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Structural health monitoring (SHM), as an essential tool to ensure the health integrity 

of aging structures, mostly focus on monitoring conventional observable damage 

markers such as fatigue crack size. However, degradation starts and progressively 

evolves at microstructural levels much earlier than detection of such indicators.  

This dissertation goes beyond classical approaches and presents a new SHM 

framework based on evolution of Damage Precursors, when conventional direct 

damage indicator, such as crack, is unobservable, inaccessible or difficult to measure. 

Damage precursor is defined in this research as “any detectable variation in material/ 

physical properties of the component that can be used to infer the evolution of the 

hidden/ inaccessible/ unmeasurable damage during the degradation”. 



 

 

Accordingly, the degradation process is to be expressed based on progression of 

damage precursor through time and the damage state assessment would be updated by 

incorporating multiple different evidences. Therefore, this research proposes a 

systematic integration approach through Dynamic Bayesian Network (DBN) to 

include all the evidences and their relationships. 

The implementation of augmented particle filtering as a stochastic inference method 

inside DBN enables estimating both model parameters and damage states 

simultaneously in light of various evidences. Incorporating different sources of 

information in DBN entails advance techniques to identify and formulate the possible 

interaction between potentially non-homogenous variables. This research uses the 

Support Vector Regression (SVR) in order to define generally unknown 

nonparametric and nonlinear correlation between some of the variables in the DBN 

structure.  

Additionally, the particle filtering algorithm is studied more fundamentally in this 

research and a modified approach called “fully adaptive particle filtering” is proposed 

with the idea of online updating not only the state process model but also the 

measurement model. This new approach improves the ability of SHM in real-time 

diagnostics and prognostics. 

The framework is successfully applied to damage estimation and prediction in two 

real-world case studies of 1) crack initiation in a metallic alloy under fatigue and, 2) 

damage estimation and prognostics in composite materials under fatigue. The 

proposed framework is intended to be general and comprehensive such that it can be 

implemented in different applications.   
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Chapter 1: Introduction 

 

1-1 Overview 

Mechanical systems are susceptible to progressive accumulation of damage during 

their service life. It is crucial to detect damages at earliest possible time before they 

lead to system failure. Time-based scheduled maintenances have been widely used to 

perform Non-Destructive Inspections (NDI) on structural and mechanical systems. 

However, these kinds of maintenance are very labor intense and costly as they require 

the system to be taken out of service or disassembled; in addition, the intervals 

between inspections should be chosen conservatively to make sure that the existing 

damage would not reach the critical region before the next scheduled inspection. 

Structural Health Monitoring practice exploits the Condition-Based Maintenance 

(CBM) to avoid costly unscheduled and/or unessential repairs that are common in 

traditional time-based maintenance (Rabiei and Modarres, 2013a). Structural health 

monitoring uses CBM to continuously monitor the health state of the system via 

online sensors. In addition to in-situ CBM, SHM is closely related to NDI techniques 

which are usually carried out off-line and with a priori knowledge of the damage 

location (Farrar and Worden, 2007). 

The majority of the existing SHM frameworks use empirical damage models such as 

the Paris Law for fatigue crack growth to estimate the damage state; these models, 

however, are mostly established based on monitoring and measuring observable 
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damage markers or indicators of damage such as the crack length. Notwithstanding 

the significant development made by conventional SHM techniques in fault 

diagnostics and failure prognostics, by the time that the common observable damage 

indicator (such as crack) can be detected and measured, most of the life of the 

component has already passed (Cantrell, 2006). In addition, considering the detection 

uncertainty involved in any NDI or sensor-based method, there is always a chance 

that such damage remains undetected. Therefore, there is a valuable time window 

from the initial degradation of characteristics at material state until the emergence of 

measureable damage markers. Even though no observable damage indicator might be 

detected in this period, degradation is progressively happening inside the component. 

This reveals the importance of attention to indirect damage indicators referred to as 

damage precursors. There is no concise and universally accepted definition for 

damage precursor in the literature. In this research, damage precursor is defined as 

“any detectable variation in material/ physical properties of the component that can be 

used to infer the evolution of the hidden/ inaccessible/ unmeasurable damage during 

the degradation”. This definition applies to both homogeneous and composite 

materials. Contribution of information content of damage precursor into the 

traditional SHM frameworks provides a powerful platform to estimate the health state 

of a component/system even when direct signs of damage such as crack are not 

visible or measureable yet. 

Damage estimation and prognostics in SHM are rooted in the Recursive Bayesian 

Estimation, also known as Bayesian filtering, problem. The Bayesian filtering 

problem, which involves probabilistic inference of the state of a system that changes 
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over time using a sequence of noisy measurements, has been around for quite a long 

time (almost since early 1960’s) (Kalman, 1960; Chen, 2003). Different techniques, 

especially methods in the Kalman filtering family and the more advanced Particle 

Filtering (PF), have been proposed and implemented to address this problem. Unlike 

Kalman filtering, particle filtering does not require any restrictive assumptions and is 

particularly useful to address non-linear problems with non-Gaussian 

process/observation noise. The application of particle filtering in reliability field is 

quite new (Orchard and Vachtsevanos, 2009) and its popularity is rapidly increasing 

in the recent years because of its flexible and powerful features. However, most of the 

recent works in this area (Butler and Ringwood, 2010; N. Eleftheroglou and Loutas, 

2016; Orchard and Vachtsevanos, 2009) only consider one observation for updating 

the state estimations. With recent advanced sensing and monitoring technologies, it is 

important to develop a framework which is capable of fusing various measurements 

and informative evidences from multiple sources and with different nature. It is 

especially important when dealing with less explored areas of study such as damage 

precursor because higher level of uncertainty is expected. Any piece of related 

information can be influential in reducing the inherent uncertainty and obtaining more 

robust and reliable estimations and predictions. Available information might be very 

diverse in nature which comes from different sources such as various online or offline 

sensors, physics-based or data-driven models, expert opinion, and reliability data. 

Accordingly, the idea of the present study is to develop a SHM framework which can 

integrate multiple evidences with different characteristics to reduce the uncertainty 

and acquire more precise damage estimation.  
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Dynamic Bayesian Network (DBN) has been recognized as one of the powerful 

approaches for integrating various complex time-dependent and uncertain variables 

(Dong and Yong, 2008; Medjaher et al., 2012; Iamsumang et al., 2015; Rabiei et al., 

2015a). Moreover, DBN has shown capability in managing hidden or latent variables 

(state or parameter) which cannot be observed or measured directly. Therefore, DBN 

is the foundation of this research to aggregate different evidences into the SHM 

framework and particle filtering is chosen as the primary computational methodology 

for making probabilistic inference in DBN about the hidden state of damage. 

Furthermore, Particle Filtering is studied more fundamentally in this research. This 

approach consists of two main components: state process model and measurement 

model. Several papers have worked on state process model and proposed some 

methods to update the model parameters in state process model while using a 

predefined measurement model (Kitagawa, 1998; Liu and West, 2001; Tulsyan et al., 

2013; Hu et al., 2015a). However, to the best of our knowledge, no major study exists 

on updating the measurement model as well. In most of the online real world 

applications, the correlation between the measurements and the hidden damage is not 

defined in advance and therefore, presuming an offline fixed measurement model is 

not promising. Therefore, a modified version of particle filtering called “Fully 

Adaptive Particle Filtering” is proposed in this research which can dynamically 

update the measurement models in addition to state process model. The proposed 

particle filtering algorithm is a significant step forward toward more realistic online 

SHM because, in real world application, usually there is no fully known and 



5 

 

predefined model that can fit to all cases, and consequently, it is important to adjust 

the models to the particular case study.  

1-2 Research objectives: 

Within the scope of this research, we seek an answer to the question of how to 

construct a new modeling and computational approach for on-line SHM framework 

by relying on indirect damage indicators or damage precursors? Moreover, this study 

investigates a systematic approach to address the challenge of fusing several sources 

of various information to achieve a more robust and reliable SHM framework. The 

approach inquires a more advance probabilistic fusion techniques for model-based and 

data-driven models in order to integrate different types of uncertain information.  

Therefore, the main objectives of this research are as follows: 

 Investigate the idea of incorporating indirect damage indicators, or more 

specifically damage precursors, into SHM. 

 Develop a general damage precursor-based SHM framework which is capable 

of inferring the degradation state in the structure when direct damage indicator 

such as fatigue crack is inexistence, undetected or difficult to measure. 

 Establish a methodology for fusing different sources of potentially non-

homogeneous evidence in order to achieve a more precise damage estimation 

through time  

 Develop a hybrid probabilistic modeling approach based on Dynamic 

Bayesian Network to formulate the SHM framework through time and to 

predict the RUL. The DBN algorithm is the combination of: 
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 Model-based particle filtering technique to infer the damage state based on 

evolution of damage precursor using various noisy measurements. 

 Data-driven techniques including regular regression techniques and more 

advanced ones such as Support Vector Regression to learn the unknown 

relationship between some of the variables in DBN from data.  

 Explore a methodology to learn the damage model parameters in real time 

when dealing with partially known degradation processes. 

 Develop a fully adaptive version of particle filtering algorithm that does not 

require a predefined measurement model to explain the relationship between 

the hidden damage state and noisy measurements. This new approach should 

be capable of learning both the measurement model as well as the state 

process model in real time.  

1-3 Dissertation’s Outline 

This dissertation is arranged into the following chapters.  

Chapter 2 presents a review of the background and related studies in SHM, followed 

by different possible sources of information that can be included in the SHM 

framework. 

Chapter 3 focuses on dynamic Bayesian network, its representation, features and 

capabilities including some recent literatures that applied DBN in SHM. 

Chapter 4 contains the proposed damage precursor-based SHM methodology and 

theoretical framework. The chapter starts by definition of damage precursor and then 

continues by introducing the concept of damage precursor into the SHM framework. 
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Two damage precursor-based SHM frameworks are developed and explained in this 

chapter.  

Chapter 5 shows the mathematical scheme of the research. Details of standard particle 

filtering algorithm for estimating the hidden states with the use of observed variables 

are reviewed. Then the idea of combined state and parameter estimation in particle 

filtering is explained in which both states and model parameters can be updated 

online simultaneously. This chapter also presents how the prognostics and predicting 

the Remaining Useful Life (RUL) is handled. And finally, support vector regression 

is introduced. 

In chapter 6 and 7 the results of applying the proposed methodology are presented in 

two case studies. Chapter 6 focuses on degradation of the metallic component (7075-

T6 Aluminum samples) under fatigue before crack initiation. In chapter 7, a more 

complicated degradation process in composite material (Glass/Epoxy (G10/FR4) 

composite laminate) is studied in which measuring conventional damage markers 

such as micro-cracks is very difficult.   

In chapter 8, the idea of adaptive measurement model is presented and the modified 

version of the particle filtering is formulated. The new algorithm is then applied on a 

similar case study of composite degradation. 

Chapter 9 presents a complete summary of the all chapters and provides the 

contributions of this research. Finally, it covers some of the potential future works to 

improve this study. 
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Chapter 2: Structural Health Monitoring 

 

2-1 Overview 

This chapter presents a brief history of the Structural Health Monitoring in reliability 

field and then, the most common modeling approaches for formulating the SHM are 

discussed. Generally, these modeling techniques are classified in three groups: 

physics-based models, data-driven models and hybrid models. The characteristics of 

each group are briefly explained in this chapter and some of the recent research works 

in each area are reviewed. 

It is very important to exploit any piece of available information for achieving more 

reliable and robust SHM framework. The last section of this chapter introduces 

potential sources in reliability field that one can extract useful information from.  

2-2 Introduction on Structural Health Monitoring 

Structural Health Monitoring emerged as a technology built upon Condition-based 

maintenance (CBM) rather than time-based maintenance. The SHM framework 

assesses the system’s health state by utilizing online sensors to monitor the condition 

of critical components. Therefore, SHM paves the way for more cost effective 

maintenance by continuous awareness of equipment health condition that results in 

avoiding unnecessary/unplanned maintenance (Rabiei, 2011). In general form, SHM 

can be seen as a pattern recognition paradigm. Farrar (Farrar and Worden, 2007) 

describes SHM as four-step pattern recognition process: (i) Operational evaluation to 
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realize what components need to be monitored and how, (ii) data acquisition, 

normalization and cleansing, (iii) feature extraction to identify characteristics of the 

collected data that can distinguish between damaged and undamaged structure and 

(iv) statistical model development to apply algorithms on the extracted features in 

order to estimate the health state of the structure. Each of these steps requires 

significant effort and understanding; so, most of the published research in this field 

have just covered some aspects of the whole process. 

Rytter (Rytter, 1993) proposed a four-level damage hierarchy as a broader framework 

for structural health monitoring. 

Level 1 – Detection: this level concerns with identifying whether or not there is 

damage in the system. 

Level 2 – Localization: after detecting that damage is present in the system, further 

information is required to indicate its location. 

Level 3 – Assessment: this level of the process provides estimation of the severity of 

damage providing information of the extent of damage 

Level 4 – Prediction: The valuable information gathered in previous levels would be 

useless if it is not utilized to infer the safety of the structure and predict the remaining 

useful life. 

The first three levels of Rytter’s damage hierarchy can be encapsulated in one word 

as “Diagnosis” (Gertler, 1998) and the forth level is the “Prognosis”. Therefore, it can 

be inferred from (Rytter, 1993; Gertler, 1998; Farrar and Worden, 2007; Farrar and 

Lieven, 2007) that the SHM problem might be seen as a combination of two concepts 

of “Diagnosis” and “Prognosis”.  
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Figure  2-1: SHM as a diagnosis-prognosis procedure 

In simple wording, at “Diagnosis” level of SHM, sensor technology is implemented 

to collect data on the condition of critical components in a system. This data will be 

studied to extract the important features that can relate to failure; as soon as statistical 

models can detect and localize any damage in the system, severity of the damage 

should be estimated. “Prognosis” step consists of estimation of remaining useful life 

of the system and inferring the health condition of the system in short term or long-

term future. And finally, based on performed diagnosis and prognosis, decisions 

would be made in order to plan for further maintenance actions. In this research, 

damage localization (level 2) is not specifically studied.  

With the development in advance sensor monitoring and powerful data acquisition, 

computing and analysis techniques, diagnostics and prognostics have become the 

focus of many recent researches in different fields. In general, diagnostic and 

prognostic methods can be mainly categorized into three major paradigms: physics-

based, data-driven, and hybrid (combination of aforementioned models) approaches.  

Diagnosis Prognosis 

Detection 
Localization/

isolation 

Assessment/ 

severity 

estimation 

Predicting the 

RUL 

Structural Health Monitoring 
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2-3 Physics-based models 

The physics-based or model-based approach uses a mathematical representation of 

the system based on the knowledge about the underlying physical mechanisms. A 

major advantage of the physics-based model is that the model carries certain 

behavioral resemblance to the actual system, thus changes in the model output can 

have explainable physical meaning. However, deriving mathematical models based 

on first principles might not be practical for complex systems due to the lack of full 

understanding of all the degradation modes. If understanding the physics of failure of 

the component is feasible, physics-based model are preferred over other types of 

models (Luo et al., 2003). 

Physics-based has been adopted by several researchers for diagnostics and/or 

prognostics. For instant, Zhao et al. (Zhao et al., 2013) developed a physical model 

for prognostics in gears. The physical models include the finite element model for 

gear stress analysis, the gear dynamics model for dynamic load calculation, and the 

damage propagation model described using Paris’ law. This physics-based model was 

then applied to estimate the remaining useful life of the gear. Model parameters and 

uncertainty factors were updated via Bayesian inference using the simulated condition 

monitoring data. 

In another study, Diagle and Goble (Daigle and Goebel, 2013) developed a physics-

based prognostics framework to model different damage processes occurring 

simultaneously within a component. They illustrated their model-based algorithm on 

a detailed physics-based model of a centrifugal pump. They considered both impeller 

wear and bearing wear as two significant damage mechanisms of pumps. Joint state-



12 

 

parameter estimation was then performed in order to estimate the health state of the 

component and to predict the remaining useful life. 

2-4 Data-driven models 

Data-driven models rely only on previously observed data (such as historical data, 

monitoring data, and field data) to estimate the health state of the system and predict 

the projection of system sate or to match similar patterns in the history to infer RUL. 

The advantage of data-driven models is that detailed understanding of underlying 

physical degradation process is not required. Therefore, data-driven models are good 

approaches especially for complex systems that their failure mechanism is not fully 

understood or is difficult to model with mathematical equations. However, they still 

have some limitations in industrial applications; for example the forecasting accuracy 

strictly depends on if the training data are adequate and representative of all the 

possible application conditions. Such a requirement is usually difficult to achieve in 

real-world applications. Also, sometimes understanding and fining any physical 

meaning for the results of data-driven models is challenging. 

With the recent developments in computational capacities, data-driven models got 

attention from many researches. Statistical models, reliability functions, and machine 

learning techniques are some of the methods applied in data-driven approach. Si et al. 

(Si et al., 2011) presented a review of the recent literatures on statistical data driven 

models for prognosis and estimating remaining useful life. They classified existing 

approaches into two broad types of models, that is, models that rely on directly 

observed state information of the component/system (such as regression-based and 
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Markovian-based models), and those do not (including stochastic filtering and hidden 

Markov models).  

Pattipati et al. (Pattipati et al., 2013) implemented data-driven models for fault 

detection, isolation and severity estimation of failure in  Electronic Return-less Fuel 

System (ERFS). They compared different machine learning algorithms for 

classification and regression of the available data on fuel system. Data was classified 

into 6 groups of possible faults in fuel system. And then regression analysis was 

performed to estimate the severity of the fault. They did not carry out any prognostics 

and RUL estimations. 

2-5 Hybrid models 

As presented above, both physics-based and data-driven models have their own 

strengths and weaknesses. To leverage the advantages of both models, hybrid models 

were developed that considers the combination of them. Lioa and Kottig (Liao and 

Kottig, 2014) presented a comprehensive review of hybrid prognostics approaches. 

Besides physics-based models and date-driven models, they also considered 

knowledge-based or experienced-based models which adopt expert knowledge and 

engineering experience to infer the health state of the structure. These models are less 

seen in the literature as independent approach for SHM and are more applied a long 

with physics-based and/or data-driven models. Therefore, Lioa and Kottig (Liao and 

Kottig, 2014) categorized hybrid models into five groups: 1) Experience-based model 

and data-driven model, 2) Experience-based model and physics-based model, 3) 

Data-driven model and data-driven model, 4) Data-driven model and physics-based 

model, 5) Experience-based model, data-driven model and physics-based model. 
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The following presents some of the recent publications on group 4 of the hybrid 

models, which is the most popular approach in the literature. 

The integration of data-driven and model-based models can be carried out through 

different approaches. In one of the most common approaches, data-driven models are 

used to infer a measurement model and then RUL is predicted by applying a physics-

based model. (Cheng and Pecht, 2009; Kumar et al., 2008) developed prognostics 

framework that incorporates both data-driven and physics-based models, and 

provided reaming useful life estimates for “electronics systems”. A data-driven model 

was first used to determine parameters to monitor, estimate the system state, and 

detect anomalies by comparing the system conditions with a healthy baseline. 

Physics-based failure modes, mechanisms, and effects analysis (FMMEA) has been 

used to aid the parameter identifications.  The estimation of RUL however, was 

basically done by simple regression techniques to project the trend of parameters 

variation in future time.  

Mohanty et al. (Mohanty et al., 2007) also combined data-driven kernel based 

Gaussian Process Regression (GPR) model with physics-based state space model to 

estimate crack growth in metallic alloys under fatigue. The crack growth equation 

used in the state-space model is similar to the Paris equation but is modified for crack 

closure. 

Many more studies can be found on hybrid models for crack size estimation for 

example Rabiei and Modarres (Rabiei and Modarres, 2013b) used Kalman Filter 

along with Paris law for crack size estimation in specimens made of Al 7075-T6 , and 
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Smith and Modarres (Smith and Modarres, 2016) implemented GPR for estimating 

small crack considering the probability of detection. 

Several other works have been published in hybrid modeling especially in prognosis 

and health management of batteries which have used different techniques such as 

GPR, particle filtering and Relevance Vector Machine (RVM) to estimate state-of-

charge (SOC), state-of-health (SOH) or state-of life (SOL) of the batteries (Goebel et 

al., 2008; Saha et al., 2009, 2007). 

As a summary, it is intuitive to use a hybrid approach via combining physics-based 

models and data-driven models to leverage both their strengths to improve damage 

estimation and prediction performance. Although, date-driven measurement model 

implicitly incorporates uncertainty into the physics-based model, it also avoids 

exponential error accumulation due to the Paris type formulation (Mohanty et al., 

2007). 

2-6 Different sources of information  

As George Box has said “all models are wrong, but some are useful” (Box et al., 

1987), all the empirical, physical and data-driven models suffer from various 

uncertainties and therefore they should be used with cautious. It is very important to 

reduce the inherent uncertainty by including different available information coming 

from various sources, which is usually called heterogeneous information (Bartram 

and Mahadevan, 2012), (Droguett et al., 2006). For diagnostics and prognostics in a 

structure, one might extract relevant information from the following sources:   
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2-6-1 Offline and online date 

With the enormous improvement in sensing technology, various sensors and 

inspection methods are now available to examine the system. Online data is collected 

from in-situ or built-in sensors that can monitor system in real time and measure 

particular characteristics. Sensors are of different types and each type of sensor has its 

own characteristics in terms of amount and precision of the gathered data. 

