for inclusion into the model, but due 

to a lack of significance and/or strong correlation with existing covariates, they were 

omitted from the final models.    

X3 represents covariates that were designed to represent the level of 

investment that residents within ZCTA i will have in the long-term maintenance and 

upkeep of their communities, and the spatial characteristics of their neighborhoods. 

These variables are outlined in and were informed by the literature on 311 requests 

that was described above. The possibility of including the percent of households that 

were owner occupied into the model was also considered, but it was very strongly 

correlated with the percent of households that are single units, so it was omitted from 

the model. Similarly, household median tenure was considered, but it was so strongly 

correlated the percent of single units, that it was omitted from the final model.  A 

measure for distance from city center was included because more central 

neighborhoods are more likely to experience higher levels of thorough-traffic.  

Table 4.7: Investment in neighborhood covariates 

Variable Year Description 
Households with 
children 

2016 (5-year 
estimate) 

Percent; estimate; households with own 
children of the householder under 18 years 

Single units 2016 (5-year 
estimate) 

Percent; estimate; households with one unit in 
structure 

Distance from 
city center 

n/a Distance between a given ZCTA’s centroid 
and Houston’s centroid, calculated in QGIS 
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Finally, both models include a spatial lag of the dependent variable Y. Spatial 

autocorrelation is a potential problem in any model that uses geographic spaces as 

units of analysis, and the literature indicates that spatial autocorrelation is often a 

factor when conducting an analysis using 311 requests. Similarities tend to be 

geographically clustered, meaning that the variables of interest in one ZCTA may be 

influenced by other ZCTAs in its proximity. This violates assumptions of 

independence. Moran’s I tests were performed on the service call count in order to 

test for spatial autocorrelation. This test confirmed that the dependent variable was 

positively and significantly spatially autocorrelated, so a spatial lag of the dependent 

variable was created using a first order queen’s contiguity matrix, following the same 

methodology as was described in Chapter 3.  

Table 4.8: Moran's I Test for Government Services Requests 

 Normal Approximation Randomization 
Moran’s I 0.4118 0.4118 
Mean -0.0106 -0.0106 
Std. deviation 0.0610 0.0612 
Z-score 6.9230 6.8973 
P-value 0.0000 0.0000 

 
 However, at times spatial lags can have such a strong relationship with the 

dependent variable that they mask the significant impacts of the other covariates, 

particularly if the covariates are also spatially auto correlated. As a result, the models 

are all also run without the spatial lags in order to compare results (Minkoff, 2016).  
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4.4 Results 

4.4.1 Analysis 1: Neighborhood Characteristics Determining Call Volume 

Descriptive Statistics 

 Of the 95 Houston ZCTAs included in the analysis, the minimum number of 

government services requests placed during the established time period is 3, and the 

maximum is 7831. The mean number of government services requests at the ZCTA 

level within the period of study was 2703, and the median was 2550. The data has a 

skewness statistic of 0.4169, confirming that the data is right skewed, and the 

variance of 4417670 means that it is over dispersed, thereby fulfilling the 

characteristics of a dataset that is best modeled using a negative binomial regression 

model. A histogram of the data distribution further confirms that the data takes the 

appropriate shape for this model (Figure 4.1). However, the skew is clearly less 

dramatic than in some count data sets, which is why a square root transformation of 

the dependent variable was able to make this dataset fit into a standard OLS 

regression model.  



 

111 

 

 

Figure 4.1: Government Services Requests by ZCTA 

A series of maps were produced in order to visualize and better understand the 

way that 311 call volume and socio-economic status were distributed throughout the 

city. All maps only include the ZCTAs for which 311 call data was available. As can 

be seen in Figure 4.2 and Figure 4.3, government service call counts are distributed in 

similar ways throughout the city of Houston, with call volume being concentrated in 

the center and south-east of the city. When compared to the distribution of median 

income within the City of Houston (Figure 4.4), there appears to be a higher volume 

of government service 311 requests being placed in the regions of the city with lower 

median incomes. 
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Figure 4.2: Distribution of Government Services Requests 

 

Figure 4.3: Distribution of Government Services Requests per Household 
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Figure 4.4: Distribution of Median Income 

 In the methods section above, it was noted that the distribution of call type 

varied across ZCTAs depending on their income. Income also had a statistically 

significant impact on the channel by which ZCTAs are most likely to make contact 

with the 311 services. Table 4.9 shows that lower income ZCTAs are much more 

likely to contact 311 services by voice calls (89.22% vs. 78.11%). However, the data 

does not distinguish between mobile and land line callers. In contrast, higher income 

ZCTAs were much more likely to make contact via the 311 website, whether on their 

smart phone (7.73% vs. 14.76%) or on a computer (2.55% vs. 6.32%).  
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Table 4.9: Channel Type by Income 

 Income Quartile 1 Income Quartile 4 
Total Percentage Total Percentage 

Face2Face 28 0.02 23 0.04 
Fax 0 0 1 0 
Mail 15 0.01 6 0.01 
SMS 98 0.07 150 0.26 
Voice 125,731 89.22 44,796 78.11 
WAP 10,897 7.73 8,463 14.76 
WEB 3,597 2.55 3,624 6.32 
e-mail 562 0.4 289 0.5 

 
Regression Analysis 

 Table 4.10 displays the results of the negative binomial regression models that 

seek to identify the neighborhood characteristics that influence the volume of 

government service related 311 requests at the ZCTA level within the city of Houston 

in 2016 and 2017 prior to Hurricane Harvey. As described above, these models 

control for socioeconomic variables, the level of investment in the neighborhood and 

population characteristics. They are all run both with and without spatial lags, 

because the literature indicates that the inclusion of a spatial lag can mute the impacts 

of other variables. The model was also run as an OLS regression using a square root 

lagged dependent variable, yielding very similar results. 

The table shows that median income has a significant negative impact on the 

volume of government services requests made at the ZCTA level, both with and 

without weights. Similarly, the percent of households below the federal poverty level 

has a significant positive relationship with the number of 311 requests, with and 

without weights. The other socio-economic variables, percent of the population with 
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limited English and percent of the population over the age of 65, had no significance 

in any of the models.  

Table 4.10: Determinants of Government Services 311 Call Volume (Model 1) 

  
 

  

Total Households 0.00005391* 0.00003372 0.00006449* 0.00004088 

 (-0.00002476) (-0.00002646) (-0.00002511) (-0.00002754) 
Population Density 273.65 329.38 238.1 266.99 

 (-168.25) (-187.01) (-169.8) (-195.4) 
Median Income -0.00001340** -0.00001877***   

 (-0.00000479) (-0.000004856)   
Percent Limited English -0.02018 -0.03172 -0.0202 -0.02916 

 (-0.01567) (-0.01653) (-0.01621) (-0.01773) 
Percent Over 65 2.5209 -0.1175 2.6598 -0.3419 

 (-3.9336) (-4.0815) (-4.0257) (-4.3398) 
Percent With Children 0.01215 0.01163 0.007089 0.007287 

 (-0.02054) (-0.02249) (-0.02158) (-0.02425) 
Percent Single Units 0.01583* 0.02164** 0.01512* 0.01933*   

 (-0.006989) (-0.00772) (-0.007102) (-0.008152) 
Distance from City Center -0.00004389* -0.00008036*** -0.00003101 -0.00006604**  

 (-0.0000201) (0.00001974) (-0.00002079) (-0.00002204) 
Wy 0.0004441***  0.0004905***  

 (-0.0001018)  (-0.00009997)  
Percent Below Poverty   0.03671* 0.04609**  

   (-0.01527) (-0.01713) 
Constant 5.4060*** 7.8369*** 3.7173*** 5.9477*** 

 (-0.9207) (-0.792) (-0.9484) (-0.9113) 
Log Alpha -0.09432 0.04907 -0.08521 0.08999 

 (-0.1302) (-0.1282) (-0.1301) (-0.1277) 
Observations 95 95 95 95 

Pseudo R2 0.03162 0.02141 0.03099 0.01843 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 

  Total number of households had a significant relationship with the call 

volume in the weighted models only, and population density had no significance. 

When the spatial lag is omitted, all models indicate that the percent of households 
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with children has a significant, negative impact on volume of 311 government service 

requests. The percent of households in single unit dwellings has a significant positive 

relationship with request volume across all models.  

4.5 Discussion 

4.5.1 Government Services Requests 

 This analysis finds that household income has a significant impact on the 

volume of government service requests being placed at the ZCTA level. Median 

income has a significant negative relationship with the volume of requests, meaning 

that as the median income decreases the number of requests placed within a ZCTA 

increased. Similarly, there is a significant positive relationship between the percent of 

a ZCTA below the poverty line and the number of government services 311 requests, 

which means that as the number of households living in poverty increases, the 

number of 311 requests also increases. These findings were surprising. The literature 

generally suggests that high-income neighborhoods are more likely to use 311 

services, but this was not the case in Houston. 

 One possible explanation for this phenomenon is that the 311 system can be 

seen as the worst available option for contacting the city and advocating on behalf of 

a neighborhood. Wealthier neighborhoods may have more bridging social capital and 

as a result are better connected to local government, providing them with more 

efficient channels by which to lodge complaints. In contrast, perhaps low-income 

neighborhoods are less likely to have other means by which to contact the city, and as 

a result resort to 311 requests. However, it is also possible despite best efforts to only 
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include requests in the government service category about problems that would be 

evenly distributed across the city, there remains some spatial and socio-economic 

bias, and the problems about which callers are complaining arise more frequently in 

lower income neighborhoods. Rather than an increased proclivity to call, there may 

be a governance deficit that requires these low income ZCTAs to log complaints with 

greater frequency. 

 The other socio-economic variables that were included in the analysis, percent 

of population with limited English and percent of population over the age of 65, did 

not have a significant relationship with the total number of government services 

requests, and several other socio-economic variables were also tested, found to lack 

significance, and omitted from the final models. It was expected that larger 

proportions of the population with limited English might hinder the use of 311, 

however this was not found to be the case. This is likely because even in low English 

speaking ZCTAs, this subgroup accounted for a relatively small proportion of the 

total population. Additionally, 311 services are also offered Spanish, which is the 

second most commonly spoken language in the Houston area, so most of the limited 

English households were still able to communicate with 311 services.  

 As expected, a positive and significant relationship was observed between the 

percentage of single housing units and the volume of 311 government services 

requests in the ZCTA. This is in large part because people residing in single units will 

deal more directly with failures in day-to-day government services like garbage 

pickup. In addition, the literature suggests that people who own their homes rather 
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than rent are more invested in the well-being of their neighborhoods and therefore are 

more likely to complain about neighborhood problems. The percent of the housing 

stock that is single units is very strong correlated with the percentage of owner-

occupied units in a ZCTA, so it this variable is also picking up the effects of being in 

a ZCTA where more people own rather than rent. It was expected that people with 

children would be similarly invested in their neighborhood, and that this may spark 

increased call volume, but the model results did not find any such effects. 

