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Improper foundation designs for machine vibrations can result in machine 

failure, severe discomfort to workers around the machine or excessive settlement. The 

goal of foundation design for machine vibrations is to minimize vibration amplitude. 

In poor soil conditions, pile foundations are used to support the machine. Soil-pile 

stiffness and damping must be known at the level of the pile head. Since piles are used 

mostly in a group, it is also necessary to determine the interaction of the piles within 

the group. This study uses a 3D finite element method to study the response of pile 

foundations subjected to vertical dynamic loading. It uses Lysmer’s analog where the 

pile is replaced by a single degree of freedom dynamic system that provides frequency 

independent parameters. 

A parametric study is performed to obtain the value of the stiffness and the 

damping of a single pile for different soil properties and for both homogeneous and 



  

nonhomogeneous soils. Floating and end-bearing piles were also studied. Pile group 

response is influenced by the soil-pile-soil interaction. The interaction is obtained by 

varying both the spacing and the soil properties around the pile. Interaction between 

the piles causes reduction in the stiffness and damping of the soil-pile system compared 

to an isolated pile. The study provided the interaction factors as a function of pile 

spacing and properties of the soil. Using the interaction factors, the response of a group 

of piles can be determined from the response of a single pile. 
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1. Introduction 

Vibration from operating machines generates cyclic stresses within the soil. 

The stresses will cause deformation within the soil. Due to the dynamic nature of 

the stresses, deformations will be amplified if the machine operates at the 

foundation-soil resonant frequency. Machine foundation design involves analyzing 

and optimizing the foundation to determine foundation type (shallow or deep) and 

geometry. Selection of foundation type and geometry control parameters that 

influence the motion of the foundation under the applied dynamic load such as 

natural frequency, geometric damping, and stiffness. The goal of the design is to 

minimize vibration so that the machine can operate smoothly. One design criteria 

is Suggested by Richart, F. E. et al. (1970) and is shown in Figure.1.1. It is based 

on the maximum allowable amplitude of dynamic displacement for a certain 

operating frequency. The cristerion gives human comfort around the machine for a 

certain frequency and amplitude. Another criterion given by Baxter & Bernhard 

(1967) is shown in Figure 1.2 which is based on how smooth the machine will run 

based on amplitude and vibration frequency.  

Examples of machines include Gas turbine Generators, wind turbine 

generators, industrial machines, etc. The foundation can be designed to support 

loadings in different directions (i.e., vertical, horizontal, rocking and rotational) and 

different Loading type (e.g., sinusoidal vibration and sudden loads). 
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Figure 1.1: Criterion for Foundation Vibration  after Richart F.E. et al. (1970). 

 

 

Figure 1.2: Criterion for foundation vibration after Baxter & Bernhard (1967). 

 



 

 

 

 

3 

 

Design of machine foundations requires working with the available soil 

either at site conditions, if suitable, or improved soil. Foundation type needs to be 

considered (i.e., shallow or deep foundation). Is the soil conditions near the surface 

is good, shallow foundations are used, if poor soil conditions exists near the surface, 

pile foundations are used to carry the load to a deeper stronger strata. After selecting 

the foundation, its dimensions need to be adjusted to meet design requirements. 

Many variables influence the design of the foundation. These variables include soil 

elastic properties (usually Young’s modulus and Poisson’s ratio), soil density, the 

mass of supported machine and the mass of the supporting foundation, the shape of 

the foundation and dimensions of the foundation. Common analytical design 

method for shallow foundations involves reducing the problem into a single degree 

of freedom dynamic problem which includes a mass, a spring, and a dashpot. This 

is known as Lysmer’s analog (Lysmer & Richart, 1966). The three parameters are 

sufficient to describe the foundation motion corresponding to the applied dynamic 

loading. The mass is the sum of the footing and the machine mass. The spring 

constant describes the stiffness of the foundation-soil system. The damper describes 

energy loss due to damping. Different soil conditions and foundation types and 

dimensions control the values of these three parameters. Also, stiffness and 

damping could be frequency dependent. A schematic drawing that describes 

Lysmer’s Analogue is shown in Figure 1.3.  
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Figure 1.3: Simplified single degree of freedom problem for Different Types of 

Foundations subjected to Vertical Dynamic Loading. 

Figure 1.3 shows a single pile (a), and a pile group (b) that  can be converted to a 

single degree of freedom dynamic problem which consists of a spring with a spring 

constant, 𝑘, a dashpot with a damping, 𝑐, and a mass, 𝑀, which is the sum of masses 

of the machine and the foundation.  Depending on the condition of the problem, 𝑘 

and 𝑐 may vary. 

 Solution provided by Novak (1974) for single pile subjected to vertical 

dynamic loading is an analytical method used to design single piles subjected to 

(b) Single pile (c) Pile group 

 𝑀: mass of 

foundation and 

machine. 

 𝑐: Damper coefficient 

 𝑘: spring coefficient 
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dynamic loading. It gives the spring and damper coefficients that describe the 

motion at the top of the pile. Another approach in design of piles subjected to 

dynamic loading is a one dimensional finite element approach  where the pile is 

modeled as a bar element divided into segments. Side soil is modeled as a discrete 

set of springs and dampers. Soil at the base is also modeled using a spring and 

damper. This approach is approximate and better in modeling pile embedded in  

layered soil profiles.  

Since piles are used in groups, the values of the stiffness and damping of the 

group are needed. Pile groups subjected to dynamic loading are designed by using 

interaction factors. A single pile stiffness and damping are obtained analytically 

using Novak’s solution. After obtaining stiffness and damping of a single pile, the 

values of the stiffness and damping of the single piles are adjusted for group 

behavior using interaction factors provided by Poulos (1968).  

1.1. Limitations in current design methods 

 Current available analytical solution regarding pile subjected to vertical 

dynamic load is the one provided by Novak (1974) and is accurate at α certain 

value of dimensionless frequency, 𝑎0 = 0.3. where 𝑎0 = 𝜔 𝑟𝑝/𝑣𝑠. 𝜔 is the 

frequency of the load in radians per seconds, 𝑟𝑝 is the pile radius and 𝑣𝑠 is the 

shear wave velocity of the soil.    

 Novak’s (1974) Solution is also limited to homogeneous soil profiles (i.e., 

constant soil elastic modulus with depth). This means that if inhomogeneous 

soil exists in the field, properties must be averaged for the engineer to be able 

to design the foundation using Novak’s Solutions. Averaging soil properties 
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might yield an erroneous design that would require a high factor of safety. This 

would render the design to be inefficient and costly.  

 One dimensional finite element approach is fast compared to 3D continuum 

finite element modeling. However, the approach ignores the continuity of the 

problem due to the soil being modeled as discrete separate sets of springs and 

dampers. Piles interact with surrounding soil as continuum. Layers of soil 

around the pile interact with each other and reflection, and refraction between 

layers will alter the behavior of the soil around the pile. Discrete springs and 

dampers might not represent real layered soil behavior.  

 Another limitation in current design methods is that static interaction factors 

provided by Poulos (1968) are the ones used in design for pile groups subjected 

to dynamic loading. The interaction factors are applied to both, stiffness and 

damping of the group. 

1.2. The need for research 

 Currently, available codes for machine foundation lack provisions for machine 

foundation supported on piles. These codes include ACI 351.3R-04: 

Foundations for Dynamic Equipment, 2004, DIN 4024: Machine Foundations, 

1955, SAES-Q-007: Foundations and Supporting Structures for Heavy 

Machinery, 2009s. An extensive review of codes provision for machine 

foundations is given by Bharathi, Dhiraj, & Dubey (2014).  

 Novak accuracy is limited to dimensionless frequency, 𝑎0 = 0.3. studying 

piles subjected to dynamic loading at dimensionless frequencies far from 0.3 

is needed. 
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 To study single piles in inhomogeneous soils. In many cases, field conditions 

of soils are far from being homogeneous and averaging soil properties might 

not represent field conditions properly. In many cases, field studies on soil 

show that soil elastic modulus calculated by shear wave velocity measurements 

tend to increase with depth. See Figure 1.4. In Figure 1.4, a typical linear 

increase of soil elastic modulus with depth is shown. Using such soil profile 

would be better than averaging soil properties.  

 There is a need to study the dynamic interaction between piles in a group. Since 

piles are mostly used in groups, the stiffness and damping of the individual 

piles within the group are less than the stiffness and damping  of an isolated 

pile in the same soil. This is due to the interaction between the piles within the 

group; However, currently only static interaction factors are used in design for 

dynamic problems.  
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Figure 1.4: Typical variation of soil shear wave velocity with depth after Stokoe & 

Woods (1972). 

1.3. Problem Statement and Objectives 

The problem studied here generally considers circular pile foundations 

subjected to vertical dynamic loading. A mass is attached on top of the pile. The 

soil material properties are varied but in general remain linearly elastic. 

Inhomogeneous and homogeneous soil profiles are studied. The pile is either a 

floating pile or and end bearing pile. In addition to single pile behavior under 

dynamic loading, pile-to-pile interaction is studied. In pile-to-pile interaction study, 

two piles are equally loaded dynamically and spaced at different distances to study 

the effect of spacing. Soil material properties are also varied at each spacing. Each 

variable studied has an influence on the stiffness and damping of the pile. 

Comparison of available design methods is discussed. The finite element method is 
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used to determine the stiffness and damping of the pile for the different cases. Figure 

1.4 shows a graphical representation of the cases considered.  

In summary, the cases to be studied are 

1- Study of a single pile foundation (floating and end bearing piles) subjected 

to vertical dynamic loading in a homogeneous soil.  

2- Study of a single pile foundation (floating and end bearing pile) subjected 

to vertical dynamic loading in an inhomogeneous soil.  

3- Study of pile-to-pile interaction at different spacing in a homogeneous soil. 
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Figure 1.5: Graphical Representation of studied cases. 

Soil Modulus of Elasticity, 𝐸𝑠 
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In Figure 1.5, a floating pile in a homogeneous or an inhomogeneous soil 

is shown (top). An end bearing pile in homogeneous or inhomogeneous soil is 

shown (middle). Finally, pile-to-pile interaction is shown at the bottom. 

1.4.Thesis Organization 

The thesis is divided into 6 chapters (including this one). Starting from chapter 2 

these chapters are:  

 Chapter 2: Literature Review. This chapter gives an introduction to 

available design methods for single pile foundations. Both analytical and 

numerical methods are discussed. A discussion of the design of pile groups 

subjected to vertical dynamic loading is also provided. 

 Chapter 3: Introduction to the Finite Element Method. The chapter gives an 

introduction to the finite element method and its application in dynamic 

problems. A discussion of the math involved in finite element analysis is 

provided. Discussion of element matrices formulation, assembly of global 

matrices is provided. Static and dynamic solvers are discussed.  

 Chapter 4: Modeling and Finite Element Method Implementation. The 

chapter describes how the finite element method is applied to current 

research. It also discusses the research procedure from modeling the 

geometry, performing the analysis to obtaining and interpreting the results.  

 Chapter 5: Results and Discussion. This chapter presents the results of this 

research and discuss their interpretation. It also compares research results 

with the work of others when applicable.  
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 Chapter 6: Design Charts and Conclusion. The chapter summarizes the 

research work, its results, and outcomes. Practical design recommendations 

are provided based on outcomes of this research. 
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2. Literature Review 

 This chapter covers previous studies on piles under dynamic vertical loads. 

It covers design methods and research related to pile dynamics. Several studies are 

undertaken on piles subjected to vertical dynamic loading. These studies vary 

greatly in their approach to the problem. Some studies provide a closed-form 

solution to the differential Equations that describe the behavior of piles. This type 

of study is limited to 1) the case considered in describing the problem. 2) the 

assumptions made to simplify the problem in order to obtain the solution. Other 

studies provide a simplified 1-Dimensional numerical solution to the problem. 

These studies are limited due to the inherent error in using 1-Dimensional solution 

to a 3D problem. Advancements have been made for these studies to account for 

this error. Other studies provide the use of finite element method and varying the 

variables that affect the response of the pile to the applied load. This chapter 

provides a summary on these studies from the closed-form solutions to the 

numerical analysis.  

2.1. Machines and machine vibration 

 Proper machine foundation design is an integral part of machine operation. 

The machines discussed are those related to industrial machines and power plants 

machines. These machines operate at a certain frequency, and they generate 

vibratory loads. The vibration can be amplified if the machine operate at the soil-

foundation resonance frequency. Amplification of machine vibration can hinder the 

machine productivity, be very uncomfortable to people working next to the 
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machine, and in severe cases might break the machine or cause failure in the 

systems connected to that machine.  

Based on the frequency of operations, machines can be classified to 4 

classes: 1) very low-speed machines that operate at 500 cycles per minute or less,  

2) low-speed machines which operate at frequencies between 500 and 1500 cycles 

per minute.  3) medium speed machines which operate at frequencies between 1500 

and 3000 cycles per minute and 4) high-speed machines that operate at frequencies 

higher than 3000 cycles per minute. Examples of machines include wind turbines, 

printing machines, steam mills, boiler feed pumps, small fans used in power 

industry and turbomachines such as gas turbines and compressors.  

 The goal of the design is to limit vibration. The design involves working 

with existing field or improved soil condition and selecting the optimal foundation 

type suitable for those conditions. From this definition, the variables of the design 

are soil profile and soil properties (mainly elastic modulus, density and Poisson’s 

ratio), foundation type: shallow or deep foundations and foundation Geometry 

(shape, dimensions, and mass). The foundation serves two purposes: static stability 

which means that foundation should carry the weight of the machine at acceptable 

settlement and dynamical stability which means low vibration amplitude so that the 

machine can operate smoothly.  

This  dissertation covers pile foundations, which are categorized as deep 

foundations. This type of foundation is used when shallow foundations are not an 

option due to poor soil conditions near the surface. The piles are used then to carry 

the load into deeper more stronger soil strata or to rock base. Using piles increases 

the value of the natural frequency of the system, and decreases the geometric 
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damping of the system. Design of piles for machine foundation also means working 

with pile groups since piles are mostly used in groups. Piles in a group interact with 

each other. This means that the stiffness and damping of a pile group is not simply 

the sum of the stiffness and damping of individual piles within the group. It is less 

than the sum due to the interaction between piles in the group. The following 

sections in this chapter discuss pile foundation design and analysis techniques with 

more detail. For more on machines and machine foundation the reader is referred 

to Chowdhury & Dasgupta, (2008),  Das & Ramana, (2010) and Richart, F.E. et al., 

(1970). 

2.2. Closed form solutions for single pile subjected to dynamic loading 

 Closed form solutions simplify the problem into a mathematical model 

consisting of differential Equations. A solution to these Equations is then provided. 

Assumptions are made on the original problem to simplify the complexity of the 

differential Equations to be solved.  

2.2.1. Richart (1970) solution for single pile resting on rock 

 Richart, F. E. et al., (1970) presented a closed form solution for a pile resting 

on a rock base. The pile supports a weight at its top. The problem is simplified into 

a fixed free rod with a mass attached at the free end. See Figure 2.1 for illustration 

of the actual problem and the corresponding simplified model.  
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Figure 2.1: Model for pile resting on rock (a) Pile resting on rock base supporting 

weight on top. (b) Simplified model as a fixed-free rod with a mass at the free end 

Richart, F. E. et al. (1970). 

 

For a free-fixed rod, The displacement at the fixed end is equal to zero. At 

the free end (𝑧 = 0) an excitation force is applied which is equal to the inertia of 

the mass at the top.  

Mathematically this is expressed by: 

𝐹 = 
𝜕𝑢

𝜕𝑧
 𝐴𝑝𝐸𝑝 = −𝑀

𝜕2𝑢

𝜕𝑡2
 

(2.1) 

Where 𝐹 is the Force, 𝑢 is the displacement at top of the rod in 𝑧 direction, 𝑡 is the 

time, 𝑀 is the mass supported, 𝐴𝑝 is the pile cross-sectional area and 𝐸𝑝 is the pile 

modulus of elasticity. 

The amplitude of the displacement, 𝑈 =  𝑢𝑑/𝑢𝑠 can be expressed as 

𝑀 

𝐿𝑝 

Rigid Base 

𝐿𝑝 

𝑀 

(a) (b) 

𝑦 

 𝑧 
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𝑈 = 
𝑢𝑑

𝑢𝑠
= 𝐶4 𝑠𝑖𝑛 (

𝜔𝑛 𝑧

𝑣𝑐
) 

(2.2) 

Where 𝑢𝑑 is the dynamic displacement at a certain frequency, 𝑢𝑠 is the static 

displacement if the load applied was static, 𝐶4 is a constant, 𝜔𝑛 is the natural 

frequency in 𝑟𝑎𝑑𝑖𝑎𝑛𝑠/𝑠𝑒𝑐𝑜𝑛𝑑 and 𝑣𝑐 is the compressional wave velocity of the 

pile. At the fixed end (𝑧 = 𝐿𝑝), the following Equations apply 

𝜕𝑢

𝜕𝑧
=  

𝜕𝑈

𝜕𝑧
 (𝐶1 𝑐𝑜𝑠(𝜔𝑛 𝑡) + 𝐶2 sin(𝜔𝑛 𝑡))  

(2.3) 

𝜕2𝑢

𝜕𝑡2
= − 𝜔𝑛

2 𝑈  (𝐶1 𝑐𝑜𝑠(𝜔𝑛 𝑡) + 𝐶2 sin(𝜔𝑛 𝑡) 
(2.4) 

Substituting Equation 2.3 and 2.4 in Equation 2.1 gives the following expression 

𝐴𝑝 𝐸𝑝  
𝜕𝑈

𝜕𝑧
= 𝑀 𝜔𝑛

2 𝑈  
(2.5) 

Also substituting Equation 2.2 in Equation 2.5 gives  

 𝐴𝑝𝐸𝑝

𝜔𝑛

𝑉𝑐
cos(

𝜔𝑛 𝐿𝑝

𝑉𝑐
) = 𝑚 𝜔𝑛

2 𝑈 sin(
𝜔𝑛 𝐿𝑝

𝑉𝑐
)   

(2.6) 

Equation 2.6 can be rearranged to become  

𝐴 𝐿𝑝 𝛾𝑝  

𝑊
=  

𝜔𝑛 𝐿𝑝

𝑉𝑐
 tan (

𝜔𝑛 𝐿𝑝

𝑉𝑐
)    

(2.7) 

𝛾𝑝  is the unit weight of the pile material, 𝑊 is the weight of the mass on top of the 

pile. A plot of 𝜔𝑛𝐿𝑝/𝑉𝑐 against 𝐴𝑝𝐿𝑝𝛾𝑝 /𝑊 is given in Figure 2.2 while the natural 

frequency in cycles per minute is given in Figure 2.3 for different pile materials. 
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Figure 2.2: plot of 𝜔𝑛 𝐿𝑝/𝑣𝑐 against 𝐴𝑝𝐿𝑝𝛾𝑝 /𝑊 after  Richart, F.E. et al ( 1970). 

 

In Richart’s solution, only the natural frequency is obtained. The static 

stiffness is assumed to be the same as a bar (i.e., 𝑘 = 𝐸𝑝𝐴𝑝/𝐿𝑝 ). Richart also 

mentions that Geometrical damping is non-existent in cases of piles resting on rock. 

The limitation of this solution is that it is only applicable to a foundation 

supported by a pile resting on rock bases and it assumes the soil along the pile shaft 

provides no support and no geometrical damping. 
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Figure 2.3:  Natural frequency for different pile materials after Richart, F. E. et al. 

(1970). 

 

2.2.2. Novak (1974) Solution for a single pile under dynamic loading 

Novak in 1974 presented a closed form solution for floating and end bearing 

pile in homogeneous soil. Novak Solution gives stiffness and damping constants of 

single piles in homogeneous elastic soils. The pile can be either an end-bearing pile 

or a floating pile. 
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The Equations that govern the pile behavior under dynamic loading are:  

𝑘 = (
𝐸𝑝𝐴𝑝

𝑟𝑝
)𝑓𝑧1 

(2.8) 

𝑐 =  (
𝐸𝑝𝐴𝑝

√𝐺𝑠/𝜌𝑠  
) 𝑓𝑧2 

(2.9) 

Where 𝑘 is the stiffness of the pile, 𝑐 is the damping of the pile, 𝐸𝑝 is the pile 

modulus of elasticity, 𝐴𝑝 is the pile cross-sectional area, 𝑟𝑝 is the pile radius, 𝐺𝑠 is 

the shear modulus of the soil, 𝜌𝑠 is the density of the soil material and 𝑓𝑧1and 𝑓𝑧2 

are factors depending on pile slenderness ratio, 𝐿𝑝/𝑟𝑝 , relative rigidity 𝐸𝑝/𝐺𝑠 of 

the pile material related to the surrounding soil. 𝑓𝑧1 and 𝑓𝑧2 also depend on whether 

the pile is a friction pile or an end bearing pile resting on rock. Plots of 𝑓𝑧1 and 𝑓𝑧2 

are given in Figures 2.4 and 2.5 for friction piles and 2.6 and 2.7 for end bearing 

pile. 

 

Figure 2.4: Plot of 𝑓𝑧1 values for friction piles. 
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Figure 2.5: Plot of 𝑓𝑧2 for friction piles. 

 
Figure 2.6: Plot of 𝑓𝑧1 for end bearing piles. 

𝐿𝑝

𝑟𝑝
 

𝑓𝑧2 

𝐸𝑝

𝐺𝑠

 

𝐿𝑝

𝑟𝑝
 

𝑓𝑧1 

𝐸𝑝

𝐺𝑠

 



 

 

 

 

22 

 

 

Figure 2.7: Plot of 𝑓𝑧2 for end bearing piles. 

 

Using Figures 2.4-2.7, 𝑓𝑧1 and 𝑓𝑧2can be determined for the case at hand. From 

there, the values of  stiffness, 𝑘 and damping, 𝑐 can be obtained using Equations 2.8 

and 2.9. The damping ratio, natural frequency, amplitude of displacement at the 

natural frequency and at any other frequency can be obtained as: 

After finding 𝑘 and 𝑐, the damping ratio 𝐷 can be found as 

𝐷 =
𝑐

2√𝑘𝑀
 

(2.10) 

Where 𝑀 is the mass supported by the pile. 

The natural frequency in Hz, 𝑓𝑛  can be obtained by the following Equation 

𝑓𝑛 =
1

2𝜋
√
𝑘

𝑀
 

(2.11) 
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The static displacement, 𝑢𝑠 is obtained by dividing the applied force, 𝐹 over the 

static stiffness, 𝑘 

𝑢𝑠 =
𝐹

𝑘
 

(2.12) 

the amplitude of displacement, 𝑈 = 𝑢𝑑/𝑢𝑠 can be found using the following 

Equation 

𝑈 =
𝑢𝑑

𝑢𝑠
=

1

√(1 −
𝑓2

𝑓𝑛2
)
2

+ 4𝐷2 𝑓
2

𝑓𝑛2
 

 
(2.13) 

𝑢𝑑is the dynamic displacement, 𝑢𝑠 is the static displacement, 𝑓 is the frequency in 

𝐻𝑧 and 𝑓𝑛 is the natural frequency in 𝐻𝑧 and 𝐷is the damping ratio. Once 𝑈 is 

found, 𝑢𝑑 can be found as 𝑢𝑑 = 𝑈 𝑢𝑠.  

It is worth mentioning that Novak’s solution is only accurate at 

dimensionless frequency, 𝑎0 = 0.3. where 𝑎0 = 𝜔𝑟𝑝/𝑣𝑠. Where 𝜔 is the frequency 

in radians/sec, 𝑟𝑝 is the pile radius and 𝑣𝑠 is the shear wave velocity of the soil.  

 Novak’s Solution provides an easy and a fast method for the analysis and 

design of pile foundations under vertical dynamic load. This solution is subject to 

certain assumptions and limitations. Assumptions include linearity of the problem, 

the pile and soil being in perfect contact (no slippage at the pile-soil interface), the 

pile is circular, vertical and elastic. Finally the soil at the side of the pile is assumed 

to behave as very thin independent layers (Plane strain condition).  

 Comparisons with field tests by Novak (1977) found good agreement with 

theory in cases where shear wave velocity at an end bearing pile base is twice that 

at the side of the pile. In other cases, the theory overestimates the response of the 

pile.  
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 Elkasabgy & El Naggar (2013) compared Novak (1974) with the response 

of helical and driven steel piles. It was found that theory gives highly overestimated 

predictions while incorporating soil nonlinearity in the analysis provided better 

predictions with field tests.  

2.2.3. Chowdhury & Dasgupta (2008) analytical solution for single pile 

It is a modification of Novak’s solution for embedded rigid cylinder Novak 

& Beredugo (1972). In this method, the stiffness of a friction pile is calculated as 

𝑘 =
𝐺𝑆𝑆1𝐿𝑝

2
 

(2.14) 

 

Where 𝐺𝑠 is the soil shear modulus, 𝐿𝑝 is the pile length and 𝑆1 is calculated as 

𝑆1 =
9.553(1 + 𝜇𝑠)

(
𝐿𝑃
𝑟𝑝
)
1/3

 
(2.15) 

Where 𝑟𝑝 is the pile radius.  

Damping of a friction pile is calculated as  

𝑐 =
1

2
𝑟𝑝√𝜌𝑠𝐺𝑠𝑆2𝐿𝑝 + 𝑟𝑝√𝜌𝑏𝐺𝑏𝐶𝑏 

(2.16) 

Where 𝑐 is the damping of the pile, 𝑟𝑝 is the pile radius, 𝜌𝑠 is the density of the soil 

at the side of the pile, 𝐺𝑠 is the side soil shear modulus, 𝑆2 a constant, 𝐿𝑝 is the pile 

length, 𝜌𝑏 is the density of the soil at the base of the pile, 𝐺𝑏 is the shear modulus 

of the soil at pile base and 𝐶𝑏 is a constant 
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In the case of an end bearing pile the static stiffness and damping are 

calculated using the following Equation respectively: 

𝑘 =
𝐸𝑝𝐴𝑝

8𝐿𝑝
+
𝐺𝑠𝑆1𝐿𝑝

2
 

(2.17) 

𝑐 =
1

2
𝑟𝑝√𝜌𝑠𝐺𝑠𝑆2𝐿𝑝 

(2.18) 

2.3. Finite Element solution for Pile subjected to dynamic loading 

 The finite element method is a numerical method used to solve differential 

Equations. For more on the general finite element method, see Bathe (2006). 

References specifically oriented towards geotechnical engineering include Potts & 

Zdravkovic (1999, 2001) and Desai & Zaman (2013). A brief introduction is also 

given in chapter 3 while application to the finite element method to current research 

is covered in chapter 4. Usage of the finite element method in geotechnical 

engineering is becoming the norm. This is due to the finite element method 

reliability to get accurate results and its ability to connect lab and field tests to 

computer simulations through material modeling.  However, this accuracy is highly 

dependable on the accuracy of the user input. Another limitation of the finite 

element method is the need for high computing power and time to get results. This 

is true in 3D geotechnical problems which involve non-linearity or dynamic 

problems. Geotechnical problems also require large geometry and require fine 

mesh. Another limitation is the absence of guidelines and codes that govern 

modeling in geotechnical engineering. This makes the modeling process different 

from a user to another and makes modeling subject to individual judgment.  

Improvement on these limitations has been undertaken and as a result, it is a widely 
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used method in geotechnical engineering research and practice in different areas. 

Current and future improvement in computer processors and parallel computing 

will make it even easier, faster and more accurate. 

2.3.1.  One-dimensional finite element approach 

The early approach to finite element modeling of pile dynamic problems 

was to discretize the pile to Beam elements attached to springs and dashpots at the 

sides and at the base. The method was first suggested by Smith (1960). The springs 

and dashpots describe the soil behavior around the pile and at the base. Pile and soil 

material could be linear or non-linear. The model is shown in Figure 2.8.  

 

Figure 2.8: Model for soil-pile interaction. 

  Figure 2.8, shows how the pile is discretized into several beams segments 

and how each segment is connected to a set of a spring and dashpot damper. In 

𝑘𝑠 𝑐𝑠 

𝑘𝑏 𝑐𝑏 

Pile modeled 

as beam 

elements  

Side soil and 

base soil is 

modeled as 

springs and 

dampers 
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Figure 2.8, 𝑘 is the spring coefficient and 𝑐 is the dashpot damping while the 

subscript 𝑠 stands for side and 𝑏 stands for base. Values of 𝑘𝑠, can be obtained from 

static t-z curves (side friction vs. displacement curve) and values of  𝑘𝑏 can be 

obtained from q-z curves (base load vs base settlement curve). Figure 2.9 shows an 

idealized t-z and q-z curves and how to obtain 𝑘 at side and base of the pile.  

 

Figure 2.9 Idealized t-z and q-z curves and value of 𝑘𝑠and 𝑘𝑏. 

 



 

 

 

 

28 

 

Values of side damping can be taken as 0.5 𝑠𝑒𝑐/𝑓𝑡 for sand while clay 

should have 0.2 𝑠𝑒𝑐/𝑓𝑡. For base damper 𝑐𝑏 should be taken as 0.15 𝑠𝑒𝑐/𝑓𝑡 for 

sand and 0.01 𝑠𝑒𝑐/𝑓𝑡 for clay (Coyle, Lowery, & Hirsch , 1977).  

 Randolph & Simons, (1986) suggested the following Equations for side 

spring, 𝑘𝑠 and side damper, 𝑐𝑠 

𝑘𝑠 = 1.375
𝐺𝑠

𝜋𝑟𝑝
 

(2.19) 

𝑐𝑠 =
𝐺𝑠

𝑣𝑠
 

(2.20) 

Where 𝐺𝑠 is soil shear modulus at the spring location, 𝑟𝑝 is the pile radius and 𝑣𝑠 is 

the soil shear wave velocity at the spring location.   

