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Abstract

Title of Dissertation: DESIGN AND PERFORMANCE OF TRELLIS
CODES FOR WIRELESS CHANNELS

Saud Ahmed Al-Semari, Doctor of Philosophy, 1995

Dissertation directed by: Associate Professor Thomas E. Fuja
Department of Electrical Engineering

Signal fading is one of the primary sources of performance degradation in
mobile radio (wireless) systems. This dissertation addresses three different tech-
niques to improve the performance of communication systems over fading chan-
nels, namely trellis coded modulation (TCM), space diversity and sequence max-
imum a posteriori decoding (MAP).

In the first part, TCM schemes that provide high coding gains over the flat,
slowl Rayleigh distributed fading channel are presented. It is shown that the use
of two encoders in parallel — used to specify the in-phase and quadrature compo-
nents of the transmitted signal — results in large performance improvements in
bit error rates when compared with conventional TCM schemes in which a single
encoder is used. Using this approach — which we label “I-Q TCM” — codes with
bandwidth efficiencies of 1,2, and 3 bits/sec/Hz are described for various con-
straint lengths. The performance of these codes is evaluated using tight upper
bounds and simulation.

In the second part, the use of space diversity with three different combining

schemes is investigated. Expressions for the cutoff rate parameter are shown



for the three combining schemes over the fully interleaved Rayleigh-distributed
flat fading channel. Also, tight upper bounds on the pairwise error probability
are derived for the three combining schemes. Examples of I-QQ TCM schemes
with diversity combining are shown. The cutoff rate and a tight upper bound
on the pairwise error probability are also derived for maximal ratio combining
with correlated branches.

In the last part the problem of reliably transmitting trellis coded signals over
very noisy channels is considered. Sequence maximum a posteriori (MAP) de-
coding of correlated signals transmitted over very noisy AWGN and Rayleigh
channels is presented. A variety of different systems with different sources, mod-
ulation schemes, encoder rates and complexities were simulated. Sequence MAP
decoding proves to substantially improve the performance at very noisy chan-
nel conditions especially for systems with moderate redundancies and encoder
rates. A practical example for coding the CELP line spectral parameters (LSP’s)
is also considered. Two source models are used. Coding gains as much as 4 dB

are achieved.
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Chapter 1

Introduction

In recent years there has been a growing demand for wireless communications
services. This has resulted in a renewed interest in providing reliable voice
and data transmission over wireless channels. Signals transmitted over wireless
communication channels experience fading, imposing extreme variations on the
envelope of the transmitted signal. As a result, a substantial degradation of the
system error rate performance occurs.

Our emphasis in this thesis is on designing combined coding/modulation
methods to improve the performance of wireless systems. Detailed descriptions
of the technical issues will be carefully examined in the thesis chapters, where
different methods to improve the reliability of transmission are proposed, evalu-

ated, and compared to currently used ones.

1.1 Typical System Model

Figure 1.1 shows a block diagram (in discrete time notation) of a typical digital

communication system operating over a frequency non-selective fading chan-



nel. The source encoder is used to reduce the redundancy of the signal, while
the channel encoder introduces controlled redundancy to combat channel errors.
Suppose at time instant i, z; is transmitted and y; is received; two kinds of
distortions are imposed on the transmitted signal (multiplicative and additive).

This is illustrated as follows
Yo =0i Ty + 1y (1.1)

where a; is the fading amplitude and n, is the two-dimensional additive white
Gaussian noise with one-sided power spectral density N,. The fading process
has memory; i.e., the fading amplitudes a;’s are correlated, resulting in burst
errors. Most channel coding schemes are designed for channels with random
(non-bursty) errors. Hence, interleaving/deinterleaving is used. It can be viewed
as a zero redundancy code that randomizes the distribution of errors.

The use of interleaving destroys the channel memory. However, a channel
with memory has a larger capacity than the corresponding memoryless chan-
nel with the same marginal distribution. Hence, interleaving may be used in
conjunction with a scheme for extracting the channel state information (CSI) -
i.e., the attenuation of the fade - to recover some of the channel capacity lost
due to interleaving. Moreover, with the availability of CSI, coherent detection is
superior to non-coherent detection [1].

Different schemes for obtaining channel state information are available. The
use of pilot tone techniques provides the receiver with an explicit amplitude
and phase reference for detection. One of the best solutions among pilot tone
techniques is the transparent tone-in-band technique[2]. Recently, an alternative
method, called pilot symbol assisted modulation (PSAM), has been proposed

[3, 4, 5]. With PSAM, the transmitter periodically inserts known symbols. It
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Source
Source | Channel - R
Encoder " Encoder *| Modulator > Interleaver
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y.
_ i
<« Source |, Channel |, Demod | Deinter-
Decoder Decoder leaver

Figure 1.1: A basic block diagram of a digital communication system.

can be used with multilevel modulation. Also, it does not need any change in the
pulse shape or the peak to average power ratios. Recently, a new algorithm to
extract accurate estimates of the fade’s amplitude and phase was proposed [6].
It combines decision-feedback and adaptive linear prediction (DFALP). It has
also been shown that coherent systems with the DFALP algorithm outperform
differentially coherent systems.

The channel encoder introduces diversity to the system. Diversity represents
a way of classifying redundancy, and it is an effective method for reducing the
error probability on fading channels [1, 7]. One of its simplest forms is time

Lth

diversity. order time diversity can be achieved by sending a symbol in L

time slots where these slots are ideally affected by independent fading. This



method of retransmission L times can be viewed as a repetition code with a
minimum Hamming distance of L. Therefore, well known block or convolutional
codes with large minimum Hamming distances may be expected to yield large
improvements over uncoded systems. However, this approach may result in
bandwidth expansion. Such expansion can not be tolerated in bandwidth limited
environments. Increased frequency efliciency can be obtained using higher-order
modulations; however, a larger signal power is needed to maintain the same error
probability. The use of coded modulation provides a solution to the bandwidth

expansion problem.

1.2 Coded Modulation

Traditional channel coding schemes are designed independently from the modula-
tor. In 1974, Massey [8] suggested the joint design of the modulator and encoder.
Then, the notion of multilevel codes was introduced by Imai and Hirakawa in
1977 [9]. Ungerboeck [10], however, stimulated most of the research in the area
of bandwidth efficient coding with his introduction of trellis coded modulation
(TCM). TCM schemes are constructed from a convolutional code in conjunction
with an expanded signal set. Decoding is done according to Euclidean distance
rather than Hamming distance. This approach - called soft decision decoding -
leads naturally to the use of convolutional codes with Viterbi decoding. Soft de-
cision decoding has proven to substantially improve error performance, especially
when fading exists [11].

There are two approaches to constructing coded modulation schemes. The

first is known as trellis coded modulation (TCM) and was introduced by Unger-



boeck. It is concerned with the appropriate mapping of a convolutional (trellis)
code onto an expanded signal constellation. A simple trellis coded modulation
scheme is shown in Figure 1.2. One information bit enters a rate 1/2 encoder,
and the two output bits together with an uncoded bit are mapped to a signal
point from the 8-PSK signal constellation. Another scheme is shown where two
input bits are uncoded and four bits are mapped to a signal point in the 16-QAM

signal constellation.

X X X X
__________________________________ N X X X X
X X X X
D D .| Signal
Mapper X X X X
> +
> 16-QAM
)L
X X
A A
X X
)L
8-PSK

Figure 1.2: A simple TCM scheme for encoding two or three bits per baud.

Generally, to transmit n bits per signal with no redundancy, a signal constel-
lation of cardinality 2" is required. For the AWGN non-fading channel, Unger-
boeck showed that most of the coding gain can be achieved by doubling the signal

constellation size; i.e., if a signal constellation of size 2"*! is used with appropri-



ate coding to transmit n bits per signal, large coding gains can be achieved. For
AWGN channels, the code design goal is to maximize the minimum squared Eu-
clidean distance between all code sequences. Ungerboeck achieved this through
the use of “set partitioning”, where the constellation is successively partitioned
into subsets with increasing intra-subset minimum Euclidean distances. Parti-
tioning is done k + 1 times (k < n). At time instant 4, k bits enter a rate %5
convolutional encoder and k + 1 bits are produced where they select one of 2¢+1
possible subsets in the (k + 1)-level partition while the (n — k) uncoded bits are
used to select one of the 2" * signals in the selected subset.

As a result of the advantages offered by TCM, a huge amount of literature
has appeared on the subject. Many researchers have tried to develop a mathe-
matical framework of the theory of TCM. Calderbank and Mazo [12] gave a new
analytical description of TCM schemes, combining the coding and mapping into
one step. Zehavi and Wolf [13] gave conditions on the regularity of trellis codes
and provided a modified generating function approach to give an upper bound
on the error probability. Biglieri and Mclane [14] also described the uniform
error properties of trellis codes.

It is clear that, as the dimensionality of the signal set increases, performance
improvements are achieved. This is basically because more space is obtained
to accommodate the signals and hence the distance between signals can be in-
creased. Ungerboeck’s codes were restricted to two-dimensional signal points.
This motivated researchers to extend the TCM schemes to multi-dimensional
constellations. Wilson [15], Calderbank and Sloane [16, 17], and Wei [18] have

presented TCM codes with multi-dimensional constellations. Wei [18] described

a simple decoding scheme that considerably simplifies the decoder. Calderbank



and Sloane [19] and Forney [20] applied lattice theory to TCM systems. They
described the signal constellation as a finite set of points taken from an infinite
lattice, and the partitioning of the constellation into subsets corresponds to the
partitioning of the lattice into a sub-lattice and its cosets. A recent article [21]
gives a good description of the performance evaluation methods of trellis coded
modulation schemes.

The second approach to coded modulation, multilevel coding, was initially
started by the work of Imai and Hirakawa [9]. The basic idea is to partition the
signal constellation €y and produce a partition chain Qq/Q,/Qy/ .../ where
(2; is a refined version of €2;_;; i.e., it contains more subsets than the previous
partition. This partition chain is used with an L-level code C = (C,Cs, ..., Cy),
where each component code C; is applied at level 4 of the partition chain. This
means that the component code C; performs the coding upon the subsets that
constitute the partition €2;.

Tanner [22] has related the minimum squared Euclidean distance of the
overall multilevel code to the minimum Hamming distances of the component
codes and the intra-subset minimum squared Euclidean distances of the sub-
constellations in the partition. The minimum squared Euclidean distance of the

multilevel code d?(C) can be bounded as
dg(C) Z min(DHldg, DHz(S%, e DHL(S%_;U (5%) (12)

where Dpg; is the minimum Hamming distance of the component code Cj;, and
62 is the intra-subset minimum squared Euclidean distance at level i; i.e., it
is the minimum squared Euclidean distance between any pair of signals in the

same subset of ;. The §?’s are independent of the code and depend only on

the partition chain of the signal constellation. In most of the cases, the relation



83 < 62 < ... < 62 is preserved.
Moreover, the minimum free Hamming distance Dy of the overall code is

related to the minimum Hamming distances of the component codes as follows
DH =min(DH1,DH2,...,DHL). (13)

More results on the design and performance of multilevel code can be found in
[23, 24, 25, 26, 27]. A good overview for coded-modulation techniques for the
Rayleigh fading channel can be found in [28].

Multistage decoding is a simple iterative decoding technique for multilevel
codes that gives performance comparable to full maximum likelihood decoding
in AWGN channels. However, it suffers from two problems: error propagation
and error multiplicity. Moreover, significant decoding delay is required to effect
near-optimal performance.

Often, communication over wireless channels involves the real time transmis-
sion of voice and images, requiring minimal decoding delay. Since the decoding
of trellis coded modulation schemes requires less decoding delay than multilevel
coding techniques, only trellis coded modulation schemes are considered in this

thesis.

1.3 Thesis Organization

To increase the reliability of digital transmission over the Rayleigh distributed
channel, the use of different techniques such as channel coding, space diversity
and maximum a posteriori (MAP) decoding are proposed. The thesis is orga-
nized as follows. Chapter 2 gives a brief summary of fading channel models;

diversity reception channel models are also described. Moreover, fading models



with space and time correlations are presented. Then, the error performance
and coding gains limits for the Rayleigh channel are discussed.

The design and structure of channel codes depends primarily on the channel
on which they will be used. Therefore, a trellis coding technique for the flat,
slow Rayleigh fading channel is presented in Chapter 3. We call this approach
in-phase-quadrature trellis coded modulation (I-Q TCM). I-Q TCM schemes
have the advantage of higher minimum time diversities than conventional trel-
lis coding schemes. I-Q TCM schemes for different bandwidth efficiencies (1,2
and 3 bit/sec/Hz) and encoder complexities are presented, analyzed (through
simulations and tight upper bounds), and compared to conventionally designed
schemes. I-QQ TCM schemes are shown to have the highest coding gains and are
the closest to the practical limits drawn from cutoff rate expressions.

Chapter 4 presents the effects of space diversity (i.e., multiple receiver anten-
nas) on trellis coded modulation. The practical limits of channel coding gains
are presented. Cutoff rate expressions for diversity reception with different com-
bining schemes are derived and compared. The effect of increasing the diversity
order is also shown. Cutoff rate expressions with correlated diversity branches
and maximal ratio combining are derived to investigate the effect of space cor-
relation on coding gains.

Tight upper bounds on the pairwise error probability for diversity reception
assuming different combining schemes are derived. The bounds can be used to
evaluate the error performance of both uncoded and coded systems. These upper
bounds are expressed in product forms so that transfer function methods can be
used to analyze the error performance of trellis codes. A comparison between

I-Q TCM schemes and conventional TCM schemes in double diversity reception



1s presented to demonstrate the superiority of I-Q TCM schemes even in double
diversity reception.

In Chapter 5, a parametric study is presented to demonstrate the usefulness
of MAP decoding of trellis codes. Different system configurations, with different
sources and codes, are used. It is shown that MAP decoding results in significant
gains, compared to ML decoding, in very noisy channel conditions. Also, the
effect of the signal constellation size, encoder complexity, and channel type on
the MAP decoding gains are presented. A practical example of coding the line
spectral parameters (LSP’s) of code excited linear predictive (CELP) encoded
speech is also shown. Coding of the LSP’s is performed using 4-dimensional trellis

codes with QPSK modulation. Significant MAP decoding gains are obtained.

10




Chapter 2

Channel Models

In order to design reliable and spectrally efficient wireless communication sys-
tems, accurate characterization of such communication channels is required. In
this chapter we will characterize different channel types. Since additive thermal
noise is always present in communication systems, we first define the additive
white Gaussian noise channel. Then, different fading channels are described
using statistical models. The choice of a model depends on the transmission
medium (satellite, land mobile radio, etc.). Moreover, diversity models in which
two or more channel paths are used to carry the transmitted signal are also
considered. Finally, we conclude with discussions on the error performance and

cutoff rate for Rayleigh distributed channels.

2.1 The Additive Noise Channel

The additive noise channel is used to model thermal and other natural noise.
It is often referred to as white noise since it affects all frequency bands equally.

The amplitude of the noise is distributed according to a zero-mean Gaussian

11



distribution. Hence, it is commonly referred to as additive white Gaussian

noise (AWGN). We consider the AWGN effect in conjunction with fading.

2.2 The Fading Channel

In typical mobile radio systems, radio signals experience extreme variations in
both amplitude and phase. Such variation is a consequence of reflections, diffrac-
tions and scattering of the transmitted signal. This phenomenon is called fading.

Fading has both “long-term” and “short-term” effects on the channel [7].
Long-term fading affects the availability of the channel. It has a slow-varying
mean that varies approximately according to a log-normal distribution. Hence,
it is known as log-normal or power fading. Short-term fading, on the other
hand, is the one that affects the details of the received waveform. It is known as
multipath fading. We only consider short-term fading in this thesis and simply
call it fading. It can be best described through a linear time-varying impulse
response. In the following, baseband rather than bandpass notation is used since

it significantly simplifies the analysis.

2.2.1 The Linear Time-Varying Model

Short-term fading is usually modeled as a time-varying linear filter [7] with
a low-pass impulse response h(7;t), where 7 represents the propagation delay
and t represents time. With the slow variation of the channel and considering
the short-term fading effect, it can be assumed that the process is wide-sense

stationary (WSS) [7]. Hence, we can define the autocorrelation function of the

12



impulse response of the channel as
1
Ry (1,05 At) = EE[h(Tl; t)h* (o5t + At)]. (2.1)

In most fading environments, the attenuation and phase shift of the channel
associated with one path delay 7 is uncorrelated with that of another path delay
To. This is usually referred to as wide sense stationary uncorrelated scattering
(WSSUS). This assumption can simplify the previous definition of Ry (1, To; At)

to

Ry (11, 705 At) = Ry(11; At)d (11 — 72) (2.2)

where, Ry(7; At) = 1E[h(r; t)h*(;t + At)] An important quantity is the value
of Ry (1, At) at At = 0; i.e., Ry(7;0). It is referred to as the multipath profile
(or delay power spectrum), and it represents the average output power of the
channel at a relative path delay of 7. The range of values of 7 over which Ry,(7;0)
is essentially non-zero is called the multipath spread of the channel and is
denoted by T,,. In other words, ﬁ gives the maximum frequency separation
for which the received signals are still correlated. If the symbol period T does
not satisfy T' % T,,, then adjacent symbols are correlated and this gives rise to
intersymbol interference and the channel is said to be frequency selective. In
narrow band systems where the symbol period is usually much larger than 7,
(1T <« 1/T,,), the channel is frequency non-selective and is usually referred to
as a flat fading channel.

Another important function, denoted by Ry (Af; At), is called the spaced-

tone autocorrelation function [7]. It is defined as

+o0 o0 , .
Ryu(fi, fo; At) = / / Ry (71, 795 At)E_JQWflTI6‘727rf272d7'1d7'2. (2.3)
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Using the assumption of uncorrelated scattering (Eqn. 2.2), it is easy to show
that
Ru(f1, f2; At) = Ru(Af; At) (2.4)

where Af = f; — f. The importance of Ry(Af;At) is evident in its value
at At = 0; i.e., Ry(Af;0), which is the Fourier transform of the multi-path
profile Ry(7;0). The spaced-tone autocorrelation function describes the selec-
tivity of the channel. The coherence bandwidth, denoted by (Af)., is defined
where Ry (Af;0) is nearly constant over (Af).. From the Fourier transform re-
lationship between the multipath profile and the spaced-tone autocorrelation

function, the multipath spread and the coherence bandwidth can be related by

(Af)e = 7

Considering the At-dependence of Ry (7; At), the scattering function, de-
noted by Sp(7;2), is defined as the Fourier transform of Ry (7; At) with respect
to At; i.e.,

Sp(: Q) = / " Ra(r; At)el2m80 g A) (2.5)

— 00
where €2 denotes the frequency variable (Doppler frequency). Similarly, the

Fourier transform of Ry (Af; At) with respect to At is defined as

Su(Af; Q) = / ‘: Ru(Af; At)e2m080 (A, (2.6)

From the uncorrelated scattering assumption, it is easy to see that Si(7;£2)
and Sy (Af; Q) form a Fourier transform pair. The importance of the scattering
function is that it describes the dynamic changes of the channel characteristics.

This is obvious in the Doppler power spectrum value, V(Q), defined as

V(Q) = / Su(r, Q)dr (2.7)
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and it indicates how much the spectrum is spread if a pure sine wave is transmit-
ted. The nominal width of V(Q2), denoted by fp, is referred to as the Doppler
spread. In other words, le gives the time span over which the received symbol
can be detected coherently. The Doppler spread indicates how fast the channel
is. Typical values of fp range between 20-100 Hz.

Another important quantity, denoted by (At)., is the coherence time. It is
defined as the time span At over which Rg(0; At) remains nearly constant. From
the Fourier transform relation, it can be deduced that (At), ~ le

Based on the previous definitions, four classes of fading channels can be

identified based on the transmitted symbol duration 7T :
1. Slow, frequency non-selective fading : T, < T < (At)..
2. Slow, frequency selective fading : T,, € T and T < (At)..
3. Fast, frequency non-selective : T,, < T and T & (At)..
4. Fast, frequency selective fading : T,,, € T but T < (At)..

