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Land surface albedo, defined as the ratio of the surface reflected incoming and outgoing 

solar radiation, is one of the key geophysical variables controlling the surface radiation 

budget. Surface shortwave albedo is widely used to drive climate and hydrological 

models. During the last several decades, remotely sensed surface albedo products have 

been generated through satellite-acquired data. However, some problems exist in those 

products due to instrument measurement inaccuracies and the failure of current retrieving 

procedures, which have limited their applications. More significantly, it has been reported 

that some albedo products from different satellite sensors do not agree with each other 

and some even show the opposite long term trend regionally and globally. The emergence 

of some advanced sensors newly launched or planned in the near future will provide 

better capabilities for estimating land surface albedo with fine resolution spatially and/or 

temporally.  

Traditional methods for estimating the surface shortwave albedo from satellite data 

include three steps: first, the satellite observations are converted to surface directional 

reflectance using the atmospheric correction algorithms; second, the surface bidirectional 



 
 

reflectance distribution function (BRDF) models are inverted through the fitting of the 

surface reflectance composites; finally, the shortwave albedo is calculated from the 

BRDF through the angular and spectral integration. However, some problems exist in 

these algorithms, including: 1) “dark-object” based atmospheric correction methods 

which make it difficult to estimate albedo accurately over non-vegetated or sparsely 

vegetated area; 2) the long-time composite albedo products cannot satisfy the needs of 

weather forecasting or land surface modeling when rapid changes such as snow fall/melt, 

forest fire/clear-cut and crop harvesting occur; 3) the diurnal albedo signature cannot be 

estimated in the current algorithms due to the Lambertian approximation in some of the 

atmospheric correction algorithms; 4) prior knowledge has not been effectively 

incorporated in the current algorithms; and 5) current observation accumulation methods 

make it difficult to obtain sufficient observations when persistent clouds exist within the 

accumulation window. 

To address those issues and to improve the satellite surface albedo estimations, a 

method using an atmospheric radiative transfer procedure with surface bidirectional 

reflectance modeling will be applied to simultaneously retrieve land surface albedo and 

instantaneous aerosol optical depth (AOD). This study consists of three major 

components. The first focuses on the atmospheric radiative transfer procedure with 

surface reflectance modeling. Instead of executing atmospheric correction first and then 

fitting surface reflectance in the previous satellite albedo retrieving procedure, the 

atmospheric properties (e.g., AOD) and surface properties (e.g., BRDF) are estimated 

simultaneously to reduce the uncertainties produced in separating the  entire radiative 

transfer process.  Data from the Moderate Resolution Imaging Spectroradiometer 



 
 

(MODIS) onboard Terra and Aqua are used to evaluate the performance of this albedo 

estimation algorithm. Good agreement is reached between the albedo estimates from the 

proposed algorithm and other validation datasets. The second part is to assess the 

effectiveness of the proposed algorithm, analyze the error sources, and further apply the 

algorithm on geostationary satellite – the Spinning Enhanced Visible and InfraRed 

Imager (SEVIRI) onboard Meteosat Second Generation (MSG).  Extensive validations on 

surface albedo estimations from MSG/SEVIRI observations are conducted based on the 

comparison with ground measurements and other satellite products. Diurnal changes and 

day-to-day changes in surface albedo are accurately captured by the proposed algorithm. 

The third part of this study is to develop a spatially and temporally complete, continuous, 

and consistent albedo maps through a data fusion method. Since the prior information (or 

climatology) of albedo/BRDF plays a vital role in controlling the retrieving accuracy in 

the optimization method, currently available multiple land surface albedo products will 

be integrated using the Multi-resolution Tree (MRT) models to mitigate problems such as 

data gaps, systematic bias or low information-noise ratio due to instrument failure, 

persistent clouds from the viewing direction and algorithm limitations.  

The major original contributions of this study are as follows: 1) this is the first algorithm 

for the simultaneous estimations of surface albedo/reflectance and instantaneous AOD by 

using the atmospheric radiative transfer with surface BRDF modeling for both polar-

orbiting and geostationary satellite data; 2) a radiative transfer with surface BRDF 

models is used to derive surface albedo and directional reflectance from MODIS and 

SEVIRI observations respectively; 3) extensive validations are made on the comparison 

between the albedo and AOD retrievals, and the satellite products from other sensors; 4) 



 
 

the slightly modified algorithm has been adopted to be the operational algorithm of 

Advanced Baseline Imager (ABI) in the future Geostationary Operational Environmental 

Satellite-R Series (GOES-R) program for estimating land surface albedo; 5) a framework 

of using MRT is designed to integrate multiple satellite albedo products at different 

spatial scales to build the spatially and temporally complete, continuous, and consistent 

albedo maps as the prior knowledge in the retrieving procedure. 
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CHAPTER 1 INTRODUCTION 

Land surface albedo is defined as the ratio of the surface reflected radiation to the 

incident radiation that reaches the surface, a key geophysical parameter controlling the 

energy budget in the land-atmosphere interactions (Dickinson 1983). Land surface albedo 

varies spatially and evolves seasonally, based on solar illumination changes, vegetation 

cover and growth and human activities such as cutting/planting forests, and slash-and-

burn agricultural practices. Sensitivity analysis, for estimating the impacts of albedo 

uncertainties in climate modeling, shows that the absolute albedo accuracy of ±0.02-

±0.03 equivalent to ±10Wm
-2

 will result in significant change (e.g., surface temperature, 

precipitation change) in regional climate simulations (Nobre et al. 1991; Sellers et al. 

1995).  

Satellite remote sensing is an essential technique in estimating land surface albedo at 

various spectral, spatial, temporal and angular resolutions. During the last decade, with 

the emergence of onboard remote sensors, many satellite-generated albedo products have 

been derived. However, in terms of albedo changes over the globe across a relatively long 

time period (several years to decades), different trends have been found based on the 

analyses of different global albedo products. A recent study on the 10-year (2000–2009) 

Moderate Resolution Imaging Spectroradiometer (MODIS) albedo product showed 

significant differences among albedo products generated by different satellite data (Zhang 

et al. 2010). Extensive validations of current shortwave albedo products have been made 

on the comparison with ground measurements or through the inter-comparison between 

different satellite products from which the albedo accuracy is reported to be 10% to 28% 
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(e.g., Liu et al. 2009; Roman et al. 2009; Rutan et al. 2009; Stroeve et al. 2005). This 

accuracy can be translated into absolute values that are around 0.03 to 0.09. It has also 

been reported that the absolute bias and Root Mean Square Error (RMSE) of surface 

albedo increase with the solar zenith and the bias can be larger than 0.06 when solar 

zenith is beyond 55° (Grant et al. 2000; Liu et al. 2009). Moreover, there is a common 

problem that many data gaps exist in current albedo products due to either cloud 

contamination or rapid surface changes. For a typical 16-day compositing period, the 

global mean annual probability of obtaining enough clear sky observations is 80% 

combining MODIS onboard Terra and Aqua, and when the temporal window reduces to 

10 days, the percentage of data gaps increases to 40% (Roy et al. 2006). Therefore, in 

order to help understand the science questions, the albedo/reflectance estimation has to be 

improved. 

1.1 Literature review 

In order to derive albedo directly from satellite observations, a lot of researchers have 

been working on various sensors. The Advanced Very High Resolution Radiometer 

(AVHRR) onboard the National Oceanic and Atmospheric Administration (NOAA) 

satellite series provided global coverage of albedo product (Strugnell and Lucht 2001). 

The POLarization and Directionality of the Earth’s Reflectances (POLDER) onboard the 

ADvanced Earth Observing System (ADEOS) and the Multiangle Imaging 

SpectroRadiometer (MISR) on Terra allowed researchers to use the wide-range of 

angular information to obtain better understanding of surface reflectance anisotropy 

(Diner et al. 1999; Leroy et al. 1997). The MODIS albedo product (Schaaf et al. 2002) 
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provided global coverage of both the black-sky (directional) and white-sky (diffuse) 

albedo at 1 km spatial resolution, which utilizes multiple spectral bands to derive more 

accurate broadband albedo estimations. With the development of geostationary satellite 

sensors, many recent research interests have been focusing on deriving the diurnal 

changes of surface albedo based on a much wider range of solar illumination direction for 

the Meteosat Visible and Infrared Imager (MVIRI)/Meteosat (Ba et al. 2001) and the 

Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) on board Meteosat Second 

Generation (MSG) satellites (Geiger et al. 2008; Pinty et al. 2000). Many of the above 

algorithms are based on searching the optimal estimation of surface albedo and/or 

Bidirectional Reflectance Distribution Function (BRDF) parameters. 

Based on the “dark object” atmospheric correction algorithm in products from 

satellite sensors such as MODIS and SEVIRI, the retrievals of aerosol distribution and 

properties over land have shown valuable results. However, the use of this algorithm is 

restricted to land surface with low reflectance (e.g., water and dense vegetation), while 

over bright surfaces (snow, desert and urban areas), it often fails to estimate the aerosol 

information accurately. In other words, this algorithm based on densely vegetated areas is 

incapable of atmospheric correction to retrieve the surface reflectance and albedo over 

highly reflective surfaces.  

The other problem of separating atmospheric correction and surface BRDF fitting lies 

in the Lambertian approximation in the radiative transfer procedure. Both atmospheric 

path and surface directional reflectance will change with the solar and viewing angles (as 

the scattering path changes). However, a Lambertian surface is usually assumed in 
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atmospheric correction when surface albedo is not known. Therefore, biases will emerge 

with “atmospheric corrected surface reflectances” and will further deteriorate the BRDF 

fitting process. Systematic biases have been found when MODIS reflectance is 

underestimated/overestimated at high/low zenith angles and bias increases as the 

wavelength decreases where there is more scattering in the atmosphere (Wang et al. 

2010). 

An approach was proposed by retrieving the surface reflectance and aerosol optical 

depth jointly using the optimization method based on SEVIRI data (Govaerts et al. 2010; 

Wagner et al. 2010). However, in their algorithm, aerosol’s information is retrieved as the 

average of its daily distribution, and climatology information is not fully utilized to 

constrain the estimation. Given the finer resolution both on temporal and spatial 

observations that can be obtained by future satellite sensors, the full use of the broad 

range of solar angular distribution during a day can be made by adding the aerosol 

variables to its retrieving procedure.  

Many researchers have been focusing on reducing the data gaps and producing 

spatially and temporally continuous albedo maps based on currently available satellite 

products. There are two major methodologies to generate this kind of albedo dataset to 

satisfy the needs in land surface modeling studies. The first one is the physical method 

which relies on the surface BRDF information. Research has been done using BRDF 

information from dataset with better angular sampling to convert surface reflectance with 

reduced angular sampling to albedo (e.g., Jin et al. 2002; Ju et al. 2010; Roy et al. 2008; 

Shuai et al. 2011). However, these methods assume that there are some homogeneous 
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pixels with coarser spatial resolution that are corresponding to the finer resolution data 

for each of the land cover types. Therefore, it is difficult to translate information across 

scales if no pure pixels can be found at the coarser resolution. The second methodology is 

using the data-driven models that are directly based on the albedo products by utilizing 

the spatial and/or temporal information to fill the gaps (e.g., Fang et al. 2007; He et al. 

2008; Moody et al. 2005). Most of the existing algorithms that follow the second 

methodology use only one dataset that will introduce the systematic bias in the final 

albedo maps. Another issue with the data-driven method is the uncertainty evaluation for 

the original satellite products which has to be done before the implementation of the data-

driven models. 

1.2 Objectives 

Considering that there are many problems of current available albedo algorithms and 

datasets in this dissertation, several general scientific questions need to be addressed to 

improve the understanding of the impacts of albedo change in climate studies that follows 

the NASA scientific goals: 1) Is it possible to characterize the temporal and spatial 

changes in surface albedo? 2) Is it possible to produce spatially and temporally consistent 

albedo products from different satellite sensors? If so, how can it be done? 3) How can 

we monitor the rapid changes (e.g., snowfall/melt, forest fire and crop harvesting) by the 

proposed algorithm? Is it possible to improve the estimation of diurnal albedo changes 

using current satellite data? 

The overall objectives of this study include two parts. The first one is to develop a 

unified framework for estimating surface albedo from different satellite observations. 
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Based on this framework, we should be able to apply the unified algorithm to both polar-

orbiting satellite data and geostationary satellite data. The proposed surface albedo 

algorithm should generate consistent albedo estimations from different satellite data and 

be able to provide accurate estimations over all kinds of surface types including vegetated 

surfaces and non-vegetated surfaces. Another requirement of this algorithm is that it 

should be capable of capturing rapid changes in surface albedo caused by events such as 

ephemeral snow, crop harvesting, and forest fires. The understanding of diurnal changes 

in surface albedo mainly caused by solar illumination and surface anisotropy should also 

be considered in this algorithm framework.  

The other overall objective is to improve albedo product by integrating multiple 

satellite datasets.  In one aspect, differences have been found among different satellite 

datasets and some are beyond the accuracy requirements for climate change and land 

surface modeling studies. A set of temporally and spatially complete and continuous 

albedo products across different scales should be generated through the data fusion 

method that can improve the accuracy estimations. Also, the methodology should be 

applicable to generate global albedo products. In the other aspect, this dataset can also 

serve as the prior information in the instantaneous estimation of surface albedo and 

aerosol. In particular, the surface albedo estimating procedure in the first part of this 

dissertation will need this background information to produce reliable and stable results. 
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Figure 1-1 Overall methodology used in this study 

To achieve the goal, several major tasks are proposed in this study (Figure 1-1): 

First, based on similar principles mentioned above, this study proposes an improved 

algorithm using polar-orbiting and geostationary observations to account for surface 

anisotropy considering temporal variations of aerosol optical depth for better estimating 

the surface albedo.  The atmospheric radiative transfer procedure with surface BRDF 

modeling is the major framework of retrieving surface albedo from MODIS and SEVIRI 

observations. This part of study consists of forming the main framework by introducing 

the atmospheric radiative transfer equation with the surface BRDF modeling, and then 

integrating broadband albedo from spectral BRDF.  

