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The propagation of a high peak power femtosecond laser pulse through a 

dielectric medium results in filamentation, a strongly nonlinear regime characterized 

by a narrow, high intensity core surrounded by a lower intensity energy “reservoir” 

region. The structure can propagate over many core diameter-based Rayleigh ranges.  

When a pulse of sufficiently high power propagates through a medium, the 

medium response creates an intensity dependent lens, and the pulse begins to focus in 

a runaway process known as optical collapse. Collapse is invariably mitigated by an 

arrest mechanism, which becomes relevant as the pulse becomes increasingly intense. 

In air, collapse is arrested through plasma refraction when the pulse becomes intense 

enough to ionize the medium. Following arrest, the pulse begins to “filament” or self-

guide. In gaseous media, energy deposited in the wake of filamentation eventually 

thermalizes prompting a neutral gas hydrodynamic response. The gas responds to a 



  

sudden localized pressure spike by launching a single cycle acoustic wave, leaving 

behind a heated, low density channel which gradually dissipates through thermal 

diffusion. 

This dissertation presents a fundamental advance in the theory of optical 

collapse arrest, which is how a pulse transitions from the optical collapse regime to 

the filamentation regime. We provide experimental evidence, supported by theory and 

numerical simulation that pulses undergoing collapse arrest in air generate 

spatiotemporal optical vortices (STOVs), a new and previously unobserved type of 

optical vortex with phase and energy circulation in a spatiotemporal plane. We argue 

that STOV generation is universal to filamentation, applicable to all collapsing 

beams, independent of the initial conditions of the pulse or the details of the collapse 

arrest mechanism. Once formed, STOVs are essential for mediating intrapulse energy 

flows. 

We also study the hydrodynamic response following filamentation, with the 

intent of engineering the response to construct a variety of neutral gas waveguides. In 

a proof-of-concept experiment, we demonstrate that a transverse array of filamenting 

pulses can be used to inscribe two distinct types of waveguides into the air: acoustic 

and thermal waveguides. These waveguides can be used to guide very high average 

power laser beams or as remote atmospheric collection lenses. 
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Chapter 1: Introduction 

1.1 Dissertation outline 

 

Filamentation is a dynamic nonlinear propagation regime for high power 

optical pulses, where competing focusing and defocusing nonlinearities allow for the 

extended propagation of a high intensity filamenting core over many Rayleigh 

lengths [1]. Interest in filamentation stems from the rich nonlinear physics of the 

system, and the many applications that this affords. The large optical field present in 

filaments enables efficient nonlinear conversion for electromagnetic sources spanning 

from THz to x-rays: optical filaments can be used to generate broadband coherent 

optical fields [2] which can be compressed down to nearly single cycle duration [3], 

they can be used as a source for high peak power single cycle THz pulses [4,5], and 

for high harmonic generation [6]. Filamentation in air is of particular interest for 

remote applications, where filaments are unique in their ability to deliver high field 

intensities (up to 
14 2~10 W cm ) at kilometer distances, allowing for ranged 

applications such as LIDAR [7] and laser induced breakdown spectroscopy [8]. 

This dissertation presents experiment, simulation and theory with two central 

thrusts: i) new applications for filaments made possible by exploiting the long 

timescale gas evolution occurring in the wake of a filamenting pulse [9], in particular 

the construction of long-lived optical waveguides [10], and ii) the discovery of the 

spatiotemporal optical vortex (STOV), a new type of optical vortex self-generated in 

all filamenting beams [11]. We establish that STOV generation is intrinsic to the 

initiation of filamentation, and central to the phase evolution and intra-envelope 

energy transport occurring in the subsequent propagation. 



 

 2 

 

The remainder of Chapter 1 provides a background for filamentation. Starting 

from Maxwell’s equations, linear optics is briefly reviewed with an emphasis on 

dispersive pulse propagation. Nonlinear processes central to air filamentation are 

discussed, followed by a short review of filamentary phenomena. In Chapter 2 we 

explore the effects of the density hole left in the wake of a filamenting beam on a 1 

kHz pulse train of filaments, where it is seen that the cumulative effects of the pulse 

train lead to convective motion of the gas and a sustained deflection of the beam 

pointing.  Chapter 3 develops and demonstrates the idea of acoustic and thermal air 

waveguides, where we show it is possible to guide high power (both peak and 

average) and high energy laser pulses in the wake of structured transverse arrays of 

filaments. Proof-of-concept ~1 meter waveguides are generated, the gas 

hydrodynamics leading to guide formation are time-resolved using interferometry, 

and modal analyses of the various guides are also performed. Chapter 4 presents 

experiment, simulation and theory establishing the universality of STOV generation 

in the optical collapse process. We interferometrically reconstruct the transverse 

intensity and phase profiles of an air filament in midflight to detect the presence of 

the STOV, and develop a model of optical collapse arrest generic to all filamentation 

processes, which predicts the generation of STOVs. Finally, we theoretically 

investigate properties of linear pulses with embedded STOVs, identifying a STOV-

carrying mode as well as assessing the orbital angular momentum of a STOV-

carrying pulse in a dispersive medium. Chapter 5 presents a summary of the thesis, 

reviews ongoing work, and suggests future directions.  
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1.2 Linear optics 

1.2.1 Maxwell’s equations 

 

Maxwell’s Equations, together with the Lorentz force law govern classical 

light-matter interactions [12]. The macroscopic formulation, in SI units, of Maxwell’s 

Equations useful for studying electromagnetic fields in material media is 

  D   (1.1a) 

 0 B   (1.1b) 

 t  E B 0   (1.1c) 

 t  H D j   (1.1d) 

while the Lorentz force on a point charge q  moving at velocity v  is 

  q  F E v B   (1.2) 

Here, E is the electric field, D  is the displacement field, B  is the magnetic field, H  

is the magnetizing field,   is the free charge density, j  is the free current density, 

and q  is a charge. The electric and displacement fields are related by the polarization 

response of the medium 0 D E P , while the magnetic and magnetization fields are 

related by the magnetization response of the medium 
0

1


 H B M , where P  is the 

polarization, M  is the magnetization, and 0  and 0  are the permittivity and 

permeability of free space. 

In this work, we consider propagation in dielectric materials where 

magnetization is negligible M 0 . Field ionization will lead to the presence of free 

charge, however, once created, this negative charge density is locally balanced by the 

positive charge density from the ions so that 0  . This situation can change with 
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large electromagnetic fields (far greater than those found in air filaments considered 

in this dissertation), for which the ponderomotive force can induce electron drift with 

respect to the ions, resulting in charge separation. In what follows, we include the 

bound and free electron response in the material’s polarization P . 

1.2.2 Linear polarization response 

 

For sufficiently small field amplitudes, bound electrons make small 

excursions from their equilibrium positions resulting in a polarization response of the 

medium. The motion of the massive nucleus (
3electron

proton

10
m

m


) is negligible by 

comparison. Much insight can be obtained using a classical model for the polarization 

response of a single bound electron, where the electron motion is modelled using a 

damped, driven spring (Lorentz model of the atom). The damping force 
dampF m x   

models momentum changes (primarily through radiation and collisions), the atomic 

binding force on the electron is 2

atom 0F kx m x     where 0

k

m
   is the resonant 

frequency of the atomic oscillator of spring constant k, and the driving force is 

driveF eE  . Here we neglect magnetic contributions to the electron motion, as 

v
E E

c
v B  for nonrelativistic electrons. At optical frequencies, the magnetic 

force term (and relativistic electron dynamics) becomes significant at intensities 

17 210 W cm  , where the normalized vector potential 2

0 0 / ~ 0.1a eA mc  . The 

classical model becomes 

 2

0F mx m x m x eE        (1.3) 
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Assuming a time harmonic field  0( ) Re i tE t E e   the dipole response of a single 

oscillator in steady state is 

 
 

2

02 2

0

( ) ( ) Re i te
p t ex t E e

m i



  


  

    
   

  (1.4) 

When the driving frequency is far slower than the resonant frequency 0  , the 

polarization response is nearly in phase with the electric field. In air, the nearest 

resonance to the optical frequency band is 0

0

2
240nm

c



   [13], resulting in a 

characteristic response time of 0.8fs  . For the titanium sapphire laser used in this 

thesis, which generates pulses with central wavelength 800nm  , the response can 

be considered instantaneous. Generalizing to a medium of N  molecules per volume, 

where each molecule has 
jf  electrons with natural frequencies 

0 j  and damping 

coefficients 
j , the medium polarization is given by 

 
2

2 2

0

j

j j j

fNe

m i   

 
     

P E   (1.5) 

Equation (1.5) specifies a susceptibility in the frequency domain 

0( ) ( ) ( )    P E . In general, the susceptibility is a 2
nd

 rank tensor, as the structure 

of a molecule allows for an orientation dependent polarization response. This effect is 

important in crystalline materials, where the molecular constituents are all oriented in 

the same manner, but in gases comprised of randomly oriented constituents, the 

polarization response is isotropic, and the susceptibility can be treated as a scalar.   
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2

2 2

0 0

( )
j

j j j

fNe

m i
 

    

 
     

   (1.6) 

Note that one option is to include the steady state free electron response in Equation 

(1.6) by using index 0j   to identify 0 ef N N  as the free electron density, 00 0   

as the free electron resonance frequency and 0   as the electron collision 

frequency, giving the free electron contribution to ( )   as 
 

2

( )
p

e
i


 

  





 where 

1
2 2

0

e
p

N e

m




 
  
 

 is the plasma frequency.  

 The electric and displacement fields are related by 

0( ) ( ) ( ) ( ) ( )        D E P E , where  0( ) 1 ( )      is the frequency 

dependent permittivity. This yields the frequency dependent refractive index 

   
1 2 1 2

0( ) ( ) 1 ( )n c         , where  
1 2

0 0c  


  is the speed of light in 

vacuum. 

1.2.3 Wave propagation in linear media 

 

Deriving a wave equation from the time-domain Maxwell’s equations (1.1) 

yields, 

  
2

2

02 2

1

c t t t


   
        

   

E P
E E M j   (1.7a) 

 

Here, the free current density j  and the polarization bound current density 

t





P
 are shown as separate terms, but can be combined as discussed in Section 1.2.1. 
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above. Note that in general the dielectric function ( , ) x  may both depend on 

frequency and position (the medium may be nonuniform) so that    E 0 . 

However, for media with sufficiently mild nonuninformity such that 
E

E





 
, 

   E 0  is an excellent approximation. This gives      

 
2 2

2

02 2 2

1

c t t


 
  

 

E P
E   (1.7b) 

where we have combined the free electron response with the bound response on the 

right side j P P
t t

 
 
 

, and taken the magnetization to be zero M 0 . Equation 

(1.7b) can be Fourier transformed ( , ) ( , )t E x E k  and ( , ) ( , )t P x P k , where 

we may use the frequency domain constitutive relation  0( , ) ( ) ( , )     P k E k , 

  
2

2

0 02
( , ) ( , ) ( ) (k, )k

c


        E k + E k = E  (1.8)  

Which yields the dispersion relation ( )k n
c


 , where n  is the index of refraction 

as discussed above, and k  k .  Because N , 1  is the case for all gases up 

to several atmospheres in pressure and we can approximate 1 1
2

k
c c

  


 
    

 

, which gives the real and imaginary part of the wavenumber r ik k ik  , 

 Re
1

2
rk

c

  
  

 
 and Im

2
ik

c

  
  

 
. Thus, the real and imaginary parts of the 

susceptibility govern the phase evolution and attenuation of waves travelling through 

the medium. 
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  
 

   

2 22
0

2 2
2 2

0 0

Re
j j

j
j j

fNe

m

 


    




 
   (1.9a) 

  
   

2

2 2
2 2

0 0

Im
j j

j
j j

fNe

m

 


    


 
   (1.9a) 

 
Figure 1.1. Susceptibility of a dielectric near a resonance. 

 

 

Figure 1.1, shown above, plots the susceptibility as a function of frequency for 

a dielectric near a resonance. In the plot, we use 0 5PHz   and 1PHz  . When 

the driving frequency is close to the resonance frequency 0  , bound electrons 

oscillate in resonance with large amplitude, and considerable energy is lost to 

damping, leading to a larger attenuation coefficient 
ik . There is also a sharp dip in the 

real part of the susceptibility, called anomalous dispersion, characterized by phase 
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velocity 

Re 1
2

c c

n 


 
 

 

 increasing as a function of frequency. Away from 

resonances, attenuation is suppressed 

 
2

2 2

0

ik


 



, where 0  is the nearest 

resonance, and we are in the normally dispersive regime where phase velocity is a 

decreasing function of frequency. A medium is said to be optically transparent when 

resonances lie outside of the optical frequency span  400 1000nm . The situation is 

typified by low losses (often approximated as lossless) and normal dispersion. 

A general wave solution can be constructed by summing the Fourier 

components of Equation (1.18) as follows: 

  ( )3

0( , ) ( , ( ))
i k t

t d k k e



 

 
k x

E x E k   (1.10) 

where ( )k   is a constraint imposed by the dispersion relation. Of particular 

interest are paraxial electric fields, where the angular wavenumber distribution is 

narrowly concentrated about a particular value 
( )

1
( )

k

k







. Paraxial fields, which 

are directional and characterized by low divergence, are often used in optical 

experiments where long paths containing common optical elements such as lenses 

and mirrors place constraints on the transverse size and divergence of optical fields 

traversing the beam line.  

Consider a paraxial electric field travelling along the z-direction, which, for 

simplicity, we take to be time harmonic and propagating in vacuum (dispersionless): 

 
( , ) ( ) ci k z t

t e


E x A x . Here we have factored the field into a planar term 
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corresponding to the central wavenumber c
ˆ

ckk z , and a field envelope A , which 

satisfies 

  2 22 c z zik    A A   (1.11) 

Here, 
2 2 2

x y     is the transverse Laplacian. Because the paraxial field is 

comprised of plane waves with a narrow distribution centered about c
ˆ

ckk z , the 

change in E  along the propagation direction is dominated by the planar term so that 

22 c z zik  A A  which is known as the paraxial approximation. More rigorously, 

note that    3 ( )ci k z t i t

c ze ik i d k e k
z z

    
  

  
k xE A

E E k , where we express the 

derivative on E  using the envelope function (first equality) and the Fourier 

decomposition (second equality).  Writing the Fourier component as z ck k k  , 

and assuming E is paraxial, so that 
c

1
k

k


 we establish that 

       3 3( ) ( )ci k z t i t i t

c ce i d k e k ik d k e ik
z

      
  

  
k x k xA

E k E k E , from which 

can we recover the paraxial approximation  22 c z zik  A A . 

For a beam comprised of linearly polarized plane waves, the spread in angle 

of the polarization unit vectors 
cen

1
k

k



   is similarly small, resulting in a beam 

with polarization that is nearly spatially invariant 0
ˆ ˆ( ) A x A .  Thus, Equation (1.11) 

simplifies to the time harmonic, paraxial, scalar envelope equation 

 
22 zik A A     (1.12) 
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Of special relevance is the 00TEM  fundamental laser mode solution to 

Equation (1.12), where 

 

22

2
( )

2 ( )( )0
00 0( , )

( )

krr
i z

R zw zw
E z E e e

w z


 
    
 

 r   (1.13) 

Here,  ,x y r  is the transverse vector, 0E  is the field amplitude, 

2

0( ) 1
R

z
w z w

z

 
   

 
 is the z-dependent spot size, 

2

0
R

w
z




 , the characteristic 

length scale for the field envelope called the Rayleigh range, 0 ( 0)w w z   is the 

beam waist,   is the wavelength, 

2

R( ) 1
z

R z z
z

  
      

 is the beam radius of 

curvature, and (z) arctan
R

z

z


 
  

 
 is the Guoy phase. 

The transverse amplitude distribution 

2

2 ( )

r

w ze



 dilates with propagation, but is 

otherwise invariant, and exhibits the lowest possible divergence of any linearly 

propagating beam with equal or lesser beam waist. The fundamental mode is the 

lowest order solution in a variety of modal decompositions of paraxial waves, the 

most popular of which are the Hermite-Gauss or TEMmn  modes which have 

rectilinear symmetry, and the Laguerre-Gauss or LGlp
  modes which have cylindrical 

symmetry. We make use of both modal decompositions in the work presented in this 

thesis as a means of generating filament arrays (see Chapter 3).   

 2 2

2 2

2

( )
2 ( )

( )0
0

2 2
TEM ( , , ) H H

( ) ( ) ( )

k x y
x y i z

R z
w z

mn mn m n

w x y
E x y z E e e

w z w z w z



 
   

   
 

   
        

   
  (1.14a) 
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22

2
2 ( )

2 ( )( )0

2

2 2
LG ( , , ) L

( ) ( ) ( )

l

l krr
i z l

R zw z

lp lp p

E r r
E r z e e

w z w z w z

 



 
     
 

   
      

  
  (1.14b) 

Here, Hm  is the m
th

 order Hermite polynomial and Ll

p are the generalized Laguerre 

polynomials, where m, n, and p, are all positive integers, and l is an integer. In both 

cases, the higher-order modes also have transverse amplitude distributions which are 

invariant under propagation up to dilation, the same phase curvature, and the same 

transverse expansion rate as the fundamental mode, but have different transverse 

distributions, and accumulate more Guoy phase through propagation 

 
R

( ) 1 arctan
z

z N
z


 

   
 

 where N m n   for TEM modes and 2N l p   for 

LG modes.   

Next, we consider the propagation of polychromatic beams in dispersive 

media. Fourier transforming Equation (1.7b) with respect to time gives: 

 
2

2

2
( , ) ( ) ( , ) 0

c


     E x E x   (1.15) 

We expand the permittivity about a central frequency c  ,  

 

 
2

c2

c

0

( ) ( )
( )

!

n

n

n n

   
    





    , where 
 2

c( ) ( )
n

      is the n
th

 derivative 

of 
2 ( )    evaluated at c  , and exchange powers of  c   for temporal 

derivatives. After inverse Fourier transforming, we have 

 
 

 
c

c2 2

c2
0

( , t) ( ) ( ) ( , )e 0
!

i t n
n i tn

t

n

e i
t

c n


   

 



     E x E x   (1.16a) 

 
 2 2

c2
0

1
( , t) ( ) ( ) ( , ) 0

!

n
n

n

t

n

i
t

c n
   





     E x E x   (1.16b) 
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Where in Equation (1.16b) we have decomposed the field into a temporal envelope 

and a carrier frequency ( , ) ( , ) ci t
t t e


E x E x , a form which is useful for describing a 

pulsed field with a relatively narrow spectral distribution surrounding a central 

frequency c .  Equation (1.16b) is a useful form of Equation (1.7) suitable for 

handling polychromatic fields.    

Equation (1.16) can be simplified considerably by truncating the series for 

( )   at some finite order. Generally speaking, more dispersive media, broader 

spectral bandwidth, and longer propagation lengths will result in increased sensitivity 

to higher order corrections to ( )  . The first order correction is 

2

02

1
2

cc

c

k
k

c   

 


  

 


 
, which is proportional to 

c g

1k

v  





. Here, 

gv  is the 

group velocity, which alters the pulse propagation speed. Higher moments distort the 

shape of the pulse envelope by accounting for a nonlinear spread in the phase velocity 

of neighboring frequencies, with the first correction being 

2 2 2

02 2 2

1

2
c c

c

k
k

c
   

 


 
 

 


 
, where 

c

2

2

k

 







  is the group velocity dispersion.  

As a final step, we combine the various approximations made in this section: 

paraxial, scalar, and truncated dispersion to create a pulse envelope evolution 

equation useful for modelling linear ultrafast pulse propagation. For the purposes of 

numerical simulation, it is useful to apply a change of coordinates: gv t z    and 

z z   (where we neglect the prime going forward). The transformation specifies a 

longitudinal coordinate   which co-moves with the pulse at the group velocity (in the 

original coordinates, the pulse will move along the longitudinal direction to the edge 
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of the numerical window, but in the transformed/co-moving the pulse remains 

stationary along the longitudinal axis). Applying the approximations results in 

   2 2

22 z ik A A 
          (1.17) 

where A  is an electromagnetic field envelope, such as E . Equation (1.17) is used 

throughout the thesis as the linear component of a numerically solved model for 

filament propagation (see Section 1.3.4 for the entire model). In many cases, temporal 

variations in the pulse envelope are slow relative to an optical cycle [14], and 

Equation (1.17) may be simplified by approximating ik ik  , which is known as 

the temporal slowly varying envelope approximation (the temporal analogy of the 

paraxial approximation). 

 2 2

22 zik A A
         (1.18) 

Equation (1.18) is more symmetrical and easily manipulated for the purposes of 

making analytical arguments.               

1.3 Nonlinear optics 

1.3.1 The anharmonic oscillator 

 

The linear polarization model developed in Section 1.2.2 was predicated on 

the assumption of small field amplitudes driving small excursions of bound and free 

electrons. Considering the bound response only, larger electron excursion amplitudes 

can be modelled by small nonlinear corrections to the restorative force. 

  2

0 NLF m x x x eE F         (1.19) 

Provided the atom or molecule in question is rotationally symmetric, or we are 

considering an ensemble average response x , NLF  over a  gas of randomly 
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oriented molecules, the requirement that NL NL( ) ( )F x F x    implies that 
NLF  

contains only odd terms 3 5

NL 3 5 ...F k x k x    , with lower order terms typically 

dominating over higher order terms 2

2

i i

i ik x k x 


 . 

Consider the first nonlinear term 3

NL 3F k x  . Equation (1.19) can be solved 

perturbatively using 
(1) (3) ...x x x    where the terms 

( )ix  are ordered in decreasing 

magnitude: ( ) ( 2)i ix x  . 

      
st

st nd nd

3
(1) 2 (1) (1) (3) 2 (3) (3) (1)

0 0 3

higher order1 order
1 order 2 order 2 order

...m x x x m x x x eE k x             (1.20) 

Equation (1.20) groups terms from Equation (1.19) into different orders. By 

inspection, we see that the first order term 
(1)x  satisfies the linear model of Equation 

(1.3), while the third order term 
(3)x  can be viewed as being driven nonlinearly by 

(1)x . Critically, even if the incident field is harmonic,  0

1
. .

2

i tE E e c c  , making 

the first order solution also harmonic  (1) (1)

0

1
. .

2

i tx x e c c  , the third order term, 

driven by  
3

(1)x  is driven at frequencies   and 3 . Assuming a harmonic incident 

field  0

1
. .

2

i tE E e c c  , a polarization 
(1) (3)P P P Nex     can be derived in a 

manner similar to Section 1.2.2. For convenience, we define the polynomial 

2 2

0( )D i      . 

 

244 3
3 0 0(3) 33 0

4 3 4 3

31 1
( ) . .

2 4 (3 ) ( ) 2 4 ( ) ( )

i t i t
k Ne Ek Ne E

P t e e c c
m D D m D D

 

   

 
   

          

  (1.21) 



 

 16 

 

Nonlinear corrections to the restorative force have led to a third order susceptibility 

(3)  entailing corrections in the medium response at the fundamental frequency, as 

well as the generation of a new frequency at the third harmonic.  

1.3.2 Formalism for nonlinear optics 

 

The example considered above, the anharmonic oscillator, can be generalized 

to explain a host of phenomena in nonlinear optics. In materials which violate 

inversion symmetry, even order terms allow for second harmonic generation, as well 

as effects sensitive to the orientation of the field polarization. By considering a 

driving field composed of three distinct frequencies: 1 , 2 , and 3 the third order 

medium response allows for general four-wave mixing processes           

where 
 ,  , and  can each be any of 1 , 2 , and 3 , allowing for a total of 22 

distinct output frequencies.  

Like the Lorentz model considered in Section 1.2.2, the anharmonic oscillator 

should be viewed as a phenomenological model for the bound electronic response. In 

practice, physicists do not seek to directly measure spring constants ik , nor is it 

always possible to perform ab initio quantum mechanical calculations on physically 

realistic models of molecules, instead, the medium is usually experimentally probed 

with incident electric fields to determine the polarization response. In general, the 

polarization response to a set of discrete optical frequencies is 

 (1) (2) (3) (1) (2) (3)

0 0 0... ...              P P P P χ E χ E E χ E E E   (1.22) 
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where ( )N
P  denotes the N

th
 order nonlinear polarization, 

( )N
χ , the N

th
 order nonlinear 

susceptibility, is a tensor of rank 1N  , and E  is a monochromatic electric field. 

Elements of the N
th

 order nonlinear polarization can be computed for a set of 

monochromatic frequencies as follows: 

 

     
 

0 0 1

1

1 2

( ) ( )

0 1 2 ... 1 2

...

1 2

; , ,..., ; , ,...,

( ) ( )... ( )

N

N

N

N N

n N n n n N

n n n N

P K

E E E

  
 

          

  

  
  (1.23) 

Here, the nonlinear polarization oscillates at 
1

N

a

a

 


 , and we sum over all 

possible sets of N frequencies  1,..., N   summing to  . Note that a real, 

monochromatic field  
1

( ) ( ) ( )
2

i t i tE t E e E e     provides equal spectral power 

at both positive and negative frequencies, as *( ) ( )E E   . K  is a degeneracy 

factor which accounts for different permutations of a fixed set of input frequencies 

(see ref. [15]), and there is an implicit Einstein summation over the electric field 

polarization directions  , ,in x y z  for 1,2,...,i N . The time domain polarization 

response corresponding to the term in equation (1.23) is 

  
0 0

( ) ( )

,

1
( ) . .

2

i tN N

n nP t P e c c





 


  .  

As an example, for the anharmonic oscillator (considered above), the third 

order polarization contribution for the fundamental frequency can be expressed as 

(3)

0

3
( ) ( ; , , ) ( ) ( ) ( )

4
x xxxx x x xP E E E            , where 

3

4
K  , we have taken the 
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scalar electric field to be oriented along the x direction, and 

4

3

4 3

0

( ; , , )
( ) ( )

xxxx

k Ne

m D D
    

  


  


 .    

Equation (1.2.3) can also be used to model pulsed electric fields in the 

adiabatic limit. Consider a pulsed field  
1

( ) ( ) . .
2

i tE t E t e c c



  , where ( )E t  is a 

temporal envelope with bandwidth  . Provided the susceptibility tensor ( )N  is 

nearly constant (dispersionless) over the frequency range 
2





 , we are in the 

adiabatic limit and Equation (1.2.3) may be used for the pulsed field as well.  

