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Abstract

The paper begins with a discussion of deterministic sampling, where it is observed that when
one can reconstruct the covariance one can also reconstruct the sample path (in quadratic mean).
Then the theorem of Shapiro and Silverman, which states that Poisson based sampling allows
reconstruction of the covariance at any sampling rate and a construction of an estimator of the
covariance (due to Papoulis) are presented. A class of estimators for random fields using Poisson
(and Poisson like) sampling is developed. The optimal estimator (minimum mean square error)
is shown to exist and the error is shown to go to zero only as the sampling rate goes to infinity;
Poisson sampling behaves differently from regular sampling in this respect. Poisson sampling is
shown to be the best (lowest error) for a wide class of multidimensional point processes (sampling
measures). One feature of the development is that it applies directly in IR™ . It is shown that
the optimal estimator has many desirable properties (continuity, etc.); however, recursion in
terms of the density of the sampling processes is not easily developed. A sub-optimal estirnator
with this desirable property is also discussed. In the case that the random field is Gaussian, the
proposed estimator is seen to be the conditional mean.
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1 Introduction and Definitions

1.1 Introduction

This section is a review of the origins of random sampling. The problem of reconstruction of
a random process has its roots in the deterministic interpolation theorem of Whittaker and
Shannon for the reconstruction of a function from regularly spaced values of the function.

Let f (f) to denote the Fourier transform® (inverse Fourier transform) of f.

-~

Theorem 1 (Whittaker-Shannon [1]) If f is a function with Fourier transform: f(\) €

Ly(-W, W). Then sin 2Wr(t — 5%)
&= fG7) Wt — %V;/

nelN

The first extension of this theorem for random processes is:

Theorem 2 (Balakrishnan[1]) Let{X;}icr, be a second order, wide sense stationary stochas-
tic process, with covariance R(t) = E(Xiys - X,) such that: R(X) € Lo(—=W,W). Then
sin 2Wr(t — 537)

n
Xp=Lim S X(—2) n

where l.i.m stands for limit in the mean square, e.g. in the norm (E{(f2)})%

These theorems state conditions under which a function (sample path) can be pointwise
interpolated (in mean square) in an error free manner. In both theorems there are restrictions on
the support of the Fourier transform of the signal (restricting the covariance restricts the support
of the spectral process associated with the path). In this case if one can recover the covariance
one can also recover the sample path. If one can recover the sample path and the processes is
ergodic then one can recover the covariance of the process via the ergodic relationship.

The bandwidth of a function is the support of its Fourier transform. The bandwidth of a
stochastic process is the support of the spectral density.

A theorem which attracts our attention is the following;:

Theorem 3 (Shapiro & Silverman [2]) If {X:}ier is a wide sense stationary, quadratic
mean continuous stochastic process with covariance R(.), then {R(7;)};en determine R(.) when
the times {r;} ;e are chosen as Poisson random variables, regardless of the the average rate of

the process {1;};en and without bandwidth limitations on R(-).

IThe Fourier Transform is taken as: f(A) = [ e2™ f(t) dt



Such a result is remarkable, as both of the earlier theorems relate sampling rate, 2—%.7, to
bandwidth, (=W, W); hence one might expect that the intensity of the Poisson process (which
is the average sampling rate) should be related to the bandwidth of the signal or covariance.

Much is known about the random sampling of random processes, e.g. asymptotically unbi-
ased estimators and statistically efficient algorithms for spectral reconstruction. A large portion
of what is known relies on the fact that IR , the parameter space for a stochastic process, has
a natural ordering — which is not generally true for a random field. Additionally, many of the
early theorems (this is true of the Shapiro and Silverman theorem) show that the probability
distribution of sampled points determine the covariance (or distribution) of the underlying pro-
cesses. This points out that there are several types of sampling theorems possible in stochastic
sampling. The first division is based on what is determined: the second order properties, the law,
the path; the second division is what determines the the properties: the second order properties
of the samples, the law of the samples or the realization (path) of the samples. This gives nine
possible types for theorems — of these, five types of sampling results are found in the literature.
This is discussed in [3].

This paper will show that although Poisson sampling is alias free (in several senses) for the
reconstruction of the covariance of a stochastic process, it is not alias free for the reconstruction
of sample paths of random fields in quadratic mean. We shall show this by construction explicitly
the minimum variance estimator of the field given (generalized) Poisson samples. In addition,
it is shown that Poisson sampling is the best possible sampling measure in a large class. The

discussion includes stochastic processes as a special case.