Second, a specific validation plan is made assessing the performance of the final 

operational estimating algorithm. Various data sets used for validation will be collected 

•   Aerosol types 

•   Land cover types 

•   Solar/viewing geometries 

•  Ground measurements 

•  Other satellite products 

•  Cross-validation 

•  Multi-year, multi-scale, 
multi-source albedo 
products 

•  Radiative transfer 

•  BRDF models 

Atmospheric 
radiative 

transfer with 
surface 
BRDF 

modeling 

Albedo 
climatology 

Sensitivity 
analysis 

Validation 
plan 
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and compared with the retrievals from the proposed algorithm. The validation data sets 

include ground measurements and satellite albedo products with improved atmospheric 

correction. Inter-comparison between different datasets is carried out as well. Different 

validation data sets have their own characteristics in terms of spatial representation and 

temporal continuity, and therefore will help improve the retrieving procedure under 

various circumstances. 

Third, sensitivity analysis will be carried out to assess the performance of the overall 

estimating procedure. Both the atmospheric radiative transfer and the surface BRDF 

modeling will be examined under different scenarios, including the aerosol, land cover 

type, solar/viewing geometries. 

Finally, in order to produce spatially and temporally complete and continuous 

albedo/reflectance products, the albedo climatology needs to be built beforehand. Data 

across various spatial scales and temporal resolutions will be used and analyzed to 

generate the albedo climatology maps based on different land cover types and latitudes. 

Researchers have been focusing on generating albedo climatology through multiyear 

satellite data (e.g., Fang et al. 2007; Moody et al. 2007; Moody et al. 2008); however, 

their products are based on only one source of satellite data so the bias from this satellite 

estimation algorithm will remain in their products. Moreover, data with an old version 

and limited temporal range of their study also constrain the application for long-term 

global studies, In this part, with its ability to make use of multiple datasets, the multi-

resolution tree (MRT) method will be employed to build the albedo maps together with 

the uncertainty based on MODIS, MISR, Landsat Thematic Mapper (TM), and Enhanced 
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Thematic Mapper Plus (ETM+) data. The albedo maps will help understand the albedo 

spatial distribution and temporal evolution on both global and regional scales, which 

therefore can be used as constraints in the albedo retrieving procedure. 

1.3 Structure of this dissertation 

Chapter 2 introduces the improved methodology of simultaneously estimating surface 

albedo and instantaneous aerosol optical depth (AOD) from MODIS observations. 

Theoretical basis and formulations are given in this chapter before the introduction of 

various ancillary datasets including the atmospheric variables and the albedo climatology 

maps. Extensive validations are given as well as the error analysis to evaluate the 

performance and the generate accuracy of both albedo and AOD estimations. 

Chapter 3 presents the procedure of applying the proposed algorithm over SEVIRI 

observations. Following the ancillary data preparation, the algorithm implementation is 

illustrated on how generate albedo and AOD estimations. Site validations are given over 

some European ground stations. Inter-comparison is made between the retrievals from 

this study and other satellite products. 

Chapter 4 proposes a new method of albedo data fusion using MRT to generate 

continuous and consistent albedo maps at different spatial scales. The uncertainties of the 

original satellite products are evaluated through comparison with ground measurements 

and inter-comparison among different satellite products. After that, the implementation of 

MRT will be introduced and the improved results are shown in time-series comparisons. 
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Chapter 5 summarizes the major findings and contributions of this dissertation. 

Conclusions are made on the general performance of the two proposed methodologies on 

improving surface albedo products. Future work is planned based on the merits and 

shortcomings of current preliminary results. 
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CHAPTER 2 ESTIMATION OF SURFACE ALBEDO FROM MODIS 

OBSERVATIONS 

2.1 Methodology 

2.1.1 Overall framework 

Currently, to obtain the broadband shortwave albedo estimations most albedo 

retrieving algorithms require three major procedures: atmospheric correction, surface 

Bidirectional Reflectance Factor (BRF) fitting, and narrowband-to-broadband conversion. 

With each procedure implemented separately, errors propagate from the atmospheric 

correction to the final broadband albedo estimates irrespective of the algorithms used. To 

avoid these increasing errors, it is advantageous to combine those procedures. In the 

framework of this proposed MODIS surface albedo estimation algorithm, several 

components are included: atmospheric radiative transfer process with anisotropic 

reflectance of land surface, surface albedo/BRF modeling, and albedo climatology. 

Based on the available prior information on albedo and the satellite observations, the 

unknown variables (e.g., the surface BRF kernel parameters, AOD) are determined in the 

context of the least-square approach through the minimization of the cost function: 

 
           1 1

( )

Clm Clm Est Obs Est Obs

c

J X

A X A B A X A R X R O R X R J 



     
  (2-1) 

Here, X  denotes the unknown variables to be estimated in one sliding window and it 

includes the surface BRF model parameters and AOD. Two general assumptions are 

made here to reduce the complexity of the retrieving procedure and to generate the stable 
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estimates as well: 1) the surface BRF shape is stable within the sliding window; 2) the 

aerosol type and its properties (e.g., Angström exponent) do not change within the sliding 

window, but AOD varies from time to time. Since the predefined aerosol types are used 

in this study, the intrinsic properties for each of the aerosol types are not part of the 

unknown variables to be estimated. Then, X  can be written in the following form: 

  1 2 1 2, ,..., , , ,...,
T

NB NOX P P P AOD AOD AOD ,  (2-2) 

NB  is the number of spectral bands from a certain satellite sensor, NO  is the number 

of cloud-free observations involved in the inversion, iP   1,i NB is a set of BRF model 

parameters (e.g., for kernel models, one set of iP  refers to three parameters: isof , volf , 

and 
geof ), 

jAOD   1,j NO is the AOD value for the corresponding observation j , and 

,

Obs

i jR  and ,

Est

i jR  refer to the observed and modeled TOA reflectance for a band and a given 

set of geometries (e.g., solar angle and viewing angle), respectively.  

,

Obs

i jR  are obtained from satellite observations. However, ,

Est

i jR  values need to be 

derived by a forward simulation based on the radiative transfer procedures from both 

surface and atmosphere components. For this purpose, the use of the atmospheric 

radiative transfer formulation with surface BRF is recommended. In this manner, ,

Est

i jR  

can be expressed using both the surface properties (e.g., albedo and BRF) and the 

atmospheric properties (e.g., AOD, water vapor, and ozone).  
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 A X  is the calculated broadband surface albedo, and ClmA  is the prior information 

of broadband albedo from albedo climatology. Albedo climatology is used to constrain 

the retrieving procedure of surface albedo and reflectance. It describes the major seasonal 

and inter-annual changes in the surface signature. At this stage, multiyear satellite albedo 

products are collected to form the spatially and temporally continuous and complete 

albedo climatology. B  and O  are the error matrices for the climatology and the fitting of 

satellite remotely sensed data, respectively. As the uncertainties for both the climatology 

and the data fitting involve a large number of components, most of which are difficult to 

estimate, two simplifications need to be made here: 1) the albedo climatology used here 

is unbiased, and B  is calculated from the uncertainty of the albedo climatology using 

multi-year satellite albedo products; 2) reflectances are band-independent and the 

diagonal components of O  are determined by the magnitude of spectral reflectance 

multiplied by the contribution to the shortwave albedo for each band. cJ  is the penalty 

function accounting for the validity of BRF values calculated from the estimated BRF 

parameters, etc. For any particular geometry, when the reflectance or albedo calculated 

from the BRF model is negative or greater than one, cJ  is set to a large value (e.g., 100). 

In addition, all the BRF model parameters are constrained to be non-negative, in 

particular for the kernel model used in this study. To minimize the cost function ( )J X , 

the optimal values of X  having physical meaning need to be found. However, owing to 

the non-linearity of the atmospheric radiative transfer equations and the dimensions of the 

unknown variables, it is always difficult to find the optimal values that can minimize the 

cost function globally. The algorithm of the shuffled complex evolution (SCE) (Duan et 

al. 1993; Duan et al. 1994) is used here to obtain physically reasonable global optimal 
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estimations based on albedo climatology and surface BRF model priors. The overall 

framework is shown in Figure 2-1. 

 

Figure 2-1 Flowchart of estimating surface albedo and reflectance 

 

2.1.2 Atmosphere radiative transfer formulation with surface BRF models 

The satellite-observed radiance contains information from both the atmospheric 

components (aerosol, water vapor, ozone, etc.) and the land surface reflectivity. Aerosol 

properties, such as optical depth, size distribution, and refractive index have a great 

impact on the representation of land surface information in the satellite observations. 

Instead of using a “dark object” algorithm, it is advantageous to combine the retrieval of 

both the AOD and the surface BRF parameters from the TOA reflectance in the radiative 
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transfer process. In order to do so, the relationship between TOA reflectance, AOD, and 

surface BRF needs to be established. 

Theoretically, the overall procedure proposed here is similar to the proposed 

algorithm based on the MSG/SEVIRI data (Govaerts et al. 2010; Wagner et al. 2010), 

which retrieves the daily aerosol and surface reflectance simultaneously. Since the overall 

retrieving procedure is underdetermined, which means there are fewer observations than 

unknown variables, an assumption needs to be made, as follows: as the surface properties 

change slowly, the surface BRF shape is assumed to be invariant within a sliding window 

(7 days or less). A smaller the window size results in better capability over a rapidly 

changing surface. Cloud-free observations are collected within the sliding window. 

However, the number of collected observations should be limited in order to reflect the 

rapid change in the surface. Only those observations that are closest to the center of the 

sliding window are used in one procedure to retrieve surface BRF and AOD 

simultaneously. Details on how the minimum number of cloud-free MODIS observations 

can be determined are discussed in Section 2.2.1. Given the surface BRF and AOD 

retrievals, the instantaneous “blue-sky” albedo can be calculated based on the black-sky 

and white-sky albedo using diffuse skylight ratio: 

  1blue dif ws dif bsf f         (2-3) 

Here, blue , bs , and ws  are the blue-sky, black-sky, and white-sky albedo, 

respectively, and diff  is the diffuse skylight ratio.  
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Based on the comparison with the SEVIRI estimating procedure, the proposed 

algorithm for MODIS has several improvements in terms of coupling the land-

atmosphere radiation interaction, as follows: 

1) The AOD is treated as non-identical throughout the retrieving temporal window. 

Since satellite observations within the sliding window can sometimes have a broad range 

of solar/viewing zenith/azimuth angles, assuming only that the aerosol does not change 

within the retrieving temporal window does not fully utilize the abundant angular 

information that can capture the directional variation in the surface reflectivity. 

Moreover, this assumption is not valid over such a long time period (one day or more, 

etc.) and can bias the atmospheric correction at large angles. 

2) Many forward models have been proposed recently to approximate different 

components of radiation fluxes at the media boundary. These models include various 

two-stream methods (Meador and Weaver 1980) and four-stream methods (Liang and 

Strahler 1994, 1995). However, although two-stream models are time-efficient, their 

accuracy is low. Instead of using the radiative transfer model with a two-stream 

approximation, this study adopted a simple and fast 3D formulation of radiative transfer 

by incorporating the surface BRF models (Qin et al. 2001). The authors state that this 

approach does not introduce any approximation into the formulation, and their numerical 

experiments demonstrate that this formulation is very accurate (Qin et al. 2001). The 

TOA reflectance a  is expressed as 
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) 

In the equation,  ,s s s    is the solar incoming direction and  ,v v v    is the 

viewing direction. There are two groups of coefficients in the above equation that are 

independent of each other: atmosphere-dependent and surface-dependent coefficients. 

The coefficients in each group represent the inherent properties of either the atmosphere 

or the surface and can be regarded as separate groups.  

For the atmosphere,  0 ,s v    is the atmospheric reflectance associated with path 

radiance,   is the atmospheric spherical albedo, and  sT   and  vT   are defined as 

combinations of direct transmittance ( ddt ) and directional-hemispheric (or hemispheric-

directional) transmittance ( dht  and hdt ), respectively. For the algorithm implementation, it 

is usually very time-consuming to calculate each element in the transmittance matrices 

together with the atmospheric reflectance. To expedite the computation for the forward 

modeling, those atmospheric variables are pre-calculated by simulation using the 

radiative transfer software 6S (Kotchenova et al. 2006) and stored in the look-up table 

(LUT). Details on the design of the LUT are given in Section 2.2.2. 

For the surface, the reflectance matrix is defined as 

  
   
 

,
,

dd s v dh s

s v

hd v hh

r r
R

r r

  
 



 
  
 

, (2-5) 
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where  ,dd s vr    is the bi-directional reflectance,  dh sr   is the directional-

hemispherical reflectance (also called black-sky albedo),  hd vr   is the hemispherical-

directional reflectance (which is equal to  vdhr   under the reciprocity law), and hhr  is 

bi-hemispherical reflectance (also called white-sky albedo). 

The determinant R  is easily calculated as 

       , ,s v dd s v hh dh s dh vR r r r r       , (2-6) 

It is evident that as long as the surface BRF is known, the surface reflectance matrix 

can be determined.  