   More generally, Equation (1.2.3) can be integrated over the spectral domain 

to determine the polarization response from pulsed fields: 

 

   
0 0 1

1

1 2

( ) ( )

0 1 ... 1

1 2

1

1
( ) ... ; ,..., ; ,...,

2

( ) ( )... ( ) . .

N

N

a

a

N

N N

n N n n n N

Ni t

n n n N a

a

P t K

E E E e d c c

 



       

   





  




 



  (1.24) 

Using the Convolution theorem, the right side of Equation (1.2.4) can also be 

expressed in the time domain: 

 
0 0 1 1

( ) ( )

0 ... 1 1

1

( ) ... ( ,..., ) ( )... ( )
N N

N
N N

n n n n N n n N a

a

P t t t E E d      


       (1.25) 

For a general review of nonlinear optical phenomenon see ref. [15] In the 

remaining sections we focus on nonlinear processes relevant to filamentation, 

especially in air. 

1.3.3 Optical Kerr effect 
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The third order susceptibility tensor (3) ( ; , , )xxxx      , responsible for the 

optical Kerr effect, is of special relevance for filamentation, as it causes the field to 

modulate its own phase. Assuming a linearly polarized electric field, an effective 

susceptibility can be defined by a combination of first and third order susceptibilities 

2(1) (3)

eff

3
( ; ) ( ; , , ) ( )

4
xx xxxx E                which can be used to construct an 

intensity dependent refractive index 
eff eff 0 21 ( )n n n I     , where 

2 (1)

0 1 ( ; )xxn      , 
2

0 0

1
( ) ( )

2
I n c E    is the spectral intensity, and 

(3)

2 2

0 0

3 ( ; , , )

4

xxxxn
n c

    



 
  is the Kerr coefficient. 

The optical Kerr effect produces frequency shifting along the temporal axis 

referred to as self-phase modulation. Assuming an instantaneous response, the 

frequency shift after propagation over a distance L  is  2( ) ( )
d d

t kn I t L
dt dt


    

. For a pulse with a bell-shaped temporal intensity profile, red-shifting occurs at the 

temporal front of the pulse, and blue-shifting occurs in the rear.  The spatial analog to 

self-phase modulation is self-focusing, and occurs when a bell shaped transverse 

profile establishes its own intensity dependent lens.      

As discussed in Section 1.2.2 on the linear polarization response, the bound 

electronic response time 0.8fs   can be viewed as effectively instantaneous for the 

800nm   pulses considered in this thesis, which have period 800nm 2.7fs   and 

bandwidths satisfying 
c

1





. With respect to the electronic Kerr effect, the 
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response is in the adiabatic regime, and we may thus approximate the time domain 

response as instantaneous 
0 2,elec( ) ( )n t n n I t  . 

An additional intensity dependent effect exists for diatomic molecules, such as 

the air constituents 2N  and 2O . The long axis (symmetry axis) of a diatomic 

molecule exhibits greater bound electron mobility and thus a stronger polarization 

response relative to the directions orthogonal to the symmetry axis. If a diatomic 

molecule is not aligned with the incident field polarization, the anisotropic 

polarization response exhibits a torque on the molecule, where the torque depends on 

the intensity of the field envelope of the pulse. In the presence of an intense electric 

field, the electron cloud distorts and thus “drags” the nuclei to align with the electric 

field polarization, producing a transient birefringence of the medium. The rotational 

response time of the molecule is determined by the moment of inertia of the 

molecule, and is naturally much slower than the bound electron response because of 

the large difference in mass. In air, the response time is 100fs  [16], meaning that a 

sufficiently short pulse will induce a transient birefringence in its wake without 

experiencing the effects itself. 

Classical and quantum mechanical derivations for the rotational response of 

the molecules are both possible. The two approaches have good agreement provided 

the initial thermal distribution populates a sufficient number of rotational states, a 

condition which is satisfied when the temperature and moment of inertia of the 

molecules are sufficiently large [17].  

One important fundamental difference is that the quantum mechanical model 

exhibits periodic realignments, or “quantum echoes”, which have been measured in 
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detail for air constituents [18] and can have significant effect on filamentation [19]. 

Echoes are seen because the rotational states are all periodic over the fundamental 

periodicity set by the lowest energy rotational state. In the classical model, where 

molecular rotation occurs for a continuous distribution of speeds, no such realignment 

is possible. For the symmetric molecules N2 and O2, full realignments occur at the 

fundamental periodicity, with partial realignments also occurring at 1 4 , 1 2  and 3 4  

of the fundamental periodicity. Air exhibits its largest realignment at 8.4ps , where 

the full realignment of nitrogen roughly coincides with the 3 4  revival of oxygen. 

Realignments can be used to guide subsequent pulses travelling in the wake of the 

first pulse [19,20]. 

It is possible to model the rotational response as an effective 
(3)  

susceptibility, where the slow response of the molecules necessitates a temporally 

nonlocal response as in Equation (1.2.5). The time domain index response is given 

by: 2,rot( ) ( ) ( )

t

n t n t I d  


    [21].   

1.3.4 Ionization 

 

The ionization potential of air constituents 2N  and 2O  are 
2N 15.2eVU   and 

2O 12.1eVU  , while single photon energies in the optical spectrum are 1-2eV , 

meaning that multiple photons must be absorbed simultaneously to liberate a bound 

electron. For low field intensities, the multiphoton ionization rate can be modelled as 

K

KW I , where W  is the ionization rate, K  is the K-photon ionization cross 

section, I is the field intensity, and K  is the minimum number of photons required to 
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overcome the ionization potential K U  . The rate can be derived from time-

dependent perturbation theory by considering the lowest order relevant term.  

As the field intensity or optical period increase, photoionization enters the 

tunneling regime, where the electron tunneling time is now less than an optical 

period, and the lowest order perturbation term is no longer sufficient for explaining 

ionization. In the tunneling regime, one considers the combined potential of the 

coulomb field and incident field 
0

( )
4

qZ
q t

r
 E r  , where 1Z   is the charge of the 

atomic core. The potential dips below the energy level of the bound electron at a 

finite distance, allowing the electron to tunnel out of its bound state. Figure 1.2, 

shown below, diagrammatically displays the difference between multiphoton 

ionization and tunneling ionization. Multiphoton ionization, displayed on the left of 

Figure 1.2, shows an unperturbed coulomb potential in black, and the simultaneous 

absorption of several photons (red arrows) to raise the electron energy above the 

barrier. Tunneling ionization, on the right of Figure 1.2, shows the combined incident 

field and coulomb potential distorting to levels where there is significant probability 

for the electron to tunnel beyond the resulting potential barrier.  
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Figure 1.2. Schematic depiction of multiphoton ionization (left) and tunneling 

ionization (right). 

A measure of the degree to which ionization is in the multiphoton or tunneling 

regime is given by the Keldysh parameter i

p2
K

U

U
  , where iU  is the ionization 

potentiation and 

22

p 2

e 04

e E
U

m 
  is the ponderomotive potential of the incident field. For 

1K , ionization is dominated by multiphoton absorption, while for 1K , 

tunneling is the dominant mechanism. In air, where the lowest ionization potential 

comes from oxygen 
2O 12.1eVU  , and filaments with pulses at 800nm   reach 

peak intensities of 
13 25 10 W cmI    (see Section 1.4.3), 1.6K  , indicating that 

multiphoton absorption is favored, but we are in an intermediate regime. Keldysh was 

able to unify the two regimes into a single model [22], which was further refined by 

Perelmov, Popov and Terent’ev into what is now referred to as the PPT model [23].  

As already discussed in Section 1.2.2, once electrons are born, their 

susceptibility can be modelled using the Lorentz model with the atomic restoring 

e-

e-

ħω
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force set to zero, and the damping force replaced by a collision rate) 
e

e

m
  

E
x x , 

which gives a susceptibility 

 
 

2

e

2
e 0

1n e

m i


  
 


  (1.26) 

Where en  is the free electron density, and   is a collision rate. For the low density 

plasmas generated by femtosecond filaments in air (ionization fraction ~0.001 [24]), 

the electron-neutral collision rate en 2THz   so that en 1



 [25]. The free electron 

susceptibility can then be simplified to e

c

n

n
   , where 

2

0
c 2

em
n

e

 
  is the critical 

plasma density. Avalanche ionization due to electron-neutral collision is similarly 

negligible for the 100fs  pulses considered in this dissertation, since 

1avalanche   [26].  

 Plasmas generated by filamentation in air are quasi-neutral: electron-ion 

charge separation can be shown to be negligible by comparing the ponderomotive 

force 
2 2

pond 2

e4

e E

m 


F  to the electrostatic force field established due to space charge 

separation between the electrons and ions. The electron and ion charge distributions 

can be modelled as cylinders of constant charge, which have corresponding electric 

fields
inside

02






r
E  inside the cylinder, and 

2

outside

0

ˆ
2

R

r




E r  outside the cylinder, where 

  is the charge density, r  is the distance from the axis of the cylinder, and R  is the 

radius of the cylinder. Displacing the electron cylinder by a small distance x R  
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results in an electric field magnitude 
02

x
E






  in the sliver where the cylinders are 

non-overlapping, from which the space charge felt by a single particle may be 

estimated 
s.c.

02

e x
F






 . Equating the two forces gives the ponderomotive force-

induced displacement as 

2

0

2

e2

e E
x

m



 


  . Estimating 

2
2

core

E
E

r
 , where the filament 

core radius is core 50μmr  (see Section 1.4.3), and the peak intensity achieved in the 

filamenting core as 
2 13 2

0

1
10 W cm

2
c E   (also see Section 1.4.3),and 

16 310 cme    [24], gives a displacement core0.2nm rx  . As a result, to a very 

good approximation, the plasma can be treated as quasi-neutral.  

1.3.5 Nonlinear polarization 

        

In Section 1.2.2 we modelled the linear polarization response derived from the 

Lorentz model of the atom, neglecting all nonlinearities. Now we incorporate 

nonlinearities stemming from the bound electronic response, molecular rotational 

response, and the free electronic response of the medium. 

 

L

NL

2
(1) (3)

0 pl

( , )
( , )

3
( , ) ( , ) ( , ) ( , ) ( , ) ( , )

4




         

 
 

   
 
 

P r
P r

P r r r E r r E r   (1.27) 

Here, L ( , )P r and NL ( , )P r  are, respectively, the linear and nonlinear polarization. 

The linear susceptibility, as discussed in Section 1.2.2, is 
(1) ( , ) r , 

(3)  incorporates 

bound electron and rotational susceptibilities, and pl  models the free electron 
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response. The nonlinear polarization can be used to extend the linear pulse 

propagation Equation (1.17) to a nonlinear propagation equation suitable for 

modelling filamentation. To derive the result, start at the frequency domain wave 

Equation (1.15), splitting the polarization into linear and nonlinear components as in 

Equation (1.27), and then follow the derivation of Section 1.2.3 (inverse transform 

back to the temporal domain, transform to the moving frame 
gv t z   , apply 

paraxial approximation, and truncate linear dispersion at a finite order), this time 

keeping the nonlinear polarization on the RHS as a driving term.   

    
2

2 2

2 NL

0

1 ˆ2 z ik A ik P  



         

  (1.28) 

Here, A  and NLP̂  are envelope functions for the scalar electric field 

( , , ) ( , , ) ikE z A z e   

 r r  and the time domain nonlinear polarization 

NL NL
ˆ( , , ) ( , , ) ikP z P z e   

 r r , which can be separated into 

NL,elec 0 2,elec
ˆ ( , , ) 2 ( , , ) ( , , )P z n I z A z     r r r , 

NL,rot 0 2,rot
ˆ ( , , ) 2 ( ) ( ) ( , , )P z n I d A z



       



   r r , and 

NL,plas 0

( , , )ˆ ( , , ) ( , , )e

c

n z
P z A z

n


  

  
r

r r , with rate equations governing the 

populations of the free electrons and neutrals 
2 2 2 2

e
N N O O

dn
n n

d
 


  , 2

2 2

O

O O

dn
n

d



  , 

and 2

2 2

N

N N

dn
n

d



  , where i  are ionization rates given by the PPT model, and in  

are number densities for the free electrons and neutrals. Note that we have used the 
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adiabatic approximation (see Section 1.3.2) in expressing the time-domain 

polarization response from plasma as well as the electronic Kerr effect  

1.4 Filamentation of high power optical pulses 

 

1.4.1 Filamentation summary 

 

When a high intensity pulse propagates through a dielectric medium it 

generates its own co-propagating lens due to the optical Kerr effect. If the pulse 

power is above a critical power threshold crP , the self-lens is able to overcome 

diffraction and the pulse begins to shrink in size. As the pulse shrinks in size and the 

peak intensity grows, the self-lens becomes increasingly dominant over diffraction in 

a self-reinforcing process known as optical collapse. The collapse is invariably 

mitigated by a “collapse arrest mechanism” which only becomes relevant to 

propagation as the pulse becomes increasingly singular. Following collapse arrest the 

pulse begins to “filament”, a dynamical competition ensues between focusing and 

defocusing nonlinearities that support extended propagation of a high intensity 

filamenting core over many Rayleigh lengths. Figure 1.3, below, shows a schematic 

representation of filament self-channeling in air, where self-focusing from the Kerr 

effect competes with refraction from plasma generated from field ionization. An end 

mode image of an air filament is also displayed, in which the intense and spectrally 

broadened “core” contrasts with the lower intensity “reservoir” (see Section 1.4.3).  
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Figure 1.3. Left: schematic representation of dynamic self-channeling of air filament 

due to competition between self-focusing nonlinearity and plasma refraction. Right: 

end mode image of air filament.  

1.4.2 Optical collapse and collapse arrest 

 

Optical collapse, wave propagation where self-focusing dominates diffraction, 

is the first phase of filamentation. Self-focusing due to the optical Kerr effect is 

ubiquitous, as the process is automatically phase matched, produced from a single 

frequency, present regardless of the symmetry of the material, and often the most 

pronounced effect at lower intensities. Optical collapse was first experimentally 

observed by Hercher in 1964 [27], in a series of experiments where high power lasers 

were seen to drill transparent glass plates, leaving cylindrical damage patterns up to 

2cm  long and only several wavelengths wide. The large aspect ratio of the damage 

patterns cast doubt on potential explanations using linear optics.  Chiao [28] and 

Kelley [29] were the first to identify self-focusing nonlinearities as responsible for 

lensing the beam. Following Kelley’s original arguments to demonstrate optical 

collapse and estimate the critical power, we consider a monochromatic beam of 

sufficient intensity as to be lensed by the optical Kerr effect.    

plasma

self-focusing defocusing
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2

2 2

0

2
2 ( ,z) ( , z) ( , z)z

k n
ik A I A

n
   

 
     

 
r r r   (1.29) 

The monochromatic propagation equation (1.29) can be derived from the filament 

model considered in Equation (1.28) by taking the long pulse limit, where ik  , 

dispersion is negligible 
2

2 0   , the medium response is in the adiabatic limit, and 

we focus on the optical collapse phase of filamentation where the Kerr effect is the 

only relevant nonlinearity. Equation (1.29) is known as the Nonlinear Schrodinger 

Equation, or NLS. Suppose the beam is of sufficient intensity, that initial propagation 

is dominated by the nonlinear term 2 2

22A k n IA , so that the phase curvature of 

the beam evolves due to nonlinear lensing much more quickly than beam changes due 

to diffraction. The evolution of the beam at this early stage is then approximated by 

 2 ( ,z 0)
( ,z) ( ,z 0)e

ikn I z
A A  

  
r

r r   (1.30) 

where ( , 0)A z r  is the beam envelope at that the start of propagation. We may now 

estimate a length scale over which diffraction becomes relevant by estimating the size 

of the diffractive term using the solution in Equation (1.30). For definiteness, 

consider the initial condition 

2

2
02

0( , z 0)
r

A E e



  

r

r . By imposing 

2 ( ,z 0)2 22 ( ,z) ( ,z) ( ,z 0) e
ikn I z

zik A A A  

          
r

r r r , we arrive at a self-focusing 

scale length 0 0
SF

22

r n
L

n I
 . By considering a diffractive scale length in the absence of 

nonlinearities 
2

0 0
diff

2

1.22

r n
L


 , we obtain Kelley’s original estimate for the onset of 
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optical collapse: 
SF diffL L  which can be rearranged to create a condition on the pulse 

power 
 

2

2

cr 0

0 2

1.22

16
P P r I

n n


   . 

If self-focusing can overcome diffraction, can self-focusing be tuned to 

balance it? Solitonic solutions to the NLS (Equation (1.29)), can be found by 

assuming a propagation invariant solution where diffraction exactly balances self-

focusing
2

2 2

0

2
( ) ( ) ( )

k n
A I A

n
     r r r , from which an entire family of solitonic 

solutions may be derived, with the lowest order solution known as the Townes 

profile. All solutions to the stationary NLS are unstable; infinitely small perturbations 

to the solitons either lead to catastrophic collapse of the wave, or eventual diffractive 

spreading, making physical realizations of solitonic propagation in this regime 

impossible [30]. Each transverse beam distribution has its own critical power, with 

the critical power for the Townes profile providing an absolute lower bound on the 

power necessary to initiate optical collapse 
2

cr,Townes

0 2

3.72

8
P

n n




 . The Gaussian initial 

distribution relevant in many laser experiments results in a slightly larger critical 

power 
2

cr,Gauss

0 2

3.77

8
P

n n




 . 

According to the NLS, Equation (1.29), a beam propagating above its critical 

power leads to catastrophic collapse, where, in a finite distance, a finite amount of 

energy in the beam aggregates to a point. The collapse length cL  is generically a 

function of the linear diffractive length diffL  and the ratio of the power to the critical 
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power 
cr

P

P
. For the case of a Gaussian beam, Dawes and Marburger determined a 

formula for approximating the collapse length [31] by numerically solving the NLS 

for a variety of initial conditions, and fitting the obtained collapse length to an 

analytical formula 

 diff
c

2
1/2

0.367

0.852 0.0219
cr

L
L

P

P



  
   
   

  (1.31) 

Of course, catastrophic collapse is not a real physical scenario. Invariably, an 

additional physical mechanism termed the collapse arrest mechanism becomes 

relevant as the pulse becomes increasingly intense. In air and other gaseous media, 

the collapse arrest mechanism is refraction from plasma which is generated by field 

ionization from the intense beam [1]. In water and many other solids, spectral 

broadening from increased self-phase modulation during collapse results in a 

dispersive arrest where temporal stretching of the pulse results in a lowered 

intensity [32]. Even in a plasma, which exhibits a self-focusing nonlinearity resulting 

from relativistic corrections to the quiver trajectory of free electrons, electron 

cavitation from the ponderomotive force of the beam leads to collapse arrest [33]. In 

the absence of an additional material effect, the NLS (Equation (1.29)) eventually 

becomes non-physical as the beam becomes non-paraxial, at which point it can be 

shown that vectorial effects will also arrest collapse [34].  

1.4.3 Core/reservoir model of filamentation 
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In the optical collapse scenario detailed in Section 1.4.2 an initially collimated 

beam with transverse scale length 0r  begins to self-focus, transferring energy inward 

until the on-axis intensity diverges and a finite amount of energy has aggregated to a 

point [30]. Even in this unphysical collapse scenario absent an arrest mechanism, a 

substantial portion of the pulse energy remains distributed over the original transverse 

scale length 0r .  

Collapse arrested filamenting beams possess two transverse scale lengths, one 

for the small, high intensity filamenting “core”, and another for the larger, low 

intensity filament “reservoir” which surrounds the core and contains the majority of 

the energy in the pulse [35]. Typically, the arrest mechanism is active in the core, 

with Kerr lensing guiding additional energy inward from the reservoir, fueling 

continued propagation of the core. In an air filament, the core may be loosely defined 

by the maximal radius where the pulse is intense enough to produce ionization. The 

relatively small filamenting core produces an even narrower plasma column (due to 

the highly nonlinear dependence of ionization on intensity) which then acts to refract 

light out of the core.  

Courvoisier et al., conducted experiments where water droplets impeded the 

propagation of the filamenting core [36]. Beyond the droplet, the reservoir was seen 

to form a new core, indicating the “self-healing” property of filamenting beams. 

Provided the filamenting reservoir contains more than the critical power for self-

focusing, optical collapse should continue, forming a new core. 

The intensity in the core of an air filament can be estimated by balancing the 

refractive index contributions of Kerr self-focusing and plasma refraction 
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(defocusing) e
2

c

( )

2

n I
n I

n
 , where the multiphoton ionization rate may be used to 

estimate the electron density (see Section 1.3.3) e ( ) ~ K

K pn I I  . Here, K  is the K-

photon absorption cross section and 
p  is the pulse length. Slight increases in the 

intensity lead to much higher electron density and stronger defocusing from plasma 

refraction. As a result, the intensity is effectively clamped somewhere near the 

balance set by Kerr self-focusing and plasma refraction 
13 2

clamp ~ 2 10 W cmI   . This 

estimate is borne out by measurements of air filament intensity by Lange et al. [37], 

who found that an air filament that abruptly transitions to an argon gas cell has a 

harmonic cutoff of 23, which can be linked via simple theory [38] to a peak intensity 

of the laser of 
13 25 10 W cm  . Additionally, assuming that each filamenting core 

contains roughly a critical power, the transverse scale of the core can be estimated as 

cr
core

clamp

~ 40μm
P

r
I

 .    

1.4.4 Spectral broadening and self-steepening 

 

 

Phase shifts due to the optical Kerr effect and the plasma response can lead to 

spectral broadening. Ignoring diffraction, total phase accumulation of the pulse may 

be modelled as 
( , )

( , )
n t z

t kz t t
c

  
 

    
 

x
x , with the instantaneous frequency 

given by e
inst 2

c

1

2

nd z I
n

dt c t n t

 
 

 
     

  
 where we use an instantaneous Kerr 

response for simplicity. The Kerr response causes red shifting of the leading (rising) 
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edging of the pulse, and blue shifting of the trailing (falling) edge. Ionization, which 

is strongly nonlinear in the intensity, is negligible up to an intensity threshold, at 

which point the free electron density rapidly increases and saturates as the intensity 

clamps (see Section 1.4.3 for a discussion of intensity clamping). The sharp rise in 

free electron density contributes to a blue shifting of the pulse. 

Temporal variations in the index are also responsible for a reshaping of the 

amplitude of the temporal envelope of the pulse in a process known as self-

steepening. The index enhancement from the Kerr effect results in an intensity 

dependent group velocity 
gv

k





, where the high intensity peak of the pulse travels 

slower than the low intensity wings. Self-steepening results in a stretching of the 

rising edge of the pulse, and a compression of the falling edge. 

The combined effects of spectral broadening and self-steepening results in 

self-compression of filamenting beams. Compression of a 45 fs, 800 nm, 5mJ pulse 

down to an 8 fs, 3.8 mJ pulse has been demonstrated by Stibenz et al. [3], and is 

competitive with the pulse compression capability of modern hollow core fibers [39] 

without the additional cost and complexity of dealing with several meters long rigid 

glass fibers.  

1.4.5 Modulational instability and multiple filamentation 

 

For powers well above the critical power crP P , a filamenting beam will 

produce multiple filamenting cores. The cores are nucleated as the beam undergoes 

collapse, as well as throughout propagation as individual cores expire and new cores 

are created. During collapse the Kerr effect creates an instability in the transverse 
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intensity distribution, producing multiple high intensity peaks or “hot spots”. 

Campillo et al. [40,41], considered a planar monochromatic wave, and found that the 

growth rate for transverse spatial modulations was 
2

cr

8
( )

2

k I
k k

k P


 

    which has 

maximal growth for 
opt

cr

2
I

k
P


  . This leads to a characteristic distance between 

filaments 
fil opt

2
d

k





 , from which Couairon and Berge [42] estimated a typical power 

per filament of 
2

cr
4

P


, consistent with an experimental study by Ting et al. [43], who 

found cr1P  per filament for a 20 mJ, 50 fs beam filamenting at 800 nm in air.  

1.4.6 Long timescale gas response to filamentation 

 

All of the discussion regarding filamentation has thus far focused on ultrafast 

phenomena, that is, phenomena with timescales similar to or faster than the pulse 

itself. We now consider the behavior of gaseous media following propagation of a 

filamenting pulse.  

A long, thin plasma is generated in the wake of a filamenting pulse [35]. Over 

a timescale depending on the gas type and pressure (~1 ns for air at 1 atm [24]), the 

plasma then recombines and repartitions most of its initial thermal energy into 

translational and rotational degrees of freedom of the neutral gas. If the gas is 

diatomic, the ultrashort pulse torques the ensemble of molecules, depositing energy 

by coherently exciting rotational states of the gas. The rotational excitation decoheres 
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through collisions (~100 ps collisional timescale for air at 1 atm [44]) where the 

energy is also repartitioned to translational and rotational modes of the neutral gas.  

In a filament, energy is primarily deposited by the high intensity filamenting core 

(~50 µm radius for an air filament), and, owing to the air low thermal conductivity, 

the deposited energy does not diffuse appreciably before it is converted to heated air 

in approximately the same volume. Seeking pressure balance, the heated channel of 

neutral gas launches a single cycle acoustic wave and expels mass out of the volume. 

Figure 1.4, taken from Cheng et al. [9], is a hydrodynamic simulation of the early 

time evolution of the gas as it relaxes into pressure equilibrium.  

 

Figure 1.4. Simulation of the time evolution of a gas density hole created in the wake 

of a filamenting pulse taken from Ref. [9]. At early times < 0.3 µs, the high pressure 

volume originally occupied by the filamenting core expels mass and launches a single 

cycle acoustic wave, reaching pressure equilibrium by ~1 µs. 
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After ~1 µs the gas reaches pressure equilibrium, and a hot, low density 

channel occupies roughly the same volume as the filamenting core [9]. The gas 

begins to cool through diffusion, and the density depression expands and fills in over 

a timescale of milliseconds. To verify diffusively driven evolution, Figure 1.5, also 

taken from Cheng at. al, shows the relaxation of the density hole created in a variety 

of gases. The log-log plot of time vs. hole FWHM displays a slope of 1 2 , 

characteristic of diffusion into the 2 transverse dimensions. Further, the expansion 

rate of the density holes was used to infer a thermal diffusivity for the medium, which 

was found to be within ~10% of values found in the literature [9].  