 Lysmer & Richart (1966) proposed a static stiffness and dampings at of a 

circularly loaded area on a surface of an elastic half-space. Based on this model the 

values of the stiffness and dampings at the base of  a circular area are given by the 

following Equations respectively: 

𝑘𝑏 =
4𝐺𝑠𝑟𝑝

1 − 𝜇𝑠
 

(2.21) 

𝑐𝑏 =
3.4𝑟𝑝

2

1 − 𝜇𝑠
√𝐺𝑠𝜌𝑠 

(2.22) 

In the previous Equations, 𝐺𝑠 is the soil shear modulus, 𝑟𝑝 is the pile radius, 𝜇𝑠 is 

soil Poisson’s ratio and 𝜌𝑠 is the soil mass density.  

Holeyman (1988) suggested adding another damper to side and base soil to account 

for soil material damping. The configuration is shown in Figure 2.10. 
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Figure 2.10 Model to account for material damping for side and base Soil. 

 

 . The method is further modified and refined by researchers to account for 

shortcomings, to produce more accurate results and to expand applicability to 

different cases. Kagawa (1991) proposed a nonlinear model that doesn’t use 

dampers. The model relies only on the nonlinear behavior of the soil using dynamic 

t-z (shaft resistance vs. displacement) and q-z curves (base resistance vs. 

displacement). Seidel & Coronel  (2011) formulated a model that takes into account 

the degradation resulting from cyclic loading to predict long-term response of piles 

The method described here (one-dimensional soil pile interaction) is 

advantageous over analytical method as it is better in modeling layering of the soil 

profile since the set of dashpots and springs around the pile can have different 

coefficients. Care should be taken when choosing values of spring and dashpot 

coefficients for the soil beneath the pile and the soil surrounding the pile. The values 

should resemble field conditions and are obtained through field testing or available 

literature. This model is flawed in that it ignores the continuity of the problem. 

Reflections and interaction between soil layers cannot be accounted for. There is 

also difficulty in choosing appropriate and reliable spring and damping values for 

the soil.  

spring 

Radiation 

damper 
Material 
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2.3.2. 3D Finite element modeling 

 In this approach the soil is modeled as solid elements, the pile is modeled as 

solid elements or beams with interface elements that connect the pile to the soil. 

The method accuracy depends on the selected element size, time step and boundary 

of the problem. The method is very time consuming and requires great 

computational power due to a large number of elements. Several general purpose 

computer programs are created for finite element simulation. Some programs are 

more tailored to geotechnical engineering applications.  

 Ali, O. (2015) implemented 3D finite element method to study end bearing 

piles subjected to a vertical dynamic load. The study calculated the dynamic 

stiffness and damping of the pile. The soil along the pile shaft was homogeneous 

and elastic. At the base, the soil shear modulus was 100 times that of the soil along 

the pile shaft. In addition, a group of 3 by 3 piles are studied at different spacing.  

2.4. Design of pile groups and pile to pile interaction 

Piles are mostly used in groups. Groups of piles consist of a cap that 

connects the piles together. This cap could be flexible or rigid. The difference 

between rigid and flexible caps is that flexible caps allow for deformation of the 

cap and thus the load is distributed unequally on the piles within the group. This 

means that displacement is different between the piles. Rigid caps however 

distribute the loads on the piles equally and displacement is uniform across the piles 

in the group.  

In static and dynamic problems, the stiffness and dampings of a single pile 

don’t translate simply into a group of piles. Group stiffness and damping is not 
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simply the sum of the stiffness and damping of individual piles. The interaction 

between the piles results in a reduction in the stiffness and dampings of individual 

piles. Mathematically this is described by the following Equations 

𝑘𝐺 =
∑ 𝑘𝑖

𝑛
𝑖=1

∑ 𝛼𝑖
𝑛
𝑖=1

 
(2.23) 

𝑐𝐺 =
∑ 𝑐𝑖

𝑛
𝑖=1

∑ 𝛼𝑖
𝑛
𝑖=1

 
(2.24) 

Where 𝑘𝐺is the group stiffness, 𝑘𝑖is the stiffness of a pile 𝑖 in the group, 𝛼𝑖is the 

interaction factor of pile 𝑖 with a reference pile within the group. The interaction 

factor is defined as the increase of settlement of a pile 𝑖 due to loading on an adjacent 

pile 𝑗 over the settlement of pile 𝑖 if it were isolated.  

Mathematically this is written as: 

𝛼 =
𝑢𝑖𝑗 − 𝑢𝑖

𝑢𝑖
 

(2.25) 

Where 𝑢𝑖𝑗 is the total settlement of  pile 𝑖 (settlement because of its own load and 

added settlement due to loading on an closely spaced pile), 𝑢𝑖 is the settlement of 

pile 𝑖 due to its own loading and if it were isolated. The interaction factor,𝛼 is a 

function of pile dimensions (i.e. length and diameter),  its stiffness, soil properties 

around the piles and spacing between the piles in the group.  

2.4.1. Poulos (1968) static interaction factors 

 In this study, two piles of the same characteristics embedded in an elastic 

half-space are analyzed. The analysis is based on Elasticity theory. Equal loads are 

applied on each pile. The increase of settlement on the piles due to the interaction 

between them is calculated. This system despite having two piles, it is considered a 

pile group by definition (The simplest form of a pile group). The analysis assumes 
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incompressibility of the piles and that the piles and the soil are perfectly contacted 

and move together with no slippage at the pile-soil interface. This limits the solution 

to cases where the stresses in the soil are within the elastic capacity of the soil and 

not have reached yield strength of the soil. This doesn’t limit the solution from being 

applicable to design since the investigation of pile groups load-settlement behavior 

shows that the group settles linearly up to one third or one-half of its maximum load 

capacity (Poulos, 1968). The solution gives values of the interaction factor, 𝛼 that 

ranges between 1 for 0 spacing and 0 for pile spaced at an infinite distance. Figure 

2.11 gives a plot of the values of 𝛼 against 𝑠/𝑑𝑝 for different 𝐿𝑝/𝑑𝑝. Where 𝑠 is the 

spacing between the piles (center to center), 𝑑𝑝 is the pile diameter, 𝐿𝑝 is the pile 

length. 

In Figure 2.11, values of 𝛼 are plotted fοr Poisson’s ratio, 𝜇𝑠 of 0.5 and 0 for 

the case of 𝐿𝑝/𝑑𝑝  = 25. The author states that influence of Poisson’s ratio is just 

0.06 of difference in 𝛼 at maximum. This means that 𝜇𝑠 has little effect on 

interaction between piles. The analysis is extended to group of 3 and 4 piles. The 

results of the analysis shows that superposition can be assumed and holds true for 

group of piles subjected to static load. This means that the total interaction factor 

for a group is equal to the sum of the interaction factor for each pile added to the 

group.  

 



 

 

 

 

33 

 

 

Figure 2.11:  Interaction factors between two piles after Poulos (1968). 

 

 To illustrate the principle of superposition consider an example like that 

shown in Figure 2.12 where the reference pile is the black pile while the interacting 

piles are 3 gray piles. Let 𝛼1 be the interaction factor of two piles spaced at spacing 

𝑠 and 𝛼2 is the interaction factor between two piles spaced at √2𝑠. This means that 

the total static stiffness of the group is reduced by 1 + 2𝛼1 + 𝛼2. 

Poulos states that superposition holds true for symmetrical pile groups and 

it may be assumed in general pile groups analyses. Symmetrical pile groups are any 

group that has its piles spaced equally around the circumference of a circle. The 

piles should be loaded equally and settlement is equal among the piles. Figure 2.13 

shows solution for 2, 3 and 4 pile group at 𝐿𝑝/𝑑𝑝  = 25. 
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Figure 2.12: layout of 4 pile group. 

 

Figure 2.13 Interaction factors for 2, 3 and 4 symmetrical pile groups after Poulos 

(1968). 

 

Advancements are made on pile-to-pile interaction by Poulos and other researchers. 

Butterfield & Banerjee (1971) presented an analysis to a group of piles while 
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considering the cap of the group being in contact with the ground. The results of the 

analysis demonstrated that a contacting cap increased the stiffness of the pile group 

by 5-15%. This increase in stiffness depends on the group size and spacing between 

the piles. The portion of the load carried by the piles is different from that of a group 

with a non-contacting cap. The range of difference is between 20% and 60%. The 

larger the group, the higher the difference is. Chow & Teh (1992) studied groups in 

a nonhomogeneous elastic soil where the soil’s Young's modulus increases linearly 

with depth till it reaches rock base. They found that using homogeneous soil profile 

underestimates the stiffness of the pile group. They provided field case studies in 

which results are in agreement with their studies. In these case studies, the soil was 

of clayey nature and the cap of the group was in contact with the ground. More 

research in this area is being conducted to account for more cases and different soil 

conditions.  

2.4.2. Studies on dynamic interaction factors 

 Novak (1974) provided a comparison of pile groups against footing under 

dynamic loading. The response is given in Figure 2.14. From Figure 2.14, Novak 

concluded that due to increased stiffness of the pile group, the natural frequency 

increases. The pile group had more amplitude of displacement at the natural 

frequency which means that it is less damped than shallow block foundations. A 

footing might have a higher amplitude at lower frequencies than a group of piles. 

This is apparent at frequencies between 0 and 60 radians per seconds. Embedment 

of the cap increased damping of the pile group so did embedment of the footing. In 

this comparison interaction between the piles was considered by applying 
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interaction factors provide by Poulos (1968). It was presented to show the difference 

between pile groups and shallow foundations under dynamic loading.  

 

 

Figure 2.14 Comparison between pile group and footing under vertical dynamic 

loading after Novak (1974). 

 

 Sharnouby & Novak (1985) studied pile groups under low frequency using 

a numerical approach. They found that using static interaction factors provided by 

Poulos (1968) gives a response in agreement with their method at low frequencies.  

Dobry & Gazetas (1988), Gazetas & Makris (1991) presented dynamic interaction 

factors for pile groups. The interaction factors were frequency dependent. El Naggar 

& El Naggar (2007) presented a simplified method in which the stiffness and 

damping of single piles are calculated as described in section 2.2.2 using Novak’s 
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solution. The next step is to obtain interaction factor for a group that has been solved 

for in the paper (2 by 2, 3 by 3, and 4 by 4 up to 9 by 9).  

 The presented studies in this section give some insight into the interaction 

factor of dynamic loading on pile groups. Due to lack of analytical solutions on the 

dynamic pile to pile interaction, references of soil dynamics refer to interaction 

factors given by Poulos (1968) for dynamic analysis and it is the one used in design 

for pile groups subjected to dynamic loading. See Prakash & Puri (1988) and  Das 

& Ramana ( 2010).  
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3. The Finite element method, an introduction 

 The finite element method (might be referred to as FEM or FEA throughout 

the rest of this text) is a numerical method that discretizes a continuum into small 

finite sub-structures. The sub-structure element is mathematically defined in how it 

transports a certain quantity (e.g., stress, temperature, or fluid) to the adjacent 

element. Boundary conditions and material models are to be defined in order for the 

solution of the differential Equations to be solved. Basically, FEM is a numerical 

method used to solve differential Equations of field problems. The field problem 

can be one, two or three dimensional of any shape and configuration.  

In this research, the finite element method is used to study the dynamic behavior 

of pile foundations under vertical dynamic loading. Five different studies are 

performed. 4 of those studies are on single piles. Since the piles in these studies 

have circular cross sections, axisymmetric finite elements are used to discretize the 

problem. Use of axisymmetric element is time efficient when simulating solids of 

revolution. These solids are formed by revolving a planar shape around an axis. The 

method would yield the same results as a full 3D simulation but with significantly 

less number of elements. A smaller number of elements means a smaller stiffness 

matrix and much less amount of time to solve the system of Equations. This is of 

great importance in this research since the analysis is dynamic. Dynamic analysis 

requires the system of linear Equations to be solved at each time step of the analysis. 

The fifth study, however, is on the pile-to-pile interaction. This study requires a full 

3D model to be set up for the analysis in order to properly capture the behavior of 

the two piles. This means that full 3D analysis is run on this case and the analysis 

time is very high compared to 2D analysis. 
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This chapter serves as an introduction to the finite element method based on 

Bathe, (2006) and Logan (2007). In this chapter, 2D axisymmetric elements and 3D 

tetrahedron elements are briefly introduced. The process of obtaining the stiffness 

matrix and other matrices for each type of element is covered. A solution of linear 

Equations systems is discussed. In particular, the sparse and iterative solvers are 

discussed. Integration schemes in time for dynamic analysis are discussed.  

3.1. Mathematical preliminaries for the finite element method 

In a linear elastic material, the stress-strain relationship is defined by 

{𝜎} = [𝐶]{휀} (3.1) 

Where {𝜎} is the stress matrix, [𝐶] is a constitutive matrix that relates the stress to 

the strain and {휀} is the strain matrix.  

From the constitutive matrix, a local elemental stiffness matrix [𝑘] can be calculated 

as 

{𝑘} = ∫[𝐵]𝑇[𝐶][𝐵]𝑑𝑉 (3.2) 

The matrix [𝐵] depends on the geometry and coordinates of the finite element and 

is defined by 

[𝐵] = {𝜕}[𝑁] (3.3) 

In 3.3, {𝜕}is a differential operator of the shape functions matrix [𝑁].  

The final equilibrium Equation for a static problem is 

{𝐹} = [𝐾]{𝐷} (3.4) 
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Where [𝐹] is the global nodal forces matrix and [𝑈] is the global nodal displacement 

matrix. They are defined by  

{𝐹} = ∑𝑓𝑖

𝑛

𝑖=0

 (3.5) 

{𝐷} = ∑𝑑𝑖

𝑛

𝑖=0

 (3.6) 

𝑓𝑖 and 𝑢𝑖 are the force and displacement at node 𝑖 respectively. 𝑛 is the total number 

of nodes in the problem.  

[𝐾] is the global stiffness matrix and is obtained by  

{𝐾} = ∑∑𝑘𝑖𝑗

𝑛

𝑖=0

𝑛

𝑗=0

 (3.7) 

 

{𝐹} and {𝑈} depends on the boundary conditions of the problem (i.e. applied loads 

and prescribed displacements). After defining all the required matrices Equation 3.4 

can be solved to obtain unknown forces or displacements at any node in the 

continuum. All the above Equations depend on the problem at hand. 

3.2. Axisymmetric elements 

An axisymmetric element is a finite element used to model a three-

dimensional body that is symmetrical around an axis in regards to geometry and 

boundary conditions. Due to symmetry around the z-axis, as shown in Figure 3.1, 

the stresses and strains are independent of the value of  𝜃. The stresses are 

dependent on the coordinates of the plane 𝑧 − 𝑟. The following is a derivation of 
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the matrices required to solve a finite element problem with a triangular 

axisymmetric element. See Figure 3.2 for the triangular element with 

vertices 𝑖, 𝑗, 𝑎𝑛𝑑 𝑚; each has the coordinates (𝑧, 𝑟). The element has two degrees of 

freedom per node (𝑢 𝑎𝑛𝑑 𝑤). Let the element have the following displacement 

functions 

𝑢(𝑟, 𝑧) = 𝑎1 + 𝑎2𝑟 + 𝑎3𝑧 (3.8) 

𝑤(𝑟, 𝑧) = 𝑎4 + 𝑎5𝑟 + 𝑎6𝑧 (3.9) 

Note that the total number of the coefficients 𝑎 is the same as the number of the 

degrees of freedom. (6 𝑎𝑖′𝑠 for 6 degrees of freedom).  

The nodal displacement matrix is 

{𝑑} =  {

𝑑𝑖

𝑑𝑗  

𝑑𝑚

} =  

{
 
 

 
 
𝑢𝑖

𝑤𝑖

𝑢𝑗
𝑤𝑗

𝑢𝑚

𝑤𝑚}
 
 

 
 

 (3.10) 

At any node 𝑖, 𝑢 and 𝑤 are evaluated as  

𝑢(𝑟𝑖, 𝑧𝑖) = 𝑎1 + 𝑎2𝑟𝑖 + 𝑎3𝑧𝑖 (3.11) 

𝑤(𝑟𝑖, 𝑧𝑖) = 𝑎4 + 𝑎5𝑟𝑖 + 𝑎6𝑧𝑖 (3.12) 
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In matrix form, the displacement function is represented as  

{𝜓} =  [
1
 0

 𝑟
 0
 𝑧
 0
  0
 1
 0
𝑟
 0
𝑧
]

{
 
 

 
 
𝑎1
𝑎2
𝑎3
𝑎4
𝑎5
𝑎6}

 
 

 
 

 (3.13) 

 

Figure 3.1: Axisymmetric element used to model solids of revolution. 
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Figure 3.2 Triangular axisymmetric element. 

 

 

Rearranging Equation 3.13 and substituting the coordinates of each vertex on the 

element yields: 

{

𝑎1
𝑎2
𝑎3

} =  [

1 𝑟𝑖 𝑧𝑖
1 𝑟𝑗 𝑧𝑗
1 𝑟𝑚 𝑧𝑚

]

−1

{

𝑢𝑖

𝑢𝑗
𝑢𝑚

} (3.14) 

{

𝑎4
𝑎5
𝑎6

} =  [

1 𝑟𝑖 𝑧𝑖
1 𝑟𝑗 𝑧𝑗
1 𝑟𝑚 𝑧𝑚

]

−1

{

𝑤𝑖

𝑤𝑗

𝑤𝑚

} (3.15) 

 

 

 

 

 

𝑗 𝑟𝑗 , 𝑧𝑗  

 𝑢𝑗 , 𝑤𝑗  

𝑖(𝑟𝑖, 𝑧𝑖) 

(𝑢𝑖, 𝑤𝑖) 

𝑚(𝑟𝑚, 𝑧𝑚) 

(𝑢𝑚, 𝑤𝑚) 
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After performing the inversion in Equations 3.14 and 3.15, they become 

{

𝑎1
𝑎2
𝑎3

} =
1

2𝐴
 [

𝛼𝜄 𝛼𝑗 𝑎𝑚
𝛽𝜄 𝛽𝑗 𝛽𝑚
𝛾𝑖 𝛾𝑗 𝛾𝑚

] {

𝑢𝑖

𝑢𝑗
𝑢𝑚

} (3.16) 

{

𝑎4
𝑎5
𝑎6

} =  
1

2𝐴
 [

𝛼𝜄 𝛼𝑗 𝑎𝑚
𝛽𝜄 𝛽𝑗 𝛽𝑚
𝛾𝑖 𝛾𝑗 𝛾𝑚

] {

𝑤𝑖

𝑤𝑗

𝑤𝑚

} (3.17) 

Where: 

𝛼𝜄 = 𝑟𝑗𝑧𝑚 − 𝑧𝑗𝑟𝑚 𝛼𝑗 = 𝑟𝑚𝑧𝑖 − 𝑧𝑚𝑟𝑖 𝛼𝑚 = 𝑟𝑖𝑧𝑗 − 𝑧𝑖𝑟𝑗 

(3.18) 𝛽𝑖 = 𝑧𝑗 − 𝑧𝑚 𝛽𝑗 = 𝑧𝑚 − 𝑧𝑖 𝛽𝑚 = 𝑧𝑖 − 𝑧𝑗 

𝛾𝑖 = 𝑟𝑚 − 𝑟𝑗 𝛾𝑗 = 𝑟𝑖 − 𝑟𝑚 𝛾𝑚 = 𝑟𝑗 − 𝑟𝑖 

The shape functions are then defined as: 

𝑁𝑖 =
1

2𝐴
(𝛼𝑖 + 𝛽𝑖𝑟 + 𝛾𝑖𝑧) (3.19) 

𝑁𝑗 =
1

2𝐴
(𝛼𝑗 + 𝛽𝑗𝑟 + 𝛾𝑗𝑧) (3.20) 

𝑁𝑚 =
1

2𝐴
(𝛼𝑚 + 𝛽𝑚𝑟 + 𝛾𝑚𝑧) (3.21) 

The displacement matrix of the element is: 

{
𝑢(𝑧, 𝑟)

𝑤(𝑧, 𝑟)
} =  [

𝑁𝑖

0

 0
 𝑁𝑖 

𝑁𝑗
0
 
0
𝑁𝑗
 
𝑁𝑚

0
 
0
𝑁𝑚

]

{
 
 

 
 
𝑢𝑖

𝑤𝑖

𝑢𝑗
𝑤𝑗

𝑢𝑚

𝑤𝑚}
 
 

 
 

 (3.22) 
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From continuum mechanics and elasticity the strains can be defined as 

휀𝑟 = 
𝜕𝑢

𝜕𝑟
 휀𝜃 = 

𝑢

𝑟
 휀𝑧 = 

𝜕𝑤

𝜕𝑧
 𝛾𝑟𝑧 = 

𝜕𝑢

𝜕𝑧
+ 

𝜕𝑤

𝜕𝑟
 (3.23) 

Using Equations 3.8 and 3.9 with 3.23 the following is obtained  

{휀} =  

{
 
 

 
 

𝑎2
𝑎6

𝑎1
𝑟
+ 𝑎2 +

𝑎3𝑧

𝑟
𝑎3 + 𝑎5 }

 
 

 
 

 (3.24) 

Equation 3.24 can be rewritten as 

{

휀𝑟
휀𝑧
휀𝜃
𝛾𝑟𝑧

} =  

[
 
 
 
 
0
0
1

𝑟
0

  

1
0
1
0

   

0
0
𝑧

𝑟
1

  

0
0
0
0

  

0
0
0
1

  

0
1
0
0]
 
 
 
 

{
 
 

 
 
𝑎1
𝑎2
𝑎3
𝑎4
𝑎5
𝑎6}

 
 

 
 

 (3.25) 

 

Substituting Equations 3.16 and 3.17 in 3.25 with simplification, the following 

Equation is obtained 

{휀} =

1

2𝐴

[
 
 
 
 

𝛽𝑖
0

𝛼𝑖

𝑟
+ 𝛽𝑖 +

𝛾𝑖𝑧

𝑟
𝛾𝑖

     

0
𝛾𝑖
0
𝛽𝑖

     

𝛽𝑗
0

𝛼𝑗

𝑟
+ 𝛽𝑗 +

𝛾𝑗𝑧

𝑟
𝛾𝑗

    

0
𝛾𝑗
0
𝛽𝑗

      

𝛽𝑚
0

𝛼𝑚

𝑟
+ 𝛽𝑚 +

𝛾𝑚𝑧

𝑟
𝛾𝑚

     

0
𝛾𝑚
0
𝛽𝑚]

 
 
 
 

{
 
 

 
 
𝑢𝑖

𝑤𝑖

𝑢𝑗
𝑤𝑗

𝑢𝑚

𝑤𝑚}
 
 

 
 

 

(3.26

) 

 

 

 

[𝐵] 
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The stresses are given by Equation 3.1 where the constitutive matrix [𝐶] is 

according to the following Equation 

[𝐶] =
𝐸

(1 + 𝜇)(1 − 2𝜇)
 

[
 
 
 
 1 − 𝜇

𝜇
𝜇
0

     

𝜇
1 − 𝜇
𝜇
0

     

𝜇
𝜇

1 − 𝜇
0

     

0
0
0

1 − 2𝜇

2 ]
 
 
 
 

 (3.27) 

The axisymmetric element stiffness matrix is calculated according to the volume 

integral in Equation 3.2 and in the cylindrical coordinates Equation 3.2 becomes 

[𝑘] = 2𝜋 ∬[𝐵]𝑇[𝐶][𝐵] 𝑟 𝑑𝑟 𝑑𝑧 (3.28) 

So far the element stiffness matrix of an axisymmetric element is derived. 

Boundary conditions (i.e., nodal forces and prescribed displacements) are applied 

on each node and placed in the proper location in the forces and displacement 

matrices. In the case of surface forces (i.e., surface traction and/or pressure), the 

process is more involved in obtaining equivalent nodal forces. The process is 

explained with the aid of Figure3.3. In Figure 3.3, an axisymmetric element is 

presented with forces acting on the surface of the element. One force is a pressure 

force and the other is a surface traction force. In general, surface forces can be found 

by 

{𝑓𝑠} =  ∬[𝑁𝑠]
𝑇{𝑇} 𝑑𝑆 (3.29) 

Where {𝑓𝑠} is the element forces matrix and [𝑁𝑠] is the shape function matrix 

evaluated along the surface where the surface forces are applied. In the case of the 

element presented in Figure 3.3, Equation 3.29 becomes  
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{𝑓𝑠} =  ∬[𝑁𝑠]
𝑇 {

𝑝𝑟
𝑝𝑧
}  𝑑𝑆 (3.30) 

 

Figure 3.3 Example of surface forces acting on an axisymmetric element (Logan, 

2007). 

 

The evaluation of [𝑁𝑠] is obtained from Equations 3.19, 3.20, and 3.21 for each 

node and the integral is evaluated individually to obtain the equivalent forces at the 

node. For example at node 𝑗 the integral in Equation 3.30 and with the aid of 

Equation 3.20 becomes 

{𝑓𝑠𝑗} =  ∫
1

2𝐴
[
𝛼𝑗 + 𝛽𝑗𝑟 + 𝛾𝑗𝑧

0
     

0
𝛼𝑗 + 𝛽𝑗𝑟 + 𝛾𝑗𝑧

]
𝑧𝑚

𝑧𝑗
{
𝑝𝑟
𝑝𝑧
} 2𝜋𝑟𝑗  𝑑𝑧 

 

(3.31) 

 

 

     Evaluated at 𝑟 = 𝑟𝑗 and 𝑧 = 𝑧 
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After performing the integration at each node, the forces matrix can be calculated 

and at each node the final force matrix becomes 

{𝑓𝑠} =
2𝜋𝑟𝑗(𝑧𝑚 − 𝑧𝑗)

2

{
 
 

 
 
0
0
𝑝𝑟
𝑝𝑧
𝑝𝑟
𝑝𝑧}
 
 

 
 

 (3.32) 

Finally the global stiffness, forces, and displacements are formed by the 

summation of the values at each node according to Equations 3.5, 3.6, and 3.7. 

The discussion presented here on axisymmetric elements applied to 3D 

elements with several modifications on the matrices size and entries within the 

matrices to allow for 3D analysis. The core concept, however, applies. Shape 

functions are used to describe the element nodal coordinates, a stress-strain 

relationship matrix is extended to include x, y and z directions, the stiffness matrix 

is a 9 by 9 matrix and force and displacements matrix are 9 by 1. Stress and strains 

matrices are 6 by 1. 

3.3. Solution of the static equilibrium Equations 

For static analysis, Equation 3.4 needs to be solved. Several techniques are 

available to solve the Equation. The software used here is capable of using two 

methods. The first is a sparse solver and the second is an iterative solver. The 

following sections gives an in-depth look at each technique.  
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3.3.1. Direct solution of the static equilibrium Equation in linear analysis 

(sparse solver) 

Gauss Elimination method is used in the direct solution to the equilibrium 

Equations in linear elastic finite elements. The process of the Gauss elimination is 

better explained with the aid of the following Equation 

[

𝑘11
𝑘21
𝑘31
𝑘41

     

𝑘12
𝑘22
𝑘32
𝑘42

     

𝑘13
𝑘23
𝑘33
𝑘43

     

𝑘14
𝑘24
𝑘34
𝑘44

] {

𝑢1
𝑢2

𝑢3

𝑢4

} = {

𝑓1
𝑓2
𝑓3
𝑓4

} (3.33) 

The mathematical steps to solve the system of Equations above are: 

1. For the second row get 

𝑘2,𝑗 −
𝑘2,1𝑘1,𝑗

𝑘1,1
 

This means that for 𝑖 = 2 𝑎𝑛𝑑 𝑗 = 1 the entry will be 𝑘2,1 −
𝑘2,1𝑘1,1

𝑘1,1
= 0 

For the third row get 

𝑘3,𝑗 −
𝑘3,1𝑘1,𝑗

𝑘1,1
 

This means that for 𝑖 = 3 𝑎𝑛𝑑 𝑗 = 1 the entry will be 𝑘3,1 −
𝑘2,1𝑘1,1

𝑘1,1
= 0 

The process is then repeated for all the rows and columns until the first 

column of entries in the matrix = 0 and in one Equation step one is 

summarized is summarized as  

𝑘𝑖,𝑗 −
𝑘𝑖,1𝑘1, 𝑗

𝑘1,1
    𝑖 = 2,3, … . 𝑡𝑜 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑤𝑠 

Where 𝑗 = 1,2,3, … to the number of columns 

(3.34) 
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2. Starting from the third row apply the following Equation 

𝑘𝑖,𝑗 −
𝑘𝑖,2𝑘2, 𝑗

𝑘2,2
    𝑖 = 3,4, … . 𝑡𝑜 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑤𝑠 

𝑗 = 2,3,4…… 𝑡𝑜 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 

(3.35) 

3. The process is repeated for the fourth row until a triangle of zeros is made below 

the diagonal of the matrix similar to Equation 3.36 

[
 
 
 𝑘11
0
0
0

     

𝑘12
𝑘′22
0
0

     

𝑘13
𝑘′23
𝑘′33
0

     

𝑘14
𝑘′24
𝑘′34
𝑘′44]

 
 
 

{

𝑢1
𝑢2

𝑢3

𝑢4

} =  {

𝑓1
𝑓2
𝑓3
𝑓4

} (3.36) 

 𝑘𝑖,𝑗
′  is the new entry calculated as per steps 1 𝑡𝑜 3. 

4. A simultaneous solution can now be obtained as  

𝑢4 =
𝑓4
𝑘44
′  

𝑢3 =
𝑓3 − 𝑘34

′ 𝑢4

𝑘33
′  

𝑢2 =
𝑓2 − 𝑘23

′ 𝑢3 − 𝑘24
′ 𝑢4

𝑘22
′  

𝑢1 =
𝑓1 − 𝑘12𝑢2 − 𝑘13𝑢3 − 𝑘14𝑢4

𝑘11
 

(3.37) 

The process of obtaining the solution is then made directly until all unknowns are 

identified. This solution yields the exact solution for the set of equilibrium 

Equations given that the problem is defined correctly. Considering the sparsity of 

the stiffness matrix (i.e., many entries are zeros in the matrix) programming 

algorithms are built with consideration to take advantage of this sparsity and solve 
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fewer Equations since the zero entries in the stiffness matrix do not affect the 

solution of the Equations. 

