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Antibody recognition of antigens is a unique class of protein-protein interactions, and 

increased knowledge regarding the determinants of these interactions has advanced fields such as 

computational vaccine design and protein docking. However, the diversity and flexibility of 

antibodies and antigens can hinder generation of potent vaccine immunogens or prediction of 

correct antibody-antigen interfaces, slowing progress in the design of vaccines and antibody 

therapeutics. In this thesis, we present strategies to design vaccine candidates for a difficult viral 

target and describe expanded resources for benchmarking and training antibody-antigen docking 

and affinity prediction algorithms. 

We utilized rational design to develop candidate immunogens for a vaccine against 

hepatitis C virus (HCV), which represents a global disease burden despite recent advances in 

antiviral treatments. This design strategy produced a soluble and secreted E1E2 glycoprotein 

heterodimer with native-like antigenicity and immunogenicity by fusing ectodomains with a 

leucine zipper scaffold and a furin cleavage site. We developed additional constructs that 



 
 

incorporated synthetic or non-eukaryotic scaffolds or alternative ectodomains that included 

consensus sequences designed using a large reference database. Finally, we utilized previously 

published data on HCV antibody neutralization and E1E2 mutagenesis to predict residues that 

impact antibody neutralization and E1E2 heterodimerization, offering potential insights that can 

aid vaccine design. 

To improve our knowledge of and accuracy in modeling antibody-antigen recognition, 

we assembled a set of antibody-antigen complex structures from the Protein Data Bank (PDB) 

that expanded Docking Benchmark 5, a widely used benchmark for protein docking. These 

complexes more than doubled the number of antibody-antigen structures in the benchmark and, 

based on tests of current algorithms, highlight significant challenges for docking and affinity 

prediction. Building on this resource, we assembled and curated a dataset of ~400 antibody-

antigen affinities and corresponding structures, forming an expanded and updated benchmark to 

guide ΔG prediction of antibody-antigen interactions. Using this dataset, we retrained 

combinations of terms from existing scoring functions and potentials, demonstrating that this 

resource can be used to improve antibody-antigen ΔG prediction. Overall, these findings can 

advance HCV vaccine design and antibody-antigen docking and affinity prediction, helping to 

better elucidate the determinants of antibody-antigen interactions and to better display vaccine 

immunogens for induction of neutralizing antibodies. 

 

 

 

 
 
 
 



 
 

 
 
 
 
 
 

STRATEGIES AND RESOURCES FOR RATIONAL VACCINE DESIGN AND 
ANTIBODY-ANTIGEN DOCKING AND AFFINITY PREDICTION  

 
 
 

by 
 
 

               Johnathan Guest 
 
 
 
 
 

Dissertation submitted to the Faculty of the Graduate School of the  
University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 
Doctor of Philosophy 

2022 
 
 
 
 
 
 
 
 
 
 
Advisory Committee: 
Assistant Professor Brian G. Pierce, Chair 
Professor Roy A. Mariuzza 
Professor John Moult 
Assistant Professor Margaret A. Scull 
Professor Lai-Xi Wang 

 
 
 
 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by 
Johnathan Guest 

2022 
 
 
 
 
 
 
 
 
 
 
 



 

ii 
 

 

Dedication 
 

To my wife Christine, my mother Kathryn, my father Daniel, and my sister Monica: thank you 

for your constant love and support. 



 

iii 
 

 

 Acknowledgements 

I feel incredibly fortunate just to get to this point, and I have so many people to thank for 

helping me on my journey. Too many to mention here, in fact, so I will acknowledge those who 

had the largest impact. 

 I could not have conducted this research without the wisdom and guidance of my advisor, 

Professor Brian Pierce. He gave me the opportunity to pursue a variety of projects, even when 

they were a mix of wet lab and dry lab, and shared many insightful comments along the way. I 

would also like to thank my thesis committee for their useful comments and suggestions: 

Professor Roy Mariuzza, Professor John Moult, Professor Lai-Xi Wang, and Professor Margaret 

Scull, both as a committee member and a co-advisor for several years. 

 All members of the Pierce lab and our colleagues at the Institute of Bioscience and 

Biotechnology Research have provided invaluable advice and feedback. In the Pierce lab, thank 

you to Ragul Gowthaman, Rui Yin, Dongxiu Zhang Spiering, Ghazaleh Taherzadeh, and Stefan 

Ivanov for sharing your expertise and helpful suggestions in lab meeting and beyond. At IBBR, 

thank you to Ruixue Wang, Eric Toth, Andrezza Chagas, Thomas Fuerst, Khadija Elkholy, 

Liudmila Kulakova, Kyle Garagusi, Yunus Abdul, Yuxing Li, and Andrey Galkin for helping to 

guide and greatly advance computational and experimental projects. Special thanks to Ruixue 

and Dongxiu, whose research provided several key figures in chapters 2 and 3. Finally, I would 

like to thank our collaborators; in particular, Zhen-Yong Keck and Steven Foung at Stanford 

University for their contributions to chapters 2 and 3, along with Jing Zhou and Jeffrey Gray at 

Johns Hopkins for their contributions to chapter 5. Specific contributions to all figures and tables 

are listed below: 

Figure 2.13: Western blot data provided by Liudmila Kulakova (IBBR) and Eric Toth (IBBR) 



 

iv 
 

 

Figure 2.14: AUC data provided by Kinlin L. Chao (IBBR); SEC-MALS data provided by 

Thomas E. Cleveland IV (IBBR/NIST) 

Figure 2.15: mbE1E2 native gel western blot data provided by Andrezza Chagas (IBBR) 

Figure 2.16: ELISA data provided by Ruixue Wang (IBBR) 

Table 2.1: Quantitative ELISA data provided by Young Chang Kim (Stanford) and Zhen-Yong 

Keck (Stanford) 

Figure 2.17: SPR data provided by Eric Toth (IBBR) 

Figure 2.18: Endpoint titer and ID50 data provided by Ruixue Wang (IBBR) 

Figure 2.19: Neutralization data provided by Ruixue Wang (IBBR) 

Figure 3.3: ELISA data provided by Ruixue Wang (IBBR) 

Figure 3.4: ELISA data provided by Ruixue Wang (IBBR) 

Table 3.1: Dose-dependent ELISA data provided by Zhen-Yong Keck (Stanford) 

Figure 3.9: Western blot data provided by Dongxiu Zhang Spiering (IBBR) 

Figure 3.10: ELISA data provided by Dongxiu Zhang Spiering (IBBR) 

Table 5.8: SnugDock performance provided by Jing Zhou (Johns Hopkins) 

This work was supported by NIH grants R21 AI154100, R21 AI126582, R01 AI102766, 

R01 AI132213, and T32 AI125186. 

 

 

 

 
 



 

v 
 

 

Table of Contents 
 

Dedication ....................................................................................................................................... ii	
Acknowledgements ....................................................................................................................... iii	
Table of Contents ............................................................................................................................ v	
List of Tables .................................................................................................................................. ix	
List of Figures .................................................................................................................................. x	
List of Abbreviations .................................................................................................................... xii	
Chapter 1: Introduction .................................................................................................................... 1	
1.1 Hepatitis C virus ........................................................................................................................ 1	

1.1.1 Discovery and health impacts ............................................................................................ 1	
1.1.2 Current treatments .............................................................................................................. 2	

1.2 Vaccines and vaccine design ..................................................................................................... 2	
1.2.1 History and techniques ....................................................................................................... 2	
1.2.2 Structure-based vaccine design .......................................................................................... 3	
1.2.3 Making an HCV vaccine ..................................................................................................... 4	

1.3 HCV immune evasion ............................................................................................................... 4	
1.3.1 Genetic diversity and glycans ............................................................................................. 6	
1.3.2 Hypervariable regions ........................................................................................................ 7	
1.3.3 Resistance to antibodies ..................................................................................................... 7	

1.4 Antibody-antigen interactions ................................................................................................... 8	
1.4.1 Antibody structure and classification ................................................................................. 8	
1.4.2 Recognition of antigens ...................................................................................................... 9	
1.4.3 Structural characterization and modeling .......................................................................... 9	

1.5 Protein docking ........................................................................................................................ 11	
1.5.1 Strategies and challenges ................................................................................................. 11	
1.5.2 CAPRI and docking benchmarks ...................................................................................... 12	

1.6 Protein affinity prediction ........................................................................................................ 13	
1.6.1 Affinity measurements and predictors .............................................................................. 14	
1.6.2 Community resources ....................................................................................................... 14	

1.7 Dissertation overview .............................................................................................................. 16	
Chapter 2: Design of a native, secreted hepatitis C virus E1E2 heterodimer ................................ 19	
Abstract .......................................................................................................................................... 19	
2.1 Introduction ............................................................................................................................. 20	
2.2 Methods ................................................................................................................................... 22	

2.2.1 Protein expression ............................................................................................................ 22	
2.2.2 Antibodies ......................................................................................................................... 23	
2.2.3 Protein purification and size exclusion chromatography ................................................ 23	
2.2.4 Computational design of coiled coil assemblies .............................................................. 24	
2.2.5 Peptide synthesis and characterization ............................................................................ 25	
2.2.6 SEC-MALS ........................................................................................................................ 26	
2.2.7 SDS-PAGE and western blot ............................................................................................ 26	



 

vi 
 

 

2.2.8 Analytical ultracentrifugation (AUC) ............................................................................... 27	
2.2.9 Enzyme-linked immunosorbent assay (ELISA) ................................................................. 28	
2.2.10 Determination of antibody affinity by quantitative ELISA ............................................. 28	
2.2.11 Surface plasmon resonance ............................................................................................ 29	
2.2.12 Animal immunization ...................................................................................................... 29	
2.2.13 HCV pseudoparticle generation ..................................................................................... 30	
2.2.14 HCVpp neutralization assays ......................................................................................... 30	
2.2.15 Statistical comparisons ................................................................................................... 31	

2.3 Results ..................................................................................................................................... 31	
2.3.1 Design of sE1E2 constructs .............................................................................................. 31	
2.3.2 sE1E2.LZ forms an intact E1E2 complex ......................................................................... 34	
2.3.3 Purification of sE1E2.LZ .................................................................................................. 38	
2.3.4 Analytical characterization of heterogeneity in solution ................................................. 46	
2.3.5 sE1E2.LZ exhibits native-like E1E2 antigenicity and robust immunogenicity ................ 49	

2.4 Discussion ................................................................................................................................ 55	
Chapter 3: Design of soluble hepatitis C virus E1E2 assemblies with alternative scaffolds or 
ectodomains ................................................................................................................................... 59	
Abstract .......................................................................................................................................... 59	
3.1 Introduction ............................................................................................................................. 60	
3.2 Methods ................................................................................................................................... 63	

3.2.1 E1E2 consensus and alternative isolate sequences .......................................................... 63	
3.2.2 Selection of alternative scaffolds ...................................................................................... 64	
3.2.3 Protein expression ............................................................................................................ 65	
3.2.4 Antibodies ......................................................................................................................... 66	
3.2.5 Protein purification and size exclusion chromatography ................................................ 66	
3.2.6 SDS-PAGE and western blot ............................................................................................ 67	
3.2.7 Enzyme-linked immunosorbent assay (ELISA) ................................................................. 67	
3.2.8 Determination of antibody affinity by quantitative ELISA ............................................... 68	

3.3 Results ..................................................................................................................................... 69	
3.3.1 Design of sE1E2 constructs with synthetic scaffolds ....................................................... 69	
3.3.2 sE1E2.SZ and sE1E2.HH mimic sE1E2.LZ secretion and antigenicity ........................... 71	
3.3.3 Design of sE1E2 constructs with alternative scaffolds .................................................... 74	
3.3.4 Design of sE1E2 constructs with alternative ectodomains .............................................. 77	
3.3.5 Characterization of alternative sE1E2 constructs ........................................................... 81	

3.4 Discussion ................................................................................................................................ 85	
Chapter 4: Prediction of hepatitis C virus polymorphisms impacting antibody neutralization and 
residues critical for E1E2 heterodimeric assembly ....................................................................... 90	
Abstract .......................................................................................................................................... 90	
4.1 Introduction ............................................................................................................................. 91	
4.2 Methods ................................................................................................................................... 94	

4.2.1 Collection of antibody neutralization data ....................................................................... 94	
4.2.2 Prediction of polymorphisms contributing to neutralization changes with SNAPR ........ 94	
4.2.3 Pairwise comparisons of antibody neutralization data .................................................... 95	
4.2.4 Computational mutagenesis of polymorphisms predicted to contribute to neutralization 
changes ...................................................................................................................................... 95	



 

vii 
 

 

4.2.5 Collection of E1E2 mutagenesis data ............................................................................... 97	
4.2.6 Clustering of mutagenesis data ........................................................................................ 97	

4.3 Results ..................................................................................................................................... 98	
4.3.1 Neutralization datasets used for predictions .................................................................... 98	
4.3.2 SNAPR predicted E1E2 polymorphisms contributing to neutralization changes ............ 99	
4.3.3 Pairwise sequence comparisons predicted E1E2 polymorphisms contributing to 
neutralization changes ............................................................................................................. 103	
4.3.4 Polymorphisms predicted to impact antibody neutralization modeled using 
computational mutagenesis ..................................................................................................... 105	
4.3.5 Hierarchical clustering of E1E2 mutagenesis datasets .................................................. 110	
4.3.5 Critical E1E2 interface residues predicted through clustering by residue .................... 114	
4.3.6 Predicted E1E2 contacts found in E1E2 heterodimer structure .................................... 117	

4.4 Discussion .............................................................................................................................. 118	
Chapter 5: An expanded benchmark for antibody-antigen docking and affinity prediction reveals 
insights into antibody recognition determinants .......................................................................... 122	
Abstract ........................................................................................................................................ 122	
5.1 Introduction ........................................................................................................................... 122	
5.2 Methods ................................................................................................................................. 125	

5.2.1 Benchmark assembly ...................................................................................................... 125	
5.2.2 Protein-protein docking .................................................................................................. 127	
5.2.3 Interface analysis and affinity prediction ....................................................................... 131	
5.2.4 Analysis of conformational changes ............................................................................... 132	
5.2.5 Quantification and statistical analysis ........................................................................... 133	

5.3 Results ................................................................................................................................... 134	
5.3.1 Benchmark assembly and composition ........................................................................... 134	
5.3.2 Binding conformational changes .................................................................................... 144	
5.3.3 Global docking prediction .............................................................................................. 151	
5.3.4 Local docking perturbations ........................................................................................... 158	
5.3.5 Binding affinity prediction .............................................................................................. 164	

5.4 Discussion .............................................................................................................................. 170	
Chapter 6: A curated dataset of antibody-antigen affinities and structures to facilitate 
development of affinity prediction algorithms ............................................................................ 173	
Abstract ........................................................................................................................................ 173	
6.1 Introduction ........................................................................................................................... 174	
6.2 Methods ................................................................................................................................. 177	

6.2.1 Collection of cases in the antibody-antigen affinity dataset .......................................... 177	
6.2.2 Curation of antibody-antigen affinity dataset ................................................................ 178	
6.2.3 Analysis of affinity predictors ......................................................................................... 180	
6.2.4 Comparison of correlations in affinity subsets ............................................................... 181	
6.2.5 Additional case information in affinity dataset .............................................................. 182	
6.2.5 Individual terms in REF15 and beta16 scoring functions .............................................. 183	
6.2.6 Individual terms in IRAD and ZRANK scoring functions .............................................. 184	
6.2.7 Regression analysis and cross-validation ...................................................................... 187	
6.2.8 REF15/beta16-based sets ............................................................................................... 187	
6.2.9 IRAD/ZRANK-based sets ................................................................................................ 187	



 

viii 
 

 

6.2.9 Composite REF15/IRAD sets ......................................................................................... 188	
6.2.10 Data for independent test set ........................................................................................ 188	
6.2.11 Modeling and scoring of antibody-antigen complexes from independent test set ........ 189	
6.2.12 Predictions of optimized scoring functions on independent test set ............................. 190	

6.3 Results ................................................................................................................................... 190	
6.3.1 Dataset assembly and diversity ...................................................................................... 190	
6.3.2 Performance of existing scoring functions as affinity predictors ................................... 194	
6.3.3 Correlations of predictors by annotation subset ............................................................ 196	
6.3.4 Correlations of individual terms with ΔG values ........................................................... 200	
6.3.5 Selection and retraining of input terms for antibody-antigen affinity prediction .......... 203	
6.3.6 Performance of top retrained models on independent test set ....................................... 211	

6.4 Discussion .............................................................................................................................. 214	
Chapter 7: Summary and future directions .................................................................................. 219	
Publication Information ............................................................................................................... 222	
Bibliography ................................................................................................................................ 224	
 
 
 
 



 

ix 
 

 

 List of Tables 
 
Table 2.1 Binding affinity of mbE1E2, sE1E2.LZ, and sE2 to a panel of HMAbs. ............... 53	
Table 3.1 Antigenic analysis of mbE1E2, sE1E2.LZ, and sE1E2.SZ by quantitative ELISA.
 ....................................................................................................................................................... 74	
Table 4.1 Summary of neutralization data from previously published datasets. .................. 99	
Table 4.2 Summary of residue positions with a polymorphism found as SNAPR hit. ........ 102	
Table 4.3 Summary of residue positions predicted to contribute to neutralization changes 
through pairwise comparisons. ................................................................................................ 104	
Table 4.4 ΔΔG predictions of changes in E1 monomer stability. .......................................... 108	
Table 4.5 ΔΔG predictions of changes in E2 monomer stability. .......................................... 108	
Table 4.6 Computational mutagenesis summary and classification for each structure. .... 110	
Table 4.7 Relative binding averages for residue clusters from merged E2 mutagenesis data.
 ..................................................................................................................................................... 115	
Table 4.8 Relative binding averages for residue clusters from E1E2 mutagenesis data. ... 116	
Table 4.9 Summary of predicted E1E2 interface residues. ................................................... 117	
Table 5.1 New antibody-antigen benchmark cases organized by difficulty category. ........ 136	
Table 5.2 Additional details for new antibody-antigen test cases. ........................................ 138	
Table 5.3 Additional details and references for new antibody-antigen affinity cases. ........ 140	
Table 5.4 Antibody CDR loop sequences of benchmark cases. ............................................. 141	
Table 5.5 sdAb CDR3 average RMSDs for subsets with or without interloop disulfide. ... 151	
Table 5.6 Global docking ranks of top Acceptable and Medium models. ............................ 155	
Table 5.7 Comparison of ZDOCK results with or without glycans removed in unbound 
antigen. ....................................................................................................................................... 158	
Table 5.8 SnugDock local perturbation performance by test case. ...................................... 160	
Table 5.9 Pearson correlation, and correlation p-value, of functions/terms with 
experimentally determined ΔGs. .............................................................................................. 168	
Table 5.10 Correlations with experimental ΔG values for ΔASA and Rosetta REF15 
stratified by I-RMSD. ................................................................................................................ 170	
Table 6.1 Correlations of REF15, beta16, IRAD, and ZRANK scores with ΔG values. ..... 196	
Table 6.2 Scoring function correlations with affinity values by measurement method. ..... 199	
Table 6.3 Scoring function correlations with affinity values by structure resolution. ........ 200	
Table 6.4 Correlations of REF15 and beta16 scoring terms with affinity values. ............... 202	
Table 6.5 Correlations of IRAD and ZRANK scoring terms with affinity values. ............. 202	
Table 6.6 Terms and weights of retrained models selected by stepwise regression. ........... 208	
Table 6.7 ΔG prediction of models retrained through stepwise regression. ........................ 209	
Table 6.8 Affinity prediction of models retrained with Ridge, LASSO, Elastic net 
regression following 5-fold cross-validation. ........................................................................... 211	
Table 6.9 Correlations of top retrained models with affinities in independent test set. ..... 213	
Table 6.10 Correlations of top retrained models with neutralization data of 45_01dG5 
isolate in independent test set. .................................................................................................. 213	
 



 

x 
 

 

 List of Figures 
Figure 2.1 Design of sE1E2 constructs. ..................................................................................... 33	
Figure 2.2 Characterization of the peptide complex CC1+CC2. ............................................ 34	
Figure 2.3 E1 and E2 western blots of sE1E2 supernatant. ..................................................... 36	
Figure 2.4 Western blots of supernatant from E1-Jun/E2-Fos co-expression. ...................... 36	
Figure 2.5 E1 and E2 western blots of sE1E2 cell lysate. ......................................................... 37	
Figure 2.6 Quantitative western blots comparing sE1E2.LZ supernatant and cell lysate. .. 37	
Figure 2.7 Size exclusion chromatography of sE1E2.LZ, sE1E2GS3, and mbE1E2. ........... 40	
Figure 2.8 Size exclusion chromatograph of sE1E2GS3. ......................................................... 41	
Figure 2.9 Yield and purity of mbE1E2, sE1E2.LZ, and sE1E2GS3 in SDS-PAGE. ........... 42	
Figure 2.10 sE1E2GS3 fractions from SEC analyzed by SDS-PAGE and western blot. ...... 43	
Figure 2.11 sE1E2.LZ fractions from SEC analyzed by SDS-PAGE and western blot. ....... 44	
Figure 2.12 mbE1E2 elution fractions from SEC analyzed by western blot. ........................ 45	
Figure 2.13 Deglycosylation of mbE1E2, sE1E2.LZ, and sE2. ................................................ 45	
Figure 2.14 Analytical characterization of sE1E2.LZ and mbE1E2 size and heterogeneity.
 ....................................................................................................................................................... 48	
Figure 2.15 mbE1E2 and sE1E2.LZ size and heterogeneity in native gel. ............................. 49	
Figure 2.16 Initial antigenicity screening of sE1E2 designs in ELISA. .................................. 52	
Figure 2.17 Measurement of binding to the CD81 receptor by SPR. ..................................... 54	
Figure 2.18 Immunogenicity assessment of sE2, mbE1E2, and sE1E2.LZ. ........................... 54	
Figure 2.19 Calculated curves for H77C HCVpp neutralization by immunized (Day 56) 
murine sera. .................................................................................................................................. 55	
Figure 3.1 Design of sE1E2 constructs with synthetic scaffolds. ............................................. 70	
Figure 3.2 Evaluation of sE1E2 secretion to supernatant in western blot. ............................ 72	
Figure 3.3 Binding of sE1E2 constructs and mbE1E2 to HCV HMAbs in ELISA. .............. 73	
Figure 3.4 Binding of sE1E2 constructs and mbE1E2 to HCV HMAbs in ELISA at elevated 
temperatures. ............................................................................................................................... 73	
Figure 3.5 Design of sE1E2 constructs with alternative scaffolds. .......................................... 76	
Figure 3.6 Phylogenetic tree of cons.80 with sequences from genotypes 1-7. ........................ 79	
Figure 3.7 Phylogenetic tree of cons1.92.5 with sequences from genotype 1 subtypes. ........ 80	
Figure 3.8 Comparison of H77 and consensus sequences at residue positions of key 
epitopes. ........................................................................................................................................ 81	
Figure 3.9 Detection of alternative sE1E2 constructs in western blot. ................................... 84	
Figure 3.10 Antibody binding to alternative sE1E2 constructs in ELISA. ............................ 85	
Figure 4.1 Example of SNAPR predictions of E1E2 polymorphism contributions. ........... 101	
Figure 4.2 Visualization of antibody groups using hierarchical clustering. ........................ 112	
Figure 4.3 Heatmap of merged mutagenesis dataset clustered by residue. ......................... 113	
Figure 5.1 Docking and affinity benchmark composition. .................................................... 143	
Figure 5.2 Binding conformational changes of antibody-antigen benchmark cases. .......... 147	
Figure 5.3 Comparison of residue-level conformational changes by antibody chain type. 148	
Figure 5.4 Structural diversity of benchmark cases. .............................................................. 149	
Figure 5.5 Binding conformational changes of antibody residues near the antigen interface 
by amino acid. ............................................................................................................................ 150	
Figure 5.6 Docking performance on the antibody-antigen benchmark. .............................. 154	
Figure 5.7 Comparison of docking success rates in ZDOCK models. .................................. 157	
Figure 5.8 SnugDock binding funnels for two benchmark cases. ......................................... 162	



 

xi 
 

 

Figure 5.9 SnugDock binding funnels for Rigid benchmark cases. ...................................... 163	
Figure 5.10 SnugDock binding funnels for Medium and Difficult benchmark cases. ........ 164	
Figure 5.11 Affinity predictions on benchmark cases. ........................................................... 167	
Figure 5.12 I-RMSD, ΔASA, and Rosetta REF15 scores versus experimentally determined 
ΔGs. ............................................................................................................................................. 169	
Figure 6.1 Summary of diversity in the antibody-antigen affinity dataset. ......................... 193	
Figure 6.2 Ranges of ΔG values and structural resolution in affinity dataset. .................... 194	
Figure 6.3 Predictive performance of existing scoring functions. ......................................... 199	
Figure 6.4 Heatmap of correlations between terms output by IRAD. .................................. 203	
Figure 6.5 Predictive performance of top retrained models. ................................................. 210	
Figure 6.6 Predictions of retrained models with significant correlations to 45_01dG5 
neutralization data. .................................................................................................................... 213	
  



 

xii 
 

 

List of Abbreviations 
 

aa   amino acid 

AB-Bind  Antibody-Bind database 

AF4   Asymmetric flow field flow fractionation 

ANARCI  Antigen receptor Numbering And Receptor Classification 

ApoE   apolipoprotein E 

AR   antigenic region 

AUC   analytical ultracentrifugation 

auc   area under the curve 

beta16   Rosetta “beta_nov16” energy function 

β-OG   n-Octyl-b-D-Glucopyranoside 

BLAST  Basic Local Alignment Search Tool 

BLI   bio-layer interferometry 

BM5   Docking Benchmark 5.0 

BM5.5   Docking Benchmark 5.5 

bnAb   broadly neutralizing antibody 

Cɑ   alpha Carbon atom 

CAPRI   Critical Assessment of Predicted Interactions 

CD81-LEL  large extracellular loop of CD81 

CDR   complementarity determining region 

CDR1   first complementarity determining region loop (mAb or sdAb chain) 

CDR2   second complementarity determining region loop (mAb or sdAb chain) 



 

xiii 
 

 

CDR3   third complementarity determining region loop (mAb or sdAb chain) 

CDRH1  first complementarity determining region loop on mAb heavy chain 

CDRH2  second complementarity determining region loop on mAb heavy chain 

CDRH3  third complementarity determining region loop on mAb heavy chain 

CDRL1  first complementarity determining region loop on mAb light chain 

CDRL2  second complementarity determining region loop on mAb light chain 

CDRL3  third complementarity determining region loop on mAb light chain 

cons.80  HCV E1E2 consensus sequence, genotypes 1-7 

cons1.92.5  HCV E1E2 consensus sequence, genotype 1 

Cryo-EM  Cryogenic electron microscopy 

ΔASA   change in accessible surface area 

ΔG   change in Gibbs free energy 

ΔΔG   change in the change in Gibbs free energy 

DAA   direct acting antiviral 

DLS   dynamic light scattering 

DMEM  Dulbecco’s modified Eagle medium 

ECL   enhanced chemiluminescence 

ELISA   Enzyme-linked immunosorbent assay 

Env   HIV envelope glycoprotein 

FFT   Fast Fourier Transform 

fnat   fraction of native contacts 

fnon-nat   fraction of non-native contacts 

Fu   fraction unaffected 



 

xiv 
 

 

Fv   antibody variable domain 

GNA   Galanthus Nivalis Agglutinin 

GNL   Galanthus Nivalis Lectin 

gp120   HIV glycoprotein 120 

gp41   HIV glycoprotein 41 

HAstV   human astrovirus 

HCV   hepatitis C virus 

HCVcc   HCV cell culture virus 

HCVpp  HCV pseudoparticle 

HETATM  hetero atom 

HIV   human immunodeficiency virus 

HMAb   Human monoclonal antibody 

HMW   high molecular weight 

HRP   Horseradish peroxidase 

HVR1   hypervariable region 1 

HVR2   hypervariable region 2 

IC50   half-maximal inhibitory concentration 

ID50   half-maximal inhibitory dose 

IgG   immunoglobulin G 

IgNAR   immunoglobulin new antigen receptor 

IMAC   Immobilized metal affinity chromatography 

IP   Intraperitoneal 

IRAD   Integration of Residue- and Atom-based potentials for Docking 



 

xv 
 

 

I-RMSD  interface root-mean-square distance 

ITC   isothermal titration calorimetry 

L-RMSD  ligand root-mean-square distance 

KA   association constant 

KD   equilibrium dissociation constant 

kDa   kilodalton 

KinExA  kinetic exclusion assay 

koff   dissociation rate constant 

kon   association rate constant 

LASSO  Least Absolute Shrinkage and Selection Operator 

LVP   lipoviroparticle 

mAb   monoclonal antibody 

mAU   milli absorbance units 

mbE1E2  membrane-bound E1E2 

MDS   motif dock score 

µM   micromolar 

MLV   murine leukemia virus 

MSA   multiple sequence alignment 

nM   nanomolar 

OD   optical density 

PBS   Phosphate-buffered saline 

PCPP-R  Poly[di(carboxylatophenoxy)phosphazene] formulated with resiquimod 

PDB   Protein Data Bank 



 

xvi 
 

 

pM   picomolar 

PRODIGY  protein binding energy prediction 

RBD   receptor binding domain 

REF15   Rosetta Energy Function 2015 

RMSD   root-mean-square distance 

RMSE   root-mean-square error 

RSV   respiratory syncytial virus 

RU   resonance unit 

S   sedimentation coefficient 

S2   SARS-CoV-2 spike S2 subunit 

SAbDab  Structural Antibody Database 

SARS-CoV  severe acute respiratory syndrome coronavirus 

SARS-CoV-2  severe acute respiratory syndrome coronavirus 2 

scFv   single-chain antibody fragment 

sdAb   single domain antibody 

SDS-PAGE  sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

sE1E2   secreted E1E2 

sE1E2.cons.80  secreted E1E2 with cons.80 sequences as ectodomains 

sE1E2.cons1.92.5 secreted E1E2 with cons1.92.5 sequences as ectodomains 

sE1E2.1U0I  secreted E1E2 scaffolded with IAAL-E3/IAAL-K3 

sE1E2.3CFI  secreted E1E2 scaffolded with EpsI/EpsJ 

sE1E2.1.11.6  secreted E1E2 with 1.11.6 isolate sequences as ectodomains 

sE1E2.1a38  secreted E1E2 with 1a38 isolate sequences as ectodomains 



 

xvii 
 

 

sE1E2.CC  secreted E1E2 scaffolded with CC1+CC2 hexamer 

sE1E2.FD  secreted E1E2 scaffolded with foldon 

sE1E2.HH  secreted E1E2 scaffolded with synthetic hetero-hexamer 

sE1E2GS3  secreted E1E2 fused with a glycine-serine linker 

sE1E2.LZ  secreted E1E2 scaffolded with Fos-Jun leucine zipper 

sE1E2.R6  secreted E1E2 with furin cleavage site but no scaffold 

sE1E2RevGS3 secreted E1E2 fused with a glycine-serine linker, ectodomains reversed 

sE1E2.SpyC  secreted E1E2 scaffolded with SpyCatcher on E1 and SpyTag on E2 

sE1E2.SpyT  secreted E1E2 scaffolded with SpyTag on E1 and SpyCatcher on E2 

sE1E2.SZ  secreted E1E2 scaffolded with SYNZIP1/SYNZIP2 

sE2   soluble E2 

SEC   size exclusion chromatography 

SEC-MALS  size exclusion chromatography with multi angle light scattering 

SiPMAB  Single-Point Mutant Antibody Binding database 

SKEMPI Structural database of Kinetics and Energetics of Mutant Protein 
Interactions 

 
SNAPR  Subject-adjusted Neutralization Antibody Prediction of Resistance 

SOSIP   designed HIV gp120-gp41 hexamer with key stabilizing mutations 

SPR   surface plasmon resonance 

SR-BI   scavenger receptor class B type I 

ssRNA   single-stranded RNA 

SV   sedimentation velocity 

TBS   Tris-buffered saline 

TMB   3,3’,5,5’-Tetramethylbenzidine 



 

xviii 
 

 

TMD   transmembrane domain 

tPA   tissue plasminogen activator 

VACV   vaccinia virus 

ZAPP   Zlab Affinity for Protein-Protein interaction 

ZRANK  Zlab Rerank



 

1 
 

 

 Chapter 1: Introduction 
 
 

1.1 Hepatitis C virus 

1.1.1 Discovery and health impacts 
 

Hepatitis C virus (HCV) is an enveloped, positive-sense ssRNA virus in the Flaviviridae 

family. It was initially known as “non-A, non-B Hepatitis” before being described as HCV by 

several labs in 1989 (1). Harvey Alter , Michael Houghton, and Charles Rice were awarded the 

2020 Nobel Prize in Medicine for their discovery and characterization of HCV (2), demonstrating 

its clinical impact (https://www.nobelprize.org/prizes/medicine/2020/summary/). HCV continues 

to be a worldwide health burden, with a recent estimate of 58 million infected according to the 

WHO (https://www.who.int/news-room/fact-sheets/detail/hepatitis-c). In addition, an estimated 

1.5 million new infections occur every year, with an estimated 290,000 deaths from HCV in 2019. 