 

Figure 1.5. Log-log plot of density hole FWHM vs time. Measured FWHM vs time is 

shown in circles, with slope of ½ fitted to the experimentally derived values. Data is 

taken from earlier work published in Ref. [9]. 
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Chapter 2: Optical beam dynamics in a gas repetitively heated 

by femtosecond filaments 
 

2.1 Introduction 

In this chapter we consider the effects of long timescale neutral gas evolution 

on the beam pointing dynamics of high repetition rate (≥1 kHz) filaments. Most 

effects pertinent to the filamentation process itself occur on a timescale on the same 

order or shorter than the pulse length (typically ~100 fs). For air filamentation [35], 

this includes self-phase modulation induced electronically and rotationally through 

the optical Kerr effect, as well as ionization from multiphoton absorption and 

tunneling. Filamentation has undergone intensive investigation for applications 

stemming from these ultrafast effects, such as harmonic generation [45,46], 

supercontinuum generation [2], and generation of few-cycle pulses through self-

compression [3,47]. Missing from prior analyses of filamentation are longer timescale 

effects such as thermal blooming, which has been found to distort the propagation of 

high power CW lasers in the atmosphere [48,49]. Despite the high peak power of 

pulses in femtosecond filaments, the average power in the beam is relatively small, so 

thermal effects in filamentation are subtle and were only reported recently [9]. In 

general, models of filamentation had assumed that each laser pulse interacts with a 

uniform medium and that any perturbations caused by the previous pulse have 

vanished by the time the next pulse arrives. Recently, it was shown that filamentation 

in gases at kilohertz repetition rates can be affected by the density depression that 

accumulates due to laser heating of the gas [9]. Lensing by the density depression 
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alters the propagation of the laser pulse, affecting the onset of filamentation and the 

spectrum of generated supercontinuum [9]. 

In this chapter, we show that this long-lived density depression, coupled with 

convective motion of the heated gas, leads to a reproducible deflection of the 

filamenting beam. We present time-resolved measurements of the accumulating kHz 

pulse-train-driven gas density depression inside a gas cell and the associated beam 

deflection. We find that the deflection is well-described by a simple model of beam 

refraction associated with the evolution of the gas density hole, whose time and space 

scales are well described by a simple fluid analysis. The results presented here 

provide quantitative understanding of thermal effects on beam propagation of 

femtosecond filaments, which will point the way to both stabilization and long range 

control of the filamentation process. Results are shown for Xe and air, but are broadly 

applicable to all configurations employing high repetition pulse rate femtosecond 

laser propagation in gases. For a review of the hydrodynamic response following 

filamentation, see Section 1.3.6 or the paper by Cheng et al. [9]. 

2.2 Experimental setup 

 

Here, we consider a situation in which a shutter is opened suddenly and a 1 

kHz pulse train is focused into a gas cell. The first pulse experiences a uniform gas 

density. The time separation between successive pulses is short enough that each 

pulse, which itself heats the gas, is affected by the cumulative density hole, which 

acts as a negative lens. As the hole evolves, the pulses in the sequence are steered, 

eventually reaching a steady state deflection. Here we measure and quantify the hole 

evolution and beam deflection. 
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Figure 2.1. Experimental setup: the pump and probe travel collinearly through the 

gas cell. The probe beam is relay imaged at the axial center of the plasma where the 

density hole is produced. 

 

 

The experimental setup is shown in Figure 2.1. A 1 kHz pump pulse train, 

apertured to 4mm with 45 fs, 120 µJ pulses was focused by a 60 cm lens into a gas 

cell filled with air or xenon at 1 atm. An additional setup was employed where a 40 

cm lens focused the beam into a 2.7 atm gas cell also filled with xenon. The latter is 

the same setup and gas cell we use for supercontinuum generation for our spectral 

interferometry experiments [50].  A fast shutter synchronized to the laser system was 

employed to create a finite pulse train. To capture the transverse location of the pump 

beam in the far field we routed the output beam, attenuated using neutral density 

filters, from the gas cell onto a quadrant detector. The beam spot size on the 7.8 mm 

diameter quadrant detector was ~4 mm. The recorded beam deflections were 

downward.  

Gas density evolution was measured using a folded wavefront interferometer 

with a CW HeNe laser probe beam [9]. The probe propagated collinearly with the 

pump pulse train, and was relay imaged from the axial center of the plasma, through a 

folded wavefront interferometer and onto a CCD. The phase shift from the density 
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perturbation was then extracted from the resulting interferogram using standard 

interferometric techniques [51]. The phase shift was converted to gas density using 

the known linear refractive index of Xe [52]. In the case of the 2.7 atm cell, the probe 

beam propagated at a 5 degree angle with respect to the pump, and Abel inversion 

was used to extract the size and shape of the density perturbation. Temporal 

resolution was achieved by time-gating the CCD and triggering the electronic 

exposure in order to sample the perturbation after a given pulse in the pulse train. The 

temporal resolution was limited by the minimum CCD exposure duration of ~40 μs, 

which was short compared to the density profile evolution diffusive timescale as 

previously measured [9].  

2.3 Results and discussion 

 

2.3.1 Beam deflection 

 

A crucial aspect of the gas dynamics not investigated previously is that 

buoyant forces move the density depression upward. This is seen in Figure 2.2, which 

shows the 2D gas density profile measured in 1 atm xenon and air in response to 

filament generation at 1 kHz. Here, the filaments are 2.5 cm and 4.75 cm long for 

xenon and air from visual inspection of the plasma fluorescence. The profile shows 

the gas density 100 µs before the next pulse in the train. The accumulated density 

hole from earlier pulses, which has expanded to hundreds of microns in width, is seen 

to be displaced upward from the pump beam center, centered at (0,0) on the image, 

while the pulse train deflects downward.  
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Figure 2.2. Two-dimensional plots of gas density in 1 atm xenon and air created by 1 

kHz  pulse trains with 0.12 mJ and 1.5 mJ per pulse respectively. The image was 

taken in between pulses in the pulse train. The deep center region was created largely 

by the pulse prior to the probe, while the larger, shallower background is due to the 

accumulation of heat from earlier pulses in the train. 

 

 

Results from the interferometry experiment particularly useful for 

understanding beam deflection are shown in Figure 2.3. Here we use data taken from 

the 2.7 atm xenon gas cell setup, where the filament is ~3 cm long. Plotted are the 

hole vertical displacement relative to the pulse train, the hole depth, and the hole half-

width-at-half-maximum (HWHM). Each point is an average of 5 measurements. Shot 

to shot variations were small.  
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Figure 2.3. Top panel: Image of deflected white light supercontinuum spot as a 

function of pulse number in the 1 kHz pulse train. Lower panels: Hole parameters as a 

function of pulse number in the pulse train. The fast shutter is opened just before 

pulse 1. Equilibrium is approached by about the 250
th

 pulse (at 250 ms).The inset in 

the second panel is a typical relative density profile extracted from the interferogram. 

 

 

The hole displacement was measured by sampling the cumulative density hole 

just before and after a pulse arrived. The location of the newest pulse is marked by a 

small, sharp dip in the density superimposed on the larger cumulative density hole, as 

seen in Figure 2.2. The hole depth and HWHM were extracted from an Abel inverted 

lineout of the interferogram and were measured 100 µs before a pulse arrives. As can 

be seen from Figure 2.2, the hole is significantly more extended above than below its 

deepest point. Since the hole drifts upwards and the beam deflects downwards, it is 

the bottom portion of the hole that is relevant to the deflection dynamics, and it is the 
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HWHM of the bottom side of the hole shown plotted in Figure 2.3. Also displayed in 

the top panel of Figure 2.3 is a sequence of filament white light beam images in the 

far field as a function of pulse number in the sequence, showing progressive 

deflection with negligible beam distortion. Furthermore, we use these beams in our 

spectral interferometry experiments [50] and detect no phase front distortion from the 

density hole-induced steering.  

We model the beam deflection by the density hole using the ray propagation 

equation, 
d d

n n
ds ds

 
  

 

r
, applied in the vertical plane, where s  is the optical path 

along the 2D ray trajectory, ˆ ˆz x r z x  points to the ray tip, with ẑ  along and x̂  

vertically perpendicular to the propagation direction, and where 0n n n   is the 

refractive index. For our situation of a small refractive index perturbation 
0

1
n

n


, 

0 1n  and small ray deflection angles 
( )

1
dx z

dz
 at large z , this equation simplifies 

to 

 
2

2

d x d n

dz dx


  (2.1)   

The heated density depression relaxes through thermal diffusion [9], and so the index 

perturbation is approximately Gaussian: 

 2 2

0 exp( )n n x z       (2.2)   

Here   and   characterize the length scales of the perturbation in the x  and z  

directions respectively, and 0n  (<0 for a density hole) gives the maximum amplitude 

of the perturbation. In the experiment, the axial extent of the density hole  1 2   of 
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~ 3 cm was measured by translating the object plane of the imaging system along the 

axis of the hole, and 0n  and   were obtained by fitting the measured density hole to 

a Gaussian. Light ray trajectories are linear outside of the density hole region, and so 

the problem can be treated as classical scattering, where the amplitude and 

dimensions of the index perturbation, impact parameter, and deflection (scattering) 

angle are the relevant variables. The deflection angle   is given by integrating 

equation (2.1), using equation (2.2) as the index profile: 

 
   2

00
04

x

z z

d n x z ,z xdx dx
dz n e

dz dz dx


 







  

   
Δ

Δ  (2.3)    

The incident ray is assumed to be initially travelling parallel to the optical axis with 

impact parameter 0x , where in the experiment 0x  corresponds to the density hole 

displacement.  

 

Figure 2.4. Far field beam deflection angle versus pulse number in 1 kHz plus train. 

Blue squares: measurement; red squares: ray optics calculation using measured gas 

density profiles. 
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Figure 2.4 shows good agreement between the measured deflection and 

deflection from the ray optics model. The deviation at earliest times is due to 

uncertainty in the density hole position for small displacements. The ray optics model 

contains no free parameters and uses the density hole parameters from Figure 2.3 

measured simultaneously with the deflection. That this model works so well for 

filaments is consistent with density hole lensing of the filament ‘reservoir,’ the lower 

intensity beam surrounding the filament that exchanges power with the filament 

core [53]. The beam deflection reaches steady state in ~250 ms with amplitude of 

~3.5 mrad.  Note that the magnitude of the steady state deflection is reproduced by 

the model, while the time to steady state agrees with the hole parameter plots of 

Figure 2.3. As can be seen from Figure 2.3, the density hole width only increases by a 

factor of 2 or 3, while the depth and displacement increase by very large factors. The 

widening of the hole quickly stagnates on the bottom side as convection begins 

balancing thermal diffusion, preventing heat from spreading downward, as seen in 

Figure 2.2. As a result, the growth in the deflection angle with time is primarily 

driven by the density hole depth and displacement, and follows their relaxation 

timescale.  

2.3.2 Density hole evolution 

 

We can estimate the relaxation timescale to steady state using fluid equations 

in steady state for conservation of momentum and energy. The physical picture is that 

the gas heated by the laser pulses begins to rise by buoyancy. The gas below the 

heated region then also rises, setting up a velocity flow field. One can show using the 

momentum equation that the vertical flow velocity is ultimately limited by viscous 
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drag  to 
2gL

u





 , where   (>0) is the mean decrement in gas density averaged 

transverse to the flow, L  is the transverse scale length of the density hole, g  is the 

gravitational acceleration, and   is the dynamic viscosity. We next consider the 

energy conservation equation in steady state and apply it to the region just below the 

localized laser-filament thermal source.  Given the vertical flow velocity u , the 

density depression scale length in the vertical direction, L , adjusts itself until there is 

a balance between thermal transport and diffusion, giving B 05

2

Nk T uT

L 


, where 

0  and 0T  are the background gas density and pressure, N  is the gas number 

density, T  (>0) is the transverse average temperature increment, 
0






   is the 

relative density depression,   is the gas thermal conductivity, and Bk  is Boltzmann’s 

constant. Combining these equations and using pressure equilibrium, 
0 0

T

T





 
 , 

leads to an effective length scale  
1 3

1 3
2

eff 2

B

2

5
L L L

mN k g




 
   

 
 for the system. 

Substituting effL  for L  in the expression for u  gives 

1 3
2

2

B

0.16
mg

u
N k





 
  
 

 for the 

limiting flow velocity. For a given gas species, note the weak cube root dependence 

of u  and effL  on the experimentally controllable parameters of gas number density 

N  and hole depth  , as well as on the relatively weak temperature dependence of   
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and   [54]. This makes the scale of these estimates robust over a wide range of 

conditions.  

For our experiment in Xe, 
3 -1 -15.65 10 W m K      [54], 23μPa s    [54], 

252.2 10 kgm   , 
19 -37 10 cmN   at 2.7 atm, and we take a hole depth of 0.1  

from Figure 2.3. This gives a limiting gas flow velocity of 
115μm msu   and 

ff 150μmeL . The approximate time to reach this steady state is given by 
u

t
a

 , 

where a g   is the acceleration from the buoyancy force.  Examination of Figure 

2.3 shows that in the early phase of hole displacement, 0.01 0.05  , giving 

20 100mst  , a range of timescales in reasonable agreement with the approach to 

steady state shown in Figure 2.3 and Figure 2.4. 

In an alternative, essentially kinematic approach for estimating these space 

and time scales, we take an estimate of the initial height rise of the hole due to 

buoyancy, 2

rise

1

2
d gt  and set it equal to the approximate hole radius as determined 

by thermal diffusion, thermal 2d t   [9], the idea being that the thermal source 

location cannot move below the expanding hole width as the hole rises. Here, t  is the 

elapsed time after the laser shutter is opened and 
B

2

5 Nk


   is the thermal 

diffusivity. The result is 

2 3

1 3

rise

4
t t

g


 
  

 
 and 

1 3
2

rise

32
d

g

 
 
 

. Using the above 

parameters gives rise 100mst  and 1mmd , in reasonable agreement with the 

experiment and the prior scale estimates. 
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2.4 Conclusion 

 

In summary, we have examined the propagation of a high repetition rate 

filament pulse train in the transiently evolving gas that it heats. When a filament pulse 

train is suddenly initiated in a gas, the local density is reduced, driving buoyant 

motion of the gas. The upward drift of the gas density hole steers subsequent pulses 

downward. Eventually the buoyant motion is damped by viscous forces, establishing 

a steady gas flow field and hole density profile, and the downward beam steering 

stabilizes. Unlike conventional thermal blooming with high power CW lasers, the 

beam mode is preserved. Further, a simple ray model explains the transient deflection 

of the beam by the accumulated density hole, and simple fluid analysis explains the 

experimentally observed space and time scales for the density hole dynamics and 

beam steering.  
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Chapter 3: Demonstration and analysis of long-lived high power 

optical waveguiding in air 

3.1 Overview 

 

In this chapter we explore the possibility of creating waveguides using the 

long timescale neutral gas hydrodynamic response following filamentation. In 

Chapter 2, we demonstrated that a high repetition rate (>1 kHz) filamenting beam 

deflects itself due to the cumulative thermal density hole generated by the heated gas 

from previous pulses in the pulse train. Such simple density holes will only defocus 

or deflect optical beams. However, by producing a ring of filaments, we show in this 

chapter that optical guiding structures can be generated in air in two ways: through 

collisions of single cycle acoustic waves launched by each filament in the array, or by 

the long timescale annular density hole that is left over after the acoustic waves have 

propagated away. Section 3.2 presents time resolved interferometry of the acoustic 

response following filamentation, which we use to characterize acoustic guides and 

resolve an open question in the literature regarding a waveguide created in the wake 

of a single filament. In Section 3.3, we demonstrate the generation of air waveguides 

and their guiding properties in a proof-of-concept experiment. In Section 3.4 we 

analyze the optical properties of thermal and acoustic air waveguides by performing a 

modal analysis.   
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3.2 Direct imaging of the acoustic waves generated by 
femtosecond filaments in air 

3.2.1 Introduction 

 

In this section we investigate the time evolution of the acoustic response 

following femtosecond filamentation. Long-lived thermal depressions produced by 

short pulses were recently measured interferometrically [9], but those measurements 

did not have the sub-microsecond time resolution required to measure the full 

evolution of the acoustic response. Levi et al. recently used a delayed 150 ns pulse to 

probe the axially extended gas density perturbation produced by an ultrashort 

filamenting pulse in air [55]. They claimed a positive gas density perturbation on axis 

with a microsecond lifetime that supports optical guiding. 

Here, we present interferometric measurements of the acoustic response 

induced by filaments from single- and multi-mode beams, at repetition rates of 10 Hz 

and 1 kHz, and we compare our measurements to hydrodynamic simulations. We also 

perform simulations of the propagation of light in post-filament gas density profiles. 

For single filaments, at no delay do we find on-axis enhanced gas refractive index 

profiles that can support guided modes; such profiles are produced only by multi-

filaments. 

Gas dynamics after deposition of energy by an ultrashort optical pulse has 

been discussed previously [9,10,56–58] and is reviewed in Section 1.4.6. We simulate 

the gas dynamics using the 1-dimensional radial Lagrangian hydrodynamical code 

detailed in Appendix A.2.  

3.2.2 Single mode filament acoustic response 
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Simulation results assuming a 30 m FWHM Gaussian heat source of energy 

density 
330mJ cm  (consistent with the focal spot, typical plasma density and 

temperature of ~2x10
16

 cm
3

 and ~5 eV, and rotational heating of 4 

meV/molecule [9,59]) are shown in Figure 3.1(a). The refractive index of air at 

standard atmospheric temperature and pressure, 4

0 1 2.7 10n     [60], was used to 

calculate the refractive index change from the gas density. The single cycle acoustic 

wave propagates outward at the speed of sound, 
1340m s  in air [61], and the 

amplitude of the density perturbation falls as 1 2r . The central density depression 

rapidly reaches its maximum depth by ~100 ns and then changes very little over 

microsecond timescales after the acoustic wave is launched. 

Short filaments were generated with 50 fs, 800 nm Ti:Sapphire pulses at 10 

Hz to investigate single shot gas response and at 1 kHz to probe for a possible 

dependence on repetition rate [9,58]. A 532 nm, 7 ns laser probe pulse timed to the 

Ti:Sapphire laser is used in a counter-propagating geometry. The optical setup is 

similar to that in [9] and [55], with the important exception that here and in [9] we 

perform imaging interferometry for direct and unequivocal measurement of the 

evolving refractive index profile. We use folded wavefront interferometry [9,10,58], 

which measures the 2D phase shift ( , )x y  of the probe beam, from which the 

refractive index perturbation n  is extracted. Timing jitter between the two laser 

systems is <10 ns, which is unimportant for the longer timescales explored in this 

experiment. For a reliable measurement of ( , )x y , it is critically important to keep 

the interaction length of the probe short enough that refraction from the gas 

perturbation negligibly distorts the probe [62]. This is achieved by limiting the 
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filament length to ~2 mm by focusing the pump laser beam relatively tightly at f/30, 

where filament formation is dominated by the lens focusing. In the absence of 

refractive distortion, the change in probe phase due to the index perturbation n  is 

    eff( , ) , , , ,0x y k n x y z dz k n x y L     , where k is the vacuum wavenumber of 

the probe, z=0 is the pump beam waist location, and Leff =2 mm. 

 

Figure 3.1. Acoustic gas dynamics following an ionizing pulse in air. The refractive 

index change n  is shown at time T after the passage of the pulse. Blue: T = 80 ns; 

green: T = 280 ns; red: T = 480 ns. (a) Hydrocode simulation. The calculated n  is 

plotted as a function of transverse coordinate. (b) Sequence of n  profile lineouts 

obtained by interferometry of a 2 mm long plasma at 10 Hz. 

 

The measured refractive index change induced by the 10 Hz laser with a 96 J 

pulse (vacuum peak intensity 
14 24 10 W cm  ) is shown in Figure 3.1(b) for a few 

delays following excitation. The density depression along the optical axis is clearly 

seen, as is the outwardly propagating single cycle acoustic wave. Good agreement is 

found between the experiment (Figure 3.1(b)) and the calculation (Figure 3.1(a)).  
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We repeated our measurements with the 1 kHz laser with pulse energy 60 J 

(vacuum peak intensity 
14 22.5 10 W cm  ) and the same focusing geometry. The 

measured refractive index profile is shown in Figure 3.2. We found no qualitative 

differences between the 10 Hz and 1 kHz cases apart from the broad and shallow 

density hole left over from the previous pulse, where the depth of the hole at 1 ms is a 

few percent of ambient density [9]. Such a hole can negatively lens an optical pulse 

over an extended region [9,58], but has negligible effect on a tightly focused beam. 

We also observe that the hydrodynamic evolution of the gas initiated by individual 

pulses in the 1 kHz train is essentially unaffected by the presence of the preexisting 

density hole. 

 

Figure 3.2. Measured refractive index profiles induced by 60 J pump pulses at 1 

kHz. The delays shown are with respect to passage of the pump pulse. The thermal 

gas density hole left between pulses is seen in the 60 s delay panel. 

 

 

3.2.3 Multi-mode filament acoustic response 
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Next, we generated double and octuple filaments using TEM01 and Laguerre-

Gaussian 
*

04 0,4 0,-4LG LG LGi   modes at the focus. For a TEM01 focal mode, the 

pre-focused beam was passed through a half-pellicle angled so as to phase shift one 

half the beam by  with respect to the other half.  For the *

04LG  focus, with eight 

azimuthal intensity lobes, we use normal incidence reflection of the pre-focused beam 

from an eight segment mirror with alternating triangular segments recessed by 

/4~200 nm or /2. Using comparable methods, other groups have produced multi-

lobed beams for filament generation [63,64].  Images of the acoustic response to 

multi-lobed modes are shown in Figure 3.3. Figure 3.3(a) and (b) show the measured 

response at 0.2 s and 0.5 s for a TEM01 mode. Figure 3.3(c) and (d) show 

simulations assuming that the gas dynamics is linear, so that two radially offset single 

filament results can be added. This is reasonable since the peak relative amplitude of 

the acoustic wave, 0.05





, is small. The approximation is borne out by the good 

agreement with the measurements. 

The measured acoustic response from the *

04LG  mode is shown in Figure 

3.3(e) and (f).  The low intensity 8-lobe mode is shown in the Figure inset. The gas 

response to the *

04LG  focus was simulated assuming a continuous ring heat source at 

t=0 with a Gaussian cross section at the ring location. The results, shown in Figure 

3.3(g) and (h), are in excellent agreement with the experimental results. The ring does 

a very effective job of simulating the merged acoustic response to closely spaced 

azimuthal lobes. As seen in the experiment and simulation, at longer delays (Figure 

3.3(f) and (h)), two single cycle sound waves propagate away from the beam axis. 
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This is because the lobes (or ring) launch both inward- and outward-directed acoustic 

pulses. The inward-directed annular acoustic wave collides with itself on axis and 

produces a very strong density increase of ~30% (Figure 3.3(e) and (g)). It then 

passes through the axis and re-emerges as a wave trailing the originally outward-

directed wave. Movies of the gas evolution induced by single- and multi-filaments –

both experiment and simulation- can be viewed at [65]. 

 

Figure 3.3. Measured and simulated air refractive index profiles induced by a TEM01 

focus (vacuum peak lobe intensity 
14 22.5 10 W cm  ) ((a)-(d)) and an *

04LG  focus 

(vacuum peak lobe intensity 
14 23 10 W cm  ) ((e)-(h)). The inset between (e) and 

(f) shows an expanded view of the focused *

04LG  beam mode at low intensity. The 
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simulations in (g) and (h) assume a continuous ring heat source at t=0 with a 

Gaussian cross section at the ring location. 

 

3.2.4 Identifying the guiding mechanism behind the single filament 
acoustic guide 

 

We have generated local density enhancements on-axis only in the case of gas 

dynamics initiated by a multi-lobed focus, as seen in Figure 3.3 for *

04LG  and TEM01 

modes, and with TEM11 modes (see [65]). As described above, in those cases, 

acoustic waves are launched from the lobe locations and superpose near the axis. 

However, for single filaments generated by a wide range of pump intensities and 

focal spot sizes, we always find that the central density (and refractive index) change 

is negative with respect to the surrounding gas. Such a profile would not be expected 

to guide an on-axis beam. But the results of Levi et al. [55] show apparent on-axis 

guiding of a 150 ns probe pulse at ~1 s delay in their post-single-filament gas 

density profile. What can explain this? In Levi et al., the filament length is ~300 mm, 

while for our interferometry measurements it is intentionally kept short at Leff ≈ 2 

mm.  There is no reason to believe that the radial hydrodynamics are significantly 

different in the two cases. Our simulation assumes an infinitely long heat source and 

it matches our short filament measurements extremely well. However, what remains 

to be considered are the details of probe pulse propagation in the extended gas density 

profile produced by a long filament. 
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Figure 3.4. Measurement of the axial dependence of energy deposition in a single 

filament and simulation of the propagation of a probe beam in the post-filament gas 

density profile. (a) Measured acoustic amplitude along the filament. The filamenting 

pulse propagates right-to-left. Error bars indicate the standard deviation of the signal 

amplitude over 100 shots at each position. The inset shows a sample acoustic trace 

measured by the microphone. (b-d) Beam propagation method simulations of a probe 

beam propagating left-to-right using hydrocode-generated gas index profiles weighted 

by the acoustic data of (a). The leftmost panels show index profiles associated with 

the maximum acoustic amplitude (near z = 42 cm) for the post-filament time delays in 

(b-d). 

 
 

To investigate this issue, we performed experiments and simulations for an 

extended interaction length; results are shown in Figure 3.4. A ~20 cm filament, here 

dominated by Kerr self-focusing and plasma defocusing, was generated by a 10 Hz, 

2.8 mJ, 50 fs, 800 nm pulse focused at f/200. For a better understanding of a long 

filament’s effect on a probe beam, one must know the axial dependence of the 

induced refractive index perturbation. To characterize the axial profile of the energy 
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deposited by the filament, we used a sonographic technique [66]. A rail-mounted 

microphone is positioned ~3 mm away from the filament and scanned along it. The 

amplitude of the leading feature of the sound trace (see inset of Figure 3.4(a)) is 

plotted as a function of axial position in Figure 3.4. Our hydrodynamic simulations 

verify that the sound amplitude is proportional to the laser energy deposited.  

