TECHNICAL RESEARCH REPORT

G-Snakes:

Nonholonomic Kinematic Chains on Lie Groups

by P.S. Krishnaprasad and D.P. Tsakiris

T.R. 94-27

Sponsored by

the National Science Foundation
Engineering Research Center Program,
the University of Maryland,

Harvard University,

and Industry






(G—-Snakes:

Nonholonomic Kinematic Chains on Lie Groups

P. S. Krishnaprasad and Dimitris P. Tsakiris

Institute for Systems Research & Department of Electrical Engineering
A. V. Williams Build. (§ 115)
University of Maryland, College Park
College Park, MD 20742

E-mail: dimitris@src.umd.edu, krishna@src.umd.edu

Regular Paper

Keywords: Nonholonomic Motion Planning, Kinematic Chains, Nonlinear Control, Lie
Groups

Abstract

We consider kinematic chains evolving on a finite-dimensional Lie group G under
nonholonomic constraints, where snake-like global motion is induced by shape variations
of the system. In particular, we consider the case when the evolution of the system is
restricted to a subspace h of the corresponding Lie algebra G, where h is not a subalgebra
of G and it can generate the whole algebra under Lie bracketing. Such systems are
referred to as G-snakes. Away from certain singular configurations of the system, the
constraints specify a (partial) connection on a principal fiber bundle, which in turn gives
rise to a geometric phase under periodic shape variations. This geometric structure
can be exploited in order to solve the nonholonomic motion planning problem for such
systems.

G-snakes generalize the concept of nonholonomic Variable Geometry Truss assem-
blies, which are kinematic chains evolving on the Special Euclidean group SE(2) under
nonholonomic constraints imposed by idler wheels. We examine in detail the cases of
3-dimensional groups with real non-abelian Lie algebras such as the Heisenberg group
H(3), the Special Orthogonal group SO(3) and the Special Linear group SL(2).
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1 Introduction

Of significant interest among mechanical systems subject to nonholonomic constraints are
those wherein variations of shape induce, under the influence of the constraints, a global motion
of the system. A well-known example is that of a free-floating multibody system in space
(e.g. robotic manipulators mounted on orbiting satellitesj, where periodic movements of the
joints induce a reorientation of the system, under the nonholonomic constraint of conservation
of angular momentum (Krishnaprasad [1990]; Marsden, Montgomery & Ratiu [1990]).

Inspired by the experimental work of Joel Burdick and his students at Caltech (Chirikjian &
Burdick [1991]; Chirikjian & Burdick [1993]), a novel system that uses the above principle for land
locomotion was introduced in (Krishnaprasad & Tsakiris [1994]). There, a Variable Geometry
Truss (VGT) assembly consisting of longitudinal repetition of truss modules, each one of which
is equipped with idler wheels and linear actuators in a planar parallel manipulator configuration,
uses periodic changes of the shape of each module to produce global motion. The locomotion
principle is not based on direct actuation of wheels, but rather on the nonholonomic constraints
imposed on the motion of the system by the rolling without slipping of the idler wheels of each
module on the supporting plane. This results in a snake-like motion of the VGT assembly,
which is not too far, at least in principle, from certain modes of actual snake locomotion (Hirose
[1993]). Both the shape and the configuration of the VGT assembly can be described by elements
of the Special Euclidean group SE(2), the group of rigid motions on the plane. A system like
the VGT assembly constitutes a kinematic chain evolving on this matrix Lie group, with the
corresponding velocities given by elements of the Lie algebra of SE(2). Of these velocities, the
shape variations can be considered as the controls of the system and they are referred to as
shape controls. The nonholonomic constraints allow us to express the global motion of the VGT
assembly as a function of the shape and of the shape controls and to formulate motion control
strategies under periodic shape controls. ‘

This situation can be generalized to kinematic chains evolving on an arbitrary (matrix) Lie
group G under a certain class of nonholonomic constraints. In particular, we are interested in
groups with a real finite-dimensional non-abelian Lie algebra G (of dimension n) and (£ — 1)-
module kinematic chains evolving on them, where the constraints force the velocities of the system
to lie in a subspace of G, which is not a subalgebra of G but which generates the whole algebra G
under Lie bracketing. We refer to systems of this type as G-snakes and observe that they possess
an interesting geometric structure: When £ = n and the codimension of the constraints is one,

the configuration and shape spaces of the system specify a principal fiber bundle (Bleecker [1981];
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Nomizu [1956]) and the nonholonomic constraints specify a (partial) connection on it, at least
away from certain configurations which we call nonholonomic singularities (higher codimension
cases will be treated elsewhere).

