Translating IDEF3 to PSL*

Mihai Ciocoiu
Dept. of Computer Science
and Institute for Systems Research
University of Maryland
College Park, MD 20742

mihaic@cs.umd.edu

Abstract

This document describes the process of integrating IDEF3 and PSL.
The EPIF like frame representation developed for representing IDEF3 schemat-
ics is introduced, together with the compilation rules for the various IDEF3
elements. The appendix contains a full example of the use of the translator
for the Camile scenario.

*This work was partially supported by NIST contract 70NANB6HO147 — Process Represen-
tation Studies.

Contents

1 Introduction 3
2 The IDEF3 language 3
2.1 UOB Declarations 4
2.2 UOB-use Declarations 4
2.3 Process Declarations 5
24 Links. o 5
2.4.1 Simple Precedence Links 5

2.4.2 Left to Right Precedence Links 6
2.4.3 Right to Left Precedence Links 6
2.4.4 Bidirectional Precedence Links 6
2.4.5 General Constrained Precedence Links 6
2.4.6 Relational Links 7

2.5 Junctions e 7
2.5.1 Fan Out AND Junctions Declaration 7
2.5.2 Fan Out OR Junctions Declaration 7
2.5.3 Fan Out XOR Junctions Declaration 8
2.5.4 Fan In AND Junctions Declaration 8
2.5.5 Fan In OR Junctions Declaration 8
2.5.6 Fan In XOR Junctions Declaration 8
2.5.7 Synchronuous Fan Out AND Junctions Declaration. . . . 8
2.5.8 Synchronuous Fan Out OR Junctions Declaration 9
2.5.9 Synchronuous Fan Out XOR Junctions Declaration. . . . 9
2.5.10 Synchronuous Fan In AND Junctions Declaration 9
2.5.11 Synchronuous Fan In OR Junctions Declaration 9
2.5.12 Synchronuous Fan In XOR Junctions Declaration 9

3 PSL extensions 10
3.1 PSL Splitting extensions L. 10
3011 ORSPHES © o o oo ot e 10
3.1.2 AND Splits oo 11
3.1.3 XORSplits oo oo 11

3.2 Sincronizing Axioms o 12
3.3 Syncronuos Splitso 14
3.4 Temporal Sequencing of Activities 15
3.5 IDEF3 Processes e 15
3.6 Type-Instance Relationships 16
3.7 Documentation e 16
4 Compilation rules 17
4.1 Compiling UOB Declarations 17
4.2 Compiling UOB-use Declarations 17
4.3 Compiling Process Declarations 18
4.4 Compiling Simple Precedence Links Declarations 19

4.5 Compiling Left to Right Precedence Links Declarations 19

4.6 Compiling Right to Left Precedence Links Declarations 20
4.7 Compiling Bidirectional Precedence Links Declarations 20
4.8 Compiling General Constrained Precedence Links Declarations . 21
4.9 Compiling Relational Links Declarations 21
4.10 Compiling Fan Out Junction Declarations 22
4.11 Compiling Fan In Junction Declarations 23
5 The translator 24
A The Camile scenario 24
A1 IDEF3source 24
A.2 PSL KIF representation 33
A.3 PSL simplified KIF representation 42
A4 PSL Prolog representation oo 53

1 Introduction

This document describes the process of integrating IDEF3[3] and PSL. Section
2 introduces the EPIF[2] like frame representation developed for representing
IDEF3 schematics. Then, in Section 3 the PSL extensions that were necessary
for representing IDEF3 concepts are introduced, together with their definitions.

The translation process is based on a set of compilation rules that associate
with each IDEF3 concept a KIF[1] sentence expressing its semantics into PSL.
These compilation rules are introduced in Section 4.

The actual implementation of the translator is presented in Section 5, to-
gether with an example of its use to translate an IDEF3 schematic representation
of the Camile[4] scenario into PSL.

2 The IDEF3 language

IDEF3[3] is a graphical language designed for capturing information about the
objects and processes involved in a system. It offers both process-centered
and an object-centered perspectives, and it includes the ability to capture and
structure descriptions of how a system works from multiple viewpoints.

Unfortunately, it turns out that apart from its graphical elements, there is
no standard textual representation for its elements.