 City centers tend to have the largest flow of people, and because 311 

complaints about a given ZCTA are not necessarily made by people within that 

ZCTA, it is likely that areas that are visited by more non-residents will have more 311 

complaints. This is confirmed by the fact that there is a significant negative 

relationship between distance from city center and the volume of 311 government 

services requests in three of the four models. This suggests that as the distance 

between a ZCTA’s centroid and the city center increases, the number of 311 requests 

will decrease. 

4.5.2 Research Implications 

 This analysis began with the hope of finding that 311 call volume would be an 

effective quantitative proxy for social capital, based on the fact that other measures of 

civic engagement are regularly used in this context. However, the results indicate that 

in the city of Houston, ZCTAs that contact 311 more frequently do not necessarily 

have the neighborhood characteristics that are typically associated with social capital 

such as socio-economic advantage. However, although it cannot be confidently 
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claimed that 311 requests are an accurate proxy for the generally accepted definition 

of bridging social capital, it is nonetheless an interesting measure for citizen 

engagement with local government. 

 311 services provide residents with a way of seeking information from the 

local government and lodging complaints even if they do not have social connections 

to people in power. This could credibly be a tool that helps communities to recover 

following disasters, which will be explored in the following chapter by analyzing 311 

contact patterns across Houston following Hurricane Harvey.  
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5. Post-Hurricane Recovery and Civic Engagement 
This paper investigates the way that communities engage with their local 

government following major shocks by analyzing 311 requests for municipal services 

in Houston Texas during and after Hurricane Harvey struck the city in August 2017. 

Given the conclusions reached in the previous chapter about the way that 311 

requests function during normal circumstances, several hypotheses can be drawn 

about the way that they might function during disasters and recovery.  

311 requests serve two functions that are useful in the recovery process. First, 

they act as a mechanism for transmitting information from the local government to 

citizens. During times when internet and cellular data may not be functioning, 311 

lines are a vital way of connecting people to the services and information that they 

need during and after a natural disaster. Second, 311 requests are a way for citizens to 

convey information and requests to the local government. By providing an easy and 

low-cost way for residents to alert the government about storm damage, citizens are 

able to act as the government’s eyes and ears after a storm, and quickly alert the 

government to problems that require its attention. This has the potential to 

substantially speed up the recovery process because it increases the effectiveness and 

efficiency of problem identification. 

 As a result, there is expected to be a benefit associated with the act of 

contacting the government following a disaster, and that benefit should materialize in 

the form of a faster and more efficient recovery process. The review of the literature, 

as well as findings from the previous chapters, indicates that different neighborhoods 
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and different groups of people will tend to contact 311 services at different rates. If 

this holds true in disaster contexts, we may hypothesize that differences in 311 

contact frequency may play a part in explaining why different communities 

experience different recovery outcomes.   

This hypothesis builds on the literature that identifies social capital as a 

determinant of disaster recovery outcomes. The primary way that social capital is 

thought to contribute to recovery is by enabling communities to organize and 

advocate for themselves in the aftermath of a disaster. For example, in Consoer’s 

study of the role of social capital in Vermont after Tropical Storm Irene the 

organization of informal ‘recovery groups’ was driven by social capital in some, 

though not all communities impacted by the storm. These communities enjoyed 

“proliferating social capital and access to high value resources” (Consoer & Milman, 

2016b).  Simply put, social capital helped communities to more easily connect with 

and communicate their needs to authorities, thereby improving their ability to 

advocate and engage.  

Although social capital is shown to be a powerful force in the recovery 

process, it consistently favors those who are wealthy and well-connected, thereby 

leaving behind those who lack powerful social networks and potentially making them 

even worse off (Aldrich, 2012b). Research also indicates those who are less wealthy, 

educated and well-connected are less likely to receive government assistance during 

the recovery process because they likely to be less aware of the available programs 

and less capable of navigating the bureaucratic systems necessary in order to obtain 
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government-issued aid (Fothergill & Peek, 2004b). If properly operationalized, 

managed and promoted, 311 services could be a way to reduce these inequalities. It 

gives citizens a low-cost and low-effort way of communicating their needs to local 

authorities. It is also a way to inform people about the assistance programs for which 

they are qualified and help them navigate the red tape required to secure the aid.  

This chapter will begin by providing an overview of Hurricane Harvey and 

Houston’s recovery process, and then will go on to review the literature on the use of 

311 requests during natural disasters. The analysis that follows builds upon the work 

done in the previous chapter by continuing to use 311 call data from Houston, TX, 

but shifting to consider the city’s 311 use in the aftermath of Hurricane Harvey in 

2017, linking these findings to the literature on social capital and recovery. I will then 

focus on the way that community characteristics impact recovery and government 

interaction over time, focusing on changing weekly volume of storm-related requests. 

This analysis examines recovery at multiple time scales, first looking at 311 

call volume in the first six weeks following Hurricane Harvey, and then widening the 

focus to the full breadth of storm-related 311 requests that were made over a 20-week 

period. Meanwhile, the dimensional focus includes the recovery of many different 

systems, because the 311 requests under study relate to different types of 

infrastructure and city services. Overall, the analysis seeks to determine the 

community characteristics of 311 use related to a natural disaster, while answering 

the questions: do communities that experienced more storm-related damages log more 

storm-related 311 requests? And do communities that placed a larger volume of 
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requests in the two weeks immediately following Hurricane Harvey tend to see their 

call volume reduce more quickly? Or more generally: does calling 311 services 

actually have an impact on the speed at which a community recovers? 

5.1 Hurricane Harvey 

Hurricane Harvey initially formed as a tropical storm over the Atlantic Ocean 

on August 17, 2017. It built up to hurricane strength over the Gulf of Mexico on 

August 24, and it reached Category 4 strength just before making landfall on the 

Texas coast near Corpus Christ on August 25. Hurricane Harvey moved inland very 

slowly and was almost stationary over South Eastern Texas for four days before 

moving back into the Gulf of Mexico and making second landfall in Louisiana on 

August 30th (Blake & Zelinsky, 2018). In anticipation of the Hurricane making 

landfall, Texas Governor Greg Abbott declared a State of Disaster for 30 counties in 

the state, and the US President approved a major disaster declaration for the State of 

Texas on August 25th, at the Governor’s request.  

 Harvey would have been considered a strong and damaging hurricane just on 

the basis of its size and high winds. 52 tornadoes were reported during the storm, 36 

of which occurred in and near the Houston metro area. Maximum sustained winds of 

132 mph occurred just prior to the storm’s first Texas landfall. Highest observed 

sustained winds were 110 mph near Aransas Pass just outside of Corpus Christi 

where the storm first made landfall and highest observed gusts were 146 mph nearby 

in Rockport, TX (Blake & Zelinsky, 2018). However, water is what made Hurricane 

Harvey an unprecedented disaster. Hurricane Harvey caused extreme flooding in 
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Houston and its surrounding areas (Van-Olderborgh et al., 2017).  An estimated total 

of 33 trillion gallons of rain fell on Texas and Louisiana during the hurricane. Since 

reliable rainfall records became available in the 1880s, Hurricane Harvey is 

unmatched in United States history in terms of both scope and peak rainfall. (Blake & 

Zelinsky, 2018). 

Storm surges were also significant. In eastern Houston, a tide gauge indicated 

that the peak water level was 10.5 feet mean higher high water (MHHW), but this 

figure was inflated by extreme rainfall runoff, so while it certainly paints of picture of 

the extreme flooding, it cannot be considered as an accurate storm surge 

measurement. United States Geological Survey sensor data indicated that the highest 

surges were 8-10 feet above ground level in the Port Aransasa and Matagorda areas 

(Blake & Zelinsky, 2018).  

Hurricane Harvey’s recorded-breaking flooding caused catastrophic damage 

throughout Texas and Louisiana, with the most severe impacts concentrated in South-

Eastern Texas, including Harris County, which houses the Houston Metro area. When 

flooding was at its peak, it is estimated that 25-30% of Harris County was 

underwater. Over 300,000 structures and 500,000 cars were reported flooded, and 

336,000 customers lost power because of the hurricane. Much of the flooding during 

the hurricane was caused by torrential rains rather than storm surges and flooding 

rivers, so the majority of residential flooding occurred outside of the 500-year flood 

plain. These areas have much lower participation in the National Flood Insurance 
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Program due to the lower perceived risk. As a result, only 17% of affected residents 

had flood insurance (Shultz JM & Galea S, 2017). 

NOAA estimates that Hurricane Harvey caused $125 billion in damages, with 

a 90% confidence interval of $90 billion to $160 billion. This means that the 

hurricane will likely be the second most expensive hurricane in United States history 

after Hurricane Katrina, which caused $161.3 billion in 2017 dollars. FEMA has 

indicated that an estimated 13 million people were directly affected by the storm, 

which was responsible for at least 68 direct deaths in the United States, all of which 

occurred in Texas. This makes Hurricane Harvey the deadliest Hurricane in the 

United States in terms of direct deaths3 since Hurricane Sandy in 2012, and the 

deadliest hurricane in Texas since the 1919 Florida Keys Hurricane. All but three of 

the hurricane’s attributed direct deaths were the result of freshwater flooding. A 

further 35 deaths have been attributed indirectly to the hurricane, although attribution 

of indirect deaths is quite speculative and typically underestimated. 40,000 total 

people were evacuated and among them, 22,000 were rescued from floodwaters and 

32,000 were temporarily housed in emergency shelters. Nearly 894,000 people 

applied for FEMA aid following Hurricane Harvey (Lozano, Juan, 2017), which is 

almost double the  450,000 applicants that FEMA predicted would apply (Blake & 

Zelinsky, 2018).  

                                                
3 Direct deaths refer to deaths that were caused as a direct result of the storm, such as death by 
drowning, high winds or lightning strike. This count does not include deaths that are caused by by-
products of the storm, such as downed power lines, a lack of access to medical care, or car accidents 
from sub-optimal road conditions.  
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5.1.1 Response and Recovery 

In the weeks that followed Hurricane Harvey, the general consensus was that 

the hurricane response was relatively well managed, and that political officials 

managed to avoid the major mistakes that the public has come to associated with 

other recent storms like Hurricane Katrina (Wallace, 2017). The Kaiser Family 

Foundation conducted two surveys of people living in the 24 Texas Counties most 

heavily impacted by the Hurricane, one in October and November 2017, about three 

months following the Hurricane and a follow-up survey in June and July 2018, almost 

one year after the storm hit the region. The surveys investigate how residents are 

coping, how they perceive the recovery process, and to what extent the hurricane has 

and/or continues to disrupt their lives. Taken together, these surveys give important 

insight about the successes and failures of the recovery process to this point, as well 

as the areas that require more attention as the region moves into the phase of long-

term recovery (Hamel et al., 2018). 