In section 2 of this paper, we consider an (£ — 1)-module kinematic chain evolving on an
n—dimensional Lie group. The Wei-Norman representation of G (Wei & Norman [1964]), which
expresses each element of the group as a product of the one-parameter subgroups of G, and the
notion of the adjoint action of G on G allow us to express in a compact form how the motion of
each module of the kinematic chain relates to that of the other modules and to the global motion
of the system and how this latter becomes a function of just the shape and the shape controls
because of the nonholonomic constraints. We show that the configuration and shape spaces of
the G—-snake specify a principal fiber bundle and that the nonholonomic constraints specify a
connection on it.

In section 3 we focus on 2-module G-snakes (£ = 3) evolving on 3-dimensional Lie groups
(n = 3). In particular, we examine, apart from SE(2), the Heisenberg group H(3), the Special
Orthogonal group SO(3) and the Special Linear group SL(2). We derive the corresponding Wei-
Norman representation, the system kinematics, the connection and specify the nonholonomic
singularities in each case.

In section 4 we discuss possible further extensions of this work. For reasons having to do
with ease of exposition, we limit ourselves to matrix Lie groups in this paper. Extensions to

arbitrary Lie groups are easy.

2 Nonholonomic Kinematic Chains on Lie Groups

In section 2.1 we discuss the Wei—-Norman representation of curves in n—dimensional Lie
groups and in section 2.2 we derive the kinematics of the (£ — 1)-module kinematic chain. In
section 2.3 we examine the geometric structure of the chain kinematics when nonholonomic

constraints are present, using the theory of connections on principal fiber bundles.

2.1 The Wei-Norman Representation of Lie Groups

Consider a left—invariant dynamical system on a matrix Lie group G with n—dimensional Lie
algebra G. For g € G, the left translation by g is defined as the map L, : G — G : h — gh, for
h € G. If e is the identity of G, then T.L, is the tangent of the map L, at e. Consider a curve
g(.) C G. Then, there exists a curve £(.) € G such that:

g=Telg-E=9-€. (1)
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Let {A4;, i=1,...,n} be a basis of G and let [.,.] be the usual Lie bracket on G defined by:
[Ai, Aj] = AiA; — AjA;. Then, there exist constants I'j ;, called structure constants, such that:

[ Al =) T AL, ,5=1,...,n. (2)

k=1

Let G* be the dual space of G, i.e. the space of linear functions from G to IR. Let {4}, i =
1,...,n} be the basis of G* such that

AA) =6, i,i=1,...,n, (3)

where 63 is the Kronecker symbol. Then the curve £(.) C G can be represented as:

€= EAi=) AOA. ©
i=1 i=1

Proposition 2.1.1 (Wei & Norman [1964])
Let g(0) = e, the identity of G and let g(t) be the solution of (1). Then, locally around

t =0, g is of the form:
g(t) = e’Y1(t)-A1 e’Yz(t).Az . e'y,.(t).A,l : (5)

where the coefficients v; are determined by differentiating (5) and using (1). Then:

1 3
= M(715.--57n) . (6)

n 3
The matrix M is analytic in v and depends only on the Lie algebra G and its structure constants
in the given basis. If G is solvable, then there exists a basis of G and an ordering of this basis,

for which (5) is global. Then the v;’s can be found by quadratures.

|
For g € G, £ € G, define the adjoint action of G on G denoted Ad, : G — G by:
Adgt = geg™" . (7)
From (4) we have:
3 3
Adgt = 36 AdgAi = 3 AN AdpA, ()
1=1 =1
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From (5) we have:
Adg-Ai - gAig—l = e"/l-Al .. ,e'YnAnAie—'Yn-An . ,e"'Yl-Al . (9)

Equation (9) can be made more explicit by the Baker-Campbell-Hausdorff formula (Wei &
Norman [1964]), which for z,y € G states that:

1
e“ye T =y +[z,y] + 5—,[% [z, y]] + dots . (10)

2.2 The (£ - 1)-module Kinematic Chain

We consider a dynamical system that evolves on the Cartesian product @ = G X --- X G.
| —

£ times

Its trajectory is a curve g(.) = (gl(.), .. .,gz(.)) C @. On each copy of G, the system traces a
curve gi(.) C G, such that

§,=TLy -6=g,-€,i=1...,1 (11)

where fi(.) €G,i=1,...,£ We think of the gi’s as the nodes of a kinematic chain.
Let the instantaneous shape of the kinematic chain be given by the (£ — 1)~tuple
(91,2’g2,3’ .. "gl-1,l) € G X --+ X G, where

(£-1) times

_ -1 :_ _
gi,iﬂ—gi gH_l,z—l,...,Z 1. (12)

A pair of adjacent nodes of the chain constitutes a module. The g, '+1,S can be regarded as the
PR

shapes of the modules of an (£ — 1)-module kinematic chain. We consider the corresponding

curves Ei i1 C G, specified by (1) as the controls of the system (11). We refer to them as the

shape controls:

gi,i+1 = TeLgi,H.l 'fi,z’+1 =9 i 'fi,i+1 si=1...,6-1. (13)
For future reference, define also:
g —1 —_— - y y
9.9, 9,590 VS (14)
and
gi’j = TeLgi,j . Ei,j = Gi,j .gi,j , 1< 7. (15)



We can think of the §i’s as characterizing the global motion of the G—snake system with respect
to some global coordinate system, while the §i j’s capture the relative motion (or shape variation)

of nodes ¢ and 7.