This information was fed into a paraxial beam propagation method 

simulation [67], the results of which are shown in Figure 3.4(b),(c), and (d) for probe 

injection delays of 0.4 s, 0.8 s, and 1.2 s, respectively. Here, the simulated gas 

density structure was built by weighting the results of the hydrocode by the axial 

slice-by-slice relative laser energy deposition measured in Figure 3.4(a).  The 

structure is stationary on the timescale of the 7 ns probe pulse. Note the enhanced 

light intensity at the location of the expanding annular acoustic wave, where there is a 

positive refractive index perturbation. The annulus serves to trap probe light either 

when it overfills the entrance of the structure or when it is more tightly focused into 

the entrance. Either way, the density depression on axis repels probe light from the 

center of the structure, and a portion of the diverging beam is trapped by the annulus. 

The results of Figure 3.4 are for the probe beam overfilling the entrance, but 

simulation of a more tightly focused probe gives qualitatively similar results. Past the 

end of the filament (z=48 cm), the annular beam generates a strong interference 

maximum on axis within a few centimeters, producing the appearance of on-axis 

guiding if the plane containing the maximum is imaged onto a camera. The well-

known Bessel beam [68] can be considered as an example of a self-interfering 

annular beam. The range of time delays for which an apparent on-axis mode is seen 
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depends on the position of the object plane and the diameter of the acoustic annulus, 

which is set by the sound speed and time delay. Beyond ~1 s, the annulus has 

moved sufficiently outward that the interference maximum shifts beyond the imaging 

system’s object plane.  The acoustic wave’s amplitude, and thus its ability to trap 

light, also rapidly falls as it propagates outward. See Appendix A.3 for an explanation 

of the on-axis interference which occurs after light is launched from the annular 

acoustic ring. These effects create the appearance of an optimum temporal window 

for on-axis light trapping. Experimental probe images for our ~20 cm filaments show 

on-axis maxima whose behavior is consistent with this picture. For a 150 ns probe 

pulse [55], these effects should be present, though temporally smeared out. 

3.2.5 Conclusions 

 

In conclusion, we have directly measured the sub-microsecond gas dynamics 

following ultrashort pulse single- and multi-mode filamentation in air, obtaining 

excellent agreement with hydrodynamic simulations. Accurate measurements depend 

on minimizing refractive distortion of the probe, which demands a short probe 

interaction length. For the post-single filament gas response, measurements and 

simulations show that while there is no positive on-axis refractive index enhancement 

at any delay, the annular sound wave can guide injected light, leading to the 

appearance of an on-axis interference mode of limited axial extent beyond the end of 

the filament. An array of filaments, however, can produce an on-axis refractive index 

enhancement owing to superposition of acoustic waves, and this structure may serve 

as an optical waveguide, as recently verified [10]. We have also recently shown that 
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an even more effective and much longer-lived waveguide can be generated using the 

relaxation of a filament array in the thermal diffusion regime (see Section 3.3) [10].    

3.3 Generation of long-lived optical waveguides in air 

3.3.1 Background 

 

Femtosecond filaments are notable for their ability to deliver high intensity 

and high peak power at distances ranging up to several kilometers  [35], enabling 

applications such as stand-off laser induced breakdown spectroscopy, backwards 

lasing through the atmosphere, and LIDAR  [7,8,69]. Despite these applications, it 

remains a significant limitation that femtosecond filamentation cannot deliver high 

average power over long distances in a single tight spatial mode. This is due to the 

fact that for laser pulses with P ~ several Pcr , the beam will collapse into multiple 

filaments [70] with shot-to-shot variation in their transverse locations. For Pcr ~ 5-10 

GW, this means that single filament formation requires pulses of order ~1 mJ.  For a 

1 kHz pulse repetition rate laser, this represents only 1 W of average power.  

Here, we demonstrate a method employing filaments that can easily supersede 

this limitation by setting up a robust, long range optical guiding structure lasting 

milliseconds. It opens the possibility for optical guiding of megawatt levels of 

average power over long distances in the atmosphere. The guiding structures 

demonstrated here have substantial potential for directed energy applications [71]. 

The generation of long-lived thermal guiding structures in air using filament 

arrays also has the potential to enhance other photonics applications in the 

atmosphere. For instance, they could be used to concentrate heater beams for remote 

atmospheric lasing schemes [72] or for inducing characteristic emission for standoff 
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detection of chemical compounds. Many remote detection applications rely on the 

collection of fluorescence [7,8,69], for these remote-sensing schemes, where 

detection over large distances may be desired, very little of the isotropically emitted 

fluorescence reaches the detector at a distance. The long-lived guiding structures 

demonstrated here could be used as an effective collection lens, enhancing the signal. 

They may also find use in atmospheric laser communication [73]. Finally, they might 

also be used to enhance and control the propagation of an injected ultrashort 

filamenting pulse [74], similar to what has been done with a permanent refractive 

index structure in glass [75] and recently with the plasma from an array of filaments 

in air  [76]. 

We note that there has been much recent work on using the refractive index of 

the plasma generated by an array of filaments to form guides for microwaves [77,78] 

and nanosecond optical pulses [79]. We emphasize that the guiding we demonstrate 

here does not use the optical response of the plasma – rather, it uses the ~10
6
 times 

longer duration hydrodynamic response of the gas after heating by the filaments.  

3.3.2 Gas hydrodynamics initiated by femtosecond filaments 

 

Recently we found that a femtosecond filament, starting at an electron 

temperature and density of a few eV and a few times 10
16

 cm
-3

 [24],  acts as a thermal 

source to generate long-lived gas density hole structures that can last milliseconds and 

dissipate by thermal diffusion [9]. In air, additional heating can occur from molecular 

excitation [9], with peak deposited energy density in the plasma and molecules of as 

much as ~100 mJ/cm
3
. Owing to the finite thermal conductivity of the gas, the initial 

energy invested in the filament is still contained in a small radial zone, but it is 
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repartitioned into the translational and rotational degrees of freedom of the neutral 

gas. The result is an extended and narrow high pressure region at temperatures up to a 

few hundred K above ambient. In air, this pressure source launches a radial sound 

wave ~100 ns after the filament is formed. By ~1 s, the gas reaches pressure 

equilibrium with an elevated temperature and reduced gas density in the volume 

originally occupied by the filament, after which the ‘density hole’ decays by thermal 

diffusion on a few millisecond timescale [23]. 

 

Figure 3.5. Gas dynamics following a single filament in air. (a) Interferometric 

measurement of the refractive index change following a short pulse as a function of 

the time delay of the probe pulse. (b) Hydrodynamic simulation, assuming a 60 m 

FWHM Gaussian heat source of peak initial density 32 mJ/cm
3
. 

The full dynamics are clearly seen in Figure 3.5(a), which presents a time 

resolved measurement of the 2D density hole evolution (expressed as air refractive 

index shift) of a short air filament from nanoseconds through microseconds after 

filament formation.  A 1D radial fluid code simulation, described in Appendix A.2, is 

shown in Fig. 3.5(b) for comparison and the results are in excellent agreement with 

the measurements. The experimental results verify that the density hole first deepens 

over tens of nanoseconds, and launches a sound wave which propagates beyond the 
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~200m frame by ~300ns. By ~ 1-2 s, pressure equilibrium is reached and the hole 

decays by thermal diffusion out to millisecond timescales. 

 

3.3.3 Experimental setup 
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(a)  

(b)  

Figure 3.6. Generation of a filament array using half pellicles. (a) A 55 fs, 800 nm, 

10 Hz pulsed laser is used to generate an array of four filaments. A pulse propagates 

through two orthogonal half-pellicles, inducing π phase shifts on neighboring 

quadrants of the beam, and then are focused to produce a 4-filament with a TEM11 

mode (actual low intensity image shown). A 7 ns, 532 nm 10 Hz pulsed laser counter-

propagates through the filament and is imaged either directly onto a CCD for guiding 
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experiments or through a folded wavefront interferometer and onto a CCD for 

interferometry. (b) Rayleigh scattering as a function of z with a bi-filament produced 

by a single half pellicle (the bi-filament far-field mode is shown in inset). The bottom 

row shows burn patterns produced by a 4-filament produced by two orthogonal half 

pellicles. 

 
 

A =532 nm, 7 ns duration beam counter-propagates along a femtosecond 

filament structure generated by a 10 Hz Ti:Sapphire laser system producing  =800 

nm, 50 fs pulses up to 100 mJ. The optical arrangement is similar to our earlier 

experiment of ref. [9]. Here, the 532 nm pulse serves as either a low energy 

interferometric probe of the evolving gas density profile, using a folded wavefront 

interferometer, or as an injection source for optical guiding in the gas density 

structure. The transverse gas density profiles shown in Fig. 1(a) were obtained using 

the 532 nm pulse as an interferometric probe of a single short ~2 mm filament. The 

short filament length is essential for minimizing refractive distortion of the 

interferometric probe pulse [62]. The 2D density profiles were extracted from the 

interferograms as described in ref. [9]. The delay of the 532 nm probe/injection pulse 

is controlled with respect to the Ti:Sapphire pulse with a digital delay generator. The 

pulse timing jitter of <10 ns is negligible given the very long timescale gas evolution 

we focus on. For the injection experiments, up to 110 mJ is available at 532 nm. The 

Rayleigh side-scattering image of Figure 3.6(b) was obtained by concatenating 

multiple images from a low noise CCD camera translated on a rail parallel to the 

filament. The images were taken through an 800 nm interference filter. 

We note that at no probe delay do we see an on-axis refractive index 

enhancement that might act as a waveguiding structure and explain a recent report of 

filament guiding  [55], an issue further discussed in ref. [80] and Section 3.2. At the 
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longer delays of tens of microseconds and beyond, the thermal gas density hole acts 

as a negative lens, as seen in our earlier experiments [9]. 

3.3.4 Multi-filament-induced guiding structure 

 

Although a single filament results in a beam-defocusing gas density hole, a 

question arises as to whether a guiding structure can be built using the judicious 

placement of more than one filament. We tested this idea with a 4-lobed focal beam 

structure using two orthogonal ‘half-pellicles’. As seen in Figure 3.6(a), the pellicles 

are oriented to phase-shift the laser electric field as shown in each near-field beam 

quadrant. Below the filamentation threshold, the resulting focused beam at its waist 

has a 4-lobed intensity profile as shown, corresponding to a Hermite-Gaussian TEM11 

mode, where the electric fields in adjacent lobes are  phase shifted with respect to 

each other. Above the threshold, the lobes collapse into filaments whose optical cores 

still maintain this phase relationship and thus 4 parallel filaments are formed. As a 

demonstration of this, the top panel of Figure 3.6(b) shows an image of the Rayleigh 

side-scattering at 800 nm from a 2-lobed filament produced by a single half pellicle, 

indicating that the  phase shift is preserved along the full length of the filament. This 

image was obtained by concatenating multiple images from a low noise CCD camera 

translated on a rail parallel to the filament. The images were taken through an 800 nm 

interference filter. The bottom panel shows burn patterns taken at multiple locations 

along the path of a ~ 70 cm long 4-lobe filament used later.  For the 70 cm 4-filament, 

the filament core spacing is roughly constant at ~300 m over a L~ 50 cm region with 

divergence to ~ 1 mm at the ends.   
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The effect of a 4-filament structure on the gas dynamics is shown in Figure 

3.7, a sequence of gas density profiles measured for a short ~2 mm filament 

(produced at f/35) to minimize refractive distortion of the probe beam. The peak 

intensity was 
14 2<10 W cm , typical of the refraction-limited intensity in more 

extended filaments, so we expect these images to be descriptive of the gas dynamics 

inside much longer filaments. Inspection of the density profiles shows that there are 

two regimes in the gas dynamical evolution which are promising for supporting the 

guiding of a separate injected laser pulse. A shorter duration, more transient acoustic 

regime occurs when the sound waves originating from each of the four filaments 

superpose at the array’s geometric center, as seen in panel (a) of Figure 3.7, causing a 

local density enhancement of approximately a factor of two larger than the sound 

wave amplitude, peaking ~80 ns after filament initiation and lasting approximately 

~50 ns. A far longer lasting and significantly more robust profile suitable for guiding 

is achieved tens of microseconds later, well after the sound waves have propagated 

far from the filaments. In this thermal regime, the gas is in pressure equilibrium [9]. 

As seen in panels (c) and (d) of Figure 3.7, thermal diffusion has smoothed the profile 

in such a way that the gas at center is surrounded by a ‘moat’ of lower density. The 

central density can be very slightly lower than the far background because its 

temperature is slightly elevated, yet it is still higher than the surrounding moat. The 

lifetime of this structure can be several milliseconds. In both the acoustic and thermal 

cases, the diameter of the air waveguide “core” is approximately half the filament 

lobe spacing. A movie of the 4-filament-induced gas evolution is provided in the 

supplementary material [81]. 
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Figure 3.7. Interferometric measurement of the air density evolution induced by a 4-

filament. (a) The acoustic waves generated by each filament cross in the middle, 

generating a positive index shift, producing the acoustic guide. (b) The acoustic 

waves propagate outward, leaving behind a density depression at the location of each 

filament. (c) The density depressions produce the thermal guide, with a higher central 

density surrounded by a moat of lower density. (d,e)  The density depressions 

gradually fill in as the thermal energy dissipates. A movie of the 4-filament-induced 

gas evolution is provided in the supplementary material  [81]. 

 

3.3.5 Fiber analysis of air waveguides 

 

Having identified two potential regimes for optical guiding, a short duration 

acoustic regime, and a much longer duration thermal regime, it is first worth 

assessing the coupling and guiding conditions for an injected pulse. We apply the 

fiber parameter V for a step index guide [82] to the air waveguide, 

   
1 2 1 2

2 2
co clco cl

2 2 2a a
V

n nn n

 

  



, where the effective core and cladding regions 

have refractive indices 
co,cl 0 co,cln n n  , 0n  is the unperturbed background air index 

( 4

0 1 2.77 10n     at room temperature and pressure [60]), con  and cln  are the 

(small) index shifts from background at the core and cladding, and the core diameter 

is 2a, taken conservatively at the tightest spacing of the filament array. The numerical 
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aperture of the guide is 
2

V
NA

a




 . Because accurate density profile measurements 

are restricted to short filaments, we use the results of Figure 3.7 and apply them to 

much longer and wider-lobe-separated filaments that are inaccessible to longitudinal 

interferometry owing to probe refraction. As typical filament core intensities are 

restricted by refraction (‘intensity clamping’) to levels 
14 -210 W cm   [35], we expect 

that the measurements of Figure 3.7 apply reasonably well to longer filaments and 

different lobe spacings.  For the acoustic guide, we used a filamenting  beam with 

lobe spacing of 150 m, so 2a ~75 m. Using co

0

0.05
1

n

n




, and cl

0

0.02
1

n

n




 from 

Figure 3.7 then gives V~ 2.8  (> 2.405) and  NA~ 6.310
-3

, indicating a near-single 

mode guide with an optimum coupling f-number of 
0.5

# 80f
NA

 . For the long 

thermal guide, we used a filamenting beam with lobe spacing of ~300 m, so 2a~150 

m. From Figure 3.7, the core index shift is nco ~0 and the cladding shift is the index 

decrement at the moat, cl

0

0.02
1

n

n





, giving V~2.9, corresponding to a near-single 

mode guide with  NA~3.210
-3

, corresponding to f/# ~160. For a more complete 

analysis of the modal properties of the thermal and acoustic guides, see Section 3.4 

3.3.6 Injection and guiding experiments 

 

The experimental setup is shown in Figure 3.6(a). An end mode image from 

injection and guiding of a low energy =532 nm pulse in the acoustic waveguide 

produced from a 10 cm long 4-filament is shown in Figure 3.8. In order to 
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differentiate between guiding and the propagation of the unguided beam through the 

fully dissipated guide at later times (>2 ms) we define the guiding efficiency as 

g ug

tot ug

E E

E E




 where Eg is the guided energy within the central mode, Etot is the total 

beam energy and Eug is the fraction of energy of the unguided mode occupying the 

same transverse area as the guided mode. 

 

Figure 3.8. Demonstration of guiding of 7 ns, =532 nm pulses in 70 cm long 

acoustic and thermal air waveguides produced by a 4-filament. The panel in the upper 

left shows the probe beam, which is imaged after the filamentation region, with and 

without the filament. The time delay of the probe was 200ns, which is in the acoustic 

guiding regime. The effect of the thermal waveguide, the shadow of which can be 

seen in the image in the top center (with a red dashed circle showing the position of 

the lower density moat), is shown in the bottom row, where the probe beam is imaged 

after the exit location of the air waveguide with and without the filamenting beam. 

The coupling efficiency vs. injected pulse delay is shown in the upper right. Peak 

energy guided was ~110 mJ. 

 

Best coupling occurred at an injection delay of ~200 ns and f/# >100, with a 

peak guided efficiency of 13%, although the guides were not stable on a shot-to-shot 

basis. Efficient guiding in the acoustic regime takes place over an injection delay 
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interval of only ~100 ns, consistent with the time for a sound wave to cross the 

waveguide core region, 
s

100ns
a

c
, where 2a=75 m and 4 -1

s 3.4 10 cm sc    is the 

air sound speed [54]. We found that for longer filaments with wider lobe spacings, the 

acoustic guides were even less stable. Unless the 4-filament lobes were well balanced 

in energy and transverse position, the sound wave superposition would not form a 

well-defined air waveguide core. This is why a shorter 10 cm filament was used for 

the acoustic guide experiment. While the acoustic superposition guide is a promising 

approach, future experiments will need filaments generated by very well-balanced 

multi-lobe beam profiles, an example of which is seen in ref. [80].  

By comparison, the thermal guides were far more robust, stable, and long-

lived. Results from the thermal guide produced by a 70 cm long 4-filament are also 

shown in Figure 3.8, where optimal coupling was found for f/#=200, in rough 

agreement with the earlier fiber-based estimate. An out of focus end mode image (not 

to scale) is shown to verify the presence of the thermal guide’s lower density moat. 

Here we note that owing to the much greater lobe spacing of its long 4-filament, the 

thermal guide of Figure 3.8 lasts much longer (milliseconds) than that from the short 

4-filament of Figure 3.7 (~10 s). Guided output modes as function of injection delay 

are shown imaged from a plane past the end of the guide, in order to minimize guide 

distortion of the imaging. These mode sizes are larger than upstream in the guide 

where 4-filament lobe spacing is tighter, but where we are unable to image reliably. 

We injected up to 110 mJ of 532 nm light, the maximum output of our laser, with 

90% energy throughput in a single guided mode. This corresponds to a peak guiding 

efficiency of 70%. Guiding efficiency vs. injected pulse delay is plotted in Figure 3.8.  
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As seen in that plot, peak guiding occurs at ~600 s and persists out to ~2 ms where 

the guiding efficiency drops to ~15%.  Based on the guide core diameter of 2a~150 

m and the portion of the filament length with constant lobe spacing, L~50 cm, the 

guided beam propagates approximately 
2

15
L

a




 Rayleigh ranges. A movie of the 

thermal waveguide output beam, during real time rastering (at 10 Hz) of the injected 

beam across the guide entrance, is shown in the supplementary material of ref. [10]. 

3.3.7 Simulations of waveguide development and guiding 

 

Owing to the linearity of the heat flow problem, the evolution of the 4-filament-

induced density structure in the thermal regime can be calculated by finding the 

solution ( , , )T x y t  to the 2D heat flow equation, 2

tT T   , for a single filament 

source located at ( , ) (0,0)x y   and then forming 
4

4

1

( , , ) ( , , )j j

j

T x y t T x x y y t


   , 

where ( , )j jx y  are the thermal source locations in the 4-filament. Here 
pc


  , where 

  and 
pc  are the thermal conductivity and specific heat capacity of air. To excellent 

approximation, as shown in ref. [9], ( , , )T x y t  is Gaussian in space. Invoking pressure 

balance, the 2D density evolution is then given by 

 
   

2 2
2 4

0 0
4 b 2 2

1b 0 0

, exp
4 4

j j

j

x x y yT R
N r t N

T R t R t 

           
     

 , where 0R  is the 

initial 1/e radius of the temperature profile of a single filament and 0T  is its peak 

value above bT , the background (room) temperature.  Using 0 50μmR  , 0 15KT  , 
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2 -10.21cm s    for air [9], and source locations separated by 500 m, 

approximating our 70 cm 4-filament, gives the sequence of gas density plots shown in 

the upper panels of Figure 3.9, clearly illustrating the development and persistence of 

the guiding structure over milliseconds. 

 

Figure 3.9. Simulation of the evolution of and guiding in a thermal air waveguide. 

The top row shows the index of refraction shift produced by the 4-filament-induced 

temperature profile as a function of time. The bottom row shows a BPM simulation of 

the guided laser beam profile at the end of a 70 cm waveguide produced by the 4-

filament-induced refractive index change. 

 

The propagation of the 532 nm beam in the waveguide was simulated in the 

paraxial approximation using the beam propagation method (BPM) [67]. The 

calculated intensity at the output of the waveguide is shown in the lower panels of 

Figure 3.9. At early delays <100 s, characteristics of a multimode waveguide are 

observed in the simulation, including mode beating. At later times, as the refractive 

index contrast decreases, the propagation is smoother, indicating single mode 

behavior, consistent with the estimates in Section 3.3.5 using the fiber parameter. The 

simulation is in reasonable agreement with the experimental results. Axial 

nonuniformity in the waveguiding structure could explain the absence of four fold 
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symmetry in the experimental data, whereas it is pronounced in the simulations. For a 

more complete assessment of the modal properties of the thermal waveguide as well 

as the acoustic guide, see Section 3.4. 

3.3.8 Conclusions and potential future application to guide high 
average power beams 

 

We have demonstrated the generation of very long-lived and robust optical 

waveguides in air, their extent limited only by the propagation distance of the 

initiating femtosecond filament array and the axial uniformity of its energy 

deposition. Assuming a sufficiently uniform filament, this is ultimately determined by 

the femtosecond pulse energy absorbed to heat the gas. Based on a single filament 

diameter of ~100 m, an electron density of ~310
16

 cm
-3

 [24], ionization energy of  

~10 eV per electron, and 5 meV of heating per air molecule [9], approximately 0.5 mJ 

is needed per meter of each filament.  With a femtosecond laser system of a few 

hundred millijoules pulse energy, waveguides hundreds of meters long are possible.  

What is the optical-power-carrying capacity of these guides? For high peak 

power pulses, the peak guided intensity,  -2

p W cmI  , is limited by self-focusing in 

the waveguide core. For 1μm   guided light, the approximate B-integral condition 

is 
14 2

p g ~ 2 10 W cmI L     where 
gL  is the guide length (cm) and the nonlinear index 

of air is obtained from Ref.  [16]. For our ∼100 cm waveguide, this gives 

12 2

p g ~ 2 10 W cmI L    , corresponding to a pulse energy of ∼4 J for the 150 μm 

diameter core, assuming a 10 ns pulse. At higher repetition rates (> 1 kHz) and over 

longer ranges (hundreds of meters), heating from non-linear absorption mechanisms 
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such as stimulated Raman scattering (SRS) may also become relevant for guided 

energetic nanosecond pulses. However, the real utility of these air waveguides, in the 

thermal formation regime, derives from their extremely long millisecond-scale 

lifetime. This opens the possibility of guiding very-high-average powers that are well 

below the self-focusing or SRS thresholds.  

We now consider the robustness of our filament-induced waveguides to 

thermal blooming [49,71] from molecular and aerosol absorption in the atmosphere. 

For thermal blooming, we consider the deposited laser energy which can raise the 

local gas temperature by a fraction  of ambient, 
g

1.5
P t p

A






 , where Pg is the 

guided laser power, t is the pulse duration,  is the absorption coefficient, A is the 

waveguide core cross sectional area, and p is the ambient pressure. Thermal blooming 

competes with guiding when  is approximately equal to the relative gas density 

difference between the core and cladding.  In our measurements of the thermal air 

waveguide, the typical index (and density) difference between the core and cladding 

is of the order of ~2% at millisecond timescales. Taking =0.02, p=1 atm, and 

=2×10
-8

 cm
-1

 [71], gives 
g 5 21.5 10 J cm

P t

A




    as the energy flux limit for 

thermal blooming.  For example, for a 1.5 mm diameter air waveguide core formed 

from an azimuthal array of filaments [80], the limiting energy is g 2.7kJP t . Note 

that we use a conservative value for  at ~1 m which includes both molecular and 

aerosol absorption for maritime environments [71], which contain significantly higher 

aerosol concentrations than dry air. If a high power laser is pulsed for t~2 ms, 

consistent with the lifetime of our 10 Hz-generated thermal waveguides, the peak 
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average power can be 1.3 MW.  It is possible that in such environments, air heating 

by the filament array itself could help dissipate the aerosols before the high power 

beam is injected, raising the thermal blooming threshold and also reducing aerosol 

scattering. An air waveguide even more robust against thermal blooming and capable 

of quasi-continuous operation may be possible using a kHz repetition rate filamenting 

laser. We have already shown that the cumulative effect of filamenting pulses 

arriving faster than the density hole can dissipate leads to steady state hole depths of 

order ~10% [9].  

3.4 Modal analysis of air waveguides 

3.4.1 Introduction 

 

In this section, we explore the modal and light transport properties of air 

waveguide structures using analytical and numerical methods. The optical properties 

of air waveguides depend on the evolving air density profile, which is determined by 

the axial and transverse distribution of energy deposited in the gas by the filament or 

filament array. For typical pulse durations of ~40-100 fs, approximately 
325mJ cm  

is deposited over the ~50 µm radius filament core [9,59,80] by plasma generation and 

molecular rotational excitation. The hydrodynamic response of the gas is again 

simulated using our 1D Lagrangian hydrocode where we take the initial energy 

deposition to be 
325mJ cm . Details of the code can be found in Appendix A.2, and 

in earlier work [9,10,80]. 

We consider the two regimes of guiding demonstrated in Section 3.3.6, 

acoustic and thermal guiding. Acoustic guiding, which typically occurs over a 

microsecond timescale interval [10,80,83], works by confining light in the positive 
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density (refractive index) crest of the single cycle annular acoustic wave launched 

from a single filament [55,80], or  in the enhanced density peak resulting from 

collision of acoustic waves from  multiple filaments [10,80] (see Figure 3.10). In the 

much longer lived, millisecond scale thermal guiding regime [9,10,83], a ring of   4  

filaments leaves  a cladding ‘moat’ of diffusively merged density holes surrounding a 

near ambient air density core (see Figure 3.11).  

