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CHAPTER 1: INTRODUCTION 

 

 

1.1 PROBLEM STATEMENT 

 

1.1.1 Importance of the Snowpack in Mountainous Regions  

 

Snowmelt is vital to the hydrologic cycle of the mountainous western United 

States.  Mountain snowpacks provide the majority of annual streamflow for many 

locations in the western U.S., where snowfall can make up 60% or more of the annual 

precipitation (Serreze et al., 1999). Snowmelt represents about two-thirds (60-70%) 

of the total annual runoff in the western U.S. (Daly et al., 2000).  Snowpack 

meltwater serves as a water source for municipalities, agriculture interests, recreation 

interests, hydropower interests, and others.   

As the snowfall accumulates and the snowpack builds throughout the winter, 

the snowpack acts as a reservoir, the contents of which are released in an uncontrolled 

fashion during the melt season.  While the snowpack serves multiple uses and 

benefits many people in the semiarid regions of the western U.S., its uncontrolled 

melt can sometimes cause problems.  The rapid melt of an abnormally extensive 

snowpack can easily cause high streamflow and flooding, threatening life and 

property.  Seasonal runoff volumes, upon which many groups depend for domestic 

water, irrigation, and recreation, may impact reservoir operations and water 

deliveries.  Informative snowmelt-driven streamflow prediction is a critical 
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component of the management of snowmelt-driven rivers, and improved predictions 

can assist in flood planning (Adams et al., 2004). 

 

1.1.2 Modeling and Predicting Snowmelt 

 

 Because the semiarid regions of the western U.S. rely so heavily on the 

mountain snowpack, operational government agencies and research groups have 

developed a wide variety of models to predict snowpack conditions and subsequent 

snowmelt-driven streamflow.  Operationally, these models are used to make two 

types of predictions: (1) short-term deterministic prediction of streamflow, including 

flood flows if conditions warrant, out to one to two weeks, and (2) longer-term 

probabilistic prediction of seasonal runoff volumes that a snowpack may yield, with 

lead times of several months.  These agencies and groups use a variety of tools, 

including process-based models (which include explicit representation of the 

equations that describe physical processes), simpler conceptual models, traditional 

statistical regression, and more advanced probabilistic methods, such as ensemble 

prediction. 

Slow, orderly snowmelt is manageable for hydrologic forecasters and 

modelers, water users, and emergency managers.  However, when snowmelt is 

abnormally rapid and intense, the snowpack sheds its water volume in a short period 

of time.  In these situations, dangerous flooding can occur, especially if the snow 

water equivalent (SWE) of the snowpack is large at the start of the rapid melt event. 

Disaster responses to and management of the flows resulting from such a snowmelt 

event can be challenging for emergency managers and reservoir operators.  During 
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abnormally rapid snowmelt events, the risks of damage are highest; thus, 

improvements in hydrologic predictions of these events would be most beneficial to 

users.   

Seasonal runoff volumes yielded by a snowpack may also be difficult to 

predict by a conceptual model if conditions deviate far from those represented by the 

historical period used to calibrate the model. Achieving improvements in hydrologic 

prediction at all lead times, irrespective of the type of forecast (deterministic vs. 

probabilistic, daily flows vs. seasonal runoff volumes) can be challenging. 

Accurate model representation of snowmelt events in mountainous areas can 

be difficult to achieve for snowpack models, even those that contain detailed 

representation of snowpack physics.  Difficulties arise because mountainous 

watersheds and the conditions within them are spatially diverse.  Accurate 

representation of orographic precipitation, areal extent of snow cover, the distribution 

of SWE, terrain characteristics, and land cover, all of which play roles in determining 

the rate of snowmelt, is a challenging aspect of hydrologic modeling.  Uncertainties 

are inherent in input data as well as in model structure. 

Several methods have been proposed as ways to improve snow representation 

in models and, in turn, prediction of snowmelt-driven streamflow.  Some examples 

include the incorporation of in-situ or satellite-derived snow observations into 

hydrologic models, the use of distributed hydrologic models at fine scales, and the 

use of full energy balance snow models within a hydrologic modeling framework.   
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1.1.3 Importance of Accurate Snow-Covered Area Estimates in Models  

 

Successful modeling and prediction of snowmelt-driven flow in mountainous 

watersheds depends, in part, on accurate model representation of the portion of a 

watershed that is covered with snow .  Hydrologic models that contain a snow module 

consider snow-covered area (SCA) in snowmelt calculations, particularly if only a 

portion of a watershed area is estimated to be snow-covered. Even if the snow model 

embedded within a hydrologic model is capable of accurately predicting snowmelt, 

application of snowpack calculations over an improper areal extent of snow cover 

(AESC) can lead to inaccurate estimates of the snowpack characteristics and, in turn, 

inaccurate predictions of subsequent meltwater runoff (Turpin et al, 1999).   

Additionally, in the melt computations of many models, including SNOW17, 

the snow model used in this study, the snowmelt volume for a single timestep is 

initially computed assuming the modeled area is completely snow covered (AESC = 

1.0 or 100%).  If the modeled area is not fully covered by snow, the melt volume 

initially computed under the assumption of 100% snow cover is multiplied by an 

AESC value of less than 100% before being passed to subsequent processing in the 

model (such as routines that route the liquid meltwater through the snowpack).   

 

1.2 MOTIVATION FOR THE STUDY AND RESEARCH NEEDS 

 

There are two primary motivations for this study:  (1) the need for a detailed 

analysis of the impacts, related to direct insertion (DI) of satellite-derived snow cover 

observations into a hydrologic model, on snowmelt-driven streamflow predictions in 
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an operational National Weather Service (NWS) environment, and (2) contribution to 

a snow modeling and data assimilation testbed being built by an operational agency in 

cooperation with research and development (R&D) partners. Both motivations are 

tightly tied to the need for operational NWS hydrologists to understand the fine 

details of the hydrologic modeling systems they use, particularly as they begin to 

explore alternative forecasting and modeling techniques. 

Improvement in model estimates of snowpack properties can lead to improved 

flow prediction for snowmelt-driven streams and rivers in certain cases.  Specifically, 

preliminary results of quantitative assimilation of satellite-derived fSCA observations 

show that assimilation of such observations has potential to improve streamflow 

simulations, at least during the spring and early summer, as the snowpack declines 

and bare ground is exposed (Clark et al., 2006). 

However, quantitative ways of incorporating satellite-derived snow cover 

information into hydrologic models have not yet been heavily tested in-house at an 

operational venue such as a National Weather Service River Forecast Center (RFC). 

The conditions under which research and operational environments carry out their 

studies can be drastically different.  In an operational environment, certain constraints 

on the modeling and prediction processes exist.  For example, input data must be 

reliably available and, due to computing power limitations, the use of complex 

models and data assimilation schemes in real time is usually prohibitive. These 

constraints are closely tied to the need for reliability and timeliness in operational 

procedures (Nester et al., 2012). 
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Liu et al. (2012) state that the application of advanced hydrologic data 

assimilation as a tool for incorporating information from observations into the RFC 

forecasting process is currently limited in operational environments.  For the 

operational environments of NWS RFCs, this limitation is due partially to the fact 

that the RFC forecast process is very subjective, relying heavily on human forecasters 

to make updates and adjustments to model states.  The framework of the NWS RFC 

environment does not yet lend itself to advanced objective, quantitative methods of 

updating model conditions.    

Despite the constraints of the operational NWS RFC environment, the NWS 

Colorado Basin River Forecast Center (CBRFC) is investigating ways in which 

satellite-derived snow cover observations may potentially improve predictions made 

by CBRFC, both with the current forecasting and modeling system and with systems 

that may be developed in the future.  The simple direct insertion (DI) method is one 

quantitative method that is currently available to NWS RFCs, and it is used in this 

study. 

This study examines one of the ways in which model snowpack estimates can 

be modified by inclusion of moderately high-resolution observations of snow cover 

extent in an operational model.  Specifically, the study aims to quantitatively evaluate 

for a headwater basin, in terms of streamflow, the impacts of objective use of 

satellite-derived snow cover observations on operational streamflow predictions. The 

simple DI method is the focus of this study, since parsimonious methods are preferred 

in an operational environment (assuming their use results in improvement to the 

predictions).  Direct insertion is a conceptually and computationally simple method to 
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implement, and it can be tested in-house at NWS RFCs with the current 

implementation of the modeling system.  

The DI technique is tested without recalibration of model parameters and with 

no adjustment of the satellite-derived data for vegetation or transformation to a 

SNOW17-equivalent snow cover value.  In 2011 and 2012, CBRFC recalibrated, for 

each area that it models (~1100), the SNOW17 model parameters using the 1981-

2010 historical period.  Currently, personnel time and resources at CBRFC are not 

available for an additional round of CBRFC-area-wide model parameter recalibration.  

If it can provide a benefit in terms of streamflow prediction, the inclusion of observed 

fSCA via DI without complete recalibration of all modeled points, would be the 

preferred option. 

Some RFCs have begun to pursue more active collaboration and 

experimentation with each other and with the research and academic communities.  

The RFCs have traditionally been end users of products and methods developed by 

academia and the hydrologic research arm of the NWS, the Office of Hydrologic 

Development (OHD).  However, the role of the RFC in NWS hydrology is changing 

as some RFCs become more actively involved in the R&D process.  That both sides 

(operations and research) understand the unique characteristics of each other’s 

environments and share information across traditional barriers is becoming 

increasingly important.  The National Research Council (2012) heavily emphasizes 

the need for active collaboration among operational, research, and academic groups, 

despite barriers that have prevented such collaborations in the past.  Liu et al. (2012) 

also emphasize collaboration among modelers, data assimilation (DA) researchers, 
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and operational forecasters as a cost-effective way to transition new techniques from 

the research community into operations. 

To facilitate collaboration among the RFCs and R&D groups, the CBRFC, in 

Salt Lake City, Utah, is building modeling testbeds.  These testbeds focus on different 

sub-fields of hydrology.  One example is the CBRFC Snow Modeling and Data 

Assimilation (SMADA) Testbed (http://www.cbrfc.noaa.gov/testbeds/smada/) that 

focuses on snow hydrology.  An additional testbed, the Seasonal to Year-2 Climate 

and Streamflow Forecast Testbed 

(http://www.cbrfc.noaa.gov/testbeds/si_y2/index.php) focuses on-long range 

streamflow forecasting techniques that use climate information (Wood and Werner, 

2011).  The testbeds are venues intended as a way to encourage and enable 

collaborations between the RFC and its research partners.  Wood and Werner (2011) 

promote testbeds that partner operational RFC staff with external research groups as 

ways to: 

 

• Build knowledge and skills of RFC staff, particularly operational forecasters 

• Educate external partners about operational forecasting and its constraints 

• Ensure that research efforts intended to improve operational forecasting are 

properly focused and evaluated. 

 

Via these testbeds, CBRFC provides data sets for targeted watersheds within 

the Colorado River basin and the eastern Great Basin to external collaborators for 

experimentation.  In the case of the snow hydrology SMADA testbed, the targeted 
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watersheds are high elevation headwater basins that are snow-dominated with few (if 

any) diversions or reservoirs; in the case of the climate and streamflow testbed, the 

targets are important as inflow sources to major reservoirs in the western United 

States.    

The watersheds currently included in the SMADA testbed are headwater 

basins for which (mostly) natural flow is measured by a United States Geological 

Survey (USGS) stream gage.  For many watersheds that the CBRFC models, the lack 

of flow observations for diversions and reservoirs, especially in near real time, limits 

CBRFC’s ability to compute naturalized flow, which in turn affects the accuracy of 

snow and soil moisture model parameters derived in the calibration process.  Impacts 

of diversions and reservoirs must be estimated because the availability of flow 

observations for the diversions and reservoirs is delayed, sometimes up to a year if 

the flows are available only as part of a water year report. To reduce (though certainly 

not eliminate) uncertainty in the streamflow observations used to evaluate 

experiments, and in an attempt to limit sources of uncertainty to techniques or models 

being tested, the initial focus of the SMADA testbed is on watersheds that (1) are 

minimally impacted by diversions and reservoirs and (2) have a reliable record of 

streamflows measured by the USGS at their outlet.  Additional watersheds may be 

eventually included in the SMADA testbed if diversion and reservoir flow data of 

acceptable quality become available.   

The testbeds will also serve as repositories for research results generated by 

studies focusing on the targeted watersheds.  As the testbeds evolve, additional uses 
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will be identified.  This study serves as one of the pilot projects in the snow modeling 

and data assimilation testbed (SMADA) currently being built at CBRFC. 

 

1.3 PRINCIPAL GOALS AND OBJECTIVES 

 

This research investigates how streamflow predictions are affected by fractional 

snow-covered area (fSCA) observations and a simple technique (DI) for incorporating 

information from such snow observations into a hydrologic model, subject to 

operational constraints.  There are four principal goals/objectives of this study: 

1. Perform an experiment with the simple DI technique and investigate benefits 

and drawbacks to incorporation of fSCA derived from NASA’s MODerate-

resolution Imaging Spectroradiometer (MODIS) into a hydrologic model, 

subject to realistic, operational constraints 

 

2. Determine if DI without recalibration of the operational models can provide 

any benefit (since a major recalibration of model parameters was recently 

completed at CBRFC and personnel time for recalibration is currently limited) 

 

3. Determine the compatibility of observed fSCA from MODIS with snow 

covered area as it is represented in SNOW17 

 

4. Contribute to the snow modeling and data assimilation testbed being 

constructed at the CBRFC. 
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The objectives and goals for this study are tied closely to the concerns of an 

operational environment, which requires efficient and reliable data processing and 

modeling.  This study examines ways in which remotely sensed fSCA data currently 

considered experimental by the NWS RFCs might be used in an operational 

environment.  The study also investigates ways in which the operational modeling 

process must adapt in order to take advantage of the benefits that the remote sending 

data may offer. 

To fulfill these objectives, the current CBRFC operational system is 

examined.  Processing scripts and codes are set up in order to ingest MODIS-derived 

fSCA observations into the CBRFC data processing stream.  A retrospective 

experiment using the fSCA observations via DI is run for a headwater basin.  The 

study period includes water years 2000 to 2010, which are common to the MODIS 

period of record (2000 to present) and the historical period used in the most recent 

round of model calibration at CBRFC (WY1981 to WY2010).  Streamflow 

predictions from the DI simulations are compared to simulations from the operational 

configuration where snow cover is completely model-driven and no satellite-derived 

fSCA values are used.  Differences between streamflow predictions generated by the 

operational (control) and experimental DI systems are investigated, with a special 

focus on determining which system produces more accurate simulations under which 

conditions.  Finally, recommendations for future studies are made, given the results of 

this study. 

The results of this study will be contributed to the collaborative snow 

modeling and data assimilation testbed being constructed at the CBRFC.  One of the 
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intents of this testbed is to serve as a repository for snow hydrology research that is 

focused on CBRFC’s models and the modeling challenges that CBRFC faces. 

 

1.4 POTENTIAL IMPLICATIONS 

 

The results of this study will help CBRFC decide if quantitative use of 

MODIS-derived fSCA observations, at least in terms of the DI technique, should be 

pursued in the RFC’s operational procedures.  Depending on the outcome, pursuit of 

further collaborative research and experiments by the RFC and its research partners 

may be desirable before operational implementation is considered in any further 

capacity.  Alternatively, if results are positive, indicating that adoption of quantitative 

use of satellite-derived fSCA observations in the operational environment should be 

actively pursued, then the results of this study could be used as a starting point to 

further investigation of operational implementation. 

 

1.5 OUTLINE OF REPORT  

 

 This thesis is organized into several chapters.  This chapter introduces issues 

related to hydrologic prediction of snowmelt-driven flows in mountain watersheds.  

The second chapter describes how fSCA is observed by satellite-borne 

instrumentation in mountainous watersheds (including the benefits and limitations of 

such observations).  It also describes how snow is represented in the hydrologic 

modeling system used operationally by the NWS and introduces the DI technique 

used in the study.  The third chapter describes the watershed used in the DI 
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simulations in this study.  The fourth chapter describes the methods of the 

experimental DI simulations.  The fifth chapter discusses results of the retrospective 

experiment.  The last (sixth) chapter reports conclusions and recommends directions 

for further study. 
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CHAPTER 2: BACKGROUND/LITERATURE REVIEW 

 

 

2.1 INTRODUCTION 

 

 This chapter presents overviews of several topics.  Satellite-derived fractional 

snow-covered area observations at sub-1 km resolution are discussed.  The 

mathematical representation of the snowpack in the NWS operational hydrologic 

modeling system is described.  The last section describes how satellite-derived fSCA 

observations have been used to update model estimates of the snowpack. 

 

2.2 SATELLITE OBSERVATIONS OF SNOW COVER  

 

2.2.1 Benefits of Satellite-derived fSCA Observations 

 

Over the past several decades, the CBRFC has used observations 

(precipitation, snow water equivalent, etc.) from point station networks such as the 

National Resources Conservation Service (NRCS) SNOwpack TELemetry) 

(SNOTEL) network and the NWS’s Cooperative Observer Program (COOP) to 

monitor snow conditions.  Despite the important contribution of these observing 

networks to hydrologic forecasting, the point station networks lack the extensive 

spatial coverage that remote sensing data can provide, especially in mountainous 

terrain. 

Regular detailed observations of snow cover on a large scale are nearly 

impossible to obtain for watersheds in mountainous regions via ground field surveys.  
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Rough terrain, inaccessibility, and concerns for crew safety in such terrain prohibit 

surveys on a large scale.  Ground surveys are also intensely time-consuming.   

Instead, hydrologic modelers, snow hydrologists, and others who need 

observations of snow cover extent in mountainous watersheds often turn to remote 

sensing from aircraft or satellite platforms as an attractive alternative.   Snow cover 

observations derived from satellites are particularly useful, as they can sample the 

spatial distribution of snow cover within basins regularly and quickly, without 

endangering a field crew or incurring the cost of aircraft use. Figure 1 compares the 

area covered by a sample gridded satellite-derived snow cover product and SNOTEL 

stations in southwestern Colorado.  Use of data from satellites (such as MODIS-

derived data sets used in this study), in combination with point observations, can 

provide a more complete picture of snowpack conditions. 

 

Figure 1: Spatial extent of remotely sensed snow cover data and SNOTEL station locations in 

southwestern Colorado, with NWS IDs of basins 

 



 

 16 

 

 Satellite-derived snow cover observations at appropriate spatiotemporal 

resolution can help forecasters and modelers identify and monitor abnormalities in the 

snow cover extent, especially when such snow cover may lead to floods if it melts 

rapidly.  Snow cover observations of adequate resolution for mountain basins are 

potentially available from several satellite-borne instruments.   For this study of a 

small mountain watershed, “adequate resolution” is defined spatially as sub-1 km 

resolution and temporally as daily acquisitions. 

Spatial resolution of less than 1 km is desirable because mountainous terrain is 

very diverse; observations of higher resolution are better able to represent conditions 

with mountainous watersheds.  The watershed that is the focus of this study is a small 

mountainous basin (area of ~400 square kilometers), so use of the highest number of 

pixels possible to represent conditions within the basins is desirable.  Temporal 

resolution of at least daily is preferable to increase the chance of obtaining cloud-free 

(or mostly cloud-free) scenes during snowmelt events that span only a few days or 

perhaps a week.  Within the study basin, the snow cover (on average) depletes over 

~10 to 12 weeks (~70 to 85 days); the approximate rate of snow cover depletion is 

greater than 1% per day. 

In conjunction with digital elevation models (DEMs), hydrologists can 

identify the elevation and aspect of the terrain covered by snow, along with the order 

in which areas of the snow cover might melt (low vs. high elevations, south vs. north 

faces, etc.).  Lumped snow models such as SNOW17 (as it is run in NWS RFC 

operations) do not explicitly consider spatial heterogeneity of terrain (aspect, slope, 

land cover including vegetation, etc.); however, model parameters, including areal 



 

 17 

 

depletion curves, can be more appropriately estimated with knowledge of terrain 

characteristics and their impact on snowpack depletion.  Supplementary information 

about the spatial distribution of the snow cover is particularly helpful in years when 

the snowpack persists at low elevations and on south faces past the average date of 

snowpack depletion.  An abnormally extensive late-season snowpack tends to elevate 

the flood potential, so additional observations of the snowpack (including those from 

satellites) during these years would be especially beneficial to forecasters (CBRFC 

Staff, pers. comm., 2011). 

 

2.2.2 Use of the Electromagnetic Spectrum to Observe Snow Cover Extent 

 

Various portions of the electromagnetic spectrum are useful for remote 

sensing of snowpack properties.  The most widely used portions include the visible 

(VZ), near infrared (NIR), and shortwave infrared (SWIR) for monitoring snow 

covered area, along with gamma and microwave (MW) wavelengths for observing 

snow water equivalent (SWE). The short wave infrared (SWIR) wavelengths are used 

to differentiate between clouds and snow (Dozier, 1989).  For satellite-derived fSCA 

observations, sensors operating in the VZ, NIR, and SWIR bands (see Table 1) 

generate the data of highest spatial resolution.  The boundary between the NIR and 

SWIR bands is somewhat arbitrary in the literature, ranging from 1.0 µm to 1.4 µm. 

Armstrong and Brun (2008) define it as 1.1 µm.   
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Table 1: Wavelengths bands useful for observing snow cover extent 

 

Band Wavelength Range 

Visible (VZ) 0.4 to 0.7 µm 

Near Infrared (NIR) 0.7 to 1.1 µm 

Shortwave Infrared (SWIR) 1.1 – 3 µm 

 

 

Observations of sub-1 km spatial resolution that also have high temporal 

resolution currently come from a subset of polar orbiting satellites.  Having both 

adequate spatial and adequate temporal resolution is essential for monitoring fSCA 

conditions in spatially diverse mountainous watersheds, especially when snow 

conditions change may quickly during rapid melt events.  Therefore, this section and 

this report as a whole will focus on the use of the VZ, NIR, and SWIR portions of the 

electromagnetic spectrum to generate fSCA observations and instrumentation on 

certain polar orbiters.  Instruments operating outside the VZ, NIR, and SWIR 

wavelengths are discussed further in only a limited manner.   

 Radiation received at satellite sensors within the VZ, NIR, and SWIR bands of 

the electromagnetic spectrum can be used to differentiate snow-covered areas from 

other types of land cover, when multiple bands are used in combination.  In general, 

snow cover observation is made possible by using the spectral signature of snow and 

the ways in which it differs from spectral signatures of other types of land surfaces.  

Figure 2 (Wright, 2011) shows spectral reflectance curves for various land cover 

types.  Clouds and fresh snow are both highly reflective of VZ light (both appear 

bright white to the naked eye), but their spectral signatures in the NIR and SWIR 

differ.  Clouds are highly reflective of SWIR light, but snow and water are less 
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reflective of SWIR light (see Table 2, which is based on Fig. 2).  The spectral 

reflectance of snow also varies with grain size, as shown in Fig. 3 (Wright, 2011).  By 

exploiting the differences in the spectral signatures of snow and other land cover 

types, the portion of a pixel that is snow-covered can be estimated.   

 

 

Figure 2: Spectral reflectance (!) curves for land cover types (Wright, 2011). 

 

 
 

 

Table 2: Relative Reflectance of Land Cover Types in Different Bands  

 

Land Cover 

Type 

Visible (VZ):  

0.4 to 0.7 µm 

Near Infrared (NIR):  

0.7 to 1.1 µm 

Shortwave Infrared (SWIR):  

1.1 – 3 µm 

Clouds High High 

High 

(much greater than snow) 

Snow High 

Moderate to High  

(varies with grain size) 

Low to Moderate  

(varies with grain size) 

Water Low Very Low Very Low 

Snow-free 

Land Low Low Low 
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Figure 3: Spectral reflectance (!) curves for snow of varying grain sizes (Wright, 2011).  

 

The observed spectrum of snow may also be altered by impurities deposited 

upon the snow surface, such as dust (Painter et al., 2012).   Figure 4 shows an 

example of differences between observed “dusty” snow and modeled “clean” snow.   

The most notable differences occur in the VZ portion of the spectrum, and the 

differences decrease as wavelength increases.  Albedo of dusty and clean snow may 

differ by as much as 50% in the visible portions of the spectrum.  Since wavelengths 

in the VZ portion of the spectrum are essential to the detection of fSCA (see section 

2.2.4.3), impurities upon the snow surface likely impact the accuracy of snow cover 

retrieved by satellite instrumentation.  

 The satellite-derived snow cover data sets used in this study are not adjusted 

for impacts of impurities on the snow spectrum.  Investigation of fSCA derived from 

dusty snow cover that has an albedo much below that of clean snow is planned as part 

of future work. 
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Figure 4: Spectral albedo of clean snow (modeled) and snow with dust concentration of 0.37 

parts per thousand by weight of snow water or mg  g
-1

 (measured) (from Painter et al., 2012) 

 

 

 

2.2.3 Types of Satellite Snow Cover Observations: Binary and Fractional 

 

Types of snow cover estimates from satellite-derived data sets include the 

traditional binary (snow or no-snow) products as well as more recently developed 

subpixel fSCA products.  Both binary and fractional observations of snow cover 

extent use the differences in spectral signatures of snow, clouds, and various land 

covers to determine, in the binary case, whether or not a pixel should be labeled as 

completely snow covered or completely snow-free, and to estimate, in the fSCA case, 

approximately what fraction of a pixel is snow covered.   