The spread factor (L) is defined to be the product of the multipath spread
and Doppler spread; i.e., L = T,, fp. In most fading channels, L < 1 and the

channel is said to be underspread.

2.2.2 Statistical Models

Different statistical models are used to describe fading channels. The choice of
a model depends on the nature of the transmission media. The most commonly

used models are described below
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e The Rayleigh Model
Because of the multipath nature of the propagation media, the received
signal is composed of a sum of transmitted signals each with different am-
plitude and phase. If there is only a diffuse collection of multipath signals
— l.e., there is no significant “line-of-sight” path — we can conclude from
the central limit theorem that the in-phase and quadrature multiplicative
fades are independent Gaussian random processes with zero mean and a
variance of o2. This means that the multiplicative envelope of the signal

is Rayleigh distributed with the following pdf :
f@)=%exp(—£2), a>0. (2.8)

The phase will have a uniform distribution on [0, 27| but since the fading

is slow, phase tracking by the synchronization circuit is usually assumed.

Rayleigh distributed fading channels represent “the worst case” of the Ri-
cian family of distributions (see below) used to characterize the channel
behavior of land mobile radio (LMR) systems [1, 7, 11, 28]. If the coher-
ence bandwidth is much greater than the signal bandwidth, the channel
is considered as a frequency non-selective. This means that the channel
imposes a multiplicative distortion on the signal. An important example

of this channel is that of the narrow-band cellular mobile radio.

e The Rician Model
In the Rician fading model, a line-of-sight (LOS) is assumed to exist be-
tween the transmitter and the receiver. Also, additional diffuse paths re-
sulting from multipath reflections exist. Such a situation occurs most in

mobile satellite communications. The multiplicative envelope of the signal
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is accordingly Rician distributed with the following pdf :

f(a) = 2a(1 + K) exp —(K + a®(1 + K))I,(2ay/K(K +1)), a>0
(2.9)
where I(z) = Y22, (;—2,)2 is the zero-order modified Bessel function of

the first kind and K is the Rician parameter defined as ratio of the energy

of the direct component to the energy of the diffuse components.

Nakagami Model

Another fading model is the one introduced by Nakagami [29]. It was
empirically derived by fitting envelope statistics around the mean or me-
dian rather than near the zero region. The envelope in Nakagami fading

is distributed according to

10) = g () Ve (2.10)

where I'(z) = [;°y* e Vdy(z > 0) is the Gamma function, m is the

Nakagami parameter (m > 0.5) and Q,, = E[a?).

The Rayleigh distribution is a special case of the Nakagami model when
m = 1. When m = 1/2 the Nakagami model reduces to the Gaussian dis-
tribution, and when m — oo the channel becomes non-fading. Moreover,
there is a close fit between the Rician and Nakagami distributions where

K and m are related by

K=-—Ym-_m_ .1, (2.11)

m—vm2—m

This fit is accurate for small values of Es/N,. However, at large values the

difference between the models becomes large [30].
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2.2.3 The Diversity Model

Diversity combining is a well-known and effective method for improving the per-
formance of digital communication systems over fading channels [1, 7, 31]. The
basic principle of M-fold diversity is to use M independent channels so that the
probability of a “deep fade” on all channels is low. (These independent channels
can be created in a number of ways, including separation in frequency, time,
and/or polarization; if multiple antennas are used to receive multiple indepen-
dent versions of the received signal, the approach is called spatial diversity.) A
combining circuit is used to form a single resultant signal from the M different
“branch” signals.

A diversity reception system can be described as follows. Suppose the com-

plex signal z; is transmitted at time 3. At the receiver, M corresponding signals

Y, = Wil Yo2s - -+, Yim ) exist ~ e,

Yil = Q1%+ Ny
Yiz = G;2%;+ N2

(2.12)
YiM = QG MT,+ N M.

Here, a; = {a,1,ai2,...,a;p} are the fading amplitudes (typically Rayleigh or
Rician) and n; = {n;1,ni9,...,n;m} are the two-dimensional additive white
Gaussian noise samples with one-sided power spectral density N,. We will focus
our interest on the performance of diversity systems employing trellis coded

modulation assuming a variety of different signal combining methods.
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2.3 Correlation Models

In this section we discuss two types of correlation that are of concern when
dealing with fading channels. Since fading has memory, adjacent signal symbols
are affected by correlated fade amplitudes. The correlation function depends on
the transmission media and the receiver. Moreover, when space diversity is used
at the receivers, it may be difficult to separate the antennas sufficiently far apart
so that their received signals are uncorrelated. In the following we discuss these

two types of correlation.

2.3.1 Time Correlation

In time correlated fading, the successive fade amplitudes (a;’s) are correlated.
In land mobile radio, assuming an omnidirectional antenna at the mobile and
that the received plane waves are uniformly distributed in arrival angle, the

autocorrelation function Ry (0; At) can be represented as [31, 32]

RH(O, At) = J0(27TfDAt) (213)
where Jo(z) = To2o(—1)"(55)? is the zero-order Bessel function of the first

kind, and fp is maximum Doppler frequency and is given by

fo= %fc (2.14)

where v is the mobile unit speed, f. is the carrier frequency and c is the speed
of light. Figure 2.1 shows a plot of the autocorrelation function. It can be seen

that the correlation decay is very slow and that it goes negative.
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Figure 2.1: The autocorrelation function .

The Doppler power spectrum can be written as as

V(f) = W if || < |fpl (2.15)

0 otherwise.
This fading model can be simulated by generating first two sequences of i.i.d.
Gaussian random variables, passing each sequence through a low pass filter with
a spectrum specified by Eqn. 2.15. The Rayleigh fade will be the envelope of
the two Gaussian random variables, one from each sequence. The low pass filter
is constructed using an FIR filter designed to approximate the response of the

ideal filter. In our construction, a 200-tap FIR was used.

20



2.3.2 Space Correlation

If two antennas are separated by a distance d, then the correlation coefficient
between the signals of the two antennas is given by [31]

o= 0% (2.16)

where ) is the carrier wavelength. The first zero of the Bessel function occurs
when d = 0.38)\. In practice, a separation distance of d = 0.5\ is used [31].
For example, with a carrier frequency f, = 900 MHz, a separation distance
between the receiving antennas of 6-7 inches will result in practically negligible
correlation. For higher carrier frequencies less separation is required.

In many systems employing spatial diversity, it may be difficult to achieve
uncorrelated branches. This may be due to improper antennas positioning or
receiver space limitations. Branch correlation can be simulated using a linear
transformation of independent Gaussian variables. Observe that the Rayleigh

fade amplitude, a;;, can be written as
ay; = |gil” (2.17)

where g,, is a complex Gaussian random variable with zero mean and a variance
of one-half for both the real and imaginary parts, and | - | denotes the envelope.

Therefore, we can write

M
>0 = g,9; (2.18)
I=1

where g. = {gi1,...,g,m} and (-)* denotes the Hermitian transpose. The prob-

ability density function of g, is expressed as

1

__ - _ —1 *
19) = s, Pl ek 's) 219)
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where K, is an M x M covariance matrix with entries (Kg )ix = E(i19])-
Since the g;,’s are uncorrelated, K, 0. will be simply the identity matrix.

We are interested in generating a new vector h; = {h;1,...,h;p} with a
specified covariance matrix, Kj . This can be accomplished using the transfor-

mation

Using this transformation, K is expressed as follows
K, = AA (2.21)

where A? is the transpose of A. Since K}, is a symmetric matrix, it can be
represented in the form

Ky = PAPY, (2.22)

where A is a diagonal matrix that consists of the eigenvalues of K, and P is
a matrix whose columns are the orthonormal set of the eigenvectors of K} .

Therefore, we can write

AAt = PAY2AY2pt (2.23)

i.e., if we let A = PA'Y/? we get the desired covariance matrix. For example, to

generate two branches with the following covariance matrix
Ky, = (2.24)

it is straightforward to show that

JA=-0/2 J(1+p)/2
/@ =p)/2 JA+p)/2

A= (2.25)
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2.4 The Rayleigh Channel Error Performance

The research conducted in this thesis considers only short-term fading. The
fading is assumed to be slow with a signaling interval much less than the coher-
ence time of the channel. The fading is also assumed to be flat — i.e., frequency
non-selective. This work concentrates on land mobile radio channels. Hence,
Rayleigh distributed fading is assumed throughout most of the thesis. However,
some results for the Rician model are given in Chapter 3.

In the following we discuss the error performance of signals transmitted over
the flat Rayleigh distributed channel. Suppose at time instant i, z; (z; € A) is

transmitted and y, is received - i.e,
Yi=0; T+ Ny (2.26)

where a; is the fading amplitude having the Rayleigh distribution and n; is the

two-dimensional additive white Gaussian noise with one-sided power spectral

density N,

The sequence of signals xy = (21, Zs,...,Zy) is transmitted. At the receiver,
two sequences, the received signal yxy = (y1,%s,...,yn) and the channel fade
amplitude sequence ay = (ay,as,...,ay), are the inputs to the TCM decoder

which performs maximum likelihood (ML) decoding, with ideal channel state

information. The decoding metric is

N

N
m(yn,xn;an) = 3 InP(ylz, a) =Y —|y — am]®. (2.27)
I=1 =1

The pairwise error probability P(xy — Xy) is the conditional probability
that the decoder estimates the transmitted signal to be Xy, given that it is in

fact xy. This happens only if

m(yn,Xn;an) > m(yn,Xn; an) (2.28)
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which can be written as

N N

Sl — s> Y~y — axf’ (2.29)
=1 =1

To obtain an upper bound on the pairwise error probability, we first condi-

tion on the fade amplitude sequence ay. Then, using the Chernoff bound and

optimizing the Chernoff factor, P(xy — Xy|ay) can be simplified to

. N —af|z — &)
P(xy — xnlay) < [Jexp | =] (2.30)
i1 4N,

Finally, averaging over the fading amplitude reveals

. 1
P(XN — XN) < H W (231)
len 4N,

where n = {l : ; # #;}. From the above expression we see that the pairwise
error probability is mainly affected by the symbol-wise Hamming distance of
the code sequence and so the error event probability will be dominated by the
code’s minimum symbol-wise Hamming distance, also known as the minimum
time diversity of the code. A secondary parameter is the minimum product
distance among all error events with minimum time diversity. This means that
in finding good trellis codes for the Rayleigh distributed fading channel, the
minimum time diversity is the most important parameter, and not the minimum
free Euclidean distance of the code as it is for AWGN channels.

The channel coding theorem given by Shannon [33] states that given a partic-
ular channel model, there exists a maximum rate of reliable transmission called
the capacity of the channel; as long as the transmission rate does not exceed the
channel capacity, there exists some coding scheme which can be used to achieve

an arbitrary degree of reliability. Knowledge of the channel capacity tells us how

much potential gain can be achieved.
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Some early work on the capacity of the Rayleigh channel was considered
by Ericsson [34] and Lee [35]. Recently, some information theoretic limits for
fading channels was given by Buz [36]. He showed that the asymptotic loss
due to independent Rayleigh fading (with CSI) with respect to the AWGN non-
fading channel is 2.51 dB. He also showed that using the pilot tone technique for
channel estimation is essentially ideal for high SNR. Moreover, it was shown that
the use of space diversity reclaims a significant amount of the loss experienced
due to Rayleigh fading. Most of the gain is achieved by using two antennas.

To compare different modulation schemes over a certain channel type, the
cutoff rate parameter, R,, is the appropriate design criterion. R, is the largest
number such that there exists sequence codes with rate R and increasing block-
length N such that

P(E) < 27N(R—R) (2.32)

for N sufficiently large. Here, P(FE) is the average error probability. R, estab-
lishes a limit on the rate at which one can communicate with arbitrary small error
probability; i.e., when R < R,, P(E) — 0 as the code block length N — co. Al-
though it is not the ultimate limit - that would be the capacity - it is considered
to be the practical limit for coded systems.

The cutoff rate was first introduced by Wozencraft and Kennedy in 1966 [37]
using random coding bound arguments. It received more attention when it was
introduced by Massey in 1974 where he promoted its use as a criterion for joint
modulation and coding systems [8]. The higher the R, value for a given F}/N,

the better the modulation system is. For a continuous valued fading channel,
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the cutoff rate, in bits/transmitted signal, is given by [38]

Ry = Jim max [—%logx /] > Pr(xn)y/F(yw [, an) f (an) 2daydy y)

(2.33)
where Pr(xy) is the a priori probability of transmitting the sequence xy, f(yn|Xn,an)
is the conditional pdf of yy given the input sequence and the fade depth se-
quence, and f(ay) is the fade sequence distribution. For the fully interleaved

channel (i.e., memoryless), this expression reduces to

T,EA T,

R, o = [ax [ log, (Z > Pr(z;) P(z;) min C(z;, z,, ))} (2.34)

where Pr(z;) is the probability of transmitting z,, and C(z,, z,, v) is the Chernoff

factor of z; and z,, defined as

C(xiy Ty, V) = Eal [Eyilwi [exp(V{m(yi, Ty; ai) - m(yia T3 az)})]] . (2'35)

The minimal Chernoff factor is given by

1

|lzi—z; |2 "
]. + 4NO

C(zi, 7;) = min C(z;, 75, v) = (2.36)

Also, the cutoff rate is maximized with a uniform input distribution [38]. There-
fore, it can be written as

R, = 2log,(|A]) — log, (%;A sze:,q -~ _w%]ﬁ) . (2.37)

Cutoff rate curves, in Figure 2.2, show that a significant coding gain can

be achieved using a larger signal constellation. For example, if a system with

two information bits per transmitted signal is to be designed, a QPSK uncoded

system requires an F;/N, = 50 dB to provide a bit error probability of 1073,

However, if an 8-PSK signal constellation is used with a powerful coding scheme,
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it can provide the same error performance at E;/N, = 12 dB. This represents
a coding gain of 38 dB. Moreover, if 16-QAM is used the cutoff rate limit is
reduced to E;/N, = 11 dB. In the next chapter we will introduce highly reliable

trellis codes that achieve coding gains very close to the cutoff rate limit.
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Figure 2.2: Cutoff rates for QPSK, 8-PSK and 16-QAM

In [38], it is shown that the performance of coded systems significantly de-
grades over correlated fading channels, relative to channels with i.i.d. fading.
Therefore, interleaving/deinterleaving is used to break up error bursts caused
by amplitude fades of duration greater than one symbol. It is reported that
interleaving with reasonably long interleaving depths is almost as good as ideal
infinite interleaving.

The interleaver can be regarded as a bufler with d rows and s columns. Here,
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d represents the depth of interleaving while s represents the span. The interleaver
size is therefore d x s. The signal points are fed into the buffer in successive rows
and transmitted out of the buffer column-by-column. The deinterleaver performs
the reverse operation. In practice the interleaver depth should be chosen such
that the signal amplitudes received in any two signaling intervals are subjected
to fading that is as close to independent as possible. In the case of cellular radio,
the signal amplitudes received at two different locations separated by a distance
of a half carrier-wavelength are independent [31]. For example, for a vehicle with
a speed of v, the corresponding distance associated with one symbol duration is
vT. Therefore, the interleaver depth should be designed such that dv > 0.5),
where ) is the carrier wavelength.

The interleaver span, s, should be chosen greater than the decoding depth of
the code so that correlated amplitudes will not affect the decoding of the current

symbol.
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Chapter 3

I-Q Trellis Coded Modulation

3.1 Introduction

In cellular mobile radio channels, the transmitted signal typically suffers dis-
tortion from fading. One of the most commonly assumed models is that of a
frequency non-selective slowly Rayleigh distributed fading channel; this model
has been used to characterize the channel behavior of mobile radio systems
[1, 11, 28, 31]. The effect of fading is a substantial degradation of the system
error rate performance.

Diversity is a popular method for mitigating the effects of fading. One of its
simplest forms is time diversity, in which each symbol is repeated in L different
time slots such that the slots are affected by independent fades. This approach
— called L-fold time diversity — can be viewed as an (L, 1) repetition code with a
minimum Hamming distance of L. Therefore, it may be expected that more so-
phisticated block or convolutional codes with large minimum Hamming distance

could yield significant gains over uncoded systems.
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However, channel coding raises the possibility of bandwidth expansion; in
bandlimited environments, such expansion might not be acceptable. Unger-
boeck [10] stimulated most of the research in bandwidth-efficient coding with
his introduction of trellis coded modulation (TCM). While originally applied to
AWGN channels, the use of TCM for fading channels has received considerable

attention in recent years.

3.1.1 Relevant Past Work

Divsalar and Simon [39, 40] were the first to evaluate the performance of trellis
coded modulation for Rayleigh/Rician channels. They showed that substantial
performance improvement can be achieved using simple TCM schemes combined
with interleaving; the interleaving can be viewed as a zero redundancy code that
“randomizes” the distribution of the errors, breaking up bursts and destroying
the memory of the channel. Interleaving may be used in conjunction with a
scheme for extracting channel state information (CSI) - i.e., the attenuation of
the fade — to recover some of the channel capacity lost due to the interleaving.
Divsalar and Simon [39] also derived Chernoff upper bounds on the pair-
wise error probability, assuming independent fading (i.e., infinite interleaving)
and perfect recovery of the channel state information. They pointed out that
the effective minimum time diversity of the code is equivalent to its minimum
Hamming distance (in signal symbols); moreover, the performance of a code over
the Rayleigh-distributed fading channel depends strongly on the code’s minimum
time diversity and very weakly on its minimum squared Euclidean distance — the
most important performance parameter for non-fading AWGN channels. This

means that trellis codes that are optimal for non-fading AWGN channels are, ex-
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cept for a few cases, sub-optimal for fading channels. An exact characterization
of the pairwise error-probability in the Rayleigh fading environment was given
in [41] and [42]. Also, an upper bound on the bit error probability for Rician
channels is given in [43].

A number of papers dealing with the optimization of TCM codes for the
Rayleigh channel have appeared [44]-[49]. Most of these coding schemes use the
traditional Ungerboeck approach in their design — i.e., they involve doubling the
constellation size over what is required for uncoded transmission and the use
of a rate k/(k + 1) encoder to describe valid symbol sequences. However, if an
encoder with £ input bits and one output channel symbol is used, the achievable
minimum time diversity L is upper bounded by L < |v/k]| + 1, where v is the
number of memory elements in the encoder. Therefore, the larger the number
of the encoder input bits, the more memory elements are needed for a given
minimum time diversity. This suggests that if the input bits are distributed to
different convolutional encoders, the minimum time diversity could be increased.
This is one motivation behind using multilevel codes for the Rayleigh channel
[50, 51, 52, 53, 54]. However, multilevel codes with multistage decoding require
a large delay at the decoder to get near-optimal performance.

The problem of transmitting two bits/symbol over the Rayleigh channel with
8-PSK modulation was considered by Zehavi [55]; he showed that using three bit
interleavers with a sub-optimal decoding metric can provide additional coding
gain. The use of multidimensional trellis codes for the Rayleigh fading channel
was investigated in [56] and [57]. Multidimensional TCM permits the design of
systems with non-integer bandwidth efficiencies and improves the error perfor-

mance for low constraint length codes. However, a disadvantage of multidimen-
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sional TCM is the increased number of input bits to the encoder, which limits
the minimum time diversity of the code. Also, more interleaving and a larger
decoder buffer size are needed; this increases the delay, which may prohibit the
use of such codes in real-time applications.

All of the results described above fall far short of the performance promised by
Ry, the computational cutoff rate limit. For example, for 8-PSK TCM schemes
with two information bits per baud over a channel with independent Rayleigh
fading, cutoff rate curves show that reliable communication can be achieved at
Ey/N, = 9 dB, while the best code currently known requires E,/N, = 14.5 dB
to provide a BER of 107° [55].