From (11),(12) and (13) we get:

£ =6 +Adg )b =2t (16)

. 17
i i-1% i—1

Applying (16) iteratively we can express any 51‘ as a function of El and of the shape controls

51’2, - .,Ei_l ;a8 follows:

L]

T

§i = E'—-l,i + Ad(gi__llgi)_lgi—Li—l + .-+ Ad(y;1gi)—l£1,2 + Ad(gflgz')_lfl . (].7)

Using (4) we get:

§= D AE, A+ DA, A ) A
Jj=1 j=1 i—171

n (19
b b
4t ZA1(51,2)Ad(92‘19i)_1Aj + Z; Aj({l)Ad(gl-lgi)—l.Aj .
J:

i=1

2.3 Nonholonomic Constraints and Connections on Principal Fiber Bundles

In this section we consider nonholonomic constraints acting on the G-snake and we show
that they specify a connection on the principal fiber bundle associated to our problem.
Codimension 1 Constraint Hypothesis: Assume that the evolution of system (11) on each
copy of G is constrained to lie on an (n — 1)-dimensional subspace h of the Lie algebra G, where
h is not a subalgebra of G, i.e.

§€hi=1,...,L. (19)
Then, for some A, € G* (not necessarily an element of the basis {A%, i = 1,...,n}) we have:
h = Ker(A%). (20)
The constraints (19) can be expressed as:
AE)=0,i=1,...,L (21)

i
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The constraints (21) are linear in the components of £ and those of the shape controls £ .
i,

This can be made explicit by defining the composite velocity vector of the kinematic chain:

=9

ef

= (5: ...gigiﬂ ,_,gi—l,l)T

n

= (M) -+ ML) AUE, ) - g, )T

Proposition 2.3.1

The £ nonholonomic constraints (21) can be written in matrix form as:
’4(‘(‘71,2""’91—1,12)E =0, (22)

where A is a function of only the shape of the system and is a block lower triangular ¢ x nf

matrix of maximal rank of the form

*11 0 0 0 0 0 0
*1,2 *2,2 0 0 0 0 0
' 0 0 0
4= *1,i 0 k2,8 ot Riolg Fig 0 0 ’ (23)
: : 0
\*1,2 k9.0 vt K10 Kip v Rp1p ¥eg
with the 1 X n block *, 4, defined for p < ¢ as:
*¥p,g = (.Ai(Ad(g—1g )—1.A1) M A‘;(Ad(g—lg )—I.An) ) .
p 9 p g
Proof
From (18) and (21):
A(€) = 3 ANE)ALA) = 0,
=1
ALE) = D AGE ) JAADN + D AKE, I AAdm o) Ay) 0
j=1 j=1 =1t

fotk S .Ag-(fm).A[,’C(Ad(gz_lg_)—xAj) + ZAg(gl)A‘;(Ad(gl_lg_)_lA,-),
j=1 1 1

i=1

i=2,...,0



The diagonal blocks *, , of A have the form ( AL (A - AL(AL) ), therefore they contain

at least one non-zero constant term. Thus A has always maximal rank.

Proposition 2.3.2
Assume £ > n. Partition E as (E; Z;), with Z; an /-dimensional vector containing the
components of fl (and possibly some components of shape controls), while Z; is an (n — 1)¢-
dimensional vector containing only components of shape controls. Let the corresponding partition
of A be (A1 Ag), with A; a (n — 1)£ X £ matrix and Ay a locally invertible £ x £ matrix. Then
from (22) :
2= —A7Ng, 8,y YA, 40009, )F (25)

Proof
Follows from the smooth dependence of A on the shape variables and the maximal rank property
of Proposition 2.3.1.

[ |

The physical significance of this result is that, if the global motion of the (£ — 1)-module
system is characterized by the global motion of its first module (i.e. by 51), then variations of the
shape controls (at least those which are elements of Z;) induce a global motion of the system.

Configurations where A is singular will be called nonholonomic singularities.

Definition 2.3.3 (Principal Fiber Bundle (Nomizu [1956]) )
Let S be a differentiable manifold and G a Lie group. A differentiable manifold @ is called
a (differentiable) principal fiber bundle if the following conditions are satisfied:

1) G acts on @ to the left, freely and differentiably:

®: GxQ—Q: (g,q)Hg-qdéng-q-

2) § is the quotient space of Q by the equivalence relation induced by G, i.e. § = Q@/G and the
canonical projection 7 : Q — § is differentiable.