Offline data, however, comes from NDI that can be applied to mechanical systems in 

specific intervals. Although these two sources of measurement are crucial for 

diagnosis and prognosis, most of the time systems are not equipped with built-in 

sensors and also inspection intervals might be very long. As a result, there is always a 

risk of insufficient or lack of measurement data. Moreover, NDI techniques have 

specific precision for damage detection; i.e., they can only measure the damage when 

it is greater than specific threshold.  

2-6-2 Partially relevant data 

Direct measurement of the system/component of interest is not always accessible. 

However, one can take advantage of another source of information that can provide 

indirect or soft evidence. The key idea is to implement inspection data gathered from 

other similar systems; by term “similar” we mean that data might come from systems 

that are not identical to the target system, for example their operating or 

environmental conditions could be different. We call this evidence “partially relevant 

data”. This goal can be achieved through advance machine learning techniques. In 

order to incorporate partially relevant data into the SHM modeling one needs to: 

 Find related systems that have online or offline data available. 
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 Identify all the similar and dissimilar features between the system of interest 

and other comparable systems. 

 Develop data-driven similarity model using machine learning methods. 

2-6-3 Expert opinion 

Field experts can add valuable and beneficial information to any part of SHM 

framework. Expert opinion might provide relevant information about which variables 

should participate in SHM structure and how they are connected. Moreover, expert’s 

knowledge and experience can also be used to directly infer some of the parameters 

of the model or to interpret the functionality of component. Therefore, expert opinion 

is an inseparable part of the SHM framework. 

2-6-4 Other sources  

Relevant published literature, reliability handbooks and historical data can also be 

considered to estimate the value of some model parameters. 

Consequently, dealing with mixture of various types of information requires a 

combination of mathematical and probabilistic techniques. The model for prediction 

of remaining useful life needs to be capable of integrating heterogeneous evidence in 

order to reduce uncertainty in RUL predictions.   

2-7 Summary  

In summary, SHM is a growing area of research that focuses on assessing the state of 

the structural health at every moment during the life of a structure. It involves the 

integration of sensors, data acquisition, feature extraction and analysis, statistical 
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model development and RUL prediction. Structural health monitoring can be 

considered as an online process of diagnostics and prognostics on engineering 

structures with the goal of improving the reliability and integrity of the structure. 

 Different diagnostics and prognostics modeling approaches have been used in the 

literature. The most popular techniques are physics-based, data-driven and hybrid 

models. physics-based models relies on underlying physics of the degradation 

process, while the data-driven models tries to extract meaningful results based on 

observed historic or monitoring data. The hybrid models are the combination of 

physics-based and data-driven models. These models were discussed in this chapter. 

Finally in this chapter, different sources of available information for developing a 

comprehensive SHM framework were introduced.  
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Chapter 3: Dynamic Bayesian Network 

 

3-1 Overview 

Bayesian Networks (BNs) have been recognized as an essential tool in modeling 

systems with complex dependent and uncertain variables. They are being used 

effectively by researchers and practitioners more broadly in science, medicine, 

economics and engineering. A static BN is actually a marriage between probability 

theory and graph theory which represents a set of random variables and their 

conditional dependency with a graphical characterization. Random variables are 

shown as nodes and directed edges are used between nodes to represent their 

conditional probabilities. Bayesian networks are also called directed acyclic graph 

(DAG), meaning loops are not allowed in the structure of the BN; hence, edge that 

starts from node x cannot return to the same node. Dynamic Bayesian Network 

extends static BN to model systems that are dynamically changing or evolving over 

time.  

Bayesian networks and their temporal extension as dynamic Bayesian networks can 

be particularly useful for monitoring, diagnostics and prognostics of systems under 

the presence of uncertainty. Especially DBN, which incorporates time-varying 

properties of the system, is appropriate for monitoring and predicting the health state 

of the component/system through time. Moreover, BN and DBN system models can 

support a hybrid data-driven/model-based SHM approach due to their ability to 

simultaneously incorporate many types of data and serve as a system model (Bartram 
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and Mahadevan, 2012). Therefore, DBN provides a simply understandable 

representation for modeling problems in structural health monitoring.  

3-2 Bayesian Networks in Structural Health Monitoring 

Despite the advances in Bayesian Network researches, its application for probabilistic 

modeling of diagnosis and prognosis with the presence of different types of 

information remains modest. Most of the works are confined to simple models with 

discrete random variables or can only partially address dynamic aspects of real world 

applications (Iamsumang et al., 2015). This is mainly because of the fact that the 

complexity and computational cost of the BN and DBN algorithms increase 

significantly as the number of random variables in the network grows. 

In the following the review of two of the most recent and relevant studies that 

implement BN or DBN in SHM are presented and after that, other similar works are 

mentioned and explained briefly. 

Ling and Mahadevan (Ling and Mahadevan, 2012) developed a probabilistic 

approach to integrate model-based fatigue damage prognosis with structural health 

monitoring data, considering different types of uncertainties. They used Modified 

Paris’ Law equation as fracture mechanics-based fatigue model for crack growth. 

Then online (operational load monitoring data extracted from built-in sensors) and 

off-line (crack size measured by NDI technique) monitoring data were applied to 

update the model. The focus of the paper however is more on uncertainty 

quantification that is identifying sources of uncertainty such as variability, data 

uncertainty and model selection uncertainty and then assessing the contribution of 

each source of uncertainty to the overall uncertainty. They have used static Bayes 
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Network to show the connection between the sources of uncertainty and errors. 

Gaussian process model is implemented for cycle-by-cycle simulation of crack 

growth. Although this study tries to perform prognosis under uncertain evidence, the 

modified Paris’ law is only applicable if the initial size of the crack is known. They 

introduced the concept of Equivalent Initial Flaw Size (EIFS), as a function of 

material properties to bypass the complication of dealing with short cracks when short 

cracks are of most interest in SHM and PHM. 

In another recent interesting study by Bartram and Mahadevan (Bartram and 

Mahadevan, 2014), which has been one of the motivations for the present research, 

DBN is used for online diagnosis via particle filtering. Future states of the system are 

predicted using the DBN and sequential or recursive Monte Carlo sampling. Although 

the use of particle filtering for inference in DBN is quite recent, Bartram and 

Mahadevan have assumed that relationship between all the nodes in the DBN are 

known through deterministic mathematical models, while this is not the case for most 

of the real world applications. So, no probabilistic fusion between correlative 

evidences is performed in their study. Moreover, model parameters and particle 

weights are assumed to be constant during the diagnosis and prognosis. It would be 

vital to update the parameters as the characteristics of the component might change 

during degradation. 

Here are some of the other recent works in this area: 

Sheppard and Kaufman (Sheppard and Kaufman, 2005) developed a diagnostic and 

prognostics approach based on DBN that incorporates information on failure 
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probability, instrument uncertainty, and the predictions for false indication. The focus 

of their study is more on identifying and modeling the uncertainty.  

Ferreiro et al. (Ferreiro et al., 2011) used BN model in health assessment and 

prognostics for aircraft line maintenances. The focus of the article is on the global 

framework that allows the transformation of the traditional maintenance (preventive 

and corrective, time based) into a predictive maintenance based on prognostic 

techniques. They applied the model to predict the break wear based on parameters 

such as weight of the aircraft, velocity and operation of the brakes during landing. 

However, the proposed Bayes Net contains purely discrete random variables based on 

predefined probability tables. 

In another recent publication, Medjahar et al. (Medjaher et al., 2012) presented a 

data-driven prognostics method for the estimation of the RUL of critical physical 

components. The model mainly uses Mixtures of Gaussian hidden Markov models 

(MoG-HMMs), represented by dynamic Bayesian networks, to estimate the 

degradation of the bearings and predict the RUL before potential failure. Their 

proposed methodology consists of two phases of learning and exploitation. The 

prognostics performance was evaluated with a set of run-to-failure accelerated life 

tests. The method they used however is purely statistical. 

Dong and Yang (Dong and Yong, 2008) use DBNs to estimate the RUL distribution 

of drill bits in a vertical drilling machine. The RUL of drill-bits is defined as the 

number of holes that can be drilled before the failure occurs. In their constructed 

DBN, RUL is considered as the hidden state which is updated based on observation 

of thrust-force and torque.  
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Rosunally et al. (Rosunally et al., 2013) used a Bayesian network to predict the 

remaining useful life of iron structures under corrosion from physics of failure models 

(linear bi-logarithmic law for atmospheric corrosion). A data-driven method was used 

to assess the system health status, and detect anomalies based on weight, dimension, 

and electrical resistance. The RUL distributions from the physics of failure models 

and the current health status, which were derived from the distributions of the data-

driven results, were used as inputs for a Bayesian network model to obtain updated 

RUL predictions.  

3-3 Summary 

Dynamic Bayesian network has been known as a powerful and suitable framework in 

SHM diagnosis and prognosis because of some beneficial features (Bartram and 

Mahadevan, 2014; Iamsumang et al., 2015; Rabiei et al., 2016):  

 DBN facilitates understanding of complex systems by providing a graphical 

representation of all the variables and their temporal and functional 

dependencies. 

 DBN framework enables us to consider different sources of uncertainty that 

might exist in the system such as measurement uncertainty, detection error, 

modeling error, etc. (Ling and Mahadevan, 2012) 

 DBN is efficiently capable of integrating information from different sources 

such as physical model, historical data, operational data, expert opinion, etc. 

(Bartram and Mahadevan, 2012) 

 As soon as new information in terms of evidence or observation becomes 

available, DBN incorporates that piece of knowledge to update the belief state 
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of all the variables. This feature makes it favorable in damage diagnosis and 

prognosis in time. 

Therefore, DBN can be a competent approach with favorable characteristics for 

modeling a comprehensive SHM framework. 

This chapter provided the foundation for the modeling approach in the rest of the 

dissertation. The overview of BN and DBN and their application in SHM frameworks 

were presented and some state-of-the-art papers in this area were surveyed. And 

finally, the strengths of DBN in dealing with uncertain dynamic systems were 

discussed. 
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Chapter 4: Proposed Structural Health Monitoring Framework 

Based on the Evolution of Damage Precursor 

 

4-1 Overview 

Although many papers have been published with the focus on damage diagnosis and 

prognosis in different fields, most of the proposed methodologies are established 

based on estimating conventional “direct damage indicators”, which are regarded as 

“observable markers of damage” in some studies, such as the fatigue crack size; see 

for instance (Orchard and Vachtsevanos, 2009; Zio and Peloni, 2011; Ling and 

Mahadevan, 2012; Rabiei and Modarres, 2013a; Keshtgar and Modarres, 2013). This 

chapter focuses on developing a new SHM framework based on alternative “indirect 

damage indicators”, as opposed to direct damage indicators, that can be used for early 

damage detection, when conventional observable damage markers are absent, 

inaccessible or difficult to measure.  

This chapter begins with the definition of damage precursor followed by its important 

role in early detection of degradation. Then, some examples of identified damage 

precursors for fatigue loading are presented. Most importantly, the idea of damage 

precursor-based SHM framework is proposed and elaborated later in this chapter. The 

framework is formulated for two scenarios:  

1) when there is a chance to detect, measure and model the direct damage 

indicator some times before the failure of the component (for example in 

fatigue of metallic components). In this situation, SHM can be modeled first 
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based on evolution of damage precursor and then based on variation of direct 

damage indicator as soon as it emerges.   

2) when measurement of conventional direct damage indicator is very difficult or 

impractical throughout the lifetime of the component (for example in fatigue 

of composite materials). So, the SHM framework only relies on evolution of 

damage precursor. 

Later, the idea of each framework is expressed systematically through general DBN 

structure.  

In order to apply the proposed SHM framework for diagnostics and prognostics, a 

combination of different mathematical techniques is required. In the last section of 

this chapter, an integrated mathematical modeling approach is proposed that is 

desired to be flexible enough with minimum restrictions for applying in various case 

studies. 

4-2 Damage Precursor Definition 

It is crucial to detect damage at earliest possible time. The concept of damage is 

abstract to some extent, and its definition relies on the variables used as damage 

indicators or markers of damage to describe the aging or degradation process (Arson, 

2012; Imanian and Modarres, 2015). In fact, definitions of damage due to physical 

mechanisms vary for different materials, geometries and scales (Imanian and 

Modarres 2015). At the very basis, some researchers looked for a microscopically 

consistent definition in the context of the Continuum Damage Mechanics (CDM) 

(Lemaitre, 1996). For example, in CDM the damage, 𝐷, as an internal variable is 
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defined as the effective surface density of intersections of micro-cracks and cavities 

in most damaged sections:  

D =
𝑆𝐷

𝑆𝑖
 ( 4-1) 

where, 𝑆𝐷 is the damage surface area and 𝑆𝑖 is the initial (pre-damage) cross section 

area. Due to the difficulty in direct measurement of the density of defects on the 

surface or volume of materials, alternative methods were investigated. For example, 

the more common damage marker widely used to describe fatigue in metallic 

materials is the crack size; similarly, the wear volume is used for wear damage 

(Archard, 1953) and the delamination for the degradation of composite (Suh, 1977). 

These categories of common observable damage markers are called “direct damage 

indicators” in this study. 

However, by the time that the conventional NDI techniques can detect common direct 

damage indicators, most of the life of the component has already expended and it 

would be too late to save the degraded component/system (Cantrell, 2006). 

Therefore, it is desirable to be able to estimate the degradation much earlier than the 

emergence of direct damage indicators. On the other hand, in some cases such as 

fatigue in composites, although direct damage indicators might appear early in the 

degradation process, measuring them directly would be very difficult or even 

impossible. In general, in many cases, it is not efficient to rely on conventional 

damage indicators to develop models for damage estimation and prediction and 

therefore, widely used empirical or physics-based models, which are derived based on 

such direct damage indicators, would not be valid for accurate early estimation. 

Hence, it would be beneficial to search for “indirect damage indicators” represented 
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more specifically as “damage precursors”. There are no formal studies on this concept 

and different interpretations can be found in the literature. Weiss and Ghoshal (Weiss 

and Ghoshal, 2014) defined damage precursor as “the progression of structural 

material property degradation or morphology that can evolve into damage”. In this 

description, damage precursor refers to flaws or defects that happen at material level 

“before damage” that can grow and propagate through time and ultimately “evolve 

into damage”. However, the term damage in this definition might be confusing 

because, as explained earlier in this chapter, damage itself is an abstract concept and 

different interpretations can be perceived based on scale, geometry and material of 

the problem in hand. In other words, deterioration of microstructural properties  

which is called “damage precursor” by (Weiss and Ghoshal, 2014)  itself can be 

regarded as damage of the component at microscale. Therefore, a broader definition 

of damage precursor is more appropriate to convey the idea. Accordingly, we define 

Damage precursor representing the indirect damage indicator as “any detectable 

variation in material/ physical properties of the component that can be used to infer 

the evolution of the hidden/ inaccessible/ unmeasurable damage during the 

degradation”.. This comprehensive definition can be adjusted to describe different 

degradation processes. In this research, damage precursor and indirect damage 

indicator terms are used interchangeably. 

4-3 Damage precursors in fatigue: 

Some microstructural changes, which are currently known as damage precursor, are 

identified in laboratory settings for metals and composites under fatigue. They 

include increase in dislocation density, crazing (i.e., a network of fine cracks on the 
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surface of a material), inhomogeneity of strain, shear localization, variation of 

electrical resistivity and conductivity, change in chemical composition, electrical 

signal and  acoustic response (Habtour et al., 2016; Hall et al., 2013; Ingo Weber, 

2001; Irving and Thiagarajan, 1998; N. E. Bedewi, 1997; Rabiei et al., 2015a; Wang 

et al., 1998).  

For fatigue in metallic components in particular, Weiss et.al (Weiss and Ghoshal, 

2014) discussed about the possibility of observing linear behavior in progression of 

some damage precursors such as micro-strain and particle size, and electrical 

resistivity, which are all related to dislocation processes that precede crack formation. 

This linear property opens new doors to SHM procedure because while the crack size 

initiates and starts to grow exponentially, linear growth of some microstructural 

properties can be used for early stage diagnostics (prior to formation of cracks 

detectable by traditional nondestructive methods) and also for more precisely 

prognostics and estimating remaining useful life of the component.    

Therefore, it is advantageous to look for damage precursors that change nearly linear 

with time or cycle. However, even if such precursors are not recognized in 

degradation process, monitoring any other type of damage precursor is extremely 

beneficial as it provides valuable awareness about the health of the material state. As 

the trade off, more advance analysis techniques should be implemented in order to 

track and predict non-linear behaviors through time.  

In summary, the idea of considering indirect damage indicators (more specifically, 

damage precursors) in SHM frameworks (Rabiei et al., 2016, 2015a, 2015b) provides 

the opportunity to estimate the damage state of a component when direct signs of 
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damage (e.g., crack) have not developed yet or are difficult to measure (e.g., complex 

degradation processes in composites). Therefore, with the help of damage precursors, 

one can assess and ultimately predict the degradation state. 

4-4 Damage precursor-based SHM framework 

The objective is to develop a new structural health monitoring framework based on 

evolution of damage precursor utilizing different available sources of information 

considering their associated uncertainties. 

In order to identify and then implement the damage precursor in SHM framework, 

detailed understanding of material properties under loading at micro or even nano 

scale is required. Studying micro-mechanical properties of materials is not a new area 

of research, however, incorporating their contribution into the SHM process is quite 

novel. Indeed, this approach leads to Health Conscious Structures technology which 

is based on material state awareness. Material state awareness is defined as reliable 

nondestructive quantitative material/damage characterization regardless of scale 

(Lindgren E and Buynak C, 2011). The ultimate goal of Health Conscious Structures 

is to achieve a zero maintenance systems by detecting and measuring damage 

precursors at the very early stage and to integrate them into RUL estimation (Le et al., 

2014). This will require several steps as following: 

1. Perform thorough research on possible failure mechanisms of the mechanical 

structure of interest. 

2. Develop advance sensor technology that is capable of monitoring evolution of 

microstructure defects over time. 
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3. Develop advance data interpretation procedure to encode relationship of 

sensor response to microstructural changes. 

4. Investigate and identify damage precursors. 

5. Develop methods to quantify damage precursors. 

6. Incorporate damage precursor measurements into SHM framework 

7. Predict the remaining useful life of the structure  

Each of these steps can be a separate research topic. The current study mostly focuses 

on the last four steps and briefly touches on the third step. 

In the following, two damage precursor based SHM frameworks are proposed 

depending on whether the direct damage indicator can be measured at some point 

during the useful life or not. Each methodology is explained thoroughly with details 

on how and when they can be applied. 

4-5 Proposed SHM framework: two-stage approach 

As described earlier, in many cases when a component is under load, unseen 

microstructural changes occur inside the component that gradually evolve into visible 

and measureable damage markers. Therefore, there is a time period when, although 

the component seems quite healthy and does not reveal any conventional 

recognizable damage signs, degradation is actively happening inside the component. 

The idea here is to be able to monitor the health of the component even when visible 

direct damage indicator such as crack does not exist. This situation might relate to 

many cases such as degradation of the metallic components prior to crack initiation. 

Consider a metallic component in operation under load when a conventional direct 

damage indicator (such as crack length) does not exist, is very small or difficult to 
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detect. Figure  4-1illustrates the proposed two-stage SHM framework for estimating 

the health state of the component based on monitoring the evolution of a proper 

damage precursor up to the time that a direct damage indicator is recognized. Then, 

when a direct damage indicator (e.g., fatigue crack length) becomes measureable by 

conventional sensor or NDI tools, the focus of the methodology can shift to tracking 

propagation of the direct damage indicator instead and then, the widely used 

empirical models such as the Paris Law can be implemented. Otherwise, if necessary, 

health assessment can be continued based on the evolution of both damage precursor 

and direct damage indicator. In Figure  4-1, DP represents Damage Precursor, DDI is 

Direct Damage Indicator, Z shows all the available measurements, and D is the 

damage parameter defined based on the evolution of either damage precursor or direct 

damage indicator provided which one is available. Subscript k refers to the k
th

 time 

step or cycle. 

The criteria for prognostics and predicting the RUL is completely application-

dependent. In one system, as soon as the crack is initiated, the component might be 

considered as already failed. Therefore, prognostic can be seen as predicting the 

“crack initiation time”. Whereas, in another case, component can be still operational 

until the damage size reaches some specific threshold. The proposed damage 

precursor-based SHM framework, Figure  4-1, tends to be general to represent both 

scenarios. In the following, the main elements of the proposed methodology are 

discussed in detail. 
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Figure  4-1: Proposed two-stage SHM Framework for monitoring and prognostics 
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4-5-1 Stage I: Damage Precursor modeling 

The first stage is based on identifying and monitoring the evolution of the proper 

damage precursors. It requires a deep understanding of the possible failure 

mechanisms, system’s functionality, relevant components and their interactions, and 

other influential factors. As shown in Figure  4-1, stage I of the proposed framework 

starts with: 

 Identifying microstructural damage mechanisms
1
 for the material under 

consideration and in a particular application. 