2.1.3 BRF/Albedo modeling 

BRF models quantify the angular distribution of radiance reflected by an illuminated 

surface. Various models have been proposed to simulate or capture the anisotropic 

characteristics of the land surface (Liang 2007; Widlowski et al. 2007), including 

computer simulation models (Gastellu-Etchegorry et al. 2004), physical models using the 

canopy radiative transfer process (Kuusk 1995a, b; Pinty et al. 2006), and 

(semi)empirical models based on various approximations of the radiative transfer process 

(Li and Strahler 1992; Rahman et al. 1993; Roujean et al. 1992). The quality of these 

models can be evaluated either through a comparison with simulations by other models of 

higher complexity, or through a comparison with measurements. In order to expedite the 

inversion procedure, complex computer simulation and physical models are not 

considered to be the optimal BRF model herein. Pokrovsky and Roujean (2003) made 
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comparisons based on different kernel-based BRF models and found that the Li-Sparse 

and Roujean models perform best when fitting the bidirectional reflectances. Maignan et 

al. (2004) evaluated a set of analytical models based on POLDER measurements and 

proposed an improved Ross-Li kernel model by adding an angular factor based on 

Breon’s finding (2002) to better account for the “hot spot” effect, which occurs when the 

viewing and illumination directions coincide. By introducing the multiple scattering 

between the canopy and the soil, and the relationship between the soil moisture and the 

soil reflectance into the Ross-Li kernel models, a recent method was proposed to build an 

angular and spectral kernel model (Liu et al. 2010). However, this method requires prior 

knowledge of soil moisture, which is difficult to obtain and therefore limits its 

operational application. Therefore, in this study, the improved Ross-Li kernel model 

proposed by Maignan et al. (2004) and Breon et al. (2002)  is used to account for the 

surface anisotropic reflectance. It is given by 

     , , , , , ,v iso vol vol v geo g os ses vR f f K f K           ,  (2-7) 

where s , v , and   are the solar zenith, view zenith, and relative azimuth angles, 

respectively.  , ,svol vK     and  , ,sgeo vK     are simplified kernels based on physical 

or empirical approximations over the specific illumination and viewing geometries. volK  

is based on the approximation of the radiative transfer within the canopy, whereas geoK  is 

based on the distribution of the size and the orientation of surface canopies within a 

certain area. isof , volf  and geof  are the coefficients for those kernels. Further details can 

be found in the referenced studies. 
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For the bias of the MODIS reflectance products, it has been reported (Wang et al. 

2010) that the derived reflectance is underestimated at high solar or view zenith angles 

but is overestimated at low solar or view zenith angles. When the solar zenith angle 

increases beyond 70°, increases in the negative bias and the RMSE compared to the 

ground measurements have also been identified (Liu et al. 2009). The problem of the 

separation of atmospheric correction and surface BRF modeling could be one possible 

reason for this bias, which can be solved using the method proposed in this study. A 

recent study (Liu et al. 2012) suggests that the possible underestimation of MODIS 

albedos may come from the insufficient angular sampling of the surface anisotropy. In 

order to resolve this second problem, one method is introduced here to correct the change 

in albedo caused by the illumination geometry and the diffuse skylight impacts, 

especially for a solar zenith angle larger than 70°. The method is based on the 

dependence of surface albedo on the solar zenith angle over snow-free land surfaces and 

uses the intensive observations of surface shortwave fluxes made by the U. S. 

Department of Energy Atmospheric Radiation Measurement (ARM) Program and 

SURFRAD Network (Yang et al. 2008).  

2.1.4 Integration of BRF and spectral albedo 

An angular integration of BRF over all the viewing angles is required to calculate the 

albedo because only the directional reflectance can be calculated directly from the BRF 

models. Instead of directly calculating the integral, the same method proposed in the 

MODIS albedo estimating procedure (Schaaf et al. 2002) is used, based on the improved 
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kernel models above, fitting the black-sky albedo with a polynomial function. In this 

study, a higher order of the polynomial function was used to achieve better accuracy: 

     

 

2 3 2 3

0 1 2 3 0 1 2 3

2 3

0 1 2 3

bs s iso s s s vol s s s

geo s s s

f a a a a f b b b b

f c c c c

       

  

       

   
,
   

(2-8) 

where s  is the solar zenith angle, and a , b , and c  are the regression coefficients. 

Similarly, the white-sky albedo can be computed by using the equation 

ws iso w vol w geo wf a f b f c     (2-9) 

 

The regression coefficients are listed in Table 2-1. Figure 2-2 shows the fitting 

capability of the black-sky albedo using the polynomial function (Eq. (2-8)). The 

calculated black-sky albedo from the regression coefficients matches the BRF-integrated 

albedo very well. Contrastingly, simply using the MODIS equations and coefficients will 

result in a 0.02 albedo difference in this case when the solar zenith angle is greater than 

80°. Experiments on extending the polynomial function to a higher order show no 

significant improvement in the BRF/albedo fitting accuracy. 

Table 2-1 Coefficients used to calculate albedo from BRF parameters 

Variable 0a  1a  2a  3a  0b  1b  2b  3b  

Value 1.0 0 0 0 -0.0374 0.5699 -1.1252 0.8432 

Variable 0c  1c  2c  3c  wa  wb  wc   

Value -1.2665 -0.1662 0.1829 -0.1489 1.0 0.2260 -1.3763  
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Figure 2-2 Comparison of current polynomial and MODIS equation for angular 

integration based on Maignan’s BRF kernel model 

Most of the current land surface models and weather forecast applications use an 

albedo that can account for a wide range of wavelengths (e.g., total shortwave, total 

visible, and total near-infrared band). However, the BRF models are designed to carry out 

the calculation of all the components defined in the reflectance matrix (Eq. (2-5)) 

individually for each spectral band. Moreover, the distribution of the downward solar 

radiation varies significantly with the change in aerosol density, precipitable water vapor 

content, ozone, and other profiles of atmospheric variables. As a result, the reflected solar 

radiation of the surface changes when the definition of the albedo changes. The spectral 

albedo needs to be converted into broadband albedo based on the spectral albedo 

characteristics over different surfaces and different atmospheric conditions. An approach 

for establishing the linear relationship between broadband albedo and the spectral value 
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from each band has been proposed by Liang (2001). In the present study, the conversion 

equations are adopted from Liang (2001) and Stroeve et al. (2005), the latter providing an 

improved equation to derive the shortwave broadband albedo for snow-covered surfaces. 

2.1.5 Albedo climatology 

The climatology of the surface broadband albedo reflects both the seasonal and the 

inter-annual changes in the surface status. It is very important because it places 

constraints on the BRF retrieving procedure. The TOA radiance/reflectance observed by 

the satellite sensor can be biased by the calibration error or an inaccurate estimation of 

atmospheric components (e.g., ozone and water vapor). “Prior” information is much more 

reliable when its associated (co)variance is small whereas the calibrated TOA 

observations contain a large amount of noise. The “prior” can help the optimization 

procedure to achieve reasonable global optimal estimations. However, owing to persistent 

and transient cloud contamination as well as ephemeral and seasonal snow cover, most 

satellite albedo products contain a large number of gaps for a snow-free land surface. In 

this study, 10 years (2000–2009) of MODIS broadband albedo products and the 

corresponding quality control data (for detailed information please refer to the MODIS 

website) were collected. In the quality control data set, the broadband albedo values are 

identified as “good quality” and “other quality”. To avoid the effects (e.g., cloud 

contamination and low BRF fitting accuracy), only “good-quality” data were used to 

calculate the 10-year mean of the broadband albedo over North America and Greenland. 

The standard deviation for multiyear broadband albedo data was calculated for the same 

time of year to reflect the inter-annual variation in albedo over the same location.  
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(a) 

 

(b) 

Figure 2-3 Ten-year average white-sky shortwave albedo (a) and its multi-year standard 

deviation (b) for Julian Day 121 from MODIS albedo product 2000–2009 over North 

America and Greenland (white color means water/ocean or lack of data) 
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White-sky albedo products were used in this study with no solar zenith dependence 

(an example for Julian day 121 is shown in Figure 2-3). Many gaps can be found over 

west and north Canada. When the latitude is greater than 50°, both the mean and variation 

of the shortwave albedo values become very large. This indicates that the snow situation 

over these areas changes annually at this time of year, whereas over central North 

America and Greenland, the surface is quite stable. The multiyear mean of shortwave 

albedo is used as the climatology data in Eq. (2-1) and the one-year standard deviation is 

used as an approximation to the uncertainty of the climatology. In this study, a simple 

method was used to build the albedo climatology. Generating complete and continuous 

spatial-temporal albedo climatology is beyond the scope of this study. 

2.2 Data 

2.2.1 MODIS TOA reflectance and atmospheric products  

The sensor of MODIS has seven spectral bands within the shortwave range that can 

be used for land applications. The MODIS Level 1B (Collection 5) calibrated radiance 

data, together with their corresponding geo-location data, were collected and converted 

into the TOA bidirectional reflectances. According to Eq. (2-4), the total unknown 

variables to be estimated include three BRF kernel parameters for each spectral band and 

AOD for each observation time given that the aerosol type is known from MODIS 

product. For example, for n clear observations cumulated within a sliding temporal 

window (the surface is assumed to be stable in the temporal window), the total number of 

unknown variables is 3 × 7 + n. Here, to make the whole procedure invertible, the 

number of variables should be no more than the number of observations: 3 × 7 + n ≤ n × 
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7. Therefore, n should be at least four, which implies that four sets of MODIS clear sky 

TOA reflectances (one set = seven bands) need to be collected within the temporal 

window to make it possible to retrieve the unknown variables. Since it is not always easy 

to obtain the angular sampling suitably within such a short temporal window, the BRF 

parameter retrievals from the preceding day were used as “first guess” constraints to limit 

the retrievals for the current procedure. MODIS level 2 cloud mask products 

(MOD35_L2/MYD35_L2) were used to screen cloudy observations. As a supplement to 

Terra MODIS, the one onboard Aqua (launched 2002) provides TOA observations as 

well. Commonly, over a mid-latitude location, there are two or three overpasses a day, 

combining data from Terra and Aqua. Considering that around two-thirds of the 

observations are under cloudy conditions over most of North America, the length of the 

temporal sliding window is usually less than seven days in order that a sufficient number 

of clear sky observations can be obtained for the retrieving procedure. During the winter 

season, the window size can be slightly smaller when the sky tends to be clearer than in 

other seasons. This is a great advantage for monitoring the rapid surface changes, 

especially for snow conditions. 

2.2.2 Atmospheric parameters 

To implement a forward simulation of TOA bidirectional reflectances using Eq. (2-4), 

parameters such as path reflectance, both upward and downward direct/diffuse 

transmittance and spherical albedo need to be calculated. In addition to simulating the 

TOA signal, the diffuse light ratio needs to be generated to produce the actual surface 

albedo considering the redistribution of solar illumination caused by aerosol scattering. 



27 
 

Instead of an online calculation of these atmospheric functions on a point basis for every 

observation time, which will be computationally expensive, they were prepared as a 

function of the viewing geometries and AOD. The 6S software (Kotchenova et al. 2006) 

was used for the calculation of the LUT. It enables accurate simulations of satellite 

observation while accounting for elevated targets, the use of anisotropic and Lambertian 

surfaces, and the calculation of gaseous absorption based on the method of successive 

orders of scatterings approximations (Kotchenova et al. 2006). In this study, the 

following values were used as the entries in the 6S simulations: solar zenith angle (0°–

75°, at 5° intervals), viewing zenith angle (0°–75°, at 5° intervals), relative azimuth angle 

(0°–180°, at 10° intervals), AOD at 550 nm (0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 

and 1.0) for five predefined aerosol types in 6S software (urban, biomass, continental, 

desert, and maritime).  Through the forward simulation, for each particular solar/viewing 

geometry and aerosol loading (AOD at 550 nm), 6S generates path reflectance, upward 

and downward transmittances, spherical albedo, diffuse skylight ratio, and AOD for each 

of the seven MODIS bands respectively. 

2.2.3 Ground measurements 

The ground observational data used for this study were obtained from the SURFRAD 

website and the GC-Net web site. Details about instruments, data processing, and quality 

controls can be found on their websites.  

For vegetated areas, the SURFRAD instruments measure surface downward and 

upward radiation. Based on the availability and quality of both satellite data and ground 

observations, this study used the SURFRAD observations at several sites (names and 
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locations are listed in Table 2-2) for the year 2005. The SURFRAD sites provide the 

shortwave upward flux together with the downward global flux every three minutes. The 

“ground truth” blue-sky albedo was calculated by averaging the ratio between the upward 

and downward radiation within a 15-min range before and after the satellite observing 

time to reduce the ground measurement errors and temporal/partial cloud effects. In 

addition to radiation flux data, AOD measurements are also available at these sites. 

Aerosol information is measured for five channels (415, 500, 614, 670, 868, and 940 nm) 

at a 2-min temporal resolution. In order to make comparisons with AOD retrievals in this 

study, the ground measurements were converted to AOD at 550 nm with the Angström 

exponent data provided and then averaged within ±10-min range of the MODIS overpass 

time. 

Table 2-2 SURFRAD site information 

Site Name Location Land Cover Type 

Bondville, IL 40.05N, 88.37W Crop 

Boulder, CO 40.13N, 105.24W Grass 

Desert Rock, NV 36.63N, 116.02W Open Shrub 

Fort Peck, MT 48.31N, 105.10W Grass 

Goodwin Creek, MS 34.25N, 89.87W Grass & Forest 

Penn State, PA 40.72N, 77.93W Crop 

Sioux Falls, SD 43.73N, 96.62W Grass 

 

Table 2-3 GC-Net site information 

Site Name Location Site Name Location 

Swiss Camp 69.57N, 49.30W NASA-SE 66.48N, 42.50W 

JAR1 69.50N, 49.68W NASA-E 75.00N, 30.00W 

JAR3 69.40N, 50.31W GITS 77.14N, 61.10W 

Summit 72.58N, 38.50W DYE-2 66.48N, 46.28W 

Saddle 66.00N, 44.50W   
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Ground radiation measurements over Greenland are regularly collected at GC-Net. 

This dataset provides unique and extensive observations, which can help verify the 

validity of this proposed algorithm over snow-covered surfaces. Shortwave upward and 

downward radiation at the surface is observed on an hourly basis. To account for the 

reduced sensitivity of the GC-Net instruments, ground data were preprocessed using the 

method proposed by Stroeve et al. (2005). The “ground truth” blue-sky albedo is 

calculated based on that. Thirteen sites were chosen in this study according to data 

availability and data quality during the year 2003 (information listed in Table 2-3).   

2.2.4 MODASRVN data set 

Due to the limited spatial representation of ground measurements, it is always 

difficult to validate satellite pixel-based surface albedo estimations solely through 

comparison with ground measured data, especially when the pixel is not quite 

homogeneous. Using other satellite-derived data sources can help verify the algorithm 

estimations. Based on the ancillary information on aerosol and water vapor from the 

Aerosol Robotic Network (AERONET) sites, a set of surface albedo and reflectance data 

is retrieved through an independent atmospheric correction with the Ross-Li BRF kernel 

models using TOA data from MODIS observations (Wang et al. 2009). The 

MODASRVN data products from the year 2000 onwards are stored with the AERONET 

site in the center of the image covering 50 × 50 km
2
 at 1-km resolution.  

