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1 Introduction 

1.1 Background  
 

One of the challenges for policy makers is to protect society from the socio-economic 

consequences of environmental disasters resulting from floods and droughts, where being 

able to predict and respond quickly to potential threats is an important management tool.  

Floods and droughts are both directly a result of extreme weather conditions. While 

floods are local phenomena and typically affect small areas for relatively short periods, 

they often have significant and long lasting impacts on people living in the affected areas. 

Droughts are regional phenomena affecting large areas for relatively long periods. While 

farmers and hydro-electrical power plants are directly affected by droughts, the increase 

in the prices of food and electricity affect a broader segment of society.  

Numerical Weather Prediction (NWP) models operated by national weather services 

are used to forecast the extreme weather conditions that result in droughts and floods. 

However, the reliability of these models is strongly influenced by the uncertainty in the 

soil moisture conditions. Various investigations have shown through a proper soil 

moisture initialization, the timing and severity of extreme events, such as floods (United 

States 1993, Bosilovich and Sun 1999) and extreme droughts (Europe 2003, Ferranti and 

Viterbo 2006) can be predicted more accurately, which would give governmental 

agencies more time to respond to potential treats. 

Observations acquired by spaceborne passive microwave instruments have shown 

sensitivity to variations in soil moisture (Bindlish et al. 2003, Wen et al. 2003 and Owe et 

al. 2001). Based on this characteristic of passive microwave instruments, satellite 

missions have been and are being proposed to space agencies for monitoring soil 
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moisture on a global scale [e.g. Soil Moisture and Ocean Salinity (SMOS) mission, 

Aquarius and Soil Moisture Active Passive (SMAP)].  Utilization of accurate soil 

moisture products derived from these satellite observations within hydrological and 

weather forecasting models would greatly improve predictions having applications in 

various research fields, such as flood forecast, drought monitoring and agriculture. 

However, among the challenges in retrieving soil moisture from spatially distributed 

passive microwave observations (brightness temperature, TB) is the requirement to 

account for the effects of vegetation.  For large scale soil moisture retrieval applications, 

correcting for the vegetation effects is based on the semi-empirical radiative transfer 

approach (Mo et al. 1982), which accounts for the: 1) attenuation of the microwave 

surface emission, 2) emission by vegetation and 3) vegetation emission scattered to 

surface reflected by the soil. Attenuation of the soil surface emission and emission by 

vegetation are accounted for through formulation of the transmissivity coefficient (γ), 

while scattering of surface emission within the canopy is parameterized by the single 

scattering albedo (ω). Based on a detailed parameterization of the vegetation 

morphology, physically-based scattering models are able to provide an accurate 

characterization of γ and ω. However, the implementation of such complex scattering 

models is rather cumbersome because the required parameterization is difficult to 

implement through integration of ground measurements and remote sensing techniques. 

Therefore, for large scale soil moisture retrieval applications, the ω is assumed to be a 

time-invariant constant depending only on the vegetation morphology, while γ is, 
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typically, implemented as a time dependent variable affected by the vegetation 

morphology as well as the density of the vegetation (e.g. biomass). For the retrieval of 

soil moisture, γ is an important variable describing the vegetation effects, because spatial 

as well as temporal variations in vegetation cover affect this parameter. 

For the determination of γ in large scale soil moisture retrieval applications, two 

different approaches can be adopted: 1) employing multiple TB observations acquired 

during a time step, or 2) adopting of the ancillary data approach. Because the required 

ancillary data for global soil moisture retrieval applications may not be available at that 

scale, many studies have investigated the direct retrieval of γ from multi-channel 

microwave observations (e.g. Bindlish et al. 2003, Wen et al. 2003, and Owe et al. 2001).  

However, γ could be polarization dependent, because the emitted radiation is 

differently attenuated and scattered as the orientation of the elements in the canopy layer 

changes relative to the direction of the polarization (Wigneron et al. 2004; Parde et al. 

2003). In addition, the γ is frequency (or wavelength) dependent, because the surface 

emission is differently attenuated as the dimension of the elements in the canopy layer 

changes relative to the wavelength (Jackson and O’Neill 1990; Van de Griend and 

Wigneron 2004).  

Therefore, single channel retrieval algorithms, which use the ancillary data approach, 

are considered as the most robust solution. The ancillary data approach is based upon the 

formulation of γ as a function of the vegetation water content and an empirical constant, 

the b parameter. Experimental investigations have shown that the empirical constant is 
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specific for each crop type and may depend on the morphology of the vegetation cover.  

However, within soil moisture retrieval algorithms operational on a global scale the 

empirical constant is, typically, implemented as a single time-invariant parameter. 

Temporal variations in the empirical constant may, therefore, affect the determination of 

the appropriate γ and the retrieval of soil moisture.  

 

1.2 Research goals and objectives 
 
The goal of this research is to improve the quantification of the transmissivity 

coefficient for soil moisture retrieval from satellite microwave radiometers on global 

scales. To achieve this goal, the objective of this research is to quantify uncertainties in 

the empirical constant induced by temporal variations in the vegetation cover.  The 

proposed methodology to address this objective will consist of two parts:  

Using ground based radiometer data sets; the variability in the empirical constants over 

specific agricultural vegetation covers (e.g. corn and soybeans) will be quantified using 

the semi-empirical, ancillary data approach; 

Physically-based scattering models will be employed to simulate the transmissivity 

coefficient based on input of vegetation morphology. From the simulated transmissivity 

values the empirical constants will be derived. 
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1.3 Research questions 
 
In carrying out this research, the following questions were addressed: 

 

1. What is the variability of the empirical constant derived from radiometer 

observations using the semi-empirical ancillary data approach? 

2. What is the variability of the empirical constant obtained through simulations 

with a physically based model using vegetation morphology parameterizations 

collected over the corn growth cycle?  

3. What is the influence of these uncertainties in the empirical constant on the 

retrieval of the soil moisture?  

4. Is it possible to develop a methodology to account for possible seasonal variations 

in the empirical constant?  

 

Through determination of the variability in the empirical constant derived from the 

radiometer observations and theoretical simulations, the uncertainty in the soil moisture 

retrievals imposed by the empirical constant can be determined. Moreover, using the 

physically-based scattering model, empirical constants can be derived for vegetation type, 

for which no ground based radiometer data sets are available. The results from this 

research will provide an improved understanding of the behavior of the empirical 

constant in relation to the vegetation morphology. This improved knowledge about the 

behavior of the empirical constant can then be used for implementation within global soil 
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moisture retrieval algorithms. Moreover, quantification of the soil moisture retrieval 

uncertainty induced by the empirical constant can be utilized for the assimilation of soil 

moisture products into hydrological and weather prediction models resulting in more 

accurate forecasts. 

This dissertation is composed of 6 chapters including this introduction. Chapter 2 is a 

background of L-band emission modeling, the Tor Vergata model, and a brief description 

of the study sites used in the analysis of this dissertation. Further details on the study sites 

are included in chapters 3 through 5. Presented in chapter 3 is the entire journal 

publication “L band brightness temperature observations over a corn canopy during the 

entire growth cycle”, which appeared in the Sensors journal in 2010. Chapter 4 is based 

on the journal article “Soil moisture retrieval during a corn growth cycle using L-band 

(1.6 GHz) radar observation”, which is currently in review for publication in the Remote 

Sensing of Environment journal. Chapter 5 is based on the journal article “Modeling L-

band emission during the corn growth cycle using a discrete medium scattering model”, 

which is to be submitted to the IEEE Transactions on Geoscience and Remote Sensing. 

Chapter 6 is the summary and conclusions.
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2 Background  
 

2.1 Emission from soil 
 

The surface emissivity is typically described in terms of the surface reflectivity. This 

is convenient because the microwave reflectivity under smooth surface conditions can 

theoretically be derived from Maxwell’s equations (the Fresnel reflectivity). Fresnel 

reflectivity (R0
p) for Horizontal (H) and Vertical (V) polarizations for smooth soil surface 

is given as follows,  

 

2

0 2

cos sin

cos sin

HR
  
  
 


 

 (2.1) 

2

0 2

cos sin

cos sin

VR
   
   

 


 
 (2.2) 

where, θ is the incidence angle (degrees), and ε is the soil dielectric constant 

calculated here using dielectric mixing model by Dobson et al. (1985) as a function of the 

soil moisture content and soil textural properties. 

In the real world, however, soil surfaces are rough. This roughness increases the 

surface per unit area contributing to the microwave emission and this decreases the 

surface reflectivity. Moreover, the roughness causes part of the radiation emitted in a 

particular polarization to be scattered within the soil surface and transmitted to the 

antenna in the other polarization, often referred to as polarization mixing. Wang and 

Choudhury (1981) developed a semi-empirical model that takes these two effects of soil 

surface roughness into account. In its most general form this model is written as,  
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   R
0 01 exp cosNp p q

s rR Q R QR h        (2.3) 

where, hr quantifies the increase in emission as the surface roughness (or surface area) 

increases, NR describes the angular dependence of hr , Q is the polarization mixing 

parameter and R0 is the Fresnel reflectivity defined for the H and V polarization.  

A much debated part in this formulation is the angular dependence of the roughness 

effect. Originally, Wang and Choudhury (1981) took NR equal to 2.0, while others (e.g. 

Wang et al. 1983, Wegmüller and Mätzer 1999) suggested that lower values are more 

appropriate. Recently, Escorihuela et al. (2007) found that NR also attains different values 

for the H and V polarization.  

For this study, two implementations are used; Firstly, Q≠0 is adopted and fixed 

values for NR are used (Chapter 2). Secondly, Q=0 is utilized while various NR values are 

evaluated, recognizing that both the H and V polarized R0 vary with the incidence and the 

assumption Q=0 can be compensated by NRH (Chapter 3). 

2.2 Vegetation effects on emission 
 

The effect of vegetation on microwave emission includes both absorption and 

scattering. The absorbing properties of vegetation attenuate the soil surface emission. At 

the same time, the absorption is also equivalent to the emission by the canopy itself when 

Kirchhoff’s Law is applicable and the soil-vegetation system is in a thermodynamic 

equilibrium. Apart from these zeroth order mechanisms, radiation emitted by crops may 

also be scattered within the canopy. Figure 2-1 illustrates these sources of microwave 
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emission. Typically, the transmissivity (γ) quantifies the absorbing properties of a 

canopy, whereas the single scattering albedo (ω) is used within semi-empirical models to 

account for the effects of scattering by vegetation. 

 

Figure 2-1: Effects of vegetation on microwave emission from the soil-vegetation 
system.  

 

The amount of radiation scattered within the canopy and can be computed as, 

 

p
s

p p p
s a


 




 (2.4) 

where, κs and κa are the scattering and absorption coefficients, respectively and p is the 

H and V polarization. 

These scattering and absorption coefficients can be obtained through application of the 

discrete medium approach (examples are given in section 2.4), in which individual 

Attenuated 
surface emission

Vegetation 
emission

Vegetation emission 
reflected by the surface 

   1 1 1p
s p p pR      1 p

s pR 
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components of the vegetation layer (leaves and stems) are represented by elliptical and/or 

cylindrical dielectric scatterers. Alternatively, ω is assumed to be negligible or a variable 

dependent on the growth stage, which can be determined from controlled experiments 

where all other variables (e.g. soil moisture, temperature of emitting layer, surface 

roughness and transmissivity) are measured. 

The γ describes the amount of soil emission passing through the vegetation layer. The 

one-way γ through the canopy layer can be formulated as,  

 

exp
cos

p
p





 

  
 

 (2.5) 

where, τ is the optical depth or canopy opacity and p is the H and V polarization, 

which can be calculated using,  

 

p ep vk h   (2.6) 

With 

 

 4
Imep o ppk n f




  (2.7) 

where, hv is the canopy height, kep is a polarization dependent extinction coefficient, no 

is the number of phytoelements per unit volume, λ is the wavelength and Im(fpp) is the 

imaginary part of the scattering matrix.  
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Within the SMOS soil moisture retrieval algorithm, the τ is calculated as an empirical 

linear function of the Leaf Area Index (LAI) as these products are derived from satellite 

observations at a global scale. A more traditional formulation originates from Kirdyashev 

et al. (1979) whom related τ to the dry biomass and its imaginary part of the dielectric 

constant. Jackson et al. (1982) simplified this relationship by taking τ equal to the product 

of the W and an empirical parameter, b, that depends on canopy structure and sensing 

configuration (e.g. frequency, polarization, incidence angle) as follows,  

 

p b W    (2.8) 

Both b and ω are frequently included in retrieval algorithms as a single land cover 

specific value for entire growing season assigned based on a land cover map and existing 

databases. Summaries of research related to the value of these parameters for various 

crop types can be found in Jackson and Schmugge (1991) and Van de Griend and 

Wigneron (2004a, b).  

2.3 Semi-empirical emission modeling  
 

Mo et al. (1982) described a semi-empirical radiative transfer approach for 

microwave emission from a homogeneous soil-vegetation system, commonly known as 

the τ-ω model. Nowadays, most soil moisture retrievals algorithms (e.g. Bindlish et al. 

2003, Wen et al. 2003, Owe et al. 2008) for passive microwaves are based on this model, 

including SMOS L2 soil moisture processor described in Wigneron et al. (2007). 
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Assuming that the contribution from the atmosphere is negligible, the p polarized TB is 

computed by the τ-ω model as,  

 

     1 1 1 1p p p
B s p p p v s p sT R T R T          (2.9) 

where, Rs is the soil surface reflectivity (= 1- soil surface emissivity, es) (-), γ is the 

transmissivity (-), ω is the single scattering albedo (-), Ts and Tc are respectively the soil 

and canopy temperatures (K), and sub- and superscript p indicates that the variable is 

representative for the H or V polarization.  

As shown in Figure 2-1, the first term on the right hand side of Eq. (2.9) represents the 

microwave emission directly by vegetation and the radiation emitted by the vegetation 

reflected by the soil surface back towards the sensor. The second term quantifies the 

emission contribution from the soil, corrected for the energy absorbed by the vegetation 

layer.  

The solution to this radiative transfer approach requires parameterization of the 

vegetation and soil surface layer radiative transfer properties as presented in the previous 

two sections. Additionally, temperatures of the vegetation and the emitting soil surface 

layer are needed. However, when assuming the vegetation and soil surface are in thermal 

equilibrium with each other, Ts and Tv can be considered equal. This condition occurs 

typically near dawn. The required temperature is then considered representative for the 

emitting layer. In this dissertation, applications of the τ-ω model are presented in 

Chapters 3 and 4. Details on the utilized parameterizations are given therein. 
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2.4 Physically based emission modeling  
 

The semi-empirical τ-ω model uses an effective parameterization to represent the 

electromagnetic properties of vegetation, while in fact a canopy consists of several types 

of scatterers (e.g. leaves, stems) with specific dielectric and geometric properties. 

Discrete medium scattering models are able to include the effects of the dielectric and 

geometric state of individual plant components in emission and backscatter simulations. 

From this physical viewpoint the emission from vegetation covered soil can be 

represented as, 

 

   1p pe W    (2.10) 

where, e is the emissivity and W is the scattering albedo. 

The scattering albedo, Wp(θ), can be decomposed into a specular (spec) and a diffuse 

(dif) component, according to, 

 

     spec dif
p p pW W W     (2.11) 

The specular component represents the radiation reflected specularly from the ground 

attenuated by the canopy formulated as, 

 

     2
exp 4 Imspec

p p pW R d       (2.12) 
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where, R is the surface reflectivity, κ is the propagated constant, d is the height of the 

canopy, and Im is the imaginary part of the propagated constant. 

The diffuse component of the scattering albedo represents the scattering within the 

canopy and requires integration of the scattering coefficients over the hemisphere above 

the soil surface, 

 

       2

1
, , cos

4 cos
dif o o
p hp vp s sW o i o i d   

 
      (2.13) 

where, dΩs = sin(θs)dθsdφ, o is the unit vector in the observation direction, i is the unit 

vector in the incident direction.  

The scattering cross section can be computed using a scattering approach formulation 

in the following general form, 

 

         , , , ,, , , , ,o o o o o
pq pq s pq dr pq r pq do i o i o i o i o i       

 
(2.14) 

where, σo
pq,s is the soil scattering component, σo

pq,d is the direct scattering component, 

σo
pq,dr is the direct-reflected scattering component and σo

pq,r is the reflected scattering 

contribution.  

The scattering mechanisms described in Eq. 2.14 are illustrated in Figure 2-2. The 

computation of these scattering contributions requires the formulation of the scattering 

amplitudes (fpq(o,i)) and the propagation constants. Within physically based models, these 

scattering amplitudes and propagation constants are determined based on the dielectric 
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properties, size and orientation of a specific type of scatterer represented by a predefined 

shape. For example, thin dielectric disks are commonly used to model leaves whereby 

typically the Rayleigh-Gans approximation (Eom and Fung 1984) is invoked for the low 

frequency domain and the Physical Optics approximation (Le Vine et al. 1983) for the 

high frequency domain.  Further, cylinders are often used for stems through application 

of the infinite length approximation (Seker and Schneider 1988).  

Figure 2-2: Scattering mechanisms described by Eq. 2.14.  
 
After the electromagnetic properties of the individual scatterers with the canopy are 

quantified, their combined effect should be integrated over the entire vegetation layer. 

Then, the computation of the emissivity or backscatter coefficient with a discrete medium 

approach can either be based on the wave theory (e.g. Chauhan et al. 1991, Chauhan et al. 

1994, Saatchi et al. 1994) or on the radiative transfer theory or transport theory (e.g. 

Ulaby et al. 1990, Karam et al. 1992, Ferrazzoli and Guerriero 1996 and Karam, 1997).  

Soil Direct Direct-reflected Reflected
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In the application of the wave theory presented by Chauhan et al. (1994), a mean 

electric field is defined using Green’s functions, which is solved using the Foldy-Lax 

approximation. This approximation assumes the incident field on each particle is 

approximately the same as the average field. A consequence of Foldy-Lax approximation 

is that solutions are only valid for media with weakly fluctuating permittivities (or 

dielectric constants), which limits its application to remote sensing observations acquired 

at long wavelengths with respect to the dimensions of the scatterers. The distorted Born 

approximation is, then, used to compute the backscattered field from the scatterers within 

the discrete medium describing the canopy layer. The distorted Born approximation 

applies fluctuations of the dimension, orientation and location to the mean electric field 

based on probability density functions, which is valid when the scatterers have a small 

albedo. For agricultural canopies, this assumption may hold up to frequencies of 10 GHz.  

Physical scattering models that make use of the radiative transfer theory (e.g. 

Ferrazzoli and Guerrierro 1996) focus on describing the transport of microwave radiation 

through the canopy layer. Scattering and absorption characteristics of elements within the 

canopy layer (e.g. trunks, leaves and branches) are defined through the scattering and 

extinction cross section. Different algorithms can be used to compute the bistatic 

scattering coefficients from these scattering and transmissivity matrices. Ulaby et al. 

(1990, MIMICS) uses a first order approximation, Karam et al. (1992) extended the 

solution to a second order approximation and Bracaglia et al. (1995) employed the Matrix 

Doubling algorithm. The advantage of the Matrix Doubling algorithm is that through its 
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application multiple scattering between different vegetation layers are taken into account. 

For this dissertation the model described in Bracaglia et al. (1995) is applied to determine 

theoretically the effects of changes in the vegetation morphology throughout the growth 

cycle. Hereafter, this discrete medium scattering model is referred to as the Tor Vergata 

model and a brief description is given in section 2.5.   