One year after the hurricane, 58% of residents reported that they had been 

affected by Hurricane Harvey, which the survey defines as having “incurred damage 

to their home or vehicle, or that they or someone in their household lost a job, had 

hours cut back at work or experienced some other loss of income as a result of 

Harvey”. Among the affected residents, 70% reported that their lives were “largely” 

or “almost” back to normal in the June-July 2018 survey. This is an increase from 

56% who reported a return to normalcy in the October-November 2017 survey. 

However, nearly a year after the storm 21% of affected residents reported that they 
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were “still somewhat disrupted” and 9% report being “still very disrupted”. Black and 

low-income residents reported ongoing disruption in higher numbers. Further, 8% of 

respondents to this survey indicated that they had evacuated their home during the 

storm and that their displacement continued at the time they were surveyed. When 

those who reported that their lives were still being disrupted by the hurricane were 

asked what they needed most in order to solve their problems, the most common 

answers were house and property repairs and financial assistance (Hamel et al., 

2018).  

In Harris County, which is the focus of this analysis, 37% of residents 

reported that their place of residence had sustained damage as a result of the storm. 

Within that group, 4% reported that their home was destroyed, 15% reported major 

damage and 19% reported that there was minor damage. Of this 37%, 14% reported 

that their home was “still in an unlivable condition”. 20% of respondents who 

reported home damage in this region felt as though the place where they were 

currently living was not safe. In total, the study indicates that 8% of Harris County 

residents did not return to their pre-Hurricane home following the storm, which is the 

most accurate data currently available on Hurricane Harvey displacement, because 

FEMA does not maintain a count of how many Texans are still without permanent 

homes following the storm (Hamel et al., 2018).  

 67% of residents who were still displaced due to Hurricane Harvey indicated 

that they were not getting the help that they needed to recover. 53% said that they 

needed more help “apply[ing] for disaster assistance”, 45% said they needed help 
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“finding someone to help navigate the different systems for receiving help”, 42% 

indicated that they needed help “finding affordable permanent housing” and 28% said 

they needed help getting legal assistance. Many of these services are offered to the 

public; the FEMA helpline is designed to assist disaster victims in navigating aid 

systems and the government offers disaster legal services. The survey did not, 

however, indicate whether the problem is that those affected by Hurricane Harvey are 

unaware of these programs, or if they attempted to use them and did not find that they 

met their needs (Hamel et al., 2018).  

 The survey did specifically ask affected residents about whether they had 

applied for disaster assistance through FEMA or the US Small Business 

Administration, and 41% indicated that they had submitted applications. Of those 

who applied, 39% were approved for assistance and 42% were denied. In addition, 

28% of affected residents received financial assistance from a charitable organization. 

Although low-income individuals were among the most likely to have received 

financial assistance following Hurricane Harvey, they were also the most likely to 

report that the amount of assistance was insufficient, with focus group participants 

indicating that FEMA repair estimates were very out of touch with real material and 

labor costs (Hamel et al., 2018).  

5.1.2 311 Services During and After Emergencies and Disasters 

 Before, during and after a disaster, residents understandably have many 

questions about the status of relief efforts that are not appropriate for emergency 

services, which will likely be overwhelmed with more urgent requests and calls for 
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assistance. Further, it is to the government’s benefit to maintain a line of 

communication with citizens during disasters because it gives them on the ground 

information about where services are most needed. 311 requests provide local 

governments with a mechanism for accessing information and providing non-

emergency assistance.  During hurricanes, 311 call volumes are observed to increase 

substantially from normal use. For example, during Hurricane Wilma in 2015, 311 

use in Miami increased by 636%. Volume peaked the day after the storm when 

24,000 requests were logged; a 1200% increase from the daily average (Schellong & 

Langenberg, 2007). Similarly high volumes have been linked to hurricanes in other 

cities as well, such as New York City during Hurricane Sandy (Wiseman, 2014) and 

Hampton during Hurricane Isabel (Fleming, 2008).  

 Soon after New York City launched their 311 services in 2003, the 

Northeastern United States experienced a major blackout. Although the internet and 

cell phones were without service, landline telephones remained functional, making 

the 311 lines one of the few sources of information available to New Yorkers until 

power was restored. It proved to be an incredibly valuable service. For example, it 

was reported that many calls were received from diabetics who were inquiring about 

whether their insulin was safe to use without refrigeration. Not only were the 311 

operators able to get this information and relay it to the callers, but they also passed it 

on to the media so that it could be widely disseminated via radio throughout the city 

(Wiseman, 2014).  Wiseman also notes that 311 lines can be helpful when local 

governments are seeking FEMA assistance. FEMA offers financial assistance to local 
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governments that declare a state of emergency, but in order for the assistance to be 

approved FEMA requires specific information about the location and severity of the 

damage. Chicago used 311 flood complaints as a data source that was submitted to 

the agency following flooding in the city, which helped them to efficiently and 

quickly secure recovery assistance.  

 In September 2017, a report was published that specifically analyzed 311 calls 

in New York City that were related to Hurricane Sandy, using these calls as a proxy 

for recovery within the city. Between when the storm hit the city in late October 2012 

through to when the article was published almost five years later, over 80,000 calls 

had been placed that were directly related to the storm. The contact volume peaked at 

over 8000 on October 29 when the storm hit the city, and thousands more came in the 

following weeks. However, the calls persisted much longer than would have been 

expected; in 2017, 311 operators received almost 150 calls related to Hurricane Sandy 

(Wolfe & Roeder, 2017).  

5.2 Data 

 The analyses in this paper use 311 data from the city of Houston Texas to 

build the dependent variables. This data was described in detail in the previous 

chapter. The spatial unit of analysis for this paper is Census ZIP Code Tabulation 

Area (ZCTA), and individual requests were assigned to their corresponding ZCTA by 

mapping their reported longitudes and latitudes in QGIS (QGIS Development Team, 

2018), and then tagging each request with the ZCTA in which it is located, using the 

Census Bureau’s 2010 ZCTA shapefile.   
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Although the majority of the 311 logs included a ZIP Code in the address 

column, this was not always the case, because some requests were linked to 

intersections rather than home addresses. However, nearly all of the logs included 

spatial information about the site of the complaint in the form of latitude and 

longitudinal coordinates. The coordinates were mapped and joined them to the 

Census Bureau’s 2010 ZCTA shapefile.  

In addition to the 311 data used to construct the dependent variables in the 

analysis, variables were included in order to control for demographic, spatial and 

meteorological conditions that would have impacted the volume of requests that were 

placed after Hurricane Harvey. These variables came from a variety of data sources as 

outlined in Table 4.2.  

Table 5.1: Independent Variable Overview and Sources 

 

Category Description Source Use 
Socio-
economic 

Median income American Community 
Survey (ACS) 

2,3 

% Below Poverty Line ACS 2,3 
Total households ACS 1 
Population density TIGER/Line, ACS 1 
Queen's contiguity lag of 
dependent variable 

TIGER/Line, Houston 
311 

1,2,3 

Impact Individual assistance payouts FEMA 1,2,3 
FEMA assessed building damage FEMA 1,2,3 
FEMA assessed building damage FEMA 1,2,3 

Other Pre-storm government services 
requests 

Houston 311 Logs 1,2 

% change in average daily 
government services requests 

Houston 311 Logs 1 

Storm-related requests (August 23 
– October 6) 

Houston 311 Logs 3 
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5.3 Methods 

5.3.1 Analysis 1: Storm-related Requests Following Hurricane Harvey 

The first analysis uses a dependent variable that was constructed to include 

311 requests that are specifically related to hurricane-related concerns. This was 

designed in order to focus on the way that ZCTAs used the 311 services during and 

after Hurricane Harvey to seek out information or to alert local government officials 

to problems. These categories are not unique to Hurricane Harvey, and appeared 

infrequently in the logs prior to the storm, but for the purposes of this analysis they 

are only being included in the dependent variable if the contact occurred immediately 

prior to, during or after the hurricane, which hit Houston on August 25, 2017. In order 

to establish that these categories were appropriate, t-tests were performed in order to 

test whether the average number of daily requests about these concerns was 

significantly higher in the period following Hurricane Harvey than it was before.  

Table 5.2: Storm-Related Requests, August 23 - October 6, 2017 

Department Division Type Total  
Emergency 
Management  

Evacuation Medical Evacuation 308 
Storm Damage 203 

Housing Community 
Development 

Disaster 
Recovery 

Crisis Cleanup 1521 

Parks and Recreation  Forestry Storm Tree Removal 661 
Public Works 
Engineering 

Street and 
Drainage 

Flooding 4416 

Solid Waste 
Management 

Collections Storm Debris 
Collection 

10432 

 
Like the analysis performed on government services requests in the previous 

chapter, count data is used as the dependent variable. This data has a strong right-
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skew and is over dispersed. After testing multiple models and variable 

transformations for goodness of fit, it was clear the negative binomial regression 

model was the most appropriate option. The econometric specifications of the models 

are as follows: 

 𝑌" = 𝛽% + 𝛽'𝑋'" + 𝛽)𝑋)" + 𝛽*𝑊," + 𝜀  (1) 
 𝑌" = 𝛽% + 𝛽'𝑋'" + 𝛽)𝑋)" + 𝛽*𝑋*" 	+ 𝛽.𝑊," + 𝜀  (2) 
 𝑌" = 𝛽% + 𝛽'𝑋'" + 𝛽)𝑋)" + 𝛽*𝑋*" 	+ 𝛽.𝑋." 	+ 	𝛽@𝑊," + 𝜀  (3) 

 
Where Y is the count of storm-related 311 requests made in ZCTA i between the 

dates of August 23 and October 6, 2017.  

 X1 represents the total number of households in ZCTA i, and X2 represents 

covariates that estimate storm damages within ZCTA i in order to test whether 

ZCTAs that received the most damage made the most contact. Three different 

variables were introduced into the analysis to attempt to control for the amount of 

damage done by the storm in a given ZCTA: the amount of FEMA individual 

assistance issued to the ZCTA, and FEMA-assessed building damage counts of 

destroyed and affected buildings.  