 Looking for a set of precursors that collectively represent the highest 

information content about the progression of the damage.  

 Developing a damage model based on evolution of identified damage 

precursor 

When the proper damage model is established, continuous monitoring of the 

material’s health state is required for extracting and quantifying the measurements of 

damage precursor. These measurements will be used recursively to update the 

damage estimation in time based on variation of damage precursor. Moreover, if any 

other type of monitoring data (such as measurements of other properties or related 

conditions) exists, the framework will integrate them all in a fused measurement 

model and use all the available sources of information to update the damage 

estimations.  

                                                 
1
 Although it is not the focus of current research, this step can be performed in different scale of nano, 

meso or micro based on different case studies. In fact, it does not violate the framework. 
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4-5-2 Stage II: Direct damage indicator modeling 

Microstructure defects grow over time and evolve into observable damage in the 

component. When a direct damage indicator is recognized and measured, one can 

switch the modeling approach to more traditional damage evolution models that 

already exist in the literature. Modeling the component’s degradation process at this 

stage has been the focus of study for years and different approaches exist in the 

literature. For example, underlying physical mechanism of crack growth in metallic 

components under fatigue has been widely studied and several models have been 

proposed including Paris Law (Paris and Erdogan, 1963), modified Paris Law 

(Donahue et al., 1972) and Weertman’s equation for fatigue crack growth (Weertman, 

1969). Therefore, one of these predefined damage models based on evolution of the 

direct damage indicators can replace the damage precursor-based degradation model 

developed in stage I. Then continuous monitoring and measuring the progression of 

direct damage indicator is required to update the damage estimations in stage II. 

Similar to stage I, the framework considers all the other available measurements as 

well.  

The methodology then can be used to estimate the damage state in future and 

consequently to predict the RUL.  

4-5-3 Integrate other evidences: 

As seen in Figure  4-1, the idea of integrating other available evidences into the SHM 

framework is graphically represented by an independent box in developing the 

measurement model.  
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4-5-4 General DBN representation of the proposed two stage SHM framework 

As discussed in previous chapter, DBN is a proper methodology to model the 

complex time dependent relationships between uncertain variables of the proposed 

SHM framework. Figure  4-2 shows a general form of the DBN which is required for 

representing the proposed 2-stage SHM framework. Two time slice of the DBN are 

presented for each of the stages I and II. The underlying true hidden damage which is 

not directly accessible is depicted by dash line. Arrows from left to right show the 

progression of damage in time and other arrows demonstrate the causality or 

correlation relationship between variables. In stage I, damage model is developed 

based on variation of damage precursor in time considering the inherent uncertainty 

𝜎𝑘 and model parameters 𝜽𝑘. Then, all the available measurements are used to 

recursively update the damage estimations through a proper measurement model 

which depends on the measurement uncertainty 𝜀𝑘 and model parameters 𝝋𝑘. In stage 

II, however, it is assumed that a conventional direct damage indicator such as crack 

size is detected and measured at some point in time e.g. at k+l time step, therefore, 

widely used empirical damage growth models can be applied instead. And the 

measurements of that direct damage indicator along with any other available evidence 

are integrated to update the estimations of the damage state. Notice that the error 

terms (𝜎𝑘+𝑙
′  and 𝜀𝑘+𝑙

′ ) and the model parameters (𝜽𝑘+𝑙
′  and 𝝋𝑘+𝑙

′ ) are different than 

those in stage I and need to be assigned accordingly. 
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Figure  4-2: General DBN representation of the proposed two-stage SHM framework 
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Again, it is important to notice that the DBN in Figure  4-2 is the high-level overview 

of the idea of the proposed SHM with the capability of integrating different sources of 

information and it needs to be customized based on the problem at hand. That is why 

the rectangle for other evidences is not specifically linked to other variables. In  0, the 

proposed SHM framework is applied on a real world case study and more details on 

the DBN structure are presented. 

4-6 Proposed SHM framework: one-stage approach 

In addition to cases such as fatigue in metals that the concept of damage precursor 

can be used for damage estimation prior to any detectable crack initiation, another 

class of damage precursor relates to cases when the degradation process itself is very 

complicated in a way that a conventional direct damage indicator is not well-defined 

or is very difficult to measure with regular inspection techniques. It might happen in 

complex degradation process such as in composite material. In such events, damage 

markers (such as matrix of mirco-cracks) might emerge very early in the process, 

however, effective assessment of them could be burdensome in practice. Therefore, it 

is useful to search for alternative indirect damage indicators that can model the 

damage evolution more fundamentally. Here, assuming two separate stages (as 

explained in previous section) for evolution of first indirect damage indicators and 

then direct damage indicator might not be legitimate. Therefore, the idea of proposed 

damage precursor based SHM is formulated here as a new one-stage SHM 

framework. Schematic diagram of this diagnosis-prognosis framework is presented in 

Figure  4-3.  
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Figure  4-3: Proposed one-stage SHM Framework for diagnostics and prognostics based on 

damage precursor evolution 
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applied in prognostic techniques to predict the future state of the system and estimate 

the remaining useful life based on critical threshold. Note that the model for damage 

evolution based on damage precursor evolution in time can be attained by either 

physics-based or data-driven method regarding the complexity of the degradation 

process. 

4-6-1 General DBN representation of the proposed one-stage SHM framework 

The proposed one-stage SHM framework is formulated with DBN in Figure  4-4 

which is basically the first stage in the two-stage DBN (Figure  4-2). 

 

Figure  4-4: General DBN representation of the proposed one-stage SHM framework 
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based SHM framework will be presented more formally with details on damage in 

composites. 

4-7 Integrated mathematical approach to formulate the proposed 

SHM: 

As demonstrated in sections  4-5-4 and  4-6-1, DBN is the fundamental approach to 

represent the proposed SHM framework. Therefore, the first step is to construct the 

DBN of the problem considering all the variables including hidden variables, 

observed variables, model parameters, related uncertainties and any other sources of 

evidence. A combination of different physics-based models, empirical models, data-

driven models (regular regression or more flexible SVR) and expert opinion models is 

required to define the underlying relationship between variables.  

The focus of the DBN in the context of proposed SHM framework would be inferring 

the damage state and parameters of the damage model at any time step k in the light 

of all the available observations, i.e., 𝑝 𝐷𝑘 , 𝜃𝑘|𝒁𝑘  as presented in Figure  4-2 and 

Figure  4-4. The presence of different types of random variables in the DBN makes 

the inference more challenging. Therefore, particle filtering as the stochastic state-

space model is used to make the inference inside the DBN. Particle filtering as an 

independent filtering approach has captured significant research attentions for 

performing diagnostics and prognostics in recent years. However, its application for 

inference in DBN when more than one type of observation exists has not been studied 

profoundly. Moreover, when dealing with less explored areas such as damage models 

based on evolution of damage precursor, the state-space model of interest also 

depends on unknown static parameters that need to be estimated from the data. In this 
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context, standard particle filtering methods fail and it is necessary to rely on more 

sophisticated algorithms. Accordingly, the ”Augmented particle filtering” with the 

ability of estimating both the model parameters and the damage states is required to 

make inferences in the proposed DBN. 

The proposed integrated mathematical framework is presented in Figure  4-5 and each 

component with all the mathematical details will be thoroughly described in the next 

chapter. 

 

Figure  4-5: Integrated mathematical approach required for the proposed SHM framework 
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4-8  Summary: 

The concept of indirect damage indicator and more specifically damage precursor 

was presented in this chapter and some details and examples were provided. Then the 

idea of incorporating the damage precursor into SHM framework, which is the 

principle idea of this research, was explained and two different frameworks were 

presented. The first framework was the two-stage approach in which there is a chance 

that a direct damage indicator such as fatigue crack can be detected and measure at 

some point in time before the failure. As a result, the degradation state can be 

estimated by monitoring the evolution of the damage precursors in the first stage of 

the proposed SHM when direct damage indicator cannot be observed yet. And later, if 

such direct damage indicators emerged, the SHM can switch to stage two where it 

relies on growth and propagation of direct damage indicator instead. 

The second SHM framework focused on complex degradation processes (such as 

those in composite materials) when a well-known direct damage indicator is not 

defined or is not easily measureable. The framework assesses the degradation state 

based on variation of damage precursors. 

Both of these frameworks were formulated through DBN and a general DBN 

structure was presented that can be customized for the particular problem under 

consideration. 

At last, an integrated mathematical framework was proposed to demonstrate the 

underlying mathematical elements required for the proposed SHM framework to 

work. each technical component will be elaborated further in the next chapter.  
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Chapter 5: Mathematical Model Development 

 

5-1 Overview  

The proposed approach encompasses several techniques that must be integrated to 

achieve the desired goal of monitoring and prediction. In this section, the underlying 

mathematical details of each technique are provided. The section starts with short 

introduction on representation of DBN and making inference using particle filtering 

approach for state estimation. Later on, the augmented particle filtering for combined 

state and parameter estimation is introduced followed by the procedure of damage 

prognostics and prediction of time to failure with augmented particle filtering. And 

finally, a brief introduction on SVR is presented to demonstrate how it fits into our 

mathematical framework. 

5-2 Dynamic Bayesian Network Representation  

As explained earlier, DBN is the main approach underpinning the proposed 

framework considering correlation among the variables and their uncertainties. 

Dynamic Bayesian Network extends static BN to model systems that are dynamically 

changing or evolving over time. Dynamic Bayesian Network can be recognized as an 

important member of a bigger family called State-Space Models (SSM), which are 

represented as probabilistic graphical models to handle time-series data.  

Dynamic Bayesian Network is a powerful tool to model probability distribution of 

collection of random variables Zt over time. Random variable Zt can be representative 
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of input (ut), hidden (xt), and observed (yt) random variables. When the DBN is 

constructed over the sets of suitable random variables Zt and their conditional 

correlations, the joint probability distribution for all the variables can be represented 

as: 

𝑝 𝑍1 , … , 𝑍𝑛 = ∏∏𝑝 𝑍𝑡
𝑖  | 𝑃𝑎 𝑍𝑡

𝑖  

𝑛

𝑖=1

𝑇

𝑡=1

 ( 5-1) 

𝑍𝑡
𝑖
 is the i

th
 node at time t that could be any of ut, xt, or yt, and 𝑃𝑎 𝑍𝑡

𝑖  shows all the 

parents of node 𝑍𝑡
𝑖  that could be either in the same time slice or in previous one. In 

principle, we can use the Bayes rule to “infer” any probability of interest. Inference is 

effectively computing the probability of each state of a node (or subset of nodes) in a 

Bayesian network when other (or some of the) variables are known. In other words, 

when random variables and their relationship are modeled in DBN structure, one can 

employ the model to deduce the belief distribution over random variables of interest. 

Inference in DBN is a challenging task and the exact inference only exists for 

particular cases with simplifying assumptions. Murphy (Murphy, 2002) presents a 

comprehensive review of exact, approximate and stochastic inference methods for 

DBN. Kalman Filter and its extensions (Extended Kalman Filter, Unscented Kalman 

Filter) are well-known inference methods that are widely used. However, they are 

only applicable when random variables are Gaussian and the system is linear (the 

linearity assumption is relaxed for EKF and UKF). Unfortunately, this is not the case 

in most of the real world applications. In this context, one can resort to particle 

filtering: a stochastic algorithm capable of inferring the unknown belief state when 

the system is non-linear and non-Gaussian.  
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5-3 Particle Filtering: 

Particle filtering is a stochastic computational technique, also referred to as 

Sequential Monte Carlo, which uses Bayesian recursive estimation to address the 

filtering problem especially when dealing with nonlinear and/or non-Gaussian 

processes. In the context of this research, suppose 𝑥𝑘 refers to the underlying 

progressive damage at any given time step k, which is not observable directly. And, 

𝑦1:𝑘 represent all the available noisy measurements or evidences that can be observed 

and tracked through time (see Figure  5-1).  

 

Figure  5-1: representation of Bayesian recursive estimation 
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Equations ( 5-2) and ( 5-3) are not deterministic and the uncertainty is introduced by 

noise terms 𝜔𝑘 and 𝑣𝑘. The goal is to estimate the unobserved state of the system 𝑥𝑘 

based on all the observations available up to time k; that is inferring 𝑝 𝑥𝑘|𝑦1:𝑘 . It can 

be obtained recursively in two steps called prediction and update. 

Prediction step: in this step, one tries to predict 𝑝 𝑥𝑘|𝑦1:𝑘−1 , supposing that prior 

probability 𝑝 𝑥𝑘−1|𝑦1:𝑘−1  at time k-1 is available.  

Update step: as a new measurement 𝑦𝑘becomes available at time k, predicted 

probability will be updated via Bayes’ rule: 

𝑝 𝑥𝑘|𝑦1:𝑘 = 𝑝 𝑥𝑘|𝑦1:𝑘−1, 𝑦𝑘  =
𝑝 𝑦𝑘|𝑥𝑘 𝑝 𝑥𝑘|𝑦1:𝑘−1 

𝑝 𝑦𝑘|𝑦1:𝑘−1 
 ( 5-4) 

Where the prior and the normalizing factor are: 

𝑝 𝑥𝑘|𝑦1:𝑘−1 = ∫𝑝 𝑥𝑘|𝑥𝑘−1 𝑝 𝑥𝑘−1|𝑦1:𝑘−1 𝑑𝑥𝑘−1 ( 5-5) 

𝑝 𝑦𝑘|𝑦1:𝑘−1 = ∫𝑝 𝑦𝑘|𝑥𝑘 𝑝 𝑥𝑘|𝑦1:𝑘−1 𝑑𝑥𝑘 ( 5-6) 

Computing the posterior 𝑝 𝑥𝑘|𝑦1:𝑘  through such integrals is very difficult and does 

not lead to analytical solution except in special cases (for example when all the 

distributions are Gaussian). The key idea of particle filtering is to represent the 

required posterior density function 𝑝 𝑥𝑘|𝑦1:𝑘  by a set of random samples (called 

particles {𝑥𝑖}) with associated weights {𝜔𝑖} : 

𝑝 𝑥𝑘|𝑦1:𝑘  ≈  ∑𝑤𝑘
𝑖𝛿 𝑥𝑘 − 𝑥𝑘

𝑖   

𝑁

𝑖=1

 ( 5-7) 

𝛿 is Dirac’s delta function and 𝜔𝑘
𝑖  is the normalized weight of the i

th
 particle at time 

k. Practically, in particle filtering approach, the prediction step starts by recursively 

propagating the particles forward in time using the state process model Eq. ( 5-2). And 
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then, each particle will be weighted based on the likelihood of observed measurement 

𝑦𝑘 using the measurement model Eq. ( 5-3); that is the update step.  

Weights are chosen using a Monte Carlo based method called the principle of 

sequential importance sampling (SIS) (Arulampalam et al., 2002; Doucet et al., 

2001). SIS is based on this assumption that target posterior density p(x) is unknown 

or difficult to draw samples from; therefore, particles are sampled from importance 

density or proposal density q(x) instead. The particle weights are then introduced as 

the ratio of  
𝑝 𝑥 

𝑞 𝑥 
 which is called the importance weight: 

𝑤𝑘
𝑖  ∝  

𝑝 𝑥𝑘
𝑖 |𝑦1:𝑘 

𝑞 𝑥𝑘
𝑖 |𝑦1:𝑘 

=
𝑇𝑎𝑟𝑔𝑒𝑡 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

𝑃𝑟𝑜𝑝𝑜𝑠𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
 ( 5-8) 

Importance weight is calculated for each particle and shows how important that 

particular particle is in building the posterior distribution. Both target and proposal 

distributions can be expanded by applying the Bayesian and chain rule as following: 

𝑤𝑘
𝑖  ∝   

𝑝 𝑥𝑘
𝑖 |𝑦

1:𝑘
 

𝑞 𝑥𝑘
𝑖 |𝑦

1:𝑘
 
=

𝑝 𝑦𝑘|𝑥𝑘
𝑖  𝑝 𝑥𝑘

𝑖 |𝑥𝑘−1
𝑖  

𝑞 𝑥𝑘
𝑖 | 𝑥𝑘−1

𝑖 , 𝑦1:𝑘 
 .
 𝑝 𝑥𝑘−1

𝑖 |𝑦1:𝑘−1 

𝑞 𝑥𝑘−1
𝑖 | 𝑦1:𝑘 

 

𝑤𝑘
𝑖  ∝  

𝑝 𝑦𝑘|𝑥𝑘
𝑖  𝑝 𝑥𝑘

𝑖 |𝑥𝑘−1
𝑖  

𝑞 𝑥𝑘
𝑖 | 𝑥𝑘−1

𝑖 , 𝑦1:𝑘 
 . 𝜔𝑘−1

𝑖  

( 5-9) 

Now, the challenge is how to choose the proposal density or importance density 

function 𝑞 𝑥𝑘|𝑥𝑘−1
𝑖 , 𝑦1:𝑘 . Some approaches are proposed in the literature. Ideally, we 

would like the importance function to be the posterior distribution itself, 

𝑝 𝑥𝑘|𝑥𝑘−1
𝑖 , 𝑦1:𝑘 . This is called the “optimal importance function” proposed by 

(Akashi and Kumamoto, 1977) based on the strategy of minimizing the variance of 

the importance weights. However, there is no analytical closed-form solution in 

general cases when using optimal importance function. Therefore, some suboptimal 
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methods were proposed to approximate the importance function for instance by using 

MCMC or local linearization techniques. 

The most common and convenient choice implemented in the literature is to use the 

prior distribution of 𝑝 𝑥𝑘|𝑥𝑘−1
 𝑖   as the importance function (Handschin, 1970). That 

is sampling the particles from transition equation (or process model): 

𝑞 𝑥𝑘
𝑖 | 𝑥𝑘−1

𝑖 , 𝑦1:𝑘 =  𝑝 𝑥𝑘
𝑖 |𝑥𝑘−1

𝑖   ( 5-10) 

Substituting ( 5-10) back into ( 5-9), the particle weights at each time step k would be 

calculated as: 

𝑤𝑘
𝑖  ∝  𝑤𝑘−1

𝑖 . 𝑝 𝑦𝑘|𝑥𝑘
𝑖   ( 5-11) 

Basically, given that the state of the particle is at 𝑥𝑘
𝑖 , its weight at time step k is the 

multiplication of its previous weight at time step k-1 and the likelihood of observing 

𝑦𝑘. When the weights are calculated, each particle will carry two pieces of information 

{𝑥𝑘
𝑖 , 𝑤𝑘

𝑖  }. Roughly speaking, each particle is a representative of one possible hidden 

state of the system at time step k along with its probability of happening. Interested 

readers can refer to (Arulampalam et al., 2002) and (Doucet et al., 2001) for more 

detailed information about the importance density function and the procedure of 

weighing the particles. Figure  5-2 shows the weighing procedure schematically.  
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Figure  5-2: Weighing procedure 

The original SIS algorithm has a common problem called “Degeneracy Problem”, 

where the distribution of the importance weights becomes more and more skewed and 

its variance increases as we progress in time. So, after a few time steps, the weights of 

all but one particle will drop dramatically to zero. One of the intuitive proposed 

techniques to resolve this issue is “Resampling” based on the calculated weights 

(Gordon et al., 1993). The key idea of resampling is to eliminate particles that have 

small weights and to concentrate on particles with large weights. Therefore, at each 

iteration, the new sets of particles will be drawn from the proposed distribution based 

on calculated weights. This approach makes sure that more samples would be 

selected from higher probability areas.  

The final expected estimation of the state at each time step will be then calculated as 

the weighted average of all the particles: 
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𝑥̅𝑘 = ∑𝑤𝑘
𝑖 . 𝑥𝑘

𝑖

𝑁

𝑖=1

 ( 5-12) 

A lot of attention has been paid recently toward particle filtering approach because of 

its flexibility in dealing with nonlinear and non-Gaussian problems. Other versions of 

the standard particle filtering have also been proposed in the literature to improve the 

performance of the algorithm usually at the cost of more computation. Among them 

one can refer to Auxiliary Particle Filter (Pitt and Shephard, 1999), Regularized 

Particle Filter (Musso et al., 2001) and Unscented Particle Filter (Doucet et al., 2000).  

Researchers have used the standard PF algorithm and its variants for diagnostics and 

prognostics in many different fields such as life prediction of batteries and fuel cells 

(Dalal et al., 2011; Goebel et al., 2008; He et al., 2011; Jouin et al., 2014; Miao et al., 

2013), degradation assessment and prediction in gears and bearings (Chen et al., 

2011; Zhou et al., 2011; Yoon and He, 2014), Health monitoring and prognostics of 

gas turbines (Sun et al., 2012a), machine tools (Wang et al., 2015), and pumps 

(Daigle and Goebel, 2013; Wang and Tse, 2015), and also, damage estimation and 

prediction of composite materials (Chiachío et al., 2015a; Corbetta et al., 2016; 

Rabiei et al., 2015b). More application examples can be found in the most recent 

review paper on PF algorithm by (Jouin et al., 2016). 