 

2.5 Tor Vergata model  
 

The Tor Vergata model (Bracaglia et al. 1995) is a discrete medium scattering 

modeling method that adopts a radiative transfer approach. The model represents the 

generic architecture of agricultural crops as thin dielectric discs for the foliage and 

cylinders for the stems as shown in Figure 2-3. The electromagnetic behavior of discs is 

simulated using the Rayleigh-Gans approximation (e.g. Eom and Fung 1984) for 

frequencies lower than 5.0 GHz and the infinite length approximation is utilized for the 

cylinders (Seker and Schneider 1988). Further, the scattering by the soil surface is 

simulated using Integral Equation Method (IEM, Fung et al. 1992) surface scattering 

model. 

 

2.6 Electromagnetic representation of the canopy  
 

Calculation of the scattering and absorption by a canopy requires a characterization of 

the physical dimensions, orientation and permittivity of the scatterers within the discrete 
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medium. The leaf coverage is parameterized by the leaf area index (LAI), leaf thickness 

and disc radius, whereby the LAI and leaf thickness are inputted and a fixed disc radius 

of 3.5 cm is used. Then, the number of discs within the medium is obtained by dividing 

the LAI by the disc’s surface area. The stem radius and length define its dimensions and 

the number of stems is used to quantify the density of the scattering medium.  

The Eulerian angles (α, β, γ) describe the orientation of the scatterers according to 

schematization in Figure 2-4. In the Tor Vergata model the minimum and maximum 

position can be defined, over which the scattering amplitude functions are averaged with 

an interval of 1.0 degree.  

Further, the Tor Vergata model calculated the permittivity of the vegetation layer using 

either the method developed by Mätzler (1994) or the one by Ulaby and El-Rayes (1987). 

Both approaches compute the permittivity as a function of the fresh and dry biomass. The 

simulations presented in this dissertation are only performed using Mätzler’s approach. 
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Figure 2-3: Schematization of the canopy architecture presented by the Tor Vergata 
model (adopted from Della Vecchia 2006).  
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Figure 2-4: Eurelian angles (α, β, γ) used to define the orientation of scatterers with 
a medium. 
 

2.7 Electromagnetic representation of the soil  
 

As the IEM surface scattering model is utilized, the Tor Vergata model requires 

similar soil variables to compute the surface scattering contribution. This 

parameterization defined the surface geometry and the soil permittivity.  
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Within the IEM the surface geometry is based on a stochastic representation of the 

surface height variations. This characterization consists of three parameters, namely the 

root mean square height (s), autocorrelation length (l) and autocorrelation function 

(ACF). The parameters, s and l, are input to the model, while the ACF is typically fixed 

as being either a Gaussian or an Exponential function. The Tor Vergata model 

simulations presented in this dissertation are performed using only the Exponential 

ACF’s because this shape has been found to be most appropriate for smooth agricultural 

surfaces (e.g. Oh et al. 1992, Davidson et al. 2000). 

The soil permittivity can be calculated by the Tor Vergata model using the semi-

empirical dielectric mixing model developed by Dobson et al. (1985) and also the 

generalized refractive dielectric mixing model by Mironov et al. (2009) has been 

included in the Tor Vergata modeling system. For many years, Dobson’s mixing model 

has been one of “the standards” for obtaining the soil permittivity as a function of 

moisture content and texture. Recent enhanced validations showed, however, that the 

permittivities obtained with Dobson’s model tend to overestimate the measurements. The 

permittivity model described in Mironov et al. (2009) makes an explicit distinction 

between the electromagnetic properties of bound and free water. This added complexity 

allows the Mironov model to produce more accurate estimates of the soil permittivity. 

Both mixing models are considered for the simulations presented in this dissertation.  
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2.8 Integrating the effects of individual scatterers  
 

Via the Rayleigh-Gans approximation for foliage and the infinite length 

approximation for stems, the Tor Vergata model determines the scattering and absorption 

(or transmission) matrices of individual scatterers with the discrete medium. Then, the 

multiple scattering interactions among the scatterers within the medium are considered 

through application of the Matrix Doubling algorithm described in Eom and Fung (1984).  

For the Matrix Doubling, the entire canopy is subdivided into layers with thickness Δz. 

Then, the scattering and absorption matrices of a single layer for downward travelling 

radiation (see left panel Figure 2-5) can be defined as,  

 

 1 , ,s i s i z      eS M κ P  (2.15a) 

 1 , ,t i t i z       eT M κ P  (2.15b) 

where, S is the scattering matrix, T is the transmission matrix, M is the diagonal 

matrix of directional cosine, κe is the extinction matrix, P is the phase matrix, μ is cosine 

of the angle between z-axis and wave, φ is the angle between the wave and x-axis and 

subscripts i, s, and t indicate the incident, scattered and transmitted energy.  

Hence, for upward travelling radiation (see right panel of Figure 2-5) the scattering 

and transmission matrices are formulated as,  

 

 * 1 , ,s i s i z      eS M κ P  (2.16a) 
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 * 1 , ,t i t i z      eT M κ P  (2.16b) 

Through the combination of the scattering and transmission matrices for downward 

and upward travelling radiation of two layers with thickness Δz, the S, T, S* and T* can 

be computed for a layer of thickness 2Δz as follows, 

 

  1
  * *

1 1 2 1 2 1S S T S I S S T  (2.17a) 

  1

1


  *

2 1 2T T I S S T  (2.17b) 

  1* 
  * * * *

1 1 2 1 2 1S S T S I S S T  (2.17c) 

  1
 * * * *

2 1 2 1T T I S S T  (2.17d) 

where, I is the identity matrix. 

In case the two layers have identical properties the equations 2.17(a)-2.17(d) represent 

the doubling of the matrices. This process can be repeated to obtain the phase matrices of 

a medium with any thickness. Figure 2-6 visualizes this principle of matrix doubling.  

2.9 Backscatter and emissivity calculation  
 

Once the scattering and transmission matrices have been integrated over the entire 

vegetation layer, the total scattering matrix (ST) can be calculated using,  

   * *
T v v g v g vS S T S I S S T  (2.18) 

where, subscripts v and g indicates that the property is defined for the vegetation layer 

or the soil surface, respectively.  
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Figure 2-5: Scattering and transmission matrices for downward (left) and upward 
(right) travelling radiation (adopted from Eom and Fung 1984). 

 
In Equation 2.18, the first term on the right-hand side represents the direct vegetation 

term, while the second term includes the soil scattering contribution attenuated by the 

canopy and scattering along the soil-vegetation pathways. From the kth row and lth 

column element of the p, q polarized Stokes parameter in ST the bistatic scattering 

coefficient σo
pq(θk, θsl, φs-φ) can be obtained using, 

  

   , ,

4
, cot ,o

pq sk l s sk l s pq

         


     TS  (2.19) 

Via integrating the bistatic scattering coefficient over the upper half space, the total 

reflectivity (or albedo) of microwave radiation in the hemisphere is obtained. Since the 

reflectivity is complementary to the emissivity, its computation is as follows,  

 

   2
22

0 0
1

, ,1
1 sin

4 cos

o
pq s s

p s s s
p

e d d
    

   
 

     (2.20) 
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Figure 2-6: Combination scattering and transmission matrices for a multi-layered 
medium (adopted from Eom and Fung 1984). 

 

2.10  Study sites 
 

Two L-band radiometer data sets were used for the research presented in this 

dissertation.  

The main data set under investigation was obtained by an automated dual polarized 

L-band radiometer, called LRAD. Its measurements were collected as a part of a field 

campaign that covered the 2002 corn growth cycle in Beltsville, Maryland. This 

campaign took place at the USDA Hydrology and Remote Sensing Laboratory’s (HRSL) 
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research site; commonly referred to as the OPE31* site (Gish et al., 2003). Henceforth, this 

campaign is referred to as the ‘2002 OPE3 campaign’. 

Further, the L-band radiometer data sets collected in 1981 over bare fields at the 

USDA’s Beltsville Agricultural Research Center (BARC) were utilized. During the 

experiments at the BARC facility in 1981, the L-band TB were measured over different 

rough surfaces. As such, analysis presented in Chapter 3 using the BARC data set are 

included to present a more complete analysis of the angular dependence of the roughness 

effect on microwave emission.  

Both data sets are further described in the text below.  

2.11  1981 BARC experiments 
 

General description  

The 1981 BARC experiments took place during the months July to September in 

1981. The main objective of this campaign was to investigate the impact of the soil type 

on the radiometric response; the two test sites selected for the analysis of this dissertation 

addresses this objective. The first site has a soil type named Elinsboro sandy loam with 

67% sand, 19% silt and 14 % clay. The soil type at the second site is referred to as 

Mattapex silty loam that consists of 32% sand, 43% silt and 25% clay.  

At both sites radiometric measurements were made over vegetated as well as bare soil 

plots each of about 20 by 20 meters in size. The vegetation types included in the 

experiment were grass, winter wheat, alfalfa, soybean and corn. Further, the radiometric 

                                          
1 OPE3 ~ Optimizing Production Inputs for Economic and Environmental Enhancements 
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measurements over bare soils were conducted over a very smooth plot at the Elinsboro 

site, and at the Mattapex site a smooth and a rough surface were prepared. A root mean 

squared height (s) of 0.21 was measured at the Elinsboro site and at the Mattapex bare 

plots s values of 0.73 and 2.45 were measured. 

 

Radiometric measurements 

For the 1981 BARC experiments, three radiometers were deployed each mounted on 

the same mobile tower and operating at frequencies of 1.4, 5.0, and 10.7 GHz, 

respectively. The antennas of the radiometers all have comparable 3-dB beamwidth of 

about 13O and the radiometers are of the Dicke-type with two internal calibration targets. 

The hot calibration target has a temperature of 310 K and the cold calibration target is 

maintained at a temperature of 77 K using liquid nitrogen.  

An absolute calibration of the radiometers is obtained against three external targets 

with known TB’s, which include the cold sky (~ 5 K), a calm water surface and a 

blackbody (emissivity = 1.0) formed by a layer of Eccosorb slabs with an ambient 

temperature. Both sky and Eccosorb calibrations were performed at least once during 

each measurements day. The calm water surface calibration was made twice throughout 

the entire measurements period. The results from the calibrations of the radiometers are 

shown in Figure 2-7. Linear regression functions fitted through the data points have a 

coefficient of determination larger than 0.99, and the accuracy of the radiometer is 

estimated at about +/- 3 K. 
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Figure 2-7: The results from calibration of the microwave radiometers (a) 1.4 GHz, 

(b) 5 GHz and (c) 10.7 GHz operated during the 1981 BARC experiments (adopted 

from Wang et al. 1983).  

 
The field operations consisted of radiometric measurements collected from incidence 

angles varying from 10o to 70o with an interval step of 10o. The majority of the 

measurement days (12 in total) at the Mattapex bare soil plots took place in Mid-August, 

while the bare soil measurements at the Elinsboro site (in total 23 days) were conducted 

from Mid-July till the end of September.  

In this dissertation, research is presented using only the L-band radiometer data set 

collected over bare soils.  
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Ground truth  

In support of the radiometric measurements, a ground truth characterization took 

place which included in-situ measurements of vegetation, surface roughness, soil 

moisture and temperature. A gravimetric sampling technique was used for measuring the 

soil moisture content over depths of 0.0-0.5 cm, 0.0-2.5 cm, 2.5-5.0 cm and 5.0-10.0 cm. 

Concurrent to each sequence of radiometric observations, two soil samples were taken 

close to the footprints. Further, the soil temperatures were measured by Omega-platinum 

resistance thermometers at depths of 0.25, 1.25, 2.50, 7.50 and 15.00 cm.  

These ground measurements were used for the radiative transfer modeling described 

in Chapter 3. 
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Figure 2-8: Experimental setup during the 2002 remote sensing campaign at the 
OPE3 site. 
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2.12  2002 OPE3 campaign 
 
Site description  

The field at the Beltsville Agricultural Research Center (BARC) referred to as the 

Optimizing Production Inputs for Economic and Environment Enhancement (OPE3) site 

(Gish et al., 2003) was the focal point of a microwave remote sensing campaign in 2002. 

This research facility is located about 5 kilometers east from Beltsville (Maryland, USA) 

at an elevation of 40 meters above mean sea level and includes four watersheds each with 

an area of 4 hectares. Climate in this region is dominated by mild winters and hot (and 

humid) summers. The annual rainfall amounts on average 990 mm.  

In 2002, the microwave instruments were placed in the most northern part of the OPE3 

site, in which the soil texture is classified as sandy loam with 23.5% silt, 60.3% sand, 

16.1% clay and a bulk density of 1.25 g cm-3. Non-automated measurements of soil 

moisture, temperature and vegetation biomass were taken manually directly around the 

periphery of the scatterometer/ radiometer footprints and are hereafter referred to as labor 

intensive measurements. Automated meteorological and soil moisture stations are 

available within a short distance. An outline of this experimental setup is given in Figure 

2-8. Further information on the OPE3 project can be found at 

http://hydrolab.arsusda.gov/ope3 (verified December 6th, 2010). 
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Figure 2-9: Diagram of the LRAD footprints. 
 

L-band radiometer (LRAD) data 

The L-band radiometer (LRAD) is a dual-polarized passive sensor operating at 1.4 

GHz and a 3-dB half power beam width of about 12o. Calibration of the TB measurements 

is obtained by pointing the antenna towards two reference targets with known 

temperatures. A microwave absorber with an ambient temperature monitored by the 

system itself was taken as a hot target and the sky with an assumed L-band TB of 5 K (3 

K cosmic background radiation and 2 K atmospheric contribution) was adopted as a cold 

target. Then, assuming the system has a linear response, the TB is calculated by, 

P
B pT A U B    (2.21) 
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where, TB
p is the p polarized (either horizontal (H) or vertical (V)) brightness 

temperature (K), Up is the p polarized LRAD measurement (Volt), and A and B are two 

calibration constants (K/Volt and K, resp.) that are obtained from the two reference 

measurements following, 

abs sky
B B

abs sky

T T
A

U U





 (2.22) 

abs sky
sky B B

B sky
abs sky

T T
B T U

U U


 


 (2.23) 

where, U is the LRAD measurement of the reference target (Volt) and sub-

/superscripts abs and sky are used to refer to either the microwave absorber or the sky 

target.  

For the field campaign in 2002, LRAD was mounted on an 18-m portable tower, and 

was programmed to take measurements every hour at five incidence angles (25o, 35o, 45o, 

55o, and 60o) and at three azimuth angles. As illustrated in Figure 2-9, the azimuth angles 

were parallel to corn rows, and respectively 20o and 40o across the row direction. Before 

and after each sequence, LRAD collected measurements from the microwave absorber 

target and the sky.  

As both pre- and post-calibration parameters are uncertain, the two sky and absorber 

voltages as well as the two absorber temperatures are averaged to derive the calibration 

constants, A and B. The A values derived using the reference target measurements varied 

for the H-polarization from 304.5 to 678.7 K/Volt throughout the campaign. Given 

LRAD recorded its measurements at a resolution of 1.0 10-3 Volt, the TB were monitored 



Background  

34 
 

with a radiometric resolution varying from 0.304 to 0.678 K. The overall accuracy of the 

calibrated H polarized TB is estimated to be better than 2 K. As some issues related to 

calibration of the V polarization remain, these measurements are not included in the 

analysis presented here. 

Despite intermittent failures of the scanning mechanism of LRAD’s automated hourly 

data collection system, over 700 sequences were completed of which many were 

consecutive. The focus of this investigation lies, therefore, on the analysis of diurnal TB 

cycles collected during five periods with significant variations in vegetation cover. In 

addition, three shorter measurement episodes over virtually bare soil conditions are used 

to evaluate the impact of soil surface roughness. The start and end of each episode with 

continuous hourly LRAD data are listed in Table 2-1 for both the vegetated and bare soil 

conditions. 

The corn biomass was measured using a destructive approach based on cutting all 

(about 12) plants within a 1 m2 area and recording the weights of fresh and over-dried 

biomass. Figure 2-10 shows the measurements of the total water content (W), and fresh 

and dry biomass as well as the water content of individual plant constituents (e.g. leaves, 

stems and cobs) over time. As observed, the W at peak biomass is about 5.1 kg m-2 and a 

maximum canopy height of 2.2 m was measured.  
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Table 2-1: Episodes with sequence of hourly LRAD measurements collected during 
the 2002 OPE3 remote sensing campaign. 

 Start End SM range W N 

 date, time date, time m3 m-3 kg m-2 # 

bare soil 21 May, 22h00 22 May, 13h00 0.20-0.21 0.03 16 
bare soil 23 May, 21h00 24 May, 6h00 0.19-0.18 0.04 10 
bare soil 29 May, 15h00 30 May, 4h00 0.17-0.16 0.09 14 

vegetation 8 June, 8h00 10 June, 13h00 0.22-0.18 0.3 54 
vegetation 24 June, 15h00 27 June, 14h00 0.14-0.11 1.0 72 
vegetation 2 July, 16h00 4 July, 21h00 0.09-0.06 4.2 54 
vegetation 20 August, 20h00 23 August, 10h00 0.02-0.01 2.7 63 
vegetation 29 August, 0h00 3 Sept., 14h00 0.28-0.23 2.1 75 

 
Top 0.06-m soil moisture and soil temperatures at depths of 0.03- and 0.07-m were 

measured at twenty-one locations around the footprints shown in Figure 2-9. Portable 

impedance probes (Delta-T Theta-probe, Type: ML2x) were used to measure soil 

moisture and the soil temperatures were obtained using Extech Instruments digital stem 

thermometers. From the start till the end of the campaign, one temperature and two 

impedance probe readings were taken per location each time the radar/radiometer 

collected data, which was typically around 8:00, 10:00, 12:00 and 14:00 hours. 

Additionally, soil temperatures were recorded during week days at nominal times of 8:00 

and 14:00 hours. Moreover, the canopy temperature was monitored from July 3 using an 

Omega handheld infrared thermometer.  

Further, soil samples were taken coincident to the first radar/radiometer acquisitions of 

a measurement day for a gravimetric determination of the volumetric soil moisture (θv), 

which was used to establish a site specific calibration for the impedance probe readings. 

Details about this calibration procedure are available in Joseph et al. (2010b). The Root 
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Mean Squared Difference (RMSD) between the gravimetric and calibrated impedance 

probe θv is found to be 0.024 m3 m-3.  

Complementary to this extensive ground sampling, the OPE3 site is equipped 

permanently with several automated instruments. Specifically of interest to this study is 

the soil moisture network that consists of 48 stations (12 in each watershed). The stations 

include either 3 or 6 capacitance soil moisture probes (EnviroSCAN, SENTEK Pty Ltd., 

South Australia) depending on the infiltration rate, which are installed at depths of 0.1, 

0.3, 0.8 m or at depth of 0.1, 0.3, 0.5, 1.2, 1.5 and 1.8 m, respectively. The EnviroSCAN 

probes observe the moisture content in a soil volume with a radius of 0.1 m from sensor’s 

center and at the OPE3 site their readings are recorded every 10 minutes. The location of 

stations in the northern watershed is shown in Figure 2-8. The location of the other 

stations and additional details can be found in De Lannoy et al. (2006).  
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Figure 2-10: Measurements of a) total water content, and fresh and dry biomass and 
b) water content of individual plant components during the 2002 OPE3 campaign. 

 
Further, located about 100 m from the radiometer footprints is a micro-meteorological 

station, which provides a detailed surface energy balance characterization (Crow et al. 