3.1.2 Proposed Codes

To achieve a larger minimum time diversity, we propose distributing the data
bits to two parallel encoders; the first encoder encodes the in-phase component of
the signal while the second encodes the quadrature component. (See Figure 3.1)
This approach requires only two encoders/decoders and permits the two decoders
to work independently; by comparison, multilevel codes typically require more
than two encoders/decoders and incur substantial delay to approach optimal
performance. In this chapter, examples of codes with bandwidth efficiencies
of 1,2, and 3 bits/sec/Hz and different constraint lengths are described. Their
minimum time diversities are shown to be greater than that of the corresponding
conventionally designed codes with the same complexity.

The idea of I-Q TCM first appeared in the “pragmatic” TCM design of
Viterbi et. al. in which they proposed two off-the-shelf rate 1/2 64-state en-

coders to encode the in-phase and quadrature components of a QAM constella-
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Figure 3.1: The structure of the proposed system.

tion [58]. This approach results in quadrupling the QAM constellation over what
is required for uncoded transmission. Another approach that uses off-the-shelf
convolutional codes with QAM modulation was suggested by Heegard, Lery,
and Paik; in [59] they demonstrated how coded QAM modulation can be imple-
mented using QPSK-based coded modulation, eliminating the need to quadruple
the constellation.

Moher and Lodge [3] used the I-Q approach for transmitting 2 bits/sec/Hz
on a satellite channel modeled with a Rician distribution; they showed that pilot

symbol aided techniques could effectively extract channel state information. Ho,

33



Cavers, and Varaldi [60] used the I-Q approach to compare the performance of a
single 8-state octal PSK trellis code with that of two parallel 4-state encoders —
the latter resulting in 16-QQAM signaling; they show that a large coding gain over
the Rayleigh distributed channel is achieved, even if the ratio of peak-to-average
power is deducted from the coding gain. However, no codes were given for a
higher number of states or for different bandwidth efficiencies.

Our work here is a generalization of this idea. Systems with a throughput
of 1, 2, and 3 bits/sec/Hz and different constraint lengths are described and
compared to their corresponding conventional codes. If the throughput is not
an even number, then the encoder is operated every two signaling intervals and
thus produces 4-dimensional coded signals. Quadrupling the signal constellation
is only required for the 2 bits/sec/Hz system.

Section 3.2 gives a summary of the channel model, the performance criteria,
upper bounds on the bit error rate, and the coding gain limits drawn from the
cutoff rate curves. Then, a description of the codes, their analytical and simu-
lated performance over the ideal Rayleigh channel, and complexity comparisons
are presented in Section 3.3. Performance results for systems with finite inter-
leaving on a cellular mobile correlated fading model are given in Section 3.4.
Some other considerations on the performance of these codes are discussed in

Section 3.5. Finally, Section 3.6 summarizes the work in this chapter.

3.2 Background

In this section we briefly review the problem of coded modulation over fading

channels.
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3.2.1 Channel Model and Performance Criterion

Let x; be the complex signal input to the channel at time 7. The channel intro-
duces two kinds of distortion — multiplicative and additive. The received signal
at time 7 is given by

Yi =0 T+ 1 (3.1)

where a; is a Rayleigh distributed random variable with E(a2) = 1, and n; is
two dimensional additive white Gaussian noise with single sided power spectral
density Ny. We assume that the effect of fading on the transmitted signal phase
is completely compensated for by the synchronization circuitry — i.e., perfect
coherent detection is assumed.

The trellis encoder produces a sequence of signals xy = (21,2, ..., 2x) that
are transmitted over the fading channel. At the receiver, the received sequence
yn = (Y1,Y2,---,Yn) is observed; furthermore, we assume that the fading am-
plitudes ay = (ay,ag,...,ay) can be perfectly recovered at the receiver. The
decoder then performs maximum likelihood (ML) decoding using the Viterbi

algorithm and decoding metric

N
m(yn,Xn;an) = ZlnP(yllxl,al) (3.2)
=1

which can be simplified (up to multiplication by a constant) as

N
m(yn,Xn;an) = — Z |lyi — al$l|2- (3.3)
1=1

The pairwise error probability P(xy — Xy) is the probability that the de-

coder chooses as its estimate the sequence Xy = (%1, %3, .. ., £x) when the trans-
mitted sequence was in fact xy = (£1,%2,...,2y). This occurs only if
N N
A (2 2
Yolu—ad? <Y |y — am (3.4)
=1 =1

35



If the fading amplitudes {q;} are independent — i.e., the channel is fully
interleaved — then a bound on the pairwise error probability can be obtained as

in [39]:

1
P(XN—))A{N)SH Y
1en 1+ oo — &)

(3.5)
where n = {l : z; # #;}. From Equ. 3.5, it’s clear that the pairwise error prob-
ability is affected primarily by the symbol-wise Hamming distance between the
code sequences; so the error event probability will be dominated by the mini-
mum symbol-wise Hamming distance of the code — its minimum time diversity,
denoted by L. A parameter of secondary importance is df,, the minimum product
distance among code sequences at distance L apart.

Generally, the error performance of a trellis code is computed via the gener-
alized transfer function of the (pairwise) super-state diagram [61]. This diagram
has 22” states, where v is the number of memory elements in the encoder; thus
this approach is impractical even for codes with few states. However, the codes
presented here satisfy the quasi-regularity property of Zehavi and Wolf [13], al-

lowing the use of the transfer function of a modified state diagram with only 2”

states. To describe this modification, define the weight profile function

F(Bj,e,D) = ¥4 AgD@®ls(e)s(ede)] =1 9, (3.6)

Here, B, and B, are the subsets forming the first-level partition of the signal
constellation, e is a binary error vector, s(c) is the signal label corresponding to
the binary encoder output vector ¢, Ay is the number of signals with d?[s(c), s(c®
e)] = d and a is the fading attenuation. For codes satisfying the Zehavi-Wolf
condition, F'(By, e, D) = F(By,e, D).

Having defined the weight profile function, the branches in the state diagram
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are labeled with

I"F(By,&,D)
ok ID=exp(-£2)

(3.7)
where € is the label of the signal relative to a transition, r is the number of input
“ones” associated with €, k is the number of input bits entering the encoder, F,
is the average signal energy, and the overbar denotes averaging over the fading
distribution.

The bit error probability of the TCM system can be tightly upper bounded
[62] by

1 L 2L —7 -1 ( 9 )j o
— ) | 557(D, 1) 1= (3.8)
j=1 L—-1 1+ Zmin o1

where L is the minimum time diversity of the code, T(D, I) is the code transfer
function and
_ [ az/an,

Tmin =
14+d2 /4N, (39)

d2 = min{|z; — z;|*, z; # z;}.

3.3 The Structure of I-Q Trellis Coded Mod-
ulation

Recall the structure of the proposed system in Figure 3.1. The basic idea is to
use two independent encoders in parallel to select the in-phase and quadrature
components of the transmitted signal. Moreover, two independent decoders are
used to recover the data associated with the in-phase and quadrature components
of the received signal. Hence, this coding scheme is called I-Q TCM.

As an example, suppose we use two rate 1/2 encoders, with the outputs of

each mapped to a 4-AM signal set. The result is a 16-QAM constellation for
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transmitting 2 bits/sec/Hz. This code structure appears in [60], where it is
shown that a 4-state code thus designed has a minimum time diversity of three,
while the best 8-state/8-PSK code with a throughput of 2 bits/sec/Hz has a
minimum time diversity of two.

Regarding the complexity of the proposed structure: Similar to [61], we mea-
sure complexity by the total number of non-parallel paths leaving all the states
divided by the number of information bits associated with a transition through
the trellis*.  Consider a conventional TCM scheme in which k = k; + &, data
bits enter the encoder every signaling interval, causing a transition; here, k; is
the number of “encoded” bits and k, is the number of “uncoded” bits — i.e.,
there are 2%! non-parallel “bundles” of 2*2 parallel paths leaving each state. If
the encoder has ¥ memory elements, the complexity is 2/ /k.

By comparison, consider the following I-Q TCM schemes:

o If k£ is even, we split up the k£ data bits into two blocks of k/2, and use
two k/2-input encoders every signaling interval to encode the in-phase and
quadrature components of the transmitted signal; assume k;/2 of the k/2
bits are “encoded” and ky/2 are “uncoded”. If each of the two encoders
has v memory elements, then there are (in both encoders combined) 2v+!
states with 2¥1/2 non-parallel edges emanating from each state — thus a

complexity of 2v+1+(k1/2) /[

o If k£ is odd we use two k-input encoders every two signaling intervals; as-

suming k; of the k bits are “encoded”, the result is 2“*! states with 2%

* In [61] the complexity is normalized per transmitted two-dimensional signal; we opt here

to normalize per information bit.
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non-parallel edges emanating from each state to encode 2k data bits — or

a complexity of 2/T1+kL 2k = vtk /|,

It is clear, then, that using two encoders — each with v memory elements — to
implement I-Q TCM is no more complex than using a single encoder with v
memory elements at the same throughput.

The proposed codes are detailed in the following sections.

3.3.1 I-Q QPSK

To transmit 1 bit/sec/Hz, each of the two encoders must encode 0.5 bit/sec/Hz.
Hence, each encoder will be rate 1/2 and will operate every two signaling inter-
vals; furthermore, each of the two encoded bits coming out of an encoder will be
mapped to a 2-AM signal. The output of the first encoder specifies the in-phase
components of two consecutive signals, while the output of the second encoder
specifies the quadrature components; thus two QPSK signals are generated every
two signaling intervals. This approach dictates the use of convolutional codes
optimized in terms of minimum Hamming distance [63]. Table 3.1 shows the
generator polynomials and the minimum Hamming distances of the codes thus
used. Figure 3.2 shows the trellis diagram of the 8-state code, and Figure 3.3
shows the BER of each code — both the analytical upper bound from Eqn. 3.8
and error rates obtained via simulation. Note that, for the 64 state code, a BER
of 10™° can be achieved at E,/N, = 7.5 dB, while the cutoff rate limit is 5.5
dB. For this code the complexity is equivalent to that of a Gray mapped QPSK

encoded system with 64 states.
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v 91(D) 92(D) L
2 1+ D? 1+ D+ D? 5
3 1+D+ D3 1+D+D?+ D3 6
4 1+ D3+ D* 1+D+ D? + D* 7
5 1+D+ D+ D? 1+D*+D3+D*+D5| 8
6| 1+D?*+D3+D5+DS| 1+D+D*+D3*+D° |10

Table 3.1: Generator polynomials for the rate 1/2 codes.

0/+1 +1

0/-1 -1

0/-1 +1

0/+1 -1

0/-1 -1

0/+1 +1

0/+1 -1

0/-1 +1

Next
state

Current

state

1/-1-1 0
1/+1 +1 1
1/+1 -1 2
1/-1 +1 3
1/+1 +1 4
1/-1 -1 5
1/-1 +1 6
1/+1 -1 7
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Figure 3.2: Trellis diagram for the 8-state I-(QQ QPSK code. (1 bit/sec/Hz)
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Figure 3.3: BER performance for 1 bit/sec/Hz I-Q QPSK. The solid lines indi-

cate the upper bound from Eqn. 3.8; dashed lines indicate simulation resullts.
3.3.2 I-Q 16-QAM

To transmit 2 bits/sec/Hz, two rate 1/2 encoders are used each signaling interval,
with the output of each mapped to a 4-AM signal set; the result is a 16-QAM
signal selected every signaling period. Gray mapping between the output bits
of each encoder and the 4-AM signal set allows the use of convolutional codes
optimized for Hamming distance; once again, the codes in Table 3.1 are used.
With this approach, the minimum time diversity is bounded by L < v+1, where
v is the number of memory elements in each of the two encoders. By comparison,
conventional 8-PSK codes sending two bits per baud have a minimum time

diversity at most |/2] + 1. Figure 3.4 shows the trellis diagram of the 8-state
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code with L = 4.

Since the I and Q channels operate independently, the bit error performance
for I-QQ 16-QAM is identical to that of 4-AM. Figure 3.5 shows the BER per-
formance for the different codes. Note that a BER of 107 can be achieved at
Ey,/N, = 10.5 dB using the 64-state code; this is close to the cutoff rate limit of

8 dB for 16-QAM signaling when 2 bits/sec/Hz are transmitted.

Current Next

state state

0/3 1/-1 0 0
0/-1 1/3 1 1
0/1 1/-3 2 2
0/-3 171 3 ;
0/-1 173 4 4
0/3 1/-1 5 s
0/-3 111 6 6
0/1 1/-3 7 .

Figure 3.4: Trellis diagram for the 8-state I-Q 16-QAM code. (2 bits/sec/Hz)
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Figure 3.5: BER performance for 2 bits/sec/Hz I-Q 16-QAM. The solid lines

indicate the upper bound from Eqn. 3.8; dashed lines indicate simulation resullts.
3.3.3 4-D I-Q 16-QAM

To transmit 3 bits/sec/Hz, two rate 3/4 encoders are used every two signaling
intervals. The four bits from each encoder select a pair of 4-AM signals; the
output of the first encoder specifies the in-phase components of two consecutive
signals, while the output of the second encoder specifies the quadrature com-
ponents. Thus two 16-QAM signals are generated every two signaling intervals.
Figure 3.6 shows the signal partitioning of the 4-AM signal set; this partition-

ing maximizes the symbol Hamming distance and the minimum squared product
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distance. An eight state code’s trellis diagram is shown in Figure 3.7. For this
code the minimum time diversity is two and the minimum squared product dis-
tance (MSPD) is 16(AZ2)? where Ay is the spacing between the signal symbols in
the 16-QAM signal set. Figure 3.8 shows the trellis diagram of a 16-state code.
Also, a 32-state code, shown in Figure 3.9, with a minimum time diversity of 4
is designed. Figure 3.10 shows the performance of these three codes. No codes
with higher number of states are designed because of their large complexity and

the small gain in performance due to the limited minimum time diversity.

} } f } 4-AM
3 I 1 3
TO=33) Td=(l,]) T2=G,-1) T6=(1,3) TI=G,1)  T5=(1,3) T3=(3,3) T7=(:33)
T8=(-1-1) TI2=(:3,-3) TI0=(-1,3) TI4(-3,1) T9=(-1,-3) TI3=(-3-1) Tll=(-1,1) TIi5=(1,-1)
S0 S4 2 s6 sl S5 s3 s7

Figure 3.6: Signal partitioning for the 2D 4-AM constellation designed for the

Rayleigh distributed channel
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Current Next

state state
S0S45286 0 0
SIS58387 1 1
S4S086S52 2 2
S5S1S7S3 3 3
$2865084 4 4
s3s7s1s5s 5 5
$6S25450 6 6
$7S38581 7 7

Figure 3.7: Trellis diagram for the 4-D I-Q 16-QAM 8-state code. (3 bits/sec/Hz)

current Next

state state
TOT2 T4 T6 T8 TIO T12 T14 0 0
T1T3T5T7T9T11 T13T15 1 1
T2 TO T6 T4 T10 T8 T14 T12 2 2
T3T1T7T5TI1TY TI5T13 3 3
T4 T6 TO T2 T12 T14 T8 T10 4 4
T5T7T1 T3 T13 T15 T9 T11 5 5
T6 T4 T2 TOT14 T12 T10 T8 6 6
T7T5T3TITISTI3TIITY 7 7
T8 T10 T12 T14 TO T2 T4 T6 8 8
TOTI1TI3TISTI T3TS T7 9 9

T10 T8 T14 T12 T2 TO T6 T4 10 10
TI1 TOTISTI3T3T1 T7 TS 11 11
T12T14 T8 T1I0 T4 T6 TO T2 12 12
TI3TISTOTII TST7 T1 T3 13 13
T14TI2TIO T8 T6 TA T2TO 14 14
TISTI3TI1TOT7 TST3 Tl 15 15

Figure 3.8: Trellis diagram for the 4-D I-Q 16-QAM 16-state code (3 bits/s/Hz)
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current Next
state state

TOT2T4T6 T8 TIO T12 T14
TIT3T5T7TOTII TI3T1S
T2 TOT6 T4 TI0 T8 T14 T12
T3TIT7TSTI1 TOTISTI3
T4T6 TOT2TI2TI4 T8 T10
TST7TIT3TI3TIST9 T1l
T6 T4 T2TOTI4 T12TI0 T8
T7TST3TITISTI3TI1T9
T8TIOTI2TI4 TOT2 T4 T6
TOTIITI3TISTIT3ITS T7
TI0OT8 T14 T12 T2 TO T6 T4
TITTOTISTI3T3TI T TS
T12 T14 T8 T10 T4 T6 TO T2
TI3TISTOTIITST7ITI T3
T14 T12 T10 T8 T6 T4 T2 TO
TISTI3TIITOTI TS T3 T1
T14 T12 T10 T8 T6 T4 T2 TO
TISTI3TIITOTITST3 Tl
TI12 T14 T8 TI0 T4 T6 TO T2
TI3TISTOTIITSTITI T3
TI0T8 T14 T12 T2 TO T6 T4
TIITOTISTI3T3TI T TS
T8 T10 T12 T14 TO T2 T4 T6
TOTI TI3TISTIT3TS T7
T6 T4 T2TOT14TI2TIO T8
T7TT5T3TITISTI3TIITO
T4 T6 TOT2TI2 TI14 T8 T10
TST7TI T3TI3 TIST9 Tl
T2TOT6 T4 TIO T8 TI4 T12
T3TITITSTIITITISTI3
TOT2T4T6 T8 TIO TI2 T4
TIT3TST7 T9 T11 T13 T1S

WO AN DW=

O 00NN R W - oy

Figure 3.9: Trellis diagram for the 4-D I-Q 16-QAM 32-state code (3 bits/s/Hz)
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Figure 3.10: BER performance for 3 bits/sec/Hz I-Q 4-D 16-QAM. The solid

lines indicate the upper bound from Eqn. 3.8; dashed lines indicate simulation

resullts.

3.3.4 Comparisons

Table 3.2 compares the minimum time diversities and the product distances of

the proposed codes with those of conventionally-designed TCM schemes.

e The 1 bit/sec/Hz I-Q QPSK system is compared with conventional Gray-

mapped QPSK used with a rate 1/2 convolutional code.

e The 2 bits/sec/Hz I-Q 16-QAM system is compared with TCM schemes
based on 8-PSK designed by Schlegel and Costello [46].
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e The 3 bits/sec/Hz four-dimensional I-Q 16-QAM system is compared with

codes employing 16-QAM signaling proposed by Du and Vucetic [49].

In each case a comparison is made between two codes of the same complexity,
and in each case the I-QQ code has a substantially higher minimum time diversity
than the conventional TCM scheme. (The only exception: An eight-state 3
bits/sec/Hz code from [49] is compared with an eight-state 3 bits/sec/Hz 1-Q
TCM code; the time diversities are identical, but the complexity of the I-QQ TCM
code is one-half that of the code from [49]. In addition, the MSPD of the I-Q
TCM code is 16(A2)? while the MSPD of the code from [49] is 5(A2)?). Figures
3.11, 3.12 and 3.13 show the results of simulations that compare the I-Q TCM
codes with conventional codes. The coding gains at a BER of 10~° range from
2 dB (for I-Q QPSK) to more than 5 dB (for 4-D I-Q 16-QAM).