5-4 Combined estimation of model parameters and states in Particle 

Filtering 

The original particle filtering is established based on the assumption that state process 

model is fully defined with fix known parameters in advance. However, in many 

cases especially when dealing with uncertain dynamic systems, even if the form of 
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state model is known, all or some of the parameters might be unknown. This aroused 

an interest in combining parameters and states together and estimating both of them 

simultaneously through augmented particle filtering (Carvalho et al., 2010; Kitagawa, 

1998; Liu and West, 2001; Storvik, 2002). In this regard, it is required to learn the 

state process model by online tuning its parameters as well as estimating the damage 

states.  

The extension of standard particle filtering to augmented-particle filtering is not 

trivial. One of the conventional proposed strategies (Liu and West, 2001) is to treat 

the model parameters the same way as states, which results in estimating the 

augmented state space problem 𝑃 𝑥𝑘 , 𝜃𝑘|𝑦1:𝑘 . Therefore, the original state process 

model Eq. ( 5-2) needs to be modified to consider parameter evolution as well: 

𝜃𝑘 = 𝑔 𝜃𝑘−1, 𝛾𝑘−1  → 𝑝 𝜃𝑘|𝜃𝑘−1  

𝑥𝑘 = 𝑓 𝑥𝑘−1, 𝜃𝑘 , 𝜔𝑘  → 𝑝 𝑥𝑘|𝑥𝑘−1, 𝜃𝑘  ( 5-13) 

where 𝑔 and 𝛾 are the transition function and random noise for model parameters 𝜃, 

respectively. Furthermore, when measurements are available, both state and 

parameters should be updated with respect to newly arrived observation. Therefore, 

based on Bayes’ rule, the final joint posterior distribution of interest (presented in Eq. 

( 5-4)) can be rewritten as (Liu and West, 2001): 

𝑃 𝑥𝑘, 𝜃𝑘|𝑦1:𝑘 ∝  𝑃 𝑦𝑘|𝑥𝑘 , 𝜃𝑘  𝑃 𝑥𝑘|𝜃𝑘 , 𝑦1:𝑘−1  𝑃 𝜃𝑘|𝑦1:𝑘−1   ( 5-14) 

The last term in Eq. ( 5-14) is the main modification in the posterior of the original 

particle filtering and it should be estimated accordingly. In the following, the 

procedure of computing the distribution 𝑃 𝜃𝑘|𝑦1:𝑘−1  is briefly explained. 
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Going back to the augmented state process model, it is suggested in (Kitagawa, 1998; 

Liu and West, 2001) that a Gaussian random walk with mean 0 and variance 𝛾 can 

satisfy the parameter transition model as: 

𝜃𝑘 = 𝑔 𝜃𝑘−1, 𝛾𝑘−1  =  𝜃𝑘−1 +  𝒩 0, 𝛾𝑘−1   ( 5-15) 

Note that the parameters are not time variant, i.e., they are not supposed to 

dynamically evolve in time. Therefore, adding random noise results in more diffused 

posterior relative to the theoretical posterior of the actual fixed parameters. This issue 

was recognized very early and an approach based on Kernel Smoothing was proposed 

by (Liu and West, 2001) to control the variance. The idea of kernel smoothing is to 

reduce the variability in particles by shrinking them (with shrinkage parameter h) 

towards the current estimated mean 𝜃̅, and then to add controlled reduced noise (ℎ2𝛾) 

for the next step in the estimation process. In this sense, the smooth kernel probability 

density is proposed to estimate the last term in Eq. ( 5-14) as following: 

𝑃 𝜃𝑘|𝑦1:𝑘−1 ≈  ∑𝜔𝑘−1
𝑖

𝑁

𝑖=1

𝒩 𝜃𝑘|𝑚𝑘−1
𝑖 , ℎ2𝛾𝑘−1  ( 5-16) 

where m is the kernel location calculated for each particle (i) with the following 

shrinkage rule: 

𝑚𝑘−1
𝑖 = (√1 − ℎ2) 𝜃𝑘−1

𝑖 + (1 − √1 − ℎ2) 𝜃̅𝑘−1 ( 5-17) 

The value of h[0,1] is suggested in (Chen et al., 2005; Liu and West, 2001) to be 

less than 0.2 for slowly varying particles and more than 0.8 for highly stochastic 

process. Some works also have been published recently on optimizing the value of h 

using historical data or online observations (Hu et al., 2015a, 2015b; Tulsyan et al., 

2013). 
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A pseudocode for the augmented particle filtering technique is presented in Table  5-1. 

Table  5-1: Augmented Particle filtering algorithm 

(1) Initiation step: 

 Sample N particles from initial distributions of states and 

parameters: 

𝑥0
𝑖  ~ 𝑝 𝑥0                      𝑖 = 1, 2, … ,𝑁 

𝜃0
𝑖  ~ 𝑝 𝜃0                      𝑖 = 1, 2, … ,𝑁 

 Assign initial equal weights to all the particles 

𝑤0
𝑖  ~ 

1

𝑁
                         𝑖 = 1, 2, … ,𝑁 

(2) Recursive steps: 

Prediction: 

 Estimate 𝑚𝑘−1
𝑖  for each parameter using shrinkage rule 

Eq.(‎5-17) 

 Draw new samples for parameter vector from: 

𝜃𝑘
𝑖  ~ 𝒩 . |𝑚𝑘−1

𝑖 , ℎ2𝛾𝑘−1  

 Propagate each particle one step forward using state process 

model with new sampled parameter: 

𝑥𝑘
𝑖  ~ 𝑝 . |𝑥𝑘−1

𝑖 , 𝜃𝑘
𝑖   

Update: 

 Calculate the weights for each particle as new measurement 

𝑦𝑘 gets available: 

𝑤𝑘
𝑖 = 𝑤𝑘−1

𝑖  . 𝑃 𝑦𝑘|𝑥𝑘
𝑖 , 𝜃𝑘

𝑖   

 Normalize the weights: 
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𝑤𝑘
𝑖 = 

𝑤𝑘
𝑖

∑ 𝑤𝑘
𝑖𝑁

𝑖=1

 

Estimate: 

 Estimate the expected state:  

𝑥̅𝑘 = ∑𝑤𝑘
𝑖 . 𝑥𝑘

𝑖

𝑁

𝑖=1

 

Resample: 

 Resample (with replacement) new set of particles for states 

and process model parameters {𝑥𝑘
𝑖 , 𝜃𝑘

𝑖 }
𝑖=1

𝑁
based on 

calculated weights 𝑤𝑘
𝑖  

 

One way to perform the resampling step in coding can be as following: 

Having separate vectors of N particles for representing the states [𝑥𝑘
1, 𝑥𝑘

2, … , 𝑥𝑘
𝑁] and 

the model parameters [𝜃𝑘
1, 𝜃𝑘

2, … , 𝜃𝑘
𝑁] at each time step k, we can randomly choose N 

integers “with replacement” from 1, 2,… , N based on the distribution of the 

calculated weights. These N numbers would be used as indices to reconstruct 

(resample) the vector of states and parameters in a way that particles with higher 

probability of occurrence would appear more and particles with very low likelihood 

would be disregarded.   

Consequently, selecting the augmented-particle filtering algorithm as an inference 

technique along with kernel smoothing for handling unknown parameters will make 

DBN more flexible and powerful to model complex nonlinear dynamic systems. In 

our case, it would be specifically useful for studying less explored degradation 

processes when the damage model itself is not well-defined. 
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5-5 Prognostics with Augmented Particle Filtering 

The ultimate goal of the SHM framework is to predict the future health state of the 

system and estimate the RUL. Prognostic with Bayesian recursive approaches such as 

augmented-particle filtering deals with the challenge of making long-term predictions 

without having any further observations to update the estimated states. Some methods 

are proposed in (Liu et al., 2012; Orchard and Vachtsevanos, 2009; Zio and Peloni, 

2011) to handle this issue. In (Orchard, 2007) three methods are described in details. 

The first approach is based on updating the initial weights of the particles by 

integrating over discretized domain of particle population, while the second approach 

aims at reducing the computational cost by resampling the predicted state pdf rather 

than updating the weights. The third and simplest method is to keep the weights of the 

particles constant when predicting long-term state. It is shown in (Orchard and 

Vachtsevanos, 2009) that keeping the particles weights invariant during the long-term 

prediction can provide satisfactory results. In this approach, the weights of the 

particles are updated based on the last available observations in the current time 

instance and then these weights are stored and kept constant during the long-term 

predictions. We implemented this approach in the current research. 

Each weighted particle can be considered as a hypothesis of the hidden state (i.e., 

state of damage in this study), which we desire to estimate and also predict in future. 

Having a predefined threshold for damage, tf
(i)

 corresponds to the time when particle 

(i) crosses this threshold and represents a possible failure time for the component. 

When the failure time of all the N particles are recorded {tf 
(i)

}i=1:N, the distribution of 
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the component’s time to failure can be obtained (Rabiei et al., 2015a) and therefore, 

Mean-Time-To-Failure (MTTF) of the component would be determined by:  

𝑀𝑇𝑇𝐹 =  ∑𝑡𝑓
 𝑖 

. 𝑤 𝑖 

𝑁

𝑖=1

 ( 5-18) 

Note that long-term prediction heavily relies on state process model. Since in 

augmented-particle filtering algorithm the parameters of the state model are not 

known in advance and are supposed to be learned during the process, the accuracy of 

prognostics depends on the state of convergence or maturity of the parameters at the 

time of prediction. Predictions cannot be reliable when variation in model parameters 

is still large.  

5-6 Support Vector Regression 

When a complex DBN is adopted to represent an unknown and complicated 

degradation process, the relationship between all the involved variables needs to be 

defined. Although a field expert would be necessary to learn the structure of the DBN 

and identify the possible links between the nodes at the first place, physical or 

empirical or data-driven models are then required to quantify such links. However, 

there might not be a proper predefined model to interpret the relationship between 

some of the variables. It is worth noting that the relationship between the nodes in 

DBN can be based on either causality or statistical correlation. In cases where 

underlying physical causality is missing or unexplored, more flexible technique such 

as regression with Support Vector Machine (SVM) can play an important role to 

define the possible correlation.  
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Support Vector Regression (SVR) (Smola and Schölkopf, 2004) is an extension of a 

supervised machine learning technique called SVM which was originally developed 

by (Cortes and Vapnik, 1995) for binary classification. Support vector regression 

implements the nonparametric kernel-based method to model the relationship 

between input (regressors) and output (response) variables. The regression algorithm 

is to be trained based on available data (training data) and then will be utilized to 

estimate the system’s output when new input variables get available. Examples of 

successful application of SVM in different fields such as risk and reliability can be 

found in (Droguett et al., 2014; Lins et al., 2015; Moura et al., 2011). 

Support vector regression has flexible features that make it a very good candidate to 

perform regression to describe the relationship between some variables: 

 It is especially powerful to model generally unknown nonparametric and 

nonlinear mapping between input and output variables.   

 It is particularly useful when the underlying functional relationship between 

random variables is not fully known.  

 It does not require any hypothesis on the distribution of the variables.  

 It does not require any assumption on the distribution of noise. 

 It guarantees to find the global optimum. 

Brief mathematical background of regression with Support Vector Machine is 

presented in the following. 

Suppose we are given “l” pairs of observed data { 𝒙1, 𝑦1 ,  𝒙2, 𝑦2 ,… ,  𝒙𝑙, 𝑦𝑙 }, 

which can be considered as training set for the supervised SVR. In general, each 𝒙𝑖 

denotes the space of the input variables that can be p-dimensional real vector 
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(𝒙𝑖 ⊂ ℝ𝑝  and 𝑦𝑖 belongs to the corresponding output variable. Considering the 

response variable Y generated by the model: 

𝑌 = 𝜇𝑦 𝑥 + 𝜖 𝑥  ( 5-19) 

where 𝜇𝑦 𝑥  is the unknown expected value of Y and 𝜖 𝑥  is a random error with 

zero mean and non-zero variance 𝜎𝜖
2. SVR tries to estimate 𝜇𝑦 𝑥  by utilizing training 

set. More formally it can be written in form of the regression: 

𝜇𝑦 𝑥 ≡ 𝑓 𝑥 =  𝑾𝑇𝝓 𝑥 + 𝑏 ( 5-20) 

𝝓 𝑥  is an implicit mapping of the input data into a higher-dimensional feature space 

that will be explained in more details later in this section. The weight vector 𝑾 and 

linear coefficient b should be adjusted regarding the training data that leads to solving 

a quadratic and convex optimizing problem (Droguett et al., 2014; Kecman, 2005; 

Lins et al., 2012): 

Minimize      
1

2
 〈𝑾.𝑾〉 + 𝐶. ∑  𝜉𝑖 + 𝜉𝑖

∗ 𝑙
𝑖=1  ( 5-21) 

Subject to     {

𝑦𝑖 − 〈𝑾.𝝓 𝑥𝑖 〉 − 𝑏 ≤  ε + 𝜉𝑖              ∀𝑖 ∈ {1,… , 𝑙}

〈𝑾.𝝓 𝑥𝑖 〉 + 𝑏 − 𝑦𝑖  ≤  ε + 𝜉𝑖
∗               ∀𝑖 ∈ {1,… , 𝑙}

 ( 5-22) 

C is the control parameter (regularization factor) that adjusts between two parts of the 

optimization problem. The first part in Eq. ( 5-21) relates to SVR prediction of unseen 

data, while the second part tries to minimize error on training data. Parameters 𝜉𝑖 and 

𝜉𝑖
∗ are called slack variables correspond to measurements “above” and “below” an ε–

tube respectively. The ε–tube, defined by Vapnik’s ε-insensitivity loss function 

(Vapnik, 2000), is a tube with the width of ε around the output values (Figure  5-3).  
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Figure  5-3: The parameters used in (1-dimensional) support vector regression. (Kecman, 

2005) 

If the predicted value is within the tube the loss is zero. For all other predicted points 

outside the tube, the loss equals the magnitude of the difference between the predicted 

value and the radius ε of the tube, i.e. measured 𝜉𝑖 and 𝜉𝑖
∗. Therefore, only the points 

outside this tube contribute to the regression function and all points inside the tube are 

neglected.  

By applying Lagrange multiplier, the dual formulation of this optimization problem 

can be written as Eq. ( 5-23), in which parameters 𝛼𝑖,𝑗 and 𝛼𝑖,𝑗
∗  are 𝑙-dimensional 

Lagrange multiplier correspond to measurements above and below the ε–tube.  

𝑀𝑎𝑥𝛼,𝛼∗
{−

1

2
 ∑∑  𝛼𝑖 − 𝛼𝑖

∗  𝛼𝑗 − 𝛼𝑗
∗  𝝓 𝒙𝑖 

𝑇𝝓 𝒙𝑗 

𝑙

𝑗=1

𝑙

𝑖=1

− ∑[𝜀 𝛼𝑖 + 𝛼𝑖
∗ + 𝑦𝑖 𝛼𝑖 − 𝛼𝑖

∗ ]

𝑙

𝑖=1

}   

( 5-23) 

Subjects to conditions: 
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∑ 𝛼𝑖 − 𝛼𝑖
∗ = 0,                     0 ≤ 𝛼𝑖, 𝛼𝑖

∗ ≤ 𝐶

𝑙

𝑖=1

,   ∀𝑖 ( 5-24) 

Therefore, the SVR equation for nonlinear predictions for the optimal value “o” 

becomes:  

𝑓𝑜 𝑥 =  〈𝑾𝒐. 𝝓 𝒙 〉 + 𝑏 =  ∑ 𝛼𝑖𝑜 − 𝛼𝑖𝑜
∗   𝝓 𝒙𝑖 

𝑇𝝓 𝒙 + 𝑏𝑜

𝑙

𝑖=1

 ( 5-25) 

Regression with SVR is different than other regression techniques because of the term 

𝝓 𝑥 , which is an implicit mapping of the input data into a higher-dimensional 

feature space. This mapping facilitates dealing with possible nonlinear correlation 

between the input and output variables. However, defining a proper function and 

calculating the dot product is usually tedious in practice. Therefore, SVR uses a 

kernel function in form of  𝐾 𝑥, 𝑥′ = 𝝓 𝑥 𝑻𝝓 𝑥′  which can compute the dot 

product implicitly in the original space. The learning then takes place in the feature 

space, and the data points only appear inside dot products with other points. This is 

often referred to as the “kernel trick” (Schölkopf et al., 2000). Different kernel 

functions are proposed in the literature such as the linear, polynomial, and Gaussian 

radial basis function (RBF). The Gaussian radial basis function, 𝐾 𝑥, 𝑥′ =

 exp  −𝛾‖𝑥 − 𝑥′‖2  is the most popular kernel function (Droguett et al., 2014; Hsu et 

al., 2003). 

In this paper, SVR with RBF kernel function is implemented inside DBN to define 

the unknown nonparametric and nonlinear correlation relationships between some of 

the hidden and/or observed variables. The trained SVR then will be introduced into 
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augmented- particle filtering algorithm to infer the model parameters and damage 

states. 

There are some concerns related to the SVM and SVR such as being deterministic or 

using a lot of kernels to perform the regression/classification. Hence, recently in the 

literature more sophisticated techniques such as Relevance Vector Machine (RVM) 

(Tipping, 2000) and Bootstrapped SVR (Lins et al., 2015) have been introduced to 

remedy these concerns by proving uncertainty quantification via different approaches. 

However, for the problem at hand, at this stage of the framework development, SVR 

presents promising results based on our experimental data. Therefore, SVR was 

implemented in this research to capture the relationship between some of the key 

variables in the DBN. 

5-7 Summary 

Different mathematical elements which are required to formulate the proposed SHM 

have been presented in this chapter.  

First, fundamentals of DBN structure were presented and then the details of standard 

particle filtering as the main underlying inference techniques were discussed. Later, it 

was described how the standard particle filtering can be extended to augmented 

particle filtering to update both states and model parameters at the same time. The 

augmented particle filtering algorithm along with kernel smoothing technique 

supplies a flexible stochastic inference technique to infer the hidden states and 

unknown parameters in the DBN structure with the presence of multiple uncertain 

evidences. The prognostics then can take place by projecting the particles in time 

based on the trained DBN when no more observation exists.  
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The last but not the least, the regression with SVR was explained which can be 

particularly handy in modeling the unknown relationship between some variables in 

the DBN. 

The proposed integrated mathematical framework presented in previous chapter 

(section  4-7) provides the foundation to fuse all these elements in a DBN structure. In 

the following two chapters, the proposed integrated mathematical framework will be 

applied for investigating the degradation process and predicting the RUL in two 

different real world case studies: degradation of metallic components and degradation 

of composite components. 
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Chapter 6: Damage estimation and prediction of RUL in 

Metallic component prior to crack initiation (Case Study I) 

 

6-1 Overview 

In this chapter, degradation of the metallic components (7075-T6 Aluminum alloy) 

under fatigue prior to crack initiation is studied from the new perspective of damage 

precursor. The experimental setup and procedures used for fatigue testing will be 

explained. The proposed SHM and prognostics framework presented in  Chapter 4: 

section  4-5 is employed here to develop a damage model based on evolution of 

damage precursor when the crack is not detected yet.  This damage model is updated 

with the existence of two different uncertain sensor data. The proposed SHM 

framework integrates all these information via DBN structure and presents accurate 

damage estimation through time. The framework is then used to predict the crack 

initiation time. 

6-2 Introduction 

Fatigue is one of the most common and well-studied failure mechanisms in 

mechanical and structural systems. Although many published papers in the reliability 

field have effectively studied diagnosis and prognosis in systems under fatigue, there 

is a significant gap for considering damage precursors for fatigue related failures in 

the SHM framework. Widely used empirical models (e.g., Paris Law) are applicable 

when an initial crack is already present, while damage may start much earlier than 
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onset of crack formation. Life estimation based on crack length measurements using 

empirical models and very early service data would result in immature and inaccurate 

estimation, while on the other hand, it would be too late if we wait until easily 

measureable crack is detected. 

6-3 Experimental setup: 

An accelerated life testing is designed and run in the Laboratory of the Center for 

Risk and Reliability at the University of Maryland, College Park. In this set of 

experiments, dog-bone 7075-T6 Aluminum samples undergo cyclic load with 

frequency of 5Hz and stress ratio of R=0.1. Samples contain a small notch in order to 

localize the stress intensity and accelerate the degradation process. Extension of the 

specimen is measured by extensometer which is placed around the notch area. 

Moreover, two Acoustic Emission sensors are also employed on the sample in order 

to capture any acoustic wave emitted during the fatigue test. A high resolution 

microscopic camera is adjusted and zoomed on the notch area that captures photos 

every 5 seconds. When setup is complete, the specimen experiences fatigue under 

cyclic load with maximum load of 11 KN. Experimental setup and schematic of the 

test specimen are shown in Figure  6-1.  
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Figure  6-1: Experimental set up (top), schematic Dog-bone specimen used for the fatigue test 

(bottom) 

6-4 Define the damage precursor:  

Since the focus of the experiment is on crack initiation, the test will be stopped as 

soon as first signs of crack can be recognized by microscopic camera. Such 

experiment relates to the time period before crack initiation in the component, so 

conventional damage models (e.g., Paris Law) are not valid and cannot be applied to 

Extensometer 
Acoustic Emission Sensors 

Optical Microscope 
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estimate the damage level. Therefore, without loss of generality and because of the 

nature of the experiment, only stage I of the proposed two-stage SHM framework 

(Figure  4-1) can be employed in this case study. If the experiment were to continue 

after crack initiation into crack growth until some predefined threshold is reached, 

then stage II of the framework would be applicable.  