A preliminary such encoding, specified by Chris Menzel at Knowledge Based
Systems, Inc. and used in [5] was selected as a basis for building a representation
language rich enough to capture the IDEF3 elements. Frames were provided and
compilation rules defined, in the stile of EPIF[2] for the various kinds of IDEF3
junctions and links.

The two major differences from EPIF is that our representation reifies activity
types and that explicit link constructs are used as opposed to :successors fields

in EPIF. This change was imposed by the fact that there are several kinds of
expressing successor relationships in IDEF3 with slighty different semantics.

2.1 UOB Declarations

UOB’s (Units of Behaviour) are IDEF3’s most fundamental building blocks.
They are identified with PSL’s activities. Furthermore, IDEF3 distinguishes
UOB’s (aka generic activities), UOB-uses which are the occurences of UOB’s
in particular IDEF3 schematics, and UOB activations which are collections of
instances of UOB-uses that satisfy the temporal and logical constraints imposed
by an IDEF3 schematic.

A UOB declaration has the generic form:

<UOB-declaration> ::=
(define-UOB <con>
[:documentation <string>]
[:objects (<con>+)]
[:constraints (<sentence>+)])

A UOB declaration enables the specification of common properties of generic
activities outside the scope of any particular process.

The :objects and :constraints slots define object types that must be
present and constraints that must be met by any subclass of the UOB. Specific
subclasses can then be created within the context of a particular process by
UOB-use declaration, importing the generic UOB information via the :use-of
slot in the UOB-use frame.

2.2 UOB-use Declarations

<UOB-use-declaration> ::=

(define-UOB-use <con>
[:documentation <string>]
[:use-of (<con>+)]
:in-process <con>
[:decompositions (<con>+)]
[:constraints (<sentence>+)])

UOB-use declarations specify the general constraints that must be satisfied
by activities that occur in a particular IDEF3 process specification. They can
inherit objects and constraints via the :use-of mechanism from several generic
UOB declarations. Furthermore if the UOB represented by a UOB-use in a
particular schematic is highly complex, it may be decomposed into schematics
of finer granularity by the use of the :decompositions slot. An UOB-use may
have several different such decompositions, providing the ability to model the
same process from various perspectives.

2.3 Process Declarations

<process-declaration> ::=

(define-process <con>
[:documentation <string>]
:components (<con>+)
[:constraints (<sentence>+)])

An IDEF3 process declaration corresponds to a graphical IDEF3 process
schematic. The :components slot is used to specify the UOB’s and junctions
that appear in the schematic.

2.4 Links

Links are used in IDEF3 schematics mainly to specify temporal constraints
among the UOB’s of a process schematic. By using additional constraints links
can also be used to express logical, causal, natural and conventional relations[3].
There are three generic categories of links, that are:

e simple precedence links
e constrained precedence links
e relational links

One important thing to note is that IDEF3 links are connecting just UOB’s. Al-
though sharing the same graphical representation, the arrows connecting junc-
tions and UOB’s or junctions and junctions have different semantics, and are
handled in the context of the junction they are connecting.

2.4.1 Simple Precedence Links

<stmple-link-declaration> ::=
(define-1link <con>
[:documentation <string>]
:in-process <con>
:pred <con>
;succ <comn>)

The semantics for precedence links schematics can be expressed in terms of
possible activations of those schematics[3]. The simple precedence link expresses
the constraint that any activation of the schematic in which it appears contains
activations of its :pred and :succ slots and the activation of the :succ slot
does not begin before the end of the activation of the :pred slot.

2.4.2 Left to Right Precedence Links

<left-to-right-link-declaration> ::=
(define-1r-link <con>
[:documentation <string>]
:in-process <con>
:pred <con>
:succ <con>)

A left to right precedence link, apart from the constraint imposed by a
simple precedence link imposes the constraint that any activation of the :pred
slot must be followed by an activation of the :succ slot.

2.4.3 Right to Left Precedence Links

<right-to-left-link-declaration> ::=
(define-rl-link <con>
[:documentation <string>]
:in-process <con>
:pred <con>
:succ <con>)

A right to left precedence link, apart from the constraint imposed by a
simple precedence link imposes the constraint that any activation of the :succ
slot must be preceded by an activation of the :pred slot.