2008). At this station, two Apogee Instruments Incorporated precision infrared 

radiometers (type: IRTS-P3) are mounted at height of 4.5 m above ground level pointing 

towards the east and west at a view angle of 45o. This type of radiometer measures the 

radiative temperature with an accuracy of 0.15 oC over the 6.5 – 14 μm spectral range 
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using a Field Of View (FOV) of 18.4o. The area observed is, thus, 7.35 m2 at ground level 

and 1.93 m2 at the maximum corn height of 2.2 m. In addition, Type-T thermocouples 

installed at depths of 0.02 and 0.06 m monitor the soil temperature at six locations about 

10 meters from the station. The thermocouples as well as the infrared radiometers 

recorded data every 30 minutes. 
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3 Angular dependence of the soil roughness effect on 
microwave emission 

 
This chapter is based on: 
Joseph, A.T., van der Velde, R., O’Neill, P.E., Choudhury, B.J., Lang, R.H., Kim, E.J., 

Gish, T., (2010), “L band brightness temperature observations over a corn canopy 
during the entire growth cycle”, Sensors, 10, pp. 6980-7001. 

 

Abstract: During a field campaign covering the 2002 corn growing season, a 

dual polarized tower mounted L-band (1.4 GHz) radiometer (LRAD) provided 

brightness temperature (TB) measurements at preset intervals, incidence and 

azimuth angles. These radiometer measurements were supported by an 

extensive characterization of land surface variables including soil moisture, 

soil temperature, vegetation biomass, and surface roughness. During the period 

from May 22, 2002 to August 30, 2002 a range of vegetation water content (W) 

of 0.0 to 4.3 kg m-2, ten days of radiometer and ground measurements were 

available. Using this data set, the effects of corn vegetation on surface 

emissions are investigated by means of a semi-empirical radiative transfer 

model. Additionally, the impact of roughness on the surface emission is 

quantified using TB measurements over bare soil conditions. Subsequently, the 

estimated roughness parameters, ground measurements and horizontally (H)-

polarized TB are employed to invert the H-polarized transmissivity (γh) for the 

monitored corn growing season.  

Keywords: Field campaign, L-band radiometry, vegetation effects, surface 

roughness  
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3.1 Introduction  
 

Low frequency passive microwave observations have been intensively studied for their 

potential of retrieving soil moisture [e.g. Jackson (1993), Wigneron et al. (2007), and 

Owe et al. (2008)]. Studies have demonstrated that when an appropriate characterization 

of vegetation, soil surface roughness and dielectric properties are applied, soil moisture 

can be retrieved fairly accurate from the brightness temperatures (TB’s) measured by 

microwave radiometers [e.g. Saleh et al. (2009), Panciera et al. (2009)]. As a result, the 

Soil Moisture and Ocean Salinity (SMOS [Kerr et al. (2001)]) mission is the first of three 

L-band radiometers designed for global soil moisture monitoring purposes to be 

launched.  In the near future, the Aquarius and Soil Moisture Active Passive (SMAP 

[Entekhabi et al. (2004)]) missions will follow; their expected launch dates are in spring 

2010 and in 2013, respectively. With this increased availability of low frequency 

spaceborne radiometer observations, new opportunities arise for monitoring soil moisture 

globally. 

However, among the challenges in retrieving soil moisture from TB measurements is to 

account for soil surface roughness and vegetation effects. Most retrieval approaches 

utilize similar radiative transfer equations [3.8-3.10].  These methods estimate the 

vegetation transmissivity (γ) using either multiple channel microwave data or ancillary 

data. Because the required ancillary data for global soil moisture retrieval applications 

may not be available at that scale, direct retrieval of the γ is preferred. However, the γ is 

polarization as well as wavelength (or frequency) dependent because the emitted 
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radiation is differently attenuated as the orientation of the elements in the canopy layer 

changes relative to the wavelength and the direction of the polarization [e.g. Jackson and 

O’Neill (1990), Wigneron et al. (2004), Van de Griend and Wigneron (2004)] 

Therefore, large scale soil moisture monitoring studies [e.g. Drusch et al. (2004), 

Cashion et al. (2005), and Bindlish et al. (2008)] frequently adopt an ancillary data 

approach to determine the γ, which has been extensively described in the scientific 

literature [e.g. Jackson and Schmugge (1991), Schmugge and Jackson (1992)]. This 

characterization of the γ requires knowledge of the vegetation water content (W), and a 

crop-specific and frequency dependent empirical parameter b (elaborated below). The 

Normalized Difference Vegetation Index (NDVI) and related indices have been 

suggested as a surrogate for W in large-scale studies [e.g. Bindlish et al. (2003), Jackson 

et al. (2004)]. Then, the empirical parameter b should be implemented as a land cover 

specific parameter assigned based on a classification map.  

Selection of the appropriate parameterization for a specific land cover relies, however, 

often on parameter sets derived from TB measurements collected during past intensive 

field campaigns [e.g. Van de Griend and Wigneron (2004), Jackson and Schmugge 

(1991)]. By default, the validity of those parameterizations is restricted to the conditions 

for which they have been derived. Many of the past field campaigns covered, for 

example, a part of the growth cycle of agricultural crops. Therefore, the development of 

the γ and b parameter throughout the growth cycle is not fully understood.  
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This paper contributes to this understanding by analyzing the L-band H-polarized TB’s 

measured throughout the complete 2002 corn (Zea mays L.) growth cycle. The utilized 

data set has been collected at one of the fields of the Beltsville Agricultural Research 

Center (BARC) by an automated tower mounted L-band (1.4 GHz) radiometer (called 

LRAD) starting from May 22 till the beginning of September. These radiometer 

measurements are supported by a detailed land surface characterization, which took place 

about once every week and included measurements of the vegetation biomass, soil 

moisture and soil temperature. Despite mechanical difficulties with scanning system of 

LRAD produced gaps in the data record, a total of ten days distributed over the growing 

season of both radiometer and ground measurements are available covering a W range 

from 0.0 to 4.3 kg m-2.  

The objective of this investigation is to evaluate the variations in the γ and the 

empirical parameter b over the monitored corn growth cycle. To this aim, first, the impact 

of the surface roughness on the surface emission is quantified using the LRAD TB’s over 

bare soil conditions and an older data set collected at the BARC facility. Subsequently, 

the γ (and b parameter) are inverted from individual TB measurements using the estimated 

roughness parameterization, and measured soil moisture and soil temperature. In 

addition, an analysis is presented of the sensitivity of the derived b parameters for 

uncertainties in the LRAD TB and the assigned single scattering albedo (ω). 
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3.2 Theoretical background 
 

The starting point for the computation of microwave emission from vegetated surfaces 

is the semi-empirical radiative transfer approach by Mo et al. (1982), which is based on 

the assumption that at L-band attenuation is more dominant than scattering, 

 

     1 1 1 1p p p
s p p p v s p sB

T R T R T        
 

(3.1) 

where, p
BT is the polarized brightness temperature, p

sR  is the soil surface reflectivity (= 

1- emissivity), γp is the transmissivity of vegetation, ωp is the single scattering albedo, Ts 

and Tv are the soil and canopy temperatures, respectively, and superscript and subscript p 

indicates polarization. 

The first term on the right hand side of Eq. (3.1) represents the microwave emission 

directly by vegetation and the radiation emitted by the vegetation reflected by the soil 

surface back towards the sensor. The second term quantifies the emission contribution 

from the soil, corrected for the energy absorbed by the vegetation layer. 

The solution to the radiative transfer equation requires parameterization of the 

vegetation and soil surface layer radiative transfer properties. Further, temperatures of the 

vegetation and soil surface layer are required. However, when assuming the vegetation 

and soil surface are in thermal equilibrium with each other, Ts and Tv can be considered 

equal; this condition occurs typically near dawn. The required temperature is then 

considered representative for the emitting layer.  
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Emission from soil  

The solution to the radiative transfer equation requires parameterization of the 

vegetation and soil surface layer radiative transfer properties. Further, temperatures of the 

vegetation and soil surface layer are required. However, when assuming the vegetation 

and soil surface are in thermal equilibrium with each other, Ts and Tv can be considered 

equal; this condition occurs typically near dawn. The required temperature is then 

considered representative for the emitting layer.  

The surface emissivity is typically described in terms of the surface reflectivity. This is 

convenient because the microwave reflectivity under smooth surface conditions can be 

theoretically derived from Maxwell’s equations (the Fresnel reflectivity). Fresnel 

reflectivity ( pR ) for H- and V-polarizations for smooth soil surface are given as follows,  
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(3.2b) 

where, εr is the dielectric constant of soil, θ is the incidence angle. 

 

In this study, the approach described by Wang and Choudhury (1981) has been adopted 

to account for the effect of surface roughness on the reflectivity. This approach involves 
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two parameters, where one parameter has an attenuating effect on the surface reflectivity 

and the other accounts for the depolarizing effect of the surface roughness, 

 

      1 expp p q
sR Q R Q R h G        

(3.3) 

where, h is roughness parameter given by 4k2σ2 with k as the wavenumber (2π/λ) and σ 

as the root mean square (rms) height of the surface height variations, Q is a polarization 

mixing factor, G(θ) is a function describing the view angle dependency of the h 

parameter and superscript q represents the polarization orthogonal to polarization p, 

which can be either horizontal (H) or vertical (V).  

Originally, Wang and Choudhury (1981) took the function G(θ) equal to 2cos  . 

However, Wang et al. (1983) have found that the dependence of 2cos  is much too 

strong and replaced it by G(θ) = 1.0 for best fitting their data. The latter is initially 

adopted here. 

 

Vegetation effects on soil surface emission 

Within the radiative transfer approach, vegetation effects are characterized by two 

parameters: transmissivity (γ) and single scattering albedo (ω). The ω is a measure for the 

amount of radiation scattered within the canopy and can be computed as follows, 
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p
s

p p p
s a
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  

(3.4) 

where, p
s  and p

a  are the scattering and absorption coefficients, respectively. 

These scattering and absorption coefficients can be obtained through application of the 

discrete medium approach (Lang and Sidhu 1983, Chauhan 1997, and O’Neill et al. 

1996), in which individual components of the vegetation layer (leaves and stems) are 

represented by elliptical and/or cylindrical dielectric scatterers. Alternatively, the ω is 

assumed to be negligible or a variable dependent on the growth stage, which can be 

determined from controlled experiments where all other variables (e.g. soil moisture, 

temperature of emitting layer, surface roughness and transmissivity) are measured. 

The transmissivity describes the amount of soil emission passing through the 

vegetation layer and is an important variable for quantification of the effect of vegetation 

on microwave emission. The one-way transmissivity through the canopy layer is 

formulated as, 

  

exp
cos

p
p





 

  
   

(3.5) 

where, τp is the polarization dependent optical depth [Wigneron et al. (2004)] or canopy 

opacity, which can be calculated using,  
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p ep vk h 
 

(3.6) 

with   

 

4
Imep o ppk n f





 

(3.7) 

where, hv is the canopy height, kep is a polarization dependent extinction coefficient, no 

is the number of phytoelements per unit volume, λ is the wavelength and Im ppf  is the 

imaginary part of the polarization dependent scattering matrix.  

Several studies [Wigneron et al. (2004), Van de Griend and Wigneron (2004), Jackson 

and Schmugge (1991)] have shown that τp can be related to the vegetation water content 

as,  

 

p pb W  
 

(3.8) 

where, W is the vegetation water content and bp is an empirical parameter varying with 

crop type, canopy structure, wavelength, and polarization [Wigneron et al. (2004)]. 

Eq. (3.8) for soil moisture retrieval requires information about vegetation class, W, and 

bp parameters for different types of vegetation, and has been widely adopted and has been 

proposed as part of the soil moisture retrieval algorithms for current and future 

microwave radiometers [e.g. Njoku (1999), Kerr et al. (2006)].  
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3.3 The OPE3 experiment  
 

Site description 

The present study was conducted at Optimizing Production Inputs for Economic and 

Environmental Enhancement (OPE3) test site managed by the USDA-ARS (United States 

Department of Agriculture- Agricultural Research Service) [Gish et al. (2003)]. The site 

consists of four adjacent watersheds with similar surface and sub-surface soil and water 

flow characteristics and covers an area of 25 ha near Beltsville, Maryland (Figure 3-1). 

Each of the four watersheds is formed from sandy fluvial deposits and has a varying 

slope ranging from 1% to 4%. The soil textural properties are classified as sandy loam 

with 23.5% silt, 60.3% sand, 16.1% clay, and bulk density of 1.25 g cm-3. A detailed 

description of the research activities can be found at http://hydrolab.arsusda.gov/ope3. 

(Verified December 6, 2010). 
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Figure 3-1:  Location and schematization of the OPE3 remote sensing experimental 
setup in 2002. 

 
Ground measurements 

The in-situ measurement strategy was designed to provide ground information to 

supplement the radar and radiometer data acquisitions, and took place every Wednesday, 

rainy days excluded. In this paper, an analysis of the radiometer observations is 

presented. A description of the radar data set is given in Joseph et al. (2008).  

During the field campaign (May 10 to October 2, 2002) representative soil moisture, 

soil temperature, vegetation biomass (wet and dry) and surface roughness measurements 

were taken around the radiometer footprints. Soil moisture and soil temperature 
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measurements were collected at twenty-one sites located at the edge of a 67.1 m x 33.5 m 

rectangular area depicted in Figure 3-1. Vegetation biomass and surface roughness 

measurements were taken around the study area at representative locations.  

 

Figure 3-2:  (a) Comparison of the calibrated theta probe soil moisture against the 
gravimetrically determined soil moisture content converted to volumetric values. (b) 
Volumetric soil moisture (Mv) as measured by the theta probe, TDR and determined 
through a gravimetric sampling technique plotted against time. 

 
Soil moisture and Soil temperature  

Soil moisture was measured using gravimetric, portable impedance probe (Delta-T 

theta probe 2 ), and buried impedance probe (Time Domain Reflectometry (TDR)) 

techniques. Soil samples of the top 6-cm soil layer were collected at the beginning of 

each day in conjunction with the theta probe measurements primarily for calibration 

purposes. Theta probe measurements were collected typically at 8:00, 10:00, 12:00 and 

14:00 hours (USA Eastern). The buried TDR probes were installed at locations R5, R11 

and R18 (Figure 3-1) at various depths (5, 10 and 20 cm) and insertion angles (horizontal, 

vertical, and 45 degrees).  
                                          
2 The US Government does not endorse any specific brand of impedance probe for measuring soil 
moisture. 
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Relative dielectric constant (εr) measured by the theta probe were converted to 

volumetric soil moisture (Mv) values by fitting a linear regression function through the 

following relationship (figure 3-2a),  

 

0 1r va a M   
 

(3.9) 

where, a0 and a1 are regression parameters.  

While general soil texture-specific parameters are available [Miller and Gaskin (1996)], 

a site specific calibration was performed. To achieve this, soil moisture determined 

gravimetrically from the soil samples was converted to Mv and used with concurrent 

probe observations to fit for each site a specific a0 and a1 parameter. Comparison of the 

calibrated theta probe Mv values with the gravimetric Mv (see Figure 3-2a) gives a root 

mean squared error (RSME) of 0.024 m3 m-3, which is comparable to calibration errors 

obtained with theta probe observations collected in several remote sensing campaigns 

[Cosh et al. (2005)]. In Figure 3-2b, the soil moisture observed by the three different 

measuring techniques are displayed as time series for comparison purposes. As shown in 

Figure 3-2b, the soil moisture values observed with the theta probe, gravimetric and TDR 

instruments are in agreement with each other, which justifies the use of each of their 

products. 

 Soil temperature measurements were taken manually at soil depths of 3- and 7-cm at 

each of the twenty-one sampling locations (annotated as R1 to R21 in Figure 3-1) 
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throughout the experiment using Extech Instruments digital stem thermometers3. On 

intensive sampling days the soil temperatures were measured at 8:00, 10:00, 12:00, 14:00 

hours, and the measurements on other days were taken approximately every two days at 

8:00 and 14:00 hours. 

Although the study area was selected to minimize the possible effects of land surface 

heterogeneity, small surface height and soil texture variations could potentially influence 

the representativeness of the measured soil moisture and temperature for the radiometer 

footprints. These effects are studied by evaluating the spatial soil moisture and 

temperature variability measured around the footprints. In Figures 3-3a and 3-3b, 

averages of the gravimetric Mv and soil temperature measured during the entire campaign 

are plotted for each site. Figure 3-3a shows that the western boundary (site R1-R6) is 

consistently wetter than the eastern boundary (site R16-R21). The difference between the 

maximum and minimum average soil moisture values observed in the study area is 0.04 

m3 m-3 (with 0.17 m3 m-3 at site R9 and 0.13 m3 m-3 at site R20). However, compared to 

the uncertainties in soil moisture measurements in general, see for example theta probe 

calibration uncertainty of 0.024 m3 m-3, this difference between the minimum and 

maximum averaged soil moisture is relatively small. We consider, therefore, the soil 

moisture variability around the radiometer footprint to be small and the mean of the 

twenty-one measurements representative for the radiometer footprint.  

 

 
                                          
3 The US Government does not endorse any specific brand of digital thermometers. 
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Vegetation 

Corn was planted on April 17, reached peak biomass around July 24 and was harvested 

on October 2. Vegetation biomass and morphology were quantified through destructive 

measurements applied to 1 m2 area (approximately 12 plants) once every week at 8:00 

am. The water content, fresh and dry biomasses were determined separately for the 

individual plant constituents, such as leaves stems and cobs (when present). 
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Figure 3-3:  Averages of the gravimetric Mv (a) and soil temperature (b) measured 
during the entire campaign plotted for each sampling site separately. The site ID 
locations are shown in Figure 1 (R1 to R21). Error bars indicate the standard 
deviation in soil moisture or temperature measured throughout the campaign.  

 
Figure 3-4a shows the development biomasses and water content of the total plant over 

time and Figure 3-4b illustrates the temporal evolution of the water content in individual 

plant components. It follows from Figure 3-4b that in the beginning of the corn growing 

season, the canopy was primarily made up of leaves and stems. In the middle of the 

growing season the stem contribution becomes more dominant and cobs’ water content 
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increases to levels exceeding the leaf contribution. Near senescence, water content in the 

leaves is reduced further, whereas the contribution of the cobs to the total biomass 

remained constant. 

Figure 3-4 (a) Total plant water content, fresh and dry biomass plotted against time. 
(b) Water content in the leaves, stems and cobs plotted against time. The markers 
indicate the dates at which measurements were made.  
 

Surface roughness 

During the experiment surface roughness was characterized on May 25 using the grid 

board technique. A 2-meter long grid board was placed in the soil and photographs were 

taken with the soil surface in front. In total, ten surface height profiles were recorded. The 

surface height profile in these pictures was digitized at a 0.5-cm interval, from which two 

roughness parameters were derived: root the rms height and the correlation length (L). 

The averaged rms height and L for the ten observed surface roughness profiles were 

found to be 1.62 and 12.66 cm, respectively. Figure 3-5 shows an example of a 

photograph taken for this roughness characterization and lists the roughness parameters 

calculated from the digitized surface height profiles. 
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Figure 3-5: The left panel shows an example of a picture taken for surface 
roughness characterization and the right panel lists the derived surface roughness 
parameters.  