3.3.2. Iterative solution of the static equilibrium Equation in linear analysis 

The Iterative solution presented here is based on that developed by Varga (2009).  

Basically, the solution to Equations of static equilibrium is calculated iteratively by 

trial and error as  

𝑈𝑖
𝑡+1 = 𝐾𝑖𝑖

−1( 𝐹𝑖 −∑𝐾𝑖𝑗

𝑖−1

𝑗=1

𝑈𝑗
𝑡+1 − ∑ 𝑘𝑖𝑗𝑈𝑗

𝑡 

𝑛

𝑗=𝑖+1

) (3.38) 

Where 𝑈𝑖
𝑡+1 and 𝐹𝑖 are the 𝑖𝑡ℎ component of 𝑈 and 𝐹 and 𝑡 represents the trial 

number. The trials are continued until the following Equation is satisfied 

|𝑈𝑡+1 − 𝑈𝑡|

|𝑈𝑠+1|
< 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒  (3.39) 

Tolerance is a preset value depends on the user choice.  

3.4. Dynamic Analysis 

The following sections covers dynamic finite element analysis and the solution 

to equilibrium Equations in dynamic analysis. 

3.4.1. Mass matrix of an axisymmetric element 

The mass matrix divides the total element mass on its nodes. It is of importance 

in dynamic problems since inertia forces are part of the dynamic Equation of 

equilibrium as shown later and they (i.e. inertia forces) play an important role in the 

dynamic response of any structure. The mass matrix of an axisymmetric element is 

obtained using the following Equation  
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[𝑀] =  ∭𝜌[𝑁]𝑇[𝑁]𝑑𝑉  (3.40) 

This mass matrix is called the consistent mass matrix, and it is a full and symmetric 

matrix. By using the shape functions given in Equations 3.19, 3.20 and 3.21, the 

mass matrix can be obtained for the axisymmetric element. The same concept 

applies to a 3D elements and the shape functions used are related to the 3D element.  

3.4.2. Integration of dynamic Equation of equilibrium in time 

The following integration schemes are summarized from Bathe (2006) and 

Logan (2007) textbooks. 

If no viscous damping is applied, the Equation of equilibrium in dynamics is  

{𝐹(𝑡)} = {𝐾}{𝑑} + [𝑀]{�̈�} (3.41) 

In 3.41, the force is transient and is a function of time, [𝑀] is the global mass matrix 

and {�̈�} is the acceleration. The acceleration is defined as the second derivative of 

the displacement over time. Several methods are used to integrate Equation 3.41 

over time. The methods are called direct integration methods and under the direct 

integration method there is the explicit method which is known as the central 

difference method and there are the implicit methods such as Newmark-Beta (to be 

referred to as Newmark’s method) and the Wilson-Theta method (to be referred to 

as Wilson’s method). Each method has its advantages and disadvantages. A brief 

description is given in the upcoming sections.  
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3.4.2.1 The central difference method 

The finite difference Equations for velocity   is 

{�̇�𝑖} =
{𝑑𝑖+1} − {𝑑𝑖−1}

2(𝛥𝜏)
 (3.42) 

And for acceleration  

{�̈�} =
{�̇�𝑖+1} − {�̇�𝑖−1}

2(𝛥𝑡)
 (3.43) 

In 3.43 and 3.42 the subscripts indicate the current time step for a time 

increment 𝛥𝑡. This means that 𝑑{(𝑡)} = {𝑑𝑖} and {𝑑(𝑡 + 𝛥𝑡)}.  

With 3.42 and 3.43 an Equation that relates the displacement with the acceleration 

can be obtained as 

{�̈�} =
{𝑑𝑖+1} − 2{𝑑𝑖} + {𝑑𝑖−1}

(𝛥𝑡)2
 (3.44) 

Given those previous two Equations, the procedure for the solution is  

1- To start solving, {𝑑0}, {�̇�𝑖}, {�̈�}, and {𝐹𝑖(𝑡)} must be known 

2- If {�̈�} is not known, it should be calculated by rearranging Equation 3.41 as 

{�̈�0} = [𝑀]−1({𝐹0} − [𝐾]{𝑑0}) (3.45) 

3- After obtaining {�̈�0}, {𝑑−1} is calculated as 

{𝑑−1} = {𝑑0} − (𝛥𝑡){𝑑0̇} +
(𝛥𝑡)2

2
{�̈�0} (3.46) 

4- {𝑑1} is now needed to be calculated as  
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{𝑑1} = [𝑀]−1{ (𝛥𝑡)2{𝐹0} + [2[𝑀] − (𝛥𝑡)2[𝐾]]{𝑑0} − [𝑀]{𝑑−1 } }  (3.47) 

5- {𝑑2} can now be calculated as  

{𝑑2} = [𝑀]−1{ (𝛥𝑡)2{𝐹1} + [2[𝑀] − (𝛥𝑡)2[𝐾]]{𝑑1} − [𝑀]{𝑑0} }  (3.48) 

 

6- {�̈�1} is calculated as  

 {�̈�1} = [𝑀]−1({𝐹1} − [𝐾]{𝑑1}) (3.49) 

 

7- The velocity is calculated as  

{�̇�1} =
{𝑑2} − {𝑑0}

2(𝛥𝑡)
 (3.50) 

Repeating steps 5 to 7 for all other time steps while increasing the subscripts in 

Equations 3.48, 3.49, and 4.50 by 1 to complete the integration in time. 

3.4.2.2 Newmark’s method 

Newmark’s Equations that are used to solve finite element problems in dynamics 

are 

{�̇�𝑖+1 } = {�̇�𝑖} + (𝛥𝑡)[(1 − 𝛾){�̈�𝑖} + 𝛾{�̈�𝑖+1}] (3.51) 

And 

{𝑑𝑖+1} = {𝑑𝑖} + (𝛥𝑡){�̇�𝑖} + (𝛥𝑡)2[(
1

2
− 𝛽) {�̈�𝑖} + 𝛽{�̈�𝑖+1}] (3.52) 

In Newmark’s Equations the parameters 𝛾 and 𝛽 are selected by the analyzer. The 

steps to solve a dynamic problem using Newmark’s method are: 
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1- With the load varying in time and known at every time step, proceed to 

calculate the displacements, velocity, and acceleration for every time step. 

2- Initially at 𝑡 = 0, {𝑑0} and {𝑑0}̇  are know from the boundary conditions. 

3- The initial acceleration {�̈�0}; unless it is also know; is calculated as  

{�̈�0} = [𝑀]−1({𝐹0} − [𝐾]{𝑑0}) (3.53) 

 

4- Using {𝑑0}, {�̇�0}, and {𝑑0̈}, {𝑑1} is calculated as  

[𝐾′]{𝑑1} = {𝐹1
′} (3.54) 

 

Where 

[𝐾′] = [𝐾] +
1

𝛽(𝛥𝑡)2
[𝑀] (3.55) 

And  

{𝐹1
′} = {𝐹1} +

[𝑀]

𝛽(𝛥𝑡)2
[ {𝑑0} + (𝛥𝑡){�̇�0} + (

1

2
− 𝛽) (𝛥𝑡)2{𝑑0̈} ] (3.56) 

5- {�̈�1} is calculated by rearranging Equation 3.52 as  

{𝑑1} =
1

𝛽(𝛥𝑡)2
[ {𝑑1} − {𝑑0} − (𝛥𝑡){𝑑0} − (𝛥𝑡)2  (

1

2
− 𝛽) {�̈�0}] 

̇̈
 (3.57) 

6- The velocity at 𝑖 = 1, is calculated from Equation 3.51 

With the results from steps 5 and 6, the steps are repeated starting from step 4 

while increasing the subscript 𝑖 by a 1. 
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3.4.2.3 Wilson’s method 

Wilson Equations that are used are  

{�̇�𝑖+1} = {�̇�𝑖} +
𝜃(𝛥𝑡)

2
 ({�̈�𝑖+1 } + {�̈�𝑖}) (3.58) 

 

And  

{𝑑𝑖+1} = {𝑑𝑖} + 𝜃(𝛥𝑡){�̇�𝑖} +
𝜃2(𝛥𝑡)2

6
 ({�̈�𝑖+1 } + 2{�̈�𝑖}) (3.59) 

 

The steps for integration in time using Wilson’s method are  

1- From initial boundary and velocity conditions at time 𝑡 = 0, the 

displacement {𝑑0} and the velocity {�̇�} are known.  

2- If the initial acceleration {�̈�0} is not known, it is calculated as  

{�̈�0} = [𝑀]−1({𝐹0} − [𝐾]{𝑑0}) (3.60) 

 

3- {𝑑1} is calculated a s 

[𝐾′]{𝑑1} = {𝐹1
′} (3.61) 

Where  

[𝐾′] = [𝐾] +
6

(𝜃𝛥𝑡)2
[𝑀] (3.62) 
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And  

{𝐹1
′} = {𝐹1

′} +
[𝑀]

(𝜃𝛥𝑡)2
[6{𝑑0} + 6𝜃(𝛥𝑡){�̇�1} + 2(𝜃𝛥𝑡)2{�̈�0}] (3.63) 

4- {�̈�1} is calculated as 

{�̈�1} =
6

𝜃2(𝛥𝑡)2
({𝑑1} − {𝑑0}) −

6

𝜃(𝛥𝑡)
{�̇�0} − 2{�̈�0} (3.64) 

5- {�̇�1} is calculated as  

{�̇�1} =
3

𝜃(𝛥𝑡)
({𝑑1} − {𝑑0}) − 2{�̇�0} −

𝜃(𝛥𝑡)

2
{�̈�0} (3.65) 

6- Steps 3 to 5 are repeated with the subscript increased by one each time a 

repetition is made. 

Notes on Dynamic analysis solvers 

Solving the dynamic finite element is more involved than solving static 

problems. The time step size is essential to the accuracy of the results and in case 

of using Newmark’s method, the variables 𝛽 and 𝛾 affect the solution accuracy and 

stability. Usually, 𝛽 is selected from between 0 and 
1

 4
; while 𝛾 is selected as 

1

2
. If 𝛽 

is set as 0 and 𝛾 is set as  
1

2
 , Newmark’s Equations 3.51 and 3.52 become similar to 

the central difference Equations.  Similarly, If Wilson’s method is used; the choice 

of the variable 𝜃 also has an impact on the accuracy of the solution. Bathe (2006) 

gives a discussion about the stability and the accuracy of the integration schemes 

discussed in the previous sections.  
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4. Modeling and finite element method implementation 

In this chapter, the process of modeling the geometry of the problem, its 

boundary conditions, time step choice, element size are discussed. In order to verify 

proper modeling of the problem and proper choice of modeling parameters, a 

verification study is performed on the model. The verification study compares the 

model of a single pile in homogeneous linear elastic soil with the analytical solution 

of Novak (1974) at 𝑎0 = 0.3. His solution is given in more details in chapter 2.  

The problem of a pile under a vibrating vertical load is shown in Figure 4.1. 

the pile is considered a floating pile in this case (or friction pile). The black part on 

top of the pile represents the mass the pile is carrying. A force 𝑄 is acting on top of 

the pile. 𝑄 varies with time in a sinusoidal manner. The force applied (sinusoidal 

load) has an amplitude of 22000 𝑁 therefore, 𝑄(𝑡) = 22000 𝑆𝑖𝑛(𝜔𝑡). Where 𝜔 is 

the frequency of the load in 𝑟𝑎𝑑𝑖𝑎𝑛𝑠/𝑠𝑒𝑐, 𝑡 is the time in seconds. 

Finite element modeling of this problem utilizes axisymmetric elements for 

discretizing the model. The solution parameters need to be optimized for accuracy 

include mesh size, time step, and boundary conditions. Choice of these parameters 

is based on recommendations from the literature. Once these parameters are set, a 

verification study is performed to verify that the modeling process is applicable to 

the modeling of the research cases.  

Although most of the discussion here is limited to the 2D axisymmetric  

modeling of a single pile, the concepts and assumptions can be extended to the 3D 

modeling of two piles for the dynamic interaction study.  

Autodesk simulation was used in this research. It has the capability to 

perform the linear static and dynamic finite element analysis required by this 
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research. It can mesh 2D regions and 3D solids automatically. Furthermore, the 

license of this software was given for free for the author as a Ph.D. student. The 

license grants full access to the software with no limitations.  

4.1. Research assumptions 

The following assumptions are applied to the research studied: 

1- Pile and soil material is linearly elastic. 

2- Pile and soil are in perfect contact and slippage and separation aren’t 

allowed between the pile and the soil. 

3- The pile in this research is circular in cross-section. 

4- No material damping is applied.  

 
Figure 4.1: Pile subjected to vertical dynamic loading. 

4.2. Geometry Modeling 

Figure 4.1 showed the basic problem. A single pile subjected to vertical 

dynamic loading. Two types of analysis are carried in this research, 2D and 3D. 

This requires creating 2D and 3D geometries that represent the actual problem. The 

𝑄(𝑡) 𝑄(t) 

𝑡 
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2D axisymmetric geometry was created by drawing planes that represent the 

problem. for 3D modeling of the pile to pile interaction, 3D solids were created and 

assembled using Autodesk Inventor 2015 and then imported into Autodesk 

simulation mechanical for meshing and analysis.  

The problem geometry consists of a mass on top of pile (rectangular region 

for 2D axisymmetric and 3D cylinder for 3D analysis), the pile (rectangular region 

for 2D axisymmetric and 3D cylinder for 3D analysis), and the soil (rectangular 

regions for 2D axisymmetric and 3D brick shape with hole to place pile in for 3D 

analysis). See Figure 4.2 for geometry modeling details with dimensions. Although 

the Figure shows 1 pile in the 3D model, the 3D model was used to model two piles 

to study the interaction between them.  

4.2.1. Additional geometry modeling considerations  

For piles in nonhomogeneous soils, geometry modeling of this study is 

slightly different than that of  a pile in a homogeneous soil. Since Autodesk 

simulation doesn’t have a built-in feature to set soil modulus of elasticity as a 

function of depth, it was done manually. The soil adjacent to the pile was divided 

into 10 segments each segment is 1 m in height. The modulus of elasticity of each 

segment is the average modulus of elasticity at the top of the segment and at the end 

of the segment. See Figure 4.3.  

For end Bearing Pile, the bottom layer at which the pile rests is removed and 

fixed boundaries are placed along the bottom line of the model. This is because rock 

base deformation is almost non-existent and negligible compared to the pile and the 

soil. See Figure 4.3. 
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Figure 4.2: Details of geometry modeling. 2D axisymmetric model (top) and 3D 

model  (bottom). 
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Figure 4.3: Additonal modeling considerations. 

 

4.3. Finite element solution parameters 

4.3.1. Element size 

 One of the major parameters in obtaining an accurate finite element solution 

is the mesh element size. The element size has to be chosen as small as possible to 

obtain accurate results while not being too small that the model has a huge number 

of elements and consequently consume more time to be solved. 

 Recommendations in literature by Lysmer (1978) and Zhang & Tang (2007) 

suggest that the following Equation governs the element size for dynamic soil 

problems 

 side segment length=1 m  

1 𝑚 

𝐸𝑠(𝑧) 

𝑧 

𝐸𝑠(𝑇𝑜𝑝) 
 
 
𝐸𝑆(𝐵𝑜𝑡𝑡𝑜𝑚) 

 𝐸𝑠 =
𝐸𝑠(𝑡𝑜𝑝)+𝐸𝑠(𝐵𝑜𝑡𝑡𝑜𝑚)

2
  

This layer is removed in 

end-bearing pile study 

and replaced with fixed 

boundaries along the 

bottom line for end 

bearing pile simulation. 
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𝐸𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒, 𝑙𝑒 =
1

8
~
1

5
𝜆𝑠 

(4.1) 

In Equation 4.1, 𝜆𝑠 is the shear wave length which is equal to 𝑣𝑠/𝑓. Where 𝑣𝑠 is the 

shear wave velocity and 𝑓 is the frequency in 𝐻𝑧. Note that in an elastic continuum, 

the shear wave velocity 𝑣𝑠 is √𝐺𝑠/𝜌𝑠. Where 𝐺𝑠 is the shear modulus of the soil and 

𝜌𝑠 is the soil mass density. Based on Equation 4.1, if the soil has a shear wave 

velocity of 300 𝑚/𝑠 and the frequency of the load is 6 𝐻𝑧, the element size should 

be between 8.33 and 10 𝑚. In this study the upper limit (𝑙𝑒 =  1/5 𝜆𝑠) was chosen 

for the element size. See Figure 4.4 that shows how 2D and 3D elements sizes is 

defined. Two types of elements were used in this research, triangular axisymmetric 

elements for single piles and 3D tetrahedrons for 3D pile to pile interaction analysis. 

For the 2D axisymmetric model the Z-axis is the axis of symmetry.   

 

Figure 4.4: Definition of element length for a) Autodesk Simulation 

Axisymmetric element and b) Autodesk Simulation 3D tetrahedron. 

4.3.2. Time step 

 Another important parameter in finite element solution is the time step. 

Wave propagation problems are dynamic and dynamic analysis is carried through 

integration in time at consecutive time steps. In choosing time step, the wave must 

𝑙𝑒 
𝑙𝑒 
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not travel more than one element length each time step (Bathe, 2006). The following 

Equation then governs the time step size 

𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 = 𝑙𝑒/𝑣𝑝 (4.2) 

 

Where 𝑙𝑒 is the element length and 𝑣𝑝 is the compressional wave velocity and it is 

calculated as 

𝑣𝑝 =
𝜆 + 2𝐺𝑠

𝜌𝑠
 

(4.3) 

In Equation 4.3, 𝜆 is Lame’s parameter, 𝐺𝑠 is the shear modulus and 𝜌𝑠 is the mass 

density of the continuum. The integration scheme used in the analysis was 

Newmark’s Integration in time.  

4.3.3. Boundary conditions 

Since the model needs to simulate an elastic half-space, it needs to be 

infinite. The program used Autodesk simulation (2017) doesn’t have infinite 

elements. Because of this, the boundaries needed to be far away from the pile so 

that displacement amplitudes near the boundaries are very small and do not cause 

any significant reflection. In case of 3D analysis, the boundaries were much closer 

but needed to be composed of dashpot elements that absorb the upcoming waves 

and prevent reflection. Using far fixed boundaries and absorbing boundaries 

prevent significant reflection of the waves at the boundary and back to the pile for 

the 2D and 3D model.  It is needed so that the reflected waves do not corrupt 

analysis results. Figure 4.5 shows a complete 2D axisymmetric model with fixed 

boundaries. Figure 4.6 shows the 3D model with absorbing boundaries. Figure 4.7 

shows the amplitude of displacement at the pile and near side boundaries for a 2D 
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axisymmetric model and in Figure 4.8 amplitude of displacement is shown near 

bottom boundaries for a 2D axisymmetric model. From these Figures, it can be seen 

the displacement is small near fixed boundaries and any reflection won’t corrupt 

results of dynamic displacement at the pile. The dashpot used at the boundary of 

3D model has a coefficient calculated using the following Equations (Wilson, 2002) 

𝑐𝑣 = 𝜌𝑠𝑣𝑝𝐴𝑒 (4.4) 

𝑐ℎ = 𝜌𝑠 𝑣𝑠𝐴𝑒 (4.5) 

Where 𝑐𝑣 is the dashpot (vertical to element side) coefficient to absorb 

compressional waves, 𝑐ℎis coefficient of dashpots (parallel to element side) 

absorbing shear waves, 𝜌𝑠 is the soil density  𝑣𝑝 is the compressional wave velocity, 

𝑣𝑠 is the shear wave velocity and 𝐴𝑒 is the element area. 
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Figure 4.5: 2D axisymmetric model (meshed) with fixed boundaries placed far 

from the pile. 

Fixed boundaries 
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Figure 4.6: 3D model with dashpots as absorbing boundaries. 

Blue lines are 

dashpot element 

forming the 

absorbing boundaries 
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Figure 4.7: Amplitude of dynamic displacement near side boundary (green) 

compared to amplitude of dynamic displacement at pile(blue). 
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Figure 4.8: Amplitude of dynamic displacement near bottom boundary (green) 

compared to amplitude of dynamic displacement at pile (blue). 
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4.4. Analysis, obtaining results and interpretation procedure 

The following is a step by step procedure for applying solution parameters, 

performing the analysis and obtaining results and interpretation of these results. 

1- Parameters of study are set. This includes: Soil material Properties (Young’s 

modulus, 𝐸𝑠 , Poisson’s ratio,  𝜇𝑠 and mass density, 𝜌𝑠), Pile Material Properties 

(Young’s modulus,𝐸𝑝 and Poisson’s ratio 𝜇𝑝and mass density, 𝜌𝑝).  

2- Depending on the case, mesh element size, time step and boundaries are set. 

3- A mass, 𝑀 = 65000 𝑘𝑔 is applied on top of the pile. 

4- A static pressure , 𝑄𝑠 = 22000 𝑁𝑒𝑤𝑡𝑜𝑛/𝑚2 is applied on top of the pile and a 

static analysis is run. From static analysis, the static pile displacement,𝑢𝑠 is 

determined. From static analysis, the static stiffness, 𝑘 is calculated as: 

𝑘 =
𝑄𝑆 𝐴𝑝

𝑢𝑠
 

(4.6) 

Where 𝐴𝑝 is the area of the pile. 

Also the natural frequency, 𝑓𝑛 can be calculated as 

𝑓𝑛 =
1

2𝜋
√
𝑘

𝑀
 

(4.7) 

Where 𝑘 is the static stiffness of the pile and 𝑀 is the mass applied on top 

of the pile. 

5-  A load frequency, 𝑓 is set and the dynamic load-time curve is prepared. (see 

Figure 4.9 for an example of a load-time curve)  

6- The dynamic pressure 𝑄𝑑 = 220000𝑆𝑖𝑛(2𝜋𝑓𝑡)𝑁𝑒𝑤𝑡𝑜𝑛/𝑚2 is applied on top 

of the pile and the dynamic analysis is run until steady state vibration is reached. 

Note that 𝑡 in the previous Equation is the time in seconds. 
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Figure 4.9: Example of applied  load-time curve. 

 

7- From dynamic analysis the pile dynamic displacement, 𝑢𝑑 is determined. Note 

that dynamic displacement is the maximum amplitude of displacement at the 

steady state vibration. 

8- The frequency is changed and steps 5 to 7 are repeated for several frequencies. 

9- A curve of normalized dynamic displacement over static displacement is plotted 

against frequency. See Figure 4.10 for example. 
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Figure 4.10: Example of pile response curve under different frequencies. 

 

10-  A curve similar to that shown in Figure 4.10 is described mathematically as 

𝑢𝑑

𝑢𝑠
=

1

√(1 −
𝑓2

𝑓𝑛
2)

2

+ (2𝐷
𝑓
𝑓𝑛
)
2

 
(4.8) 

Where 𝑢𝑑is the dynamic displacement, 𝑢𝑠 is the static displacement, 𝑓 is the 

frequency in 𝐻𝑧, 𝑓𝑛 is the system natural frequency in 𝐻𝑧, D is the geometrical 

damping ratio. 

In Equation 4.8, all the parameters of the Equation are known except for the 

geometrical damping ratio, 𝐷. It is the goal of the dynamic analysis is to determine 

𝐷 that describes the curve. Excel solver is used to determine 𝐷 with the least error 

across all frequencies.  

The process of determining the stiffness and damping ratio, 𝐷 is illustrated by the 

following sample calculation. 
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Sample calculation of stiffness and damping: Floating pile in homogeneous 

elastic soil 

For soil, 𝐸𝑠 =  2.5𝑥108 𝑁/𝑚2, 𝜇𝑠 = 0.45 and 𝜌𝑠 = 1800 𝑘𝑔/𝑚3. 

For pile, 𝐸𝑝 = 2.1𝑥1010𝑁/𝑚2, 𝜇𝑝 = 0.25, 𝜌𝑝 = 2400 𝑘𝑔/𝑚3, 𝑑𝑝 = 0.5 𝑚, 𝐿𝑝 =

10 𝑚. Pressure applied on top of pile and amplitude of dynamic pressure 𝑄 =

 22000 𝑁𝑒𝑤𝑡𝑜𝑛/𝑚2. Mass, 𝑀 attached on top of pile = 65000 𝑘𝑔. 

Where 𝐸 is elastic modulus, 𝜇 is Poisson’s ratio and 𝜌 is the mass density. Subscript 

𝑠 designate soil property while subscript 𝑝 designate pile property. 𝑑𝑝 is the pile 

diameter and 𝐿𝑝 is the length of the pile. For the specified case, results of finite 

element analysis are shown in Table 4.1. The results are obtained from static and 

dynamic analysis performed with accordance to sections 4.1, 4.2 and 4.3. 

Table 4.1: Sample results for  static and dynamic analysis. 

𝐹𝑟𝑒𝑞𝑢𝑛𝑒𝑐𝑦1 
 

𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡2 
 

𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

𝑆𝑡𝑎𝑡𝑖𝑐 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡
 

𝐻𝑧 𝑚𝑒𝑡𝑒𝑟  

0 5.70E-06 1.00 

10 8.00E-06 1.40 

17.2 1.80E-05 3.16 

25 5.00E-06 0.88 

30 3.00E-06 0.53 

  

 Note in Table 4.1: 

1- For frequency = 0, displacement is the static displacement. 

2- 𝑥𝑥 𝐸 − 𝑥𝑥 means 𝑥𝑥 ×  10−𝑥𝑥 example: 5.70𝐸 − 06 = 5.7 × 10−6. 
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The static stiffness can be calculated using  

𝑘 =
𝑄𝑆 𝐴𝑝

𝑢𝑠
=

(22000) (𝜋 (
𝑑𝑝

2 )
2

)

5.7𝑋10−6
= 7.6𝑋108 𝑁𝑒𝑤𝑡𝑜𝑛/𝑚 

(4.9) 

The system natural frequency can be calculated using  

𝑓𝑛 =
1

2𝜋
√
𝑘

𝑀
=

1

2𝜋
√
7.6𝑋108

65000
= 17.2 𝐻𝑧 

(4.10) 

 An arbitrary value of the geometrical damping ratio 𝐷 is chosen, let 𝐷 =  0.1. 

Table 4.2 can be prepared using the value of assumed 𝐷 and Equation 4.8.  

Table 4.2: Calculated Dynamic Displacement/Static Displacement using assumed 

D value. 

𝐹𝑟𝑒𝑞𝑢𝑛𝑒𝑐𝑦1 
 

𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

𝑆𝑡𝑎𝑡𝑖𝑐 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

2

 
𝐸𝑟𝑟𝑜𝑟3 

𝐻𝑧   

0 1.00 0.00 

10 1.49 0.09 

17.2 5.00 1.84 

25 0.87 -0.01 

30 0.48 -0.04 

      Sum of Errors = 1.87 

Note in Table 4.2: 

1- For frequency = 0, displacement is the static displacement. 

2- The values in column 2 are calculated using Equation 4.6 with the 

assumed value of 𝐷 = 0.1. 

3- 𝐸𝑟𝑟𝑜𝑟 = 𝐶𝑜𝑙𝑢𝑚𝑛 2 𝑜𝑓 𝑇𝑎𝑏𝑙𝑒 4.2 − 𝐶𝑜𝑙𝑢𝑚𝑛 3 𝑜𝑓 𝑇𝑎𝑏𝑙𝑒 4.1 

Using Excel Solver, the actual value of 𝐷 that would minimize the sum of the errors 

is obtained. Table 4.2 values are adjusted. The new results of 𝑢𝑑/𝑢𝑑 are show in 

Table 4.3. The value of 𝐷 that would minimize the errors is 0.16.  



 

 

 

 

75 

 

Table 4.3: Table generated after solving for D that would minimize the sum of 

errors. 

𝐹𝑟𝑒𝑞𝑢𝑛𝑒𝑐𝑌 
 

𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

𝑆𝑡𝑎𝑡𝑖𝑐 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

2

 
𝐸𝑟𝑟𝑜𝑟 

𝐻𝑧   

0 1.00 0.00 

10 1.46 0.05 

17.2 3.12 -0.04 

25 0.83 -0.05 

30 0.47 -0.06 

 

It can be seen from Table 4.3 that the error is at around 0.05 across all frequencies. 

The value of 𝐷 = 0.16 is the best that describes the system response for the current 

set of analysis parameters. Plot of finite element results with results predicted using 

calculated geometric damping, 𝐷 value is shown in Figure 4.11. 

 

Figure 4.11: Plot of finite element results and that predicted using calculated 𝐷 

value. 
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After interpreting results for a certain case, the studied variables are adjusted 

and steps outlined in sections 4.3 and 4.4 are repeated for the new set of variables. 

After varying parameters, plots of the studied variable against static stiffness and 

damping are generated. These plots show how the variation in a certain studied 

variable affects the dynamic response of the system.  

In summary, this chapter gives an insight of how data is collected and how 

the results are interpreted to come up with static stiffness, 𝑘, natural frequency, 𝑓𝑛 

and geometrical damping ratio, 𝐷. A flow chart is created to summarize the general 

study procedure followed throughout this research. It is shown in Figure 4.12. 
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Figure 4.12: Flowchart summarizing research process. 