3.4.2 Modelling 

 

In order to discuss mode structure, we consider idealized air waveguides 

whose transverse refractive index profile is axially invariant. While real air 

waveguides have axial variation [10,80,83] the scale is over many Rayleigh ranges of 

the guided beam. We also neglect any absorption or scattering losses, which can be 

added with an exponential attenuation factor. To find the modes ( , ) i zA z e 

r , where 

A  is a slowly varying field amplitude and r  and z  are transverse and axial 

coordinates, we consider the paraxial scalar wave equation  

 2 2 2 2(r , )
2 [ ( (r ) )] (r , ) 0

A z
i k n A z

z
 

  


    


 (3.1)   

where k is the vacuum wavenumber, 0( ) ( )n n n  r r  is the air refractive index 

(assumed dispersionless for our range of considered wavelengths), ( )n  r  is the 

filament-induced refractive index profile change, and   is the waveguide 

wavenumber. Use of the scalar wave equation is well justified, as the air waveguides 

created in the wake of filamentation are all well within the weak guiding 
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regime [82,84]; index shifts are of order 5

0

10
n

n




. For later use in our analysis, we 

define an effective mode index n  by  0k n n   . 

The type of mode supported depends on the profile details of the guide. 

Profiles with a region or regions of positive refractive index with respect to the 

surrounding air can support strictly bound modes [82], which propagate with no 

transverse leakage loss. This applies to both the single and multifilament acoustic 

guides, where there are regions of increased air density with respect to the ambient 

density. In contrast, thermal guides support only leaky modes [82] because the index 

perturbation from the density holes is strictly negative. Leaky modes have an 

oscillatory component at large r  that corresponds to the leakage of energy out of 

the guide as the light propagates [85]. However, we will show that the propagation 

losses per unit length for these guides can be quite small. 

To find the bound modes of air waveguides that can support them, we set 

0
z





 in Equation (3.1), leaving the transverse Helmholtz equation which we solve 

numerically. For azimuthally symmetric guides, the solutions are indexed by radial 

(p) and azimuthal (m) mode numbers. To find the fundamental leaky mode of an 

arbitrary leaky structure, we apply the beam propagation method (BPM) [67] to 

Equation (3.1) (for 0
z





) using a suitable initial guess ( ,0)A r and sufficient 

propagation along z  that the solution, up to an exponential decay along z, approaches 
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steady state for small 
A

z




. This method is equivalent to shedding any higher order 

leaky modes.  

3.4.3 Modal structure of acoustic air waveguides 

 

Figures 3.10(a) and (b) show experimental and simulated index profiles for 

the single filament-induced acoustic guide at time t=500 µs after the filament. The 

amplitude and radial scale (or wavelength) of the outgoing density perturbation is 

imposed by the strength and diameter a of the initiating filament energy deposition. 

Figures 3.10(f) and (g) show calculated bound modes at =532 nm for (p,m) = (0,0) 

and (0,5), confirming that the mode conforms to the acoustic wave peak [55,80]. At 

typical levels of energy deposition in filaments, the density modulation is not deep or 

wide enough to support higher order (p >0) radial modes. As the acoustic wave 

expands outward, higher order azimuthal modes with cosm dependence are allowed, 

with the highest azimuthal mode number scaling as 
0.6

max

0

R
m

R
, as seen in Figure 

3.10(i), where 0R  is the size of the filamenting core, sR c t  is the ring radius, cs is 

the acoustic speed and t is time after the filament energy deposition. Prior 

experiments and simulations of trapping in single filament acoustic guides have 

shown a useful window of  ~1 µs over which optimally positioned Gaussian beams 

can be efficiently coupled [55,80].  
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Figure 3.10. Mode properties at =532 nm of single and octo-filament induced 

acoustic guides. Measured air refractive index profiles for single (a) and octo-filament 

excitation (c), along with corresponding hydrocode-simulations ((b) and (d)). Panel 

(e) shows an index profile simulation for the larger transverse scale typical of axially 

extended air waveguides. Calculated modes for the single filament-induced acoustic 

annular guide are shown in (f) p=0, m=0 and (g) p=0, m=5. The lowest order mode 

for the guide of (e) is shown in (h). Panel (i) shows the maximum azimuthal mode 

number mmax vs delay for the single filament-induced annular guide. Points: 

simulation, red curve: best fit. 

 
 

In the multifilament acoustic guide, each of the filaments, equidistant from a 

common center, launches a single cycle acoustic wave. The interference maximum 
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scale set by the sound speed and acoustic wavelength (here ~300 ns). Figures 3.10(c) 

and (d) show an interferometric measurement of an octo-filament-induced acoustic 

guide at the moment of peak central index enhancement at delay ~200 ns and its 

hydrocode simulation using a ring-shaped pressure source [80]. Guides as in Figure 

3.10(c), amenable to longitudinal interferometry, are shorter with tighter transverse 

spatial features [10,80]. A hydrocode simulation more representative of our axially 

extended structures used for guiding [10,83] is shown in Figure 3.10(e) for an initial 

ring pressure source of radius 200 m with the same total energy deposition as for 8 

filaments. The p=0, m=0 mode for this guide is shown in Fig 3.10(h), peaking on 

axis, in contrast to the fundamental ring-shaped mode of the single filament-induced 

acoustic guide (Figure 3.10(c)). For typical parameters, such multifilament acoustic 

guides only support the lowest order mode.  

3.4.4 Fundamental mode and leakage rate for thermal air 
waveguides 
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Figure 3.11. Typical refractive index profiles and modes of thermal air waveguides. 

(a) Interferometrically measured refractive index profiles, (b) simulated time 

evolution of eight-lobe filament with 500 μm ring radius, (c) simulated time evolution 

of ring heat source with 500 μm ring radius and initial energy deposition equal to the 

eight-lobe filament case, (d) calculated fundamental leaky modes at =532 nm of the 

octo-lobe and ring air waveguides shown in (b) and (c). 

 

As discussed earlier, for thermal guides generated by a ring array of filaments, 

leaky guiding occurs, with the field energy contained in the ambient density core 

bounded by the lower density moat where the filaments were located. Row (a) of 

Figure 3.11 shows interferometric measurements of short octo-filament arrays for 

several times during the evolution of the thermal guide. The three panels resolve 

distinct stages of the evolution: At t = 2 μs the density holes from individual filaments 

are still distinct, at t = 10 μs the holes have merged through thermal diffusion to form 
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a continuous ring, and at t = 50 μs the holes have diffused to the center and have 

washed-out the guide. Figures 3.11(b) and (c) show larger transverse scale 

simulations consistent with longer multi-filaments used in guiding 

experiments [10,83]. As can be seen, the relevant timescales increase with the 

transverse scale size, with guide washout now occurring at > 1.5 ms. In Fig. 3.10(b) 

the linearity of gas hydrodynamics for small density perturbations allows the 

summation of single filament results from our 1D hydrocode (see ref. [80] or 

Appendix A.2) to obtain an excellent approximation of the 2D response to the octo-

filament. Figure 3.11(c) shows the efficacy of treating the octo-filament array as a 

continuous ring heat source with the same total initial energy.  In contrast with the 

acoustic regime, the thermal regime produces a much longer lasting guide whose 

lifetime 
2

thermal 1ms
4

R



  [9] is set by the thermal diffusivity of the gas (

2 -119μm μs    for air at standard conditions [61]) and the transverse length scale of 

the guide (here R=500 μm).  

The fundamental leaky modes for the eight-lobe and idealized ring thermal 

guides, shown in Figure 3.11(d), are close to Gaussian in shape and nearly identical. 

Even at the early time t=500 μs, where there is a marked difference between the 

eight-lobed and ring index structures (Figures 3.11(b) and (c)), the overlap integral 

between the two modes is >0.995. 

We find that the propagation leakage loss from the ring guide of Figure 

3.11(c) closely approximates that for the octo-thermal guide of Figure 3.11(b). 

Computed loss rates shown in Figure 3.12(a) for the ring guide (in red) and the octo-

guide (in blue) are nearly identical except at early times, when the gaps between the 
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octo-lobes cause higher loss. Approximate expressions for the axial loss rate 

Im( )  and effective index n  of the lowest order mode can be derived assuming a 

step index decrement n (<0) at the moat of width r, 

 
cl

cl

2

co cl

2

cl co 1

r

r

e

k r e





 




 

 


 
 (3.2a)   

  
2 2 2

0 0 co2 2

co

1 1
1 1 ln(2 )

2 2
n n n n k r

k r
        (3.2b)   

Where cor  is the core radius, and  
1 2

co 02k n n    and   
1 2

cl 02k n n n    are 

propagation constants in the core and cladding. Since the lowest order leaky mode is 

nearly Gaussian (Figure 3.11(d)) we used a variational equation with Gaussian trial 

function to derive Equations (3.2). For details regarding derivation of the loss rate   

and effective index n  see Appendix A.4. At early times up to ~500 μs, propagation 

loss decreases as there is less transverse leakage through a broad and shallow 

cladding region than through a narrow and deep one. Beyond ~500 μs the trend 

reverses as the density hole diffusion reduces the central density, decreasing the index 

contrast between the core and cladding. Loss rates vs. delay for a range of 

wavelengths are plotted in Figure 3.12(b). 



 

 86 

 

 

Figure 3.12. (a) Energy loss at =532 nm in dB/100 m for the octo-lobe index and 

ring index structures of Fig. 2 (blue and red respectively) and from the expression for 

 in Eq. (2) (black). (b) Loss in dB/100 m vs. time for a range of wavelengths (color 

scale in log base 10). 

3.4.5 Coupling efficiency 

 

Figure 3.13 shows coupling efficiency into various guides for a varying 

Gaussian beam waist diameter, with the waist located at the waveguide entrance and 

centered on the guide axis. Coupling efficiency is defined as the overlap integral 

between the Gaussian beam and the modes of the guide. For the single filament 

acoustic guide, coupling only occurs into the lowest order mode, as azimuthal 

symmetry of the Gaussian beam prevents coupling into any higher order modes. 

Highest coupling efficiency is achieved at early times, but the presence of the deep 

density hole on axis requires the coupled mode to be large. At longer times, the 

optimal waist size increases linearly in time, following the acoustic wave location 

sr c t . However, coupling efficiency falls as 1t  because the beam area increases as 

2r  to overlap an acoustic ring area increasing as r . Maximum coupling efficiency to 

the multifilament acoustic guide occurs when the inward propagating acoustic waves 
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collide on axis, which occurs just beyond 0.5 μs in Figure 3.13(b). For a waist of 70 

μm, the coupling efficiency is >85% over a duration of ~ 250 ns. For the octo-

filament-induced thermal guide (Figure 3.13(c)), the lowest order mode is nearly 

Gaussian; we find that optimal coupling efficiency is >95% for approximately the 

first millisecond. As one can see, there is a very broad range of nearly optimal waist 

sizes with a full width at half maximum spanning ~400 μm.  

 

Figure 3.13. Coupling efficiency of a Gaussian beam at focus as a function of time 

and waist size for the (a) single filament acoustic guide, (b) octo-filament acoustic 

guide, and (c) octo-filament thermal guide. 

 

3.4.6 Conclusions 

 

In conclusion, we have found and characterized optical modes of the distinct 

types of air waveguides that are formed in the wake of femtosecond filaments or 

filament arrays. The acoustic wave from a single filament supports only ring-shaped 

optical modes, with an increasing number of azimuthal modes with time. However, 

the coupling efficiency for an injected Gaussian beam falls as 1t , fading away by ~1 

s. The multifilament acoustic guide primarily supports lowest order modes peaked 

on axis, but likewise has an efficient coupling lifetime of ~1 s. The thermal air 

waveguides studied here support near-Gaussian leaky modes. We examined their 
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leakage loss as a function of delay, wavelength, and guide characteristics. Gaussian 

beam coupling of >95% efficiency is possible over the millisecond scale lifetime of 

the guide.     

 

 



 

 89 

 

Chapter 4: Spatiotemporal Optical Vortices 

4.1 Overview 

 

In this chapter we study spatiotemporal optical vortices (STOVs), and their 

connection to optical collapse arrest, which is a universal process in all self-focusing 

scenarios. STOVs are a new kind of optical vortex, which exhibit phase winding and 

the flow of electromagnetic energy in a spatiotemporal plane. Section 4.2 introduces 

the concept of an optical vortex, briefly reviews existing literature on optical vortices, 

and then provides an example construction of an electric field with an embedded 

STOV. Section 4.3 presents experiments, supported by theory and numerical 

simulation, constituting the first experimental detection of a STOV. We establish that 

STOV generation is fundamental to the optical collapse process, occurring in all 

optical pulses undergoing optical collapse. Finally, Section 4.4 considers the pulse 

evolution and angular momentum of linearly propagating STOV-carrying pulses.      

4.2 Introduction 

 

Vortices – localized regions in which the flow of some quantity such as mass 

or electromagnetic energy circulates about a local axis – are a common and 

fundamental element of classical  [86] and quantum fluids [87–89] as well as 

optics [90]. In quantum fluids, the circulating quantity is the spatial atomic 

probability density; in optics it is the electromagnetic energy density. Both densities 

are expressed as the magnitude squared of a complex scalar field iue    derivable 

from a Schrödinger-like equation (SE), where the vortex circulation is l
c

d   ,  

u and  are real scalar fields, and the integral is on a closed contour about the local 
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axis. A non-zero value of  implies a discontinuity or ‘defect’ in . Furthermore, the 

single-valuedness of fields demands that the circulation be quantized, 2m  , 

where m, an integer, is called the ‘topological charge’. Because remains constant as 

one shrinks the contour around the local axis, or vortex core, the phase  becomes 

undefined at the core center, (‘phase singularity’) where the field magnitude is 

necessarily zero.  

In optics, vortices have been heavily investigated for decades, but as far as we 

know, the types that have been studied experimentally are entirely those that can be 

supported by monochromatic waves, that is, they have phase and energy circulation 

purely in the spatial domain.  

In this chapter, we present experimental evidence, backed by theory and 

simulation, for a dynamic phase vortex that mediates energy flow spatially and 

temporally. The spatiotemporal character of the vortex dictates that energy flow near 

the vortex core is saddle or spiral depending on the sign of dispersion of the 

propagation medium. Further, we show that vortex formation is an inherent feature of 

nonlinear collapse arrest, and that vortex dynamics are associated with changes to the 

envelope of a nonlinearly propagating pulse. 

In an early, influential publication, Nye and Berry introduced the concept of 

dislocations (field nulls) to wave theory and gave many examples [91]. A well-known 

example of a vortex in linear optics is the linearly polarized Laguerre Gaussian (LG) 

mode lpLG ( , ,z)r   of integer radial index p0 and non-zero integer azimuthal index l, 

with azimuthal dependence exp( )il ). This mode has an on-axis field null, a 
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topological charge 
2

l



 , an orbital angular momentum (OAM) of Nlħ, where N is 

the number of photons , and a spiral energy density flux about the propagation 

axis [92]. The phase singularity at beam center is called a screw dislocation [91]. 

Such modes can be generated by phase plates [93].  LG modes are solutions to the 

paraxial wave equation 2 0i
z




  


 for propagation along z, which is of the SE 

form with zero potential [92].  An example of an LG field at z=0 with a null on axis is 

   
2 2/1

0, 1E (r ) rw

rx iy w e 

   
r

, where ˆ ˆx y  r x y , and wr is the beam waist. 

Now consider, as an example, a construction similar mathematically to the LG 

field but physically quite different: the pulsed Gaussian field 

 
2 2 22

E( , ) r ww

r

x
i e e

w w






  



 
  
  

r
r , where 

gv t z    is the local position in a 

frame moving with the pulse group velocity 
gv , and w  is the axial pulse length. This 

field has a moving null at  0, 0x    along the y-axis, perpendicular to the 

direction of propagation, and the circulation  on closed spatiotemporal contours in 

 ,x   around the null is quantized. We refer to optical vortices with phase winding 

along spatial and temporal axes as spatiotemporal optical vortices (STOVs). We 

contrast the STOV construction with other recent work, such as by Eilenberger et 

al. [94] or Mihalache et al. [95], where beams with non-trivial spatiotemporal 

coupling are created with embedded vorticity, but the vorticity is fundamentally 

similar to the LG construction given above, where phase and energy circulation from 

the vortex occur only in the transverse spatial dimensions. We refer to optical vortices 



 

 92 

 

with phase circulation solely in spatial dimensions as spatial optical vortices, and note 

that, as far as we know, STOVs have only been considered theoretically, with the first 

mention by Yangirova and Sukhorukhov in the context of solitons [96–98]. Outside 

of optics there has been theoretical and experimental work on systems with analogs of 

the STOV construction, such as work by Nicholls et al. in acoustics [99], and 

Kartashov et al. in quantum fluids [100]. 

In this chapter, we demonstrate that STOVs are a fundamental and universal 

feature of optical pulse collapse and arrest in self-focusing media. Their existence in 

nonlinear ultrafast pulse propagation appears to be ubiquitous, and their creation, 

motion, and destruction is intrinsically linked to the complex spatiotemporal 

evolution of the pulse. 

4.3 STOV generation in a collapsing pulse 

4.3.1 Modeling STOV generation 

Optical collapse is a fundamental phenomenon in nonlinear optics [30] (see 

Section 1.4.2 of the introduction). It occurs when the laser pulse-induced change in 

the medium’s refractive index generates a self-lens whose focusing strength increases 

with intensity. Above a critical power level (Pcr), self-lensing exceeds diffraction, and 

the pulse experiences runaway self-focusing. In the absence of “arrest” mechanisms 

terminating self-focusing, the pulse would collapse to a singularity. In reality, 

additional physical effects intervene. For example, in the case of femtosecond 

filamentation in ionizing media [35], plasma generation acts to defocus the pulse 

when the peak self-focused pulse intensity reaches the ionization threshold. Other 

collapse arrest mechanisms include dispersion-induced pulse lengthening [32], 
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cascaded third order nonlinearities [101], vectorial effects from pulse non-

paraxiality [34], and, in the case of relativistic self-focusing, electron cavitation [33]. 

In both calculations and simulations [14,102–104], it has been found that the 

following modified paraxial equation for wave evolution (see Section 1.3.4), in the 

form of a time-dependent nonlinear Schrödinger equation (NLSE), is well-suited to 

describe optical pulse collapse and collapse arrest for pulse propagation along z: 

  
2

2 2

2 2
2 V 0ik k

z


 


    
      

   
  (4.1) 

Here, 
 cE ( , , )

i k z t
z e






  r  is the dimensionless electric field component,   is the 

pulse envelope, 

c

2
2

2 c 2

k
c k

 






 
  

 
 is the dimensionless group velocity dispersion 

(GVD), r  and   are as before, and the axial position z can be viewed as a time-like 

coordinate. The physics of self-focusing and arrest is contained in the functional 

 V  . To demonstrate toroidal STOV generation in the arrest of self-focusing 

collapse, we perform propagation simulations using Eq. (1), imposing azimuthal 

symmetry, and include electronic, rotational, and ionization nonlinearities in  V 

(see Section 1.3.4 or ref. [102,105]). The Gaussian input pulse is 3 mJ, 45 fs 

(Gaussian FWHM) with an input waist w0=1 mm, and the propagation medium is 

atmospheric pressure air. As our experiments (see Section 4.2.3) are intentionally 

operated in the single filamentation regime, where multi-filamentary modulational 

instabilities are precluded, azimuthal symmetry is a good approximation [35]. Figure 

4.1(a) is a post-collapse plot of the pulse phase at z=120 cm, which shows the 

emergence of two oppositely wound and oppositely propagating STOVs (v1 (+1 
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charge, forward) and v2 (-1 charge, backward)) entrained between the higher intensity 

core of the beam and the beam periphery. The delayed rotational nonlinearity from 

the N2 and O2 air constituents [16] forms an additional vortex pair ~100 fs behind the 

main pulse, v3 (+1, forward) and v4 (-1, backward), where v3 is shown bisected in Fig. 

1(a) and v4 has exited the simulation window.  Further evolution of the simulation 

shows that v2 and v3 collide and annihilate, while v1 continues propagating with the 

most intense part of the pulse (to be discussed later). We note that the delayed 

generation of v3 and v4, where the pulse intensity is many orders of magnitude weaker 

than at its peak, shows that STOVs can also be generated linearly by an imposed 

spatiotemporal index transient. STOVs are not merely mathematical free-riders on 

intense propagating pulses: as we will see, a real energy flux j circulates either as a 

saddle (for 2>0) or as a circle (for 2<0) in the  ,r  plane surrounding the STOV 

core. 
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Figure 4.1. (a) Phase and intensity projections of simulated pulse, in local 

coordinates, showing STOV generation. Propagation medium: atmospheric pressure 

air. Black dashed lines encircle vortices v1, v2 and v3, and arrows point in the 

direction of increasing phase. Our phase winding convention considers a (ξ ξ0) 

+i(rr0) winding about a null at (ξ0, r0) to denote a +1 STOV, giving the v1 STOV a 

+1 charge. The white dots on the intensity projection are centered on the locations of 

vortices v1, v2 and v3.  (b) Simulation of an air filament crossing the air-helium 

boundary for the conditions of (a), showing the pulse fluence and plasma density. 

Nonlinear propagation terminates as the pulse transitions from air to helium, 

whereupon the pulse and a reference pulse (not shown, see Appendix A) are directed 

to an interferometer. 

 

To understand the generation of these spatiotemporal toroidal structures, recall 

that phase vortices in fields are closely associated with localized field nulls [91]. In 

(b)

pulse to interferometer

nonlinear propagation 
terminates

500 μm

(a)

v1v2v3



r

rad TW/cm2
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arrested self-focusing, field nulls occur as a natural part of the dynamics and spawn 

toroidal vortices of opposite charge. This can be illustrated by the toy model of Figure 

4.2, which shows the effect on a beam of abruptly spatially varying self-induced 

change in refractive index, which we model here as a sharp transverse step.  We 

consider left-to-right propagation of the ‘half plane-wave’ pulse 

      2
g g0 NL

/v / ( , , )

0E( , , ) E δ h( ) e e e
i z k v i x z

x z x
    
 

  , neglecting dispersion and 

diffraction, where  and z are as before, <<1, h(x)=1 for x<0 and 0 otherwise, 

2

NL 2( , , ) E( , , )x z kn x z z    is the sharply stepped nonlinear Kerr phase, and n2 is 

the nonlinear index of refraction. At z=0, the phase fronts are aligned for all x. As the 

pulse propagates, the Gaussian intensity distribution causes the front of the pulse to 

red shift and the back of the pulse to blue shift, with spatiotemporal phase front shear 

developing between the pulse ‘core’ at x<0 and periphery at x>0.  When the 

propagation reaches 2 1

v 2 0( )z z kn E   , the peak of the pulse in the core is  out of 

phase with the periphery, and the electric field magnitude nulls out at the single point 

v( 0, 0, )x z z    , marked by a circle, forming an ‘edge dislocation’ [91]. Upon 

further propagation, continued phase shearing spawns two null points of opposing 

(1) phase winding, marked by circles (z=2zv). These two STOVs, whose axes are 

along y (perpendicular to page), immediately begin moving apart; one vortex 

advances in time towards the front of the pulse while the other vortex moves to the 

back. Similar dynamics are theorized to exist in monochromatic breather-solitons, 

where ring shaped vortices are formed quasi-periodically throughout 

propagation [106]. 
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Figure 4.2. Toy model showing birth of a vortex pair via spatiotemporal phase front 

shear. The white curve and arrow depicts the axial (temporal) intensity profile and 

propagation direction, while the “core” and “periphery” labels denote the spatial 

intensity step. The z=0 panel shows the initial condition where phases are aligned, the 

z=zv panel shows the birth of the null (vortices overlap) and the z=2zv panel shows 

continued shear carrying the vortices apart, with the +1 vortex moving to the temporal 

front, and the -1 vortex moving backward. Our phase winding convention considers a 

(ξ ξ0) +i(xx0) winding about a null at (ξ0, x0) to denote a +1 STOV. In the third 

panel, red and black arrows indicate the direction of increasing phase. The two arrows 

connect the same lines of constant phase; the arrows show that the phase difference 

between head and tail is ill-defined due to the vorticity of the -1 STOV. 

 

These general features occur in simulations of self-focusing collapse arrest. In 

Figure 4.3, we show 2D profiles of the pulse’s phase v( , , )r z    and intensity 

2

0 v

1
( , , )

2
nc E r z    for a simulation using Equation (4.1), tracking the moving 

plane =v where the phase singularity and field null first appear. Log lineouts of the 

intensity (normalized to 
13 210 W cm ) are overlaid on the 2D profiles. As the initial 

(z=0) Gaussian input beam self-focuses, a strongly peaked high intensity central core 

(similar to the Townes profile [107]) develops, surrounded by a lower intensity 

periphery, with a sharp transition knee between them (z=156 cm). The associated 
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phase plot shows the central core having accumulated a much larger nonlinear phase 

shift than the periphery. During collapse, the knee moves radially inward, preventing 

phase shear from accumulating substantially at any particular radial location.  

However, as the core peak intensity rises to the point where ionization begins (z =160 

cm, not shown), the location of the intensity knee stabilizes and highly localized 

phase shear builds up, greatly steepening the transition between core and periphery, 

with the field beginning to dip towards a null  (z=166 cm). Finally, only a short 

propagation distance later (z=167 cm), sufficient shear develops that the core and 

periphery are  out of phase at the slice =v, with the dip in the simulation becoming 

orders of magnitude deeper, forming a ring-shaped null surrounding a core of 

relatively flat intensity and phase. Note the core-periphery phase difference 
cp  

jumps by 2  between z=166 and 167 cm. (As seen in the computation of Figure 

4.1(a), the null then spawns two oppositely charged (1) toroidal vortices that 

propagate forward and backward.) The plane =v is still shown at z=178 cm, but the 

vortices have now migrated out of that plane. Later in the paper, we derive and 

discuss equations of motion describing vortex dynamics within the moving reference 

frame.  
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Figure 4.3. Simulations of beam phase (top) and intensity (bottom) at the 

axial/temporal slice v where the STOV pair first appears. From left to right, the pulse 

is advancing along z, with the input shown at z=0, a collapsing beam at z=156 cm, 

ionization onset at 160 cm (not shown), just before the vortices spawn at 166 cm, just 

after the vortices spawn at 167 cm, and an image where the vortex pair has moved out 

of the =v plane.  The linear intensity images are overlaid with centered lineouts of 

10 0log ( )I I , where 13 2

0 10 W cmI   . Experimental parameters were used as code 

inputs: w0 =1.3 mm, pulse energy=2.8 mJ (P/ Pcr=6.4), pulse FWHM 45fs. 