HCV is a bloodborne virus largely restricted to humans and chimpanzees, with infection often 

through intravenous drug use, sexual transmission, or other practices leading to blood exposure 

(https://www.who.int/news-room/fact-sheets/detail/hepatitis-c). HCV infections can be cleared in 

some cases following an acute phase, but approximately 75% of cases become chronic, potentially 

causing severe inflammation of the liver (3-6). Deaths from HCV are often attributed to the worst 

outcomes caused by these chronic infections, including cirrhosis, liver failure, or hepatocellular 

carcinoma (4, 5). To make matters worse, a substantial number of acute and early chronic HCV 

infections are asymptomatic, requiring broad surveillance and testing to determine the extent of 

viral spread (7, 8). With increasing case numbers and deaths, meeting the WHO’s 2030 global 

targets to reduce new HCV infections by 90% and deaths by 65% remains an enormous 

undertaking (9, 10). 
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1.1.2 Current treatments 
 

Despite the widespread and increasing health burden of HCV, rapid progress has been 

made to treat and cure infections. Direct acting antivirals (DAAs) with high cure rates (>90%) 

introduced in the last 10 years were a paradigm shift in treatment of HCV infection, and were safer 

and more effective than pegylated-interferon with ribavirin, the previous standard of care (11, 12). 

DAAs target NS3/NS4A protease, NS5A, or NS5B polymerase to inhibit HCV replication, and 

are often used in combination (12-14). However, the use of DAA treatments as the sole tool for 

HCV control and eradication comes with severe limitations. To start, the WHO estimates that only 

21% of HCV-infected individuals are tested, and only 62% of those tested have been treated with 

DAAs (https://www.who.int/news-room/fact-sheets/detail/hepatitis-c). These metrics showing 

suboptimal treatment levels reflect barriers of access to DAAs, financial or otherwise (15). Though 

DAA cure rates are very high, resistance has been identified in numerous cases (16). Furthermore, 

curing HCV infection with DAAs does not prevent later reinfection with a different HCV genotype 

or subtype (17, 18). There is also limited evidence to suggest that the risk of hepatocellular 

carcinoma progression decreases following DAA treatment, showing that DAAs may not alleviate 

some of the worst impacts of infection (19). DAAs are undeniably valuable tools to help control 

and eradicate HCV, but there is an ongoing and urgent need to pair DAAs with a low-cost 

preventative treatment, especially for at-risk populations; that treatment is an HCV vaccine (20-

22). 

1.2 Vaccines and vaccine design 

1.2.1 History and techniques 
 

The development of vaccines has a long and storied history of protecting against once-

devastating diseases, beginning with inoculations against smallpox pioneered by Edward Jenner 
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in 1796 and later including rabies, measles, and polio (23). Part of the success of vaccines comes 

from the diversity of formulations that can stimulate a protective immune response. The field is 

identified by several major types of vaccines: whole virus (attenuated or inactivated), subunit 

(protein or polysaccharide), and genetic material (DNA, viral vector) (23, 24). Each type has led 

to a safe and effective vaccine against a pathogen, giving researchers many avenues to develop a 

product that can induce protective responses (23, 25). The techniques of vaccine development have 

continued to advance, exemplified by cutting-edge mRNA technology that helped to produce 

highly effective vaccines against SARS-CoV-2 within a year (26-28). Vaccines can also be 

improved or optimized through rational vaccine design, or a loosely defined set of strategies to 

select vaccine antigens or adjuvants that best focus or boost immune responses (29, 30). This 

process can be interconnected with knowledge of broadly neutralizing antibody (bnAb) responses 

against a particular antigen and reverse vaccinology, which uses bioinformatics techniques to 

search the genome of a pathogen for potent immunogens (31, 32). Computational methods and 

advances in deep sequencing also facilitated reverse vaccinology 2.0, or structural vaccinology, 

where B cell repertoires and structures of antibody-antigen complexes are often used to inform the 

selection of optimal antigens (33). 

1.2.2 Structure-based vaccine design 
 

As with rational vaccine design, structure-based vaccine design is not a single strategy but 

a collection of methods to improve vaccine immunogens, often by introducing mutations that 

stabilize a protein antigen, boost immune responses, or both (34, 35). These designs are directly 

informed by the structural characterization of promising vaccine antigens, both alone and in 

complex with bnAbs. Known structures can provide a promising starting point to boost bnAb 

responses, even though the capacity of an antigen to be recognized by antibodies, or antigenicity, 
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does not guarantee that the antigen has a similar capacity to stimulate a robust response from the 

immune system, or immunogenicity (36, 37). Structure-based vaccine design has resulted in some 

high-profile advancements, namely SARS-CoV-2 vaccines that incorporate two or six targeted 

proline mutations to stabilize spike trimers in a pre-fusion conformation (38, 39). These SARS-

CoV-2 designs also include foldon, a self-assembling trimer, as a C-terminal scaffold, stabilizing 

the entire glycoprotein assembly as a vaccine antigen and facilitating structural characterization 

(39). Using foldon or other self-assembling proteins, the incorporation of scaffolding has become 

a key component of several design efforts for viral glycoproteins, including vaccine candidates for 

RSV and influenza (40). Additional modifications to vaccine antigens are tailored to the specific 

requirements for stabilization or bnAb responses, but two examples are instructive. A designed 

RSV vaccine candidate named DS-Cav1 incorporated foldon and several mutations informed by 

the glycoprotein F structure, including an added disulfide and cavity-filling hydrophobic residues, 

to favor a pre-fusion conformation of the antigen that presented an epitope recognized by a key 

bnAb (41). HIV SOSIP designs have been instrumental in structurally characterizing the trimeric 

assembly of gp120-gp41 glycoproteins alone (42) and in complex with bnAbs such as VRC01 (43-

45). These designs are defined by a host of modifications, including cysteine mutations to add a 

disulfide bond, a proline mutation to restrict flexibility, truncation of gp41, and insertion of a furin 

cleavage site (6xArg) between gp120 and gp41 (46). 

1.2.3 Making an HCV vaccine 
 

Despite 30 years of attempts with a myriad of vaccine technologies, an effective HCV 

vaccine has not yet been developed (47, 48). Recently, a T cell based HCV vaccine completed 

phase 1 human clinical trials, but could not prevent chronic infection despite inducing HCV-

specific responses (49). In these attempts, proteins have been targeted across much of the HCV 
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genome, which includes capsid protein Core, glycoproteins E1 and E2, ion channel protein p7, and 

six non-structural proteins. E1E2 glycoproteins have formed the primary target for most HCV 

vaccines, as these proteins associate as heterodimers on the surface of the virion (50) and are 

thought to form a larger assembly of a trimer of heterodimers mediated by contacts between C-

terminal transmembrane domains and residues in the E1 and E2 ectodomains (51). E2 is an 

especially important target of B cell based HCV vaccines due to its critical interactions with co-

receptors at several steps of attachment and viral entry, including sequential steps of binding to 

SR-BI and the large extracellular loop of CD81 (CD81-LEL), later triggering HCV membrane 

fusion and endocytosis (3, 52). As shown in a structure of E2 in complex with CD81-LEL, both 

proteins undergo conformational changes that appears to facilitate HCV attachment to the host 

membrane (53).  

Naturally, blocking E2 interaction at one or more of these steps with antibodies is a 

longstanding vaccine strategy, which is supported by the characterization of several bnAbs directly 

inhibiting CD81 binding (54, 55). Some efforts have incorporated rational or structure-based 

design approaches to test vaccine candidates of E1 or E2 epitopes, the E2 ectodomain, or the E1E2 

heterodimer (56). The design of individual epitopes, either through mutations or scaffolding, is 

more tractable considering the well-characterized bnAb epitopes and corresponding antibody-

antigen complex structures (57). However, the design of scaffolded and homogenous E1E2 

heterodimer has been elusive, with several candidates that produced secreted E1E2 but showed 

little binding to anti-E1E2 bnAbs AR4A and AR5A (58-60). An E1E2 heterodimer structure was 

reported recently (61), but has not yet been released and only represents a small fraction of HCV 

genotype diversity, with some E1E2 residues unresolved. Severe limitations in knowledge of the 

E1E2 structure have left research efforts without a suitable design template, undeniably hindering 
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structure-based vaccine design specifically and our understanding of assembly and entry 

mechanisms generally. 

1.3 HCV immune evasion 

1.3.1 Genetic diversity and glycans 
 
Despite the characterization of multiple glycoprotein epitopes that induce bnAbs (62, 63), HCV 

has several overlapping mechanisms of immune evasion that have made vaccine development 

extraordinarily difficult. Analogous to other difficult targets such as HIV (64, 65), genetic diversity 

and glycan shielding are key challenges to HCV vaccine development. There are eight documented 

HCV genotypes, with multiple subtypes reported in several genotypes (66). The genomes of these 

genotypes are approximately 70% identical at the nucleotide level (67), showing remarkable inter-

species diversity that is largely driven by error-prone replication (68, 69) and recombination in 

rare cases (70). Additionally, individual HCV isolates usually develop quasispecies during a single 

infection, leading to similar but genetically distinct populations that may make clearing the virus 

more difficult (71, 72). No genotype is dominant worldwide, with genotype 1 most prevalent at 

~46%, forcing any comprehensive vaccine strategy to address multiple genotypes (73). E1E2 

glycoproteins include four conserved glycosylation sites on E1 and eleven mostly conserved 

glycosylation sites on E2, helping to shield epitopes recognized by bnAbs (74-76). HCV glycans 

also show substantial heterogeneity and varying site occupancies (77), making efforts to modulate 

or remove glycans more important for vaccine development or for therapeutics directly targeting 

viral glycans (78). The removal of some glycans on E1 and E2 also leads to abrogation of HCV 

assembly and infection, showing the importance of the glycan shield in viral function and immune 

evasion (79, 80). 
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1.3.2 Hypervariable regions 
 

Other more unusual mechanisms of HCV immune evasion have been described, making 

vaccine design even more challenging. E2 ectodomain sequences contain three hypervariable 

regions that are highly diverse and flexible, providing another avenue to shield epitopes recognized 

by bnAbs (62, 81). The most prominent example is hypervariable region 1 (HVR1), a 27 aa long 

N-terminal region that is thought to shield bnAb epitopes in the CD81 binding site and antigenic 

domain E (82-84). HVR1 is also immunodominant, inducing antibody responses that are strain-

specific and not broadly neutralizing (85). Another immunodominant epitope on E2 that induces 

non-neutralizing antibodies is antigenic domain A, located on the back layer that does not interact 

with CD81 (86-88). During viral attachment and entry, HVR1 is also a crucial stabilizer in reported 

“viral breathing” mechanisms, specifically in maintaining a closed state of the E2 front layer by 

concealing the CD81 binding site and keeping domain E in a compact β-hairpin conformation (89, 

90). With HVR1 removed, E2 preferentially adopts an open or receptor-bound state, where the 

CD81 binding site is exposed for engagement by bnAbs and domain E is in an elongated 

conformation. However, HVR1 removal in vaccine designs has failed to boost bnAb responses 

and may be counterproductive (91). Removal of domain A through glycan masking also did not 

have a large effect on immunogenicity (92). 

1.3.3 Resistance to antibodies 
 

Even when epitopes on E1E2 recognized by bnAbs are exposed, HCV has additional layers 

of immune evasion that may be context dependent and more difficult to measure through existing 

methods. In previous research of bnAb responses to HCV isolates, sequence polymorphisms that 

increase resistance to antibody neutralization have been observed, primarily in E2. While this 

effect may be restricted to a particular antibody epitope or to the context of one isolate, the high 
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genetic diversity and emergence of quasispecies during infection gives HCV plenty of 

opportunities to escape bnAb responses. The most dramatic example of these polymorphisms has 

been observed in antigenic domain E, an epitope that is highly conserved across genotypes (93, 

94). In rare cases, an asparagine at position 417 in E2 mutates to serine or threonine, causing a 

glycan shift from N417 to N415 (95, 96). This small shift ablates binding of bnAbs that specifically 

recognize the β-hairpin conformation of domain E (57, 96), in one case leading to viral rebound in 

a clinical trial involving domain E bnAb HCV1 (97). Other research has implicated 

polymorphisms of extra-epitopic residues, or residues not directly bound by an antibody, as 

contributors to neutralization resistance (98-104). These polymorphisms have often been found in 

HVR1 or near the CD81 binding site, though the mechanisms of these effects can be unclear and 

dependent on the sequence context of a particular isolate (102). In several studies, specific 

resistance-associated polymorphisms in HVR1 were shown to affect dependency on SR-BI for 

viral entry, suggesting modulation of the complex entry pathway as one mechanism for antibody 

resistance (89, 103). Other direct or indirect effects on antibody neutralization likely stem from 

interactions with ApoE, which interacts with E2 in the context of lipoviral particles (LVPs), or 

HCV viral particles contained within low-density lipoproteins (105-107). Both ApoE interactions 

and assembly of HCV virions as LVPs can also impede bnAb responses by shielding key epitopes 

during infection (108, 109). The heterogeneity of LVPs and their absence from some methods of 

in vitro models has made these impacts on antibody neutralization more difficult to quantify (110, 

111). 

1.4 Antibody-antigen interactions 

1.4.1 Antibody structure and classification 
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Antibodies recognize and specifically bind foreign antigens, making them a key component 

of the adaptive immune system. This class of protein has increasingly been used as a therapeutic, 

with dozens of antibody treatments approved in recent years (112). Antibody sequence and 

structure is a fascinating combination of conservation and tremendous diversity. In humans and 

many mammals, the Fab region of Immunoglobulin G antibodies contains a heavy chain and a 

light chain, each with a structurally conserved constant domain and framework regions in the 

variable domain (113). However, complementarity determining region (CDR) loops in both 

chains, along with mechanisms such as V(D)J recombination and affinity maturation, allow 

antibodies to recognize a nearly infinite pool of antigens (113-115). The CDRH3 loop is most 

important for dictating antibody recognition and specificity, as it is the most diverse loop and 

makes the most contacts with antigens (116, 117). Camelid nanobodies, which are present in llama 

and alpaca immune systems, perform a similar function to human antibodies but are structurally 

distinct (118). Most importantly, camelid nanobodies include a single chain, or VHH, that 

approximately resembles an antibody heavy chain. Despite fewer chains, nanobodies have shown 

remarkable potency to diverse antigens, leading to their recent development as therapeutics (119). 

Other differences between antibodies and nanobodies have been noted, including altered 

prevalence of some amino acids in CDRs and longer CDR3 sequences for nanobodies than 

antibody heavy chains (120-122).  

1.4.2 Recognition of antigens 
 

Antibody-antigen interactions involve recognition of an epitope, or a set of residues on the 

antigen contacting the antibody, by a paratope, or the antibody residues used to contact the epitope 

(114, 123). Paratopes often include residues from CDR loops exclusively, though residues from 

framework regions may also contact the antigen (114). Antibodies may recognize continuous 
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epitopes, which are contained in a stretch of antigen residues and tend to be described as linear, or 

discontinuous epitopes, which are not contained in the same residue stretch but are spatially 

proximal and tend to be described as conformational (124, 125). This knowledge has stimulated 

efforts to predict B cell epitopes computationally, helping to guide antibody docking and design 

to an antigen of interest (126, 127). The identification and characterization of epitopes recognized 

by bnAbs is critical to recent efforts in rational or structure-based vaccine design, with the largest 

efforts surrounding HIV (128-131). Though the criteria for defining a bnAb may depend on the 

antigen targeted, these antibodies are typically found to recognize an epitope that is highly 

conserved by sequence, structure, or both (132, 133), and can neutralize a diverse set of virus 

isolates. Key examples include the CD4 binding site and MPER region in HIV Env (134), the stem 

region of influenza hemagglutinin (135), and several recently described epitopes in the S2 region 

of SARS-CoV-2 spike (136, 137). Though the discovery of bnAbs against a target antigen is 

incredibly valuable, a variety of factors can make inducing bnAbs with a vaccine immunogen very 

difficult, with some factors mentioned in the previous section. Within the context of epitope 

recognition, even some conserved epitopes can also be cryptic epitopes, which are difficult to 

access or are displayed in limited antigen conformations (138-141). In addition, bnAb responses 

can be impeded if neoepitopes, or immunogenic epitopes that are not often present in a native 

antigen, induce responses from the immune system with little to no capacity to neutralize (142, 

143). 

1.4.3 Structural characterization and modeling 
 

Structural characterization of free and antigen-bound antibody structures has been crucial 

for understanding antibody-antigen recognition, but time and resource-intensive experiments alone 

cannot hope to characterize the vast size and diversity of antibody repertoires (144). The structures 
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of CDR loops and their diversity have been studied closely, with structurally similar CDRs in each 

loop identified and reported by PyIgClassify (145, 146). In combination with several numbering 

schemes based on residue position (147), these tools allow for a comparative analysis of antibody 

structures and their recognition of antigens. Despite these classifications, CDR loops still show 

remarkable structural diversity in combination with conformational flexibility (148, 149). Paratope 

flexibility and its role in antigen recognition suggests that antibodies may utilize one or more 

proposed mechanisms of recognition, including induced fit and conformational selection (150, 

151). These dynamics within antibody-antigen interactions make antibody CDR loops difficult to 

model, especially CDRH3 (152). Modeling accuracy has steadily improved in recent years, with 

databases of antibody structures (153, 154), modeling algorithms (155-158), design protocols 

(159), and modeling assessments (160, 161) playing a role. However, these improvements largely 

focus on unbound antibody states, which may be less reliable in predicting antibody-antigen 

interactions due to conformational changes. 

1.5 Protein docking 

1.5.1 Strategies and challenges 
 

Protein docking is the computational prediction of protein-protein interactions using the 

unbound structures or models as input (162, 163). The binding of the two proteins is simulated 

with an algorithm to generate a set of modeled complexes, which are then ranked based on a score 

calculated by the algorithm. The goal of docking algorithms is to predict the native binding 

interface in top ranked models. These simulations rarely reach this ideal scenario, though 

knowledge of binding or non-binding residues in a complex can improve predictions (164). 

Strategies of developed docking algorithms fall into two major categories: global docking and 

local docking. Global docking performs an exhaustive search of the binding interface between two 
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proteins using methods such as Fast Fourier Transform (165-168), geometric hashing (169, 170), 

and Monte Carlo searches (171). Some algorithms incorporate additional steps to improve 

predictions, including clustering of models and potentials tailored for unique types of complexes 

such as antibody-antigen interactions (166, 172). Local docking involves refinement of a starting 

model interface, often simulating protein backbone flexibility or interface perturbations to improve 

the free energy of a complex. These algorithms can work in tandem with global docking 

algorithms, starting with a coarse-grained representation of a model complex then refining at a 

higher resolution. While most local docking generally introduces flexibility through Monte Carlo 

searches, molecular dynamics, or normal modes (173-177), SnugDock explicitly adds flexibility 

to the paratope in models of antibody-antigen interactions (178). Instead of local refinement, other 

algorithms perform reranking of global docking models based on complex scoring functions (179-

183) that can also help to improve predictions. Though careful applications of protein docking can 

find or recapitulate a native binding interface, there are several major challenges in this field. 

Protein flexibility between unbound and bound states makes docking more difficult, especially for 

rigid-body global docking algorithms that do not model conformational changes (163, 184, 185). 

Flexible protein docking may help resolve this issue despite being more intensive computationally 

(163), but predictions of rigid-body complexes by rigid-body algorithms may not find a near-native 

hit, suggesting that the underlying algorithms used to score models may be suboptimal or 

inadequate for predicting specific types of complexes (186). Recent advances in utilizing co-

evolutionary information for protein docking cannot apply to antibody-antigen complexes, 

reducing the options for making predictions of this type of interaction (187, 188). 

1.5.2 CAPRI and docking benchmarks 
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With many protein docking algorithms available to use, it can be difficult to know which 

method may perform the best in practical applications, and whether those success rates are high 

enough to warrant utilization of these methods. For two decades, the Critical Assessment of 

Predicted Interactions (CAPRI) process has tested the performance of docking algorithms by 

comparing docking predictions of solved but not yet released structures with the native interface, 

then reporting a ranking of participating groups that often use distinct docking algorithms (189, 

190). Docking models are compared to the native complex and assessed for accuracy based on the 

criteria of interface RMSD (I-RMSD), ligand RMSD (L-RMSD), and fraction of native contacts 

(fnat). I-RMSD and L-RMSD are respective measurements in Å of positional fit in the interface 

and ligand, or the protein that was docked to its binding partner, once each model and the native 

complex are superposed. fnat indicates the fraction of residue-residue contacts within 5 Å of the 

native interface that are observed in a given docking model. Models within or above specific 

thresholds of each metric are classified as “Acceptable”, “Medium”, or “High”; any model that 

fails to meet these criteria is classified as “Incorrect” (189, 190).  

This evaluation of docking model accuracy pioneered by CAPRI has helped to standardize 

assessments of predictive performance that can compare the success rates of docking algorithms. 

This type of resource is typically known as a docking benchmark, and can be used both to evaluate 

current docking algorithms and to validate newly developed docking algorithms. In some docking 

benchmarks, each complex structure is matched with structures of the unbound state of each 

component, allowing for impartial assessments of docking success rates by comparing docking 

predictions with the unbound structures to the native complex. Frequently used benchmarks such 

as iterations of the Docking Benchmark and DOCKGROUND (186, 191-196) have been 

developed for this specific purpose. Published in 2015, Docking Benchmark 5 presented an 
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updated and diverse set of 230 cases (186) that included enzyme-inhibitor interactions, antibody-

antigen interactions, and other categories of complexes, with each case assigned a docking 

difficulty based on the degree of conformational change and fraction of non-native contacts (fnon-

nat), or the fraction of residue-residue contacts between unbound structures superposed onto bound 

structures that are not present in the native interface (197). Though this update increased the 

number of cases available for benchmarking, only 28 represented antibody-antigen interactions, a 

small portion of the overall benchmark. 

1.6 Protein affinity prediction 

1.6.1 Affinity measurements and predictors 
 

Prediction of protein-protein affinity, or the strength of binding between interacting 

proteins, is a related yet distinct computational problem. In this prediction scheme, structures or 

high-quality models of protein complexes are matched with a corresponding equilibrium 

dissociation constant (KD) that is measured experimentally (198, 199), often with techniques 

such as surface plasmon resonance, bio-layer interferometry, or isothermal titration calorimetry. 

These affinities can be calculated as the change in Gibbs free energy (ΔG) in kcal/mol or kJ/mol 

if there is a documented temperature for the measurement. When a wild-type affinity and an 

affinity of the same complex with a mutation are compared, the effect of the mutation on affinity 

can be calculated as the change in the change in Gibbs free energy (ΔΔG). Both ΔG and ΔΔG 

predictions compare experimentally determined affinity values with the scores of corresponding 

bound complexes generated by algorithms. These scores can be derived from calculations of 

certain interface characteristics such as ΔASA (200) or from a weighted set of linear terms that 

forms a statistical potential or scoring function (201, 202). Most of these scoring functions have 

similar terms to calculate interface properties, including van der Waals forces, desolvation, and 
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electrostatics that are also used by docking algorithms (179, 181, 203). Other more complex 

scoring functions have also added potentials for hydrogen bonding and residue or atom-based 

potentials to improve performance in free energy calculations or docking model rankings, which 

may help to improve affinity predictions (182, 204). Improving antibody-antigen affinity 

prediction would aid the design of antibodies as therapeutics, and is one of many design 

applications under investigation using machine learning algorithms (205), especially ΔΔG 

prediction with algorithms such as TopNetTree (206). 

1.6.2 Community resources 
 

As with protein docking, protein affinity prediction requires dedicated databases for 

training and testing affinity predictors that can be applied to any algorithm in development. 

Experimentally determined ΔΔG values are matched with complex structures in several databases 

that are available to the community for ΔΔG prediction, including SKEMPI (207, 208), SiPMAB 

(209), and AB-Bind, a resource specifically for ΔΔG prediction in antibody-antigen interactions 

(210). These resources have been used to train and evaluate ΔΔG predictors, demonstrating the 

utility of curated datasets for researchers (206, 211-215). Although databases such as PDBbind 

and SAbDab contain protein affinities that can be used for ΔG prediction (153, 216), there is not 

a dedicated database for ΔG prediction in antibody-antigen interactions. This lack of focus on 

resources for antibody-antigen ΔG prediction persists even though a recently described affinity 

predictor utilized antibody-antigen affinities from PDBbind (214). Docking Benchmark 5 and a 

previous iteration also contain an Affinity Benchmark, where ΔG values and corresponding bound 

and unbound structures can be used to facilitate predictions (186, 217). This benchmark has been 

used to train ΔG prediction models, including PRODIGY (218), a model of interfacial contacts 

(219), and a minimal model of ΔASA and I-RMSD (220), integrating a metric of conformational 
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change between bound and unbound states to represent the thermodynamics of these interactions. 

Though these predictors performed reasonably well on the entire Affinity Benchmark, correlations 

between scores and ΔG values of antibody-antigen complexes were noticeably lower. A host of 

predictors were also tested for correlations with ΔG values in Docking Benchmark 5, showing a 

range of modest Pearson correlation coefficients with correlations by complex type not reported 

(186). 

1.7 Dissertation overview 
 

This thesis describes research that I conducted under the guidance of Dr. Brian Pierce over the 

period of five years. In this dissertation, I will detail computational and experimental research to 

address a set of questions that broadly encompass vaccine design and antibody-antigen prediction. 

Throughout this research, there is a unifying theme of utilizing antibody responses to antigens, 

leading to advancements in both therapeutically relevant immunogen designs and improved 

resources for antibody-antigen docking and affinity prediction. The research involving hepatitis C 

virus (HCV) vaccine design and analysis of antibody responses was started before broad 

computational analyses of antibody-antigen interactions, and the chapters here approximately 

match this order. Vaccine design (chapters 2 and 3) and antibody-antigen interaction (chapters 5 

and 6) sections were laid out chronologically, while chapter 4 was strategically placed to bridge 

these two main topics. All projects were intended to facilitate vaccine and/or antibody design in 

different ways, and we hope that a complete description of these projects will be useful. 

 

In Chapter 2, we describe the design and characterization of a novel and secreted HCV E1E2 

(sE1E2) glycoprotein construct. Through rational design that implemented strategies used for other 

viruses, we found that a heterodimer of E1E2 ectodomains with a C-terminal coiled-coil scaffold 
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could be expressed and purified more easily than E1E2 with native transmembrane domains. The 

utility of this construct as a vaccine candidate is tested through antigenicity and immunogenicity 

studies, as well as analytical characterization. 

In Chapter 3, we designed sE1E2 constructs with various scaffolds of synthetic or non-

eukaryotic origin or with glycoprotein ectodomains from consensus sequences or alternative 

isolates. This research expands on the proof-of-concept sE1E2 design to test additional constructs 

than can facilitate soluble E1E2 assembly while avoiding potential development issues and 

inducing broadly neutralizing antibody responses. In most cases, these constructs showed promise 

as vaccine candidates based on successful expression, native-like antigenicity, and analytical 

characterization. 

In Chapter 4, we utilized existing datasets to predict E1E2 residues with important 

implications for immune evasion and viral assembly, including sequence polymorphisms that 

contribute to changes in antibody neutralization and E1E2 residues crucial for heterodimeric 

assembly. A variety of computational methods were used to examine experimental datasets, 

including scripts implemented in R, sequence-based comparisons, hierarchical clustering, and 

computational mutagenesis in Rosetta. These analyses produced a series of predictions about 

important E1E2 residues that can be tested experimentally and inform HCV vaccine design. 

In Chapter 5, we curated and analyzed an expanded set of antibody-antigen structures for a 

benchmark that can be used for docking and affinity prediction. Through automated and manual 

searches of the Protein Data Bank (PDB), we identified a diverse set of antibodies that more than 

doubled the number of antibody-antigen structures and affinities in Docking Benchmark 5. 

Docking algorithms and scoring functions were evaluated on this expanded set for their success in 
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docking and affinity predictions, providing examples of how this benchmark update can aid future 

algorithm development.  

In Chapter 6, we compiled a large dataset of antibody-antigen affinity values with 

corresponding PDB structures as a benchmark for antibody-antigen affinity prediction that can 

facilitate future algorithm development. Scores from existing functions showed modest 

correlations to affinities in this diverse dataset, showing that there is room to improve the 

performance of affinity predictors. We demonstrate the utility of this dataset by using its affinities 

and structures to retrain individual and combined scoring functions, which showed higher 

correlations following training and cross-validation but limited improvements on an independent 

test set. 