Create geometry of 

the problem as per 

section 4.2 

Set new material 

properties 

Set FEM analysis parameters: mesh size, time step, 

and boundary conditions as per section 4.3 
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4.5. Verification of the modeling process for dynamic analysis 

To verify the modeling process for dynamic analysis, the case of a floating 

pile in elastic, homogeneous soil is analyzed using the finite element method and 

compared with results obtained by Novak’s (1974) solution. Novak’s solution is 

accurate at a  dimensionless frequency, 𝑎0 = 0.3 . Analysis results at 𝑎0 = 0.3  for 

finite element solution and Novak’s solution is shown in Table 4.4. the 

dimensionless frequency is calculated using 𝑎0 = 𝜔𝑟/𝑣𝑠. Where 𝜔 is the frequency 

in radians per seconds, 𝑟 is the pile radius and 𝑣𝑠 is the shear wave velocity of the 

soil. To maintain the value of 𝑎0 at 0.3, both the frequency and the soil modulus of 

elasticity were varied. Dynamic finite element analysis is used to determine the 

dynamic displacement at a certain frequency and shear modulus of the soil. Novak 

solution is used to determine the dynamic displacement analytically. Results of 

dynamic displacement obtained by dynamic finite element analysis and Novak 

(1974) are shown in Table 4.4. .Results of both methods are plotted in Figure 4.13. 

As shown in Figure 4.13, good agreement between the FEM results and Novak’s 

solution was obtained. 

Table 4.4: results of verification study. 
   

𝒖𝒅 
 

𝝎 𝑣𝑠 𝐺 Novak (1974) 3D FEM Δ 

Radians/second(Hz) meter/second Pascals meter meter % 

63 52 4.9E+06 2.9E-05 2.3E-05 -21% 

126 105 2.0E+07 6.2E-06 6.0E-06 -3% 

188 157 4.4E+07 2.5E-06 2.3E-06 -9% 

251 209 7.9E+07 1.3E-06 1.2E-06 -11% 

314 262 1.2E+08 8.4E-07 8.0E-07 -4% 
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Figure 4.13: Plot of verification study results. 
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5. Results and Discussion 
 

 This chapter presents the results of the research. After defining the process 

of modeling, analysis and data interpretation in chapter 4, the cases considered in 

this research are prsented. Results are collected and processed to get the parameters 

that describe the dynamic behavior of the cases studied.  

The cases considered in this research are: 

1- Floating pile in homogeneous soil: The pile is elastic embedded in a 

homogeneous elastic soil. Results of the study give the variation of the stiffness 

and damping ratio with the variation of the soil modulus of elasticity. 

2- Floating pile in nonhomogeneous soil: the study is concerned with a floating 

pile where the surrounding soil has a modulus of elasticity which increases 

linearly with depth. The increase stops at a point. Below this point, the soil 

modulus of elasticity remains constant. Variation of the slope of the increase in 

soil modulus of elasticity as well as variation of the point at which the modulus 

remains constant is considered. Their effect on damping ratio and stiffness are 

considered.  

3- End-bearing pile (pile on rock) in homogeneous soil: this case is similar to case 

1, but the pile rests on a rock base. This study varies the soil modulus of 

elasticity. Effect on damping and stiffness are studied. 

4- End-bearing pile (pile on rock) in nonhomogeneous soil: this study is concerned 

with nonhomogeneous soil, where the soil has an increasing modulus of 

elasticity with depth. The increase stops at a point. Below this point, the soil 

modulus of elasticity remains constant until the rock base. Variation of the slope 

of the increase in soil modulus of elasticity as well as variation of the point at 
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which modulus remains constant is considered. Their effect on damping ratio 

and stiffness are considered.  

5- The pile-to-pile interaction: this study is concerned with the dynamic and static 

interaction of piles. The simplest case of a pile group (2 piles) is studied in a 

manner similar to Poulos (1968). Soil modulus of elasticity and pile spacing is 

also varied. Effect of interaction between the piles is studied. Application to pile 

groups is discussed.  

5.1. Floating pile in homogeneous soil 

In this study, an elastic pile in an elastic homogeneous soil is studied via 

finite element method. An axisymmetric model is used to analyze this problem. Pile 

modulus of elasticity, 𝐸𝑝 is fixed at 2.1 × 1010 𝑁/𝑚 (pre-stressed concrete pile) 

and its Poisson’s ratio, 𝜇𝑝  is fixed at 0.25. Pile diameter, 𝑑𝑝 = 0.5 𝑚 and its length, 

𝐿𝑝 is 10 𝑚. The pile mass density, 𝜌𝑝 is 2500 𝐾𝑔/𝑚3. Soil modulus of elasticity,𝐸𝑠  

is varied from 5 × 106 𝑡𝑜 8.34 × 108 𝑁/𝑚. The soil Poisson’s ratio, 𝜇𝑠 is fixed at 

0.45. Soil density, 𝜌𝑠 is 1800 𝑘𝑔/𝑚3. Frequency is varied in the dynamic analysis 

to capture dynamic response of the pile. Frequency variation depends on the soil 

material. The variation is chosen to best capture the dynamic behavior by choosing 

frequencies around the resonance area. In general, frequency was between 2.5 and 

30 Hz. See Figure 5.1 for a general graphical description of the problem. See Table 

5.1 for a summary of values of constants and range of values for varied parameters. 

The study captured the effect of the varied variables on the stiffness and damping 

of the pile. 
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Table 5.1: Values for variables and constants for study of floating pile in 

homogeneous soil. 

Parameter Symbol Unit Value 

Pile Modulus of Elasticity 𝐸𝑝 𝑃𝑎𝑠𝑐𝑎𝑙 2.1x1010 

Pile Poisson’s Ratio 𝜇𝑝  0.25 

Pile Mass Density 𝜌𝑝 𝑘𝑔/𝑚3 2500 

Pile Diameter 𝑑𝑝 𝑚 0.5 

Pile Length 𝐿𝑝 𝑚 10 

Soil Modulus of Elasticity 𝐸𝑠 𝑃𝑎𝑠𝑐𝑎𝑙 5x106 𝑡𝑜 8.34x108 

Soil Poisson’s Ratio 𝜇𝑠  0.45 

Soil Mass Density 𝜌𝑠 𝑘𝑔/𝑚3 1800 

Mass applied on top of Pile 𝑀 𝑘𝑔 65000 

Applied Static Pressure 𝑄𝑠 𝑃𝑎𝑠𝑐𝑎𝑙 22000 

Dynamic Pressure Amplitude 𝑄𝑑 𝑃𝑎𝑠𝑐𝑎𝑙 22000 

Frequency 𝑓 𝐻𝑧 2.5 𝑡𝑜 30 
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Figure 5.1: Floating pile in an elastic homogeneous soil. 

 

The main two outcomes of this study are the stiffness, 𝑘 and geometric 

damping ratio, 𝐷. The system stiffness, 𝑘 as a variation with soil elastic modulus, 𝐸𝑠 

is given in Figure 5.2 while the variation of geometric damping ratio  is given in 

Figure 5.3. from these two parameters, the critical damping, 𝑐𝑐𝑟, the damping, 𝑐 and 

the natural frequency,𝑓𝑛 can be calculated using the following Equations.  

𝑐𝑐𝑟 = 2√𝑘 𝑀 (5.1) 

𝑐 = 𝐷 𝑐𝑐𝑟 (5.2) 

𝑓𝑛 =
1

2𝜋
√
𝑘

𝑀
 

(5.3) 
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Elasticity, 𝐸𝑠 
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Variation of these parameters is given in Figures 5.4, 5.5 and 5.6 respectively. For 

the natural frequency, it is given in Figure 5.6 as a dimensionless natural 

frequency,𝑎0𝑛 which is calculated as 

𝑎0𝑛 =
2𝜋𝑓𝑛(𝑑𝑝/2)

𝑣𝑠
 

(5.4) 

Where 𝑓𝑛 is the natural frequency, 𝑑𝑝 diameter of the pile, 𝑣𝑠 is the shear wave 

velcotiy of the soil.  

 

 

 

Figure 5.2: Variation of stiffness, 𝑘 with soil modulus of elasticity, 𝐸𝑠 for a 

floating pile in homogeneous soil. 
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Figure 5.3: Variation of geometric damping, 𝐷 with soil modulus of elasticity, 𝐸𝑠 

for a floating pile in homogeneous soil. 

 

 
Figure 5.4: Variation of critical damping, 𝑐𝑐𝑟 with soil modulus of elasticity, 𝐸𝑠 

for a floating pile in homogeneous soil. 
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Figure 5.5: Variation of damping, 𝑐 with soil modulus of elasticity, 𝐸𝑠 for a 

floating pile in homogeneous soil. 

 

 
Figure 5.6: Variation of dimensionless Natural frequency, 𝑎0𝑛 with soil modulus 

of elasticity, 𝐸𝑠 for a floating pile in homogeneous soil. 
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5.1.1. Results commentary and analysis 

 Figure 5.2 shows that the stiffness increases with increase in soil elastic modulus 

at a slightly nonlinear rate. This increase is expected. As the soil gets stronger, 

it can sustain the load at lower displacements.  

 Figure 5.3 shows that the trend for geometric damping ratio which tends to 

decrease with an exponential decay function as the elastic modulus of the soil 

increases.  

 From the previous 2 points, it can be concluded that increase in soil elastic 

modulus provides lower dynamic displacement, 𝑢𝑑 and static displacement, 𝑢𝑠 

but greater amplification of displacement (i.e. 𝑢𝑑/𝑢𝑠)  at resonance. This pattern 

is shown in Figure 5.7 for value of dynamic displacement and Figure 5.8 for 

amplification of displacement. From Figure 5.7 it can be seen that the dynamic 

displacement at resonance is high at low modulus of elasticity and decreases 

rapidly with increase in soil modulus of elasticity. If the dynamic displacement 

at resonance is normalized over the static displacement (i.e., dynamic 

amplification) as in Figure 5.8, it can be seen that amplification increases 

linearly with increase in soil modulus of elasticity.  
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Figure 5.7: Variation of vertical dynamic displacement, 𝑢𝑑 at resonance with soil 

modulus of elasticity, 𝐸𝑠 for a floating pile in homogeneous soil. 

 

Figure 5.8: Variation of dynamic amplification at resonance with soil modulus of 

elasticity, 𝐸𝑠 for a floating pile in homogeneous soil. 

 

 From Figure 5.4 it is shown that the critical damping increase with the increase 

in soil stiffness. This is expected since it is mathematically related to the 

stiffness of the system as described by Equation 5.1.  
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 From Figure 5.5 it is shown that the damping (which is obtained by multiplying 

the damping ratio, 𝐷 with the critical damping, 𝑐𝑐𝑟) increases with soil stiffness 

up to a certain point. At this point the, damping seems to be constant. 

 The natural frequency s given in the form of dimensionless frequency in Figure 

5.6. It starts high in softer soils and decreases as the soil gets stiffer. The actual 

natural frequency in 𝐻𝑧 increases with increase in soil modulus of elasticity as 

shown in Figure 5.9.  

 

Figure 5.9: Variation of natural frequency, 𝑓𝑛 with soil shear wave velocity, 𝑣𝑠 for 

a floating pile in homogeneous soil. 
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5.1.2. Comparison of finite element solution results with literature 

5.1.2.1. Comparison of stiffness  

Results obtained by finite element analysis (current study) are compared 

with the work of others. The first comparison provided is with Novak (1974) 

solution which is discussed in section 2.2.2. The comparison is shown in Figure 

5.10. Relative difference of static stiffness values between finite element analysis 

and Novak’ Solution is calculated using Equation 5.5 and plotted in Figure 5.11. 

 

𝑘𝑠𝑡𝑢𝑑𝑦 − 𝑘𝑁𝑜𝑣𝑎𝑘

𝑘𝑁𝑜𝑣𝑎𝑘
x100 

(5.5) 

 

 

Figure 5.10: Comparison of stiffness,𝑘  obtained by finite elemnt method with 

Novak (1974) for a floating pile in homogeneous soil. 

 

0.00E+00

1.00E+09

2.00E+09

3.00E+09

0.E+00 2.E+08 4.E+08 6.E+08 8.E+08 1.E+09

St
if

fn
e

ss
, 

k
(N

/m
)

Soil Modulus of Elasticity, Es

(N/m2)

FEA

Novak (1974)



 

 

 

 

91 

 

 
Figure 5.11: Relative Difference of stiffness between 3D FEM  and  Novak (1974) 

for a floating pile in homogeneous soil. 

 

From Figure 5.11, it can be shown that there is a great difference between 

the stiffness obtained by Finite element analysis and that obtained by Novak. The 

relative difference between the two is between −57%  𝑡𝑜 − 15%. In general, 

Novak’s solution over-predicts the stiffness of the system compared to finite 

element analysis. This difference can be contributed to Novak’s simplification of 

the problem as he idealized the 3D problem to a plane strain 2D plane strain 

problem. Novak also assumes that the stiffness at the pile tip is similar to a that 

obtained by elastic solution for a circular loaded area on the surface of an elastic 

half space. Implications of such difference in stiffness will have its effect extended 

to other  dynamic parameters. Values of natural frequency are directly affected by 

such difference due to its direct dependency on the stiffness, 𝑘 as 𝑓𝑛 =

(1/2𝜋) √𝑘/𝑀 . The critical damping values are also directly affected as 𝑐𝑐𝑟 =

2√𝑘𝑀. Effect on critical damping is extend to the geometrical damping ratio as 

𝐷 = 𝑐/𝑐𝑐𝑟, where 𝑐, is the damping of the system (Geometrical damping in this 

case).  
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Another comparison of the stiffness is provided against the work of  Gazetas 

& Mylonakis (1998). The stiffness of a  pile in homogeneous elastic soil given is 

calculated as follows: 

𝑘 = 𝐸𝑝𝐴𝑝𝜆
𝛺 + tanh (𝐿𝑝𝜆)

1 + 𝛺 tanh (𝐿𝑝𝜆)
 

(5.6) 

Where  𝜆 is calculated using 

𝜆 =  √
𝛿𝐺𝑠

𝐸𝑝𝐴𝑝
 

(5.7) 

 

𝛺 is calculated using the following Equation 

𝛺 =
𝑘𝑏

𝐸𝑝𝐴𝑝𝜆
 

(5.8) 

𝛿 is calculated as 

𝛿 =
2𝜋

ln (
2𝑟𝑚
𝑑𝑝

)
 

(5.9) 

Where 𝑟𝑚 is  

𝑟𝑚 = 2.5𝐿𝑝(1 − 𝜇𝑠) (5.10) 

And 𝑘𝑏 is calculated as  

𝑘𝑏 =
𝑑𝐸𝑠

1 − 𝜇𝑠
(1 + 0.65

𝑑𝑝

ℎ𝑏
) 

(5.11) 

In Equations 5.6 to 5.11, the following notations apply: 

 𝐸𝑝: Pile modulus of elasticity. 

 𝐴𝑝: Pile cross sectional area. 

 𝜆: a parameter calculated using 5.7. 

 𝛺: a parameter calculated using 5.8. 
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 𝐿𝑝: Pile length. 

 𝑘𝑏; stiffness at pile base given by Randolph & Wroth (1978). 

 𝐺𝑠: soil shear modulus. 

 𝐸𝑠: soil modulus of elasticity. 

 𝑑𝑝: pile diameter. 

 ℎ𝑏: depth to bed rock from pile tip (ℎ𝑏 =  ∞, if far away and has no effect). 

 𝜇𝑠: soil Poisson’s ratio. 

 𝑟𝑚: radius at which soil settlement is negligible. 

Using the Equations defined by Gazetas & Mylonakis (1998), the stiffness was 

calculated. The problem as defined by  Gazetas & Mylonakis (1998) is shown in 

Figure 5.12. A comparison between this approach and the finite element solution is 

provided in Figure 5.13 while relative difference (𝑘𝑠𝑡𝑢𝑑𝑦 − 𝑘𝐺𝑎𝑧𝑒𝑡𝑎𝑠)/𝑘𝐺𝑎𝑧𝑒𝑡𝑎𝑠   is 

given in Figure 5.14. 
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Figure 5.12: Problem layout as studied by Gazetas & Mylonakis (1998). 

 

 

Figure 5.13 Comparison of stiffness,𝑘 obtained by finite element method with  

Gazetas & Mylonakis (1998) for a floating pile in homogeneous soil. 
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Figure 5.14: Relative difference of stiffness between 3D FEM and Gazetas & 

Mylonakis (1998) for a floating pile in homogeneous soil. 

 

 

Comparing the stiffness with Gazetas & Mylonakis (1998) shows very good 

agreement with that calculated by finite element solution. The relative difference is 

between −2% 𝑡𝑜 16.5%. In general finite element analysis gives higher values for 

stiffness than that calculated by Gazetas & Mylonakis (1998).  

A solution given in Chowdhury & Dasgupta (2008) and is compared with 

the FEM results. The solution is a modification of Novak’s solution for a rigid 

cylinder embedded in elastic soil Novak & Beredugo (1972). In this method, the 

stiffness for a friction pile is calculated as 

𝑘 =
𝐺𝑆𝑆1𝐿𝑝

2
 

(5.12) 
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Where 𝐺𝑠 is the soil shear modulus, 𝐿𝑝 is the pile length and 𝑆1 is calculated as 

𝑆1 =
9.553(1 + 𝜇𝑠)

(
𝐿
𝑅)

1/3
 

(5.13) 

Values of stiffness calculated using this approach compared to finite element results 

computed by this study are shown in Figure 5.15 while the relative difference is 

shown in Figure 5.16. From Figure 5.16, it can be seen that the relative difference 

is low starting at −17% to −30% corresponding to soil modulus of elasticity of 

5x106 to 8.34x10^7. The relative difference then continues to increase until it 

reaches values of −56% to −73%. These results suggest that rigid cylinder 

assumption might be valid for values of relative rigidity, 𝐸𝑝/𝐺𝑠 greater than 700. 

Below this values Novak’s (1974) solution for pile foundations and Gazetas & 

Mylonakis (1998) solutions are more agreeable with finite element data and that the 

pile can’t be assumed to be rigid. 



 

 

 

 

97 

 

 

Figure 5.15: Comparison of stiffness obtained by finite element  method with 

work of Chowdhury & Dasgupta (2008) for a floating pile in homogeneous soil. 

 

Figure 5.16: Relative difference of stiffness between 3D FEM  and Chowdhury & 

Dasgupta (2008) for a floating pile in homogeneous soil. 
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5.1.2.2. Comparison of damping 

The dynamic response of a pile under dynamic loading is governed by 

displacement amplification factor, 𝑢𝑑/𝑢𝑠. This amplification factor describes how 

much is the static displacement is amplified or reduced at a certain frequency and it 

is function of the damping of the soil-pile system. Mathematically it can be obtained 

using the following Equation 

𝑢𝑑

𝑢𝑠
=

1

√(1 −
𝑓2

𝑓𝑛2
)
2

+ 4𝐷2 𝑓
2

𝑓𝑛2

 
(5.14) 

Where 𝑓 is the frequency at which amplification is calculated, 𝑓𝑛 is the natural 

frequency of the system and 𝐷 is the damping ratio defined as 𝑐/𝑐𝑐𝑟. Where 𝑐 is the 

damping and 𝑐𝑐𝑟 is the critical damping of the pile-soil system. The variation of 

𝐷 with soil modulus of elasticity obtained by finite element solution is given in 

Figure 5.3. Comparison of the damping ratio obtained by finite element method and 

by Novak is given in Figure 5.17 while relative difference is shown in Figure 5.18. 

it can be seen from Figure 5.17 that the pattern of variation is similar taking the 

form of a decay power function. The difference between the two methods starts high 

at around 90% but then decreases to below 20% at high soil modulus of elasticity. 

To understand the origin of this difference, the differences of the critical damping 

component of the geometric damping ratio is studied.  
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Figure 5.17: Comparison between damping ratio, 𝐷 results Obtained by Finite 

element method and Novak (1974) for a floating pile in homogeneous soil. 

 

 

 

 
Figure 5.18: Relative difference between Damping ratio, 𝐷 obtained by FEM and 

by Novak (1974) for a floating pile in homogeneous soil. 
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Figure 5.19 shows a comparison of critical damping results and 5.20 for 

relative difference between the results of Novak and the finite element analysis. The 

difference here would be inherited from the difference in the stiffness since the 

critical damping is directly dependent on the value of the stiffness. The critical 

damping difference was 40%  but a better agreement is obtained at stiff soils. The 

greater difference in critical damping values at soft soils might explain the higher 

difference in damping ratio at the same range of soil properties.  

 

Figure 5.19: Comparison between critical  damping results obtained by FEM and 

Novak (1974) for a floating pile in homogeneous soil. 
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Figure 5.20: Relative difference between critical damping, 𝑐𝑐𝑟 obtained by FEM 

and by Novak (1974) for a floating pile in homogeneous soil. 
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earlier are 1) reducing a 3D problem to a 2D plane strain condition. 2) assuming 

that the stiffness at the tip is similar to that obtained by a loaded circular area on the 

surface of an elastic half space. Of course the soil at the pile tip is far from being on 

the surface and will interact with the soil around the pile and above it while 

supporting the pile.  

 

 

Figure 5.21, Comparison of predicted dynamic displacement values, 𝑢𝑑 obtained 

by finite element method and Novak (1974) for a floating pile in homogeneous 

soil. 
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Figure 5.22: Relative difference of dynamic displacement values predicted by 

finite element method and  Novak (1974) for a floating pile in homogeneous soil. 
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Figure 5.23 Comparison of damping ratio, 𝐷 results Obtained by FEM and 

Chowdhury & Dasgupta (2008) for a floating pile in homogeneous soil. 

 

 

Figure 5.24: Showing great difference between damping and critical damping 

obtained by Chowdhury & Dasgupta (2008) for a floating pile in homogeneous 

soil. 
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The damping, 𝑐  of rigid cylinder in soil is also calculated by Dobry (2014) 

. It gives a good agreement with damping, 𝑐 calculated by finite element method in 

this research in soft soil. See Figure 5.25. the damping obtained by Dobry (2014) 

Continue to increase  and deviate away from finite element results. Dobry (2014) 

values are obtained assuming pile acts as a rigid cylinder embedded in an elastic 

half space. Again the rigid cylinder assumption is not always valid for pile 

foundation subjected to dynamic loading.  

 

Figure 5.25: Comparison of  damping, 𝑐 obtained by FEM and Dobry (2014) for a 

floating pile in homogeneous soil. 
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5.2.Floating pile in nonhomogeneous soil 

This is study of this research applies the finite element analysis to obtain the 

behavior of a floating pile foundation in nonhomogeneous soils. Non-homogeneity 

here means an increasing soil modulus of elasticity with depth at a rate referred to 

as 𝑆𝐸𝑠 . This is to simulate field conditions where the shear wave velocity increases 

linearly with depth. This increase however stops at some depth, 𝐷𝑐 within the soil. 

After this point the soil modulus of elasticity becomes constant and this modulus is 

referred to as 𝐸𝑠𝑐 The soil rate of increase in modulus of elasticity in this study is 

varied from 5.56 × 105  to 5.56 × 107 𝑁/𝑚2/𝑚 or 𝑝𝑎𝑠𝑐𝑎𝑙/𝑚𝑒𝑡𝑒𝑟 . The increase 

stops at a point measured from the surface. The study captures the effect of the 

varied variables on the stiffness and damping of the pile.  

The function describing this soil profile is described mathematically as 

𝐸𝑠(𝑧) = {
𝑆𝐸𝑠  𝑧 , 𝑧 ≤  𝐷𝑐

𝐸𝑠𝑐 , 𝑧 >  𝐷𝑐
 

(5.15) 

In Equation 5.15, 𝐸𝑠(𝑧) is the function of soil modulus of elasticity at  any depth, 

𝑧. 𝑆𝐸𝑠 is the rate of increase of soil modulus of elasticity with depth and 𝐷𝑐 is the 

point after which the modulus of elasticity remains constant with depth and is equal 

to 𝐸𝑠𝑐. Graphically this problem is shown in Figure 5.26. For a summary of varied 

and constant parameters see Table 5.2.   
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Figure 5.26: Floating pile in nonhomogeneous soil. 
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Table 5.2: Parameters used in study of pile in nonhomogeneous soil. 

Parameter Symbol Unit Value 

Pile Modulus of Elasticity 𝐸𝑝 𝑃𝑎𝑠𝑐𝑎𝑙 2.1x1010 

Pile Poisson’s Ratio 𝜇𝑝  0.25 

Pile Mass Density 𝜌𝑝 𝑘𝑔/𝑚3 2500 

Pile Diameter 𝑑𝑝 𝑚 0.5 

Pile Length 𝐿𝑝 𝑚 10 

Soil Modulus of Elasticity 𝐸𝑠(𝑧) 𝑃𝑎𝑠𝑐𝑎𝑙 Function of depth 

Rate of Increase in 𝐸𝑠 𝑆𝐸𝑠 Pascal/m 5.56 × 105  

to 5.56 × 107 

Point at which increase in 𝐸𝑠 stops 𝐷𝐶  m 4 𝑡𝑜 10 (0.4𝐿𝑝 𝑡𝑜 𝐿𝑝) 

value of constant modulus of 

elasticity after 𝐷𝑐. 

𝐸𝑠𝑐 𝑃𝑎𝑠𝑐𝑎𝑙 Depends on 𝑆𝐸𝑠 and 

𝐷𝑐 

Soil Poisson’s Ratio 𝜇𝑠  0.45 

Soil Mass Density 𝜌𝑠 𝑘𝑔/𝑚3 1800 

Mass applied on top of Pile 𝑀 𝑘𝑔 65000 

Applied Static Pressure 𝑄𝑠 𝑃𝑎𝑠𝑐𝑎𝑙 22000 

Dynamic Pressure Amplitude 𝑄𝑑 𝑃𝑎𝑠𝑐𝑎𝑙 22000 

Frequency 𝑓 𝐻𝑧 2.5 𝑡𝑜 30 
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Two parameters are varied in this study, rate of increase in soil modulus of 

elasticity, 𝑆𝐸𝑆
 and the point at which 𝐸𝑠 remains constant (𝐸𝑠(𝑧) = 𝐸𝑠𝑐).  The main 

outcomes of this study are the system stiffness, 𝑘 and damping ratio, 𝐷. The 

stiffness, 𝑘 is shown in Figure 5.27 plotted against 𝑆𝐸𝑆
 while plotted against 𝐷𝐶/𝐿𝑝 

in Figure 5.28. The damping ratio is plotted against 𝑆𝐸𝑠 in Figure 5.29 and against 

𝐷𝐶/𝐿𝑝 in Figure 5.30. from stiffness and damping ratio, the critical damping, the 

damping and natural frequency can be calculated. They are shown in Figures 5.31, 

5.32 and 5.33 respectively.  

  

 

Figure 5.27: Variation of stiffness, 𝑘 with soil’s rate of increase in elastic 

modulus, 𝑆𝐸𝑆 
 for a floating pile in nonhomogeneous soil. 
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Figure 5.28: Variation of stiffness, 𝑘 with 𝐷𝐶/𝐿 for a floating pile in 

nonhomogeneous soil. 

 

 

 

Figure 5.29: Variation of Damping Ratio, 𝐷 with soil’s rate of increase in elastic 

modulus, 𝑆𝐸𝑆 
 for a floating pile in nonhomogeneous soil. 

 

0.E+00

1.E+08

2.E+08

3.E+08

4.E+08

5.E+08

6.E+08

7.E+08

0.00 0.20 0.40 0.60 0.80 1.00 1.20

St
if

fn
es

s,
k

(N
/m

)

Dc /Lp

5.56E+05

1.11E+06

8.34E+06

2.78E+07

5.56E+07

SEs

0.0

0.1

0.2

0.3

0.4

0.5

0.E+00 1.E+07 2.E+07 3.E+07 4.E+07 5.E+07 6.E+07

D
am

p
in

g 
R

at
io

, D

Rate of Elastic Modulus Increase, SEs

(N/m2 /m)

1.0

0.8

0.6

0.4

Dc /Lp



 

 

 

 

111 

 

 
Figure 5.30: Variation of Damping, 𝐷 Ratio with𝐷𝑐/𝐿 for a floating pile in 

nonhomogeneous soil. 

 

 

 

Figure 5.31: Variation of critical damping, 𝑐𝑐𝑟 with soil rate of increase in elastic 

modulus, 𝑆𝐸𝑆 
 for a floating pile in nonhomogeneous soil. 
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Figure 5.32: Variation of  damping, c with soil rate of elastic modulus for a 

floating pile in nonhomogeneous soil. 

 

5.2.1.  Results commentary and analysis 

 Increase in stiffness in a nonlinear manner is observed with increase in soil 𝑆𝐸𝑠, 

where 𝑆𝐸𝑠 is the rate of increase of soil modulus of elasticity. The greater the 

value of 𝑆𝐸𝑠  the stronger the soil is, which means that the soil can provide 

greater support to the applied load at lower displacement. The trend is the same 

for all values of 𝐷𝑐/𝐿𝑝 in Figure 5.27. It is also observed from Figure 5.27 that 

at higher values of 𝐷𝑐/𝐿𝑝 the stiffness is higher. This is because higher values 

of 𝐷𝑐/𝐿𝑝 means that soil modulus of elasticity continues to increase to a greater 

depth along the pile shaft and stronger stiffness is provided  as a result. This 

trend is observed in Figure 5.28. It can be seen that the stiffness at certain slope, 

0.E+00

5.E+05

1.E+06

2.E+06

2.E+06

3.E+06

0.E+00 1.E+07 2.E+07 3.E+07 4.E+07 5.E+07 6.E+07

D
am

p
in

g,
 c

(N
 s

/m
)

Soil's Rate of Elastic Modulus Increase, SEs

(N/m2 /m)

1.0

0.8

0.6

0.4

Dc/Lp



 

 

 

 

113 

 

𝑆𝐸𝑆
 is low at low values of 𝐷𝑐/𝐿𝑝 and gets higher for higher values of 𝐷𝑐/𝐿𝑝. 

The change in 𝑘 with 𝐷𝑐/𝐿𝑝 increases in a linear manner  

 Damping as plotted in Figure 5.29 seems to decrease with the increase in  𝑆𝐸𝑠 

values with a  power decay function. Damping ratio decreases with 𝐷𝑐/𝐿𝑝 in a 

linear manner.  