Moreover, a comparison between the I-Q and the traditionally designed codes’
minimum free squared Euclidean distances are also shown in Table 3.2. As
mentioned in Chapter 1, the primary design goal in AWGN non-fading channels

is to maximize the code’s minimum free squared Euclidean distance d? To

make a fair comparison, d%ree and df, are normalized by the bit energy E,. Also,
the values of d%,,,/FE; for Ungerboeck codes (i.e., the codes optimized for the
AWGN non-fading channel) are included in parentheses. The [-Q QPSK codes
achieve the same d%,.,/ E; values. The I-Q 16-QAM codes have little degradation
in d%,../Es, while the loss in d3,./Ep for the 4-D I-Q 16-QAM codes is more

evident.
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Code bits/s/Hz | v | L | d2/(Ey)" | Complexity | d%,../Eb
QPSK-Gray 1 2| 3 32 8 10 (10)8
I-Q QPSK 1 2|5 32 8 10
QPSK-Gray 1 3 4 64 16 12 (12)
I-Q QPSK 1 3|6 64 16 12
QPSK-Gray 1 4|5 | 128 32 14 (14)
I-Q QPSK 1 4|7 128 32 14
QPSK-Gray 1 506 | 256 64 16 (16)
I-Q QPSK 1 5| 8 256 64 16
QPSK-Gray 1 6| 7| 1024 128 20 (20)
I-Q QPSK 1 6 | 10 1024 128 20
8-PSK 2 22| 938 8 6.34 (8)
I-Q 16-QAM 2 213 8.19 8 7.2
8-PSK 2 3| 2 32 16 9.2 (9.2)
I-Q 16-QAM 2 3| 4 6.55 16 8
8-PSK 2 4| 3 37.44 32 10.3 (10.3)
1-Q 16-QAM 2 415 5.24 32 8.8
8-PSK 2 51 3 128 64 10.3 (11.5)
I-Q 16-QAM 2 5| 6 4.19 64 9.6
8-PSK 2 6| 4| 128 128 8.68 (12.7)
1-Q 16-QAM 6| 7| 336 128 11.2
16-QAM 3 32| 72 64/3 4.8 (6)
1.Q 16-QAM 3 32| 2304 32/3 3.6
16-QAM 3 42| 144 128/3 6 (7.2)
I-Q 16-QAM 3 41 3 6.91 128/3 4.8
16-QAM 3 512 | 4608 256/3 | 7.2(7.2)
I-Q 16-QAM 3 51| 4 8.29 256/3 6

Table 3.2: A comparison between the proposed codes and conventional TCM

schemes. The numbers inside parentheses correspond to Ungerboeck codes.
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Figure 3.12: A comparison between the proposed 2 bit/sec/Hz codes and codes

from [46]. The solid lines indicate I-Q TCM; dashed lines indicate [46].
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Figure 3.13: A comparison between the proposed 3 bit/sec/Hz code and codes
from [49]. The solid lines indicate I-Q TCM; dashed lines indicate [49)].

3.4 Performance over Correlated Rayleigh Fad-
ing

Often, successive fading amplitudes are correlated — as in, for example, narrow-
band cellular mobile radio [31]. In this section we briefly describe the perfor-
mance of the proposed codes when correlated fading is assumed and appropriate
interleaving is employed.

We assume an omnidirectional antenna at the mobile and that the received
plane waves are uniformly distributed in arrival angle. In this case, the power

spectral density of the faded amplitude due to Doppler shift is expressed as [31]

1 if
V(f)=q mVioi-f <l (3.10)

0 otherwise.
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Thus the autocorrelation function Ry (0; At) can be written as

RH(O, At) = Jo(QWfDAt) (311)
where Jo(z) = 52(—1)%(3%5)? is the zero-order Bessel function of the first

kind. In the simulations, the fade amplitudes are generated by applying two
independent white noise sources to two filters with a spectrum shape of W
and scaling them so that E(a?) = 1; an FIR filter with 200 coefficients is used
to approximate the power spectrum. The filter bandwidth is specified by the
vehicle speed, the carrier frequency and the symbol rate; i.e., fp = Efﬁ In our
simulations, we have assumed a vehicle speed of 60 mi/hr, a carrier frequency
fe = 900 MHz and a symbol rate of 8000 symbols/sec. This results in a fade
rate fpTs = 0.01.

A block interleaver of 400 symbols was used, corresponding to a delay of 50
msec. The interleaver is implemented as a buffer with d rows (depth) and s
columns (span); the encoded symbols are written in successive rows and trans-
mitted over the channel in columns. It has been shown [64] that an interleaver
depth of at least one-quarter of the fade cycle provides near-optimal performance
—1ie.,d > 1/(4fpTs). For our purposes, this meant we kept the interleaver depth
to at least 25 symbols; accordingly, the span s must satisfy s < 16.

Computer simulations were performed to determine a suitable interleaver
span. Ideally, the interleaver span should be on the order of the decoder buffer
size so that correlated amplitudes will not affect the decoding of the current
symbol. Figure 3.14 shows BER results for the 4-state I-Q 16-QAM encoded
system with independent fading and different decoder buffer sizes. Note that
there is (relatively) little performance degradation when a buffer of size 4v is

used, compared with the case 8v. A similar conclusion has been observed for
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other codes. Simulation results for a fixed interleaver size (s -d = 400) but
different values of d and s are shown in Figure 3.15; it is observed that s = 4v

yields the best results.

Figure 3.14: BER for the 4-state I-Q 16-QAM encoded system with different

decoder buffer sizes.

Figure 3.16 shows the BER results for 8-state codes with different through-
puts. For the 2 bits/sec/Hz code an interleaver of dimension d x 4v = 33 x 12 was
used. For the other two codes — with their multiplicity of two baud per branch
- the guideline of 4v stages in the decoder buffer would suggest an interleaver
with span s = 24; however, that would imply an interleaver depth of d = 16,
which is less than one-quarter of the fade cycle. As a compromise, we used a
20 x 20 interleaver table for the 1 bit/sec/Hz code and the 3 bits/sec/Hz code.
A loss of about 1-2 dB is observed when these results are compared with the
independent Rayleigh fading results in Figures 3.3, 3.5, and 3.10. This loss is

due to the effects of residual correlated fading.
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3.5 Other Considerations

In this section we consider the performance of some I-QQ codes over the Rician
channel where a line-of-sight is assumed to exist. Also, the effect of channel state

information at the decoder is addressed.

3.5.1 Performance over Rician Channels

Previously, we assumed a Rayleigh distribution for the channel fade amplitudes.
This model assumes no effective line-of-sight, and the resulting primary design
criterion is to maximize the minimum time diversity of the code.

In some environments a line-of-sight exists. A typical example is the mobile
satellite channel. As mentioned in Chapter 2, in this case the fade amplitude will
have a Rician distribution, and the minimum time diversity of the code will not
be the dominant design criterion. In this section we compare the performances
of I-Q TCM and traditionally designed codes when the channel is modeled to
have the Rician distribution.

We simulated two 16-state schemes: [-Q QPSK and Gray mapped QPSK.
Both schemes assume full interleaving and ideal channel state information. Ri-
cian parameter values of K = 5 and K = 9 and are used - i.e., the line-of-sight
component is 7 and 9.5 dB above the diffuse component, respectively. The I-Q
QPSK code and the “traditional” convolutionally-encoded Gray-mapped QPSK
have the same minimum squared Euclidean distance. Thus their performance
in AWGN channels are very similar. Figure 3.17 shows the BER performance
of the two codes in both channel environments. For the K = 9 case, the I-Q

code provided about 0.8 dB coding gain over the conventional code at an output
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BER of 1075. At an output BER of 1072 the coding gain was about 0.4 dB. For
the K = 5 case, there was a very slight increase in coding gain — the gains were
about 1.0 dB and 0.4 dB at 1075 and 1073, respectively. Even though the I-Q
code is designed for the Rayleigh channel, slight improvements can be obtained

if a Rician distribution exists.

1-Q QPSK

BER

Eb/No

1-Q QPSK

BER

Figure 3.17: A comparison between the I-Q and the Gray-mapped QPSK 16-

state codes with different Rician factors (a) K =5 (b) K =9
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3.5.2 Effect of Channel State Information

Although there exists powerful methods to estimate the channel state infor-
mation very accurately, here we provide some results where no channel state
information is used at the decoder. In this case the decoding metric will be
N N
m(yn,Xn) = Eln P(y|x) = ; |y =z % (3.12)

For constant amplitude signals, such as BPSK, QPSK or 8-PSK, the absence
of channel state information results in a loss of 1.5-2.5 dB. However, for multi-
amplitude signals such as 16-QAM, a significant loss occurs if no channel state
information is used at the receiver. In fact, our simulations show that a high
error floor ~ 1072 occurs if no form of CSI is used at the receiver. (By compar-
ison, Ho etf. al used pilot-symbol techniques to decode 16-QAM signals with a
loss of only 1-1.5 dB from ideal CSI [60].)

Figure 3.18 show the performance of the 16-state I-QQ QPSK schemes over the
Rayleigh and Rician (K = 9) channels. In the Rayleigh channel case, about 1.3
dB (at BER =107%) is lost if no CSI is used. For the Rician case, the use of CSI
at the decoder gives only about .2 dB additional coding gain. This is because
the line-of-sight component is 9.5 dB above the diffuse component and hence
the channel is close to the AWGN non-fading channel. Finally, a comparison
between the 16-state I-QQ QPSK code and the Gray mapped QPSK with a 16-
state rate 1/2 convolutional code over both the Rayleigh and Rician (K = 9)
channels is shown in Figure 3.19. In both systems no CSIis used at the decoder.
It is clear that still 2 dB of extra coding gain (at BER = 107°) is achieved for
the Rayleigh channel, while about 0.7 dB of additional coding gain is achieved

over the Rician channel with K = 9.
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11

Figure 3.18: BER for the 16-state I-Q QPSK system over both the Rayleigh and
Rician (K = 9) channels. Solid = Ideal CSI, dashed = NO CSI.
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10
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Figure 3.19: BER comparison between the 16-state I-Q QPSK code and the
Gray mapped QPSK with a 16-state rate 1/2 convolutional code over both the
Rayleigh and Rician (K = 9) channels. All curves assume NO CSI. Solid = I-Q
code, dashed = rate 1/2 conv. encoded QPSK.
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3.6 Summary

I-Q TCM schemes with bandwidth efliciencies of 1,2, and 3 bits/sec/Hz were
presented. Computer simulations and tight upper bounds show a significant
improvement in bit error rate for I-Q TCM schemes relative to conventional trellis
codes over the Rayleigh fading channel; coding gains close to what is expected
from the cutoff rate limits are achieved for codes with moderate complexity.
Simulations of interleaved systems confirm that an interleaver depth of 1/(4fpT)
yields good performance, and it has been shown that a suitable value of the
interleaver span is 4v. Finally, it was shown that I-Q TCM yields (reduced)
coding gains over conventional codes over Rician channels; also, the effect of no
CSI was evaluated. In the next chapter we will investigate the use of combined

coding and diversity to further improve the error performance.
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Chapter 4

Diversity Reception

4.1 Introduction

Diversity combining is a well-known and effective method for improving the per-
formance of digital communication systems over fading channels [7, 31, 65, 66].
The basic principle of M-fold diversity is to use M independent channels so
that the probability of a “deep fade” on all channels is low. (These independent
channels can be created in a number of ways, including frequency, time, and/or
polarization diversity; if multiple antennas are used to receive multiple indepen-
dent versions of the received signal, the approach is called spatial diversity.) A
combining circuit is used to form a single resultant signal from the M different

“branch” signals. There are (at least) three different methods for combining.

e The optimal combining scheme is called mazimal ratio combining (MRC)
[31]. In such a scheme the M received K-dimensional signals are treated
as a single M K-dimensional signal; the resultant SNR at the output of the

combiner is the sum of the SNR’s of the M branches.

61



e In equal gain combining (EGC) the resultant signal is simply the sum of

the signals from the M branches.

e In selection combining (SC) the resultant signal is the one with highest SNR,
among the M received signals; in practice, the signal with the strongest

received signal — i.e., signal plus noise — is selected.

Error probability expressions for uncoded systems with different combining schemes
in Rayleigh fading are presented in [67, 68]

As shown in the previous chapter, trellis-coded modulation (TCM) also pro-
vides a form of diversity — time diversity. The performance of TCM schemes
may be evaluated using the pairwise error probability and the transfer function
approach [13, 61]. Upper bounds on the bit error probability for TCM with
different combining schemes were presented in [69, 70]. These expressions use
the Chernoff bound to establish an upper limit on the pairwise error probability
and are loose. A tighter upper bound on the bit error probability for maximal
ratio combining (only) has recently been developed by Ventura-Traveset, Caire,
Biglieri, and Taricco [71]; the upper bound in [71] requires numerical evaluation
of the pairwise error probability and the use of a truncated transfer function
which does not account for all paths in the trellis.

In uncoded systems, the diversity combining schemes are compared based
on the probability distribution of the signal-to-noise power ratio (SNR) at the
output of the combiner [31, 66, 68]. On the other hand, the typical performance
criterion for systems employing coded modulation is the cutoff rate parameter (
R,). In this Chapter, the use of trellis-coded systems with diversity receivers is
investigated. Cutoff rate expressions for the Rayleigh distributed channel with

diversity reception and the three different combining schemes are presented.
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Also, tight upper bounds on the pairwise error probability for transmission over
the Rayleigh distributed channel with diversity reception and the three combin-
ing schemes are derived. The same system configurations in [69, 70] are used,
the new bounds are shown to be tighter than those presented in [69, 70].

The next section describes the system model and the combining metrics. In
Section 4.3, expressions for the cutoff rates for the three combining schemes
are derived and compared. Tight upper bounds on the bit error probability for
trellis coded systems with the three combining schemes are derived and analyzed
in Section 4.4. Moreover, the application of these bounds on uncoded systems
is discussed in section 4.5. The effect of branch correlation on MRC schemes
is presented in Section 4.6. Comparisons complexity tradeoffs are presented in

Section 4.7. Finally, the Chapter is concluded with a summary.

4.2 System Model

The underlying system can be described as follows. Suppose the complex signal
z; is transmitted at time 4 and M corresponding signals y. = {Yi1s Yios - Y}

are received; i.e.,

Yil = Q1%+ Ny
Yiz = Q2T + N2
(4.1)
YiM = Q,MTi+ Ny
where a; = {a;1,a,2, . - .,a; p} are the fading amplitudes, assumed to be Rayleigh-
distributed with E(a?) = 1. Here also, n; = {n;1,n;2,-..,n;m} are the two-
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dimensional additive white Gaussian noise samples with one-sided power spec-
tral density N,. We assume full interleaving. We also assume the branches are
affected by independent fading. Thus, {a;;} are i.i.d. Rayleigh.

The transmitter produces a sequence of signals xy = {z1,2s,...,2x}. At the
receiver, the sequence of received M-tuples yy = {gl, YooY N} and the chan-
nel fade amplitudes ay = {a1,a,,...,ay}, are the inputs to the TCM decoder
which performs maximum likelihood (ML) decoding assuming ideal channel state
information. The decoding metric is

N

m(xXn,ynian) = ) m(zi, y,; &) (4.2)
1=1

Here the symbol metric m(z;, Y5 a;) depends on which form of signal combining

is being used.

e For maximal ratio combining,
M
2
m(z;, Y, a;) Z |yiy — asgzi]”
e For equal gain combining,

2
m(xz) y .a_fz -

M
Z Yig — Qi iTs)

e For selection combining,

m(xhﬂi;%‘) = —|yij* — Qi 2

where

J* = argmax{a;;,j=1,...,M}.
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4.3 Cutoff Rate for Diversity Reception

Recall that the pairwise error probability, P(xy — Xx), is the conditional proba-
bility that the metric associated with the coded sequence Xy exceeds that of xy,
given xy was in fact transmitted. It can be upper bounded using the Chernoff

bound as follows

P(xy = %y) = P(m(Xn,yn;an) — m(xn,yn;an) > 0)
< Elexp(Mm(Xn,y~;an) — m(xn,yn;an)})] (4.3)
= C(xn, %N, ) =[IX, C(zs, 3, A)
where
Clxi, &4, A) = Elexp(Mm(2,, Y5 8;) — m(zi, 9,5 8:) D], (4.4)
and the expectation is taken with respect to the noise n; and the fading a;.
As mentioned previously the cutoff rate, R,, in bits/transmitted signal can be
expressed as [46]
R, = 2log,(|A|) — log, (Z ) C(xz-,fcz-)) (4.5)
T EAZ,EA

where A is the signal set and
C(xi, &,) = m/\in C(zs, Ty, N). (4.6)

In the case of single channel reception (M = 1) the Chernoff factor can be

written in a simplified form as

1
Clz,, &) = ——. (4.7)
1 4 o=l

N,
In the next subsections the Chernoff bound is derived for M-diversity systems
with the three different types of metrics. The cutoff rate expressions are also

presented and compared.
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4.3.1 Maximal Ratio Combiner

For maximal ratio combining, the conditional Chernoff bound can be expressed
as
C(xi, i, Ma;) = Ey, [exp()\{m(fci,gi;gi) - m(xi,gi;gi)})]
= B lexp(MSM, (1950 — asmil® — [yig — aigdi*)})]

which can be simplified as follows

(4.8)

C(i, 25, M) = T, By lexp(Myig — aigmil® — yig — i@l )]
= 1%, En, lexp(A{—a?)|z; — &i* — 245, R(niy - (2 — 3:))})]
= exp(—AXY, a? |z — &*) x

I/, En, [exp(M =203, R(ns; - (2 — 2:)")})],
(4.9)

where R(-) denotes the real part and (-)* denotes complex conjugate. However,
By, Jexp(M =203, R(niy - (z: — £:)")})] = exp(Xaf, Nofoi — 2:")  (4.10)

Therefore, the conditional Chernoff factor can be reduced to

C(xi, &4, Mg;) = exp( /\Za” — N\ |z — &%), (4.11)
It is easy to see that C(xz;,&i, Ala;) can be minimized by choosing A = 51{,—0
Therefore, the tightest conditional Chernoff bound can be written as
3 , . i — &)
C(zitila;) = min{C(z;, &i, Ala;)} = eXP(—ﬁw) (4.12)
where
M
B=>d,. (4.13)
=1

Since the {a;1,a;2...a;p} are independent Rayleigh distributed random vari-
ables, then {a},,a?,...a? )} will be independent exponentially distributed ran-

dom variables. So, § will have an M-Erlang distribution with parameter one;
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i.e., its distribution is given by

fB) = g’ B>0. (4.14)

The last step is to perform the following intergration

N L Sy Yot s — &
Clant) = [ Gyl oA exp(-pEE s (41
Using the following equality
/ Y M leTdg = (M — 1)! (4.16)
0

the integral reduces to

1

T e

(4.17)

Therefore, the cutoff rate for maximal ratio combining receivers is given by

R, = 2log,(|Al) — log, Z Z 1

— 7 (4.18)
5,€A 2, €A (1 + J%L)

Figure 4.1 shows the cutoff rate values of the 16-QAM signal constellation
and maximal ratio combining with diversity orders of M = 1,2,3,4. It is clear
that the largest incremental gain is obtained in going from single to double diver-
sity. The coding gains diminish as the order of diversity increases. For example,
the curves show that reliable communication at a rate of 2 bits/symbol can be
achieved at Fs/N, = 11 dB (or Ey/N, = 8 dB) for single channel reception.
However, the required SNR can be reduced to E,/N, = 6.1 dB (or E;/N, = 3.1

dB) if double diversity with maximal ratio combining is used.
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Figure 4.1: The cutoff rate of 16-QAM with maximal ratio combining and dif-

ferent diversity orders
4.3.2 Equal Gain Combining

In the equal gain combining scheme the Chernoff bound can be written as

C(xiv s, Algz) = Eﬂ, [exp()‘{m(ﬁivﬂi;%’) - m(xzag,a-@z)})]
= Ep [exp(M| 021 (Wi — aigms) | — | 20 (vig — aig2)*})]

(4.19)
which can be simplified to
C(*’Eua}h/\l@z) = Enzz[exp()‘{—(zl]\ilai,l)Z‘xi_jilz_
—2(CM ai ) R(SM iy - (m — 34)°
(X051 e )R nag - ( )] (4.20)

= exp(=A(ZiL; aig)?|zi — 2.[*) %

Enz,l [exp{—Q/\ Ef\é az,l%(zz]\il na - (2, — iz)*)}]
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However,

M M M
En” [exp{—2)\ Z ai,l%(z ’I’Li,l . (CE, — .f?l)*)}] = eXp{AZ(Z ai,l)ZMN,,]:vi — i_1|2}
= =1

=1
(4.21)
Therefore,

C(z4, Ty, Ma;) = exp(— Za” (1 — MNN)|z; — &[). (4.22)
In this case C(z,,%;, Alg;) can be minimized by choosing A = 5 MlNo. There-

fore, the tightest conditional Chernoff bound can be written as
C(zit;)|a;) = min{C(z;, &;, Ma,)} = exp(—uM) (4.23)

[ ek 2 p-t) 2y My =1 4MNO *

where
M
=D ay)’ (4.24)
=1
However, no closed form expression for the sum of Rayleigh distributed random
variables is available for the case of M > 2, so an approximate expression is
used. This expression is based on the small argument approximation [65, 31].
(Beaulieu [72] showed that this expression is very accurate for M < 8). The

approximation to the pdf of ¢ is given by

+(2M~-1) eXp(—-Z%)

@)= IR (A — 1)1 (4.25)
for t > 0, where
b, = [(2M — YYM = [(2M — 1) - (2M - 3)---3 - 1]V/M, (4.26)
Using the transformation f, (1) = fr(\/&)/2/&, f(1) can be written as
flp) = M(ZA;E)AZXE(;!’J’J:) (4.27)
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for 4 > 0. In other words, 4 has an M-Erlang distribution with parameter 1/b,.