2.4.4 Bidirectional Precedence Links

<bidirectional-link-declaration> ::=
(define-bi-link <con>
[:documentation <string>]
:in-process <con>
:pred <con>
:succ <com>)

Bidirectional precedence link impose the constraints of simple precedence
link, together with left to right and right to left constraints.

2.4.5 General Constrained Precedence Links

<general-link-declaration> ::=
(define-general-link <con>
[:documentation <string>]
:in-process <con>
:pred <con>
:succ <con>
:constraints (<sentence>+))

General constrained precedence links impose the constraints of simple prece-
dence link, together with the constraints specified in the :constraints slot.

2.4.6 Relational Links

<relational-link-declaration> ::=
(define-relational-link <con>
[:documentation <string>]
:in-process <con>
:pred <con>
:succ <comn>
:constraints (<sentence>+))

Relational links have no predefined semantics. They just impose the con-
straints present in the :constraints slot.

2.5 Junctions

Brancing is represented in IDEF3 using junctions. A process can branch (con-
verge or diverge) into multiple parallel (AND junction) or alternative (OR or
XOR junctions) subprocesses. Also, branching can be done in asynchronuous
(default) or synchronuous mode. Particular junctions exist for all those combi-
nations, and their exact semantics are defined in [3]. We will just elaborate here
on the syntax used for the various junction declarations, reffering the reader to
[3] for the exact semantics.

2.5.1 Fan Out AND Junctions Declaration

<fan-out-and-junction-declaration> ::=
(define-fan-out-&-junction <con>
[:documentation <string>]
:in-process <con>
:pred <con>
:succ (<con>+)
[:constraints (<sentence>+)])

2.5.2 Fan Out OR Junctions Declaration

<fan-out-or-junction-declaration> ::=
(define-fan-out-0-junction <con>
[:documentation <string>]
:in-process <con>
:pred <con>
:succ (<con>+)
[:constraints (<sentence>+)])

2.5.3 Fan Out XOR Junctions Declaration

<fan-out-zor-junction-declaration> ::=
(define-fan-out-X-junction <con>
[:documentation <string>]
:in-process <con>
:pred <con>
:succ (<comn>+)
[:constraints (<sentence>+)])

2.5.4 Fan In AND Junctions Declaration

<fan-in-and-junction-declaration> ::=
(define-fan-in-&-junction <con>
[:documentation <string>]
:in-process <con>
:pred (<con>+)
:succ <con>
[:constraints (<sentence>+)])

2.5.5 Fan In OR Junctions Declaration

<fan-in-or-junction-declaration> ::=
(define-fan-in-0-junction <con>
[:documentation <string>]
:in-process <con>
:pred (<con>+)
:succ <con>
[:constraints (<sentence>+)])

2.5.6 Fan In XOR Junctions Declaration

<fan-tn-zor-junction-declaration> ::=
(define-fan-in-X-junction <con>
[:documentation <string>]
:in-process <con>
:pred (<comn>+)
:succ <con>
[:constraints (<sentence>+)])

2.5.7 Synchronuous Fan Out AND Junctions Declaration

<sync-fan-out-and-junction-declaration> ::=
(define-sync-fan-out-&-junction <con>
[:documentation <string>]
:in-process <con>
:pred <con>

:succ (<con>+)
[:constraints (<sentence>+)])

2.5.8 Synchronuous Fan Out OR Junctions Declaration

<sync-fan-out-or-junction-declaration> ::=
(define-sync-fan-out-0-junction <con>
[:documentation <string>]
:in-process <con>
:pred <con>
:succ (<con>+)
[:constraints (<sentence>+)])

2.5.9 Synchronuous Fan Out XOR Junctions Declaration

<sync-fan-out-zor-junction-declaration> ::=
(define-sync-fan-out-X-junction <con>
[:documentation <string>]
:in-process <con>
:pred <con>
:succ (<comn>+)
[:constraints (<sentence>+)])

2.5.10 Synchronuous Fan In AND Junctions Declaration

<sync-fan-in-and-junction-declaration> ::=
(define-sync-fan-in-&-junction <con>
[:documentation <string>]
:in-process <con>
:pred (<con>+)
:succ <con>
[:constraints (<sentence>+)])