 The building damage counts come from the FEMA Modeled Building 

Damage Assessment dataset. The information is generated by a model that used 

“building inventories and modeled flood depth grids to assess potential impacts and 

provide an estimate” of the damaged buildings (FEMA, 2017). The damages are 

categorized as affected, minimal damage, major damage, and destroyed, and each 

damaged building is categorized individually. This data was available as a shapefile, 

and QGIS was used to tag the individual buildings with the ZCTAs in which they 
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were located in order to create count variables (QGIS Development Team, 2018). For 

the purposes of this analysis, minimal and major damages were grouped together to 

create a non-destroyed damages count variable, and destroyed buildings were counted 

separately.  

X3 is introduced into the model in equation 2 and 3. It represents the total 

number of government services requests made in a given ZCTA prior to the storm. 

This is the same measure as that which was used as the dependent variable in the 

previous chapter. This is included because it is likely that ZCTAs that used 311 more 

frequently prior to the storm will be more aware of and comfortable with the service, 

leading them to continue using it in higher volume when making storm-related 

complaints.  

X4 is introduced into the model in equation 3, and it represents the percent 

change in daily average government services requests, comparing the number of daily 

requests that were made in the period prior to the storm and the number of requests 

made in the period that followed. As discussed above, many homes in the Houston 

area were severely damaged or destroyed in Hurricane Harvey and as a result, many 

residents did not return to their prior residence immediately after the storm. Some did 

not return at all. This means that the storm caused a population decrease in some parts 

of the city, which can be expected to cause a decrease in 311 requests coming from 

these areas. This is potentially problematic, because one would expect that more 

severely storm-damaged ZCTAs would place more storm-related 311 requests as a 

response to the increased damage, but these effects may be muted or even cancelled 
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out entirely by a population decrease. In order to control for potential population 

changes, the model includes the percent change in daily government services requests 

between the six-week period under study and the same six weeks the previous year.   

Table 5.3: Moran's I Test for Storm-related Requests 

 Normal Approximation Randomization 
Moran’s I 0.2582 0.2582 
Mean -0.0106 -0.0106 
Std. deviation 0.0610 0.0562 
Z-score 4.4051 4.7793 
P-value 0.0000 0.0000 

 
Finally, Models 3, 4 and 5 all include a spatial lag of the dependent variable Y. 

Spatial autocorrelation is a potential problem in any model that uses geographic 

spaces as units of analysis, and the literature indicates that spatial autocorrelation is 

often a factor when conducting an analysis using 311 requests (Minkoff, 2016). 

Similarities tend to be geographically clustered, meaning that the variables of interest 

in one ZCTA may be influenced by other ZCTAs in its proximity. This violates 

assumptions of independence. Moran’s I tests were performed on the government 

services request count in order to test which confirmed that the dependent variable 

was positively and significantly spatially auto correlated (Table 5.3). To correct this, 

a spatial lag of the dependent variable was created using a first order queen’s 

contiguity matrix.  

5.3.2 Analysis 2: Time for Storm-Related Requests to Subside.  

 This analysis examines the time that it takes for a ZCTA to significantly 

reduce the volume of 311 requests placed about storm-related concerns. The 
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dependent variable is constructed in a similar way to the recovery time variables in 

Chapter 3, Analysis 2. Storm-related requests were with the same method as the 

previous analysis and sorted at the ZCTA level by the date that the request was made. 

The number of days after Hurricane Harvey on which the 50th, 75th and 95th percentile 

of total storm-related requests occurred within the ZCTA was calculated, and these 

were used as the dependent variables in this analysis.  

Unlike the time to recovery data used in Chapter 3, this data has a relatively 

normal distribution. An OLS regression is the most appropriate model for the 

analysis. The model specifications are as follows: 

 𝑌" = 𝛽% + 𝛽'𝑋'" + 𝛽)𝑋)" + 𝛽*𝑋* + 𝜀  (4) 
 
Where Y is the length of time in days before storm-related 311 requests have reduced 

by a given threshold in ZCTA i.  X1 represents the socio-economic variable of 

interest; both median income and percent of the population below poverty level are 

used in the model separately. X2 represents the log transformation of government 

services requests made in the period of study between 2016 and 2017, prior to 

Hurricane Harvey. Finally, X3 represents the three damage measures that were 

included in Analysis 1: total FEMA individual assistance compensation, total 

destroyed buildings, and total damaged buildings. A spatial lag was not included in 

this mode because testing indicated that spatial autocorrelation was not present.  

5.3.3 Analysis 3: Relative Long-term Storm-Related Request Volume 

Zobel proposes a quantitative approach to estimating non-linear recovery in a 

way that incorporates the shape of the recovery curve and thereby the nature of the 
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recovery process. By first plotting the recovery over time, one can calculate the area 

under the recovery curve, and then generate the ratio of the area under the curve to 

the area of the plot as a whole. This calculation can be taken as a representation of the 

recovery process. Using this method, he analyzed power outages in New York City 

post-Hurricane Sandy, and his model produced a point estimate for the recovery 

behavior as a whole (Zobel, 2014). Although Zobel noted that any time a system’s 

performance is condensed into a single measure, certain characteristics and unique 

features will be lost in the process, this is a tradeoff inherent to the process of 

quantifying complex processes and systems.  

This method was utilized in order to study the persistence of 311 requests 

made about storm-related concerns following Hurricane Harvey. In order to construct 

the dependent variable, the 311 data were used to generate the number of storm-

related requests made per week in a given ZCTA per week following the storm. 

Storm-related requests persisted until twenty weeks following Hurricane Harvey. 

ZCYA level curves were plotted using this data, and then an integral was taken to 

measure the area under each curve. Then a ratio was created by dividing the area 

under each curve by the maximum total area of the graph, which is the peak number 

of weekly requests within the ZCTA multiplied by 21, the total number of weeks 

under study. This ratio acts as the dependent variable for this analysis. Larger ratio 

values indicate that request volume persisted within the ZCTA, whereas smaller ratios 

mean that the request volume decreased more quickly following the peak volume. 
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Figure 5.1: Storm-Related Requests Across Houston Over Time 

 As an illustrative example of the method used to construct the dependent 

variable, Figure 5.1 plots the number of storm-related requests across the entire 

Houston metro area per week. The peak request volume occurred in week 5, when a 

total of 4102 requests were placed, and they stopped entirely in week 21. Therefore, 

the total possible area of the graph is 4102*21 = 86412, and the integral of the curve 

is 17967.5. As a result, the curve ratio is 17967.5/86412, or 0.2079. 

 An OLS regression model is a good fit for this data, and the econometric 

specifications of the models are: 

 𝑌" = 𝛽% + 𝛽'𝑋'" + 𝛽)𝑊," + 𝜀  (5) 
 𝑌" = 𝛽% + 𝛽'𝑋'" + 𝛽)𝑋)" +	𝛽*𝑊," + 𝜀  (6) 
 𝑌" = 𝛽% + 𝛽'𝑋'" + 𝛽)𝑋)" + 𝛽*𝑋*" +	𝛽.𝑊," + 𝜀  (7) 

 
Where Y represents the recovery ratio described above in ZCTA i. X1 is the log 

transformed number of storm-related requests that was used as the dependent variable 
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for Analysis 1. X2 represents the socio-economic variables of interest. Median income 

and percent below the poverty line were both used separately as potential variables in 

the model. Finally, X4 represents the three damage-related covariates that were 

included in Analysis 2: FEMA individual compensation, total destroyed buildings and 

total damaged, non-destroyed buildings. 

Table 5.4: Moran's I Test for Storm-Related Request Ratio 

 Normal Approximation Randomization 
Moran’s I 0.1806 0.1806 
Mean -00106 -0.0106 
Std. deviation 0.0610 0.0610 
Z-score 3.1343 3.1368 
P-value 0.0017 0.0017 

 
 In addition, a Moran’s I test was performed to test for spatial autocorrelation 

in the dependent variable in the model, and although it was not as highly correlated as 

was observed in Analysis 1 and Analysis 2, autocorrelation was still present. As a 

result, a spatial lag of the dependent variable was generated using a Queen’s 

Contiguity Matrix and was included in all of the models.  

5.4 Results 

5.4.1 Analysis 1: Storm-related Requests Following Hurricane Harvey 

Descriptive Statistics 

 The same 95 ZCTAs that were used in the analysis in the previous chapter 

were also included in this analysis. During the time period under study the total 

number of storm-related requests at the ZCTA level ranged from 0 to 1467. The mean 

number of requests was 162.39, and the median was 80. The data has a skewness 
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statistic of 3.3019, confirming that the data is right skewed, and the variance of 

55721.18 means that it is over dispersed, thereby fulfilling the characteristics of a 

dataset that is best modeled using a negative binomial regression model. A histogram 

of the data distribution further confirms that the data takes the appropriate shape for 

this model (Figure 5.2). 

 

Figure 5.2: Storm-Related Requests by ZCTA, August 23 – October 6, 2017 

 A series of maps was produced in order to visualize and better understand the 

way that 311 request volume, storm damage and FEMA compensation was 

distributed across the city. All maps only include the ZCTAs for which 311 request 

data is available. Figure 5.3 shows the distribution of storm-related 311 requests 

across Houston between August 23 and October 6. As shown in the figure, high-

volume contacting neighborhoods are concentrated in the south-west quadrant of the 

city. Similarly, Figure 5.4 shows the distribution of storm-related 311 requests per 
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household in the same time period. The distribution is very similar to the total number 

of requests. 

 

Figure 5.3: Distribution of Storm-Related Requests 

 

Figure 5.4: Distribution of Storm-Related Requests Per Household 

 Figure 5.5 shows the distribution of FEMA Individual Assistance payments 

across the City of Houston. Although there are some similarities to the distribution of 

storm requests, they are closely matched.  
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Figure 5.5: Distribution of FEMA Individual Assistance Payments 

 As might be expected, the channels by which people contacted the 311 service 

about storm-related concerns following Hurricane Harvey significantly from the 

channels by which 311 was generally contacted prior to Hurricane Harvey. 

Table 5.5: Contact Channels Before and After Hurricane Harvey 

 Pre-Storm Requests Storm-Related Requests 
Total Percentage Total Percentage 

Face2Face 158 0.03 32 0.18 
Fax 5 0 0 0 
Mail 65 0.01 0 0 
SMS 625 0.11 7 0.04 
Voice 486,137 86.41 15,163 86.32 
WAP 50,324 8.95 2,013 11.46 
WEB 23,012 4.09 305 1.74 
e-mail 2,246 0.4 47 0.27 

 
As seen in Table 5.5, people were significantly more likely to contact 311 over a 

mobile web browser and much less likely to contact using a website accessed by a 

computer. Face to face contact also represented a much larger proportion of the 
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complaints. Voice calls decreased slightly as a relative proportion of total requests 

following the hurricane.   