 

4.3.2 Experiment 

 

4.3.2(a) Experimental overview  

 

In order to experimentally confirm the existence of STOVs, we image the 

spatiospectral phase and intensity profiles of femtosecond laser pulses mid-flight 

during their pre- and post-collapse evolution in air. Until now, we have been 

discussing STOVs as a spatiotemporal phenomenon, but they are also vortices in their 

spatiospectral representation, which has enabled us to unambiguously observe them. 

Why should a pulse with a STOV have a vortex in the spatiospectral domain? For a 

small temporal chirp of the electric field where the vortex is embedded, there is a 

simple linear mapping between time and frequency. This leads to the vortex 

appearing in the spatiospectral as well as the spatiotemporal domain. Section 4.2.3(c) 
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discusses a Gaussian pulse with a temporally centered toroidal STOV and shows that 

the spatiospectral representation of the pulse possesses a vortex with the same spatial 

radius. We note that the relationship between vorticity in the spatiotemporal and 

spatiospectral domains is, in general, complex, with the full field distribution 

(including vortices) in one domain contributing to an individual vortex in the 

conjugate domain. Because our experimental images identify STOVs after optical 

collapse arrest has occurred, our results avoid this complexity, as simulations show 

that by this point there is only one STOV propagating with the filamenting pulse.  

Direct measurement of the spatial phase and intensity profile of a filament in mid-

flight is not amenable to standard techniques; the use of relay imaging or beam 

splitters is subject to the severe distorting effects of nonlinear propagation and 

material damage. However, by interrupting nonlinear pulse propagation by an air-

helium interface, the in-flight beam intensity and phase profile can be linearly imaged 

through helium, taking advantage of the very large difference in instantaneous 

nonlinear response between helium and air (
2,He

2,air

0.04
n

n
  [16,50]). This helium cell 

technique was first employed by Ting et al. [43] to measure the in-flight intensity 

profile of a femtosecond filament. Here we extend the technique to also enable 

measurement of the pulse transverse phase profile. Section 4.2.3(b) discusses the 

details of how we produce the air-helium interface and how the <4 mm thick air-

helium transition layer is sufficiently thin to enable distortion-free imaging of the air 

filament cross section. The interface is movable along the laser propagation axis to 

allow mid-flight filament intensity and phase imaging over the full propagation path.  
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A conceptual view of the experiment is presented in Figure 4.1(b), where we 

show the post-collapse pulse from the simulation of Figure 4.1(a) encountering the 

air-helium interface and terminating nonlinear propagation, after which it is relay 

imaged through a folded wavefront interferometer and combined there with a weak 

femtosecond reference beam with flat spatial and spectral phase. The resulting 

interferogram encodes the 2D spatial phase and intensity of the in-flight filamenting 

(signal) pulse at the air-helium interface, averaged over the ~20 nm bandwidth of the 

λ=800 nm reference arm. In effect, the reference arm spectrally gates the STOV, 

resulting in a spatiospectral interferogram centered at the reference pulse bandwidth. 

Spectral gating is crucial to our measurements. If the reference arm had the same 

wide bandwidth as nonlinearly-generated in the signal (filamenting) arm, the 

signature of the STOV, which is present over a smaller spectral window, would be 

washed out. The remaining sections of 4.3.2 provide detailed descriptions and 

justifications for the experimental method: a discussion of the experimental setup is 

given in Section 4.3.2(b), the spatiospectral representation of STOVs is addressed in 

Section 4.3.2(c), and the interferometric analysis is explained in Section 4.3.2(d).  

 

4.3.2(b) Experimental setup 

 

The experimental apparatus makes possible the reconstruction of the 

transverse spatial phase and intensity profiles of a femtosecond optical air filament in 

mid-flight. To do this, we use an abrupt air-helium transition to halt nonlinear 

propagation, as ionization yield and self-focusing are both negligible in helium. The 

beam is then relayed linearly from the transition zone through the helium and 
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interfered with a reference pulse in an interferometer, enabling extraction of the 

transverse amplitude and phase profiles of the filament. 

 

Figure 4.4. Experimental setup for measuring the in-flight intensity and spatial phase 

profiles of collapsing and filamenting femtosecond pulses over a ~2m range. 

 

The experimental setup is shown in Figure 4.4. Our filamentation source is a 

chirped pulse amplification Ti:Sapphire amplifier ( λ=800 nm, 45 fs, 0-5 mJ). The 

beam from the laser is spatially filtered using a pinhole to produce a Gaussian mode 

with flat phase fronts – this is important for the reference arm in the experiment, 

which requires a flat spatial phase. After spatial filtering, the pump/filamenting 

(signal) arm and reference arm are generated using uncoated wedges in a Mach-

Zehnder (MZ) configuration to create a large difference in power between the two 

pulses (~10
4
: 1). Here, the low power reference arm reflects off the front faces of the 

wedges, while the high power signal arm transmits, creating a dispersion imbalance 

that is corrected further downstream. The pulses are then compressed, with the signal 

arm now at 45 fs full width at half maximum (FWHM) intensity, rotated 90 degrees 
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using a periscope (converting P-polarization to S), and down collimated to a waist of 

1.3 mm using a reflective off-axis telescope.  

After down-collimation, the pulses are launched a variable distance spanning 

50-225 cm beyond the last optic of the telescope before nonlinear propagation 

terminates inside the nozzle of the translatable helium cell. Past the air-helium 

transition, both pulses propagate linearly in helium 50 cm, with the intense filament 

core of the high power beam expanding transversely in size. Both pulses are then 

wedge-attenuated before being directed out of the cell through a 200 µm thick BK7 

window. Outside the cell, the high power pulse is attenuated to match the power of 

the reference arm via reflections from a second set of wedges in MZ configuration. In 

order to maintain polarization purity, polarization rotation from the upstream 

periscope was necessary, as wedge reflections preferentially select for s-polarization. 

Wedge transmissions by the reference arm fix the dispersion mismatch created in the 

pre-compressor MZ interferometer.  The pulses are recombined at the output of the 

interferometer and sent through a lens which images an upstream plane, just before 

the nozzle’s gas transition region, to a CCD camera. 

The air-helium interface is formed by the non-turbulent flow of helium, at 

slightly positive pressure, into the ambient air through a 1/4” diameter nozzle on a 

translatable rail-mounted cell. The filament propagates from air into the nozzle and 

nonlinear propagation terminates over the sharp 4 mm transition from air to helium. 

The helium-air transition was measured, as in Ting et al. [43], by monitoring the 

strength of the 3 
3
D – 2 

3
P , =587.6 nm helium line as the helium cell nozzle is 

moved through a tightly focused 800 nm, 45 fs ionizing pulse. As seen in Figure 
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4.5(a), the rapid drop-off of the helium line indicates that there is negligible helium 

beyond a 4 mm 10%-to-90% transition layer at the nozzle. 

To confirm the fidelity of imaging and phase reconstruction through the 

helium cell, we used a time domain propagation code [102] in 2+1 dimensions (r, z, 

ξ) to model the propagation of a filamenting pulse through the 4 mm air-helium 

transition into the far field in the bulk helium at atmospheric pressure. The accuracy 

of phase and intensity reconstruction was verified by reverse-propagating the beam 

via phase conjugation through vacuum back to the air region just before the transition. 

The results are displayed in Figure 4.5(b) and (c), which show that the reconstructed 

spatial intensity and phase at 800 nm (red) closely track that of the input electric field 

just before the transition region (black). In addition, we verified that small deviations 

from the correct imaging plane (+/- 1 cm) did not affect the results. 



 

 105 

 

 

Figure 4.5. (a) Line emission (in arbitrary units) of the neutral helium 3 
3
D – 2 

3
P , 

=587.6 nm transition induced by a tightly focused 800 nm pulse as a function of 

helium cell position. (b) Simulated filament intensity and (c) spatial phase at 800 nm 

(black) just before the ~4 mm air-helium transition, as well as reconstructed intensity 

and phase (red).  The reconstruction is performed by propagating the solution 4 mm 

through the transition region followed by 50 cm of helium. This simulated far field is 

then back-propagated through 50.4 cm of vacuum to simulate reconstruction from 

imaging optics. 

 

4.3.2(c) STOVs in spatiospectral space 

 

Although the STOV is a vortex in the spatiotemporal domain, our experiment 

measures the spatial phase of the filamenting pulse by interference with a reference 

pulse that is centered at λ=800 nm (see Section 4.2.3(d) below). What is the signature 

of a STOV in spatiospectral space? 
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Consider an ‘R’ vortex ring centered at 0 0( , )r   embedded in a Gaussian background 

field with a temporal chirp, 

 
2 2 2 2 2w

0 0 0( , ) [ i( )]rr w iaE r E e e r r   
        (4.2) 

where rw  and w  are transverse and longitudinal widths, respectively, and a  is a 

chirp parameter. The Fourier transform along the   axis is, up to a complex 

coefficient, 

 
   22 2 2 2

g

2
/w / ( ) 2 2

0 0( , ) (1 ) ( )( )
2

r cr v ia w c

g

iw
E r e iaw r r aw i

v

  

 

 
 

    
 

  
      

  

 (4.3) 

Where 
gk v  , the variable conjugate to   is k , and c  is the central frequency of 

the pulse. In spatiospectral space the vortex is centered at 

 0
0 0 0 0 g2 4

0

1 1
(1 ), 2 v cr r a

r aw aw 


  

 
      

 

  (4.4) 

 It is seen that the STOV is manifested at a definite spectral location  

depending on its axial position 0  and pulse chirp a . For a STOV perfectly centered 

in the pulse ( 0 0  ), its spatiospectral representation is located at the central 

frequency ( c  ) and at the same spatial radius ( 0 0r r  ). For an air filament, the 

STOV is, indeed, positioned temporally about the peak intensity of the filamenting 

pulse, as this is where the Kerr effect-driven inward flow of optical energy yields to 

the plasma refraction-induced outflow, as will be discussed in Section 4.2.5. 
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Figure 4.6. Spectral phase (radians, top) and spectral intensity (arbitrary units, 

bottom) taken from simulation at z=180 cm as the vortex core in the spatiospectral 

domain crosses 2.35 PHz (λ=800 nm). Simulation parameters are the same as Fig. 3 

of the main text: w0 = 1.3 mm, pulse energy = 2.8 mJ (P/ Pcr = 6.4), pulse FWHM 45 

fs. From left to right, the top row (bottom row) shows the full spatial-spectral phase 

(intensity), as well as spatial phase (intensity) slices spectrally fore and aft of 800 nm. 

The dashed black line in the top left panel intersects the vortex core. 

 

 Figure 4.6 displays the spatiospectral representation of a STOV using 

simulation output. We use the same simulation parameters presented in Figure 4.3: w0 

= 1.3 mm, pulse energy = 2.8 mJ (P/Pcr = 6.4), pulse FWHM 45 fs. The top row 

shows spatiospectral phase, while the bottom row displays the spatiospectral 

intensity. The leftmost column shows the complete spatiospectral phase and intensity, 

and makes clear that there is phase vorticity in the spatiospectral domain. The middle 

(rightmost) column shows the phase and intensity spectrally fore (aft) of the vortex 

where we present the data in a manner similar to the experimental images of Figure 
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4.9 shown in Section 4.2.4. Here, ‘fore’ and ‘aft’ refer to left and right of the dashed 

black line in the upper left panel. The diameter of the core is well reproduced, as are 

the abrupt phase jumps of ~π from core to periphery on both sides of the vortex. The 

spectral intensity images show the dark ring of the vortex core. The location of the 

vortex core changes as the pulse propagates. The phase flip seen in Figure 4.6 by 

sampling spectrally to either side of the core would also be seen by observing a fixed 

frequency while scanning the input power or by scanning along the propagation axis 

of the filament, which is how we observe the phase flip experimentally in Figures 4.9 

and 4.10.  

   

4.3.2(d) Interferometric reconstruction 

 

Since the collimated low power reference arm has a flat spatial phase, the 

spatial phase difference, extracted from the interferogram using standard 

techniques [51,108], is just the spatial phase accumulated by the nonlinearly 

propagating pulse. Such a pulse can develop a complicated time (and therefore 

frequency) dependence [35,109,110]. However, our interferograms are spectrally 

gated by the narrower reference pulse spectrum. What is actually measured, therefore, 

is a weighted average of the spatial phase as a function of frequency, where the 

weighting factor is the product of the (narrower) spectral amplitude of the low power 

reference arm and the (broader) spectral amplitude of the filamenting arm. The 

oscillatory portion of the signal on the CCD is given by 

 sin *

ref sigint( , ) 2Re ( , , ) ( , , )ikxx y e d A x y A x y   






 
  

 
   (4.5) 
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where x  and y  are transverse coordinates in the pulse, refA  and 
sigA  are Fourier 

transforms of the field envelopes of the reference and signal pulses, k is the central 

wavenumber of the reference pulse, and θ is the crossing angle of the two beams. As 

the spatially filtered reference pulse propagates linearly, refA  is fully known, and is 

well approximated by a Gaussian with flat spectral phase, 

 2 2 2 2 2
0

ref 0( , , )
x y w

A x y A e
 


  

  and the weighted spatiospectral phase of the signal 

pulse is then extracted. 

 

Figure 4.7. Comparison of the spatiospectral phase of the pulse at 800 nm, to the 

weighted spatial phase measured about 800 nm using the same simulation parameters 

considered in Fig. 3: w0=1.3 mm, pulse energy=2.8 mJ (P/ Pcr=6.4), pulse FWHM 45 

fs. Flipping of the spatial phase occurs at z=179 cm at 800 nm and z=185 cm for the 

weighted spatial phase. 
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What is the difference between the weighted spatial phase which can be 

extracted from Equation 4.5 and the spatial phase at a single frequency (such as at the 

spectral center =800 nm)? Figure 4.7 uses simulation output to directly compare the 

spatiospectral phase at =800 nm and the weighted spatiospectral phase. We simulate 

using the same input parameters as Figure 4.3: w0 = 1.3 mm, pulse energy = 2.8 mJ 

(P/ Pcr = 6.4), pulse FWHM 45 fs. The Figure tracks the evolution of the two different 

spatial phase quantities as the STOV in spatiospectral space crosses =800 nm. It is 

apparent from Figure 4.7 that the two quantities follow each other closely, and 

critically, they both exhibit the flip in phase we use to identify the vortex. The two 

main differences in the phase quantities are that the 800 nm spatial phase flips first at 

z=179 cm, followed by the weighted phase at z=185 cm (likely due to asymmetric 

dispersion about 800 nm), and that the weighted phase gives a core region ~20% 

larger than the exact spatial phase at 800 nm. Figure 4.7 establishes that the weighted 

spatial phase is a good proxy for the spatial phase at =800 nm, and can be used to 

detect the STOV in spatiospectral space as outlined in section 4.2.3(c). 

4.3.3 Experimental results 

 

The experiment was performed by scanning the helium cell axial position over 

a range covering both pre- and post-collapse propagation for all energies used. The 

data consists of a densely spaced collection of beam intensity and phase images at 

various cell positions ( hz ) and input pulse energies ( i ). For all measurements, 

collimated beams were launched with w0=1.3 mm and FWHM intensity pulse width 

=45 fs. 
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Figure 4.8 shows the beam on-axis phase shift  with respect to the 

interferometric reference pulse as a function of P/Pcr at a fixed position of zh =150 cm 

after launch, where 
2

cr

0 2

3.77
8

P
n n




  for our Gaussian input beam profile and 

iP



  is the input power. The red points are averages over 2600 shots (blue points) 

in 150 energy bins. It is important to note that the scatter in  of roughly 1rad  at 

any given laser power is constant across all powers measured, including 
cr

1
P

P
, 

where we could not detect any nonlinear phase. Therefore, the scatter is due to the 

shot-to-shot interferometric instability of the measurement and is not intrinsic to the 

filamentation process.  The most striking aspect of the plot is the abrupt jump in beam 

central phase of approximately ~2  at 
cr

5
P

P
. The phase goes from positive and 

rapidly increasing (increasing self-focusing) to abruptly negative (defocusing), 

providing a clear signature of the transition from the pre-collapse to post-collapse 

beam. For nominally constant laser power right at the jump, the phase fluctuates in 

the range ~, showing the extreme sensitivity of the phase flip.  
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Figure 4.8. Beam on-axis phase shift (with respect to flat-phase reference arm) as a 

function of pulse power at zh = 150 cm. The phase jumps abruptly by ~2  at P/Pcr ~ 

5, providing a clear signature of the transition from the pre-collapse to post-collapse 

beam. The red points are averages over 2600 shots (blue points) in 150 energy bins. 

A more revealing way to display what is happening at the collapse is shown in 

Figure 4.9. Here, for given zh, the phase images ( , )h iz   were searched for i  or 
cr

P

P
 r 

where the central phase appeared to randomly flip sign from shot to shot. These are 

the powers at which pulse collapse was observed for each position, just as 
cr

5
P

P
 

was for zh=150 cm in Figure 4.7. The top row of Figure 4.9 shows beam phase and 

intensity images for input power 
cr

4.4
P

P
  (at zh= 165 cm). Because the onset of 

collapse arrest is extremely sensitive to fluctuations in the pulse energy (as seen in 

Figure 4.8), these images span the possibilities of pre-arrest through post- arrest of the 
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collapse, and typically three types of images appear. Panel (i) shows strongly-peaked 

intensity and positive phase; the beam is collapsing, but arrest has not yet begun.  

Panel (ii) shows radically different images, as does panel (iii): the intensity images 

show narrow ring-shaped nulls embedded in a relatively smooth background, and the 

phase images show a sharp yet smoothly transitioning jump close to π or -π across the 

rings, with the phase jumps flipped between (ii) and (iii). We note that the smooth 

phase transition from the periphery to the core rules out 2π phase ambiguities in 

interferometric phase extraction. 

The bottom row of Figure 4.9 plots, for a range of 
cr

P

P
, the phase difference 

cp  between the core and periphery of the beam. To do this, for each phase image 

we compute the difference between the maximum and minimum values of the phase 

within a 60 micron box centered about the largest spatial phase gradient, the radial 

location of which defines ‘core’ and ‘periphery’. For each nominal value of 
cr

P

P
, it is 

clear that as the phase gradient becomes large, the phase difference saturates at π. 

Near saturation, roughly 50% of the shots have the core phase advanced from the 

periphery while the others show the reverse.  
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Figure 4.9. Top row: retrieved spatial phase (in radians) and intensity (arbitrary units) 

images at z = 165cm, P/Pcr = 4.4 for i) a pre-collapse beam, ii) and iii) beams where a 

vortex ring is on either side of the reference central wavelength of 800 nm. The 

bottom row shows that as the maximal phase gradient in the images increases, the 

maximal phase shift saturates at π for all cases of P/Pcr leading to beam collapse. 

 
 

The evidence from Figures 4.8 and 4.9, and comparison to the simulation of 

Figure 4.3, strongly suggest that we are imaging spatiotemporal vortex rings: the 

abrupt appearance of ring-shaped nulls in the field magnitude accompanied by 2π 

phase jumps in 
cp  across the null– these are exactly the signatures of a vortex. 

Because the circulation around a general singly charged vortex is 2, examining our 

vortex in the spatiospectral domain ( , )r ,  one would expect, depending on the 

sign of vortex winding, that the core-periphery phase difference 
cp  jumps by 2π 

from   slices just before the vortex ( cp    ) to   slices just after ( cp   ). 

For example, before a vortex of charge +1 the core is phase-advanced with respect to 

the periphery; after the vortex it is phase-retarded. This is exactly what we observe 

experimentally and what is predicted in the simulation of Fig. 3 and its spatiospectral 
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counterpart, where even the ~400m diameter of the vortex ring is accurately 

determined. Of the four STOVs simulations show are generated at collapse arrest in 

air (see discussion of Fig. 1(a)), only the temporally foremost +1 STOV does not 

annihilate or separate from the bulk of the pulse . Using Fig. 1(a) as a guide, we 

interpret our results as a spectral “fly-by” of a +1 STOV from the blue to the red side 

of our reference pulse spectrum centered at 800 nm. We note that a similar fly-by of a 

1 STOV from red to blue would present itself in an identical manner.   

How are STOVs born in real collapsing pulses? In our ( , , )r z  simulations, 

vortices are immediately born as tori around the beam owing to azimuthally 

symmetric ( -independent) phase shear. In real beam collapse, where there is   

variation in the laser field, topological considerations lead us to expect that shear in 

higher E-field locations will first lead to a point null, followed by an expanding and 

distorted torus on one side of the beam that progressively wraps to the other side of 

the beam and then, meeting itself, splits into two toroidal STOVs of opposite phase 

winding. The onset of these STOVs, aligned with planes of constant  , has a beam-

regularizing influence, as seen in the images of Figure 4.9, which show remarkably 

flat phase and intensity profiles inside the ring. This could be the reason for the 

notably high quality spatial modes and supercontinuum beams (so-called ‘spatial 

cleaning’ [111]) observed in filamentation. We are performing 3D propagation 

simulations to verify this scenario. We also note that the ring null forms a natural and 

well-defined boundary between what had been qualitatively labelled the ‘core’ and 

‘reservoir’ regions [35] in femtosecond filaments. 
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4.3.4 STOV dynamics and energy flow 

 

Once STOVs are generated, it is important to understand how they propagate. 

Following the method of ref. [112] as applied to spatial vortices, we approximate the 

local form of the STOV as a spacetime “R-vortex” vortex 0 0( ) (r r )i       of 

charge 1 with a linear phase winding about 0 0( , )r ,  embedded in a background 

field envelope 
bg  such that 

bg vortex   . If we take bg

ie   , where   and   

are the real amplitude and phase of the background field, then as the pulse propagates 

along z , the nonlinear Schrödinger equation in ( , , )r z  moves the vortex location 

vortex 0 0( , )r r  according to: 

 

0 0 0

vortex
2 2

( , , ) ( , , )

1 1ˆ ˆ ˆˆˆ ˆ
2

r z r z

k
z r r r

 

   
 

  


        
         

        

r
r ξ r ξ ξ  (4.6) 

where the derivatives are evaluated at the present vortex core location 0 0 0( , , )r z  (See 

Appendix A.5). Equation (4.6) demonstrates interesting analogies with fluid vortices. 

The term 
ˆ

2r

ξ

 propels the vortex forward or backward depending on its charge and 

radius (curvature), and strongly resembles the speed 
4 r


 of a toroidal fluid vortex 

(such as a smoke ring) [113]. Identifying 
2

ˆ k
r










 



j
r   as the local effective 

velocity associated with the background electromagnetic flux (see Appendix A.6), we 

interpret it as a charge-independent drag-like term, expanding (contracting) the STOV 

for power outflow (inflow) for 0( 0)
r


 


. The term 

1ˆˆ
r






 


r   is a Magnus-like 
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motion [86], here propelling the STOV along ˆξ , perpendicular to the vortex 

circulation vector ̂  and the ring expansion/contraction direction r̂ . The terms

2
ˆ 








ξ  and 

2

1ˆ ˆ 


 





ξ   are their spatiotemporal analogues.  In gases, small 2   

(~10
-5

) makes these terms negligible; they contribute much more significantly in solid 

media. We note that 
bg  is not a fixed field independent of vortex motion. Equation 

(2) should be understood as a stepwise predictor of vortex motion based on an 

updated 
bg .  

 

Figure 4.10. Demonstration of energy flow about a +1 “r-vortex” STOV. White 

arrows correspond to size and direction of j in Equation (4.7). There are three distinct 

regimes: the left panel shows the saddle regime which exists in regularly dispersive 

media (2>0), the middle panel shows the degenerate regime which can exist in 

regular or anomalously dispersive media and has a dominant axis for energy flow, 

and the right panel shows the spiral regime which exists in anomalously dispersive 

media (2<0). 
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To understand energy flow near STOVs, it is useful to consider the 

electromagnetic energy flux associated with the full field envelope iue    in the 

moving frame of the pulse (see Appendix A.6) 

 2

2

1
( )u

k






  


j ξ   (4.7) 

where one can see that the sign of 2  determines whether the energy flow near the 

STOV is spiral ( 2 0  ) or saddle ( 2 0  ). What are the relative contributions of 

longitudinal and transverse energy flow about a STOV? For filamentation in air, 

5

2 10  , the characteristic axial pulse length and width are ~c×10 fs and ~100 µm 

(filament core), and one finds 410 1
r

j

j

  . Here, the distinction between saddle and 

spiral is not important, as we are in the degenerate case. For solids, however, where

2

2 10  , we expect the distinction between saddle and spiral energy flow to be very 

important. Figure 6 provides intuitive visualization of the energy flow pattern for the 

saddle, degenerate and spiral cases. 

Equations (4.6) and (4.7) are useful for an intuitive picture of the governing 

dynamics of STOVs, especially when viewed together with propagation simulations. 

For example, for the four STOVs seen in the simulations of Figure 4.1(a), their 

dominant early movement is governed by 
1ˆ

r









ξ  in Equation (4.6), which propels 

the +1 (-1) STOV temporally forward (backward), with the forward motion initially 

being superluminal. (We will explore the detailed implications of superluminal STOV 

motion in a future publication.) A consequence of the opposing directions for the  
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charges is collision and annihilation of v2 and v3 of Figure 4.1(a), as discussed earlier. 

Remarkably, the v3 STOV superluminally climbs from a region of negligible intensity 

through many orders of magnitude of increasing intensity to reach and annihilate v2, 

whereupon a local depression is left in the field that more gradually dissipates. The v1 

STOV eventually settles in the temporal middle of the highest intensity portion of the 

pulse, propagating at nearly vg. Evidently,   self-consistently evolves to balance the 

ξ̂  terms in Equation (4.6) and   flattens along the radial dimension (as indicated in 

the experiment), preventing expansion or contraction of the STOV. Our simulations 

show that a surviving +1 STOV is always coupled to the filamenting pulse. This is no 

coincidence, as the energy flow for a +1 STOV is toward (away from) the pulse axis 

temporally in front of (behind) the STOV. This is exactly as expected, where the front 

of the pulse draws energy in by Kerr self-focusing, and energy at the back of the 

pulse is directed outward by plasma refraction. A link and descriptions of STOV 

movies are at ref. [65].  There  appears to be a deep connection between the STOV 

picture of filamentation—spontaneous generation of STOVs followed by STOV-

governed energy flow in the pulse—and the spontaneous formation of conical 

nonlinear waves (X and O waves), which have been used to explain propagation 

dynamics of a filamenting pulse [114–116].  