The last step is to perform the following intergration

. Iz B |z; — 3]
C(z,, %:) = (2M—1 M=) / uM " exp(— b —) exp( HAMN, )dp.
(4.28)

Using variable transformation and Eqn. 4.16 the previous integral reduces to

1
EM-1)MYM |z,—5;2\ M

o

Therefore, the cutoff rate for equal gain combining receivers is expressed as

1
R, = 2logy(|A]) — log, Z Z [(@M—)MM |o,—5,2\ M

(2]

(4.30)

Clearly, maximal ratio combining, at high SNR, is better than equal gain com-
bining by [(_21\71——1\1/[)"]W which is always > 1 and monotonically increases with

increasing M as shown in Table 4.1.

M (211\4\4341)!! (gﬁi)” in dB
1 1 0

2 1.155 0.625

3 | 1.216 0.861

4 1.250 0.968

8 1.302 1.147

Table 4.1: Improvement factor for MRC over EGC

Figure 4.2 shows the cutoff rate values of the 16-QAM signal constellation

and equal gain combining with a diversity order of M = 1,2,3,4. Similar to
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the maximal ratio combining case, the largest incremental gain is obtained in
going from single to double diversity and coding gains diminish as the order of

diversity increases.

| I E W

I |
I I
| |
| |
[l 1
-10 -5 0 5 10 15
Es/No (per branch)

N
o
[\*]
[4)]

30

Figure 4.2: The cutoff rate of 16-QAM with equal gain combining and different

diversity orders

4.3.3 Selection Combining
In this case the Chernoff bound can be written as

Clandi Ala) = B lexp(Mm(i,y;50:) = m(i,y;5 0:)})] (4.31)

= B, . [exp(Myigr — aijetil® — |9i50 — aij=2:*})]-
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Again, this can be simplified to

C(zi, &3, Ma;) = En.[exp(M—afu]zi — 2 — =2(as )R (1 4+ - (2 — 2:)")})]

= exp(—Aa} u|x; — &if*) En, . [exp{—2Xa; jxR(ni jx - (z; — 23)")}]

0,g*

= exp(—Aaf .|z, — 1,|*) exp{\?a} j. No|x; — 1’}

(4.32)
Therefore,
C(zi, &1, Ma;) = exp(—M(a;;+)*(1 — NA)|z; — ). (4.33)
C(z;,%;, A|lg;) can be minimized by choosing A = ﬁ Therefore, the tightest
conditional Chernoff bound can be written as
) . . |z — &
C(ziZil|ai) = m)\ln{C(xi, Zi, Mai )} = exp(—l/T) (4.34)
where
v =a;; = max{aly,aly, - a; p}- (4.35)

Since {a;1,a;2...a, m} are independent, v is just the maximum of M indepen-

dent exponential random variables, so

f(v) = M1 — exp(—v)|MVexp(—v) v>0 (4.36)
which can be rewritten using the binomial expansion as

f(y):ﬁjj(—nk“M A:_ll exp(—kv). (4.37)

The last step is to perform the following intergration
M—-1

|z — ;]2

M
O(xl)j:‘i) = Z(_l)k+1M 4N

k=1 k—1

/Ooo exp(—kv) exp(—v )dv.

(4.38)
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Evaluating the integral, the Chernoff factor reduces to

C(x, ;) = %(—1)“1M M- = (4.39)
(2] 1 = k_l k+zz4;\212

Therefore, the cutoff rate for maximal ratio combining receivers is given by

M M—-1 1
Ro = 2log,(1dl) —logs | £ 3 [ (-1 -
;€A x,€A | k=1 kE—1 k+J%4—1\;::E

(4.40)

Figure 4.3 shows the cutoff rate values of the 16-QAM signal constellation
and selection combining with diversity orders of M = 1,2, 3,4. Once again, the
largest incremental gain is obtained in going from single to double diversity and
the coding gains diminish as the order of diversity increases. Moreover, when
more diversity is added the “diminishing returns” effect is more obvious in this

case.

4.3.4 Comparisons and Numerical Results

Comparing the expressions for the three combining schemes, it is clear that the
MRC scheme achieves the best performance. In fact, it is the optimal combining
scheme for equal energy branches [65]. Moreover, SC gives the lowest perfor-
mance among all other schemes. Figure 4.4 and Figure 4.5 show the cutoff rate
for the 16-QAM constellation with the three combining schemes and diversity
orders of M = 2 and M = 4, respectively. Finally, Tables 4.2- 4.5 give the values

of Es/N, corresponding to different rates and different constellations.
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2.1

0.8

0.1

-1.4

1.4

2.0

-9.2

0.7

-1.5

-2.9

-6.3

M | MRC | EGC | SC

1 for the

Table 4.2: The E;/N, per branch values ( in dB) to achieve R,

QPSK constellation
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M | MRC | EGC | SC

2 6.7 7.3 | 8.1

3| 4.2 2.0 | 6.5

4 | 2.6 3.5 | 5.6

8 | -1.1 -2 140

Table 4.3: The E;/N, per branch values ( in dB) to achieve R, = 2 for the

8-PSK constellation

M | MRC | EGC | SC

2| 6.1 6.7 | 7.5

31 3.7 46 |6.0

4 2.1 3.1 5.2

81 -13 | -0.2 {36

Table 4.4: The E;/N, per branch values ( in dB) to achieve R, = 2 for the

16-QAM constellation

M | MRC | EGC | SC

2] 10.7 | 11.3 | 12.1

3 80 8.8 | 10.3

4 | 6.3 72 | 94

8 | 2.7 3.8 | 7.6

Table 4.5: The E,/N, per branch values ( in dB) to achieve R, = 3 for the
16-QAM constellation
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4.4 Pairwise Error Probability

In this section, tight upper bounds on the pairwise error probability are de-
rived for the three combining schemes. Moreover, the pairwise error probability
expressions are expressed in product form — i.e.,
N
P(xy — xnlany) = K. X l_]_—[lW(xl,fvl), (4.41)
where K is a constant that does not depend on the length of the error sequence,
and W (x;, #;) is the error weight profile between x; and #;. Expressing the
pairwise error probability in this form allows the use of the transfer function
technique of trellis codes to be used. In contrast with other methods of finding
the bit error probability, the transfer function method accounts for all the paths
of the trellis.
Using the union bound approach, the average bit error probability, P,, of
trellis coded systems is upper bounded as [61]
0
Po<Y 3 Y Na(%n,%n) Pr(xa)P(xn — %) (4.42)
n=1 Xn x,#X,
where Pr(x,) is the a priori probability of transmitting the sequence x,, and
Np(Xy,%,) is the number of bit errors when x,, is the transmitted sequence and
%, is chosen by the decoder. Note that [61]
00 N
T(D,1)=3"5 3 Pr(x,) M) [T W (2, 25) (4.43)
n=1 Xn x,£%n i=1
where T'(D,I) is the transfer function of the code with D averaged over the

fading distribution.
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4.4.1 Maximal Ratio Combiner

The conditional pairwise error probability for maximal ratio combining can be

expressed as

P(xy — xnlay) = P(m(Xn,yn;an) — m(xny,yn;an) > 0ay)
= P(ZN, M (lyig — aigmil? = |yig — aiy3i]?) > 0lay)
(4.44)
which can be simplified to
P(xy — Xnlay) = P(ZL, S [—a? |z — &if* — 25, R{niy(z; — £:)*}] < Olay)
= Plen > T, T, dd)|zi — £|aw),
(4.45)

where zy is a Gaussian random variable with zero mean and a variance of

2N, N, ¥, a2 |z, — £,|°. This probability can be expressed as

P(xy — Xnlay) = —erfc (4 ny, ) (4.46)

where erfe(z) = 2= [°e e Pdt, d; = JM‘— and v, = Y2, a?,. Since the a;’s
are i.i.d. Rayleigh distributed random variables with E(a?,) = 1, their squares
are i.i.d. exponentially distributed random variables with a mean equal to one.
Hence, ~; will have an M-Erlang distribution with parameter one — i.e., its pdf
is

flv) = W;_l)!%w_l)e_%- (4.47)

The unconditional pairwise error probability is thus

P(xy — Xy) 2/ / erfc (« Z’Yz ) - flyn)dy - - dyn.

(4.48)
Define

(51 = and W; = ’)’1(1 + d,) (449)
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So f(7;)dv; can be expressed as

f(%’)d’)’i = me&wi X (Mil)!sz_le—mdwi

= medlw’ X f(wz)dwl

(4.50)

where f(w;) is the M-Erlang distribution of w; with parameter one. Therefore,
the unconditional pairwise error probability can be represented as
POy = %n) = $Tliey grag o=+ I exfe (y/ZI, 8

where n = {i : z; # &;} and L, = |n|. Note that

(4.51)

€N 1EN
where 6,, = min{8;,i € n}, and since erfc(z)e** is monotonically decreasing for

z > 0, then the pairwise error probability can be upper bounded as

1 1 00
< < = - (5'"19) .
P(xx = %n) < 5 iﬂen AL /0 erfc( 5,,@) x D F( YA,  (4.53)

where (0 = 3°,c, w;. Since the w;’s are independent M-Erlang distributed random
variables each with parameter one, 2 will have an (M L,)-Erlang distribution

with parameter one; i.e.,

f(Q) = A QML—De=2 O > (4.54)

= (ML,-1)!

To evaluate the integral, we use the following equality [62]

1 o 1 K[ 2K-5-1 2 \’
e fel/z)e V=2 (K= gy — _—_
2(K—1)!/0 erfe(vzy)e v Y 22K§ K—1 1+
(4.55)
which is valid for x < 1. Integration yields
1 | 2MLy,—j -1 2 Y 1
P(XN — &N) < | = (__.—>
2= VPR AU = U aram
(4.56)
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Let L be the minimum time diversity of the code — i.e., the minimum Ham-
ming distance, in signal symbols, between any two signal symbols. Then, L < L,

and we can further upper bound the pairwise error probability by

1
XHW

i€n

ML ([ oML —j—1 j
P(XN—))A(N)S 1 J < 2 )

. _c
= N VA 1+ Vo

(4.57)
Note that the upper bound in [62] is a special case of this bound (M = 1). The
upper bound in Eqn. 4.57 is written in a product form. This allows us to use

the transfer function of the trellis code to account for all trellis paths. Therefore,

the bit error probability can be expressed as

P, < % 22% 5| MRt (1 2 )j oD, 1) |1=1,DeFa/4No
=i\ ML-1 + VB or
(4.58)
where
D | pe-osag= —— (4.59)

1+ Ze)M
This upper bound has the same complexity as the Chernoff bound. The extra
term on the left of the transfer function is always smaller than or equal to one.
So this bound is at least as tight as the Chernoff bound. To see the tightness of
the bound, the 8-state 16-QAM code with bandwidth efficiency of 2 bits/sec/Hz
is used. For this specific coding/modulation

0.8E,/N,

= e 4.60
1+ 0.8E,/N, (4.60)

Figure 4.6 compares the newly derived bound for dual diversity (M=2) and

maximal ratio combining with the Chernoff bound for the same code; the new
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bound is slightly more than 1 dB tighter than the Chernoff bound at a bit error

rate of 1075.

Chernoff bqun.d

BER

_4

10
Eb/No (per branch)

Figure 4.6: A comparison between the new bound and the Chernoff bound for
the 16-QAM I-Q TCM 8-state code with maximal ratio combining and double

diversity.

The performance of the 16-QAM with MRC and different orders of diversity
is shown in Figure 4.7, where 4, 8, and 16-state codes are shown. It is clear
that the largest gain is obtained in going from single to double diversity; i.e.,
the coding gains diminish as the order of diversity increases. This confirms the

conclusions obtained from the cutoff rate curves.
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4

BER

(b)

)

Eb/No (per branch)

(c)

Figure 4.7: BER of 16-QAM I-Q TCM 4,8, and 16-state codes with maximal

ratio combining and different diversity orders. solid(bound), dashed(simulation),

(@)v=2(Mb)r=3()r=4
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4.4.2 Equal Gain Combiner

In the case of equal

can be expressed as

P(XN — iN[aN)

gain combining the conditional pairwise error probability

= P(m(xy,yn;an) — m(xn,yn;an) > 0lay)
= P(ZX(1ZM (yig — aigz)? (4.61)

—| T2 (yig — aigdn)?) > 0]Ay).

It can be simplified to

P(XN — chlaN)

= P( i]\;l{_(zll\il ai,l)2|xi - fi'iIZ
—2(CM e ) RIS, nig(e — £:)*]} < Olay)  (4.62)

= Play > TL(Si aig)?lei — &il’law),

where zy is a Gaussian random variable with zero mean and a variance of

2N, M va:1(2tﬂi1 Ayl

)2|z; — #;|%. This probability can be expressed as

P(xy — Xylay) = %erfc (4 g: pid; /bo) , (4.63)

~ b 7 2
where d, = i%‘—
(4

Define v; = p,/b,. T

and p; = (L2, a;1)®. Here, y; has pdf

Y exp(- 55

F(w) = “pgro= w2 0. (4.64)

hen

(M-1)

fly) = L(Me_;;;(._ﬂ Y. > 0. (4.65)

Therefore, the unconditional pairwise error probability can be expressed as

P(XN — }A{N) = %fooo e fOOO erfc ( Efvzl Vldz)

(4.66)
Xf(v) - flyw)dy - - - dyw.

83



Similarly, define

. d: -
Therefore,
fwdy = Gmwe®™ x ghmel e d
( ) (1+d, )M (M-1)! (468)
= g X S (@1)d

where f(@;) is M-Erlang distribution of @; with parameter one. Hence the un-

conditional pairwise error probability can be represented as

P(xy = %y) = 51lien gaym Jo~ -+ o~ erfe ( PO &GJO

s (4.69)
xRt D9 (@) - f (Gy)didn - - - didy

where 1 = {i : z; # &;} and L, = |n|. Note that

3 b > Suiy (4.70)

1€n €7
where 6, = min{&,i € n}. Hence, the pairwise error probability can be upper

bounded as

P(XN — XN) S ; m/ erfc (V 5 Q ' X 6(66 f(Q)dQ (471)

where Q = Yien @i and Q is distributed as

FQ) = Gty Q™M De=® Q> 0. (4.72)

Finally performing the integration yields

1 M 2ML, -5 -1 ( 2 )j Tl 1
= VSRR ARV B Y (e AT
(4.73)

P(XN —))A(N) S
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Again, since L < L, we can further upper bound P(xy — Xy) by

p( ) < 1 MLI OML—-j-1 ( 2 )j 0 1
Xy = Xn) < | =+ — x| ———.
22ML ML —1 14+ /6, ien (L+d)M
(4.74)
Therefore, the bit error probability can be tightly upper bounded by
1| 1 ML 2ML—j-1 2 \'| oT(D, 1)
P <+ |5z 1+ /0. T |r=1.pme-suisn -
j=1 ML -1 e
(4.75)
where
_ 1
D |p_-Boang= ——————. 4.76
G (o o
For the same previous coding/modulation schemes, ¢, is expressed as
0.8b,FE;/MN,
Je / (4.77)

" 1+ (0.85,E,/MN,)’
The performance of the previous codes with equal gain combining and dif-
ferent orders of diversity is shown in Figure 4.8. Similar to the MRC case, the

largest gain is obtained in going from single to double diversity.
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Eb/No (per branich)

(b)
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Eb/No {per branch}

(c)

Figure 4.8: BER of 16-QAM I-Q TCM 4,8, and 16-state codes with equal gain

combining and different diversity orders. solid(bound), dashed(simulation), (a)

v=2b)v=3()r=41
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4.4.3 Selection Combining

With selection combining, the conditional pairwise error probability can be ex-

pressed as

P(XN — ﬁNlaN)

P(ZiL (lyiy

This expression can be simplified to

N
i=1

2

P(XN — chlaN) P( (—ai,j, Z;

P(m(xy,yn;an)

- ii'ZIQ - 20,2‘,]'*%{7%,1(.’1),' -

—m(xn,yn;an) > 0lay)

— i Til* = |yig — aij+2i?) > Olan).

(4.78)

2;)*}) < Olan)

Py > TN, vilz; — £:]%an).

(4.79)
where v, = az e ZN 182 Gaussian random variable with zero mean and a variance
of 2N, SN, v;|z; — 4;]%. This probability can be expressed as

P(xy — Xylay) = —erfc (4 Zyz ) (4.80)
where d; = |x1 I’l . The pdf of v, is
Fw) = M(1—e)M-Dev
M-1 (4.81)
— Ek 1 ( )kri-l e—k,u,.
ki —1
The unconditional pairwise error probability can be expressed as
- 1 <M M N ki1 M-1
P(xy = Xy) = 3 2ki=1 -+ Ky=11lim1 M(-1)%
ki—1
X fo°-- o erfe ( >N vd; ) e R emhNUNdy, - duy
(4.82)
Define
d;
5i,k = kJZ n dl and Wik, = I/,(kl + dl) (483)
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Hence,

M-1
fw)dy; = ZM 1)ftl ( 1

O,k Wa kg TWaki (] ik, - 4.84
- k¢+d,~)e e, (484

So, the pairwise error probability can be expressed again as

M-1
Plxy - %y) = XM ...3¥ _ Y {M(-1)k+ L (=)}
X f [ erfc( TN 5,,9%,6) (SN, 8k, wk,)

XeTWEL e eTNEN g g W gy -

(4.85)
Define
L= wyp,. (4.86)
1€7
Therefore,
FI) = (Ln_l)'r(Ln—l) e T T'>0. (4.87)
Also, observe that
D bikwin =D Oswuk, (4.88)
i€n i€n
where
) . min{d;}
s = Oi k. Jkie{l,.. M}}= ————. 4.89
0s = min{d; 5,1 € 0, k; € { I3 M + min{d;] (4.89)

Using the above expressions, the pairwise error probability can be expressed as

M-1
Pxy = %n) < ilie, | ZhL, M(—1)FH! o | X
2 llien k=1 b1 (k+d,) (4.90)
Js2 erfc (v&sf‘) e%T) f(I)dl'

The final step is to evaluate the integral and replace L, by L. Hence, the pairwise

error probability can now be expressed as
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R L L 2L—-j7-1 o
Plxy = Xn) < |z Xim . Ty
—1
(4.91)
k+1 M-1 1
X Hzen Zk 1 ( ) & m
-1

Therefore, the bit error probability can now be expressed as

( ) (D, )lIZI,D:e—Es/‘INo, (4.92)

L1 14+ oI

1 L
il

where
M-1 1

M
D |pe-mosame= 3 M(=1)* (4.93)

Es
k—1 k+4No

For the same previous coding/modulation schemes, ¢, is expressed as

_ 0.8E,/N,
" M+0.8E,/N,

(4.94)

The performance of the previous codes with selection combining and different
orders of diversity is shown in Figure 4.9. Similar to the two combining schemes,
the largest gain is obtained in going from single to double diversity. Moreover,
with increasing the diversity order the coding gains diminish faster than in the
other combining cases.