According to the location, land cover type, and MODASRVN data availability from 

the AERONET sites, sixteen sites were chosen in this study for the validation of the 

estimated surface reflectance (see detailed information in Table 2-4). Similar to the 
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ground measurement section, data for the year 2005 for MODASRVN and MODIS L1B 

TOA observations were collected and processed. 

Cloud-screened AOD data from AERONET are available all year round at minimum 

intervals of 3-min for almost all the MODASRVN sites. Around 16 channels of AOD 

measurements are provided from 340 nm to 1640 nm. Data were converted into AOD at 

550 nm for comparison. Similar to the data processing for SURFRAD AOD, ±10-min 

average AOD values were calculated. 

Table 2-4 MODASRVN – AERONET site information 

Site Name Location Land Cover Site Name Location Land Cover 

Bondville 
40.05N, 

88.37W 
Crop Mexico City 

19.33N, 

99.18W 
Urban 

GSFC 
38.99N, 

76.84W 

Forest & 

Urban 
Rimrock 

46.49N, 

116.99W 
Grass 

Missoula 
46.92N, 

114.08W 

Grass & 

Urban 

MD Science 

Center 

39.28N, 

76.62W 
Urban 

SERC 
38.88N, 

76.50W 

Forest & 

Wetland 
KONZAEDC 

39.10N, 

96.61W 
Grass 

CARTEL 
45.38N, 

71.93W 

Grass & 

Urban 

BSRNBAO 

Boulder 

40.05N, 

105.01W 
Grass 

Bratts 

Lake 

50.28N, 

104.70W 
Crop 

Railroad 

Valley 

38.50N, 

115.96W 
Grass 

Sioux 

Falls 

43.76N, 

96.63W 
Grass Frenso 

36.78N, 

119.77W 
Urban 

Egbert 
44.23N, 

79.75W 
Crop Halifax 

44.64N, 

63.59W 
Urban 

 

2.2.5 Algorithm implementation 

As mentioned in the previous section, MODIS TOA reflectances were calculated 

from the 1km MODIS L1B dataset and collected within the sliding temporal window. 

Cloud pixels were excluded based on the MODIS cloud mask product. Following the 
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flowchart in Figure 2-1, all the clear sky observations were used in the retrieving 

procedure as long as they satisfied the minimum number required. The aerosol type was 

adopted from the MODIS aerosol product (MOD04/MYD04). Monthly statistics of AOD 

were calculated from the ground aerosol observations (Augustine et al. 2008; Holben et al. 

2001) and used as a “first guess” in the retrieving process to constrain the AOD 

retrievals. BRF kernel parameters from the preceding day supported the radiative transfer 

and optimization process by providing the “first guess” BRF shape. This prior 

information can also help reduce the uncertainty that may be introduced by the 

insufficient angular sampling of the TOA signal during a short period of time. The SCE 

algorithm then searched for the optimal kernel parameters and instantaneous AODs, 

which best fit the satellite observations and the albedo climatology considering the error 

distributions for both parts of Eq. (2-1). The retrieved BRF models can generate 

bidirectional reflectances for all the seven spectral bands as well as spectral black-

sky/white-sky albedos through angular integration based on Eq. (2-8) and Eq. (2-9). With 

the retrieved AOD as an inference, the “blue-sky” albedo was calculated using Eq. (2-3) 

following the narrowband-to-broadband conversion based on spectral albedos.  

2.3 Results and discussions 

2.3.1 SURFRAD sites 

Ground measurements from SURFRAD sites have been extensively used for 

validating the MODIS albedo product (Jin et al. 2003; Liu et al. 2009; Salomon et al. 

2006). The direct comparisons of the retrieved albedo values with ground measurements 

and MODIS data over the seven SURFRAD sites are shown in the time series in Figure 
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2-4, and the statistics listed in Table 2-5(a). MODIS 1-km albedo products (MCD43B3) 

and the corresponding quality products (MCD43B2) were used in this study. Only the 

best quality MODIS albedo values are shown for snow-free conditions in the comparison. 

While the MODIS albedo algorithm intends to produce snow-free albedo values, the total 

shortwave albedo products for snowy conditions are always flagged as having lower 

quality. Those snow data are included in the comparison, in black color.  

Table 2-5 Statistics of the retrieved values from this study with comparison to ground 

measurements over SURFRAD sites 

 

Site Name Bias RMSE R
2
 

Bondville  -0.0097 0.0615 0.6268 

Boulder 0.0245 0.0781 0.0086 

Desert Rock -0.0033 0.0271 0.0013 

Fort Peck 0.0241 0.0541 0.9714 

Goodwin Creek -0.0403 0.0581 0.1035 

Penn State -0.0135 0.0390 0.4537 

Sioux Falls -0.0031 0.0762 0.7884 

All sites for no snow -0.0016 0.0268 0.0783 

All sites for snow 0.0324 0.1319 0.3855 

(a) 

Site Name 

Retrieved AOD 

vs 

ground measurements 

MODIS AOD 

vs 

ground measurements 

Bias RMSE Bias RMSE 

Bondville 0.0529 0.1283 0.0579 0.1416 

Boulder -0.0059 0.0567 0.0025 0.0612 

Desert Rock 0.0186 0.0451 n/a n/a 

Fort Peck 0.0330 0.0654 0.0357 0.0986 

Goodwin Creek 0.0095 0.1271 -0.0445 0.1290 

Penn State n/a n/a n/a n/a 

Sioux Falls 0.0232 0.0901 -0.0480 0.1210 

All sites 0.0243 0.0984 -0.0009 0.1187 

(b) 
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Figure 2-4 Verification of time series shortwave albedo from MODIS observations in 

2005 over seven SURFRAD sites (red diamond: ground measured shortwave albedo; 

blue diamond: estimated albedo from MODIS observations; green diamond: MODIS 16-

day snow-free albedo; black cross: MODIS 16-day snow albedo) 
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Figure 2-4 (continued) 
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Generally, the retrieved albedo values have a good match with the field 

measurements and MODIS albedos. The proposed algorithm in this study generates 

albedo estimates, which are very close to the MODIS data since large albedo changes are 

rarely encountered over the snow-free period especially for these vegetated sites. For the 

non-snow cases (Desert Rock and Goodwin Creek), the Root Mean Square Errors 

(RMSE) are quite small, although the R
2
 values are rather low due to the small range of 

albedo variations. At Goodwin Creek, both our estimations and the MODIS products are 

slightly lower than the field measurements.  

Both our retrievals and the MODIS albedo data can represent the seasonal snow 

albedo over Bondville and Sioux Falls reasonably well. However, due to the failure of the 

MODIS albedo algorithm, the albedo values cannot reflect the snow covered situations in 

some cases, either due to a mismatch of the snow or a non-snow condition (e.g., around 

DOY 40 over Bondville) or to having filled values in winter (e.g., over Fort Peck). 

The proposed algorithm has difficulty deriving surface albedo over the site of Penn 

State in winter and early spring because of lack of available clear sky observations within 

the sliding window while the MODIS magnitude algorithm can produce some estimates.  

Overall, the proposed algorithm in this study provides good estimations at all the 

seven sites with a small bias (-0.0016) and RMSE (0.0268) for no snow conditions, and 

reasonable results for snow events (bias: 0.0324, RMSE: 0.1319, R
2
: 0.3855). Besides 

residual cloud contamination, the pixel mixture (e.g., partial snow and surface 

heterogeneity during the non-snow season) problem could be one of the main reasons for 
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the bias found at Fort Peck and Goodwin Creek. It should be noted that the surface 

condition is very stable over some sites mainly covered by grass (e.g., Boulder, Desert 

Rock and Goodwin Creek). In these cases, the R
2
 can be quite low due to the small 

change in surface albedo and the reduced RMSE is observed as well. 

Comparisons of AOD estimations from the proposed algorithm and the MODIS 

algorithm with ground measurements are provided along with the statistics in Table 

2-5(b). MODIS instantaneous AOD data (Collection 5) from both Terra (MOD04_L2) 

and Aqua (MYD04_L2) observations were used in this comparison. For Bondville, 

significant positive bias and RMSE are found for both the retrieved AODs and MODIS 

estimations. The site’s close vicinity to the urban area could be a main reason for the 

large aerosol variations, which may contribute to an underestimation of the albedo. The 

slight underestimation over Boulder is one of the possible reasons for the introduction of 

the positive bias in the albedo estimation. There are some overestimations over Desert 

Rock where the RMSE (0.0451) is the smallest among all the sites, indicating accurate 

surface albedo estimations and non-significant surface changes. However, the MODIS 

aerosol algorithm generates very few values over Desert Rock, which makes the 

comparison impossible. This is probably caused by the increased surface reflectivity, 

which its algorithm is not capable of processing.  Both Fort Peck and Goodwin Creek 

have large AOD variations; the uncertainty of aerosol retrievals may have deteriorated 

the albedo estimations. Due to the lack of ground measurements over Penn State, no 

comparison is made for this dataset. For Sioux Falls, the positive bias (0.0232) 

corresponds to the slight underestimation of albedo, while the impact is not very 

significant. Combining the comparisons for all the sites, the AOD values generated by the 



37 
 

proposed algorithm have accuracy levels similar to those of the MODIS aerosol products. 

A positive bias (0.0243) is found for the retrievals with a slightly smaller RMSE (0.0984) 

compared to that of the MODIS AOD (RMSE: 0.1187). The positive biases of the 

MODIS AOD data over Bondville (0.0579) and Fort Peck (0.0357) are offset by the 

negative ones over Goodwin Creek (-0.0445) and Sioux Falls (-0.0480) leading to a small 

bias (-0.0009). 

2.3.2 GC-Net sites 

Similar to the comparisons made over the SUFRAD sites, the MODIS 1-km albedo 

and quality data were processed for the GC-Net sites. Time series comparisons of ground 

measurements, retrieved albedo values, and MODIS albedo products over the GC-Net 

sites are given in Figure 2-5. From the results shown here, snow and snow-melt events 

were clearly captured by the retrievals of our proposed algorithm. The results based on 

daily observations show variations in ground measurements and retrieved albedo data 

whereas the 16-day MODIS albedo curves are smooth over most cases. The albedo 

variations are caused by the changes in solar zenith angle, since MODIS can have 

multiple overpasses over Greenland in one day (combined Terra and Aqua). As more 

observations can be obtained over Greenland compared to those of the SURFRAD sites, 

the time range for collecting the cloud free observations becomes shorter over the 

Greenland sites, which gives the algorithm better capability for capturing rapid changes.  
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Figure 2-5 Verification of time series total shortwave albedo from MODIS observations 

in 2003 over six GC-Net sites (red diamond: ground measured visible albedo; blue 

diamond: estimated albedo from MODIS observations; green diamond: MODIS 16-day 

albedo) 
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Figure 2-5 (continued) 

 

The statistics of the comparisons between the instantaneous retrievals and ground 

measured albedo data over all the sites are given in Table 2-6. This algorithm gives a 

satisfactory result over all sites with a small positive bias (0.012). The overall R2 (0.842) 

shows that the albedo retrievals have a good correlation with the ground measurements 

indicating that the snow surface changes can be well captured, although sometimes the 

sliding window size is still larger than the real situation given that the RMSEs are higher 
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than 0.05 over some sites. Figure 2-6 shows the comparison of the 16-day MODIS 

products and averaged retrievals and ground measurements over the same time period. 

The MODIS albedo data have a negative bias (-0.027) while the retrieved values here 

have a much smaller bias of 0.013. Furthermore, the retrieved albedos have a higher 

correlation with the ground measurements (R2: 0.838) and a smaller RMSE (0.0589) than 

those from MODIS (R2: 0.773, RMSE: 0.076). Unlike the seasonal albedo changes at the 

sites close to the seashore (e.g., Swiss Camp, JAR1, and JAR3), the snow albedo does not 

change significantly at the rest of the chosen sites due to fewer snow fall/melt events. The 

values of R2 and RMSE are much lower for sites close to the center of Greenland due to 

the small albedo variation and possible misidentification of clouds over snow surface. 

Table 2-6 Statistics of the retrieved values from this study with comparison to ground 

measurements over GC-Net sites 

Site Name Bias RMSE R
2
 

Swiss Camp 0.062 0.1110 0.700 

GITS -0.011 0.0356 0.077 

Summit 0.0098 0.0467 0.027 

DYE-2 -0.0039 0.0333 0.006 

JAR1 0.015 0.0910 0.872 

Saddle 0.015 0.0304 0.060 

NASA-E -0.024 0.0341 0.002 

NASA-SE 0.0074 0.0351 0.001 

JAR3 0.0012 0.0767 0.774 

All sites 0.012 0.0654 0.842 
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Figure 2-6 Scattering plots of the 16-day averaged albedo values over nine GC-Net sites 
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2.3.3 Comparisons with MODASRVN data set 

Sixteen sites were chosen for validation of the surface reflectance using the 

MODASRVN data set. Time series comparisons of the red band and near-infrared band 

data over six vegetation sites are given in Figure 2-7. The retrieved surface reflectances 

in these two bands capture the seasonal trends and match the MODASRVN instantaneous 

reflectance products very well. The difference plot in Figure 2-7 shows that most of the 

errors lie in the range of ±0.05 for both bands and the errors are randomly distributed for 

a short time period. However, since in most cases the MODASRVN data failed to 

provide the reflectance over the snow covered surfaces, it is difficult to validate the 

proposed algorithm over bright surfaces using this dataset. Moreover, as this dataset 

relies only on the MODIS sensor onboard Terra, fewer retrievals are available than those 

in our results presented in this study. 
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Figure 2-7 Verification of time series instantaneous reflectance from MODIS 

observations in 2005 over six AERONET sites (dark blue circle: estimated red band 

reflectance; green cross: MODASRVN red band reflectance; red square: estimated near-

Infrared band reflectance; light blue triangle: MODASRVN near-Infrared band 

reflectance) and time series of differences between the retrieved values and 

MODASRVN data (red square: difference for red band; blue cross: difference for near-

Infrared band) 
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Figure 2-7 (continued)  
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Figure 2-7 (continued)  

 

Direct comparisons are given in Figure 2-8 (statistics listed in Table 2-7) over all 

sixteen sites for all 7 MODIS bands. The overall correlation of the retrievals and the 

MODASRVN data is very good for each individual band and the bias and RMSE are 
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small. The R
2
 values are relatively small for band 3 and band 4 because there is only a 

narrow range for the reflectances (0–0.2). Some outliers are found in the comparison, 

probably due to the misclassification of the cloud mask, which is one of the major input 

components for this algorithm. Given the variability of surface cover types over all the 

sixteen sites, the results show that the algorithm proposed here is capable of handling 

different types of land cover regardless of its homogeneity.  