 
Radiometer 
The deployed radiometer was a dual-polarized (horizontal (H) and vertical (V)) L-band 

passive microwave sensor, called LRAD. The instrument was mounted on a portable 18 

m tower and was designed to collect data automatically (for this experiment every hour) 

at five incidence angles (25, 35, 45, 55, and 60 degrees) and three azimuth angles over a 

range of 40 degrees. LRAD had a 3 dB beam width of approximately 12 degrees, which 

corresponds to footprints varying from 4.5 to 15.5 meters for the 25 to 60 degrees 

incidence angle range. Mechanical difficulties with the scanning system restricted the 

LRAD data collection, and produced considerable gaps in the season-long record. 

Nevertheless, ten days of complete record (ground measurements and radiometer 

observations) were available for the present analysis. 

Each LRAD data run consisted of a pre-calibration, a measuring sequence, and a post-

calibration. During each of the two calibration periods one microwave observation was 

acquired from a microwave absorber target of known temperature (hot target) and one 
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microwave observation was acquired of the sky (cold target), which has at L band an TB 

of ~ 5 K (3 K cosmic background radiation and 2 K atmospheric contribution). These two 

so-called “hot” and “sky” target observations can be used to calibrate, through linear 

interpolation, the radiometer observations of the land surface using, 

 

hot sky hot skyp
B p sky sky

hot sky hot sky

T T T T
T U T U

U U U U

 
  

 
 (3.10) 

where TB is the brightness temperature [K], T indicates the temperature [K] of the 

specified target and U represents the LRAD voltage observations [Volt] with subscripts 

hot and sky indicating the hot and sky target properties and superscript p pointing towards 

the polarization dependence of the brightness temperature, which is either horizontal (H) 

or vertical (V).  

For processing the LRAD measurements to TB’s the pre-calibration was used, while the 

post-calibration was only employed to detect anomalous values. The estimated 

uncertainty of the calibrated H-polarized TB is about  1.0 K. While measurements were 

also collected for vertical polarization, there remain some unresolved issues with respect 

to the calibration of these measurements. Thus, vertical polarization measurements are 

not being presented at this time. 
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3.4 Results  
 

Surface roughness parameter estimation based on H-polarized observations 

Within the model of Wang and Choudhury (1981), the effects of the surface roughness 

is characterized by two variables: 1) modification of the reflectance (h parameter), and 2) 

redistribution of the H- and V-polarized emitted radiation (Q parameter). Since the data 

set under investigation currently includes only calibrated H-polarized TB measurements, 

the Q parameter is omitted (i.e., Q = 0), which essentially reduces the surface emission 

algorithm to the one proposed by Choudhury et al. (1979). This formulation has been 

adopted previously in several other studies [i.e. Drusch et al. (2004), Bindlish et al. 

(2003)]. Based on this assumption, the h parameter can be estimated from H-polarized 

TB’s measured over bare soil using, 

 

   1 exp
H

HB

s

T
R h

T


 
      

   

(3.11) 

where, H
BT  is the H-polarized brightness temperature, sT  is the soil temperature, HR  is 

the H- polarized Fresnel reflectivity.  

For the OPE3 campaign, the LRAD observations started on May 22, when corn crops 

had just emerged and the total fresh biomass was less than 0.04 kg m-2. The TB’s 

measured under these low biomass conditions (May 22) were used to estimate the h 

parameter. Unfortunately, due to mechanical difficulties with the LRAD scanning 

system, only microwave observations for viewing angles of 35, 45 and 60 degrees were 
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available for this part of the experiment. The twenty-one 3 cm surface temperature 

measurements taken around the radiometer footprint are averaged and are adopted as Ts. 

The resulting h parameter values are given in Table 3-1. 

 
Table 3-1:  Surface parameters obtained through inversion of H-polarized TB 
observations acquired over bare soil conditions. 

 
View angle 

35 degrees 45 degrees 60 degrees 
h 0.300 0.238 0.172 

h·sec θ 0.366 0.336 0.344 
 
The derived h parameters fall within the range that has been reported previously. Wang 

et al. (1983)] reported a 0.00-0.53 h parameter range for surfaces with a rms height 

varying from 0.21 to 2.55 cm for a similar setting Considering an averaged rms height of 

1.62 cm was observed around the radiometer footprint, the h parameter values obtained 

from the LRAD observations appears reasonable. 

An interesting observation is, however, the angular dependence of the h parameter. 

Over a view angle range from 35 to 60 degrees, the h parameter decreases from 0.300 to 

0.172. A angular dependence is partly expected because when a radiometer observes the 

land surface at different angles surface roughness may have a different impact on the 

surface emission, while recognizing that Eq. (3.10) is also an approximation [Choudhury 

et al. (1979)]. However, the angular dependence of the h parameter could also be a result 

from the assumption of Q = 0. The Fresnel reflectivities for the H- and V-polarization are 

both a function of the incidence angle; excluding one of the two polarization components, 



Angular dependence of roughness effects 

60 
 

as is done by assuming Q = 0 in Eq.(3.3), induces an angular dependence of the h 

parameter.  

 

Surface roughness parameter estimation based on dual-polarized TB 

The surface roughness parameter h from the present data set demonstrates an angular 

dependence that is equal to adopting G(θ) = sec θ (see Table 3-1). A limitation of the 

present data set is that only H-polarized TB observations are available to some degree of 

confidence. Therefore, in order to retrieve the h parameter from these TB values, Q was 

taken equal to zero, which might alter the angular dependency (mixing of polarization). 

To elaborate on these findings, dual polarized L-band (~1.4 GHz) radiometer data sets 

collected over bare soils within the general area of the present study [Wang et al. (1983)] 

are utilized to invert h and Q simultaneously.  

The methodology used to retrieve the Q and h parameters has been adopted from Wang 

and Choudhury (1981), which is based upon the following two relationships, 

 

     
   

   
     2 1 2

1
1

2

V H

V H

H V
NB NB

H V

NB NB

T T R R
X Q

R RT T

   


  

  
       

 

(3.11a) 

            1 1
1 exp

2 2
V H H V

NB NBY T T R R hG                 
(3.11b) 

where p
NBT  is the normalized brightness temperature for polarization p, according to 

p
B sT T ,  X   is the surface roughness coefficient for deriving the Q parameter,  Y   is 
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the surface roughness coefficient for deriving the h parameter, Eq. (3.11) and (3.12) can 

be rewritten to give the Q and h explicitly resulting in,  

 

 
 

1 2
2

X
Q

P




 
  

      

(3.13a) 
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with  
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
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 
     

 

(3.14) 

The data set described in Wang et al. (1983) includes ground measurements of soil 

moisture and temperature observed at various depths: 0-0.5, 2.5-5.0, 5.0-10.0 cm for soil 

moisture and 1.25, 2.5, 7.5 and 15.0 cm for soil temperature. In addition, dual-polarized 

TB observations were collected at view angles of 10, 20, 30, 40, 50, 60 and 70 degrees. 

These measurements have been collected over soil surfaces with different roughness 

characteristics. For this investigation, a smooth and a rough surface are included in the 

analysis with a measured rms height of 0.73 and 2.45 cm, respectively. Because the 

present data set includes radiometer observations for an incidence angle range between 

35 and 60 degrees, only the TB measured over the 20 to 60 degrees incidence angle range 

are utilized from the Wang et al. (1983).  
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The extensiveness of the radiometer and ground measurements permits all unknowns in 

Eq. (3.13) and (3.14) to be derived, and allows the computation of surface roughness 

parameters Q and h. In analogy with the previous roughness computations, the soil 

moisture content integrated over 0-5.0 cm has been used to compute the relative dielectric 

constant and the soil temperature at 2.5 cm has been used to derive the normalized 

brightness temperature. The resulting h parameters are plotted as a function of the 

incidence angle for the rough and smooth bare soil surface in Figures 3-7a and 3-7b 

respectively, whereas the computed Q values are shown as a function of the incidence 

angle for both the rough and smooth surface in Figure 3-7c. The h-parameters shown in 

Figure 3-7a and 3-7b have been computed assuming three different G(θ) relationships, 

which are: 2cos  , cos , and G(θ) = 1.0. 
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Figure 3-7:  h-parameter as a function of incidence angle calculated from dual-
polarized L-band TB’s measured over (a) smooth bare soil surface and (b) rough 
bare soil surface. (c) Q-parameters as a function of the incidence angle for same 
smooth and rough surfaces. 

 
Figures 3-7a and 3-7b show a different angular behavior of the emission measured over 

the rough and the smooth surface. For the rough surface, it is observed that the function 

G(θ) = cos θ results in angular independent h parameter. However, G(θ) functions are not 

able to suppress the angular dependence of the h parameter from the smooth surface, 

while G(θ) = cos2 θ  provides the best approximation. An angular dependency of Q 
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parameter is noted in Figure 3-7c for both the rough and smooth surface. As shown in 

Figure 3-7c, the response of Q to incidence angle is, however, reasonably well 

approximated by  

 

   2cosQ Q    (3.15) 

During the OPE3 campaign an average rms height of 1.62 cm was measured. As such, 

the roughness conditions can be considered as rougher than smooth surface, and as 

smoother than the rough surface of the Wang et al. (1983) data set. Given that V-

polarized component of surface reflectivity cannot be included in the h parameter 

retrieval from the present data set, the obtained function G(θ) = cos θ is assumed to be in 

agreement with the results obtained from the data set collected at OPE3 in 2002. In 

addition, Q value of 0.1, being the average value of the Q derived for the rough and 

smooth surface, is utilized in combination with Eq. (3.15) to quantify depolarizing effects 

surface roughness. Then, using these extrapolated parameterizations, the h parameter is 

inverted from the H-polarized TB measurements on May 22.  

The resulting h parameters are given in Table 3-2, which range from 0.165 to 0.171 and 

display, thus, no angular dependency. This illustrates that incorporation of V-polarized 

reflectivity (and Q ≠ 0.0) is required for the h parameters to be valid over all incidence 

angles, which will be particularly important for retrieving soil moisture from the multi-

angular data as is acquired by SMOS and will be the case for Aquarius. These values for 

the h parameter are used for the analysis of the H-polarized transmissivity.  
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Table 3-2:  Surface parameters obtained through inversion of H-polarized TB 
observations acquired over bare soil conditions with implementation of the Q 
parameter extrapolated from the Wang et al. [23] data set  

 
View angle 

35 degrees 45 degrees 60 degrees 
h 0.165 0.171 0.165 

 
 
Estimation of the H-polarized transmissivity  

When soil moisture and surface temperature are known, H-polarized transmissivity (γh) 

can be retrieved by assuming that temporal changes in the roughness parameterization are 

small and the single scattering albedo can be neglected. The γh is estimated for days, for 

which soil moisture, soil temperature measurements and radiometer observations are 

available. For this determination, the measured soil moisture is converted into the 

dielectric constant using the soil textural properties given in section 3.1 and the dielectric 

mixing model by Dobson et al. (1985). The measured soil temperature observed at a 

depth of 3-cm is used to correct the TB observations for the changes in temperature of the 

soil-vegetation medium. Using this parameterization, the γh is computed using Eq. (3.1) 

for incidence angles of 35, 45 and 60 degrees.  
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Table 3-3:  H-polarized transmissivities and b parameters estimated over the 2002 
corn growth cycle using multi angular brightness temperatures. 

Date 
W transmissivtity b parameter 

kg m-2 35o 45o 65o 35o 45o 65o 
May 29, 2002 0.1 0.919 0.936 0.958 0.675 0.455 0.211 
June 5, 2002 0.3 0.813 0.840 0.868 0.554 0.401 0.230 
June 19, 2002 1.9 0.803 0.844 0.800 0.095 0.063 0.059 
June 26, 2002 3.1 0.782 0.788 0.741 0.063 0.053 0.047 
July 3, 2002 3.7 0.807 0.803 0.743 0.039 0.037 0.037 
July 9, 2002 4.2 0.763 0.739 0.711 0.055 0.053 0.041 
July 12, 2002 4.3 0.793 0.757 0.726 0.045 0.046 0.037 

August 21, 2002 2.6 0.840 0.812 0.763 0.055 0.056 0.051 
August 30, 2002 2.0 0.838 0.835 0.795 0.073 0.069 0.058 

 

The resulting γh are given for each day and for each of the three viewing angles in 

Table 3-3 and are plotted in Figure 3-8a against the W along with expected γh based on 

reported b parameter of 0.125 m2 kg-1. In addition, the LRAD b parameters are plotted 

against W in Figure 8b.  Most b parameter values have been derived for dense corn 

canopies near peak biomass. Therefore, the comparison of b parameters derived for May 

29 and June 5 (W = 0.1 and 0.3 kg m-2) is not optimal. Since previous studies [e.g 

Jackson and Schmugge (1991)] have reported comparable b parameter for W range 1.2 – 

6.0 kg m-2, the field conditions observed on June 19 to August 30  (W = 1.9 – 4.3 kg m-2) 

are comparable to corn canopies referred to in these previous investigations.  
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Figure 3-8:  H-polarized corn transmissivities (a) and b parameters (b) inverted 
from LRAD TB measured at incidence angle of 35, 45 and 60 degrees. 

 
Figure 3-8a and 3-8b show that the LRAD γh follows a different pattern than is 

expected based on the literature reported b parameters. In the beginning of the corn 

growing season the γh is lower than expected, while closer to peak biomass the γh is 

larger. In terms of the b parameter, the results are much higher after the corn crops have 

just emerged and somewhat lower values at high W (> 1.9 kg m-2). However, because at 

the beginning of the growing season the corn crops were small, the uncertainties in the W 

measurement can result in rather large deviations between the LRAD retrievals and 

literature reports. In addition, the contribution of the vegetation emission to the measured 

TB is also small and, therefore, uncertainties in the TB measurements (for example, 

stability of the instrument) can also be a cause for the obtained differences with the 

literature.  
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Table 3-4:  H-polarized transmissivities and b parameters inverted from LRAD TB 
measured on May 29, 2002 perturbed by  1.0 K. 

Date 
transmissivtity b parameter 

35o 45o 65o 35o 45o 65o 
TB - 1.0 K 0.936 0.948 0.970 0.537 0.371 0.147 

TB 0.944 0.955 0.976 0.466 0.319 0.120 
TB + 1.0 K 0.952 0.963 0.980 0.396 0.266 0.102 

 

To illustrate the impact of the TB uncertainties on the derived b parameter under low 

biomass conditions, the γh on May 29 has also been computed by perturbing the LRAD 

TB with   1.0 K. The obtained γh and b parameters are given in Table 3-4, which show 

that under low biomass conditions the sensitivity of the b parameter to uncertainties TB is 

very high. When 1.0 K is added or subtracted from the LRAD TB observations, the 

computed γh changes only about 0.007, while this changes the computed b parameter by 

0.071 to 0.027 m2 kg-1 depending on the incidence angle.  

The high γh obtained from the TB measured over more dense vegetation are most likely 

caused by scattering effects within the canopy, which has not been accounted for, since 

the ω = 0.0 has initially been assumed. At low frequencies and when the canopy 

attenuation is small, the ω value adopted within the radiative transfer approach is 

negligible (Jackson and O’Neill, 1990) because the vegetation emission is small, which 

would justify using ω = 0.0. As the biomass increases, however, the scattering within the 

canopy can have a significant impact on the measured TB. In literature [Van de Griend 

and Wigneron (2004)], reported ω values for corn canopies range from 0.04 to 0.13 for L 

band. 
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By assuming that the b parameter for corn vegetation at the OPE3 site should be 

between 0.10 and 0.15 m2 kg-1, the ω’s are computed for the LRAD measurements made 

on June 26. These ω computations have been made assuming b parameters of 0.10, 0.11, 

0.12, 0.13, 0.14 and 0.15 m2 kg-1. The resulting ω’s are given in Table 3-5, in which the 

numerical correlation between the b parameter and ω is demonstrated; for small b 

parameters, also ω is also small. Further, an angular dependency is noted among the 

inverted ω values. The derived values differ on average 0.025 between 35 and 45 degrees 

and 0.023 between 45 and 60 degrees. The angular dependence of ω is caused by the 

scattering within the complex canopy architecture (orientation of stems and leaves, as 

dielectric components of vegetation) [e.g. Lang and Sidhu (1983), Chauhan (1997)]. 

Despite these observations, the LRAD inverted ω‘s in agreement with the parameter 

range documented in Van de Griend and Wigneron (2004).  
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Table 3-5:  Single scattering albedo (ω) inverted from LRAD TB measured on June 
26, 2002 (W = 3.1 kg m-2) assuming a range b parameters from 0.10 to 0.15 m2 kg-1.  

b parameter Single scattering albedo 
m2 kg-1  35o 45o 65o 

0.10 0.044 0.071 0.093 
0.11 0.053 0.078 0.101 
0.12 0.059 0.085 0.108 
0.13 0.065 0.089 0.112 
0.14 0.069 0.093 0.116 
0.15 0.073 0.096 0.119 

3.5 Concluding remarks  
 

In this investigation, the H-polarized TB’s measured by a tower mounted L-band (1.4 

GHz) radiometer are used to analyze the vegetation effects on surface emission 

throughout the 2002 corn growth cycle. Concurrent with the radiometer measurements an 

extensive land surface characterization took place about once a week including soil 

moisture, soil temperature and vegetation biomass measurements. Over the period from 

May 22 to August 30, ten days with a complete record of ground and radiometer 

measurements are available for the present analysis that cover a vegetation water content 

(W) range of 0.0 to 4.3 kg m-2.  

The roughness parameter h, needed to correct for the effects of surface roughness, is 

inverted from H-polarized TB measured early in the corn growing season over essentially 

an bare soil surface using the Choudhury et al. [30] surface emission algorithm assuming 

(Q = 0.0) and  G(θ) equals 1.0. The h parameters inverted using this formulation displays 

an unusual angular dependence. Analysis of a dual-polarized L-band radiometer data set 

from 1981 [Wang et al. (1983)] demonstrates that the angular dependence of the h 

parameter in the present data set is partly caused by taking Q equal to 0.0. An alternative 
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set of the h parameters was computed using the Wang and Choudhury (1981) surface 

emission algorithm (Q ≠ 0.0) with Q parameter estimated from the 1981 data set as input.  

Based on the derived Wang and Choudhury (1981) surface roughness formulation, the 

H-polarized corn transmissivities (γh) have been retrieved using the radiative transfer 

equation and assuming the single scattering albedo (ωh) to be zero. The derived γh’s are 

converted into b parameter values using the measured W. For sparse vegetation, the 

inverted γh’s and b parameters were found to be larger than expected based on literature. 

It is, however, shown that under low biomass conditions when the emission by vegetation 

is small, uncertainties in TB and W measurements result in a particularly large b 

parameter uncertainty. For dense vegetation, the inverted b parameters are somewhat 

smaller than expected, which is attributed to scattering within the canopy that is not 

accounted for since ω is initially assumed to be zero. Assuming the b parameter for corn 

varies between 0.10 and 0.15 [m2 kg-1], the ωh has been computed from LRAD TB 

measurements. For this range of b parameters, a range of ωh values is found that is 

agreement with literature reports, but displays a strong angular dependence.  

This study shows that the roughness parameters, h and Q, interact with each other as is 

also the case for the vegetation parameters, γh and ωh. These interactions, together with 

any existing uncertainty in TB need to be considered for estimating soil moisture. 

Moreover, the temporal variation observed among the computed γh’s suggests that the 

empirical parameter b could also depend on the growth stage. Analysis of additional 

radiometer data sets and simulations by advanced vegetation scattering models is 
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recommended to further improve the understanding of the behavior of the b parameters 

during the growth cycle. 
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4 H polarized L-band microwave emission during the corn 
growth cycle. 