1.2 A Short Introduction to Random Fields

This introduction is included to establish the terminology used in this discussion, since there
is not full agreement on nomenclature. Briefly, a random field is a family of random variables
which are parameterized (indexed) in a general way. If the parameterization (index set) is an
interval of the real line, the random field is identified with a stochastic process. Hence random
fields can be shown to represent one generalization of stochastic processes.

One might take the ground wind speed as a random field, with the Borel subsets of IR% as
the parameter sets. Similarly, the number of trees in a forest can be modeled as the selection
of random points in the plane. Here the parameter space is the Borel set in IR? and the
random variable takes on values in INt . Such a model is a special kind of random field called
a multidimensional point process (m.p.p.).

In what follows, the parameter space (index set) is Euclidean space, usually IR? ; however



definitions are framed in a general way. Relevant references for random fields are Rozanov [4],
Yadrenko [5], Vanmarke [6], and Gel’fand [7]. Relevant references for m.p.p.’s are Rozanov [4],
Gel’fand [7], Lewis [8], and Karr [9]. Discussions of spectral representation for random fields can

be found in Yadrenko [5], and in Hannan [10].

Definition 4 1. Let T be a locally compact space and (E, E, ) be a measure space. A filtration
on (E,E, 1) is a family of o-subalgebras of E indezed by subsets of T', such that ¥ open t, ' C
T, t C t' = E(t) C E(t).

2. Let (Q, %, P) be a probability triple, T a locally compact space, T a distinguished ring of
subsets of T. Let (E,E,p) be a measure space. An E-valued random field is a function X:
QO x T — E, such that X(t,.) is £ measurable ¥t € T and the filtration generated by the

semi-ring
%(A) = {w:X(d,w)eBEE, s € A}
ts additive :
T(AuAd) = S(AvEA)YVA ACT
(the smallest o — field containing ©(A) and T(A"))
The triple (E,E, 1) is called the sample space, T is called the parameter space (or the time

space). By abuse of nomenclature T is occasionally referred to as the parameter space; this

is especially true when T is the Borel sets of T'.

3. The function X(w,.) : T — E is called the sample function, sample path or trajectory.
Additional notations used for X (t,w) are Xy(w) , X¢; and X or {Xy} for {Xi}ier.

4. The random field is homogeneous if
Ptl, ta,... ,tn({w : X(tz, (U)} € Bz 1= 1,2 TL)

is translation invariant inty, ..., t, VB; € E.

4. The random field is isotropic if
Ptl,t%_mtn({w : X(tz,w)} € B; 1= 1,2.. n)

s tnvariant in ty, ..., t, under rotations VB; € E. In the case of an ordinary stochastic

process, isotropicity is equivalent to symmetry of the density function (if it exists).



1.2.1 Examples

1. Let {X;} be a stochastic process with probability triple (2, X, P). Then X is a random field
with T = IR T = Borel sets; (E,E, u) is (IR , Lebesgue measurable sets, Lebesgue measure).
The canonical identification is that ¢ is identified with the interval (—oc,t]. By definition
X(t,.) is ¥ measurable and the filtration $(¢) = L(X (¢, B),t' € [~o0,t),B € E) is
additive.

Informally, X(¢) is what is known about w by observing X (t/,w) Vt' € [—00,t). A processes
X, is said to be adapted to a filtration X'(¢) if it is ¥'(¢) measurable — then ¥(¢) C ¥'(¢),

and informally ¥/(t) contains at least as much information about w as X(t) [11].

2. The canonical example is a two dimensional random field. Let T be IR?> , T = the Borel
sets; let (E, E, u) be (IR? , Lebesgue measurable sets, Lebesgue measure). Then X(t,.) is
a random variable V¢ € IR?. Here the associated filtration is: X(4) = X(X~X(7,B), 7 €
A, B € E) for Borel A C IR2.