.   

Figure 2-8 Scatter plot of estimated and MODASRVN instantaneous bidirectional 

reflectance for each of the seven MODIS bands over all the selected AERONET sites 

during 2005 
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Figure 2-8 (continued) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y=0.91535x+0.024

R-squared=0.732

Bias=0.0025

RMSE=0.0471

All Sites Band2

MODASRVN IBRF

E
s
ti
m

a
te

d
 I
B

R
F

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y=0.65212x+0.018

R-squared=0.303

Bias=-0.0062

RMSE=0.0305

All Sites Band3

MODASRVN IBRF

E
s
ti
m

a
te

d
 I
B

R
F



48 
 

 

Figure 2-8 (continued) 
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Figure 2-8 (continued) 
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Table 2-7 Statistics of the retrieved reflectance values from this study with comparison to 

MODASRVN reflectance products ground measurements over sixteen AERONET sites 

Band No. Bias RMSE R
2
 

1  0.0084 0.0269 0.698 

2 0.0025 0.0471 0.732 

3 -0.0062 0.0305 0.303 

4 0.0097 0.0366 0.422 

5 0.0045 0.0288 0.889 

6 0.015 0.0495 0.662 

7 0.015 0.0418 0.635 

 

Table 2-8 Impacts of solar zenith angle and estimation accuracies of AOD on surface 

reflectance estimations 

(a)SZA on AOD and reflectance 

SZA 15˚-25˚ 25˚-35˚ 35˚-45˚ 45˚-55˚ 55˚-65˚ 65˚-75˚ 

Mean(EAOD*) 0.0311 0.0428 0.0333 0.0120 0.0079 0.0022 

STD(EAOD*) 0.1204 0.1238 0.1015 0.0324 0.0251 0.0495 

Mean (EB1**) 0.0121 0.0107 0.0186 -0.0017 -0.0139 n/a 

STD(EB1**) 0.0142 0.0190 0.0262 0.0128 0.0204 n/a 

Mean (EB2***) 0.0347 0.0292 0.0075 0.0016 -0.0136 n/a 

STD(EB2***) 0.0318 0.0442 0.0301 0.0226 0.0178 n/a 

(b) AOD on reflectance 

Abs(EAOD*) <0.05 0.05-0.10 0.10-0.15 0.15-0.20 >0.20 

Mean (EB1**) 0.0035 0.0066 0.0204 0.0289 0.0184 

STD(EB1**) 0.0189 0.0224 0.0204 0.0347 0.0246 

Mean (EB2***) 0.0049 0.0278 0.0604 0.0278 -0.0221 

STD(EB2***) 0.0254 0.0348 0.0534 0.0571 0.0394 

EAOD*: Estimated AOD – AERONET AOD 

EB1**: Estimated reflectance – MODASRVN reflectance for MODIS Band 1 

EB2***: Estimated reflectance – MODASRVN reflectance for MODIS Band 2 
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The direct comparison of retrieved instantaneous AOD values with AERONET 

observations is shown in Figure 2-9(a). The errors in the AOD estimates follow a normal 

distribution which shows a positive bias less than 0.03. The overall results have a large 

RMSE (0.1017) which is larger than the MODIS AOD products shown in Figure 2-9(b). 

Analysis has been carried out to investigate the performance of the algorithm in 

estimating AOD and therefore surface reflectance, and the statistics listed in Table 2-8. 

As MODIS passes over the same location only twice a day around local noon for mid-

latitude sites (including Terra and Aqua), solar zenith is used here as the inference of the 

season – small values in summer and large values in winter. Solar zenith is divided into 6 

segments: 15°–25°, 25°–35°, 35°–45°, 45°–55°, 55°–65°, and 65°–75°. The AOD 

estimation accuracies generally decrease with the increase of solar angles, which means 

better accuracies can be achieved during winter. There are two reasons for this. One is 

that summer has lower solar zenith but more variation of aerosol, while winter has large 

solar zenith with small aerosol accumulation. The other is that a large solar zenith angle 

provides a longer path from earth’s surface to the satellite as well as more information on 

aerosol. The uncertainties of reflectance estimates also generally decrease with the 

increase of solar zenith when it is less than 55°. When the solar angle increases to 55°–

65°, there is a negative bias for each of the two bands. The underestimation may result 

from the difference of the two algorithms in accumulating the observations in the time 

period of partial snow. 

Table 2-8(b) shows the impacts of AOD estimation errors on the surface reflectance 

retrieving accuracies. Absolute AOD error values are divided into five ranges: <0.05, 

0.05–0.10, 0.10–0.15, 0.15–0.20, and >0.20. According to the statistics, the algorithm 



52 
 

generates larger errors in reflectance for both bands when the AOD uncertainties become 

larger. As most of the AOD errors lie within the range of ±0.05, the overall reflectance 

retrievals can have good accuracies in terms of the averaged errors. 

 

(a) 

 

(b) 

Figure 2-9 AOD estimation accuracies from (a) the proposed algorithm and (b) the 

MODIS algorithm at MODASRVN sites during 2005 
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2.3.4 Summary and conclusions 

Based on the integration of the land-atmosphere radiation interaction framework, this 

study focuses on estimating the MODIS surface albedo and directional reflectance. The 

major contributions of this study are as follows: 

1) As existing algorithms deriving albedo products from geostationary satellite data 

mainly focus on the partitioning the contributions from atmosphere and surface, the “dark 

object” algorithm may bias the estimation of surface anisotropy. The proposed approach 

in this study is designed to mitigate this problem. This is the first prototype algorithm that 

estimates the surface albedo and reflectance for use with the future geostationary satellite 

Geostationary Operational Environmental Satellite-R Series (GOES-R) Advanced 

Baseline Imager (ABI) sensor. This study provides the complete algorithm framework for 

the albedo retrieving procedure using MODIS observations as proxy data.   

2) By using different “truth” datasets, this study provides extensive validation of the 

proposed algorithm by comparing the broadband albedos, spectral reflectances and 

instantaneous AODs. The overall results show that the retrievals are a good 

representation of the seasonal curves of the albedo and reflectance changes all year round. 

Compared with the MODIS albedo algorithm and MODIS AOD products, this proposed 

algorithm with a smaller sliding window provides reasonable results with relation to 

ground measurements for both surface albedo and AOD, while the capabilities in terms of 

handling rapid surface albedo changes caused by snowfall and snow-melt situations still 

need further investigations. This will help climate models in the simulation and forecast 

applications. 
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Future work will focus on several major problems. First, efforts will be made on the 

mitigation of cloud effects and improvements over rapid change surfaces. Time series of 

previous retrievals/observations can be better used if clouds are persistent in the sliding 

window. Temporary cloud contamination or partial snow cover impacts can also be 

mitigated by introducing the previous retrievals as constraints in the current retrieving 

procedure. Since direct broadband albedo estimation can be carried out when limited 

clear skies are available, efforts will be made to incorporate and extend this algorithm to 

estimate both the broadband and spectral band albedos.  

Second, the retrieved albedo values have some correlation with the climatology used 

in this study. While the observation data and climatology maps come from the same data 

source – MODIS, further efforts should be made to derive an unbiased climatology from 

multiple data sources. In addition, factors such as disturbance, precipitation and soil 

moisture changes, will be taken into account in building the climatology. More efforts 

will be made on analyzing the covariance between different input data in the cost 

function. 

Finally yet importantly, extensive validations need to be carried out using various 

sources of data that include finer-resolution satellite products. In addition, proxy data 

from a geostationary satellite (e.g., MSG/SEVIRI) will be used in evaluating this 

retrieving procedure in Chapter 3.  
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CHAPTER 3 ESTIMATION OF SURFACE ALBEDO FROM SEVIRI 

OBSERVATIONS 

3.1 Methodology 

3.1.1 Optimal estimation 

In the last chapter, a method is proposed relying on both the albedo prior information 

and the satellite observations to estimate properties of surface and atmosphere 

simultanenously from MODIS data. As SEVIRI provides observations every 15-30 mins, 

around 20-50 clear sky observations can be available per day that make the angular 

samplings sufficient to capture both aerosol and surface anisotropy. The surface 

invariability assumption can be shortened to one in this study. Another assumption needs 

to be made on the aerosol type and its properties (e.g., Angström exponent): that they do 

not change within one day, but AOD varies from time to time. 

3.1.2 Broadband shortwave albedo calculation 

In this study, the major objective is to generate the shortwave albedo that is required 

by many land surface models and weather forecast applications to quantify the overall 

solar shortwave net radiation. From the BRF models, albedo from spectral bands can be 

easily estimated through the polynomial function, as mentioned in the last chapter. As the 

broadband albedo quantifies the ratio of the total reflected and incident radiation for a 

wide range of wavelengths, it can be expressed as the linear combination of spectral 

albedos with the weights from the distribution of the incident energy. Variation of 

atmospheric aerosol loading will scatter and/or absorb the solar radiation and reflected 
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radiation from the surface. Aerosol tends to scatter more in the shorter wavelength, thus 

changing the spectral distribution of solar radiation that reaches the surface. To simplify 

the estimation of broadband albedo, a general equation needs to be worked out to express 

the relationship between the spectral albedo and the integrated broadband shortwave 

albedo, accounting for various aerosol loadings over different surfaces (Liang 2001). The 

relationship can be established using the following linear equation: 

0

1

n

sw Reg Reg 


 


   (3-1) 

where sw  is the total shortwave albedo,  (  1,n ) is the albedo from spectral 

band, iReg (  0,i n ) is the regression coefficients. 

Samples from the U.S. Geological Survey (USGS) Digital Spectral Library (Clark et 

al. 2007) were used in this study for the representation of spectral albedo for various 

surfaces (Table 3-1). The Second Simulation of a Satellite Signal in the Solar Spectrum 

(6S) software (Kotchenova et al. 2006) is able to simulate the both incoming and 

outgoing radiation data at the surface with the inputs of surface albedo and AOD at 550 

nm. The simulations were carried out by varying the AOD from 0.01 to 0.5 with the 

albedo spectrum as input. Albedos from spectral bands and the total shortwave band were 

calculated from the simulated radiation data and then put into the linear regression.  

Results are shown in Equation (3-2): 

1 2 30.4331 0.3939 0.1136 0.0084short        (3-2) 
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Only one equation was generated while not separating the snow surface from non-

snow ones because good agreement was found using these coefficients for high albedo 

values (Figure 3-1). Moreover, with SEVIRI’s 3-km resolution, a lot of pixels are 

mixtures of multiple land cover types.  

Table 3-1 Albedo spectrum samples from USGS library 

Surface type Vegetation Soil Water Snow/Ice Rock Manmade 

Samples 118 50 7 21 18 31 

 

 

Figure 3-1 Narrowband-to-broadband conversion accuracy from all the samples 
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range on SEVIRI which results in lower accuracy capturing the high reflectivity over soil 

and snow. 

3.2 Data and retrieving procedure 

3.2.1 MSG/SEVIRI data 

Meteosat-8 SEVIRI level 1.5 data stores the TOA radiance covering the continent of 

Africa, east of South America, and a large portion of Europe. Data for the year of 2005 

was used in this study. The radiance data was converted to reflectance by dividing the 

incoming solar radiation reaching at TOA. Local solar illumination angles (zenith and 

azimuth) for the observing time were calculated by the solar positioning algorithm (Reda 

and Andreas 2004). Source code is available at 

http://rredc.nrel.gov/solar/codesandalgorithms/spa/. Since the viewing geometry is fixed 

for the same location, the relative azimuth angle is easy to calculate with the solar 

azimuth. 

The SEVIRI cloud mask (Derrien and Le Gleau 2005) distributed along with the 

radiance data was used to remove the TOA observations affected by cloud cover. As the 

cloud mask algorithm has difficulties identifying the clouds in low-sun conditions 

(Derrien and Le Gleau 2010), the TOA observations in early-morning or late-afternoon 

were not used in this study. 

http://rredc.nrel.gov/solar/codesandalgorithms/spa/
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3.2.2 Albedo climatology 

Albedo climatology was calculated from ten years’ MODIS shortwave albedo product 

(2000-2009). MODIS 0.05° albedo data set (MCD43C3) was used in this study because 

the spatial resolution is similar to that of SEVIRI data. The shortwave albedo data in 

MCD43C3 data set is stored in the lat/lon projection. MODIS data was reprojected to the 

SEVIRI projection. To reduce the data volume and the dependence of solar angle, white-

sky albedo was used here. Ten years’ mean and standard deviations (Figure 3-2) were 

calculated with only the “best quality” MODIS albedo products. In the climatology maps, 

albedo in the Amazon and central Africa is generally small and stable because of large 

forests. Usually cloud contamination can be the major reason for gaps over these areas; 

therefore, surface albedo algorithm may still get reasonable estimations from this prior 

information with limited instantaneous cloud-free observations. North Africa is largely 

covered by desert, which causes the major failure of the “dark object” algorithms. Since 

the ten years’ albedo variation is not huge, the multi-year mean data can serve as the prior 

information very well in this area. Large values are found for both albedo mean and 

standard deviation over east Europe, which suggests inter-annual variation of snow 

events. This also implies that the accurate estimates may rely on the instantaneous 

observations more if its error is lower over this area during winter. 
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(a)  

(b)  

Figure 3-2 Albedo climatology for day of year (DOY) 065 in SEVIRI projection from ten 

years’ MODIS shortwave albedo: (a) mean value of MODIS white-sky albedo; (b) 

standard deviation of MODIS white-sky albedo in ten years 
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3.2.3 Atmospheric look-up table (LUT) 

The atmospheric LUT was created before the algorithm implementation to expedite 

the online calculation of the atmospheric variables needed in the radiative transfer and the 

estimation of all-sky surface albedo. Again, 6S software was used to do the atmospheric 

radiative transfer simulations. With the spectral response functions for all three SEVIRI 

bands as input, 6S can generate the atmospheric variables through the settings on 

geometries, and aerosol type, etc. 