3) Q is locally trivial, i.e. every point s € S has a neighborhood U such that 7~ %(U) C Q is
isomorphic with U x G, in the sense that ¢ € #~1(U) — (x(q), #(q)) € U X G is a diffeomorphism
such that ¢ : 7~1(U) — G satisfies ¢(g - q) = g¢(q),Vg € G.
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For s € S, the fiber over s is a closed submanifold of  which is differentiably isomorphic with
G. For any g € @, the fiber through q is the fiber over s = m(¢). When Q = S x G, then Q is said
to be a trivial principal fiber bundle.

Consider now the manifolds ) and S defined in section 2.2 and the canonical projection

7 : @ — S defined by equation (12), i.e.

déf ( -1

ot (26)

-1
”(91""’92) g1 9o+ 9 ge) = (91,2,---,91_1’3) .

We can show that the quadruple (@, 5,7, G), together with the action ® of G on Q defined by
®:GxQ—Q: (,9)=(9(9,5--,9) = 9-a=(99,,---,99,) , (27)

meets the requirements of Definition 2.3.3, and therefore (@, S,7,G) is a trivial principal fiber

bundle. Indeed, = is differentiable and its differential is

Ty * TqQ - r(q)s : (9151, .o "nge) = (g1,261,2’ .. -791_1’£§£_1,£) ’ (28)
where the Ei_l ; are given by (16) :
£i—1 i = §i - Ad(g_l 9-)_1€i—1’ T = 2, .o .,f . (29)
' i-17i

Definition 2.3.4 (Connection on a Principal Fiber Bundle (Nomizu [1956]) )
Let (@, S, m,G) be a principal fiber bundle. A connection on the principal fiber bundle is
a choice of a tangent subspace H, C T,Q at each point ¢ € @ (horizontal subspace) such that,

if V, def {v € T,Q|n. (v) = 0} is the subspace of T,Q tangent to the fiber through g (vertical
subspace), we have:

1)T,Q=H, 8V,

2)Forevery g€ Gand g€ Q, T,®,- Hy = Hy.,.

3) H, depends differentiably on gq.



Proposition 2.3.5
Away from nonholonomic singularities and when £ = n, the nonholonomic constraints (21)
specify a connection on the principal fiber bundle (Q, S, r,G), with the horizontal subspace

defined as follows:

Hy={neT,Q|v= (glfl,...,glﬁl) and §i € h}

(30)
={veT,Q|v= (glgl, .. .,glé'z) and =y = —A;l(ﬂ'(q))Al(ﬂ'(q))El },

where 51 = (£1 -+ gLz g2a .. fi—l,e)T and =5 = (¢! - gi)T _

Proof
Due to the left-invariance of our system, T, = {(glf1 yeuesd ef e) | fi € G}. The vertical subspace

is (from (27) — (29))
Vo= {ve T,Q | 7"*4(5) =0}
= {(glfl’ ’ ..,g££e) | (g1,2§1,2’ Y ge—1,z§e-—1,z) =0}
= {(g1€17 .. "gefe) | 61,2 == Eé—l,[ = 0}

= {(9151"”’ge§e) l Ei = Ad(gl—lgi)—lfl, 1=2,.. ,f} .

(31)

Physically, the vertical subspace contains all infinitesimal motions of the kinematic chain that
do not alter its shape.

To show property (1) of Definition 2.3.4, we first prove that H, NV, = {0} and then that
dim(T,Q) = dim(H,) + dim(V,).

To show H,NV, = {0}, assume that there exists a non-trivial v = q-§€Hq NV;. By the definition
of V,, the corresponding shape controls are zero. Thus Z; = 0 and, by the definition of H,, also
Z; = 0. But then { =0 and from (31)also § =0, i=2,...,£ Thus {_0. Thus H, NV, = {0}.
Now observe that, away from the nonholonomic singularities dim(H,) = nf — £ . Further,
dim(V,) = n . So, when £ = n, dim(H, ® V,) = (€ =€) + n = (n* —n) + n = n? = dim(T,Q). It
follows that H, @ V, = T,Q.

To show property (2) of Definition 2.3.4, consider T, ®,-H, =g -H,=g- {(glfl, a98)1¢ €

Y = {(99,8,-99,6) | §, €hyand Hyy = {v € TogQ v = (9-9)- (§,-- ) and £ €
h} = {(gglfl, . ..,gglfl) | £ € h} . Then, obviously, T4®, - Hy = Hg.q.
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Property (3) of Definition 2.3.4 is immediate from the smooth dependence of A on the shape and

from the left—invariance of our system.