The fSCA algorithms aim to give a more complete, more detailed picture of a 

region’s snow cover extent than the binary products do.  Figure 5 shows an example 

of MODIS-derived snow cover in the Sierra Nevada in January 2008 (Dozier et al., 

2008).  Figure 5a shows an fSCA product, in which the snow cover of the pixels 
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spans the full range of 0 to 100%.  Figure 5b shows a binary remapping of the fSCA 

product, in which each pixel is shown as snow-covered or snow-free using an fSCA 

threshold of 50%.  Figure 5c shows the pixels from the fSCA product that have less 

than 50% snow cover.  The pixels with lesser snow cover are usually at lower 

elevations.  In the binary data, these pixels would be classified as completely snow-

free if an fSCA threshold of 50% is used; the binary product would not provide 

information about snow cover at the lower elevations.  The fSCA product implies 

these pixels are at least partially snow covered.  Use of the fSCA product over the 

binary product would provide more detailed information about the extent of the snow 

cover to forecasters and modelers, especially at lower elevations. 

 

 

Figure 5: Fractional and binary snow cover from MODIS (Dozier et al., 2008) 

 

(a) (b) (c) 
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In spatially diverse mountainous watersheds, the snow cover extent can easily 

vary at scales finer than what a satellite-borne instrument can observe in a single pixel 

or field of view.  Because of this characteristic of high elevation, mountainous 

watersheds dominated by snow, subpixel analysis of fSCA is especially useful when 

analysts need the most complete snow cover extent information.  Therefore, the 

binary products are not discussed further in this report.  The details of specific 

methods of deriving fSCA observations, including those from the MODIS instrument, 

will be described in more detail in a later section. 

 

2.2.4 fSCA Observations Appropriate for Mountain Watersheds 

 

2.2.4.1 Sources and Providers  

 

Private-sector satellite programs (QuickBird, Ikonos) can provide land cover 

information of very high spatial resolution (some even at sub-1 m), but these data are 

usually very expensive (DeWalle and Rango, 2008).  In addition, they revisit the 

same location on a very low frequency, and this characteristic does not lend itself to 

snowpack monitoring, especially during rapid snowmelt events that occur on 

timescales of days to a week.   

The most commonly used satellite-derived fSCA data sets that observe the 

western U.S. come from publicly funded efforts, through federal agencies such as the 

National Oceanic and Atmospheric Administration (NOAA), National Aeronautics 

and Space Administration (NASA), and the United States Geological Survey (USGS).  

These agencies provide satellite observations of many types at no extra charge to 

users.  Among these publicly funded programs, the Landsat program, run by NASA 
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and the USGS, provides satellite observations with the highest spatial resolution, 30 

m in most bands, 15 m in the panchromatic band.  The Landsat satellites observe the 

same location on earth once every ~2.5 weeks.  Additional efforts by NASA, 

including the MODIS instrument on its Terra and Aqua satellites, provide fSCA 

observations at 500 m spatial resolution.  Although the MODIS spatial resolution is 

coarser than Landsat’s (500 m vs. 30 m), the MODIS data sets are available on a daily 

basis (depending on cloud cover) versus only once every ~2.5 weeks for Landsat. 

Table 3 summarizes characteristics of satellites and instruments used to 

monitor snow cover in the western United States at sub-1 km resolution as of March 

2013, including planned missions (denoted by italics). These instruments, on polar-

orbiting satellites, provide observations in real time or near real time as of March  

2013.  Table 4 lists the measurement bands applicable to monitoring snow cover for 

the satellite instruments listed in Table 3 (again, instrumentation on future missions is 

italicized).  These wavelength bands and their utility for snow cover observation were 

discussed in more detail in section 2.2.2.  
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Table 3: Publicly-funded satellite instrumentation for observing fSCA.  Italics indicate future 

missions. 

 

Agency NASA NASA/USGS 

 

NASA 

(primary), 

NOAA, 

DOD, 

private 

partners 

NOAA, 

NASA, 

EUMETSAT 

 

 

Satellite 

Terra/ 

Aqua 

Landsat-

5 Landsat-7 LDCM NPP JPSS-1 

Year of  

Launch 

Terra: 

1999 

Aqua: 

2002 1984 1999 Feb 2013 2011 

Jul 2017 

(planned) 

 

Orbit Time/ 

Period 99 min 99 min 99 min 99 min 101 min 101 min 

 

Nominal 

Satellite 

Altitude 705 km 705 km 705 km 705 km 824 km 824 km 

 

fSCA 

Instrument MODIS TM ETM+ OLI VIIRS VIIRS 

 

Swath  

Width 

2330 

km 185 km 185 km 185 km 3000 km 3000 km 

 

Temporal 

Resolution ~daily 16 d 16 d 16 d ~daily ~daily 

 

Nominal 

Spatial 

Resolution at 

Nadir in the 

VZ/NIR/SWIR 

Bands 

Bands 

1-2: 250 

m 

Bands 

3-7: 500 

m 30 m 

30 m  

(15 m in 

panchromatic 

band) 

30 m  

(15 m in 

panchromatic 

band) 750 m 750 m 
 

Sources:  

Terra/Aqua: NASA (No Date) 

Landsat: NASA (2011)  

NPP: CEOS (2011) 

JPSS:  CEOS (2012) 
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Table 4: Satellite instrumentation bands applicable to fSCA observation. Italics indicate future 

missions. 

 

Satellite 

Instrument 

(nominal 

resolution) 

Visible (VZ):  

0.4 to 0.7 µm 

Near Infrared 

(NIR):  

0.7 to 1.1 µm 

Short wave Infrared 

(SWIR): 

1.1 – 3 µm 

 Band Number, Wavelength Range, Violet/Blue/Green/Red (if VZ) 

 

Aqua/Terra 

MODIS 

 

(500 m) 

3: 0.459-0.479 (B) 

4: 0.545-0.565 (G) 

1: 0.620-0.670 (R) 

2: 0.841-0.876  

5: 1.230-1.250 

6: 1.628-1.652 

7: 2.105-2.155 

 

Landsat TM 

 

(30 m) 

1: 0.45-0.52 (B) 

2: 0.52-0.60 (G) 

3: 0.63-0.69 (R) 4: 0.76-0.90 

5: 1.55-1.75 

7: 2.08-2.35 

 

Landsat ETM+ 

 

 (30 m) 

1: 0.450-0.515 (B) 

2: 0.525-0.605 (G) 

3: 0.630-0.690 (R) 4: 0.75-0.90 

5: 1.55-1.75 

7: 2.09-2.35 

 

LDCM OLI 

 

(30 m) 

2: 0.450-0.515 (B) 

3: 0.525-0.600 (G) 

4: 0.630-0.680 (R) 5: 0.845-0.885 

6: 1.560-1.660 

7: 2.100-2.300 

 

NPP VIIRS 

(launched) 

 

JPSS-1 VIIRS 

(to be 

launched) 

 

  (Mx = 750 m) 

M1: 0.402-0.422 (V) 

M2: 0.436-0.454 (V) 

M3: 0.478-0.498 (B) 

M4: 0.545-0.565 (G) 

M5: 0.662-0.682 (R) 

M6: 0.739-0.754 

M7: 0.846-0.885  

M8: 1.230-1.250 

M9: 1.371-1.386 

M10: 1.580-1.640 

M11: 2.225-2.275 

  (Ix = 375 m) I1: 0.600-0.680 (R) I2: 0.846-0.885 I3: 1.580-1.640 
 

Sources:  

MODIS: NASA (No Date)  

Landsat TM: NASA (2011) 

Landsat ETM+: NASA (2011) 

LDCM: NASA and USGS (2010) 

VIIRS: Zhou (2011) 
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2.2.4.2 Importance of Spatiotemporal Resolution in Mountain Basins 

 

Because mountainous watersheds are spatially diverse, and because snow cover 

conditions within them can change rapidly, observations with both high spatial and high 

temporal resolution (within practical limits) are most desirable for monitoring snow cover 

within these watersheds.  Unfortunately, no single available data set currently combines 

the highest spatial resolution with the highest temporal resolution.  Concessions must be 

made with respect to one or the other.   

Private satellite programs like QuickBird offer very high resolution land cover 

observations of less than 1 m (DigitalGlobe, 2006).  However, obtaining observations 

from these programs can be very expensive, with costs of several thousand dollars or 

more.  Also, their very low temporal resolution eliminates them from being used to 

monitor snow cover during rapid snowmelt events.   

The instruments on the geostationary platforms, such as NOAA’S GOES, provide 

observations of the earth’s surface many times a day.  However, at a resolution of 1 km, 

the observations from GOES are thirty times coarser than the observations from polar 

orbiting satellites in the Landsat program.  For large watersheds (e.g., the entire Colorado 

River Basin), a spatial resolution of 1 km for the satellite-derived snow cover 

observations is sufficient.  However, as hydrologic modelers seek to represent processes 

on a regional scale and within individual small mountain watersheds, especially during 

rapid melt events, satellite-based snow observations at a spatial resolution finer than 1 km 

become more desirable.    
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Observations from the Landsat platforms provide data of high spatial resolution 

(30 m), but the frequency of observations is approximately 2.5 weeks.  While they are of 

high spatial resolution, the low temporal resolution of the Landsat observations renders 

them less useful for monitoring snow conditions during snowmelt, particularly if the melt 

is rapid.  Cloud cover further limits Landsat instrumentation from observing snow cover 

extent. 

Starting in the early 2000s, snow cover observations became available with 

NASA’s MODIS instrument.  MODIS, which flies on NASA’s Terra and Aqua satellites, 

represents the best compromise of spatial and temporal resolution currently available.  It 

provides fSCA information at 500 m resolution and on a daily basis (depending on cloud 

cover).  Its much wider swath width enables MODIS to observe the entire earth much 

more quickly than Landsat (185 km vs. ~2300 km, see Table 3).  This higher temporal 

frequency of observation presents a distinct advantage of using snow cover observations 

from MODIS over those from Landsat when near real time observations are needed, 

despite the fact that the MODIS resolution is much coarser than Landsat’s.  Since 

MODIS currently provides the best spatiotemporal resolution for monitoring fSCA in 

mountainous watersheds, MODIS snow cover observations are used in this study. 

 

2.2.4.3 Methods of Deriving fSCA from MODIS  

 

Snow hydrologists seek to extract as much detailed information as possible from 

satellite data.  The snow cover extent in mountainous basins can vary widely within the 

basin and even within a single grid cell or pixel.  Legacy satellite-derived snow cover 

products are binary in nature and assume that an entire pixel is snow-covered or snow-
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free.  With the advent of the MODIS instrument and new fSCA algorithms in the past ten 

years, scientists have regular access to estimates of subpixel fSCA.  Two of the 

techniques used to derive subpixel fSCA from MODIS data are described below.  

 

NDSI-BASED fSCA  

 

The standard MODIS fSCA data sets from NASA are available from February 24, 

2000 to present.  Collection 5 of the MODIS snow products, processed in 2006, is the 

latest official version of the products as of spring 2013.  The data sets consist of subpixel 

fSCA values calculated from a linear regression relationship between the normalized 

difference snow index (NDSI) and snow cover observations from the Landsat ETM+, 

treated as “ground truth” (Salomonson and Appel, 2004).  The NDSI uses reflectance 

values from multiple MODIS bands to distinguish snow from clouds and other types of 

land cover.  The NDSI is a ratio, defined as: 

 

! 

NDSI =  
VZ band -  SWIR band

VZ band +  SWIR band
 (1) 

 

where the VZ band is band 4 for both MODIS instruments and the SWIR band is band 6 

for Terra’s MODIS and band 7 for Aqua’s MODIS.  

Most of the detectors in band 6 on Aqua’s MODIS are no longer functional, so 

band 7 is used to derive fSCA values from Aqua’s MODIS.  In response to the 

degradation in band 6 on Aqua’s MODIS, Salomonson and Appel (2006) investigated 

whether the second MODIS band in the SWIR portion of the spectrum, band 7, could be 
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used to calculate a NDSI and to identify whether or not a pixel is snow-covered.  They 

determined that using band 7 to derive fSCA from Aqua’s MODIS results in comparable 

values to using band 6 to derive fSCA from Terra’s MODIS but that the Terra MODIS 

had slightly better performance when compared to snow cover from Landsat data.  The 

fSCA values from Terra’s MODIS are generally preferred by users over the Aqua 

MODIS values due to (a) the longer period of record for Terra’s MODIS (1999 to present 

for Terra versus 2002 to present for Aqua) and (b) the detector problems in band 6 of 

Aqua’s MODIS and the use of the alternate SWIR band 7 to calculate fSCA. 

After the NDSI is computed, additional tests screen for water that may exhibit a 

snow-like NDSI value (Riggs et al., 2006).  Water pixels initially identified as snow are 

then reclassified as non-snow.  In forested areas, the NDSI value may be low and indicate 

a non-snow land type; yet, snow cover is nonzero.  To accommodate detection of snow 

cover in forested areas, NASA checks for low NDSI values that coincide with certain 

thresholds of the normalized difference vegetation index (NDVI).  If thresholds are met, 

pixels that may initially be labeled as non-snow because of a low NDSI value may be 

reclassified as snow covered. 

Once a pixel passes the checks described above, its fSCA value is computed. The 

NDSI value is input to the linear regression equations developed by Salomonson and 

Appel (2006) to generate subpixel fSCA values for MODIS snow cover products.  For 

Terra’s MODIS, the relationship between the MODIS NDSI and “ground truth” 

observations from Landsat ETM+ was determined to be: 

 

! 

FSCA = "0.01+1.45NDSI    (2) 
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The linear regression algorithm that generates the subpixel fSCA values is 

computationally frugal and reasonably accurate when compared to data from Landsat 

ETM+, with reported correlation coefficients of ~0.9 (Salomonson and Appel, 2006). 

 

fSCA FROM SPECTRAL MIXTURE ANALYSIS 

 

 In recent years, spectral mixture analysis has gained traction as a way to derive 

subpixel fSCA estimates, especially in forested mountainous basins where the land cover 

types may vary widely even within a single pixel.  Spectral mixture analysis assumes that 

the sensor observation is determined by a linear combination of contributions from 

individual endmembers such as rock, bare soil, vegetation, and snow.  Mathematically: 

 

    (3) 

 

where  

 

RS,$ = pixel-averaged surface reflectance measured by the sensor at wavelength $ 

N = number of spectral endmembers 

R$,i = reflectance of the ith endmember at wavelength $ 

Fi = fraction of the pixel attributable to endmember i 

%$ = the residual error at $ for the fit of the N endmembers 

 

 

Fi, the fraction of the pixel covered by the i-th endmember (which could be snow) is 

determined by examining different linear combinations of endmembers and minimizing 

the residual error via numerical methods like least squares.   

Multispectral instruments like MODIS have multiple bands that allow the use of 

spectral mixture models.  Spectral mixture analysis is more computationally intensive 
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than the NDSI-based algorithm for determining fSCA.  However, with improvements in 

computing power, fSCA derived from spectral mixture analysis is becoming more widely 

utilized.  As one example of this method, Painter et al. (2009) developed a model called 

MODSCAG (MODIS Snow-Covered Area and Grain size) that uses spectral unmixing to 

derive subpixel fSCA information.  MODSCAG uses the 16-bit MODIS surface 

reflectance product (MOD09GA), examines the reflectance values in each of seven 

bands, and searches a library of endmembers for combinations of endmembers that 

minimize the error in equation (3) above.    

The library contains endmembers representing spectral signatures of various land 

covers such as soil, rock, vegetation, etc.  The spectral signatures are generally derived 

from field or lab measurements.  The library also contains model-derived snow 

endmembers with different grain sizes.  The snow endmembers are spectrally similar, but 

with subtle differences.  Because the snow endmembers are too similar to allow 

resolution of multiple unique snow grain size endmembers within the same pixel, the 

MODSCAG algorithm allows only one snow endmember per pixel.  However, the snow 

endmember is allowed to vary from pixel to pixel.  MODSCAG solves for each different 

combination of endmembers and generates thousands of candidate combinations for each 

pixel (Dozier and Frew, 2009).  The chosen combination is the one with the lowest root 

mean square error (RMSE), defined as:

  

 

   (4) 
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2.2.5 Limitations of Satellite-derived fSCA Observations  

 

Despite their growing use and popularity, the snow cover products from satellites 

have limitations and drawbacks.  Methods of correcting for these drawbacks exist for 

some of the limitations.  Some of these limitations are described below. 

 

2.2.5.1 Lack of SWE Information 

 

By themselves, fSCA observations do not provide any volumetric estimates of the 

water content of the snowpack, which could be used to infer the potential snowmelt 

runoff volume.  In mountain basins, much SWE may be lost and appear as streamflow 

before the fSCA drops below 1.0 (100%).  Satellite instruments operating in the 

microwave wavelengths can provide SWE information, but the horizontal resolution of 

these data sets is too coarse (e.g., 25 km for the AMSR-E instrument on the Aqua 

satellite) to be used in spatially diverse mountain watersheds.  While SWE information is 

not available directly from satellite-derived fSCA observations, SWE is often inferred 

through the use of snow cover depletion curves (SDCs).  Liston (1999) describes 

relationships among melt rate, SWE distribution, and snow cover extent that could be 

used to model snowpack characteristics if two of the three pieces of information listed are 

available. 

 

2.2.5.2 Limited Seasons of Usefulness 

 

Satellite-derived fSCA information is most useful during the accumulation and 

ablation seasons.  There are finite bounds on fSCA values; these bounds are 0% and 

100%.  Algorithms used to derive fSCA, such as the NDSI method and algorithms based 
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on spectral mixture models, also have practical limits in the lower bound.  They are less 

accurate when only a small fraction of the pixel is covered by snow.  The signal from the 

small amount of snow may be overwhelmed by spectral signatures from other surface 

types (soil, rock, vegetation, etc.).  The practical lower detection capacity of subpixel 

fSCA for the MODSCAG algorithm, for example, is 10-15% (Painter et al., 2009).  As 

fSCA approaches zero, the uncertainty in the fSCA is large enough that confidence in the 

derived fSCA below a 10-15% threshold diminishes greatly.  In fact, fSCA values below 

this threshold are zeroed out in the MODSCAG data sets (T. Painter, pers. comm., 2013). 

The water content of the snowpack can change drastically while the fSCA 

observation for a grid cell or basin-wide areal fSCA average remains at 100%.  A 

significant amount of snow may melt before the fSCA drops below the upper bound of 

100% (Clark et al., 2006).  Until the fSCA values drop below 100%, satellite-derived 

fSCA observations do not provide additional information to a hydrologic model or a 

hydrologic forecaster, even if snowmelt is indeed ongoing and driving streamflow.  Any 

improvements in streamflow prediction due to the inclusion of fSCA are limited to the 

period when fSCA values are less than 100%.  However, even though the time during 

which the fSCA values are able to inform a hydrologic model or forecaster may be short, 

the rapid melt events are when the additional information is most needed.   

 

2.2.5.3 Inaccurate Observations at Large Scan Angles 

 

Observations derived from satellite-borne instrumentation are most accurate at 

nadir (directly below the spacecraft).  At off-nadir viewing angles, the sensor observes a 

much larger area at the edge of a scan than the nominal spatial resolution of the 
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observations (500 m for MODIS data sets used to derive fSCA).  Figure 6 (Dozier et al., 

2008, amended with qualitative indication of pixel size) illustrates the viewing geometry 

for off-nadir pixels and the larger area that the sensor observes at a large scan angle (") 

compared to the instantaneous field of view (IFOV) seen at nadir.  MODIS’s maximum 

scan angle of 55°, along with effects of the earth’s curvature, causes pixels far from nadir 

to be stretched to about ten times larger than nadir pixels (Dozier et al., 2008).   

In MODIS-derived snow cover data sets that have their roots in the MODIS 

spectral reflectance data, the stretched pixels from large scan angles are resampled to  

500 m, and the reflectance value from the stretched pixel is assigned to the resampled  

500 m pixels.  In this case, all of the 500 m pixels derived from the stretched pixel are 

assigned the same reflectance value, that of the stretched pixel.  Subsequently, snow 

cover derived for these resampled reflectance pixels will be the same since their assigned 

reflectance values are the same.  When these stretched pixels (caused by large scan 

angles) are included in satellite data sets, even if they are resampled to 500 m, the 

satellite observations of snow cover are less accurate than those at nadir.  
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Figure 6: Viewing geometry for off-nadir pixels (after Dozier et al., 2008). The variables in the figure 

are defined as follows: " = instrument scan angle, "s = sensor zenith angle, H = sensor altitude above 

the earth’s surface, Hs = path length from the sensor to the surface (H = Hs at nadir), c = the arc 

length along the surface, from nadir to the image point, # = the angle that subtends the instantaneous 

field of view (IFOV). 

 

 

2.2.5.4 Forest Cover 

 

Because MODIS is an optical sensor, it does not detect emitted radiation from 

objects beneath tree canopies.  Instead, it sees the land surface only in open areas and 

through canopy gaps.  Hence, the snow conditions observed by the sensor are often 

different from the actual snow cover, especially in heavily forested regions where the 

breaks in the forest canopy are small.  The problem is exacerbated at large off-nadir scan 

angles. 

Forest cover poses a challenge in snow cover monitoring, because extensive forest 

cover in mountainous areas often coincides with snow-covered areas.  For example, Klein 

et al. (1998) estimate that, for the month of February, approximately 36% of the snow 

covered areas in North America are also covered by forests, and that detection of snow 

IFOV at nadir 

Stretched pixel at large off-nadir scan angle 
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under the canopy, where it remains in the spring when open areas have melted out, is 

challenging. 

Attempts have been made to correct for vegetation in snow cover mapping.  

Raleigh et al. (2011) describe one vegetation correction to fSCA values.  The correction 

uses the “viewable gap fraction,” which is defined as 1 – F, where F is the fractional 

forest canopy density from the 2001 National Land Cover Data Set.  Mathematically, 

their corrected fSCA value is: 

 

  
(5) 

 

They acknowledge that this type of correction may not be robust, as it assumes that snow 

conditions in the forest are proportional to snow conditions in clearings and forest gaps.   

The Raleigh et al. (2011) study compared snow cover from a ground network of 

snow sensors with individual MODSCAG fSCA pixels.  At one (moderately forested) of 

their three test sites, there was reasonable agreement between the MODSCAG fSCA and 

the fSCA computed from the ground sensor network.  At the other two sites (one heavily 

forested, one lightly forested), the MODIS-derived fSCA declined much more rapidly 

and much earlier than the ground sensors indicated.  Though, in the lightly forested area, 

the fSCA data were impacted by off-nadir angles and cloud cover.  The assumption that 

snow conditions in a forested area are proportional to those in open areas is often violated 

because snow cover patterns depend on types of trees, among other factors.  Their study 

suggests that the vegetation correction method should not assume that the snow 

conditions in clearings and under forest canopies are similar.  Further studies of sub-
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canopy conditions would be necessary to develop a robust vegetation correction.  

However, validation of vegetation correction methods on a basin scale may be difficult 

due to the need for high resolution, ground-based validation data sets.  NASA’s Jet 

Propulsion Laboratory (JPL) recently received funding to begin a study related to 

adjustment of remote sensing data for vegetation (T. Painter, pers. comm., 2012).   

 

2.2.5.5 Cloud Cover 

 

While other characteristics of satellite-derived fSCA observations limit their 

usefulness, cloud cover is the dominant drawback of snow cover observations derived 

from optical satellite instrumentation like MODIS.  Optical instruments like MODIS 

cannot penetrate cloud cover in order to determine snow cover conditions on the land 

surface.  Snow-covered area products from MODIS, including the NDSI-based fSCA 

observations and alternatives like the MODSCAG algorithm, are both hindered by cloud 

cover.  In a study focusing on Austria, Parajka and Blöschl (2006) found that the utility of 

the MODIS snow cover data varies with cloud coverage, and, because the cloud cover 

varies seasonally, so does the utility of the MODIS observations. 

Prolonged periods of extensive cloud cover, which tend to occur in the winter 

months in the western United States, can obscure the land surface conditions (including 

snow cover) for days.  For example, in January 2008 over the Sierra Nevada, clouds 

covered 70% or more of the area on eight days out of the month (Dozier et al., 2008).  As 

the cloud cover persists for longer periods of time, the uncertainty in satellite-derived 

fSCA estimates over a basin increases dramatically.   
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The uncertainty due to cloud cover in satellite-derived fSCA estimates should be 

considered when these observations are used in hydrologic prediction, especially during 

snowmelt events on short time scales.  Models generate continuous snow-covered area 

estimates without consideration of cloud cover.  So, if the satellite-derived estimates of 

fSCA are used to update snowpack conditions in a hydrologic model, the effect of cloud 

cover on the fSCA estimate should be considered in some manner. 

There are two parts to the cloud cover problem when considering snow cover 

estimation for cloudy pixels.  First, clouds must be correctly identified from snow in the 

satellite observations. Secondly, one must decide whether or not to interpolate or 

approximate fSCA for cloudy pixels, in hopes of making a basin fSCA estimate more 

informative. 

Cloud detection algorithms of many varieties have been developed in the past two 

decades, aiming to correctly and efficiently differentiate cloud from snow.  These cloud 

detection algorithms are generally successful for thick clouds.  However, thin clouds may 

still sometimes be mistaken for snow. 

The standard MODIS snow cover product at 500m resolution, produced by NASA 

(Terra: MOD10A1, Aqua: MYD10A1), labels pixels as cloud-covered, but the standard 

500 m product does not currently provide an estimate of fSCA for cloudy pixels.  In the 

MODSCAG fSCA product, fSCA is not currently estimated for cloudy pixels.  NASA’s 

JPL has plans to incorporate fSCA estimates for cloudy pixels into their product in the 

future (T. Painter, pers. comm., 2012).   

In attempts to make fSCA estimates derived from MODIS usable even on cloudy 

days, efforts have been made by users of MODIS fSCA data to estimate the snow cover 



 

 40 

 

for cloud-obscured pixels.  These methods are successful to varying degrees.  Examples 

of snow cover estimation methods for cloudy pixels are described below. 