Though general mechanisms of antibody-antigen recognition are well understood, induction 

of broadly neutralizing antibody responses through vaccine design and predictions of antibody-

antigen docking or affinity remain difficult problems. The following thesis describes efforts to 

advance vaccine design for one virus and to provide resources for benchmarking docking and 

affinity prediction of all antibody-antigen interactions, presenting a broad and interdisciplinary 

perspective that should be useful in both areas of development. 
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Chapter 2: Design of a native, secreted hepatitis C virus E1E2 
heterodimer 

 

Abstract 

Hepatitis C virus (HCV) is a major worldwide health burden, and a preventive vaccine is 

needed for global control or eradication of this virus. A substantial hurdle to an effective HCV 

vaccine is the high variability of the virus, leading to immune escape. The E1E2 glycoprotein 

complex contains conserved epitopes and elicits neutralizing antibody responses, making it a 

primary target for HCV vaccine development. However, the E1E2 transmembrane domains that 

are critical for native assembly make it challenging to produce this complex in a homogenous 

soluble form that is reflective of its state on the viral envelope. To enable rational design of an 

E1E2 vaccine, as well as structural characterization efforts, we have designed a soluble, secreted 

form of E1E2 (sE1E2). As with soluble glycoprotein designs for other viruses, it incorporates a 

scaffold to enforce assembly in the absence of the transmembrane domains, along with a furin 

cleavage site to permit native-like heterodimerization. This sE1E2 was found to assemble into a 

form closer to its expected size than full-length E1E2. Preservation of native structural elements 

was confirmed both by high-affinity binding to a panel of conformationally specific monoclonal 

antibodies, including two neutralizing antibodies specific to native E1E2, and by binding to its 

primary receptor, CD81. Finally, sE1E2 was found to elicit robust neutralizing antibodies in vivo. 

This designed sE1E2 can both provide insights into the determinants of native E1E2 assembly and 

serve as a platform for production of E1E2 for future structural characterization and vaccine 

studies, enabling rational optimization of an E1E2-based antigen. 
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2.1 Introduction 

Hepatitis C virus (HCV) is a global disease burden, with an estimated 71 million people 

infected worldwide (10, 221). Roughly 75% of HCV infections become chronic (4-6), and in 

severe cases can result in cirrhosis or hepatocellular carcinoma (222). Viral infection can be cured 

at high rates by direct acting antivirals (DAAs), but multiple public health and financial barriers 

(15, 223), along with the possibility of reinfection or continued disease progression (19, 223, 224), 

have resulted in a continued rise in HCV infections. An HCV vaccine remains essential to 

proactively protect against viral spread, yet vaccine developments against the virus have been 

unsuccessful to date (111, 225). The challenges posed by HCV sequence diversity (67, 225), 

glycan shielding (74, 79), immunodominant non-neutralizing epitopes (62, 82, 85, 226), and 

preparation of a homogeneous E1E2 antigen all contribute to the difficulty in generating protective 

B cell immune responses. Though multiple studies in chimpanzees and humans have used E1E2 

formulations to induce a humoral immune response, their success in generating high titers of 

broadly neutralizing antibody (bnAb) responses has been limited (227). Optimization of E1E2 to 

improve its immunogenicity and elicitation of bnAbs through rational design may lead to an 

effective B cell based vaccine (228). 

 HCV envelope glycoproteins E1 and E2 form a heterodimer on the surface of the virion 

(50, 229, 230). Furthermore, E1E2 assembly has been proposed to form a trimer of heterodimers 

(51) mediated by hydrophobic C-terminal transmembrane domains (TMDs) (50, 231, 232) and 

interactions between E1 and E2 ectodomains (233-235). These glycoproteins are necessary for 

viral entry and infection, as E2 attaches to the CD81 and SR-B1 co-receptors as part of a multi-

step entry process on the surface of hepatocytes (236-239). Neutralizing antibody responses to 

HCV infection target epitopes in E1, E2, or the E1E2 heterodimer (62, 88, 240-244). Structural 
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knowledge of bnAb antibody-antigen interactions, which often target E2 epitopes in distinct 

antigenic domains B, D, or E (55, 62, 86), can inform vaccine design efforts to induce bnAb 

responses against flexible HCV epitopes (96, 245, 246). E1E2 bnAbs, including AR4A, AR5A 

(247), and others recently identified (243), are not only among the most broadly neutralizing (240), 

but also represent E1E2 quaternary epitopes unique to antibody recognition of HCV. 

 Though much is known about bnAb responses to E1E2 glycoproteins, induction of B cell 

based immunity with a E1E2-based vaccine immunogen (81, 248, 249) has remained difficult. The 

inherent hydrophobicity of E1 and E2 transmembrane domains (TMDs) (50, 250) may impede 

uniform production of an immunogenic E1E2 heterodimer that could be utilized for both vaccine 

development and E1E2 structural studies. Although partial E1 and E2 structures have been 

determined (244, 251-254), many other enveloped viruses have structures of a complete and near-

native glycoprotein assembly (41, 46, 255-257), providing a basis for rational vaccine design (34, 

258, 259). Viral glycoproteins of Influenza hemagglutinin (260), respiratory syncytial virus (RSV) 

(41), SARS-CoV-2 (261), and others (262, 263) have been stabilized in soluble form using a C-

terminal attached foldon trimerization domain to facilitate assembly. HIV gp120-gp41 proteins 

have been designed as soluble SOSIP trimers by introducing a furin cleavage site, along with a 

key proline mutation and an added disulfide between gp120 and gp41, to mediate native-like 

assembly when cleaved by the enzyme (46, 264). Previously described E1E2 glycoprotein designs 

include covalently-linked E1 and E2 ectodomains (58, 265), E1E2 with transmembrane domains 

intact and an IgG Fc tag for purification (266), as well as E1 and E2 ectodomains with a cleavage 

site (58), which presented challenges for purification either due to intracellular expression or to 

high heterogeneity. Two recently described scaffolded E1E2 designs, while promising, have not 

been shown to engage monoclonal antibodies (mAbs) that recognize the native E1E2 assembly, 
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though they were engaged by E1-specific and E2-specific mAbs, as well as co-receptors that 

recognize E2 (59). Therefore, these presentations of E1E2 glycoproteins may not represent a native 

and immunogenic heterodimeric assembly, and thus their potential as vaccine candidates remains 

unclear. 

 Here, we describe the design of a secreted E1E2 glycoprotein (sE1E2) that mimics both 

the antigenicity in vitro, and the immunogenicity in vivo, of the native heterodimer through the 

scaffolding of E1E2 ectodomains. In testing our designs, we found that both replacing E1E2 TMDs 

with a leucine zipper scaffold and inserting a furin cleavage site between E1 and E2 enabled 

secretion and native-like sE1E2 assembly. We assessed the size, heterogeneity, antigenicity, and 

immunogenicity of this construct (identified as sE1E2.LZ) in comparison with full-length 

membrane-bound E1E2 (mbE1E2). sE1E2.LZ binds a broad panel of bnAbs to E2 and E1E2, as 

well as co-receptor CD81, providing evidence of assembly into a native-like heterodimer. An 

immunogenicity study indicated that sera of mice injected with sE1E2.LZ neutralize HCV 

pseudoparticles (HCVpp) at levels comparable to sera from mice immunized with mbE1E2. This 

sE1E2 design is a novel form of the native E1E2 heterodimer that both improves upon current 

designs and represents a platform for structural characterization and engineering of additional 

HCV vaccine candidates. 

2.2 Methods 
 
2.2.1 Protein expression 
 

For expression of recombinant soluble HCV E2 (sE2), the sequence from isolate H77C 

(GenBank accession number AF011751; residues 384–661) was cloned into the pSecTag2 vector 
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(Invitrogen)*, and expressed in mammalian (Expi293F) cells as described previously (92). The 

mbE1E2 and sE1E2 DNA coding sequences were synthesized with a modified tPA signal peptide 

(267) at the N-terminus. All E1E2 sequences were cloned into the vector pcDNA3.1+ at the 

cloning sites of KpnI/NotI (GenScript). Furin sequence DNA was cloned into the vector 

pcDNA3.1 and was a gift from Dr. Yuxing Li (University of Maryland IBBR). All sE1E2 

constructs and mbE1E2 were transfected with ExpiFectamine 293 into Expi293F cells for 

expression (Invitrogen). Cleavable polyprotein constructs were co-transfected with the furin 

construct at a 2:1 ratio. A clone for mammalian expression of CD81 large extracellular loop 

(CD81-LEL), containing N-terminal tPA signal sequence and C-terminal twin Strep tag, was 

provided by Dr. Joe Grove (University College London). CD81-LEL was expressed through 

transient transfection in Expi293F cells (Thermo Fisher Scientific). 

2.2.2 Antibodies 

Monoclonal antibodies used in ELISA assays and binding studies were produced as 

previously described (268-270), except for AR4A and AR5A, which were kindly provided by Dr. 

Mansun Law (Scripps Research Institute). 

2.2.3 Protein purification and size exclusion chromatography 

sE2 glycoprotein was purified from cell supernatant as described previously (92). Culture 

supernatant of sE1E2.LZ and E1E2 ectodomains fused with a Gly-Ser linker (sE1E2GS3) was 

purified by immobilized metal affinity chromatography (IMAC) with separate HiTrap chelating 

HP Ni2+-NTA columns (Cytiva). Expressed mbE1E2 was extracted from cell membranes using 

 
* Certain commercial equipment, instruments, or materials are identified in this paper in order to specify 
the experimental procedure adequately. Such identification is not intended to imply recommendation or 
endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the 
materials or equipment identified are necessarily the best available for the purpose. 
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1% NP-9 and purified via sequential Fractogel EMD TMAE (Millipore), Fractogel EMD SO3- 

(Millipore), immunoaffinity with HC84.26.WH.5DL antibody (271), and Galanthus Nivalis Lectin 

(GNL, Vector Laboratories) affinity chromatography. Sample concentration prior to size exclusion 

chromatography (SEC) was conducted with 15 ml Amicon Ultra 3 kDa centrifugal filters 

(Millipore Sigma). sE1E2.LZ, sE1E2GS3, and mbE1E2 were fractionated using a Superdex 200 

Increase 10/300 column (Cytiva). sE1E2.LZ and sE1E2GS3 were equilibrated with 1x Phosphate-

buffered saline (PBS; 10 mM sodium phosphate + 150 mM NaCl) pH 7, while mbE1E2 was 

equilibrated in Tris-buffered saline (TBS; 25 mM Tris-HCl + 150 mM NaCl) pH 7.5 + 0.5% n-

Octyl-b-D-Glucopyranoside (Anatrace). Size exclusion fractions of 500 μl were collected on 

AKTA FPLC (Cytiva). Molecular weight standards from the high molecular weight (HMW) 

calibration kit (Cytiva) were compared to purified sE1E2.LZ, sE1E2GS3, and mbE1E2. CD81-

LEL was purified using a 5 ml prepacked Streptactin XT column (IBA Lifesciences), following 

dialysis of expression supernatant in buffer W (100 mM Tris-HCl pH8, 150 mM NaCl, 1 mM 

EDTA) overnight in 4°C. CD81-LEL eluate was fractionated with a Superdex 200 column (Cytiva) 

on an AKTA FPLC (Cytiva) equilibrated with Tris buffered saline (TBS) (20 mM Tris + 150 mM 

NaCl) pH8. 

2.2.4 Computational design of coiled coil assemblies 

Coiled coil assemblies were designed using the HBNet protocol in Rosetta (272). This 

protocol accepts coiled coil architectures as input, performing modular hydrogen bond network 

generation and subsequent design to optimize packing and stability, resulting in models of 

designed assemblies (272). Two architectures were selected for parametric generation of coiled 

coil bundles for Rosetta input: supercoiled and no supercoil (parallel coil). The supercoil 

parameters were selected based on the GCN4 leucine zipper structure (PDB code 1ZIK) (273). 
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Backbones were generated with these two architectures using a Python program described 

previously and available in Rosetta (274), with each helix 30 amino acids in length. By varying 

helix phases in 18° increments for the inner and outer helices in the Python program, 400 

backbones were generated per global architecture (supercoil and parallel coil). As the design 

subunits in this system were heterodimeric rather than monomeric, we added a minor modification 

to the published HBNet Rosetta Script protocol (272) to account for the chain break between 

heterodimeric subunits (“<Span begin="30" end="31" bb="0" chi="1"/>). HBNet design was 

performed with each of the 800 input backbone structures, resulting in approximately 335 output 

designs. Some backbone structures resulted in no output designs due to lack of candidate hydrogen 

bond networks identified by HBNet, while others resulted in multiple designs based on multiple 

candidate hydrogen bond networks and packing designs. Design models were assessed for lack of 

buried unsatisfied polar groups, which has been found to be associated with successful designed 

assemblies (272), followed by manual inspection, to select the top five candidates for experimental 

characterization. 

2.2.5 Peptide synthesis and characterization 

Peptides for coiled coil designs CC1+CC2, HEX-1, HEX-2, HEX-3, and HEX-4 were 

synthesized (Genscript) and resuspended in Milli-Q water. Pairs of peptides corresponding to each 

coiled coil design were mixed at a 1:1 ratio and incubated overnight in 4oC. 10X PBS was then 

added at 1/10th the volume of the mixture, which was centrifuged to separate any precipitate. Each 

peptide mixture was purified using a Superdex 75 Increase 10/300 column (Cytiva). Elution peak 

positions of gel filtration standards (Bio-Rad #1511901) were used to calculate molecular weights 

of designs CC1+CC2 and HEX-1-4 based on their observed peak positions. 
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2.2.6 SEC-MALS 

For size exclusion chromatography coupled to multiple angle light scattering (SEC-

MALS), a UHPLC system (Vanquish Flex, Thermo Fisher) was coupled to MALS (DAWN 

HELEOS-II, Wyatt) and Refractive Index (Optilab T-rEX, Wyatt) detectors. Separations were 

performed using a WTC-050N5 column (Wyatt) equilibrated in PBS for sE1E2.LZ or in TBS + 

0.5% b-OG for mbE1E2, with a flow rate of 0.3 mL/min and sample injection volumes of 25 μL. 

Molar mass analysis was performed using the software ASTRA 7.1.3 (Wyatt) using refractive 

index as a concentration source. 

2.2.7 SDS-PAGE and western blot 

SDS-PAGE and western blot experiments were conducted with 12-well stain-free gels 

(Bio-Rad), with total protein detected using a stain-free imager (Bio-Rad). For SDS-PAGE, 

Precision Plus Unstained Protein Standards (Bio-Rad) were used as a molecular weight marker. 

E2 was detected in western blot with HCV1 (275) as the primary antibody. E1 was detected in 

western blot with H-111 as the primary antibody (276). In reducing conditions, each sample was 

incubated with loading dye (4x Laemmli buffer + 10% b-mercaptoethanol) (Bio-Rad) and heated 

to 95oC, except for mbE1E2, which was heated to 37oC. In non-reducing conditions, each sample 

was incubated with Laemmli buffer and heated to 37oC. For western blots, stain-free gels were 

transferred to a turbo mini 0.2 µm nitrocellulose membrane (Bio-Rad) using the trans-blot turbo 

transfer system (Bio-Rad). Supersignal Molecular Weight Protein Ladder (Thermo Fisher 

Scientific) was used as a marker for western blots. 10X concentration of supernatant for E1 western 

blots was conducted in 0.5 mL Amicon Ultra 3 kDa centrifugal filters (Millipore Sigma). Cell 

lysates of sE1E2.LZ and mbE1E2 were collected by centrifugation of 1 ml transfected cell 

suspension and extraction from cell membranes with 1% NP-9. For native western blots, 15-well 
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NativePAGE Novex 4-16% Bis-Tris protein gels (Thermo Fisher Scientific) were transferred to a 

turbo mini 0.2 µm PVDF membrane (Bio-Rad) using the same transfer system. NativeMark 

unstained protein standard (Invitrogen) was used as a molecular weight marker for native gels. To 

deglycosylate sE1E2.LZ, mbE1E2, and sE2 in non-denaturing conditions, 3 µg of each protein 

was mixed with 2 µl PNGase F enzyme (New England Biolabs), then incubated at 37oC for 24 

hours before western blot preparation. Proteins were detected with goat anti-human IgG HRP 

conjugate (Invitrogen) and clarity western ECL substrate (Bio-Rad). All gels were imaged using 

the ChemiDoc system (Bio-Rad). 

2.2.8 Analytical ultracentrifugation (AUC) 

Sedimentation velocity (SV) experiments were performed at 20ºC using a ProteomeLab 

Beckman XL-A with absorbance optical system and a 4-hole An60-Ti rotor (Beckman Coulter). 

For sE1E2.LZ, the sample and reference sectors of the dual-sector charcoal-filled epon 

centerpieces were loaded with 390 μL protein in PBS, pH 7.4 with or without 0.5% b-OG, and 400 

μL buffer. For mbE1E2, the sample and reference sectors of the dual-sector charcoal-filled epon 

centerpieces were loaded with 390 μL protein in TBS + 0.5% b-OG, and 400 μL buffer. The cells 

were centrifuged at 40 krpm and the absorbance data were collected at 280 nm in a continuous 

mode with a step size of 0.003 cm and a single reading per step to obtain linear signals of <1.25 

absorbance units. Sedimentation coefficients were calculated from SV profiles using the program 

SEDFIT (277). The continuous c(s) distributions were calculated assuming a direct sedimentation 

boundary model with maximum entry regularization at a confidence level of 1 standard deviation. 

The density and viscosity of buffers at 20ºC and 4ºC were calculated using SEDNTERP (278). 

The c(s) distribution profiles were prepared with the program GUSSI (C.A. Brautigam, Univ. of 

Texas Southwestern Medical Center). 
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2.2.9 Enzyme-linked immunosorbent assay (ELISA) 

HCV human monoclonal antibody (HMAb) binding to mbE1E2, sE1E2.LZ, sE1E2GS3, 

and sE2 was evaluated and quantitated by ELISA. 96-well microplates (MaxiSorp, Thermo Fisher, 

Waltham, MA) were coated with 5 μg/mL Galanthus Nivalis Lectin (Vector Laboratories, 

Burlingame, CA) overnight, and purified mbE1E2, sE1E2.LZ, sE1E2GS3 and sE2 was then added 

to the plates at 2 ug/ml. After the plates were washed with PBS and 0.05% Tween 20, and blocked 

by Pierce™ Protein-Free (PBS) Blocking Buffer (Thermo Fisher, Waltham, MA), the HMAbs 

were tested in duplicate at 3-fold serial dilution starting at 100 ug/ml. The binding was detected 

by 1:5000 dilutions of HRP-conjugated anti-human IgG secondary antibody (Invitrogen, Carlsbad, 

CA) with TMB substrate (Bio-Rad Laboratories, Hercules, CA). The absorbance was read at 450 

nm using a SpectraMax MS microplate reader (Molecular Devices, San Jose, CA). For ELISA 

measurements of immunized murine sera, endpoint titers were calculated by curve fitting in 

GraphPad Prism software, with endpoint OD defined as four times the mean absorbance value of 

Day 0 sera. 

2.2.10 Determination of antibody affinity by quantitative ELISA 

ELISA assays were performed as described (270) to compare antibody affinity to 

sE1E2.LZ, mbE1E2, and sE2. Briefly, plates were developed by coating wells with 500 ng of 

Galanthus nivalis agglutinin (GNA) and blocking with 2.5% non-fat dry milk and 2.5% normal 

goat serum. Purified sE1E2.LZ, mbE1E2, and sE2 at 5 µg/ml were captured by GNA onto the 

plate and later bound by a range of 0.01-200 µg/ml of antibody. Bound antibodies were detected 

by incubation with alkaline phosphatase-conjugated goat anti-human IgG (Promega), followed by 

incubation with p-nitrophenyl phosphate for color development. Absorbance was measured at 405 

nm and 570 nm. The assay was carried out in triplicate in three independent assays for each HMAb. 
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The data were analyzed by nonlinear regression to measure antibody dissociation constants (KD) 

and binding potential (optical density at 405 nm) using Graphpad Prism software, and standard 

deviation values were calculated using the three independent affinity measurements. 

2.2.11 Surface plasmon resonance 

Surface plasmon resonance (SPR) analysis was performed using a Biacore™ T200 system 

(Cytiva) and HBS-EP+ buffer was used as sample and running buffer. The analysis temperature 

and sample compartment were set to 25°C. mbE1E2, sE2, and sE1E2.LZ were immobilized on 

Series S CM5 chips using the Amine Coupling Kit per the manufacturer’s instructions. Antigen 

capture levels were adjusted to yield approximately 2000 RU for the kinetic experiments. Purified 

CD81-LEL was injected over reference and active flow cells, applying a single cycle kinetics 

procedure using twelve concentrations. Data were fitted to a 1:1 binding model using Biacore™ 

T200 Evaluation Software 2.0. As one concentration series was used to calculate binding 

parameters, no standard errors were calculated for those values. 

2.2.12 Animal immunization 

CD-1 mice were purchased from Charles River Laboratories. Prior to immunization, sE2 

and E1E2 antigens were formulated with polyphosphazene PCPP-R adjuvant (279).  

Poly[di(carboxylatophenoxy)phosphazene], PCPP (50 µg, molecular weight 800,000 Da) (280) 

was formulated with resiquimod, R848 (25 µg) in PBS (pH 7.4) to prepare PCPP-R as described 

previously (279). The resulting formulation was mixed with E1E2 antigen (70 µg for prime or 15 

µg for boost immunization). The absence of aggregation in adjuvanted formulations was 

confirmed by dynamic light scattering (DLS): single peak, z-average hydrodynamic diameter – 60 

nm. The formation of antigen–PCPP-R complex was confirmed by asymmetric flow field flow 

fractionation (AF4) as described previously (281). On scheduled vaccination days, groups of 6 
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female mice, age 7-9 weeks, were injected via the intraperitoneal (IP) route with a 50 µg E1E2 

prime (day 0) and boosted with 10 µg E1E2 on days 7, 14, 28, and 42. Blood samples were 

collected prior to each injection with a terminal bleed on day 56. The collected samples were 

processed for serum by centrifugation and stored at -80°C until analysis was performed. 

2.2.13 HCV pseudoparticle generation 

HCV pseudoparticles (HCVpp) were generated as described previously (77), by co-

transfection of HEK293T cells with the murine leukemia virus (MLV) Gag-Pol packaging vector, 

luciferase reporter plasmid, and plasmid expressing HCV E1E2 using Lipofectamine 3000 

(Thermo Fisher Scientific). Envelope-free control (empty plasmid) was used as negative control 

in all experiments. Supernatants containing HCVpp were harvested at 48 h and 72 h post-

transfection and filtered through 0.45 μm pore-sized membranes. For measurements of serum 

binding to HCVpp in ELISA, concentrated HCVpp were obtained by ultracentrifugation of 33 ml 

of filtered supernatants through a 7 ml 20% sucrose cushion using an SW 28 Beckman Coulter 

rotor at 25,000 rpm for 2.5 hours at 4°C, following a previously reported protocol (86). 

2.2.14 HCVpp neutralization assays 

Huh7 cells were maintained in the Dulbecco’s modified Eagle medium (DMEM) 

supplemented with 10 % FBS. 1.5 × 104 Huh7 cells per well, plated in white 96-well tissue culture 

plates (Corning), and incubated overnight at 37°C. The following day, HCVpp was mixed with 

serially diluted murine serum samples at 37°C. After one-hour incubation, the HCVpp-serum 

mixture was added to the Huh7 cells (kindly provided by Jonathan K. Ball, University of 

Nottingham, UK) in 96-well plates and incubated at 37°C for 5 h. After removing the inoculum, 

the cells were further incubated for 72 h with DMEM containing 10% fetal bovine serum (Thermo 
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Fisher, Waltham, MA) and the luciferase activities were measured using Bright-Glo™ luciferase 

assay system as indicated by the manufacturer (Promega, Madison, WI). 

2.2.15 Statistical comparisons 

P-values between group endpoint titers and group half-maximal inhibitory dose (ID50) 

values were calculated in Graphpad Prism software, using non-parametric Kruskal-Wallis analysis 

of variance with Dunn’s multiple comparisons test. 

2.3 Results 

2.3.1 Design of sE1E2 constructs 

We designed and screened a set of sE1E2 constructs to determine which type of scaffold 

might be suitable for development of a novel secreted heterodimer (Figure 2.1A). Scaffolded 

sE1E2 constructs were synthesized as cleavable polyproteins and contain a six-arginine furin 

cleavage site, which was incorporated to facilitate E1E2 assembly with a method also used for 

HIV SOSIP constructs (46). Each cleavable polyprotein replaces E1 and E2 TMDs with a self-

assembling heterodimeric, homotrimeric, or hetero-hexameric scaffold designed to enforce E1E2 

ectodomain assembly in the absence of a membrane anchor. In addition, all constructs replace the 

N-terminal wild-type signal peptide sequence with a modified version of the signal sequence from 

tissue plasminogen activator (tPA) (267) and include a C-terminal 6xHis tag for purification. 

sE1E2.LZ used the human Fos-Jun leucine zipper, a coiled coil obligate heterodimer with 

a known structure (PDB code 1FOS; Figure 2.1B) (282), as a scaffold. The heterodimeric Fos-

Jun leucine zipper has been used as a scaffold for expression of T cell receptors (283), making it a 

possible candidate for maintaining heterodimeric E1E2 in secreted form. sE1E2.FD replaced the 

E1 TMD with a foldon domain (Figure 2.1C; PDB code: 4NCU) (284), a self-trimerizing protein 
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that has been previously used to stabilize soluble assemblies of viral glycoprotein trimers (41, 

285). This construct was designed to test whether enforcing E1 trimerization (51) would be 

sufficient to enable E1E2 ectodomain assembly. sE1E2.CC used a scaffold that was designed to 

self-assemble into a hetero-hexameric peptide complex, which would reflect the previously 

described model of the E1E2 TMD architecture (51) in a soluble form. The corresponding scaffold, 

CC1+CC2 (Figure 2.1D), was designed de novo using the HBNet protocol of Rosetta protein 

modeling software (272). Though we were unable to confirm the structure of CC1+CC2 with 

experimental structural determination, it was included as a candidate scaffold given its putative 

hexameric assembly (Figure 2.2). To examine the importance of including scaffolds in the absence 

of TMDs, a separate construct with a furin cleavage site but no scaffold was generated (sE1E2.R6). 

Two sE1E2 constructs with a covalent linker between ectodomains were also included. In 

sE1E2GS3, E1 and E2 ectodomains are linked by a 15 amino acid glycine-serine sequence, 

resembling a previously described sE1E2 construct (58). The construct sE1E2RevGS3 reverses 

the order of E1 and E2 ectodomains, testing whether altering the order of ectodomains in the 

context of a covalent fusion may improve E1E2 assembly, which could be affected by the currently 

unknown proximity of the N- and C-termini of the ectodomains in native E1E2. 
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Figure 2.1 Design of sE1E2 constructs. (A) Schematic of mbE1E2, covalent linker sE1E2, and 
cleavable polyprotein constructs. Regions shown include tPA signal sequence (green boxes), E1 
ectodomain (yellow boxes), E2 ectodomain (red boxes), wild-type TMDs (gray boxes), Gly-Ser linker 
(orange boxes), and various scaffolds replacing TMDs. E1E2 residue ranges for each region are noted 
according to H77 numbering. C-terminal His tags and furin cleavage sites are shown in boxes and labeled. 
The expected molecular weight of each construct is indicated, and molecular weights of expected 
oligomers for sE1E2.FD and sE1E2.CC are in parentheses. For molecular weight estimations, each N-
glycan is approximated to be 2 kDa at each NxS/NxT sequon, a value within the molecular weight range 
of typical N-linked glycans (286).  (B) X-ray structure of human Fos-Jun heterodimer (PDB code: 1FOS); 
only the coiled coil region that was used for the sE1E2.LZ scaffold is shown. Fos and Jun chains were 
colored to match the diagram of sE1E2.LZ. (C) X-ray structure of foldon domain (PDB code: 4NCU). All 
chains colored light blue to match the diagram for sE1E2.FD. (D) Model of CC1+CC2 heterohexameric 
peptide assembly. CC1 and CC2 chains colored to match the diagram for sE1E2.CC. All structures were 
visualized in PyMOL (Schrödinger). 
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Figure 2.2 Characterization of the peptide complex CC1+CC2. Shown are the chromatographic traces 
for the CC1+CC2 complex (blue line) and other tested designs (labeled HEX1-4) following elution from a 
Superdex 75 size exclusion chromatography column (Cytiva). The CC1+CC2 complex elutes at a volume 
consistent with hexameric assembly. Indicated on the chromatograph is the estimated molecular weight 
for CC1+CC2, calculated based on the retention volumes of molecular size standards (Bio-Rad). 

2.3.2 sE1E2.LZ forms an intact E1E2 complex 

Each sE1E2 construct was expressed in mammalian cells, with cleavable polyproteins co-

expressed with furin. To test for successful secretion of sE1E2, we probed for the presence of E1 

and E2 ectodomains in the supernatant, using the E1 HMAb H-111 (276) and the E2 HMAb HCV1 

(275) in western blots. These antibodies bind to linear epitopes at or near the N-terminus of the E1 

or E2 ectodomain, respectively. sE1E2.LZ was the only cleavable polyprotein design to show clear 

detection of both E1 and E2 in the supernatant (Figure 2.3), though sE1E2.FD exhibited some 

secretion of E2. The sE1E2.R6 construct without a scaffold showed no secretion of sE1E2, 

consistent with previous results that E1 and E2 ectodomains alone do not form a stable complex 
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(59). Expression of E1-Jun and E2-Fos constructs in trans without a furin cleavage site found 

secretion of E1-Jun, but minimal secretion of E2-Fos (Figure 2.4). Collectively, these results 

determine that the combination of a furin cleavage site and leucine zipper scaffold enables 

secretion of the E1E2 complex. sE1E2GS3 and sE1E2RevGS3 showed high levels of E1 and E2 

in supernatant, corroborating previous findings with a covalently linked sE1E2 design that is 

similar to sE1E2GS3 and was likewise detected in the supernatant (58). In addition, we examined 

if protein was expressed but not secreted by probing for the presence of E1 and E2 in lysed cells 

(Figure 2.5). sE1E2GS3 and sE1E2RevGS3 that was retained in cells migrated at smaller 

molecular weights than the corresponding secreted proteins, while sE1E2.FD and sE1E2.LZ 

exhibited multiple bands in E2 detection; both results may be indicative of incomplete processing 

or degradation of protein that was not secreted. Though some sE1E2.LZ was detected 

intracellularly, approximately 90% of expressed sE1E2.LZ was secreted to the supernatant, as 

determined by a quantitative analysis comparing supernatant and cell lysate western blots probed 

with the anti-E2 HMAb HCV1 (Figure 2.6). Based on these results, we selected sE1E2.LZ, as a 

cleaved scaffolded sE1E2 candidate, and sE1E2GS3, as a covalently linked sE1E2 candidate, for 

further characterization. 
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Figure 2.3 E1 and E2 western blots of sE1E2 supernatant. HCV1 antibody at 5 μg/ml was used for the 
E2 western blot. H-111 antibody at 10 μg/ml was used for the E1 western blot. All sE1E2 supernatant 
samples were loaded under reducing conditions. Supernatants were concentrated 10 times prior to E1 
western blot. Molecular weights, in kDa, of the western blot markers closest to observed bands are 
indicated on the left. Expected band positions of E1, E2, and E1E2 are indicated with black triangles on 
right and labeled. 