3.2.4 Algorithm implementation 

All the TOA observations within the same day were collected. Before the ingestion of 

the data into the retrieving procedure, TOA reflectances were masked with the cloud data 

to insure that only clear sky information was used to derive the BRF. With only three 

spectral bands on SEVIRI, the minimum requirement for clear sky observations should 

be at least five in order to retrieve all the unknown variables in one retrieving procedure. 

0.1 of AOD at 550 nm and the BRF kernel parameters from the preceding day provide 

the “first guess” in the retrieving process. The albedo climatology plays a vital role in 

matching it with the simulated broadband shortwave white-sky albedo to constrain the 

estimated surface BRF. Through minimization of Eq. (2-1), the retrieved BRF models 

and AOD were balanced with the albedo climatology and the satellite observations 

according to their uncertainties. 

Once the surface BRF models were obtained through minimization of the cost 

function, the instantaneous bidirectional surface reflectance can be calculated. Given the 
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surface BRF and AOD retrievals, the instantaneous “blue-sky” albedo can be calculated 

based on the black-sky and white-sky albedo using diffuse skylight ratio diff
 using Eq. 

(2-3) which were used for the comparison with the ground measurements: 

3.3 Results and discussion 

3.3.1 Albedo comparison at IMECC sites 

The network of IMECC is designed to provide dataset for characterizing the carbon 

balance of Europe. The IMECC Terrestrial Carbon Data Center (TCDC) maintains the 

access to the radiation measurements. Downward and upward surface radiation data are 

measured at a 30-min interval. Quality flags are provided along with the radiation 

measurements. There are four levels of quality flags: best, medium, bad, and missing. 

Only the data with “best” quality were used in this study.  According to the availability 

and the quality of the data and the surface homogeneity, eight sites (listed in Table 3-2) 

were chosen here to compare our estimations with the ground measurements. The 16-day 

MODIS 5 km albedo products are provided through their website at an 8-day interval. To 

get comparable results, MODIS data with the best quality were used here in the 

comparisons at the chosen sites. 

Daily-aggregated comparisons between the retrieved albedos from SEVIRI, the 

ground observations, and the MODIS 16-day averaged albedo values are given in Figure 

3-3 (statistics listed in Table 3-3). The albedo estimates from this study are generally very 

close to MODIS values. One reason for this is that the albedo climatology is generated 
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from multi-year MODIS data. The other one is possibly the scale difference between the 

satellite pixel and the ground point. 

Table 3-2 Information of the chosen IMECC sites 

Site name Latitude Longitude Surface cover type 

CZ-Bk2 49.4953 18.5448 GRA 

CH-Oe2 47.2863 7.7343 CRO 

CZ-Wet 49.025 14.7722 WET 

DE-Hai 51.0793 10.452 DBF 

DK-Sor 55.4859 11.6446 MF 

CH-Oe1 47.2858 7.732 GRA 

DE-Geb 51.1001 10.9143 CRO 

DE-Me2 51.2754 10.6556 GRA 

DE-Meh 51.2753 10.6554 MF 

GRA: grassland; CRO: cropland; WET: wetland; DBF: deciduous broadleaf forest; ENF: 

evergreen needleleaf forest; MF: mixed forest; EBF: evergreen broadleaf forest. 

 

Figure 3-3 Comparison of daily-aggregated albedo from estimates in this study and 

ground measurements with MODIS 5 km products as reference at the IMECC sites 
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Figure 3-3 (continued) 

80 100 120 140 160 180 200 220 240
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Julian Day

S
ho

rt
w

av
e 

A
lb

ed
o 

(D
ai

ly
)

CH-Oe2 Lat:47.2863 Lon:7.7343 (CRO)

 

 

Ground measured albedo

Estimates

MODIS albedo

140 160 180 200 220 240

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Julian Day

S
h
o
rt

w
a
v
e
 A

lb
e
d
o
 (

D
a
ily

)

CZ-Bk2 Lat:49.5047 Lon:18.5411 (GRA)

 

 

Ground measured albedo

Estimates

MODIS albedo



65 
 

 

 

Figure 3-3 (continued) 
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Figure 3-3 (continued) 
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Figure 3-3 (continued) 

Table 3-3 Statistics of daily-aggregated albedo estimation accuracies with comparison to 

ground measurements 
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quality” ground data was restricted to 80% for a whole day when the downward solar 

radiation is larger than 10 W/m
2
. The comparisons show that the retrieved albedo can 

well capture the diurnal change caused by the solar illumination angle. In addition, the 

day-to-day variation can be well represented by the retrievals in this study since the 

variation can be observed which the 16-day MODIS products do not have. In order to 

match the MODIS albedo data with the ground measurements, MODIS 0.05° BRDF 

dataset is used to calculate the instantaneous albedo value. Only the BRDF values with 

the “best quality” are used to do the calculation. 

The day-to-day albedo variation can be caused by the soil moisture change resulting 

from precipitation. Results show that the proposed algorithm works reasonably good for 

SEVIRI data and the day-to-day variation can be captured even when the 16-day albedo 

climatology is not very accurate. For some sites, the albedo changes differently in the 

morning and in the afternoon, which some researches have proven that the dew in the 

morning and the wind near the ground can be the reason (Minnis et al. 1997; Song 1998). 

However, in this study, the surface BRF shape was assumed to be invariant within a day 

which would therefore limit the capability to capture this phenomenon. Sometimes, the 

proposed algorithm here even generates the opposite shape. 
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Figure 3-4 Comparison of instantaneous albedo from estimates in this study and ground 

measurements with MODIS 5 km products as reference at the IMECC sites 
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Figure 3-4 (continued) 
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An interesting phenomenon found at the site of DK-Sor is that the diurnal shape of 

ground-measured albedo is not convex but concave. The land cover type for this site is 

mixed forest. This might be the reason sunlight tends to penetrate from the gaps of the 

trees and is then reflected by the ground soil (which has higher reflectivity than 

vegetation in visible range) when the solar zenith is small. As the solar zenith becomes 

larger, more energy is absorbed by the forest while less energy can be reflected to the 

sensor. However, the basic assumption that the kernel parameters are non-negative 

otherwise similar albedo shapes as observed by the ground instrument cannot be 

generated. 

Statistics in Table 3-4 suggest that good agreement has been achieved between the 

instantaneous albedo estimations from our algorithm and the MODIS algorithm, and the 

ground measurements. The proposed algorithm tends to generate larger albedo than the 

MODIS algorithm does when solar zenith angle is large, which may result from the wider 

angular sampling from SEVIRI than that from MODIS. It has been found that for 

MODIS albedo products, the absolute bias and RMSE increase with the solar zenith angle 

(Liu et al. 2009). Similar trend is found in this study that both bias and RMSE of our 

retrieved albedo values increase with the solar zenith angle. When the solar zenith is 

smaller than 55°, there is a small positive bias of 0.0009 with an RMSE of 0.0336. As the 

solar zenith increases beyond 55°, the bias and the RMSE increase to 0.0140 and 0.0414 

respectively. The increase of the albedo standard deviation from 0.0253 (<55°) to 0.0329 

(≥55°) is the major reason for the decrease of the albedo estimation accuracy while the 

bias may come from the problem of the kernel models that are with less accuracy for 

large solar angles. 
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In surface radiation budget studies, surface albedo is an indicator of how much energy 

is reflected by the surface, from which the remained downward solar radiation is 

absorbed. Net radiation quantifies the solar radiation absorbed by Earth’s surface. Unlike 

the polar-orbiting satellites, SEVIRI can obtain observations under different solar angles 

during the daytime thus provides better capability of monitoring the net radiation at the 

surface. Net shortwave radiation NetR
 estimations from this study is calculated from 

ground measured downward shortwave radiation 
R
  and surface albedo blue

 using Eq. 

(3-3): 

  1Net blueR R R R
  

      (3-3) 

Table 3-4 Statistics of instantaneous albedo estimation accuracies with comparison to 

ground measurements 

Site Name 

Our retrievals MODIS albedo from BRDF 

Bias STD RMSE Bias STD RMSE 

CH-Oe1 -0.0379 0.0262 0.0562 -0.0337 0.0129 0.0545 

CH-Oe2 -0.0301 0.0260 0.0404 -0.0247 0.0131 0.0389 

CZ-Wet 0.0077 0.0278 0.0286 -0.0125 0.0083 0.0244 

DE-Geb 0.0013 0.0277 0.0327 -0.0199 0.0145 0.0341 

DE-Hai 0.0344 0.0294 0.0446 0.0109 0.0086 0.0187 

DE-Me2 0.0099 0.0318 0.0278 0.0018 0.0158 0.0146 

DK-Sor 0.0396 0.0320 0.0549 0.0215 0.0147 0.0358 

All sites 0.0056 0.0351 0.0414 -0.0075 0.0181 0.0341 
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Table 3-5 lists the accuracy of net shortwave radiation estimations for all the chosen 

sites. A negative bias in surface albedo estimation causes an underestimation of upward 

radiation thus an overestimation of net radiation. When there is a larger error in the 

surface albedo estimation, there is greater uncertainty in the net radiation calculation. 

Combining all sites together, there is a small negative bias of -2.2023 W/m
2
 (RMSE: 

18.2900 W/m
2
) in net radiation estimations. Unlike the solar angle’s impacts on surface 

albedo estimations, the accuracy of net radiation estimations does not change much under 

different solar angles (<55° and ≥ 55°) in terms of the bias and the RMSE. This is 

probably because that the downward radiation decreases with the solar angles. 

Table 3-5 Accuracy assessment of net radiation estimations 

Site Name 

Net shortwave radiation 

(W/m
2)

 

Bias RMSE 

CH-Oe1 16.7390 21.4240 

CH-Oe2 -4.9975 12.0180 

CZ-Wet -15.2350 19.7850 

DE-Geb -17.8170 23.5220 

DE-Hai 17.9830 24.0860 

DE-Me2 -0.0007 13.6960 

DK-Sor -4.6793 11.6970 

All sites -2.2023 18.2900 

All sites <55° -1.3520 20.1900 

All sites ≥55° -3.7125 14.3080 

 

3.3.2 AOD comparison with MISR products 

The MISR on board Terra is one of the most successful polar-orbiting sensors 

designed for the aerosol monitoring. It has some unique advantages to accurately estimate 

the AOD with multiple bands in the shortwave range (especially the blue band) and 

observations from nine viewing angles. The MISR Level 2 aerosol products (Diner et al. 
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2005) with the most recent version (V22) are used in this study. This dataset is reported 

at a spatial resolution of 17.6 km using a 16×16 array of 1.1 km radiance pixels. 

Extensive validations of the MISR AOD with ground measurements (Kahn et al. 2010; 

Kahn et al. 2005) show that the error of AOD at 550 nm is less than 0.03-0.05. 

Comparisons made between our AOD estimations and MISR AOD products are given in 

Figure 3-5 at all the chosen IMECC sites. To match SEVIRI data with MISR data and to 

reduce the temporal fluctuation of our retrieved values, averages of our AOD retrievals 

are calculated if the SEVIRI observation time is within the ±30-min window of the MISR 

overpass. A slight underestimation of AOD is found in this comparison, with 68% of our 

retrievals falling within 20% × AOD. 

 

Figure 3-5 Histogram of the AOD estimation error 
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3.3.3 Albedo map 

The major objective of this algorithm is to generate the surface albedo from SEVIRI 

data. At SEVIRI’s spatial resolution, it’s difficult to find homogeneous ground truth from 

the ground measurements. Therefore, albedo products from other satellite data are needed 

to help verify the performance and validity of the albedo estimations from this algorithm 

under different atmosphere and surface conditions over a large area. In this study, 

MODIS albedo products are reprojected and resampled into the SEVIRI projection. 

Comparison is made between the retrieved albedo here and the reprojected MODIS 

albedo map on DOY 121, 2005 (Figure 3-6). Similar spatial patterns can be found in both 

maps. However, our results show greater spatial variations in surface albedo over the 

deserts and the sparsely vegetated area in North Africa and the Middle East, which 

suggests that the algorithm used in this study may have better capabilities in monitoring 

aerosol variation over bright surfaces. Over the east part of South America which is 

covered mainly by rain forests, our algorithm generates some higher albedo values. This 

overestimation is probably caused by undetected clouds. The viewing path is longer for 

the pixels close to the edge of the scene, which gives a higher possibility of cloud 

contamination. Moreover, other than the 16-day composition method used in the MODIS 

algorithm, the daily basis albedo estimation in this study can sometimes suffer from the 

undetected sub-pixel clouds. Due to the reduced spatial coverage of the cloud mask 

products, our algorithm do not have albedo estimations over the areas (Greenland and 

Central Asia, etc.) close to the edge of the scene. The overall statistics shown in Figure 

3-7 suggest that our results are comparable to MODIS products, though with a small 

positive bias. 
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(a)  

(b)  

Figure 3-6 Comparison of shortwave albedo in MSG2/SEVIRI projection on DOY 121, 

2005: (a) black-sky albedo estimations from SEVIRI proxy data; (b) reprojected MODIS 

black-sky albedo products (white color means no data or water) 
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Figure 3-7 Statistics of the comparisons over the scene 

 

3.4 Summary and conclusions 

The geostationary satellite provides a unique means to observe the Earth’s surface at 

very high temporal resolution that can better capture the surface anisotropy within a short 

time period while the polar orbiting satellites cannot. As a prototype for the GOES-R 

ABI surface albedo algorithm, the approach proposed in this study used the 

MSG/SEVIRI as proxy data to evaluate its performance. Generally, this study showed 

reasonably results while comparing the retrieved albedo from this approach with the 

ground measurements and satellite-derived products. Given the limitation of the SEVIRI 

spectral bands, the aerosol loadings could not be estimated accurately due to lack of a 
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blue band and the narrow-to-broadband albedo conversion accuracy suffered from the 

limited number of spectral bands in the visible range. In addition, the residual cloud 

contamination, which was not successfully identified by the current cloud mask algorithm, 

influenced the retrieving procedure by either overestimating or underestimating the 

surface albedo due to cloud or cloud shadow. 