 

COMBINATION PRODUCTS 

 

 Combination products are a popular way of reducing data loss due to cloud cover 

in MODIS grids.  Gao et al. (2010) describe a method that combines Terra and Aqua 

MODIS data with snow cover information implied by the AMSR-E SWE product.  Their 

method first combines Terra and Aqua MODIS snow cover grids, reclassifying the 

cloudy pixel as snow if the grid cell from either the Aqua or Terra MODIS is snow.  If 

the grid cell is cloudy in both the Aqua and Terra MODIS, then the pixel is left as cloudy.  

For the cloudy pixels that remain after the Terra and Aqua MODIS combination is 

performed, information from the microwave AMSR-E instrument is used to infer snow 

conditions.   

 

SPATIAL AND TEMPORAL FILTERS 

 

Filters use neighboring pixels in space and time to estimate snow cover conditions 

for cloudy or otherwise indeterminate pixels.  The techniques aim to reduce the amount 

of cloud coverage in a scene, in hopes of generating more useful snow cover estimates 

over basins. 

Parajka and Blöschl (2008) replaced cloudy pixels with estimates of snow 

conditions derived from a combination of Terra and Aqua snow cover data, as well as 

spatial and temporal filters.  Before applying the spatial and temporal filters, they 
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combined the MODIS snow information from Terra and Aqua into a combination 

product.  In this combination product, any cloudy pixels from the Aqua MODIS grids 

took the class of the corresponding Terra pixel if the Terra pixel was non-cloudy.  If both 

were cloudy, then the pixel was left as cloud and was subjected to the spatial and 

temporal filters.  The spatial filter replaced the cloudy pixel with the class (land or snow) 

of the majority of non-cloud pixels in the eight pixel neighborhood.  If there was a tie, the 

cloudy pixel was assumed to be snow covered.  The temporal filter replaced cloudy 

pixels by the most recent preceding non-cloud observation at the same pixel within 

various time windows of 1, 3, 5, and 7 days.  The authors found that use of the combined 

and filtered MODIS snow cover data improved their estimates of snow conditions in their 

snow model when compared to snow depth measurements from independent ground 

stations. 

Hall et al. (2010) applied a similar methodology of replacing cloudy pixels with 

snow cover values from previous days, to fill in gaps due to cloud cover in the 0.05 

degree snow cover data set (MOD10C1).  Accompanying the “cloud gap filled” (CGF) 

snow cover data set is a data set of cloud-persistence-count (CPC) values that indicates, if 

the grid cell in the original data set was cloudy, the age (in days) of the snow cover value 

that replaces the cloud value.  This quality indicator allows users to choose their own 

tolerance with respect to age of the snow cover observation that replaced cloudy grid 

cells.  Their results indicate that 80 to 100% more snow cover values are included in the 

CGF product when the CPC threshold is relaxed from 0 to 3 days. 
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USING THE LOCATION OF THE SNOWLINE  

 

Parajka et al. (2010) proposed that cloudy pixels be reclassified as snow or land 

according to their elevation with respect to the regional snow line.  Their evaluation was 

conducted over Austria using MODIS data from the Terra satellite.  In their pixel 

reclassification method, they compared the elevation of each cloudy pixel to the mean 

elevation of all the snow pixels and the mean elevation of the snow-free land pixels.  

Cloudy pixels were assigned as snow if their elevation was above the mean snow line, 

and they were assigned as snow-free land if their elevation was below the mean elevation 

of land pixels (the “land line”).  Cloudy pixels between the snow line and the land line 

were reclassified as “partially snow covered.”  They realized that extensive cloud cover 

would limit the use of this method of estimating snow conditions for cloudy pixels, so 

they applied cloud cover thresholds.  If cloud cover was above a certain percentage on a 

day, the snow cover estimation was not performed, and pixels were left classified as they 

were in the original Terra data set. 

 

2.3 OPERATIONAL MODELING OF SNOW AT NWS RFCS 

 

2.3.1 Overview of the Operational NWS Hydrologic Modeling System 

 

 The NWS RFCs are responsible for providing operational hydrologic guidance, 

including streamflow predictions, to their partner NWS weather forecast offices (WFOs).  

The WFOs are tasked with the responsibility of issuing official flood watches and 

warnings when necessary.   
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Included in the hydrologic guidance from the RFCs is output from the NWS 

hydrologic forecasting, prediction, and modeling system called the Community 

Hydrologic Prediction System (CHPS).  CHPS is a forecasting and modeling framework 

that manages input data, execution of the models, and output data, including real-time 

streamflow forecasts.  Within CHPS, forecasters are able to run the hydrologic model in 

near real time, including its embedded snow and soil moisture modules, on demand.  

Typically, updated hydrologic guidance is available from the RFCs once a day, but 

updates can be issued more frequently in flood situations.  Figure 7 shows an overview of 

the processes and modules involved in the operational NWS hydrologic forecasting 

system.  This study focuses on the snow model, SNOW17 (Fig. 8), which is included in  

“Snow accumulation and ablation” in the “Hydrologic and Hydraulic Models” portion of 

the overall modeling system (Fig. 7). 

 

 

Figure 7: RFC hydrologic forecast system (Demargne et al., 2009) 
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2.3.2 Overview of SNOW17 

 

 The NWS RFCs currently use the SNOW17 snow accumulation and ablation 

model in a lumped fashion as the snow model in their operational hydrologic modeling 

systems.  SNOW17 is a relatively simple conceptual model that requires only 

temperature and precipitation as the minimum input observations (Anderson, 2006). 

SNOW17 is primarily a temperature-index snow model that computes snowmelt under 

non-rain conditions by multiplying the difference between the air temperature and a base 

temperature by a melt factor [mm C
-1

 day
-1

].  It also includes simplified energy balance 

calculations to handle rain-on-snow events. Air temperature has been shown to be highly 

correlated with snowmelt and several energy balance components (Hock, 2003).  

Snowpack processes represented within SNOW17 include the accumulation of the 

snowpack, energy exchange at the snow-air and snow-soil interfaces, snowpack heat 

deficit accounting, and transmission (including lag and attenuation) of liquid meltwater 

within the snowpack.  Vertically, SNOW17 represents the snowpack as a single layer, in 

contrast to alternative snow models that model the snow in multiple layers, such as 

SNTHERM (Frankenstein et al., 2008).  SNOW17 can be applied at a point or to an area. 

The primary SNOW17 state variables are listed in Table 5.  Figure 8 shows the major 

physical processes considered by SNOW17. 
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Figure 8: Flowchart of SNOW17 (Anderson, 2006) 

 

 

 

Table 5: Primary SNOW17 state variables (Anderson, 2006) 

 
State 

Variable Description Units 

Wi Water equivalent of the ice portion of the snow cover mm 

D Heat deficit mm 

ATI Antecedent temperature index C 

Wq Liquid water held by the snow mm 

Wmax Max water equivalent during an accumulation period mm 

Wns 

Water equivalent when new snowfall first occurs on a partly bare area (i.e., the 

water equivalent at the point where the areal cover leaves the depletion curve) mm 

Ans 

Areal cover when new snowfall occurs on a partly bare area (i.e., the depletion 

curve value at the point where the areal cover leaves the curve) 

decimal 

fraction 

W100 

Amount of water equivalent where the areal cover drops below 100% when 

melt occurs after new snowfall takes place on a partially bare area mm 

S Amount of lagged excess liquid water in storage mm 

Aadj 

Ai value computed for use in depletion curve computations after an adjustment 

to the areal extent of snow cover – allows the water equivalent to remain the 

same as before the adjustment  mm 

El Average hourly lagged excess water for each precipitation &t m 

H Depth of snow cover cm 

Ts Average snow cover temperature C 

Ta,t-&t Air temperature for the previous computational time interval C 
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 SNOW17 is designed to run for one specific point (where snow cover extent is 

not considered) or an area (where snow cover extent is considered).  For both points and 

areas, a set of model parameters is derived in the calibration process. When applied to an 

area, SNOW17 uses an areal depletion curve (ADC) and the SI parameter (the SWE 

index value below which the ADC is in effect) to model the snow cover extent (AESC).   

 When SNOW17 is used in mountainous areas, watersheds are typically divided 

into two or three subareas by elevation, and SNOW17 is applied over each subarea, 

which the NWS terms an “elevation zone.”  Figure 9 shows the elevation zones for the 

Weber River headwater basin, the basin used in this study.  The intention of dividing a 

modeled watershed into subareas and running SNOW17 over each subarea is to better 

capture spatial variability of the modeled watershed’s physiographic characteristics, at 

least as far as the constraints of the NWS operational environment allow.  The potential 

implementation of a fully distributed hydrologic model is currently limited in operations 

at NWS RFCs, particularly with respect to computing power. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9: OAWU1 basin, with elevation zone divisions used in the NWS hydrologic model 
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 The limited number of inputs makes SNOW17 attractive for use in an operational 

environment, as precipitation and temperature observations are more likely than other 

types of observations (radiation, wind, etc.) to be available in real time for operational 

forecasting (Hock, 2003).  Estimates of mean areal temperature (MAT) and mean areal 

precipitation (MAP) are computed from point station data (usually stations from the 

NRCS’s SNOTEL network and from the NWS’s COOP network) for each elevation 

zone.  The point stations are assigned weights that are determined in the calibration 

process, and those weights are used in conjunction with the point data to generate MATs 

and MAPs for each elevation zone.  The MATs and MAPs are used to build the 

snowpack and drive snowmelt within SNOW17.  SNOW17 is applied to each elevation 

zone to generate meltwater outflow that can then be passed to subsequent modules 

(including a soil moisture accounting model) in the forecasting system.   

SNOW17 is a calibrated model; model parameters are necessary because every 

detail of snowpack physics is not explicitly represented in SNOW17.  The parameters are 

intended to represent the physical characteristics of the elevation zone to which SNOW17 

is applied, as well as the prevailing weather patterns (storm types, etc.).  With knowledge 

of the characteristics of the basin to be calibrated (and parameters for surrounding basins 

if nearby basins are already modeled with SNOW17), users can make initial educated 

estimates of the SNOW17 parameters for the basin to be calibrated.  The initial estimates 

of the model parameters can be fine-tuned within the calibration process itself.  Table 6 

lists the model parameters, both major and minor. 
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Table 6: SNOW17 Parameters (Anderson 2006, NWS 2004, and Franz and Karsten, 2013) 

 

Model 

Parameter 

(units) Description 

Major 

(large 

effect on 

modeled 

snowpack) 

or minor 

parameter Purpose  Typical Values 

Effects on 

simulated 

snowpack  

 

SCF  

[dim’less] 

 

Snow 

Correction 

Factor 

 

Major 

 

Accounts for: 

changes to 

snowpack volume 

 

precipitation gage 

catch deficiencies 

caused by wind 

 

sublimation 

 

<1.0 – high 

sublimation  

 

1.0 – sheltered, 

non-windy sites 

 

1.2 – reasonable 

default 

 

>1.2 – windy, 

exposed sites 

 

Affects : 

water balance  

 

amount of snow 

that needs to melt 

before bare 

ground appears 

 

max accum SWE 

 

volume of runoff 

 

MFMAX 

(mm/C/6hr) 

 

Maximum 

Melt Factor – 

June 21 

 

Major 

 

Accounts for 

climatic and 

physiographic 

characteristics of 

an area, including 

forest cover, 

which is not 

explicitly input to 

SNOW17 

 

 

 

 

0.5 – 0.8 – dense 

forest 

0.8 – 1.0 – mixed 

forest 

1.0 – 1.3 – 

coniferous forest 

1.3 – 2.0 – open 

areas 

 

MF in windy 

areas > MF in 

calm areas 

 

MF in areas w/ 

south facing areas 

> those w/ north 

facing areas 

 

Affects melt rate 

in late winter and 

spring (after 

March 21) 

 

Affects timing of 

snowmelt and 

rate of snowmelt  

 

Since MFMAX  

affects melt rates, 

it affects SWE, 

and also fSCA, 

since fSCA = 

f(SWE) 

 

MFMIN 

(mm/C/6h) 

 

Minimum 

Melt Factor – 

December 21 

 

Major 

 

Account for 

climatic and 

physiographic 

characteristics of 

an area, including 

forest cover, 

which is not 

explicitly input to 

SNOW17 

 

0.2 – 0.3 – dense 

forest 

0.25 – 0.4 – 

mixed forest 

0.35 – 0.5 – 

coniferous forest 

0.5 – 0.9 – open 

areas 

 

 

 

Affects melt rate 

during the winter 

(if melt does 

occur during the 

winter).   

 

Important for 

areas that melt 

out early 

(southern 

latitudes, lower 

elevation, 

maritime 

climates) 
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Model 

Parameter 

(units) Description 

Major 

(large 

effect on 

modeled 

snowpack) 

or minor 

parameter Purpose  Typical Values 

Effects on 

simulated 

snowpack  

 

UADJ  

(mm/mb/6h) 

 

Average 

wind 

function 

during rain-

on-snow 

events 

 

Major 

 

Account for 

acceleration of 

melt during 

windy rain-on-

snow events 

 

0.03 – 0.19  

 

Lower in sheltered, 

less windy areas 

 

Higher in open, 

windy areas 

 

Increases or 

decreases melt 

rate 

 

ADC   

(no units) 

 

Areal 

depletion 

curve 

 

Major 

 

Relates the snow 

cover extent to 

the amount of 

water equivalent 

left in the 

snowpack 

 

Represents modeled 

snow cover extent 

(AESC) as a function 

of simulated SWE 

 

Consists of ten pairs 

of values that relate a 

mean areal SWE 

index to the areal 

extent of snow cover  

 

Shape depends 

empirically on 

characteristics of 

modeled area (land 

cover, heterogeneity 

in melt rates, etc.) 

 

Affects rate of 

snowpack 

depletion once 

AESC drops 

below 100% 

 

SI 

(mm) 

 

Amount of 

water 

equivalent 

above which 

100% snow 

cover exists 

 

Major 

 

Threshold below 

which the areal 

depletion curve 

goes into effect 

 

During initial 

calibration, at least 

equal to or greater 

than the max water 

equivalent that occurs 

during the calibration 

period, but usually 

less. 

 

If SI is 

increased, then 

ADC goes into 

effect earlier 

during the melt 

season. If ADC 

is in effect 

earlier, the 

snowpack melts 

more slowly. 

 

If SI is 

decreased, the 

ADC goes into 

effect later.  If 

ADC is in effect 

later, then the 

snowpack melts 

more quickly. 
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Model 

Parameter 

(units) Description 

Major 

(large 

effect on 

modeled 

snowpack) 

or minor 

parameter Purpose  Typical Values 

Effects on 

simulated 

snowpack  

 

NMF  

(mm/C/6hr) 

 

Maximum 

negative melt 

factor 

 

Minor 

 

Determines 

amount of energy 

exchange that 

occurs when melt 

is not taking place 

at the snow 

surface. 

 

Accounts for the 

thermal 

conductivity 

changes within the 

snowpack. 

 

Function of snow 

density and depth 

 

~0.05- ~0.4, 

depending on 

snow density 

 

Affects heat 

conduction 

through the 

snowpack  

 

Varies with the 

MF. 

 

Heat conduction 

is scaled by 

NMF. 

 

TIPM 

(dim’less) 

 

Antecedent 

Temperature 

Index 

Parameter 

 

Minor 

 

Used in 

computation of the 

ATI (antecedent 

temperature 

index), which is an 

approximation of 

the temp within 

the snowpack at 

some depth 

 

0.01 – 1.0 

 

> 0.5 – gives 

weight to air 

temps w/in the 

past few 6h 

periods when 

computing ATI 

(appropriate for 

shallow snow 

cover) 

 

< 0.2 – gives 

weight to air 

temp over the 

past 3-7 days 

(appropriate for 

deep snow covers 

due to increased 

depth and heat 

storage capacity) 

 

Impacts the rate 

at which the 

snowpack ripens 
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Model 

Parameter 

(units) Description 

Major 

(large 

effect on 

modeled 

snowpack) 

or minor 

parameter Purpose  Typical Values 

Effects on 

simulated 

snowpack  

 

MBASE  

(C) 

 

Base 

temperature 

for non-rain 

melt  

 

Minor 

 

Allows user to 

vary the temp. 

above which melt 

typically occurs 

(used when the 

point stations for 

estimating the 

mean areal temp. 

have different 

characteristics 

than the modeled 

area itself) 

 

Typically 0 C in 

vast majority of 

watersheds. 

 

May be set to 0.5 

to 1 C in areas w/ 

dense forest 

where stations 

used to estimate 

temperature in 

the area are in 

open areas 

 

Impacts timing of 

melt 

 

PXTEMP 

(C) 

 

Threshold 

that defines 

precipitation 

type (rain or 

snow) 

 

Minor 

 

Provide a 

threshold by 

which to type 

precipitation 

 

0.5 – 2 C.   

 

May be 3 -5 C if 

area 

characteristics 

allow snow to fall 

at higher 

temperatures. 

 

Affects the 

volume of SWE, 

and fSCA, since 

fSCA = f(SWE) 

 

PXTEMP 

uncertainty is 

greater at lower, 

warmer elevs. 

(He et al., 2011) 

 

PLWHC 

(decimal 

fraction) 

 

Percent 

liquid water 

holding 

capacity for 

ripe snow 

 

Minor 

 

Defines the how 

much liquid water 

might be stored in 

a snowpack 

 

0.02 – 0.05  

 

Larger (0.2 – 0.3) 

in areas with 

slush layers and 

shallow slopes 

that slows the 

drainage rate of 

melt water 

 

Impacts 

attenuation of 

meltwater 

through the 

snowpack 

 

DAYGM 

(mm/day) 

 

Average 

daily ground 

melt during a 

typical 

winter 

 

Minor 

 

Allows for melt at 

the snow-soil 

interface in areas 

where the soil is 

not completely 

frozen 

 

0.0 - areas w/ 

frozen ground 

 

0.3 – areas with 

mild climates and 

deep snow cover 

(e.g., Sierra 

Nevada) 

 

> 0.3 – areas with 

infrequent snow 

 

Impacts amount 

of melt that may 

occur during the 

winter, at the 

snow-soil 

interface 
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Two important SNOW17 parameters that impact snowmelt (especially its timing) 

are the “maximum melt factor” (MFMAX) and the “minimum melt factor” (MFMIN), 

used to define a sine curve that represents the seasonally varying melt factor, which 

relates the amount of snowmelt to a unit change in air temperature.  In the northern 

hemisphere, the maximum value of the SNOW17 melt factor occurs on June 21 and the 

minimum on December 21, indicating the relative amount of radiation incident on the 

snowpack at different times of the year.   Incoming solar radiation peaks on the summer 

solstice, though the actual amount of radiation that reaches the snowpack may be altered 

by cloud cover or a forest canopy.  As the snowpack melts through the spring and into the 

summer and snow grain size increases, the albedo of the snowpack is also reduced, which 

also affects the amount of energy absorbed by the snowpack.  

 The melt factor representation of the relative contributions of various energy 

balance components is certainly not perfect.  However, implementation of a snow model 

into NWS operations, that includes more details of the energy balance, is still years away. 

SNOW17 works well under most conditions, especially within the constraints of 

an operational environment.  For example, Franz et al. (2008) found that SNOW17 and 

an energy balance model performed comparably, and in some cases, SNOW17 bested the 

energy balance model.  However, conditions that deviate from those observed within the 

historical period used in the model calibration challenge SNOW17 as a temperature index 

model.  Anderson (2006) cites one such example of warm temperatures combined with 

high humidity and strong winds permitting a larger than normal contribution of the 

sensible and latent heat terms to the energy balance.  In this case, SNOW17 tends to 

underestimate meltwater volume (Anderson, 2006).  Also, large deviations of albedo 
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from the assumed average conditions (perhaps from dust deposited onto the snowpack’s 

surface) affect the energy input to the snowpack, as well as melt timing and melt rates.  

Since SNOW17 does not explicitly account for albedo, situations where the snowpack 

albedo differs greatly from assumed normal conditions render the temperature index 

model less representative.  Updates of model conditions via inclusion of snow 

observations may alleviate this shortcoming of SNOW17. 

 

2.3.2.1 Importance of Snow Cover Extent in SNOW17 

 

SNOW17 tracks the areal extent of snow cover (AESC) for each elevation zone of 

a basin as the model marches forward in time.  Many of SNOW17’s calculations, 

including those related to snowpack melt, are made assuming mean areal values and are 

based on 100% snow cover.  For example, the equations representing melt under rainy 

and non-rain conditions, the change in heat storage in the snowpack, and ground melt are 

all based on 100% snow cover (Anderson, 2006).   

SNOW17 adjusts the computed melt volumes at the surface of the snowpack and 

at the soil-snow interface by the snow covered area fraction before passing any melt 

volume to other routines or modules in the NWS hydrologic modeling system.  If the 

modeled area or elevation zone is less than 100% snow covered, then any melt volume 

computed by the equations that assume 100% snow cover is multiplied by the AESC 

value.  That volume of snowmelt (initially computed assuming 100% snow cover and 

then reduced by the AESC value if AESC is less than 1.0 or 100%) ultimately becomes 

part of the outflow from SNOW17.   
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Tracking snow covered area is necessary so that water volumes output from 

SNOW17 (initially computed assuming 100% snow cover) are adjusted before they are 

passed to subsequent routines and/or modules within SNOW17, such as the subroutine 

that routes liquid water through the snowpack, or, downstream and outside of SNOW17, 

the SAC-SMA soil moisture accounting model.  Mathematically, the total outflow from 

SNOW17 that is available to other modules is defined as 

 

  (6) 

 

where: 

O = total outflow from SNOW17 (snow cover outflow + rain-on-bare-ground) in mm 

Os = total outflow from snow cover in mm 

As = areal extent of snow cover (fraction) 

P = total precipitation amount input to the model in mm 

fr = fraction of precipitation falling as rain 

 

2.3.2.2 Modeling Snow Cover Extent in SNOW17 

 

 SNOW17 uses an areal depletion curve (ADC), in which snow covered area is a 

function of snow water equivalent.  Specifically, the SNOW17 ADC relates the areal 

extent of snow cover to a ratio of the mean areal snow water equivalent (including the ice 

content and water held within the snowpack against gravity) to an index, Ai  (the ratio is 

SWE/Ai).  The index Ai is the smaller of (a) the model parameter that defines the water 

equivalent above which 100% snow cover always exists (SI) and (b) the maximum 

amount of water equivalent that existed during the accumulation period (state variable 
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Wmax).  If Wmax does not exceed SI in a given water year, then Wmax is used as the Ai 

value.  As the snowpack accumulates during the winter, Wmax increases and may exceed 

the SI parameter value; in this case, Ai is set to SI. 

 ADCs are empirically derived for each elevation zone of a basin in the calibration 

process (Anderson, 2006).  No single continuous function defines the ADC in SNOW17.  

Discrete SWE/Ai values between 0.0 and 1.0, in increments of 0.1, for a modeled area are 

associated with snow cover extent values (as fractions) via a look-up table. For SWE/Ai 

values of 0.1 to 0.9, the AESC values in SNOW17 can vary from basin to basin and 

elevation zone to elevation zone.   

For all areas, the endpoints of the ADC are the same.  At the upper end, when the 

modeled areal extent of snow cover in SNOW17 is equal to 1.0 (100%), SWE/Ai is also 

1.0.  At the lower end, as SWE/Ai approaches and goes to 0.0, AESC is held at 0.05 

(AESC never reaches zero on the ADC).  The lower end of the ADC is configured this 

way in the operational SNOW17 source code so that the remains of the snowpack, when 

the snowpack persists into the summer, are quickly melted.  Since the AESC value acts as 

a multiplier on the snowpack melt volume that is computed under 100% snow cover 

conditions, an AESC value very near zero (for example 0.00001) would greatly reduce 

the melt volume in each time step as the last remaining bit of snowpack is melted.  In this 

case, the remaining snowpack would melt very slowly and could easily persist 

unrealistically into the summer and early fall, every year.  Holding the AESC value at 

0.05 while the snowpack dwindles in terms of SWE is intended to prevent this unrealistic 

situation when SNOW17 is used in NWS hydro operations. 
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The SNOW17 ADC is empirically derived in the model calibration process at 

CBRFC and is not currently based on observations of SWE or snow cover.  Extremely 

detailed observations of SWE and snow cover are usually available only as part of 

sharply focused research studies.  The NWS RFCs model thousands of watersheds 

throughout the United States, and the observations needed to derive ADCs for each 

watershed and area modeled by the NWS (particularly SWE) simply do not exist at the 

current time.  Hence, the NWS empirically derives the ADC to be used by SNOW17 

during the model calibration process.   

Users of SNOW17 (including the NWS) can estimate the shape of the ADC since 

the general shape is empirically associated with the basin’s physiographic characteristics 

(elevation, forest cover, etc.) and its weather patterns.  Generally, these patterns do not 

vary much (if at all) from year to year.  Possible exceptions would be vegetation changes 

due to severe wildfires or outbreaks of forest pests such as mountain pine beetle.  Events 

such as these that affect the vegetation patterns may require recalibration of SNOW17 

and derivation of a new ADC for the impacted area.  Figure 10 and Table 7 show and 

explain examples of ADCs used in SNOW17.  ADCs in the CBRFC-modeled watersheds 

typically take the shapes of the B and C curves. 
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Figure 10: Examples of conceptual ADCs used in SNOW17 (NWS, 2004) 

 

Table 7: NWS Descriptions of ADCs (NWS, 2004) 

 
Curve 

Brief Summary of Area Characteristics (NWS, 2004) 

A 

 

• As snow cover extent decreases, snow-free areas appear at an increasing rate 

• Common in areas where the accumulation and melt are spatially heterogeneous but where the 

variability is scattered across the area 

B 

 

• Similar to curve A when exposure of soil begins. Much SWE may be lost at first without much 

change in AESC 

• Common in areas where parts of the area accumulate deeper snow and/or have a significantly 

lower melt rate than the rest of the area. 