2.5.11 Synchronuous Fan In OR Junctions Declaration

<sync-fan-in-or-junction-declaration> ::=
(define-sync-fan-in-0-junction <con>
[:documentation <string>]
:in-process <con>
:pred (<comn>+)
:succ <con>
[:constraints (<sentence>+)])

2.5.12 Synchronuous Fan In XOR Junctions Declaration

<sync-fan-in-zor-junction-declaration> ::=
(define-sync-fan-in-X-junction <con>

[:documentation <string>]
:in-process <con>

:pred (<con>+)

:succ <con>

[:constraints (<sentence>+)])

3 PSL extensions

In order to be able to capture the semantic concepts of IDEF3, some extensions
were created for the PSL language.

Those extensions fall into several broad categories, that deal with splitting of
processes, type-instance relationships for both activities and objects, temporal
sequencing of activities, etc.

3.1 PSL Splitting extensions

Three new predicates or_split, and_split and xor_split areintroduced. They
have two (type level) activity arguments, the intended semantics being that the
first one is a complex activity consisting of sub-activities whose activations are
governed by the type of the split, appearing in the context of the second argu-
ment.

They are introduced by the following axioms:
3.1.1 OR Splits

Axiom 1.

(defrelation or_split (7a 7c) :=

(=> (or_split 7a 7c)
(and (Activity 7a)
(Activity ?c)))

or_split holds between activities.

Axiom 2.

(=> (or_split 7a 7c)
(subactivity 7a 7c))

The complex activity occurs in the context of (as a subactivity of) the pro-
cess.

10

Axiom 3.

(=> (and (or_split 7a 7c)
(exists (7aa : (activation-of 7aa 7a))))
(exists (7al : (subactivity 7al 7a))
(exists 7aal (activation-of 7aal 7al))))

If there exists an activation of the complex activity, there must exist an
activation of al least one of its sub-activities.

3.1.2 AND Splits

Axiom 4.

(defrelation and_split (7a 7c) :=

(=> (and_split 7a 7c)
(and (Activity 7a)
(Activity 7c¢)))

and_split holds between activities.

Axiom 5.

(=> (and_split 7a 7c)
(subactivity 7a 7c))

The complex activity occurs in the context of (as a subactivity of) the pro-
cess.

Axiom 6.

(=> (and (and_split 7a 7?c)
(exists (7aa : (activation-of 7aa 7a))))
(forall (7al : (subactivity 7al 7a))
(exists 7aal (activation-of 7aal 7al))))

If there exists an activation of the complex activity, there must exist activa-
tions of all of its sub-activities.
3.1.3 XOR Splits
Axiom 7.
(defrelation xor_split (?7a 7c) :=
(=> (xor_split 7a 7c)

(and (Activity 7a)
(Activity ?c)))

xor_split holds between activities.

11

Axiom 8.

(=> (xor_split 7a 7c)
(subactivity 7a 7c))

The complex activity occurs in the context of (as a subactivity of) the pro-
cess.
Axiom 9.

(=> (and (xor_split 7a 7c)
(exists (7aa : (activation-of 7aa 7a))))
(exists-1 (7al : (subactivity 7al 7a))
(exists 7aal (activation-of 7aal 7al))))

If there exists an activation of the complex activity, there must exist an
activation of exactly one of its sub-activities.

3.2 Sincronizing Axioms

We intoroduce two predicates, sync_start and sync_finish that hold between
a complex activity and a process if all activations of the complex activity’s
subactivities start, respectively finish in a synchronized manner.

The two predicates are introduced by the following axioms:

Axiom 10.

(defrelation sync_start (7a 7c) :=

(=> (sync_start 7a 7c)
(and (Activity 7a)
(Activity 7c)))

sync_start holds between activities.

Axiom 11.

(=> (sync_start 7a 7c)
(subactivity 7a 7c))

The complex activity occurs in the context of (as a subactivity of) the pro-
cess.

12

Axiom 12.

(=> (sync_start 7a 7c)
(forall (7al 7a2 : (and (activation-of 7al 7A1l)
(activation-of 7a2 7A2)
(subactivity 7A1 7a)
(subactivity 7A2 7a)))
(= (Begin0f 7al)
(Begin0f 7a2))))

All activations of the complex activity’s subactivities start in a synchronized
manner.