 
Figure 2.4 Western blots of supernatant from E1-Jun/E2-Fos co-expression. sE1E2.LZ components 
E1-Jun and E2-Fos, both with tPA signal sequence, were co-expressed in trans and then probed with 
HCV1 (anti-E2) at 5 µg/ml or H-111 (anti-E1) at 10 µg/ml under reducing conditions. E1 and E2 
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detection was compared to expression levels of the full sE1E2.LZ construct. Supernatants were 
concentrated 10X prior to E1 western blot. Molecular weights, in kDa, of the marker closest to observed 
bands are labeled. In both western blots, E1-Jun/E2-Fos and sE1E2.LZ were loaded in non-adjacent wells 
but were placed together to aid viewing. 

 
Figure 2.5 E1 and E2 western blots of sE1E2 cell lysate. HCV1 antibody at 5 µg/ml was used for the 
E2 western blot. H-111 antibody at 10 μg/ml was used for the E1 western blot. All sE1E2 lysate samples 
were loaded under reducing conditions. Supernatants were concentrated 10X prior to E1 western blot. 
Molecular weights, in kDa, closest to observed bands are labeled. Expected band sizes of E1, E2, and 
E1E2 are indicated with black triangles and labeled accordingly. E1 detection of sE1E2.R6 and 
sE1E2.CC were loaded in non-adjacent wells but are grouped together in this figure to aid comparisons. 

 
 
Figure 2.6 Quantitative western blots comparing sE1E2.LZ supernatant and cell lysate. One µl of 
each sample was used for E2 probing with anti-E2 antibody HCV1 at a concentration of 5 µg/ml in 
separate western blots. A standard curve with defined values of sE2 purified protein (50, 100, or 200 ng) 
was included in each western blot, with a representative standard curve shown. Band intensities of 
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supernatant and cell lysate samples were compared with the standard curve via ImageQuant software 
(Cytiva) to estimate protein amount and the proportion of expressed sE1E2.LZ that was secreted in 
supernatant. Molecular weights, in kDa, closest to observed bands are labeled. E2 detection of sE1E2.LZ 
supernatant and cell lysate was aligned by molecular weight range of markers from separate western 
blots. sE1E2.LZ cell lysate and 50 ng of sE2 were loaded in non-adjacent wells but are grouped together 
in this figure to aid viewing. 

2.3.3 Purification of sE1E2.LZ 

We purified both sE1E2.LZ and sE1E2GS3 using IMAC, and then examined the molecular 

weight and heterogeneity of each construct with SEC (Figure 2.7A; Figure 2.8). Expression and 

purification of all three constructs produced sufficiently pure protein for characterization, with 

sE1E2.LZ providing the highest yield at 480 µg per 100 ml of transfected cells (Figure 2.9). Both 

constructs eluted in SEC across a broad molecular weight range, with the peak for each estimated 

at approximately 400 kDa. The resultant SEC peaks were directly compared with the peak SEC 

fractions of purified mbE1E2 (Figure 2.7D). Though sE1E2.LZ, along with sE1E2GS3, exhibited 

a broad peak in SEC, it eluted at a volume consistent with a molecular weight that is both smaller 

than mbE1E2, which eluted as a peak in void volume (approximately 700 kDa), and closer to the 

expected size of the heterodimeric assembly (94 kDa; Figure 2.1). To further investigate the size 

distribution and heterogeneity of purified constructs, we examined fractions eluted from SEC 

under non-reducing conditions, using western blot for sE1E2.LZ (Figure 2.7B-C), mbE1E2 

(Figure 2.7E-F), and sE1E2GS3 (Figure 2.10D,F), and SDS-PAGE for sE1E2GS3 (Figure 

2.10B) and sE1E2.LZ (Figure 2.11B). Both sE1E2.LZ and sE1E2GS3 SEC fractions showed two 

predominant species migrating in the range between 150 and 250 kDa when probed for E1 and E2 

under non-reducing conditions, which is smaller than expected based on the SEC chromatographs 

but confirms the heterogeneity of each protein. mbE1E2 SEC fractions probed by western blot 

under non-reducing conditions showed several species, including prominent bands corresponding 

to free E1 and E2 along with higher molecular weight aggregates. In addition, the anti-E1 non-
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reducing western blot shows discrete bands corresponding to self-associating E1 dimers and 

trimers as observed previously (51), suggesting that, while the purified protein is a heterogenous 

mixture, the mixture contains a significant population of E1E2 assembled natively. In contrast, 

under reducing conditions the E1 and E2 components migrated at the expected molecular weight 

for both sE1E2.LZ (Figure 2.11) and mbE1E2 (Figure 2.12) fractions, and at a molecular weight 

corresponding to covalently linked E1E2 in sE1E2GS3 (Figure 2.10) fractions. The spread of the 

bands in SDS-PAGE and western blot is likely due to in part heterogeneity in glycoforms, as 

observed previously (77, 287). To examine the contribution of glycosylation to observed size 

distributions, we subjected the purified proteins to PNGase F cleavage to remove the glycans. An 

examination of the deglycosylated proteins on a non-reducing western blot showed more species 

(Figure 2.13), indicating that the heterogeneity in solution we observed for all constructs is 

dominated by another factor, possibly disulfide crosslinking or exchange. Although these results 

suggest that sE1E2.LZ is closer to expected size of a heterodimer than mbE1E2, the ranges of 

observed sizes led us to utilize more sensitive methods of characterization to examine molecular 

size and heterogeneity. 
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Figure 2.7 Size exclusion chromatography of sE1E2.LZ, sE1E2GS3, and mbE1E2. Chromatographic 
traces for (A) sE1E2.LZ and (D) mbE1E2 shown in blue lines plotted with molecular weight standards 
shown in grey lines after elution from a Superdex 200 SEC column (Cytiva). Molecular weight estimates 
for the center of each peak are labeled based on comparisons with elution of HMW standards (Cytiva), 
with molecular masses of 670, 440, 158, 73, and 44 kDa. The range for elution fractions F1-F10 used for 
analysis is shown as a red line. Western blots of sE1E2.LZ for E2 (B), sE1E2.LZ for E1 (C), mbE1E2 for 
E2 (E), and mbE1E2 for E1 (F) under non-reducing conditions. HCV1 antibody at 5 µg/ml was used to 
probe for E2, while H-111 antibody at 10 µg/ml was used to probe for E1. Molecular weights, in kDa, of 
the western blot markers closest to observed bands are indicated on the left of each panel. All fractions 
had 250 ng loaded for improved visualization of size. For E1 western blots, all fractions were 
concentrated 10X prior to loading. Putative E1 monomer, dimer, and trimer populations shown in panel 
(F) are highlighted with red initials. 
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Figure 2.8 Size exclusion chromatograph of sE1E2GS3. Chromatograph of sE1E2GS3 shown as a blue 
line plotted with molecular weight standards shown as a grey line after elution from a Superdex 200 SEC 
column (Cytiva). The elution fractions F1-F9 used for subsequent analysis is shown as a red line. A 
molecular weight estimate for the center of the peak is labeled based on comparisons with elution of 
HMW standards (Cytiva), with values of 670, 440, 158, 73, and 44 kDa. 
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Figure 2.9 Yield and purity of mbE1E2, sE1E2.LZ, and sE1E2GS3 in SDS-PAGE. Yield of each 
protein in µg per 100 ml of transfected cells is shown underneath the corresponding sample. 3.75 µg of 
protein was loaded for each purified protein. Expected band sizes of E1, E2, and E1E2 are indicated with 
black triangles and labeled accordingly. Molecular weight markers, in kDa, closest to observed bands are 
also indicated. 
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Figure 2.10 sE1E2GS3 fractions from SEC analyzed by SDS-PAGE and western blot. Fractions F1-
F9 show a gradient of molecular weights following elution. SDS-PAGE results for sE1E2GS3 fractions 
under (A) reducing and (B) non-reducing conditions with molecular weights, in kDa, of the marker 
labeled. Western blot of sE1E2GS3 fractions under (C) reducing and (D) non-reducing conditions probed 
with HCV1 (anti-E2) antibody at 5 µg/ml. In panel (C), the fraction with the highest concentration had 
250 ng loaded, with other fractions scaled accordingly. In panel (D), 250 ng of sE1E2GS3 fractions were 
loaded to improve visualization of size. Western blot of sE1E2GS3 fractions under (E) reducing and (F) 
non-reducing conditions probed with H-111 (anti-E1) antibody at 10 µg/ml. All fractions were 
concentrated 10X prior to E1 western blots. In panel (E), the fraction with the highest concentration had 
250 ng loaded, with other fractions scaled accordingly. In panel (F), 250 ng of sE1E2.LZ fractions were 
loaded to improve visualization of size. In panels (C-F), molecular weight, in kDa, of the western blot 
marker closest to observed bands is indicated. 
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Figure 2.11 sE1E2.LZ fractions from SEC analyzed by SDS-PAGE and western blot. Elution 
fractions F1-F10 show both E1 and E2 in SDS-PAGE under reducing conditions (A) and a molecular 
weight gradient in SDS-PAGE under non-reducing conditions (B). Molecular weights, in kDa, for the 
SDS-PAGE protein ladder (Bio-Rad) are indicated. Western blots of sE1E2.LZ fractions under reducing 
conditions when probed with HCV1 (anti-E2) antibody at 5 µg/ml (C) or H-111 (anti-E1) antibody at 10 
µg/ml (D). Molecular weight, in kDa, of the western blot marker closest to observed bands is indicated. In 
both western blots, the fraction with the highest concentration had 250 ng loaded, with other fractions 
scaled accordingly. For the E1 western blot, all fractions were concentrated 10X prior to loading. 
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Figure 2.12 mbE1E2 elution fractions from SEC analyzed by western blot. Elution fractions were 
probed under reducing conditions with HCV1 (anti-E2) antibody at 5 µg/ml (A) or H-111 (anti-E1) 
antibody at 10 µg/ml (B). Molecular weight, in kDa, of the western blot marker closest to observed bands 
is indicated. 
 

 
Figure 2.13 Deglycosylation of mbE1E2, sE1E2.LZ, and sE2. Purified proteins were analyzed by 
western blot with HCV1 (anti-E2) antibody at 5 µg/ml under reducing (left) and non-reducing (right) 
conditions with molecular weights, in kDa, of the marker labeled. 800 ng of each deglycosylated sample, 
along with a paired sample with intact glycans, were loaded in each lane of the reducing western blot. 
Some degradation of deglycosylated sE2 is apparent as the band intensity is markedly reduced. To aid 
detection of the full range of species present in the non-reducing western, additional sample was added as 
needed. It is apparent that deglycosylation either allows separation or induces formation of additional 
species in the non-reducing western blot. Figure provided by Liudmila Kulakova and Eric Toth. 
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2.3.4 Analytical characterization of heterogeneity in solution 

sE1E2.LZ and mbE1E2 purified constructs were also characterized using AUC, which can 

separate a mixture of protein populations more precisely than SEC (288). A comparison of AUC 

results offers further support that sE1E2.LZ is less heterogeneous than mbE1E2. AUC for 

sE1E2.LZ showed two prominent peaks between sedimentation coefficient (S) values 4.9 and 7.5, 

which are approximately consistent with a monomer and dimer of the sE1E2.LZ heterodimer, 

respectively, and resemble what we observed in the non-reducing western blot. To control for 

potential effects of 0.5% n-Octyl-b-D-Glucopyranoside (b-OG), a detergent required for mbE1E2 

purification, we performed a parallel AUC experiment with sE1E2.LZ in the presence of 0.5% b-

OG (Figure 2.14A). The size distribution in that experiment closely matched that of the sample 

without b-OG, indicating that the detergent itself does not contribute to heterogeneity. mbE1E2 

showed three large peaks between S values 4 and 9.1, suggesting that mbE1E2 exhibits more 

heterogeneity than sE1E2.LZ (Figure 2.14B). Furthermore, the peak with the highest intensity for 

mbE1E2 closely resembles the S value found for free E2. sE1E2.LZ by contrast shows no peak at 

that S value. Though sE1E2.LZ is not a uniform single species, it is a less complex mixture of 

E1E2 assemblies than mbE1E2. 

 SEC-MALS was used as another analytical technique to examine the heterogeneity and 

size of sE1E2.LZ. Since the presence of b-OG detergent had little to no effect on sE1E2.LZ in 

AUC, we expected that an absence of b-OG would not affect analytical characterization of 

sE1E2.LZ in SEC-MALS. When compared with standards and analyzed by light scattering, 

sE1E2.LZ exhibited a single peak in SEC-MALS with an estimated molecular weight at peak 

center of 173 kDa, corresponding approximately to a dimer of the sE1E2.LZ heterodimer (Figure 

2.14C). This estimated size is generally consistent with the observed AUC peak around 7.5 S, 
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though the breadth of the peak in SEC-MALS still suggests that sE1E2.LZ displays some 

heterogeneity in size, corresponding to 1-2 sE1E2.LZ heterodimers, in accordance with the two 

major peaks from AUC measurements. In SEC-MALS, mbE1E2 was characterized as a single, 

very broad peak with an estimated molecular weight of 1.1 MDa at peak center (Figure 2.14D). 

The broad range of this peak identified mbE1E2 as a mixture containing a broad range of species, 

with approximately 5 to over 20 E1E2 heterodimers. Additionally, sE1E2.LZ was directly 

compared to mbE1E2 in a native western blot, showing differences in overall size (Figure 2.15). 

In assessments by multiple analytical techniques, sE1E2.LZ forms a moderately heterogeneous 

mixture that is nonetheless smaller and closer to expected size than mbE1E2, representing a 

potentially improved immunogen for HCV vaccine development and a candidate for structural 

characterization. In addition, sE1E2.LZ does not require detergents for solubility, allowing for 

simpler formulations than mbE1E2. 
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Figure 2.14 Analytical characterization of sE1E2.LZ and mbE1E2 size and heterogeneity. AUC 
profiles of (A) purified sE1E2.LZ with or without detergent b-OG and (B) purified mbE1E2. The 
distribution of Lamm equation solutions c(s) for the two proteins (blue or black lines) is shown. 
Calculated sedimentation coefficients for the peaks are labeled. Observed species for sE1E2.LZ 
approximately correspond to a heterodimer at 4.9 S, a dimer of heterodimers at 7.7 S, and higher-order 
aggregates at 10.3 S. Observed species for mbE1E2 approximately correspond to free E2 at 4.0 S, a dimer 
of heterodimers at 6.6 S, a trimer of heterodimers at 9.1 S, and a tetramer of heterodimers and higher-
order aggregates at >10 S. Figures provided by Kinlin L. Chao. (C) sE1E2.LZ and (D) mbE1E2 
characterization with SEC-MALS. The chromatographs of each protein are shown as blue lines. For 
reference, chromatographs of molecular weight standards are shown as grey lines in panels (C) and (D), 
corresponding to molecular masses of 670, 158, 44, 17, and 1.35 kDa. The MALS scattering sizes 
between the peak half-maxima are shown as red lines, with the estimated molecular weight at the center 
of each peak labeled, and size distribution of each range in parentheses. Based on calculated molecular 
weights of each heterodimer and SEC-MALS molecular size ranges, these peaks predominantly contain 
oligomers of (C) 1-2 sE1E2.LZ heterodimers and (D) 5-27 mbE1E2 heterodimers. Figures provided by 
Thomas E. Cleveland IV. 
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Figure 2.15 mbE1E2 and sE1E2.LZ size and heterogeneity in native gel. Purified proteins were 
compared through blue native gel electrophoresis followed by western blot probed with either HCV1 
(anti-E2) at 5 µg/ml or H-111 (anti-E1) antibody at 10 µg/ml. E2 detection of mbE1E2 and sE1E2.LZ 
originated from different gels, which were then aligned to make the range of molecular weights 
equivalent. Molecular weights, in kDa, closest to observed bands are labeled. E1 detection of mbE1E2 
and sE1E2.LZ was also conducted on separate gels, then aligned by molecular weight range. Figure 
provided, in part, by Andrezza Chagas. 

2.3.5 sE1E2.LZ exhibits native-like E1E2 antigenicity and robust immunogenicity 

We next examined the native-like properties of sE1E2.LZ by measuring the binding 

affinities to a panel of bnAbs in comparison with sE2 and mbE1E2. Unlike the antibodies used in 

western blot, most bnAbs used for this analysis recognize conformational epitopes on E2 (55, 270, 

289), and E1E2 (247). We first performed ELISA at one antibody concentration to compare 

mbE1E2 and sE1E2.LZ antibody reactivity, along with purified sE1E2GS3 and sE2. This 
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sensitive antibodies, versus quantitative comparisons of affinities, which were undertaken later. 

The antibodies utilized were a representative panel of bnAbs to antigenic domain B, D, and E 

epitopes in E2 and the E1E2 bnAbs AR4A and AR5A (Figure 2.16). At the tested antibody 

concentration (0.185 µg/ml), mbE1E2 and sE1E2.LZ exhibited similar binding levels for all 

antibodies. Importantly, sE1E2.LZ maintained reactivity to E1E2 bnAbs, providing evidence that 

this sE1E2 construct contains a soluble, native-like form of the E1E2 heterodimer. In contrast, 

sE1E2GS3 and sE2 showed little to no reactivity to AR4A and AR5A; this was not unexpected 

for sE2, which lacks key residues comprising the E1E2 bnAb epitopes (87). Based on the AR4A 

and AR5A binding results, the lack of E1-E2 cleavage or scaffold in sE1E2GS3 appears to lead to 

a severe disruption of native-like assembly, thus we focused on sE1E2.LZ for subsequent 

characterization. 

 To confirm more precisely our initial measurements of bnAb reactivity, we tested the 

affinity of sE1E2.LZ to a larger panel of HCV antibodies (Table 2.1) and CD81 (Figure 2.17). 

KDs were measured by dose-dependent ELISA to antibodies that recognize discrete epitopes of E2 

(62) and E1E2 bnAbs. For comparison, we performed the same analysis for purified mbE1E2 and 

sE2. sE1E2.LZ and mbE1E2 showed similar affinities to almost all tested HCV HMAbs, within a 

2-3 fold difference. One notable exception was an 8-fold lower affinity of AR4A for sE1E2.LZ 

relative to mbE1E2. Although sE1E2.LZ maintained affinity to AR5A, a decrease in affinity to 

AR4A may stem from subtle differences in heterodimer assembly or dynamics when compared to 

mbE1E2, which may be difficult to elucidate without detailed structural characterization of the 

epitope. Regardless, AR4A binds sE1E2.LZ with nanomolar affinity (16 nM), indicating that the 

overall structure of the AR4A epitope and the E1E2 interface in that region are intact. In addition 

to measurements of binding to conformationally sensitive E2 and E1E2 HMAbs, we also tested 
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binding to the CD81 receptor, which recognizes a region on the E2 ectodomain overlapping with 

epitopes for many bnAbs (87). sE1E2.LZ showed robust binding to CD81-LEL in SPR (10.8 nM; 

Figure 2.17), establishing that this sE1E2 construct displays receptor binding critical for native 

HCV infection. While measured CD81-LEL KD values show comparable or higher affinity than 

corresponding glycoprotein affinities for antibodies in Table 2.1, due to the different experimental 

measurement methods, these results provide a comparison between antigens rather than a 

comparison between absolute glycoprotein affinities of receptor versus antibodies. 

 After confirming the native-like antigenicity of sE1E2.LZ, we tested the native-like 

properties of sE1E2.LZ in vivo to determine whether it will elicit antibodies that effectively 

recognize HCV and inhibit infection. Mice were immunized with either mbE1E2, sE1E2.LZ, or 

sE2 and tested for the presence of antibodies that target E1E2 and neutralize the virus (Figure 

2.18). sE1E2.LZ elicited anti-mbE1E2 antibody responses that mimicked responses from 

mbE1E2-immunized mice, while serum binding of mbE1E2 from sE2-immunized mice was lower, 

particularly when compared with the mbE1E2-immunized group (p < 0.01) (Figure 2.18A). 

Binding of immunized sera to H77-pseudotyped HCV pseudoparticles (HCVpp) was also tested 

for all groups (Figure 2.18B), and while mean serum titer was highest for the sE1E2.LZ group, 

there were no significant differences found between immunized group titers based on non-

parametric (Kruskal-Wallis) assessment. Serum neutralization of H77C HCVpp was tested for all 

groups to assess for elicitation of neutralizing antibodies that target the homologous virus (Figure 

2.18C). Testing of pre-immune sera for background neutralization showed no detectable HCVpp 

neutralization (Figure 2.19). sE1E2.LZ-immunized sera showed robust neutralization of HCVpp, 

with neutralization titers (ID50s) that showed no significant difference from mbE1E2-immunized 

and sE2-immunized groups. This initial test of sE1E2.LZ immunogenicity shows that this secreted 
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E1E2 construct induces an antibody response comparable to mbE1E2 and sE2 that can recognize 

homologous E1E2 on the surface of HCVpp and neutralize the virus. 

 

Figure 2.16 Initial antigenicity screening of sE1E2 designs in ELISA. mbE1E2, sE1E2.LZ, 
sE1E2GS3, and sE2 were coated on ELISA plates at a concentration of 2 μg/ml and tested for binding to 
a panel of anti-E2 and anti-E1E2 bnAbs, representing E2 antigenic domains E (HCV1), B (AR3A), and D 
(HC84.26.WH.5DL), as well as E1E2 domains AR4 (AR4A) and AR5 (AR5A). Binding was measured at 
450 nm with an antibody concentration of 0.185 μg/ml. Negative controls shown are an unrelated 
antibody (CA45) or PBS. Figure provided by Ruixue Wang. 
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Table 2.1 Binding affinity of mbE1E2, sE1E2.LZ, and sE2 to a panel of HMAbs. 

Antibody Domain1 
KD (nM)2  Standard 

Error (nM) 
 

mbE1E2 sE1E2.LZ sE2 mbE1E2 sE1E2.LZ sE2 

CBH-4D A 28 26 1 3.2 3.4 0.2 

CBH-4G A 7.8 18 0.5 2.3 3.1 0.3 

HC-1 AM3 B 1.5 2.9 3.6 0.06 0.5 0.4 

HC-11 B 1.8 3.2 11 0.09 0.4 0.6 

CBH-7 C 1 1.7 0.3 0.1 0.1 0.04 

HC84.24 D 0.5 1.3 0.7 0.07 0.1 0.1 

HC84.26 D 1.2 2.6 0.4 0.03 0.4 0.1 

HC33.1 E 3.8 0.9 1.9 0.3 0.09 0.2 

HCV1 E 9.8 3.5 6.2 0.3 0.2 0.3 

AR4A E1E2 2.3 16 - 0.2 1.5 - 

AR5A E1E2 1.5 1.7 - 0.2 0.2 - 

“-” denotes no binding detected 
1Antigenic domain on E2 targeted by antibody (A-E), as previously described (63). “E1E2” denotes 
antibodies that target the E1E2 heterodimer. 
2Measured by dose-dependent ELISA, with standard error values shown for each affinity measurement. 
Figure provided by Young Chang Kim and Zhen-Yong Keck. 
3Affinity-matured HC-1 antibody, as previously described (290). 
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Figure 2.17 Measurement of binding to the CD81 receptor by SPR. CD81 binding kinetic curves to 
(A) mbE1E2, (B) sE1E2.LZ, and (C) sE2 are shown. Kinetic (kon, koff) and steady-state (KD; calculated as 
koff/kon) binding parameters were calculated based on 1:1 model and are shown in each panel. Figure 
provided by Eric Toth. 
 

 
Figure 2.18 Immunogenicity assessment of sE2, mbE1E2, and sE1E2.LZ. Six mice per group were 
immunized with sE2, mbE1E2 or sE1E2.LZ, and sera were tested for binding to (A) mbE1E2 and (B) 
H77C-pseudotyped HCVpp in ELISA. One mouse in the sE2-immunized group died prior to final bleed, 
thus responses for five mice are shown for that group. Endpoint titers were calculated using Graphpad 
Prism, and geometric mean titers are shown for each group as black lines. (C) Neutralization of H77C 
HCVpp by immunized murine sera. ID50 values were calculated in Graphpad Prism for individual mice, 
and average ID50 titers for each immunized group are shown as black lines. The minimal serum dilution 
used for ID50 measurement (1:64) is shown as a horizontal dashed line, for reference. P-values between 
group endpoint titer or ID50 values were calculated using Kruskal-Wallis analysis of variance with 
Dunn’s multiple comparison test (ns, not significant: p > 0.05; *: p £ 0.05; **: p £ 0.01). Figure provided 
by Ruixue Wang. 
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Figure 2.19 Calculated curves for H77C HCVpp neutralization by immunized (Day 56) murine 
sera. Data are shown for individual mice, and names (key on right) correspond to immunized groups (G1: 
mbE1E2, G2: sE1E2.LZ, G3: sE2), with six mice per group. Pooled pre-immune sera from each group 
were tested as controls. One mouse from G3 died prior to Day 56, thus had no serum available for testing. 
Serum dilutions (x-axis) are two-fold serial dilutions, starting at 1:64 (Reciprocal Serum Dilution = 64). 
Figure provided by Ruixue Wang. 

2.4 Discussion 

The development and characterization of a native-like E1E2 antigen containing a leucine 

zipper scaffold offers a proof of principle platform for designing E1E2 vaccine antigens within a 

soluble and secreted backbone. Exploration of this scaffold approach for producing E1E2 from 

other HCV genotypes is warranted, as sE1E2.LZ was only designed using the H77C sequence. E2 

ectodomains from other strains have been characterized structurally (244, 254, 291), and the E1E2 

sequences of those strains could be targets for sE1E2.LZ backbone expression and 

characterization. However, strain-specific sequence changes may affect sE1E2.LZ secretion, as 

differences in E1 and E2 stalk regions could modulate assembly and export from cellular 

components (292, 293). In addition, further studies of sE1E2 secretion may shed light on cellular 

factors that facilitate efficient sE1E2 assembly, which could then be used to either improve 

production levels or examine mechanisms of viral assembly and secretion. 
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There are several avenues for subsequent design and optimization of the sE1E2.LZ 

platform. As a potential vaccine immunogen, a human leucine zipper in sE1E2.LZ poses potential 

problems related to immunizing humans with human protein sequences (294, 295). As the Fos-

Jun leucine zipper is structurally defined at high resolution, this can be used as a template for 

identification of heterodimeric leucine zipper structures from non-human proteins or de novo 

designs of synthetic leucine zipper scaffolds. Furthermore, although the CC1+CC2 sE1E2 design 

(sE1E2.CC) did not yield appreciable secretion, it is possible that alternative hetero-hexameric 

scaffolds, possibly generated using the Fos-Jun leucine zipper structure as a subunit, could promote 

stable E1E2 assembly. Finally, recent studies have shown that cage-like protein nanoparticles can 

provide scaffolds for viral glycoproteins such as RSV F (296, 297) and Influenza hemagglutinin 

(255). A nanoparticle recapitulating the Fos-Jun leucine zipper structure as attachment points could 

be identified or designed to present sE1E2 in a similar nanoparticle format. Binding to E1E2-

specific antibodies, such as AR4A and AR5A, is particularly important for validation of scaffolded 

E1E2 antigens. Since sE1E2.LZ exhibited slightly impaired binding to AR4A, new designed or 

synthetic scaffolds may provide an opportunity to improve upon a human leucine zipper scaffold 

by matching or exceeding wild-type binding to E1E2-specific antibodies. High-resolution 

structural characterization of sE1E2.LZ or subsequent designs, enabled by effective secretion and 

purification of this native-like assembly, can permit an improved view of the determinants of E1E2 

assembly and support structure-based modifications to enhance assembly and stability.  

Although sE1E2.LZ was observed as closer to expected size of a heterodimer than 

mbE1E2, our extensive analytical characterization indicated a likely mix of heterodimers and 

higher-order oligomers. This degree of sample heterogeneity has been found during purification 

of previous soluble construct designs, both with a covalent linker (58) and a designed 
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heterodimeric scaffold (59). Although glycoform heterogeneity is apparent in both constructs, our 

results suggest that it is not the primary source of observed oligomerization. Instead, these 

constructs demonstrate that removing the heterodimer from its natural membrane-attached 

environment does not preclude formation of large assemblies. The E2 ectodomain likely plays a 

large role in aggregation via additional hydrophobic interactions or disulfide crosslinking, as its 

ectodomain contains conserved and surface-exposed tyrosines, tryptophans, and cysteines (62). 

These residues are critical for co-receptor interactions (241, 298), proper ectodomain folding, and 

assembly (87, 292), but could readily mediate E1E2 aggregation without TMDs present. Self-

association of E2 ectodomains has also been noted previously (299), offering additional support 

for the propensity of soluble E2 to exhibit crosslinking. Future studies will examine specific 

determinants of sE1E2.LZ heterogeneity and methods to mitigate it, building on recent efforts to 

obtain homogenous secreted glycoprotein (300). Experimental structural characterization, as noted 

above, would help to delineate the stoichiometry and oligomerization modes of sE1E2 designs.  