• Examples: areas in which portions are densely forested, north-facing, ravines  

C 

 

• Snow cover drops off quickly without much loss of water volume to start 

• Common in areas where parts of the area accumulate much less snow and/or have a much 

higher melt rate than the remainder. 

• Examples: open areas, south aspects, open areas with some forest where the forest is usually 

blown free of snow 

D 

 

• Area with subareas of two drastically different regimes (large accumulation/low melt rates vs. 

small accumulation/high melt rates) 

• In areas where the best ADC fits a pattern such as Curve D, the area should be divided and 

each portion modeled separately. 
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2.3.2.3 Snow Cover Extent from SNOW17 vs. Observed fSCA 

 

An additional caveat of SNOW17 is that the snow cover extent value calculated 

by the model, AESC, is not 100% directly comparable to fSCA observations from 

satellite instruments like MODIS.  SNOW17, like all models, does not perfectly represent 

all physical processes.  The SNOW17 AESC value is calculated from a depletion curve 

that is determined in the model calibration process; the depletion curve is not directly 

derived from observations during the calibration process at CBRFC.   

The calibration-derived depletion curve does not explicitly include certain aspects 

of the physical areal depletion of snow cover such as the decrease in melt rate that occurs 

over time as the snow cover extent decreases.  For example, as the snow melts, shallow 

snow or snow on south faces melts more quickly than deep stashes of snow in shaded 

areas.  Areas of deep snow endure the longest into the melt season, as they melt slowly.  

The empirically-derived ADC represents an attempt to address the decrease in 

melt rates with time for a modeled area, as a function of SWE.  As the snowpack depletes 

and the SWE decreases, the AESC value diagnosed from the ADC as a function of SWE 

changes. Before the snowpack SWE accounting occurs within a model timestep, the 

AESC value is used as a multiplier on the melt volume that is initially computed 

assuming 100% snow cover.  Therefore, as the SWE changes, the amount of meltwater 

that is ultimately deducted from the snowpack and, subsequently, the snowpack melt rate 

are impacted by the AESC value diagnosed from the ADC curve. 

Dividing a basin into additional, smaller elevation zones (i.e., moving towards a 

distributed model), for which model parameters could be estimated from an analysis of 
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the basin’s physical characteristics, may allow for better representation of the variation in 

melt rates across a mountainous area.  Yet, even with higher spatial resolution, no model 

can perfectly represent real world hydrologic systems, so calibration of model parameters 

by a user will still be needed, at least to some extent. 

Verification of melt rates and the values of model parameters related to melt rates 

would still be difficult even if a watershed was subdivided into smaller areas.  NRCS’s 

SNOTEL network provides the most extensive network of point SWE measurements in 

the western U.S., but the network of point stations is not dense enough to 

comprehensively represent the variation in melt rates across mountainous terrain on a fine 

scale.  Satellite-derived SWE retrievals from microwave sensors such as NASA’s 

AMSR-E instrument are spatially more extensive than the SNOTEL network.  Yet, they 

are of coarse horizontal resolution (25 km), and their use is limited by accuracy problems, 

especially in areas with deep snowpacks and dense vegetation (Derksen et al. 2003).  For 

a melt rate verification study, obtaining a data set of SWE observations sufficient for 

verification (either from point networks such as SNOTEL, from satellite microwave 

retrievals, or a combination of the two) would be difficult.  Due to limitations in 

observations available to verify melt rates in SNOW17, users still need to rely on the 

calibration process and empirical derivation of model parameters related to the simulated 

melt rate and snow cover depletion. 

The fact that snow covered area values expected by SNOW17 do not exactly 

correspond to what observed fSCA from MODIS represents manifests itself in 

streamflow simulations when DI of observed fSCA takes place.  These impacts will be 

explained in detail in Chapter 5. 
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2.3.3 Updating Hydrologic Models with Observed fSCA 

 

 Many objective, quantitative data assimilation methods for updating model states 

(including those related to snow cover) are available for use in hydrologic modeling 

systems. Data assimilation methods blend information from observations and information 

from models into more accurate estimates of a system’s true state.  Hydrologic 

applications of sophisticated data assimilation techniques, such as the Kalman filter (KF) 

and its variations such as the Ensemble Kalman Filter (EnKF), as well as particle filters, 

are currently limited to the research community.  None are used in NWS hydro 

operations as of June 2013. However, sophisticated data assimilation is attractive as a 

potential way to improve the NWS’s operational streamflow predictions (Liu et al., 

2012).  Sophisticated DA techniques could help the NWS advance its hydrologic science 

and potentially reduce errors in its streamflow predictions.  Yet, the infrastructure of the 

NWS operational environment does not currently support such methods and their 

requirements, especially with respect to computing power required by advanced methods.  

Techniques to update hydrologic models with snow covered area observations in the 

current (June 2013) NWS hydrologic operational implementation are limited to 

subjective manual updates and/or DI. 

 Direct insertion is a simple substitution of an observed value in place of a model 

estimate of that value, without attempting to correct the model step or steps that led to the 

difference.  Information from a remotely sensed fSCA observation would replace a 

model’s AESC estimate.  The observed fSCA value can be substituted as-is, or rule-based 

DI schemes may be applied, in which the information from the observation is 
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transformed in some way before being inserted into the model.  These transformations 

usually involve a small amount of SWE being added to a modeled area if the model has 

no snow and the observed data indicate snow is still present, and zeroing out the model 

snow if the observed data indicate that the area is snow-free. The amount of SWE added 

to the snow model varies among research studies that use this technique.  For example, 

Fletcher et al. (2012) added 0.01 m of SWE to a model cell when their snow model had 

melted out and the MODIS snow cover data indicated that the snowpack was still present.  

Rodell and Houser (2004) added 5 mm of SWE to the modeled areas, at the timestep 

coincident with the Terra satellite overpass, if the MODIS snow cover was greater than 

40% and the model was snow free.  They found that the addition of SWE, as inferred by 

MODIS snow cover data, improved their model’s SWE simulations over the Great Plains 

of the central United States and over the Midwestern United States when compared to 

observations from ground-based point stations.  Tang and Lettenmaier (2010) added the 

same amount of water equivalent (5 mm) when MODIS indicated that snow was present 

yet the model indicated it was absent.  The amount of added SWE in these studies is 

usually only a small amount, in order to minimize impacts on the model water balance. 

 The current operational version of SNOW17 allows updating of snow cover 

extent via DI. To activate the DI option, a flag is set in the SNOW17 configuration file, 

indicating which elevation zones of a modeled basin should use the DI.  A tolerance 

value is also set in the SNOW17 configuration file, specifying when the observed fSCA 

should be inserted into the model.  If the difference between the observed and modeled 

snow cover extent values exceeds the set threshold, then the fSCA observation is used in 

place of SNOW17’s AESC estimate.  Otherwise, the observation is ignored.  
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Configuration of SNOW17 to include DI is discussed further in Section 4.6 with respect 

to the set up specific to the case study experiment. 

While DI is a simple technique that does not require many computer resources, 

even with rules applied beyond the most basic implementation of DI, it assumes that the 

information contributed by the observations is perfect.  When the model estimate of 

AESC is completely replaced by the observation’s fSCA value, DI implies that the model 

does not contribute any information.  Direct insertion does not make use of any kind of 

error estimates for either the model or the observations.  Caution must be exercised 

because of inaccuracies that do in fact exist in the observed data sets due to a variety of 

causes (e.g., cloud cover, vegetation, properly identifying snow from clouds, etc.).  Also, 

DI of one type of observation does not propagate information from the inserted 

observation to other model states. 

Despite the drawbacks of the DI technique, DI is the easiest way for operational 

NWS RFCs to quantitatively use observed fSCA values in their modeling efforts as NWS 

hydrologic operations are currently organized.  Given the constraints of the operational 

NWS hydrologic forecasting environment, and because the current operational 

environment of NWS RFCs requires generation of hydrologic predictions in a timely and 

reliable manner, simpler techniques that are computationally frugal are desirable.  Hence, 

this study focuses on the simple DI technique and the impacts of using remotely sensed 

snow cover via the DI method. 
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CHAPTER 3: OVERVIEW OF STUDY BASIN  

 

 

3.1 GENERAL BASIN CHARACTERISTICS  

 

This study focuses on the headwaters of a snow-dominated, mountainous basin: 

the Weber River. Figure 11 shows the location of the Weber River headwaters within the 

region.  The Weber River is a tributary of the Great Salt Lake; its headwaters are located 

in the western Uinta mountains of northeastern Utah.  The basin snowpack has distinct 

accumulation and ablation seasons, and the basin’s flow is dominated by snowmelt.   

The drainage spans 418 km
2
 (161 mi

2
).  Elevations within the basin range from 

2024 m (6640 ft) at the outlet near the town of Oakley to 3570 m (11,714 ft) in the 

southeastern part of the basin.  Flow at the outlet is measured by United States Geological 

Survey (USGS) stream gage #10128500.  The higher elevations of the basin are popular 

for recreational activities in the Uinta-Wasatch-Cache National Forest (Fig. 12).  The 

basin is heavily forested, with some development in the form of farms and residential 

areas in the lower elevations.  

There is one reservoir within the basin, Smith and Morehouse Reservoir, operated 

by the Weber Basin Water Conservancy District (WBWCD).  The reservoir is small (1.7 

MCM/1,360 AF) and typically fills and spills each spring (UT DWQ, 2006). The Weber 

River is a major source of inflow to Rockport Reservoir, which provides water to 

WBWCD customers.  Table 8 summarizes the characteristics of the headwaters of the 

Weber River, and Fig. 12 shows the watershed and the surrounding area. 
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Figure 11: Overview map of the Upper Colorado River Basin and the Eastern Great Basin, including 

case study basin 
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Table 8: Characteristics of the Weber River Headwaters 

 
Weber River Headwaters 

Characteristics  

NWS ID: OAWU1 

Tributary of: Great Salt Lake 

Mountain Range: Uinta 

Drainage area: 418 km
2
 (161 mi

2
)  

Elevation: 

Maximum: 

Minimum: 

3570 m (11,714 ft) 

2024 m (6640 ft) 

Land Use/Cover:  Primarily forested, open rocky areas at highest elevations 

Population Centers: 

Headwater area above Oakley: mostly farms, some homes 

Downstream: Oakley, UT 

Reservoirs/Diversions: 

Smith and Morehouse Reservoir is located within the OAWU1 basin but is 

not explicitly modeled by CBRFC.  The reservoir has a small capacity of 1.7 

MCM or 1,340 AF (UT DWQ, 2006). It fills and spills with spring snowmelt, 

so it generally has minimal effect on streamflow predictions. 

 

 

 

 

 
Figure 12: Weber River headwater basin and surrounding area, including nearby SNOTEL sties 
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3.2 LAND COVER AND VEGETATION PATTERNS 

 

The OAWU1 watershed is divided into three subareas (upper, middle, and lower 

subarea), which are modeled as separate units by the NWS. (Model configuration for the 

OAWU1 basin is discussed in detail in Section 4.4.)  Because the operational NWS 

hydrology program currently uses lumped models, the spatial variation of vegetation 

patterns and land use patterns within each elevation zone is not explicitly accounted for 

within the operational NWS hydrologic modeling system.   However, the patterns are 

discussed in this chapter that summarizes characteristics of the Weber River headwaters 

because they do play an important role in the derivation of MODIS-derived snow cover, 

especially the MODSCAG product, and in the variability of actual snow melt rates.   

Patterns in vegetation and land use were analyzed with the 30 m 2006 National 

Land Cover Database (NLCD) (Fry et al., 2011).  The gridded data were downloaded 

from the Multi-Resolution Land Characteristics Consortium (MRLC).  The percentage of 

the OAWU1 areas identified with various land cover types was computed; the land cover 

types are summarized in Table 9.  As shown in Fig. 13, the OAWU1 basin and its 

subareas are heavily forested.  Forest cover overwhelmingly dominates the basin as a 

land cover type, with 70% of the upper subarea, 87% of the middle subarea, and 86% of 

the lower subarea covered in some type of forest.  The forest type for the upper and 

middle subareas is mostly evergreen, and the lower subarea is mostly deciduous forest.  

The large extent of deciduous forest impacts the MODSCAG retrievals during the winter, 

when the deciduous canopy is absent (discussed later in section 3.4.2).  
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 A large portion (18%) of the upper subarea is identified as “barren land” or rock.  

The middle and lower subareas have less than 5% of the “barren land” class.  Figures 13 

and 14 show typical land cover of the upper and middle portions of the Weber River 

headwaters, including several clear examples of “barren land”.  Peaks are rocky and 

mostly above the treeline, and the terrain leading up to the peaks is steep with little 

vegetation.  Expansive vegetation (mostly coniferous, evergreen forest with 

accompanying understory) spans the flat and more gently sloped areas of upper and 

middle portions of the basin.  The vegetated areas also include alpine meadows and bogs. 

The lower subarea of the OAWU1 basin is also heavily forested, but instead of 

evergreen forest, deciduous trees dominate the lower elevations.  Shrub, grassland, and 

pastures also appear in the lower subarea, where several ranches and farms are located.  

As elevation decreases, the amount of developed land (large residential lots with grass as 

well as parks) increases.   
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Figure 13: NLCD 2006 land cover for OAWU1 basin and subareas.  The red box indicates area 

shown in Figure 14. 

 

 

 

 

 
Figure 14: Typical landscape of the far upper Weber R. headwaters basin, as viewed from just 

outside OAWU1 basin boundary atop Bald Mountain at 3640 m.  (Credit: T. Love, United States 

Forest Service) 
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Table 9: OAWU1 land cover types according to NLCD 2006, with dominant land cover types in bold 

 

NLCD Class 

Upper 

Elev 

Zone 

Pixel 

Count 

% of 

elevation 

zone area 

Middle 

Elev Zone 

Pixel 

Count 

% of 

elevation 

zone area 

Lower 

Elev 

Zone 

Pixel 

Count 

% of 

elevation 

zone area 

Total 

Basin 

Pizel 

Count 

% of total 

basin area 

11 –  

open water 1,002 1.1% 246 0.1% 790 0.5% 2,038 0.4% 

21 - 

Developed - 

Open Space 162 0.2% 110 0.0% 1,337 0.9% 1,609 0.3% 

22 - 

Developed - 

Low 

Intensity 0 0.0% 20 0.0% 61 0.0% 81 0.0% 

23 - 

Developed - 

Medium 

Intensity 0 0.0% 7 0.0% 6 0.0% 13 0.0% 

31 –  

Barren Land 

(Rock/Sand/

Clay) 15,825 17.6% 2,356 1.0% 103 0.1% 18,284 3.9% 

41 - 

Deciduous 

Forest 209 0.2% 43,403 19.0% 84,630 58.4% 128,242 27.6% 

42 - 

Evergreen 

Forest 62,101 69.0% 155,853 68.1% 39,709 27.4% 257,663 55.5% 

43 -  

Mixed Forest 110 0.1% 5,061 2.2% 2,054 1.4% 7,225 1.6% 

52 - 

Shrub/Scrub 6,351 7.1% 20,222 8.8% 15,557 10.7% 42,130 9.1% 

71 - 

Grassland/ 

Herbaceous 4,249 4.7% 1,642 0.7% 247 0.2% 6,138 1.3% 

81 - 

Pasture/Hay 0 0.0% 0 0.0% 272 0.2% 272 0.1% 

90 –  

Woody 

Wetlands 49 0.1% 51 0.0% 170 0.1% 270 0.1% 

95 - 

Emergent 

Herbaceous 

Wetlands 0 0.0% 0 0.0% 15 0.0% 15 0.0% 

                  

Total num  

30 m pixels 90,058 100.0% 228,971 100.0% 144,951 100.0% 463,980 100.0% 

Area (km
2
) 81 100.0% 206 100.0% 130 100.0% 418 100.0% 
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3.3 WY2000 TO WY2010 STREAMFLOW  

 

 During the study period of water years 2000 to 2010, the annual streamflow at the 

outlet gage for the OAWU1 basin consists of a distinct snowmelt-driven peak in the 

spring and baseflow for the remainder of the year (Fig. 15).  The snowmelt peak flow 

slightly exceeded the flood threshold established by the Salt Lake City NWS Weather 

Forecast Office (WFO) in the spring of 2010.  For all other years in the study period, the 

peak flows remain below the flood flow threshold (71.1 m
3 
s

-1
). 

 
Figure 15: Observed mean daily streamflow for WY2000-WY2010 for the Weber R. near Oakley, UT 

  

 

Seasonal runoff volumes for April – July range from 80.85 million cubic meters 

(MCM) in WY2004 to 174.32 MCM in WY2005 (Table 10).  Water years 2002 and 2004 

had the lowest runoff volumes while 2005 and 2009 had the highest.  The mean 

streamflow volume for the April – July period for WY2000 to WY2010 is 118.99 MCM, 

and the median is 105.30 MCM. 

 

 

 



 

 71 

 

Table 10: Observed seasonal runoff volumes for OAWU1 for WY2000 to WY2010 

 

Year 

Observed April – July Runoff Volume 

(MCM/KAF) 

Rank 

 
(1 = smallest runoff volume of study 

period,11 = largest runoff volume of 

study period) 

2000 94.48 MCM (76.60 KAF) 5 

2001 87.56 MCM (70.99 KAF) 3 

2002 82.96 MCM (67.26 KAF) 2 

2003 105.30 MCM (85.37 KAF) 6 

2004 80.85 MCM (65.55 KAF) 1 

2005 174.32 MCM (141.32 KAF) 11 

2006 150.68 MCM (122.16 KAF) 8 

2007 88.36 MCM (71.63 KAF) 4 

2008 158.38 MCM (128.40 KAF) 9 

2009 168.54 MCM (136.64 KAF) 10 

2010 129.64 MCM (105.10 KAF) 7 

 

 

3.4 TYPICAL SNOWPACK PATTERNS  

 

The snowpack within the Weber River headwaters exhibits distinct seasonal 

accumulation and ablation patterns.  Under normal conditions, the snowpack begins to 

accumulate in October and November.  Peak snowpack generally occurs near April 1, 

and the snowpack normally melts out between late May and early July.  Typical 

snowpack evolution patterns evident in SWE data from SNOTEL stations, as well as 

patterns in MODIS snow cover data, are discussed below. 

 

3.4.1 SNOTEL SWE 

 

The NRCS SNOTEL network is a crucial source of snowpack information, 

especially SWE information, throughout the western United States. These automated 
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monitoring stations report precipitation, snow water equivalent, temperature, soil 

moisture, and other variables at hundreds of locations in the western U.S.    

The OAWU1 basin has one SNOTEL site located within the basin (SMMU1) and 

five others nearby, just outside the basin boundary (CCKU1, NWYU1, CHCU1, HFKU1, 

TRLU1 – see Table 11 and Fig. 12).  The elevations of the SNOTEL sites range from a 

moderate elevation of 2317 m (7,600 ft) to high elevations of nearly 3040 m (10,000 ft).   

 

 
Table 11: Characteristics of SNOTEL sites within and near OAWU1 (shown in Fig. 12) 

 
Long Name NWS ID NRCS ID Elevation Installation Date 

Smith & Morehouse SMMU1 763 2317 m (7600 ft) 1978-10-01 

Chalk Creek #2 CCKU1 393 2487 m (8158 ft) 1978-10-01 

Beaver Divide Near 

Norway Flat NWYU1 330 2524 m (8280 ft) 1978-10-01 

Chalk Creek #1 CHCU1 392 2742 m (8993 ft) 1978-10-01 

Hayden Fork HFKU1 517 2808 m (9212 ft) 1978-10-01 

Trial Lake TRLU1 828 3036 m (9992 ft) 1978-10-01 

 

 

 

The WY2000 to WY2010 mean peak SWE among SNOTEL sites within and 

surrounding the OAWU1 basin ranges from 240 to 580 mm, and the range of the median 

peak SWE is similar, from 250 to 540 mm (Fig. 16).  The mean meltout dates range from 

mid May to late June, and the median meltout dates occur earlier than the mean meltout 

dates, ranging from approximately May 1 to June 1.  The higher elevation and north slope 

sites (TRLU1, CHCU1) melt out last, which is expected. 

 NWYU1, a lower elevation SNOTEL site to the south of the OAWU1 basin, 

tends to accumulate the smallest snowpack, in terms of SWE, and it also melts out the 

earliest.  CHCU1, with an elevation of approximately 2800 m (9000 ft), tends to 

accumulate the largest snowpack.  Along with TRLU1, CHCU1 is typically the last of the 
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six SNOTEL stations in the group to melt out.  TRLU1, the SNOTEL site with the 

highest elevation accumulates a slightly smaller snowpack, in terms of mean SWE, than 

CHCU1, which is ~230 m (750 ft) lower in elevation.  Local site characteristics and/or a 

limited time period of analysis (only 11 years) may be the cause of the lower elevation 

site (CHCU1) apparently accumulating a larger snowpack than the upper elevation site 

(TRLU1).  TRLU1 is more open and susceptible to wind, and CHCU1 is located in a 

more heavily forested area on a north slope. 

Figure 16: Mean and median SWE for WY2000 to WY2010 (n=11) for SNOTEL sites within and 

near the OAWU1 study basin  
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3.4.2 MODIS-derived fSCA 

 

 The mean and median of the spatial averages of fSCA were computed over the 

OAWU1 elevation zones for WY2000 to WY2010 for data sets of two MODIS-derived 

snow cover (MOD10A and MODSCAG).  Mean areal fSCA from days when cloud cover 

was 50% or less was used to compute the mean and median fSCA time series for the 

elevation zones, shown in Fig. 17.  

 The most obvious difference between the two data sets is that mean areal fSCA 

from MODSCAG is much less than the mean areal fSCA from MOD10A, particularly 

during the winter.  This pattern is consistent with Rittger et al. (2013), who found that, 

when compared to fSCA from Landsat ETM+ in the western United States, MOD10A 

tends to overestimate viewable fSCA (no correction for vegetation) during the winter and 

underestimate fSCA in the late spring, as the snowmelt runoff season progresses.  Also, 

in mid December through late March, the lower elevation zone (in green) is estimated to 

have more extensive snow cover than the middle zone (red) by the MODSCAG mean 

areal fSCA time series.  This difference between snow cover patterns in the middle and 

lower elevation zones is most likely due to deciduous trees (canopy-free in the winter) 

dominating the lower subarea/elevation zone while the middle and upper elevation zones 

are dominated by coniferous, evergreen forest (Fig. 13, Table 9).  During the winter, 

when the deciduous trees are free of leaves, MODIS would be better able to detect the 

snowpack on the ground.  A higher fSCA value would be observed in a deciduous forest 

in the winter, simply because MODIS can detect the snowpack on the ground more easily 

in the deciduous forest than the evergreen forest that has a denser winter canopy.  This 

effect is exacerbated when the coniferous forest is not covered in fresh snow.  The 
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MODSCAG fSCA data used in this study are viewable fSCA, with no correction or 

adjustment for vegetation. 

 

 

Figure 17: Mean and median MODIS FCA for WY2000 to WY2010 for OAWU1 elevation zones 

 

 

When the snowpack begins to melt, Fig. 17 shows a logical order with respect to 

elevation.  The snowpack in the lower elevation zone (green) begins to melt first, then the 

middle, and finally the upper elevation snowpack.  Once the snow cover begins to deplete 

in earnest, it depletes more quickly at the lowest elevations (green curve), especially 

when patterns in the MODSCAG product are examined.  The more rapid rate of snow 

cover depletion in the lower elevations is related at least in part to the fact that (1) higher 

temperatures exist at lower elevations and (2) the lower areas of the OAWU1 basin are 
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covered in deciduous trees, which allow more incoming solar radiation to reach the 

snowpack before the deciduous canopy is fully realized later in the spring and early 

summer.  Longwave radiation from a coniferous forest could be argued as a major 

contributor to snowmelt in the middle and upper elevations and it does, in fact, contribute 

to snowmelt. However, the incoming solar radiation usually dominates the energy 

balance in the spring, especially the late spring as the summer solstice approaches. A 

detailed examination of energy balance components is reserved for future work (see 

Section 6.3). 
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CHAPTER 4: CASE STUDY DATA SETS AND METHODS  

 

 

4.1 INTRODUCTION 

 

The methods of this case study are used to evaluate how DI of satellite-derived 

fSCA observations might impact model estimates of the snowpack and subsequent 

streamflow simulations in an operational environment. This research focuses specifically 

on the impacts of moderately high-resolution (defined as sub 1 km spatial resolution and 

daily temporal resolution) satellite-derived snow cover observations in conjunction with a 

simple snow updating method on streamflow predictions, during the water years of 2000 

to 2010. 

 

4.2 TYPES OF PREDICTION: SIMULATIONS VS.  FORECASTS 

 

In the operational environment at CBRFC, hydrologic models (including 

SNOW17) are used to make two types of predictions: simulations and forecasts.  

Simulated streamflow is the best estimate of streamflow that a model, with forcing data 

derived from quality-controlled observations and with parameters tuned by a user with 

comprehensive knowledge of a basin, can provide.  Simulations are usually run 

retrospectively, that is, for events that have occurred in the past and for which verified 

observational data are available.  Streamflow forecasts use the model parameters derived 

during the calibration process, as well as forecasts of forcing variables (e.g., temperature 

and precipitation).  
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The calibration process uses thoroughly quality-controlled input data (temperature 

and precipitation) to force the model and, ultimately, simulate streamflow.  Typically, the 

point observations used in the model calibration process (which are subsequently 

transformed into mean areal forcing data for the calibration period) require a dedicated 

effort and a large amount of time to collect and quality-control, either by CBRFC or by 

other agencies, such as the NRCS, the agency responsible for the SNOTEL network.  Use 

of quality-controlled observations to produce model forcings reduces the amount of 

system uncertainty that results directly from the input observations.  With this reduced 

uncertainty, model users can be more confident that the model parameters they derive are 

more representative of the physical processes that the modeling system aims to represent.  