3 Three—dimensional Nonholonomic Lie Groups

Here we specialize the results of the previous section to kinematic chains on Lie Groups
with 3-dimensional real non-abelian Lie algebras (n = 3). In section 3.1 we consider the Special
Euclidean group SE(2), in section 3.2 the Heisenberg group H(3), in section 3.3 the Special
Orthogonal group SO(3) and in section 3.4 the Special Linear group SL(2).

We study 2-module (£ = n = 3) kinematic chains on each of these groups by deriving
their Wei-Norman representation and by defining the partial connection on the corresponding
principal fiber bundle.

Let G be one of the above four matrix Lie groups and G be the corresponding Lie algebra.
Consider the system (2.1) on G :

g=Tely-§=9-¢, (1)
with ¢ € G and £ € G. From Proposition 2.1.1, any g € G has a local Wei-Norman representation

of the form
g(t) = eM{t) A1 gr2(B) A2 o3 (2) As 2)

Consider now the 2-module kinematic chain on G. From the system kinematics (equations

(2.11) — (2.18)) we have:

9,= 9191’2 ’
9, = 9292’3 = 9191,292’3 ) (3)
g1,3 = gl,2gZ,3 )

From (2.16) we get for the corresponding velocities:

€2 = 61’2 + Ad(g;1g2)_1£1 )
(4)
53 = 52’3 + Ad(gz_l‘q3)_1§2 = 52’3 + Ad(92—193)_1£1,2 + Ad(gl-lga)—lfl .
Assume that the evolution of system (1) on each copy of G is constrained to lie on a 2~dimensional
subspace h of the Lie algebra G, where h is not a subalgebra of G. Define
= o= (£12 g12 g1,2 23 223 £2,3\T g = (glgl e\ T
Zi= (€770 and By = (66 ¢
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Proposition 2.3.1 holds with = = (Z; Z;). From Proposition 2.3.2 we conclude that the global
velocity of the 2-module kinematic chain, as it is characterized by 51’ can be expressed as a

function of only the shape variables 9,279, 5 and shape controls fl 2,52 5 of the assembly:

2,
—_ -1 —_
B = -4, (91’2,92,3)141(9112,92,3):1 : (5)

From Proposition 2.3.5, equation (5) defines (away from the singularities of A;) a connection on

the trivial principal bundle (§ x G, S, 7,G) with § = G X G and with horizontal subspace:

Hq = {1) € TqQ I v= (9151,925279353) and 51- € h}

(6)
={veT,Q|v=1(9,9,,9,,) and 5, = —A{‘(gllz,gm) A(g, 59,051}

Subsequently, we will derive explicitly the Wei-Norman representation for each of the Lie
groups mentioned earlier and we will define the connection (6) for specific 2~dimensional sub-
spaces h of G. In (Vershik & Gershkovich [1994]) the authors present a result showing that,
for each of H(3),50(3) and SE(2), all 2-dimensional subspaces A of G, which are not subal-
gebras, are isomorphic and can be represented by h = sp{A1, Az} in the basis of G specified
in the following sections. For SL(2), there are 2 classes of such isomorphic subspaces that can
be represented, respectively, by h = sp{A41,A2} and by h = sp{As, A;1 + A2}. Therefore, only
nonholonomic constraints corresponding to these subspaces of G will be considered here.

Our main purpose in this section is to set the stage for a deeper understanding of this
novel class of kinematic chains, by cataloguing the low—dimensional possibilities. One case,
corresponding to SE(2) has already found a concrete mechanical realization (Krishnaprasad
& Tsakiris [1994]). Others might follow, for instance, there are possible connections between

50(3)-snakes and the kinematics of long chain molecules (Karplus & McCammon [1986]).

3.1 Nonholonomic Kinematic Chains on the Special Euclidean Group SE(2)
Let G = SE(2) be the Special Euclidean group of rigid motions on the plane and G = se(2)
be the corresponding algebra with the following basis:

0 -1 0 00 1 00 0
Ai=[1 0 o], A=[000),4=[00 1]. (7)
0 0 0 00 0 000

[-Ala-A?]:-AS’[AlaA3]=—A27[A2aA3]=O‘ (8)

Then:
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The algebra G is solvable and, from Proposition 2.1.1, any g € G has a global Wei-Norman

51
52) . (9)
63

representation of the form (2), with

A 1 0 0
Y2 ]l=1 13 10
Y3 -7 0 1

Equation (9) is solvable by quadratures:

7(t) =n(0) + /t ¢, (r)dr,
v2(t) = 72(0) cos (/tfl(a)da) + v3(0) sin (/tgl(a)da>

+ O/ £ r)eos / £ (0o )r + 0/ £, (mysia ( / € (o)do)dr, (10

73(t) = —72(0) sin (/tfl(a)d0> + 73(0) cos (]51(0)(10)
0 0

e ( [ gore)ir+ [ e s [ man)er
0 T 0 T

From (2.9), (9) and (10) we can compute Ad,-1.4; :

Adg—l.Al = Ay — ’73./42 + ')’2~A3 3
Ady-1A; = cos 1Ay —sinmAs, . (11)

Adg-1A3 = siny; Az + cos v1As3 .