 
This chapter is based on: 
Joseph, A.T., van der Velde, R., O’Neill, P.E., Lang, R.H., Gish, T. “Soil moisture 

retrieval during a corn growth cycle using L-band (1.6 GHz) radar observations”, 
Remote Sensing of Environment, (in review). 

 

4.1 Introduction 
L-band radiometry is recognized as a technique with a significant potential for 

providing spatial and temporal soil moisture variations (e.g. Jackson 1993, Wigneron et 

al. 2003). As a result, satellite missions dedicated to global soil moisture monitoring have 

been proposed. A 2D-interferometric L-band radiometer has recently been launched 

onboard the European SMOS (Soil moisture and Ocean Salinity) satellite, Kerr et al. 

2001, and the NASA is in preparation of a similar suite of microwave instruments as a 

part of the Aquarius and SMAP (Soil Moisture Active/Passive, Entekhabi et al. 2004) 

missions, which have anticipated launch dates in 2011 and 2014, respectively.  

The reliability of soil moisture products derived from these microwave observations 

will depend, at least in part, on the effectiveness of accounting for vegetation and surface 

roughness impacts. Most retrieval algorithms utilize the radiative transfer model 

proposed by Mo et al. (1982), referred to as the τ-ω model, to account for the effects of 

vegetation and consider the surface roughness through the Wang and Choudhury (1981) 

model. Results from past field campaigns (e.g. Wang et al. 1990, Jackson et al. 1993, 

Jackson et al. 1999) have demonstrated the feasibility of obtaining reliable soil moisture 

maps using this modeling framework. At the same time, analysis of radiometer data sets 

collected at field scale assisted in further understanding the sources of microwave 
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emission and developing parameterizations for various land surfaces (e.g. O’Neill et al. 

1984, Jackson and Schmugge 1991, Wigneron et al. 1995, Wigneron et al. 2001).  

In recent years, however, the prospect of satellites with a L-band radiometer led to an 

increased number of initiatives focused on improving emission models and soil moisture 

retrieval algorithms, specifically for conditions that had not been intensively monitored in 

the past. For example, Grant et al. (2007), Guglielmetti et al. (2007) and Kurum et al. 

(2009) reported recently on radiometer measurements collected over forest stands and 

several others studies (e.g. Hornbuckle et al. 2003, Vall-llossera et al. 2005, De Rosnay et 

al. 2006, Cano et al. 2010) described long term field campaigns conducted in agricultural 

and natural vegetated settings.  

Several of these new data sets were collected using automated radiometers allowing 

brightness temperatures (TB) to be measured at preset time intervals. This permits a more 

detailed analysis of the effects of highly time-variable land surface states on microwave 

emission. Saleh et al. (2006) and Hornbuckle et al. (2006) found that water intercepted by 

vegetation could possibly influence the microwave emission also at L-band. Escorihuela 

et al. (2007), Saleh et al. (2007) and Panciera et al. (2009a) reported on increasing 

roughness effects proportional to a soil moisture decrease previously discussed by Mo 

and Schmugge (1987) and Wigneron et al. (2001). Hornbuckle et al. (2003) showed that 

the emission from vegetated surfaces may also be sensitive to the orientation of crop rows 

relative to the azimuth angle. While the above effects on microwave emission are 

detected at field scale, their impacts at the coarse resolution of satellites require further 
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investigation. Not accounting for these effects may add to the increase of uncertainty in 

satellite-based soil moisture products. Only an improved understanding of microwave 

emission will make it possible to reduce such uncertainties.  

This chapter contributes to the improved understanding of microwave emission from 

the soil-vegetation system by analyzing diurnal cycles of horizontally (H) polarized L-

band emission from a corn field measured as a part of a combined active/passive 

microwave remote sensing campaign. The NASA/ George Washington University 

(GWU) truck mounted scatterometer was deployed for measuring backscatter (e.g. 

Joseph et al. 2008) and a new L-band radiometer, called LRAD, provided TB’s. For the 

field campaign, LRAD operations were automated and programmed to collect data every 

hour at five incidence (25o, 35o, 45o, 55o, and 60o) and three azimuth angles. In support of 

these remote sensing observations an intensive ground sampling of biomass, soil moisture 

and temperatures took place once a week around the footprints. In addition, land surface 

states (e.g. temperature and soil moisture) and surface heat fluxes were measured within 

the same field at fixed time intervals by a micro-meteorological station and a network of 

soil moisture stations. 

In this investigation, the τ-ω model with in-situ measurements as input is applied to 

reproduce the LRAD observed diurnal TB cycles by optimizing its vegetation and soil 

surface roughness parameterizations. Three specific corn growth stages are included in 

this analysis, namely the periods 1) just after emergence, 2) before reaching peak biomass 

and 3) at senescence. The vegetation water content (W) measured during these three 
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periods was 0.3, 0.9-4.2 and 1.4-2.7 kg m-2, respectively and a soil moisture range from 

0.016 to 0.324 m3 m-3 was observed. This diversity in land surface conditions were used 

to study several of the effects on microwave emission discussed above under a changing 

vegetation cover. For example, the TB’s measured at different azimuths was utilized to 

investigate the impact of canopy’s azimuthal anisotropy on microwave emission. Further, 

the data sets from different parts of the growth cycle was studied to identify the 

dependence on morphological changes in the canopy and the varying soil conditions was 

used to analyze changes in soil surface roughness as a function of soil moisture.  

4.2 From incidental to continuous measurements 
The ground measurements available for analysis of the passive microwave data were 

collected either incidentally at fixed positions around the periphery of the footprints, or 

continuously at some distance. This study focuses on the investigation of diurnal L-band 

TB’s cycles requiring continuous soil moisture and temperature data sets. However, the 

measurements collected by the automated instruments may not represent the land surface 

conditions at the footprint of the radiometer. On the other hand, Joseph et al. (2010a, b) 

and the results of Chapter 3 have shown that the spatial mean of the measurements taken 

around the footprint is representative. Therefore, the soil moisture and temperatures 

measured by the automated instruments are matched to the mean of the measurements 

taken around the footprint. As such, the measurements collected at fixed time intervals 

are corrected to represent the conditions observed at the radiometer footprints.  
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Soil moisture  

In the case of soil moisture, each watershed is equipped with twelve stations that record 

data every 10 minutes using capacitance probes. The data collected in the most northern 

watershed can be expected to represent the conditions at the footprint. The resemblance 

between the soil moisture dynamics measured at the footprint and at the twelve stations is 

analyzed by plotting the capacitance probe data against the spatial mean of the twenty-

one measurements. This analysis is supported by coefficients of linear functions fitted 

through the data points along with the RMSD, bias, coefficient of determination (R2) and 

the number of data points listed in Table 4-1.  
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Figure 4-1: Capacitance probe soil moisture measured in the most northern watershed against the 
mean of twenty-one soil moisture measurements taken around the footprint (Footprint soil moisture). 
The station ID is given in the top left corner of each plot. 
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The plots of Figure 4-1 indicate positive and linear relationships between the two soil 

moisture data sources. The main differences consist of higher capacitance probe readings 

in the dry and mid soil moisture range. Such discrepancy is expected because around the 

footprint the moisture content of the top 0.06 m is sampled, while the capacitance probes 

are installed at 0.1 m depths and measure the moisture content within a 0.1 m radius. The 

top soil is in direct contact with the atmosphere and, thus, is subjected to a higher 

evaporative demand resulting in drier conditions than at a 0.1 m soil depth. In some 

cases, however, the capacitance probes also provided lower values than the measured 

around the footprint. This can be associated with the periods just after small rain events 

that wet the top soil, but do not include sufficient water to raise the moisture content in 

the deeper layers.  
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Table 4-1: Coefficients of linear function fitted through the soil moisture data 
presented in Figure 4-1 and RMSD, Bias and R2 and number of data points (No). 

Station ID 
a b RMSD bias R2 No 
- m3 m-3 m3 m-3 m3 m-3 - # 

AH1 0.580 0.017 0.058 0.043 0.509 57 

AH2 0.788 0.079 0.053 -0.054 0.850 74 

AH3 0.857 0.022 0.031 0.017 0.831 58 

AH4 0.926 0.032 0.047 0.022 0.741 55 

AL1 0.836 0.024 0.035 0.005 0.687 60 

AL2 0.664 0.034 0.036 0.011 0.794 66 

AL3 0.769 0.046 0.036 -0.016 0.810 58 

AL4 0.752 0.054 0.037 0.003 0.849 55 

AM1 0.968 0.005 0.037 -0.000 0.665 57 

AM2 0.761 0.034 0.032 -0.051 0.754 74 

AM3 0.959 0.039 0.041 -0.033 0.874 74 

AM4 0.615 0.084 0.061 -0.016 0.545 55 

 
Despite these inherent differences, fairly high correlations are found between the 

footprint soil moisture and the measurements from the stations AH2, AH3, AL3, AM3, 

and AL4. It is noted that the smallest scatter among the data points is obtained using the 

measurements collected at station AM3 and that the line fitted through these data points 

is also close to unity. Therefore, the measurements from this station (AM3) were adopted 

to establish the soil moisture time series representative for the radiometer footprints. A 

linear function with its coefficients given in Table 4-1 is used to match the soil moisture 

measured at station AM3 to the dynamics monitored around the footprint resulting in 

RMSD of 0.025 m3 m-3, which is comparable to calibration uncertainty of the Theta 

probe measurements. The time series of the corrected and original AM3 measurements 

along with the footprint soil moisture and daily rainfall is shown in Figure 4-2. 
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Temperature 

Soil and infrared temperatures of the surface are available at the micro-meteorological 

station. The soil temperatures were measured by six pairs of thermocouples buried at 

depths of 0.02 and 0.06 m wired to a single channel. These temperatures can be 

considered as an average over these two depths and were used as a proxy for the footprint 

soil temperature. Similarly, the temperatures measured by infrared radiometers can be 

used as proxy for the canopy temperature. 

 
Figure 4-2: Time series of the corrected and the original soil moisture measurements 
collected at the AM3 station along with the footprint soil moisture and antecedent 
precipitation.  
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footprint average of the mean of the 0.03- and 0.07-m soil temperatures. The bottom of 

Figure 4-3 presents the two infrared temperatures against the mean of the footprint 

canopy temperatures. Statistics related to the comparison are given in Table 4-2.  

Table 4-2: Same as Table 4-1, except the regression coefficients and statistical 
variables are presented for the temperature data in Figure 4-3. 

Station ID 
a b RMSD bias R2 No 
- K K K - # 

TC-1 0.909 5.033 4.66 -2.68 0.69 

92 

TC-2 0.960 5.785 6.88 -4.66 0.58 
TC-3 0.991 4.828 6.73 -4.47 0.60 
TC-4 0.929 4.855 4.94 -2.99 0.69 
TC-5 1.009 4.415 6.64 -4.52 0.63 
TC-6 0.981 4.171 5.56 -3.59 0.68 

IR-east 0.919 4.301 4.61 -2.25 0.63 
93 

IR-west 0.863 5.533 4.41 -1.92 0.63 
 
Both Figure 4-3 and Table 4-2 indicate that the temperatures measured by the TC-1 and 

IR-west sensors at the station represent respectively the soil and canopy temperatures at 

LRAD’s footprints best. Hence, the data sets collected by these two instruments are 

matched to the footprint dynamics using the linear functions define by the coefficients 

given in Table 4-2 resulting in a RMSD’s of 2.14 and 2.58 K, respectively.  

In the following, the corrected TC-1 and IR-west temperature are adopted as the soil 

and canopy temperatures, respectively. However, it is widely recognized that L-band 

emission can originate from deeper within the soil profile (+/- 0.5-1.0 m, Choudhury et 

al. 1982), while the TC-1 data is fitted to averaged of 0.03- and 0.07-m temperature. 

Unfortunately, temperatures measured at deeper depths are not available at this site. The 

uncertainty introduced by this assumption is expected to not exceed the other error 

sources. 
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Figure 4-3: (Top panel) thermocouple temperature plotted against the footprint 
average of the mean of the 0.03 and 0.07 m soil temperature, (bottom panel) thermal 
infrared temperature at the micro-meteorological station against the mean canopy 
temperature measured around LRAD’s footprint. 
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4.3 τ-ω model application and parameter estimations  
 
τ-ω model application 

The semi-empirical τ-ω model developed by Mo et al. (1982), and also described in 

Chapters 2 and 3, has been applied to reproduce the H polarized L-band emission 

measured from the corn field. Assuming that the contribution from the atmosphere is 

negligible, the τ-ω model defines H polarized TB as, 

 

     1 1 1 1H H H
B s H s s H H H cT R T R T          (4.1) 

where, Rs is the soil surface reflectivity (= 1- soil surface emissivity, es) computed 

using the model by Wang and Choudhury (1981), γ is the transmissivity, ω is the single 

scattering albedo, Ts and Tc are respectively the soil and canopy temperatures (K), and 

sub- and superscript H indicates that the variable is representative for the H polarization. 

The vegetation effects within the τ-ω model are accounted for by the γ and ω. The first 

quantifies the amount of soil emission passing through the canopy and the emission by 

the canopy itself. The latter parameterizes the faction of emission scattered within the 

canopy. As shown in Chapter 2, the γ is calculated as a function of the optical depth (τ) 

following, 

 

 exp cos     (4.3) 



Chapter 4 

85 
 

whereby the τ is often specified as linear function of an empirical parameter, b, and 

vegetation water content (W) as follows, 

 

b W    (4.6) 

Wigneron et al. (1995) among others have shown that the τ at a field scale may also 

depend on the incidence angle, specifically for vertically structured canopies such as 

wheat and corn. Therefore, in several cases, such as the L-MEB model (Wigneron et al. 

2007) for the SMOS soil moisture retrievals, the τ is defined through a simple 

formulation based on the τ at nadir (τNAD) and a fitting parameter,  

 

      2 2
NAD sin cosH Htt        (4.4) 

      2 2
NAD sin cosV Vtt        (4.5) 

where, ttH and ttV are empirical parameters quantifying angular dependence of τ at the H 

and V polarization, respectively.  

Application of the τ-ω model for simulating TB’s requires temperatures of the canopy 

(Tc) and emitting soil layer (Ts) as well as the soil moisture content. The temperatures 

measured by the infrared thermometer and buried thermocouples, and the soil moisture 

recorded by the AM3 probe, corrected to represent the footprint dynamics, have been 

adopted as Tc, Ts and soil moisture data sources, respectively.  
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Parameter estimation 

Next to these land surface states, the TB simulations depend also on a number of 

roughness and vegetation parameters, which should ideally be reduced to a minimum for 

retrieval purposes. For example, the bare soil emission model utilizes the parameters hr, 

Q and NR. A much debated part in this formulation is the angular dependence of the 

roughness effect. Originally, Wang and Choudhury (1981) took NR equal to 2.0, while 

others (e.g. Wang et al. 1983, Wegmüller and Mätzer 1999) suggested that lower values 

are more appropriate. Recently, Escorihuela et al. (2007) found that NR attains also 

different values for the H and V polarization. Hence, the NR is considered as a 

polarization dependent parameter. Recognizing that both the H and V polarized R0 vary 

with the incidence and that polarization mixing is limited at L-band (e.g. Mo and 

Schmugge 1987, Wigneron et al. 2001), Q is assumed zero as its effect on surface 

emission can be compensated by NRH. 

Also, the impact of the parameters τ (or b) and ω is not independent within TB 

simulations performed using the τ-ω model (e.g. Burke et al. 1999, Joseph et al. 2010b). 

The ω is, therefore, taken equal to zero, which is justified based on previous research 

(e.g. Wigneron et al. 2004) showing that the effect of scattering within the canopy is at L-

band negligible for most vegetation covers. Nevertheless, the values of ω derived from 

inversion of selected measurement days are given. 

These simplifications reduce the unknowns to hr and NRH for the soil surface roughness, 

and to b and ttH for the vegetation. The roughness parameters are estimated by 
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minimizing the RMSD between TB’s simulated and measured at the beginning of the 

campaign under nearly bare soil conditions (W < 0.1 kg m-2) using a least squares 

optimization algorithm. The obtained hr and NRH are respectively 0.579 and 0.214 with a 

RMSD of 2.67 K computed using the TB’s measured at all azimuth and incidence angles 

for the three bare soil periods. This parameterization is assumed to be temporally stable, 

which is justified based on the investigation by Joseph et al. (2010a). They found that the 

roughness estimated at the start of this campaign is representative for the entire 

observation period.  

With roughness parameterized and assumed constant, the τNAD, computed as the 

product of the W and the empirical b parameter, remains the only variable throughout the 

growing season, whereby measurements are used for W. Although the b parameter is 

intended to be a constant defined for a specific land cover type, results from a discrete 

medium scattering model have shown that attenuation by canopies depend also on the 

vegetation morphology (Le Vine and Karam, 1996). As the architecture of corn plants 

changes during the growing season, the empirical constant may vary as well. Moreover, 

Wigneron et al. (1995) and Pardé et al. (2003, 2004) found an angular dependence for the 

b parameter and Hornbuckle et al. (2003) demonstrated that microwave emission is also 

affected by the crop row orientation. 

Given the setup of our field campaign, the b parameters needed to reproduce the 

measured TB cycles may, thus, depend on the growth stage, incidence and azimuth angle. 

In this context, the ttH parameter could be useful in correcting for the angular 
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dependence. Therefore, to match the TB simulations with hourly measurements of each 

episode separately, the b value is estimated assuming ttH = 1 (no angular dependence), 

and the values of b and ttH are estimated simultaneously. The optimum b and ttH values 

are obtained by minimizing two cost functions using least squares optimization 

algorithm: 1) RMSD computed for the TB’s at all azimuth and incidence angles, 2) 

RMSD computed for TB’s at a specific azimuth angle. Additionally, a single b value is 

estimated for each azimuth and incidence angle separately, which provides the best 

approximation of the angular dependence. 

In addition, the episodes with LRAD measurements over vegetation cover include a 

certain soil moisture range. As several authors (e.g. Saleh et al. 2007, Escorihuela et al. 

2007, Panciera et al. 2009a) provided evidence for a linear dependence of the hr 

parameter to soil moisture, a change in wetness during a measurement periods could 

affect the results. In analogy to these studies, the impact of changing soil moisture 

conditions on the effective roughness is investigated by fitting the following linear 

function, 

 

1 0rh h sm h    (4.7) 

where, sm is the soil moisture (m3 m-3).  

The coefficients, h1 and h0, are obtained by minimizing the RMSD computed using all 

TB’s measured during sequence after the b value has been optimized for each azimuth and 

incidence angle, separately.  
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Table 4-3 lists the summary of the optimizations (six types in total) described above. The 

inverted b parameters are expected to quantify its dependence on the growth stage, 

azimuth angle (or crop row orientation) and incidence angle. Further, the estimation of 

the coefficients h1 and h0 can provide additional experimental evidence for the 

dependence of hr on soil moisture. Moreover, via the RMSD’s computed between the 

simulated and measured TB, the relative contribution of each uncertainty source is 

quantified. 

 
Table 4-3: List of calibrations used for reproducing the TB’s measurements 

 ttH = 1 ttH ≠ 1 

1 
Fit a single b for all azimuth and 
incidence angles 

Fit a single b and ttH for all azimuth 
and incidence angles 

2 Fit a single b for each azimuth angles 
Fit a single b and ttH for each 
azimuth angles 

3 Fit for each incidence and azimuth angle a singe b value 
4 Fit the function hr = h1 sm + h0 

4.4 Results 
The results from the six optimizations are presented for each measurement cycle in a 

single table, Tables 4-4 through 4-8. In these tables, the inverted b and, if applicable, ttH 

parameters are given as well as the RMSD’s computed between the measured and 

simulated TB’s. The total RMSD is provided along with the RMSD averaged for a 

specific azimuth. The RMSD’s following from the optimization of the h1 and h0 

parameters are given in Table 4-9.  