Having experimental results, the challenge is to define damage precursors which can 

explain the microstructural degradation happening in the component prior to crack 

initiation. Referring to the proposed SHM framework in Figure  4-1, the procedure of 

state estimation starts in stage I by identifying the microstructural damage 

mechanisms and proper damage precursor. When a component undergoes fatigue 

loading, microstructural changes such as micro deformation, slipping and micro-

cracks at grain’s boundaries happen at material scale which can be treated as 

underlying damage mechanisms. Such phenomena, although unobservable, make the 

component weak and reduce its resistance to deformation. Modulus of elasticity, as 

the measure of substance’s resistance to deformation, has been reported in literature 

(Lemaitre, 1996, 1985) as one of the microstructural properties that changes during 

degradation. Therefore, variation of modulus of elasticity can be considered as a 

damage precursor that would provide insight about the undergoing damage within the 

component in advance to any visible crack on the surface of the component. 

Lemaitre (Lemaitre, 1985) proposed that it is possible to estimate damage through the 

variations of the modulus of elasticity. If E0 is the modulus of elasticity of undamaged 

material, then damage parameter D can be expressed by: 
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𝐷 = 1 −
𝐸

𝐸0
 ( 6-1) 

where E is the modulus of elasticity for the degraded material. As soon as damage 

occurs and propagates in the material, modulus of elasticity decreases. This 

relationship is simply presented by Eq. ( 6-1). In this model, damage would reach 1 

only if E reduces to 0. This situation might not be obtained in reality, not even at 

breakage point. A modified version of the Lemaitre damage parameter (Lemaitre, 

1996, 1985) was introduced by Mao and Mahadevan (Mao and Mahadevan, 2002):  

𝐷 =
𝐸0 − 𝐸

𝐸0 − 𝐸𝑓
 ( 6-2) 

where, 𝐸𝑓 is the Young’s modulus when the failure occurs. Eq. ( 6-2) presents a 

damage parameter based on variation of modulus of elasticity, which is scaled 

between 0 and 1, so that damage would be 1 when E reaches a predefined threshold 

on modulus of elasticity Ef. Therefore, by measuring the modulus of elasticity as a 

damage precursor during degradation process, one can use Eq. ( 6-2) to estimate a 

normalized damage parameter D with respect to 𝐸0 and 𝐸𝑓.  

Having defined a suitable damage precursor, the next step is to identify its variation 

in order to develop a damage evolution model (refer to Figure  4-1). Modulus of 

elasticity is basically the slope of stress-strain curve in elastic region. Since we are 

dealing with cyclic load, stress-strain curves will form hysteresis loop throughout the 

loading process. Variation of stress-strain can be monitored by extensometer. To 

quantify E, the slope of the linear portion of stress-strain loop is calculated for each 

loading cycle in the hysteresis loop. Figure  6-2 shows how modulus of elasticity 

changes during the aforementioned experiment.  
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Figure  6-2: Variation of the modulus of elasticity during fatigue test until first signs of crack 

is detected 

6-5 DBN representation: general overview 

Figure  6-3 represents a high-level DBN for modeling the degradation process in this 

experiment. As explained above, in the hidden layers of the material, damage 

mechanisms take place that result in change in modulus of elasticity, E. Referring to 

general DBN structure which was presented in chapter 4 Figure  4-2, the node for 

damage precursor DPk would be Ek in this case. E can be measured and tracked 

through monitoring variations of hysteresis loop in each cycle. Calculated modulus of 

elasticity (i.e., the measurement of DPk in Figure  4-2) is then entered into Eq. ( 6-2) to 

acquire a normalized damage index D used as a proper representative of hidden 

damage evolution. On the other hand, acoustic emission sensors can capture signals 

from underlying progressive degradation. AE signals can be treated as another 

observed evidence of hidden damage (equivalent to node “other evidences” in 

Figure  4-2).  
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Having the DBN topology ready, probability distribution of all the correlated nodes 

should be defined in order to make inference in DBN. Each arrow in Figure  6-3 

indicates the probabilistic relationship between the nodes that needs to be modeled by 

physical or data-driven methods. Hence, in the DBN shown in Figure  6-3, probability 

distributions 𝑃 𝐸𝑘|𝐷𝑘
∗ , 𝑃 𝐷𝑘|𝐸𝑘 , 𝑃 𝐴𝐸𝑘|𝐷𝑘

∗  and 𝑃 𝐷𝑘
∗|𝐷𝑘−1

∗   need to be explicitly 

provided at each time step k. Following section presents how these probabilistic 

relationships are estimated, and then a more elaborate DBN with all the contributing 

factors can be constructed. 

 

Figure  6-3: General DBN representation of the damage evolution considering actual hidden 

underlying damage mechanisms 

6-6 Inference in DBN using Augmented-Particle Filtering 

A combination of physics-based and data-driven models is required to represent the 

relationships between the nodes in the DBN in Figure  6-3. To make an inference 

about the hidden variables (true damage parameter D
*
) in the DBN, state process 

model and observation models need to be identified. The details are presented in the 

following. 
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6-6-1 Online learning of both state and parameters in the degradation model: 

Ideally, it is advantageous to apply physics-based model to describe the system 

degradation in the form of an analytical system equation (degradation model). The 

standard particle filter state estimation process was retained as the model-based 

technique. Mao and Mahadevan (Mao and Mahadevan, 2002) proposed a versatile 

empirical model for explaining the evolution of damage index in composite material 

(see Eq. ( 6-3)). Although the model was first suggested for damage parameter in 

composites, the form of the model fits our experimental results very well. This is 

because of the two-part format of the model as the first term controls the damage 

accumulation at the beginning of the degradation, and the second term captures the 

fast damage growth toward the end of the life. Therefore, based on our experimental 

results, the model is quite satisfactory for explaining the behavior of damage 

evolution in terms of decrease in modulus of elasticity prior to crack initiation in our 

case study.  

𝐷∗ = 𝑞 (
𝑛

𝑁𝑓
)

𝑚1

+  1 − 𝑞 (
𝑛

𝑁𝑓
)

𝑚2

 ( 6-3) 

In this equation, q, m1 and m2 are model parameters that need to be estimated online 

during the experiment and n is the elapsed cycle which is normalized with respect to 

number of cycles at failure threshold Nf. However, in online monitoring of the 

component/system, the value of Nf is not known in advance. In fact, estimating the 

maximum number of cycles to failure is the final objective of the whole diagnostics 

and prognostics framework. Therefore, Nf would be treated as another unknown 

model parameter that needs to be updated in real time.   
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State of damage at each time step k relates to not only the elapsed cycle, but also its 

previous damage level 𝐷𝑘−1
∗ . With Eq. ( 6-3) and for small enough Δ𝑛, the state 

process model can be discretized in the form of (Zio and Peloni, 2011): 

𝐷𝑘
∗ = 𝐷𝑘−1

∗ + 
𝛥𝐷∗

Δ𝑛
|𝑘−1 × ∆𝑛 × 𝑒𝜔𝑘 ( 6-4) 

Where 
𝛥𝐷∗

Δ𝑛
 is derivative of D

*
 with respect to cycle (n) in degradation model (Eq.  

( 6-3)) and the stochastic behavior of the state process model is represented by 𝑒𝜔𝑘. 

There is no restriction on the noise term distribution 𝜔. Here, a white Gaussian noise 

with mean zero and standard deviation 𝜎 is considered 𝜔 ∼ 𝒩 0, 𝜎 , which will 

result in a lognormal process noise when embedded in exponent. k denotes the k
th

 

cycle. Accordingly, based on Eqs. ( 6-3) and ( 6-4), the state process model would be: 

𝐷𝑘
∗ = 𝐷𝑘−1

∗ + [
𝑚1 × q

𝑁𝑓
× (

𝑛

𝑁𝑓
)

𝑚1−1

+
𝑚2 ×  1 − q 

𝑁𝑓
× (

𝑛

𝑁𝑓
)

𝑚2−1

]

𝑘−1

× ∆𝑛 × 𝑒𝜔𝑘 ( 6-5) 

Eq.( 6-5) is used to describe the probability distribution 𝑃 𝐷𝑘
∗|𝐷𝑘−1

∗ , 𝜃𝑘  in which 

𝜃𝑘 = [𝑞,𝑚1, 𝑚2, 𝑁𝑓] 𝑘. The idea here is to update both damage states and model 

parameters simultaneously as time goes on. Since the number of state and parameters 

that need to be estimated is relatively large, high level of uncertainty is expected. 

Thus, the more observation/information gathered and employed, the more precise 

estimation can be obtained.  
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6-6-2 Observation models 

Real time observations will be used to weigh the projected particles. In this case 

study, two types of observation are available: one is AE signals and the other is the 

measurements of variation of modulus of elasticity E as damage precursor.  In order 

to demonstrate the importance of incorporating different observations into the 

framework, three cases are studied here: 

 Case 1: only consider AE signals, i.e., 𝑃 𝐴𝐸𝑘|𝐷𝑘
∗     

 Case 2: only consider measured modulus of elasticity E, i.e., 𝑃 𝐸𝑘|𝐷𝑘
∗  

 Case 3: consider both AE signals and measurements of reduction in modulus 

of elasticity, i.e., 𝑃 𝐸𝑘, 𝐴𝐸𝑘| 𝐷𝑘
∗  

In case 1, the likelihood of observing AE signals at time step k given underlying 

damage state should be estimated. Acoustic emission signal acquisition system 

captures and reports different features of AE signals. In the present study, cumulative 

absolute energy of signals is calculated and employed as one of the observations. 

Ideally, in an online monitoring process, it is preferred to implement new 

observations as soon as they get available to update a predefined empirical or 

physical model. However, not all the time a well-defined physical or empirical 

relationship exists between the variables. To the best of our knowledge, there is not a 

pre-determined model to correlate the cumulative absolute energy of AE signals to 

underlying hidden damage parameter prior to crack initiation. Moreover, no common 

type of regression family can efficiently model this relationship. Therefore, to 

overcome this challenge, more flexible regression approach based on SVM is applied. 

A SVR model is trained offline based on 60% of captured AE signals (Figure  6-4). 
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This model, including some measurement noise 𝜗𝑘, will be then used online to 

estimate 𝑃 𝐴𝐸𝑘|𝐷𝑘
∗  when updating the states and parameters when the rest of AE 

signals (test data) get available. Therefore, an offline data-driven model based on a 

portion of data (train data) is developed to relate acoustic emission signals AE to 

damage parameter 𝐷∗. 

On the other hand, in case 2, we assume that only in-situ measurement of modulus of 

elasticity as indirect damage indicator prior to crack initiation is incorporated in the 

likelihood equation. Measured E will be used in Eq. ( 6-2) to calculate damage level 

D. Considering measurement uncertainties  𝜈𝑘 , online evaluated D can be then used 

through the following observation model to update the estimations of state process 

model. 

𝐷𝑘
∗ = 𝐷𝑘 + 𝜈𝑘 

𝑃 𝐸𝑘|𝐷𝑘
∗ ∝  𝑃 𝐷𝑘|𝐷𝑘

∗  ( 6-6) 

Expert opinion and specification of measurement instruments (Acoustic Emission 

acquisition system and extensometer) are used to decide about the observation noises 

𝜗𝑘 and 𝜈𝑘. 
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Figure  6-4: Correlation of damage index and cumulative AE energy using SVR (model is 

trained based on 60% of data) 

In case 3, however, when both AE and E are integrated simultaneously, one fused 

measurement model exists as 𝑃 𝐸𝑘, 𝐴𝐸𝑘| 𝐷𝑘
∗ . Based on the probability chain rule, we 

will have: 

𝑃 𝐸𝑘, 𝐴𝐸𝑘| 𝐷𝑘
∗ = 𝑃 𝐸𝑘|𝐴𝐸𝑘, 𝐷𝑘

∗  . 𝑃 𝐴𝐸𝑘|𝐷𝑘
∗ . 𝑃 𝐷𝑘

∗  ( 6-7) 

In this case study, it is reasonable to assume that variation of modulus of elasticity is 

independent of captured acoustic emission as they are different in nature, therefore: 

𝑃 𝐸𝑘, 𝐴𝐸𝑘| 𝐷𝑘
∗ ∝ 𝑃 𝐸𝑘|𝐷𝑘

∗ ∝ 𝑃 𝐷𝑘|𝐷𝑘
∗ . This results in the integrated measurement 

model as: 

𝑃 𝐸𝑘, 𝐴𝐸𝑘| 𝐷𝑘
∗ ∝ 𝑃 𝐷𝑘|𝐷𝑘

∗  . 𝑃 𝐴𝐸𝑘|𝐷𝑘
∗ . 𝑃 𝐷𝑘

∗  ( 6-8) 

More details on estimating these 3 cases as well as existing challenges are presented 

in the next section. 
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6-6-3 DBN representation: detailed model 

Now that all the elements of the DBN and the details of state process and observation 

models are explained, a more elaborate version of Figure  6-3 can be constructed. 

Figure  6-5 demonstrates the detailed DBN of this case study: 

 

Figure  6-5: Detailed DBN representation considering all the factors 

In Figure  6-5, observations (i.e., AE signals and measured damage precursor E) are 

shown with rectangular. Recalling from section  6-6, 𝜔𝑘, 𝜈𝑘 and 𝜗𝑘 are process noise, 

noise in E measurements and noise in captured AE signals respectively. 𝜃𝑘 is the 

vector of parameters for state process model Eq. ( 6-5) consists of q, m1, m2 and Nf at 

time step k. In the context of this case study, only 𝐸0 and 𝐸𝑓 are considered to be 

constant. The DBN presented in Figure  6-5 is used in the rest of this paper for 

estimating and predicting damage in the component.  

𝐷𝑘
∗ 𝐷𝑘−1

∗  

𝑞𝑘 𝑚1𝑘 𝑚2𝑘 𝑁𝑓𝑘
 

𝜽𝑘 𝜔𝑘 

𝐷𝑘 

𝐸0 𝐸𝑓 

𝐸𝑘 𝐴𝐸𝑘 𝜈𝑘 𝜗𝑘 
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6-7 Results and discussion: 

In each case mentioned in previous section, 5000 particles that included 1000 

particles for each variable (q, m1, m2, Nf, and damage states D) were randomly 

selected. Any prior information about the initial value of the parameters would be 

very helpful in achieving the faster convergence of the technique. Such prior 

information might come from relevant literature, similar experiments or expert 

opinion. In our case, the suggested  range (Mao and Mahadevan, 2002) for parameters 

m1 and m2 are m1 <1 and m2 >1. However, more information on the range of the 

parameters was obtained from fitting the same model to other experiments under 

similar test conditions. Therefore, model parameters were initialized as following: q = 

uniform [0.01, 1], m1 = uniform [0.1, 0.8], m2 = uniform [18, 25], Nf = uniform 

[10000, 14000]. Also, for damage states D, initial particles should be selected very 

close to zero as it is assumed that the component is completely healthy and no 

damage exists in the component before loading.  Randomly selected particles are 

propagated in time based on the proposed state model with unknown model 

parameters, Eq.( 6-5), following the procedure explained in section on augmented 

particle filtering.  The estimation of the model parameters as well as states will be 

updated once any measurement gets available. The methodology will be validated by 

comparing the estimation and prediction results of DBN with the true damage 

evolution. The following results present that the proposed methodology is able to 

effectively track the true damage evolution based on variation of modulus of elasticity 

along with captured AE signals. 
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6-7-1 Damage state monitoring 

In case 1, when only one observation model exists 𝑃 𝐴𝐸𝑘|𝐷𝑘
∗ , the challenge is the 

scarcity of observations due to lack of significant AE events at preliminary stages of 

fatigue. Very few AE signals were received in almost 80% of the experiment, while 

the number of observations increases dramatically toward the end of test. Therefore, 

there are not enough data points at the beginning to both learn the model parameters 

and estimate the damage state. Relying only on AE signals to update the model leads 

to significant errors in damage estimations. However, as it is presented in Figure  6-6 

(bottom), particles begin to move toward true damage state when more observations 

are captured at the end of experiment. Model parameters (Figure  6-6(top)) also cannot 

be trusted as they behave very randomly and do not follow any particular pattern. 

In case 2, however, modulus of elasticity can be measured in each cycle, therefore 

there will be plenty of observations to both learn the model and estimate the damage 

state. Measurement model 𝑃 𝐷𝑘|𝐷𝑘
∗  comes from Eq.( 6-6), in which 𝐷𝑘 is calculated 

based on measured modulus of elasticity 𝐸𝑘. It can be seen in Figure  6-7 that 

measurement of modulus of elasticity is obviously more informative than AE signals 

before crack initiation. High level of uncertainty was observed at the beginning of the 

process because of the fact that all the model parameters were selected randomly. 

This uncertainty decreases through time when more E measurements are obtained. 

The particle filtering approximation of damage state nicely follows the true damage 

evolution especially in the middle part. Toward the end of the experiment, however, 

slight discrepancy (overestimating of damage) can be seen. Examining the model 

parameters (Figure  6-7) shows that the variation of parameters reduces after almost 
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4000 cycles and they tend to converge to some particular values, but parameters m2 

and Nf suddenly starts to increase near the end of the estimation and this is the reason 

for slight inconsistency appeared in state approximations (Figure  6-7(bottom)). In 

fact, recalling from Eq.( 6-3), parameter m2 is responsible for the sharp increasing 

slope of the degradation model near the end of the experiment.  

In order to reduce the computational cost and increase the practicality of the proposed 

method, modulus of elasticity was calculated at some specific interval (for example 

every 30 cycles) instead of every cycle. 

Figure  6-8 shows the results of damage estimation in case 3 when both AE signals 

and E are incorporated in the DBN for the updating process. It was noted that results 

were improved and more precise estimation can be achieved. It is interesting that 

even though AE signals seem to be very ineffective and incapable for updating the 

states and parameters once used alone in case 1, they can improve the results when 

combined with E measurements. Compared to case 1 and 2, DBN approximations of 

damage state in case 3 follow the trend of true damage evolution more accurately 

through time, and even the uncertainty of estimation (dispersion of particles) was 

reduced especially at the tail where many AE signals are available. 
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Figure  6-6: Estimation of damage evolution in time using only AE signals for case 1 (bottom) 

and corresponding model parameters (top) 
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Figure  6-7: Estimation of damage evolution in time using only measured E for case 2 

(bottom) and corresponding model parameters (top) 
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Figure  6-8: Estimation of damage evolution in time using both AE signals and measured E 

for case 3 (bottom) and corresponding model parameters (top) 

Since the observations (AE signals and E measurements) are not necessarily 

synchronized, they do not enter into the DBN simultaneously. Therefore, the 
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procedure for considering both evidences is as follows:  as soon as any of the 

observations (AE signals or E) is captured independently, the model parameters and 

damage state are updated with corresponding measurement model similar to cases 1 

and 2. And if both AE and E were captured simultaneously, then Eq. ( 6-8) should be 

used to consider the fused measurement model. In other words, unlike regular 

filtering techniques, in this approach time step ∆𝑛 is not fixed to a predefined value 

and it will change adaptively based on availability of the observation as we progress 

in time.  

Another important improvement in fusing different observations is illustrated in 

convergence of model parameters. Figure  6-8 shows smoother and more stable 

convergence in all the model parameters q, m1, m2 and Nf. This feature is especially 

significant in prognostics. Since in dual updating particle filtering algorithm, model 

parameters are not known in advance, prognostics results are not reliable unless 

fluctuations of model parameters subside.  

Although the improvement of estimation results is clearly apparent in Figure  6-6 to 

Figure  6-8, in order to mathematically show the increase in accuracy of the approach, 

the Root Mean Square Error (RMSE) is calculated for each case by Eq. ( 6-6) and 

presented in Table  6-1. 

𝑅𝑀𝑆𝐸 = √
∑  𝑦̂𝑛 − 𝑦𝑛 

2𝑁𝑓

𝑛=0

𝑁𝑓
 

( 6-9) 

𝑦̂𝑛 is the true damage coming from ( 6-3), and 𝑦𝑛 is the estimated damage by 

augmented-particle filtering (the red dots in Figure  6-6 to Figure  6-8). Then their 
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difference is squared and averaged through time from the beginning of life to the 

failure time.  

Table  6-1: RMSE calculation for the three cases presented above 

 Case 1: 

Only consider AE 

Case 2: 

Only consider measured 

modulus of elasticity E 

Case 3: 

Consider both AE and E 

RMSE 0.5195 0.0438 0.016 

 

As it was anticipated, the error in Table  6-1 for case 1 is significantly large. Case 2 

shows much better RMSE results because of the substantial number of monitoring 

data coming from E measurements at each cycle. Nevertheless, the results of RMSE 

are improved further for case 3. Therefore, Table  6-1 mathematically confirms that 

more accurate damage estimation is obtained by integrating both evidences. 