In summary, replacing the native TMDs of E1 and E2 with a leucine zipper scaffold 

provides proof of concept that this approach can be used to develop a native-like, antigenically 

and immunogenically intact E1E2 complex without requiring a membrane or detergent 

environment. The design and validation of additional scaffolds that adopt dimeric, trimeric, or 

hetero-hexameric quaternary structures could elucidate key determinants of E1E2 complex 

assembly, another area of research that has been hindered by membrane association of E1E2. In 

addition, this scaffold approach could serve as a platform to study how the substantial genetic 

diversity of HCV translates to structural diversity and envelope glycoprotein dynamics, and how 

structural and dynamic changes, including “open” and “closed” envelope glycoprotein states, may 

promote immune evasion, as noted by recent work (89). Finally, in addition to their use in 



 

58 
 

 

structural characterization, designed soluble E1E2 complexes with functional TMD replacements 

that retain all essential structural properties can serve as an integral component of rational vaccine 

design.   
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Chapter 3: Design of soluble hepatitis C virus E1E2 assemblies with 
alternative scaffolds or ectodomains 
 
 

Abstract 

Hepatitis C virus (HCV) represents a worldwide disease burden, and a vaccine is urgently 

needed to control and eradicate this virus. HCV vaccine design has been difficult in part because 

of substantial genetic diversity and of challenges in isolating and producing the E1E2 glycoprotein 

heterodimer, the primary target of broadly neutralizing antibodies (bnAbs). Recently, a scaffolded 

E1E2 heterodimeric assembly was shown to be secreted, antigenically native, and immunogenic 

in vivo. However, the use of a human sequence to scaffold E1E2 makes the use of this design as a 

vaccine candidate problematic. Previous studies with other viruses have utilized protein scaffolds 

that are synthetic or non-eukaryotic in origin or glycoprotein sequences that are a consensus of a 

reference panel, but the impact of these strategies in improving on the initial sE1E2 design has not 

been examined. In this study, we design and characterize sE1E2 constructs that incorporate 

synthetic or non-eukaryotic heterodimers as scaffolds or consensus sequences or alternative 

isolates as replacement E1E2 ectodomains. Alternative scaffolds were selected either by 

identifying structures in the Protein Data Bank (PDB) with similarity to sE1E2 scaffold with a 

human leucine zipper or by noting its incorporation in other vaccine candidates. Consensus 

sequences for genotypes 1-7 and genotype 1 were designed using a reference panel of full-length 

E1E2 sequences from multiple sources, while alternative isolates were selected from an 

antigenically diverse panel of E1E2 sequences functional as HCV pseudoparticles (HCVpp). 

Several new sE1E2 constructs secreted and displayed native-like antigenicity with a panel of HCV 
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antibodies, providing promising options for HCV vaccine design and additional strategies for 

effectively scaffolding E1E2 glycoproteins. 

3.1 Introduction 

In Chapter 2, we detailed the global impact of Hepatitis C virus (HCV) infection despite 

the success of direct acting antivirals (DAAs), showing the ongoing and urgent need for a vaccine. 

The primary target for a B cell based HCV vaccine is the complex of E1E2 glycoproteins, which 

are essential for viral entry and infection through interactions with co-receptors (236, 237) and are 

thought to form a trimer of heterodimers at the surface of the virion (51). As discussed in Chapter 

2, various challenges to vaccine development posed by HCV have led to numerous efforts to 

delineate the effective immune response to HCV, including characterization of bnAb responses to 

this target, especially to E2 regions classified as antigenic domains (247, 269, 270). Though this 

characterization has led to valuable efforts in structure-based vaccine design (92, 301, 302), the 

lack of an accessible E1E2 heterodimer structure has hindered these efforts. An experimentally 

determined structure of the E1E2 heterodimer was recently reported in a preprint, offering an 

exciting glimpse of this elusive complex that can lead to rapid advances in structure-based vaccine 

design against this target (61). However, this structure does not show the putative “trimer of 

dimers” hetero-hexameric assembly that may best capture E1E2 presentation in native virus (51, 

303). As described in Chapter 2, this slow progress of E1E2 structural characterization is in stark 

contrast with the structural characterization of multiple viruses using various methods of 

modification to stabilize full glycoprotein assemblies (38, 41, 46, 255, 304) and to proceed with 

these immunogens as vaccine candidates (305). Without structural determination of a complete 

and native E1E2 glycoprotein assembly, the goal of a B cell based vaccine that can prevent HCV 

infection may never be reached. 
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 Chapter 2 presented a proof of concept for a scaffolded native-like E1E2 heterodimer that 

can help HCV vaccine design and structural characterization efforts, but important questions about 

the feasibility of this approach remain. Importantly, this scaffolded E1E2 design uses a human 

leucine zipper sequence, and the possibility of generating autoreactive antibodies to a critical 

human transcription factor (294, 295) following vaccine administration makes the inclusion of this 

sequence potentially problematic for HCV vaccine development. Previous research has harnessed 

knowledge of leucine zipper domains to produce coiled coil peptide heterodimers of synthetic 

origin for a variety of potential functions (306-308), roughly resembling the structure of the 

designed heterodimeric scaffold shown to assemble secreted E1E2 (59). Scaffolded immunogens 

for vaccine design have also been combined with methods of multimeric display, boosting 

immunogenicity of this design while maintaining secretion and proper assembly. Self-assembling 

proteins such as ferritin (255, 309, 310) and other non-eukaryotic or synthetic assemblies (297, 

302, 311-314) have enabled multimeric nanoparticle assembly of viral glycoproteins. Other 

designs have utilized the SpyCatcher/SpyTag system to facilitate multimeric assembly through an 

irreversible isopeptide linkage that enforces attachment of a nanoparticle and a target protein (315, 

316). This system has been used for mosaic nanoparticles of viral glycoproteins that show promise 

as vaccine candidates (317-320). Another strategy to advance HCV vaccine design would be 

alteration of the E1E2 ectodomains used in the scaffolded constructs instead of the scaffold itself, 

as the reference isolate H77 used for a previous design is relatively sensitive to antibody 

neutralization (321, 322) and often induces limited neutralization of other genotypes as an 

immunogen (56), though the cause of these limitations is unclear. Consensus sequences of viral 

glycoproteins of HIV (323, 324) and Influenza (325, 326) were found to be highly stable while 

retaining conserved epitopes targeted by neutralizing antibodies. In addition, a recent panel of 
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HCV sequences isolated from patients has characterized neutralization phenotypes more 

representative of antibody responses to the panel overall (321), which may identify HCV isolates 

that better reflect typical neutralization sensitivity. By exploring multiple options for native-like 

presentation and ectodomain representation of E1E2 glycoproteins, the secreted and scaffolded 

design that eliminates risk of inducing autoreactive antibodies, facilitates multimeric display, and 

better induces bnAb responses may become clearer. 

 Here, we characterize a variety of scaffolded E1E2 constructs that either replace the 

previous Fos-Jun leucine zipper scaffold with a synthetic or non-eukaryotic heterodimeric 

assembly or replace the previous E1E2 ectodomain sequences with a consensus sequence or 

different isolate. Alternate scaffolds were selected through structural similarity with the Fos-Jun 

leucine zipper scaffold, stemming from a broad search of the PDB for heterodimeric or hetero-

hexameric assemblies that matched certain criteria. E1E2 consensus sequences were generated for 

genotype 1 only and genotypes 1-7 through a multiple sequence alignment of E1E2 reference 

sequences, and alternative HCV isolates were tested based on previous evaluations of their 

representative neutralization profiles. All constructs were tested for secretion of E1E2 complex 

into supernatant following transfection and expression, with a range of secretion levels detected. 

Promising sE1E2 candidates were tested for binding to a diverse panel of HCV antibodies in 

ELISA that included anti-E1, anti-E2, and anti-E1E2 antibodies. Several new designs showed 

antibody binding levels that were comparable to E1E2 scaffolded with a leucine zipper (sE1E2.LZ) 

and membrane-bound E1E2 (mbE1E2), including for anti-E1E2 antibodies AR4A and AR5A, 

suggesting that these constructs produce properly folded E1E2 heterodimer. One new construct 

also showed comparable binding affinities to HCV bnAbs as measured in quantitative ELISA. By 

using the Fos-Jun leucine zipper scaffold as a reference, we have identified additional scaffolds 
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and ectodomains that enforce secreted and native-like E1E2 assembly while revealing that a coiled 

coil scaffold or a genotype 1a sequence is not determinative. This characterization of additional 

vaccine candidates defines new strategies of E1E2 scaffolding and sequence selection, directly 

advancing HCV vaccine development. 

3.2 Methods 

3.2.1 E1E2 consensus and alternative isolate sequences 

Approximately 3600 full-length E1E2 genotype 1-7 aa sequences from NCBI 

(www.ncbi.nlm.nih.gov) LANL HCV (327, 328), and euHCVdb (329) were downloaded and 

aligned using MAFFT (330). To determine an E1E2 genotype 1-7 consensus sequence using this 

reference database, the database was first filtered by an in-house Perl script so that the remaining 

sequences (N = 43) were no more than 80% identical to each other. This filtered set of sequences 

was then used to generate the consensus sequence cons.80. To determine an E1E2 genotype 1 

consensus sequence, the portion of the reference alignment with approximately 2700 genotype 1 

sequences was filtered by an in-house Perl script so that the remaining sequences were no more 

than 92.5% identical to each other. This filtered set of sequences was then used to generate the 

consensus sequence cons.1.92.5. Phylogenetic trees comparing cons.80 and cons1.92.5 to E1E2 

sequences used to design consensus sequences were visualized in R using the APE software 

package (331). Distances between sequences for each tree were exported from ClustalX2 (332) in 

PHYLIP format. To aid visualization of cons1.92.5 placement, the phylogenetic tree only includes 

a reduced but representative set of genotype 1 sequences used to design cons1.92.5. This reduced 

set was defined by filtering with an in-house Perl script so that the remaining sequences (N = 44) 

were no more than 88% identical to each other. The alignment of H77, cons.80, and cons1.92.5 

sequences in key epitopes were visualized and captured in SeaView version 5 (333). Genotype 1a 
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HCV isolates with neutralization profiles distinct from reference sequence H77 (GenBank 

accession number AF011751) (334) were selected from a genetically diverse panel of HCVpp 

(321, 335). Isolate 1.11.6 (GenBank accession number ALV85487) was chosen as a Tier 1 

representative more sensitive to antibody neutralization than H77, while isolate 1a38 (GenBank 

accession number AHV90280) was chosen because of its high HCVpp infectivity within the 

context of the entire panel. 

3.2.2 Selection of alternative scaffolds 

In order to find additional scaffolds for a soluble and secreted E1E2 candidate, the PDB 

(336) was searched for structures based on the following criteria: heterodimeric or hetero-

hexameric, synthetic or non-eukaryotic in origin, parallel, N-termini in chains proximal to each 

other, and short sequences to minimize the possibility of immunogenicity to the scaffold. 

Searching for these structures was conducted in part by running an automated feature on PDB 

pages to find similar proteins by 3D structure using individual chains from several coiled coil 

scaffolds as input. These structures include the Fos-Jun human leucine zipper heterodimer 

structure (PDB code 1FOS), a portion of which is used in sE1E2.LZ, a synthetic coiled coil 

heterodimer SYNZIP1/SYNZIP2 (PDB code 3HE5), and a synthetic coiled coil hetero-hexamer 

(PDB code 3R48). These structures with synthetic sequences had been found in a previous search 

for self-assembling peptides that involved manual inspection of candidates in the PDB and 

corresponding literature. Both structures were included to aid searches of additional structures 

even though we also planned to test these structures as alternative scaffolds. Any structures 

identified through these structural similarity searches that also matched the above criteria were 

visually inspected in PyMOL (Schrödinger). Structure similarity searches with 1FOS as input 

could not be focused to the portions of chains used in sE1E2.LZ (chain E, residues 161-200 and 
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chain F, residues 285-324), but only structural similarity to these portions following alignment in 

PyMOL was considered for candidate structures identified during these searches.  

In addition, candidate structures in the PDB were identified using a text search for 

“heterodimer”, followed by the filtering of results to structures of non-eukaryotic origin; these 

structures were also manually inspected in PyMOL. No specific distance cutoff was used to define 

proximity of N-termini, but in selected structures, the maximum distance at N-termini between C⍺ 

atoms was approximately 10 Å. The structure of the SpyTag/SpyCatcher complex (PDB code 

4MLS) was identified in an explicit search for the complex following its inclusion in vaccine 

designs. Each selection was included as a C-terminal scaffold in alternative secreted E1E2 (sE1E2) 

designs. 3HE5 and 3R48 structures were superposed on the component of the 1FOS structure used 

in sE1E2.LZ, ensuring that the N-terminal fusion points of the scaffolds for sE1E2.SZ and 

sE1E2.HH were structurally similar to sE1E2.LZ. The residues from 3CFI and 4MLS used as N-

terminal fusion points were selected though structural analysis in PyMOL to estimate which N-

terminal residues would most likely be on the same horizontal plane. All fusions between 

ectodomain and scaffold are separated by a small “PGG” linker. 

3.2.3 Protein expression 

The mbE1E2 and sE1E2 DNA coding sequences were synthesized with a modified tPA 

signal peptide (267) at the N-terminus. All E1E2 sequences were cloned into the vector 

pcDNA3.1+ at the cloning sites of KpnI/NotI (GenScript). Human furin sequence DNA in the 

vector pcDNA3.1 was a gift from Dr. Yuxing Li (University of Maryland IBBR). mbE1E2 was 

transfected with ExpiFectamine 293 into Expi293F cells for expression (Invitrogen). sE1E2 

constructs were co-transfected with furin at a 2:1 ratio with ExpiFectamine 293 into Expi293F 

cells for expression (Invitrogen), using standard protocols outlined by the manufacturer. Harvested 
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supernatants were immediately filtered with a bottle top vacuum 0.22 µm filter and supplemented 

with protease inhibitor cocktail (Thermo Fisher Scientific). 

3.2.4 Antibodies 

To conduct western blot detection, HCV1 and H-111 antibodies were purified in-house 

with a protein A column. Antibodies AR4A, AR5A, AR3A, HC33.1, and IGH526 were used for 

screening of sE1E2 design antigenicity by ELISA. These antibodies were also purified in-house 

except for AR4A and AR5A, which were kindly provided by Mansun Law. 

3.2.5 Protein purification and size exclusion chromatography 

sE1E2 designs were purified using a 5 ml HiTrap Chelating HP IMAC column (Cytiva) 

with a stepwise imidazole gradient from 5 mM to 1 M. Fractions eluted by imidazole were loaded 

onto SDS-PAGE to confirm protein purification, then fractionated with a Superdex 200 increase 

10/300 GL column (Cytiva) equilibrated with 1x Phosphate buffered saline (PBS) pH7 on an 

AKTA FPLC (Amersham). Expressed mbE1E2 was extracted from cell membranes using 1% NP-

9 and purified via sequential Fractogel EMD TMAE (Millipore), Fractogel EMD SO3- (Millipore), 

HC84.26 immunoaffinity (271), and Galanthus Nivalis Lectin (GNL, Vector Laboratories) affinity 

chromatography. mbE1E2 was equilibrated in Tris-buffered saline (TBS; 25 mM Tris-HCl + 150 

mM NaCl) pH 7.5 + 0.5% n-Octyl-b-D-Glucopyranoside (Anatrace) and fractionated with a 

Superdex 200 column (Cytiva) on an AKTA FPLC (Amersham). All samples were concentrated 

prior to size exclusion chromatography with 15 ml Amicon Ultra 3 kDa centrifugal filters 

(Millipore Sigma). All fractions from AKTA FPLC were collected in 500 µl increments. 

Molecular weight standards from the high molecular weight (HMW) calibration kit (Cytiva) were 

compared to purified sE1E2 designs. 
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3.2.6 SDS-PAGE and western blot 

SDS-PAGE and western blot experiments were conducted with 12-well stain-free gels 

(Bio-Rad), with total protein detected using a stain-free imager (Bio-Rad). For SDS-PAGE, 

Precision Plus Unstained Protein Standards (Bio-Rad) were used as a molecular weight marker. 

E2 was detected in western blot with HCV1 (275) at 5 µg/ml as the primary antibody. E1 was 

detected in western blot with H-111 at 10 µg/ml as the primary antibody (276). Each sample was 

incubated with loading dye (4x Laemmli buffer + 10% b-mercaptoethanol) (Bio-Rad) and heated 

to 95°C, except for mbE1E2, which was heated to 37°C. For western blots, stain-free gels were 

transferred to a turbo mini 0.2 µm nitrocellulose membrane (Bio-Rad) using the trans-blot turbo 

transfer system (Bio-Rad). Supersignal Molecular Weight Protein Ladder (Thermo Fisher 

Scientific) was used as a marker for western blots. 10X concentration of supernatant for E1 western 

blots was conducted in 0.5 mL Amicon Ultra 3 kDa centrifugal filters (Millipore Sigma). Proteins 

were detected with 1:10,000 dilution of goat anti-human IgG HRP conjugate (Invitrogen) and 

clarity western ECL substrate (Bio-Rad). All gel pictures were captured using the ChemiDoc 

imaging system (Bio-Rad). 

3.2.7 Enzyme-linked immunosorbent assay (ELISA) 

HCV human monoclonal antibody (HMAb) binding to mbE1E2 and sE1E2 designs was 

evaluated and quantitated by ELISA. 96-well microplates (MaxiSorp, Thermo Fisher) were coated 

with 5 μg/mL GNL (Vector Laboratories) overnight. Purified mbE1E2 was added to the plates at 

1 ug/ml. Expi293 cell culture supernatant of sE1E2 constructs was added to the ELISA plate. After 

the plates were washed with PBS and 0.05% Tween 20, and blocked by Pierce™ Protein-Free 

(PBS) Blocking Buffer (Thermo Fisher Scientific), the HMAbs were tested in duplicate at 0.5 

µg/ml. HMAb binding to supernatant of alternative sE1E2 designs was tested in ELISA using the 
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same procedure, except that HMAbs were tested in duplicate at 1 µg/ml. The binding was detected 

by 1:5000 dilutions of HRP-conjugated anti-human IgG secondary antibody (Invitrogen) with 

TMB substrate (Bio-Rad). The absorbance was read at 450 nm using a SpectraMax MS microplate 

reader (Molecular Devices). Prior to temperature-dependent ELISA, samples of mbE1E2, 

sE1E2.LZ, sE1E2.SZ, and sE1E2.HH at elevated temperatures 37°C or 56°C were heated in a 

water bath for one hour. 

3.2.8 Determination of antibody affinity by quantitative ELISA 

ELISA assays were performed as described (270) to compare antibody affinity to 

sE1E2.LZ, mbE1E2, and sE1E2.SZ. Briefly, plates were developed by coating wells with 500 ng 

of Galanthus Nivalis Agglutinin (GNA) and blocking with 2.5% non-fat dry milk and 2.5% normal 

goat serum in Tris-buffered saline (TBS; 20 mM Tris-HCl, pH 7.5, 150 mM NaCl) + 0.1% Tween 

20. Purified sE1E2.LZ, mbE1E2, and sE1E2.SZ at 5 µg/ml were captured by GNA onto the plate 

and later bound by a range of 0.01-200 µg/ml of antibody. Bound antibodies were detected by 

incubation with alkaline phosphatase-conjugated goat anti-human IgG (Promega), followed by 

incubation with p-nitrophenyl phosphate for color development. Absorbance was measured at 405 

nm and 570 nm. The assay was carried out in triplicate in three independent assays for each HMAb. 

The data were analyzed by nonlinear regression to measure antibody dissociation constants (KD) 

and binding potential (optical density at 405 nm) using Graphpad Prism software, and standard 

deviation values were calculated using the three independent affinity measurements. 
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3.3 Results 

3.3.1 Design of sE1E2 constructs with synthetic scaffolds 

We sought to design additional sE1E2 constructs that built on the proof of concept 

established by secretion and native-like antigenicity of sE1E2.LZ (337). Specifically, we aimed to 

avoid potential issues of incorporating a human sequence into a vaccine immunogen, as the Fos-

Jun sequence included in sE1E2.LZ could induce an autoimmune response to this common protein. 

As shown in Figure 3.1, two sE1E2 constructs were designed with a synthetic scaffold that 

replaced the Fos-Jun human leucine zipper sequence in sE1E2.LZ. Both designs were built from 

the framework of sE1E2.LZ, in which 1) the E1E2 transmembrane domains (TMDs) are replaced 

by a heterodimeric scaffold to enforce assembly, 2) a furin cleavage site (6xArg) is inserted 

between the first scaffold and the E2 ectodomain to facilitate proper folding of the construct prior 

to secretion, 3) a tissue plasminogen activator (tPA) signal sequence is added at the N-terminus to 

boost expression, and 4) a His tag (6xHis) at the C-terminus to aid protein purification. The 

synthetic scaffolds used in these designs were found to be structurally similar to the human Fos-

Jun leucine zipper, allowing for possible characterization of sE1E2 constructs without the potential 

of an autoimmune response. sE1E2.SZ was constructed with SYNZIP1/SYNZIP2, a designed 

coiled coil heterodimer (306), as a scaffold to facilitate sE1E2 assembly. sE1E2.HH was 

constructed with synthetic coiled coil peptides known to self-assemble as a hetero-hexamer (307), 

leading to scaffolded sE1E2 designed as a trimer of heterodimers rather than a single heterodimer, 

potentially mimicking predicted E1E2 display on the viral surface (51). 



 

70 
 

 

 

Figure 3.1 Design of sE1E2 constructs with synthetic scaffolds. (A) Schematic of mbE1E2, sE1E2.LZ, 
sE1E2.SZ, and sE1E2.HH. Regions shown include tPA signal sequence (green box), E1 ectodomain 
(yellow boxes), E2 ectodomain (red boxes), wild-type TMDs (gray boxes), and various scaffolds 
replacing TMDs. E1E2 residue ranges for each region are noted according to H77 numbering. C-terminal 
His tags and furin cleavage sites are shown in boxes and labeled. The expected molecular weight of each 
construct is indicated, and molecular weight of expected oligomers for sE1E2.HH is in parentheses. For 
molecular weight estimations, each N-glycan is approximated to be 2 kDa at each NxS/NxT sequon, a 
value within the molecular weight range of typical N-linked glycans (286). (B) X-ray structure of human 
Fos-Jun heterodimer (PDB code: 1FOS); only the coiled coil region that was used for the sE1E2.LZ 
scaffold is shown. c-Fos and c-Jun chains were colored to match the diagram of sE1E2.LZ. (C) X-ray 
structure of SYNZIP1/SYNZIP2 assembly (PDB code: 3HE5). SYNZIP1 and SYNZIP2 were colored to 
match the diagram for sE1E2.SZ. (D) X-ray structure of W22-L24H/Y15-L24D hetero-hexameric 
assembly (PDB code: 3R48). All chains were colored to match the diagram of sE1E2.HH. All structures 
were visualized in PyMOL (Schrödinger). 
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3.3.2 sE1E2.SZ and sE1E2.HH mimic sE1E2.LZ secretion and antigenicity 

Following transfection and expression, levels of sE1E2.SZ and sE1E2.HH secretion to 

supernatant were directly compared to sE1E2.LZ in western blot (Figure 3.2), with the anti-E2 

antibody HCV1 (275) used to test E2 secretion and the anti-E1 antibody H-111 (276) used to test 

E1 secretion. Both sE1E2.SZ and sE1E2.HH showed robust detection of E1 and E2 protein in 

separate western blots, showing that these constructs secrete sE1E2 in amounts comparable to or 

higher than the sE1E2.LZ construct. The antigenicity of both designs was also compared in the 

supernatant of sE1E2.LZ and mbE1E2 using a panel of HCV antibodies in ELISA, including anti-

E1, anti-E2, and anti-E1E2 antibodies (Figure 3.3). All binding levels of sE1E2.SZ and sE1E2.HH 

to these antibodies were comparable to sE1E2.LZ, suggesting that both constructs mimic the 

native-like antigenicity of the original sE1E2 design. Crucially, binding levels of anti-E1E2 

antibodies AR4A and AR5A were maintained, showing that sE1E2.SZ and sE1E2.HH adequately 

present epitopes sensitive to proper heterodimeric assembly, despite switching to a synthetic 

scaffold, designing a larger oligomeric form, or both.  

We also compared the effects of temperature on antibody binding to sE1E2.SZ, sE1E2.HH, 

sE1E2.LZ, and mbE1E2 as a method of assessing the relative stability of E1E2 assembly in each 

construct. In this experiment, all constructs were heated to 37°C or 56°C prior to a test of AR4A 

binding in ELISA (Figure 3.4). As temperatures increased, all constructs showed reduced binding 

to AR4A, suggesting that higher temperatures destabilized the E1E2 heterodimer and subsequently 

disrupted the conformational and heterodimer-dependent antibody epitope. Of the synthetic 

constructs, sE1E2.SZ showed a smaller reduction of AR4A binding than sE1E2.HH, providing 

evidence that sE1E2.SZ stability may be higher than sE1E2.HH and comparable to sE1E2.LZ. The 

combination of a synthetic scaffold with relatively higher stability at increased temperatures makes 



 

72 
 

 

sE1E2.SZ a promising candidate for vaccine design. Additionally, affinity of HCV antibodies to 

purified sE1E2.SZ protein was measured by quantitative ELISA and compared with purified 

sE1E2.LZ and mbE1E2 (Table 3.1). sE1E2.SZ antibody affinities were comparable to or higher 

than sE1E2.LZ antibody affinities, including for anti-E1E2 antibodies AR4A and AR5A, 

demonstrating that sE1E2.SZ also displays characteristics of a secreted and native-like 

heterodimer. These results also support the strategy of selecting a structurally similar scaffold 

based on a characterized template, despite the synthetic origin of the new scaffold.  

 

Figure 3.2 Evaluation of sE1E2 secretion to supernatant in western blot. HCV1 antibody at 5 μg/ml 
was used for the E2 western blot. H-111 antibody at 10 μg/ml was used for the E1 western blot. All 
sE1E2 supernatant samples were loaded under reducing conditions. Supernatants were concentrated 10X 
prior to E1 western blot. Molecular weights, in kDa, of the western blot markers closest to observed bands 
are indicated on the left. Expected band positions of E1 and E2 are indicated with black triangles on right 
and labeled. 
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Figure 3.3 Binding of sE1E2 constructs and mbE1E2 to HCV HMAbs in ELISA. Supernatant from 
expressed sE1E2.LZ, sE1E2.SZ, and sE1E2.HH was added to ELISA plates and tested for binding to a 
panel of E1, E2, and E1E2 HMAbs, representing E1 N-terminus (H-111), E2 antigenic domains E (HCV1 
and HC33.1), B (AR3A), and D (HC84.26.WH.5DL; abbreviated to HC84.26), as well as E1E2 domains 
AR4 (AR4A) and AR5 (AR5A). mbE1E2 protein was coated on ELISA plates at a concentration of 1 
μg/ml. Binding was measured at 450 nm with an antibody concentration of 0.5 μg/ml. Negative control 
shown is an unrelated antibody (CA45). Figure provided by Ruixue Wang. 
 

 
Figure 3.4 Binding of sE1E2 constructs and mbE1E2 to HCV HMAbs in ELISA at elevated 
temperatures. Prior to ELISA assay, samples were heated to 37°C, 56°C, or kept at room temperature for 
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one hour. Heated or room temperature supernatant from expressed sE1E2.LZ, sE1E2.SZ, and sE1E2.HH 
was added to ELISA plates and tested for binding to a panel of E1, E2, and E1E2 HMAbs, representing 
E1 N-terminus (H-111), E2 antigenic domains E (HCV1 and HC33.1), B (AR3A), and D 
(HC84.26.WH.5DL; abbreviated to HC84.26 in panels), as well as E1E2 domains AR4 (AR4A) and AR5 
(AR5A). Heated or room temperature mbE1E2 protein was coated on ELISA plates at a concentration of 
1 μg/ml. Binding was measured at 450 nm with an antibody concentration of 0.5 μg/ml. The % decreases 
shown in each panel refer to the reduction in O.D. for supernatant heated to 56°C compared to O.D. at 
room temperature. Asterisks above the bars for AR4A/AR5A binding at 56°C are only meant to highlight 
the labeled reductions, and do not indicate statistical significance. Negative control shown is an unrelated 
antibody (CA45). Figure provided by Ruixue Wang. 
 
Table 3.1 Antigenic analysis of mbE1E2, sE1E2.LZ, and sE1E2.SZ by quantitative ELISA. 

Antibody Domain K
D
 (nM)1 

  mbE1E2 sE1E2.LZ sE1E2.SZ 
CBH-4D A 17 ± 1 28 ± 3 22 ± 3 
CBH-4G A 13 ± 1 28 ± 2 23 ± 2 
AR3A B 1.2 ± 0.3 4.6 ± 0.2 1.9 ± 0.2 
HEPC74 B 0.57 ± 0.04 3.0 ± 0.1 0.88 ± 0.03 
HC84.26.WH.5DL D 0.94 ± 0.06 1.5 ± 0.1 0.94 ± 0.02 
HC84.1 D 0.81 ± 0.11 1.3 ± 0.1 0.43 ± 0.08 
HC33.1 E 5.7 ± 0.2 0.35 ± 0.03 0.27 ± 0.02 
HCV1 E 5.7 ± 0.2 0.35 ± 0.01 0.35 ± 0.01 
AR4A E1E2 2.3 ± 0.2 16 ± 1 1.5 ± 0.12 
AR5A E1E2 2.2 ± 0.2 7.4 ± 2.2 3.5 ± 0.2 

 
1Figure provided by Zhen-Yong Keck 
2Affinity of sE1E2.SZ to a given antibody showed an increase of more than 10-fold when compared to 
sE1E2.LZ 

3.3.3 Design of sE1E2 constructs with alternative scaffolds 

Encouraged by the initial characterization of sE1E2 designs with synthetic scaffolds, we 

expanded our search and design process to test alternative scaffolds and ectodomain sequences for 

assembly, secretion, and native-like antigenicity. These searches were conducted to find an optimal 

sE1E2 scaffold that may better enforce heterodimer or hetero-hexamer assembly or present a 

smaller immunogenic target and to find E1E2 ectodomains that can better induce bnAb responses, 

characteristics that could all lead to an improved sE1E2 immunogen for a vaccine. Constructs in 

Figure 3.5 include alternative scaffolds that were designed following searches of the PDB (336) 

for heterodimeric or hetero-hexameric structures that were synthetic or non-eukaryotic in origin. 
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These searches led to the design of sE1E2 scaffolded from a variety of sources, with only some 

alternative scaffolds showing structural similarity with the coiled coil leucine zipper scaffold in 

sE1E2.LZ. The synthetic heterodimer IAAL-E3/IAAL-K3 was designed de novo as a coiled coil 

heterodimer and characterized as highly stable despite its smaller size (308); this heterodimer was 

used as an alternative scaffold for the construct sE1E2.1U0I due to its structural similarity to the 

Fos-Jun leucine zipper scaffold and to its smaller size that would present a minimized 

immunogenic target in a vaccine candidate.  