Calibration of the snow and soil moisture models may require multiple iterations as the 

model user finely tunes the parameters.  Ultimately, a model that uses more appropriate 

parameters and coefficients has a better chance of predicting the streamflow that is 

eventually observed, whether in simulation mode or forecast mode. 

The model parameters derived in the calibration process are then used in real-time 

operational model runs.  Forecasts are the prediction of streamflow in real-time, using 

input data that are available in real time.  Temperature and precipitation observations that 

are available in real time typically have more uncertainty in them than observations that 

have been thoroughly reviewed in a retrospective manner.  Streamflow forecasts also rely 

on temperature and precipitation forecasts.  Forecasts of the forcing variables can be 

highly uncertain, especially forecasts of precipitation.  Due to these important differences 

between the input data sets for the simulations and forecasts, the simulations usually 

provide better predictions than forecasts. 
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All simulations (control and DI) use the same temperature and precipitation 

observations as input and the same model parameter set that was derived as part of the 

most recent CBRFC calibration effort.  As mentioned above, the forcing data used in the 

study simulations has been quality-controlled retrospectively by both the data provider 

and CBRFC.   

Using the mean areal temperature and precipitation, the model simulates 

accumulation and melt (which then drives the majority of simulated streamflow during 

the melt season, barring a large rain event).  Observed fSCA is not included in the control 

simulation in any manner.  As in current RFC operations, snow water equivalent and 

areal snow cover extent are completely model-driven in the control simulation.   

 

4.3 INPUT DATA SETS  

 

4.3.1 Meteorological Input Data Sets 

 

 Since SNOW17 is run operationally at CBRFC in lumped mode over elevation 

zones, mean areal temperature (MAT) and mean areal precipitation (MAP) estimates are 

input to and used as forcing data in the operational CBRFC modeling system.  These 

estimates are derived by CBRFC from point station observations (primarily from the 

NRCS SNOTEL and NWS COOP networks) over the WY1981-2010 historical period 

used in the most recent round of calibration.  In the calibration process, weights that 

depend on distance and elevation relative to the elevation zones are determined for each 

point station.  Then, these weights are used to compute the mean areal temperature and 

precipitation values from point observations at each time step in the WY1981-WY2010 
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historical period.  This study uses MAT and MAP estimates for WY2000 to W2010 

(water years common to both the MODIS period of record and the historical period used 

in the most recent calibration).  The forcing data are used as-is from CBRFC; no 

modifications are made to them. 

No explicit quantitative estimates of uncertainty in the mean areal forcing data for 

areas that CBRFC models in its operations are currently available.  Qualitatively, the 

snowmelt simulations will result in streamflow predictions that deviate noticeably from 

observations if mean areal temperature is altered by an increment of more than 

approximately 2 F (1.1 C) (RFC Staff, pers. comm., 2013), and Smith et al. (2003) note 

that a bias of just a few degrees can shift the timing of snowmelt.  Anderson (2002) states 

that a bias of 10% in the MAP values may lead to a change in runoff of 10-25%.  

Uncertainty in the forcing data should be explicitly estimated but is left as task for future 

work (see Section 6.3). 

 

4.3.2 MODIS-derived fSCA Observations Used in the Study 

 

The MODIS fSCA data sets used in this study are the MOD10A and MODSCAG 

data sets described in Chapter 2. Both MODIS fSCA data sets are daily gridded products, 

available at 500 m resolution.  Though MODIS data sets span the globe, they are made 

available as a collection of smaller pieces in order to facilitate management and 

transmission of the data.   Each individual subset of the global data set, or tile, is made 

available from NASA in a sinusoidal projection.  Four individual MODIS tiles are needed 

for complete coverage over CBRFC’s area of responsibility (AOR).  Figure 18 shows the 

necessary tiles (reprojected to the Universal Transverse Mercator Projection).   
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Figure 18: MODIS tiles that cover the CBRFC area of responsibility (AOR) 

 

MODIS provides global coverage, so, spatially, data are potentially available 

across the entire CBRFC area of responsibility, depending on cloud cover.  Over the case 

study basin, hundreds of pixels are available across each elevation zone on clear days.  

On cloudy days, the number of non-cloudy pixels that provide fSCA information may be 

as low as zero.  

 Overall, RMSE of the MOD10A fSCA data set is 0.10 when validated against    

30 m Landsat ETM+ data processed with the binary SNOWMAP algorithm, aggregated 

to 500 m pixels (Salomonson and Appel, 2004 and 2006).  Salomonson and Appel (2004, 

2006) included several areas of North America, as well as Scandinavia, Russia, Chile, 

and Argentina in their study of MODIS-derived fSCA.  Rittger et al. (2013) validated the 

MOD10A and MODSCAG fSCA products against Landsat ETM+ fSCA derived with 

spectral mixture modeling over several areas of North America and the Himalaya.  Their 
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results indicated that the overall RMSE for MOD10A is 0.23 while overall RMSE of the 

MODSCAG data set is 0.10 when the validation data set, Landsat ETM+ fSCA, is 

derived with spectral mixture models.  In their study, the mean and median differences 

between Landsat ETM+ fSCA and MODIS-derived fSCA for each study area were 

similar, so they focus on median differences in their report.  For the areas in their study, 

the median differences in fSCA between the Landsat and MODIS fSCA data ranged from 

-0.34 to 0.35 for the MOD10A product and -0.16 to 0.04 for the MODSCAG product.   

 In this study, each gridded MODIS fSCA data set was averaged over the OAWU1 

elevation zones to create a time series of mean areal fSCA for each elevation zone.  Only 

non-cloudy pixels were considered when generating mean areal fSCA.  The OAWU1 

basin and its elevation zones lie within MODIS tile h09v04. No corrections for vegetation 

are included in the versions of the data sets used as part of this study.  Use of MODIS 

fSCA adjusted for vegetation is left for future work (see Section 6.3). 

The MOD10A mean areal fSCA values were derived from the gridded data sets 

for the time period of February 24, 2000 to June 30, 2011 by RTi (2011), using MODIS 

tiles downloaded from the National Snow and Ice Data Center, a polygon shapefile of 

elevation zones provided by CBRFC, and ESRI’s ArcGIS Zonal Statistics tool.  The 

percentage of the polygons that had indeterminate snow cover (including cloudy pixels) 

was also computed and included in the data set as a data quality indicator. 

CBRFC generated MODSCAG mean areal fSCA values for the study basin’s 

elevation zones for the MODIS period of record (February 24, 2000 to present).  Data for 

February 2000 through December 2012 were processed as a batch in late 2012.  For 2013 

data, CBRFC downloaded MODSCAG tiles and processed the gridded data sets into 
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scalar mean areal fSCA values in near real time, on a daily basis.  The MODSCAG tiles 

are available in near real time; they are typically posted to the NASA/JPL server 18 to 36 

hours after MODIS first acquires the scene.  The mean areal fSCA values are computed 

by CBRFC using open source tools, including R and utilities from the Geospatial Data 

Abstraction Library (GDAL).  Specifically, the rgdal and raster packages are used in 

addition to the default R and GDAL utilities.  The percent of the elevation zone that is 

cloud covered is also computed and saved for the MODSCAG data sets. 

This study uses mean areal fSCA from days when cloud cover over each elevation 

zone is 50% or less, for WY2000 to WY2010. For days when cloud cover is greater than 

50%, the mean areal fSCA value is set to missing in the fSCA files that are input to 

SNOW17.  The 50% cloud cover threshold is arbitrary.  Investigation of the sensitivity of 

the streamflow simulations to a variety of cloud cover thresholds is planned as future 

work (see Section 6.3). 

Figure 19 shows a time series of MODIS-derived observed mean areal fSCA for 

the entire study period, for both MODIS-based data sets (MOD10A and MODSCAG).  

MODIS-derived mean areal fSCA for all three elevation zones within the OAWU1 basin 

(Fig. 9) are shown in Fig. 19 (upper zone in blue, middle in red, lower in green).  These 

data are used in the DI simulations.  Gaps appear in the time series where the cloud cover 

exceeded the 50% threshold on a particular day, or because data were missing or flagged 

for another reason (e.g., the source files were not available from the data server, or 

another problem occurred, such as MODIS fSCA erroneously being set to zero in all 

scenes in mid winter). 
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Figure 19: MOD10A and MODSCAG mean areal fSCA for OAWU1 elevation zones, with data 

counts and availability as a percent of days in the year shown on the right for each water year. 
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4.3.3 Comparison of MOD10A vs. MODSCAG Mean Areal fSCA  

  

 Overall, MODSCAG mean areal fSCA values tend to be less than those derived 

from the MOD10A grids for the OAWU1 elevation zones (Figs. 17, 19, and 20).  This 

pattern is evident in years across a range of snowpack conditions.  Figure 20 compares 

MODSCAG and MOD10A-derived fSCA in years with low (WY2002), large (WY2005), 

and moderate (WY2010) snowpack.  Figure 20 also shows that mean areal fSCA from 

MODSCAG is always less than 0.75 in the sample water years selected from the study 

period (which range from dry to wet).  The mean areal fSCA from MOD10A spans the 

allowable fSCA range of 0.0 to 1.0.  In most years, as the fSCA values approach zero, 

mean areal fSCA values from MOD10A and MODSCAG are in better agreement (Fig. 

20).  

These differences between the two MODIS-derived fSCA data sets are expected 

due to differences in the algorithms that derive fSCA for each MODIS pixel (Rittger et 

al., 2013).  The differences in the MODIS-derived fSCA data sets lead to different 

impacts on streamflow predictions when the fSCA values are used via DI (see Chapter 5). 
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Figure 20: WY2002, WY2005, and WY2010 runoff season (April – July) MOD10A vs. MODSCAG 

mean areal fSCA for OAWU1 elevation zones (mean areal fSCA derived from days when cloud cover 

less than or equal to 50%).   
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4.4 NWS HYDROLOGIC MODEL CONFIGURATION FOR OAWU1 

 

4.4.1 Modeled Areas 

 

 The hydrologic modeling system at CBRFC is used operationally in both a 

forecasting and a simulation mode.  In this study, the models are run in simulation mode 

for the historical period of WY2000 to WY2010.  The predictions are deterministic single 

values, and no uncertainty information accompanies the predictions.   

The OAWU1 watershed is divided into three zones (upper, middle, lower).  The 

elevation breaks are determined subjectively by CBRFC during the calibration process.  

Interannual patterns of SNOTEL SWE and snow cover extent have been used in past 

calibration efforts to determine which areas of a basin have a persistent winter snowpack 

and which areas fluctuate between snow covered, partially snow covered, and snow-free 

during the winter.  Spatial variability in snowpack patterns is sometimes used to 

subdivide the modeled watershed into elevation zones.  CBRFC also subjectively 

considers overall land cover and vegetation type when determining elevation zone 

boundaries during the calibration process. 

For each elevation zone, the snowpack is modeled by SNOW17, and snowpack 

output from each zone is routed through the SAC-SMA soil moisture submodel.   Runoff 

is transformed into streamflow via a unit hydrograph.  At the OAWU1 basin outlet, flow 

contributions from each zone are aggregated into streamflow for basin as a whole.  Area 

and elevation characteristics for each elevation zone are listed in Table 12, and the 

elevation zones themselves are shown in Fig. 9. 
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Operationally, SNOW17 is not calibrated with satellite-derived snow cover 

observations, and streamflow is the only performance variable used in the calibration 

process.  The experiment conducted as part of this research runs SNOW17 without 

recalibration of the model’s parameters using fSCA as a performance variable, either in 

place of or in conjunction with streamflow.  Experiments using a SNOW17 parameter set 

from recalibration that does use MODIS-derived fSCA as a performance variable are 

planned for the future (see section 6.3). 

 

Table 12: Areas and elevation characteristics of OAWU1 elevation zones 

 
Area (km

2
/mi

2
) 81.07 31.30 

Max elevation (m/ft) 3570 11714 

Min elevation (m/ft) 3048 10000 

Relief (m/ft) 522 1714 U
P

P
E

R
 

Mean elevation (m/ft) 3148 10327 

Area (km
2
/mi

2
) 206.06 79.56 

Max elevation (m/ft) 3048 10000 

Min elevation (m/ft) 2591 8500 

Relief (m/ft) 457 1500 M
ID

D
L

E
 

Mean elevation (m/ft) 2840 9319 

Area (km
2
/mi

2
) 130.46 50.37 

Max elevation (m/ft) 2591 8500 

Min elevation (m/ft) 2024 6640 

Relief (m/ft) 555 1822 L
O

W
E

R
 

Mean elevation (m/ft) 2388 7835 
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4.4.2 SNOW17 Parameters for Elevation Zones 

 

Most of the SNOW17 parameters derived during most recent calibration 

(historical period of WY1981 to WY2010, calibration completed in 2011) for the Weber 

River headwaters are typical of parameters derived for mountainous basins.  Streamflow 

is the performance variable used in the CBRFC calibration process, and model 

parameters are tuned with the goal of closely matching the simulated to the observed 

streamflow.  The parameters derived by CBRFC during the most recent calibration are 

shown in Table 13.  The parameters are indicative of forested areas that are not 

particularly affected by wind and that build deep snowpacks annually. 

 

Table 13: SNOW17 parameters for OAWU1 elevation zones 

 

Model Parameter Conditions Indicated by OAWU1 parameter 

Upper  

Zone  

Middle  

Zone  

Lower  

Zone  

SCF  

(dim’less) 

 

1.0 – sheltered sites not susceptible to wind 1.05 1.05 1.05 

MFMAX 

(mm/C/6hr) 1.0 – 1.3 – coniferous forest 1.1 1.0 1.0 

MFMIN 

(mm/C/6h) 0.2 – 0.3 – dense forest 0.2 0.2 0.2 

UADJ (mm/mb/6h) 0.03 – 0.19: lower in sheltered, less windy areas 0.02 0.02 0.02 

SI 

(mm) 

During initial calibration, at least equal to or 

greater than the max water equivalent that 

occurs during the calibration period, but usually 

less.  350 350 275 

NMF (mm/C/6hr) ~0.05- ~0.4, depending on snow density 0.2 0.2 0.2 

TIPM 

(dim’less) 

0.01 – 1.0 

 

< 0.2 – gives weight to air temp over the past 3-

7 days (appropriate for deep snow covers due to 

increased depth and heat storage capacity) 0.1 0.2 0.2 

MBASE  (C) Typically ~0 C in vast majority of watersheds. 0.25 0.25 0 

PXTEMP 

(C) 0.5 – 2 C.   1.5 1.5 1.5 

PLWHC 

(decimal fraction) 0.02 – 0.05  0.05 0.05 0.05 

DAYGM 

(mm/day) 

0.0 - areas w/ frozen ground 

0.3 – areas with mild climates and deep snow 

cover (e.g., Sierra Nevada) 0.1 0.2 0.3 

Note: Parameters are defined in Table 6 
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The ADCs for the OAWU1 elevation zones are shown in Fig. 21, and the 

individual values for the ADC are listed in Table 14.  The ADCs for all OAWU1 

elevation zones exhibit a shape similar to the ADC curve type C (Fig. 10, Table 7).  ADC 

Type C occurs in areas consisting of a mix of open and forested portions.  Type C ADCs 

indicate that portions of the modeled area accumulate less snow than others (perhaps due 

to changes in land cover type) and/or have a much higher melt rate than the remainder of 

the area (NWS, 2004).   

In the case of ADC Type C (Fig. 10) and the OAWU1 ADCs from the most 

recent CBRFC calibration (Fig. 21), the ADC attempts to represent the variation in melt 

rates as the snowpack depletes.  When snowmelt has progressed to the point where the 

snow cover extent first drops below 100%, the snow cover extent decreases quickly per 

unit change of a SWE index (the WE/Ai ratio), as the portions of the modeled area with 

more shallow snow melt rapidly and bare ground is exposed. The middle portion of the 

ADC represents snowmelt in areas where the snowpack is deeper.  As these areas melt, 

much SWE may be lost with only a smaller change in snow cover extent than when 

shallow areas of snow are melting.  Finally, when enough SWE has melted such that the 

snow cover extent drops below about 50% for the OAWU1 elevation zones, the 

remaining snow cover extent depletes rapidly per unit change in the WE/Ai SWE index. 

At the lower end of the ADCs, as WE/Ai approaches 0.0, AESC is held at 0.05 

(AESC never gets to zero on the ADC).  The lower end of the ADC is configured this 

way so that the remains of the snowpack are melted and do not persist into the summer 

under normal conditions, as discussed in section 2.3.2.2.  In SNOW17, the SWE (and, in 

turn, the WE/Ai ratio) must reach zero before AESC is allowed to be zero. 



 

 91 

 

 
Figure 21: Areal depletion curves for OAWU1 elevation zones that relate AESC (model snow cover 

extent) to a SWE index (a ratio of SWE to an Ai). The index Ai is the smaller of (a) the model 

parameter that defines the water equivalent above which 100% snow cover always exists (SI) and (b) 

the maximum amount of water equivalent of the accumulation period (see section 2.3.2.2).  

 

 

Table 14: ADC values for OAWU1 elevation zones 

 
 Areal Extent of Snow Cover (fraction) 

WE/Ai UPPER MIDDLE LOWER 

0.0 0.05 (fixed) 0.05 (fixed) 0.05 (fixed) 

0.1 0.30 0.25 0.31 

0.2 0.45 0.39 0.41 

0.3 0.54 0.51 0.47 

0.4 0.59 0.60 0.53 

0.5 0.63 0.66 0.59 

0.6 0.67 0.70 0.67 

0.7 0.73 0.77 0.74 

0.8 0.80 0.84 0.82 

0.9 0.89 0.91 0.91 

1.0 1.0 (fixed) 1.0 (fixed) 1.0 (fixed) 
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4.5 MEAN AREAL FSCA FROM MODIS VS. SNOW17 AESC 

 

Mean areal fSCA values derived from both MOD10A and MODSCAG are almost 

always less than the SNOW17-estimated AESC values from the control simulation.  

Example scatterplots of MODIS-derived mean areal fSCA vs. SNOW17 AESC for the 

three OAWU1 elevation zones for three water years (WY2002 – dry, WY2005 – wet, and 

WY2010 – average) are shown in Fig. 22. 

 During the runoff season of April – July for the sample water years shown in Fig. 

22, an exponential relationship appears to exist between the MODIS-derived fSCA (both 

MOD10A and MODSCAG) and SNOW17’s estimate of AESC.  The SNOW17 model 

structure (specifically the use of AESC as a multiplier on the melt volume computed 

assuming 100% snow cover) and the fact that MODIS-derived fSCA values are almost 

always less than 100% (due to vegetation, soil, rock, and other mixed pixel issues) 

impacts the DI streamflow simulations.  The extent of the impacts due to differences 

between MODIS-derived fSCA and SNOW17 AESC is discussed in Chapter 5. 
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Figure 22: WY2002, WY2005, and WY2010 runoff season (April – July) MOD10A and MODSCAG mean 

areal fSCA values vs. control simulation of AESC (CTL) for OAWU1 elevation zones. 
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4.6 DIRECT INSERTION OF PREPARED FSCA ESTIMATES 

 

The experiment in this study tests the impact of the simple DI scheme, where 

satellite-derived fSCA observations are directly substituted for modeled snow cover 

extent in SNOW17.  SNOW17 is capable of ingesting external sources of snow data 

(snow water equivalent and snow cover) provided the data are in the correct format 

(NWS, 2005).  In the SNOW17 input configuration files, a user can set a flag to notify 

SNOW17 that an external source of snow cover values should be used in place of the 

model driven snow covered area value.  The external source of snow cover values can 

come from any source; usually, the external snow cover values are estimates of fSCA 

derived from some type of observations.   

A user can also specify a “snow covered area tolerance” value, which is used to 

determine which observations presented to the model are actually used to update model 

snow cover conditions within the model.  If the absolute value of the difference between 

the simulated and observed snow cover values is greater than the specified tolerance, then 

the observed fSCA estimate will be substituted for the model’s estimate of snow covered 

area.   

For the DI simulations in this study, these features of SNOW17 were used. 

MODIS-derived fSCA values from days when cloud cover was 50% or less were 

presented to SNOW17 as an additional input file.  The indicator flag that specifies 

whether or not to update SNOW17 AESC values with the external fSCA values (in this 

study, MODIS-derived fSCA) was set to “UPDATE”.  The “snow covered area 

tolerance” value was set to 0.0, indicating that any MODIS-derived fSCA value that 
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differed from the SNOW17 simulated snow cover value would replace the SNOW17 

estimate of snow cover.  Thus, any time a MODIS-derived fSCA value is available, it is 

used in the model, in the experimental simulations.  An example of the SNOW17 

configuration for the upper elevation zone of OAWU1 is shown in Fig. 23.  The flag 

indicating that DI should be used is highlighted in red, and the “snow cover toleranace 

value” is highlighted in blue. 

 

 

 

 

 

 

 

 

 

 

 

 

For this study, the focus is on determining whether or not DI is a viable option for 

updating snow pack conditions without recalibration of SNOW17.  Recalibration would 

involve using MODIS-derived snow cover observations as a performance variable in 

addition to streamflow.  At least some of the SNOW17 parameters would likely change 

in a recalibration if observed fSCA is used as a performance variable in place of or in 

addition to streamflow.   

Figure 23: SNOW17 settings for the upper elevation zone of OAWU1. 



 

 96 

 

During 2011 and 2012, CBRFC completed a major recalibration of SNOW17 and 

SAC-SMA for all of the hundreds basins included in the CBRFC forecasting system.  

Recalibration for the entire hydrologic modeling system at CBRFC occurs typically once 

every ten years, when the historical period used in calibration is moved forward by a 

decade.  The most recent recalibration used the historical period of WY1981 to WY2010.  

Hundreds of basins are modeled by CBRFC, and those basins are divided into one, two, 

or three elevation zones (usually two or three).  Since the modeled basins are usually 

divided into multiple elevation zones, and SNOW17 is run over each elevation zone, 

CBRFC runs SNOW17 for approximately 1100 elevation zones.  A complete 

recalibration would involve checking approximately 1100 sets of SNOW17 parameters.  

Dedicated staff time for an additional complete recalibration of elevation zones for all 

modeled basins is not currently available at CBRFC, so the immediate question to be 

answered is related to whether or not MODIS-derived fSCA values can be used via DI 

without recalibration.  

 

4.7 STREAMFLOW PREDICTION EVALUATION METRICS 

 

To be considered useful, a modeling system must be able to predict (i.e., 

reproduce in simulation mode and also to forecast) the observed hydrograph.  In the 

model calibration and daily forecasting processes at CBRFC, streamflow is the variable 

used to judge the performance of the operational system. 

Tolerance of error varies with the intended end use of the model. Various metrics 

can be used to judge the utility of a model and how well the model predicts the observed 
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hydrograph.  No single metric can describe a model’s performance by itself.  Two types 

of metrics are used in this study to evaluate the streamflow predictions produced by the 

control experimental simulations that use the DI technique: subjective and objective. 

 

4.7.1 Subjective Evaluation of Streamflow Forecasts 

 

The subjective, or qualitative, checks involve visual inspection of the hydrograph 

generated by the model, to determine how well the predicted hydrograph fits the 

streamflow observations.  The peaks and their sharpness are examined to see, 

qualitatively, how closely the highest predicted flow values match the observations.  The 

timings of the modeled and observed peak flow values are compared.  The timing of the 

peak flow in snow-dominated watersheds is strongly influenced by the condition of the 

snowpack, the diurnal cycle, time of year (especially incoming solar radiation), and 

temperatures. The flow volume (area under the hydrograph) is examined for each 

snowmelt simulation, to roughly estimate if the right amount of water is being 

contributed to the streamflow from the snowpack.  These features of the hydrograph are 

summarized in Table 15.  All of these characteristics (peak flow, timing, water volume) 

are important to emergency responders, other flood management groups, and water 

managers in general. 

 

Table 15: Qualitative Evaluation Measures of Hydrographs 

 

 Hydrograph Aspect  Questions Answered 

Highest peak flows Are the peak flow magnitudes predicted? 

Peak Timing Is the timing of the peak flows predicted? 

Flow Volume/Area under hydrograph Is the annual volume of water predicted? 
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4.7.2 Objective Evaluation of Deterministic Streamflow Predictions 

 

In addition to qualitative visual inspection of the predicted hydrographs, many 

objective, quantitative metrics are applied in hydrologic practice to evaluate simulation 

and forecast performance.  This section discusses the quantitative metrics used to judge 

the DI simulations conducted for this research.  The streamflow simulations from model 

runs with DI are compared to (1) streamflow observations and (2) the simulation derived 

during the CBRFC calibration process, which uses model-calculated snow cover only 

(AESC) and no MODIS-derived fSCA (which is treated as an experimental control).  

This study focuses on deterministic prediction; therefore, deterministic metrics are 

used to evaluate the predictions.  Multiple metrics are necessary to evaluate model 

performance.  No single metric can provide a complete picture of the model’s 

performance.  The objective verification measures used in these comparisons are listed in 

Table 16 and described in further detail below. 

Table 16: Deterministic Verification Metrics 

 

Type of Verification Metric Deterministic 

Association Scatterplots 

Pearson Correlation Coefficient (R)  

Accuracy/Error Measures Mean Error (ME) 

Root Mean Squared Error (RMSE) 

Percent Bias (PB) 

Measures of Forecast Skill Root Mean Squared Error Skill Score (RMSE-SS) 

 

 

Despite the importance of categories and thresholds to streamflow prediction, the 

ability of the modeling system to predict when and how frequently flows meet or exceed 

a flood threshold is not evaluated in this study.  During the time period of the study 
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(WY2000 – WY2010), the observed streamflow for the study basin slightly exceeded the 

flood threshold only once, in early June 2010.  The observed peak mean daily flow in 

early June 2010 was 71.3 m
3
 s

-1
, while the flood threshold is 71.1 m

3
 s

-1 
(see Fig. 15 in 

Chapter 3).  Given the time period of the study and the basin that is the focus of this 

study, the flood sample size (n = 1) does not allow an appropriate evaluation of the 

simulations with respect to the flood threshold. 