 Analysis of stiffness, 𝑘 and damping ratio, 𝐷 shows a trend of increasing  

stiffness and decreasing damping ratio with stiffening soils.. This means 

increasing natural frequency value and increase in dynamic amplification at 

this natural frequency with increase in soil 𝑆𝐸𝑆
 (Note that higher 𝑆𝐸𝑠  means 

more stiff soil). See Figure 5.33 for dynamic displacement values at resonance 

and Figure 5.34 for amplification factor at the natural frequency.  

 

 

 

Figure 5.33: Variation of  dynamic displacement, 𝑢𝑑   at natural frequency with 𝑆𝐸𝑠 

for a floating pile in nonhomogeneous soil. 
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Figure 5.34: Variation of  dynamic amplification 𝑢𝑑/𝑢𝑠 at natural frequency with 

𝑆𝐸𝑠 for a floating pile in nonhomogeneous soil. 
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 The natural frequency in 𝐻𝑧 increases with increase in 𝑆𝐸𝑠as shown in Figure 

5.35.  

 

 

Figure 5.35:Variation of natural frequency, 𝑓𝑛  with 𝑆𝐸𝑠 for a floating pile in 

nonhomogeneous soil. 
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Figure 5.36: Effect of inhomogeneity on stiffness for a floating pile in a 

nonhomogeneous soil. Note: 𝐷𝑐/𝐿𝑝 = 0 means pile in homogeneous soil.  

 

 
Figure 5.37: Effect of inhomogeneity on stiffness for a floating pile in a 

nonhomogeneous soil. Note: 𝐷𝑐/𝐿𝑝= 0 means pile in homogeneous soil. 
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5.2.2. Comparison of finite element solution results with literature 

 Floating piles in a nonhomogeneous soil can be analyzed using a simplified 

one-dimensional finite element approach similar to that described in section 2.3.1 

of the dissertation. A program was created using Mathematica® (a programming 

environment). Details of the program and its code are given in Appendix B of this 

dissertation while the concept of the approach is described in Section 2.3.1 of this 

dissertation. The pile was modeled as a 10 segments bar and average shear modulus 

was calculated at the side at different segments. Side springs and dampers 

coefficients can be obtained by the following Equations by Randolph & Simons 

(1986) 

𝑘𝑠 =
1.375 𝐺𝑠

𝜋𝑟𝑝
 

(5.16) 

𝑐𝑠 =
𝐺𝑠

𝑣𝑠
 

(5.17) 

Where 𝑘𝑠 is the side spring coefficient, 𝑐𝑠 is the side damper coefficient, 𝐺𝑠 is the 

shear moduls of the soil at the spring location, 𝑟𝑝 is the pile radius, and 𝑣𝑠 is the 

shear wave velocity of the soil and is equal to √𝐺𝑠/𝜌𝑠. Where 𝜌𝑠 is the mass density 

of the soil.  

The base and damper coefficients are obtained using the following equations by 

Randolph & Simons (1986) are used 

𝑘𝑏 =
4𝐺𝑠𝑟𝑝

1 − 𝜇𝑠
 

(5.18) 

𝑐𝑏 =
3.4𝑟𝑝

2

1 − 𝜇𝑠
𝜌𝑠𝑣𝑠 

(5.19) 
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Where 𝑘𝑏 is the base spring coefficient, 𝑐𝑏 is the base damper coefficient, 𝐺𝑠 is the 

soil shear modulus, 𝑟𝑝 is the pile radius, 𝜇𝑠 is Poisson’s ratio, ρ𝑠 is the soil mass 

density and 𝑣𝑠 is the shear wave velocity of the soil. For a graphical representation 

of the problem of pile modeled as beam with side and base springs and dampers 

describing soil behavior. See Figure 5.38.  

 

Figure 5.38: Pile modeled as beam segments and soil modeled as springs and 

dampers. 

5.2.2.1. Comparison of stiffness 

Comparison of stiffness calculated by 3D finite element and that calculated 

by 1D Finite element as described in Section 5.2.2 is shown in Figures 5.39, 5.40, 

5.41 and 5.42. Summary of numerical results of the comparison is shown in Table 

5.3. Good agreement is found between the two approaches in calculating stiffness.  
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Figure 5.39: Comparison of stiffness for a floating pile in nonhomogeneous soil 

calculated by 3D FEM and 1D FEM for 𝐷𝑐/𝐿𝑝  = 1. 

 
Figure 5.40: Comparison of stiffness for a floating pile in nonhomogeneous soil  

calculated by 3D FEM and 1D FEM for 𝐷𝑐/𝐿𝑝   = 0.8. 
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Figure 5.41: Comparison of stiffness for a floating pile in nonhomogeneous soil  

calculated by 3D FEM and 1D FEM for 𝐷𝑐/𝐿𝑝    = 0.6. 

 

 
Figure 5.42:Comparison of stiffness for a floating pile in nonhomogeneous soil  

calculated by 3D FEM and 1D FEM for 𝐷𝑐/𝐿𝑝     = 0.4. 
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5.2.2.2. Comparison of damping  

Comparison of geometric damping calculated by 3D finite element and that 

calculated by the 1D Finite element analysis is shown in Figures 5.43, 5.44, 5.45 

and 5.46. Summary of numerical results of the comparison is shown in Table 5.3. 

Damping is significantly underpredicted by the 1D finite element method.  

 

Figure 5.43: Comparison of damping ratio for a floating pile in nonhomogeneous 

soil  calculated by 3D FEM and 1D FEM for 𝐷𝑐/𝐿𝑝 = 1. 

 

 
Figure 5.44: Comparison of damping ratio for a floating pile in nonhomogeneous 

soil calculated by 3D FEM and 1D FEM for 𝐷𝑐/𝐿𝑝    =  0.8. 
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Figure 5.45: Comparison of  damping ratio for a floating pile in nonhomogeneous 

soil calculated by 3D FEM and 1D FEM for 𝐷𝑐/𝐿𝑝  =  0.6. 

 

 

 

 
Figure 5.46: Comparison of geometric damping for a floating pile in 

nonhomogeneous soil calculated by 3D FEM and 1D FEM for 𝐷𝑐/𝐿𝑝   =  0.4. 
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Table 5.3: Numerical results for comparison between 3D and 1D FEM for a 

floating pile in nonhomogeneous soil. 
 

k D k D Δ(k) Δ(D) 

𝑫𝑪/𝑳𝒑 𝑆𝐸𝑆
 3D FEM 3D FEM 1D FEM 1D FEM (%) (%) 

1 

5.56E+05 2.16E+07 0.39 1.88E+07 0.29 15% 34% 

8.34E+06 2.30E+08 0.22 2.09E+08 0.13 10% 69% 

2.78E+07 4.75E+08 0.13 4.36E+08 0.07 9% 78% 

5.56E+07 6.54E+08 0.11 5.92E+08 0.06 11% 78% 

0.8 

5.56E+05 1.80E+07 0.41 1.74E+07 0.31 3% 31% 

8.34E+06 2.15E+08 0.24 1.96E+08 0.13 9% 95% 

2.78E+07 4.57E+08 0.16 4.23E+08 0.08 8% 91% 

5.56E+07 6.45E+08 0.13 5.86E+08 0.06 10% 108% 

0.6 

5.56E+05 1.60E+07 0.45 1.49E+07 0.21 7% 114% 

8.34E+06 1.88E+08 0.29 1.76E+08 0.13 7% 117% 

2.78E+07 3.93E+08 0.18 4.04E+08 0.09 -3% 107% 

5.56E+07 6.13E+08 0.14 5.68E+08 0.07 8% 110% 

0.4 

5.56E+05 1.17E+07 0.45 1.05E+07 0.23 11% 100% 

8.34E+06 1.47E+08 0.35 1.35E+08 0.15 9% 133% 

2.78E+07 3.60E+08 0.22 3.40E+08 0.12 6% 76% 

5.56E+07 5.54E+08 0.17 5.14E+08 0.08 8% 97% 

Average Δ-> 0.08 0.90 

5.3. End-bearing pile in homogeneous soil 

In this study, a pile is supported by a firm rock base. Rock base experience 

deformation that is very low and assumed to be negligible compared to the pile 

deformation and deformation of the surrounding soil. Rocks have very high shear 

wave velocity ranging from 760 to 1500 𝑚/𝑠. With a density of about 2600 

𝑘𝑔/𝑚3, the shear modulus of rock is between 1.502 × 109 𝑁/𝑚2 and 5.85 ×

109 𝑁/𝑚2. The low strains shear modulus of rocks can reach 100 times that of 

soils. This makes rocks perform as a rigid base for the pile to rest on. For static load 

design, if the pile is supported on rock, its capacity is considered the actual 

structural capacity of the pile itself. Richart (1970) extended this assumption to 

dynamically loaded piles resting on rock. Richart (1970) assumed the pile to 
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perform as a fixed-free bar ignoring surrounding soil and any geometrical damping. 

This was presented in Section 2.2.2 of the dissertation. Novak (1974) provided 

damping and stiffness constants for end-bearing piles while considering 

surrounding soils. The problem of an elastic pile supported on rock base is shown 

in Figure 5.47. Constant and varied parameters are shown in Table 5.4. The finite 

element model of this problem uses fixed boundaries at the base to simulate non 

deforming rock base. The study captured the effect of the varied variables on the  

stiffness and damping of the pile. 

 

Figure 5.47: End-bearing pile in an elastic homogeneous soil. 
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Table 5.4: Values for variables and constants for study of end-bearing  pile in 

homogeneous soil. 

Parameter Symbol Unit Value 

Pile Modulus of Elasticity 𝐸𝑝 𝑃𝑎𝑠𝑐𝑎𝑙 2.1x1010 and 5.5𝑥1010 

Pile Poisson’s Ratio 𝜇𝑝  0.25 

Pile Mass Density 𝜌𝑝 𝑘𝑔/𝑚3 2500 

Pile Diameter 𝑑𝑝 𝑚 0.5 

Pile Length 𝐿𝑝 𝑚 10 

Soil Modulus of Elasticity 𝐸𝑠 𝑃𝑎𝑠𝑐𝑎𝑙 8.34x106 𝑡𝑜 8.34x108 

Soil Poisson’s Ratio 𝜇𝑠  0.45 

Soil Mass Density 𝜌𝑠 𝑘𝑔/𝑚3 1800 

Mass applied on top of Pile 𝑀 𝑘𝑔 65000 

Applied Static Pressure 𝑄𝑠 𝑃𝑎𝑠𝑐𝑎𝑙 22000 

Dynamic Pressure Amplitude 𝑄𝑑 𝑃𝑎𝑠𝑐𝑎𝑙 22000 

Frequency 𝑓 𝐻𝑧 2.5 𝑡𝑜 30 

 

The main two outcomes of this study are the stiffness, 𝑘 and damping ratio. Stiffness 

is plotted in Figure 5.48 while the damping ratio is plotted in Figure 5.49. From 

these two parameters, the critical damping, damping and dimensionless resonant 

frequency can be calculated and are shown in Figures 5.50, 5.51, and 5.52 

respectively.  
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Figure 5.48: Variation of stiffness, 𝑘 with soil modulus of elasticity, 𝐸𝑠 for an 

end-bearing pile in homogeneous soil. 

 

 

 

 

Figure 5.49: Variation of damping ratio, 𝐷 with soil modulus of elasticity, 𝐸𝑠 for 

an end-bearing pile in homogeneous soil. 
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Figure 5.50: Variation of critical damping, 𝑐𝑐𝑟 with soil modulus of elasticity 𝐸𝑠 

for an end-bearing pile in homogeneous soil. 

 

 

 
Figure 5.51: Variation of damping, 𝑐 with soil modulus of elasticity, 𝐸𝑠 for an 

end-bearing pile in homogeneous soil. 
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Figure 5.52: Variation of natural dimensionless frequency, 𝑎0𝑛 with soil modulus 

of elasticity, 𝐸𝑠 for an end-bearing pile in homogeneous soil. 
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 Geometric damping ratio is plotted in Figure 5.49. Geometric damping 
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of 0.12. Any variation of geometric damping is provided by the soil along the 
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 The combination of the stiffness and damping variation with soil modulus of 

elasticity would result in decrease in both dynamic displacement, 𝑢𝑑 at 

resonance and amplification of static displacement, 𝑢𝑑/𝑢𝑠 at resonance. 

Dynamic displacement, 𝑢𝑑 at resonance is shown in Figure 5.53 while dynamic 

amplification of static displacement, 𝑢𝑑/𝑢𝑠 is shown in Figure 5.54. 

 

Figure 5.53: Variation of dynamic displacement, 𝑢𝑑  at resonance with soil 

modulus of elasticity, 𝐸𝑠 for an end-bearing pile in homogeneous soil 

 

Figure 5.54: Variation of dynamic amplification of static displacement, 𝑢𝑑/𝑢𝑠 at 

resonance with variation of soil modulus of elasticity, 𝐸𝑠 for an end-bearing pile 

in homogeneous soil. 
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 It can be seen from Figure 5.53 that the dynamic displacement, 𝑢𝑑 at resonance 

decreases with increase in soil modulus of elasticity. In Figure 5.54 the 

dynamic amplification of static displacement, 𝑢𝑑/𝑢𝑠 at resonance also 

decreases with increase in soil elastic modulus.  

 The critical damping, 𝑐𝑐𝑟 is plotted in Figure 5.50. critical damping increases 

with increase in soil modulus of elasticity. This is expected since the critical 

damping is proportionally related to the stiffness as shown in Equation 5.1.  

 Damping, 𝑐 which is obtained by multiplying critical damping, 𝑐𝑐𝑟 by damping 

ration, 𝐷 is shown in Figure 5.51. It increases with increase in soil modulus of 

elasticity, 𝐸𝑠.  

 The natural frequency is provided in the form of dimensionless frequency, 𝑎0𝑛 

in Figure 5.52 decreases with the increase in soil modulus of elasticity, 𝐸𝑠. The 

natural frequency in Hertz is shown in Figure 5.55. The natural frequency, 𝑓𝑛 

in Hertz increases with increase in soil modulus of elasticity. 
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Figure 5.55: Variation of natural frequency, 𝑓𝑛  with soil modulus of elasticity, 𝐸𝑠 

for an end-bearing pile in homogeneous soil. 

 

5.3.2. Comparison of finite element solution results with literature 

5.3.2.1. Comparison of stiffness 

A comparison of the stiffness for an ending bearing pile calculated using  

Novak (1974) and 3D Finite element analysis is shown in Figure 5.56, while the 

relative difference in stiffness between the two approaches is shown in Figure 5.57. 

No agreement between the two methods is found as 3D FEM is -50% to 350% 

different than Novak (1974).  

0

5

10

15

20

25

30

0.E+00 2.E+08 4.E+08 6.E+08 8.E+08 1.E+09

N
at

u
ra

l f
re

q
u

en
cy

, f
n

(H
z)

Soil Modulus of Elasticity, Es

(N/m2)



 

 

 

 

132 

 

 

Figure 5.56: Comparison of stiffness calculated using 3D FEM and Novak (1974) 

for an end-bearing pile in a homogeneous soil. 

 

Figure 5.57: Relative difference in stiffness between 3D FEM and Novak (1974) 

for an end-bearing pile in a homogeneous soil. 
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Comparison of stiffness, 𝑘 calculate by 3D FEM and Gazetas & Mylonakis 

(1998) is provided in Figure 5.58. The relative difference is shown in Figure 5.59.  

Gazetas & Mylonakis (1998) approach is the same of that provided in Equations 

5.6 to 5.10 with a change in Equation 5.10. To be applicable to an end bearing pile 

the stiffness at the pile tip is calculated using the following Equation 

𝑘𝑏 =
4𝐺𝑏𝑟𝑝

1 − 𝜇𝑠
 

(5.20) 

In Equation 5.20, 𝐺𝑏 is the shear modulus at the pile tip. In order for rigidity of the 

base to be applicable 𝐺𝑏 was assumed to be 1000 times the shear modulus of the 

soil along the pile shaft. However it was found even if 𝐺𝑏 is only 100 times the 

shear modulus of the soil along the pile shaft, no change in the overall pile stiffness. 

Good agreement between 3D FEM and Gazetas & Mylonaki (1998). 3D FEM is 

only 5% to 26% higher in predicting the stiffness.  

 

Figure 5.58: Comparison of stiffness, 𝑘 obtained by finite element method with  

Gazetas & Mylonakis (1998) for an end-bearing pile in homogeneous soil. 
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Figure 5.59: Relative difference of stiffness between 3D FEM and Gazetas & 

Mylonakis (1998), for an end-bearing pile in homogeneous soil. 
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Figure 5.60: Comparison of stiffness obtained by 3D FEM with work of 

Chowdhury & Dasgupta (2008) for an end-bearing pile in a homogeneous soil. 

 

Figure 5.61: Relative difference of stiffness between 3D FEM  and Chowdhury & 

Dasgupta (2008) for an end-bearing pile in a homogeneous soil. 

 

0.E+00

1.E+09

2.E+09

3.E+09

4.E+09

5.E+09

6.E+09

7.E+09

0.E+00 2.E+08 4.E+08 6.E+08 8.E+08 1.E+09

St
if

fn
es

s,
 k

(N
/m

)

Soil Modulus of Elasticity, Es

(N/m2)

3D FEM

Chowdhury & Dasgupta (2008)

-100%

-75%

-50%

-25%

0%

25%

50%

75%

100%

0.E+00 2.E+08 4.E+08 6.E+08 8.E+08 1.E+09

Δ
(k

) 
=(

st
u

d
y-

re
fe

re
n

ce
)/

re
fe

re
n

ce
(%

)

Soil Modulus of Elasticity, Es

(N/m2)



 

 

 

 

136 

 

5.3.2.2. Comparison of damping 

Damping ratio calculated by the finite element method is compared by the damping 

ratio calculated using  Novak (1974). A comparison between the two approaches is 

shown in Figure 5.62 while the relative difference between the two approaches is 

shown in Figure 5.63. It is found that there is a difference in values and in the pattern 

of the curve. Damping calculated using  Novak (1974) decreases with increases in 

soil modulus of elasticity. On the contrary, damping calculated using finite element 

method shows a different pattern as damping increases with increase in soil 

modulus of elasticity until it becomes constant. Difference between the two 

approaches is between -70% to 45%. No agreement between the two approaches is 

found. 

 

Figure 5.62: Comparison of damping ratio between finite element method and  

Novak (1974) for an end-bearing pile in a homogeneous soil. 
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Figure 5.63: Relative difference of stiffness between 3D FEM and Novak (1974) 

for an end-bearing pile in a homogeneous soil. 
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Figure 5.64: Comparison of critical damping between finite element method and 

Novak (1974) for an end-bearing pile in a homogeneous soil. 

 

Figure 5.65: Relative difference of stiffness between 3D FEM and Novak (1974) 

for an end-bearing pile in a homogeneous soil. 

 

Comparison of damping calculated by the finite element method and that 

calculated by Chowdhury & Dasgupta (2008) is shown in Figure 5.66. Damping 

calculated by Chowdhury & Dasgupta (2008) is constant at 0.03 regardless of the 

change in soil modulus of elasticity.  
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Figure 5.66: Comparison of damping ratio between finite element method and 

Chowdhury & Dasgupta (2008) for an end-bearing pile in a homogeneous soil. 

 

5.4. End-bearing pile in nonhomogeneous soil 

 An elastic pile in nonhomogeneous soil supported by a rock base is studied. 

Inhomogeneity takes the form of an increase in the elastic modulus of the soil with 

depth. The increase of elastic modulus has a rate of increase that is referred to as 

𝑆𝐸𝑠. The increase stops at certain depth, 𝐷𝑐. After this depth the soil mdulus of 

elasticity remains constant. This constant modulus is referred to as 𝐸𝑠𝑐. The problem 

is graphically described in Figure 5.67 and variables and constants are shown in 

Table 5.5. The study captures the effect of the varied variables on the stiffness and 

damping of the pile. 
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Figure 5.67: End-bearing pile in nonhomogeneous soil. 
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Table 5.5: Values for variables and constants for study of end-bearing  pile in 

nonhomogenous soil. 

Parameter Symbol Unit Value 

Pile Modulus of Elasticity 𝐸𝑝 𝑃𝑎𝑠𝑐𝑎𝑙 2.1x1010 

Pile Poisson’s Ratio 𝜇𝑝  0.25 

Pile Mass Density 𝜌𝑝 𝑘𝑔/𝑚3 2500 

Pile Diameter 𝑑𝑝 𝑚 0.5 

Pile Length 𝐿𝑝 𝑚 10 

Soil Modulus of Elasticity 𝐸𝑠(𝑧) 𝑃𝑎𝑠𝑐𝑎𝑙 Function of depth 

Rate of Increase in 𝐸𝑠 𝑆𝐸𝑠 Pascal/m 4.17 × 106 to 8.34 × 107 

Constant modulus at 𝐷𝑐 𝐸𝑠𝑐 Pascal  

Point at which increase in 𝐸𝑠 stops 𝐷𝐶  m 4 𝑡𝑜 10 (0.4𝐿𝑝 𝑡𝑜 𝐿𝑝) 

modulus of elasticity at 𝐷𝑐 𝐸𝑠𝑐  Depends on 𝑆𝐸𝑠 and 𝐷𝑐 

Soil Poisson’s Ratio 𝜇𝑠  0.45 

Soil Mass Density 𝜌𝑠 𝑘𝑔/𝑚3 1800 

Mass applied on top of Pile 𝑀 𝑘𝑔 65000 

Applied Static Pressure 𝑄𝑠 𝑃𝑎𝑠𝑐𝑎𝑙 22000 

Dynamic Pressure Amplitude 𝑄𝑑 𝑃𝑎𝑠𝑐𝑎𝑙 22000 

Frequency 𝑓 𝐻𝑧 2.5 𝑡𝑜 30 
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The main two outcomes of this study are the stiffness and damping ratio of the pile. 

Variation of the stiffness with 𝑆𝐸𝑠 is shown in Figure 5.68 while variation of 

damping with 𝑆𝐸𝑠  is shown in Figure 5.69. 

 

Figure 5.68: Variation of stiffness with 𝑆𝐸𝑠 for an end-bearing pile in 

nonhomogeneous soil. 

 

Figure 5.69: Variation of geometric damping ratio with 𝑆𝐸𝑠 for an end-bearing pile 

in nonhomogeneous soil. 
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From the stiffness and damping ratio, critical damping and damping can be 

calculated. Critical damping is shown in Figure 5.70 while damping is shown in 

Figure 5.71.  

 

Figure 5.70: Variation of critical damping  with 𝑆𝐸𝑠  for an end-bearing pile in 

nonhomogeneous soil. 

 

 
Figure 5.71: Variation of damping  with 𝑆𝐸𝑠 for an end-bearing pile in 

nonhomogeneous soil. 
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5.4.1. Results commentary and analysis 

 Stiffness increases with increase in 𝑆𝐸𝑠. As 𝑆𝐸𝑠 gets larger, the soil around the 

pile gets stronger which results in increase the stiffness of the soil-pile system.  

 Geometric damping ratio increases with increase in 𝑆𝐸𝑠. All damping of the 

system is provided from the surrounding soil. The faster the soil can transfer 

waves away from the pile, the greater is the geometric damping. 

 The effect of increasing damping and increasing stiffness is a decrease in 

dynamic displacement at resonance and decrease in dynamic amplification of 

static displacement at resonance. Dynamic displacement at resonance is shown 

in Figure 5.72. Dynamic amplification of static displacement at resonance , 

𝑢𝑑/𝑢𝑠 is shown in Figure 5.73. 

 

Figure 5.72: Variation of dynamic displacement at resonance with 𝑆𝐸𝑠 for an end 

bearing pile in nonhomogeneous soil. 
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Figure 5.73: Variation of 𝑢𝑑/𝑢𝑠 at resonance with 𝑆𝐸𝑠  for an end bearing pile in 

nonhomogeneous soil. 

 

 

 Critical damping increases with increase in 𝑆𝐸𝑆
. Critical damping is 

proportionally related to stiffness of the pile. 

 Damping of the system also increases with increase in 𝑆𝐸𝑠. 

 Variation of 𝐷𝐶/𝐿𝑝 doesn’t significantly alter the results. In all Figures 5.68 to 

5.69, 2 curves are provided. One for 𝐷𝑐/𝐿𝑝 = 1 and the other for 𝐷𝑐/𝐿𝑝 = 0.4. 

In all these Figures the difference between the two curves isn’t significant.  

 The system natural frequency, 𝑓𝑛 increases with increase in 𝑆𝐸𝑠. This is shown 

in Figure 5.74.  
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Figure 5.74: variation of natural frequency with 𝑆𝐸𝑠  for an end bearing pile in 

nonhomogeneous soil. 

 

 Another way to look at analysis results is to study effect of an inhomogeneity 

ratio and the constant modulus of elasticity, 𝐸𝑠𝑐. This is shown in Figure 5.75 

for  stiffness while for damping it is shown in Figure 5.76. Increase in 

inhomogeneity ratio decreases the stiffness and damping compared to 

homogeneous soil (𝑑𝑐/𝐿𝑝 = 0).  
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Figure 5.75: Variation of stiffness with inhomogeneity ratio for an end bearing 

pile. 

 

 
Figure 5.76: Variation of the stiffness with inhomogeneity ratio for an end bearing 

pile. 
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5.4.2. Comparison with 1D finite element method 

No analytical solution is provided for an end bearing pile subjected to dynamic 

loads in nonhomogeneous soils. Analysis can be done using the computationally 

efficient 1D approach described in Section 2.3.1. A comparison of results of the 3D 

finite element method and the 1D finite element method is presented here for the 

stiffness and dynamic of the pile. Comparison of stiffness is given in Figure 5.77 

while comparison of damping is given in Figure 5.78. Numerical results of the 

comparison are given in Table 5.6. The comparison provided is for the case where 

𝐷𝑐/𝐿𝑝 = 1 only. Difference between two approaches in stiffness is below 20% 

while difference in damping is between 47% to 110%. 1D FEM under predicts 

stiffness and damping compared to 3D FEM.  

 

Figure 5.77: Comparison of stiffness calculated by 3D FEM and 1D FEM for an 

end-bearing pile in nonhomogeneous soil and 𝐷𝑐/𝐿𝑝 = 1. 
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Figure 5.78: Comparison of geometric damping ratio calculated by 3D FEM and 

1D FEM for an end-bearing pile in nonhomogeneous soil and 𝐷𝑐/𝐿𝑝 = 1. 

 

Table 5.6: Numerical results for Comparison of stiffness and damping calculated 

by 3D and 1D FEM for an end-bearing pile in nonhomogeneous soil and 𝐷𝑐/𝐿𝑝 =

1. 
  

3D FEM 1D FEM 
  

Dc/L 𝑆𝐸𝑠  k D k D Δ(k) Δ(D) 

Unit->  𝑁/𝑚2 /𝑚 N/m  N/m    

1.0 

4.17E+06 4.45E+08 0.04 4.28E+08 0.03 4% 47% 

8.34E+06 4.72E+08 0.06 4.50E+08 0.03 5% 66% 

1.67E+07 5.31E+08 0.08 4.89E+08 0.04 9% 89% 

4.17E+07 6.65E+08 0.10 5.85E+08 0.05 14% 106% 

8.34E+07 8.31E+08 0.11 7.08E+08 0.05 17% 110% 
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5.5. Pile-to-pile interaction in homogeneous soil 

 The final study in this research is the study of two floating piles in a 

homogeneous soil to determine interaction between the two. When piles are 

constructed in groups, their stiffness and damping are reduced due to stresses from 

an adjacent interacting pile. The study captures the interaction between two piles 

by calculating the reduced stiffness and damper coefficients to determine the 

stiffness and damping interaction factors. The problem is graphically described in 

Figure 5.79.  Two parameters are varied and they are the elastic modulus of the soil 

and the spacing between the two piles. See Table 5.8 for variables and constants for 

this study. 

 

 

Figure 5.79: 2 Floating piles in homogeneous soil. 
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Table 5.7: Variables and constants for study of pile to pile interaction. 

Parameter Symbol Unit Value 

Pile Modulus of Elasticity 𝐸𝑝 𝑃𝑎𝑠𝑐𝑎𝑙 2.1x1010 

Pile Poisson’s Ratio 𝜇𝑝  0.25 

Pile Mass Density 𝜌𝑝 𝑘𝑔/𝑚3 2500 

Pile Diameter 𝑑𝑝 𝑚 0.5 

Pile Length 𝐿𝑝 𝑚 10 

Pile Spacing from center to center 𝑆 𝑚 1 to 3 (2 𝑑𝑝 to 6 𝑑𝑝)  

Soil Modulus of Elasticity 𝐸𝑠 𝑃𝑎𝑠𝑐𝑎𝑙 5x106 𝑡𝑜 5x108 

Soil Poisson’s Ratio 𝜇𝑠  0.45 

Soil Mass Density 𝜌𝑠 𝑘𝑔/𝑚3 1800 

Mass applied on top of  each Pile 𝑀 𝑘𝑔 65000 

Applied Static Pressure per pile 𝑄𝑠 𝑃𝑎𝑠𝑐𝑎𝑙 22000 

Dynamic Pressure Amplitude per 

pile 

𝑄𝑑 𝑃𝑎𝑠𝑐𝑎𝑙 22000 

Frequency 𝑓 𝐻𝑧 2.5 𝑡𝑜 30 

 

The piles are assumed to act as two sets of mass, spring, and dashpot 

vibrating in parallel. This assumption allows the required parameters of the two 

piles to be obtained (without a cap to eliminate the effect of the cap from interfering 

with the results) statically to compute stiffness and dynamically to compute 

damping according to the procedure described in Section 4.4. In a pile-to-pile 

interaction, the stiffness of single pile in the group is the stiffness of the group 
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divided by 2. Similarly, damping ratio of a single pile in the group is damping of 

the group divided by two. The stiffness and damping of a single pile in the group 

are always less than that a single isolated pile. Interaction is calculated based on this 

reduction in stiffness and damping as described below.  