With the development of the GOES-R ABI, which has more bands in the shortwave 

range (similar to MODIS), the estimation accuracy will probably be improved through 

better characterization of aerosol and broadband albedo conversion. 
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CHAPTER 4 GENERATING CONSISTENT SURFACE ALBEDO 

PRODUCTS ACROSS SCALES FROM DIFFERENT SATELLITE 

SENSORS USING A MULTI-RESOLUTION TREE (MRT) METHOD 

4.1 Introduction 

The framework of the MRT method has been developed in recent years to make 

predictions consistent across different spatial resolutions by assuming a statistical model 

that is autoregressive in levels of resolution (Chou et al. 1994). The MRT method has 

been widely used on large datasets to overcome the computational difficulties which the 

other existing methods (optimal interpolation, kriging, etc.) may have (Yue and Zhu 

2006). Many researchers have been applying this method to interpolate and to smooth 

data over various satellite products (Huang et al. 2002; Wang and Liang 2010; Yue and 

Zhu 2006; Zhu and Yue 2005; Zhu et al. 2010). Based on its time efficiency and 

capability of generating interpolations with minimal bias, this method is chosen to do the 

albedo data fusion from multiple satellite datasets. 

4.2 Methodology 

The theoretical basis of the MRT is to assume that data at different spatial resolutions 

are autoregressive and can be organized in the tree structure (Figure 4-1). The linear tree-

structure model can be expressed using (4-1):   

 ( )u u pa u uy A y w    (4-1) 
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where uy  is the variable to estimate at the scale u  and 
( )pa uy  is the variable at the parent 

node. uw  is the spatial stochastic process that follows a Gaussian normal distribution with 

a variance of uW . uA  is the state conversion matrix that estimates the variable at scale u  

from its parent node. There is a similar formulation that transfers the variable at scale u  

from its child node  ch u . To determine the state conversion matrix, the “change-of-

support” problem has been widely discussed in much research (Huang et al. 2002; 

Plumejeaud et al. 2011; Wikle 2003). A simple aggregation method is used in this study. 

 

Figure 4-1 MRT data structure 

Besides the state conversion model, an observation model is also used in this method 

by converting the satellite products to the “truth” data: 
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 u u u uz C y    (4-2) 

Here, uz  is the satellite product with a white noise u  that follows a normal 

distribution  0, uN  . uC  is the observation matrix that converts the variable of interest 

to the satellite data. Since both the variable and the satellite data are surface albedo, the 

observation matrix uC  is set to be one. 

The MRT algorithm consists of two-steps, the leaves-to-root filtering step and the 

root-to-leaves smoothing step. The basic assumption of the tree models is that the tree-

structure follows a Markov chain process which means that the state variable is only 

related to its instant child nodes and instant parent node(s). The first step is a high-to-low 

resolution filtering to estimate state variable from higher resolution data (Eq. (4-3)). The 

major purpose of this step is to fill in the gaps at different resolutions. In the leaves-to-

root filtering step, the Kalman filter is used here to deal with the Markov process. The 

second step is a low-to-high resolution smoothing to update the state variable with the 

information at a coarser resolution (Eq. (4-4)). This step generally assumes that the 

process at the parent scale provides the foundation of the process at current scale. After 

the Kalman-smoothing step, the datasets at different spatial scale will become smooth 

and consistent. For details of the Kalman filter derivations please refer to Huang et al. 

(2002). 

  ( ),u u u ch uEy y Z Z  (4-3) 

  ( ),u u u pa uEy y Z Z  (4-4) 
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Figure 4-2 Framework of MRT albedo data fusion from multiple satellite products 

To implement the MRT using multiple satellite products, there are generally several 

steps (Figure 4-2). First, the data uncertainties of different satellite products need to be 

evaluated and quantified. To do this, the ground measurements of surface albedo are 

collected to verify the satellite albedo products. Inter-comparison between different 

satellite datasets also provides the accuracy information. Second, there is one basic 

assumption of zero mean in the spatial process of the variable used and predicted in the 

MRT. Therefore, the spatial trend surface for each of the satellite products needs to be 

extracted so that the de-trended albedo datasets can be used in the data fusion process. 

Third, the leaves-to-root Kalman filtering and the root-to-leaves Kalman smoothing are 

implemented recursively to get the updated probability estimation of the data at each 
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scale. Finally, the updated spatial residual “albedo” is added back to the trend surface to 

get the real updated albedo maps at all the scales involved. In this study, satellite albedo 

products from MISR, MODIS, and Landsat are used to apply the MRT method.  

4.3 Characterization of the data uncertainties of different satellite products 

4.3.1 Ground measurements 

The study area is located in the middle north of the United States. The land cover 

types are mainly cropland, grassland, forest, and some water bodies. Data are collected at 

nine AmeriFlux sites in the study area. Site information is listed in Table 4-1. 

4.3.2 Landsat data 

Landsat L1T dataset is geometrically and radiometrically calibrated and projected in 

the Universal Transverse Mercator (UTM) coordinate system from the original Landsat 

data. This dataset is available on the USGS website (http://earthexplorer.usgs.gov). 

Table 4-1 AmeriFlux sites 

Site_Name State Latitude Longitude Elevation IGBP 

Landsat 

Scene 

Bondville IL 40.006 -88.290 219 CRO p023r032 

Bondville Companion Site IL 40.009 -88.290 219.3 CRO p023r032 

Brookings SD 44.345 -96.836 510 CRO p029r029 

Fermi Agricultural IL 41.859 -88.223 225 CRO p023r031 

Fermi Prairie IL 41.841 -88.241 226 CRO p023r031 

Fort Peck MT 48.308 -105.102 634 GRA p035r026 

Lost Creek WI 46.083 -89.979 480 DBF p025r028 

Willow Creek WI 45.806 -90.080 515 DBF p025r028 

nstl10 IA 41.975 -93.691 315 CRO p027r031 

CRO: cropland; GRA: grassland; DBF: deciduous broadleaf forest. 

http://earthexplorer.usgs.gov/
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To get the surface reflectance, the LEDAPS tool (Masek et al. 2006) is here used to 

do the atmospheric correction on Landsat L1T data for the year of 2005. The LEDAPS 

tool relies on 6S software (Kotchenova et al. 2006) to do the atmospheric correction 

based on some atmospheric ancillary dataset from reanalysis data. To mitigate the cloud 

contamination on the atmospheric correction, only the scenes with no more than 30% 

cloudy pixels are used in this study. 

If we assume the surface is lambertian on the Landsat 30m scale, the Landsat 

shortwave surface albedo can be calculated using the equation from Liang (2001). Eq. 

(4-5) can be applied on the band conversion for both TM on board Landsat-5 and ETM+ 

on board Landsat-7, since they have the same multispectral bands with similar spectral 

coverages (Liang 2001). 

 1 3 4 5 70.356 0.130 0.3736 0.085 0.072 0.0018short             (4-5) 

4.3.3 MODIS albedo products 

MODIS Level 3 500m albedo (MCD43A3) together with the quality flags 

(MCD43A2) are available every 8 days which is based on the observations in a period of 

16 days. The actual pixel size for this nominal “500m” Sinusoidal grid is 463.3127m. 

Shortwave broadband albedo is included in this product for both bi-hemispherical (white-

sky) and directional-hemispherical (black-sky) albedos.  In this study, the MODIS tile 

h11v04 is chosen to match with the Landsat scenes. 
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4.3.4 MISR albedo products 

MISR Level 2 albedo products with a spatial resolution of 1100m are used in this 

study. The albedo data is stored in the grid system called Space Oblique Mercator (SOM). 

MISR albedo products contain both bi-hemispherical and directional-hemispherical 

albedos for each of the spectral bands. MISR shortwave broadband albedo is converted 

from the spectral albedos using the following equation (Liang 2001): 

 2 3 40.126 0.343 0.415 0.0037short         (4-6) 

4.3.5 Inter-comparison at AmeriFlux sites 

Figure 4-3 shows the time-series of MODIS, MISR, TM, and ETM+ albedo values 

with comparison to the ground measurements at the eight AmeriFlux sites. MODIS data 

with the highest quality are shown as good and other data are shown as bad. In this 

comparison, we can see that MODIS data have the stable and smooth annual curves. 

Since MODIS algorithm tends to generate snow-free albedo and the estimations from the 

magnitude version are flagged as low quality (Lucht et al. 2000; Schaaf et al. 2002), the 

abrupt changes caused by events such as ephemeral snow cannot be seen from MODIS 

good quality data. Besides, the scale difference is significant between MODIS data and 

ground measurements. MISR data have similar values to MODIS data. However, the 

fluctuation of MISR data seems to be a little bit higher because MISR algorithm only 

relies on the observations within a very short time. Landsat data provide the best match 

with the ground measurements because of the finest spatial resolution with the 

instantaneous information. The 16-day’s repeating cycle of Landsat data provides similar 

data availability to MODIS and MISR if combining the data from TM and ETM+. Failure 
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of cloud detection on Landsat data is the major reason for the data uncertainties shown 

here. Outliers are contaminated by either clouds or cloud shadows. 

Statistics on the paired comparison of Landsat data and ground measurements are 

shown in Figure 4-4. No significant differences are found for the data uncertainties on 

TM and ETM+. The standard deviation of the relative error of Landsat data is 25.74%, 

which means that Landsat data have a relative error of about 25.74% in general. 

Then, MODIS and MISR data are reprojected into UTM projection and Landsat data 

are aggregated to match MODIS and MISR to evaluate their albedo estimation accuracies 

respectively. From the comparisons with aggregated Landsat data, MODIS albedo has a 

bias of -0.0263 with an RMSE of 0.0353, while MISR albedo has a bias of 0.0282 with 

an RMSE of 0.031. 
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Figure 4-3 Time-series comparisons of different albedo datasets at the AmeriFlux sites 
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Figure 4-3 (continued) 
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Figure 4-3 (continued) 
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 (a)  

 

(b)  

Figure 4-4 Evaluation of Landsat data using ground measurements: (a) paired comparison 

and (b) histogram  
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4.4 Results and discussion 

4.4.1 Data selection and preprocess 

To evaluate this method using three different satellite datasets, a subset of 

approximately 135 km × 135 km area is extracted from all these products in the UTM 

projection. This area is located in the Landsat scene p025r028 and shares the same land 

cover types as that in the whole MODIS tile h11v04. The uncertainties of the albedo 

products are assumed to be the same as mentioned in the last section. 

Criteria are made on the selection of data used in the experiment based on cloud 

coverage and timing of the data. Landsat surface reflectance is generated through the 

LEDAPS tool that gives both cloud flag and filling value for each of the cloud pixels 

detected. As shown in Figure 4-3, there are still some undetected cloud pixels with a lot 

of surrounding pixels covered by potential cloud shadow that the LEDAPS tool do not 

take into account.  The high cloud covered scene may have high cloud shadow coverage. 

Besides, undetected thin clouds may deteriorate the quality of atmospheric correction. To 

reduce the risk of cloud contamination, Landsat scenes with less than 30% cloud 

coverage are used in this study. MODIS and MISR albedo products tend to generate 

cloud/cloud shadow free data relying on multiple observations that suffer less from cloud 

impacts. 

The assumption that surface BRDF is invariant in 16 days is adopted in the MODIS 

albedo product. This assumption is followed in this study. In the following context, the 

DOY date refers to the 16-day time period around the specific date (e.g., DOY 184 means 
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the temporal window from DOY 177 to DOY 192). Due to the limited spatial coverage of 

each MISR swath and the cloud contamination, the MISR Level 2 albedo product often 

has many gaps for a single observation day. To reduce the impacts of missing data from 

MISR albedo, data from multiple days that are within the temporal window will be 

combined. The Landsat data close to the center of the temporal window is used. 

4.4.2 Comparison on data before and after MRT 

One of the basic assumptions in the MRT method is that the data on each scale shall 

have an expectation of zero mean in the spatial domain. However, the original albedo 

datasets cannot have a zero mean because of different land cover types, observation 

noises, and atmospheric correction accuracies. The spatial trend surface needs to be 

extracted and then removed from the original data. Research has been done finding the 

spatial trend surface using methods such as spline fitting and kriging. Using these 

methods are quite time consuming (Yue and Zhu 2006) and will limit the application in 

the operational practice. A simple method is used here by applying the median value of a 

moving window as the spatial mean. The window size is determined by the ratio of 

spatial resolutions from two satellite products with adjacent scales, e.g., MISR/MODIS 

and MODIS/Landsat. So, for Landsat data, the window size is set to be 15 and it is 3 for 

MODIS and MISR. 

The observation errors for the satellite products are assumed to be proportional to the 

magnitude of albedo while the spatial random process of each satellite product is 

estimated by the variance within the window size from the detrended data.  
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The two-step MRT algorithm is implemented on the three products. All errors of the 

three albedo maps (Figure 4-5) have been significantly reduced after the implementation 

of MRT. From the comparisons of Landsat data before and after MRT, the spatial 

variation is well preserved, while most of the cloud effects have been removed based on 

the contributions from coarser resolution data that has less cloud masking difficulties. 

Also, the MODIS albedo product is retrieved from multiple days’ observations, which 

should have the least cloud impacts. 