Consider now the 2-module kinematic chain on SE(2), (£ = 3). A concrete mechanical realization
of such a system is the Variable Geometry Truss assembly mentioned in section 1, which appears
in fig. 3.1. The system kinematics of equations (3),(4) apply.

From (8) we can see that there are two possible 2-dimensional subspaces h of G that can generate

the whole algebra under Lie bracketing:

hs = sp{A1, A3} = Ker(A}) and h, = sp{A1, A3} = Ker(Ab) . (12)

13



Fig. 3.1

Subsequently we will consider only h; (which is exactly the case of the system in fig. 3.1). The

nonholonomic constraints £i € hy can, then, be expressed as:
A5(€) =0, i=1,2,3. (13)

Equation (5) holds with =; and Z; defined as above and with:

0 0 0
Ay = 0 1 0
.Ag (Ad(g2—1g3)—1.A1) Ag (Ad(g2-1g3)—1A2) .Ag (Ad(g;193)_1"43)

0 0 0 0 00
= 0 1 0 0 00
-2 cos v* sin w2 0 10

0 1 0

[ R e B ]
= oo

oo o
SN———

and

A2=

01 2 L 1,2 0 1,2
= ——7:1’3 cos 7]1’3 sin 711’3 .
_731 Y ¥

cosy;"” sinyy
The nonholonomic singularities of the system are the configurations where:
det(Ap) = A} (Ad(gl_lg3)—xA1)A; (Ad(gl_lgz)-lAs) — Aj (Ad(gl_ng)—xAl)Ag (Ad(gl_lga)_lA3)
= —7§’3 sin 711'2 + 7;’2 sin 711’3 =0.
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See (Krishnaprasad & Tsakiris [1994]) for the mechanical interpretation of the nonholonomic
singularities. Away from those, equation (6) specifies the connection corresponding to this sys-
tem. Under periodic shape controls 51’2,52’3, the system translates when 711’2 = 0 and rotates
otherwise. This in turn is associated with the concept of geometric phase of the system, which
is discussed in greater detail in (Krishnaprasad & Tsakiris {1994]). In the case of the translating
system, the corresponding geometric phase is plotted in fig. 3.2 for one period of the shape

controls and for varying amplitudes.

Geometric Phase: Translation

Fig. 3.2

3.2 Nonholonomic Kinematic Chains on the Heisenberg Group H(3)
Let G = H(3) be the Heisenberg group of real 3 x 3 upper triangular matrices of the form

l a §
0 1 v | andlet G = h(3) be its algebra with the following basis:
0 0 1
0 10 0 0 0 0 0 1
A={0 0 0], A4={00 1),4={0 0 0 (14)
0 0O 0 00 0 0 O
Then:
[AI,A2]=A3)[A17A3]:05[A27A3]=0‘ (15)

The algebra G is nilpotent (thus solvable) and, from Proposition 2.1.1, any g € G has a global

Wei-Norman representation of the form (2) with

A 1 00 3
Y2 }=|1 0 1 0 £, (16)
¥3 -v2 0 1 3

3
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Equation (16) is solvable by quadratures:

t
(0 =m0+ [ ¢ @ar,

7(®) =10+ [ € r)ar,
0

¢ t (7
1(0) =10~ [ () (ir+ [ ¢, (rr
0 0
t t T t
= 73(0) — 72(0) / ¢ (0)do - / {1(7')( / 52(o)da)dr+ / ¢ (r)dr .
0 0 0 0
From (2.9),(16) and (17) we can compute Ad,-1.A4; :

Adg—lAl =A; + Y2 A3 ,
Adg-1.A2 = .Az - 71A3 ’ (18)

Adg-1A3 = .A3 .

Consider now the 2-module kinematic chain on G, (£ = 3). The system kinematics of equations

(3), (4) apply.
From (15) we can see that there is only one possible 2—dimensional subspace A of G that can

generate the whole algebra under Lie bracketing:
h = sp{A;, A} = Ker(A4}) . (19)
The nonholonomic constraints can, then, be expressed as:
A3() =0, i=1,23. (20)

Equation (5) holds with =; and =, defined as above and with:

0 0 0
A = 0 0 b 1
Ag(Ad(gQ_IgB)-IAI) Ag(Ad(g;ga)_lAz) Aa(Ad(g;,ga)_lAs)

|

[ B e B e}
(ol e I e}

- OO
~—

= O o

0 0 000
=1 0 0 10 0
733 421 0 0
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and
0 0 1
Ag(Ad(gl_lgz)-lAl) A (Ad(gl_l%)_lfb) .Ag(Ad(gl_lgz)_l.A3)

b
Ay = 3
Ag(Ad(gl—lga)—l.Al) Ag (Ad(gl_lg3)_1A2) .Ag (Ad(g_lgs)—lAg,)
1

0 0 1
= | 42 2

i3 i3

S TR |

The nonholonomic singularities of the system are the configurations where:
det(Ap) = A} (Ad(gl_lgz)—x.Al).Ag (Ad(g-14)-242) - AL (Ad(gl_lga)-lAl)Ag (Ad(y-15 y-142)
1

1,2 1,3 1,2 1,3 1,2_2,3 1,2_2,3
== N AN R =1 T =0,

3.3 Nonholonomic Kinematic Chains on the Special Orthogonal Group SO(3)
Let G = SO(3) be the Special Orthogonal group of real orthogonal 3 X 3 matrices with
determinant equal to one and let G = so(3) be the algebra of 3 X 3 real skew—symmetric matrices.

Consider the following basis for G :

0 0 O 0 0 1 0 -1 0
.A1 = 0 0 -1 ) .A2 = 0 0 0 N .A3 = 1 0 0 . (21)
01 0 -1 0 0 0 0 O

(A, A= A3, [A1, A3]=—-Ay, [A2, As] = A; . (22)

Then:

The algebra G is simple, thus, the Wei-Norman representation (2) is only local (defined when
cosyz # 0) with coefficients:

1 sec7ac0sy3 —secyzsinys 0 51 ‘
g | = sin 3 cos ¥3 0 N (23)
A3 —tanypcosys tanyesinyy 1 §3

From (2.9) and (23) we can compute Ad,-1.A4; :
Adg-1A; = cos ¥z cos ¥3.A; — cos ¥y sin 3.4z + sin 7243 ,
Adg-1 Az = (sin 1 sin 72 cos 3 + cos v sin 73).Ax
+ (—sin vy siny2 sin 3 + cos 1 cosv3) Az — siny; cosy2. 43 , (24)
Adgy-1 Az = (— cosy; sin ¥ cos y3 + sin 1 sin v3).A;
+ (cos 1 sin 2 sin 3 + siny; cos¥3).As + cos 1 cos 72.A3 .

17



Consider now the 2-module kinematic chain on G, (£ = 3). The system kinematics of equations

(3),(4) apply.
From (22) we can see that there are three possible 2-dimensional subspace h of G that can

generate the whole algebra under Lie bracketing:

hs = sp{A1, A2} = Ker(A}), hs = sp{A;, A3} = Ker(A}),
(25)
and hy = sp{As, A3} = Ker(A}),

We consider only hs C G. The nonholonomic constraints §i € h3 can, then, be expressed as:
A3(€)=0, i=1,2,3. (26)

Equation (5) holds with Z; and Z; defined as above and with:

0 0 0
Ay = 0 0 1
Ag(Ad(g;gs)-l.Al) Ag(Ad(g;gs)_lAz) Ag(Ad(gz_lg3)—1A3)

|

0 0 1

oo O
[en i el o}

0O
SN——

0

oo

fl

0
0
0

o oo
= oo

0
0
. . 2,3 2 2,
sin 722 3 _sin v, cos 722 3 cos T 3 cos Yy 3

and

b
Ay = 3
Ag(Ad(gl—lgs)—l.Al) Ag(Ad(g;1g3)—1A2) Ag(,4d(g_193)—1./43)
1
0 0 1
= | sinys? — siny1" cos 2 cos'yl’2 cosyi? | .
\ . 3 . 1,3 %,3 1,3 %.,3
sin v, —siny;"" cosy,” cosy;" cosv,

The nonholonomic singularities of the system are the configurations where:
det(A2) = Ag (Ad(gI1g2)—1A1)Ag (Ad(g_lga)—1A2) - Ag (Ad(gflgs)-lAl ) Ag (Ad(g_.1g2)—1.A2)
1 1

. 2 3 . s 1,2 1,2
= —sin 7; % sin 711 cos 721’3 + sin 7;’3 sin 711 cosyy,” =0.
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3.4 Nonholonomic Kinematic Chains on the Special Linear Group SL(2)
Let G = SL(2) be the Special Linear group of real 2 x 2 matrices with determinant one and
let G = si(2) be the algebra of real 2 X 2 matrices of trace zero. Consider the following basis for

G:
01 00 1/1 0
“41:(0 0)’“42:(1 0>’A3=§<0 —1)' (27)

(A1, Ag) =243, [A1, A3]=—-A1, [A2, A3] = A; . (28)

Then:

The Wei-Norman representation (2) is only local (defined when €”* # 0) with coefficients:

gb! e 0o o\ /¢
Y3 —279€73 0 1

1
£, ) (29)
53

(See however comments in (Wei & Norman [1964]) and their Theorem 3. A global representation
of SL(2) can be obtained using {A;,A; — Az,.A3} as a basis).
From (2.9) and (29) we can compute Adg-1.A4; :