Regression Analysis 

Table 5.6, Table 5.7 and Table 5.8 display the results of the negative binomial 

regression models that seek to identify the characteristics that influence the volume of 

storm-related requests at the ZCTA level within the city of Houston in the six weeks 

following Hurricane Harvey. All models were run both with and without spatial lags, 

because the literature indicates that the inclusion of a spatial lag can mute the impacts 

of other variables.  

Table 5.6: Determinants of Storm-Related Request Volume (Model 3) 

   

Total Households 0.00004571 0.00002357 

 (-0.00002816) (-0.0000278) 
Destroyed Damages -0.005149 -0.005607 

 (-0.005209) (-0.004592) 
Non-Destroyed Damages -0.0002313 -0.0001305 

 (-0.0001775) (-0.0001856) 
FEMA Individual Assistance 9.708e-08*** 5.345e-08**  

 (-2.18E-08) (-2.02E-08) 
Wy  0.006502*** 

  (-0.001328) 
Constant 3.9435*** 3.1659*** 

 (-0.3324) (-0.3634) 
Log Alpha 0.3197* 0.1076 

 (-0.1311) (-0.1356) 
Observations 95 95 

Pseudo R2 0.02494 0.04618 
Standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 
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 The analysis begins with a simple model that seeks to explain the number of 

storm-related 311 requests by controlling for the total number of households and 

impact measures (Table 5.6). The results indicate that there is no statistically 

significant relationship between the total number of households within a ZCTA and 

the number of storm-related requests. We observe that neither the total number of 

households, the number of destroyed buildings nor the number of damaged buildings 

have a significant impact on the volume of storm-related requests. However, a small 

but significant increase in storm-related requests is observed when the amount of 

FEMA individual assistance paid within a ZCTA increases. 

Table 5.7: Determinants of Storm-related 311 Request Volume (Model 4) 

   

Total Households 0.00001297 -0.00001624 

 (-0.00001984) (-0.00001799) 
Destroyed Damages -0.002679 -0.001119 

 (-0.00431) (-0.003721) 
Non-Destroyed Damages -0.0002431 -0.0001898 

 (-0.0001473) (-0.0001413) 
FEMA Individual Assistance 1.010e-07*** 6.899e-08*** 

 (-1.77E-08) (-1.48E-08) 
Government Services Requests (pre storm) 0.0004517*** 0.0004122*** 

 (-0.00006405) (-0.00004933) 
Wy  0.005440*** 

  (-0.0008692) 
Constant 2.7576*** 2.2734*** 

 (-0.264) (-0.2418) 
Log Alpha -0.1004 -0.4623**  

 (-0.1401) (-0.1488) 
Observations 95 95 

Pseudo R2 0.06599 0.09783 
Standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 
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Table 5.7 displays the results of the negative binomial regression model when 

the volume of pre-storm government services requests is added into the equation. We 

observe that there is a significant positive relationship between the volume of 

government services requests placed prior to the storm and the number of storm-

related requests at the ZCTA level following Hurricane Harvey. The positive 

significant relationship between FEMA individual assistance and storm-related 

requests persisted but controlling for pre-storm 311 use did not improve the 

significance of the number of destroyed and non-destroyed damages in the equation.  

Table 5.8: Storm-Related Request Volume (Model 5) 

   

Total Households 0.00001462 -0.00001626 

 (-0.00002055) (-0.00001857) 
Destroyed Damages -0.002774 -0.001119 

 (-0.004316) (-0.003722) 
Non-Destroyed Damages -0.00025 -0.0001897 

 (-0.0001479) (-0.0001442) 
FEMA Individual Assistance 1.039e-07*** 6.897e-08*** 

 (-2.00E-08) (-1.63E-08) 
Government Services Requests (pre storm) 0.0004454*** 0.0004123*** 

 (-0.00006722) (-0.00005186) 
% Change in Government Services Requests -0.06307 0.0003173 

 (-0.1967) (-0.1315) 
Wy  0.005440*** 

  (-0.0008703) 
Constant 2.7608*** 2.2734*** 

 (-0.2643) (-0.2420) 
Log Alpha -0.1011 -0.4623**  

 (-0.1401) (-0.1488) 
Observations 95 95 

Pseudo R2 0.06607 0.09783 
Standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 
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Finally, Table 5.8 displays the results of the model that controls for the 

percent change in government services requests before and after the storm in an 

attempt to control for the possibility that some Houston residents evacuated due to 

Hurricane Harvey and did not return to their homes afterwards. However, the 

inclusion of this covariate into the model had virtually no impact on the model 

results. FEMA Individual Assistance and the number of government services requests 

made prior to the storm remain significant, and the rest of the covariates continue to 

lack significance in both the lagged and unlagged models.   

5.4.2 Analysis 2: Time for Storm-related Requests to Subside 

Descriptive Statistics 

 A total of 92 ZCTAs were used in this analysis, and Table 5.9 provides an 

overview of the descriptive statistics for the number of time in days for the storm-

related requests to reduce by 50%, 75% and 95% following Hurricane Harvey.  

Table 5.9: Descriptive Statistics for Dependent Variables in Days 

 Minimum Maximum Median Mean Std. Dev. 
50%  30 88 48 48.44 8.89 
75%  30 99 57.25 58.57 10.81 
95%  30 142 78 82.52 21.17 

 
The data takes on a fairly normal distribution, and total storm-related requests had 

completely subsided very shortly after the 142-day mark that represented the 

maximum number of days before a ZCTA had received 95% of its total storm-related 

requests.  
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Regression Analysis 

 The results of the OLS regression analysis can be found in Table 5.10. At the 

75% and 95% reduction thresholds, there is a positive and significant relationship 

between median income and request time, and the same thresholds exhibit a negative 

and significant relationship between request reduction time and the percent of the 

population below poverty level. The log transformation of number of government 

services requests is also positive and significant at the 75% and 95% threshold levels.  

Table 5.10: Determinants of Storm-Related Request Reduction Time 

 50% 75% 95% 50% 75% 95% 

Median Income 5.0e-05 .00014*** .00029***    

 (3.5e-05) (3.8e-05) (7.3e-05)    
% Below Poverty    -.11455 -.30466** -.53149* 

    (.10006) (.11332) (.2192) 
Government Services (log) -.21398 1.2465* 4.5367*** -.21595 1.2114* 4.34*** 

 (.51453) (.56596) (1.0753) (.52273) (.59198) (1.1451) 
Total Compensation -1.8e-07 -4.3e-07** -4.7e-07 -2.0e-07 -4.7e-07** -5.6e-07 

 (1.4e-07) (1.5e-07) (2.9e-07) (1.4e-07) (1.6e-07) (3.1e-07) 
Damages (destroyed) -.02798 -.04043 -.02608 -.0209 -.01871 .02499 

 (.03608) (.03968) (.0754) (.03532) (.04) (.07738) 
Damages (non-destroyed) .00114 .00315* .00542 .0009 .00245 .00386 

 (.00143) (.00157) (.00299) (.00141) (.0016) (.0031) 
Constant 48.353*** 43.714*** 34.779*** 53.537*** 58.23*** 63.414*** 

 (4.6923) (5.1614) (9.8068) (3.9996) (4.5295) (8.7617) 
Observations 92 92 92 92 92 92 

R2 0.058 0.229 0.274 0.050 0.176 0.196 
Standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 
 
Total compensation is significant at the 75% threshold level in the models 

using both median income and percent below the poverty level, and the non-

destroyed damages are significant at the 75% level only in the models using median 
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income. The 50% threshold model has a very low R-squared value and none of the 

covariates have any significance whatsoever.  

5.4.3 Analysis 3: Relative Long-Term Request Volume 

Descriptive Statistics 

 For analysis 3, observations were removed if the number of storm-related 

requests in the first six weeks following Hurricane Harvey were less than 50. This 

analysis is meant to measure the reduction in 311 requests as a proxy for progress in 

the recovery process so it is illogical to include ZCTAs in which the baseline is very 

low. After removal, 60 observations remained. Within this data set, the mean of the 

dependent variable, ratio, is 0.1664 with a standard deviation of 0.5217, and a median 

of 0.166758.  

 

Figure 5.6: Distribution of Recovery Ratios 

Figure 5.6 shows the distribution of recovery ratios across the city of Houston. 

Evidently, they are much more evenly distributed across the city than either the 

government services or storm-related 311 requests. This is because real volume of 
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requests is not relevant to the calculation, but instead the way that the requests 

diminished over time relative to the peak number of storm-related requests. 

Regression Analysis 

 The results of the OLS regression analysis can be found in Table 5.11. There 

is a consistent and significant negative relationship between storm-related requests 

and the recovery ratio. No significant relationship between the recovery ratio and the 

socio-economic or hazard covariates was observed. The model was also run without 

spatial lags and using percent below poverty level as a socio-economic covariate 

rather than median income. The results were very similar.  

Table 5.11: Determinants of Recovery Ratio 

    

Storm-related requests (log) -0.02449** -0.02540** -0.02540** 

 (-0.008385) (-0.008387) (-0.008387) 
Median Income  -3.27E-07 -3.27E-07 

  (-2.72E-07) (-2.72E-07) 
Wy 0.02528 -0.07743 -0.07743 

 (-0.2436) (-0.2572) (-0.2572) 
Total Destroyed   -0.0001712 

   (-0.0002269) 
Total Compensation   -4.53E-10 

   (-1.39E-09) 
Total Non-Destroyed Damages   0.0001715 

   (-0.0002316) 
Constant 0.2890*** 0.3265*** 0.3265*** 

 (-0.06445) (-0.0714) (-0.0714) 
Observations 60 60 60 

Pseudo R2 0.137 0.159 0.159 
Standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 
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5.5 Discussion 

5.5.1 Storm-Related Request Volume 

 One of the primary goals of the 311 storm-related request analysis was to 

identify whether the amount of storm damage in a ZCTA following Hurricane Harvey 

had an impact on the number of storm-related requests placed at the ZCTA level. The 

results of this analysis were mixed. Neither the number of destroyed buildings nor the 

number of damaged buildings in a ZCTA had a significant relationship on the volume 

of storm-related requests recorded within a ZCTA. However, the total FEMA 

individual assistance paid out within a ZCTA had a significant, positive relationship 

with the number of requests related to storm-related issues in the neighborhood. This 

suggests that ZCTAs that received larger amounts of FEMA individual assistance 

also had more storm-related 311 complaints.  

 I hypothesize that there may be two separate forces that are driving these 

results. First, in ZCTAs with higher levels of destroyed and damaged buildings there 

would indeed be more reasons to contact 311 with storm-related complaints. 