The estimated detrended data are then added to the trend surface to generate the 

surface albedo. A time-series comparison of albedo is made from the results generated 

using data from DOY 151 to DOY 191 (Figure 4-6). Six cases in total are included in this 

time range. To be noted, the same Landsat data may be used in two adjacent cases. Some 

adjacent two cases can share part of the MISR data while MODIS albedo is always 

different. Results showed that the gaps, especially in MISR data and Landsat ETM+ data 

have been significantly filled, based on the supporting data from the other scale(s). 

Compared to the original satellite products, the datasets after MRT become consistent 

across scales. 

According to the statistics comparison on the data before and after the data fusion 

(shown in Table 4-2), the bias between different products has been reduced and the 

values become consistent across the time. More significant improvements are: the relative 

RMSE has been reduced to almost half of its original value; and the outliers of the data 

have been removed in terms of the decrease in absolute values of maximum differences. 

These improvements indicate that the data fusion algorithm is capable of generating 
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consistent albedo products at different scales as well as reducing the risks of cloud 

contaminations and satellite system failure. 

 

Figure 4-5 Error comparisons between albedo maps before and after MRT for the three 

products on DOY 184 
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Table 4-2 Statistical comparison of different datasets before and after MRT 

Date 

MODIS vs Aggregated Landsat 

Before MRT After MRT 

Bias RMSE RMSE(%) Max Min Bias RMSE RMSE(%) Max Min 

160 -0.022 0.030 20.467 0.102 -0.132 -0.016 0.018 14.270 0.094 -0.061 

168 -0.024 0.031 20.399 0.095 -0.133 -0.015 0.017 13.814 0.095 -0.059 

176 -0.027 0.033 22.170 0.105 -0.179 -0.011 0.014 11.260 0.100 -0.055 

184 -0.020 0.030 21.572 0.116 -0.179 -0.011 0.014 11.254 0.100 -0.055 

192 -0.027 0.036 23.023 0.111 -0.467 -0.007 0.011 10.310 0.110 -0.055 

232 -0.005 0.023 19.720 0.112 -0.213 -0.007 0.011 11.953 0.095 -0.060 

240 -0.007 0.023 18.985 0.110 -0.215 -0.007 0.011 11.950 0.095 -0.060 

248 -0.010 0.025 18.957 0.111 -0.756 -0.008 0.011 10.762 0.093 -0.053 

256 0.004 0.017 18.144 0.110 -0.108 -0.008 0.011 11.356 0.083 -0.057 

264 0.003 0.016 17.442 0.106 -0.102 -0.008 0.011 11.193 0.083 -0.060 

Date 

MISR vs Aggregated MODIS 

Before MRT After MRT 

Bias RMSE RMSE(%) Max Min Bias RMSE RMSE(%) Max Min 

160 0.023 0.027 20.886 0.094 -0.057 0.025 0.027 22.699 0.060 -0.004 

168 0.029 0.032 27.494 0.110 -0.071 0.024 0.025 21.392 0.062 -0.012 

176 0.032 0.035 29.152 0.111 -0.071 0.020 0.021 16.020 0.069 -0.013 

184 0.026 0.029 21.887 0.100 -0.077 0.019 0.020 14.901 0.052 -0.013 

192 0.028 0.031 23.978 0.110 -0.074 0.014 0.015 9.821 0.053 -0.015 

232 0.014 0.034 33.842 0.068 -0.066 0.011 0.018 22.800 0.058 -0.001 

240 0.029 0.035 29.281 0.126 -0.091 0.010 0.012 9.822 0.058 -0.011 

248 0.027 0.032 27.509 0.133 -0.094 0.011 0.012 10.445 0.049 -0.011 

256 0.021 0.024 20.462 0.114 -0.085 0.011 0.011 10.639 0.046 -0.010 

264 0.020 0.024 20.899 0.123 -0.089 0.011 0.011 10.518 0.050 -0.010 

RMSE(%): relative RMSE in percentage; Max: maximum value for the difference; Min: 

minimum value for the difference. 

4.4.3 Summary and conclusions 

Land surface albedo is an essential geophysical variable controlling the surface 

radiation budget. However, the current satellite albedo products cannot fully satisfy the 

accuracy requirements of the climate modeling studies. Errors of satellite albedo products 

may come from issues such as sensor calibration, temporal/angular composition, and 

cloud contamination. To reduce the uncertainty of the albedo products, it is important to 
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take advantage of different albedo datasets. This study proposes a novel approach to 

combine albedo datasets together. 

A data fusion method using MRT is proposed to improve current satellite albedo 

products from multiple datasets. The purpose of using this data fusion method is to 

generate a set of temporally and spatially complete, continuous, and consistent albedo 

products across different scales. The MRT algorithm is proven to be capable of 

generating consistent albedo products across scales while reducing the uncertainties. This 

is the first time of data-fusing more than two albedo datasets at different spatial scales.  

The proposed method works well to reduce the difference between albedo products at 

different spatial resolutions. Since the MRT method is very time efficient and the 

methodology presented here is applicable to other satellite albedo data and scalable to 

other areas, it can be used to generate some global albedo datasets at different spatial 

scales to better serve the albedo retrieving algorithms and the land surface modeling 

purposes.  

The proposed approach requires the uncertainty estimations of existing satellite 

albedo products. Simplifications are made on the land surfaces by assuming that the land 

cover types are the same within the study area and the albedo uncertainty is proportional 

to the magnitude regardless of the surface type. In order to extend this approach to other 

areas with different land cover types (snow and urban areas, etc.), more efforts are 

needed to evaluate the products’ accuracies.  
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CHAPTER 5 CONCLUSIONS 

Land surface albedo products are of great importance in climate change and land 

surface modeling studies. Surface albedo varies spatially and evolves seasonally based on 

solar illumination changes, vegetation growth, and human activities such as 

cutting/planting forests and slash-and-burn agricultural practices. To detect the rapid 

surface changes, it requires accurate and consistent satellite albedo products with high 

spatial and temporal resolutions. However, most of current satellite albedo products 

suffer from several common problems, such as 1) the compositing time period is too long 

for monitoring abrupt changes on Earth surfaces; and 2) the “dark object” atmospheric 

correction algorithm is not suitable for non-vegetated surfaces. Moreover, data gaps and 

inconsistency are found among those products. As a result, current satellite albedo 

products cannot satisfy the needs of climate studies. This dissertation proposes two major 

methods to improve the current albedo products. 

5.1 Major findings 

In this dissertation, I designed a unified algorithm to estimate surface albedo by using 

the atmospheric radiative transfer with surface BRDF modeling. This unified algorithm is 

capable of simulating the interactions between atmosphere and non-Lambertian surfaces 

by accounting for the surface anisotropy. The proposed algorithm combines information 

of satellite observations and albedo prior knowledge. Thus, a much smaller temporal 

composition window is needed to estimate both surface albedo and instantaneous AOD. 

The reduced composition window size provides better capability of monitoring abrupt 

changes in surface albedo. 
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Following the same general retrieving procedure, surface albedo has been generated 

from different satellite datasets – MODIS and SEVIRI, respectively. Extensive validation 

over different land surfaces with various data sources are used to evaluate the 

performance of the proposed algorithm. Generally, the algorithm performs well on 

simultaneous estimations of surface albedo and AOD. For the retrievals from MODIS 

observations, validations of surface albedo are made over vegetated sites (SURFRAD) 

and snow-covered sites (GC-Net). The absolute bias is around 0.012 for snow-covered 

areas and around 0.002 for non-snow surfaces, while the RMSE is 0.0654 for snow-

covered sites (less than 8% of the magnitude) and 0.0268 for non-snow sites. The 

directional surface reflectance by-product together with the AOD estimations have also 

been validated at AERONET sites to help verify the atmospheric correction accuracy in 

the proposed algorithm. The reflectance estimations for all the seven MODIS bands have 

a bias of less than 0.015 and the AOD retrievals have similar accuracy with MODIS 

products, which means the atmospheric correction is accurate in this algorithm. 

With the success of application to MODIS data, this algorithm is revised and applied 

to SEVIRI data. Diurnal change and day-to-day change in surface albedo can be well 

captured from SEVIRI observations, whereas the 16-day MODIS products can only have 

an updated value every eight days. The evaluation of diurnal albedo estimation shows 

that the albedo retrievals have larger error with larger solar zenith angle, mainly because 

of failure of surface BRDF models. However, as the downward shortwave solar radiation 

decreases with solar zenith angle, the instantaneous estimation of surface shortwave 

energy budget turns out to have similar accuracy for both large and small solar zenith 

angles. The scene comparison between the retrieved values from this study and the 
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MODIS products shows that the proposed algorithm can generate albedo with good 

accuracy (bias: 0.0112; RMSE: 0.0318). The AOD retrievals at 550 nm from this study 

are compared to the MISR observations. The result shows a small bias of -0.012 with the 

RMSE of 0.083 for all the seven IMECC sites together.  

The overall accuracy of albedo estimations from MODIS and SEVIRI can satisfy the 

accuracy requirements for the climate change studies and for the application of future 

GOES-R/ABI surface albedo algorithm (Liang et al. 2011).  

A data fusion method MRT is used to improve current satellite albedo products from 

multiple datasets. The purpose of using this data fusion method is to generate a set of 

temporally and spatially complete, continuous, and consistent albedo products across 

different scales. The MRT algorithm is proven to be capable of generating consistent 

albedo products across scales. At the same time, it can reduce the uncertainties by using 

the information across different spatial resolutions.  

5.2 Major contributions 

This dissertation provides a new framework of estimating land surface albedo from 

satellite data. This framework provides a direction of how to generate accurate land 

surface albedo estimations at a finer temporal resolution for the future satellite 

applications. First, the approach was designed to estimate surface and atmospheric 

properties simultaneously using both satellite observations and prior knowledge of 

surface albedo. Second, the proposed approach was applied to both polar-orbiting and 
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geostationary satellite data. In the end, a method was proposed to improve the prior 

knowledge of surface albedo from multiple satellite products. 

This is the first study of algorithm development for simultaneous estimations of 

surface albedo and instantaneous AOD by using the atmospheric radiative transfer with 

surface BRDF modeling for both polar-orbiting and geostationary satellite data. Existing 

methods usually follow a three-step procedure: atmospheric correction, surface BRDF 

model fitting, and broadband albedo conversion from spectral BRDF. To avoid error 

propagation at each step, the proposed algorithm in this dissertation estimates surface 

albedo and AOD directly from satellite observations. More importantly, the proposed 

approach provides the albedo estimations with much finer temporal resolution than the 

current satellite products, which benefits the climate change and terrestrial ecological 

monitoring communities with improved understanding of ephemeral snow events and 

vegetation growth, etc. 

Extensive validations made from the comparison between the retrievals of albedo and 

AOD in this study and other data sources have shown that the accuracy of albedo 

estimations from MODIS and SEVIRI can satisfy the requirements for climate and 

meteorology studies and applications. Polar-orbiting satellites can provide good spatial 

resolution over high latitude regions while geostationary satellites can provide good 

temporal resolution for other regions. One of the main contributions is that this 

dissertation provides a unified algorithm to produce consistent albedo and AOD 

estimations from both kinds of satellites platforms (He et al. 2012a; He et al. 2012c). In 

addition, this algorithm has been slightly revised and applied as the prototype of future 
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GOES-R/ABI land surface albedo estimation algorithm (He et al. 2011; Liang et al. 

2011). Given the very fine temporal resolution of geostationary satellites, the accurate 

diurnal albedo estimations from the proposed algorithm in this dissertation provides good 

understanding of diurnal energy budget estimations, which will contribute much to the 

climate change studies by demonstrating the surface albedo feedback to global warming. 

Another major contribution of this dissertation is designing a framework using MRT 

to integrate multiple satellite albedo products at different spatial scales to build the 

spatially and temporally continuous albedo maps (He et al. 2012b). This is the first time 

of data fusing multiple albedo datasets to generate consistent albedo products across 

different spatial scales to generate. Uncertainties of albedo maps have been reduced 

significantly after the data fusion. 

Current satellite albedo products have been evaluated extensively using various data 

sources. It has been found that those satellite albedo dataset cannot always meet the 

accuracy requirements for the applications on land surface modeling, weather forecasting, 

and terrestrial monitoring studies, etc. The innovative approaches proposed in this 

dissertation helps improve surface albedo estimations in terms of reducing data gaps and 

uncertainties, increasing temporal resolutions, and providing diurnal albedo changes. All 

these improvements can eventually help improve the predicting capabilities of global and 

regional models for climate change studies.  
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5.3 Suggestions for future study 

This dissertation is a preliminary study in estimating surface albedo using information 

from both satellite observations and albedo climatology. Simplifications are made on the 

mathematical formula by assuming the unknown variables are independent to each other. 

However, there may be some correlation between different variables (e.g., autocorrelation 

in the aerosol information observed from geostationary satellites). Covariance of different 

variables in the retrieving algorithms needs to be exploited in the future to improve the 

accuracy of albedo and AOD estimations.  

Some of the intrinsic aerosol properties (e.g., aerosol type and Angström exponent) 

are assumed to be invariant within the current retrieving procedure. Inclusion of global 

aerosol climatology and aerosol type selection methods is needed to improve the aerosol 

estimations. 

Since the kernel models used in this dissertation are designed for vegetated land 

covers, snow BRDF models (e.g., Aoki et al. 2000; Hudson et al. 2006) and prior 

information (e.g., Wu et al. 2012) need to be incorporated into the proposed algorithm to 

account for the snow surface anisotropy signatures that intend to forward scatter the 

sunlight. Improvements on snow albedo estimation could be expected. 

Multi-year MODIS albedo products are used as the prior information in current 

retrieving algorithm. Only relying on MODIS products to derive the albedo priori has two 

problems: first, the albedo priori has systematic bias; second, the prior information 

correlates with MODIS observations. Since the data fusion on albedo products provides 



104 
 

promising and unbiased albedo maps, the results from data fusion can be used as the prior 

information in the retrieving procedure. 

In addition, since the MRT method is very time efficient and the methodology 

presented here is applicable to other satellite albedo data and scalable to other areas, it 

can be used to generate some global albedo datasets at different spatial scales to better 

serve the albedo retrieving algorithms and the land surface modeling purposes. 
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