Comparisons between the three combining schemes are shown in Figure 4.10
for M = 2 and M = 4. It is clear that MRC achieves the best performance.
EGC error performance is within 1 dB from MRC. As M increases, the difference
between the three schemes increases. This is clear between MRC and SC. Also,
it is obvious that the upper bound is very tight and gives very accurate values

for the bit error probability, especially, at bit error rates less than 1073,
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Eb/No (per branch}
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Eb/No (per branch)

(a) (b)

BER

6 8
Eb/No (per branch)

()

Figure 4.9: BER of 16-QAM I-Q TCM 4,8, and 16-state codes with selection
combining and different diversity orders. solid(bound), dashed(simulation), (a)

v=2(b)r=3(c)r=4
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BER

Eb/No (per branch)

Figure 4.10: Simulated BER of 16-QAM [-Q TCM 8-state code with different
combining schemes. dashed (M = 2), solid (M = 4).
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4.5 Performance of Uncoded Systems

The derived bounds can also be used to evaluate the performance of uncoded
systems. In uncoded BPSK, the error event length is L, = 1. This means that

the pairwise error probability is equal to the bit error probability, P,.

e For MRC receivers, d; = E;/N,. Therefore,

5 = 6 = 2o/ Mo

and

1
1+ d; =1—5i:(1—\/5:)(1+\/(i-), (4.96)

Since J,, = d;, the upper bound is satisfied with equality in this case.

Therefore, the bit error probability can be expressed as

2M — 43 -1 j
P, = ﬁ in1 M—jl (1+3/E)J (ﬁ)M
(4.97)
2M—4—-1 -
- =T (e

If we define k = M — j, then P, can be written as

11—\ M+k—-11) 145\
P,,:( ; ) 3 ( 2\/—>' (4.98)
k=0 k

This is exactly the same expression in [1].

e For EGC receivers, d; = %ﬂ— Therefore,
o

b, =6 = —— (4.99)
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and

1jgi =1-6=(1-VR)a+V8). (4.100)

Therefore, the bit error probability can be expressed as

1 M 2M—-j-1 ) 7 1 \M
Pb:?—MZ - ( ) (4.101)
i=1 M—1 1+ (1+dy)

6min

which again can be written as

— M 1 _ —\ k
Pb:(l_Q\/é_’) IR, (H‘/‘?) (4.102)

k=0 k 2

e For selection combining receivers, d, = F;/N,.

d; ki
Oi, = ) and Fad (1—4/6ix)(1+y/6:x)  (4.103)

)

Therefore,
1 X M-1 1 1
P,=-% M(-1)k*! : (4.104)
2 kz::1 ki —1 (ki +di) (1+ /6,1,
which can be finally written as
1M M d.
P, ==Y (—1)kH 1- —). 4.105
P I (e (4.105)

Note that in all the previous cases when M = 1 the formula reduces to

1 E,/N,
Py= (1 - ﬁbEbW> (4.106)

which is exactly as in [1]. Figure 4.11 shows P, values for the three combining

schemes with diversity orders of M = 1,2, 3,4.
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Figure 4.11: Bit error probability of uncoded BPSK with different diversity
orders and combining schemes (a) MRC (b) EGC (c) SC
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4.6 The Effect of Branch Correlation

Up to now, we have assumed that the fading in the different diversity branches
are independent. In some cases, this is difficult to achieve due to improper
antenna positioning or receiver space limitations. Therefore, it is important to
examine the possible degradation in the system performance when the branch
signals are correlated. The effect of branch correlation on the distribution of the
received signal was studied by Schwartz et. al. in 1966 [65]. Recently, the effect
of correlation on non-coherent orthogonal digital modulation was studied [73].
They derived upper bounds for binary convolutional codes and non-coherent
orthogonal digital modulation.

In this section the pairwise error probability for maximal ratio combining with
correlated branch signals is derived. Recall from Eqn. 4.46 that the conditional
pairwise error probability may be expressed as

1 M
P(xy — Xylay) = §erfc ( Z Za?zdi) (4.107)

i=11=1

where d; = J%E Also, a2, = |hy|* where h; is a complex Gaussian random
variable with zero mean and variance of 1/2 for both the real and imaginary

parts, and | - | denotes its envelope. Observe that
M
> ah = hib; (4.108)
1=1

where h; = {h;1,..., hi} and (-)* denotes the Hermitian transpose. The prob-

ability density function of h; is expressed as
1

ki) = ————— exp(—h;K; 'h} 4.109

f(—l) 7N det Kﬁ, exp( L4 h, —z)’ ( )

where K}, is an N x N covariance matrix with entries (K )i = E(hghj,). It is
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also assumed that the real parts of h,’s are independent of the imaginary parts;
i.e., the cross covariances are zero.

The first step is to uncorrelate the random variables using a linear transfor-
mation. We are interested in generating a new vector g. = {g1, ..., ginr} With a

diagonal covariance matrix. Let U be the transformation - i.e.,
g, = Uh,. (4.110)

Using this transformation, the covariance matrix of g,, denoted by K, is
expressed as follows

K, =UK, U, (4.111)

-

where U' is the transpose of U. Since K}, is a symmetric matrix, it can be

represented in the following form
Ky, = QAQ", (4.112)

where A is a diagonal matrix that consists of the eigenvalues of K and Q is a
matrix whose columns are the orthonormal set of the eigenvectors of Kp . The

last equation can be rewritten as
A=Q'KQ. (4.113)

Therefore, if we let U = @Q* then the Gaussian random variables g, are indepen-
dent and K, = A; i.e,
A i=j
K, ={ "’ (4.114)
- 0 otherwise

The second step is to make another transformation so that the covariance
matrix becomes the identity matrix. This is achieved via the following transfor-
mation

9, = /Ky p; (4.115)

=1
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This makes the Gaussian random variables p, independent with same variance.
Using this transformation, the unconditional pairwise error probability can be

expressed as

Ploy — &) = 1[5+ 5 erfe (/I S hauds)

(4.116)
flau) - flam) -+~ flana)daqur - - - dgune - - - dana,
where g = |py|?. Define
A -
L s and @y = qu(1+ Nd;). (4.117)
Hence,
@)y = ———ePPtgBudg, = — S (0 do,  (4.118)
’ ¢ 1+ )‘ldz ¢ 1+ /\le ’ "

where f(@;) is the exponential distribution of &; with parameter one. Hence,

the unconditional pairwise error probability can be expressed as
P(xy — %n) = 5 e, [T, (ﬁ,l\,zj) Joo - Joerfe (\/Zilil Ir Sil(:)il) X

fl@n) - f(@) -+ F(@npr)dDny - - - doin - - didwm

(4.119)

where 17 = {¢ : z; # ©;} and L, is its cardinality. However,

M M
SN budu =YY beda, (4.120)

icn [=1 i€n l=1

where 6, = min{0y,7 € n,l = 1,--- M} Hence, the pairwise error probability can

be upper bounded as

M o0
P(xy — Xn) H H T )\ 3 / erfc < 60@) x el £(B)dd, (4.121)
ien =1 !

where & = Pien Zz=1 w;. Since the @;’s are independent exponentially dis-
tributed random variables each with parameter one, ® will have an (ML,)-

Erlang distribution with parameter one — i.e.,

F(®) = Gy @M Ve ® 3 > 0. (4.122)

97




Finally performing the integration yields

1 M| 2ML,-j-1 2 J M 1
Py — %3) < | (_) M)

(4.123)
Therefore, the bit error probability can be expressed as
p <] MZL 2ML—-j—1 ( 2 )j 8T(D,I)I
n I=1,D:e_E3/4N07
T k| 22ML ML — 1 1+ /6, ol
(4.124)
where
_ M 1
D |p_. -5, — 4.125
|D_e Bs/aNg = H (1 +)\ij) ( )
Similarly, the cutoff rate can be expressed as
> ¥ (T
R, = 2log,(|A]) — log, - . (4.126)
’ zi€Az, €A |i=1 (1 + )\ll%ﬁ)

4.6.1 Example

In many practical systems, dual diversity is used. The covariance matrix K is

represented as
K, = A (4.127)
p 1
In other words, p is the correlation coefficient between the two antenna elements.
It is straightforward to show that the eigenvalues of K are (1 —p) and (1+ p).
The 4-state I-Q TCM 16-QAM scheme ( 2 bits/s/Hz) is used as an example. For

this configuration, é, will be

(1-p) 252
= Tyt (4.128)
N,
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A comparison between the bound and simulations are shown in Figure 4.12
for the case of p = 0.5. Clearly, the bound is very tight. Figure 4.13 shows the
bit error probability upper bound curves for the mentioned code with different
values of p. It should be pointed out that values as large as p = 0.5 degrade
the performance slightly. The effect of space correlation is not as severe as time

correlation which is minimized via interleaving.

1

Y SR S | S S B S
1021 : : : \ bq;und 4
& 102 . s:imulatlt?n —
107 E
10° L ' ' . : : : . P
0 1 2 8 9 10

4 5 6 7
Eb/No (per branch)

Figure 4.12: A comparison between the upper bound and simulated BER of
16-QAM I-Q TCM 4-state code with MRC dual diversity and p = 0.5 .

4.7 Comparisons and Complexity Tradeoffs

In this section, we compare the performance of an I-Q code with a traditionally
designed trellis code. Figure 4.14 shows a comparison between the I-Q 16-QAM
and the 8-PSK TCM 8-state codes. MRC is used and the diversity order is

M = 2. Even in double diversity environments, the I-Q code outperforms the
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Figure 4.13: Analytical BER of 16-QAM I-Q TCM 4-state code with MRC dual

diversity and different correlation values.

8-PSK code by about 1.5 dB at a BER=10"°.

A comparison between three schemes is shown in Figure 4.15. The first
scheme uses a 4-state code and maximal ratio combining of two branches. The
branch correlation p is assumed to be 50%. The second scheme uses a 64-state
code but no diversity combining is employed. Both schemes are 16-QAM. The
third scheme employs diversity only. It uses uncoded QPSK with Gray mapping.
The diversity order (M) is . All systems have a bandwidth efﬁc\iency of 2
b/s/Hz. Simulation results are plotted for the first two systems and analytical
values are shown for the third system. Clearly, the first scheme outperforms
the other schemes at BER < 4 x 1073 even though moderate branch correlation

(50%) exists. This suggests that a combination of simple channel coding and
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space diversity might yield in general better performance than using complex
channel coding schemes or several diversity receivers. Moreover, increased delay

and interleaving for complicated channel codes is avoided.

BER

1074 1-Q 16-QAM

10 1 1 | i 1
2 3 4 5 6 7 8 9 10

Eb/No (per branch)

Figure 4.14: Simulated BER of 16-QAM I-Q TCM 8-state code and the 8-PSK
TCM 8-state code with MRC and double diversity.

4.8 Summary

In this chapter, cutoff rate expressions of coherent systems with maximal ratio,
equal gain, and selection combining schemes have been evaluated using Chernoff
bounds. Moreover, tight upper bounds on the pairwise error probability have
been derived. These upper bounds were used to evaluate a variety of system
configurations, including uncoded and coded systems. The upper bounds were
expressed in product form to allow the use of the transfer function approach

for evaluating the performance of trellis coded systems. Simulations of different
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Figure 4.15: Copmarison between the 16-QAM I-Q TCM 4-state code (with
double diversity, MRC and 50% branch correlation) and the 64-state code (with

no diversity).

systems show that the derived bounds are very tight.

For the case of branch correlation, the cutoff rate and a tight upper bound on
the pairwise error probability were derived for maximal ratio combining. Also,
the pairwise error probability is expressed in product form and the transfer
function approach is used. Branch correlation with correlation coefficients less
than 0.5 result in a slight performance loss. The results indicate that the joint
use of coding and diversity results in a substantial improvement in the Rayleigh

fading channel.

102



Chapter 5

Sequence MAP Decoding

5.1 Introduction

Traditionally, source coding (data compression) and channel coding (error con-
trol) are designed independently of one another. The reason for this is based on
the separation principle presented by Shannon [33], which states the no perfor-
mance degradation is suffered if the two functions are thus partitioned. However,
this principle is an asymptotic result with unlimited delay and complexity. Given
a limited decoding complexity/delay, joint source-channel coding could outper-
form separately designed pairs.

Some recent work in this area has investigated the design of source codes that
are robust to channel errors [74, 75, 76]. On the other hand, the work in [77] and
[78] has concentrated on the design of channel decoders that exploit the known
characteristics of the source code. The work here focuses on the performance of
trellis codes with sequence maximum a posteriori (MAP) decoding of correlated

signals transmitted over very noisy AWGN and Rayleigh channels.
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An ideal source encoder would compress an audio, image or a data signal
and produce an independent, identically distributed (i.i.d.) sequence of bits
at the output. Most source coding algorithms are not ideal; the output bit
stream contains residual redundancy in the form of memory and/or non-uniform
distribution. Hence, the number of bits produced per sample (or unit time) is
significantly greater than the entropy rate of the source encoder’s output.

This residual redundancy may be exploited at the receiver by adjusting the
Viterbi algorithm decoding metric to use the source’s a priori probabilities. Se-
quence MAP Viterbi decoders take advantage of this residual redundancy to
enhance the performance of the system under very noisy channel conditions.
This decoding method used in conjunction with other means (i.e., soft-decision
decoding and channel state information estimation) results in a very robust sys-
tem under bad channel conditions.

The Viterbi algorithm selects the maximum likelihood sequence as its esti-
mate; it does not minimize the probability of error of the data bits [79, 80, 81].
However, its performance is very close to that of the optimal symbol-by-symbol
decoding algorithm [79]. Furthermore, although the existing symbol-by-symbol
decoding algorithms apply only to linear codes [79], the Viterbi algorithm is
applicable to linear and non-linear codes. Sequence MAP decoding does not re-
quire substantial modifications of the existing decoders for trellis coded system,
and as indicated in [77, 78], may be used if needed where a bad channel environ-
ment exists. In [77], Hagenauer showed that 2-3 dB gains could be obtained for
PCM transmission and the full rate group special mobile (GSM) speech codec.
A 16-state rate 1/2 convolutional code with BPSK modulation and a dynamic

two state Markov correlation estimator were used. In [78], Alajaji, Phamdo and

104



Fuja used both block and convolutional codes to exploit the residual redundancy
in the CELP speech encoder. A 32-state rate 3/4 convolutional code with BPSK
modulation and sequence MAP decoding was used. The receiver was supplied
with the source a priori information which was obtained using first and second
order Markov models on a large training sequence from the TIMIT [82] speech
database. Decoding gains of 2-5 dB were obtained.

The work in this chapter is divided into two main parts. The first part as-
sumes a simple ideal first order two state Markov source model. This simple
model is chosen because its a priori information may be easily estimated at the
receiver during periods of good channel conditions. A variety of different sys-
tems with different sources, modulation schemes and trellis code complexities are
simulated. Extensive simulations of these system configurations are performed
to assess their effect on the sequence MAP decoding gains* (simply called MAP
gains) over ML decoding. In performing such simulations, we try to address the

following questions

e What is the effect of increasing the trellis encoder memory?

What is the effect of increasing the encoder rate?

What is the effect of increasing the signal constellation?

What is the effect of redundancy type?

What is the difference in MAP decoding gains for coded as well as uncoded

systems?

We use the term “decoding gains” instead of “coding gains” since we are comparing two

systems with the same coding schemes but the decoders are different
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e What is the effect of the channel type (AWGN or Rayleigh) on the MAP

decoding gains?

The first part is concluded with a comparative example between a 2-D and a
4-D QPSK trellis coded modulation schemes with the same spectral efficiencies
and ML asymptotic coding gains. It is shown that increasing the dimensionality
(i.e., multiplicity) of the code results in increased decoding gains.

In the second part, we consider a practical example for coding the CELP line
spectral parameters (LSP’s) using trellis codes with 4-D QPSK modulation. Two
source models are used. One is based on the intra-frame correlation while the
second one models both intra-frame and inter-frame correlations. Both AWGN

and Rayleigh channels are considered.

5.2 MAP decoding for Ideal Sources

5.2.1 System Model

The basic model block diagram is shown in Figure 5.1. The information bits from
the source , u;’s, are modeled by a stationary first order two-state Markov process
as shown in Figure 5.2. The sequence {u,} represents the output of a source
encoder, or (if the source is not compressed) the output of the source itself. We
denote the transition probabilities Pr(u, = 0ju;~; = 0) and Pr(u; = 1|u;_y = 1)
by Pr(0]0) and Pr(1|1), respectively.

The entropy of the Markov chain can be computed to arrive at an estimate
of the source redundancy. Let Ho(U) be the source entropy rate and let H(U)
be the entropy of a memoryless source with the same marginal distribution as

the source. Define [83]
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Trellis

{ u }—— Encoder » Modulator—> Interleaver
A
AWGN/
Rayleigh
| Viterbi |, Demod | Deinter- |
Decoder leaver
CSI

Figure 5.1: Block diagram of the system model.

Pr(1]0)

Pr(0]0) ° e Pr(l]1)

Pr(0|1)

Figure 5.2: Two-state binary Markov source model.
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pp=1-H(U)
pm 2 H(U) — Hoo(U) (5.1)
pTépD +pm =1— Hy(U).

In other words, pp denotes the redundancy due to the non-uniform distribution
of the source, pps denotes the redundancy due to the source memory and pr
denotes the total redundancy of the source. We assume that the source has
pr > 0. The two forms of redundancy are utilized by the decoder to combat
channel errors.

The source bits are arranged in a sequence of binary k-tuples {u;,u,,...}.
At time 1, u; is an input to a trellis encoder which produces a (k + 1)-tuple of
binary bits ¢;. The trellis encoder output ¢; is mapped to z; = {z},...,z"},
a complex vector in general, where m is the number of transmitted signals per
trellis branch (baud);i.e., the multiplicity of the code. For example for rate 1/2
trellis code with BPSK modulation m = 2. The sequence xy = {z;,...Zy} is
transmitted over the channel. This can be described by the discrete time relation

as

1_ 1.1 1
Ui =0;T; + 1y

2

i

Y, = 0.z + 1

(5.2)

Y = aral +
where n! is a two-dimensional zero mean additive Gaussian noise with a single-
sided power spectral density of N,. The distribution of af depends on the channel

assumption
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e For a purely AWGN non-fading channel, a{ =1.

e For a fully interleaved Rayleigh fading channel we assume {a’} is a sequence
of ii.d. Rayleigh distributed random variables with E[(a})?] = 1. Note
that the assumption of full interleaving is fully justified since under very
noisy channel conditions (the region of interest in this work) interleaving
requirements are much less than at high SNR’s. In other words, at low SNR
the additive noise plays a more dominant role than the possible correlation

in the fading.

5.2.2 MAP decoding rule

The sequence MAP decision rule is to choose Xy which maximizes

flyn|xn) Pr(xn).

For the AWGN channel, this reduces to choosing Xy which minimizes

N m
ZZ |yf — i‘i|2 — N, InPr(xy).

i=11[=1

Using the chain rule In Pr(xy) can be expressed as
In Pr(xy) ZlnPr iz, 20y ). (5.3)

However, because of the first order Markov property, we can further simplify this
to

InPr(z;|z; 1,2 2,...) = InPr(u;|u; ). (5.4)

Therefore, the MAP decoding rule is to choose Xy which minimizes

N m
5 (z vl — 4= N, Pr(uim,-_l)) |
=1

i=1
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For the Rayleigh distributed fading channel, CSI is incorporated in the decoding

metric to choose X, which minimizes

N

m
5 ( ' — el - N, Pr(uzm,-_l)) |
=1

5.2.3 Bit Error Probability Upper Bound
Using the union bound approach, the average bit error probability, Py, of trellis
coded systems is upper bounded as [61]

%

BEYY Y NalnRa) Prixa) P(xn = %) (5.5)

n=1 Xn x,4%n
where P(x, — X,) is the pairwise error probability between the sequences x,
and X,, Pr(x,) is the a priori probability of transmitting the sequence x,, and
Np(xn,%,) is the number of bit errors when x,, is the transmitted sequence and
X, is chosen by the decoder.