In real beams without   symmetry, we expect collisions of oppositely 

charged STOVs to be much more complex, although the beam regularization 

observed in experiments may conspire to promote collisions. Auxiliary 3D+1 linear 

propagation simulations in which we imposed STOVs as initial conditions on 

Gaussian pulses show repulsion of like-charged STOVs, which pass around each 
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other, and splitting of higher charge STOVs into multiple STOVs of single charge. 

We note that our measured air-based STOVs are not solitons, as diffraction does not 

balance self-focusing for a dark object. STOV solitons could exist, however, in an 

anomalously dispersive, self-defocusing medium [96,97]. 

4.3.5 Conclusions 

 

A STOV is an optical vortex with phase circulation in a spatiotemporal plane. 

STOVs form naturally as a consequence of arrested self-focusing collapse and their 

dynamics influences subsequent pulse propagation.  STOVs can also be imposed 

linearly via prescribed spatiotemporal or spatiospectral phase shifts, making possible 

their engineering for applications. While evidence for STOV generation was 

demonstrated in experiments and simulations of short pulse filamentation in air, we 

expect that STOVs, whose dynamics are subject to topological constraints, are a 

fundamental and ubiquitous element of nonlinear propagation of intense pulses.  

STOV-STOV interactions should prove to be a fundamental mediator of intra- and 

inter-beam dynamics. 

4.4 Linear propagation and angular momentum of STOV-
carrying pulses in material media 

 

Section 4.3 presents the first experimental detection of a STOV, which we 

show are self-generated in pulses undergoing optical collapse arrest and are intrinsic 

to the subsequent self-guided evolution of the pulse. While the presence of STOVs in 

such nonlinearly propagating pulses provides a compelling reason to study their 

fundamental properties, STOVs are not an inherently nonlinear phenomena. In this 
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section, we study the evolution of STOV-carrying pulses in the linear dispersive 

propagation regime, with particular emphasis on their angular momentum.  

We propose a simplified model to calculate the orbital angular momentum in a 

pulse with a STOV. The model provides physical intuition for the origins of the 

angular momentum. For STOV-carrying pulses in dispersive media, we identify a 

modal solution for the case of anomalous dispersion, and a “quasi” modal solution for 

normal dispersion.  

4.4.1 Angular momentum in STOV-carrying pulses 

 

Here, we wish to calculate the angular momentum present in a linearly 

polarized STOV-carrying optical pulse. We consider the case where the pulse is 

propagating through a dispersive dielectric material, with spectral content far from 

any resonances, so that the material can be approximated as lossless.  

When speaking about the angular momentum of the pulse, we include 

contributions from both the electromagnetic field as well as the material response. 

The “correct” partitioning of momentum and angular momentum into electromagnetic 

and material subsystems is the topic of a century long investigation: the Abraham-

Minkowski controversy [117–121], which we do not engage with as we are 

considering the total angular momentum, and do not discriminate between 

electromagnetic and material contributions.  

We consider Maxwell’s equations (in SI units) for the fields in a uniform, 

linear, lossless dielectric with zero free charge density and zero free current density: 

0D  , 0B  ,  0t  E B , 0t  H D . The material linear response 
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is expressed in the frequency domain as  
0( , ) ( ) ( , )r    D r E r  (tilde indicates 

Fourier transform) while 1( , ) ( , )H r B rt t , with 0  .  If the time domain fields 

are taken to be real, then 
*( , ) ( , )E r E r   , 

*( , ) ( , )D r D r   , and 

*( ) ( ) ( )r r r          since the medium is lossless. The last relation allows 

expansion of the permittivity ( )r   as an even function of   about zero:  

 
2

r r,2

0

( ) n

n

n

   




   (4.8) 

The conserved linear and angular momentum densities within a lossless, 

dispersionless dielectric are well known  [12], and can be derived through direct 

manipulation of Maxwell’s equations. In the presence of dispersion, momentum and 

angular momentum densities were only recently derived by Philbin et al., from an 

action principle using Noether’s Theorem [122,123], 
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



  

 

       p D B E E   (4.9a) 
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n
n m m n m

n t t

n m





  

 

      r p E El   (4.9b) 

where the momentum density p  is seen to be the Minkowski momentum D B  plus 

an additional dispersive term, and the angular momentum density l  takes on the 

familiar form r p  plus an additional dispersive term.  The additional dispersive 

terms are, in general, difficult to compute exactly, but are typically small compared to 

leading terms provided the pulse is far from any resonances, and the spectral 

bandwidth is small relative to the central frequency. 
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To calculate total angular momentum, we assume a form for an optical pulse 

with an embedded line STOV. We take the electric field at time t=0 to be 

  0 c( , 0) ( , , )exp( )t E z w im x w x w y w z w ik z    E r A   (4.10)   

Here, x, y, and z are spatial variables, with the pulse travelling in the z-direction. The 

prefactor E0 is the electric field amplitude, m=±1 determines the direction of the 

phase winding, w|| and w⊥ are the longitudinal and transverse scale lengths of the 

pulse, kc is the central wavelength of the pulse, and A  is the pulse envelope. 

We impose several restrictions on A  so that the angular momentum in the 

pulse represents the intrinsic, or coordinate independent, orbital angular 

momentum [124]. We take the beam to be approximately linearly polarized, 

ˆA A x , so that there is no angular momentum contribution from the polarization 

state [124], and we assume A  is symmetric about the x and z axes so that a lop-sided 

field distribution does not contribute to extrinsic orbital angular momentum, orbital 

angular momentum that depends on choice of coordinates [124]. Additionally, we 

assume that the spectral bandwidth of A is small compared to the central frequency 

c . 
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Figure 4.11. Simple model of the propagation effect of the envelope phase of a pulse 

with an embedded STOV. Color gradient indicates change in phase and central 

circular black arrow indicates the direction of phase winding. In regions a) and c) 

respectively, the phase winding blue and red shifts the pulse as indicated by the blue 

and red arrows (indicating momentum) and vertical lines (wavefronts). In regions b) 

and d) respectively, the phase winding deflects the local momentum density of the 

beam downward and upward as shown by the solid black arrows/wavefronts. Dashed 

black arrows indicate the momentum density and unperturbed wavefronts for the case 

of a constant envelope phase. 

 

To obtain physical insight and to straightforwardly derive expressions for 

angular momentum, we develop a simple four-quadrant model of the local spacetime 

environment of a STOV, as depected in Figure 4.11. The diagram shows the top and 

bottom portions of the vortex region respectively blue-shifted and red-shifted, while 

the temporal front and back of the pulse experience downward and upward tilt of the 

a

c

bd

z

x

momentum density
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phase fronts. Because the medium is dispersive, red and blue shifting sections of the 

pulse result in a differential in the momentum density from top to bottom, while the 

upward and downward deflections of the phase fronts cause the direction of the 

momentum density to deflect upward and downward as indicated on the diagram. 

Deviations from the momentum density of a plane wave of equal field amplitude 

travelling in the z-direction reveal the circular and saddle character of the momentum 

flux for the beam in anomalous and normally dispersive media.  

The simple model shown in Figure 4.11 suggests an intuitive method for 

estimating the angular momentum contained in the fields: approximate each quadrant 

as a section of a plane wave, with the top and bottom quadrants approximated by red 

and blue shifted plane waves travelling in the z-direction, and the left and right 

quadrants approximated by plane waves at the central frequency which are deflected 

upward and downward into the x-axis from the z-axis. Maxwell’s equations admit 

plane wave solutions of the form: 
  0

1
.

2

i t
e c c

 
 

k r
E E , 

  0

1
.

2

i t
e c c

 
 

k r
D D , 

and 
  0

1
.

2

i t
e c c

 
 

k r
B B , where 0 0 0( )  D E  and 0 0


 

k
B E .     

For plane waves, the exact form of the angular momentum density (4.9b) simplifies to 

   
c

0 r g* 20
0 0 0

ˆIm
4 2

r

t t t

nd
E

d  

  

 

 
        

 
 

l r D B E E r k , where 

( )g

k
n c







 is the group index, and 

t
 denotes a cycle average.  

For the top and bottom quadrants, labelled a) and c) in Figure 4.11, we take the plane 

wave as directed along the z-direction with frequencies shifted from the central 
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frequency of the pulse due to the winding phase of the vortical term. Upon integration 

the angular momentum is 

   r g2

,ac 0 0 r g r g

1

2 8
y t

nw wm u
l V E m n n

c n w


  


 

   


  


  (4.11)   

Here, ,acy t
l  is the cycle-averaged angular momentum in the y-direction (vortex axis) 

resulting from integrating regions a) and c). V is the volume of a quadrant, 

( )r r c       are the blue and red shifted dielectric functions, g g c( )n n     , 

n is the refractive index at c , 
2

0 02u V E  is the vacuum energy of the pulse, and 

4

c

n w


   is the frequency shift inherent to the phase winding. 

Calculating the angular momentum contribution from the left and right 

quadrants, sections b) and d) in Figure 4.11, we find a cycle-averaged angular 

momentum 

 
r g

,bd
8

y t

n wm u
l

n w



 

   (4.12)     

Where ,bdy t
l is the cycle-averaged angular momentum in the y-direction from 

integrating regions b) and d) of Figure 4.11, and we have estimated the plane wave 

deflection into the x direction as 
c4

x

z

k

k w k





 , which is valid for paraxial pulses 

c 1k w . 

The total, cycle-averaged angular momentum is: 

 
r g r g

,ac ,bd
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y y yt t t

n n wwm u
l l l

n w w
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 




 
      

  (4.13)     
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The overall angular momentum is proportional to the vacuum pulse energy u , with 

an orientation which depends on the sign (charge) of the vortex (such as 1m   ), and 

a numerical factor of 
8


 specific to our simple model and resulting from our choice of 

how the phase winds about the pulse 
z x

im
w w

 . The ratios involving the pulse 

transverse size and longitudinal length 
w

w

  and 
w

w

 result from the spatial 

dependence of the angular momentum density l r .  

 The contribution to the angular momentum from regions a) and c) of Figure 

4.11 (first term of Equation 4.13) can be split into two parts, proportional to r






 and 

gn






. The first term, r






, is attributable to a differential in the magnitude of the 

material response between regions a) and c), while the second term, proportional to 

the group velocity dispersion 
gn

c GVD



 


, occurs due to a differential in the group 

velocity between regions a) and c).   

Contributions to the angular momentum from regions b) and d), attributable to 

wavefront tilt, complement results already derived by Bliokh and Nori [98]. The 

result is also similar to calculations done by Allen et al. [92] who considered orbital 

angular momentum in vortex carrying monochromatic Laguerre-Gauss modes. 

Although Allen et al. consider spatial optical vortices, the reason the beam contains 

orbital angular momentum remains fundamentally the same: wavefront tilt due to the 

presence of a vortex. Allen et al. showed that LG modes with azimuthal index l  have 
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angular momentum equal to Nl , where N  is the number of photons. To compare to 

Allen et al., we consider propagation in vacuum, and impose w w , which 

simplifies Equation (4.12)  to ,bd
8

y t
l Nm


 , where we express results in terms of 

the number of photons 
u

N


 . The results are identical up to the numerical factor 

of 
8


. A factor of 2 difference is expected because our result only considers half of 

the pulse (regions b) and d)) while the Allen result considers the entire beam – the 

remainder of the difference in their ratio 0.8  is attributable to differences in the 

distribution of the electric field.  

While the plane wave model provides an intuitive explanation for the origin of 

angular momentum in a STOV carrying pulse, and clearly delineates between 

contributions due to wavefront tilt and contributions due to dispersive effects, a more 

rigorous derivation is required to confirm the validity of the model. We are presently 

in the process of performing this derivation, which involves deriving an approximate 

form to the momentum and angular momentum densities of Equations (4.9) suitable 

for slowly varying envelopes, which can then be applied to a fully consistent solution 

of Maxwell’s equations containing a STOV.  

4.4.2 Free space STOV mode propagation 

 

How do pulses with STOVs evolve as they propagate? To address this we 

consider the scalar wave equation under paraxial and slowly varying envelope 

approximations, subject to 2
nd

 order dispersion: 
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  2 2

22 zik u u       (4.14)   

Here x and y are transverse dimensions, gv t z    is the longitudinal moving frame 

coordinate, gv  is the group velocity, z is the longitudinal direction, k  is the central 

wavenumber, 
2 2 2

x y     is the transverse Laplacian, u is the electric field envelope 

which specifies the scalar electric field: ( , , , ) ( , , , ) ikE x y z u x y z e    , and 

2
2

2 2

c

c

k
c k

 






 
  

 
is the dimensionless group velocity dispersion. Separation of 

variables leads to the familiar Hermite-Gauss solutions to the Helmholtz equation:  

 
,a y,b ,cxu u u u   (4.15a)   
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  (4.15b)   

Here, 0xw  is the beam waist, 

2

0( ) 1x x

Rx

z
w z w

z

 
   

 
 is the z-dependent spot size, 

2

0

2

x
Rx

kw
z   is the Rayleigh range, aH  is the a

th
 order Hermite polynomial, 

2

( ) 1 Rx
x

z
R z z

z

  
      

 is the curvature, and 1( ) ( 1) tana

Rx

z
z a

z

  
     

 
 is the Guoy 

phase. Solutions for ,y bu  are identical in form to ,x au , while solutions for ,cu  are 

obtained with the substitutions: 2

2

, sgn( )
k

k z z 


  . Scaling the effective 

wavenumber to 
2

k


accounts for the different rate of spreading present in dispersion 

relative to diffraction, while flipping the sign of z for normal dispersion results in 
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phase accumulation identical to a left-going wave 
 i kz t

e
 

  , opposite the right-

going wave convention 
 i kz t

e


  used for the transverse directions in Equation 

(4.14). 

  A pulse containing a STOV oriented along the y-axis, similar in form to the 

pulse considered in Equation (4.10) can be constructed out of the modal solutions 

(4.15). Here we wish to construct a pulse that exhibits modal evolution, and so 

impose Rx Ry R Rz z z z


   . 

  y,0 ,1 ,0 ,0 ,1x xu u u u imu u   ,a y,b ,cxu u u u   (4.16a)   
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  (4.16b)   

As before, 1m    determines the winding of the vortex, and we have expressed the 

pulse using pulse parameters from the 
xu  family of solutions provided in (4.15b). 

Adding ,1 ,0 ,0 ,1x xu u imu u   is analogous to using 0
th

 and 1
st
 order TEM modes to 

produce a first order Laguerre-Gaussian pulse, but with the mode now lying in the 

 ,x   plane instead of the transverse spatial plane.  

Note that phase accumulation in the pulse envelope in Equations (4.16b) is 

equal for both terms when 
2 0  , resulting in an amplitude which simply dilates 

with propagation (a modal solution), but when 
2 0   the Guoy phase present in the 

vortical term (bracketed) exhibit right-going and left-going signatures respectively, 

resulting in what we call a quasi-mode. 
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Figure 4.12. Evolution of pulse intensity of a quasi-mode (top) in normally dispersive 

media, and mode (bottom) in anomalously dispersive media. The pulse envelopes 

have been rescaled so that they have equal size at all z locations. Pulse intensity is 

shown in the y=0 plane. Phase winding due to vorticity is indicated with red arrows.  

How do the solutions (4.16b) behave as they propagate? Figure 4.12 displays 

plots of the intensity as a function of propagation along the z-axis in the y=0 plane. 

Intensity plots are shown for five different locations: 0, ,Rz z   . For ease of 

viewing we have normalized the spatial scales so that all pulse envelopes have the 

same size. We have also chosen to plot solutions which are identical at the waist, z=0. 

For anomalous dispersion, all separable solutions evolve according to the “right-

propagating-wave” convention, resulting in a free-space mode where the pulse 

amplitude simply dilates with propagation, in a manner analogous to a transverse 

LG01 beam, but with the pulse lengths scaled to reflect different magnitudes of 

diffraction and dispersion. In the case of normal dispersion, the transverse dimensions 

still obey the right-going convention, but the moving frame coordinate   now obeys 

the left-going convention, and the result is the quasi-mode evolution shown in the 

first row of Figure 4.12. The sign of the phase winding, indicated with a red arrow, 

flips while propagating from z   to the waist at 0z  , and flips once again while 

propagating from the waist to the positive far field at z  , with intermediate 

regions at 
Rz z   where the pulse is transitioning between opposing windings. 
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Interestingly, the “quasi” modal evolution of the STOV pulse in a normally 

dispersive medium changes the direction of its phase winding while preserving total 

orbital angular momentum. We are presently in the process of examining this 

situation, and deriving equations for angular momentum conservation for scalar 

pulses in dispersive media.   

4.4.3 Conclusion 

 

We have studied the angular momentum and pulse evolution for linearly 

propagating pulses with STOVs. We identified two distinct sources for net orbital 

angular momentum due to the presence of a STOV: wavefront tilt and dispersion 

from the polarization response of the medium. Contributions to STOV beam angular 

momentum from wavefront tilt are fundamentally similar to wavefront tilt 

contributions to the orbital angular momentum of spatial optical vortices [92], while 

the dispersive contributions are physically distinct and specific to STOVs. We have 

also considered the linear propagation of STOV-carrying scalar optical pulses, 

identifying a free space mode in anomalously dispersive media, and a quasi-mode for 

normally dispersive media. We are presently in the process of rigorously deriving 

expressions for the total orbital angular momentum in STOV-carrying pulses and 

related equations for angular momentum conservation in dispersive media.  
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Chapter 5: Summary and future directions 

5.1 Summary 

 

The research in this dissertation explores two topics: i) how to use the long 

timescale, neutral gas hydrodynamic response following filamentation to guide and 

deflect optical beams, and ii), the discovery of spatiotemporal optical vortices 

(STOVs), for which we provide the first experimental detection, and establish that 

STOV generation is a fundamental part of the optical collapse process, occurring in 

all filamenting beams. 

Chapters 2 and 3 focus on the long timescale, neutral gas hydrodynamic 

response following a filamenting pulse. In Chapter 2 we demonstrate that a pulse train 

of filamenting beams undergoes a sustained deflection in its trajectory due to the 

cumulative density hole generated from the pulse train. This effect is present in all 

high repetition rate (>1 kHz) filamenting pulse trains in gaseous media.  In Chapter 3 

we show how the neutral gas hydrodynamic response may be used for the formation 

of acoustic and thermal waveguides. These guides may be useful for ranged 

atmospheric applications such as remote sensing and the guiding of high average 

power beams.  

In Chapter 4 we introduce STOVs, and provide the first experimental 

detection, supported by theory and simulation, of a STOV. We develop a simple 

model of optical collapse arrest generic to all short pulse optical filamentation and 

self-guiding scenarios. We argue that STOV formation is universal, applying to all 

beams undergoing optical collapse in any system, independent of the details of the 

collapse arrest mechanism. Propagation simulations of air filaments show that in the 
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self-guided phase of propagation one of the STOVs has settled down to form a torus 

surrounding the filament core and co-propagates with it, mediating energy flow to 

and from the reservoir. Finally, through studying the linear propagation of STOV 

beams, we identify free-space mode solutions and calculate the orbital angular 

momentum of STOV-carrying beams. 

The remainder of this chapter suggests extensions to existing work.  

5.2 Acoustic manipulation of the filament-induced air density 
hole 

 

The density depressions produced in the wake of a filament were shown in 

Chapter 2 to lead to a persistent deflection in the pulse train of a filamenting beam. 

By acoustically manipulating the position of the density hole, a filamenting pulse 

train can be dynamically steered. Figure 5.1, below, shows preliminary data where we 

demonstrate deflections in the beam pointing which result from passing a beam above 

an acoustic source (in this case a car subwoofer oscillating at 25 Hz). With sound 

waves driven with speaker currents of 4 A RMS, we stimulate deflections in a 1 kHz 

pulse train which vary sinusoidally in time, tracking the waveform of the driver. At 

10 A RMS speaker current, we observe a rapid decline in the deflection magnitude at 

the peak of the oscillation. We interpret this result as indicating that the density hole 

displacement has become large enough that the deflection effect saturates. The 

presence of the density hole creates a transverse gradient in the refractive index, 

which acts to deflect pulses (see Chapter 2). For small displacements from the center 

of the density hole, increasing the displacement acts to increase the index gradient 

sampled by a pulse, which results in a larger deflection. However, this effect 
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eventually saturates and reverses as the density hole displacement becomes 

sufficiently large (in the limit of very large displacements, a pulse samples 

unperturbed air and does not deflect at all). 

 

Figure 5.1. Filament deflection by 25 Hz acoustic source. Figure a), on the left, 

shows deflections with a speaker current of 4 A RMS, with figure b) showing 

deflections with a 10 A speaker current. 

 

In addition to dynamic steering of a filamenting pulse train, acoustically 

modulating the location of the density hole may be useful for quasi-phase matching 

third harmonic generation in filamentation. Due to dispersion, the phase walk-off 

length for third harmonic generation is given by
33

L
k k



 





. For example, phase 

matching in air with an 800 nm pulse has a walk-off length 7L mm   [13]. Figure 

5.2, below, shows a scheme where we propose using a solid grate to obstruct sound 

waves emitted from a speaker. A filamenting pulse train passes over the grate, 

creating an elongated density hole, local sections of which (those above the sound-

transmitting slots of the grate) are driven out of the path of subsequent filaments by 
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the speaker. The combined effect of the density hole, speaker and grate is to create a 

periodically modulated gas density for the purpose of quasi phase matching third 

harmonic generation. We should be able to achieve ~1-10% gas density modulation 

in air at 1 kHz  [9,80], with substantially larger modulations achievable by using a 

more readily ionizable gas such as Xenon [58] or higher gas pressure (which leads to 

more energy absorbed per pulse), or a higher repetition rate laser (leading to a deeper 

cumulative density hole). A similar scheme involving a cavity with a longitudinal 

acoustic mode to produce density variations has been proposed [125], but it is very 

difficult to generate transducer-driven acoustic waves with amplitudes approaching 

~1% [126].  

 

Figure 5.2. Third harmonic generation scheme employing a speaker and grating to 

periodically modulate the location of the density hole. 

 

5.3 Scaling the thermal air waveguide to a ~50 meter span 

 

speaker

sound waves

grate

density hole
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One of the primary use cases for filament generated air waveguides is guiding 

secondary beams over large distances in the atmosphere. To this end, an important 

next step is to test the scalability of the guide over larger distances. Our laser lab is 

situated at one end of a ~50 meter hallway in our institute, and we have already begun 

experimenting with ranged filamentation and waveguide generation over the ~50 

meter span of the hallway. 

5.3.1 Intra-beam phase variation over long filamenting distances  

 

Multi-lobe filamenting arrays, like the TEM11 mode used in the 1 meter 

thermal guide demonstration [10] rely on a relative phase shift of   between 

neighboring lobes to maintain lobe separation. Recent theoretical studies have 

suggested that nonlinear phase accumulation in filamenting beams is rapid and highly 

sensitive to input conditions [127,128]. As a result, it is claimed that the spatial phase 

of a filament is effectively stochastic, strongly constraining applications which may 

rely upon maintaining phase coherence across a complicated multi-filamenting beam 

over many meters of propagation. Results from our initial demonstration of quad 

filaments [10] already cast some doubt on these claims, as the four-lobe beam 

maintains lobe separation throughout the initial linear propagation, optical collapse, 

~1m of filamentary propagation, and post-filament propagation. This strongly 

suggests that the inter-lobe phase relationship is maintained over the full pulse 

evolution.  

Interferometric measurements of a two-lobe TEM01 filamenting beam 

propagating ~20 meters down the hallway are shown in Figure 5.3. Images were 
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obtained by interferometrically combining the two lobes of the post-filament pulse on 

a CCD camera, positioning the two lobes so that their centroids (determined by eye) 

overlap. This allows for a measurement of the transverse spatial phase difference 

between the lobes: 
lobe1 01 01 lobe2 02 02( , ) ( , ) ( , )x y x x y y x x y y       , where 

0 0( , )m mx y  is the location of the centroid of the 
thm  lobe. The fringe patterns in Figure 

5.3(a) are lineouts of the interferograms. The coherence of the fringe patterns 

indicates that the two neighboring lobes maintain their phase relationship all the way 

up to 67.5 critical powers ( cr67.5 P ) per lobe (maximum power available in our laser 

system at the time of the experiment). Given the small but not insignificant shot-to-

shot intensity differences between the lobes, references [127,128] would have 

predicted random variation in their nonlinear phase difference from shot to shot. 

Figure 5.3(b) plots 
,x y N

  (blue dots), phase difference between the two lobes 

averaged over the full transverse beam profile 
,x y

 and a sequence of 100 shots 

N
. It is seen that 

,x y N
  for the full range of lobe powers. Figure 5.3(b) 

also quantifies shot-to-shot differences in  , by computing the standard deviation 

of 
,x y

  over all shots at a given power:  ,
STD

x y
 . The “loss of phase” 

references [127,128], which argue that the phase in a filamenting beam is extremely 

sensitive to input peak laser power, would have predicted a dramatic increase in 

standard deviation in the phase owing to the fact that absolute power fluctuations 

increase with nominal power. However, what is measured is a relatively flat standard 

deviation with no evident increase with lobe power. 
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These measurements reinforce the notion that intra-beam phase differences 

engineered into multi-filamenting beams will be maintained over long propagation 

distances. 

 

Figure 5.3. Phase interferograms collected from interference of the two lobes of a 

TEM01 filamenting mode after 20 meters of nonlinear propagation. a) Plots of 

different input power (per lobe) are shown, where lineouts of single shot 

interferograms are shown in different colors. b) Blue dots plot the transverse spatial 

phase difference between the two lobes, and red dots show the standard deviation in 

the transverse spatial phase difference.   

5.3.2 Microphone array for single-shot filament visualization 
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Scaling up the thermal guide entails filamenting with a larger mode, and 

sufficient power so that a multifilamentation pattern can diffusively evolve into a 

contiguous index cladding. Preliminary results of a multifilamenting beam nucleated 

from a TEM00 input profile suggest contiguous energy deposition, but have thus far 

only been “measured” subjectively using the human ear while walking along the 

beam propagation path. To improve upon this, we have purchased a set of 64 

microphones which can be operated synchronously, allowing for a single shot 

reconstruction of the energy deposition from ~50 meter filament.  Further progress on 

the thermal air waveguide awaits a laser upgrade of our laser from 2 TW to 10 TW, to 

provide additional power required for creating a contiguous  ring-shaped energy 

deposition on a ~50 meter scale. 