3. A most important example is that of a multidimensional point process (m.p.p.). Let T
= IR™ and T be the Borel measurable sets and (E, E, ) be (INt | all subsets, p =
cardinality). Then VB, B' C T:

(a) n(B) € IN*
(b) n(BUB') =n(B)+n(B") if BNnB=10

Definition 5 Associate with a realization of a m.p.p, N(w,.), a set of points in IR™ in the
Jollowing manner: say ; is associated with N(A) if for any open system of neighborhoods of T;,
{B.} with lim,, B, = {r:} haslim, N(B, N A) # 0. If such a limit is either one or zero with
probability one, then the process is said to be simple. The association of all such points in A will

be written as {r; € A}.

Assumption 6 Unless otherwise stated, all point processes are assumed to be simple, and

N(B) < oo if B is compact.

Definition 7 A simple m.p.p., N, is defined to be a Poisson m.p.p. with rate u if:
1.

E{N(A)}:/u/A dt

cov(N(A), N(B))=pn . dt



The usual Poisson process is a special case of a Poisson m.p.p., the advantage is that the
definition is not based on the increment properties of the process. Define the stochastic integral

of a function, ¢, on a set, A, with respect to an m.p.p., n, as:

[ #midn = ¥ é(r(w) (1)

TEA

Associated with equation 1 is

[ o0 @y = Ex{ [ o) nian}
A A

where 4 is known as the mean measure (if it exists), and
[ ety otasxay = Exi[ [ ot s) ntdsm(an
— [ [ 6(t.9) utds)utds)
AJB

where o is known as the covariance measure (if it exists). When ¢ is stochastic, the computation

of:
B[ pltw)n(dn)} = B{Y (ri(w),w)}

€A
which is a generalization of Wald’s equation [12], may not always be possible — as implicitly
assumed here, independence will be crucial. The process formed in 1 is also known as a compound

or marked process [8], [9].

Assumption 8 Adopt the implicit convention that the sampling schemes are always independent
of the basic random fields under consideration.

1.2.2 Random Sampling

The following problem is discussed in Papoulis [13]. Since it forms the basis of what follows, the
discussion is repeated. Proceeding heuristically — consider a Poisson process with parameter p;
think of samples as being taken at the jumps of the Poisson process?. Observe that as required

for overlapping intervals [sy,?1) and [sg,t2):

BN (st} = pls—s)=p [

t1 AL
1 / dt
51Vs2

11 12
,u/ (5(7'1 — TQ) dTldTQ.
51 52

Cov{N([s1,11))N((s2,12])}

Il

*This is sometimes modeled as the Poisson impulse process: Z((s,t]) = 3 <, <, 6(t' —%;). Then Z(1) is the

“generalized” derivative of N([s,1)) =3 which is the counting measure associated with the Poisson process.

s<Ti<t?



These two statments can be expressed differentially as E{N(dt)} = pdt and E{N(dt)N(ds)} =
{ué(t — 8) + p*}dtds. We shall adopt this notation.

Lemma 9 (Papoulis[13], p. 337) Let {X,;}icr be a wide sense stationary stochastic process

with continuous paths and covariance Rx € L1, spectral measure Sx(A)dA with S(X) € Ly. Let

10 .
YA = P _axte““'t N(dt)
=1 T X, e

P eCan)

Then:
.1 5 1
— 42y A+ =
lim 2aE{m 1“} = Sx(\) + MRX(O)

Note that one can always estimate R(0) = %ffa X2N(dr), and this allows us to estimate
the covariance of the processes. This argument adapts to IR™ transparently; evidently recovery
of the spectrum is independent of the average sampling rate, p. This line of investigation has

been extensively developed, in fact we have:

Theorem 10 (Karr[9]) Let X be a random field continuous in probability, N be a Poisson
process with absolutely continuous mean, both on IR™ and independent. Then the law of the

marked process Y (dt) = X;N(dt) determines the law of X.

The proof of this theorem and discussion of estimation techniques for the mean and covariance
of X based on observations Y can be found in Karr’s book [9].

In the remainder of this discussion the focus will be on sample path recovery from the sample
path of the samples. Specifically we shall construct estimators of the form Y (dt) = [, X, N(dt),
which minimize the estimation error. We shall examine the properties of such estimators, such

as the dependance of the estimator on the region A, and the sampling rate, p.



2 The Estimation Problem

Let N(dr) be an homogeneous multidimensional point process with:

Il

E{N(dt)}
E{N(dt)N(ds)} = {ub(t—s)+ p*{c(t—s)+ 1}}dtds

pdt

This is not the most general form of an m.p.p., which would take ¢(t — s)dtds as a measure
C(d(t—s))d(t+s); however the absolutely continuous form is sufficiently general for our purpose.
We shall assume that both ¢ and ¢ are bounded.