The match between the TB measurements and various simulations are plotted as a time 

series in Figure 4-4 for June 8 (early growth stage), Figure 4-5 for July 2 (near peak 

biomass) and Figure 4-6 for August 29 (senescence). To limit the number of plots in 
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these figures, the results from three incidence angles are presented, which are 25o, 45o, 

and 60o except for June 8. On this day, data from 25o (and 55o) was not collected and the 

measurements from 35o are shown instead. Also for clarity, the TB simulations from four, 

instead of six, optimizations are shown, which are obtained by:  

1) a single fitted b while assuming ttH = 1; 

2) a b and ttH fitted for each azimuth angle; 

3) a b fitted for each incidence and azimuth angle; 

4) using b values from (3) with fitted  h1 and h0 parameters; 

 

Vegetation effects throughout the growth cycle  

The plots in Figures 4-4 through 4-6 show, as expected, that discrepancies between 

the measured and simulated TB’s are largest when a single b parameter is fitted for all 

incidence and azimuth angles. The magnitude of these deviations varies, however, among 

the different growth stages. This suggests not only that the b parameter depends on the 

incidence and azimuth angle, but also that these angular dependencies change during the 

growing season. Somewhat unexpected is, however, that at peak biomass TB simulated by 

a single b parameter matches the measurements taken from the various incidence and 

azimuth angles best. This is further elaborated below. Indeed, the values presented in 

Tables 4-4 through 4-8 confirm the changing angular dependencies of the empirical b 

throughout the growing cycle. The magnitude of b also displays a seasonal trend. A b of 

0.334 m2 kg-1 is found at the early development of crops (W = 0.3 kg m-2), while near 
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peak biomass (W = 4.2 kg m-2) and senescence (W = 2.1 kg m-2) the b reduces to 0.053 

and 0.047 m2 kg-1, respectively. Considering most studies on L-band radiometry over 

corn reported on b parameters ranging from 0.10 to 0.15 m2 kg-1 (e.g. Van de Griend and 

Wigneron 2004a), the values obtained at the early growth stage are much larger, and the 

ones near peak biomass and senescence are somewhat smaller than expected. Many of the 

investigations summarized by Van de Griend and Wigneron (2004a), however, analysed 

TB’s measured in only a part of the growth cycle. In fact, the observed trend over the 

growth cycle is quite consistent with results previously reported by Wigneron et al. 

(2004). They also found that at the early growth stage the b attains much larger values 

than during the rest of the season. 

 
Table 4-4: The b parameter and ttH calibrated to reproduce the TB’s measured at 
various combinations of incidence and azimuth angles in the period June 8th to June 
10th and the RMSD’s computed between the simulated and measured TB’s. 
Azimuth Incidence ttH = 1 ttH = optimized Incidence 
degrees degrees single azimuth single azimuth  

  b b b ttH b ttH b 

  kg m-

2
 

kg m-2 kg m-

2 
- kg m-

2 
- kg m-2

 

40 

25 

0.334 0.376 0.569 0.308 0.474 0.671 

 
35 0.431 
45 0.368 
55  
60 0.361 

RMSD (K) 6.77 6.39 7.18 6.26 6.18 

60 

25 

0.334 0.319 0.569 0.308 0.562 0.326 

 
35 0.412 
45 0.395 
55  
60 0.275 

RMSD (K) 6.89 6.86 5.99 5.94 5.94 

80 

25 

0.334 0.264 0.569 0.308 0.648 0.095 

 
35 0.450 
45 0.359 
55  
60 0.208 

RMSD (K) 8.23 7.71 6.43 5.55 5.55 
Total RMSD (K) 7.30 6.99 6.54 5.93 5.89 
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Table 4-5: Same as Table 4-4, only results for the period June 24th to June 27th are 
presented. 
Azimuth Incidence ttH = 1 ttH = optimized Incidence 
degrees degrees single azimuth single azimuth  

  b b b ttH b ttH b 

  kg m-

2
 

kg m-2 kg m-

2 
- kg m-

2 
- kg m-2

 

40 

25 

0.269 0.291 0.405 0.426 0.328 0.818 

0.264 
35 0.363 
45 0.286 
55 0.304 
60 0.272 

RMSD (K) 4.57 4.29 5.33 4.24 3.88 

60 

25 

0.269 0.253 0.405 0.426 0.401 0.417 

0.337 
35 0.327 
45 0.297 
55 0.236 
60 0.226 

RMSD (K) 5.28 5.18 4.19 4.17 4.12 

80 

25 

0.269 0.235 0.405 0.426 0.476 0.196 

0.363 
35 0.368 
45 0.290 
55 0.220 
60 0.186 

RMSD (K) 6.86 6.56 5.09 4.27 4.20 
Total RMSD (K) 5.57 5.35 4.87 4.23 4.06 
 
The lower values found here near peak biomass and at senescence are mostly explained 

by neglecting the effect of scattering within canopy (ω = 0) for the b parameter inversion. 

Accounting for these scattering losses requires typically a larger b value as compensation 

(e.g. Burke et al. 1999, Joseph et al. 2010b). Moreover, using roughness parameters 

estimated at the start of the campaign poses also a larger, though unknown, uncertainty 

on the results obtained from the LRAD data sets collected at the end of the campaign.  
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Table 4-6: Same as Table 4-4, only results for the period July 2nd to July 4th are 
presented. 
Azimuth Incidence ttH = 1 ttH = optimized Incidence 
degrees degrees single azimuth single azimuth  

  b b b ttH b ttH b 

  kg m-

2
 

kg m-2 kg m-

2 
- kg m-

2 
- kg m-2

 

40 

25 

0.053 0.053 0.049 1.02 0.030 1.981 

0.023 
35 0.047 
45 0.045 
55 0.057 
60 0.056 

RMSD (K) 3.96 3.95 3.70 3.41 3.21 

60 

25 

0.053 0.054 0.049 1.02 0.047 1.110 

0.034 
35 0.049 
45 0.061 
55 0.054 
60 0.054 

RMSD (K) 3.37 3.34 3.29 3.27 3.01 

80 

25 

0.053 0.049 0.049 1.02 0.078 0.368 

0.044 
35 0.066 
45 0.063 
55 0.050 
60 0.043 

RMSD (K) 4.21 4.10 4.43 3.78 3.37 
Total RMSD (K) 3.85 3.80 3.81 3.49 3.20 
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Table 4-7: Same as Table 4-4, only results for the period August 20th to August 23rd 
are presented. 
Azimuth Incidence ttH = 1 ttH = optimized Incidence 
degrees degrees single azimuth single azimuth  

  b b b ttH b ttH b 

  kg m-

2
 

kg m-2 kg m-

2 
- kg m-

2 
- kg m-2

 

40 

25 

0.056 0.053 0.011 7.09 0.000 159.9 

-0.016 
35 0.026 
45 0.047 
55 0.055 
60 0.056 

RMSD (K) 4.12 4.05 3.56 3.37 3.09 

60 

25 

0.053 0.058 0.011 7.09 0.013 6.224 

0.002 
35 0.034 
45 0.059 
55 0.062 
60 0.059 

RMSD (K) 3.73 3.72 3.38 3.38 3.09 

80 

25 

0.053 0.063 0.011 7.09 0.035 2.238 

0.008 
35 0.056 
45 0.065 
55 0.068 
60 0.063 

RMSD (K) 4.01 3.80 3.90 3.68 3.35 
Total RMSD (K) 3.95 3.86 3.61 3.48 3.18 
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Table 4-8: Same as Table 4-4, only results for the period August 29th to September 
1st are presented. 
Azimuth Incidence ttH = 1 ttH = optimized Incidence 
degrees degrees single azimuth single azimuth  

  b b b ttH b ttH b 

  kg m-

2
 

kg m-2 kg m-

2 
- kg m-

2 
- kg m-2

 

40 

25 

0.047 0.036 0.008 8.030 0.001 96.38 

0.014 
35 0.018 
45 0.026 
55 0.038 
60 0.045 

RMSD (K) 6.48 5.10 4.54 2.91 2.79 

60 

25 

0.047 0.051 0.008 8.030 0.000 388.0 

0.011 
35 0.014 
45 0.046 
55 0.058 
60 0.055 

RMSD (K) 6.59 6.46 4.26 3.79 3.01 

80 

25 

0.047 0.053 0.008 8.030 0.043 1.375 

0.041 
35 0.048 
45 0.054 
55 0.059 
60 0.051 

RMSD (K) 3.64 3.05 5.14 2.90 2.54 
Total RMSD (K) 5.57 4.87 4.65 3.20 2.78 
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Figure 4-4: TB simulations and measurements plotted over time for the period 8 June 8:00 to 10 June 
13:00. 
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Figure 4-5: TB simulations and measurements plotted over time for the period 2 July 
16:00 to 4 June 21:00. 
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Figure 4-6: TB simulations and measurements plotted over time for the period 29 
August 0:00 to 1 September 14:00. 
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Figure 4-7: Separately fitted b values for the five measurements episodes plotted 
against the incidence for the three azimuth positions.  
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the b values fitted for each incidence and azimuth angle separately are plotted against the 

incidence angle. In addition, the values produced by the b and ttH fitted for a specific 

azimuth are plotted. 

Figure 4-7 shows, in general, a decreasing b as a function of the incidence angle at the 

beginning of the season (June 8 and 24), while an increase is observed near senescence 

(August 20 and 29). The decrease in the early corn development is most noticeable for 

the view direction along the rows and less apparent when viewing further across. Near 

senescence, however, the opposite trend is noted. At this growth stage, the angular 

dependence of b is almost absent for the parallel view direction, especially if results from 

25o is disregarded. Conversely, viewing only somewhat across the corn rows causes 

already a significant increase in the b with the incidence. On the other hand, closer to 

peak biomass (July 2) the angular dependence of the b for either of the azimuth positions 

is much weaker. This explains also why for this particular episode a good match between 

the measured and simulated TB’s is obtained using a single b.  

The decrease of the b parameter with the incidence angle at the beginning of the growth 

cycle is not quite surprising as neither model nor experimental investigations have yet 

provided evidence for such angular dependency. Nevertheless, the decrease of the b is 

consistently observed for the periods starting on both June 8th and June 24. On these 

dates, the canopy height was 0.6 m and 1.4 m respectively, and the corn plants consisted 

primarily of leaves shooting nearly vertical from the stems. Thus, the density of the 

vertically oriented leaves is rather high at the position of the crops, which could possibly 
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explain the larger b (or τ) at lower angles. O’Neill et al. (1984) showed that for L-band 

the contribution from leaves of a fully grown corn canopy is less important than the 

contribution from the stems. Thus, even a smaller effect of leaves can be expected at the 

early growth stage. Clustered together, however, they may exert a significant effect on 

the measured TB. Since the vertically oriented crops appear denser as the path through the 

canopy is shorter, the value of b decreases with the incidence angle and a weaker angular 

dependency is observed when viewing across the rows.   

The strength of this angular dependency declined as the canopy grows towards its peak 

biomass. A reduction in the decrease of b with the incidence angle is already noted on 

June 24. During this growing stage, the leaves increase in number and develop primarily 

in the horizontal direction forming a closed canopy. This leaf coverage has an attenuating 

effect on the angular dependent contributions from strong emitters, such as the stems. 

Hence, the dependence of the b on the incidence angle found near peak biomass (July 2) 

is negligible at all azimuths. Hornbuckle et al. (2003) drew similar conclusions. They 

found that as long as leaves contain significant amounts of water, the emission from corn 

is isotropic in the azimuth. During senescence, however, the foliage loses its moisture and 

the leaves no longer mask the contribution from the stems. For this growth stage, 

Hornbuckle et al. (2003) concluded that the TB measurements are sensitive to the view 

direction relative to the crops rows because of the effect of the exposed stems. 
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Figure 4-8: Single scattering albedos (ω’s) inverted for the measurements collected at senescence 
(August 20th and August 29th) assuming a b parameter of 0.115 m2 kg-1. 
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values of 0.073 and 0.223 are found for August 20 and 29, respectively. This large 

difference between the two dates was explained by the strong decrease in leaf moisture. 

On August 21, a leaf water content of 0.8 kg m-2 was measured, which reduces to 0.3 kg 

m-2 on August 31 and became almost negligible (0.05 kg m-2) on September 4. Over this 

period, thus, the effect of the stems gradually increased as the attenuation by the leaves 

further decreased. Another important observation from Figure 4-8 is that the ω estimated 

for both periods is larger in the across than in the along row direction, which supports the 

above hypothesis. Yet, the ω is fairly independent of the incidence angle.  

Many studies assume for L-band the ω equal to zero as scattering within the canopy is 

generally negligible for the longer wavelengths and its effect on TB simulations by the τ-

ω model is highly correlated with the τ. Our results show, however, that as the leaves lose 

their water at senescence scattering within a corn canopy becomes important particularly 

when viewing across rows. Under those conditions, adopting ω = 0.0 requires an angular 

dependent b parameter for reproducing the measured TB’s. Interestingly, however, the 

formulation proposed by Wigneron et al. (1995) is able to replicate this angular 

dependency evolving from assuming ω = 0.0 reasonably well. In some cases, however, 

the obtained ttH parameters are beyond the ranges reported previously (e.g. Pardé et al. 

2003, Wigneron et al. 2007), especially for the across row view geometry. A 

consequence of a large ttH is that the inverted b attains an unrealistically low value.  
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Table 4-9: Regression coefficients of the function hr = h1 sm + h0 fitted for five 
periods with LRAD measurements.  

Period SM range hr = h1 sm + h0 RMSD (K) 
 m3 m-3 h1 h0 hr~sm Incid. 

8 -10 June 0.22-0.18 -9.68 1.67 3.64 5.89 
24-27 June 0.14-0.11 -16.45 1.71 3.58 4.06 

2-4 July 0.09-0.06 -9.60 1.03 3.13 3.20 
20-23 August 0.02-0.01 -7.58 0.46 3.18 3.18 

29 Aug. – 3 Sept. 0.28-0.23 0.39 0.52 2.76 2.78 
 

hr Dependence on soil moisture  

Next to optimizing parameterization defining the τ, the regression coefficients h1 and h0 

were calibrated to evaluate the dependence of hr on soil moisture during each of the five 

measurement periods. Table 4-9 gives the obtained parameters and the RMSD’s 

computed between the simulated and measured TB. In addition, the RMSD’s obtained by 

fitting the b for each incidence and azimuth angle are given for reference. These b values 

have also been used while optimizing h1 and h0. As such, resulting parameters only 

corrected for the soil moisture dependence of hr and not for potential changes in the 

physical roughness as those effects are implicitly included in the calibrated b values. 

The RMSD’s presented in Table 4-9 indicate that by defining the hr as a function of soil 

moisture improvements are obtained for the periods starting on June 8 and 24. The effect 

on the simulated TB is clearly visible in Figure 4-4 for June 8. For the two episodes, the 

error levels reduce from 5.89 to 3.64 K and 4.06 to 3.58 K, respectively. Effectively, the 

improved TB simulation is achieved by increasing hr as the soil dries, which is consistent 

with various recent studies (e.g. Saleh et al. 2007, Escorihuela et al. 2007, and Panciera et 

al. 2009a).  
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Wigneron et al. (2001) associated the higher hr values with an increase in the spatial 

heterogeneity of the dielectric properties. During dry-downs, typically, the micro-scale 

soil moisture variability increases, causing a strong dielectric contrast within the soil 

volume. This enhances the surface emission and is considered as a ‘dielectric roughness’. 

Since the spatial soil moisture variability is often large in the mid range (e.g. Ryu and 

Famiglietti 2005, Van der Velde et al. 2008), the dielectric roughness effect is expected 

to be largest under those conditions. This explains the large RMSD reduction for June 8th 

(2.26 K), while for June 24th the RMSD decreases merely 0.48 K and the effect is almost 

negligible for the other periods. Similarly, both Saleh et al. (2007) and Escorihuela et al. 

(2007) found that the dielectric roughness came only into effect below certain moisture 

contents. As an addition to these two investigations, Panciera et al. (2009b) concluded 

also that as the soil moisture content approaches residual conditions the soil moisture 

dependency of hr reduces.  

Compared to these studies, the values for the slope (h1) presented in Table 4-9 are on 

the same order of magnitude, though somewhat larger. This difference is most likely 

explained by the employed procedure. Here the coefficients are fitted for individual time 

series with a fairly small dynamic range, whereas the studies cited above fitted complete 

data sets. The h1 values in Table 4-9 are, thus, only representative for the specific soil 

moisture conditions, while slope reported by the studies cited above are valid for a wider 

soil moisture range. 
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4.5 Discussion 
 

The analysis of L-band H polarized TB’s measured during several growth stages shows 

that the b parameter (for canopy opacity) and its dependence on incidence and azimuth 

angles change throughout the season. Moreover, the hr is found to increase as the soil 

moisture content decreases during a specific part of the dry-down cycle. The relative 

importance of these uncertainties on TB simulations is discussed here. The fraction of the 

optimum performance (F) is defined as,  

 

 min

min

1 100%iRMSD RMSD
F

RMSD


    (4.8) 

where RMSDi is RMSD computed between the measured and simulated TB for a 

specific calibration (K) and RMSDmin is the minimum RMSD achieved for a continuous 

period of LRAD measurements (K).  

The F’s have been calculated for all six calibrations and are presented in Figure 4-9 for 

each episode in a separate plot. The plots show that the largest variations in performance 

occur on June 8th and August 29th. The definition of the hr as a function of soil moisture 

reduces for June 8th the RMSD by 38%, while for August 29th the calibration of the b and 

ttH for each azimuth angle separately is responsible for a 27% RMSD reduction. Also, 

noteworthy is the more than 10% error reduction on June 24th using either an azimuth 

angle dependent vegetation or soil moisture dependent roughness parameterization. The 

improvement in the TB simulation for the other two periods is, however, in total less than 

20% and does not exceed 8% for individual sources of uncertainty. Averaged over all 
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five episodes, the calibration of the b and ttH for each azimuth angle separately results in 

improvements (11.5%) twice as large as for the other optimizations. 

These results demonstrate that uncertainties in TB simulations are largest at the start and 

end of the corn growing season. At an early growth stage, the TB simulations mainly are 

uncertain due to a combination of the soil moisture dependence of hr and the effect of the 

crop row orientation relative to view direction. At senescence, the crop row orientation 

primarily affects the reliability TB simulations. Of course, at the satellite scale (>10 km) 

these effects may not be directly observable, especially the crop row effects. However, 

uncertainties like these affect the overall accuracy of soil moisture products from satellite 

missions, such as SMOS and SMAP. Moreover, via simulation of TB’s at a high spatial 

resolution using a process model, as demonstrated by Crow et al. (2005), it could be 

possible to take these field scale effects into consideration.    
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Figure 4-9: The faction of the optimum performance calculated for all six 
calibrations plotted for each of the five measurement episodes.  
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4.6 Conclusions 
 
From a combined active/passive microwave remote sensing campaign conducted in 

2002, hourly L-band H polarized TB measurements are available for five episodes 

distributed over the corn growth cycle. These measurements were collected at five 

incidence angles and three azimuth angles relative to crop row orientation. A labor 

intensive ground characterization took place on a weekly basis in the direct proximity of 

the footprints and, at some distance (<100 m), a suite of automated instruments were 

available to support the microwave data sets. In this investigation, the soil moisture and 

temperatures measured at preset time intervals have been utilized as input for the τ-ω 

model to reproduce the measured TB cycles. Via calibration of the model’s vegetation and 

roughness parameterizations, the impact of the changing canopy structure throughout the 

season and soil moisture dependence of the hr are evaluated.  