Axiom 13.

(defrelation sync_finish (7a 7c) :=

(=> (sync_finish 7a 7c)
(and (Activity 7a)
(Activity 7c)))

sync_finish holds between activities.

Axiom 14.

(=> (sync_finish 7a 7c)
(subactivity 7a 7c))

The complex activity occurs in the context of (as a subactivity of) the pro-
cess.

Axiom 15.

(=> (sync_finish 7a 7c)
(forall (7al 7a2 : (and (activation-of 7al 7A1)
(activation-of 7a2 7A2)
(subactivity 7A1 7a)
(subactivity 7A2 7a)))
(= (EndOf 7al)
(EndDf 7a2))))

All activations of the complex activity’s subactivities finish in a synchronized
manner.

13

3.3 Syncronuos Splits

All splits have both syncronuos start and syncronuos finish versions, which are
introduced by inheriting both the split’s properties and those that define the
respective syncronicity.

Axiom 16.
(defrelation sync_start_and_split (7a 7c) :=
(<=> (sync_start_and_split 7a ?c)

(and (sync_start 7a 7c)
(and_split 7a ?c)))

Axiom 17.

(defrelation sync_start_or_split (?7a ?c) :=
(<=> (sync_start_or_split 7a 7c)

(and (sync_start 7a 7c)
(or_split 7a ?7c)))

Axiom 18.

(defrelation sync_start_xor_split (7a 7c) :=
(<=> (sync_start_xor_split 7a ?c)

(and (sync_start 7a 7c)
(xor_split 7a 7c)))

Axiom 19.

(defrelation sync_finish_and_split (7a 7c) :=
(<=> (sync_finish_and_split 7a 7c)

(and (sync_finish 7a 7c)
(and_split 7a 7c)))

Axiom 20.

(defrelation sync_finish_or_split (7a 7c) :=

(<=> (sync_finish_or_split ?a ?c)

14

(and (sync_finish 7a 7?c)
(or_split 7a ?7c)))

Axiom 21.

(defrelation sync_finish_xor_split (7a 7c) :=

(<=> (sync_finish_xor_split 7a 7c)
(and (sync_finish 7a ?c)
(xor_split 7a 7c)))

3.4 Temporal Sequencing of Activities

A new predicate, follows is introduced with the intended semantics for (follows
U J P) being that “activations of J come after activations of U inside process
P, in an IDEF3 link sense.”

That IDEF3 link sense is captured in the following axiom:

Axiom 22.

(defrelation follows (7A 7B 7P) :=

(=> (follows 7A 7B 7P)
(forall (?a : (activation-of 7a 7A))
(forall (?p : (activation-of 7p 7P))
(=> (subactivity-occurence 7a 7p)
(exists (?b : (activation-of 7b 7B))
(and (subactivity-occurence 7b 7p)
(BeforeEq (EndOf 7a)
(BeginOf 7b)))))))))

3.5 IDEF3 Processes

An interesting issue that occured when doing the IDEF3 to PSL translation was
What is the right abstraction level in PSL at which to do the translation?

As far as thelDEF3 to PSL translator is concerned, the level of abstraction
at which the translation is done doesn’t really matter. One has to think of
translation rules that go all the way to the bottom (i.e. the PSL primitive
concepts) and define the IDEF3 constructs in terms of these. Alternatively,
once semantic agreement has been checked by going to the lowest level, the
compilation rules can be written in terms of higher level concepts reused from
the PSL Ontology, or in terms of concepts defined in a PSL extension.

15

However, to facilitate the style currently chosen for translating out of PSL
the higher level approach was chosen. That is new high level semantic con-
cepts were defined in terms of the PSL Ontology and the compilation rules were
written in terms of those concepts.

So, a new predicate idef-process that characterizes IDEF3 processes was
introduced as an extension. Its definition is:

(defrelation idef-process (7P) :=

(=> (idef-process 7P)
(forall (?p : (activation-of 7p 7P))
(exists (7u 7U : (subactivity-occurence 7u 7p)

(activation-of ?u 7U)

(subactivity 7U 7P))
(and (forall (?7V : (subactivity 7V 7P))

(not (follows 7V 7U ?7P)))

(= (beginof ?7u) (beginof ?p)))))))

3.6 Type-Instance Relationships

Both activities and objects are type-level in IDEF3 and in PSL. However, they
are encoded as predicates in IDEF3, but as objects in PSL. So, going with the
PSL encoding we choose to reify both activity and object types, introducing
two new predicates to express their type-instance relationship.