Since a 2 pile system is the simplest form of a group, the following Equations apply: 

𝑘𝐺 =
∑ 𝑘𝑖

𝑛
𝑖=1

∑ 𝛼𝑘𝑖
𝑛
𝑖=1

 
(5.21) 

𝑐𝐺 =
∑ 𝑐𝑖

𝑛
𝑖=1

∑ 𝛼𝑐𝑖
𝑛
𝑖=1

 
(5.22) 

 

Where 𝑘𝐺  is the group stiffness, 𝑘𝑖 stiffness calculated for an isolated pile, 𝑐𝐺 is the 

group damping, 𝑐𝑖 is the damping calculated for an isolated pile, 𝑎𝑘𝑖 is stiffness 

interaction factor and 𝛼𝑐𝑖 is the damping interaction factor. Finite element analysis 

is used to calculate 𝑘𝐺  and 𝑐𝐺 of the 2 pile system. From the study on a single pile 

in a homogeneous soil, 𝑘𝑖 and 𝑐𝑖 are calculated. The only remaining factors are 

∑ 𝛼𝑘𝑖
𝑛
𝑖=1  and ∑ 𝛼𝑐𝑖

𝑛
𝑖=1 . Since this is a 2 pile group, ∑ 𝑘𝑖

𝑛
𝑖=1 = 2 𝑘 and ∑ 𝑐𝑖

𝑛
𝑖=1 = 2 𝑐  

where 𝑘 and 𝑐 indicates stiffness an damping of an isolated pile. Αlso, ∑ 𝛼𝑘𝑖
𝑛
𝑖=1 =

𝛼𝑘1 + 𝛼𝑘2 where 𝛼𝑘1 = 1. Similarly, ∑ 𝛼𝑐𝑖 =
𝑛
𝑖=1 𝛼𝑐1 + 𝛼𝑐2 and  𝛼𝑐1 = 1. The value 

of 1 for 𝛼𝑘1 and 𝛼𝑐1 represent interaction of the pile with itself which are always be 

1. Since no cap was used in the study, the value of geometric damping, 𝐷 calculated 

using the procedure described in section 4.4 yields the geometric damping of the 

group. This damping is the sum of the geometric damping coming from each pile 

after being modified for group action.  

The following Equation then applies, 

𝐷𝐺 = 𝐷1
′ +𝐷2

′  (5.23) 
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From 5.23, it can be said that  

𝐷𝐺 =
𝑐1
′

2√𝑘1
′𝑀1 

+
𝑐2
′

2√𝑘2
′𝑀2 

 
(5.24) 

 

The superscript ′ means modification of the isolated pile stiffness and damping for 

the group. The stiffness of the group is 𝐾𝐺 = 𝑘1
′ + 𝑘2

′  and damping is 𝑐𝐺 = 𝑐1
′ +

𝑐2
′ . Since each pile is identical to the other and is subjected to same mass and load, 

it can be said that 𝑘1
′ = 𝑘2

′ = 𝑘′ and 𝑐1
′ = 𝑐2

′ = 𝑐′. Then the group stiffness 

calculated from finite element, 𝑘𝐺 = 2𝑘′ and damping is 𝑐𝐺 = 2𝑐′. Equations 5.21 

and 5.22 become: 

2𝑘′ =
2𝑘

1 + 𝛼𝑘2
 

(5.24) 

2𝑐′ =
2𝑐

1 + 𝛼𝑐2
 

(5.25) 

Determining 𝛼𝑘2 and 𝛼𝑐2 is the goal of this study. In Equations 5.24 and 5.25, all 

parameters are calculated using finite element method and  𝛼𝑘2 and 𝛼𝑐2 can be 

obtained.  

 The following is a sample calculation of values of 𝛼𝑘2 and 𝛼𝑐2 using the described 

procedure for the set of parameters described in Table 5.9. 

1- A static load, 𝑄 is applied on each pile. 

2-  The static displacement of each pile can be determined from static analysis and 

the stiffness of a pile in a 2 pile system,  

𝑘′ can be calculated as  

𝑘′ =
𝑄

𝑢𝑠
=

22000

7.23 × 10−6
= 5.97 × 108 𝑁/𝑚 

(5.26) 
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or  

𝑘′ =
𝑘𝐺
2

 
(5.27) 

Where 𝑘𝐺  is the group stiffness and 𝑘𝐺 = 2𝑄/𝑢𝑠. 

 

Table 5.8: Parameters values for sample calculation of stiffness and damping in a 

2 pile system. 

Parameter Symbol Unit Value 

Pile Modulus of Elasticity 𝐸𝑝 𝑃𝑎𝑠𝑐𝑎𝑙 2.1x1010 

Pile Poisson’s Ratio 𝜇𝑝  0.25 

Pile Mass Density 𝜌𝑝 𝑘𝑔/𝑚3 2500 

Pile Diameter 𝑑𝑝 𝑚 0.5 

Pile Length 𝐿𝑝 𝑚 10 

Pile Spacing from center to 

center 

𝑆 𝑚 1  

Soil Modulus of Elasticity 𝐸𝑠 𝑃𝑎𝑠𝑐𝑎𝑙 2.5 × 108 

Soil Poisson’s Ratio 𝜇𝑠  0.45 

Soil Mass Density 𝜌𝑠 𝑘𝑔/𝑚3 1800 

Mass applied on top of Pile 𝑀 𝑘𝑔 65000 

Applied Static Pressure 𝑄𝑠 𝑃𝑎𝑠𝑐𝑎𝑙 22000 

Dynamic Pressure Amplitude 𝑄𝑑 𝑃𝑎𝑠𝑐𝑎𝑙 22000 

Frequency 𝑓 𝐻𝑧 5 𝑡𝑜 30 
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3- For a range of frequencies, dynamic loading is applied and dynamic 

displacement, 𝑢𝑑 at each frequency is determined as shown in Table 5.9. 

Table 5.9: results of dynamic displacement for sample calculation of stiffness and 

damping of 2 pile system. 

𝑬𝑺 = 𝟐. 𝟓 × 𝟏𝟎𝟖 𝑷𝒂 

frequency Displacement, 𝑢𝑑 𝑢𝑑/𝑢𝑠 

0 7.23E-06 1.00 

5 7.50E-06 1.04 

10 1.40E-05 1.94 

15 1.80E-05 2.49 

20 9.00E-06 1.24 

30 2.50E-06 0.35 

 

4- The geometric damping of the group, 𝐷𝐺  that correspond to values of dynamic 

displacement in Table 5.9 was found to be 0.18.  

5- The geometric damping contribution from each pile in the group, 𝐷′ is  

𝐷′ =
𝐷𝐺

2
= 0.09 

(5.28) 

6- Damping of a single pile in the group is  

𝑐′ = 𝐷′  × 2√𝑘′𝑀 = 0.09 (2√5.97 × 108 × 65000) 

𝑐′ = 1.12 × 106 𝑁 𝑠/𝑚 

(5.29) 

Where in 5.29, 2√𝑘′𝑀  is the critical damping of a single pile in the group. 

7- From elastic analysis of an isolated pile in elastic homogenous soil , the 

stiffness, 𝑘 = 7.58 × 108 𝑁/𝑚 and damping 𝑐 = 2.25 × 106 𝑁 𝑠/𝑚. 
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8- Using values of 𝑘′ and 𝑐′ obtained from Equations 5.26 and 5.29 and values of 

stiffness, 𝑘 and damping 𝑐 obtained in step 7 in Equations 5.24 and 5.25 after 

rearranging it to find 𝛼,  

𝛼𝑘2 =
𝑘

𝑘′
− 1 =

7.58 × 108

5.97 × 108
− 1 = 0.27 

(5.30) 

𝛼𝑐2 =
𝑐

𝑐′
− 1 =

2.25 × 106

1.12 × 106
− 1 = 1.01  

(5.31) 

For the case presented addition of a second pile resulted in a reduction equals 

to 27% in the stiffness of the isolated pile and 101% reduction in damping of 

the isolated pile.  

9- Steps 1 to 8 are repeated for different soil moduli of elasticity and different 

spacing to determine the interaction factors for the different cases.   

Variation of stiffness interaction factor, 𝛼𝑘 with spacing of the piles normalized 

over the pile diameter is shown in Figure 5.80. Variation of the damping interaction 

factor with the spacing of the piles normalized over their diameter is shown in 

Figure 5.81.  
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Figure 5.80: Variation of stiffness interaction factors with 𝑠/𝑑𝑝 for 2 piles. 

 

Figure 5.81: Variation of damping interaction factors with 𝑠/𝑑𝑝  for 2 piles. 
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of stiffness of a single pile in the group, 𝑘′ calculated using 5.26 is shown in Figure 

5.82 while damping, 𝐷′, calculated using Equation 5.28 is shown in Figure 5.83.  

 

Figure 5.82: Variation of stiffness of a pile in a 2 pile group compared with a 

single isolated pile. 

 

Figure 5.83: Variation of damping of a pile in a 2 pile group compared with a 

single isolated pile. 
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Damping of a pile in a 2 pile group calculated as per Equation 5.29 is shown in 

Figure 5.84.  

 

Figure 5.84: Damping of a 2 pile group in homogeneous soil. 

5.5.1. Results commentary and analysis 

 Results of stiffness interaction factor are plotted in Figure 5.80 for different 

values of soil modulus of elasticity against the normalized spacing. All curves 

show that interaction is reduced with increased spacing. This is even more 

evident in Figure 5.82 that shows that stiffness for different spacing values. 

The more the spacing is between the pile, the less is the interaction (Figure 

5.80). The more the spacing the closer the stiffness curve is to that of a single 

pile in the same soil (Figure 5.82).  

 The interaction means that the spring stiffness that describes the behavior the 

top of the pile as obtained in Section 5.1 specifically in Figure 5.2 should be 

reduced if the pile is used in a group. The amount of reduction in the stiffness 

that should be applied is the interaction factor shown in Figure 5.80.  
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 The interaction factor shown in Figure 5.80 shows that the effect of soil 

modulus of elasticity is not perfectly defined. It is then better to describe 

interaction by an average fitted line. This is shown in Figure 5.85. The 𝑅2 value 

of the best fit was found to be 0.88, indicating a strong correlation with spacing.  

 

 

Figure 5.85: Average fitted line for stiffness interaction factor. 

 

 Results of dynamic interaction factors (or damping interaction factors) are 

plotted in Figure 5.81 for different values of soil modulus of elasticity 

against the normalized spacing. All curves show that interaction is reduced 
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that the damping for different spacing values. The more the spacing is 

between the pile, the less is the interaction (Figure 5.84). The more the 

spacing is, the closer the damping curves are to the curve of a single isolated 

pile in the same soil (Figure 5.84).  
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reduced if the pile is used in a group. The amount of the reduction of damping 

that should be applied is the interaction factor shown in Figure 5.85.  

 The interaction factor shown in Figure 5.85 shows that the effect of soil 

modulus of elasticity is not perfectly defined. It is then better to describe 

interaction by an average fitted line. This is shown in Figure 5.86. the 𝑅2 value 

of the best fit was found to be 0.61 indicating a strong correlation with spacing.  

 

 

 
Figure 5.86: Average fitted line for dynamic interaction factor. 
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Figure 5.85) is shown in Figure 5.87. Comparison of static interaction factors 

provided by Poulos (1968) with damping interaction factors obtained by this study 

is shown in Figure 5.88. The static interaction factors given by Poulos (1968) are 

close to the average line of stiffness interaction factors obtained by this study. The 

difference may be contributed to the variation in the material properties of the soil 

which isn’t considered in Poulos (1968). The comparison with average damping 

interaction factors shows that using static interaction factors in the dynamic analysis 

underpredicts dynamic interaction significantly especially for closely spaced piles.  

 

 

 

Figure 5.87: Comparison of average stiffness interaction factors with static 

interaction factors given by Poulos (1968). 
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Figure 5.88: Comparison of average damping interaction factors with static 

interaction factors given by Poulos (1968). 

 

5.6. Frequency independence of the stiffness and damping 

In soil dynamics, the stiffness and damping of foundation systems are described 

using spring and damper analogy. However, the stiffness and damping of 

foundations provided are dependent on the frequency of the vibration. For example 

for shallow foundations, Reissner (1936) found a solution for the motion of a rigid 

disk on the surface of an elastic half-space. The solution simplified to spring and 

damper analogy by Hsieh (1962). In the latter solution, the stiffness and damping 

were found to be frequency dependent (i.e. a function of the frequency). Lysmer & 

Richart (1966) came up with a solution where the stiffness and damping of a 

shallow foundation were frequency independent. The solution produced accurate 

results for the response of a shallow foundation within a certain range of frequency. 

The results were in accordance with Reissner (1936). The stiffness of the foundation 

was the same obtained from elastic analysis of a statically loaded area over an elastic 

half-space. The damper is obtained through dynamic analysis.  
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  Novak (1974) solved the Equation of motion for a floating pile foundation. 

The stiffness and damping of the of the pile were found to be function of the 

frequency, however at dimensionless frequency, 𝑎0 = 0.3, stiffness and damping 

were found stationary and independent of the frequency. Novak (1974) presented 

Equations for stiffness and damping independent of the frequency while 

compromising accuracy at other values of 𝑎0.   

A system consisting of a mass, a spring and a dashpot can describe the motion 

of the pile top when subjected to vertical loading. The mass is the mass supported 

by the pile; the spring has a spring constant that is equal to the static stiffness of the 

pile and dashpot that has a coefficient that represents energy loss in the soil-pile 

system due to radiation damping. A procedure is described in section 4.4 of this 

thesis of how these parameters were obtained. The concept is extended to different 

cases of piles in non-homogeneous soils and friction and end bearing pile. The 

concept is also extended to the case of the pile-to-pile interaction, where the piles 

are assumed to act as two sets of mass, spring and dashpot vibrating in parallel. This 

assumption allows the required parameters of the two piles to be obtained by 

analyzing a group (without a cap to eliminate the effect of the cap from interfering 

with the results) statically to compute stiffness and dynamically to compute 

damping using the procedure described in section 4.4. In the pile-to-pile interaction 

study the stiffness of a single pile in the group is the stiffness of the group divided 

by 2. Similarly, damping of a single pile in the group is damping of the group 

divided by 2. The stiffness and damping of a single pile in the group are always less 

than that of a single isolated pile. Interaction is calculated based on the reduction in 

stiffness and damping of a pile in a group compared to that of an isolated pile. The 
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stiffness and damping of all cases in this research are found to be independent of 

the frequency in the range of the data studied. 

In order for the assumption to be valid, the following points should be valid:  

1- The stiffness and damping obtained should be able to predict the steady state 

motion (i.e., dynamic displacement) at the pile top at any frequency using the 

following Equation: 

𝑢𝑑 =
𝑄

𝑘

1

√(1 −
𝑓2

𝑓𝑛2
)
2

+ 4𝐷2 𝑓
2

𝑓𝑛2

 

 

(5.32) 

Where 𝑄 is the dynamic load amplitude, 𝑘 is the spring constant, 𝑓 is the 

frequency at which the dynamic displacement, 𝑢𝑑 is calculated, 𝑓𝑛 is the 

natural frequency of the system where 𝑓𝑛 = (1/2𝜋)√𝑘/𝑀, and 𝐷 is the 

damping ratio where 𝐷 = 𝑐/2√𝑘 𝑀. The spring constant is equal to the 

static stiffness of the pile. Damping describes energy loss due to radiation 

damping only, as no consideration of material damping is applied in this 

research. Frequencies from 2.5 to 30 Hz are used to calculate 𝐷 using 

dynamic finite element analysis while static analysis was used to calculate 

the stiffness, 𝑘. The plot of Equation 5.32 of the frequency range used 

matches the dynamic displacement calculated by finite element analysis. 

This means the damping and spring constant calculated are the actual values 

of stiffness and damping of the pile independent of the frequencies. At least 

this can be said for the range of the frequencies analyzed and used in 

calculation. Figure 5.89 is an example of how a plot of Equation 5.32 
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matches the dynamic displacement calculated by finite element analysis. 

The dots in Figure 5.89 are finite element results of displacements for 

specific case while the solid line is a plot of Equation 5.32 using damping 

and spring constant for that same specific case. The fact that a predicted line 

fits perfectly with finite element results used in calculation of stiffness and 

damping was observed in every case analyzed in this research and is an 

indication of frequency independency of the values of stiffness, 𝑘 and 

damping ratio, 𝐷 obtained in this research at least within the frequency range 

of 2.5 and 30 Hz. (i.e., fitting Equation 5.32 to a dynamic displacement 

points similar to those dots shown Figure 5.89 as described in Section 4.4 

yields almost  a perfect fit in every case analyzed).  

 

 

Figure 5.89: Dynamic displacement results  plotted using Equation 5.32 (solid 

line) and finite element results (dots). 
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2- Using a frequency range of 2.5 to 30 Hz, the stiffness and damping calculated 

and presented the ability to match finite element analysis results. A test to see if 

the spring and damping are also valid for frequencies greater than 30 Hz was 

performed. The frequencies investigated were 40, 50 and 60. The test was 

performed only at the minimum and the maximum value of study variables used 

in each case. The results of this test found that the stiffness and damping 

calculated can be used to predict the steady-state dynamic displacement at the 

top of the pile for frequencies greater than 30 Hz. No change in stiffness and 

damping is observed. Dynamic displacement results obtained using finite 

element analysis for frequencies greater than 30 Hz agrees with Equation 5.32. 

As an example see Figure 5.90 that shows values of dynamic displacements 

obtained by finite element analysis fall on the curve used to predict the 

displacement.   

 

Figure 5.90: Dynamic displacement results  plotted using Equation 5.32 (solid 

line) and finite element results (dots). 
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3- The resonance (frequency of maximum displacement), 𝑓𝑛 is  calculated using 

the spring constant, 𝑘 and the mass supported by the pile, 𝑀 where 𝑓𝑛 =

1/(2𝜋)√𝑘 𝑀 . As an example, see Figure 5.89. In Figure 5.89 a pile embedded 

in a homogeneous soil with soil modulus of elasticity of  8.344 x 108  Pa, the 

natural frequency was calculated to be 25 Hz. The resonance frequency from 

finite element analysis is found at this number as shown in Figure 5.89. 

Agreement of frequency of maximum dynamic displacement (obtained from 

FEM) with resonant frequency calculated from spring constant is observed in 

all cases studied in this research. This means that maximum dynamic 

displacement obtained via finite element occurs near resonant frequency, 𝑓𝑛 

obtained from spring constant. If this is true, it can be said the stiffness and 

damping computed are the true stiffness and damping of the system. 

4- If the stiffness and damping are frequency independent, they should be able to 

predict the motion at the top of the pile in the time domain for any frequency of 

loading. This means that time history analysis of  a single degree of freedom 

consisting of a mass, a spring, and a damper with stiffness and damping 

calculated using the procedure described in section 4.4 should be similar and 

close to time history analysis using  finite element simulation of the actual soil-

pile system. This was also found to be true in several tests at different 

frequencies. Examples of time history comparison between the single degree of 

freedom and finite element analysis of a pile are shown in Figure 5.91 (a) to 

Figure 5.90 (d) . It can be seen from Figure 5.91 that the single degree of 

freedom (SDOF) time history matches the time history analysis of finite element 

simulation of the pile.  
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Figure 5.91: (a) to (d):  Examples of time history analysis for FEM and SDOF. 

  

Figure 5.91 (a) Time history analysis for end bearing pile and SDOF 

representing the case. Frequency = 10 Hz. Homogeneous soil with 

modulus of Elasticity = 8.344 × 108 𝑃𝑎𝑠𝑐𝑎𝑙𝑠. 

 

 

Figure 5.91 (b) Time history analysis for an end bearing pile and SDOF 

representing the case. Frequency = 50 Hz. Homogeneous soil with 

modulus of Elasticity = 8.344 × 108 𝑃𝑎𝑠𝑐𝑎𝑙𝑠. 
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Figure 5.91 (c) Time history analysis for a floating pile and SDOF 

representing the case. Frequency = 10 Hz. Homogeneous soil with 

modulus of Elasticity = 8.344 × 108 𝑃𝑎𝑠𝑐𝑎𝑙𝑠. 

 

 

 
Figure 5.91 (d) Time history analysis for a floating pile and SDOF 

representing the case. Frequency = 40 Hz. Homogeneous soil with 

modulus of Elasticity = 8.344 × 108 𝑃𝑎𝑠𝑐𝑎𝑙𝑠. 
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5.7. A discussion on design applications 

5.7.1. Design of a pile in homogenous soil 

Comparison of stiffness obtained by this study with Novak (1974) shows a great 

difference in stiffness and damping. Comparison of stiffness and damping with 

Chowdhury & Dasgupta (2008) shows good agreement of stiffness only at a low 

modulus of elasticity of the soil. However, comparison of damping ratio shows no 

agreement as damping ratio calculated by Chowdhury & Dasgupta (2008) was 

constant at any value of the soil modulus of elasticity. To show how analyzing a 

pile subjected to vertical dynamic load using stiffness and damping obtained by  

Novak (1974) and Chowdhury & Dasgupta (2008) differ from finite element 

analysis, see Figure 5.92. The graph shows differences in resonance frequency and 

displacement at resonance. The displacements values are agreeable after resonant 

frequency. Pile properties in this examples are the same used in this research.  
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(a) 

 

(b) 

Figure 5.92: Comparison of dynamic displacement at different frequencies. 

(a) 𝐸𝑠  =  8.344 × 106 𝑝𝑎 (b) 𝐸𝑠 =  8.34 × 108 𝑃𝑎. 
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ratio decreases with increase in soil elastic modulus if obtained by Novak (1974). 

Damping ratios calculated by this research were found to be increasing with the 

increase in soil modulus of elasticity. Comparison of stiffness and damping 

obtained by Chowdhury & Dasgupta (2008) and those obtained by this research 

found no agreement. Stiffness obtained by Chowdhury & Dasgupta (2008) was 

significantly higher than that obtained in this research. Figure 5.93 shows how 

using stiffness and damping obtained by Novak (1974) and Chowdhury & 

Dasgupta (2008) compare with those obtained by this study in predicting dynamic 

displacement at any frequency. The methods differ in predicting resonance 

frequency and displacement at resonance. After resonance, both methods show 

agreement in predicting dynamic displacements.  
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(a) 

 

(b) 

Figure 5.93: Comparison of dynamic displacement at different frequency. 

(α)  𝐸𝑠  =  8.344 × 106 𝑝𝑎 (b) 𝐸𝑠 =  8.34 × 108 𝑃𝑎. 
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In the case of designing a floating or an end-bearing pile in a homogeneous 

soil, comparison of stiffness obtained by finite element analysis with Novak (1974) 

found that stiffness obtained by Novak (1974) is overestimated. This overestimation 

in stiffness lead to overestimation in critical damping,𝑐𝑐𝑟 , and the damping ratio 

which is equal to 𝑐/𝑐𝑐𝑟. It  also affects the value of the natural frequency. However, 

calculating damping, 𝑐 using Novak (1974) is more agreeable with finite element 

results. As a result, ιt is suggested to use an analytical solution based on static elastic 

analysis of piles to obtain stiffness of the pile. One method was presented earlier in 

section 5.1.2.1 by Gazetas & Mylonakis (1998). In fact using such a method for 

stiffness makes Novak solution more agreeable with finite element data in 

determining dynamic displacement at any frequency as well as determining 

resonant frequency. This is because adjusting the stiffness automatically adjusts the 

value of the damping ratio, 𝐷 as shown in Figure 5.94 for damping of a floating pile 

and 5.95 for damping of an end bearing pile. It can be seen from Figures 5.94 and 

5.95 that using a static stiffness reduces the difference in damping between finite 

element and Novak (1974). In fact, using a stiffness computed by static analysis 

makes the damping ratio curve obtained by Novak (1974) agreeable with finite 

element results not only in values but also in the pattern (i.e. increasing with 

increase in soil modulus of elasticity) for the case of an end bearing pile. 
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Figure 5.94: Comparison of Damping ratio between FEM and Novak (1974) after 

adjusting stiffness for a floating pile. 

 

Figure 5.95: Comparison of Damping ratio between FEM and Novak (1974) 

after adjusting stiffness for an end-bearing pile. 
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5.7.2. Design of a pile group 

An example is provided to show how interaction factors are used in designing a 

pile group using static and dynamic interaction factors. The example considers 2 

approaches: (1) the currently used one where Poulos (1968) interaction factors are 

applied to both stiffness and damping and (2) The new interaction factors obtained 

by FEM are applied to stiffness of the group and damping interaction factors are 

applied to damping of the group. The parameters of the soil and the pile are 

summarized in Table 5.10. The problem is shown graphically in Figure 5.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

178 

 

 

Table 5.10:Summary of soil and pile parameters for example of design of pile 

groups. 

Parameter Symbol Unit Value 

Pile Modulus of Elasticity 𝐸𝑝 𝑃𝑎𝑠𝑐𝑎𝑙 2.1x1010 

Pile Poisson’s Ratio 𝜇𝑝  0.25 

Pile Mass Density 𝜌𝑝 𝑘𝑔/𝑚3 2500 

Pile Diameter 𝑑𝑝 𝑚 0.5 

Pile Length 𝐿𝑝 𝑚 10 

Pile Spacing from center to 

center 

𝑆 𝑚 1 .5 

Cap thickness  𝑡 𝑚 1 

Cap width  𝑤 𝑚 5 

Cap Length 𝐿𝐶 𝑚 5 

Cap mass density  𝜌𝐶 𝑘𝑔/𝑚3 2500 

Soil Modulus of Elasticity 𝐸𝑠 𝑃𝑎𝑠𝑐𝑎𝑙 5.0 × 108 

Soil Poisson’s Ratio 𝜇𝑠  0.45 

Soil Mass Density 𝜌𝑠 𝑘𝑔/𝑚3 1800 
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Figure 5.96: Outline of pile group for design example. 

 

The stiffness and damping of an isolated pile of that group is found from 

finite element analysis to be 1.17 × 109 𝑁/𝑚 and 2.5 × 106 𝑁 𝑠/𝑚 respectively. 

Using pile number 1 as the reference pile, stiffness interaction factors are calculated. 

Values of interaction factors are shown in Table 5.11. 
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Table 5.11: Values of interaction factors for pile group design  example. 
  

Poulos (1968) stiffness damping 

Pile spacing from reference pile αk αk αc 

1 0.00 1.00 1.00 1.00 

2 1.50 0.59 0.34 0.81 

3 3.00 0.37 0.22 0.23 

4 1.50 0.59 0.34 0.81 

5 2.12 0.48 0.28 0.52 

6 3.35 0.34 0.21 0.13 

7 3.00 0.37 0.22 0.23 

8 3.35 0.34 0.21 0.13 

9 4.24 0.27 0.17 0.00  
Σα 4.35 2.98 3.87 

 

Based on interaction factors shown in Table 5.11, the stiffness and damping 

of the group using Poulos method are: 

𝑘𝐺 =
𝑛𝑘𝑝

𝛴𝛼
=

9(1.17 × 109)

4.35
= 2.42 × 109 𝑁/𝑚 

(6.1) 

𝑐𝐺 = 
𝑛𝑐𝑝

𝛴𝛼
=

9(2.5 × 106)

4.35
= 5.30 × 106 𝑁 𝑠/𝑚 

(6.2) 

While based on the second approach, the stiffness and damping of the 

group are 

𝑘𝐺 =
𝑛𝑘𝑝

𝛴𝛼
=

9(1.17 × 109)

2.98
= 3.35 × 109 𝑁/𝑚 

(6.3) 

𝑐𝐺 = 
𝑛𝑐𝑝

𝛴𝛼
=

9(2.5 × 106)

3.87
= 5.81 × 106 𝑁 𝑠/𝑚 

(6.4) 

 

The response of the foundation is shown in Figure 5.97. In Figure 5.97 it is 

shown that there is 45% difference in stiffness and 10% difference in 

damping between the two methods. These numbers might differ from 

problem to problem as the interaction factors are dependent on pile spacing. 
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Figure 5.97: response of pile group in design example. 
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6. Design Charts and Conclusion 

6.1. Design Charts 

In the case of inhomogeneity in the soil profile along the pile. The stiffness, 𝑘 

and damping, 𝑐 should be reduced. Reduced stiffness, 𝑘𝑟 and reduced damping, 𝑐𝑟 

charts are provided in Figure 6.1 and 6.2 for floating piles and Figures 6.3 and 6.4 

for an end bearing pile. To use Figures 6.1, 6.2 , 6.3 and 6.4:  

a. Stiffness and damping are calculated based on a homogenous soil with a 

modulus of elasticity equal to 𝐸𝑠𝑐.  

b. The inhomogeneity ratio is calculated as 𝐷𝑐/𝐿𝑝.  

c. From 𝐷𝑐/𝐿𝑝 , the reduction in stiffness and damping 𝑘𝑟/𝑘ℎ and 𝑐𝑟/𝑐ℎ could 

be obtained using Figures 6.1 6.2 , 6.3 and 6.4. 

d. finally 𝑘𝑟 and 𝑐𝑟 could be obtained.  

𝐸𝑠𝑐 is the constant modulus of elasticity at a depth 𝐷𝑐 below the ground surface, 

𝐿𝑝 is the pile length, 𝑘𝑟 and 𝑐𝑟 are reduced stiffness and damping due to 

inhomogeneity, and 𝑘ℎand 𝑐ℎ are the stiffness and damping of the soil if it were 

homogeneous with a modulus of elasticity equal to 𝐸𝑠𝑐.   
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Figure 6.1: Reduction in stiffness of a floating pile due to inhomogeneity of soil 

profile.  
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Figure 6.2: Reduction in damping of a floating pile due to inhomogeneity of soil 

profile.  
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Figure 6.3: Reduction in stiffness of an end bearing pile due to inhomogeneity of 

soil profile.  
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Figure 6.4: Reduction in Damping of an end bearing pile due to inhomogeneity of 

soil profile.  ` 
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interaction factors suggested to be applied on stiffness and damping interaction 

factors are shown in Figure 6.5. 

 

 

Figure 6.5: Stiffness and damping interaction factors. 
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6.2. Conclusion 

The stiffness and damping of a pile top when subjected to vertical vibration are 

needed for the design of a pile subjected to dynamic loading.  