However, the value of RMSE is not solely illustrative of the precision of the results 

which relates to the uncertainty in the damage estimation. The dispersion of the 

particles is the representation of the uncertainty, and in order to measure and compare 

this uncertainty mathematically, the credibility interval or more specifically the 

Highest Posterior Density (HPD) interval can be computed for each case through 

time. The HPD is an interval in which most of the distribution of the particles lies. A 

100 ∗  1 − 𝛼 % HPD is the region that satisfies the following two conditions:  

 The posterior probability of that region is 100 ∗  1 − 𝛼 %. 

 The minimum density of any point within that region is equal to or larger than 

the density of any point outside that region. 
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Figure  6-9 shows the 95% HPD intervals for all the three cases which are calculated 

at their corresponding time step and plotted on top of each other. For better 

illustration of the uncertainty bounds, the scale on y axis is extended to 1.4. As 

expected, the 95% HPD in the first case, shown by grey lines, are extremely wide 

because of the very few measurements of AE signals. 

The green and red lines relate to 95% HPD for case 2 and 3, respectively. While the 

green area is deviated from the true damage trend especially toward the last 20% of 

the life, it is clearly evident that in case 3, this deviation is resolved by fusing both 

AE and E measurements and the reduced 95% HPD always surrounds the true 

damage trend. Therefore, more precise damage estimations are achieved through 

integrating two sources of evidence. 

 

Figure  6-9: Comparison of 95% HPD intervals in all the three cases. 
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6-7-2 Prognostics and crack initiation prediction: 

Without loss of generality, suppose that at a particular time Tp, one intends to look p-

step ahead and predict the remaining useful life. In this case study, the experiment 

stops immediately after detection of crack by the optical camera. Therefore, RUL 

here relates to remaining useful life before the crack initiation, and prognostics 

encompass predicting the crack initiation time. As explained earlier, prognostics in 

augmented-particle filtering algorithm is more challenging because not only no other 

observation exists to update the estimation, but also the degradation model itself is 

not fully known. Therefore, prognostics should be postponed until variation of model 

parameters decreases.  

Figure  6-10 shows the result of prognostics at Tp= 4000 cycles. E measurements and 

AE signals were employed to learn the model parameters and damage states (like case 

3) up to 4000 cycles and after that noting was observation. Prognostic was performed 

by propagating the particles in time relying only on state process model without any 

more updating in model parameters and/or states. It is evident that in this case the 

particles disperse more and more through time. However, the final approximation of 

particle filtering, (∑ 𝜔𝑖 𝛿 𝑥 − 𝑥𝑖 
𝑁
1  ), is remarkably close to the true damage. To 

better illustrate the uncertainty in particles, the y-axis is scaled to the maximum value 

of 1.6 in Figure  6-10. 
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Figure  6-10: Variation of model parameters(top). DBN prediction of damage evolution until 

crack initiation (bottom). Note that model parameters do not change during prognostics. 

Prediction of the Time to Failure (TTF) and Remaining Useful Life (RUL), as the 

ultimate goal in prognostics, is based on a predefined damage threshold. 
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Characterizing the failure threshold depends on the features of the problem in hand. 

In our case study, “failure” relates to observing first signs of direct damage indicator 

(crack initiation), so TTF means time to crack initiation. In that sense, the threshold in 

the present study is defined as when evolution of damage parameter reaches 1. 

As described in the Section  5-5, each particle is tracked from the start of prognostics 

(Tp) until it passes the threshold at cycle tf. The process continues until all the 

particles cross the limit and fail. The TTF corresponds to a distribution over all the tf
(i)

 

(i from 1 to N) and the MTTF is estimated based on Eq.( 5-18). The long-term 

prediction starting at cycle Tp=4000 and the distribution of TTF are also shown in 

Figure  6-11. 

 

Figure  6-11: Long-term prediction of life before crack initiation and distribution of TTF 

Referring again to Figure  6-8, it can be seen that even though variation of model 

parameters decreases after 4000 cycles, there is still some noise especially in 

parameters m1 and Nf. So, it is expected to get different prediction results if the 
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prognostics begin at different cycle Tp. In order to show how the accuracy of the 

prognostics will change with respect to variation of parameters, the prognostic 

procedure was repeated with different starting points namely 4000, 4200, 4400, ... , 

7000 cycles. The noise in the model parameters at the aforementioned prediction 

starting times Tp results in slightly different distributions for TTF (shown in 

Figure  6-12). However, the average of their MTTF is 11415 cycles which is in 0.2% 

error with respect to true TTF = 11444 cycles. The true TTF is when crack inititation 

is detected by the microscopic camera and the experiment stops. 

 

Figure  6-12: Different distributions of TTF when prediction is started at different cycles in 

[4000, 4200, 4400,..., 7000] 

6-8 Summary: 

Widely used empirical damage models for fatigue of metallic components such as 

Paris Law can be used only when an initial size of crack is known. However, 

degradation process starts way before emergence of measurable crack size and it is 

important to monitor the structural health even when crack is not detected.  
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This chapter demonstrated the application of the proposed damage precursor-based 

SHM framework on fatigue of metallic components prior to crack initiation. A set of 

accelerated life testing experiments were conducted in which Al 7075-T6 specimens 

underwent fatigue loading until detection of measureable cracks. The tests were 

stopped as soon as the crack was seen by optic microscopic camera. Stress-strain and 

acoustic emission signals were captured and recorded during the experiment. A DBN 

was established to represent the related variables and their causal or correlation 

relationships. Variation of modulus of elasticity E was selected as damage precursor 

to describe the underlying active damage state in the component while crack had not 

detected yet. Then, online measurements of E and cumulative absolute energy of 

Acoustic emission signals were applied through augmented particle filtering to update 

the damage estimation and damage model parameters.  

This chapter presented how the proposed SHM can be applied to estimate the current 

damage state and to predict the RUL in metallic component by focusing on damage 

precursor evolution instead on direct damage indicators. The method could 

successfully predict the crack initiation time in this case study.  
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Chapter 7: Damage estimation and prediction of RUL in 

Composites (Case Study II) 

 

7-1 Overview 

In previous chapter, the proposed damage-precursor based SHM framework was 

successfully applied to monitor the damage state in metallic components before unset 

of cracks. This chapter attends to the cases when degradation process is very complex 

and measuring direct damage indicators such as crack is very difficult throughout the 

life of the component. The proposed one-stage SHM framework is employed to 

damage estimation and prognostics in composite materials under fatigue.  

7-2 Introduction 

Popularity of using composite materials in industry is increasing rapidly because of 

their low weight, high strength and long fatigue life. However, inhomogeneity of the 

composite material makes the degradation process very complicated especially when 

subjected to cyclic loading. Therefore, early-stage detection of damage and 

continuous assessment of degradation during the lifespan of the component are of 

critical importance in reliability estimation of the composite structures (Chiachío et 

al., 2015a). Several experimental, numerical and theoretical researches have been 

published recently on characterizing the fatigue damage in composites for example 

(Kahirdeh et al., 2013; Montesano et al., 2015; Naderi and Khonsari, 2012; Reis et 

al., 2010), just to name a few. 
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Majority of the proposed degradation models for composites are deterministic 

empirical formulations usually developed for particular material properties under 

specific testing conditions, whereas, damage evolution in composite is a complex 

stochastic and uncertain phenomenon. Moreover, lack of complete understanding of 

the degradation process and its corresponding failure modes add extra uncertainty and 

complexity to the modeling approach. Therefore, it is crucial to take the stochasticity 

of the process into consideration. Probabilistic approach toward damage estimation 

and prediction in composites is getting attention in recent years; however, the number 

of contributions in this context is still very limited (Chiachío et al., 2015b, 2015c, 

2016; N. Eleftheroglou and Loutas, 2016; Peng et al., 2015). Among the most recent 

works, Manual and Juan Chiachío and their colleagues in a series of similar papers 

(Chiachío et al., 2015b, 2015c, 2016; Chiachıo et al., 2013) studied the progression of 

fatigue damage in composites by focusing on two characteristics: the matrix-cracks 

density, and the normalized effective stiffness. To obtain the evolution of matrix-

crack density during the fatigue life, they implemented the energy release rate (ERR) 

that represents the energy released due to the formation of a new crack between two 

existing cracks at specific stress amplitude. The damage prognostic is then performed 

via particle filtering. They measured the same variables (micro-cracks density and 

stiffness) through the experiment to update the particle filtering estimations. In a 

similar research, (Corbetta et al., 2016) extended the same energy-based approach by 

(Chiachio et al., 2013) to consider not only the matrix-cracking but also the 

delamination stage in order to enable the real-time monitoring and prediction of a 

structure’s RUL with multiple co-existing damage-mechanisms. Although the 



93 

 

aforementioned studies present physics-based approaches, which are preferred in 

general, their proposed energy-based models for damage estimation and prediction in 

composite are very complicated and might have limitations on other types of 

composites or more complex geometries (N. Eleftheroglou and Loutas, 2016). Also, 

the proposed models require precise measurement of many physical parameters that 

can be difficult or may need specific tools. Moreover, in their particle filtering 

algorithm, the measurements are exactly the same as the variables of interest which is 

not the case most of the times. 

In comparison to the aforementioned works in SHM-based prognostics, Eleftheroglou 

and Loutas  (Nick Eleftheroglou and Loutas, 2016) proposed a purely data-driven 

approach that does not rely on stiffness measurements or measurements of the load to 

define the energy release rate within the fatigue cycle. They modeled the damage 

evolution in composite as stochastic hidden Markov process by implementing only 

acoustic emission data. They used a generalized nonhomogeneous hidden semi 

Markov approach is to model the hidden damage process in a composite under fatigue 

loading. They took SHM data i.e., acoustic emission as the only input data. 

Nevertheless, purely data-driven approaches usually suffer from the lack of physical 

meaning and sometimes it is difficult to interpret the results. 

The complication of damage evolution in composites and lack of a general and well-

defined SHM framework for estimation and prediction of composite’s degradation 

were motivations to this study. The current chapter presents new hybrid SHM 

framework for damage estimation and prediction of composites in which not only 

physical properties of the degradation process are considered as indirect damage 
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indicator, but also other sources of structural health monitoring data such as acoustic 

emission are integrated into the model in order to reduce the uncertainty and obtain 

more robust and reliable damage estimations and predictions. Moreover, in contrast 

with similar works, in this research, the measurements captured during the 

degradation are different than the hidden damage state.  

7-3 Damage in Composite 

Unlike the fatigue in metals which starts with crack initiation and then propagates in 

time until the component fails, fatigue in composite structures is a more complex 

process. Although understanding detailed failure mechanism of composite is out of 

the scope of this research, brief summary of the damage propagation in composites 

would be helpful.  

Damage evolution in composite materials is a multistep procedure that involves 

micro-cracks formation and progression until failure occurs. The idealized trend of 

damage evolution in composite (shown in Figure  7-1) is proposed by Toubal et al. 

(Toubal et al., 2006) and Mao and Mahadevan (Mao and Mahadevan, 2002) as a 

three-stage process. Matrix cracking starts in Stage I in the weak points of the 

laminate and continues in Stage II where cracks coalesce and the damage takes place 

at the matrix–fiber interface. Also, in the second stage II, debonding and fiber matrix 

delamination take place and as a result damage accumulates and stiffness is reduced. 

In Stage III, fiber breakage is the dominant damage mechanism which results in the 

failure of the specimens. However, it is worth noting that fiber breakage may start 

earlier than Stage III (Kahirdeh et al., 2013; Natarajan et al., 2005; Toubal et al., 

2006; Wu and Yao, 2010). 
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Figure  7-1: Fatigue damage evolution in composite laminates (Wu and Yao, 2010) 

7-4 Damage parameter or damage index: 

In fatigue of metals, the crack size is a commonly accepted direct damage indicator 

that shows the progression of degradation in the component. However, as explained 

earlier, such well-defined and easily measureable direct damage indicator does not 

exists or is very difficult to monitor in composite materials because of the complexity 

of the degradation process. Therefore, researchers have tried to explain the 

degradation of composite using the normalized “damage index” or “damage 

parameter”, which varies from 0 – no damage, to 1 – completely failed. 

Table  7-1 shows a number of the existing damage indices related to fatigue of 

composite materials. The damage parameters shown in Table  7-1 are all derived from 

experimental studies; the first four parameters are defined based on physical 

properties of the composite during the fatigue, while the last two rows are more 

analytical (curve fitting) damage parameters. Equation ( 7-1) is a modified version of 

the Lemaitre damage parameter (Lemaitre and Chaboche, 1994) introduced by Mao 



96 

 

and Mahadevan (Mao and Mahadevan, 2002) where 𝐸0 is the elastic modulus of the 

material in its untouched (undamaged) condition, E is the elastic modulus in the 

damaged state of the material and 𝐸𝑓 represent the modulus of elasticity at the failure 

point of the data.  

Dissipated energy during the fatigue degradation of the composite laminate is also 

employed by Giancane et al. (Giancane et al., 2010) to represent the damage profile. 

The H in Eq. ( 7-2) represents the dissipated energy per cycle, 𝐻0 is the dissipated 

energy in the initial cycle of the operation and 𝐻𝑓 is the final condition, respectively.  

Azouaoui et al. (Azouaoui et al., 2010; Azouaoui et al., 2001) also defined a damage 

parameter based on the variations in the bending stiffness of the composite laminates 

during the cyclic impact-bending loading which characterizes the three stages of the 

life of the laminates. Their damage parameter is defined in Eq. ( 7-3). 𝑅0 represents 

the initial stiffness, 𝑅𝑓 represents the final stiffness and R is the bending stiffness at 

any time.  

Most recently, Longbiao (Longbiao, 2016) proposed a new damage parameter Eq. 

( 7-4) based on variation of the hysteresis dissipated energy 𝑈 during the fatigue 

degradation. As defined in Eq.( 7-4), 𝑈0 is the initial hysteresis energy released at the 

first cycle of the fatigue. 𝑈𝑒 denotes the elastic strain energy given by 𝑈𝑒 =

 
1

2 
 𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛  𝜀𝑚𝑎𝑥 − 𝜀𝑚𝑖𝑛  which is based on min and max of stress and strain 

in the loading process.  

Equations ( 7-5) and ( 7-6) are analytical models to characterize the damage profile as 

a function of time in composites. 𝑛 and 𝑁 are the number of applied loading cycles 
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and the fatigue life at a load level, respectively. The q, 𝑚1, 𝑚2, 𝐴 and 𝐵 are model 

parameters. 

Table  7-1: Some of the existing damage models for composites 

Damage indicators 

by: 
Definition 

Physical 

parameter to 

define 

damage 

parameter 

(Mao and 

Mahadevan, 2002) 
𝐷 =

𝐸0 − 𝐸

𝐸0 − 𝐸𝑓
 ( 7-1) 

 

Modulus of 

elasticity 

(Giancane et al., 

2010) 
𝐷 =

𝐻 − 𝐻0

𝐻𝑓 − 𝐻0
 ( 7-2) 

 

Dissipated 

thermal 

energy 

(Azouaoui et al., 

2010; Azouaoui et 

al., 2001) 

𝐷 =
𝑅0 − 𝑅

𝑅0 − 𝑅𝑓
 ( 7-3) 

 

Bending 

stiffness 

(Longbiao, 2016) 𝐷 =
𝑈 − 𝑈0

𝑈𝑒
 ( 7-4) 

 

Hysteresis 

dissipated 

energy 

(Mao and 

Mahadevan, 2002) 
𝐷 = 𝑞 (

𝑛

𝑁
)
𝑚1

+  1 − 𝑞 (
𝑛

𝑁
)
𝑚2

 ( 7-5) 

 

- 

(Wu and Yao, 2010) 𝐷 = 1 − (1 − (
𝑛

𝑁
)
𝐵

)
𝐴

 ( 7-6) 
 

- 

 

7-5 Application example 

The complexity of damage propagation in composites under fatigue loading is a 

motivation to search for alternative indirect damage metrics. Naderi et al. (Naderi et 

al., 2012), in an experimental research, utilized dissipated energy approach to 

evaluate fatigue damage in a woven Glass/Epoxy (G10/FR4) laminate. They showed 

that during the low cycle fatigue, most of the applied mechanical work converts into 

dissipated thermal energy which, in turn, gives rise to temperature.  
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In the current research, results of Naderi’s experiment (Naderi et al., 2012) on 

Glass/Epoxy (G10/FR4) composite laminate during bending fatigue with 

displacement amplitude of 38.1 at 10 Hz, are used to demonstrate the proposed 

damage precursor-based SHM framework. For composite material under low-cycle 

fatigue, damage starts as soon as load applies on the component. In this context, 

underlying damage mechanisms such as matrix cracking, debonding and delamination 

occur in the composite material. Even though the direct measurement of actual 

damage such as density of micro-cracks at early stages can be very difficult in 

practice, damage might be revealed by change in some physical properties (indirect 

damage indicators) such as dissipating energy and variation in material’s elasticity or 

stiffness. In this case study, based on the published experimental data in (Naderi et 

al., 2012) dissipated energy is considered as an indirect damage indicator. This 

property can be used to define the proper damage parameter as it is suggested in the 

literature (Table  7-1, Eq. ( 7-2)). Dissipated energy causes temperature increase in the 

material which can be monitored continuously and measured more easily by 

thermography techniques. Therefore, temperature is treated as one of the observations 

related to the indirect damage indicator. 

As discussed before, the proposed SHM framework is meant to be able to take 

advantage of other sources of information. Naderi et al (Naderi et al., 2012) have also 

reported the cumulative count of acoustic emission (AE) signals in addition to 

temperature measurements. Some features of captured AE signals such as count or 

energy are also informative about the underlying damage evolution and should be 
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integrated into the SHM framework as another source of evidence to reduce the 

uncertainty.  

7-6 DBN representation: general overview  

Figure  7-2 shows two time-slices of the high level DBN representation of the 

problem. Similar to section  6-5 for metallic component, the same story can be 

explained for composite as well. Inaccessible actual damage mechanisms occur in the 

material and lead to dissipation of thermal energy (H). Variation of H as an indirect 

damage indicator can be used to define the normalized damage parameter (D) which 

is the representative of the actual hidden damage happening in the component. 

Dissipated thermal energy or its normalized form as damage index causes 

temperature rise in the component. On the other hand, the underlying progression of 

damage results in acoustic waves as well which are captured through AE signal 

acquisition system. Therefore, AE measurements are also available as another sensory 

data that provides information about the damage. Figure  7-2 can be compared to 

Figure  4-4 where Hk is equivalent to DPk and its measurement will be used to 

compute a damage index Dk and then develop the damage model. Tk and AEk are the 

measurements (denoted as Zk in Figure  4-4) which are used to update the damage 

model. Each arrow in Figure  7-2 shows the relationship between the nodes which 

needs to be obtained either from the underlying physical dependency between the 

variables or from mathematical data driven methods.  
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Figure  7-2: General DBN representation of the SHM framework in composite degradation 

7-7 Inference in DBN using Augmented-Particle Filtering 

Similar to the case study in previous chapter, the same procedure would be followed 

here for damage estimation and prediction in composite material with integrating 

different sources of information through DBN. 

7-7-1 Online learning of both state and parameters in the degradation model: 

The first step is to define a proper state process model to explain the degradation 

process in composite material. A combination of damage indexes shown in table 1 is 

utilized to develop the process model. More formally, experimentally measured 

dissipated energies H are entered in Eq.( 7-2) to compute the damage indices 𝐷 = 
𝐻

𝐻𝑓
. 

Note that in Eq.( 7-2) 𝐻0 is zero because when the applied load is of the fully reversed 

bending type, the initial value of heat dissipation is zero (Naderi et al., 2012).  
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Having the calculated damage parameter, Eq. (‎7-6) will then be used to demonstrate 

the evolution of damage index in time. Naderi (Naderi et al., 2012) followed an 

experimental procedure to measure dissipated energy at a few specific time steps 

during the test. Figure  7-3 demonstrates the damage parameter calculated based on 

reported dissipated energy and the fitted model derived from Eq. (‎7-6). 

 

Figure  7-3: Damage parameter based on evolution of dissipated thermal energy 

In order to convert it to the form of state process model, one can discretize Eq. (‎7-6) 

with sufficiently small ΔN:  

𝐷𝑘 = 𝐷𝑘−1 + 
𝛥𝐷

𝛥𝑁
|𝑘−1 × ∆𝑁 × 𝑒𝜔𝑘 ( 7-7) 

ΔD/ΔN is derivative of D with respect to N. 𝑒𝜔𝑘 is used to show the random behavior 

of the state process model;  ω can be a white Gaussian noise with mean zero and 

standard deviation 𝜎, and k indicates the k
th

 cycle. Therefore, based on Eq. (‎7-6) the 

final state process model 𝑃 𝐷𝑘|𝐷𝑘−1, 𝐴, 𝐵, 𝑁𝑓  can be developed based on: 
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𝐷𝑘 = 𝐷𝑘−1 + [
𝐴. 𝐵

𝑁𝑓
(
𝑛

𝑁𝑓
)

𝐵−1

× (1 − (
𝑛

𝑁𝑓
)

𝐵

)

𝐴−1

]

k−1

× ∆𝑛 × 𝑒𝜔𝑘 ( 7-8) 

in which A, B and Nf are unknown model parameters to be estimated by augmented-

particle filtering along with damage states Dk.  