We choosed to reify both activity and object types, introducing two new
predicates to express their type-instance relationship.

The two predicates are (activation-of 7a 7A) and (instance-of 7o 70)
both having the intended semantics that their first argument is an instance of
the second. (for activities, respectively objects)

For the moment they are both defined in terms of the PSL occurence as:

(defrelation activation-of (?a 7A) :=
(<=> (activation-of 7a 7A)

(occurence 7a 7A)))
(defrelation instance-of (7a 7A) :=

(<=> (instance-of 7a 7A)
(occurence 7a 7A)))

but this might change in the future.

3.7 Documentation

A new predicate, doc was introduced, that holds between an object and its
documentation.

16

4 Compilation rules

The PSL representation of an IDEF3 schematic will be a set of (implicitly and-ed)
KIF sentences that define a PSL theory. The translation process can be described
by a set of meta-theoretic compilation rules that associate KIF sentences with the
IDEF3 constructs. (writing such compilation rules can be also seen as providing
a formal, declarative semantics into PSL to IDEF3 constructs)

The notion of compilation will be defined relative to a process specification II
for each type of IDEF3 declaration and rules for the compilation of the individual
slots of a declaration will be written in the style used in [2].

4.1 Compiling UOB Declarations

The compilation Compr(p) of a UOB declaration having the generic form:

(define-UOB ~
:documentation ¢
:objects (& ...&,)
:constraints (K1...K;m))

is defined as (and Compr (:documentation) Compr(:objects) Compr (:constraints)),
where:
Compy (:documentation) is the sentence:

(doc v)
Compy (:objects) is the sentence:

(forall (7a : (activation-of 7a 7v))
(exists (g1...m, : (instance-of n; &) ... (instance-of 7, &,))
(and (in m &) ... (in 0, §))))

Compy (: constraints) is the sentence:

(and K1 ...Km)

4.2 Compiling UOB-use Declarations

The compilation Compy (1) of a UOB-use declaration having the generic form:

(define-UOB-use «
:documentation ¢
:use-of (y1...7n)
:in-process w
:decompositions (p;...pk)
:constraints (K1...K.;))

17

is defined as (and Compy (:documentation) Compy (:use-of) Compy (:in-process)
Compy (:decompositions) Compp (:constraints)), where:
Compr (:documentation) is the sentence:

(doc a 6)
Compy (:use-of) is the sentence:

(forall (7a : (activation-of 7a «))
(and (activation-of 7a ;) ... (activation-of 7a v,)))

Compr (:in-process) is the sentence:

(forall (7a : (activation-of 7a a))
(exists (7p : (activation-of 7p 7))
(subactivity-occurence 7a 7p)))

Compr (:decompositions) is the sentence:

(forall (?a : (activation-of 7a «))
(and (activation-of 7a p;) ... (activation-of 7a pi)))

Compr (: constraints) is the sentence:

(and K1 ...Km)

4.3 Compiling Process Declarations
The compilation C'ompr () of a process declaration having the generic form:

(define-process 7
:documentation ¢
:components (qq ...qp,)
:constraints (K1...K;m))

is defined as (and Compy (:documentation) Compy (:components) Compy (:constraints)),
where:
Compy (:documentation) is the sentence:

(doc 7 6)
Compr (: components) is the sentence:

(and (subactivity a; m)
(subactivity ay)

(subactivity a, m)
(idef-process w))

Compr (: constraints) is the sentence:

(and K1 ...KEm)

18

4.4 Compiling Simple Precedence Links Declarations
The compilation Compr()) of a simple precedence link declaration having the

generic form:

(define-link A
:documentation §
:in-process w
:pred o
:succ 3)

is defined as (and Compp (:documentation) Compy (:in-process:pred:succ)),
where:
Compy (:documentation) is the sentence:

(doc A &)
Compn (:in-process:pred:succ) is the sentence:

(follows a (3)