Let X be an homogeneous random field with:

E{X}} 0

E{X.X,} = R(t-s)

and Z(A) = [4 h(7)X,N(dr) be the compound process formed from X and N. It has second

order statistics:

E{Z(A)} = u [ W(DE{(Xdr = 0
E{ /A Z(dt) /B Z(ds)} = /A /B h(t)h(s)R(t — s) E{N(dt)N(ds))
- /A/B R(OR(s)R(t — ) {us(t = ) + p?{e(t = 5) + 1) | dtds
— uR(0) /A R
2 /A /B h()h(s)R(t — ){c(t — 5) + 1} dtds

We shall use compound processes of this form as a class of estimators of X;:

X, = }-/ X5 h(t,s) N(ds)
pJa
1
= — E h(t,si)Xs;
ll’s,‘GA

The constant -}; is a matter of future convenience. The set A will be treated as fixed Borel set, but
otherwise unspecified (it may or may not be compact), as will the variable t. The sample path
X is assumed to be continuous. In this paradigm it is easy to see that the sampled process X
should be path continuous as should the function h. This makes the estimator and the sampled
process path continuous. Conditions will be delineated in order to assure the continuity of h.
A natural direction to proceed is to minimize the estimation error — that is choosing A as

to minimize the estimation error covariance.

10



TG, )] = E{(Xt _%/A X, h(t,s) N(ds))z}
— R(0)-2 /A R(t — s)h(t, s) ds

+ /A /A RS = )(e(s' — )+ 1)h(t, s)h(t, s) ds'ds

RO) [ 12
+ ——;—;—/A h*(t,s) ds

An obvious requirement is to determine for which functions J{A(.,.)] < co. In order to determine

such conditions the following lemma is needed.
Lemma 11 The function c is positive definite.

Proof.

Cov(N(ds)N(dt)) is a positive definite (p.d.) measure Vi > 0 i.e.

/ / F(1)f(5) coo(N(ds)N(dt))> 0 V[ € C.
Hence
{ub(t — s) + ple(t — s)}dtds is p.d.
This implies:
p / / F)F(s) et — s)dtds > — / F2(1) dt

Assume that ¢ is not p.d. then 3fy s.t.

// Jo(t) fo(8)e(t — s) dtds = —e < 0

Then —pe > —|f0|z2 or ue < |f0|%2 Vu € IR*. Contradiction. n

This does not imply that ¢ is continuous; it does imply that ¢ is the Fourier transform of a
tempered distribution [7]. However ¢ will be taken as bounded and continuous in the subsequent
discussion. Since R and R(c + 1) are bounded, h(t,.) € L1(A)N Ly(A) = J[h] < co. Hence
functions in C, are allowable e.g. A(t,.) € C. = J[h] < co. This allows use of the techniques

of calculus of variations in the determination of the minimum of the functional.

2.1 Calculation of the Frechet Derivative

The minimum of the cost functional J[.] is determined by the calculus of variations. Specifically,

necessary conditions for the minimization of the cost functional can be derived from: (%J [h+

11



€g])|e=o = 0 Y admissible g. The perturbation functions are taken as g(t,.) € C and the first

variable is held fixed for this argument.

LTt eqll o = g-E{(x — 2 [ Xlhit, )+ ea(t,) N(as) } eco
- %{R(O)—z /A R(t — s)(h(t, s) + eg(t, s)) ds
+% /A /A RS — s)(h(t, s') + eg(t, $))(h(t, s) + eg(t, 5))8(s — ') ds'ds

+ /A /A R(s' — s)(e(s — ) + 1)(h(t, 8') + g(t, ')
(h(t,s) + €g(t,3)) ds'ds}|e=o

= (=2 /A R(t - $)g(t,9)) d3+2% /A R(O)(h(t, ) + cg*(t, 5)) ds

+ /A/A R(s' = 8)(e(s' — 8) + 1)

{g(t, sHh(t, ") + R(t, s )g(L, s) + €g(t, 8)g(L, 8')} ds'ds}e=o (2)