7-7-2 Observation models 

Again, here two types of measurements are monitored throughout the experiment: AE 

signals and temperature rise. Similar to metallic example, three cases are considered 

to discuss the fusion of different information: 

 Case 1: only incorporate temperature data, i.e., 𝑃 𝑇𝑘|𝐷𝑘
∗     

 Case 2: only incorporate acoustic emission data, i.e., 𝑃 𝐴𝐸𝑘|𝐷𝑘
∗     

 Case 3: combine both sources of data, i.e., 𝑃 𝑇𝑘, 𝐴𝐸𝑘| 𝐷𝑘
∗  

Temperature is related to damage through the damage precursor H and its normalized 

form as damage index D. This relationship between temperature T and the damage 

index can be expressed by data-driven polynomial regression as: 

𝑇𝑘 = 𝜑0 + 𝜑1. 𝐷𝑘 + 𝜑2. 𝐷𝑘
2 + 𝜑3. 𝐷𝑘

3  +  𝜐𝑘  ( 7-9) 

𝜑0, 𝜑1, 𝜑2, 𝜑3 are model parameters and  𝜐𝑘 is the measurement noise. Figure  7-4 

shows the correlation between temperature and damage parameter following the 

regression model in Eq. ( 7-9). 
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Figure  7-4: Correlation of damage index and temperature  

Unlike relationship between temperature and damage that is nicely explained by 

regular regression techniques, the underlying link between acoustic emission and 

damage index cannot be captured by any known type of regression family. That is 

mainly because of the steep slope at stage III of damage evolution. Interested readers 

might refer to (Naderi et al., 2012) for more details. Therefore, a more flexible SVR 

algorithm is used to generate a data-driven correlation between AE signals and 

estimated damage index. SVR model is trained based on 53 data points in cycles 

where AE measurements were available. This model is then used to predict the value 

of D, at any other data points in time. Figure  7-5 demonstrates the results of SVR 

presenting the correlation between AE cumulative counts vs damage parameter.   
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Figure  7-5: Correlation of damage index and cumulative AE counts using SVR  

For the third case, the challenge remains as how to combine two measurement models 

and obtain one merged measurement model as 𝑃 𝑇𝑘, 𝐴𝐸𝑘| 𝐷𝑘
∗ . Again, based on the 

probability chain rule: 

𝑃 𝑇𝑘, 𝐴𝐸𝑘| 𝐷𝑘
∗ = 𝑃 𝑇𝑘|𝐴𝐸𝑘, 𝐷𝑘

∗  . 𝑃 𝐴𝐸𝑘|𝐷𝑘
∗ . 𝑃 𝐷𝑘

∗  ( 7-10) 

Since Acoustic emission and temperature are conditionally independent in nature 

given the D
*
, i.e., 𝑇 ╨ 𝐴𝐸 | 𝐷, therefore:  𝑇𝑘|𝐴𝐸𝑘, 𝐷𝑘

∗ =  𝑇𝑘|𝐷𝑘
∗ . This will result in 

the integrated measurement model as: 

𝑃 𝑇𝑘, 𝐴𝐸𝑘| 𝐷𝑘
∗ = 𝑃 𝑇𝑘|𝐷𝑘

∗  . 𝑃 𝐴𝐸𝑘|𝐷𝑘
∗ . 𝑃 𝐷𝑘

∗  ( 7-11) 

Equation ( 7-11) is used to update the weight of each particle when both temperature 

and acoustic emission signals are measured simultaneously. 

7-7-3 DBN representation: detailed model 

More detailed DBN considering all the random variables of the problem is shown in 

Figure  7-6: 
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Figure  7-6: Detailed DBN representation considering all the factors 

Observations (i.e., AE signals, measured damage precursor H, and measured 

temperature T) are shown with rectangular because they can be measured through the 

experiment. 𝜔𝑘, 𝜈𝑘 and 𝜗𝑘 are process noise, noise in T measurements and noise in 

captured AE signals respectively. 𝜃𝑘 is the vector of parameters for state process 

model Eq. ( 7-8) consists of  A, B and Nf at time step k. In the context of this case 

study, only 𝐻0 and 𝐻𝑓 are considered to be constant. The DBN presented in 

Figure  6-5 is used in the rest of this chapter for estimating and predicting damage in 

the component.  

7-8 Results and discussion: 

One of the main challenges in this case study was the scarcity of both measurements. 

Only 38 data points for temperature and 51 measurements for AE were reported 

𝐷𝑘
∗ 𝐷𝑘−1

∗  

𝐴𝑘 𝐵𝑘 𝑁𝑓𝑘
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during the 6800 cycle of fatigue life which is quite few. Moreover, the last data point 

in both temperature and AE measurements was captured at 90% of life; meaning no 

observation was available to train the measurement models in the last 10% of life. 

One suggested way to handle this issue is to synthetically generate more data in 

between, based on the trend of measurement. This method would be satisfactory for 

the sake of illustration; however, it is contradictory with real time monitoring, 

because in online SHM, the trend of measurements is not known in advance. 

Therefore, we decided to use the original raw data as is and show how the proposed 

SHM framework would perform in case of insufficient measurement data. However, 

it is important to notice that the state process model as expressed in Eq. ( 7-7) and 

( 7-8) is valid for sufficiently small time step, so whenever the interval between two 

consecutive measurements is big, intermediate steps would be taken to propagate the 

particles forward in time without updating. And as soon as any measurement is 

captured, the states of the particles would be updated. In other words, we consider a 

maximum allowable time step ∆𝑛, here it is every 50 cycle or 
50

6800
= 0.007. If the 

measurement is available during this ∆𝑛, the update step of the particle filtering 

algorithm would take place as usual, otherwise only the particles are transmitted 

forward in time using the state process model while carrying their last calculated 

weights. It is equivalent to applying the prognostics approach between two successive 

measurements. This helps the validity of the methodology and decrease the 

uncertainty of the estimations. 

Similar to previous case study in chapter 6, the number of the particles and the initial 

values of the parameters (here A, B, and Nf) need to be set in advance. Here, 500 
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particles are selected randomly for each model parameters as well as damage states 

(2000 particles in total). And, the state model parameters were initialized regarding 

(Naderi et al., 2012; Wu and Yao, 2010) as following: A = uniform [0.1, 0.6], B = 

uniform [0.1, 0.6], and Nf = uniform [6000, 7000]. 

7-8-1 Damage state monitoring 

Figure  7-7 to Figure  7-9 show the three cases discussed earlier. Part (a) of each figure 

presents the evolution of the state model parameters and in part (b) the result of 

damage estimation with augmented particle filtering is demonstrated. In Figure  7-7, 

only temperature measurements are used for updating. Without loss of generality and 

for better illustration of the effect of fusion technique, we considered more 

uncertainty in temperature measurements because it is measured less frequently than 

AE signal.  Therefore, a wider bound of particle trajectories is expected in estimation 

of damage. Considering AE signals (Figure  7-8) results in better estimation and lower 

uncertainty because of the presence of more data points and consequently more 

accurate measurement model. However, in both cases in Figure  7-7 and Figure  7-8, 

the model parameters (specially parameters A and Nf) are very noisy and their 

variation does not subside through time and because of that, both methods perform 

poorly in the last 10% of life. Particles start to disperse more and more at the end. In 

Figure  7-9, however, when both temperature and AE observations are integrated into 

the framework, state process model parameters converge more smoothly and rapidly 

that leads to more precise damage estimation with less diffused particles. As 

discussed before, the convergence of the model parameters is specifically important 

for prognostic purposes.  
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Figure  7-7: Estimation of damage evolution in time using only temperature measurement for 

case 1 (bottom) and corresponding model parameters (top) 
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Figure  7-8: Estimation of damage evolution in time using only AE signals for case 2 (bottom) 

and corresponding model parameters (top) 
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Figure  7-9: Estimation of damage evolution in time using both AE signals and temperature 

measurments for case 3 (bottom) and corresponding model parameters (top) 
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The root mean square error RMSE is calculated for each case and is presented in 

Table  7-2. As expected, the RMSE for case 3 is less than other two cases. In 

comparison of case 1 (Figure  7-7) and 2 and (Figure  7-8), it is apparent that case 2 

outperforms case 1 during almost 90% of the life, however, significant dispersion of 

the particles in the last few steps cause the slightly bigger RMSE in case 2. 

Table  7-2: RMSE calculation for the 3 cases presented above 

 Case 1: 

Only consider T 

Case 2: 

Only consider AE 

Case 3: 

Consider both AE and T 

RMSE 0.0397 0.0408 0.0128 

 

Similar to chapter 6, the HPD intervals are also computed at 95% and depicted in 

Figure  7-10. As discussed, the uncertainty bounds in case 1 is wider than the other 

two cases, mainly because of insufficient temperature measurements during the 

experiment. So, case 1 is less successful to damp the state process noise and control 

the dispersion of particles.  

The results are more satisfactory for case 2 because more AE data points with less 

measurement error were used to update the estimations. Again similar to case 1, the 

HPD intervals diffuse and deviate from true damage more and more toward the end.  

In case 3, no significant improvement can be seen before 6000 cycle compared to 

case 2, however, the results are apparently improved in the last 20% of life. The 

uncertainty is decreased and the true damage trend is enclosed in the HPD intervals 

from the beginning to the end of damage estimation. 
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Figure  7-10: Comparison of 95% HPD intervals in all the three cases.  

7-8-2 Prognostics and prediction of RUL: 

Similar to previous chapter, the prognostics and life prediction are performed on case 

3 when both observations are considered and the results are presented in Figure  7-11. 

Prediction is started around 3000 cycle; it is when the model parameters are almost 

converged and no more significant variation is seen. In order to estimate the RUL, a 

critical hazard zone or threshold needs to be defined, above which the system fails or 

its performance is no longer acceptable. In the case study of fatigue of composite 

material, the critical threshold might be defined based on the level of dissipated 

energy that corresponds to stage III of damage evolution which is identified in 

(Naderi et al., 2012) by a drastic increase in both temperature and acoustic emission 

signals. It happens when almost 80-90% of the component life has expended. 

Therefore, dissipated energy at 85% of the life is selected as critical threshold 𝐻𝑐𝑟𝑡 

for estimating the 𝐷𝑐𝑟𝑡. This will result in the critical damage threshold as 𝐷𝑐𝑟𝑡 =
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0.67. As it is shown in Figure  7-11, particles are tracked from the beginning of the 

prognostics until they pass cross the critical threshold.  

The distribution of the TTF is also generated based on the time at which each particle 

reaches the threshold and the MTTF can be calculated using Eq.( 5-18). In this case, 

the estimated MTTF via DBN with augmented particle filtering is 5829 cycle and the 

true MTTF is 5780. The absolute error is 49 cycles which is equivalent to %0.8 error. 

 

Figure  7-11: Long-term prediction of life in composite material and distribution of TTF 
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7-9 Summary: 

This chapter presented how the proposed SHM framework can be applied in cases 

with complicated degradation processes where fully defined or well-studied damage 

models do not exists and effective measuring a conventional direct damage indicator 

is very difficult. Indeed, the application of the proposed damage precursor-based 

SHM framework was illustrated for bending fatigue test of woven Glass/Epoxy 

(G10/FR4) laminate composite. While the direct state of the damage was not 

accessible, the dissipated energy was considered as the damage precursor. A DBN 

was built as the underlying model to fuse two types of observations (temperature and 

AE signals) in order to update the knowledge about the state of damage. Regular 

regression techniques and also SVR were used to model the relationship between 

damage index and the observations. The augmented particle filtering technique was 

then used to infer the evolution of damage given the available monitoring information 

during the lifetime of the composite. In addition, the framework was utilized to 

perform the prognostics and promising prediction of TTF. 
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Chapter 8: Proposed Fully Adaptive Particle Filtering Algorithm  

 

8-1 Motivation 

The details of the particle filtering approach were discussed thoroughly in chapter 5 

sections  5-3 and  5-4. To recall, particle filtering, like any other state-space model, is 

defined based on two elements: the state process model that shows the progression of 

the hidden state of interest 𝑥𝑘 through time, and the measurement model that presents 

the relationship between the observed variables 𝑦𝑘 and the hidden states 𝑥𝑘 at each 

time step. In the recent literature, particular attention has been paid to developing and 

updating the state process model and, as discussed earlier in  5-4, different method 

with varying degrees of success, such as augmented particle filtering and kernel 

smoothing (Hu et al., 2015a, 2015b; Liu and West, 2001; Storvik, 2002), have been 

proposed for updating the model parameters when dealing with partially known 

process models. However, to the best of our knowledge, no formal study has been 

published with the focus on improving the likelihood calculation method and 

updating the measurement model.  

Measurement model plays a very important role in updating both states and the model 

parameters. In the literature, usually two types of measurements 𝑦𝑘 and, 

consequently, two types of measurement models are considered: 

1) The most common technique is that “𝑦𝑘 is the same quantity as 𝑥𝑘” that can 

be measured with some error. In other words, it is assumed that we can 

observe the hidden variable with some measurement error. A few examples 
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can be found in (Dalal et al., 2011; Liu et al., 2012; Orchard and 

Vachtsevanos, 2007; Saha and Goebel, 2009; Sun et al., 2012b). This leads to 

a very basic and simple measurement model as the following: 

𝑦𝑘 = 𝑥𝑘 + 𝑣𝑘  ( 8-1) 

2) The second group can be considered as the cases when “𝑦𝑘 is NOT 

necessarily the same quantity as 𝑥𝑘”; for example in (Zio and Peloni, 2011). 

Therefore, 𝑦𝑘 has a different nature and needs to be related to the hidden 

variable through some physical or data-driven models:  

𝑦𝑘 =  ℎ 𝑥𝑘, 𝑣𝑘    ( 8-2) 

For example the hidden variable is the crack size, but we observe acoustic 

emission or ultrasonic waves instead. This case is more close to real world 

situations; however, the relationship between the hidden variable and 

observed variables is not always easy to develop. 

Although one of the powerful features of the particle filtering is dealing with non-

linear measurement models, the majorities of the published papers are based on case 

(1) in which the measurement model is a purely linear function that is simply 

constructed by adding noise to the hidden variable.  

Also, in cases when observed variable is different than the hidden state, i.e., case (2), 

a fixed predefined measurement model has been used in the literature. However, in 

real world application, most of the time no predefined function exists to exactly 

explain the relationship between the state of the system and the observed variable for 

that particular study. It is especially noteworthy for online monitoring, diagnostics 
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and prognostics. Since there is no accurate predefined measurement model, it is 

important to adjust the measurement model to map the real-time streaming 

monitoring data. 

This is the motivation to consider cases where not only the state process model, but 

also the exact measurement model is not completely known. Although it is expected 

to add additional layers of uncertainty to the estimation that needs to be handled 

accordingly, the approach would be a significant step forward to SHM in real world 

application; because, when performing the damage monitoring and prognostics in real 

time, the underlying state process and measurement models are not fully defined in 

advance for the particular component/system under specific testing or operating 

condition. For example recalling the composite degradation case study in  Chapter 7:, 

the state process model that represents the damage evolution in composite was 

partially known and its parameters needed to be learnt online based on new online 

measurements. Now suppose that the measurement model also has not been 

predefined, which is actually a very reasonable and logical assumption for online 

SHM. Therefore, it would be critical to adjust the parameters of the measurement 

model in real time as well. 

8-2 Proposed adaptive measurement model for particle filtering 

approach 

The idea is to establish an adaptive measurement model that can be trained online as 

time goes by. Since fully online-learning of an unknown function without any prior 

knowledge is impractical, we need to impose some restrictions. Therefore, similar to 

the strategy for updating the state process model, it is supposed here that the 
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measurement model is also “partially known”. That is, only its functional form is 

known in advance but its model parameters need to be adjusted for the particular case 

study at hand. This requirement can be met in practice by generating an offline data-

driven or a physics-based model based on partially relevant data. For example, 

suppose that the results of a set of fatigue experiments are available in which the 

fatigue crack length is the hidden variable of interest x and the acoustic emission 

signals are the observations y. So, a priori observation model can be built offline to 

correlate the acoustic emission signal to crack size based on the historic experiments. 

Now, if this model is to be applied in the particle filtering algorithm for damage 

estimation in a new experiment with different loading condition, the priori fitted 

model needs to be updated online to adjust to the condition of the new experiment as 

measurement data comes in. More specifically, both the state process model and 

measurement model are condition-based and need to be adjusted to the particular case 

under study. 

8-2-1 How the approach is different from augmented-particle filtering? 

As presented in section  5-4, in augmented-particle filtering or dual updating particle 

filtering the state process model is partially known, so the measurements are used to 

update both states and process model parameters simultaneously. However, it is 

assumed that the measurement model is predefined and completely known in 

advance. 

The proposed adaptive measurement model, however, deals with the situation when 

the parameters of the measurement model are also unknown in addition to the state 

process model. Therefore, nothing is fixed or predefined. This is a more complex 
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problem because in order to update the states and process model parameters, a 

measurement model is required, while in this case, the measurement model itself is 

partially known and is adaptively changing based on new observations. 

Table  8-1 compares the proposed fully adaptive particle filtering with standard and 

augmented particle filtering in terms of knowledge about the state process model and 

the measurement model. 

Table  8-1: Comparison of standard, augmented and fully adaptive particle filtering 

Filtering 

Method 

State process model Measurement model 

Functional 

form 
Parameters 

 Functional 

form 
Parameters 

Standard 

particle filtering 
Known Known Known Known 

Augmented 

particle filtering 
Known 

Unknown/ 

Learned online 
Known Known 

Fully adaptive 

particle filtering 
Known 

Unknown/ 

Learned online 
Known 

Unknown/ 

Learned online 

8-3 Proposed Likelihood Adaptation Approach 

The proposed approach for adaptive likelihood is based on minimizing the Kullback–

Leibler divergence or KL-divergence or KLD for short (Kullback and Leibler, 1951). 

KL-divergence, also known as relative entropy, is an effective evaluation method to 

compare two distributions 𝑃 and 𝑄: 

𝐷𝐾𝐿 𝑃||𝑄 = ∫𝑃. log
𝑃

𝑄
 ( 8-3) 

Usually 𝑃 is the true distribution of the data (the objective distribution) and 𝑄 comes 

from the model used to approximate that true distribution.  

In order to apply the idea of KLD to adaptive measurement model, 𝑃 would be the 

distribution of the real measurement which is captured online at each time step k with 
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some degree of measurement uncertainty, whereas 𝑄 would be the distribution built 

based on predicted measurements at that time. Predicted measurements in particle 

filtering algorithm are calculated by applying the partially known (approximate) 

measurement model ℎ̃ on the propagated particles. Since the exact values of the 

parameters in ℎ̃ are not known, the measurement model might be very inaccurate 

which will lead to false predicted measurements. In this situation, the distribution 𝑄, 

fitted to the predicted observations, might be significantly different than the 

distribution of the real measurement 𝑃. The main idea is to optimize the parameters in 

the measurement model with the objective of minimizing the KL-divergence between 

𝑄 and 𝑃. 

Recently, KL-divergence was introduced to particle filtering algorithm as a statistical 

approach in the context of mobile robot localization (Fox, 2003, 2001) to increase the 

efficiency of particle filters by “adapting the sample size” during the estimation 

process. The proposed approach in our research, however, implements the concept of 

KL-divergence for adjusting the measurement model on the fly while the number of 

samples is fixed. In what follows, we will determine how the KL-divergence is used 

to dynamically adapt the measurement model in particle filtering through time. 

8-4 Introducing the KLD into the particle filtering algorithm 

This section presents how to incorporate the idea of adaptive measurement model into 

the particle filtering algorithm.  

As explained in the procedure of augmented-particle filtering algorithm, the state 

process model with unknown model parameters can be demonstrated by Eq.( 5-13) 

which is presented here again for convenience: 
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𝜃𝑘 = 𝑔 𝜃𝑘−1, 𝛾𝑘−1  → 𝑝 𝜃𝑘|𝜃𝑘−1  

𝑥𝑘 = 𝑓 𝑥𝑘−1, 𝜃𝑘 , 𝜔𝑘  → 𝑝 𝑥𝑘|𝑥𝑘−1, 𝜃𝑘  ( 8-4) 

In addition, it is assumed that the measurement model is also partially defined. 

Suppose that the analyst’s belief about the approximate prior measurement model is 

presented by: 

𝑦̃𝑘 = ℎ̃ 𝑥𝑘, 𝜑𝑘, 𝜏𝑘  → 𝑝 𝑦̃𝑘|𝑥𝑘−1, 𝜑𝑘  ( 8-5) 

in which 𝜑 is the measurement model parameters that need to be updated through 

time as new real-time monitoring data gets available. 𝜏 is the uncertainty in model ℎ̃ 

based on parameters uncertainty and measurement uncertainty.  