Other structures selected as alternative scaffolds were non-eukaryotic in origin and, though 

matching the principle of heterodimeric scaffolding in sE1E2.LZ, showed less structural similarity 

to the Fos-Jun leucine zipper scaffold. A structure of the EpsI/EpsJ heterodimer from a bacterial 

type 2 secretion system (338) was incorporated as a scaffold for sE1E2.3CFI because it contained 

a N-terminal and parallel coiled coil assembly that resembled the coiled coil association of the 

Fos-Jun leucine zipper scaffold. The SpyTag/SpyCatcher complex, which forms a heterodimer 

when the SpyTag peptide irreversibly links to the single domain SpyCatcher protein (315), was 

also tested as a non-eukaryotic scaffold despite little structural similarity with Fos-Jun. This 

complex as structurally characterized (316) was used as an alternative scaffold in two designs, one 

with the SpyTag after E1 and SpyCatcher after E2 (sE1E2.SpyC) and one with the placement of 

the scaffolds switched (sE1E2.SpyT). This selection of two designs was based on the documented 

strength of SpyTag/SpyCatcher association, its utility in linking glycoprotein antigens of other 

viruses to nanoparticles for vaccine designs (317-320), and its successful stabilization of a large 

heterodimer after fusion to the C-terminus that aided structural characterization (339). In addition, 

the constructs that include 3CFI or SpyTag/SpyCatcher help to test the determinants for 
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scaffolding E1E2; specifically, whether a helical and coiled coil scaffold is necessary for assembly, 

or if spatial proximity of N-termini is sufficient. 

 

Figure 3.5 Design of sE1E2 constructs with alternative scaffolds. (A) Schematic of sE1E2 constructs 
sE1E2.1U0I, sE1E2.3CFI, sE1E2.SpyC, and sE1E2.SpyT. Regions shown include tPA signal sequence 
(green box), E1 ectodomain (yellow boxes), E2 ectodomain (red boxes), wild-type TMDs (gray boxes), 
and various scaffolds replacing TMDs. E1E2 residue ranges for each region are noted according to H77 
numbering. C-terminal His tags and furin cleavage sites are shown in boxes and labeled. The expected 
molecular weight of each construct is indicated. For molecular weight estimations, each N-glycan is 
approximated to be 2 kDa at each NxS/NxT sequon, a value within the molecular weight range of typical 
N-linked glycans (286). (B) NMR structure of synthetic IAAL-E3/IAAL-K3 heterodimer (PDB code: 
1U0I). IAAL-E3 and IAAL-K3 chains were colored to match the diagram of sE1E2.1U0I. (C) X-ray 
structure of EpsI/EpsJ assembly (PDB code: 3CFI). EpsI and EpsJ chains were colored to match the 
diagram for sE1E2.1U0I. (D) X-ray structure of SpyTag/SpyCatcher complex (PDB code: 4MLS). 
SpyTag and SpyCatcher chains were colored to match the diagrams of sE1E2.SpyC and sE1E2.SpyT. All 
structures were visualized in PyMOL (Schrödinger). 
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3.3.4 Design of sE1E2 constructs with alternative ectodomains 

Constructs containing alternative E1E2 ectodomain sequences were selected either from 

designed consensus sequences or from an existing panel of functional HCV isolates with known 

neutralization profiles. To best match the original Fos-Jun leucine zipper assembly while still 

testing ectodomains with a non-human scaffold, the SYNZIP1/SYNZIP2 heterodimer was used as 

a scaffold for all alternative ectodomain constructs. Two designs incorporated consensus 

ectodomains, each utilizing a different scope of HCV genetic diversity. One consensus sequence 

that formed the ectodomains of sE1E2.cons.80 is pan-genotypic, as it was designed using a non-

redundant set of aligned E1E2 sequences from genotypes 1-7. The other consensus sequence, 

contained in sE1E2.cons1.92.5, was designed with a non-redundant set of E1E2 sequences only 

from genotype 1, making this sequence more restricted genetically but focused on the most 

prevalent genotype in the utilized E1E2 reference dataset. In separate phylogenetic trees, both 

consensus sequences do not form a branch with reference sequences used to generate each 

consensus sequence, showing that these sequences are not biased toward any genotype (Figure 

3.6) or genotype 1 subtype (Figure 3.7).  

Though the generation of these consensus sequences is unbiased by genotype or subtype, 

it should be noted that genotype 6 sequences in Figure 3.6 and genotype 1b sequences in Figure 

3.7 appear overrepresented in their respective trees. However, this observation may largely be 

explained by a higher level of genetic diversity within these groups, leading to more selections 

within a sequence identity threshold. This contribution is most evident in genotype 6, as it contains 

the most confirmed subtypes of any HCV genotype (67). An increase in genetic diversity within 

genotype 1b is less clear, but recent research has found higher levels of diversity in hypervariable 

region 1 (HVR1) of genotype 1b than genotype 3 and higher mutational flexibility than genotype 



 

78 
 

 

1a, which could contribute to the increased number of unique sequences within genotype 1b (340, 

341). At the same time, both consensus sequences mostly retained common bnAb epitopes in E1 

and E2, suggesting that these consensus ectodomains can readily bind antibodies that recognize 

highly conserved epitopes that are relevant for HCV neutralization (Figure 3.8). Sequence 

differences between H77 and either consensus sequence were found in H-111 (276), domain D 

(271), and domain B (254) antibody epitopes (Figure 3.8A, Figure 3.8D-E). These differences 

were the least concerning in H-111, which is a non-neutralizing antibody and likely does not 

impact bnAb responses directly. Though sequence differences were found in domain B and D 

epitopes that contain bnAbs, key residues in those domains were nearly or completely conserved 

in both consensus sequences (62). Alternative ectodomains from HCV isolates were selected from 

a diverse panel of E1E2 HCVpp (321) that described a reduced set of isolates with distinct patterns 

of sensitivity to antibody neutralization, allowing us to pick isolates with promising properties. 

Isolate 1.11.6 in the reduced panel was more sensitive to antibody neutralization than the reference 

sequence H77 used for sE1E2.LZ. Isolate 1a38 showed high HCVpp infectivity that matched 

levels of isolate 1b09, which has been used for structural characterization of the E2 ectodomain 

(244). Since their characteristics resembled those of well characterized genotype 1a isolates, 1a38 

and 1.11.6 were incorporated into separate sE1E2 constructs to test the utility of these sequences 

in proper assembly and secretion of E1E2.  
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Figure 3.6 Phylogenetic tree of cons.80 with sequences from genotypes 1-7. Branches containing 
E1E2 sequences from genotypes 1-7 are highlighted with arced or straight lines and labeled. The branch 
corresponding to the cons.80 E1E2 consensus sequence is indicated with an asterisk. The scale for the 
branch lengths within this tree is identified with red text. 
 
 

CO
N.
all
se
qs
.al
n.c
ull
ed
80
.fa

pp
1a
00
9

pp
1b
01
4

Re
f.1
g.
ES

.x
.1
80
4.
AM

91
06
52

Re
f.1
.G
B.
x.
16
05
26
.K
C2
48
19
5

AI
D
60
26
9.
1

UKNP4.1.1
UKNP4.3.1

Ref.4m
.GB.x.HCV−4m

/GB/BID−G1657.JX227972

AMQ09616.1

Ref.4L.GB.x.HCV−4l/GB/BID−G1246.JX227957

ABV55387.1

ACL68400.1

UKNP5.1.1

UKNP2.1.1
AGV23521.1

AEJ86545.1
UKNP2.4.1

BAK6
1658.1

AGV
2351

9.1
YP 009272536.1

UK
NP
3.1
.2

AD
D6
99
58
.1

Re
f.3
b.J

P.
x.H

CV
−T
r.D

49
37

4

Re
f.3

i.IN
.0

2.
IN

D−
HC

V−
3i.

FJ
40

70
92

Re
f.3

k.
ID

.x
.J

K0
49

.D
63

82
1

Re
f.3

h.
CA

.x
.Q

C2
9.

JF
73

51
21

R
ef
.6
k.
VN

.x
.V
N
40
5.
D
84
26
4

Ref.6i.TH.x.TH24.EU246935

AJF19157.1

Ref.6h.VN.x.VN004.D84265

Ref.6v.CN.x.KM046.EU798761

ACC78281.1

UKNP6.1.1

Ref.6r.CA.x.QC245.EU408328

Ref.6e.VN.x.D88.EU246932
AJO71610.1AJF19160.1

Ref.6t.VN.x.D49.EU246939

Ref.6d.VN.x
.VN235.D84

263

AIO08
085.1

Ref.
6w.T

W.x.HCV−6−D370.EU643836

Ref
.6g.ID.x.JK046.D63822

AII
25
86
2.1

0.1

Gen
ot

yp
e 6

Genotype 3

Genotype 2

Genotype 7

Genotype 5

Genotype 4
Genotype 1

*



 

80 
 

 

 
Figure 3.7 Phylogenetic tree of cons1.92.5 with sequences from genotype 1 subtypes. Branches 
containing E1E2 sequences from genotype 1 subtypes are highlighted with arced or straight lines and 
labeled. Sequences in this tree represent subtypes a-e, g-j, l-n, and unassigned subtypes (as of March 2022 
(66)). The scale for the branch lengths within this tree is identified with red text. 
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Figure 3.8 Comparison of H77 and consensus sequences at residue positions of key epitopes. Any 
sequence difference between H77 and cons1.92.5 or cons.80 was highlighted with an arrow above the 
sequence alignment. (A) H-111 epitope comparison, with five sequence differences indicated. (B) 
IGH526 epitope comparison showed complete sequence conservation. (C) Domain E epitope comparison 
showed complete sequence conservation. (D) Domain D epitope comparison, with four sequence 
differences indicated. (E) Domain B epitope comparison, with two sequence differences indicated (F) 
AR4A epitope comparison showed complete sequence conservation. Sequence ranges of H77, cons1.92.5, 
and cons.80 are labeled by sequence name on left-side panels A, C, and E, but these labels also apply to 
right-side panels B, D, and F. Sequence ranges or individual residues in E1 or E2 include a label above 
the corresponding residue position in the alignment. Residues are colored using default settings in 
visualization of sequences with SeaView. 

3.3.5 Characterization of alternative sE1E2 constructs 

Following expression, each construct was tested for secretion of E1E2 ectodomains to the 

supernatant. The ectodomains were detected in separate western blots, probing with the same 

antibodies used to separately assess secretion of E1 and E2 in sE1E2.LZ, sE1E2.SZ, and 
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sE1E2.HH. E2 was detected in the supernatant for all constructs, with constructs that have larger 

scaffolds found at higher molecular weights than sE1E2.LZ (Figure 3.9A). E1 was also detected 

by western blot for all constructs except sE1E2.1U0I and sE1E2.cons.80 (Figure 3.9B), largely 

confirming that these constructs secrete as designed and often at levels comparable to sE1E2.LZ. 

sE1E2.SpyC and sE1E2.SpyT showed single bands with an estimated molecular weight of about 

100 kDa even under reducing conditions. This result suggests that E1E2 scaffolded by the 

SpyTag/SpyCatcher complex is still covalently linked in the presence of SDS, consistent with 

previous characterizations of the SpyTag/SpyCatcher complex (315). The lack of E1 detection for 

sE1E2.cons.80 may be explained by multiple sequence differences in the H-111 epitope between 

the H77 and cons.80 sequences, as shown in Figure 3.8A. 

Supernatant of designed sE1E2 constructs was also tested for binding to a panel of five 

HCV bnAbs using ELISA, including anti-E1, anti-E2, and anti-E1E2 antibodies (Figure 3.10). 

Binding to antibodies HCV1 and HC84.26.WH.5DL (271) was relatively high for all constructs. 

This result was especially encouraging for the tested consensus sequences, which showed sequence 

differences in domain D (Figure 3.8D) but still bound to domain D antibody HC84.26.WH.5DL 

at levels comparable to sE1E2.SZ. sE1E2.1U0I, sE1E2.3CFI, sE1E2.1a38, and sE1E2.1.11.6 

showed decreased binding to IGH526, AR4A, and AR5A, suggesting that these constructs may 

not form native-like E1E2 heterodimers. However, the constructs sE1E2.SpyC, and sE1E2.SpyT, 

sE1E2.cons.80, and sE1E2.cons1.92.5 showed antibody binding that was comparable to sE1E2.SZ 

and sE1E2.HH, showing that each design exhibits native-like antigenicity and represents a 

promising candidate of secreted E1E2 heterodimer with a synthetic or non-eukaryotic scaffold. 

Results for sE1E2.SpyC and sE1E2.SpyT suggest that methods of E1E2 scaffolding independent 

of coiled coil assembly are also feasible, as the SpyTag/SpyCatcher complex uses an entirely 
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different mechanism of self-assembly and is structurally dissimilar to coiled coil peptide structures. 

Alternative ectodomain constructs sE1E2.cons.80 and sE1E2.cons1.92.5 exhibited native-like 

antigenicity while sE1E2.1a38 and sE1E2.1.11.6 showed decreased binding to AR4A and AR5A, 

suggesting that the utilization of consensus sequences may be more promising than selecting 

alternative isolates. Consensus sequence immunogens have also induced cross-reactive antibodies 

against diverse viral glycoproteins (342, 343), supporting the consideration of a E1E2 consensus 

sequence for vaccine design. The reduction in AR4A and AR5A binding to alternative ectodomain 

constructs was unexpected, as there was no clear reason why these genotype 1a ectodomains would 

show differences in assembly with H77, a sequence in the same subtype. There may be sequence 

determinants within 1a38 and 1.11.6 that modulate heterodimer conformation or dynamics and 

lead to reduced AR4A and AR5A recognition in an sE1E2 context, but any investigation of these 

contributions was beyond the scope of this study. 
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Figure 3.9 Detection of alternative sE1E2 constructs in western blot. (A) Western blot probing for E2 
with HCV1 antibody at 5 μg/ml. (B) Western blot probing for E1 with H-111 antibody at 10 μg/ml. All 
sE1E2 supernatant samples were loaded under reducing conditions. Molecular weights, in kDa, of the 
western blot markers closest to observed bands are indicated on the left. Expected band positions of E1, 
E2, or E1E2 heterodimer are indicated with black triangles on right and labeled. The “sE1E2” part of 
sE1E2 construct names was omitted from labels for clarity. Figure provided by Dongxiu Zhang Spiering. 
 
 

S
Z

H
H

1U
0I

3C
FI

S
py
T

S
py
C

co
ns
.8
0

co
ns
1.
92
.5

1a
38

1.
11
.6

60 kDa E2

MW

S
Z

H
H

1U
0I

3C
FI

S
py
T

S
py
C

co
ns
.8
0

co
ns
1.
92
.5

1a
38

1.
11
.6

30 kDa E1

MW

A

B

100 kDa E1E2

100 kDa E1E2



 

85 
 

 

 
Figure 3.10 Antibody binding to alternative sE1E2 constructs in ELISA. Supernatant from expressed 
sE1E2 constructs was added to ELISA plates and tested for binding to a panel of E1, E2, and E1E2 
bnAbs, representing E1 (IGH526), E2 antigenic domains E (HCV1) and D (HC84.26.WH.5DL), as well 
as E1E2 domains AR4 (AR4A) and AR5 (AR5A). Binding was measured at 450 nm with an antibody 
concentration of 1 μg/ml. The “sE1E2” part of sE1E2 construct names was omitted from labels for clarity. 
Figure provided by Dongxiu Zhang Spiering. 

3.4 Discussion 

We have designed and characterized various sE1E2 constructs that contain either an 

alternative scaffold (synthetic or non-eukaryotic) or alternative ectodomains (consensus or 

different HCV isolate). Many of these constructs showed effective secretion of E1E2 ectodomains 

in western blot and native-like antigenicity in ELISA, with sE1E2.SZ found as a synthetic analog 

to sE1E2.LZ. Other constructs showed little structural similarity with sE1E2.LZ, but still produced 

secreted and native-like sE1E2 in the same assays. sE1E2 designs with consensus sequences of 

genotype 1-7 and genotype 1 E1E2 were especially promising, demonstrating that a sequence 

designed from a pool of naturally occurring HCV sequences preserved both epitopes critical for 

bnAb recognition and ectodomain residues required for proper assembly of the heterodimer. 
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Assessing alternatives for sE1E2 design found possible improvements in the scaffold and 

ectodomain sequence components, providing further support for the proof of concept established 

by sE1E2.LZ while also broadening the options for future iterations. 

Although all sE1E2 constructs were scrutinized for proper secretion and assembly via 

interactions with HCV bnAbs, the determinants of and potential differences in construct formation 

are largely unclear. For sE1E2.LZ, analytical ultracentrifugation (AUC) and size exclusion 

chromatography with multi-angle light scattering (SEC-MALS) were performed to fully 

characterize the formation of purified construct, finding both sE1E2.LZ dimers and monomers in 

solution (337). The sE1E2 constructs that incorporate alternative scaffolds or ectodomains have 

not been tested using the same techniques, making the heterogeneity and true molecular weight of 

these constructs unknown. This characterization is especially important for sE1E2.HH, given its 

design as a hetero-hexameric construct and expected difference in molecular weight from sE1E2 

constructs designed as heterodimers. Gathering data on sample heterogeneity for each construct 

will not only determine how much the predicted sE1E2 design differs from its behavior in solution, 

but will help elucidate the impact of selected scaffolds on the prevalence of higher molecular 

weight populations, which may inform development of an HCV vaccine candidate. Additionally, 

further research can test the native-like properties of subsequent sE1E2 designs beyond recognition 

by bnAbs. As with sE1E2.LZ characterization, binding of sE1E2 constructs to the large 

extracellular loop of CD81 (CD81-LEL) should be tested, as this interaction is crucial for infection 

and entry in native virus (344, 345) and would provide more confirmation that E1E2 is properly 

assembled in these constructs.  

sE1E2 constructs with synthetic or non-eukaryotic scaffolds showed a range of secretion 

levels and antigenicity, helping to assess the boundaries of scaffold usage that can result in secreted 
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and native-like sE1E2 heterodimer. Coiled coil scaffolds of synthetic origin showed the most 

success, with sE1E2.SZ and sE1E2.HH suggested to form native-like complexes. However, 

sE1E2.1U0I did not show E1 secreted in western blot or native-like antigenicity in ELISA, despite 

including a parallel and synthetic coiled coil heterodimer as a scaffold. One possible explanation 

for diminished secretion and assembly could be the length of the scaffold; coiled coil chains in 

1U0I are only 21 amino acids long (308), less than half the length of chains used for scaffolds in 

sE1E2.LZ and sE1E2.SZ. Though this reduced scaffold length presents a smaller immunogenic 

target as a prospective vaccine candidate, the results for sE1E2.1U0I suggest that this scaffold may 

be too small to produce an E1E2 heterodimer with native-like properties. Even the smallest 

scaffold by individual chain is 32 amino acids in length (sE1E2.HH), and reducing this length 

further may make any coiled coil scaffold unable to facilitate E1E2 assembly effectively, 

regardless of the ability of the scaffold to form a stable heterodimer on its own. Another possibility 

is that the current orientation and placement of 1U0I components is not optimal for facilitating 

sE1E2 assembly and secretion. With the native orientation of E1E2 ectodomain assembly 

unknown, it is unclear if heterodimeric coiled coil scaffolds need to be attached to specific C-

terminal positions or if proper assembly would occur regardless of the order of scaffold 

components. To investigate these possibilities, the scaffold components for sE1E2 designs with 

coiled coil scaffolds could be switched and retested for secretion and antigenicity. In identifying 

the optimal placement of coiled coil scaffolds, this future work could help determine structural 

restraints in sE1E2 scaffolding that may provide insights for native E1E2 assembly and rational 

vaccine design. 

 sE1E2 constructs with non-eukaryotic scaffolds also showed a range of secretion and 

antigenicity, with the most promising results from scaffolds with no structural similarity to coiled 
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coil heterodimers. The constructs utilizing the SpyTag/SpyCatcher complex (sE1E2.SpyC, 

sE1E2.SpyT) showed more native-like antigenicity than a scaffold with N-terminal coiled coil 

regions (sE1E2.3CFI), which may stem from the unique mechanism of SpyTag/SpyCatcher self-

assembly through covalent isopeptide linkage (315). This strong and irreversible linkage between 

scaffold components in sE1E2.SpyC and sE1E2.SpyT produced secreted and native-like E1E2 

regardless of where SpyTag and SpyCatcher were placed, suggesting that this scaffolding method 

could be a powerful tool for facilitating E1E2 assembly. Furthermore, this complex could also lead 

to multimeric display of sE1E2, either alone or in combination with other scaffolds. This approach 

may utilize self-assembling nanoparticles in a method analogous to previous studies of vaccine 

candidates using SpyTag/SpyCatcher (319, 320), which could facilitate coupling to nanoparticles 

following expression and allow production of nanoparticle-displayed sE1E2 with increased 

immunogenicity.  

For the tested alternative ectodomains, consensus sequence antigenicity was much closer 

to native E1E2 than ectodomains from isolates 1.11.6 or 1a38. Although both isolates were 

previously characterized as functional and infectious in HCVpp (321), it is still possible that 

differences with the H77 sequence may contribute to decreased stability of a scaffolded E1E2 

heterodimer and decreased antigenicity. In contrast, the designed consensus sequences may 

represent ectodomains that are highly stable versions of a heterodimer for genotype 1 or genotypes 

1-7, producing robust immunogens without having to account for the sequence of one isolate that 

could contain unique characteristics affecting sensitivity to bnAb neutralization. Future work 

should assess potential changes in sE1E2 construct yield and stability when changing ectodomain 

sequences, helping to elucidate sequence determinants for native-like antigenicity of sE1E2 and 

improved protein yield for a prospective immunogen. This research could incorporate previously 
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developed E1E2 consensus sequences, which often were designed from genotype 1 sequences 

(346, 347). Also, the alternative isolates may not have been ideal candidates for sE1E2 designs, as 

they may have modulated E1E2 heterodimeric assembly in a way that makes sE1E2 non-native 

such as shifts in conformational dynamics or changes in the relative stability of the complex. In 

future work, ectodomains from other isolates could be selected that have low or medium levels of 

HCVpp infectivity – high for isolates H77 and 1b09 (321) that have been structurally characterized 

(244, 251) – to better determine how this metric could influence native-like presentation in an 

sE1E2 context. 
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Chapter 4: Prediction of hepatitis C virus polymorphisms impacting 

antibody neutralization and residues critical for E1E2 heterodimeric 

assembly 

 

Abstract 

Hepatitis C virus (HCV) is a worldwide disease burden, and an effective vaccine is needed 

to facilitate reduced infection and global eradication. Surface glycoproteins E1 and E2 form a 

heterodimer at the surface of the virion and are the primary target for broadly neutralizing 

antibodies (bnAbs), making these proteins the primary target as immunogens for vaccine 

development. However, factors such as HCV sequence variability and the lack of an accessible 

E1E2 heterodimer structure have hindered HCV vaccine design, as the sequence determinants of 

increased resistance to bnAbs and of proper E1E2 assembly remain largely unclear. Here, we 

analyze previously published datasets on HCV antibody neutralization and E1E2 mutagenesis to 

predict polymorphisms contributing to changes in antibody neutralization and residues required 

for proper assembly of the E1E2 heterodimer. Polymorphisms in 80 E1E2 residue positions were 

predicted to affect antibody neutralization through the analysis of neutralization data with a 

predictive algorithm and comparisons of neutralization results between highly similar sequences, 

with some positions not examined in previous studies. Hierarchical clustering of E1E2 

mutagenesis datasets found residues that primarily affected anti-E1E2 antibody binding, 

suggesting that these residues are critical for E1E2 assembly. Both sets of predictions were 

evaluated for possible structural effects, either on partial E1 or E2 structures with computational 

mutagenesis or on a recently reported structure of the E1E2 heterodimer. Overall, these in-depth 
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analyses of existing datasets detected E1E2 residues with predicted impacts on antibody 

neutralization and heterodimeric assembly with unclear mechanisms that warrant further 

investigation. 

4.1 Introduction 

As discussed in Chapters 2 and 3, a vaccine against hepatitis C virus (HCV) is urgently 

needed to combat infection globally, even though direct acting antivirals (DAAs) can cure 

infection at high rates. Characterization of broadly neutralizing antibody (bnAb) responses to HCV 

E1E2 glycoproteins have helped to inform vaccine design approaches. Both chapters also 

mentioned that antibody responses to E1E2 can be defined by patterns of key residues of antibody 

epitopes, especially for regions of antibody binding on E2 that have been classified as antigenic 

domains (A-E) (62, 63), antigenic regions (AR1-AR3) (55), or epitopes (I-III) (348). Additional 

antigenic regions have been defined for antibody epitopes that contact residues on both E1 and E2 

(AR4-AR5) (87, 243), along with characterized anti-E1 antibodies without previously defined 

classifications (276, 349, 350). Some of these antigenic domains are highly conserved (301, 351, 

352) or overlap with the binding site of critical co-receptor CD81 (54, 353), making these antibody 

epitopes promising targets for generating bnAb responses (243, 244, 354). Several of these bnAbs 

have been characterized extensively, both in the breadth of HCV isolate neutralization (55, 240, 

355) and the structural basis of antibody interactions with bnAb epitopes (96, 252, 254).  

However, E1E2 genetic diversity and sequence polymorphisms have restricted the breadth 

of neutralizing antibodies and contributed to viral immune evasion and escape, including in clinical 

trials (97) and in vitro despite substantial fitness costs in some cases (99, 100, 102). Though some 

bnAb epitopes are highly conserved, sequence polymorphisms in E1E2 have been found to reduce 

antibody neutralization even when those polymorphisms are not directly contacted by the antibody 
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(101-103). These extra-epitopic residues have been found primarily in regions of E2, including 

hypervariable region 1 (HVR1), hypervariable region 2 (HVR2), and the E2 back layer. To 

examine contributions of extra-epitopic residues to neutralization resistance more closely, El-

Diwany et al. utilized neutralization data of domain E antibody HC33.1 (268) and anti-E1E2 

antibody AR4A (247) against 113 genotype 1a and 1b HCV isolates to predict and experimentally 

validate sequence polymorphisms that increase resistance to antibody neutralization (103). Though 

this analysis suggested possible mechanisms for antibody resistance via polymorphisms, including 

a shift in SR-BI co-receptor dependency, the full breadth and possible mechanisms of extra-

epitopic contributions to antibody resistance remain unclear. In other studies, the breadth of 

antibody neutralization to a diverse set of HCV sequences has been evaluated (240, 356), but the 

contributions of extra-epitopic residues were not specifically investigated, despite the possibility 

of substantial impacts on antibody neutralization. 

 Recently, mechanisms of neutralization resistance have been explored through the effects 

of HCV E1E2 flexibility and dynamics (89, 98). For instance, sequence differences in HVR1 were 

associated with a shift in SR-BI dependency and altered dynamics of viral breathing, specifically 

between putative open and closed E2 states that control accessibility of the CD81 binding site to 

co-receptors. While these sequence differences and others may play a role in resistance to antibody 

neutralization through shifts in glycoprotein flexibility, the potential structural effects of 

polymorphisms have not been examined within the context of E1E2 assembly. E1E2 is thought to 

form a trimer of heterodimers on the viral surface (51), and several studies have performed 

mutagenesis on E1E2 residues to determine critical residues for heterodimeric assembly. Most 

residues suspected of contributing to E1E2 heterodimerization were in the hydrophobic E2 

transmembrane domain (TMD), E2 stem domain, or the E1 N-terminal domain (234, 298, 357), 
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but it has been difficult to confirm which E1E2 residues are critical for heterodimerization without 

a characterized and accessible heterodimer structure. Elucidation of critical E1E2 residues 

continues to be confounded by this knowledge gap, despite high-throughput mutagenesis data of 

E1E2 that have helped to characterize the epitopes of neutralizing antibodies in recent years (87, 

88). Although mutations in determinants of E1E2 assembly may contribute to changes in binding 

of neutralizing antibodies to a variety of epitopes, this information has not been harnessed to help 

elucidate the mechanisms of E1E2 heterodimerization, leaving the overall picture of E1E2 

assembly determinants unclear. 

 Here, we utilize previously published neutralization and mutagenesis datasets to predict 

both polymorphisms associated with changes to antibody neutralization and E1E2 residues critical 

for heterodimerization. For polymorphism predictions, we used neutralization data from two 

different sources (103, 356), where several antibodies to different epitopes were tested for 

neutralization on a diverse set of HCV isolates. An algorithm called Subject-adjusted 

Neutralization Antibody Prediction of Resistance (SNAPR) was modified to predict 

polymorphisms contributing to neutralization changes in a set of genotype 1a sequences with IC50 

data, mimicking the strategy of predicting polymorphisms from a previous study (103). Highly 

similar sequences in both neutralization datasets were also compared to find the largest fold 

changes for a given antibody between E1E2 sequences with one or two mutations. Following these 

strategies, polymorphisms predicted to contribute to neutralization changes for a larger number of 

antibodies were noted. Predicted polymorphisms were also modeled on partial E1 and E2 

structures using computational mutagenesis to examine the predicted effects of these 

polymorphisms on glycoprotein stability. To predict E1E2 residues that are crucial for 

heterodimerization, mutagenesis data from two different sources (87, 88) were analyzed with 



 

94 
 

 

hierarchical clustering, which visualized distinct patterns of antibody binding disruption that 

largely matched pre-defined annotations of the tested antibodies. Mutagenesis data were also 

clustered by E1E2 residues, and two of those clusters showed a disruption of anti-E1E2 antibody 

binding, even though binding to other antigenic domains and CD81 was largely intact. Some of 

the residues in these clusters corresponded to residues that affected E1E2 heterodimerization in 

previous studies, and several predicted E1E2 contacts were found in figures presenting a structure 

of the E1E2 heterodimer. Overall, these predictions broadly investigate polymorphism 

contributions to antibody neutralization and residue determinants of E1E2 heterodimerization, 

potentially providing a better understanding of E1E2 immune escape and assembly that can inform 

HCV vaccine design. 

4.2 Methods 

4.2.1 Collection of antibody neutralization data 

Data on antibody neutralization were obtained for binding of two antibodies to 113 HCV 

isolates from genotype 1 (103), and for binding of five antibodies to 69 HCV isolates from 

genotypes 1-6 (356). The Urbanowicz et al. dataset measured antibody neutralization as IC50 

values in µg/ml. The El-Diwany et al. dataset measured antibody neutralization as fraction 

unaffected (Fu) values by comparing HCV pseudoparticle (HCVpp) infection in the presence and 

absence of neutralizing antibody. 

4.2.2 Prediction of polymorphisms contributing to neutralization changes with SNAPR 

The Subject-adjusted Neutralization Antibody Prediction of Resistance (SNAPR) R script 

(103) was kindly shared by Justin Bailey. This script was modified to calculate differences in half-

maximal inhibitory concentration (IC50) values rather than Fu values to predict polymorphisms 

contributing to changes in antibody neutralization for 39 genotype 1a sequences in the Urbanowicz 
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et al. dataset. In brief, the SNAPR script reads a multiple sequence alignment (MSA) of HCV 

E1E2 sequences with corresponding neutralization data, separates sequences by polymorphism at 

a given position of the alignment, then predicts the impact of a polymorphism on neutralization by 

assessing differences using Wilcoxon rank sum tests. The SNAPR script summarizes its 

predictions by outputting a list of the ten most impactful polymorphisms based on these statistical 

tests. In separate runs after modification of the script, SNAPR was used to predict polymorphisms 

with the highest contributions to antibody resistance and with the highest contributions to antibody 

sensitivity. This analysis was conducted by antibody in the Urbanowicz et al. dataset, which 

included neutralization data for the antibodies AP33 (358), 1:7 (359), D03 (360), L1 (359), and 

XTL68 (361). 