In enumerating the trellis paths, the super-state diagram with 22” states is
used, where v is the number of memory elements of the minimal encoder [61]. It
is not possible to use the state diagram of the code for path enumeration even if
the code satisfies the uniformity properties. This is because not all sequences are
equiprobable and hence the paths will contribute unequally to the upper bound
of the bit error probability.

However, the union bound with either maximum likelihood (ML) [84] or MAP
[77] decoding is loose at high decoding error rates (~ 1072). It does not provide
useful quantitative values for the MAP decoding gains. Recently, an improved
upper bound on the error event probability, P,, for the Viterbi decoder over the
binary symmetric channel (BSC) was presented [85]. At high error rates, this

upper bound does not give trivial values for P,, as in the case of the standard
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Source | Pr(0]0) | Pr(1]1) | pp 3% oT

I 0.8 0.2 0.278 | 0.0 |0.278

II 0.8 0.8 0.0 |0.278 | 0.278

III 0.88 0.65 | 0.180 | 0.187 | 0.367

IV 0.9 0.8 0.082 | 0.365 | 0.447

A% 0.2 0.9 0.496 | 0.007 | 0.503

Table 5.1: The five source models and their redundancies

union bound. Also, it may be deduced from [85] that a higher length of an error
event path contributes to the reduction of P,. In this work we resort to computer

simulations to accurately asses the performance of the MAP decoder.

5.3 Simulated Systems

Different configurations of systems were simulated. The source is assumed to
have one of five distributions. Table 5.1 shows these distributions with their
redundancies. The first source is a non-uniformly distributed i.i.d. process. The
second is a symmetric binary Markov source. These two sources have the same
total redundancy but in completely different forms; the i.i.d. source exhibits
all its redundancy in its non-uniform distribution, while the symmetric Markov
source exhibits its redundancy in the form of memory. The last three distribu-
tions are asymmetric Markov sources. Source III has its total redundancy almost
split equally in the forms of memory and distribution, while sources IV and V
are highly skewed to one form of redundancy.

BPSK, QPSK and 8-PSK modulation schemes were used. Trellis codes with
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different encoder rates and complexities were implemented. These different con-
figurations are tested on two channel models — namely, the pure non-fading
AWGN model and the Rayleigh-distributed fading channel model with ideal in-
terleaving. These two channel models describe the extreme cases of channels
encountered in practice. Hence, the results obtained over other channels (e.g.,
Rician) will lie in between our results. The simulated systems are described as
follows

For comparison purposes, uncoded BPSK modulated systems were simulated.
Five different sources were used over both the Gaussian and Rayleigh channels.
A two-state Viterbi decoder with sequence MAP detection was used. MAP de-
tection gains, compared to symbol-by-symbol ML detection, were highly affected
by the type of redundancy. Uncoded systems with redundancy in the form of
memory have higher MAP decoding gains than uncoded systems having all or
most of their redundancy in the form of non-uniform distribution.

In coded systems, the chosen codes are optimized for the channel model
assumed. The code design criterion for the AWGN channel is to maximize the
minimum FEuclidean distance of the code. On the other hand, for the Rayleigh
channel, the design criterion is to maximize the minimum time diversity of the

code; i.e., the code’s minimum Hamming distance in signal symbols.

5.3.1 BPSK Modulated Systems

For systems with BPSK modulation, two families of trellis codes were used,
namely rate 1/2 and rate 2/3 codes. Both families of codes were obtained from
the tables of best convolutional codes (in terms of the Hamming metric) [63]. For

trellis codes with BPSK modulation, there is a one-to-one correspondence be-
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tween the code’s minimum Euclidean distance, dfe., and its minimum Hamming
distance, dy — i.e.,

dfree = 4E,dy (5.6)

Therefore, the codes are optimized for both channels. Rate 1/2 codes with 4,
8, and 16-state encoders were used for the five source models. Their minimum
Hamming distances are 5, 6, and 7, respectively. Their minimum normalized
Euclidean distances (i.e., dsree/FE;) are accordingly 20, 24 and 28, respectively.
The bandwidth efficiency of these codes are 0.5 bit/s/Hz. A decoding buffer
length of 8 was used for these codes, where v is the number of memory elements
in the encoder. At a decoding bit error rate (BER) of 0.02, MAP decoding gains
(over ML decoding) are as high as 1.4 dB for the Gaussian channel and 2 dB for
the Rayleigh channel for a correlated source with about 50% source redundancy.

Rate 2/3 codes with 4, 8, and 16-state encoders were also used to show the
effect of increasing the encoder rate on the MAP decoding gains. Higher MAP
decoding gains were obtained. For example, at a decoding BER of 0.02 gains
(MAP vs. ML) as high as 2.5 dB for the Gaussian channel and 4 dB for the

Rayleigh channel for a correlated source with about 50% source redundancy.

5.3.2 QPSK Modulated Systems

For QPSK modulated systems, the same rate 1/2 trellis codes mentioned above
were used. However, each 2-tuple of bits is mapped to two-dimensional (2-D)
QPSK signal points. Gray mapping was used so that maximizing the minimum
Hamming distance corresponds to maximizing the minimum Euclidean distance.
Moreover, using this approach the codes are optimized for both channels. The

spectral efficiency in this case is 1 b/s/Hz. Encoders with 4, 8, and 16 states
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were used. Their minimum Hamming distances (in symbols) are 3, 4, and 5,
respectively. Moreover, the codes’ normalized minimum Euclidean distances are
10, 12 and 14, respectively. A decoding buffer length of 8v was used for these
codes. The gains are very close to that of rate 1/2 codes with BPSK modulation.
The reason for this similarity is because the two systems have the same encoder

rates and QPSK signals have the same error performance as BPSK signals.

5.3.3 8-PSK Modulated Systems

Octal PSK modulation was also simulated to see the effect of increasing the signal
constellation. This system was constructed using rate 2/3 codes with natural 8-
PSK mapping. Ungerboeck’s 8 and 16-state codes were used [10]. These code are
fortunately optimized for both the Gaussian and the Rayleigh channels [46]. The
minimum Hamming distances (in symbols) are 2 and 3, respectively. Moreover,
the codes’ minimum Euclidean distances are 4.586 and 5.172, respectively [46].
A decoding buffer length of 8v was used for these codes. Higher MAP decoding
gains than that of rate 2/3 codes with BPSK are obtained. For example, at a
decoding BER of 0.02 gains (MAP vs. ML) as high as 3.3 dB for the Gaussian
channel and 4.6 dB for the Rayleigh channel for a correlated source with about

50% source redundancy.

5.3.4 Observations and Discussions

To determine the performance of the different codes, extensive simulations were
performed. Tables 5.2-5.11 show the MAP decoding gains (vs. ML decoding) for
all different systems at BER of 10, 5, 2 and 1%. We first notice that the gains

diminish as the BER decreases. The diminishing rate is slower for uncoded sys-
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tems. At lower error rates ML decoding will have only a very slight degradation
in error performance compared to sequence MAP decoding. This suggests that
to reduce the decoding computations MAP decoding should be used only in bad
channel environments.

We notice also that the gains for the Rayleigh channel are significantly higher
than the corresponding gains for the AWGN channel. The reason for that is be-
cause the slope of the decoding BER curves for the Rayleigh channel is more
gradual. This is very clear for uncoded systems where coding substantially im-
proves the performance over Rayleigh channels.

Comparisons for the uncoded systems reveal that the type of redundancy
significantly affects the decoding gains, especially for the Rayleigh channel. Re-
dundancy in the form of memory results in larger MAP decoding gains. Another
remark is that the gains does not diminish quickly as the BER decreases. This
suggests that even at low error rates (~ 1073%) appreciable gains over the Rayleigh
channels may be obtained.

For the coded systems, it can be seen that the rate 1/2 codes with BPSK
and QPSK modulations give comparable gains. This is due to the fact that the
same encoder is used and Gray mapped QPSK has the same error performance
as BPSK. It is clear also that the gains monotonically increase with increasing
the total redundancy; i.e., the effect of redundancy type is not apparent as in
uncoded systems. This is attributed to the fact that convolutional codes are
constructed using finite state machines which introduce memory to the system.
Even for sources with no memory, the coded bits will have some memory corre-
lation.

Regarding the number of encoder memory elements, it can be seen that
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the major portion of decoding gains can be obtained using 4-state codes with
low complexity; using more complex codes does not significantly improve the
performance at relatively high error rates. This is because codes with higher
number of states suffer from error propagation at very high channel error rates.

The effect of increasing the encoder rate is clear from the simulation results
for rate 2/3 codes with BPSK modulation. More decoding gains are obtained.
For example, for source V a decoding gain of 2.2(resp. 3.6) dB at a BER of 2%
is obtained over the AWGN(resp. Rayleigh) channel using a 4-state rate 2/3
code, while the 4-state rate 1/2 codes achieves a decoding gains of only 1.1(resp.
1.6) dB at the same BER and source model over the AWGN(resp. Rayleigh)
channel. Increasing the encoder rate further will also yield higher decoding
gains. This may be noticed from the results of the rate 3/4 code with BPSK
modulation reported in [78]. Another (perhaps surprising) observation is that
the performance of the 8-state code is slightly worse than the performance of the
4-state code at high error rates. This is because three memory elements are used
and one of the bits has only one delay element in the encoder structure. As a
result, the 4-state code will outperform the 8-state code at high error rates. This
fact has an effect on the decoding gains for the two codes and in some instances
the decoding gains of the 4-state code are slightly higher than the gains for the
8-state code.

Finally, the effect of increasing the signal constellation is shown in the results
for the 8-PSK coded systems. For example, at an encoder rate of 2/3, the decod-
ing gains for the 8-PSK systems are higher than the gains for the same encoder
rate systems with BPSK modulation. This is because the signal constellation

has more points and hence it is more sensitive to large noise values. This fact
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of increased MAP decoding gains is desirable since as the demand increases for
systems with higher spectral efficiencies, and hence higher signal constellations,
more MAP decoding gains could be obtained. Decoding gains as much as 3.8

dB at a BER of only 1% are obtained (see Table 5.11).

Modulation | Rate Spectral | v Gains (BER)
Type Efficiency 10% | 5% | 2% | 1%
BPSK uncoded 1 -1 09 (050403
.BPSK 1/2 1/2 2 1.2 {0906 0.5
BPSK 1/2 1/2 3 1.2 1090705
BPSK 1/2 1/2 4114 ]110(08}05
BPSK 2/3 9/3 |2 24 |17]11| 8
BPSK 2/3 2/3 3] 25 |17|11|10
BPSK 2/3 2/3 |4 24 |1.7[13]1.0
QPSK 1/2 1 21 1.2 [08]06]05
QPSK 1/2 1 31 1.2 [08]0.7]0.5
QPSK 1/2 1 4| 13 {1.0]08]0.5
8PSK 2/3 2 3132 (241714
8PSK 2/3 2 41 32 12411915

Table 5.2: MAP decoding gains for different trellis codes over AWGN channels.
Source I (with distribution Pr(0/|0) = .8, Pr(1]1) = .2).

117



Modulation | Rate Spectral | v Gains (BER)
Type Efficiency 10% | 5% | 2% | 1%
BPSK uncoded 1 -1 21 (16|13 |12
BPSK 1/2 1/2 |2 16 |11|08]07
BPSK 1/2 1/2 3 1.7 {12]09]08
BPSK 1/2 1/2 |4 1.8 [14]11]09
BPSK 2/3 2/3 |21 35 |26]1.9]16
BPSK 2/3 2/3 |3 36 |26]|19]L6
BPSK 2/3 2/3 41 36 272219
QPSK 1/2 1 215 |11(08(06
QPSK 1/2 1 3] 1.5 (11]09]0.7
QPSK 1/2 1 4 18 {1411 ]10
8PSK 2/3 2 3 3.8 [2821]1.9
8PSK 2/3 2 41 39 [30]25]21

Table 5.3: MAP decoding gains for different trellis codes over Rayleigh channels.
Source I (with distribution Pr(0|0) = .8, Pr(1|1) = .2).
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Modulation | Rate Spectral | v Gains (BER)
Type Efficiency 10% | 5% | 2% | 1%
BPSK uncoded 1 - 1.3 109(06]05
BPSK 1/2 12 |2 1309|0705
BPSK 1/2 1/2 |3 1.1 090705
BPSK 1/2 1/2 4112 [10|08]0.5
BPSK 2/3 2/3 |2 20 15|11/ .9
BPSK 2/3 2/3 |3l 16 |14]11] 9
BPSK 2/3 2/3 41 21 18|13 1.1
QPSK 1/2 1 21 14 (090706
QPSK 1/2 1 31 11]08[07]05
QPSK 1/2 1 41 13 100806
8PSK 2/3 2 319 1151110
8PSK 2/3 2 41 28 2218115

Table 5.4: MAP decoding gains for different trellis codes over AWGN channels.
Source II (with distribution Pr(0}0) = .8, Pr(1]1) = .8).
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Modulation | Rate Spectral | v Gains (BER)
Type Efficiency 10% | 5% | 2% | 1%
BPSK uncoded 1 - 26 1252322
BPSK 1/2 1/2 2 16 {1.2]09]0.8
BPSK 1/2 1/2 3] 1.5 |1.1/09 |08
BPSK 1/2 1/2 |4 17 |14 |11]1.0
BPSK 2/3 2/3 2 30 [24|21 |18
BPSK 2/3 92/3 3| 24 |21[18]15
BPSK 2/3 2/3 |4 32 |27]23|19
QPSK 1/2 1 2 16 |12 (1009
QPSK 1/2 1 31 15 (110908
QPSK 1/2 1 4116 131110
8PSK 2/3 2 3 23 |21 18|17
8PSK 2/3 2 41 35 |28 24|21

Table 5.5: MAP decoding gains for different trellis codes over Rayleigh channels.
Source II (with distribution Pr(0|0) = .8, Pr(1]|1) = .8).
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Modulation | Rate Spectral | v Gains (BER)
Type Efficiency 10% | 5% | 2% | 1%
BPSK uncoded 1 - 1.7 }1.110.7]0.6
BPSK 1/2 1/2 |2 16 |[11]08]07
BPSK 1/2 1/2 3| 1.5 |11]08]0.7
BPSK 1/2 1/2 41 1.7 11210908
BPSK 2/3 2/3 2 25 |18]13|1.1
BPSK 2/3 2/3 31 23 |1.7]13]1.1
BPSK 2/3 2/3 |4 27 |21|18]13
QPSK 1/2 1 2] 15 1110807
QPSK 1/2 1 31 15 [11]08]0.6
QPSK 1/2 1 41 16 (1210908
8PSK 2/3 2 31 28 (2116 |13
8PSK 2/3 2 41 35 262016

Table 5.6: MAP decoding gains for different trellis codes over AWGN channels.
Source III (with distribution Pr(0/0) = .88, Pr(1]1) = .65).
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Modulation | Rate Spectral | v Gains (BER)
Type Efficiency 10% | 5% | 2% | 1%
BPSK uncoded 1 - 33 |29|27]|26
BPSK 1/2 1/2 2012116111110
BPSK 1/2 12 |3] 20 |15]11]09
BPSK 1/2 1/2 4\ 22 | 1711312
BPSK 2/3 2/3 |2 38 |29]|23]21
BPSK 2/3 2/3 |31 35 |26]21]|19
BPSK 2/3 2/3 41 36 [27]22]19
QPSK 1/2 1 2 20 |15]12]|10
QPSK 1/2 1 3 20 |15|12]1.0
QPSK 1/2 1 41 22 161312
8PSK 2/3 2 3 35 (282421
8PSK 2/3 2 41 44 13412926

Table 5.7: MAP decoding gains for different trellis codes over Rayleigh channels.
Source III (with distribution Pr(0|0) = .88, Pr(1]1) = .65).
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Modulation | Rate Spectral | v Gains (BER)
Type Efficiency 10% | 5% | 2% | 1%
BPSK uncoded 1 - 23 |15]1.0]0.8
BPSK 1/2 1/2 |2 1.9 |14 1009
BPSK 1/2 12 |3] 19 |13|10]08
BPSK 1/2 1/2 |4 21 [15|12|10
BPSK 2/3 2/3 (2] 35 |26[20]|16
BPSK 2/3 2/3 |3 29 |22]18]|16
BPSK 2/3 2/3 |41 35 |28]21|18
QPSK 1/2 1 24119 1411008
QPSK 1/2 1 3 18 {1.3]1.0]0.8
QPSK 1/2 1 41 21 [151.209
8PSK 2/3 2 31 33 [26]20]|1.7
8PSK 2/3 2 41 46 | 35|27 |23

Table 5.8: MAP decoding gains for different trellis codes over AWGN channels.
Source IV (with distribution Pr(0/0) = .9, Pr(1|1) = .8).
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Modulation | Rate Spectral | v Gains (BER)
Type Efficiency 10% | 5% | 2% | 1%
BPSK uncoded 1 - 42 [ 3836135
BPSK 1/2 1/2 |2 26 |1.9]|15|13
BPSK 1/2 1/2 |3 25 19|14 |13
BPSK 1/2 1/2 41 28 [22]18]15
BPSK 2/3 92/3 2| 49 |4.1]34|30
BPSK 2/3 2/3 |3| 42 |34]28]24
BPSK 2/3 2/3 41 49 41,3530
QPSK 1/2 1 21 25 (19|16 |14
QPSK 1/2 1 3 24 181412
QPSK 1/2 1 41 27 12116 |15
8PSK 2/3 2 3 41 [35(3129
8PSK 2/3 2 41 56 |45 3.8 |34

Table 5.9: MAP decoding gains for different trellis codes over Rayleigh channels.
Source IV (with distribution Pr(0]0) = .9, Pr(1]1) = .8).
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Modulation | Rate Spectral | v Gains (BER)
Type Efficiency 10% | 5% | 2% | 1%
BPSK uncoded 1 -1 22 111]0.7]0.6
BPSK 1/2 1/2 |2 26 | 161109
BPSK 1/2 1/2 [3] 25 |16|12]10
BPSK 1/2 1/2 |4 29 |19|14]1.2
BPSK 2/3 2/3 |2 67 [34]22]17
BPSK 2/3 2/3 3 65 342318
BPSK 2/3 2/3 41 63 372520
QPSK 1/2 1 2129 (161109
QPSK 1/2 1 3 25 [16]11]09
QPSK 1/2 1 41 29 11914111
8PSK 2/3 2 3| 75 [ 443024
8PSK 2/3 2 41 77 1473327

Table 5.10: MAP decoding gains for different trellis codes over AWGN channels.
Source V (with distribution Pr(0]|0) = .2, Pr(1|1) = .9).
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Modulation | Rate Spectral | v Gains (BER)
Type Efficiency 10% | 5% | 2% | 1%
BPSK uncoded 1 - 5.0 322725
BPSK 1/2 1/2 2| 36 (231613
BPSK 1/2 1/2 |3 3524|1715
BPSK 1/2 1/2 41 39 (272017
BPSK 2/3 2/3 |2 89 |50]36]|30
BPSK 2/3 2/3 3| 87 [ 503629
BPSK 2/3 2/3 41 85 [54]14.0|3.3
QPSK 1/2 1 20 37 1221513
QPSK 1/2 1 31 35 (221613
QPSK 1/2 1 4 39 1262017
8PSK 2/3 2 31 94 5440135
8PSK 2/3 2 41 94 59|46 |38

Table 5.11: MAP decoding gains for different trellis codes over Rayleigh channels.
Source V (with distribution Pr(0[0) = .2, Pr(1]1) = .9).
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5.3.5 The effect of Increasing the Signal Dimensionality
on MAP Gains

The previous results suggest that as the encoder rate is increased, the benefit of
MAP decoding (relative to ML) increases. In trellis codes with multidimensional
( greater than two) constellations (also referred to as multiple TCM) the infor-
mation bits are grouped and sent over m bauds, where m here stands for the
multiplicity of the TCM scheme. For example, in the previously mentioned two-
dimensional Gray mapped QPSK (2-D QPSK) one information bit is delivered
to a rate 1/2 encoder at every baud. The encoder 2-tuple output bits are mapped
to one of the QPSK signals. The bandwidth efficiency is 1 bit/s/Hz. Suppose
we have a 4-D QPSK with the same bandwidth efficiency and ML coding gains.
What is the performance of the two codes with sequence MAP decoding? The
previous results suggest that the 4-D QPSK coded system will perform better.
A comparative example is used here to show the effect of increasing the sig-
nal dimensionality on the sequence MAP decoding gains. The previously used
8-state Gray mapped QPSK code has a minimum time diversity of 4. Its nor-
malized minimum Euclidean and product distances are 12 and 64, respectively.
Comparing this code with the codes in [86] and [57], this code is optimized
for both AWGN and Rayleigh channels. An 8-state 4-dimensional code is con-
structed. Its trellis diagram is shown in Figure 5.3. Two information bits are
delivered to a rate 2/3 encoder every two bauds. The encoder output 3-tuple
bits are used to select one of the 8 2-tuple QPSK signal points. The bandwidth
efficiency of this code is also 1 bit/s/Hz. The code’s minimum time diversity is 4.
Its normalized minimum Euclidean and product distances are 12 and 64, respec-

tively - l.e., its asymptotic coding gain with ML decoding is the same as that of
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the 2-D QPSK scheme. Figure 5.4 show the performance of the two codes with
ML decoding and source model V over the Rayleigh channel. If sequence MAP
decoding is used, the performance of the two codes is different, especially at low
SNR. Figure 5.5 show the performance of the two codes with MAP decoding.
It is clear that the 4-D QPSK scheme outperforms the corresponding 2-D QPSK
scheme. Increasing the signal dimensionality is also expected to yield more gains.
However, since this will also increase the number of signals per trellis branch,
more delay and interleaving are required which may not be suitable for real time

applications.