4.5 Compiling Left to Right Precedence Links Declara-
tions

The compilation Compy(A) of a left to right precedence link declaration having
the generic form:

(define-lr-link A
:documentation &
:in-process T
:pred «

:succ 3)

is defined as (and Compp (:documentation) Compy (:in-process:pred:succ)

Compr (1r)), where:
Compy (:documentation) is the sentence:

(doc X 4)

Compy (:in-process:pred:succ) is the sentence:
(follows a (3)

Compn(lr) is the sentence:
(forall (?p : (activation-of 7p «))

(exists (7s : (activation-of 7s (3))
(Before (Endof 7p) (Beginof 7s))))

19

4.6 Compiling Right to Left Precedence Links Declara-
tions

The compilation Compy(A) of a right to left precedence link declaration having
the generic form:

(define-rl-link A
:documentation §
:in-process w
:pred «

:succ 3)

is defined as (and Compp (:documentation) Compy (:in-process:pred:succ)
Compr (rl)), where:
Compy (:documentation) is the sentence:

(doc A &)

Compr (:in-process:pred:succ) is the sentence:
(follows a [m)

Compn(rl) is the sentence:

(forall (?s : (activation-of 7s [3))
(exists (7p : (activation-of 7p «))
(Before (Endof 7p) (Beginof 7s))))

4.7 Compiling Bidirectional Precedence Links Declarations

The compilation Compy (M) of a bidirectional precedence link declaration having
the generic form:

(define-bi-link A
:documentation &
:in-process w
:pred «

:succ 3)

is defined as (and Compy (:documentation) Compy (:in-process:pred:succ)

Comprn (1r) Compr (rl)), where:
Compr (:documentation) is the sentence:

(doc A §)
Compy (:in-process:pred:succ) is the sentence:

(follows a [7)

20

Compy(lr) is the sentence:

(forall (7p : (activation-of 7p «))
(exists (?s : (activation-of 7s [3))
(Before (Endof 7p) (Beginof 7s))))

Compy(rl) is the sentence:

(forall (?s : (activation-of 7s [3))
(exists (?p : (activation-of 7p a))
(Before (Endof 7p) (Beginof 7s))))

4.8 Compiling General Constrained Precedence Links Dec-
larations

The compilation Compr () of a general constrained precedence link declaration
having the generic form:

(define-1link A
:documentation &
:in-process w
:pred «

:succ 3)
:constraints (K1...K;))

is defined as (and Compp (:documentation) Compy (:in-process:pred:succ)
Compr (:constraints)), where:
Compy (:documentation) is the sentence:

(doc A)

Compr (:in-process:pred:succ) is the sentence:
(follows a [m)

Compy (: constraints) is the sentence:

(and K1 ...Km)

4.9 Compiling Relational Links Declarations

The compilation Compr(\) of a relational link declaration having the generic
form:

(define-1link A
:documentation ¢
:in-process w
:pred «

:succ 3)
:constraints (K1...K.;))

21

is defined as (and Compy; (:documentation) Compy (:constraints)), where:
Compy (:documentation) is the sentence:

(doc A 8)
Compr (: constraints) is the sentence:

(and Ki...Km)

4.10 Compiling Fan Out Junction Declarations

Fan Out junctions are identified with complex activities, having as sub-activities
the activities denoted by the UOB’s following the junction. They are compiled
using the appropriate PSL split extension, which are defined in Section 3.
Since there are many kinds of fan-out junctions in the IDEF3 language, we
will give a generic compilation schema that applies to all of them.
The compilation Compr(¢) of a fan-out junction declaration having the
generic form:

(define[-sync]-fan-out-o-junction (
:documentation §
:in-process T
:pred «

ssuce (Br...0)

:constraints (Ki...Km,))

is defined as (and Compy (:documentation) Compy (:in-process) Compy (:pred)
Compy (:succ) Compr(:constraints)), where:
Compy (:documentation) is the sentence:

(doc ¢ &)
Compr (:in-process) is the sentence:
(forall (7j : (activation-of 7j ())
(exists (7p : (activation-of 7p 7))
(subactivity-occurence 7j 7p)))
Compy (:pred) is the sentence:
(follows a (w)

Compr (:succ) is the sentence:

(and (¥ ¢ w)
(subactivity (31 ()

‘(él‘lbactivity Bn ()

22

where % is one of or_split, and split or xor_split for ¢ standing for
0, & respectively X or one of sync_start_or_split, sync_start_and split or
sync_start_xor_split for the respective syncronuos junctions.