= ——2/ R(t - s)g(t S) dS Jr‘ 2@[4 h(tas)g(t73) ds

+ / / R(S c(s —-s8)+1) (3)
(g(t,s)h(t,s) + h(t,s)g(t,s)) ds'ds (4)

The necessary condition for the minimization of the functional is that V g(¢,.) € C.:
0 = —2/ R(t— s)g(t,s) ds + QE/ h(t,s)g(t,s) ds
A o4 A
+ [ / R(s' — s)(e(s' — 5) + 1)(g(t, & )h(t, s) + h(t, )g(t, )) ds'ds
AJA

{R(t —8)— —Ri/%—q—)-h(t, 5)— /A R(s' — s)(c(s' — s) + 1)h(t,s") ds'}
g(t,s)ds (5)

[ [ B = 8)(els = )+ D9t () + 1t (1, ) ds'ds
=[] B = el = ) + DAL gt ) dds

12



+ /A /A R(s — 8')(c(s — &) + 1)g(t, s)h(t, &') ds'ds
- /A /A R(s' — s)(e(s' — 8) + Dh(t, )g(t, ) ds'ds

By invoking the fundamental lemma of the calculus of variations [14] in equation 5, the

minimization condition becomes:

R(0)

0 = R(t-s)-— ’ ——=h(t,s) — (6)
/A R(s' = s)(e(s' = 5) + Dh(t, ') ds' (7)
Vse A

This is the Wiener-Hopf equation. The cost associated with using the function h° which satisfies

equation 7 can be calculated (the uniqueness of h° will be shown):

o}  _ }_ 0 s s 2
) = B{ - [ Xt 5) Nds))?)

= R(0)- 2/A R(t — $)h°(1,5) ds (8)

1 AN X} [ ! 4
+ /A /A R(s — $')h(t, $)h*(t, ') E{N(ds)N(ds')}

} 0)_2/ R(t = s)h(Ls) ds+R(0) / (h°(t,5))* ds
+/ / — 8))R°(t, 8" )h°(t, s)(e(s — ') + 1) dsds’

= RO+ p [ {-r- s+ 2D

+ /A R(s — s)ho(t, ') (c(s — &) + 1) ds'}h(t, s)ds

—/A R(t — s)h°(t, s) ds

h°(t,s)

~ R(0)- / R(t - $)h°(t, 5) ds (9)
A
The second variation can be calculated from equation 2 as:

2 _ E@ 20t s
6°Jlg,9] = 4 . /Ag(t, )dt

+ 2/,4 /A R(s' — s)(c(s' — s) + 1)g(t,s)g(t,s') dsds’
R
> 4—5)—)|g|?;2

13



> 220e(0) + i,

This equation meets the sufficiency condition for the minimization of the cost functional in the
spaces Lo and Ly [14]. Thus the critical point is a minimum of the functional in these spaces.

Let k(t — s) = R(t — s)(¢(t —s) + 1), and

KU() = [ k(s = 9)f(s) ds
A
then equation 7 is written as:

R(0
R(t—s)= (QI+ K)h(t,s) Vse A
7
There is a well developed literature on equations of this type [15], using operator factorization
methods. In the examination of Equation 7, four questions are of interest:

(i) What is the behavior of the equation as g — oo?

(ii) If A is compact (with non-empty interior) — what is the behavior as the region grows,

A — IR™?
(iii) How does the solution depend on t? Is it continuous or a difference kernel?

(iv) What is the value of J[h°]? Does path-wise aliasing occur?

2.2 Solutions for A Compact

If A is compact, then equation 7 can be taken as being on La(A) (i.e. R|4 € La(A)). In this
case the equation has a unique solution for any function R under consideration.

We need the following fact:
Lemma 12 K is a nonnegative definite linear functional on L3(A).

Proof.

Recall that R is a covariance kernel and therefore it is nonnegative definite.

<K, f> /A /A F)F(s)k(t — s) dtds

/ / R(t — s)f(£) f(s) dids
AJA
> 0V feL(A)

v

14



Theorem 13 If A is a compact then the Wiener-Hopf equation has a unique solution, h® €
Ly(A), for all continuous positive definite R and c. Additionally, h° is continuous in s € A and

te IR™.