4.2.3 Pairwise comparisons of antibody neutralization data 

For both neutralization datasets, E1E2 sequences with no more than two sequence changes 

between them (>99.5% sequence identity) were noted and the neutralization differences for each 

antibody in the dataset were analyzed. Highly similar sequences from MSAs of isolates in each 

dataset were found using BLAST (362). The largest neutralization differences between highly 

similar sequences were quantified as fold changes of neutralization and identified for all seven 

antibodies within the two datasets. Sequence differences in a comparison were identified as 

predicted contributors to changes in antibody neutralization if a neutralization fold change in that 

comparison was greater than five for any antibody. 

4.2.4 Computational mutagenesis of polymorphisms predicted to contribute to neutralization 

changes 

Polymorphisms predicted to contribute to neutralization changes, either with SNAPR or a 

pairwise comparison, were modeled onto E1 and E2 structures to assess the predicted effects on 
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protein stability. 31 polymorphisms could not be modeled on any E1 or E2 structure, including 14 

E1 polymorphisms and 17 E2 polymorphisms. These polymorphisms could not be introduced 

because the residue position was either disordered in every structure or absent from the ectodomain 

in E1 or E2 used for structural characterization (251, 363). Polymorphisms were modeled with the 

protein modeling software Rosetta version 2.3, specifically applications within Rosetta for 

computational mutagenesis (364, 365). In Rosetta version 2.3, computational mutagenesis was 

conducted on E1 N-terminal domain (PDB code: 4UOI; (363)) and antibody-bound E2 ectodomain 

structures from three different subtypes in two genotypes: genotype 1a (PDB code: 4MWF; (251)), 

genotype 1b (PDB code: 6MEJ; (244)), and genotype 2a (PDB code: 7MWW; (53)). The -

min_interface and -int_chi flags were added to each command for mutagenesis to refine residues 

nearby the mutation prior to ΔΔG prediction. The command for a typical run with 4MWF is below, 

with 12 selected as a constant seed: 

 

/piercehome/pierce/rosetta/rosetta2.3/rosetta++/rosetta.gcc34 aa 4MWF 

_ -interface -output_structure -intout 4MWF.ddg.ros.out -

ignore_unrecognized_res -safety_check -skip_missing_residues -mutlist 

4MWF.muts.txt -min_interface -int_chi -extrachi_cutoff 1 -ex1 -ex2 -

ex3 -constant_seed -jran 12 -yap -s 4MWF 

 

Polymorphisms with predicted ΔΔG values, in kcal/mol, that were less than or equal to -

0.7 were considered stabilizing mutations. Polymorphisms with predicted ΔΔG values, in 

kcal/mol, that were greater than or equal to 0.7 were considered destabilizing mutations. All other 

ΔΔG values were classified as neutral. 
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4.2.5 Collection of E1E2 mutagenesis data 

Experimental mutagenesis data were obtained from previously published datasets showing 

the impact of E2 alanine mutants on the binding of 21 antibodies (88) and the impact of E1E2 

alanine mutants on the binding of 13 antibodies and the co-receptor CD81 (87). These datasets 

were combined for the subsequent analysis. Merged data on relative binding of all antibodies and 

CD81 to E2 alanine mutants were used for generation of the mutagenesis heatmap and residue 

clusters based on E2 mutagenesis data alone. The dataset from Gopal and Jackson et al. was also 

examined independently for clustering E1E2 residues because only this dataset contained antibody 

binding to mutants in both E1 and E2. 

4.2.6 Clustering of mutagenesis data 

Clustering of antibodies and E1E2 residues by patterns in the experimental mutagenesis 

data was performed using hierarchical clustering in R (366). An unrooted tree of antibodies based 

on E2 merged mutagenesis data was generated with the ggplot2 package in R (367). A heatmap of 

residue and antibody clustering was generated using the ggplot2, grid, reshape, and brackets 

packages in R (367-369). Once antibody clusters were visualized, an in-house Perl script was used 

to output averages of relative antibody binding values for each pre-defined antibody group in E1E2 

mutagenesis and merged E2 mutagenesis datasets. In the merged dataset, these groups were 

antigenic domain A, antigenic domain D/antigenic domain B, antigenic domain C, antigenic 

domain E, AR2, AR3/domain B, AR4-5, distinct E1 antibodies A4 and IGH526, and CD81-LEL. 

Two groups were identified with multiple classifications to reflect how antibodies with similar 

classifications clustered together based on mutagenesis data. AR3 and domain B essentially define 

the same E2 epitope under different classification schemes (62). Another group was labeled as 

domain D/domain B because two antibodies in this cluster are classified as domain B but are also 
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known to compete with domain D antibodies for binding (88). In the E1E2 dataset, these groups 

were AR1, AR2, AR3, AR4-5, distinct E1 antibodies A4 and IGH526, antigenic domain E, and 

CD81-LEL. The number of residue clusters for merged E2 data (N = 16) and E1E2 data (N = 30) 

were set following examination of several cluster numbers. These values were selected through 

evaluations of average relative antibody binding in clusters, finding that the chosen numbers led 

to clusters that best isolated residues with the largest impacts on E1E2 antibody binding, as 

indicated by average relative binding values. 

4.3 Results 

4.3.1 Neutralization datasets used for predictions 

Several groups have published antibody neutralization datasets with diverse HCV E1E2 

isolates in recent years (103, 356). The sequences included in these studies were isolated from 

HCV-infected subjects and were generated as functional HCV pseudoparticles (HCVpp) and HCV 

cell culture virus (HCVcc). In one dataset, hereafter known as the Bailey dataset (103), 113 

genotype 1a and 1b isolates were tested for antibody neutralization with HC33.4 (84), a domain E 

antibody, and AR4A (247), an anti-E1E2 antibody. The other dataset, hereafter known as the Ball 

dataset (356), included 69 sequences of HCV isolates that included genotypes 1-6 and were tested 

for neutralization against five antibodies: domain E antibody AP33 (370), 1:7 (359), D03 (360), 

L1 (359), and XTL68 (361). These studies used different methods to measure neutralization, yet 

each found a broad range of neutralization values; the Bailey dataset was measured using fraction 

unaffected (Fu), or an estimated percentage of isolate that was not neutralized (103), while the Ball 

dataset was measured as IC50s (356). The contents and characteristics of each dataset are 

summarized in Table 4.1. 



 

99 
 

 

Table 4.1 Summary of neutralization data from previously published datasets. 

Dataset Neutralization 
measurements 

Total 
sequences 

Genotype 
1a 
sequences 

Genotype 
1b 
sequences 

Genotype 
2-6 
sequences 

Antibodies 
tested 

Bailey 
(103) 

Fraction 
unaffected 
(Fu) 

113 71 42 0 HC33.4, 
AR4A 

Ball (356) IC50 (µg/ml) 69 39 17 13 AP33, 1:7, 
D03, L1, 
XTL68 

 

4.3.2 SNAPR predicted E1E2 polymorphisms contributing to neutralization changes 

In the study presenting the Bailey dataset, the Subject-adjusted Neutralization Antibody 

Prediction of Resistance (SNAPR) was used to separate HCV isolates by polymorphisms at a given 

position in an MSA, then to make statistical comparisons between differences in median Fu values 

of these subsets (103). The comparisons found to have the best SNAPR values, or subject-adjusted 

p-value, were predicted to make the largest contributions to resistance or sensitivity to antibody 

neutralization, depending on type of search in which the polymorphism was found. The separation 

by polymorphism and statistical comparisons made by SNAPR were also plotted to visualize 

neutralization differences (example in Figure 4.1). Using SNAPR, we analyzed neutralization data 

in the Ball dataset to predict sequence polymorphisms that contribute to changes in antibody 

neutralization, expanding on previous research. Though the Ball dataset encompassed genotypes 

1-6, genotype 1 sequences were highly overrepresented (356), making predictions with HCV 

isolates from multiple genotypes difficult despite their potential value. Instead, SNAPR predictions 

were conducted using a similar genotypic scope as when the algorithm was used previously (103); 

more specifically, SNAPR primarily analyzed genotype 1a isolates from the Ball dataset. Though 

a separate analysis with 1a and 1b isolates was also performed, El-Diwany et al. noted the potential 

for inherent sequence differences between subtypes to dominate predictions, leading us to mimic 
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their approach while already working with a smaller set of sequences. Polymorphisms that were 

predicted as contributors by SNAPR for one or more antibodies are summarized in Table 4.2.  

SNAPR predicted that polymorphisms in 36 E1E2 residue positions had the largest 

contributions to changes in neutralization by antibodies from the Ball dataset. Since a residue 

position may have been identified in an “antibody resistance” or “antibody sensitivity” search, the 

polymorphism or set of polymorphisms predicted to be more resistant to antibody neutralization 

is indicated for each residue position. Polymorphisms in 12 residue positions, all within E2 

(residue range 384-746), were predicted contributors to antibody neutralization in three or more 

antibodies in this dataset, suggesting that these polymorphisms may have a global effect on HCV 

antibody responses. Some polymorphisms in these predictions have been implicated in resistance 

to antibody neutralization in previous studies. Residue positions 242 and 438 were predicted by 

SNAPR for antibody L1; these polymorphisms were also predicted by SNAPR for antibodies 

AR4A and HC33.4 in El-Diwany et al., and the V438 polymorphism was found to significantly 

change antibody neutralization when introduced by site-directed mutagenesis into HCVpp (103). 

This polymorphism was also found to alter binding of the SR-BI and CD81 co-receptors, a 

mechanism that could extend to predictions for residue positions 442 and 531, which are nearby 

residues critical for binding to CD81 (298, 371), were found in the interface of a recent E2-CD81 

complex structure (53), and were previously identified as polymorphic in resistant E1E2 sequences 

(102). Other polymorphisms in residue positions listed in Table 4.2 have been identified in the 

same analysis of resistant E1E2 sequences (positions 416, 446, 461, 475, 520, 524) (102), in the 

polymorphisms of an escape pathway from a broadly neutralizing antibody (position 610) (93), or 

in polymorphisms that may enhance viral fitness in combination with resistance-associated 

polymorphisms at positions 415/417 (positions 399, 463, 603) (101). However, other 
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polymorphisms predicted by SNAPR have not been studied for possible effects on antibody 

neutralization, primarily at residue positions in HVR1 and HVR2 along with six residue positions 

in E1. Interestingly, some of these residue positions were predicted to have the broadest effects on 

antibody neutralization changes, as they were the only polymorphisms to be predicted by SNAPR 

in all antibodies of the Ball dataset (position 474), or in all but one antibody (positions 397, 460, 

709, 742). Most of the polymorphisms in Table 4.2 occur in residue positions outside of 

documented antibody epitopes (359-361, 370), suggesting that these polymorphisms may 

modulate antibody neutralization in uncharacterized ways. 

 
Figure 4.1 Example of SNAPR predictions of E1E2 polymorphism contributions. IC50 values of 
sequences in Ball dataset were separated into groups by residue at a given E1E2 position. Each black dot 
in the plot represents the neutralization value of antibody AP33 to one genotype 1a isolate in the dataset. 
In this comparison, SNAPR identified A742 as significantly more sensitive to AP33 neutralization than 
S742. A Wilcoxon rank sum test was used to test statistically significant differences between IC50 values 
of the most sensitive residue with the combined IC50 values of every other residue. This comparison 
found a high SNAPR value and a significant p-value (p < 0.001) when IC50s were not subject adjusted, 
or copied to ensure that values from each HCV-infected subject were represented equally (103). Median 
IC50 values are shown as black bars in each boxplot. 
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Table 4.2 Summary of residue positions with a polymorphism found as SNAPR hit. 

Residue 
position1 

AP33 1:7 D03 L1 XTL68 Resistant 
residue(s) 

198    X  S 
219 X     S, T 
234   X  X N 
241 X     P 
242    X  V 
308  X    I 
330  X    T 
386    X  H, Y 
395 X X   X S, T 
396    X  T, V 
397 X  X X X A, S 
401 X    X S 
405  X X  X P, R 
411 X X X   I 
416    X  T 
438    X  V 
442  X X X  F 
446  X    R 
460 X X X X  K 
461 X     P, R 
463    X  A 
466  X  X  A, N 
474 X X X X X Y 
475 X    X T 
477 X X    G 
478 X X X   S 
500 X    X K, L, Q, R 
520     X D 
524     X V 
531     X E 
580   X   R, Y 
603   X   L, V 
610 X  X  X H 
653 X X   X D 
709 X X X  X I 
742 X  X X X S 

 
1E1E2 residue positions according to H77 numbering. Residue positions found by SNAPR in three or 
more antibodies are highlighted in bold. 
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4.3.3 Pairwise sequence comparisons predicted E1E2 polymorphisms contributing to 

neutralization changes 

We utilized SNAPR to make dataset-level predictions of contributions to changes in 

antibody neutralization, which was useful in examining the potential breadth of polymorphism 

effects. However, this algorithm does not consider identity between two aligned sequences as a 

potential indicator of polymorphisms contributing to neutralization changes, meaning that SNAPR 

may miss highly impactful polymorphisms within a given dataset simply due to decreased 

prevalence or an insufficient number of sequences in the analysis. In both datasets, we found highly 

similar E1E2 sequences and examined pairwise differences in neutralization for each antibody, 

complementing the predictive approach of SNAPR. Sequence changes in comparisons with 

neutralization differences greater than fivefold were identified, offering additional predictions of 

polymorphisms that contribute to neutralization changes, with residue positions listed in Table 

4.3. Through pairwise comparisons of sequences in both datasets, we found 52 residue positions 

that were the only sequence change, or one of two sequence changes, when differences in 

neutralization values were greater than fivefold for any antibody. Nineteen of these residue 

positions represent the only sequence change in highly similar E1E2 sequences with neutralization 

fold changes above the set threshold, with some of these positions also predicted by SNAPR 

(positions 653, 709, 742). As with SNAPR predictions, several residue positions in Table 4.3 have 

been examined as possible contributors to changes in antibody neutralization in previous studies 

(positions 399, 408, 434, 456, 492, 520, 538, 558, 570, 629) (93, 101-103) or repeatedly 

documented to help escape neutralization by AP33 and similar antibodies through a glycan shift 

(position 417) (62, 97, 101, 372). Single sequence changes at residue positions such as 260 and 

496 revealed high fold changes for multiple antibodies, suggesting that these polymorphisms have 
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broad effects on antibody neutralization and represent novel predictions. Residue positions 

identified by pairwise comparisons also include more E1E2 TMD polymorphisms than predicted 

by SNAPR, which indicates that the pairwise comparison method could be finding sequence 

changes that are rarer yet no less impactful to antibody neutralization. 

Table 4.3 Summary of residue positions predicted to contribute to neutralization changes through 
pairwise comparisons. 

Residue 
position1 

AR4A HC33.4 AP33 1:7 D03 L1 XTL68 Resistant 
residue(s) 

195 1       H 
199 1 1      R 
208 2 1      S 
234 1       D 
254   1 1    A 
255      1 1 A 
260   2 2 2 1 2 H 
275       1 L 
284  1      A 
290 1 1      L 
334      1  V 
346      1 1 G 
354 1 1      A 
361   1    1 H, Y 
363 1 4      S, F 
364  5      M 
368      2 1 W, G 
383  1      V 
384 1       T 
387  1      A 
389  1      G 
396   1 1 1 1  M 
397 1  1 1 1 1  I, F 
399 1       L 
408   1  2   R 
410  1      G 
417    1   3 N 
432 3 3      G 
434   1  1   D 
437  1      R 
456  2      M 
473 1 1      G 
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478    1  1 1 G 
492       1 R 
496   2 2 2 1 2 I 
520    1   1 D, N 
538 1 1      V 
555 1 1      M 
558     1  1 S, T 
570  1      G 
576     1   D 
591   1    1 E 
593 1 3      T 
629   1    1 I 
653   1 1 1 1  D, G 
687 1 1      S 
709 1 1      V 
710 1       A 
733 1 4      S 
742 1 2      F, V 
743  1      Q 
744 1 2      A 

 
1Counts indicate the number of pairwise comparisons containing a sequence change at this residue 
position with fold change >5 for a given antibody. Residue positions that were the only sequence change 
in one or more pairwise comparisons are highlighted in bold. 
 

4.3.4 Polymorphisms predicted to impact antibody neutralization modeled using computational 

mutagenesis 

Direct effects to antibody neutralization, either through altered co-receptor binding or 

mutation of an antibody epitope, are suggested for some of the 80 residue positions predicted 

across SNAPR and pairwise comparisons such as residue positions in domain B, D, or E epitopes. 

However, this diverse set of polymorphisms may be more likely to impact antibody neutralization 

through indirect effects, with polymorphisms that could change glycoprotein conformations, 

dynamics, or stability, which would cause a change in free energy. To examine the potential 

structural effects of predicted polymorphisms, several HCV glycoprotein structures were used to 

introduce polymorphisms computationally with the protein modeling software Rosetta (364, 365). 
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One structure of E1 (363) and structures of antibody-bound E2 with sequences from three different 

subtypes (53, 244, 251) were used to model E1E2 polymorphisms and predict the change in free 

energy (ΔΔG) to the monomeric protein. About 26% of predicted polymorphisms in regions of E1 

(residue ranges 246-257, 277-383) and E2 (residue ranges 384-404, 646-746) could not be 

introduced computationally because they were either not included or disordered in the crystal 

structures used for modeling. Polymorphisms introduced by computational mutagenesis were 

classified as destabilizing, stabilizing, or neutral based on the predicted ΔΔG value, investigating 

whether a particular polymorphism is predicted to shift glycoprotein stability in a way that may 

impact antibody neutralization. 

Most modeled polymorphisms were classified as neutral, with minimal predicted effect on 

glycoprotein stability (~61%; Table 4.4, Table 4.5). If a predicted resistant residue was already 

present, that residue was mutated to one or more residues predicted to be more sensitive to 

neutralization. Overall, 12 mutations were classified as stabilizing and 31 mutations were 

classified as destabilizing, with some overlap of these classifications between structures (Table 

4.6). One polymorphism in E1 was stabilizing (A241P) and another two were destabilizing 

(R195H, R260H), forming a small group of exposed residues (Table 4.4). The predicted 

destabilizing effect of R260H was the most intriguing, given the predicted contributions to 

neutralization changes for a broad set of antibodies. In E2, just 22 residue positions showed 

polymorphisms that were predicted to be destabilizing or stabilizing (Table 4.5). Some 

polymorphisms showed similar ΔΔG values in several structures, suggesting that these 

polymorphisms might shift the stability of E2 regardless of genotype.  

Polymorphisms with the most consistent stabilizing or destabilizing effects were within 

exposed residues of domain B or D epitopes targeted by bnAbs (A531E, W437R) or in the vicinity 
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of those same epitopes (I538V, M555T). E531 was predicted both as resistant and stabilizing, or 

destabilizing when mutated to a sensitive polymorphism, an effect that may be localized to the 

domain B epitope but affect dynamics of both bnAb binding and CD81 co-receptor binding, in 

which the domain B epitope switches to an elongated and open state (53). In a similar fashion, 

R437 may shift domain D conformational dynamics in ways that directly or indirectly impact 

antibody neutralization and co-receptor binding, an effect that could mimic the effects of 

polymorphisms found in residue 438 (103). Polymorphisms V538 and T555 were both classified 

as destabilizing, but V538 was predicted as resistant while T555 was predicted as sensitive, 

suggesting that lowering glycoprotein stability may have dramatically different effects on antibody 

neutralization or viral fitness depending on residue location. Residue position 555 is closer to the 

hydrophobic core of the E2 ectodomain than 538, and destabilization of this core may be more 

likely to disrupt glycoprotein stability in a way that decreases viral fitness and increases sensitivity 

to antibody neutralization.  

Through these predictions of protein stability changes, the predicted effects of some 

polymorphisms on antibody neutralization could have mechanisms of indirectly altering the 

conformational dynamics of E1E2 glycoproteins, warranting further investigation. However, 

major caveats for this analysis should be noted. Even if ΔΔG predictions made by Rosetta were 

consistently accurate, changes in stability only apply to partial E1 and E2 ectodomains that may 

contain structural inaccuracies, revealing little about the native E1E2 assembly that interacts with 

antibodies. Furthermore, no explicit modeling of glycoprotein flexibility or dynamics was 

conducted after mutations were introduced, nor were glycans included during ΔΔG prediction, 

drastically limiting the ability of this analysis to assess possible mechanisms of neutralization 

changes. 
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Table 4.4 ΔΔG predictions of changes in E1 monomer stability. 

Residue 
position1 

4UOI mut(s)2 ΔΔG 
(kcal/mol) 

195 R195H 1.6 
198 S198T 0 
199 G199R 0.6 
208 P208S 0.6 
219 A219S 

A219T 
0.2 
-0.1 

234 Q234N 
Q234D 

-0.1 
0.1 

241 A241P -1.1 
242 V242L 

V242M 
V242I 

0.6 
0.2 
0.3 

260 R260H 1.7 
 
1E1 residue position according to H77 numbering 
2Mutation introduced in E1 N-terminal domain structure (363) 
 
Table 4.5 ΔΔG predictions of changes in E2 monomer stability. 

Residue 
position1 

4MWF 
mut(s)2 

ΔΔG 
(kcal/mol) 

6MEJ 
mut(s)3 

ΔΔG 
(kcal/mol) 

7MWW 
mut(s)4 

ΔΔG 
(kcal/mol) 

405   P405R -0.9   
408   K408R -0.4   
410   N410G 2.3   
411   I411V 0.1   
416   T416S 

T416K 
0.1 
-0.1 

  

417   N417S -0.1   
432 S432G 2 S432G 0.6 S432G 0.4 
434 N434D 0.4 N434D 0.4 H434D -0.4 
437 W437R 2.2 W437R 2.4 F437R 0.8 
438 L438V 0.9 L438V 1.3 I438V 0.2 
442 F442I 0.6 F442I 1.5 F442I 0 
446 K446R -0.3 K446R -0.8 S446R -2.4 
456   M456V 1.1   
460   R460K 0.6   
461   P461R 

P461L 
0 
0.9 

  

463   T463A 0.1   
466   D466A 

D466N 
1 
0 

  

473   S473G 0   
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474   H474Y 0.4   
475   A475T -0.6   
477   G477T 5.2   
478   S478G 0.8   
492 R492K 

R492Q 
0.3 
0.2 

R492K 
R492Q 

0.3 
0.1 

R494K 
R494Q 

1.3 
1 

496 I496V 0.3 I496V -0.6 V498I 0.1 
500 K500L 

K500Q 
K500R 

1.4 
0.3 
0.3 

K500L 
K500Q 
K500R 

0.6 
-0.3 
-1.3 

K502L 
K502Q 
K502R 

1 
0 
-0.7 

520 D520N 0.3 D520N -0.4 D522N -0.1 
524 A524V -0.2 A524V -0.3 A526V -0.6 
531 A531E -1.4 E531A 

D531D 
1.4 
0.4 

E533A 
E533D 

1.5 
-0.1 

538 V538I -1 V538I -0.9 L540V 1.4 
555 M555T 2 M555T 2.1 M557T 2.7 
558 T558S 0 T558S 0.2 S560T -0.4 
570 V570G 1.1 A570G 1   
576 D576A 1.4     
580 L580R 

L580Y 
-0.4 
0.3 

Y580L 
Y580H 

0.2 
0.6 

  

591   E591G 1.6   
593   T593S 0.4   
603 I603L 

I603V 
0.4 
0.8 

I603L 
I603V 

0.2 
0.6 

L607I 0.9 

610 D610H 0.2 D610H 0.2 D614H -0.7 
629 V629I -0.5 I629V 0.6 I633V 0.2 

 
1E2 residue position according to H77 numbering 
2Mutation introduced in E2 ectodomain structure, genotype 1a (251) 
3Mutation introduced in E2 ectodomain structure, genotype 1b (244) 
4Mutation introduced in E2 ectodomain structure, genotype 2a (53)  
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Table 4.6 Computational mutagenesis summary and classification for each structure. 

Structure Total 
mutations 

Stabilizing 
mutations 

Residue 
positions1 

Destabilizing 
mutations 

Residue 
positions 

4UOI (E1) 13 1 241 2 195, 260 
4MWF (E2 1a) 26 2 531, 538 8 432, 437, 438, 

500, 555, 570, 
576, 603 

6MEJ (E2 1b) 47 4 405, 446, 
500, 538 

13 410, 437, 438, 
442, 456, 461, 
466, 477, 478, 
531, 555, 570, 
591 

7MWW (E2 2a) 22 3 446, 500, 
610 

8 437, 492, 500, 
531, 538, 555, 
603 

 
1Residue positions colored blue had a resistant residue present in the structure, and one or more 
polymorphisms predicted to be sensitive were modeled. Residue positions colored magenta had a 
sensitive residue present in the structure, and one or more polymorphisms predicted to be resistant were 
modeled. All other mutations were classified as neutral. 

4.3.5 Hierarchical clustering of E1E2 mutagenesis datasets 

As new HCV bnAbs have been isolated and characterized, additional research has been 

conducted to thoroughly delineate and compare antibody epitopes. A step beyond broad 

classifications of antibody epitopes, this research uses alanine scanning mutagenesis to reveal how 

a mutation at each E1E2 residue affects a diverse set of antibodies. Two studies have obtained this 

data in recent years, offering an in-depth look into disruption of bnAb responses. Gopal and 

Jackson et al. performed high-throughput mutagenesis on E1E2 from the H77 reference isolate to 

assess binding changes of 13 antibodies and CD81-LEL, a dataset that includes anti-E1, anti-E2, 

and anti-E1E2 antibodies (87). Another study provided mutagenesis data with the same isolate to 

a panel of 21 antibodies from antigenic domains B-E that does not overlap with antibodies tested 

in Gopal and Jackson et al. (88). Since the mutagenesis datasets from different studies both 

reported relative antibody binding of mutants, these datasets could be combined and analyzed as a 
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larger set of mutagenesis experiments. The combined datasets were analyzed for similar patterns 

of disruption to antibody binding through hierarchical clustering implemented in R. Mutagenesis 

data were clustered both by antibody and by mutated residue to examine how they separated into 

discernible groups. Hierarchical clustering by antibody helped to visualize 10 groups that also 

matched previously defined annotations of antibodies by antigenic domain and antigenic region 

(AR), corresponding to unique epitopes (Figure 4.2). Hierarchical clustering found groups of 

antibodies in domain A (e.g. CBH-4B), domain B (e.g. AR3A), domain C (e.g. CBH-7), domain 

D (e.g. HC84.26.WH.5DL), domain E (e.g. AP33), AR2 (AR2A), AR4-5 (AR4A, AR5A), distinct 

E1 antibodies (A4, IGH526), and the CD81 co-receptor (CD81-LEL). Clustering these antibodies 

by mutated residue and visualizing in a heatmap also showed distinct patterns of relative antibody 

binding that reflected unique antibody epitopes, allowing this analysis to identify how residues 

were separated (Figure 4.3).  
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Figure 4.2 Visualization of antibody groups using hierarchical clustering. Antibodies in merged 
mutagenesis dataset were clustered through data on relative binding of E1E2 alanine mutants. Antibodies 
generally clustered by antigenic domain or region, and groups of antibodies that clustered together were 
given distinct colors for clarity. Antibody groups are colored as follows: antigenic domain A antibodies 
are in gray, AR2 antibody AR2A is in purple, AR4-5 antibodies are in dark green, antigenic domain C 
antibodies are in cyan, antigenic domain E antibodies are in blue, E1 antibody A4 is in red, E1 antibody 
IGH526 is in light pink, AR3/antigenic domain B antibodies are in magenta, antigenic domain B/D 
antibodies are in orange, and co-receptor CD81-LEL is in light green. HC84.26.WH.5DL is abbreviated 
to HC84.26 in this figure. CD81-LEL was placed in its own group and colored accordingly to reflect its 
unique role as a co-receptor, despite clustering with an antibody group. 
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Figure 4.3 Heatmap of merged mutagenesis dataset clustered by residue. Antibodies are labeled at 
the bottom of the heatmap and colored according to antibody groups visualized through hierarchical 
clustering. Antibody groups are colored as follows: antigenic domain A antibodies are in gray, AR2 
antibody AR2A is in purple, AR4-5 antibodies are in dark green, antigenic domain C antibodies are in 
cyan, antigenic domain E antibodies are in blue, E1 antibody A4 is in red, E1 antibody IGH526 is in light 
pink, AR3/antigenic domain B antibodies are in magenta, antigenic domain B/D antibodies are in orange, 
and co-receptor CD81-LEL is in light green. Relative binding values for each mutant to wild-type 
antibody binding are colored as follows: 0-20% in red, 21-40% in orange, 41-60% in yellow, 61-90% in 
white, 91-150% in green, and >150% in blue. 
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4.3.5 Critical E1E2 interface residues predicted through clustering by residue 

Following hierarchical clustering of mutagenesis data, we determined clusters of residues 

separated by patterns of disruption to antibody binding and calculated the average relative binding 

of each pre-defined group for every cluster. This analysis was performed on the merged dataset, 

which includes data on E2 residues from both datasets and was separated into 16 clusters (Table 

4.7), with some clusters overlapping with the clusters found in a previous analysis of E2 

mutagenesis data (63). The Gopal and Jackson et al. dataset that included residues from both E1 

and E2 was separated into 30 clusters (Table 4.8). In examining these results, we found that two 

defined clusters of mutated residues in E2 merged data (clusters 10 and 14; Table 4.7) showed 

low relative binding to anti-E1E2 antibodies AR4A and AR5A, and medium to high relative 

binding to virtually all other antibody groups and CD81. Since AR4A and AR5A epitopes involve 

E1 and E2 residues, and the native conformation of the E1E2 heterodimer is required, the residues 

in these clusters may disrupt E1E2 heterodimerization while leaving other antigenic domains 

largely unaffected. Residues in cluster 14 also showed low relative binding to domain A 

antibodies, which are non-neutralizing and recognize an epitope on the back layer of E2 (86), but 

this effect was deemed not to change the predictions of these residues as putative E1E2 

heterodimer interface residues. Other clusters in this combined dataset showed low relative binding 

to anti-E1E2 antibodies, but were not considered as putative E1E2 heterodimer interface residues 

due to low relative binding of bnAbs to conformational epitopes and CD81, suggesting that these 

mutants disrupt native E2 conformations. Clusters from the E1E2 dataset had a similar pattern of 

relative binding, with two clusters showing low relative binding to anti-E1E2 antibodies and 

relative binding comparable to wild-type E1E2 for all other groups (clusters 7 and 8; Table 4.8). 