 All performance metrics are computed with R scripts.  The R, ME, RMSE, and 

PB values (Table 16) are computed with the hydroGOF R package (Zambrano-Bigiarin, 

2013).  The coefficient of determination (R
2
 for linear regression), and the skill score 

(RMSE-SS) is computed within a custom R script. 

 

4.7.2.1 Predicted Streamflow vs. Observations  

 

MEASURE OF ASSOCIATION 

 

 A measure of association indicates the strength of the linear relationship between 

the streamflow observations and predictions and, to some extent, how well the model 

predicts the observed hydrograph.  The measure of association used in this study is the 

Pearson correlation coefficient (R).  Scatter plots communicate the association visually. 

 

ACCURACY AND ERROR METRICS 

 

Accuracy can be described quantitatively with error metrics.  This study uses 

error metrics that are commonly used in hydrology, including the mean error (ME), root 

mean squared error (RMSE), and the percent bias (PB).  All of these statistics are defined 

and summarized in Table 18. 
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Table 17: Relationship Indicator for (Predicted, Observed) Pairs for Deterministic Prediction 

 

 

Objective 

Streamflow  

Performance  

Metric Description Equation(s) 

 

Range, Best and 

Desirable 

Values, 

Additional 

Explanation (if 

necessary) 

Pearson 

Correlation 

Coefficient  

(R) 

Measure of how well the 

model reproduces the 

observed streamflow; 

measure of the LINEAR 

association between P and 

O 

 

Insensitive to differences in 

hydrograph size 

 

 

where: 

Qpi = predicted Q  

Qoi = observed Q 

n = number of Q prediction-observed  pairs 

 

Range:  

-1 to +1 

 

Best: +/-1 

 

Desirable 

Values:  

Far from zero; 

close to -1 or 

close to +1 

 
Table 18: Accuracy and Error Metrics (after COMET, 2008 and CBRFC, 2004) 

 
 

Objective 

Streamflow  

Performance  

Metric Description Equation(s) 

 

Range, Best and 

Desirable Values, 

Additional Explanation 

(if necessary) 

 

Mean Error (ME) 

(also referred to as 

“bias”) 

Indicates over/under prediction 

 

Disadvantage – can be misleading, 

as large errors of opposite sign will  

cancel each other out. 

 

where:  

ei = Qpi - Qoi  

Qpi = predicted Q  

Qoi = observed Q 

n = number of Q prediction-

observed pairs 

Range:  

-' to ' 

 

Best: 0 

 

Desirable Values:  

As close to zero as 

possible 

Root Mean Square 

Error  

(RMSE) 

 

Indicates error magnitude 

 

More sensitive to large errors than 

other metrics. Large errors (more 

common in high flows) will 

dominate RMSE. 

 

Does not indicate over/under 

prediction 

 

 

where:  

ei = Qpi - Qoi  

Qpi = predicted Q  

Qoi = observed Q 

n = number of Q obs 

 

Range:  

0 to ' 

 

Best: 0 

 

Desirable Values:  

As close to zero as 

possible 

Percent  

Bias  

(PB)  

 

Measure of total volume 

difference between two time 

series 

 

Does not measure differences in 

timing. 

 

where:  

ei = Qpi - Qoi  

Qpi = predicted Q  

Qoi = observed Q 

n = number of Q obs 

Range:  

-' to ' 

(usually -100 to 100%) 

 

Best: 0 

 

Desirable Values:  

As close to zero as 

possible 
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4.7.2.2 Predicted Streamflow vs. Reference or Control 

 

 In addition to comparisons with observations, this study compares experiment 

results with a control, using a skill score.  A skill score (SS) represents a percent 

difference between verification metrics for two different model predictions (NWS, 2006).  

Even if error statistics indicate less than desirable results for a model, skill scores may 

indicate that the experimental predictions improve over control or reference predictions.  

The control or reference prediction could be streamflow values from climatology, 

persistence, or predictions from other models.  The skill score for this study is the RMSE 

skill score (RMSE-SS).  Mathematically, a skill score is defined:  

! 

SS =
Xpredicted " Xcontrol

X perfect " Xcontrol

  (7) 

where: 

Xpredicted = value of a verification metric, computed for the experimental predictions 

Xcontrol = value of a verification metric, computed for the control 

Xperfect = value of a verification metric, if the predictions are perfect 

 

If the SS is less than zero, then the experimental simulations are worse than the 

control, in terms of the specified verification metric X.  If SS is equal to zero, then the 

prediction skill is the same as that of the control (no better, no worse than the control).  If 

SS is greater than zero, then the model’s predictions are better than those of the control, 

in terms of the specified verification metric..  This study applies RMSE.  For RMSE, 

Xperfect is zero; therefore, RMSE-SS is defined specifically as: 

 

! 

RMSE "SS =
RMSEprediction " RMSEcontrol

0 " RMSEcontrol

=1"
RMSEprediction

RMSEcontrol

 (8)
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CHAPTER 5: CASE STUDY RESULTS AND DISCUSSION 

 

This chapter presents and discusses the results of the experimental simulations, in 

which MODIS-derived fractional snow covered area values were directly inserted into 

the SNOW17 model for the headwater basin of the Weber River in Utah, without model 

recalibration.  Because streamflow is ultimately the most important quantity in the 

CBRFC operational forecasting and modeling systems, this study evaluates model 

performance on the basis of this variable. In this chapter, the simulations are identified as 

listed in Table 19: 

 

Table 19: Identifiers and characteristics of streamflow simulations 

 
Simulation ID Active DI MODIS fSCA data set DI Time Period 

CTL No n/a n/a 

MO1.WY Yes MOD10A Full Water Year 

MO1.AJ Yes MOD10A April - July 

MO2.WY Yes MODSCAG Full Water Year 

MO2.AJ Yes MODSCAG April - July 

 

 

5.1 OVERALL PERFORMANCE OF SIMULATIONS 

 

In general, the CTL simulation predicts the observed streamflow reasonably well.  

The DI simulations mostly under predict the streamflow and exhibit a negative average 

error (or negative bias); severe under prediction is common.  There are a few cases in 

which the DI simulations over predict the observed streamflow with a positive bias.  

Overall, over prediction is uncommon in the DI simulations.  Examples of under 
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prediction (negative bias) and over prediction (positive bias) are given throughout this 

chapter. The overall performance of the various simulations with respect to peak flows 

and annual streamflow volume, judged by the evaluation measures listed in Table 15, is 

summarized in Table 20. 

 

Table 20: Qualitative performance measures for study simulations 

 
Highest Peak Flows Peak Timing Flow Volume/Area under 

hygrograph 

Simulation 
Are the peak flow magnitudes 

predicted? 

Is the timing of the peak flows 

predicted? 

Is the annual volume of water 

being predicted? 

CTL Peak magnitudes are predicted 

to within +/-10% overall, 

though sharp peaks tend to be 

under predicted (by as much 

as -25% when averaged over 

the study period) 

Peak flow timing is predicted; 

the timing of the predicted 

peaks matches the timing of 

the observed peaks. 

Annual flow volumes are 

predicted to within a bias of 

+/- 5% of the observed annual 

flow volume in the majority 

of years.  Under prediction 

occurs of ~ - 17% in two of 

the study years. 
MO1.WY Peak magnitudes are predicted 

only in a few cases.  Almost 

always, the peaks are under 

predicted, sometimes severely 

so. 

The peak timing is predicted 

in about half of the years.  

Otherwise, peaks are 

nonexistent, or the timing is 

not predicted. 

Under prediction occurs in all 

years, most of the time severe.  

Under prediction occurs to a 

lesser degree in WY2008, 

WY2009, and WY2010. 

MO1.AJ Peak magnitudes are predicted 

only in a few cases.  Almost 

always, the peaks are under 

predicted, sometimes severely 

so. 

The peak timing is predicted 

in about half of the years.  

Otherwise, peaks are 

nonexistent, or the timing is 

not predicted. 

Under prediction occurs in all 

years, most of the time severe. 

MO2.WY Peak flow magnitudes are not 

predicted well.  In many 

years, there is no discernable 

snowmelt-driven peak flow.  

Only WY2010 comes close. 

For the most part, timing of 

peak flows are not predicted 

well.  Simulated peaks often 

occur later than observed 

peaks, or not at all. 

The annual volume of water is 

severely under predicted in 

almost all years.  WY2010 is 

close but still under predicted. 

MO2.AJ For most years, there is no 

obvious snowmelt-driven 

peak flow. 

Peaks are either predicted too 

late when compared to 

observed flow, or no peak is 

predicted at all. 

The annual volume of water is 

severely under predicted in 

almost all years.  WY2010 is 

close but still under predicted. 
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5.1.1 Scatterplots 

 

The scatterplots in Figs. 24-28 compare simulated to observed streamflow on a 

daily basis for the five simulations, for the study period of WY2000 to WY2010.  The 

coefficient of determination () is shown on each scatterplot to indicate the degree to 

which the model predicts the observed streamflow values.  

The CTL simulation performs the best overall during the study period, with an R
2
 

value of 0.92.  The performance of the DI simulations is overall poorer than that of the 

CTL simulation during the study period.  The under prediction (negative bias) of the 

observed streamflow by the DI simulations is particularly evident in Figs. 25-28.  The R
2
 

values for the DI simulations range from 0.22 (MO2.AJ DI simulation to 0.70 (MO1.WY 

DI simulation).  Despite an R
2
 of 0.70, which would generally indicate acceptable model 

performance by itself, the performance of the MO1.WY simulation exhibits a negative 

bias (Fig. 25).  The scatterplots for the CTL and DI simulations are discussed in detail 

below. 

 

5.1.1.1 Control Simulation 

 

 The CTL simulation reasonably simulates the streamflow during the study period 

of WY2000 to WY2010, across all seasons of the water years included in the study 

period (Fig. 24).  For the overall study period, the R
2
 value for observed streamflow and 

streamflow simulated by the control is 0.92.  A few cases of under prediction (negative 

bias) of approximately 50% occur when the mean daily streamflow is greater than 40 m
3
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s
-1

 (Fig. 24).  These cases of under prediction occur when the observed hydrograph 

exhibits a sharp single peak, as will be discussed in section 5.1.2. 

 

Figure 24: WY2000 to WY2010 simulated vs. observed mean daily streamflow for CTL simulation  
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5.1.1.2 Direct Insertion Simulations 

 

All of the scatterplots that compare simulated to observed streamflow for the DI 

simulations show that the DI simulations usually under predict the observed streamflow 

(Figs. 25-28).  The under prediction of the observed streamflow is especially evident for 

observed mean daily streamflow greater than ~ 5 m
3
 s

-1
.  The under prediction is partially 

a result of reduced snowmelt rates in the simulations with active DI; reasons for the under 

prediction are discussed in section 5.3.  A mix of under and over prediction occurs at low 

flows (<5 m
3
 s

-1
). 

Overall, the DI simulations that use the MOD10A version of MODIS fSCA under 

predict the observed streamflow to a lesser degree than the DI simulations that use the 

MODSCAG fSCA product. Figures 27 and 28 show that the greatest extent of under 

prediction occurs in the MO2 simulations (DI of MODSCAG fSCA).  There is also 

generally a wider range of differences between the simulated and observed streamflow in 

the DI simulations that use the MODSCAG fSCA product (Figs. 27 and 28).  
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Figure 25: WY2000 to WY2010 simulated vs. observed mean daily streamflow for MO1.WY DI 

simulation 
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Figure 26: WY2000 to WY2010 simulated vs. observed mean daily streamflow for MO1.AJ DI 

simulation 
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Figure 27: WY2000 to WY2010 simulated vs. observed mean daily streamflow for MO2.WY DI 

simulation 
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Figure 28: WY2000 to WY2010 simulated vs. observed mean daily streamflow for MO2.AJ DI 

simulation 

 

 

5.1.2 Example Hydrographs 

 

 In this section, several examples of hydrographs from both the CTL and DI 

simulations are shown.  Aspects of the hydrographs examined include peak magnitudes, 

peak timing, and volume of water indicated by the area under the hydrograph.  While the 

monthly statistics are shown in the hydrograph figures, they are discussed in a limited 

manner in this section (5.1).  Detailed discussion of the performance of the simulations 

(as judged by the statistical metrics) is included in section 5.2. 
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5.1.2.1 Hydrographs from Control Simulation 

 

The CTL simulation adequately predicts the observed hydrograph in most cases 

(Fig. 24, 29).  One example of high-quality simulation is WY2008, in which multiple 

peaks of various magnitudes were observed during the snowmelt runoff season (Fig. 29).  

While the control simulation under predicts in early May (mean error of -4.1 m
3 
s

-1
), the 

magnitude of the largest peaks is generally met, and the timing of the simulated peaks 

matches the timing of the observed peaks. 

Figure 29: WY2008 observed (bold) and CTL simulated (thin) streamflow for OAWU1  

 

The CTL simulation consistently under predicts the magnitude of sharp single 

peaks in the snowmelt-driven hydrograph in other years of the study period.  Examples 

are shown of under predicted snowmelt runoff peaks for water years 2001, 2003, and 

2010 (Figs. 30-32).  The sharpest observed peak of the study period occurs in June 2010 

(Fig. 32), when the streamflow slightly exceeds the flood threshold set by the NWS.   In 

these cases of sharp peaks in the observed hydrograph, the simulated peaks sometimes 

have a negative bias of ~40% on a daily basis.  Calibrated temperature index models such 
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as SNOW17 generally have difficulty capturing sharp streamflow peaks in the observed 

hydrograph, especially when the sharp peaks are due to abnormal conditions that are not 

representative of the historical period used to calibrate the model. For example, the sharp 

streamflow peak that occurred in June 2010 (Fig. 32) was preceded by cooler than 

average May temperatures (Fig. 33).  The cool May temperatures delayed snowmelt and 

allowed the snowpack to persist longer than it normally would have.  By mid to late May, 

the snowpack was above average in terms of SWE, according to SNOTEL sites within 

and near the OAWU1 watershed.  When temperatures increased in early June, the 

snowpack melted, driving streamflow to reach and exceed the NWS flood threshold. 

Figure 30: WY2001 observed (bold) and CTL simulated (thin) streamflow for OAWU1 

 

 
Figure 31: WY2003 observed (bold) and CTL simulated (thin) streamflow for OAWU1 
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Figure 32: WY2010 observed (bold) and CTL simulated (thin) streamflow for OAWU1 

 

 

 

 
 

Figure 33: Temperature and temperature departures from normal for Salt Lake City, UT for spring 

(late March through early June) 2010 (CBRFC, 2010).  May 2010 was overall cooler than normal 

(highlighted in green) while the first week of June was warmer than normal (highlighted in orange). 
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5.1.2.2 Hydrographs from Direct Insertion Simulations 

 

 As mentioned previously, the DI simulations under predict the observed 

streamflow most of the time. The negative bias is sometimes severe; for example, the 

monthly mean error for June 2008, for the MO2.AJ DI simulation is nearly -30 m
3 
s

-1
 (-

84% bias) when compared to the observed streamflow.   The observed hydrograph is 

particularly under predicted during the snowmelt runoff season in most of the years of the 

WY2000 to WY2010 period.  A few cases of over prediction occur during the study 

period; most over prediction (simulations with positive bias) occurs outside of the 

snowmelt runoff period of April - July.  Several examples of simulated hydrographs that 

illustrate under and over prediction during the study period are discussed in this section. 

Figure 34 shows an example of severely under predicted flow from the MO2.AJ 

DI simulation for WY2008.  In this case, two minor peaks are barely simulated in late 

May and early June.  The simulated peaks of late May and early June of WY2008 for the 

MO1.WY simulation (Fig, 35) are not as severely under predicted as in the MO2.AJ 

simulation (Fig. 34), but they still fall short of the magnitude of the observed peak. 

Prediction of peak timing by the DI simulations varies. In many cases, the 

simulated flow is very low compared to the observations, and the simulation lacks an 

obvious snowmelt-driven peak (Fig. 34).  The timing of the snowmelt-driven peak is 

predicted correctly in some years (e.g., WY2010 for the MO1.AJ simulation shown in 

Fig. 36) but the predicted peak timing predicted by the DI simulations does not match the 

observed time of peak in other cases (e.g., WY2006 and WY2007 from the MO2.WY DI 

simulation, as shown in Figs. 38-39).     
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Cases of over prediction occasionally occur, usually in the late summer or fall but 

occasionally as early as June. Figures 34-39 show cases of over prediction (positive bias), 

primarily in the months of August and September. The degree of over prediction is 

generally not as dramatic as the under prediction (negative bias) in the DI simulations.  

Figure 39 shows over prediction by the MO2.WY DI simulation during June 2007.  

During June 2007, on a monthly basis, the mean error (ME) of the MO2.WY DI 

simulation is low (0.4 m
3
 s

-1
), suggesting that the model performance may be good for the 

month of June 2007.  However, the monthly RMSE for June 2007 is 6.8 m
3
 s

-1
, indicating 

that the overall magnitude of the errors is nonzero; that is, the small monthly bias is due 

to large positive and negative errors that cancel. 

The observed volumes for the water year as a whole are mostly under predicted as 

well, though there is one instance of over prediction (MO2.AJ simulation, WY2007 – see 

section 5.2.1.2).  The water year streamflow volumes predicted by the DI simulations, in 

terms of under and over prediction of the observed water year volumes, range from -65% 

to 5% of the observed water year volume.  

For the DI simulations, all April – July streamflow volumes are under predicted 

when compared to observations, regardless of the type of MODIS fSCA data used and 

regardless of the period during which the DI is active.  The DI simulations under predict 

the observed April – July streamflow volumes and are less than the observed volumes by 

22 to 81%.  The under and over prediction of streamflow volume for the April – July 

period and the water years as a whole is discussed in detail in sections 5.2.1.2, 5.2.2.1, 

and 5.3.3. 
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Figure 34: WY2008 observed (bold) and MO2.AJ simulated (dashed) of streamflow for OAWU1 

 

 

 
Figure 35: WY2008 observed (bold) and MO1.WY simulated (dashed) of streamflow for OAWU1 

 

 

 
Figure 36: WY2010 observed (bold) and MO1.AJ simulated (dashed) of streamflow for OAWU1 
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Figure 37: WY2010 observed (bold) and MO2.WY simulated (dashed) of streamflow for OAWU1 

 

  

Figure 38: WY2006 observed (bold) and MO2.WY simulated (dashed) of streamflow for OAWU1 

 

 

Figure 39: WY2007 observed (bold) and MO2.WY simulated (dashed) of streamflow for OAWU1 
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5.2 MODEL PERFORMANCE BY QUANTITATIVE METRICS 

 

5.2.1 Overall Performance of Simulations by Quantitative Metrics 

 

5.2.1.1 Control Simulation 

 

The simulated streamflow from the control, which does not include information 

from the MODIS-derived fSCA values, performs reasonably well (overall errors near 

zero, biases near zero) over the study period.   The mean monthly errors are close to zero 

outside of the runoff period of April - July (Fig. 40).  Within the runoff period (bracketed 

by red lines in Fig. 40), the control simulation under predicts in some years and over 

predicts in others, depending on the individual month.  The largest errors occur during 

May (under prediction/negative bias) and June (over prediction/positive bias) of 

WY2009.  The monthly mean errors are most variable in the months of May and June, as 

shown in Fig. 40. 

The monthly RMSE for each water year is low (generally less than 1 m
3
s

-1
, on 

average for the control simulation)  outside of the April – July runoff period (Fig. 41).  

The RMSE values increase within the runoff period (bracketed in red lines in Figs. 41), 

with the largest RMSE (13 m
3
 s

-1
)  occurring in June 2010.  In June 2010, the control 

simulation does not capture a sharp peak in the observed hydrograph (bold line in Fig. 

36), so the monthly RMSE for June 2010 exceeds and is more than double the June 

RMSE from the other water years.  With the exception of WY2010 (where the monthly 

RMSE value is largest in June), monthly RMSE values are largest for the month of May, 

indicating that, in general, errors of the largest magnitude occur in May.  
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Figure 40: Monthly mean errors for the control simulation, by individual water year of the WY2000 

to WY2010 study period. Red lines bracket the spring snowmelt runoff period of April-July. 

 

 
Figure 41: Monthly root mean square error for the control simulation, by individual water year of 

the WY2000 to WY2010 study period. Red lines bracket the spring snowmelt runoff period of April-

July.  

 

 

5.2.1.2 Direct Insertion Simulations 

 

 

In contrast to the CTL simulation, the simulated streamflow with active DI has a 

limited ability to capture characteristics of the observed hydrograph during the study 

period of WY2000 and WY2010. The simulation accuracy varies with time of year, 

slightly with the type of MODIS-derived fSCA observations used, and, to a small degree, 

with the application of DI throughout the full water year (WY simulations) or only during 
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the April-July runoff season (AJ simulations).  Generally, under prediction of the 

observed flow occurs. Considering the streamflow volumes for each water year, the 

observed volume is under predicted by the four DI simulations in all but one DI 

simulation for one year in the study period: WY2007, when the MO2.AJ simulation over 

predicts the observed volume for the water year by 5% (Fig. 42).  More typical patterns 

of under prediction are shown in Fig. 43, for WY2009, where all four DI simulations 

under predict the annual streamflow volume by ~30 to ~50%.  The resulting under 

prediction of streamflow by the DI simulation occurs because of the manner in which 

SNOW17 uses the snow cover extent within its computations (discussed in detail in 

section 5.3). 

 

 

Figure 42: Observed and simulated annual streamflow volumes in million m
3
 (MCM) for WY2007.  

The percent difference in annual streamflow volume between the observed volume and the DI 

simulations and between the CTL simulation and the DI simulations is also shown. 
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Figure 43: Observed and simulated annual streamflow volumes in million m
3
 (MCM) for WY2009.  

The percent difference in annual streamflow volume between the observed volume and the DI 

simulations and between the CTL simulation and the DI simulations is also shown. 

 

 

Severe under prediction occurs regardless of the type of MODIS-derived fSCA 

used, and regardless of whether the MODIS-derived fSCA is used during the full water 

year or only during the runoff period of April – July.  The most obvious failure of the DI 

simulations occurs during the runoff season of April – July, the season during which the 

largest impacts would be anticipated as the snowpack depletes and observed fSCA drops 

below 100%. Detailed descriptions of the results are organized by seasons of the water 

year in the next section (5.2.2).   
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5.2.2 Breakdown of Performance Metrics by Season 

 

The streamflow simulations from the control run and the simulations run with 

active DI are compared to observed data using the measure of association and error 

metrics described in section 4.7.2.  In addition, a skill score (section 4.7.2.2) is used to 

compare the performance of the DI simulations to the control simulation. The evaluation 

metrics were calculated and then averaged on a monthly basis.   

Results during the April – July snowmelt runoff period are described first, since 

this period is the most important period of the year for seasonal streamflow volume with 

respect to water supplies.  During the study period, on average, 75 percent of the annual 

water volume observed at the USGS gage at the study basin outlet is observed during the 

months of April – July.  The snowpack at the start of the runoff period serves as an 

indicator of the runoff water volume potentially yielded by the snowpack (McInerney and 

Alvord, 2007).  The  runoff period is also the period during which DI of MODIS-derived 

fSCA most dramatically impacts the streamflow simulations.  Descriptions of results 

from other seasons of the water year follow the description of the runoff period results. 

 

5.2.2.1 Ablation/Runoff Season (April – July) 

 

The OAWU1 watershed has a distinct ablation season.  Snowmelt is the primary 

driver of flows in the spring, and the highest flows of the water year are observed in the 

April-July runoff period (Fig. 15).  The spring and early summer runoff season is when 

snowmelt-driven high flows can occur and when water managers must make decisions 
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about their operations, so it is the most important period of the water year with respect to 

streamflow prediction accuracy. 

As discussed in section 5.1, during the melt period, the control (CTL) simulation 

predicts the observed hydrograph in most water years of the study.  The most prominent 

exception is the under prediction of the sharp snowmelt runoff peak for WY2010, which 

occurred in June 2010 (Fig. 36).   

Unfortunately, the DI of MODIS-derived fSCA observations mostly results in 

drastic under prediction of the observed streamflow during the April – July melt season.   

Tables 21-23 show the values of the error statistics by month of the April – July runoff 

period, averaged over the study period of WY2000 to WY2010.  All of the values for the 

error metrics indicate under prediction during the runoff season when averaged over the 

study period of WY2000 to WY2010, with the most extensive under prediction occurring 

in May for all DI simulations.  

 

Table 21: Ablation season (April – July) monthly mean error (ME, units of m
3
s

-1
) for the study 

period of WY2000 to WY2010, for the five streamflow simulations within the experiment.  

 

Month 

WY00-WY10 
Mean Error 

CTL 

WY00-WY10 
Mean Error 
MO1.WY 

WY00-WY10 
Mean Error 

MO1.AJ 

WY00-WY10 
Mean Error 
MO2.WY 

WY00-WY10 
Mean Error 

MO2.AJ 
4 -0.62 -2.07 -1.90 -3.27 -2.78 
5 -2.60 -11.23 -11.90 -15.74 -15.28 
6 0.40 -9.19 -10.09 -9.84 -10.39 
7 0.91 -0.48 -0.44 -0.42 -0.37 

 
Table 22: Ablation season (April – July) monthly average percent bias (PB, units of %) for the study 

period of WY2000 to WY2010, for the five streamflow simulations within the experiment.  