Proof.
Since R, R(c+ 1) are bounded and A is compact %R(t —.), R(c+1)€ Ly(A). Then (R—l(f)l + K)
is a bounded linear operator on Ly(A). Since K is non-negative definite, —K is non—positive
definite and the spectrum of — K is negative, thus %91 is in the resolvent set and ( %QZI —(-K))
is invertible on Lo(A).

Rewriting the Wiener-Hopf equation:

h(t,s) = R(s' — s)(e(s' — s) + 1)h(t, &) ds’

Vse A

8)+ ——

mmR“ Rm)

so that h(t,-) is the sum of a continuous function and the convolution of two Ly functions — hence
h(t, s) is continuous in Vs € A. Thus far it has been established that the operator (—Ii,ggl[%— L)1
acts on a continuous Ly function to yield a continuous function. A similar argument shows
that it maps bounded functions into bounded functions. This will be used to show that A is

continuous in t as well. Let |t — t'| be chosen s.t. |R(t — s) — R(t' — s)| < e. Then:

Mas " )”k ROy k2R — ) - RW~JM
_ '(R(O)

< I+ K)™'1

R(0) _
=1 K)~!

= €Cg

The term ‘(%QZI + K)—ll‘ is bounded Vs € A because 1,4 is a bounded function. From this it

is easy to see that h is continuous V¢ € IR"™. m

2.3 Solution for R € Ly(IR™)

Henceforth we shall consider explicitly the case R € Lg. The additional restriction of R € Ly
has several other implications — it is a sufficient condition for the process, X;, to be ergodic (the
necessary and sufficient condition is that the spectral distribution function be continuous [16]).

The Wiener-Hopf equation in IR™ is

h(t,s) = R(O)R(t — )

—}-—E(—O—)- /R" R(s' = s)(c(s' — s) + 1)h(t, s") ds'
Vs € IR" (10)

15



The candidate solution is found by taking the Fourier Transform of both sides:

-1
h(t,\) = (%9-) + ;}(,\)) e~ 2 R(N). (11)

The multiplier on the right-hand-side of equation 11 is bounded above by —R’(%S and below by zero.

This operator is a bounded linear operator on Lo(IR™). The multiplier is zero only at points

where R is unbounded. Hence the candidate A is in Lo(JR™) and it does satisfy the equation.
One easy lemma concerning the nature of convolution operators will prove useful in showing

that the function A° is continuous.

Lemma 14 Let k, h € Ly(IR™) then f = k x h is a continuous function in Li(IR™) If s
bounded then f € Ly. If k and h are positive (i.e. greater that or equal to zero a.e.) so is f.

Proof.

Since h, k€ Ly = kh e Ly = k+he C, by the Riemann—Lebesgue lemma. If k is bounded
then clearly ||f||L, < max(k)||h||z,. Positivity is obvious. ]

Hence the function % exists in Ly(JR™) and is a difference kernel (from the form of the
dependence on t). Note that based on the equation 10, A is the difference of two continuous

functions, hence it is continuous. We have proved the main theorem for R € Ly(IR™), which is:

Theorem 15 If R € L2(ﬂ2) then the Wiener-Hopf equation has a unique solution, h° € Lo,

which is a continuous difference kernel in s and t.

16



2.4 The limiting case: A — IR"

The arguments presented demostrate that the solution exists for A compact and for IR" with
R € Ly(IR™). Nothing is said about the relationship between the solutions (as 4 — IR") or
the structure of the problem for R ¢ Lz(ﬂ%). Both of these questions can be addressed using
classical Factorization techniques.

For sufficiently regular sets (half-spaces, etc.), Wiener-Hopf factorization methods can be
used to give results. A variant of the basic method for the analysis of positive operators is
described in Shinbrot ([17] and [18]); the notation of the latter is used here. This analysis is
applicable to unbounded positive operators, K is a bounded operator if and only if R+é+ Ris
essentially bounded (see Balakrishnan [19], p.90).

The following is a brief description (without proofs) of the ideas for bounded strongly positive
operators.

Let P be an orthogonal projector in H = Ly(IR™). Let L have positive range® and be
selfadjoint on H. Consider the Hilbert spaces H 1 C H which is the space of functions for which

<Lf, f><ooand H C H_% = Dual(H1). Then I has an extension I : Hi1 — H_1 and the
2 2

L

2

extension is isometric and onto. Denote the (closed, orthogonal) extension of P to H 1 by P,
2

Let L|Ra(P:*:

The case of interest is for P given by Pf(t) = 14(¢)f(t) and I = %91 + K, where A = IR™.