However, in these same ZCTAs, people would likely resettle the ZCTA more slowly 

following the storm, and more people would be likely to permanently resettle. Fewer 

people in the ZCTA means that fewer requests will be placed. As a result, building 

destruction and damage may have both positive and negative impacts on the volume 

of storm-related 311 requests. The model attempted to control for this population 

change by including the percent change in daily government services requests before 

and after the storm as a covariate, hypothesizing that a decrease in relative contact 
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volume would indicate a population decrease. However, this measure was not 

significant when included in the model. Perhaps the disruption caused by the storm 

also changed the pattern of 311 use at the ZCTA level far beyond just shifts in 

population.  

 Unlike building damages, FEMA individual assistance is not a passive 

measure of hurricane impact. In order to receive this post-disaster aide, residents are 

required to go through an involved application process, which includes paperwork 

and a home visit. As a result, FEMA assistance does not simply measure damage, it is 

also a measure of a ZCTA’s residents’ willingness to engage with FEMA in order to 

secure funds. This means that in order to be granted this assistance, an individual 

must still be, to some degree, attached to their home and are likely to still be in the 

Houston area. With all this in mind, the relationship between storm-related requests 

and FEMA individual assistance is logically consistent. The types of people who 

successfully submit individual assistance applications are willing and motivated to 

engage with the government in order to advocate on behalf of their household. The 

same sort of person could be anticipated to make storm-related 311 complaints, 

inquiries and requests.  

 Similarly, there is a highly significant and positive relationship between the 

number of government service requests placed prior to Hurricane Harvey within a 

ZCTA and the number of storm-related requests made in the six weeks following the 

storm. This means that ZCTAs that use the 311 service more often in general also 

made more hurricane-specific requests. This is interesting because it means that a 
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major factor driving the number of storm-related requests isn’t need, but rather a 

history of 311 service use. Perhaps some neighborhoods are less aware of the service, 

and this drives their lower usage rates.  

Alternately, some communities may be aware of 311 services but share an 

increased skepticism about their efficacy. As a result, they might not perceive it to be 

worth their effort to contact 311 because they do not believe that it will make a 

difference. This could be an extension of the social capital theory that was proposed 

in the previous chapter to explain the lower rates of government services requests in 

wealthy ZCTAs prior to Hurricane Harvey. Perhaps those in wealthier neighborhoods 

have more efficient avenues for lodging complaints and advocating on behalf of their 

ZCTA, and therefore do not believe that it is worth their time to contact 311. 

5.5.2 Time for Storm-related Requests to Subside 

 Analysis 2 found that as ZCTA income increased, it took longer for their 311 

requests related to the hurricane to subside. Analysis 1 indicates that the opposite is 

true for total request volume: as median income increased, contact volume dropped. 

Perhaps this is simply because the higher volumes of storm-related requests early in 

the process in lower income ZCTAs meant that the problems they had contacted 311 

about were addressed and there was no need to make contact again later on.  

 Another possible hypothesis is that residents in higher income neighborhoods 

were more likely to temporarily leave Houston after the storm, so they began making 

311 requests about storm-related problems later in the recovery process, which caused 

them to take longer to reach the contact reduction thresholds. Some research does 
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indicate that when faced with severe storms, upper income households are more 

likely to evacuate, so these findings may be a result of this phenomenon (Dash & 

Gladwin, 2007).    

5.5.3 Relative Long-term Contact Volume 

 Analysis 3 studied the way that relative contact volume changed over time 

within a given ZCTA. The model results indicate that there is a significant negative 

relationship between the dependent variable, recovery ratio, and the log of storm-

related requests in the first six weeks following Hurricane Harvey. This means that 

ZCTAs that placed a higher absolute number of requests early in the recovery process 

experienced a faster decrease in the weekly rate of storm-related 311 requests. This 

falls in line with the findings from Analysis 2, which found that households with 

higher median incomes took longer to reach the 75% and 95% recovery thresholds.   

 These findings could indicate that 311 storm requests made earlier in the 

process had a positive impact on the recovery process within those ZCTAs, and as a 

result, fewer requests were required in the weeks that followed because the problems 

had been addressed. However, another possible explanation is that lower levels of 

storm-related requests in the early part of the recovery process is due to the fact that 

the residents within those ZCTAs evacuated in higher volumes, and it took them 

longer to return to Houston and begin to engage with the city about the recovery 

process. Therefore, their relative 311 contact volume persisted for longer because 

only then were people returning to their neighborhoods and observing the problems 
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for which they needed assistance. Without more data, it is difficult to determine 

which hypothesis is accurate.  

5.5.4 The Unreached Potential of 311 Services and Disaster Recovery 

 As it currently stands and based on the available data it does not appear as 

though 311 services were being used to their full potential in Houston following 

Hurricane Harvey. 311 services provide a line of communication between 

communities and local government that could be an extremely valuable tool for post-

disaster recovery. The primary way that this was being used following Hurricane 

Harvey was to alert the city to problems caused by the storm that needed local 

intervention. This is important, because it allows private citizens to act as the city’s 

eyes and ears and keep it updated on problems related to the storm. However, as 

discussed above, it was being used inconsistently across the city, which may put some 

ZCTAs at a disadvantage during the recovery process.  

One of the common complaints in post-disaster communities is a lack of 

information about available resources and recovery process. In the weeks following a 

major natural disaster, people do not know what help is available to them or how best 

to get it. In an optimal scenario, the 311 service could take on this role in recovering 

communities, and act as an intermediary between community residents and higher-

level government agencies such as FEMA and the Department of Homeland Security. 

There was no category for storm-related inquiries, simply storm-related complaints. 

This would suggest that it is primarily being used as a way request the city’s 
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intervention with material problems, rather than as a way of getting information about 

the recovery process of available resources.  

The 311 system could be more effectively harnessed as a non-emergency line 

for post-disaster information through proactive public education campaigns that 

brought the service to the public consciousness well in advance of a natural disaster, 

as well as by ensuring that 311 operators are given up to date information about the 

recovery process and resources to share with callers.  However, none of these efforts 

will be successful if contacting 311 is ultimately not an effective way to bring 

problems to the city’s attention, and the publicly available 311 data alone is 

insufficient to make a determination about the quality of the resulting service. This is 

an important avenue for future research and would likely require the collection of 

primary survey data to inquire about residents’ perception of the 311 service, whether 

they have used it, and if so, whether they were satisfied with their experience.  
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6. Reflections and Conclusions 
 One of the most salient and frequently made points in the resilience and 

recovery literature is that these are processes that extend across multiple dimensions, 

spaces and time spans (Cutter et al., 2008a; Engle et al., 2014; Folke, 2006). As a 

result, these concepts are incredibly difficult to quantify because the majority of 

operationalizable proxies fail to capture the entirety of the recovery process. Instead, 

there are many examples in the literature of researchers opting to focus in on a single 

dimension, time period or spatial scale (Burton, 2014; Finch et al., 2010).  

The interdependencies and interactions between the sub-processes and 

processes that drive recovery more broadly are certain to have an impact on the final 

outcome. From a system perspective, infrastructure recovery gives way to system 

recovery, which in turn leads to community recovery. Similarly, when considering 

multiple temporal scales, there are multiple different phases of recovery, each of 

which has different goals and different approaches. Meanwhile, recovery occurs 

simultaneously at the household, community, local, county and state levels. Success 

or failure in any of these systems, stages or spaces will reverberate throughout the 

process as a whole.  

A siloed approach to resilience and recovery research will be blind to most of 

the process. This is the current status quo, and as a result there is a lack of clarity in 

the literature about the nature of these interactions and their likely outcomes. 

Questions arise about whether the determinants of recovery hold consistent at 

different phases, scales and dimensions of the process: will a community that excels 
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at emergency cleanup efforts immediately after the disaster be similarly successful 

during the next phase of recovery? These shortcomings in the literature are of course, 

largely attributable to difficulties in measurement.  

This research was designed with the primary goal of examining recovery at 

multiple scales, while simultaneously considering the social and economic forces and 

community behaviors that influence recovery outcomes. There is not one single 

quantitative measure or point of measurement that will comprehensively capture the 

complexities of the recovery process, so the analytical chapters that comprised the 

body of this work proposed a variety of new ways to conceptualize and quantify 

recovery in order to analyze the way that neighborhood characteristics and 

community engagement influence the recovery process at multiple dimension and 

temporal scales.  

Throughout the process of writing this dissertation, I conceptualized and 

began data collection and cleaning on several papers are unfinished, but establish 

promising avenues for future research on interdependent, multi-scalar resilience and 

post-disaster recovery. In particular, school closures and school absences were 

identified as a potentially interesting metric for multi-system post-hurricane recovery. 

Public schools are designated as critical infrastructure by the Department of 

Homeland Security, and their functioning during times of environmental stress is a 

fascinating example of infrastructure interdependence (DHS, 2016). Schools rely on a 

wide variety of infrastructure systems in order to operate, and communities rely on 

schools for many functions beyond public education. 



 

158 

 

Meanwhile, school attendance would be more effective in measuring slightly 

longer-term recovery as it does not simply measure the amount of time it takes for 

schools and the infrastructure systems upon which they depend to return to a baseline 

level of functioning. It instead expands the analysis to include the recovery process as 

it affects the students’ households: issues such as displacement, damage, illness and 

trauma stemming from the disaster would be expected to drive down attendance 

numbers until circumstances normalized. Although time and data constraints 

prevented an analysis of this sort to be included in the dissertation, it is a unique 

approach to recovery that I hope to pursue in future research. 

This research could also have been strengthened by primary data collection as 

a way of investigating long-term community-wide recovery and community 

perceptions of the recovery process. As discussed in Chapter 2, the literature indicates 

that mixed methods are the ideal approach for studying resilience and recovery. 

Open-ended interviews with community members could help to identify components 

of recovery that are not captured by more quantitative measures, such as collective 

action and social trust. Further, it would give insight into whether broader 

community-level recovery is perceived to be largely just a combination of the 

measurable component parts, or if there are other, more abstract factors that impact 

whether community members feel as though their community is recovered, even after 

the outages are fixed, debris is cleared, services are restored and buildings are 

repaired. 
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 A case study could also give insight into the way that social capital and social 

participation impacts the construction of narratives. Other studies on perceptions of 

recovery have indicated that the extent to which the recovery process was 

participatory has a significant impact on the way that community members feel about 

the recovery process in its aftermath (Kweit & Kweit, 2004). Primary data collection 

was ultimately not pursued due time and resource constraints but remains a promising 

avenue for potential research. Given the direction and results of the completed 

dissertation, it would be particularly interesting to gather primary data about the way 

that citizens used 311 requests during post-disaster recovery periods and whether or 

not they perceived these services as being useful and informative in this context.  