Again this is just a shorthand for writing the compilation rules for all fan-out
junctions in a single compilation schema.

Compy (: constraints) is the sentence:

(and K1 ...Km)

4.11 Compiling Fan In Junction Declarations

Fan In junctions are identified with complex activities, having as sub-activities
the activities denoted by the UOB’s preceding the junction. They are compiled
using the appropriate PSL split extension, which are defined in Section 3.
Since there are many kinds of fan-in junctions in the IDEF3 language, we
will give a generic compilation schema that applies to all of them.
The compilation Compy(¢) of a fan-in junction declaration having the generic
form:

(define[-sync]-fan-in-o-junction (
:documentation &
:in-process w
:pred (aj...ap)
:succ 3
:constraints (K1...K;m))

is defined as (and Compr (:documentation) Compr (:in-process) Compy (:pred)
Compy (:succ) Compr(:constraints)), where:
Compy (:documentation) is the sentence:

(doc ¢ 6)
Compr (:in-process) is the sentence:
(forall (7j : (activation-of 7j ())
(exists (?p : (activation-of 7p w))
(subactivity-occurence 7j 7p)))

Compy (:pred) is the sentence:

(and (¥ ¢)
(subactivity a; ()

(subactivity a, ())
where % is one of or_split, and _split or xor_split for o standing for 0,

& respectively X or one of sync_finish or_split, sync_finish and split or
sync_finish xor_split for the respective syncronuos junctions.

23

Again this is just a shorthand for writing the compilation rules for all fan-in
junctions in a single compilation schema.
Compr (:succ) is the sentence:

(follows ¢ B m)
Compr (: constraints) is the sentence:

(and K1 ...Km)

5 The translator

Once the compilation rules were written, implementing the translator was a
trivial task. The compilation rules were written as 1isp macros, and the trans-
lator itself just calls macroexpand-1 for all the forms of the IDEF3 file and stores
the results in the PSL file.

The translator was later provided with a KIF expression simplifier which
can be used to convert from the higher level KIF expressions generated by the
compilation rules, that may contain a form of typed quantifiers and polymorphic
operators to a simple syntax form that uses typeless quantifiers and standard
operators. A kif-to-prolog extension that was needed for subsequent translation
steps was also included, so the translator can now generate three output formats
for an IDEF3 file, that is PSL terminology using KIF syntax, PSL terminology
using the simplified KIF syntax, and PSL terminology using Prolog syntax.

The translator has been dumped to an executable image which is invoked
as:

i2p klslp <deffile pslfile

where k|s|p selects one of the syntax options described above.

A The Camile scenario

A.1 IDEF3 source

24

H

;; Camile Scenario IDEF 3 representation
55

;3 Mihai Ciocoiu

s

(define-UOB Make-GT350
:documentation "Make GT350")

(define-UOB Make-Interior
:documentation "Make Interior"
:objects (A002-bench))

(define-UOB Make-Drive
:documentation '"Make Drive"
:objects (A003-bench))

(define-UOB Make-Trim
:documentation "Make Trim"
:objects (A002-bench A0O5-bench))

(define-UOB Make-Chassis
:documentation '"Make Chassis")

(define-UOB Final-Assembly
:documentation "Final Assembly")

(define-UOB Make-Block
:documentation "Make Block")

(define-UOB Make-Hamess
:documentation '"Make Hamess")

(define-UOB Make-Wires
:documentation "Make Wires")

(define-UOB Assemble-Engine
:documentation "Assemble Engine")

(define-UOB Produce-Moulded-Metal-Item
:documentation "Produce Moulded Metal Item")

(define-UOB Machine-Block
:documentation "Machine Block")

(define-UOB Change-Mould
:documentation "Change Mould")

(define-UOB Setup-Furnace

25

:documentation "Setup Furnace")

(define-UOB Analyse-Metal
:documentation "Analyse Metal")

(define-UOB Melt
:documentation "Melt")

(define-UOB Mould
:documentation "Mould")

(define-UOB Wait
:documentation "Wait")

(define-UO