Adg-1 Ay = e™ Ay — 72€ Ay + 27243
Adg-1Ay = —yie Ay + (1172 + 1)%€™ Ay — 211(m72 + 1) A3, (30)
Ady-1A3 = e P A — a(mye + 1) A + (21172 + 1)As

Consider now the 2-module kinematic chain on G, (£ = 3). The system kinematics of equations

(3), (4) apply.
From (28) we can see that there are two possible 2-dimensional subspaces h of G that can generate

the whole algebra under Lie bracketing:
hs = sp{A1, A2} = Ker(A%) and hya = sp{As, A1 + Az} = Ker(A} — A}) . (31)
We first consider A3 C G. The nonholonomic constraints Ei € h3 can, then, be exI;ressed as:
A(€)=0, i=1,23. (32)

Equation (5) holds with =; and Z; defined as above and with:

[ow BN en B e )
(o= e R ]

-0 O
SNe——

0 0 0
Ay = 0 0 1
Ag(Ad(g;ga)-lAl) Ag(Ad(gglgs,-lAz) Ag(Ad(gglgs)_lAa)

0
0
1

[ B oo R e}
oo

0 0 0
= st 2,3 203 2,3 2,3 123
27" 27177 (T L) 27T +1
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and

0 0 1

1./41) .A (Ad(gi_1y2)-l.A2) .Ag(Ad(g;192)—1A3)
b
3

b
3
Ag(Ad(gi.lgs)—l.Al) Ag (Ad(gl—lga)-l.Az) .A (Ad(g;lga)—lA:;)

3

0 0 1
(s ey k).
27,7 =297 (T L) 2Tt 1

The nonholonomic singularities of the system are the configurations where:

det(Az) = Aj (Ad(gl_lgz)-lAl)Ag (Ad(gl_lga)_lAZ) - Ag(Ad(gl_lga)-lAl)Ag (Ad(gl_lgz)-l.A2)

= — 4723+ D+ 4t (et + 1) = 0.

Now we consider the subspace h; 3 C G in (31). The nonholonomic constraints can, then, be

expressed as:

(Af - A5)(€) =0, i=1,2,3. (33)

Equation (5) holds with Z; and =, defined as above and with:

0 0
A = 1 -1
(Af - A3) (Ad(%_lgs)_lAl) (A4 - 43) (Ad(g-sg)-142)

0 0 0
0 0 0
(.Ag - Ag) (Ad(g;].ga)—lAa) 1 _1 0

o O

0 0
= 23 1232 2,3 2,3\2  —y23 —123 2,3 2 23
e 4 (1,°)%eBT —(17)% e — (9" + 1)e™

0

oo
1

’_‘OO
[ B e I cun
\-—-/

0
1R 4 2 (4 e 4 1)e”
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and

1 -1
(5 A8) (Adgmsg i) (4] = 43) (Ad gy, A0

(A} - A3) (Ad(gi.lga)-lAl) (A} — A3) (Ad(gl_lgs)_lAg

Ay =

0
(AL = 42) (Ady 1,1 4)

(Af - 43) (Ad(yl‘lys)“A3)

) -1
12 1, 1,2 1,212 —12 1,2
e "’i .t (72 2)26’7"; , —(11")%e 731 -’ + 1)2673; 3
e~ 4 (1i?)2e%” —(71P) e — (11y B 1 P 1)k

1,2 32 12,12

o0 ” +72 (7 + 1)6”’3
nle™s” 4y (713 Ls +1)e%”

The nonholonomic singularities of the system are the configurations where:
det(Az) = (A} — A}) (,4al(g1_1g2).1(,41 + Az)) (A% — A43) (Ad(gl_lga)-lAa)

- (A} - Ag)(Ad(gl'lg3)'1(A1 + A2)) (A ~ A3) (Ad(gl‘lgz)"l‘A:*)
= (7 e - e - 4 1)
'(711%-73 71+ 1)e™ )
- (e pEpe - (e - i s 1Pl

. (711’2(7;’2 + 122 (e + l)e"3 ) =0.

4 Conclusions

In this paper we introduce the concept of G-snakes, which is a class of kinematic chains
with nonholonomic constraints evolving on a Lie group. Shape variations of the system modules
induce a snake-like global motion of the system. We provide the framework upon which motion
planning strategies based on periodic shape variations can be developed. A concrete mechanical

realization is associated with G = SE(2). We offer a catalogue of low-dimensional possibilities.
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Further extensions of this work include the study of geometric phase for each of the groups
that we discuss, as well as the study of optimal control problems related to the optimal choice

of shape variations that will achieve motion between two desired configurations.
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