Piles are mostly used in groups. The stiffness and damping of individual piles 

within a pile group are less than that of an isolated pile due to pile-to-pile 

interaction. The interaction between piles is accounted for in design by using 

interaction factors. The process of designing a pile group begins by designing an 

individual pile and then modify the design to account for interaction using 

interaction factors. Interaction factors that are currently in use are the ones provided 

by Poulos (1968). However, these interaction factors are based on static analysis of 

pile to pile interaction. 

 This research focuses on variation in the conditions of the soil surrounding the 

pile and the soil at the pile tip. The research studies floating and end bearing piles 

in homogeneous and nonhomogeneous soils. The research also studies pile to pile 

interaction in homogeneous soils. In all the cases studied, the response at the top of 

the pile can be represented by a single degree of freedom system consisting of a 

mass, a spring, and a damper. The spring stiffness is the same as the stiffness of the 

pile and the damper represents energy loss due to radiation damping. The mass 

represents the mass supported by the pile. A method described in section 4.4 of this 

dissertation was used to obtain the stiffness and damping of the pile-soil system. 

Charts of the variation of stiffness and damping with variation in soil conditions are 

provided for each case studied in this research. 

The concept of replacing the pile with a mass, spring and damper system is 

extended to the study of the pile-to-pile interaction. The two piles are replaced by 2 
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parallel sets of spring and damper. The piles interact with each other which results 

in a reduction in stiffness and damping compared to an isolated pile. The interaction 

factor between the two pile is based on this reduction of stiffness and damping. A 

stiffness interaction factor is introduced to represent the reduction in stiffness and a 

damping interaction factor represents the reduction in damper coefficient.  

The main outcomes of this research is as follows:  

1- Floating pile in homogeneous soil 

 The stiffness, 𝑘 of a single pile increases with increase in soil modulus of 

elasticity.  

 The geometric damping ratio, 𝐷 decreases with increase in soil modulus of 

elasticity.   

 A change in soil modulus of elasticity from 8 × 106 to 8 × 108 Pascal (i.e., a 

100-fold increase) results in 32-fold increase in stiffness and 5 fold decrease in 

damping. 

 Critical damping, 𝑐𝑐𝑟 increases with increase in soil modulus of elasticity. 

 Damper coefficient increases until it reaches a point where it remains 

practically constant.  

 The natural frequency of the soil-pile system increases with increase in soil 

modulus of elasticity.  
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2- End bearing pile in homogeneous soil 

 For an end bearing pile, the stiffness of the pile system increase with an 

increase in soil modulus of elasticity.  

 Geometrical damping ratio was found to increase until a certain value of the 

soil modulus of elasticity. After this value, the geometric damping remains 

almost constant. 

 Critical damping increases with increase in soil modulus of elasticity.  

 Damping increases with increase in soil modulus of elasticity.  

 Natural frequency increases with increase in soil modulus of elasticity.  

 An increase in soil modulus of elasticity from 8 × 106 Pascal to 8 × 108 

Pascal will increase the stiffness by 400 % while the damping ratio increased 

by 200%. 

3- Comparison Between End-Bearing Piles and Floating Piles in 

Homogeneous Soil 

 In weak soils, the stiffness of end-bearing piles is 1300% greater than the 

stiffness of floating piles. However, damping of floating piles is 1000% higher 

than damping of end-bearing piles. 

 In strong soils, similar values of stiffness and damping are obtained for both 

floating and end-bearing piles.  

4-  Floating pile in nonhomogeneous soil 

 An increase in top weak soil layer results in reduction in stiffness, damping 

ratio, damper coefficient and natural frequency.   
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5- If the top weak soil layer increases in thickness to become equal to the pile 

length (i.e. 100% inhomogeneity), both the stiffness and damping are reduced 

by 40%. 

6- End bearing pile in nonhomogeneous soil 

 An increase in the thickness of the top weak soil layer reduces stiffness and 

damping of the soil-pile system. 

 If the top weak soil layer increases in thickness to become equal to the pile 

length (i.e. 100% inhomogeneity), the stiffness is reduced by 20% while 

damping is reduced by 60%. 

7- Pile to Pile Interaction 

 The stiffness and damping interaction factors were found to be dependent on 

the spacing between the piles. The greater the spacing, the less is the value of 

the interaction factor. This is because when piles are placed far from each other, 

the transferred stresses between the two piles is reduced. 

 The values of damping interaction factors found to be different than static 

interaction factors.  

 Damping interaction can be greater than one. This was found in cases of piles 

placed at 0.5 meters away from each other.  

 Dynamic stiffness interaction factors are lower than the static interaction 

factors currently used in practice. 

 Damping interaction factors are higher than the static interaction factors. 
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6.3. Summary 

For design of a pile supported machine, the stiffness and  damping of the 

soil-pile system at the level of the pile head are needed. The research provides a 

methodology to determine both the stiffness and damping for a wide range of 

variables, both in material and geometry. 

Floating Pile in Homogeneous Soil 

• Increase in soil modulus of elasticity results in increase in stiffness, decrease in 

damping ratio, increase in damping and increase in natural frequency. 

• An increase in soil modulus of elasticity from 8 × 106 Pascal to 8 × 108 Pascal 

will increase the stiffness by 3200 % while the damping ratio decreases by 500%.  

End-Bearing Pile in Homogeneous Soil 

• Increase in soil modulus of elasticity results in increase in stiffness, increase in 

damping ratio, increase in damping and increase in natural frequency. 

• An increase in soil modulus of elasticity from 8 × 106 Pascal to 8 × 108 Pascal 

will increase the stiffness by 400 % while the damping ratio increased by 200%. 

Comparison Between End-Bearing Piles and Floating Piles in Homogeneous Soil 

• In weak soils, the stiffness of end-bearing piles is 1300% greater than the stiffness 

of floating piles. However, damping of floating piles is 1000% greater than 

damping of end-bearing piles. 

• In strong soils, similar values of stiffness and damping are obtained for both 

floating and end-bearing piles.  
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Floating Pile in Non-Homogeneous Soil 

• An increase in the thickness of the top weak soil layer will reduce the stiffness and 

damping of the soil-pile system. 

• If the top weak soil layer increases in thickness to become equal to the pile length, 

both the stiffness and damping are reduced by 40%. 

End-Bearing Pile in Non-Homogeneous Soil 

• An increase in the thickness of the top weak soil layer reduces stiffness and 

damping of the soil-pile system. 

• If the top weak soil layer increases in thickness to become equal to the pile length, 

the stiffness is reduced by 20% while damping is reduced by 60%. 

Pile to Pile Interaction Factors  

• As spacing between piles increases, the interaction factor decreases. 

• Dynamic stiffness interaction factors are lower than the static interaction factors 

currently used in practice. 

• Damping interaction factors are higher than the static interaction factors.  

Design Charts  

• Design charts are provided to account for inhomogeneity in the soil profile for 

both floating and end-bearing piles. 

• Stiffness and damping interactions factors are provided to account for dynamic 

pile to pile interaction.  
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Appendices 

A. An Introduction To Soil Dynamics 

A.1. Vibrating systems 

Consider a system of a single degree of freedom system as shown in 

Figure A.1. Such system consists of a rigid mass, a supporting elastic spring and 

viscous dashpot damper. Applying a force F to the system; in which F is dynamic 

in nature that varies with time t. In such a system the inertia takes effect and 

Newton’s second Equation of motion applies to the system.  The following 

differential Equation can be used 

M
d2u

dt2
= F(t) (A.1) 

In Equation A.1, M is the mass and u is the displacement. In said system, the spring 

will respond to the displacement caused by the force while the damper will respond 

to the velocity. Equation A.1 is now adjusted to include the spring and damper 

reactions to becomes 

M
d2u

dt2
+ c

du

dt
+ ku = F(t) (A.2) 

Where c is the damper viscosity coefficient and k is the spring constant. 

Understanding such a system is critical in Machine foundation and soil dynamics 

in general. In many cases, the soil response to an applied dynamic load is reduced 

to an analogous spring and a viscous dashpot damper. This makes the problem easy 

to solve. The engineers only need to conduct experiments to determine 𝑐 and 𝑘 

values and solve the problem.  
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Figure A.1: Single degree of freedom system consists of a mass, a spring and a 

viscous damper. 

 

A.2. Free vibration 

If the force F is set to zero (i.e., the system is unloaded) the system will then 

vibrate freely for a period of time and then stops. Equation A.2 then becomes 

M
d2u

dt2
+ c

du

dt
+ ku = 0 (A.3) 

 Depending on the damping of the system and the value of the displacement at the 

time the force is set to zero , the response can be identified mathematically. Defining 

the damping ratio of the system which is the ratio of the damper coefficient on the 

critical damping of the system is Mathematically represented by  

ζ =
c

2√kM
 (A.4) 

 

 

 
  
  
  
  
  

𝑴 

𝒄 𝑘 

𝐹(𝑡) 



 

 

 

 

196 

 

Where the denominator is the value of the critical damping of the system. Also the 

natural frequency 𝜔0 of such a system can be written as 

ω0 =
𝑓𝑛
2𝜋

(
𝑟𝑎𝑑𝑖𝑎𝑛𝑠

𝑠𝑒𝑐𝑜𝑛𝑑
)  𝑤ℎ𝑒𝑟𝑒 𝑓𝑛 = √

κ

Μ
(𝐻𝑧) (A.5) 

The response of the system can be characterized by using the response time tr also 

called the relaxation time which is defined as 

tr = c/k (A.6) 

The value of tr defines the response time of the system. At any time less than the 

response time, the system is considered stiff and the response depends on the 

damper.  The system response depends more on the spring when the time is greater 

than the response time. From Equations A.4, A.5 and A.6 the damping can be 

related to the damping ratio and the natural frequency of the system as c = 2ζω0. 

Using c = 2ζω0 into Equation A.3, gives the following  

M
d2u

dt2
+ 2ζω0

du

dt
+ ω0

2u = 0 (A.7) 

Equation A.7 represents a differential Equation in which the solution can be 

assumed to take the form 

u = Aeat  (A.8) 

Where A is a constant related to the initial value of the displacement when F was 

set to zero. and a is an unknown value.  
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Substituting Equation A.8 in Equation A.7 will give 

𝑎2 + 2ζω0a + ω0
2 = 0  (A.9) 

a now can be found by finding the roots of Equation 2.9. The solution might be real 

or complex, and it takes the form 

a1,2 = −ζω0 ±ω0√ζ2 − 1 (A.10) 

It is clear from Equation 2.10 that the response of the system depends on the value 

of the damping ratio ζ. In general, three outcomes can be obtained as shown in the 

upcoming sections. 

A.2.1. when the damping ratio, 𝛇 is less than 1 

When the damping ratio ζ is less than 1(ζ < 1), the solution of Equation A.10 takes 

the form complex roots.  

α1,2 = −ζω0 ± iω0√1 − ζ2 (A.11) 

Where i is the imaginary part of the complex number and( i =  √−1). The dynamic 

displacement u can be obtained as 

u =  Α1 e
iω1t e−ζω0t + A2 e

iω1t e−ζω0t  (A.12) 

And ω1is defined as the damped natural frequency where ω1 = ω0√1 − ζ2. eiω1t 

Can be rewritten as cos(ω1t) + i sin(ω1t). Equation 2.12 then becomes 

ud = C1 cos(ω1t) e
−ζω0t + C2 sin(ω1t) e

−ζω0t  

 

(A.13) 
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Where C1 and  C2 values depend on the displacement 𝑢0 which is the displacement 

when the force 𝐹 is set to zero. Finally the solution of the dynamic displacement 𝑢𝑑 

relative to the initial displacement 𝑢0 can be given as  

𝑢

𝑢0
=

cos (𝜔1𝑡 − 𝜓)

cos (𝜓)
 𝑒−𝜁𝜔0𝑡 (A.14) 

Where 𝜓 is the phase angle and tan(𝜓) =
𝜔0𝜁

𝜔1
. This behavior of the system is 

represented graphically in Figure A.2 for various damping values. In general, the 

system will continue to vibrate in a sinusoidal form but its amplitude will decay 

depending on the exponent of the damping 𝑒−𝜁𝜔0𝑡. This decay will continue until it 

reaches at rest conditions. 

 

Figure A.2: Free vibration of damped systems. 

A.2.2. Critically Damped Systems 

When the Damping Ratio of the system is set to 1 (i.e., 휁 = 1) the system is 

said to be critically damped.  The response is entirely different than that when 휁 <

1. The sinusoidal behavior is no longer applicable here; instead a, smooth curve is 

obtained for the decay of the amplitude with time. This behavior is represented in 

Figure A.3. The solution of Equation A.9 has two roots of equal values and 𝛼1 =
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𝛼2 = −𝜔0. The ratio of the amplitude of the displacement at any time to that at  

𝑡 = 0 is given by 

𝑢

𝑢0
= (1 + 𝜔0𝑡) 𝑒

−𝜔0𝑡 (A.15) 

 

Figure A.3: Critically damped systems. 

 

A.2.3. When the Damping Ratio is Greater than 1 

In such a case where 휁 > 1, the solution to Equation 2.9 has two roots that 

are real and different.  The following Equation describes the ratio of the amplitude 

of displacement at any time relative to that at 𝑡 = 0. 

𝑢𝑑

𝑢0
=

𝜔2

𝜔2 − 𝜔0
 𝑒−𝜔1𝑡 −

𝜔1

𝜔2 − 𝜔1
 𝑒−𝜔2𝜏 (A.16) 

 

A.3. Forced vibrations 

The previous sections dealt with the solution of the dynamic differential 

Equation A.2 when the force F equals zero (i.e., free vibration). In this section, the 

response of the system is investigated under a loading that varies with time. The 

loading considered is periodic sinusoidal in nature and takes the form 

𝐹(𝑡) = 𝐹0cos (𝜔𝑡) (A.18) 
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Where 𝜔 is the frequency of the periodic load in 𝑟𝑎𝑑𝑖𝑎𝑛𝑠/𝑠𝑒𝑐𝑜𝑛𝑑𝑠. The solution 

of Equation A.2 is now obtained and is  

𝑢 = 𝑢𝑑  𝐶𝑜𝑠(𝜔𝑡 − 𝜓) (A.19) 

 

Where 𝑢𝑑 is the dynamic displacement and is given by  

𝑢𝑑 =
𝐹0/𝑘

√(1 −
𝜔2

𝜔0
2)

2

+ (2휁
𝜔
𝜔0

)
2

 

(A.20) 

Where 휁 and 𝜔0 are defined as per Equations A.4 and A.5 respectively. Equation 

A.20 can also be written in terms of 𝑘 and 𝑐 only as shown in the following Equation  

𝑢𝑑 =
𝐹0/𝑘

√(1 −𝑚
𝜔2

𝑘
)
2

+ (𝑐
𝜔
𝑘
)
2

 

(A.21) 

 

If the system has no mass, the solution is reduced to 

𝑢𝑑 =
𝐹0/𝑘

√1 + (𝑐
𝜔
𝑘
)
2
 

(A.22) 

Equations A.20 is represented graphically in Figure A.4. It is important to note  

that 𝑢𝑠 = 𝐹0/𝑘 and 𝑢𝑠 is defined as the static displacement. 



 

 

 

 

201 

 

 

 

Figure A.4: Oscillation of forced vibration. 

 

So far, an introduction to vibrating systems of a single degree of freedom is 

presented in the previous sections based on texts (Das & Ramana, 2010; Verruijt, 

2010). It is convenient to use such systems to represent the response of the soil to a 

footing subjected to periodic loading. It is also can be used for single piles in a 

homogeneous elastic half-space (Verruijt, 2010). While the finite element method 

and the boundary element method can be used in engineering practices, it is easier 

and faster to deal with the reduced system. It also allows the engineers to focus on 

the problem at hand, not on the complexity that is associated with using the 

numerical methods.  This also allows making changes on the problem parameters 

and decision making much faster and easier. In the upcoming sections, a review of 

the developments of the soil dynamics field with a focus on the response of the soil 

supporting shallow foundation subjected to a harmonic load shall be presented. 
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A.4. Waves in three-dimensional elastic medium 

Waves in the soil are better represented by a three dimensional elastic half 

space. This section will present the mathematical preliminaries required for waves 

in a three-dimensional space. 

A.4.1 The Equation of motion in a three-dimensional elastic medium 

For a small finite elastic cube similar to that shown in Figure A.5 (a), If that 

cube has experienced motion in any directions it would be similar to that presented 

in Figure A.5 (b). The differential Equations that represent this are driven by 

summing the forces in all directions. 

𝜕𝜎𝑥
𝜕𝑥

+
𝜕𝜏𝑦𝑥

𝜕𝑦
+
𝜕𝜏𝑧𝑥
𝜕𝑧

= 𝜌
𝜕2𝑢

𝜕𝑡2
 (A.23) 

𝜕𝜎𝑦

𝜕𝑦
+
𝜕𝜏𝑥𝑦

𝜕𝑥
+
𝜕𝜏𝑧𝑦

𝜕𝑧
= 𝜌

𝜕2𝑣

𝜕𝑡2
 (A.24) 

𝜕𝜎𝑧
𝜕𝑧

+
𝜕𝜏𝑥𝑧
𝜕𝑥

+
𝜕𝜏𝑦𝑧

𝜕𝑦
= 𝜌

𝜕2𝑤

𝜕𝑡2
 (A.25) 

Where 𝑢, 𝑣 𝑎𝑛𝑑 𝑤 are the displacements in the 𝑥, 𝑦  𝑎𝑛𝑑 𝑧 directions respectively,  

𝜎𝑖 is the normal stress on the 𝑖 axis, 𝜏𝑖𝑗 is the shear stress acting normal on The 𝑖 

plane and its directed towards the 𝑗 axis and 𝜌 is the mass density of the medium.  

Strain which is defined as the change in shape relative to the original shape and is 

given by 

휀𝑥 =
𝜕𝑢

𝜕𝑥
 (A.26) 

휀𝑦 =
𝜕𝑣

𝜕𝑦
 (A.27) 
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휀𝑧 =
𝜕𝑤

𝜕𝑧
 (A.28) 

𝛾𝑥𝑦 =
𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦
 (A.29) 

𝛾𝑦𝑧 =
𝜕𝑤

𝜕𝑦
+
𝜕𝑣

𝜕𝑧
 (A.30) 

𝛾𝑧𝜒 =
𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑧
 (A.31) 

Where 휀𝜄 is the normal strain in the 𝑖 direction, 𝛾𝑖𝑗 is the shear strain acting normal 

on the 𝑖 axis directed towards the 𝑗 axis. The rotation about a certain axis is defined 

by 

𝜔𝑥 =
1

2
(
𝜕𝑤

𝜕𝑦
−
𝜕𝑣

𝜕𝑧
) (A.32) 

𝜔𝑦 =
1

2
(
𝜕𝑢

𝜕𝑧
−
𝜕𝑤

𝜕𝑥
) (A.33) 

𝜔𝑧 =
1

2
(
𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
) (A.34) 

Where 𝜔𝜄 is the rotation around the 𝑖 axis. The mathematical derivation of those 

Equations is given in many books on the Theory of elasticity such as Elasticity and 

Soil Mechanics by (Davis & Selvadurai, 1996). 
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Figure A.5: (a) A finite cube under static stress. (b) The same cube undergoing 

some motion. 

 

A.4.2. Hooke’s law 

In a linear elastic medium, the stress and strain are related by Hooke’s Law 

and are given by 

휀𝑥 =
1

𝐸
[ 𝜎𝑥 − 𝜇 𝜎𝑦 + 𝜎𝑧 ] (A.35) 

휀𝑦 =
1

𝐸
[ 𝜎𝑦 − 𝜇(𝜎𝑥 + 𝜎𝑧)] (A.36) 

휀𝑧 = 
1

𝐸
[ 𝜎𝑧 − 𝜇 𝜎𝑦 + 𝜎𝑥 ] (A.37) 

Where 𝐸 is Young’s Modulus of Elasticity and 𝜇 is Poisson’s ratio. Similarly the 

shear stresses and strains are related by 

𝜏𝑥𝑦 = 𝐺𝛾𝑥𝑦 (A.38) 
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𝜏𝑦𝑧 = 𝐺𝛾𝑦𝑧 (A.39) 

𝜏𝑧𝑥 = 𝐺𝛾𝑧𝑥 (A.40) 

𝐺 is the shear modulus and is related the Young’s Modulus Poisson’s ratio by  

𝐺 =
1

2
 𝐸 (1 + 𝜇) (A.41) 

The solution to Equations A.35 to A.37 that relates the normal stresses to the normal 

strains is  

𝜎𝑥 = 𝜆휀 + 2𝐺휀𝑥 (A.42) 

𝜎𝑦 = 𝜆휀 + 2𝐺휀𝑦 (A.43) 

𝜎𝑧 = 𝜆휀 + 2𝐺휀𝑧 (A.44) 

Where 

𝜆 = 𝜇𝐸/[(1 + 𝜇)(1 − 2𝜇)] (A.45) 

휀 = 휀𝑥 + 휀𝑦 + 휀𝑧 (A.46) 
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A.4.3. Equations for compression stress waves in an infinite elastic medium 

Equation A.23 can be rewritten using Equations A.38, A.40 and A.42 to become 

𝜌
𝜕2𝑢

𝜕𝑡2
=

𝜕

𝜕𝑥
(𝜆휀 + 2𝐺휀𝑥) +

𝜕

𝜕𝑦
 𝐺𝛾𝑥𝑦 +

𝜕

𝜕𝑧
(𝐺𝛾𝑥𝑧) (A.47) 

 The values of 휀𝑥, 𝛾𝑥𝑦 and  𝛾𝑥𝑧 can be substituted using Equations A.26, A.29 and 

A.31 so that Equation A.47 becomes 

𝜌
𝜕2𝑢

𝜕𝑡2
=

𝜕

𝜕𝑥
(𝜆휀 + 2𝐺휀𝑥) + 𝐺

𝜕

𝜕𝑦
(
𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦
) + 𝐺

𝜕

𝜕𝑧
(
𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑧
) (A.48) 

The previous Equation can be rearranged so that it becomes  

𝜌
𝜕2𝑢

𝜕𝑡2
= 𝜆

𝜕𝑒

𝜕𝑥
+ 𝐺(

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑥𝜕𝑦
+

𝜕2𝑤

𝜕𝑥𝜕𝑧
+
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
 +

𝜕2𝑢

2𝜕𝑧2
 ) (A.49) 

Yet  휀 = 휀𝑥 + 휀𝑦 + 휀𝑧 which values can be taken from Equations A.26, A.27 and 

A.28 so that 

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑥𝜕𝑦
+

𝜕2𝑤

𝜕𝑥𝜕𝑧
 

can be rewritten as  
𝜕𝜀

𝜕𝑥
 . Using the previous derivation, Equation A.49 is simplified 

to be  

𝜌
𝜕2𝑢

𝜕𝑡2
= (𝜆 + 𝐺)

𝜕휀

𝜕𝑥
+ 𝐺∇2𝑢  (A.50) 

 

Where  

∇2=
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
 (A.51) 
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Similarly in the 𝑦 and 𝑧 directions 

𝜌
𝜕2𝑣

𝜕𝑡2
= (𝜆 + 𝐺)

𝜕휀

𝜕𝑦
+ 𝐺∇2𝑣  (A.52) 

𝜌
𝜕2𝑤

𝜕𝑡2
= (𝜆 + 𝐺)

𝜕휀

𝜕𝑧
+ 𝐺∇2𝑤  (A.53) 

By differentiating Equations A.50, A.52 and A.53 with respect to 𝑥, 𝑦 and 

𝑧 respectively and then summing the Equations all together, the result would be  

𝜌
𝜕2휀

𝜕𝑡2
= (𝜆 + 2𝐺)(∇2𝑒) (A.54) 

By dividing both sides on 𝜌  

𝜕2휀

𝜕𝑡2
=

(𝜆 + 2𝐺)

𝜌
∇2휀 = 𝑣𝑝∇

2휀  (A.55) 

 

Where 𝑣𝑝is defined as the compressional wave velocity and is given by 

𝑣𝑝 =
𝜆 + 2𝐺

𝜌
 (A.56) 

For the rest of this text, Compression waves can be referred to as Primary waves or 

P-waves. 
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A.4.4. Equations for shear waves in an infinite elastic medium 

By differentiating Equation A.52 with respect to 𝑧 and Equation A.53 with respect 

to 𝑦 the following Equations are obtained 

𝜌
𝜕2

𝜕𝑡2
(
𝜕𝑣

𝜕𝑧
) = (𝜆 + 𝐺)

𝜕휀

𝜕𝑦𝜕𝑧
+ 𝐺∇2

𝜕𝑣

𝜕𝑧
   (A.57) 

𝜌
𝜕2

𝜕𝑡2
(
𝜕𝑤

𝜕𝑦
) = (𝜆 + 𝐺)

𝜕휀

𝜕𝑦𝜕𝑧
+ 𝐺∇2

𝜕𝑤

𝜕𝑦
    (A.58) 

By subtracting the two previous Equations, the following is obtained 

𝜌
𝜕

𝜕𝑡2
(
𝜕𝑤

𝜕𝑦
−
𝜕𝑣

𝜕𝑧
) = 𝐺∇2 (

𝜕𝑤

𝜕𝑦
−
𝜕𝑣

𝜕𝑧
) (A.59) 

 And it is already known from Equation A.32 that (
𝜕𝑤

𝜕𝑦
−

𝜕𝑣

𝜕𝑧
) = 2𝜔𝑥. Equation A.59 

can be rewritten as 

𝜌
𝜕2𝜔𝑥

𝜕𝑡
=

𝐺

𝜌
∇2𝜔𝑥 = 𝑣𝑠

2∇2𝜔𝑥 (A.60) 

Where 𝑣𝑠 is defined as the shear wave velocity. For the rest of this text Shear waves 

are refereed to S-Waves. 

A.4.5. Rayleigh waves (R-Wave) 

Another type of elastic waves is the Rayleigh wave. This type travels at or near the 

free surface boundary of an elastic medium. Its velocity is close to that of a shear 

wave. Figure A.6 shows variation of 𝑣𝑟/𝑣𝑠 with the Poisson’s ratio. Where 𝑣𝑟 is the 

Rayleigh wave velocity. 
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Figure A.6: Variation of 𝑣𝑟/𝑣𝑠   with the Poisson’s ratio. 

 

A.4.6. Attenuation of elastic waves with distance from source of vibration 

As waves travel through an elastic medium, they lose energy. Part of this energy is 

absorbed by the medium due to what is known as damping, geometrical and 

hysteretic. Geometrical damping is the loss of amplitude due to spreading away 

from the source, while the hysteretic damping of the medium is related to the 

material properties or dry friction of a medium in case of soil. Body waves decay 

with distance faster than surface waves and Rayleigh waves. The decay of elastic 

waves follows the Equation 

𝑢𝑦𝑑𝑟 =
𝑢𝑦𝑑0

𝑟𝑛
 

Where  

𝑛 =  

{
 
 

 
 
2 𝑓𝑜𝑟 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑎𝑛𝑑 𝑠ℎ𝑒𝑎𝑟 𝑤𝑎𝑣𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒              

 
1 𝑓𝑜𝑟 𝑏𝑜𝑑𝑦 𝑤𝑎𝑣𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑚𝑒𝑑𝑖𝑢𝑚                           

 
1

2
 𝑓𝑜𝑟 𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ 𝑊𝑎𝑣𝑒𝑠                                                                      

  

 

(A.61) 
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 In Figure A.7-a, a disturbance at a source point is shown and in Figure A.7-b, the 

arrival time and amplitudes of the waves are shown. From Figure A.7, it is obvious 

that a Rayleigh wave will arrive last at a time close to the S-wave and the R-wave 

will have the highest amplitude compreaed to the compressional and shear wave. A 

P-wave is the fastest among the waves.  

 

Figure A.7: (a) Disturbance caused at a point on the surface. (b) the amplitude of 

different wave and their arrival time. 

A.5. Reflection and refraction of elastic waves within a horizontally layered 

elastic medium 

When traveling body waves (P-waves and S-waves) reaches the boundary 

between two elastic layers with different elastic properties, some of the waves will 

be reflected and some will be refracted and will continue traveling through the 

second layer. P-waves and S-waves behave differently in multilayered systems. The 

particle motion in the case of P-wave propagation is continuous to the original P-

wave ray (see Figure A.8-a), whereas the particle motion of in the case of S-wave 

propagation can be divided to two directions: 

    
 

Source             Receiver 

Time 

Amplitude 

P-Wave 

S-Wave   R-Wave 

(a) (b) 
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1- SH-waves which cause the particles to move in the plane of propagation as 

presented in Figure A.8-b. 

2- SV-waves that cause the particles to move in a direction that is perpendicular to 

the plane of propagation as shown in Figure A.8-c. 

In the case of a P-wave at the interface of two layers, there will be two 

reflected waves and two refracted waves. The first of the reflected waves will be of 

the same nature of the source wave, a P-wave, while the second one will be of the 

nature of an SV-wave. As for the refracted waves, the same applies; a P-wave and 

SV-wave will be generated (see Figure A.8-a). 

 For the first type of an S-wave which is an SH-wave, there would be a 

reflected SH-wave and a refracted SH-wave as result of facing a new elastic layer. 

See Figure A.8-b. 

 As for SV-waves, the result of facing a new layer would be two reflected 

waves which are a P-wave and an SV-wave and two refracted waves, a P-wave and 

an SV-wave as shown in Figure A.8-c.  
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Figure A.8: Reflection and refraction of body waves at the interface between two 

layers. 
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A.6. Theories and applications for dynamic soil-foundation interaction 

Consider a footing similar to that presented in Figure A.9. The footing has a 

mass, 𝑚, a radius, 𝑟0 and is subject to a dynamic force 𝑄 with an amplitude of 𝑄0. 