 

Figure 5.4. Left: close up of individual microphones, each with local A/D converter. 

Right: full mounted array of 8 microphones alongside short filament (which is on the 

other side of the mounting board), showing data hub on the bottom right. 

 

5.4 Linear generation of STOVs using optical elements 

 

In Section 4.2 we demonstrated the nonlinear generation of ring STOVs 

through optical collapse arrest, but also alluded to the possibility of linear generation 



 

 141 

 

of STOVs using passive optical elements. A collapsing beam with a preexisting 

STOV may provide a smoother transition to post collapse filamentation, shedding less 

energy in the collapse arrest, and perhaps producing a more stable and longer lived 

filament. Spatial optical vortices have found use in optical tweezing [129,130], where 

the beam can be used for trapping and transferring angular momentum to micro and 

nano sized particles, as well as stimulated emission depletion microscopy [131], 

where the amplitude null is exploited to create images with resolution exceeding the 

diffraction limit. The same characteristic phase vortex features, which manifest as 

rapid spatiotemporal variations in a beam with a STOV, may find use in manipulation 

of relativistic particles as well as for providing rapid temporal signatures which could 

be useful in time resolved measurement. 

 Here we present a scheme which employs a 4f spatiotemporal pulse 

shaper [131] to embed a line STOV onto a pulse. To motivate the scheme, consider a 

pulse with an embedded line STOV BG V( , , )E x y E E  , where we partition the field 

into a “background” and “vortex” term, mirroring the approach (and symbols) used in 

Section 4.3.4. Transforming the pulse into spatiospectral space yields an electric field 

BG V
ˆ ˆ ˆ( , y,k )E x E E   , where the “hat” denotes Fourier transform, and the   

denotes convolution.  We consider a line STOV oriented along the y-axis, so that 

   V 0 0( , )E x im x x      , and  V 0 0
ˆ ( ,k ) ( ) ( )E x im x x k i k            . 

Thus, in spatiospectral space   BG
BG 0 0

ˆ
ˆ ˆ( , y,k )

dE
E x E im x x i

dk




       . 
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Considering a Gaussian background field

2 2 2

c2 2

BG

x y
ik

w w
E e 







  

 , where 

 
2 22 2

c

2 40
BG

ˆ
2

k k wx y

w
E e

 





 

 , the spatiospectral representation is given by   

     2

BG 0 0 c
ˆ ˆ( , y,k )

2

i
E x E im x x k k w  

 
      

 
  (5.1)  

Starting with a beam without a line STOV, we may impose a STOV by 

transforming to spatiospectral space, and modifying the amplitude and phase 

appropriately to impose the bracketed term in Equation (5.1).  When centering the 

line STOV about the temporal axis of the pulse, so that 0 0  , we see that the 

bracketed term of Equation (5.1) can be interpreted as having a dividing line where 

the field in spatiospectral space passes through a zero given by 

  2

0 c

1

2
x x k k w

m
    , across which the phase of the field jumps discontinuously by 

 .   

A 4f pulse shaper [131] can be used to transform the pulse into spatiospectral 

space, where it is straight forward to use a programmable spatial light modulator, or 

static amplitude and phase masks to impose the desired pattern on the beam. Figure 

5.5, below, shows a schematic for the 4f pulse shaper: a grating is used to disperse the 

pulse along one axis, after which a cylindrical lens at a distance f away can be used to 

spectrally resolve the pulse a distance f beyond the lens. A mask is inserted in the 

Fourier plane where the pulse is transformed into spatiospectral space (note that the 

grating and cylindrical lens only act on one transverse dimension of the pulse, leaving 
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the other unchanged). Beyond the mask the sequence is reversed to transform back 

from the spectral domain.  

 

Figure 5.5. Schematic for using a 4f pulse shaper and SLM or static masks to impose 

a line STOV on a beam. 

 

SLM or static mask

cylindrical lenses

gratings
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Appendices 

A.1 Fluid scalings for convective motion of gas driven by 

pulse train of filaments 

 

 Starting from momentum and energy balance: 

 2P
t

  
 

       
 

v
v v g v   (A.1.1)  

 2 21 1

2 2
P S

t
   

     
         

     
v v v v q   (A.1.2)  

Here   is the mass density, v  is the fluid velocity, P is the pressure, g  is 

gravitational force,   is the coefficient of viscosity,   is the internal energy density, 

q  is the heat flux and S is a heat source. Recall that the heating source comes from 

the long, thin cylindrical filamenting core. We take the y-direction to point along the 

axis of the cylinder, making the problem translationally invariant in this direction, let 

z point upwards (opposing gravity) and x be the remaining transverse direction.  

Assume a steady state flow 0
t






v
with low Reynold’s number 

2
1









v v

v
 (i.e. a 

laminar flow where viscosity dominates convection). Momentum balance in the z 

simplifies to: 

 2 0
P

g v
z

 


    


  (A.1.3)  

Where we denote zv v . Assuming hydrostatic pressure equilibrium, 
0

P
g

z



 


 

where 0      results in a balance between viscosity and buoyancy from density 

perturbations.  
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2g v       (A.1.4)  

The vertical scale length will be much larger than the transverse scale length, as the 

flow field is oriented along the z-direction zL L  which results in an estimate for 

the terminal fluid velocity based off of scaling arguments: 

 
2gL

v





   (A.1.4)  

Where the quantities v  and   denote characteristic velocity and density 

perturbations.  

To obtain a second scaling we consider the energy equation in steady state and 

away from the source:        

 21
0

2
P 

  
      

  
v v v q   (A.1.4)  

For an ideal gas, the internal energy density is proportional to the pressure 

. . .

2

D O F
P P    , with 

3

2
   for monatomic gases, and 

5

2
 for diatomic 

molecules in the experiment (where two additional D.O.F. are present for rotations, 

but vibrational modes are still frozen out).  Also note that the fluid kinetic energy 

density can be neglected as it is much smaller than the internal energy density: 

2
2 2B

1
s

k T
P c v

m


    


  


 where sc  is the sound speed. We use Fourier’s 

Law to model conductivity, T  q , where   is the thermal conductivity of the 

gas. The energy balance simplifies to: 

   1 0P T     v   (A.1.5)  
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Applying a transverse average over the x-direction: 

L

L

dx




 , notice that ( ) 0xv L   

and 0
x L

T

x






, to give: 

  1 0
T

Pv
z z

 
  

   
  

  (A.1.6)  

The overbar denotes transverse average, and we assume no transverse variation in 

pressure (as it is mostly varying along the vertical direction). Integrating the equation 

along z, starting from below the disturbance, which we take to be at z=0 gives:  

     01 1
T

Pv Pv
z

  


   


  (A.1.7)  

Here we assume that the thermal gradient below the disturbance is zero and that the 

velocity is 0v . By continuity we can relate the velocities: 

 0 0 0 0

0

1v v v v


  


 
     

 
 which gives: 

  
0

1
T

P v
z


 



 
 


  (A.1.8)  

From here, we can arrive at a second scaling relation for the vertical velocity: 

 v
L


   (A.1.9)  

Here, 
0 pc





  is the thermal diffusivity,   B1p

k
c

m
   is the specific heat 

capacity, m  is the molar mass, and L  is the vertical length scale. We can combine 

the two relations to get an effective length scale: 
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  
 

1
32

eff

B1
L L L

g mn nk g

 

 
   

  
  (A.1.10)  

this can in turn be used to estimate the vertical velocity 

 
22

effgLgL
v



 



    (A.1.11)  
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A.2 Simulation of filament-induced gas dynamics 

 

Simulations of the gas hydrodynamic evolution are performed in cylindrical 

geometry using a one-dimensional Lagrangian one-fluid hydrocode, in which the 

conservation equations for mass, momentum and energy,  i
i iS

t





  


v  , 

were solved numerically. For the mass equation, 1   and 
1  0 , for the 

momentum equation, 2  v  and 2  I  (where I  is the unit tensor), and for the 

energy equation, 2

3

1

2
    v  and 3 P v q . Here,   is the volume density of the 

conserved quantity,   is the flux of that quantity, and S  refers to sources or sinks, 

while   is mass density,   is fluid internal energy density, v  is fluid velocity, P  is 

gas pressure, and T  q  is the heat flux, where   and T  are the gas thermal 

conductivity and temperature. The code includes an artificial viscosity term 

proportional to 
2

v  which prevents shock formation, but is not relevant for the 

neutral gas hydrodynamical response following filamentation, where shock formation 

does not occur.    

The radiation of the heated gas contributes negligibly to the energy balance, as 

can be verified by assuming the maximum emission of a black body and finding it to 

be tiny. At all times, 1 2 0S S   by mass and momentum conservation, but without 

approximations, 3 0S   because the thermal part of the energy density is changed by 

laser heating and by ionization/recombination of all the relevant species in the gas. 

However, we recognize that at times 10ns  after laser filament excitation, all of the 
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energy initially stored in free electron thermal energy and in the ionization and 

excitation distribution is repartitioned into a fully recombined gas in its ground 

electronic state. The ‘initial’ radial pressure distribution driving the gas 

hydrodynamics at times 10ns  is set by the initial plasma conditions 

   e
0 e B e

g

( )
f

P r N r k T r
f

 , where Bk  is Boltzmann’s constant, e ( )N r  and e ( )T r  are 

the initial electron density and electron temperature profiles immediately after 

femtosecond filamentation in the gas, and ef  and 
gf  are the number of 

thermodynamic degrees of freedom of the free electrons and gas molecules. Here, 

e 3f  , and  
g 5f   for air at the temperatures of this experiment ( 0 100KT  ). To 

simulate the neutral gas response at long timescales we solve the fluid equations for 

the i , using 3 0S   and the initial pressure profile given by 0 ( )P r  above. 
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A.3 Scale length for on-axis interference launched from an 

annular acoustic guide 

 

Here we approximate the scale length of the peak on-axis interference 

launched from light guided in the compressive section of the annular single cycle 

acoustic wave. 

 

Figure A.0.1. Schematic of light launched from end of single cycle annular acoustic 

guide. D is the size of the annulus, Δr is the thickness of the compressive section of 

the wave,  Δθ is the spreading angle for light launched from the guide, and Δzint is the 

scale length of the peak on-axis interference from light launched by the acoustic 

guide. 

 

The radial wavenumber spread emanating from the acoustic wave can be 

estimated from the thickness of the wave 1k r   which can in turn be used to 

estimate the angular spread 
1k

k k r



 


 . From here, a simple geometric 

argument can be used to estimate the region of strongest axial interference 
intz : 

tot

2

4

D

z





 and 
int

tot int

2

2

D

z k rD
z z


   
 

.   

D 

Δr Δθ 

Δθ/4 

Δz
int

 

Δθ/2 

Δz
tot
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Typical values from the annular wave are 500μmD  and 25μmr , 

which for 0.5μm   yields 
int 20cmz . 



 

 152 

 

A.4 Estimating the leakage rate and mode number of a leaky 

thermal guide 

 

Here we will derive the leakage rate and estimate the effective index of the 

fundamental leaky mode travelling through a thermal air waveguide. To do this, we 

will first derive the transverse energy flux for the paraxial equation, which we will 

use to find a general form for the leakage rate of a lossy mode, and then finally apply 

the general form to the index structure of a thermal air waveguide. The mode index 

will be estimated using a variational method.  

We start with the paraxial wave equation valid for modal solutions 

( , ) i zA z e 

r , 

 
2 2 2 2(r , )

2 [ ( (r ) )] (r , ) 0
A z

i k n A z
z

 
  


    


  (A.4.1)  

Where we use the same conventions as established in Section 3.3.2: A  is the 

envelope to the scalar electric field,   is the wavenumber of the guided mode, k  is 

the vacuum wavelength, n  is the index, r  lies in the transverse plane, and z  is the 

propagation direction. Note that kn  is the medium wavenumber,   is the z-

component of the medium wavenumber, making 
2 2 2k n    the transverse 

component of the medium wavenumber. 

 

Energy continuity equation 

 

 

We wish to derive a continuity equation for the energy, which will take the 

form of 
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2

z A    S   (A.4.2)  

Where 
2

A  is proportional to energy, and S  is proportional to the transverse energy 

flux. As the coefficients of proportionality will be irrelevant to the argument, we will 

neglect them, and refer to the aforementioned quantities as energy and energy flux. 

To derive S , add 
* *(A.4.1) (A.4.1)A A     

 
* *1

2
A A A A

i
 

     S   (A.4.3)  

Loss rate for leaky mode 

Assume the envelope has a leaky form: 

 
1

( , , ) ( , ) zA x y z f x y e
N

   (A.4.4)  

Here f  is the transverse distribution of the wave, which decays away exponentially 

at the loss rate  , and 
2

N f


   normalizes f  over the core and cladding of the 

guide, denoted  . Substituting the form of A  given in Equation (A.4.3) into the 

LHS of the continuity equation (A.4.2) and integrating over  , we have 

2 22 z

z A e  



   , while the RHS can be evaluated by using the divergence theorem: 

cl2S S dA r S

 

      , here clr  is the cladding radius, and we have assumed an 

azimuthally symmetric index profile.  Combining these results gives a general form 

for the loss rate of energy flowing out of a leaky guide:   

 
cl

* *cl

2 r r

r
f f f f

i N





 


      (A.4.5)  
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Equation (A.4.5) can be simplified further by noting that outside the cladding region 

(1)

0 ( )f H r , where (1)

0H  is a Hankel function physically representing radiation 

from the cladding of the guide. For strongly bound guides, 1clr , so we may use 

an asymptotic form for the Hankel function to estimate its derivatives 

(1) (1)

0 0
ˆ( ) ( ) rH r i H r    , and thus 

2* * 2f f f f i f     , resulting in a 

simplified form for the loss rate 

 

cl

2

cl

r r

f
r

N


 




   (A.4.6)  

Solving for loss rate of a thermal guide 

To obtain a closed form expression to approximate the loss rate of the thermal 

guide, we approximate the index structure as a radially stepwise function with 

azimuthal symmetry. As discussed in Chapter 3, the gas evolves via thermal 

diffusion, enforcing a pressure balance that maintains equal and opposite fractional 

changes in the gas density and temperature 
0 0

T

T





 
  , with the change in index 

proportional to the change in density 
0 01

n

n





 



. The thermal energy initially 

deposited takes the form of a ring array with each lobe depositing energy from 

individual filaments. As the gas evolves diffusively, the lobes blend together (as seen 

in Figure 3.2 of Section 3.2.4) becoming indistinguishable from an azimuthally 

symmetric ring source.  The radial dependence of the index perturbation is smoothly 

varying, but core and cladding radii cor  and clr  can be estimated by taking moments of 

the radial distribution, and an effective constant cladding index effn  can be defined 
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by enforcing that the integrated index decrement be equal 

2 2

eff

cladding cladding

nd x n d x    . 

 

Figure A.0.2. Depiction of approximation for moving from smoothly varying radial 

index profile (left) to stepwise profile (right). 

 

   

Exact solutions to the stepwise profile shown on the right of Figure A.2 can be 

obtained analytically by solving the paraxial wave equation over the three domains: 

clr r , co clr r r  , and clr r , and imposing matching conditions (continuity of first 

derivative) on the solutions at the boundaries of the three domains.  

 

0 co

1 0 2 0 co cl

(1) (2)

1 0 2 0 cl

( )

( ) ( )

( ) ( )

J r r r

f a K r a I r r r r

b H r b H r r r



 

 

 


   


 

  (A.4.7)  

Here, 0J  is a Bessel function of the first kind, 0K  and 0I  are modified Bessel 

functions, and ( )

0

mH  are Hankel functions. While straightforward, this approach 

necessitates solving a system of transcendental equations, so we will make further 

simplifications to obtain a solution in terms of elementary functions. Since the loss 

r 

Δn 

r
co

 r
cl

 r 

Δn 

r
co

 r
cl
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rate is proportional to the energy density at the edge of the cladding over the total 

energy in the cladding  

cl

2

r r

f

N




  we will aim to crudely estimate these quantities 

by approximating the mode as constant in the core (zeroth order expansion of 0J ) and 

exponentially decaying in the cladding (asymptotic form of 0K ), while imposing 

continuity.  

 
 co

co

co
co cl

1

r r

r r

f r
e r r r

r

 




 
 



  (A.4.8)  

From here it is straightforward to compute  cl cl co
2 2co

clcl

r r

r r

r
f e

r

 



  and 

  cl cl co22 co
co

cl

1
r rr

N r e





 
    resulting in 

 
 

 

cl cl co

cl cl co

2

co cl

2

cl co 1

r r

r r

e

k r e





 




 

 


 
  (A.4.9)  

Here, co co( )r r    and cl co cl( )r r r     are the magnitudes of the transverse 

component of the medium wavenumber in the core and cladding respectively. 

Finding the eigenvalue of the leaky mode 

Equation (A.4.9) specifies the loss rate in terms of the index profile of the 

guide, but does not specify the eigenvalue  (1)

leak 0k n n   , corresponding to the 

fundamental leaky mode (which appears in the loss rate implicitly through  ). One 

can view the continuum mode to which the leaky mode corresponds as a resonance 

condition in the transverse wavevector  allowing for efficient coupling of energy 

flowing radially inward to be trapped in the leaky. In principle, the fundamental leaky 
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eigenvalue can be found by solving the system of equations (A.4.7) for every value of

 , and then searching for resonances in the ratio of the energy density inside and 

outside of the guide: 

cl

2

0

2

r

r r

f

f









, with (1)

leak  corresponding to the largest resonance. As 

discussed, this approach requires solving systems of transcendental equations, so to 

circumvent this issue we approximate (1)

leak  by employing a variational method 

instead.  

So far we have been considering modal solutions of the waveguide, which 

obey equation (A.4.1). More generally, a non-modal solution 

 
( , ) ( , , )

i kz t
E t A x y z e


x  obeys the paraxial wave equation  

  2 2 22 1zik A k n A
      
 

  (A.4.10)  

Additionally, non-modal solutions can be constructed by summing over modal 

solutions  
mod

, y, z ( ) ( , )eikz i z

es

A x e A x y d

     where  ,A x y  are a complete set 

of modes satisfying orthonormality 
2

* 2 ( )A A d x    




  ,   is the Dirac delta 

function and  
2

* 2A Ad x     is the projection of A  onto A . Applying 

2

2 *d xA   to both sides of Equation (A.4.10), it is straightforward to establish that  

    
2

2 2 22 2 2

modes

2 ( ) 1k k d k n A A d x            (A.4.11)  
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We can find the eigenvalue (1)

leak  by considering an appropriate set of trial 

functions  
22

, rx y e 







  . Note that there are continuum modes of lower order 

(larger  )  than the lowest order leaky mode. However, because the trial functions 

decay for large r , they have large projection onto leaky modes, and very small 

projection onto other continuum modes where energy density is not suppressed 

outside the guiding structure. More rigorously, one can consider the limit clr  . As 

the cladding becomes infinite in extent, leaky modes become purely bound, while the 

continuum solutions interspersed between the bound modes no longer exist. In this 

limit, the lowest order solution is the lowest order bound mode, which will be very 

similar in form to the lowest order leaky mode of the corresponding leaky guide in 

the limit of thick cladding cl 1r . Thus, we will estimate (1)

leak  by extremizing 

 
2

2 22 2 21k n d x      for the corresponding infinite cladding problem. 

 

 

    

  

    

2

2
co

2 22 2 2

22 2 2 2 2

co cl co

2 2 2 2

min co co cl2

co

(1) 2 2 2 2 2

leak co co co cl2

co

min 1

min 1 2

1
ln

2

1
1 1 ln

2 2

r

k n d x

k n k n n e

k r n n
r

k
n k r n n

kr

 















  
     

  

    

  

      
 



  (A.4.12)  

In summary, we have derived an approximation for the loss rate   of the 

fundamental leaky mode in terms of the index structure and propagation constant 

(1)

leak . 
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 

 

cl cl co

cl cl co

2

co cl

2

cl co 1

r r

r r

e

k r e





 




 

 


 
  (A.4.13a)  

    
2 2 2

0 0 eff co2 2

co

1 1
1 1 ln 2

2 2
n n n n k r

k r
     
 

  (A.4.13b)  

 

In this last expression, we have expressed the eigenvalue in terms of an index 

 (1)

leak 0k n n   , and have approximated 2 2

co cl 0 eff2n n n n     since  
0

1
n

n


 for 

thermal air waveguides.  
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A.5 Deriving the equation of motion for the core of a STOV 

 

 We assume azimuthal symmetry and consider the evolution of the complex 

envelope   associated with the scalar electric field E , 

      
, , , ,

ikz t
E r z r z e


 


    (A.5.1)  

Where 
2

k



  is the wavenumber, 

gv t z    is the moving frame longitudinal 

coordinate, and 
gv  is the group velocity. In the paraxial and slowly-varying envelope 

approximation, the propagation equation for   is 

 
2

2 2

2 2
2 ( ) 0ik k V

z





  
     

 
  (A.5.2)  

Where 2 2 2/ (1/ )( / )r r r        is the transverse Laplacian (assuming azimuthal 

symmetry) and 
2

2

2 2
( )

cen

k
c k

 










 is the dimensionless group velocity dispersion 

(GVD) evaluated at the central frequency cen , and  V   is a nonlinear term. For 

the case 2 0  , Equation (A.5.2) drives transverse displacement of purely spatial 

optical vortices through the term 2

  , as shown in refs. [38,39]. Here, the term 

containing 2  additionally drives vortex motion along the local space ( ) direction. 

Therefore, as the beam propagates, the vortex moves temporally as well.  

Suppose at 0z  the position of the vortex ring is  0 0,vortex rr , and at 0z dz  the 

position of the vortex ring is  0 0,vortex vortexd d r dr    r r . Then 
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0 0 0 0 0 0( , , ) ( , , )r dr d z dz r z dr d dz
r z

   


  
        

  
. But since 0   

at the vortex, this leads to 

 
ST vortexd dz

z


   


r   (A.5.3)  

where the spacetime gradient is defined as ˆˆ
ST

r 

 
 
 

r ξ  .  

Following the method of ref. [38,39] as applied to spatial vortices, we 

approximate the local form of the STOV as a spacetime “R-vortex” 

0 0( ) ( )vortex i r r       of charge 1 with a linear phase winding about  0 0, r ,  

embedded in a background field envelope 
bg  such that

bg vortex   . If we take 

i

bg e   , where  and   are the real amplitude and phase of the background field, 

then substitution of 
bg vortex    into Eq. (1.3)  yields  

 2 2

1 1ˆ ˆ ˆˆˆ ˆ
2

vortexk
z r r r

   
 

  

       
        

       

r
r ξ r ξ ξ   (A.5.4)  

This is Equation (4.6) in the main text. As the pulse propagates along z ,  Equation 

(A.5.4) gives the next move of the STOV based on the current self-consistent 

background field 
bg . 

Arriving at equation (A.5.4) by substituting bg vortex   into equation (A.5.3) is 

straightforward but algebraically tedious. It useful to first express the background 

field using a Cartesian representation bg u iv    and define a coordinate system 

centered about the vortex: 0     , 0r r r   . Thus, 
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  

 

bg vortex

u iv ir

u vr i v ur

a ib



 

   

   

     

 

  (A.5.5)  

From here, factor the complex pulse evolution equation (A.5.2) into two coupled real 

equations using a  and b . 

 2 2

2

1

2
za b

k


         (A.5.6a) 

 2 2

2

1

2
zb a

k


         (A.5.6b)  

Equations (A.5.6) are then combined with equation (A.5.3) to solve for 

 ,vortexd d drr   

 
2 2

2
2

ST vortex

at vortex

dz
a d b

k


 
        

 
r   (A.5.7a) 

 
2 2

2
2

ST vortex

at vortex

dz
b d a

k


 
        

 
r   (A.5.7b)  

Computing terms individually, one finds ˆ ˆ
ST at vortex

a u vr   , ˆ ˆ
ST at vortex

b v ur   ,

2

0

2 rat vortex

v
a v

r


 
    

 
,  

2

0

2 rat vortex

u
b u

r


 
     

 
, 2 2

at vortex
a u    , and 

2 2
at vortex

b v    . Which, upon substitution into (1.7) yields 

 2

1
2 2

2
r

at vortex

u
ud vdr u v dz

k r
 

   
        

   
  (A.5.8a) 

 2

1
2 2

2
r

at vortex

v
vd udr v v dz

k r
 

   
         

   
  (A.5.8b)  

 

Equations (A.5.8) can be used to solve for d  and dr : 
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 

2 2

2 22 2

/

2
r r

at vortex

dz k u v
d u u u v v v v u

ru v
   

 
          

  
  (A.5.9a) 

 
  2 22 2

/
r r

at vortex

dz k
dr v v v u u u u v

u v
            


  (A.5.9b)  

Finally, we return to the polar form for the background field 
i

bg e   , where 

cosu    and sinv   . Upon substitution, and after applying various derivatives 

and trigonometric identities we arrive at 

 
2

1

2

r

at vortex

dz
d

k r



  



 
     

 
  (A.5.10a) 

 2 r

at vortex

dz
dr

k


 



 
    

 
  (A.5.10b)  

Which can be combined into the single vector equation shown in Section (4.2.5) 

 2 2

1 1ˆ ˆ ˆˆˆ ˆ
2

vortexk
z r r r

   
 

  

       
        

       

r
r ξ r ξ ξ   (A.5.11)    
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A.6 Energy flow in an ultrashort pulse 

 

 Without loss of generality, we take 
iue   , where u  and   are the real 

amplitude and phase of the field. Based on conservation of energy we can derive an 

equation of the form 2u
z


 


j  where j  is the energy current density in the laser 

pulse frame and 
22u    is the normalized energy density. Following an argument 

similar to [38], in order to derive j we start with 2 * *( ) . .u c c
z z z

  
    

  
 

and use the pulse envelope equation of motion 

2
2 2

2 2
2 ( ) 0ik k V

z





  
     

 
 to replace 

z





. Near the vortex, the 

amplitude of the field is close to zero, making nonlinearities negligible, away from 

the vortex nonlinearities are only strictly negligible if they are real, resulting in 

* 1
. . 0

2
V c c

ik

 
   

 
. After cancelling out the purely imaginary terms with their 

complex conjugates, we obtain * 2 2 2 21 1
. ( )

2
c c u u

ik k
   


          and 

2 2
* 2 22 2

2 2
.

2
c c u u

ik k

 

   

    
     

    
, resulting in an energy current 

density of 

 2

2

1
( )u

k






  


j ξ   (A.6.1)   
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