5.4 CELP LSP’s Coding

Codebook-excited linear predictive (CELP) coding is a frame-oriented technique
that breaks a speech signal into blocks of samples that are processed as one unit.
The particular implementation we consider is Federal Standard 1016 (FS 1016)
4.8 kbit/s CELP [87]. The CELP parameters that are transmitted over the noisy
channel include the stochastic code book index and gain, the adaptive code book
index (pitch delay) and gain, and 10 ordered line spectral parameters (LSP’s).
In the FS 1016 CELP, each LSP is quantized by either a three-bit or a four-
bit scalar quantizer. The second through fifth LSP’s are quantized by four-bit
quantizers; the rest are quantized to three bits. The quantized LSP’s refer to
frequencies that must be ordered (LSP-1 < LSP-2 < --- < LSP-10). In this
work, we consider only the three most significant bits of each LSP, ignoring the
least significant bit in the second through fifth parameters.

The CELP encoder leaves some redundancy in the encoded bit stream in the
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Signal Costellation
4-D Signal Points

1 x x 0
S0=(0,0) S1=(0,2)
S2=(1,1) S3=(1,3)
S4=(2,2) S5=(2,0)
2 x X 3 S$6=(3,3) S7=(3,1)
Current Next
State State
S0 S4 S2 S6 0 0
S185S8387 1 1
S4 S0 S6 82 2 2
S5818783 3 3
S2 86 SO S4 4 4
S387S18S5 5 5
S6 S2 54 SO 6 6
S7S38581 7 7

Figure 5.3: 4-D signal points and the trellis diagram of the 4-D QPSK 8-state

encoder.
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Figure 5.5: BER of the 2-D and 4-D QPSK 8-state schemes with MAP decoding.
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form of memory and non-uniformity. The modeling of CELP encoded speech
is described in detail in [78]. This modeling is briefly described below. A large
training sequence consisting of 83, 826 frames (about 42 minutes of speech) from
the TIMIT speech database [82] was used to estimate the prior LSP distributions
needed for the MAP decoding. For every 30 msec of speech an LPC analysis was
performed according to F'S 1016 standards to arrive at the 10 quantized LSP’s.
The relative frequency of transitions between the values of the three high-order
bits of each LSP were compiled to extract Markov transition probabilities.
Suppose we encode a segment of speech using FS 1016 CELP, resulting in
a sequence of CELP frames. The quantized LSP frames are approzimated by a
stationary Markov process [78]. Denote the process entropy rate (in bits/frame)
by H, which represents the minimum number of bits per frame required to
describe three bits. The CELP encoder produces 30 bits/frame to describe the
LSP’s, so the residual redundancy — i.e., the total redundancy (per frame) in the

CELP-encoded LSP’s — is
pr = 30 — H,, (bits/frame). (5.7)

H,, (and so pr) were estimated by observing a long training sequence and match-
ing the observations to a particular model of a random process; the entropy rate
of the model process was then computed and used as our estimate of H.

Two models for the generation of LSP’s distribution are proposed.

e Model 1 — which does not attempt to take into account any correlation
between frames — indicates that pr = 9.867 of the 30 high-order bits in
the LSP’s are redundant. Approximately pp = 5.275 bits of redundancy
were due to the non-uniform distribution of the LSP’s, and approximately

pm = 4.593 bits of redundancy were due to the memory within a frame.
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e Model 2 - which does take into account both inter-frame and intra-frame
correlation — indicates that pr = 12.485 of the 30 high-order bits in the
LSP’s are redundant. Once again, pp = 5.275 bits of redundancy were
due to the non-uniform distribution of the LSP’s; while py; = 7.211 bits of
redundancy were due to the memory remaining both within a frame and

between frames.

We employ three soft-decision decoding schemes based on the Viterbi decod-

ing algorithm:

e ML - a maximum likelihood Viterbi decoding algorithm which does not

utilize the LSP’s a priori information.

e MAP 1 - a maximum a-posteriori (MAP) decoding algorithm that exploits
only the redundancy due to the non-uniform distribution of the LSP’s and

their correlation within a frame — approximately 10 bits/frame.

e MAP 2 — which exploits the redundancy from the non-uniform distribution
of the LSP’s and their inter-frame and intra-frame correlation — approxi-

mately 12.5 bits/frame.

A decoding buffer length of 10 symbols is used to limit the decoding delay. All

algorithms are implemented so as to yield a decoding delay of only one frame.

5.4.1 Coding of the LSP’s

Since the quantized LSP’s are represented by 3 bits, every binary 3-tuple rep-
resenting one LSP must be encoded every encoder time unit. In [78], a rate

3/4 binary convolutional code with BPSK modulation was used. The resulting
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system spectral efficiency was 0.75 bit/s/Hz. To increase the spectral efficiency
we propose using QPSK modulation. The proposed codes are 4-state and 8-state
rate 3/4 codes with 4-D QPSK. Their spectral efficiency is 1.5 bit/s/Hz. These
codes were designed for Rayleigh fading channels [56]. Moreover, their minimum
Euclidean distances are the same as the corresponding codes designed for the
AWGN channel [86]. This means that both codes are optimum for both chan-
nels. The minimum Euclidean distances of the 4-state and 8-state codes are 6
and 8, respectively. The minimum time diversity of both codes are 2. However,
the minimum product distance of the 8-state code is 16, which is twice that
of the 4-state code. It should be pointed out that the number of branches in
the minimum-length error event path for the 4-state code is 2 while that of the
8-state code is one (i.e., corresponds to parallel branches). The effect of this will

be clear from the simulations.

5.4.2 Simulation Results

Simulations were used to determine the performance of the proposed decoding
algorithms. The three high-order bits of each of the ten quantized LSP’s were
channel encoded using of the two codes described above. The outputs of the
channel encoders were then mapped to a pair of QPSK signals and transmitted
over either the AWGN channel or the fully interleaved Rayleigh channel. After
appropriate demodulation, the signals were decoded with the proposed channel
decoders and the decoded LSP’s were fed into the CELP decoder for speech
reconstruction. The decoder buffer length is set to 10 symbols [56]. This allows
interleaving to be done within only one frame, and so only a delay of one frame

exists. Note that sequence MAP decoding does not introduce any additional
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delay.

The testing sequence consisted of 4753 frames (about 2.2 minutes of speech)
— 48 sentences, half uttered by female speakers and half by male speakers from
different dialect regions. No speaker appeared in both the training and testing
sequences. Thus the approach used in this simulation was to use a single “uni-
versal” model — constructed from a very large training sequence — to decode all
the speech samples.

In evaluating the performance of the various decoders we use two criteria.
The first is the average spectral distortion (SD), the most commonly used dis-

tortion measure for the LSP’s [88]. More specifically,

1
2 dw

SD:% 3 [ /7r (1010gyq S;(w) — 101ogy, Sj(w)) 57;] dB, (5.8)

=1
where S;(w) and S;(w) are the original and reconstructed spectra associated
with frame j, and T is the total number of frames. Roughly speaking, an aver-
age spectral distortion of 1 dB or less is equivalent to perceptually transparent
encoding of the LSP coefficients [88]. In addition to average spectral distortion,
the percentage of outliers — i.e., the fraction of frames with distortion greater
than 4 dB — were also compiled during the simulation. It should be noted that
the spectral distortion introduced by CELP’s scalar quantizer alone (when the
channel is noiseless) is around 1.50 dB with 0.08 % of outliers > 4 dB.

The second measure of the decoders’ performance is symbol error rate (P;) —
i.e., the fraction of LSP’s the decoder decoded incorrectly. Tables 5.12 and 5.13
indicate the MAP decoding gains for the two codes over both channels. The
gains are shown for a P, values of 1, 5, 10 and 15%, since error concealment and

interpolation are made at P,’s as high as 15%.
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It is clear that the gains over the Rayleigh channel are higher than the gains
over the AWGN channel. Moreover, significant gains are achieved. For example,
at an average spectral distortion of 2 dB, total MAP decoding gains of 1.5 and 3.1
dB were achieved over the AWGN and Rayleigh channels, respectively. Spectral
distortion gains are shown in Figures 5.6 and 5.7. Also, Tables 5.12 and 5.13
summarize the decoding gains for various SD and P; values. It is noticed that
the large portion of the gains can be achieved using Model 1. This agrees with
the calculation of the redundancies for both models, where the second model
gives only 2.5 bits additional redundancy. A comparison between the two codes
shows that even though the 8-state code outperforms the 4-state code at high
SNR’s, the MAP decoding gains for the 4-state code are slightly higher. The
reason for that is attributed to the codes’ minimum error event path length,

which affects the performance at low SNR.

135



Decoding | Channel SD(dB) P,(%)
Gains Type |2.0125(3.0|35|1%|5% |10% | 15%
MAP 1 AWGN |12 |15(1821]08 11| 1.3 | 1.6
vs. ML Rayleigh |24 12.7129 322021} 22 | 2.3
MAP 2 AWGN (03(04(04]|04]|02(03| 0.3 | 0.3

vs. MAP 1 | Rayleigh [ 0.7 0.8 0.8|0.8[0.3[0.6| 06 | 0.6
MAP 2 AWGN |15(19(22|25|1.0({14| 16 | 1.9
vs. ML Rayleigh | 3.1 | 3.5 374023 |26| 2.8 | 2.9

Table 5.12: Sequence MAP decoding gains for the the CELP encoded speech
with 4-state 4-D QPSK TCM schemes over both AWGN and Rayleigh channels

Decoding | Channel SD(dB) P,(%)
Gains Type [20(25]30(35]|1% |5% |10% | 15%
MAP 1 AWGN [ 11[13|16|18|07(10] 1.2 | 1.3
vs. ML | Rayleigh | 2.3 | 2.4 | 2.6 |29 (19|19 20 | 21
MAP 2 AWGN (0405|0506 (02(03| 04 | 04

vs. MAP 1 | Rayleigh [ 0.8 ([0.8]0.8 090506 0.6 | 0.6
MAP 2 AWGN |15(1.8(21]|24(09 (13| 16 | 1.7
vs. ML Rayleigh | 3.1 1323438 (24|25 | 26 | 2.7

Table 5.13: Sequence MAP decoding gains for the the CELP encoded speech
with 8-state 4-D QPSK TCM schemes over both AWGN and Rayleigh channels
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Figure 5.6: Spectral distortion vs. Eb/No for the 4-state 4-D QPSK scheme -
solid(Rayleigh), dashed(AWGN).

o
T

Spectral distortion
-y
T

-4

Figure 5.7: Spectral distortion vs. Eb/No for the 8-state 4-D QPSK scheme -
solid(Rayleigh), dashed(AWGN).
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5.4.3 Coding of CELP LSP’s via I-Q QPSK

In this section, another coding scheme is proposed. In Chapter 3, it was shown
that inphase-quadrature (I-Q) trellis codes offer the advantage of higher min-
imum time diversities. Also, the increased encoder rate gives higher decoding
gains. These two features are used together to provide a robust system with a
bandwidth efficiency of 1.5 bit/s/Hz. The proposed scheme is outlined as follows.
Two frames are encoded together using two rate 3/4 encoders. Each encoder is
mapped to a binary antipodal signal. The first frame is encoded using encoder-
I and the second frame is encoded using encoder-Q. The transmitted signal is
QPSK where its in-phase (quadrature) are specified by encoder-I (encoder-Q).
Only Model 1 for the a priori LSP’s information is used (i.e., correlation between
frames is not exploited) and a delay of two frames is imposed. The same 32-state
rate 3/4 code proposed in [78] is used. Using the approach, larger MAP decod-
ing gains are obtained. Table 5.14 shows the decoding gains obtained using this
scheme. Also, a comparison between this code and the previous ones in Figure
5.8 shows that the I-Q code is achieves a very robust performance at very noisy

channel conditions.

Decoding | Channel SD(dB) P,(%)

Gains Type [2.0(25130(35|1%|5% | 10% | 15%

MAP 1 AWGN |21|124(25(18 (07|10 1.2 | 1.3

vs. ML | Rayleigh | 3.7 | 4.1 4.2 45|37 | 41| 44 | 4.6

Table 5.14: Sequence MAP 1 decoding gains for the the CELP encoded speech
with 32-state I-Q QPSK TCM scheme over both AWGN and Rayleigh channels

138



%
T
I

Spectral distortion

S

/

/
/

=

>

X
1L

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Eb/No

Figure 5.8: Spectral distortion vs. Eb/No for the 8-state 4-D QPSK scheme
(dashed) - and the I-Q QPSK 32-state code (solid) over the Rayleigh channel.
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5.5 Summary

In this chapter we considered sequence maximum a posteriori (MAP) decoding
of correlated signals transmitted over very noisy AWGN and Rayleigh channels.
In the first part of this work, a first order two-state Markov model is used for the
source. A variety of different systems with different sources, BPSK, QPSK and
8-PSK modulation schemes and different encoder complexities were simulated.
Sequence MAP decoding (compared to ML decoding) proves to substantially
improve the performance at very noisy channel conditions, especially for sys-
tems with moderate redundancy. The MAP decoding gains when the channel
is Rayleigh distributed are higher than the gains when the channel is AWGN.
Most of the MAP decoding (relative to ML decoding) gains are achieved with low
complexity encoders. Moreover, trellis coded systems with higher encoder rates
have significantly more MAP decoding gains. Also, more decoding gains are
obtained for encoders with larger signal constellations. A comparative example
of a 4-D versus a 2-D constellations shows that the multidimensional constella-
tion achieves more MAP gains than its corresponding trellis coded scheme with
2-dimensional (2-D) constellation.

In the second part, a practical example for coding the CELP line spectral
parameters (LSP’s) using trellis codes with 4-D QPSK modulation is presented.
Two source models are used. One is based on the intra-frame correlation while
the second one models both intra-frame and inter-frame correlations. Coding
gains as much as 4 dB are achieved. Also, a comparison between the conven-
tionally designed codes and an I-Q QPSK scheme shows that the I-QQ scheme
achieves better performance although only the correlation within a frame is ex-

ploited.
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Chapter 6

Summary and Conclusions

6.1 Presentation Summary

In Chapter 2 the modeling of fading channels is discussed. Different statistical
channel models and the techniques to generate them were described. In Chap-
ter 3 we presented some TCM schemes that provide high coding gain over the
frequency non-selective slowly Rayleigh distributed fading channel. It is shown
that the use of I-Q TCM results in greater minimum time diversity than the
conventional design in which a single encoder is used. Using this approach codes
with bandwidth efficiencies of 1,2, and 3 bits/sec/Hz were described for various
constraint lengths. The performance of these codes were examined analytically
and via simulation; the results show a large improvement in the BER when
compared with conventional TCM schemes.

In Chapter 4 the use of diversity with coding was investigated. Three differ-
ent diversity combining schemes were compared. Expressions for the cutoff rate

parameter were shown for the three different diversity combining schemes. Also,
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tight upper bounds on the pairwise error probability were derived for the three
combining schemes. The upper bounds were used to derive the bit error prob-
abilities for uncoded as well as trellis coded systems. They were expressed in a
product form to allow the use of the transfer function approach, which accounts
for all trellis paths, for evaluating the performance of trellis coded systems.

In Chapter 5 sequence maximum a posteriori (MAP) decoding of corre-
lated signals transmitted over very noisy AWGN and Rayleigh channels was
presented. A variety of different systems with different sources, BPSK, QPSK
and 8-PSK modulation schemes and different encoder complexities were simu-
lated. Sequence MAP decoding (relative to ML decoding) proves to substantially
improve the performance at very noisy channel conditions especially for systems
with moderate redundancy. Moreover, it is shown that trellis coded systems
with higher encoder rates have significantly more MAP decoding gains relative

to ML decoding

6.2 Conclusions
The following is a synopsis of the major results and observations

1. In communicating over flat Rayleigh fading the code’s minimum time di-
versity is the primary performance criterion. The use of I-Q TCM results
in greater minimum time diversity of the code. Therefore, substantial im-

provements, with respect to conventionally designed codes, are obtained.

2. I-Q TCM schemes are not restricted to a specific spectral efficiency. Codes
with bandwidth efficiencies of 1, 2 and 3 bits/s/Hz were presented and

their performance was evaluated. Coding gains of 2-5 dB at BER = 1075,
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10.

11.

12.

with respect to conventional coding schemes, are obtained.

. The performance of some of these codes over the correlated fading model

is shown. Finite interleaving results in relatively little degradation.

In designing the interleaver, it is found that a span size of four times the

number of memory elements results in acceptable performance.

. Although the I-Q codes are designed for the Rayleigh channel, some im-

provements are still obtained for the K = 7 and K = 9 Rician channel.

The performance of trellis coded systems with different diversity combining

is tightly upper bounded using the transfer function approach.

. When the diversity signals have equal energies, maximal ratio combining

is the best combining scheme.

For low to moderate diversity orders, equal gain combining performance is

within 1 dB from that of maximal ratio combining.

. The highest relative coding gains are achieved in going from single to dou-

ble diversity.

With increasing diversity, incremental coding gains diminish and the dif-

ference between the three combining schemes increases.

Correlated diversity branches does not degrade the performance substan-

tially for p < 0.5.

Sequence MAP decoding gains when the channel is Rayleigh distributed

are higher than the gains when the channel is AWGN.
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13. The major portion of the MAP decoding gains is achieved with a low com-

plexity encoder. The gains diminish with increasing the encoder constraint

length.

14. Encoders with higher rates have significantly more MAP decoding gains,

relative to ML decoding.

15. More MAP decoding gains (relative to ML decoding ) are obtained for

encoders with larger signal constellations.

6.3 Future Work

Future work can be summarized as follows

1. As mentioned by Zehavi in [55], bit interleaving can add more inherent
minimum time diversity to the system at the expense of reduced minimum
Euclidean distance. This approach could in principle be used along with
the I-Q approach to further improve the error performance over Rayleigh

fading channels.

2. I-Q QPSK schemes with differentially coherent demodulation should be

investigated.

3. A general formula for the cutoff rate with diversity reception that includes

the effect of space and time correlations should be derived.

4. The performance of I-Q) schemes should be investigated over the frequency

selective fading channel model.

144



. The performance of the proposed codes with the existence of co-channel

interference can be evaluated.

. The tight upper bounds for the Rayleigh channel should be extended to

include the Rician channel.

. A more challenging problem is to find tight upper bounds for trellis coded

systems with ML and MAP decoding at high BER values .

. The performance of RAKE receivers can be similarly analyzed as is done

for the performance of diversity systems.
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