The elastic properties of the half space are the shear modulus, 𝐺, Poisson’s ratio, 𝜇, 

and a mass density 𝜌. Several solutions for such a problem exist to find the dynamic 

displacement of the elastic half space under such conditions. The upcoming sections 

will present some of these solutions along with assumptions made to simplify the 

problem.  Furthermore, a comparison between some of the theories and field testing 

will also be presented. 

 

Figure A.9: Foundation subject to dynamic load. 

 

A.1.1. The work of Reissner (1936) 

Lambe in 1904 studied the problem of a vertical point load acting 

dynamically over an elastic half-space. The problem is known as “the Dynamic 

Boussinesq Problem.” Reissner, (1936) studied the case where a uniformly 
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𝑄0𝑒
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distributed load is acting dynamically on a circular flexible foundation. The nature 

of the pressure distribution under the footing for such a load case is presented in 

Figure A.10-a.  This was done by integrating the problem of a point load which was 

studied by (Lambe, 1904). The vertical displacement was found to be  

𝑢 = (
𝑄0𝑒

𝑖𝜔𝜏

𝐺𝑟0
)(𝑓1 + 𝑓2) (A.62) 

where 𝑄0 is the amplitude of the load applied, 𝑢 is the dynamic displacement at the 

center of the foundation, 𝐺 is the shear modulus of the elastic medium, 𝑟0 is the 

radius of the foundation and 𝑓1 and 𝑓2 are called displacement functions which are 

functions of a dimensionless frequency 𝑎0 and are shown in Figure A.11 and Figure 

A.12 respectively, while 𝑎0 is obtained as per Equation A.63. 

𝑎0 =
𝜔𝑟0
𝑣𝑠

 (A.63) 

Where 𝜔 is the frequency of motion in radians per second and 𝑣𝑠 is the shear wave 

velocity in meters per second and 𝑟0 is the radius of said footing. 
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Figure A.10:Pressure distribution under footing subject to dynamic load. (a) 

Uniform pressure distribution, (b) Pressure distribution under a rigid footing  and 

(c) Parabolic pressure distribution. 

 

 

Figure A.11: Values of 𝑓1  vs. dimensionless frequency 𝑎0 for different Poisson’s 

ratios. 
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Figure A.12: : Values of 𝑓2  vs. dimensionless frequency 𝑎0  for different 

Poisson's ratios. 

 

Using Equation A.62 and applying equilibrium in forces, the following Equation 

for the amplitude of motion can be derived 

𝐴𝑧 = (
𝑄0

𝐺𝑟0
)𝑍 (A.64) 

Where 𝑍 is a dimension-less amplitude and is given by 

𝑍 =  √
𝑓1
2 + 𝑓2

2

(1 − 𝑏𝑎0
2𝑓1)2 + (𝑏𝑎0

2𝑓2)2
 (A.65) 

The term 𝑏 refers to a dimensionless mass ratio that relates the mass of the 

foundation, 𝑚, and the machine with the mass density of the soil, 𝜌, and is defined 

as  

𝑏 =
𝑚

𝜌𝑟0
3 =

𝑊

𝛾𝑟0
3 (A.66) 
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 Where 𝛾 is the unit weight of the soil and 𝑊 is the weight of the foundation plus 

that of the machine. So far the dynamic elastic response for the case of a uniformly 

distributed pressure on a flexible foundation was given (Figure A.10-a). Quinlan 

(1953) and Sung (1953) picked up on Reissner’s work and studied the response of 

a load distribution that is similar to that show in Figure A.10-b and A.10-c. 

Equations A.64 and A.65 applies to the case of a rigid foundation (Figure A.10-b) 

but the values of 𝑓1 and 𝑓2 are different and are shown in Figure A.13 and A.14. 

 

 

Figure A.13: Values of 𝑓1 for a rigid foundation. 
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Figure A.14: Values of 𝑓2 for a rigid foundation. 

 

A.4.7. The Work of Lysmer & Richart (1966) on Lumped Parameter System 

for Vertical Motion  

Lysmer & Richart (1966) work reduces the problem of the elastic half-space 

theory to a model of a single degree of freedom consists of a mass, a spring and a 

dashpot damper similar to that shown in Figure A.1. The required spring and 

dashpot constants are obtained from the elastic theory. The mass is equal to the 

mass of the vibrating machine and the supporting footing.  

Generally, the Equations for calculating the required parameters are 

𝑘 =
4𝐺𝑟0
1 − 𝜇

 (A.67) 

𝑐 =
3.4

1 − 𝜇
𝑟0
2√𝜌𝐺 

(A.68) 

Where 𝐺 is the shear modulus of the soil, 𝜌 is the density of the soil, 𝜇 is Poisson’s 

Ratio, and 𝑟0 is the radius of the supporting footing. After these two constants are 
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calculated, the response of the soil can be obtained using the procedure presented 

in sections A.1-A.3 to calculate the response of the single degree of freedom system. 

 Lysmer and Richart work is of importance because of its simplicity. 

Moreover, his work showed that any elastic dynamic system could be reduced to a 

single degree of freedom at the point of interest by identifying the equivalent spring 

and dashpot constants. Since then  development in the area of machine vibrations 

has continued with different loading settings (e.g., horizontal and rocking 

vibrations) different ground conditions (e.g., rock base). The mass ratio 𝐵, spring 

constant 𝑘, and damping ratio 𝐷 for a rigid foundation under different types of 

loading are in shown Table A.1. The Equations in Table A.1 are based on 

continuation of Lysmer Solution. 
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Table A.1: Values of mass ratio, spring constant and damping ratio for different 

types of dynamic loadings. 

Degree of freedom Mass ratio 

 

Spring constant 

 

Damping ratio 

Vertical 𝐵𝑣 =
(1 − 𝜇)

4

𝑚

𝜌𝑟0
3 𝐾𝑣 =

4𝐺𝑟0
1 − 𝜇

 𝐷𝑣 =
0.425

√𝐵𝑧

 

Sliding 𝛣ℎ =
(7 − 8𝜇)

32(1 − 𝜇)

𝑚

𝜌𝑟0
3 𝐾ℎ =

8𝐺𝑟0
3

2 − 𝜇
 𝐷ℎ =

0.288

√𝐵ℎ

 

Rocking 𝐵𝑟 =
3(1 − 𝜇)

8

𝛪𝑟

𝜌𝑟0
3 𝐾𝑟 =

8𝐺𝑟0
3

3(1 − 𝜇)
 𝐷𝑟 =

0.15

(1+𝐵𝑟)√𝐵𝑟
  

Torsional 𝐵𝑡 = 
𝐼𝑡

𝜌𝑟0
3 𝑘𝑡 =

16𝐺𝑟0
3

3
 𝐷𝑡 =

0.5

1 + 2𝐵𝑡
 

 

A.7. Dynamic properties of soil 

Although soil is not an elastic medium nor is it homogeneous, the dynamic 

properties and mathematics of an elastic medium can be used to obtain reasonable 

approximations for the response of soil to dynamic loading. The mathematics of a 

dynamic elastic medium forms the basis of theories presented before. It is then of 

importance to be able to obtain the dynamic properties of soil. Several laboratory 

tests are available to determine these mechanical properties that are needed to apply 

the theory of elasticity to soil dynamics. From these tests, several correlations 

between soil properties are made to further aid in the analysis.  
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Soil tends to behave nonlinearly when under stress. If the applied loading is 

cyclic, the behavior is called the backbone curve and looks like that shown in Figure 

A.15. This nonlinear behavior can be reduced to a linear behavior using two 

parameters, the shear modulus and the damping ratio. It is important that this 

reduction will require prior knowledge of the expected strain level the soil will be 

exposed to. This is due to the fact that the two said parameters; the shear modulus 

and the damping ratio; vary with the strain level.  With prior knowledge of the strain 

level, a dynamic soil test can be selected to determine the required parameters. 

When the shear modulus and the damping ratio are obtained, the soil behavior can 

be modeled within a reasonable accuracy using the elastic theory.  

 

Figure A.15: Backbone curve. 

 

A.7.1. Laboratory testing and correlations for dynamic soil properties 

A.7.1.1. Resonant column test 

In the Resonant column test, a soil sample is excited to vibrate until it 

reaches one of its natural modes. Once resonated, the frequency at resonance is 

obtained to calculate the wave velocity of the soil. If the soil is excited in torsion, 

the wave velocity calculated will be that of a shear wave. On the other hand, if the 
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soil is excited longitudinally, the wave velocity obtained will be that of the 

compression wave.  

Two types of the resonant column test are used. They differ in the applied 

boundary conditions on the soil sample. The two types are free-fixed and free-free 

boundary conditions. Figure A.16 shows a schematic drawing of the setup for the 

resonant column test. Sinusoidal force is applied to the specimen through the power 

source and an amplifier. Together, they deliver the force to the driver. The pick-up 

end is used to obtain the soil specimen response. Obtaining of dynamic soil 

properties (𝐺 𝑎𝑛𝑑 휁) depends on the type of the boundary condition and the force 

(vertical or torsional) applied to the soil sample.  

 

Figure A.16: : Schematic drawing of the resonant column test. 

Equations for obtaining 𝐸 and 𝑣𝑝 from a fixed free resonant column test with 

vertical dynamic loading are 
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𝐸 = 39.48 (
𝑓𝑛
2 ∗ 𝐿2

𝛼2
)𝜌 (A.69) 

𝑣𝑝 =
2𝜋𝑓𝑛𝐿

𝛼
 (A.70) 

Where 𝛼tan (𝛼) =
𝐴𝐿𝛾

𝑊
,  𝐿 is the length of the specimen, 𝑊 is the weight of the 

attachments on top of the soil sample, 𝛾 is the unit weight of the soil sample, 𝑓𝑛 is 

the natural frequency obtained and 𝜌 is the density of the soil sample. 

 

 

 Similarly, Equations from a torsional load applied to the soil for obtaining 𝑣𝑠 and 

𝐺 of the soil sample are  

𝐺 =  39.48 (
𝑓𝑛𝐿

𝛼
)
2

𝜌 (A.71) 

𝑣𝑠 =
2𝜋𝑓𝑛𝐿

𝛼
 (A.72) 

Here, 𝑎 =
2𝜋𝑓𝑛

𝑣𝑠
tan (

2𝜋𝑓𝑛𝐿

𝑣𝑠
) = 𝛼tan (𝛼). Other symbols definitions are similar to that 

of Equations A.69 and A.70.  

Other laboratory tests include cyclic shear test and cyclic tri-axial test. These 

tests are better used to determine soil strength parameters for large strains and when 

nonlinearity is expected. Figure A.17 shows different laboratory and field tests with 

the range of strain level each test will produce. 
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Figure A.17: : Range of strain levels produced by different shear tests (Das & 

Ramana, 2010). 

 

A.7.1.2. Correlations for shear modulus at low strains in cohesion-less soils 

B. O. Hardin & Richart (1963) conducted several resonant column tests on 

dry Ottawa sands. The shear strain amplitude was at 10−3 %. The results of their 

experiments showed that the shear wave velocity is independent of the grain-size 

distribution, soil gradation and the relative density of the specimen. Instead, the 

resulting shear wave velocities were dependent on the void ratio and the effective 

confining pressure. The results of these experiments are shown in Figure A.18.  

 From Figure 2.18, it can be seen that the higher the confining pressure, the 

higher the resulting shear wave velocities. This finding is in accordance to the fact 

that at deeper earth strata, the shear wave velocities are higher than those at 
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shallower depths. It is also shown in Figure A.15 that at the same confining pressure 

higher void ratios has shear wave velocity that is lower than at low void ratios (i.e., 

the shear wave velocity is inversely correlated with the void ratio). The correlation 

of the shear wave velocity with the confining pressure and the void ratio apply 

indirectly with the shear modulus.  

A.7.1.3. Correlations for shear modulus at low strains for normally 

consolidated cohesive soils 

B.O. Hardin & Black (1968) experimented with normally consolidated 

kaolinite and Boston Blue clay with a resonant column test. Their findings are 

presented in Figure A.19. The shear modulus was found dependent on the void ratio 

at a certain confining pressure and can be estimated as 

𝐺 = 1230
(2.973 − 𝑒)2

(1 + 𝑒)
𝜎𝑐
′ 1/2

 (A.69) 

In Equation A.69 the shear modulus 𝐺 and the effective confining pressure are both 

in 𝑙𝑏𝑠/𝑖𝑛2. 
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Figure A.18: Variation of shear wave velocity with the void ratio for different 

confining pressures (B O Hardin & Richart, 1963). 
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Figure A.19:  Correlation of shear modulus with void ratio for normally 

consolidated clays (B. O. Hardin & Black, 1968). 

 

A.7.1.4. Correlations for shear modulus at low strains for overly consolidated 

cohesive soils 

B. O. Hardin & Black (1968) consolidated some specimens before testing 

to see how pre-consolidation pressure might affect the correlation between shear 

modulus and void ratio. Equation A.69 will be modified so that the shear modulus 

will be calculated as   

𝐺 = 1230
(2.973 − 𝑒)2

(1 + 𝑒)
(𝑂𝐶𝑅)𝑘𝜎𝑐

′ 1/2
 (A.70) 

In (A.70) the term 𝑘 depends on the plasticity index of the clay specimen. This 

variation is shown in Figure A.20.  
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Figure A.20:  Variation of the term k in Equation 2.70 with the plasticity index (B. 

O. Hardin & Black, 1968). 

 

A.7.1.5. Correlations for shear modulus and damping ratio with strain level 

 In order to obtain a reliable approximation of soil response to a dynamic 

load, the shear modulus and the damping ratios must be identified correctly and at 

the strain level for the case at hand. A machine generating a dynamic load of low 

amplitude will induce a low strain in the soil skeleton. At this low strain level, the 

shear modulus and the damping ratio will defer greatly from those at higher strain 

level produced by something like an earthquake or an explosion. Generally, at low 

strains, the soil will respond with a high shear modulus and low damping. At higher 

strains, the soil will respond with a low shear modulus but with higher damping. 

This unique relation is reported by several scholars of geotechnical engineering and 

their results are shown in Figure A.21 for the shear modulus and in Figure A.22 for 

the damping ratio. 
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Figure A.21: Normalized shear modulus values at different strain levels (Rollins 

& Evans, 1998). 

 

From the data, a best-fit curve reported by Rollins & Evans (1998) is shown in 

Figure A.21. The curve is a hyperbolic curve and the shear modulus according to 

this curve is  

𝐺

𝐺𝑚𝑎𝑥
=

1

1.2 + 16𝛾(1 + 10−20𝛾)
 (A.70) 

 Where 𝐺 is the shear modulus and 𝐺𝑚𝑎𝑥 is the maximum shear modulus, which is 

the shear modulus measured at very a low strain level of 10−4% (Rollins & Evans, 

1998).  
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 A similar correlation for the damping ratio with the shear strain is reported 

by Rollins & Evans (1998). The damping is correlated with shear strain as 

𝐷 = 0.8 + 18(1 + 0.15𝛾−0.9)−0.75 (A.71) 

 

These relations are important to accurately and easily model a dynamic problem. If 

the expected strain level is known, the non-linear soil stress-strain curve can be 

reduced to an equivalent shear modulus and damping ratio. This correlation will 

also help aid in selecting the proper dynamic soil testing method as some testing 

methods produce higher strains than others which will yield a higher damping ratio 

while the shear modulus will be lower than a low strain inducing laboratory test. 
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B. A program for static and dynamic analysis of single piles subjected to 

vertical loading 

 A program that analyzes piles subjected to vertical loading is created using 

1-dimensional finite element approach such as that described in section 2.3.1 of this 

thesis. The purpose of the program is to use it in comparing results with the 3D 

finite element method used in this research in cases where no analytical solution is 

available. The following will discuss the math behind the program. A step by step 

discussion on how the program is created is provided and the full code is provided 

afterward. The program was created in Mathematica®. Mathematica is 

computational language that can be used in programming engineering applications. 

A graphical representation of the problem is shown in Figure B.1. In Figure B.1, it 

is shown that the pile is divided into segments. Each segment represents a bar 

element. Each element is then connected to a spring and a damper along the shaft. 

These springs and dampers represent soil behavior along the pile shaft. The spring 

represent friction provided by the soil and the damper will represent geometrical 

damping of the soil at the side. At the base, the bar is connected to a spring and a 

damper both at the side and from beneath. The bottom spring and damper attached 

to the bottom segment represent soil behavior at the tip of the pile.  
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Figure B.1: Graphical representation of the problem of a pile subjected to vertical 

static and dynamic load modeled as 1-D bar elements. 

 

B.1. Program Input and analysis  

The program input variables are the load, its frequency, pile modulus of 

elasticity, pile density, pile geometry (i.e., length, radius and cross-sectional area), 

mass supported at the top, and finally, soil material properties (Shear modulus, 

Poisson’s ratio, and density) . These inputs are related to the problem. another input 

is needed for analysis which includes time step size and number of segments the 

pile is divided into.  
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 The program will take the input and generate data for analysis. Data required 

for analysis includes pile segment stiffness, pile segments mass matrices and side 

and base soil spring and dampers coefficients. The program then creates global 

stiffness, mass and damping matrices needed for analysis. A load vector is created 

depending on loading data. A static and a dynamic analysis are run, and static and 

dynamic displacements can be determined. The following is a step by step 

explanation of the math behind the program. 

1- The input of pile data: 

1- 𝐸𝑝:  pile modulus of elasticity. 

2- 𝜌𝑝:: pile density. 

3- 𝐴𝑝: pile cross-sectional area. 

4- 𝐿𝑝: pile length. 

5- 𝑟: pile radius 

6- 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠: number of segments the pile is cut into. 

7- 𝑀: mass supported at the top of the pile.  

2- The generation of pile segment stiffness and mass matrices.  

8- The stiffness matrix of the pile is 2 by 2 matrix and is calculated as 

𝑘𝑝 =
𝐸𝑝𝐴𝑝

(𝐿𝑝/𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠) 
 [

1
−1

   
−1
1
]  (B.1) 

9- The length of the pile is divided by the number of segments in Equation B.1 

since each bar element length is equal to total pile length over the segment 

number.  
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10- The mass matrix of a pile segment is calculated as  

𝑀𝑝 = 𝜌𝑝 𝐴𝑝  (
𝐿𝑝

𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠
) [

1/2 0
0 1/2

] (B.2) 

3- The input of soil profile data which includes shear modulus, the mass density, 

and Poisson’s ratio. These data need to be in Mathematica table format. 

4- From soil profile properties table, a table is created by the program. This table 

contains the springs and dampers coefficients that represent soil along the shaft 

and at the tip of the pile. For side spring and damper, the following Equations 

are used to determine the coefficients per unit length of pile (Randolph & 

Simons, 1986) 

𝑘𝑠 =
1.375 𝐺𝑠

𝜋𝑟𝑝
 

(B.3) 

𝑐𝑠 =
𝐺𝑠

𝑣𝑠
 

(B.4) 

In B.3 and B.4, 𝑘𝑠 is the side spring coefficient, 𝑐𝑠 is the damper coefficient, 

𝐺𝑠 is the side soil shear modulus at a segment, 𝑟𝑝 is the pile radius, and 𝑣𝑠 is 

the soil shear modulus of elasticity. 

For the spring and the damper at the bottom, the following Equations are 

used 

𝑘𝑏 =
4𝐺𝑠𝑟𝑝

1 − 𝜇𝑠
 

(B.5) 

𝑐𝑏 =
3.4𝑟𝑝

2

1 − 𝜇𝑠
𝜌𝑠𝑣𝑠 

(B.6) 
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8- Now that the stiffness and damping are calculated, the global stiffness, damping 

and mass matrices are assembled. It will have a size of (segments+1) by 

(segments+1).  Note the mass supported on top the pile will be added to the first 

entry of the global mass matrix (i.e., entry [row 1, column 1]. 

9- The force vector is created and the static force is applied.  

10- Static displacement vector is calculated as 

{𝑢𝑠} =  [𝐾𝐺]
−1{ 𝐹} (B.7) 

  

Where {𝑢𝑠} is the global displacement vector, [𝐾𝐺] is the global stiffness matrix, 

and {𝐹} is the global force vector.  

11- From {𝑢𝑠}, the static displamcent at the top of the pile is calculated and static 

stiffness of the pile is determined by 

𝑘 =
𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑓𝑜𝑟𝑐𝑒

𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑎𝑡 𝑡ℎ𝑒 𝑡𝑜𝑝 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑖𝑙𝑒
 

(B.7) 

12- The frequency of the dynamic load is set.  

13- A trapezoidal algorithm is used to calculate the dynamic displacement see flow 

chart in Figure B.2. 

14- From dynamic analysis, the dynamic displacement can be calculated at a certain 

frequency. 

15- Using these steps, stiffness, and damping can be obtained according to section 

4.4 of this thesis. 
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Figure B.2: Flowchart of a trapezoidal algorithm for dynamic analysis. 
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B.2.  Program verification 

The program’s dynamic and static capabilities are compared to results of a 

pile in homogeneous soil obtained by this study. 3 different values of the soil shear 

modulus are chosen and a plot of displacement against frequency is plotted using 

the two methods, 1D FEM (i.e., this program) and finite element analysis using 

axisymmetric finite elements (i.e., study results). The results are plotted in Figures 

B.3, B.4 and B.5. Note that in these Figures, the displacement at frequency equals 

to zero is the static displacement of the pile. other than the displacement at the 

resonant frequency, the program was able to obtain results within less 10% in 

difference. At resonance, the program computes a dynamic displacement that is 

40% to 50% higher than that computed using finite element analysis with 

axisymmetric elements. 

 

Figure B.3: Comparison of dynamic displacement computed using axisymmetric 

finite elements and program for soil shear modulus of 8.6 × 107𝑃𝑎. 
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Figure B.4: Comparison of dynamic displacement computed using axisymmetric 

finite elements and program for soil shear modulus of 2.3 × 107𝑃𝑎. 

 

 

 
Figure B.5: Comparison of dynamic displacement computed using axisymmetric 

finite elements and program for soil shear modulus of 1.7 × 106 𝑃𝑎. 
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Appendix B.2 discusses the program created by the author for static and dynamic 

analysis of pile foundation subjected to vertical dynamic loading. The purpose of 

the program is to compare its analysis results with 3D finite element analysis results 

obtained by this research in cases where no analytical solution is available. The 

program details are discussed. It was compared with 3D finite element analysis for 

homogenous elastic soil cases and it was found that the program yields comparable 

results and is suitable to use in this research.  

The following text is the actual program code: 

(*Program dynamic vertical pile on springs and damper*) 

(*load data*) 

p = 22000*0.25*0.25*Pi; 

(*frquency*) 

freq = 16.35; 

(*pile properties*) 

Ep = 2.1*10^10; (*Modulus of elasticity*) 

Ap = 0.25*0.25*3.14;(*cross sectional area*) 

Lp  = 10; (*Pile length*) 

r = 0.25; (*pile radius*) 

rp = 2500; (*pile density*) 

(* the pile is divided into segments*) 

segments = 10; 

 

(*mass on top of pile*) 

m = 65000; 
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(*stiffness matrix of one segment*) 

kp = ({ 

     {Ep*Ap/(Lp/segments), -1*Ep*Ap/(Lp/segments)}, 

     {-1*Ep*Ap/(Lp/segments), Ep*Ap/(Lp/segments)} 

    }); 

(*mass matrix of a pile segment*) 

mp = ρp*Ap*(Lp/segments) ({ 

      {1/3, 0}, 

      {0, 1/3} 

     }); 

(*time step size*) 

dt = 0.0001; 

(*soil properties*) 

ρ = 1800; (*soil density. might change to be varied according to layers, would 

require significant program changes. in the calculation of the spring and damper 

coefficients  a matrix would be used instead of one variable *) 

μ = 0.45 ;(*soil Poisson's ratio*)  

(*shear modulus profile a matrix of size (segments+1) by 1 could be \ 

uniform or varied depending onlayers*) 

Gs = Array[2.88*10^8 &, {segments + 1, 1}]; 

(*soil spring modulus: a(segments+1) by 1 matrix describe spring \ 

constant at pile shaft and then  

spring constant at base at entry segments+1*) 

ks = Array[0 &, {segments + 1, 1}]; 
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(*soil damper coefficient: an 11 (segments+1) by 1 matrix describes damper 

constant at pile shaft and then spring constant at base at entry segments+1*) 

cs = Array[0 &, {segments + 1, 1}]; 

(*fill in the soil spring constant and damper constants by randolph and simons 

(1986)*) 

Do[ 

     

    cs[[i, 1]] += Gs[[i, 1]]/Sqrt[Gs[[i, 1]]/\[Rho]] *Lp/segments; 

    ks[[i, 1]] += 1.375*Gs[[i, 1]]/(3.14*r)*Lp/segments; 

    , {i, 1, segments, 1}]; 

(*fill the base spring and damper constants*) 

ks[[segments + 1, 1]] += 4*Gs[[segments + 1, 1]]*r/(1 - \[Mu]); 

cs[[segments + 1, 1]] +=  

  3.4*r^2/(1 - \[Mu])*Sqrt[Gs[[segments + 1, 1]]/\[Rho]]; 

(*construct the global stiffness matrix m damping and mass matrices \ 

size = (segments+1) by (segments+1) *) 

kg = Array[ 

  0 &, {segments + 1, segments + 1}]; (*global stiffness matrix*) 

cg = Array[ 

  0 &, {segments + 1, segments + 1}];(*global damper matrix*) 

mg = Array[0 &, {segments + 1, segments + 1}];(*global mass matrix*) 

(*fill these matrices*) 

(*1 fill kg with pile stiffnesses*) 

(*loop on eleemnts = # of segments*) 
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Do[ 

  (*fill global stiffness*) 

  kg[[i, i]] += kp[[1, 1]]; 

  kg[[i, i + 1]] += kp[[1, 2]]; 

  kg[[i + 1, i]] += kp[[2, 1]]; 

  kg[[i + 1, i + 1]] += kp[[2, 2]]; 

  (*fill golbal dampign marix*) 

  cg[[i, i]] += cs[[i, 1]]; 

  cg[[segments + 1, segments + 1]] = cs[[segments + 1, 1]]; 

  (*fill global mass*) 

  mg[[i, i]] += mp[[1, 1]]; 

  mg[[i, i + 1]] += mp[[1, 2]]; 

  mg[[i + 1, i]] += mp[[2, 1]]; 

  mg[[i + 1, i + 1]] += mp[[2, 2]]; 

  , {i, 1, segments, 1}]; 

(*add soil stifffness to global mstiffness matrix*) 

Do[ 

   kg[[i, i]] += ks[[i, 1]]; 

   , {i, 1, segments + 1, 1}]; 

(*add mass on top of pile*) 

mg[[1, 1]] += m; 

(*Global Force Matrix*) 

F = Array[0 &, {segments + 1, 1}]; 

F [[1, 1]] = 22000*Pi*0.25^2; 
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us = (Inverse[kg].F)[[1, 1]];(*static displacement*) 

Print["static displacement =" ] 

Print[us]; 

(*Begin Dynamic Analysis here using trapezoidal algorithm*) 

(*applied variable force vector*) 

F = Array[0 &, {segments + 1, 1}]; 

(*incremental displacement vector size segments +1*) 

dunew = Array[0 &, {segments + 1, 1}]; 

(*displacment vector at step n at iteration i*) 

unow = Array[0 &, {segments + 1, 1}]; 

(*displacment vector at step n+1 at iteration i*) 

unew = Array[0 &, {segments + 1, 1}]; 

(*acceleration at n i*) 

accnow = Array[0 &, {segments + 1, 1}]; 

(*acceleration at n+1 at iteration i*) 

accnew = Array[0 &, {segments + 1, 1}]; 

(*velocity at n *) 

velnow = Array[0 &, {segments + 1, 1}]; 

(*velocity at n+1 at i*) 

velnew = Array[0 &, {segments + 1, 1}]; 

(*internal loadvector*) 

fintg = Array[0 &, {segments + 1, 1}]; 

(*ud Table to record dynamic displacment results)*) 

udTable = Table[0, {i, 10001}, {j, 1}]; 
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(*begin trapezoidal algorithm*) 

(*load step number*) 

sn = 1; 

(*loop on steps n*) 

Do[ 

  (*set the accleration at n+1 to 0*) 

  accnew = Array[0 &, {segments + 1, 1}]; 

  (*get veleocity at n+1 and displacment at n+1*) 

  velnew = velnow + 0.5*accnow*dt; 

  unew = unow + velnow*dt + (dt/2)^2*accnow; 

  (*get load at current step*) 

  F[[1, 1]] = p*Sin[n*freq*2*Pi]; 

  

  (*start iteration to get unow velnow and accnow at n+1*) 

  Do[ 

    (*get big trapezoidal Equation*) 

    TeqL = kg + (2/dt)*cg + (2/dt)^2*mg;(*left side*) 

    TeqR = F - kg.unew - mg.accnew - cg.velnew; 

    dunew = Inverse[TeqL].TeqR; 

    unew += dunew; 

    velnew = (2/dt)*(unew - unow) - velnow; 

    accnew = (2/dt)*(velnew - velnow) - accnow; 

    (*get convergence*) 

    (*intiate values*) 
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    convTop = 0; 

    convBot = 0; 

    Do[ 

      convTop += dunew[[k, 1]]^2; 

      convBot += unew[[k, 1]]^2; 

      , {k, 1, segments + 1, 1}]; 

    (*check convergence*) 

    If[And[n != 0, Sqrt[convTop]/Sqrt[convBot] <= 0.0001], Break[];]; 

    (*If[And[n\[NotEqual]0,Sqrt[F[[1,1]]-(kg.unew)[[1, 

  1]]\[LessEqual]0.0001]],Print["Converged"];Break[];]*) 

    , {i, 1, 200, 1}]; 

   (*udate values at n*) 

   unow = unew; 

   velnow = velnew; 

   accnow = accnew; 

   (*record results*) 

   udTable[[sn, 1]] += unow[[1, 1]]; 

   sn += 1 

  , {n, 0, 1, dt}] 

(*export dynamic analysis results to excel for processing*) 

Export["udTable.csv", udTable]; 
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