 

Month 

WY00-WY10 

Percent Bias 

CTL 

WY00-WY10 

Percent Bias 

MO1.WY 

WY00-WY10 

Percent Bias 

MO1.AJ 

WY00-WY10 

Percent Bias 

MO2.WY 

WY00-WY10 

Percent Bias 

MO2.AJ 

4 -13.39 % -44.08 % -40.19 % -69.40 % -58.69 % 
5 -14.46 % -61.07 % -63.40 % -85.15 % -82.65 % 
6 0.90 % -51.95 % -55.56 % -56.67 % -52.80 % 
7 13.49 % -5.51 % -3.28 % -5.05 % -1.96 % 
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Table 23: Monthly average root mean square error (RMSE, units of m

3
s

-1
) for the study period of 

WY2000 to WY2010, for the five streamflow simulations within the experiment. 

 

Month 

WY00-WY10 

Root Mean 

Square Error 

CTL 

WY00-WY10 

Root Mean 

Square Error 

MO1.WY 

WY00-WY10 

Root Mean 

Square Error 

MO1.AJ 

WY00-WY10 

Root Mean 

Square Error 

MO2.WY 

WY00-WY10 

Root Mean 

Square Error 

MO2.AJ 

4 1.55 2.44 2.37 3.74 3.36 
5 4.99 13.04 13.89 17.82 17.47 
6 3.71 11.64 12.27 13.86 15.00 
7 1.49 1.85 2.05 2.47 2.61 

 

 

Under prediction of the observed streamflow by the DI simulations during the 

melt season, in terms of percent bias (PB) for individual months, ranges from -4% to  

-92% among all DI simulations (Fig 44-47).  The MOD10A DI simulations suffer from 

under prediction, -40 to -60% PB (Fig. 44-45), but less severely than the MODSCAG DI 

runs (Fig. 46-47). The largest under prediction occurs with the MODSCAG DI runs, 

which commonly have PB values of -50 to -80% (Fig. 46-47), particularly during May.  

The difference in the degree of under prediction between the MOD10A and MODSCAG 

DI simulations is related to the fact that MOD10A fSCA is usually greater than 

MODSCAG’s fSCA (e.g., Fig. 20).  The low runoff season bias is related to how 

SNOW17 uses snow-covered area as a multiplier on snowmelt volume initially computed 

within its snowmelt subroutine.  A more detailed explanation of the impacts of 

SNOW17’s use of snow cover extent as a multiplier on meltwater volume is provided in 

section 5.3. 

Over prediction occasionally occurs for individual months in the later part of the 

runoff period (June and July).  Cases of over prediction are more common in July than in 

June, though a great degree of over prediction can occur in June.  For example, the June 
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2007 PB value is +103.6% for the MO2.AJ simulation (Fig. 47).  Causes of the over 

prediction are discussed in Section 5.3. 

In general, the DI simulations do not represent predictions that would be useful to 

emergency managers or other users of streamflow predictions. The severe under 

prediction that occurs during the April-July snowmelt runoff period is the primary reason.  

Explanations of the under prediction/negative bias are offered in section 5.3. 

Figure 44: Monthly average percent bias for individual water years in the study period of WY2000 to 

WY2010, for the DI simulation MO1.WY  
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Figure 45: Monthly average percent bias for individual water years in the study period of WY2000 to 

WY2010, for the DI simulation MO1.AJ  
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Figure 46: Monthly average percent bias for individual water years in the study period of WY2000 to 

WY2010, for the DI simulation MO2.WY  
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Figure 47: Monthly average percent bias for individual water years in the study period of WY2000 to 

WY2010, for the DI simulation MO2.AJ 

 

 

5.2.2.2 Late Summer/Early Fall (August - September) 

 

During the late summer and early fall, a mix of under and over prediction occurs 

during the month of August, depending on the water year (Fig. 48).  All of the 

simulations (CTL and DI) are more likely to over predict during the month of September 

(Fig. 49) than in August.  OAWU1 streamflow is dominated by baseflow in the late 

summer and early fall, the seasonal snowmelt runoff has finished, and no floods occur.  
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The streamflow during this season is small, and errors are often of the same order of 

magnitude as the observations.  Hence, the errors in the DI simulations, even though the 

PB values in September may approach 200%, are less of a concern in August and 

September than during the runoff period of April-July, which is more important in terms 

of flooding and streamflow for water supply.  Regardless, causes of the simulations’ 

deviations from the observed streamflow are discussed further in Section 5.3. 

 

 

 

Figure 48: Mean monthly percent bias (PB) for August during the study period of WY00 to WY10, 

for all simulations (CTL and DI) within the experiment.  PB values for individual water years and 

individual simulations are shown in the table below the plot. 
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Figure 49: Mean monthly percent bias (PB) for September during the study period of WY00 to 

WY10, for all simulations (CTL and DI) within the experiment.  PB values for individual water years 

and individual simulations are shown in the table below the plot. 

 

 

5.2.2.3 Fall Baseflow (October – November) 

 

During October, mean error (ME) and root mean square error (RMSE) are all near 

zero for most years (Figs. 50-51).  Notable exceptions are WY2007 (October of calendar 

year 2006) and WY2008 (October of calendar year 2007), when over prediction occurs, 

and average errors are three to four times the average October errors of other water years.  

The over prediction that occurs in October 2006 and October 2007 is related to the 

availability of MODIS fSCA values of greater than 5% (discussed in section 5.3.3). 

The October percent bias (PB) metric generally follows the same patterns as the 

ME and RMSE, where October 2006 shows the largest errors and the magnitude of the 
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metric for October is similar among other years. However, for the majority of the years, 

observed and simulated streamflow are low in October.  An error that is small in 

magnitude may be large, percentage-wise, in situations of low flow.  Because streamflow 

in the OAWU1 watershed is heavily dominated by snowmelt, the large PB values in the 

month of October (indicating poor model performance) are less concerning than the poor 

model performance during the runoff period of April – July.  Specifically,  flows in 

October are usually low, October streamflow is not of primary importance as a source of 

water supply, and no flooding occurs in October of the study period.  The full set of 

statistics is available in Appendix A. 

 

Figure 50: October mean error (m3 s-1) for all simulations during the study period of WY00 to 

WY10, for all simulations (CTL and DI) within the experiment.  ME values for individual water 

years and individual simulations are shown in the table below the plot. 
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Figure 51: October monthly root mean square error (m
3
 s

-1
) for all simulations during the study 

period of WY00 to WY10, for all simulations (CTL and DI) within the experiment.  RMSE values for 

individual water years and individual simulations are shown in the table below the plot. 

 

 

Figure 52: October monthly percent bias during the study period of WY00 to WY10, for all 

simulations (CTL and DI) within the experiment.  PB values for individual water years and 

individual simulations are shown in the table below the plot. 
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 During the month of November, the mean error and root mean square error 

performance metrics are near zero and similar for the control simulation and the DI 

simulations.  Following a pattern consistent throughout the study results, the CTL 

simulation usually has better performance than the DI simulations.  Though they are 

nonzero, monthly mean errors and root mean square errors for the DI simulations are low 

in November, compared to other seasons of the water year.  For November, the 

magnitudes of both the monthly mean error and monthly RMSE values for the 

simulations are less than 1.5 m
3
 s

-1 
for all water years in the study (Figs. 53-54).  The 

average magnitudes of these error metrics can be ten times greater during the runoff 

season months of April - July (see Tables 21 and 23) than during November. Therefore, 

the monthly ME and RMSE of November, for all simulations, are considered to be minor. 

Even though the ME and RMSE values are low, the percent bias (PB) values are 

seemingly large (generally +/-40-60%) in November for the DI simulations in some years 

(Fig. 55).  The CTL simulation exhibits monthly PB values that are mostly lower than 

those of the DI simulations, except in one year (WY2002).  Despite the seemingly high 

PB values in some of the water years, the differences in percent bias are less of a concern 

during the baseflow period of November than during the runoff period of April - July.  In 

the OAWU1 basin at this time of year, flows are low as winter approaches.  No flooding 

occurred in the fall during WY2000 to WY2010, and fall streamflow is not used as a 

major source of reservoir inflow. Since the majority of the annual runoff occurs between 

April and July, and the spring and early summer runoff is used to fill reservoirs, efforts to 

diagnose poor streamflow prediction performance should first focus on the April-July 
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period.  Hence, the large PB values during October and November are not investigated in 

detail at this time. 

 

 

 

Figure 53: November mean error (m
3
 s

-1
) for all simulations during the study period of WY00 to 

WY10, for all simulations (CTL and DI) within the experiment.  ME values for individual water 

years and individual simulations are shown in the table below the plot. 
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Figure 54: November monthly root mean square error (m3 s-1) for all simulations during the study 

period of WY00 to WY10, for all simulations (CTL and DI) within the experiment.  RMSE values for 

individual water years and individual simulations are shown in the table below the plot. 

 

 

 
Figure 55: November monthly percent bias during the study period of WY00 to WY10, for all 

simulations (CTL and DI) within the experiment.  PB values for individual water years and 

individual simulations are shown in the table below the plot 
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5.2.2.4 Accumulation Season/Winter Baseflow (December – March) 

 

During the winter months, the majority of the precipitation in the OAWU1 basin 

falls as snow and temperatures are low, so little melt occurs.  Streamflow typically 

remains low, although it increases slightly in March in some years as the melt season 

approaches.  Performance metrics for this season are mixed and vary among the water 

years of the study period.  

For some months, R indicates a strong and rational linear relationship between the 

observed and simulated streamflow (e.g. near +1.0, as in December for WY2001, January 

for WY2007, and in March of most water years – see Figs. 56-59).  In other months, R is 

negative (sometimes approaching -1.0), indicating an inverse and irrational relationship 

between observed and simulated streamflow.  The most prominent examples of negative 

R values during the accumulation period occur in December for WY2002 and WY2005, 

January of WY2001, and February of WY2002 and WY2008.  

The negative Pearson R values indicate an irrational relationship between the 

observed and simulated streamflow values; as the observed hydrograph is rising, the 

simulated hydrograph is receding, or vice versa.   Pearson’s R as an indicator of an 

inverse relationship between observed and simulation streamflow may be related to 

timing problems within the simulations.  If hydrograph peaks are simulated correctly in 

magnitude but not with respect to timing, the simulated streamflow may exhibit opposite 

characteristics of the observed streamflow over short durations (e.g., the simulation may 

indicate a rise in the hydrograph while the observed streamflow indicates recession).   
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Figure 56: December monthly mean Pearson R values for all simulations during the study period of 

WY00 to WY10, for all simulations (CTL and DI) within the experiment.  R values for individual 

water years and individual simulations are shown in the table below the plot. 

 

 

 

Figure 57: January monthly mean Pearson R values for all simulations during the study period of 

WY00 to WY10, for all simulations (CTL and DI) within the experiment.  R values for individual 

water years and individual simulations are shown in the table below the plot. 
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Figure 58: February monthly mean Pearson R values for all simulations during the study period of 

WY00 to WY10, for all simulations (CTL and DI) within the experiment.  R values for individual 

water years and individual simulations are shown in the table below the plot. 

 

 

 

Figure 59: March monthly mean Pearson R values for all simulations during the study period of 

WY00 to WY10, for all simulations (CTL and DI) within the experiment.  R values for individual 

water years and individual simulations are shown in the table below the plot. 
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During the mid winter months (December, January, February), average ME and 

PB values over the study period of WY2000 to WY2010 show that the DI simulations 

under predict flows on average by –0.09 to -0.46 m
3 
s

-1
 or -4 to -32% (Tables 24 and 25).  

The CTL simulation tends to over predict in the mid winter months by 0.04 to 0.23 m
3 
s

-1
 

or 4 to 20% when averaged over the study period (Tables 24 and 25).   

For March, the CTL simulation under predicts on average during the study period 

(ME of -0.11 m
3 
s

-1
 on average over the study period), but to a lesser extent than the DI 

simulations, for which the study period average ME ranges from -0.33 to -0.89 m
3 
s

-1
, 

depending on the DI simulation  (Table 24). Percent bias values, averaged over the study 

period, for the DI simulations range from -21 to -45% for the month of March (Table 25).  

The average percent bias for the study period for the CTL simulation is -7% (Table 25). 

RMSE values (Table 26) overall indicate larger magnitudes of error in the accumulation 

period over the study period of WY 2000 to WY2010 in the DI simulations than in the 

CTL simulation.  The study period average RMSE value for the CTL simulation is lower 

(0.36 m
3 
s

-1
) in March than RMSE values of the DI simulations (0.59 to 0.98 m

3 
s

-1
) 

(Table 26). 

 Figures 60-63 show the monthly mean error for the months in the accumulation 

period.  The magnitude of the monthly mean errors is low during the accumulation period 

for most water years in the study period for all simulations (CTL and DI). During 

December and January, the CTL simulation slightly over predicts while the DI 

simulations usually under predict (Figs. 60 and 61).  The monthly mean error for 

February indicates a mix of over and under prediction by the CTL simulation and 

consistent under prediction by the DI simulations (Fig. 62).  In March, as the 
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accumulation season transitions into the spring runoff season, the CTL under predicts 

more often, and the DI simulations continue a tendency of under prediction and negative 

bias (Fig. 63).  The monthly RMSE values (Figs. 64-67) also show low error magnitudes 

for the accumulation period). 

 
Table 24: Average streamflow error for the WY2000 to WY2010 study period, for all five 

simulations, by month of the December – March accumulation season 

 

 Mean Error (m
3 
s

-1
) for the Overall Study Period 

Month CTL MO1.WY MO1.AJ MO2.WY MO2.AJ 

12 0.23 -0.11 -0.09 -0.33 -0.21 

1 0.14 -0.17 -0.18 -0.38 -0.29 

2 0.04 -0.25 -0.26 -0.46 -0.37 

3 -0.11 -0.45 -0.33 -0.89 -0.41 

 

Table 25: Average percent bias for the WY2000 to WY2010 study period, for all five simulations, by 

month of the December – March accumulation season 

 
 Overall Percent Bias (%) for the Study Period 

Month CTL MO1.WY MO1.AJ MO2.WY MO2.AJ 

12 20% -5% -4% -21% -12% 

1 13% -10% -11% -26% -19% 

2 4% -17% -18% -32% -25% 

3 -7% -26% -21% -45% -26% 

 

Table 26: Average streamflow root mean square error for the WY2000 to WY2010 study period, for 

all five simulations, by month of the December – March accumulation season 

 
 Overall Root Mean Square Error (m

3 
s

-1
) for the Study Period 

Month CTL MO1.WY MO1.AJ MO2.WY MO2.AJ 

12 0.34 0.32 0.30 0.45 0.41 

1 0.28 0.29 0.28 0.43 0.40 

2 0.20 0.34 0.32 0.50 0.44 

3 0.36 0.59 0.64 0.98 0.74 
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Figure 60: December mean error (m
3
 s

-1
) for all simulations during the study period of WY00 to 

WY10, for all simulations (CTL and DI) within the experiment.  ME values for individual water 

years and individual simulations are shown in the table below the plot. 

 
 

 

Figure 61: January mean error (m
3
 s

-1
) for all simulations during the study period of WY00 to 

WY10, for all simulations (CTL and DI) within the experiment.  ME values for individual water 

years and individual simulations are shown in the table below the plot. 
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Figure 62: February mean error (m
3
 s

-1
) for all simulations during the study period of WY00 to 

WY10, for all simulations (CTL and DI) within the experiment.  ME values for individual water 

years and individual simulations are shown in the table below the plot. 

 

 

 

 

Figure 63: March mean error (m
3
 s

-1
) for all simulations during the study period of WY00 to WY10, 

for all simulations (CTL and DI) within the experiment.  ME values for individual water years and 

individual simulations are shown in the table below the plot. 
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Figure 64: December root mean square error (m3 s-1) for all simulations during the study period of 

WY00 to WY10, for all simulations (CTL and DI) within the experiment.  RMSE values for 

individual water years and individual simulations are shown in the table below the plot. 

 

 

 

 
Figure 65: January root mean square error (m

3
 s

-1
) for all simulations during the study period of 

WY00 to WY10, for all simulations (CTL and DI) within the experiment.  RMSE values for 

individual water years and individual simulations are shown in the table below the plot. 
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Figure 66: February root mean square error (m
3
 s

-1
) for all simulations during the study period of 

WY00 to WY10, for all simulations (CTL and DI) within the experiment.  RMSE values for 

individual water years and individual simulations are shown in the table below the plot. 

 

 

Figure 67: March root mean square error (m
3
 s

-1
) for all simulations during the study period of 

WY00 to WY10, for all simulations (CTL and DI) within the experiment.  RMSE values for 

individual water years and individual simulations are shown in the table below the plot. 
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5.2.3 Comparison of April – July DI and CTL Simulations via Skill Scores  

 

 For the most important season of the water year (April – July), the RMSE skill 

score (RMSE-SS) for the water years in the study quantifies the difference between the 

error metrics for the CTL and DI simulations.  The DI simulations mostly have poorer 

performance with respect to streamflow predictions when compared to the CTL 

simulation.  The majority of the monthly RMSE-SS values during the runoff period of 

April-July are negative, indicating that use of MODIS-derived fSCA via DI degrades the 

streamflow simulations when compared to the CTL simulation.  Figures 68-71 show that 

RMSE-SS values are commonly less than -2 during months of the runoff period (April – 

July), with the largest negative value of -14.3 in June 2007.  For the month of May, 

throughout the water years in the study period, the RMSE-SS values are all negative, 

indicating that none of the DI simulations improve upon the performance of the CTL 

simulation, in terms of RMSE (Fig. 69).  The MOD10A DI simulations result in small 

improvements over the CTL simulation (RMSE-SS is positive but less than or equal to 

0.5, generally 0.2 to 0.4) in April of WY2001 and WY2007 (Fig. 68), and in July of 

WY2005, WY2009, and WY2010 (Fig. 71).  Direct insertion of the MODSCAG data set 

results in improved model performance when compared to the CTL simulation in July of 

WY2010 only (Fig. 71). 
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Figure 68: April root mean square error skill score for all DI simulations within the experiment 

during the study period of WY00 to WY10.  RMSE-SS values for individual water years and 

individual simulations are shown in the table below the plot. 

 

 

 
Figure 69: May root mean square error skill score for all DI simulations within the experiment 

during the study period of WY00 to WY10.  RMSE-SS values for individual water years and 

individual simulations are shown in the table below the plot. 
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Figure 70: June root mean square error skill score for all DI simulations within the experiment 

during the study period of WY00 to WY10.  RMSE-SS values for individual water years and 

individual simulations are shown in the table below the plot. 

 
 

 
Figure 71: July root mean square error skill score for all DI simulations within the experiment 

during the study period of WY00 to WY10.  RMSE-SS values for individual water years and 

individual simulations are shown in the table below the plot. 
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Figures 72 and 73 show the RMSE-SS values for individual months of each water 

year in the study period, for two selected DI simulations, MO1.AJ (DI of MOD10A 

during the April – July runoff period only) and MO2.AJ. (DI of MODSCAG during the 

April – July runoff period).  In the majority of individual months of all water years, the 

DI of MODIS-derived fSCA results in poorer streamflow predictions, in terms of RMSE, 

when compared to the CTL simulation. The degradation in prediction performance of the 

DI runs is particularly apparent during the runoff period of April – July, specifically in 

May and June.  Outside of March and the runoff period of April – July, use of MODIS-

derived fSCA via DI results in improved predictions (RMSE-SS for individual months of 

~ +0.5) compared to the CTL simulation in some months of some water years, though not 

all.  The DI simulations that use MODSCAG (Fig. 74) generally show worse 

performance than the DI simulations that use MOD10A (Fig. 73). 
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Figure 72: Monthly RMSE-SS for MO1.AJ DI simulation for study period of WY2000 to WY2010   

 

 
Table 27: Monthly RMSE-SS values for MO1.AJ DI simulation for study period of WY00 to WY10 

 
Water 

Year OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 

2000 0.00 0.00 0.00 0.00 0.00 0.00 -0.05 -1.91 -3.94 -0.67 -0.08 0.33 

2001 0.04 -1.42 -0.83 -0.20 -1.15 -0.85 0.35 -1.09 -3.54 -0.24 -0.26 0.77 

2002 0.25 0.52 0.71 0.77 -3.25 -1.65 -0.58 -1.55 -5.14 -2.36 0.60 0.41 

2003 -0.68 -2.07 -1.49 -1.38 -3.12 -1.24 -0.80 -2.22 -2.65 -0.51 0.11 0.79 

2004 0.75 -0.25 0.14 -0.09 -0.05 -0.88 -1.43 -3.34 -3.59 -1.48 -0.45 0.70 

2005 -0.73 -0.46 -1.62 -1.16 -0.80 -0.50 -1.24 -2.19 -3.29 0.18 -1.25 -0.76 

2006 0.62 -0.46 0.77 0.58 -4.33 -0.46 -1.22 -2.43 -2.13 -3.37 -2.84 -0.90 

2007 -1.69 -1.67 -0.50 0.12 -0.67 -0.70 0.24 -2.49 -5.12 -2.58 -1.73 -1.94 

2008 -1.40 -2.50 0.29 0.52 0.62 -0.78 -0.44 -1.15 -5.18 -1.64 -2.85 -0.40 

2009 0.35 0.18 0.73 0.04 -0.50 -0.92 -0.65 -1.69 -1.37 0.28 -0.90 -2.05 

2010 -0.56 -0.33 0.45 0.60 0.71 -2.57 -0.28 -0.35 -0.68 0.43 -1.30 0.20 
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Figure 73: Monthly RMSE-SS for MO2.AJ DI simulation for study period of WY2000 to WY2010  
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Table 28: Monthly RMSE-SS values for MO2.AJ DI simulation for study period of WY00 to WY10 

Water 

Year OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 

2000 0.00 0.00 0.00 0.00 0.00 0.00 -0.71 -2.83 -6.05 -1.43 -0.76 -0.33 

2001 -0.30 -2.67 -1.56 -1.00 -1.80 -1.31 -0.26 -1.65 -5.20 -0.82 -0.76 0.75 

2002 -0.43 0.67 0.69 0.40 -5.50 -2.59 -1.32 -1.93 -6.48 -3.00 0.35 -0.80 

2003 -1.22 -1.96 -1.65 -1.57 -3.50 -1.41 -1.28 -2.72 -3.28 -1.00 -1.36 0.30 

2004 0.43 -0.96 -0.39 -0.77 -0.71 -1.47 -1.92 -4.20 -5.71 -1.43 -2.14 0.26 

2005 -1.39 -1.35 -3.12 -1.84 -1.34 -0.81 -1.82 -2.74 -4.34 -0.22 -0.29 -0.39 

2006 -0.34 -1.38 -0.06 -0.23 -8.67 -0.85 -2.26 -3.69 -2.96 -1.49 -3.16 -2.16 

2007 -2.22 -1.64 -0.86 -0.44 -1.78 -0.78 -0.23 -3.03 -14.35 -6.00 -2.52 -2.63 

2008 -1.82 -3.23 -0.14 -0.06 -0.06 0.00 -0.71 -2.02 -6.32 -2.05 -4.00 -0.66 

2009 0.37 -0.02 0.47 -0.61 -1.32 -1.60 -1.41 -2.25 -1.47 -0.46 -0.77 -1.29 

2010 -0.30 -0.23 0.60 0.79 0.85 -4.00 -0.99 -1.71 -0.53 0.34 -2.56 -0.20 

 

 

5.3 DISCUSSION OF SIMULATIONS AND STUDY RESULTS 

 

Understanding the reasons why the inclusion of observed fSCA does not improve 

streamflow predictions using the data and modeling system of this study requires 

examination of the SNOW17 algorithm and the physical interpretation of the depletion 

curve.  Treatment of fSCA within SNOW17 and its impacts on snowmelt rates are 

discussed in this section.   

 

5.3.1 Impacts of MODIS fSCA via DI on Simulated SWE 

 

SNOW17 uses snow cover extent as a multiplier on the melt volume computed 

within the MELT19 subroutine, in which a melt volume is computed assuming 100% 

snow cover across the elevation zone. A SNOW17 AESC value close to 1.0 will deplete 
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the snowpack fastest because the melt volume, after it is multiplied by the AESC value, 

would be closest to the melt volume that assumes 100% snow cover.  The largest melt 

volume value available in a single timestep would be the volume computed assuming 

100% snow cover, then multiplied by 1.0.  Use of a MODIS-derived fSCA value of less 

than 1.0 would result in a lower melt volume being deducted from the snowpack, and the 

simulated SWE would deplete more slowly.  When MODIS-derived fSCA (less than 

what SNOW17 would expect) is forced into SNOW17 in place of the model’s estimate of 

snow cover extent, the rate at which the snowpack melts drastically slows.  In some 

years, the simulated snowpack unrealistically does not melt off in the summer in the 

upper and middle elevation zones.  For example, SNOTEL SWE data for WY2006 

indicate that the snowpack depleted between early May and early June, depending on the 

SNOTEL site (Fig. 74). However, Figures 75-82 show that, in most of the DI 

simulations, the simulated snowpack persists though the summer of 2006 carrying over 

into WY2007, in the middle elevation zone and often the upper elevation as well (e.g., 

WY2005-2006, 2009-2010). 