One major limitation of this research is that each of the analyses were limited 

to only one hurricane in one region. Because of this, we cannot claim to know 

whether the results of this dissertation are a widespread phenomenon or limited to the 

specific setting that they describe. An important next step in this research is then to 

collect similar data from other regions and other hurricanes in order to develop a 

more detailed understanding of broader recovery trends throughout the United States.  

In Chapter 3, power outage and power restoration data were used in order to 

consider the impacts of socio-economic status on power outages and power 

restoration time in the aftermath of hurricane-induced outages at the ZCTA level. 

This analysis focuses on a fairly short time scale and examines a portion of the 

recovery process that is thought by many to be very utilitarian and devoid of socio-

economic biases. However, the results indicate that even when considering this very 
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technical, very short-term recovery process, socio-economic inequalities play a role in 

the recovery outcomes.  

The findings of this paper make a strong argument for the importance of 

thinking of resilience and recovery as being on a temporal continuum, rather than 

taking a snapshot of the process at a single point in time. In the early stages of the 

analysis, only the 95% recovery threshold was considered because that was the 

industry standard for assessing power restoration. When the analysis was broadened 

to consider multiple recovery benchmarks, a more robust and interesting narrative 

emerged about the way that power recovery is prioritized to the disadvantage of 

lower-income communities. The same principles can also be applied to assessing 

recovery at multiple spatial and systemic scales.  

By considering impact as a component of recovery this paper also provides 

insight on the vulnerability resilience continuum. The process of building resilience 

and setting a community up for a successful recovery begins long before the 

declaration of a national emergency. The Hurricane Isaac analysis indicated that 

antecedent socio-economic conditions within a ZCTA had an impact on the number 

of power outages within that community. This in turn had a significant impact on the 

time it took for a ZCTA to reach 95% restoration.  

The use of 311 data to analyze how communities behaved following 

Hurricane Harvey considered a different dimension of recovery. Rather than looking 

at the restoration of a specific system or system component, storm-related 311 

requests were used in order to consider the way that communities interact with their 
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local government following natural disasters. Recovery is not something that happens 

to a community, it is a dynamic process in which community residents are involved 

and engaged. This chapter found that the way that citizens engaged with government 

throughout the recovery process with 311 is meaningfully different and distinct from 

the way that social capital typically manifests.  

Although 311 requests function as a way of connecting communities with 

government officials, we observe that this service is used more frequently in lower-

income neighborhoods that typically have lower levels of bridging social capital, 

leading to the potential conclusion that the use of 311 services is not a proxy for 

social capital because it ultimately serves as its less desirable replacement. 

Communities that do not have access to the bridging social capital necessary to 

advocate for their neighborhoods to local officials following a natural disaster might 

turn to 311 services to voice their complaints in lieu of more direct action. 

While this finding was unexpected, it may contribute more to our 

understanding of unequal social capital and post-disaster recovery than if 311 

requests had served as a more effective proxy. The fact that social capital is a tool that 

assists in post-disaster recovery but disproportionately benefits the wealthy and 

connected is well known in the disaster literature, but there are very few solutions to 

this problem that are being proposed. 311 services have the potential to be a way of 

sharing information, connecting residents to community groups, and generally 

providing them with the resources needed to guide them through the recovery 
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process. This presents an exciting opportunity for the government to replicate the 

benefits of social capital in a way that is more egalitarian. 

This research can be taken as further evidence of what was discussed in the 

prospectus that was written and defended two years ago. Researching resilience and 

recovery, particularly multi-scalar resilience and recovery, is a difficult task, largely 

because of limitations in data and measurement. The complexity of these processes 

makes it difficult to reduce them to a single data point or compresses them into a 

single model. However, when multiple measures and models are taken together, as in 

this dissertation, a clearer picture begins to emerge. As a result, focused efforts must 

be made to improve data tracking, collection and availability relevant to all scales of 

recovery. This dissertation contributed to these efforts by introducing novel recovery 

metrics, allowing for the examination of recovery at multiple scales and contributing 

to a better understanding of the way that inequalities in recovery outcomes present 

throughout the process.  
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7. Appendix 
 

Table 7.1: Descriptive Statistics for Maximum Outages Analysis (Ch 3.3.1) 

Variable Mean Std. Dev. Min Max 
Maximum Outages 2620.183 4140.051 25 21343 
Median Income 44970.96 14520.75 17300 100000 
Percent Below Poverty 19.45228 9.880057 0.6 54.4 
Percent with Bachelor's Degree 11.42218 6.397369 0.5 35 
Total Customers 4857.369 5122.763 9 21744 
Maximum Gusts 34.93196 8.792181 15.84287 51.1828 
Sustained Wind Duration 1800.763 757.973 0 2520 
Precipitation 82.05226 68.34489 1.369268 217.3865 
Maximum Flood Ratio 0.3603915 0.2334049 0.0234523 1.382497 
Soil Moisture 344.949 62.57341 142.51 410.6136 

 

 

Table 7.2: Descriptive Statistics for Restoration Analysis (Ch 3.3.2) 

Variable Mean Std. Dev. Min Max 
Maximum Outages 2620.183 4140.051 25 21343 
Median Income 44970.96 14520.75 17300 100000 
Percent Below Poverty 19.45228 9.880057 0.6 54.4 
Percent with Bachelor's Degree 11.42218 6.397369 0.5 35 
Total Customers 4857.369 5122.763 9 21744 
Maximum Gusts 34.93196 8.792181 15.84287 51.1828 
Sustained Wind Duration 1800.763 757.973 0 2520 
Precipitation 82.05226 68.34489 1.369268 217.3865 
Maximum Flood Ratio 0.3603915 0.2334049 0.0234523 1.382497 
Soil Moisture 344.949 62.57341 142.51 410.6136 
Emergency Services 3.162712 2.504547 0 13 
Health Services 0.4745763 0.8681032 0 6 
Grocery Stores 3.640678 2.964594 0 14 

 



 

164 

 

 
Figure 7.1: Percent Below Poverty Distribution 

 
Figure 7.2: Percent With Bachelor’s Degree Distribution 
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Figure 7.3: Wind Duration Distribution 

 
Figure 7.4: Health, Emergency and Grocery Services Distribution 

 

 

 

0 2520

Wind	Duration

0 28

Services



 

166 

 

Table 7.3: Percent With Bachelor’s Degrees as a Determinant of Recovery (Ch. 3.4.2, Model 3) 

  95%  80%  50%  

% Bachelor’s Degree  .00253 .0052 -.0032 .00251 -.01363 -.00257 

 (.01091) (.01134) (.01085) (.01175) (.01108) (.01197) 

Maximum Outages  .00018*** 5.7e-05* .00014*** 1.9e-05 .00011*** -2.5e-05 

 (2.1e-05) (2.3e-05) (1.8e-05) (2.2e-05) (1.7e-05) (2.1e-05) 

Wy   .00053***  .00068***   
   (4.2e-05)  (5.1e-05)  .00077*** 

/cut 1   -.68107*** 3.1645*** -.35631** 4.3016*** -.13864 4.7397*** 
  (.14166) (.33532) (.13777) (.3683) (.13951) (.40399) 

/cut 2  .1886 4.4169*** .43853** 5.6248*** .73555*** 6.1344*** 
  (.13853) (.36724) (.14004) (.41541) (.14392) (.45141) 

/cut 3  1.0425*** 5.858*** 1.3172*** 7.2811*** 1.4992*** 7.6537*** 
  (.14699) (.4321) (.15299) (.49954) (.15995) (.54173) 

/cut 4  2.0112*** 7.2778*** 2.5903*** 9.4099*** 2.444*** 10.113*** 
  (.17325) (.48439) (.21425) (.60023) (.22102) (.78826) 

Observations  284 284 284 284 284 284 
Pseudo R2  0.119 0.325 0.087 0.375 0.055 0.359 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 
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Table 7.4: Percent With Bachelor’s Degrees as a Determinant of Recovery (Ch. 3.4.2, Model 4) 

  95%  80%  50%  
% Bachelor’s Degree  .00324 .00509 -.00387 .00202 -.01672 -.00473 

 (.01101) (.01134) (.01101) (.01173) (.01131) (.01202) 

Maximum Outages  .00013*** 5.6e-05* 8.5e-05*** 1.6e-05 5.4e-05** -3.2e-05 

 (2.1e-05) (2.3e-05) (1.9e-05) (2.2e-05) (1.8e-05) (2.1e-05) 

Sustained Wind Duration  .00089*** .00016 .00098*** .0002 .00092*** .0003* 
  (.0001) (.00013) (.00011) (.00013) (.00011) (.00012) 

Wy   .0005***  .00064***  .00071*** 
   (5.0e-05)  (5.7e-05)  (6.4e-05) 

/cut 1   .52826** 3.1354*** 1.0806*** 4.2915*** 1.3022*** 4.8114*** 
  (.20179) (.33619) (.21349) (.36712) (.23137) (.40267) 

/cut 2  1.5921*** 4.4026*** 2.1097*** 5.6474*** 2.3529*** 6.2438*** 
  (.22007) (.36805) (.24013) (.41662) (.25279) (.45264) 

/cut 3  2.6549*** 5.8585*** 3.1612*** 7.2964*** 3.2163*** 7.7449*** 
  (.24807) (.43372) (.26377) (.49869) (.27271) (.53905) 

/cut 4  3.7182*** 7.2652*** 4.5108*** 9.3801*** 4.2371*** 10.074*** 
  (.27318) (.48503) (.30907) (.59728) (.32178) (.77) 

Observations  284 284 284 284 284 284 
Pseudo R2  0.205 0.327 0.195 0.378 0.154 0.367 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 
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Table 7.5: Percent With Bachelor’s Degrees as a Determinant of Recovery (Ch. 3.4.2, Model 5) 

  95%  80%  50%  

% Bachelor’s Degree  .00273 .00513 -.00521 .00344 -.02063 -.00723 

 (.01127) (.01144) (.01131) (.01185) (.01171) (.01223) 

Maximum Outages  6.2e-05** 4.5e-05 3.5e-05 1.8e-05 4.4e-07 -3.8e-05 

 (2.3e-05) (2.3e-05) (2.1e-05) (2.3e-05) (2.1e-05) (2.2e-05) 

Sustained Wind Duration  -.00061* -.00043 -.00067* -.00041 -.00078** -.0004 
  (.00026) (.00026) (.00027) (.00027) (.00029) (.0003) 

Maximum Flood Ratio  1.4918*** .78703 1.0863** .57964 .64642 .32617 
  (.41352) (.43414) (.4141) (.43419) (.42137) (.4392) 