This study shows that the b parameter, defining the τ, and its dependence towards the 

incidence and azimuth angles change both during the growth cycle. The b found for the 

early growth stage is about three times larger than expected based on the literature, while 

near peak biomass and at senescence its value is about half. The latter is mainly caused 

by assuming the scattering within canopy to be negligible by setting the ω equal to zero. 

The larger b at the beginning of the growth cycle is, however, consistent with a previous 

report by Wigneron et al. (2004).  

More surprising is the changing angular dependence of the b during the growing 

season. In general, the b parameter decreases with the incidence angle in the early growth 
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phase, which might be attributed to the predominant vertical structure of the corn plants 

at this stage. Closer to peak biomass the leaves develop in the horizontal direction and 

form a closed canopy, which is associated with the observed weakening of the angular 

dependencies as the leaf coverage attenuates angular dependent contributions. These 

attenuating effects of the leaves disappear at senescence as the foliage loses its water and, 

thus, the influence exerted by the stems increase. For this growth stage, an increase of the 

b with the incidence is observed when the ω is taken equal to zero, which is most notable 

when viewing across the rows. However, it is found that when assuming a single b value 

for all incidence angles, the optimized ω’s are well above zero and fairly independent of 

the incidence angle. Larger ω’s are, however, obtained for the across row than for along 

row view direction. These results suggest that scattering within a corn canopy is primarily 

induced by stems, which becomes particularly important at senescence. The change in the 

scattering cross sections of the vertically oriented corn stems with azimuth explains the 

dependence of the ω on the crop row orientation. The assumption ω = 0.0 requires, thus, 

an angular dependent b parameter for reproducing the TB measurements at senescence. 

This study also shows that the parameterization proposed by Wigneron et al. (1995), 

included in L-MEB is able to replicate the angular dependence of b observed for different 

azimuthal angles during various growth stages.  

In addition, calibration of the regression coefficients defining the relationship between 

soil moisture and hr indicate that the effective roughness increases as the soil dries. This 

dependence of hr is found to be responsible for significant uncertainties particularly near 
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field capacity, which typically is representative of loamy sand the 0.1 - 0.2 m3 m-3 soil 

moisture range. Previously, similar hr increments in response to a soil moisture decrease 

were associated with a spatial heterogeneity of the dielectric properties (e.g. Wigneron et 

al. 2001, Escorihuela et al. 2007). The typically large spatial variability near field 

capacity explains the larger uncertainty imposed by the soil moisture dependence of hr 

under those conditions, which is supported by the findings of Panciera et al. (2009b).  

In summary, this investigation of L-band H polarized demonstrates that the b parameter 

(or τ) and its angular dependence change throughout the corn growth cycle. It is shown 

that near field capacity, the hr increases as the soil moisture content decreases. Discussion 

of the relative importance of these two sources of uncertainty suggests that at the start of 

the crop development (W < 1.0 kg m-2) an imperfect parameterization of the angular 

dependence of b can account for about a 10 % error in TB simulations, while this source 

of uncertainty causes errors up to 27 % at senescence. On the other hand, the soil 

moisture dependence of hr accounts for an error of about 38 % at beginning of the growth 

cycle. Encouraging, is that near peak biomass neither the angular dependence of the b nor 

the soil moisture dependence of hr was found to significantly degrade the reliability of TB 

simulations. This means that the commonly adopted assumptions (e.g. ttH = 1 and ω = 

0.0) are reasonable for peak biomass. Therefore, it may be hypothesized that the 

uncertainties discussed above affect mostly the soil moisture retrievals at the start and 

end of the growth cycle. Including a soil moisture dependent hr parameterization and 
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accounting for the changing angular dependencies of the empirical b parameter can assist 

in developing more robust soil moisture products. 
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5 Modeling L-band emission during a corn growing season 
 
This chapter is based on: 
Joseph, A.T., van der Velde, R., Ferrazzoli, P., O’Neill, P.E., Lang, R.H., Gish, T., 

“Modeling L-band emission during the corn growth cycle using a discrete medium 
scattering model”, to be submitted to IEEE Transaction on Geoscience and Remote 
Sensing. 

5.1 Introduction 
 

In the previous chapter, diurnal cycles of H polarized L-band TB measurements were 

analyzed by fitting the vegetation parameters of the semi-empirical τ-ω model. One of the 

main findings from this analysis is that the empirical parameter, b, appearing in the 

formulation of the canopy opacity changes throughout the corn growth cycle. At the early 

growth stage, the b value is, for example, three times larger than expected, while close to 

peak biomass and senescence its value reduces to half. Although the unusually small b 

values at large biomass may have been induced by other settings within the τ-ω model, 

the large b values at the early growth stage are consistent with results by Wigneron et al. 

(2004).  

Unfortunately, the L-band radiometer data set collected during the 2002 OPE3 

campaign is restricted to a limited number of episodes that leave various parts of the 

growth cycle uncovered. Therefore, the conclusions drawn with respect to the seasonal 

dependency of the empirical b should also be confirmed using other data sources. Other 

ground based L-band radiometer data sets collected during the complete corn growth 

cycle are, however, rare.  

On the other hand, as a part of the 2002 OPE3 campaign a comprehensive set of 

vegetation morphological variables were measured once a week. These vegetation 

variables are input for physically discrete medium scattering models. As described in 
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section 2.4, discrete medium scattering models are used to compute the bistatic scattering 

coefficient. Integrating this bistatic scattering over the hemisphere yields the total 

reflection, which can be converted into the emissivity. Essentially, this is the concept of 

Peake’s Law.  

In this Chapter, the vegetation morphological measurements are used as input for the 

Tor Vergata model for simulating the L-band emissivity (or brightness temperature) 

throughout the complete corn growth cycle. An additional advantage of employing the 

discrete medium approach for simulating the emissivity is that the effects from the soil 

surface and vegetation can be quantified in a detailed and a physical manner. The specific 

reason for selecting the Tor Vergata model is that it adopts the matrix doubling 

algorithm, which allows taking multiple scattering between the different constituents of 

the soil-vegetation system (e.g. leaves, stems, soil surface) into consideration. Further, in 

recent years the Tor Vergata model has been used fairly successfully in several 

investigations for simulating both the backscattering and emission from soil-vegetation 

systems.  

For example, Della Vecchia et al. (2006a, 2008) employed the Tor Vergata model for 

simulating the C-band backscattering from a wheat and a corn field. Moreover, the 

passive microwave version of the Tor Vergata model has been applied by Della Vecchia 

et al. (2006b, 2010) for simulating the L-band emission of forest stands. The Tor Vergata 

model, however, has not yet been applied for simulating the microwave emission over 

agricultural fields during growth cycles (e.g., corn). Such analysis is interesting because it 
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may provide insight into the effect that morphological changes have on the microwave 

emission, which is directly relevant for the retrieval algorithm of future satellite remote 

sensing soil moisture missions, (e.g., SMAP).  

In the studies cited above several improvements were introduced to the geometric 

representation of vegetation morphology. Along with these developments, concerns have 

also been raised with the dielectric representation of scatterers. The most interesting 

results were recently presented in Mironov et al. (2009). They presented a comprehensive 

validation and showed that the soil dielectric mixing model developed by Dobson et al. 

(1985) overestimates the soil dielectric constant by more than 30%. Currently, the 

Dobson et al. (1985) model is the most widely used approach for obtaining dielectric 

constants of wet soils in both retrieval algorithm and discrete scattering models. Yet, the 

impact of such difference in soil dielectric constant is unknown, specifically over 

vegetated areas.  

In this Chapter two issues will be investigated using emissivity simulations performed 

by the Tor Vergata model. The main objective of this research is to study the impact that 

changes in corn morphology have on the emissivity and analyze the soil moisture 

sensitivity during the corn growth cycle. In addition the influence of the applied dielectric 

mixing model on these results is investigated.  

5.2 Parameterization of the Tor Vergata model  
 

The concepts and some mathematical details of the Tor Vergata model are given in 

Chapter 2. From this description, it is evident that application of the Tor Vergata model 
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requires an extensive characterization of the orientation, geometry and dielectric 

properties of scatterers within the soil-vegetation matrix. The specific settings and 

measured variables adopted for the Tor Vergata simulations presented here are briefly 

described below.  



Chapter 5 

117 
 

Figure 5-1: Photographs of the measurements carried out to characterize the 
vegetation morphology (e.g. leaf and stem dimensions) during the 2002 OPE3 
campaign. 
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The Tor Vergata model has adopted the Integral Equation Method (IEM) (Fung et al. 

1992) approach for quantifying the soil surface scattering (emission) contribution; hence, 

the soil parameters needed for the Tor Vergata model are the same as the ones required 

for the IEM. This parameterization includes, apart from the soil dielectric properties, the 

root mean square height (s), correlation length (l) and autocorrelation length function 

(ACF). The surface geometry parameters are obtained from the digitized surface height 

profiles collected in the along tillage row direction. This parameterization includes s and l 

values of 0.89 cm and 5.13 cm respectively, and an exponential ACF. Further, the soil 

textural information, including 60.3% sand and 16.1% clay, is utilized to compute the soil 

dielectric constant through application of Dobson’s and Mironov’s dielectric mixing 

models. Detailed information about these two dielectric models is given in the following 

section. 

Table 5-1: Soil surface and vegetation input variables for the Tor Vergata scattering 
model.  

Variable Data source/ value 
Soil surface 

rms height, s measured 0.89 cm 
Correlation length, l measured 5.13 cm 
Autocorrelation, ACF estimated exponential 
Dielectric constant Dobson/Mironov model 

Vegetation 
Dielectric constant Mätzler model 

Leaf width (disc radius) estimated  3.5 cm  
Leaf Area Index (LAI) measured variable 

Leaf thickness estimated 0.021 cm 
Leaf angles estimated 5o - 85o  
Stem radius measured variable 
Stem length measured variable 
Leaf angles estimated 2o – 5o 
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Using models that adopt the discrete medium approach, the vegetation layer is 

represented as individual scatterers with a predefined shape. Two types of scatterers are 

utilized within the Tor Vergata model to represent corn canopies. Circular disks are used 

for leaves and cylinders define the stems within canopies. The electromagnetic properties 

of both disks and cylinders are derived from their orientation, dimensions and dielectric 

properties. 

The dielectric properties of vegetated materials can be calculated using mixing models 

developed by Ulaby and El-Rayes (1987) and Mätzler (1994). These vegetation mixing 

models require the fresh and dry biomass weights as input, which have been measured for 

the individual crop elements (e.g. leaves, stems) for 12 plants about once a week during 

the 2002 OPE3 campaign. For the research presented in this Chapter Mätzler’s mixing 

model has been applied to derive the dielectric constants for the stems and leaves. Details 

about this mixing model can be found in Mätzler (1994).  

As for the vegetation morphology, the dimensions of the leaves and stems have been 

recorded for one representative out of twelve plants. An illustration of these 

measurements is shown in Figure 5-1.  

In the Tor Vergata model the leaf coverage is modeled as an ensemble of circular disks. 

The radius of each disk is set at 3.5 cm, which is on average about half of the measured 

leaf width. Then, the measured Leaf Area Index (LAI) is used to determine the number of 

disks needed to represent the foliage. Further, the leaf thickness makes the description of 

the leaf dimensions complete, which is fixed at 0.021 cm based on measurements and 
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previous experience. The angles of the leaves (disks) with the normal are varied from 5o 

to 85o with an interval 5o.   

The dimensions of the cylinders, representing the stems, are characterized by a radius 

and length. Both were measured during the 2002 OPE3 field campaign and these 

measurements are used as input for the model. The angle of the stems with the normal is 

estimated to vary from 2o to 5o with an interval of 1o. Further the stems density is set at 

12 stems per m2.  

A summary of the soil-vegetation information needed for Tor Vergata model 

simulations is presented in Table 5-1. 

5.3 Dielectric mixing models 
 

The importance of the soil and vegetation dielectric constant (or permittivity) in both 

semi-empirical and physically based emission models was described in Chapter 2. The 

dielectric constant of the non-polar (typically solid) materials within soil medium and 

canopy layer can be considered frequency independent. Due to its dipole, water is a polar 

material and its content within the soil and vegetation volume has an effect that changes 

with the frequency of the emitted wave (Rees 2001).  

For free water, the real and imaginary part of the dielectric constant can be computed 

as a function of the frequency through application of the well-known Debye formulas 

(Debye 1929), 
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where ε’ and ε’’ are the real and imaginary part of the dielectric constant related to 

each other as ε = ε’ - iε’’, ε∞ is the dielectric constant in the high frequency limit (= 4.9), 

ε0 is the static dielectric constant, f is the frequency of the wave (Hz), τ is the relaxation 

time (s) related to the relaxation frequency as f0 = (2πτ)-1 and σ is the effective 

conductivity (Siemens m-1), εr is the dielectric constant for free space (= 8.854 10-12 F m-

1). 

When present within a medium, the bonds between water and the molecules of the 

solid material also affect the magnitude of the real and imaginary part of the dielectric 

constant. As such, methods for integrating the effects of water, air and solid materials 

have been developed for both soils and vegetation. These so-called dielectric mixing 

models all evolved from the refractive dielectric mixing model originally proposed by 

Birchak et al. (1974),  

 

1

n

i i
i

W  


  (5.3) 

Essentially, equation 5.3 states that the ε of a medium is the sum of contributions 

from individual components (e.g. solid material, air, free (and bound) water), which is 
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taken proportional to the volume fraction (W). Initially, Birchak et al. (1974) found that α 

= 0.5 applies for an isotropic two phase medium, while others adopted other values.  

For this Chapter, the Tor Vergata model was used to simulate the emssivity using two 

soil dielectric mixing models. The applied dielectric mixing models are the ones reported 

by Dobson et al. (1985) and Mironov et al. (2009). In the text below follows a brief 

description of these dielectric models. 

 

Soils 

Over the past decades, the most widely used soil dielectric model within soil moisture 

retrieval algorithms has been the one developed by Dobson et al. (1985). The derivation 

of this model started from rewriting Eq. (7.3) as the sum of the dielectric contributions of 

the individual constituents of the soil medium (e.g. solid material, air, free and bound 

water). By combining the effect of free and bound water, Dobson et al. arrived at the 

following semi-empirical expressions for respectively the real and imaginary part of the 

soil dielectric constant,  
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with  

 2
' 1.01 0.44 0.062s s     (5.6) 
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where mv is the volumetric moisture content (m3 m-3), ρb is the dry bulk density (g m-

3), ρs is the specific density of solid materials (~ 2.66 g cm-3), α is empirically set to 0.65 

and empirical relationships are used to describe β’ and β’’ as a function of soil textural 

information, according to,  

 

' 1.2748 0.519 0.152S C    (5.7) 

'' 1.33797 0.603 0.166S C     (5.8) 

where S and C are the volume factions for sand and clay. 

Further, the Debye equations are applied to calculate the dielectric properties for free 

water. Debye’s original formulation is used to compute the εfw’, whereas a slightly 

modified form is adopted for the calculation of εfw’’. These expressions read,  
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where τw is the relaxation time of free water, εw0 and εw∞ are the low and high 

frequency limits of free water. Typically, εw∞ is fixed at 4.9, and formulations for τw and 

εw0 as a function of both temperature and salinity are given in handbooks, such as Ulaby 

et al (1986). As an indication, the 2πτw = 0.58 10-10 s and εw0 = 80.1 at a temperature of 20 

oC for a salt free medium.  
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The unknown remaining is the effective conductivity, which is given as function of 

soil texture by,  

 

1.645 1.939 2.25622 1.594b S C      (5.11) 

for 1.4 – 4.0 GHz  

0.0467 0.2204 0.4111 0.6614b S C     (5.12) 

for 0.3 – 1.4 GHz  

A limitation of this approach is that only the dielectric constant of free water is 

included in the dielectric constant calculations, while both bound and free water are 

present in the soil-air-water mixture.  

Mironov et al. (2004) considered both free and bound soil water in their dielectric 

mixing model, which also starts from defining the complex refractive index as n* = √ε. 

This allows rewriting the real and imaginary part of the dielectric constant as,  

 

2 2' n    (5.13a) 

'' 2n   (5.13b) 

 

where n is the refractive index, κ is the normalized attenuation coefficient.  

Following Birchak refractive dielectric mixing model the complex refractive index 

can be computed for soils with and without free water as, 
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 1s bw vm      for mv≤Wt 

(5.14) 

    1 1s bw t fw v tW m W         for mv ≥Wt 

where εbw is the complex dielectric constant of bound water and Wt is the maximum 

bound water fraction.  

Mironov et al. adopt the same analogy for calculating the refractive index, n, and the 

normalized attenuation coefficient, κ, which are computed as,  

 

 1s bw vn n n m    for mv≤Wt 

(5.15) 
    1 1s bw t fw v tn n n W n m W       for mv ≥Wt 

 

s bw vm     for mv≤Wt 

(5.16) 
 s bw t fw v tW m W        for mv ≥Wt 

where subscripts s, bw and fw represent the electromagnetic properties of solid 

material, bound and free water.  

 

Once all variables in Eqs. (5.15) and (5.16) are known the resulting refractive index 

and normalized attenuation coefficient can be utilized to compute the real and imaginary 

part of the soil dielectric constant using Eq. (5.13). Mironov et al. accomplished this by 

developing empirical relationships based on an extensive database of measured soil 

dielectric properties.  
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The fraction maximum bound water, Wt, is for example defined as,  

 

0.02863 0.30673tW C   (5.17) 

Further, for the solid materials, the obtained relationships between the 

electromagnetic properties, n and κ, and soil texture are given by,  

 

21.634 0.539 0.2748sn C C    (5.18) 

0.03952 0.04038s C    (5.19) 

For obtaining the n and κ of bound and free water, the inverse transformation of Eq. 

5.13 is used, which is given by,  

 

   2 2
2 ' '' 'n       (5.20) 

   2 2
2 ' '' '       (5.21) 

These two equations (Eq. 5.20 and 5.21) allow computing the n and κ of bound and 

free water using ε’ and ε’’. For quantifying both ε’ and ε’’ Mironov et al. employed the 

Debye equations and defined empirical relationships for the ε0, σ and τw as function of 

soil texture for both bound and free water. The relationships for bound water are given 

by,   

  

2
0 79.8 85.4 32.7bw C C     (5.22) 
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11 121.062 10 3.450 10bw C       (5.23) 

0.3112 0.467b C    (5.24) 

and for free water by,  

0 100fw   (5.25) 

128.5 10fw    (5.26) 

0.3631 1.217u C    (5.27) 

In Mironov et al. (2009) an extensive validation is presented for both mixing models. 