 

Figure 74: WY2006 SWE (mm) for SNOTEL stations near and within the OAWU1 basin 



 

 153 

 

 

Figure 75: CTL (solid line) and MO1.WY (dashed line) simulated SWE for upper (blue) elevation 

zone for study period  
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 Figure 76: CTL (solid line) and MO1.WY (dashed line) simulated SWE for middle (red) elevation 

zone for study period  
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Figure 77: CTL (solid line) and MO1.AJ (dashed line) simulated SWE for upper (blue) elevation 

zone for study period 
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Figure 78: CTL (solid line) and MO1.AJ (dashed line) simulated SWE for middle (red) elevation 

zone for study period 
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Figure 79: CTL (solid line) and MO2.WY (dashed line) simulated SWE for upper (blue) elevation 

zone for study period  
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 Figure 80: CTL (solid line) and MO2.WY (dashed line) simulated SWE for middle (red) elevation 

zone for study period 
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 Figure 81: CTL (solid line) and MO2.AJ (dashed line) simulated SWE for upper (blue) elevation 

zone for study period  
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Figure 82: CTL (solid line) and MO2.AJ (dashed line) simulated SWE for middle (red) elevation 

zone for study period  
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Complete depletion of the snowpack in SNOW17 depends on the SWE 

approaching and reaching zero, not the value of AESC (snow cover extent used by the 

model).  In SNOW17, SWE is a model state variable and AESC is a diagnostic variable 

(not a model state variable) that is a function of SWE.  In the operational version of the 

SNOW17 source code, the snowpack cannot be “zeroed out” by setting the AESC value 

to zero (either via direct insertion of an fSCA value of 0% or set to 0% manually by a 

forecaster).  A check within the code (UPDT19 subroutine) ensures that SNOW17 

ignores any directly inserted fSCA value of 5% or less.  The check was included in 

SNOW17 so that, in cases where DI is not used (which is always the case in the current 

operational configuration of SNOW17 in NWS hydro operations), the snowpack would 

not linger into the summer due to an AESC multiplier of nearly zero being applied, 

rendering the melt volume within a single timestep very small.  In other words, if 

simulated SWE is nonzero and the modeled snowpack exists, only AESC values that 

exceed 5% will be allowed in SNOW17 computations.  Once simulated SWE reaches 

zero, then the AESC (a diagnostic variable) in the operations version of SNOW17 is 

permitted to go to zero.  So, even if MODIS-derived fSCA values of 0% snow cover are 

available, which would indicate complete snowpack depletion by the observations, they 

cannot be used within the operational version of the SNOW17 code. The fact that AESC 

is used as an indicator of melt rate more than physical snow covered area in SNOW17 is 

apparent after thorough examination of the results of this study as well as of the source 

code (NWS/OHD, 2012). 

When an observed MODIS-derived fSCA value is directly inserted into 

SNOW17, the SWE value is not altered within the same timestep.  SNOW17 aims to 
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conserve simulated mean areal SWE (a state variable) for the elevation zone when the 

AESC value is changed via direct insertion of an observed fSCA value.  As stated 

previously, the snow cover extent (AESC) is not considered a state variable but rather a 

diagnostic variable in SNOW17.  While the simulated SWE value does not change within 

the timestep when an observed fSCA value replaces the model AESC estimate, the 

simulated SWE is impacted in future timesteps.  Details are explained below. 

Direct insertion of MODIS-derived fSCA usually slows the snowpack melt rate 

over the ablation season, regardless of whether the MOD10A or MODSCAG fSCA data 

set is used, because the inserted fSCA is almost always less than the AESC that the 

model would calculate as a function of SWE from the depletion curve.  In SNOW17, 

accounting of the simulated SWE occurs after SNOW17 makes the adjustment by AESC 

to the melt volume that is initially computed assuming 100% snow cover.  Direct 

insertion of observed fSCA effectively reduces the melt volume that is actually deducted 

from the snowpack in each SNOW17 timestep.  Because the mean areal fSCA from 

MODSCAG is usually less than that from MOD10A (Fig. 20), the DI runs that use 

MODSCAG have even slower melt rates than the DI runs that use the MOD10A fSCA 

data.   

While the snowpack carries over through the summer and from water year to 

water year in the upper and middle elevation zones at some point in all of the DI 

simulations (Figs. 75-82), it carries over through the summer more often in simulations 

that directly insert MODSCAG mean areal fSCA estimates (Fig. 79=82).  The snowpack 

in the lower elevation zone melts off every year in all of the DI simulations (not shown). 

Figures 79-82 show that snowpack carryover in the MODSCAG DI simulations starts 
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earlier in the study period (as early as 2003) than in the MOD10A DI simulations. 

Overall, DI of MODSCAG mean areal fSCA into SNOW17 results in slower melt rates 

in the simulated SWE, and the slower melt rates often lead to the model erroneously 

sustaining the snowpack through summers in the study period when it should deplete 

completely. 

 

5.3.2 Impacts of MODIS fSCA via DI on Simulated Snow Cover Extent 

 

In almost all cases, DI of observed fSCA into SNOW17 results in a simulated 

AESC time series that is less than the AESC time series from the CTL run.  Figure 83 

shows MODIS-derived fSCA (observed snow cover extent), simulated AESC (modeled 

snow cover extent based on the depletion curve), simulated SWE, and streamflow time 

series for WY2002 when DI of the MOD10A data is active for the full water year.  The 

fSCA/AESC subpanels show that the DI simulation (dashed line) is usually less than the 

CTL simulation (solid line).  Figure 84 shows the difference between the CTL and DI 

simulated AESC, where orange indicates that the predicted AESC from the DI simulation 

is less than that from the CTL simulation.  Purple indicates that the predicted AESC from 

the DI simulation is greater than that from the CTL.  The instances where the DI-

simulated AESC is less than the CTL-simulated AESC clearly outnumber the opposite 

case. 

Since SNOW17 uses the AESC value (either entirely model-driven, or influenced 

by observed fSCA in the DI simulations) as a multiplier on a melt volume computed 

assuming 100% snow cover, the negative fSCA innovations (difference or residual 

between model estimate and the observation) result in a slower rate of snowpack melt.  
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The slower melt rate translates to reduced streamflow in the DI simulations as well as 

negative bias and negative errors when the DI simulations are compared to observed 

streamflow. 

 In addition to the fact that the AESC from the DI simulation (impacted by use of 

observed fSCA from MODIS) is usually less than the AESC from the CTL simulation, it 

should be noted that predicted AESC from the DI simulation plateaus at 0.05 in the 

summer in all three elevation zones.  This pattern is due to the operational version of 

SNOW17 ignoring any directly-inserted, observed fSCA value of less than 5%. As 

discussed previously, “zeroing out” the snowpack via an observed fSCA value of 0% 

snow cover is not currently encoded into the operational version of SNOW17.  In this 

case, the observed fSCA data (when it is 0%) cannot be used to clear out an abnormally 

large simulated snowpack that has built up over multiple water years due to very slow 

melt rates.   

The SNOW17 source code could be altered to “zero out” the snowpack if the 

snow cover extent is entirely depleted according to observations of MODIS-derived 

fSCA.  However, this change would not address larger issues inherent in the simulations 

that utilize unadjusted MODIS-derived fSCA via DI.  Differences between SNOW17 

AESC and unadjusted MODIS-derived fSCA, and the fact that SNOW17 does not 

include full representation of the energy balance should be addressed before 

implementing a fix that simply “zeroes out” the snowpack when the observations indicate 

full depletion of the snowpack.  If more prominent problems with DI of unadjusted 

MODIS-derived fSCA can be addressed and solved first, then implementation of such a 

fix would seem more reasonable. 
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Figure 83: WY2002 CTL and MO1.WY snow cover extent, SWE, and streamflow simulations (DI 

using MODIS fSCA where cloud cover less than or equal to 50%) 
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Figure 84: WY2002 OAWU1 fSCA differences (DI Sim – CTL Sim) for DI simulation MO1.WY 

 

& AESC (DI – CTL) & AESC (DI – CTL) & AESC (DI – CTL) 
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5.3.3 Impacts of MODIS fSCA Availability on Streamflow Predictions 

 

While most of the DI simulations under predict streamflow with respect to both 

volumes and peak flow magnitude and timing, over prediction occurs occasionally.  Over 

prediction occurs due to a combination of events: (1) when the simulated snowpack 

persists into the middle and late summer and (2) the MODIS-derived fSCA indicates 

snow cover depletion below a threshold of 5% earlier than normal.  Two water years 

(WY2007 and WY2008) from the MO2.AJ simulation are used to illustrate an example. 

The streamflow in June 2007 was over predicted by +104% by the MO2.AJ DI 

simulation.  In contrast, the streamflow in June 2008 was under predicted to nearly the 

same degree (under prediction of -84%).  Yet, WY2007 was a much drier year with a 

lower April – July runoff volume (88.36 MCM) than WY2008 (158.38 MCM).   

The difference between the model performance for June streamflow between 

these two years is related to snowpack carryover in the middle to late summer and the 

timing of when the MODIS-derived fSCA values indicate snow cover depletion.  In the 

MO2.AJ DI simulation, the simulated snowpack began to carryover in earnest during the 

summer of 2005 in both the upper and middle zones (Figs. 81 and 82).  WY2007 was a 

dry year in the OAWU1 basin, but the simulated SWE in the upper and middle elevation 

zones, as predicted by the DI simulation, was nonzero for the entire 2007 water year due 

to carryover from WY2006.  Because WY2007 was actually a dry year in terms of 

observed streamflow, the MODIS-derived fSCA values indicated that the snow cover 

depleted by ~June 1 in the upper elevation zone (Fig. 87, top subpanel) and by mid-May 

in the middle elevation zone (Fig. 87, third panel from the top).  By these times, the 
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MODIS-derived fSCA values dropped below 5% and were ignored by SNOW17 in the 

simulations with active DI.  From mid-May forward in the middle elevation zone and 

from early June forward in the upper elevation zone, SNOW17 modeled the snowpack 

without influence of the MODIS-derived fSCA observations.  The SWE melt rates were no 

longer forcibly slowed by DI of the MODIS fSCA data.   

In contrast, the MODIS-derived fSCA during WY2008 reached a threshold of 5% 

approximately a month later than in 2007 (Fig. 86).  In WY2008, MODIS-derived fSCA 

data slowed the melt rate of the simulated SWE over a much longer time period, leading 

to lower simulated melt rates and streamflow in June of 2008, despite WY2008 being 

wetter overall than WY2007. 
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Figure 85: WY2007 CTL and MO2.AJ snow cover extent, SWE, and streamflow simulations (DI 

using MODIS fSCA where cloud cover less than or equal to 50%) 
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Figure 86: WY2008 CTL and MO2.AJ snow cover extent, SWE, and streamflow simulations (DI 

using MODIS fSCA where cloud cover less than or equal to 50%) 
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5.3.4 Apparent Lack of Mass Conservation 

  

 Throughout this report, many examples of under prediction of observed 

streamflow by the DI simulations have been shown.  The poor performance of the DI 

simulations is a result of under prediction of peak flows as well as streamflow volumes.   

 The under prediction of streamflow volumes is partially explained by the reduced 

snowmelt rates apparent in the DI simulations (see Figs. 75-82).  However, reduced 

snowmelt rates do not entirely explain the severe under prediction of the streamflow 

volumes.  Even in years when the simulated snowpack completely depletes and the 

simulated SWE reaches zero before the end of the water year, the streamflow volumes 

are still under predicted.  For example, in WY2001, the simulated snowpack was 

completely depleted during the summer of 2001 in all elevation zones in the CTL and in 

all of the DI simulations (Figs. 75-82).  Yet, the streamflow volumes for the April – July 

period and the streamflow volume for the 2001 water year as a whole are still severely 

under predicted by the DI simulations.  The streamflow volumes for the April – July 

runoff period are under predicted by 50 to 70% when compared to observations (Fig. 88) 

and for the full water year by 40 to 60%, depending on the DI simulation (Figs. 87-88). 
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Figure 87: Observed and simulated streamflow volumes for the runoff period of April – July 2001.  

The percent difference in annual streamflow volume between the observed volume and the DI 

simulations and between the CTL simulation and the DI simulations is also shown. 

 

 

Figure 88: Observed and simulated annual streamflow volumes for WY2001.  The percent difference 

in annual streamflow volume between the observed volume and the DI simulations and between the 

CTL simulation and the DI simulations is also shown. 
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   The streamflow is also under predicted by the DI simulations in years when the 

maximum SWE is larger than the maximum SWE in the CTL simulation.  In these cases, 

even though the peak SWE attained by the DI simulations is greater than the peak SWE 

of the CTL simulation, under prediction of the streamflow still occurs.  An example of 

this case occurs in WY2007 in the MO1.AJ DI simulation, which is discussed below. 

In WY2007, the simulated peak SWE in the MO1.AJ DI simulation is the same as 

in the CTL simulation for the upper and lower elevation zones, but larger than the peak 

SWE of the CTL simulation in the middle elevation zone, where the snowpack has 

carried over from the previous water year (Figs. 89-91).  Because the middle elevation 

zone is the largest elevation zone by area in the OAWU1 basin (Table 12), and because a 

larger peak SWE occurs in the middle elevation zone in the DI simulation than in the 

CTL, larger streamflow volumes would be expected from the DI simulation than the CTL 

simulation. One might even expect over prediction of streamflow by the DI simulation in 

a case like this.   Contrary to expected results, the DI simulation actually predicts less 

streamflow volume than the CTL simulation does for not only the runoff period of April-

July (54% less than observed) but also for WY2007 as a whole (27% less) (Table 25). 

The DI feature of SNOW17 is not used in the operational RFC environment to 

make official operational predictions, and it has rarely been used as part of an experiment 

conducted in-house by an RFC.  The possibility of an undiagnosed software bug or an 

unaddressed minute detail of configuration that actually has a large impact on snow 

model outflow may be affecting the results of this study.  The current schedule and IT 
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configuration at CBRFC prevents detailed troubleshooting of the source code, though the 

code should be examined in detail once resources are available. 

 

 

Figure 89: WY2007 CTL and MO1.AJ simulated SWE (mm) for OAWU1 upper elevation zone  

 

 

 

Figure 90: WY2007 CTL and MO1.AJ simulated SWE (mm) for OAWU1 middle elevation zone 

 

 

 

Figure 91: WY2007 CTL and MO1.AJ simulated SWE (mm) for OAWU1 lower elevation zone 
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Table 29: Comparison of multi-month streamflow volumes for WY2007 

 

 April – July Streamflow Volume (MCM) WY2007 Streamflow Volume (MCM) 

Observed 88.3 135.4 

CTL Simulation 94.5 153.2 

MO1.AJ  

(DI simulation) 

43.6  

(-51% vs. obs, -54% vs. CTL) 

112.6 

 (-17% vs. obs, -27% vs. CTL) 

 

 

5.4 SUMMARY OF RESULTS 

 

 

 The results of this study found negative impacts on streamflow predictions when 

DI of observed fSCA is used.  The negative impacts are particularly evident when DI 

simulations are compared to control simulations from a well-calibrated set of snow and 

soil moisture models.   

 The DI simulations are heavily impacted by the differences in MODIS-derived 

observed snow cover extent (fSCA) and modeled snow cover extent by SNOW17 

(AESC).  MODIS-derived fSCA is “viewable” snow cover extent; it represents what the 

sensor observes.  This viewable extent may or may not agree with the model’s meaning 

of AESC and its relationship to SWE through the depletion curve.  Cloud cover affects 

the availability of MODIS-derived fSCA.  In addition, on clear days when cloud cover is 

not a factor, vegetation impacts the MODIS fSCA retrieval depending on whether or not 

the vegetation is covered with fresh snow.  In contrast, the AESC value represented 

within SNOW17 is not modeled with consideration of cloud cover or fresh snow (or lack 

of fresh snow) on vegetation. 
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 SNOW17 uses snow cover extent as a multiplier on melt volume that is initially 

computed assuming 100% snow cover.  The use of snow cover extent as a multiplier 

directly affects the amount of melt water that is routed through the snowpack and 

eventually made available to the soil moisture model.  Because MODIS-derived fSCA 

observations are almost always less than the snow cover extent expected by SNOW17, 

direct insertion of the MODIS-derived fSCA results in a smaller volume of melt water 

being made available to other modules in the hydrologic modeling system.  As a result, 

the streamflow predictions that use MODIS-derived fSCA via DI exhibit a negative bias 

compared to the streamflow predictions from the CTL simulation.  SNOW17 does not 

adjust the model SWE state to be consistent with the inserted fSCA. 

In its simplest configuration (no adjustment of MODIS data, no recalibration of 

snow model), use of MODIS-derived fSCA via DI degrades CBRFC streamflow 

predictions.  Methods by which the degradation could be alleviated are discussed in 

section 6.3. 
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

 

 

6.1 SUMMARY 

 

 While DI is an objective, quantitative way to use MODIS-derived fSCA 

observations in an operational hydrologic model, it does not improve streamflow 

predictions under the assumptions and conditions of this study.   The streamflow 

predictions from the DI simulations are impacted by the initial assumption that MODIS-

derived fSCA represents a value of snow cover extent that is similar to the snow cover 

extent as represented by SNOW17 (AESC).  After investigation of and comparison of the 

simulations that are included in this study, as well as investigation of how SNOW17 uses 

snow cover extent, this initial assumption is incorrect.  In most cases, the differences 

between MODIS-derived fSCA and SNOW17 AESC lead to negative impacts on the 

streamflow predictions.  The experiment results show that DI without recalibration of 

model parameters, and without bias adjustment or transformation of MODIS-derived 

fSCA to an equivalent SNOW17 AESC value, is not a viable method by which MODIS-

derived snow covered area observations can be quantitatively incorporated into SNOW17 

and the NWS hydrologic modeling and streamflow forecasting systems.   

 In SNOW17, the snow cover extent value (AESC) is used as a multiplier on the 

melt volume computed assuming 100% snow cover.  Essentially, AESC is used as way to 

control the melt volume within a single timestep, and in turn, the melt rate of the 

snowpack as the model moves forward in time.  In this study, observed fSCA derived 

from MODIS is almost always less than what SNOW17 simulates; this lower value of 
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observed fSCA leads to slower melt of the snowpack when the observed (MODIS-

derived) fSCA is used in SNOW17 via DI without any adjustments to either the MODIS-

derived fSCA values or to the model configuration.  The reduced snowmelt translates to 

reduced streamflow. 

Although the areal depletion curve in SNOW17 is described as a relationship 

between SWE and snow cover extent, it was not developed from observations of snow 

cover, but rather as a set of parameters inferred in calibration. This inferred SWE-AESC 

function that was derived during the calibration process may need adjustment. 

 Even if observed fSCA was compatible with SNOW17’s representation of snow 

cover extent, there are still uncertainties inherent in the observations that need to be 

addressed.  Cloud cover is one of the major drawbacks of using MODIS-derived fSCA in 

hydrologic models. Methods of estimating fSCA for cloudy pixels vary; there is no one 

method that works well all of the time.  Vegetation also impacts the fSCA retrievals from 

satellite-borne instrumentation. Adjusting viewable fSCA values for vegetation is another 

challenge. Studies that verify methods of canopy adjustment with ground observations 

are very limited at this time.   

 

6.2 IMPLICATIONS OF THE RESULTS 

 

 As of June 2013, a way to quantitatively utilize MODIS-derived, observed fSCA 

on a routine basis in operations at NWS RFCs (including CBRFC) is lacking.  DI is 

available to the RFCs as an option in the current operational system, but this study shows 
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that use of observed fSCA in SNOW17 via DI results in poor streamflow simulations 

when existing model parameters, calibrated to streamflow without snow cover 

observations, are used. The DI technique, at least without recalibration of SNOW17, and 

possibly SAC-SMA parameters as well, and/or adjustment of the MODIS fSCA data, is 

currently not a viable option for quantitatively updating SNOW17 snowpack conditions 

in NWS operations.   Modifications to this study’s methodology will be necessary if 

MODIS-derived fSCA observations are to be quantitatively utilized in operational 

streamflow forecasting and modeling systems within the NWS. 

 

6.3 RECOMMENDATIONS FOR FUTURE RESEARCH 

 

 Results of this study show that the DI technique, when used with MODIS-derived 

fSCA that is unadjusted for vegetation and not transformed to a SNOW17 equivalent 

AESC, does not improve streamflow predictions. While the combination of the simple DI 

technique and MODIS-derived fSCA used as-is, with no adjustments, results in poor 

streamflow predictions, there are many methods by which the predictions could 

potentially be improved.  Several proposals for future work related to modeling of 

snowmelt-driven flow are described below. 

Lumped hydrologic modeling systems (including SNOW17 as the snow model) 

have been used operationally by the NWS for decades.  While lumped models perform 

reasonably well under average or near average conditions of the historical period to 

which their parameters were calibrated, their performance is limited by the quality of the 

calibration, as well as the range of conditions within the historical calibration period.  
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Alternatives such as distributed hydrologic models and snow models that contain a more 

explicit representation of snowpack physics than SNOW17 are now commonly available.  

In mountainous basis with spatially varying topography and highly variable vegetation 

patterns, a distributed hydrologic model is likely to more accurately account for spatial 

variability in basin conditions, including radiant energy, temperature, and precipitation. A 

snow model that includes a more explicit representation of snowpack physics and relies 

less on tuned model parameters than SNOW17 does may also improve predictions of 

snowmelt-driven streamflow.  To gain large improvements in prediction of snowmelt-

driven streamflow, models that are more advanced than those currently used in NWS 

RFC operations are likely needed.  The lumped approach of SNOW17 was appropriate 

and expedient for forecasting when observational data were scarce and computers slow; 

recent advances are eliminating these barriers. 

As an intermediate step between the lumped models currently used in NWS 

hydrologic operations and a fully distributed hydrologic model, the relationships among 

snow cover extent, SWE distribution, and melt rate described by Liston (1999) could be 

used to transfer information from MODIS-derived fSCA to the snow model state 

variables (including SWE).  An effort such as this would require further historical 

analysis of MODIS fSCA data and historical model patterns.  Such an analysis would be 

useful in other capacities, such as analysis of uncertainty in the historical observations 

and model characteristics. 

Data assimilation schemes beyond simple DI, schemes that consider uncertainties 

in the model, in the forcing data, and in the observations, and that are capable of 

propagating uncertainty information to other model states, could improve the streamflow 
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simulations.  A more detailed study of relationships between errors in observed fSCA 

from MODIS and errors in SNOW17 simulated AESC could provide more complete 

information that would enable more sophisticated data assimilation techniques to be 

tested in the NWS operational hydrologic environment. 

 New data sets and improvements to existing data sets are always in progress.  For 

example, NASA/GSFC is reprocessing the MODIS record into “Collection 6”, which will 

include an improved fSCA data set (Riggs and Hall, 2012).  The primary improvement in 

this new fSCA data set will be more accurate identification of clouds from snow.  

NASA/JPL is also in progress of reprocessing the MODIS record into a new version of 

MODSCAG with a new cloud identification algorithm; they are also generating a 

canopy-adjusted MODSCAG product.  The canopy-adjusted products are expected to be 

closer to the AESC values that SNOW17 would expect and may prove more useful than 

the unadjusted MODIS-derived data sets used in this study.  NASA/JPL’s MODIS Dust 

Radiative Forcing in Snow (MODDRFS) product, which indicates how much energy is 

absorbed by and input to the snowpack due to impurities on the snow surface and reduced 

albedo, is an additional remotely sensed data set that may potentially inform hydrologic 

predictions. 

 In addition to the available alternatives described above, DI might still be pursued 

as the quantitative, objective method by which MODIS-derived fSCA is used in a lumped 

model.  Additional statistics to describe the results of this study, such as the modified R, 

normalized root mean square error and standard error, should be computed in order to 

further diagnose data and model shortcomings.  Also, differences between the MODIS-

derived fSCA observations and AESC as the model expects would need to be resolved.  
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Development of a transformation (via regression, perhaps) between MODIS-derived 

fSCA and SNOW17 AESC could enable the MODIS-derived observations to be adjusted 

to a SNOW17 equivalent prior to being used in SNOW17 via DI. 

The DI technique used in this study could be expanded to a rule-based scheme, 

where a small amount of SWE is added to or subtracted from the model, depending on 

the conditions indicated by the MODIS fSCA observations.  This technique would be 

helpful only during times of the year when and in areas where fSCA drops below 100% 

and is changing.  

The test basin could be recalibrated and a new set of SNOW17 parameters 

derived, either manually or with a numerical optimization program, using snow cover 

extent as a performance variable alone.  The recalibration should initially focus on 

derivation of a new areal depletion curve after more detailed analysis of physiographic 

characteristics of the watershed, SWE patterns within the watershed, and fSCA patterns 

across the watershed. Recalibration work should also include using snow cover extent  

and streamflow jointly as performance variables to derive an additional set of SNOW17 

parameters. 

Because cloud cover heavily impacts the availability of MODIS data, studies of 

the sensitivity of predicted streamflow, as well as model parameters, to a variety of cloud 

cover thresholds would be helpful.  When CBRFC processes gridded MODIS data into 

the mean areal fSCA across the elevation zones that the RFC models, the fraction of the 

area that is cloud-covered is also computed.  These cloud cover fractions could be used in 

sensitivity tests that investigate the impact of variation in the cloud cover fraction on 

streamflow simulations.   
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 The soil moisture model, SAC-SMA, was not recalibrated in any way for this 

study.  SAC-SMA parameters from the CBRFC’s most recent recalibration were used.  

The impacts on soil moisture states of this study are mostly unknown, though these 

impacts should be investigated.  Determination of these impacts would augment the 

understanding of how DI of observed fSCA values impacts the overall modeling and 

forecasting systems at CBRFC, not just the simulated snowpack. 

This study focused on one basin in northern Utah.  Climate, snowpack 

characteristics, terrain characteristics, and latitude/solar radiation vary widely across the 

Colorado River Basin and the eastern Great Basin.  The study could be expanded to 

additional watersheds in the western U.S. to gain a better understanding of the spatial 

variability of DI impacts on streamflow simulations.  

These recommendations (particularly the expanded use of remote sensing science, 

the pursuit of distributed hydrologic modeling with energy-balance snow models, and 

data assimilation) are consistent with research directions and needs recognized by the 

CBRFC.  Several initiatives within CBRFC and collaborative projects between CBRFC 

and its research partners, aimed at improving the CBRFC operational forecasting and 

modeling process specifically in the areas mentioned above, are already underway or will 

soon commence over the next several months of 2013.  These efforts are expected to 

extend into the next three to five years and beyond. 
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