The procedure of the fully adaptive particle filtering is as following: 

At each time step k, the state process model Eq. ( 8-4) is used to propagate the 

particles one step ahead in time. In standard augmented-particle filtering, the 

predefined measurement model would be applied at this stage to estimate the weights 

of the particles regarding the true observation at that time. However, here, the 

measurement model is not fully defined in advance. Hence, before assigning the 

weights to the particles, the measurement model needs to be adjusted. Therefore, the 

tentative prior measurement model Eq. ( 8-5) will be used to generate a set of 

predicted observations 𝑦̃𝑘 based on particles state. Distribution 𝑄 𝑦̃𝑘
𝑖 |𝑥𝑘

𝑖  , 𝑖 = 1,… , 𝑛 

is the probability distribution that can be fitted to the set of predicted observations 𝑦̃𝑘
𝑖 .  

On the other hand, 𝑃 𝑦𝑘|𝑥𝑘  would be the probability distribution of the real 

measurement 𝑦𝑘 at time step k assuming a known measurement noise. Since, the 

model parameters 𝜑 in ℎ̃ are unknown, predicted measurements might be very far 

from the real observation at time k. This will result in assigning negligible weights to 
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the particles and, consequently, the algorithm will collapse because of the very low 

likelihood. However, the root of this problem is the fact that the measurement model 

was not completely defined at the first place. 

Therefore, to address this issue, the proposed approach is to update the measurement 

model by adjusting its parameters 𝜑 in a way that the discrepancy between 𝑄 𝑦̃𝑘
𝑖 |𝑥𝑘

𝑖   

and 𝑃 𝑦𝑘|𝑥𝑘  is minimized. Using the KL-divergence in Eq. ( 8-3), the optimum 𝜑 

can be adapted based on real measurement data at time k. Then, the updated 

measurement model is to be used to calculate the weights of the particles as before. 

This procedure will be repeated every step as a new measurement is captured. 

Table  8-2 presents the algorithm for the fully adaptive particle filtering: 

Table  8-2: Proposed fully adaptive particle filtering algorithm 

(1) Initiation step: 

 Sample N particles from initial distributions of states and 

parameters: 

𝑥0
𝑖  ~ 𝑝 𝑥0                      𝑖 = 1, 2, … ,𝑁 

𝜃0
𝑖  ~ 𝑝 𝜃0                      𝑖 = 1, 2, … ,𝑁 

 Assign initial equal weights to all the particles 

𝑤0
𝑖  ~ 

1

𝑁
                         𝑖 = 1, 2, … ,𝑁 

(2) Recursive steps: 

Prediction: 

 Estimate 𝑚𝑘−1
𝑖  for each parameter using shrinkage rule 

Eq.(‎5-17)) 
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 Draw new samples for parameter vector from: 

𝜃𝑘
𝑖  ~ 𝒩 . |𝑚𝑘−1

𝑖 , ℎ2𝛾𝑘−1  

 Propagate each particle one step forward using state process 

model with new sampled parameter: 

𝑥𝑘
𝑖  ~ 𝑝 . |𝑥𝑘−1

𝑖 , 𝜃𝑘
𝑖   

Update: 

 Compute the predicted observations using the tentative 

measurement model: 

𝑦̃𝑘 = ℎ̃ 𝑥𝑘, 𝜑𝑘, 𝜏𝑘  

 Update the parameters of ℎ̃ to minimize the KL-divergence: 

𝜑𝑘 = argmin{𝐷𝐾𝐿 𝑃||𝑄 }  

=  argmin {∫𝑃 𝑦𝑘|𝑥𝑘
𝑖 , 𝜃𝑘

𝑖 , 𝜑𝑘 . log [
𝑃 𝑦𝑘|𝑥𝑘

𝑖 , 𝜃𝑘
𝑖 , 𝜑𝑘 

𝑄 𝑦̃𝑘
𝑖 |𝑥𝑘

𝑖 , 𝜃𝑘
𝑖 , 𝜑𝑘 

]}   

 Calculate the weights for each particle as new measurement 

𝑦𝑘 gets available: 

𝑤𝑘
𝑖 = 𝑤𝑘−1

𝑖  . 𝑝 𝑦𝑘|𝑥𝑘
𝑖 , 𝜃𝑘

𝑖 , 𝜑𝑘   

 Normalize the weights: 

𝑤𝑘
𝑖 = 

𝑤𝑘
𝑖

∑ 𝑤𝑘
𝑖𝑁

𝑖=1

 

Estimate: 

 Estimate the expected state:  

𝑥̅𝑘 = ∑𝑤𝑘
𝑖 . 𝑥𝑘

𝑖

𝑁

𝑖=1

 

Resample: 

 Resample (with replacement) new set of particles for states 

and process model parameters {𝑥𝑘
𝑖 , 𝜃𝑘

𝑖
}
𝑖=1

𝑁
based on 

calculated weights 𝑤𝑘
𝑖 . 
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8-5 Challenges of the proposed approach:  

The main concern about the proposed fully adaptive particle filtering is setting the 

initial values for model parameters 𝜑 and 𝜃. If the state process model has m1 

parameters and the measurement model consists of m2 parameters, 𝜃 and 𝜑 will be 

vectors of size m1 and m2, respectively. Also, each of the model parameters is a 

random variable and needs the mean and standard deviation to be defined. Therefore, 

it will result in 2 ×  𝑚1 + 𝑚2  unknown variables. In addition, there would be also 

the process noise 𝜔 to represent the stochasticity of the process and the measurement 

noise 𝜈, which relates to the uncertainty in measured data. Therefore, there are 

2 ×  𝑚1 + 𝑚2 + 2 random variables (hyper-parameters) in total that should be 

addressed accordingly. 

The existence of multiple uncertain random variables results in additional uncertainty 

in the SHM. However, the proposed approach is mainly recommended to be applied 

in online monitoring context, where a high sampling rate, big data sets, and 

continuous streaming of monitoring data are expected. More frequent observation 

data will increase the convergence rate in the model parameters and, therefore, the 

concern of uncertain estimations can be managed. 

On the other hand, it might be argued that the method introduces some bias toward 

the measurement. In another words, minimizing the KL-divergence can be considered 

as shifting the probability distribution 𝑄 toward 𝑃 before weighing the particles. 

Therefore, the approach is sensitive to the true measurements. Indeed, this is a 

favorable property that makes sure the tentative inaccurate measurement model gets 

updated based on real-time true measurement before being used for weighing the 
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particles. However, if the coming real-time measurements are sparse, or too noisy or 

not informative enough, there is a risk that the method fails or skewed toward 

unreliable measurements. To overcome this problem, it can be beneficial to use a 

regularization parameter to control how much distribution 𝑄 is allowed to shift 

towards 𝑃, that is regularizing the KL-divergence. Consequently, this method will 

prevent the distribution 𝑄 from getting too close to distribution 𝑃, if the true 

measurement is not reliable enough. This idea needs to be validated in future studies. 

And, finally, obviously the trade-off of dynamically updating the parameters of both 

process model and measurement model along with estimating the states would be 

more expensive computations. The approach requires solving an optimization 

problem at each time step which comes at a high computational cost. This problem is 

also deferred to future research. 

8-6 Real-time damage estimation in composite material using the 

proposed Fully adaptive particle filtering algorithm: 

Recall the case of composite degradation presented in chapter 7. Now, for simplicity, 

suppose that only temperature measurements are available. It was discussed that a 3-

degree polynomial (Eq. 7-9) is a good fit to represent the relationship between the 

damage and the temperature in the composite. This information can be mainly 

obtained from similar experiments performed previously. Thus, the tentative function 

for the measurement model can be expressed as: 

𝑇̃𝑘 =  ℎ̃ 𝐷𝑘,  𝝋𝑘 = 𝜑3𝑘
 × 𝐷𝑘

3 + 𝜑2𝑘
 × 𝐷𝑘

2 + 𝜑1𝑘
× 𝐷𝑘 + 𝜑0𝑘

 ( 8-6) 
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In chapter 7, similar to other existing works on particle filtering, this measurement 

model was assumed to be completely known for the particular composite under study 

and, therefore, it was applied as a predefined fix model to explain the correlation 

between hidden damage and observed temperature. However, when dealing with real-

time SHM, no exact predefined model exists for the particular problem under study. 

On the other hand, any prior measurement model that might exist usually comes from 

previous similar experiments or related literature and does not necessarily fit to the 

upcoming monitoring data for the particular component under study. The reason is 

that even identical components do not behave exactly the same under equal loading 

condition. Moreover, there is no guarantee that the historic data used to develop the 

tentative measurement model has been extracted under identical testing conditions. In 

this situation, other filtering techniques in the literature such as Kalman filter, 

standard particle filter and even augmented particle filter fail to accurately estimate 

the state of the new system, because they are all based on fixed predefined 

measurement model and cannot adapt a preexisting model to fit the upcoming 

monitoring data on the fly.  

In the rest of this section, the capability of the proposed adaptive particle filtering is 

compared with augmented particle filtering in handling the real world situation when 

both state process and measurement models are inaccurate and need to be adjusted for 

the particular case under study.  

Accordingly, we revisited the (Naderi et al., 2012) and used another set of published 

data on the same type of specimen but under different loading condition to define a 

prior measurement model. More specifically, the experimental results of the same 
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composite specimen (G10/FR4) subjected to the frequency of 10 Hz and 

displacement amplitude of 40.64 mm were used to define a measurement model 

similar to Eq. ( 8-6). As reported in (Naderi et al., 2012), this specimen failed at 4000 

cycles of bending fatigue. 

Now, suppose that this developed model is the only available information that we 

have in advance about the possible relationship between the damage and the online 

monitoring data. If the predefined model with fixed model parameters obtained from 

the first experiment is adopted in the augmented particle filtering (similar to chapter 

7) for damage estimation in a new experiment under different testing condition 

(displacement amplitude of 38.1 mm), the results of damage estimation would be as 

presented in Figure  8-1. 

As it was expected and demonstrated in Figure  8-1, the augmented particle filtering 

and any other existing filtering method which are based on fixed predefined 

measurement models, fail to correctly track the damage evolution in the component 

under study because the existing measurement model was derived from different 

experiment and the method was not able to  adjust it for the particular problem in 

hand. This shows the necessity of learning/updating the measurement model in 

addition to the state process model.  

Therefore, in real-time SHM, it is necessary to adaptively update the parameters of 

the measurement model which are encapsulated in 𝝋𝑘 for this case study as follows: 

𝝋𝑘 = [𝜑0,  𝜑1,  𝜑2, 𝜑3]𝑘 ( 8-7) 

The state process model is the same as before Eq. ( 7-8). Thus, the process model 

parameter vector would be: 𝜽𝑘 = [𝐴, 𝐵,  𝑁𝑓]𝑘 
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Figure  8-1: Damage estimation in composite specimen under fatigue loading (with 38.1 

displacement amplitude) using augmented particle filtering with inaccurate fixed predefined 

measurement model 

As explained in the previous section, there would be 16 hyper-parameters that affect 

the result of particle filtering estimation and need to be tuned. These variables consist 

of 4 parameters in measurement model and 3 parameters in process model (each one 

with unknown mean and standard deviation), plus state process noise and 

measurement noise. 



129 

 

 

Figure  8-2: Damage estimation in composite specimen under fatigue loading (with 38.1 

displacement amplitude) using fully adaptive particle filtering which updates the parameters 

of the inaccurate preexisting measurement model  

Figure  8-2 shows that the proposed fully adaptive particle filtering approach can 

successfully estimate the damage in the composite when both state process and 

measurement models are partially known. Compare to Figure  8-1, Figure  8-2 presents 

how the proposed fully adaptive particle filtering outperforms the augmented particle 

filtering in situations when the preexisting measurement model does not exactly fit to 

the particular case under study.  

As before, Figure  8-3 shows how the state process model parameters change over 

time until their variations decrease.  
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Figure  8-3: Updating the parameters of the state process model in fully adaptive particle 

filtering 
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Figure  8-4 tracks the convergence of measurement model parameters 

[𝜑0,  𝜑1,  𝜑2, 𝜑3]. The red line in each graph is the expected value for that parameters 

coming from curve fitting. The expected values can be derived offline after 

completion of the experiment by fitting the measurement model (Eq. ( 8-6)) to all the 

recorded measurement data. Note that even though the parameters in both state and 

measurement models are noisy and do not necessarily converge to their expected 

values (especially, parameter 𝜑3), the combination of them is able to successfully 

estimate the damage as presented earlier in Figure  8-2. It seems that updating both 

state process model and measurement model through fully adaptive particle filtering 

gives more flexibility to the method in tracking the true damage evolution. 

 

Figure  8-4: parameters of measurement model in fully adaptive particle filtering 
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8-7 Summary: 

In this chapter the algorithm of fully adaptive particle filtering was proposed. The 

idea of the proposed approach is to develop a filtering technique that requires neither 

the fully known state process model nor a predefined measurement model. Thus, both 

of the state process and measurement models would be updated online through time. 

It is particularly useful for performing fully online structural health monitoring. The 

proposed algorithm incorporates the concept of KL-divergence to update the 

parameters of the measurement model based on real-time upcoming measurements 

while the parameters of the process model would be learnt via augmented particle 

filtering as before. 

The mathematical details of the algorithm along with the potential concerns and 

implementation challenges were discussed. And finally, the method was applied on a 

simplified version of composite case study in chapter 7. 
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Chapter 9: Conclusion, Contributions and Suggested Future 

Works 

 

9-1 Summary 

In this dissertation, a new structural health monitoring framework was proposed 

based on monitoring and estimating the evolution of damage precursors or indirect 

damage indicators when conventional direct damage indicator such as crack is 

unobservable, inaccessible or difficult to measure. It was shown that unlike the 

traditional widely used empirical damage models, the proposed framework does not 

have to wait until a known direct damage indicator such as a fatigue crack is 

observed, whereas it is able to inform about the underlying damage much earlier by 

monitoring the evolution of some predefined damage precursors. Hence, there would 

be more time for decision makers to perform corrective actions. The proposed 

framework is intended to take advantage of various sources of available information 

in order to reduce the inherent uncertainty and achieve more precise estimation of the 

system’s health state. Dynamic Bayesian Network was adopted as the main modeling 

technique to materialize the proposed SHM framework. Moreover, the present 

research showed how incorporating various observations in the framework leads to 

more precise and more accurate estimations and predictions. Also, integration of 

different computational approaches (i.e., DBN, augmented- particle filtering with 

Kernel smoothing and SVR) in the proposed framework provides a more general and 

flexible methodology that can be applied in many different contexts of application. 
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To demonstrate and validate the proposed approach, two different case studies were 

presented. In the first one, the results of a fatigue test on Aluminum specimen prior to 

crack initiation were used. A model based on variation of modulus of elasticity E as a 

damage precursor was developed to describe the underlying active damage state in 

the component while crack had not emerged yet. A DBN was established to represent 

the related variables and their causal or correlation relationships. Since the 

degradation model based on damage precursor was not completely known, the model 

parameters also needed to be learned during the monitoring process. Augmented- 

particle filtering along with kernel smoothing technique was applied to infer both the 

model parameters and the damage state in the component prior to crack initiation. 

Support Vector Regression technique, which is a powerful and flexible method 

especially for describing an unknown nonlinear correlation, was also implemented 

inside the DBN to incorporate AE signals. The results of the proposed framework in 

real-time estimating the damage state are in good agreement with the experimental 

observations. Consequently, the methodology described in this dissertation was able 

to successfully track the true damage evolution and predict the crack initiation in 

Aluminum specimen when no direct damage indicator existed.  

In the second case study, degradation of composite specimen was investigated. 

Inhomogeneity of the composite material makes the degradation process very 

complicated in which measuring the conventional damage indicators is quite difficult. 

Variation of the dissipated thermal energy was selected as the damage precursor to 

represent the damage evolution during the fatigue life of the component. We used 

DBN to model the correlation between different elements of the problem and then 
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applied the augmented-particle filtering approach to estimate the state model 

parameters and damage states simultaneously. Two types of measurements, i.e., 

temperature and acoustic emission counts, were adopted to update the damage states. 

And at the end, the results of damage estimation and TTF prediction were presented. 

In both case studies, the uncertainty is reduced by integrating multiple evidence and 

more accurate and precise results were achieved for parameter and state estimations 

as well as RUL predictions. Furthermore, a new version of fully adaptive particle 

filtering algorithm was proposed that is capable of learning the parameters of the 

measurement model in addition to the parameters of the state process model. The 

proposed adaptive particle filtering is based on minimizing the Kullback–Leibler 

divergence between the distribution of the predicted measurements by particle 

filtering and the distribution of the actual measurement at each time step. The 

algorithm would be particularly useful when the measurements have different nature 

than the state of interest and their relationship is not fully known in advance. For 

example, it can be used for estimating and predicting the life of newly designed 

products or new experiments with different conditions. 

It is important to mention that all the analyses are conducted in “R”, version 3.2.3 

(2015-12-10) -- "Wooden Christmas-Tree", which is a powerful open-source 

language and environment for statistical computing and graphics. An R code is 

developed throughout this research for performing diagnostics and prognostics with 

augmented particle filtering inside DBN considering more than one type of 

measurement. Also a separate code is built for fully adaptive particle filtering. Some 

of the R packages which are installed additionally and used in this research are 



136 

 

kernlab (Karatzoglou et al., 2016), e1071 (Friedrich, 2015) and CEoptim (Benham et 

al., 2015). 

9-2 Contributions and possible benefits of this work: 

As discussed above, the contributions of this research can be summarized into 

following categories: 

1) The concept of indirect damage indicator or more specifically damage precursor 

was formally studied and its incorporation into SHM framework as an 

alternative way for degradation estimation was investigated. 

2) A new SHM framework for diagnostics and prognostics was proposed based on 

evolution of damage precursors when direct damage indicator such as fatigue 

crack is inexistence, undetected or difficult to measure.  

3) A methodology was established for fusing different sources of potentially non-

homogeneous evidences via DBN structure including multiple online non-

contemporary monitoring data captured from different sensors. 

4) A hybrid probabilistic approach was developed based on DBN structure for 

damage estimation and RUL prediction by monitoring the evolution of damage 

precursor through time. The algorithm of DBN was the combination of: 

 Model-based Particle filtering technique to infer the damage state 

recursively over time using incoming noisy measurements.  

 Data-driven techniques (such as Support Vector Machine (SVM)) to learn 

the unknown relationship between some of the variables in DBN from data  
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5) Founded on the technique of augmented particle filtering with kernel 

smoothing, a solid theoretical scheme for joint parameter and state estimation 

was examined through DBN structure. The approach is beneficial for modeling 

partially known degradation process when dealing with less explored area of 

damage precursor evolution. 

6) Particle filtering algorithm was modified and a new version of fully adaptive 

particle filtering was proposed that does not require a predefined measurement 

model to explain the relationship between the hidden damage state and noisy 

measurements. This new approach is capable of learning both the measurement 

model as well as the state process model in real time.  

7) The proposed methodology was validated and demonstrated in two real world 

applications: 

 Estimation and prediction of fatigue damage in metallic component prior 

to crack initiation  

 Estimation and prediction of fatigue damage in complex degradation 

process such as degradation of Composite component  

Therefore main advantages of this research can be: 

1) Enhancements in real-time decision making for system maintenance when direct 

damage indicator (such as crack) is yet undetected or difficult to be measured.  

2) Improvement in uncertainty reduction and achieving more accurate and more 

precise damage estimation and RUL prediction by integrating different types of 

information such as various monitoring data  
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3) Advancement in performing SHM when there is no existing predefined models 

for both the damage evolution as well as correlation of sensor measurements to 

the damage. This might happen in newly designed products  

4) Systematic general SHM approach with possible application in different areas 

such as oil and gas, automobile, and any critical systems that requires online 

health monitoring under multiple uncertain observations. 

9-3 Suggestions for future research 

In this section some recommendations for extending this research are presented: 

 Additional work should be done to confirm the validity and capability of the 

proposed framework in damage estimation and prognostics for cases with 

more complicated degradation processes and in the presence of more types of 

sensor measurements.  

 One of the important challenges in this research was optimizing the hyper-

parameters such as initial range or mean and standard deviation of the model 

parameters, noise in state process model, noise in different measurement 

models, shrinkage parameter in augmented particle filtering, hyper-parameters 

in SVR. The method is sensitive to the value of each of these parameters and 

it is important to be managed in a systematic way. As a future research, it is 

required to develop an optimization algorithm on top of the proposed 

approach to define the optimum hyper-parameters.  

 Although the results are promising at this stage, it would be interesting to 

apply more advanced versions of SVR such as RVM and Bootstrapped SVR 

in future work and compare the results with original SVR.  
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 The proposed idea of fully adaptive particle filtering is in its infancy and 

needs additional research for validation. Even though the presented results are 

satisfactory, the performance of the new algorithm should be tested and 

assessed in other real world applications when for example the measurement 

model is more complicated or other types of evidence also exist. 

 More work and deeper study are required to address the challenges mentioned 

for the fully adaptive particle filtering approach in section ‎8-5: 

• More research should be done to control the bias toward the true real-

time measurements. The suggested idea of using a regularization 

parameter needs to be applied and validated.  

• The computational cost of the approach needs to be managed. 
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