Figure 5-2 presents their findings by plotting the real and imaginary parts of the predicted 

and measured dielectric constant as a function of the frequency for a silty sand soil. The 

plots show that the dielectric constants predicted by the mixing model clearly 

overestimate the measurements, whereas the predictions using Mironov model are much 

closer agreement with the measurements. 
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Figure 5-2: Real and imaginary parts of the predicted (lines) with Dobson’s (left 

panels) and Mironov’s (right panels) mixing model for a silty sand soil with 77% 
sand, 9% Silt and 14% clay. The different lines indicate soil moisture contents (m3 
m-3) labelled as [1] 0.032, [2] 0.080, [3] 0.088, [4] 0.132, [5] 0.184, [6] 0.291, [7] 0.297, 
[8] 0.382 and [9] 0.394 m3 m-3 (adopted from Mironov et al. (2009)). 

 

Dobson model Mironov model 
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Figure 5-3: Differences in the emissivity simulated by the Tor Vergata model with 
the Dobson’s and Mironov’s dielectric for soil moisture contents of 0.03, 0.11, 0.21 
and 0.31 m3 m-3. Assuming a 293.15 K (or 20 oC) temperature of the emitting layer 
the emissivity has been converted into brightness temperature.  
 

5.4 Impact of mixing model 
 

The overestimations by Dobson’s mixing model, as demonstrated in Figure 5-2, are 

quite substantial and have had a significant impact on previously obtained results. For 

example, Escorihuela et al. (2010) found recently over a grass covered surface that the 

dependency of the roughness parameter, hr, is less severe when using Mironov’s instead 
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of Dobson’s mixing model. As such, the significance of the soil moisture dependence of 

hr found in Chapter 6 can be questioned. The brightness temperatures measured during 

the 2002 OPE3 campaign were, however, collected under different (more densely 

vegetated) conditions. The impact of the employed soil dielectric model on the simulated 

emissivity under such circumstances is uncertain and requires further investigation.  

To this aim, Tor Vergata model simulations were performed with the soil dielectric 

model of Dobson and Mironov. Emissivities were simulated for incidence angles of 15o, 

35o and 55o using the measured vegetation morphology (given in Table 5-1) and soil 

moisture contents of 0.03, 0.11, 0.21 and 0.31 m3 m-3. Then, the differences between the 

emissivities simulated with Dobson’s and Mironov’s dielectric model were compared for 

each soil moisture level. In Figure 5-3 these differences are plotted in the form of 

temperatures for an assumed temperature of the emitting layer of 293.15 K (or 20 oC). On 

top of these difference plots the total plant, leaf and stem water content are shown for 

reference.  

The plots of Figure 5-3 demonstrate that the largest differences between the simulated 

emissivities occur where the vegetation water content is lowest. This is somewhat 

expected because the soil contribution is a less dominant from densely than sparsely 

vegetated surfaces. The magnitude of the difference in simulated brightness obtained 

using Dobson’s and Mironov’s mixing model is surprising; these may reach values larger 

than 15.0 K depending on the polarization, view angle and soil moisture level.  
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Typically, in the mid-soil moisture range (0.11 and 0.21 m3 m-3) and H polarization 

differences are largest. Especially at the large view angles, the V polarized emissivity is 

insensitive to the employed dielectric model. On the other hand, differences between 

Dobson and Mironov for the H polarization are on the same order of magnitude for each 

angle. This can be explained by the fact that at large angles the H polarized brightness is 

reasonably sensitive to changes in the surface conditions, whereas the V polarized signal 

is often dominated by vegetation. 

The emissivities simulated by the Tor Vergata model with Dobson and Mironov 

result in quite large temperature differences. Specifically, considering that error levels for 

brightness temperatures measured from space should better than 2.0 K, the above analysis 

shows that the dielectric model should be selected with care.  As the Mironov et al. 

(2009) have stated that the performance of their mixing model is superior to the model 

developed by Dobson et al. (1985); this dielectric model is used for the simulations 

presented in the following section.  
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Figure 5-4: H and V polarized attenuation simulated by the Tor Vergata model for 
view angle of 15o, 35o and 55o. The top panel shows the (Fresh – Dry biomass)/ Fresh 
biomass used to compute the crop ε’. 
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5.5 Impact of corn on L-band emission  
 

For analyzing the impact of corn on L-band emission, the simulated transmissivity 

and the sensitivity of the emissivity to soil moisture were evaluated. These simulations 

were performed using the Tor Vergata model with the Mironov soil dielectric model and 

same vegetation morphology that were used to generate the results of the previous 

section. Figure 5-4 shows the simulated H and V polarized attenuation against time for 

view angle of 15o, 35o and 55o.  

The plots demonstrate, as expected, that both the simulated H and V polarization 

transmissivity are close to one at the early growth, decrease towards peak biomass and 

increase again as the crops become senescent. This evolution is in line with the 

development of the vegetation water content throughout the growth cycle as shown in 

Figure 5-4. Further, it was noticeable that the simulated V polarized attenuation is larger 

than the H polarization. This can be explained by the vertical structure of corn canopies, 

which typically has a stronger attenuating effect on the V than on the H polarization (e.g. 

Mattia et al. 2003, Joseph et al. 2010).  

An anomaly in the time series of both H and V polarization is noted on August 30. On 

this day a strong increase in the H and V polarized transmissivity is observed. This is 

associated with an abrupt decrease in the ratio (fresh – dry)/fresh of the stem biomass, 

which is the variable used for the calculation of the dielectric constant of vegetation by 

Mätzler’s model. The following measurement day the ratio (fresh – dry)/fresh of the stem 

biomass recovered and a dip was observed in the ratio of the leaf biomass. Yet, the 
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transmissivity simulated for this day is hardly affected. This supports one of the 

hypotheses posed in the previous Chapter that at senescence the foliage does not have a 

strong effect on the measured brightness temperature.  

In order to make these results also relevant for the radiative transfer, τ-ω, model 

frequently adopted for soil moisture retrieval, the simulated transmissivities are converted 

to the empirical b parameter. Figure 7-5 shows the b values for the H and V polarization 

and view angle of 15o, 35o and 55o degrees. These plots show that from the beginning of 

the growth towards senescence the b value for both H and V polarization increase, which 

shows that it is contradictory with the results from Chapter 4. 
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Figure 5-5: Empirical b parameters derived from the Tor Vergata model output for 
the H and V polarization and view angle of 15o, 35o and 55o. 
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models and measurements are uncertain, both data sources provide evidence for a 

seasonally dependent b parameter. Ideally, additional resources are needed in collecting 

the data sets required to validate physically scattering models. 

Further, it is noted that the empirical b parameters simulated for the H polarization 

are quite different from the ones produced for the V polarization. The H polarized b 

values vary from 0.08 up to about 0.25 till August 14th, which are on the same order of 

magnitude as found in the literature. After this date, however, the biomass decrease 

associated with senescence sets in and the simulated b value increases. Typically, plants 

lose a considerable amount of water during senescence, while the crop dimensions 

remain about the same. It can be concluded that the simulated transmissivity does not 

depend as much on the vegetation water content as is expected. It should also be noted 

that even the “state-of-the-art” dielectric models for vegetation include uncertainties. If 

the vegetation dielectric constant as a function of water content is not properly quantified, 

the Tor Vergata model will not be able to simulate the transmissivity reliably.  

A similar seasonal trend in the empirical b parameter is noted for the V polarization. 

The magnitude, starting with values of about 0.20 up to values well over 1.0, is much 

larger than for the H polarization and that is expected based on the scientific literature. 

These results implicate that soil moisture retrieval algorithm should not be developed 

assuming the H and V polarized transmissivity each to other. From this perspective, the 

ancillary data approach with only the H polarized brightness temperature as input appears 
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to be the most physically sound solution.  In this context, it would probably be better to 

utilize the V polarization for the derivation of variables such as temperature.  

To further evaluate the sensitivity of L-band emission for soil moisture during the 

corn growth cycle, the emissivity has been simulated with the Tor Vergata model using 

the vegetation morphological parameter described in section 5.2 and two extreme soil 

moisture levels, which are 0.03 and 0.49 m3 m-3. The difference between the emissivities 

simulated with the two moisture contents is multiplied by 293.15 K (or 20 oC) and plotted 

in Figure 5-6 for the three view angles and two polarizations.  

As such, the plots of this figure demonstrate the theoretical potential of retrieving soil 

moisture reliably during a corn growth cycle. This potential is smaller for the V than for 

the H polarization because the change in H polarized brightness temperature is larger. At 

the H polarization, for example, a 4.0 Vol.-% change in soil moisture (equivalent to the 

accuracy requirements of the SMAP product) the brightness temperature changes 2.51 K, 

while for the V polarization this change is merely 0.88 K. This sensitivity of the 

brightness temperature to soil moisture should be evaluated against the sources of 

uncertainty involving the retrieval process in order to appreciate the above values. 

Considering the prospected 1.0 K measurement accuracy of the SMAP radiometer there 

will be, in case of the mature corn vegetation, little room for uncertainties within the 

radiative transfer aspect of soil moisture retrieval problem. 
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Figure 5-6: The difference in brightness temperature between simulations with soil 
moisture contents of 0.03 and 0.49 m3 m-3 (46.0 Vol-% = 0.49 – 0.03 m3 m-3 x 100%) 
assuming a temperature of 293.15 K (or 20 oC). 

 

5.6 Summary and conclusions 
 

In this Chapter, the L-band emission simulated by the Tor Vergata discrete medium 

scattering model was discussed for a corn growing season. For these simulations the 

vegetation morphology measured during the 2002 OPE3 campaign were used. Two 

H pol.

V pol.

Δ
T B

/Δ
sm

(K
/4

6.
0 

V
ol

-%
 )

Date (mm/dd/yy)

6/1/02 7/1/02 8/1/02 9/1/02 10/1/02

0.0

1.0

2.0

3.0

6/1/02 7/1/02 8/1/02 9/1/02 10/1/02

0.0

1.0

2.0

3.0

15 degrees
35 degrees
55 degrees



Chapter 5 

139 
 

aspects are investigated; the first is the impact of the applied soil dielectric model on the 

emissivity calculations and the latter is the effects of vegetation during the growth cycle. 

 

Recently, the soil dielectric model developed by Dobson et al. (1985) was shown to 

overestimate the soil dielectric constant by more than 30%. Yet, Dobson’s model has 

been the most widely used approach within soil moisture retrieval algorithms for many 

years. An alternative has been proposed by Mironov et al. (2004), which has been 

demonstrated to perform better.  

In this Chapter, the simulations with the Tor Vergata model were performed using both 

Dobson’s and Mironov’s dielectric mixing model.  It is shown that differences in the 

simulated emissivity are particularly large under sparsely (early growth stage) to 

moderately (senescence) vegetated conditions and may lead to temperature differences up 

to 15 K. Based on such large differences, a reappraisal of the soil dielectric model of 

choice would be recommended. Specifically, considering the poor performance of 

Dobson’s mixing model presented by Mironov et al. (2009). 

 

The second part of this chapter involves the analysis of transmissivity simulated by the 

Tor Vergata model and an evaluation of the sensitivity of the simulated emissivity to soil 

moisture. As expected, the simulated transmissivities decrease from values close to one at 

the early stage to values below 0.5 at peak biomass, and increase again near senescence.  
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Once the transmissivity are converted into the empirical b parameter, the results are 

less obvious. An increasing trend during the season is obtained for the simulated b values.  

It is found that the simulated transmissivities are not as much dependent on the vegetation 

water content as is expected from the ancillary data approach. This could be the case. 

However, it should also be noted that even the “state-of-the-art” dielectric model for 

vegetation include uncertainties, which may affect the simulated relationship between the 

transmissivity and vegetation water content. Ideally additional resources need to be 

invested in collecting the data sets needed for the validation of discrete medium 

scattering models.  



Chapter 5 

141 
 

6 Summary and conclusions  
 

The goal of this dissertation research was to improve the quantification of the γ for soil 

moisture retrieval from satellite microwave radiometers on global scales. In order to 

achieve this goal, the objective of this research was to quantify uncertainties in the 

empirical constants induced by temporal variations in the vegetation cover. The 

methodology used to address this objective consisted of two parts: 

 Using ground based radiometer data sets, the variability in the empirical constants 

over specific agricultural vegetation covers (e.g. corn) has been quantified using 

the semi-empirical, ancillary data approach; 

 A physically-based scattering model (e.g. Tor Vergata model) has been employed 

to simulate the γ using the measured vegetation morphology as input. From the 

simulated transmissivities the empirical constants has been derived. 

6.1 Research questions and outline 
 

In carrying out this research, the following questions were addressed: 

 What is the variability of the empirical constant derived from radiometer 

observations using the semi-empirical ancillary data approach? 

 What is the variability of the empirical constant obtained through simulations 

with a physically based model using vegetation morphology parameterizations 

collected over the corn growth cycle? 
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 What is the influence of these uncertainties in the empirical constant on the 

retrieval of the soil moisture? 

 Is it possible to develop a methodology to account for possible seasonal variations 

in the empirical constant? 

 

This dissertation contributes to that improved understanding of microwave emission 

from the soil-vegetation system at a plot scale. In Chapter 3 and 4, for example, analyses 

are presented of the soil and vegetation component with the semi-empirical radiative 

model using the L-band microwave measurements collected during the 2002 OPE3 field 

campaign. Further, Chapter 5 presents L-band emissivity simulations over a corn growing 

season performed with the Tor Vergata discrete scattering model with measured 

vegetation morphology as input. These parts are briefly summarized in the text below. 

6.2 Angular dependence of the soil roughness effects on microwave 
emission 

 
In Chapter 3 different approaches for modelling the roughness effect on surface 

emission are discussed. This study is based on H polarized brightness temperatures 

measured by the automated L-band radiometer deployed during the 2002 OPE3 field 

campaign and dual-polarized L-band radiometer data set from the 1981 BARC 

experiments. A sufficiently detailed ground truth was collected during both field 

campaigns for deriving all variables needed for modelling the microwave surface 

emission from in-situ measurements. 
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From the H polarized data collected during the 2002 OPE3 campaign, the roughness 

parameters, hr, were inverted using settings that ignore the possibility of polarization 

mixing, which are typical for the Choudhury et al. (1979) model. These inverted hr 

parameters display, however, an unusual angular dependence. It is recognized that this 

could also have been caused by assuming the polarization mixing to be negligible. Both 

the H and V polarized smooth reflectivities are a function of the incidence angle. As 

such, excluding one of the two polarization components may induce a specific angular 

dependence of the hr parameter. 

This hypothesis was validated using the bare soil data sets collected during the 1981 

BARC, which led to the conclusion that polarization mixing should be considered to 

avoid the necessity of angular dependent hr parameters. This finding will be particularly 

important for retrieving soil moisture from the multi-angular data, such as SMOS and 

Aquarius. 

6.3 Horizontal polarized L-band microwave emission  
 

In Chapter 4, the ability of a semi-empirical radiative transfer model for reproducing 

the hourly H polarized brightness temperatures is evaluated for the five measurement 

episodes (> 2.5 days) distributed over the corn growth cycle. Specifically the effects of 

the changing canopy structure throughout the season and soil moisture dependence of the 

hr are evaluated. This analysis provides experimental evidence that the empirical b 

parameter (or canopy opacity) and its angular dependence change over the season. 
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Moreover, it is shown that for a considerable part of the dry-down cycle, the hr increases 

as the soil moisture content decreases.  

Discussion of the relative importance of these two sources of uncertainty suggests that 

at the start of the crop development (W < 1.0 kg m-2) an imperfect parameterization of 

the angular dependence of b can account for about a 10 % error in TB simulations, while 

this source of uncertainty causes errors up to 27 % at senescence. On the other hand, the 

soil moisture dependence of hr accounts for an error of about 38 % at beginning of the 

growth cycle. Near peak biomass, however, neither the angular dependence of the b nor 

the soil moisture dependence of hr is found to degrade the reliability TB simulations, 

significantly. This means that the commonly adopted assumptions (e.g. ttH = 1 and ω = 

0.0) are reasonable for peak biomass. Therefore, it may be hypothesized that the 

uncertainties discussed above affect mostly the soil moisture retrievals at the start and 

end of the growth cycle. 

6.4 Model investigation of morphological effects on L-band emission 
 

The preceding two Chapters involve detailed investigations of brightness temperature 

measurements collected during intensive field campaigns. Chapter 5 discusses the L-band 

emissivity simulated by the Tor Vergata discrete medium scattering model using the corn 

morphology measured during the 2002 OPE3 field campaign. The Tor Vergata model has 

been used to investigate two aspects: 1) the impact of the applied soil dielectric model 

and 2) the effects of vegetation throughout a growing season. 
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The emissivity simulations by the Tor Vergata model have performed using the soil 

dielectric model by Dobson et al. (1985) and Mironov et al. (2004). It is shown that 

differences in the simulated emissivity are particularly large under sparsely (early growth 

stage) to moderately (senescence) vegetated conditions and may lead up to differences of 

15 K (for a reference surface with a temperature of 293.15 K). Considering the poor 

performance of Dobson’s mixing model presented by Mironov et al. (2009), a reappraisal 

of the soil dielectric model of choice is needed for future soil moisture retrieval 

processors. 

Further the Tor Vergata model has also been used to simulate the transmissivity using a 

vegetation morphology measured during the growing season. As expected, the simulated 

transmissivities drop below values of 0.5 below peak biomass and increase towards 

senescence. Somewhat surprising, however, empirical b parameters derived from the 

simulated transmissivity increase particularly at senescence. It can be concluded that the 

simulated transmissivities are not as much dependent on the vegetation water content as 

is expected based on the ancillary data approach. This could also be the case in reality. It 

should, however, be also noted that the dielectric model for vegetation includes 

uncertainties, which may alter the vegetation dielectric constant and, as such, the 

simulated transmissivity. 

6.5 Future work 
 

The research presented in this dissertation shows through the analysis of experimental 

data sets as well as theoretical simulations that both the soil surface and canopy geometry 
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have important effects on the L-band microwave emission. Specifically, changes in the 

corn plant architecture contribute to large uncertainties at senescence. On the other hand, 

uncertainties in the soil surface geometry are important at the early growth stages of the 

corn canopy. Both sources of uncertainty mostly affect the angular dependence of the 

parameters used for vegetation and surface roughness corrections, and to a lesser extent 

absolute magnitude.  

Consideration of these findings may prove particularly useful for improving the soil 

moisture retrieval from multi-angular data sets, such as the ones currently collected by 

SMOS. Of course, at the coarse resolution of SMOS pixels (>10 km) the effects observed 

at plot scale may not be directly noticeable. The SMAP mission will not measure multi-

angular TB’s and, thus, SMAP soil moisture retrievals can be expected to be less affected. 

Nevertheless, uncertainties like these have the potential to affect the overall accuracy of 

soil moisture products, particularly at the early growth stage and senescence.  

However, measurements and models also include uncertainties, which require further 

investigation of the vegetation and surface roughness effects on microwave emission. 

Ideally, additional resources are needed in the collection of data sets at plot scale. It 

would be a great asset to the future improvement of physically based scattering models if 

future field campaigns also focus on collecting the data sets needed for validating discrete 

medium scattering models. This requires incorporating a comprehensive measurement 

strategy for the vegetation morphology including geometric and dielectric properties. 

Such data sets will help to improve the reliability of discrete medium scattering models 
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through which our understanding of physically based microwave emission models will be 

further enhanced. This understanding can be used to develop more reliable 

parameterizations for the semi-empirical radiative transfer model used within soil 

moisture retrieval algorithms.  

It is my goal to continue to improve the Tor Vergata model simulations to produce 

more realistic vegetation morphological parameters and verify reliability of the radar and 

radiometer calibration.  

Due to recent changes within the SMOS algorithms, I would like to continue to 

research the differences and benefits of using the Mironov dielectric mixing model over 

the widely used Dobson model.
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