5-Day Precipitation  .01495*** .00652** .01324*** .00116 .01439*** .00535* 
  (.00195) (.00238) (.00192) (.0024) (.00197) (.0023) 

Maximum Wind   .04521* .02837 .07195*** .04709* .07187*** .04037 
  (.01892) (.01944) (.01909) (.01986) (.01973) (.02091) 

Wy   .00038***  .0006***  .00062*** 
   (6.1e-05)  (6.8e-05)  (7.0e-05) 

/cut 1   .69771 2.755*** 1.7422*** 4.8066*** 1.8652*** 4.8209*** 
  (.38153) (.51066) (.39177) (.53949) (.40944) (.54913) 

/cut 2  1.9463*** 4.0752*** 2.9973*** 6.224*** 3.1646*** 6.3125*** 
  (.40644) (.53976) (.4268) (.58333) (.43226) (.58295) 

/cut 3  3.2898*** 5.5893*** 4.2573*** 7.8641*** 4.2006*** 7.8253*** 
  (.43652) (.58853) (.44488) (.63781) (.44492) (.64195) 

/cut 4  4.5256*** 6.9902*** 5.7096*** 9.8785*** 5.2807*** 9.9437*** 
  (.44419) (.61205) (.47236) (.71682) (.4828) (.84366) 

Observations  284 284 284 284 284 284 
Pseudo R2  0.294 0.339 0.281 0.386 0.251 0.379 

 Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 
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Table 7.6: Percent With Bachelor’s Degrees as a Determinant of Recovery (Ch. 3.4.2, Model 6) 

  95%  80%  50%  

% Bachelor’s Degree  .0085 .01249 -.00105 .00945 -.0247 -.01166 

 (.01266) (.0129) (.01282) (.01347) (.01332) (.0139) 

Maximum Outages  4.9e-05* 2.1e-05 3.5e-05 1.4e-06 1.2e-05 -4.0e-05 

 (2.5e-05) (2.5e-05) (2.3e-05) (2.5e-05) (2.3e-05) (2.5e-05) 

Sustained Wind Duration  -.00065* -.0005 -.00067* -.00045 -.00075** -.00041 
  (.00026) (.00027) (.00027) (.00028) (.00029) (.0003) 

Maximum Flood Ratio  1.4898*** .74263 1.0694* .54505 .65453 .3261 
  (.41412) (.43521) (.41522) (.43598) (.42307) (.44062) 

5-Day Precipitation  .0155*** .00706** .01319*** .00149 .01393*** .00551* 
  (.00201) (.00239) (.00197) (.00241) (.00201) (.00232) 

Maximum Wind   .0478* .0326 .07203*** .04961* .0706*** .04088 
  (.01904) (.01955) (.01917) (.01992) (.01981) (.02093) 

Emergency Services  -3.863 -3.9555 .11139 -.41286 .47858 .28342 
  (119.58) (105.43) (1.1578) (1.2589) (1.1142) (1.1762) 

Health Services  -3.9602 -4.0772 .02597 -.50629 .53982 .36362 
  (119.58) (105.43) (1.1694) (1.2703) (1.128) (1.1904) 

Grocery Stores  3.9078 4.033 -.09721 .47263 -.51856 -.285 
  (119.58) (105.43) (1.1601) (1.2613) (1.1167) (1.1791) 

Wy   .00041***  .00062***  .00063*** 
   (6.2e-05)  (7.0e-05)  (7.1e-05) 

/cut 1   .90518* 3.2679*** 1.7904*** 5.2065*** 1.6915*** 4.8606*** 
  (.40685) (.55253) (.41678) (.58335) (.43105) (.58137) 

/cut 2  2.169*** 4.6239*** 3.0483*** 6.641*** 2.9964*** 6.3525*** 
  (.43444) (.58612) (.45137) (.62794) (.45163) (.61303) 

/cut 3  3.5164*** 6.1598*** 4.3087*** 8.2851*** 4.0407*** 7.8741*** 
  (.46392) (.63623) (.4676) (.68055) (.46217) (.67063) 

/cut 4  4.7473*** 7.5576*** 5.7625*** 10.303*** 5.1326*** 10.014*** 
  (.47005) (.65776) (.49228) (.75577) (.4973) (.87076) 

Observations  284 284 284 284 284 284 
Pseudo R2  0.297 0.347 0.281 0.390 0.253 0.380 

 Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 
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Table 7.7: Descriptive Statistics for Government Services Analysis (Ch. 4.3.1) 

Variable Mean Std. Dev. Min Max 
Government Services Requests 2703.663 2101.825 3 7831 
Total Households 11569.58 5777.581 782 33717 
Population Density 0.0017741 0.0009236 0.0002348 0.0058396 
Median Income 55275.49 28215.31 25354 174153 
% Below Poverty 20.36947 9.893347 2.6 43.2 
% Limited English 14.45789 11.98162 0.7 58.8 
Proportion Over 65 0.1004648 0.0380102 0.033873 0.268714 
% With Children 31.50824 10.53929 2.557545 50.65862 
% Single Units 59.28316 21.43982 0 97.4 
Distance From City Center 15948.84 7789.782 1094.585 39543.14 

 

 

 
Figure 7.5: Total Households Distribution 
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Figure 7.6: Population Density Distribution 

 
Figure 7.7: Percent Below Poverty Distribution 
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Table 7.8: Determinants of 311 Request Volume (OLS Regression, Ch.4.4.1, Model 2) 

  
 

  

Total Households .00064 .00066 .00093* .00088* 

 (.00041) (.00036) (.0004) (.00037) 
Population Density 5967.7 6743.7* 5394.7 6027.6* 

 (3167.4) (2822) (3115.6) (2856.9) 
Median Income -.00037*** -.0003***   

 (8.0e-05) (7.3e-05)   
Percent Limited English -.54627* -.46102 -.61947* -.46407 

 (.26713) (.23826) (.26924) (.24932) 
Percent Over 65 24.652 54.818 50.577 67.998 

 (64.744) (57.924) (64.742) (59.43) 
Percent With Children -.12472 .02472 -.29037 -.13041 

 (.36704) (.32794) (.36023) (.33206) 
Percent Single Units 47.896*** 37.365** 45.602*** 36.095** 

 (12.684) (11.488) (12.514) (11.681) 
Distance from City Center -.0018*** -.00072 -.00142*** -.00053 

 (.00034) (.00037) (.00033) (.00037) 
Wy  .00121***  .0011*** 

  (.00025)  (.00026) 
Percent Below Poverty   1.2539*** .90177*** 

   (.25825) (.25096) 
Constant 57.149*** 13.192 7.8088 -19.854 

 (14.317) (15.613) (15.562) (15.705) 
Observations 95 95 95 95 

Pseudo R2 0.505 0.613 0.515 0.598 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 
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Table 7.9: Descriptive Statistics for Storm Related Requests (Ch. 5.3.1) 

Variable Mean Std. Dev. Min Max 
Storm Related Requests 167.6848 238.0345 1 1467 
Government Services Requests  2790.772 2078.55 3 7831 
Total Households 11486.76 5841.616 782 33717 
Median Income 55281.98 28621.88 25354 174153 
% Below Poverty 20.54457 9.940254 2.6 43.2 
Damaged Buildings 470.6087 994.3987 0 6151 
Destroyed Buildings 19.13043 39.86549 0 327 
FEMA Assistance 6175569 8037707 5500 3.91E+07 
% Change Govt. Services Requests 0.2006134 0.8151201 -1 4.272727 

 
 
 
 

 
Figure 7.8: Distribution of Damaged Buildings 
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Figure 7.9: Distribution of Destroyed Buildings 

 
 
 
Table 7.10: Descriptive Statistics for Request Reduction Analysis (Ch. 5.3.2) 

Variable Mean Std. Dev. Min Max 
Days to 50%  48.44022 8.894943 30 88 
Days to 75%  58.57065 10.81299 30 99 
Days to 95%  82.52174 21.17353 30 142 
Median Income 55281.98 28621.88 25354 174153 
Percent Below Poverty Level 20.54457 9.940254 2.6 43.2 
Government Services (Log) 7.180285 1.859165 1.098612 8.965845 
Total Destroyed 19.13043 39.86549 0 327 
Total Damaged 470.6087 994.3987 0 6151 
Total Compensation 6175569 8037707 5500 3.91E+07 
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Table 7.11: Descriptive Statistics for Recovery Ratio Analysis (Ch 5.3.3) 

Variable Mean Std. Dev. Min Max 
Recovery Ratio 0.153115 0.0560873 0.0456349 0.3046537 
Storm Requests (log) 4.189071 1.639744 0 7.290975 
Median Income 55281.98 28621.88 25354 174153 
% Below Poverty 20.54457 9.940254 2.6 43.2 
Total Destroyed 19.13043 39.86549 0 327 
Total Damaged 470.6087 994.3987 0 6151 
Total Compensation 6175569 8037707 5500 3.91E+07 

 

 

Table 7.12: Median Income as a Determinant of Discovery Ratio Models 5-7, No Weights (Ch 5.4.3) 

  
 

 

Storm-related requests (log) .01006** .00935** .01239** 

 (.00345) (.00354) (.00365) 
Median Income  -1.8e-07 -1.4e-07 

  (2.0e-07) (2.1e-07) 
Total Destroyed   -3.5e-05 

   (.00021) 
Total Damages   1.3e-06 

   (8.5e-06) 
Total Compensation   -1.9e-09* 

   (8.7e-10) 
Constant .11096*** .1239*** .12078*** 

 (.01549) (.02131) (.02115) 
Observations 92 92 92 

Pseudo R2 0.087 0.095 0.165 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 
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Table 7.13: Percent Below Poverty as a Determinant of Recovery Ratio Models 6-7 (Ch.5.4.3) 

   
 

 

Storm-related requests (log) .00877* .00745 .01181** .0113** 

 (.0035) (.00377) (.00364) (.00406) 
% Below Poverty  .00095 .00078 .00073 .00068 

 (.00058) (.00061) (.00059) (.00061) 

  .01843  .00579 

  (.0194)  (.0201) 
Total Destroyed   -2.4e-05 -2.9e-05 

   (.00021) (.00021) 
Total Damages   1.3e-06 1.7e-06 

   (8.3e-06) (8.4e-06) 
Total Compensation   -1.9e-09* -1.8e-09* 

   (8.6e-10) (8.9e-10) 
Constant .09685*** .09098*** .10009*** .09818*** 

 (.01758) (.01864) (.0176) (.0189) 
Observations 92 92 92 92 

Pseudo R2 0.113 0.122 0.176 0.177 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 
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