) denote the restriction of L to the range of P* C H_ 1.
2

This operator has strictly positive numerical range, W(L) C (ESD, o0).

A Wiener-Hopf equation is an equation of the form:

P L h=Pg (12)

IRa(P+ )

which is exactly the form of equation 7, with g(-) = R(t — -). For positive operators the proof is

constructive, and the following theorem is from [18]:

Theorem 16 Let L be a strongly positive operator, and P be an orthogonal projection. Then
the Wiener—Hopf operator P~ Lp,(p+) is one-to-one and onto Ra(P~). Let {u,} be any or-

thonormal sequence in Hi, total in Ra(P*). Then the solution to 12 is given by:
2

h= Z(P‘g, Up ) Up (13)

. » 32 . 3 -
Since 0 > H-LR < 1, then fﬁl—%d/\ < 00, if R(0) < 0,e.g. R € H and R(0) < oo imply R € H%.
This is about as weak a condition as one might expect to find. Notice that nothing precludes

R¢H.

3The numerical range is defined as : W(L) = {Lﬁ%ﬁé\—?— 1 f € Do(L)}.
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If Do(L%P) and Do(L_-1(I — P)) are dense in H, then the solution is given by:
2

h = L{'PLZIP"R (14)

2 2

In the case that A is regular and R € H, Ly(JR*)N Ly (JR™) is in both domains and Lo(JR™)N

Li(IR") ¢ Hy C H C H_1, so the domains are dense and and all of the operators on the
2 2

right hand side are bounded. Equation 14 is the main tool for our discussion of the behavior of

dependence of equation 7 on the region A.

1E§'PLLP R~ Ly=1LZLRIP < I3 PIIPLIL PR - LZLRIP

2 2

ILHPIIPLZy PTR — PLT R+ PLT R — LT3 RIJ?
2 2 2 2 2

< ILPIPUIPLT PR = PLTRIP 4 |PLT R - LT3 RIP)
2 2 2 2 2

< ILPIFIPLZLIRIPT R = RIF+ IPEZY R - IZLRIF)

< L IFIPLZLIPIC = PRI + 11T - PYLZLRIP)

If P =Py I, and the extension converges (P~ A I), then both of the terms above vanish.

Therefore the solution for A approaches the solution for IR™ as “A4 — IR™.”
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2.5 The Error

Recall that the estimation error can be written as (equation 9):

J[R°](2)

Il

R(0) — /Rn R(t — s)h°(1 — s) ds
R(0) — (R * h*)(0)

(R(t) = (R* b)) |0 = 3(1)]e=o-

The Fourier transform of j(t) is:

i(A) = R - ROR(N)
= RO~ B")(i\)
RO
)
: B 5 R())
Ju(0) = / R(A)(1 - m) dA

= RO -

The expression R
R(A)
=+ R
is always positive and strictly less than 1 on the support of R. Sofor R € Ly N Lo (JR™, the error
is finite and nonzero. Note that fﬂ goes to zero as t — 00. Further since R(A) < R(X) + (Rx
¢)(A) V A, “pure” Poisson sampling (¢ = 0) is the best sampling possible. Thus we have:

Theorem 17 Poisson sampling is asymptotically alias free. Aliasing occurs for all finite values

of .

This theorem and theorem 3 stand in marked contrast to theorem 1 and theorem 2, in the latter

case spectral-alias free implies pathwise—alias free in this case it does not.

2.6 Examples

This section presents several solutions to the Wiener-Hopf equation using equation 2.6. Two of
the examples are taken from optical systems, and two are taken from turbulence models. Several
other examples, some of which have easy analytic solutions are given.
The general computation is based on:
h(t, ) = —eﬁ_(gmfw)
o T k()
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where k(A) = R(A\)* (@) +6())). Since the nature of the ¢ dependence is obvious, the equations
will be examined at ¢ = 0 for simplicity. We take ¢ = 0 in all of the examples.
Let R = 5 is a rational function. Then the equation for A is:

RN _ PO
O 4 Ry 2o + P(y)

h(}) =

Another example is R(t) = R(0)e~®l for @ > 0, ¢t € IR'. This is the covariance of the
Ornstein—Uhlenbeck process [16]. With the appropriate choice of a it represents the Dryden

spectral density for turbulence [20]. Then 1A2()\) = W Hence h is given by:

ﬁ()\) _ na Vat + 2apu

Va? + 2ap (a? 4+ p) + 21 A2

so that:
M) = L
Va? +2ap
Asp — oo, h(t) — \/——ﬁi_—‘—h——; . e~V H2aultl which is a “delta convergent” sequence [7], i.e.

h — (1) in the sense of distributions. The cost (error covariance) of the last example can be

computed (and it is nonzero at the origin).

J(t) = R(t)- / R(t — s)h°(t — 5) ds
J(0) = R(O)—% ol . /TR g

R(0)ua

R(0) —
© Va? + 2ap - (a4 a? + 2ap)
2au
= RO)[1-
( )< 2au+a2+a\/a2+2au)

Here it can be seen that the second term — 1 as u — 00, hence Poisson sampling is pathwise

alias free only asymptotically, as proved earlier.

An example which is directly computable in IRY is

ﬁ sin(2Wirt')

R(t) = ——
() 2Wentr

=1
1

N
1 1 T A
|2W|NH _wi,wiy( )

R()\) =
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So that % is computed as:

- R())
0+ ROV
= T — T £ A
WY (u+1)H o X,
hence:
W = M N sin(2Wint?)
(1) = pt+ls 2Wirntt
. L . 1
The error variance is: J(0) = T
3 Remarks

3.1 Gaussian Random Fields

One special case that comes to mind is the case in which the process to be sampled is Gaussian
(i.e. the {Xi, X} are jointly Gaussian Vt;, ?3). In this case the conditional mean is an
important estimator — it minimizes the mean square error over all estimators (not just linear
estimators). The conditional mean is a (bounded) linear function in the data. If one assumes
that any (bounded) linear functional of the data (or at least a dense subset) can be written

in the form: [ X, h(7)N(d7) the the usual condition that the error be independent of the data

0 = E{(Xt—/XTh(t,T)N(dT)>/Xag(taU)N(dT)}

Vg

becomes:

This equation leads precisely to equation 7, the Wiener—Hopf equation. The estimator under
discussion is the conditional mean. The only question is: is the class of functions for which
E{(f X,+g(t,7)N(dr))?} < oo sufficiently inclusive? Modifications of the arguments contained
in Section 2.3 of M. H. A. Davis’ book ([21]) show that this class is sufficiently rich.

Also the formalism can be used to derive Theorem 2. Consider the Wiener-Hopf equation:

{( ZX_,_h t, —=— 2W ) ;X%g(t,%)}

Z{R(t— 2]ch ZR(%_EIM‘W b, ziv }g( ’2?4/) (15)
J

k

<
]t
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An argument similar to the fundamental lemma in calculus of variations: shows that equation 15
is equivalent to requiring that Vk:

k J k J

t——) = = - ——h(t, =

& 2W Zj:R(2W 2w ( TIW

5 R (e, )
l

i r(t— LR
which, by the Whittaker-Shannon Theorem (Theorem 1), is true if h(%, %Vlﬁ) = %ﬂ
™—7w

The optimal estimator is not of a form that lends itself to recursive estimation. A recursive
estimator can be generated by repetitive samplings of the same sample path of the base X}

processes, at least for the case that the covariance is bandlimited. Notice that h° enjoys the same

support in the frequency domain as R, and if R is related to a Reproducing Kernel Hilbert Space?,

the limiting h° is a reproducing kernel. Let h be any function such that R(t) = [ R(7)h(t—7)dr.

Then one can easily compute the error using this function as the estimator kernel:
E{(X: - X)?} = R(0) — %QE{ / X, X, h(t — )N (dr)}
+;}2—E{ [ [ XoXeh(t = bt — ) N(ar)N (i)}
— R(0)—2 / R(t — T)h(t — 7)dr
+M—12 / / R(o = 7)h(t = )h(t — o) {2 + ub(r — 0)}drdo
— _R(O)+ / / R(o = 7)h(t — T)h(t — 0)drdo
+§%D [t = ome = ryar
EO e,
The advantage of this estimator is that it will work for a whole family of covariances — one only

need know the maximum bandwidth of the covariance. It has the same rate of convergence as

the optimal estimator!

4This occurs if R is bandlimited to a compact set.
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