From these pairs of clusters, 17 E1E2 residues were predicted as E1E2 heterodimer interface 
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residues based on mutagenesis data (Table 4.9), including seven residues in the E1 N-terminal 

domain and ten E2 residues ranging from HVR2 to the E2 stem region. Twelve cysteines from E1 

and E2 were also included in the identified clusters, but were excluded from this list of predictions, 

as it appeared unlikely for these residues to be directly involved in the E1E2 interface. 

Unsurprisingly, some of the predicted E1E2 interface residues are part of the AR4A or AR5A 

antibody epitope (247), but a majority of predictions have not been identified as anti-E1E2 binding 

residues, though it should be noted that some predictions have been previously identified as 

probable binding residues for anti-E1E2 antibodies (243). At the same time, other residues in 

Table 4.9 have been identified as determinants of native E1E2 assembly or infectivity in previous 

studies, offering support for these predictions as residues critical for the E1E2 heterodimeric 

interface. 

Table 4.7 Relative binding averages for residue clusters from merged E2 mutagenesis data.  

Cluster 
number1 

CD81-
LEL2 

AR1/ 
Dom C3 AR2 

AR3/ 
Dom B AR4-5 IGH526 A4 

Dom 
E 

Dom 
B/D 

Dom 
A 

1 71 98 94 86 91 90 92 87 95 100 
2 78 101 113 116 111 96 85 7 132 105 
3 18 115 95 44 106 98 93 89 65 130 
4 3 116 96 10 108 102 95 88 50 106 
5 2 126 93 1 121 107 88 118 5 77 
6 1 121 104 10 144 91 96 93 50 110 
7 61 241 98 100 98 88 95 91 112 202 
8 39 73 65 54 55 85 82 76 73 46 
9 8 56 48 21 40 79 90 88 38 27 
10 115 90 130 89 15 74 97 75 77 143 
11 2 2 21 1 2 76 98 85 1 1 
12 3 18 16 3 10 76 90 80 10 5 
13 3 22 21 2 5 94 104 84 6 125 
14 80 69 113 74 12 73 87 76 72 15 
15 72 87 107 71 52 83 85 76 78 6 
16 16 32 45 15 13 85 81 72 30 3 

 

1Cluster numbers containing putative E1E2 interface residues are in bold. 
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2Average relative binding values for each mutant to wild-type antibody binding are colored as follows: 0-
20% in red, 21-40% in orange, 41-60% in yellow, 61-90% in white, 91-150% in green, and >150% in 
blue. 
3Antigenic domains are identified as abbreviations “Dom” A-E. 
Table 4.8 Relative binding averages for residue clusters from E1E2 mutagenesis data. 

Cluster 
number1 

CD81-
LEL2 AR1 AR2 AR3 AR4-5 IGH526 A4 Dom E3 

1 92 99 105 104 118 104 101 91 
2 64 85 91 89 88 98 77 53 
3 73 92 97 91 93 89 99 89 
4 79 97 105 89 43 77 90 79 
5 53 84 82 78 72 81 85 73 
6 42 66 60 67 65 76 58 45 
7 91 99 114 94 14 74 95 80 
8 89 92 115 94 3 70 99 82 
9 71 87 96 92 101 16 82 68 
10 34 79 73 57 86 85 91 82 
11 78 95 113 116 111 96 85 3 
12 3 94 97 72 81 88 82 75 
13 12 70 79 28 79 100 105 96 
14 3 104 101 6 111 107 95 85 
15 1 114 99 1 135 98 93 101 
16 5 102 100 23 124 97 96 82 
17 3 90 97 16 98 96 104 98 
18 34 64 75 42 18 72 88 73 
19 105 85 96 77 62 88 102 104 
20 2 2 27 1 2 80 99 85 
21 24 41 48 38 49 82 79 67 
22 3 12 24 3 15 77 88 88 
23 4 15 16 6 13 76 83 76 
24 12 23 37 22 24 82 89 75 
25 25 29 67 41 71 83 85 85 
26 73 14 129 80 23 87 83 65 
27 55 6 116 83 48 66 103 95 
28 2 8 3 2 6 73 77 73 
29 0 1 0 1 0 73 96 98 
30 3 38 0 14 38 74 126 94 

 

1Cluster numbers containing putative E1E2 interface residues are in bold. 
2Average relative binding values for each mutant to wild-type antibody binding are colored as follows: 0-
20% in red, 21-40% in orange, 41-60% in yellow, 61-90% in white, and 91-150% in green. 
3Antigenic domain E.  
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Table 4.9 Summary of predicted E1E2 interface residues. 

Residue Location AR4-5 hotspot residue?1 Noted effects on assembly 
or infectivity?2 

Y201 E1 Yes No 
N205 E1 Yes No 
I212 E1 No Yes (234) 
I220 E1 No No 
H222 E1 No Yes (234) 
P228 E1 No No 
W239 E1 No Yes (234) 
W487 E2 Yes Yes (298) 
R543 E2 No Yes (298) 
D584 E2 No No 
F586 E2 No No 
Y594 E2 No No 
R657 E2 Yes No 
D658 E2 Yes No 
F679 E2 No No 
L692 E2 Yes Yes (357) 
D698 E2 Yes No 

 
1Epitope residues based on documented critical residues for AR4A and AR5A binding based on alanine 
scanning (247). 
2Specific references for previous research on a given residue are listed in the table. 

4.3.6 Predicted E1E2 contacts found in E1E2 heterodimer structure 

Until recently, the E1E2 heterodimer structure had only been predicted in several models 

(373, 374) that had been compared in a previous review (57). With a set of residues predicted to 

be critical for the E1E2 heterodimeric interface, we examined the report of an E1E2 heterodimer 

structure, which provided some insights about residues in the E1E2 interface (61). Though the 

coordinates of this cryo-EM structure have not yet been released, images of the full heterodimer 

and portions of the interface in figures were compared to our set of predictions. As described in 

this preprint, the E1 N-terminus and stem domain contact the E2 stem domain and back layer, 

forming a discontinuous and conformationally sensitive interface. The E1 N-terminus and E2 back 

layer form multiple contacts, with two predicted contacts from E1 (residues 201, 205) and from 
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E2 (residues 594, 679) highlighted as interacting residues in this portion of the interface. This 

overlap with predicted E1E2 interface residues suggests that the analysis of mutagenesis data led 

to some accurate determinations of critical heterodimer residues. However, other residue regions 

within the reported E1E2 interface such as the E1 stem domain were not predicted to be critical 

based on mutagenesis data, showing that aspects of the E1E2 interface may not have been captured 

by data on relative antibody binding. Other predicted E1E2 interface residues may also be near the 

heterodimeric interface, but it is difficult to assess the position of these residues solely through the 

figures in the initial report. Interestingly, residue positions with polymorphisms predicted to 

contribute to neutralization changes are also highlighted in figures of the E1E2 interface, with 

residues in both E1 (positions 199, 308) and E2 (position 709). Though we are currently unable to 

assess the impact of predicted polymorphisms on E1E2 heterodimerization, the presence of these 

residues in the interface suggests that modulation of E1E2 assembly could contribute to changes 

in antibody neutralization. Once the coordinates of the E1E2 structure are fully accessible (61), 

possible impacts on heterodimerization and antibody neutralization can be investigated in earnest. 

4.4 Discussion 

In this study, we utilized multiple published datasets to analyze HCV E1E2 sequences and 

predict contributors to changes in antibody neutralization and interface residues in E1E2 

heterodimeric assembly. These predictions were generated from diverse sets of antibody 

neutralization data, which included E1E2 sequences from multiple genotypes, and from 

mutagenesis data, which included a comprehensive and diverse set of HCV antibodies. We 

predicted polymorphisms contributing to neutralization changes using two methods: a modified 

SNAPR script that assessed neutralization differences of aligned E1E2 sequences, and pairwise 

comparisons of highly similar sequences from the Bailey or Ball datasets. Predicted 
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polymorphisms from both methods were modeled on existing E1 and E2 structures, examining the 

possible effects of these polymorphisms on glycoprotein stability. At the same time, we predicted 

determinants of E1E2 assembly through hierarchical clustering of E1E2 and merged E2 

mutagenesis datasets. Two clusters were identified as possible E1E2 interface residues, as the 

residues in these clusters primarily disrupted anti-E1E2 antibody binding while largely preserving 

antibody binding to other antigenic domains and CD81-LEL. In a recently reported E1E2 structure, 

four residues predicted by this analysis were highlighted as residues in the heterodimeric interface. 

Both analyses provide a broader set of predictions for key elements of E1E2 characterization and 

could be useful for finding crucial residue determinants in E1E2 that influence HCV vaccine 

design. 

Although the predictions presented and assessed in this study were generated using large 

and diverse datasets, both types of data have their limitations. The genotypic diversity in the Bailey 

dataset is only contained within two genotype 1 subtypes, and the genotypic diversity in the Ball 

dataset is dramatically overrepresented by genotype 1. In both cases, only genotype 1 sequences 

had enough data to conduct SNAPR predictions. Restricting these predictions by genotype could 

make claims of breadth for contributions to antibody neutralization changes less reliable, as the 

observed effects on antibody neutralization could theoretically be genotype specific. However, this 

risk of extrapolating the neutralization effects of polymorphisms to other HCV genotypes could 

be reduced for extra-epitopic residues that are conserved across genotypes. This possibility is 

supported by computational mutagenesis that classified polymorphisms as stabilizing or 

destabilizing using E2 structures from multiple genotypes, suggesting that polymorphisms in key 

epitopes or conserved regions may have similar effects across genotypes. However, these predicted 

effects on protein stability would only be applicable to E2, severely limiting the value of this 
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analysis in predicting changes in stability or flexibility of the E1E2 assembly. Lastly, the prediction 

of polymorphisms contributing to changes in antibody neutralization may also be hindered by the 

underlying neutralization data. Both datasets tested antibody neutralization using HCVpp of 

isolates, a pseudovirus system shown to be more susceptible to antibody neutralization than 

HCVcc (110). Although both systems are suitable for assessing antibody neutralization, the 

HCVpp system does not incorporate lipoproteins, potentially leaving a mechanism of 

neutralization resistance untested in combination with observed polymorphisms (108, 109). Future 

research must validate resistance-associated polymorphisms experimentally as in previous studies 

(102, 103) by introducing predictions into an array of HCV isolates, ideally from multiple HCV 

genotypes. This validation will help determine which polymorphisms have the broadest or most 

potent effect on antibody neutralization, confirming contributions to neutralization change that 

could aid vaccine design. At the same time, more work is needed to assess mechanisms of 

increased resistance or sensitivity to antibody neutralization, especially for polymorphisms far 

from documented antibody epitopes. Future work on these polymorphisms can validate predicted 

changes in ectodomain stability, and possible changes to flexibility or viral breathing could be 

examined with molecular dynamics simulations. 

Though the combined mutagenesis dataset represents the most comprehensive 

understanding of the impacts of individual E1E2 residues on antibody binding, this data also has 

limitations that may complicate predictions. The dataset only included mutated residues that were 

tested with every antibody, which missed some residues in HVR1 and most of the E1 and E2 

TMDs. E1E2 TMDs have been implicated in E1E2 assembly in multiple studies (51, 375), but the 

absence of these residues from mutagenesis data made us unable to predict the involvement of 

TMD residues in E1E2 assembly. In addition, residues that were predicted through disruptions to 
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antibody binding naturally overlap with known epitope residues for anti-E1E2 antibodies without 

being able to fully distinguish between residues that only affect antibody binding and residues that 

also affect E1E2 assembly. While it is possible that solvent exposed E1E2 interface residues are 

critical both for an anti-E1E2 epitope and for E1E2 heterodimerization, this dual role is difficult 

to elucidate through mutagenesis data alone and would require additional research, starting with 

an in-depth analysis of the heterodimer in complex with an anti-E1E2 antibody. Lastly, 

mutagenesis data may be influenced by the sequence of, and antibody responses to, genotype 1 

sequence H77. Since the H77 isolate is more sensitive to antibody neutralization than most other 

isolates (321), it is unclear if the degree of decreased antibody binding to alanine mutants in a more 

resistant isolate would be more pronounced or display different patterns for certain classifications 

of antibodies. Mutagenesis data on a different HCV isolate could offer clarity on conserved shifts 

in antibody binding induced by alanine scanning, elucidating which antibody binding impacts may 

be pan-genotypic and which may be genotype-specific. Additional experimental work should be 

conducted on predicted E1E2 interface residues, including a study of how alanine mutations 

introduced experimentally may affect E1E2 assembly. 
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Chapter 5: An expanded benchmark for antibody-antigen docking and 

affinity prediction reveals insights into antibody recognition 

determinants 

 

Abstract 

Accurate predictive modeling of antibody-antigen complex structures and structure-based 

antibody design remain major challenges in computational biology, with implications for 

biotherapeutics, immunity, and vaccines. Through a systematic search for high-resolution 

structures of antibody-antigen complexes and unbound antibody and antigen structures, in 

conjunction with identification of experimentally determined binding affinities, we have 

assembled a non-redundant set of test cases for antibody-antigen docking and affinity prediction. 

This benchmark more than doubles the number of antibody-antigen complexes and corresponding 

affinities available in our previous benchmarks, providing an unprecedented view of the 

determinants of antibody recognition and insights into molecular flexibility. Initial assessments of 

docking and affinity prediction tools highlight the challenges posed by this diverse set of cases, 

which includes camelid nanobodies, therapeutic monoclonal antibodies, and broadly neutralizing 

antibodies targeting viral glycoproteins. This dataset will enable development of advanced 

predictive modeling and design methods for this therapeutically relevant class of protein-protein 

interactions. 

5.1 Introduction 

Protein-protein interactions are crucial for many biological processes, and structural 

characterization of those interactions has provided valuable insights into their binding 
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mechanisms. Immune recognition of antigens by antibodies represents an important and well-

characterized class of these interactions, with over 3000 antibody structures deposited in the 

Protein Data Bank (PDB) (153, 336). However, experimental structural characterization is not 

possible for all interactions due to resource and experimental limitations, particularly in the case 

of antibody-antigen interactions due to the vast size of immune repertoires and amount of antigen 

targets. To address these constraints, numerous computational techniques for predictions of 

protein-protein interactions have been developed. 

Computational predictions of protein-protein interactions can address either the likely 

mode or relative strength of protein binding. Docking algorithms to model protein-protein 

complexes utilize a variety of search strategies (163), including Fast Fourier Transform (FFT) 

(165-168) and Monte Carlo searches (171). Additional algorithms conduct refinement of docking 

models, utilizing increased conformational sampling (376), rescoring (179, 377), or clustering 

(378, 379) to improve prediction accuracy. A variety of affinity prediction methods have been 

developed that employ physics-based and knowledge-based potentials (202, 218, 380). 

Evaluations of algorithm accuracy have included both community-wide prediction experiments 

with CAPRI (189) and benchmarking with databases of non-redundant protein complexes.  

Structures of protein complexes have been curated and assembled in multiple benchmarks 

for docking and affinity prediction. These include Docking Benchmark 5.0 (BM5) (186), Affinity 

Benchmark versions 1 and 2 (186, 217), DOCKGROUND (191, 192), protein model benchmarks 

(381, 382), and a benchmark of homology docking templates (383). These benchmarks include 

numerous protein-protein interactions validated for analysis, facilitating impartial assessments of 

docking and affinity predictions to develop, refine, and compare algorithms. Structures of 

antibody-antigen interactions have been assembled in public repositories (153, 154, 384, 385), and 
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have been used for interface analysis (386, 387) and predictions of binding energy changes due to 

mutations (210). A relatively small subset of BM5 cases consists of antibody-antigen interactions 

(186), making assessments specific to antibody-antigen docking and affinity predictions somewhat 

difficult. 

Antibody-antigen interactions pose a unique challenge for predictive computational 

modeling, even though antibody recognition of antigens is largely limited to the complementarity 

determining region (CDR) loops. The therapeutic and disease relevance of antibody-antigen 

recognition has led to the development of numerous predictive docking algorithms (172, 178, 388, 

389) and affinity predictors (209, 213, 215) for this class of complexes. However, the structural 

flexibility of CDR loops (116, 390, 391) can confound docking and affinity prediction despite the 

development of methods that integrate flexible backbone modeling (173, 184, 392). The limited 

success of current algorithms may stem from an incomplete view of antibody structural flexibility. 

Improving predictions of antibody-antigen interactions will benefit from a larger benchmark that 

better represents the scope of sequence diversity and structural flexibility used for antigen 

recognition. 

Here we describe an expanded dataset of antibody-antigen complex structures to enable 

improved docking and affinity predictions for these distinctive protein-protein interactions. After 

a comprehensive search for antibody-antigen complex structures in the PDB, we identified 41 non-

redundant cases in which an antibody-antigen complex and both of its unbound components were 

experimentally determined. These cases were added to 26 antibody-antigen cases from BM5, 

increasing the total number of cases to 67. An analysis of conformational changes of antibody-

antigen complexes revealed tremendous diversity in the structural flexibility of both antibodies 

and antigens. Success rates of docking algorithms were examined, highlighting the challenges 
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presented by this diverse benchmark. A variety of affinity predictors were also assessed, resulting 

in a broad range of correlations with experimental affinity values. These analyses highlight our 

benchmark as a useful resource for understanding, predicting, and designing antibody-antigen 

recognition. This benchmark set is available at 

https://piercelab.ibbr.umd.edu/antibody_benchmark/, included in an updated version of a protein-

protein docking benchmark (version 5.5) at 

https://zlab.umassmed.edu/benchmark/benchmark5.5.html, and downloadable from 

https://github.com/piercelab/antibody_benchmark. 

5.2 Methods 

5.2.1 Benchmark assembly 

New benchmark cases were identified through searches of experimentally determined 

structures in the Protein Data Bank (PDB) (336). A list of all antibody-containing structures in the 

PDB was downloaded from the Structural Antibody Database (SAbDab) database (153) in May 

2019. An automated script was then used to perform BLAST (362) searches against all PDB amino 

acid sequences (“pdb_seqres.txt”, downloaded from the PDB site, May 2019) to identify structures 

of unbound antibodies and unbound antigens for each antibody-antigen complex from the SAbDab 

set. Unbound structures with 80% sequence coverage and 98% or greater sequence identity (more 

stringent than the 96% identity threshold used for BM5) were considered as matches at this stage. 

As with BM5 (186), only structures within the resolution cutoff (≤ 3.25 Å) were considered, and 

structures with peptide antigens (< 30 aa) were excluded. As a complementary approach to ensure 

coverage, we also performed an advanced search through the PDB website, with search terms to 

filter structures by resolution (≤ 3.25 Å), release date (since 1/1/2015, corresponding to BM5 

release (186)), collection method (X-ray diffraction), and the term ‘antibody’ in the text of 
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structure descriptions. Cases identified from these automated and manual searches were combined 

and filtered for non-redundancy with the unbound-unbound antibody-antigen structures from BM5 

(186). Manual and automated inspection was then used to assess cases for anomalies warranting 

exclusion, including missing or mutated interface residues, resulting in elimination of a small set 

of cases. BM5 cases that were removed from this set include twelve bound-unbound antibody 

cases to ensure the inclusion of only unbound-unbound test cases in the current set. Cases 1BGX 

and 1BVK were removed based on manual inspection for structural quality and non-redundancy. 

Scripts and example input files used to search for and identify cases are in the Github site for the 

antibody benchmark (https://github.com/piercelab/antibody_benchmark). We have also uploaded 

the output files from the search of the PDB, which include unprocessed redundant sets of 

complexes and unbound structures (“bound_unbound_pdbs.txt”, 

“bound_unbound_pdbs.camelids.txt”). Separate files are available for antibodies and single 

domain antibodies (sdAbs), each containing bound complex PDB codes along with, when 

identified, one or more PDB codes corresponding to unbound antibody and antigen structures. 

Once verified, new benchmark cases were processed to remove extraneous atoms (e.g. 

water HETATMs) and to resolve double occupancy atoms. As with BM5 (186), all cases were 

classified as ‘Rigid’, ‘Medium’, or ‘Difficult’ based on binding conformational changes, as 

described previously (195). Superposition of unbound onto bound interface residue Cα atoms was 

used to calculate interface root mean squared distances (I-RMSDs) for antibody interface, antigen 

interface, and all interface residues, with interface residues defined as those within 10 Å of any 

non-hydrogen protein atom in the binding partner. Fraction of non-native contacts (fnon-nat) values 

were calculated as previously defined (197), using the same superposed unbound structures. 

Following previously used difficulty classification criteria (186, 193-195), complexes with I-
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RMSD > 2.2 Å were classified as Difficult, complexes with I-RMSD < 1.5 Å and fnon-nat < 0.40 

were classified as Rigid, and all other complexes were classified as Medium. 

For experimentally determined affinities, free energy (ΔG) was calculated using the 

equation ΔG = RTlnKD, where R is the gas constant and T is the temperature in degrees Kelvin. 

For some cases, equilibrium dissociation constant (KD) values were reported in the literature 

without a listed experimental temperature or ΔG value, and corresponding authors of the respective 

studies were contacted to request temperature information. Those who provided binding affinity 

temperatures permitted inclusion of ΔG values for those cases. In the event of binding affinity 

measurements reported for multiple antibody or antigen formats (e.g. antibody Fab, IgG, or scFv), 

the measured affinity was selected that corresponded to the molecular format present in the 

structure.	

5.2.2 Protein-protein docking 

ZDOCK is a docking algorithm that uses Fast Fourier Transform (FFT) for rapid rigid-

body docking through six-dimensional sampling in translational and rotational space (165, 393). 

ZDOCK version 3.0.2 with 15° sampling was executed through the command line for docking 

predictions on all cases. With these parameters, 3600 docking predictions were generated for each 

complex and ranked by ZDOCK score. As in previous ZDOCK studies (393, 394), antibody 

framework residues in heavy and light chains were “blocked” to avoid their presence in predicted 

interfaces. These blocked residue ranges were assigned based on Chothia-numbered antibody 

structures from SAbDab, and correspond to residue ranges in Chothia numbering (395): 

Heavy chain: 6-22, 39-46, 81-91, 106-end 

Light chain: 7-20, 38-44, 76-85, 101-end 

sdAb structures were not subjected to blocking. 
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ClusPro is a protein-protein docking algorithm that uses FFT-based sampling with the 

PIPER algorithm (166), followed by clustering of low energy conformations and minimization to 

avoid steric clashes (396). Unbound structures for each benchmark case were submitted to the 

online ClusPro server for docking predictions. Docking predictions used antibody mode, which 

incorporates an asymmetrical statistical potential for improved predictions of antibody-antigen 

complexes (172). As in the published method, non-CDR regions in antibody structures were 

masked during docking through selection of that option during ClusPro submission.  

SnugDock is an antibody-antigen docking protocol in Rosetta (178) that enables induced 

fit modeling by modeling CDR loops and interfacial side chains during docking. Additionally, 

ensembles of structures can be used to allow conformer selection. 

We used the FastRelax protocol in Rosetta to relieve potential clashes and find a low energy 

conformation for the initial unbound crystal structures of antibody and antigen for each complex 

(397). To take backbone flexibility into consideration, we also used FastRelax to generate an 

ensemble of 10 decoys, both for the unbound antibody and the unbound antigen. To ensure low-

energy starting side-chain conformations, the 10 relaxed antibody and antigen structures for each 

complex were prepacked apart from each other using the Prepack protocol (171).  

The SnugDock protocol was used to dock the antibody ensemble with the antigen ensemble 

for each case (178). All cases were tested with SnugDock except for 2I25, as the architecture of 

the IgNAR antibody of that case was not compatible with the SnugDock protocol. To explore the 

local docking energy funnel, we superimposed the starting structures onto the bound crystal 

structures. For each docking target, SnugDock started with a random perturbation of 8° rotation 

and 3 Å translation in each Cartesian direction. We used the new Motif Dock Score (MDS) during 

the low-resolution docking phase (173). 1000 decoys were generated for each complex. 



 

129 
 

 

Example command line used in FastRelax protocol: 

relax.mpi.linuxiccrelease 

-s 5JMO_l_u_cleaned.pdb 

-relax:constrain_relax_to_start_coords 

-relax:ramp_constraints true 

-ex1 

-ex2 

-use_input_sc 

-flip_HNQ 

-no_optH false 

-min_cycles 5000 

-nstruct 10 

 

Example command line used in Prepack protocol: 

docking_prepack_protocol.mpi.linuxiccrelease 

-in:file:s 5JMO_u_cpx.pdb 

-ex1 

-ex2 

-partners H_A 

-ensemble1 antibody_ensemble.list 

-ensemble2 antigen_ensemble.list 

-docking:dock_rtmin 

 

Example command line used in SnugDock protocol: 
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snugdock.mpi.linuxiccrelease 

-s 5JMO_u_cpx_0001.pdb 

-antibody:auto_generate_kink_constraint 

-antibody:all_atom_mode_kink_constraint 

-spin 

-dock_pert 3 8 

-loops:refine_outer_cycles 2 

-loops:max_inner_cycles 20 

-out:path:pdb out_pdb 

-pdb_gz 

-detect_disulf false 

-partners H_A 

-out:file:scorefile score-snugdock.sf 

-nstruct 1000 

-docking_low_res_score motif_dock_score 

-mh:path:scores_BB_BB 

/work/06525/tg858246/stampede2/motif_dock/score_data_ 

-mh:score:use_ss1 false 

-mh:score:use_ss2 false 

-mh:score:use_aa1 true 

-mh:score:use_aa2 true 

 

Docking models were evaluated using Critical Assessment of Predicted Interactions 

(CAPRI) criteria, which ranks predictions as ‘High’, ‘Medium’, ‘Acceptable’, or incorrect based 
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on their degree of similarity to the bound complex. This similarity criteria includes I-RMSD, 

ligand RMSD (L-RMSD), and fraction of native interface residue contacts (fnat) (197). 	

5.2.3 Interface analysis and affinity prediction 

All non-protein HETATMs were removed prior to surface area analysis and scoring. 

Change in accessible surface area (ΔASA) upon complex formation was calculated using 

NACCESS v2.1.1 (398), with default probe size (1.4 Å). ΔASA values were negated during ΔG 

prediction to facilitate comparison of correlation with affinity prediction terms. Prior to affinity 

prediction calculations, complex structures were processed using the “score” application in Rosetta 

(399) to add missing side chain atoms, remove double occupancies, and ensure consistent atom 

naming. Affinity prediction methods ZRANK (179) and ZRANK2 (180) were executed from 

downloadable command line programs. PRODIGY binding affinity predictions were calculated 

for each complex by the PRODIGY web server (218). ZAPP scores were computed as published, 

using command-line scripts and programs (380). PYDOCK_TOT, dDFIRE, PISA, 

FIREDOCK_AB, ROSETTADOCK, AP_T2, CP_TB, LK_SOLV, ELE, DDG_W, HBOND2, 

VDW, DCOMPLEX scores were computed by the CCharPPI server (400). Function descriptions 

from CCharPPI are as follows: 

PYDOCK_TOT: Total pyDock energy (377) 

dDFIRE: dDFIRE interaction energy (401) 

PISA: PISA score (402) 

FIREDOCK_AB: FireDock antibody-antigen function total energy (181) 

ROSETTADOCK: Total RosettaDock energy, calculated by PyRosetta (403) 

T2: The second atomic two-step potential described by Tobi (404) 

CP_TB: The residue-level interface contact potential from Tobi and Bahar (405) 
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LK_SOLV: The effective solvation energy function from Lazaridis and Karplus (406) 

ELE: Total electrostatic energy, as calculated by pyDock (377) 

DDG_W: A weighted atomic potential derived from mutation data (201) 

HBOND2: Hydrogen bonding potential energy from PyRosetta (403) 

VDW: van der Waals energy calculated by pyDock (377) 

DCOMPLEX: The DCOMPLEX potential (407) 

 

Calculation of Rosetta “REF15” and “beta_nov16” binding scores was performed using 

the “score” application in Rosetta (weekly release 2017.52), subtracting the separately scored 

antibody and antigen components from the score of the bound complex. Prior to REF15 and 

beta_nov16 affinity calculation, structures were pre-processed using Rosetta FastRelax (“relax” 

executable) (397) to perform constrained minimization of the bound complex structures.	 

5.2.4 Analysis of conformational changes 

To assess and compare residue-level and CDR-level binding conformational change, 

antibody chains were re-numbered in the AHo numbering scheme (408) using the ANARCI 

software tool (409). This processing only retained re-numbered atoms in the heavy and light chain 

variable domains, and discarded residues outside of the scope of AHo. The antibody in BM5 case 

2I25 was not recognized by ANARCI for re-numbering and was excluded from analysis of residue-

level and CDR-level binding conformational changes as it contains a shark IgNAR, which has a 

non-canonical antibody structure (410). CDR boundaries followed definitions, proposed by North 

et al. (145) and implemented by PyIgClassify (146), that maximize structural similarities between 

sdAb, heavy, and light chain loops. Specific CDR definitions for assessing conformational changes 

are as follows in AHo numbering: 
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CDRH1/sdAb CDR1: 24-42 

CDRH2/sdAb CDR2: 57-69 

CDRH3/sdAb CDR3: 107-138 

CDRL1: 24-42 

CDRL2: 57-72 

CDRL3: 107-138 

  

The structural alignment software ProFit V3.1 (411) was used to fit unbound and bound 

antibody variable domains, and calculate RMSDs of Cα backbone atoms for individual CDRs and 

entire variable domains. All antibody-antigen interface contacts within 5 Å were identified to 

determine the frequency at which each residue forms an interface contact in benchmark complexes. 

The RMSDs of antibody residues identified as interface contacts were grouped by type of amino 

acid, allowing for specific comparisons of average conformational changes. Significant differences 

in conformational changes between one amino acid and all other amino acids were calculated using 

two-sided Wilcoxon rank sum tests.	

5.2.5 Quantification and statistical analysis 

All statistical analysis was performed using the R program. For statistical analysis of 

Pearson correlations between scores and binding affinity measurements, p-values were computed 

using the cor.test() function in R (366), which is based on the t distribution, and “n” corresponds 

to the total number of affinity values (n = 51) (Table 5.9) or a subset thereof as indicated in Table 

5.10. For Wilcoxon rank sum tests between one amino acid and all other amino acids, p-values 

were computed using the wilcox.test() function in R. 
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5.3 Results 

5.3.1 Benchmark assembly and composition 

A comprehensive search of PDB structures identified 41 antibody-antigen complexes with 

corresponding structures of unbound antibody and antigen chains available that are not present in 

BM5 (186), increasing the benchmark to 67 cases. The antibody-antigen structures verified as new 

benchmark cases are summarized in Table 5.1 (additional details of new cases in Table 5.2). 

Affinity values were found in the literature for 28 new cases (details in Table 5.3), increasing the 

number of benchmark cases with affinities to 51. These structures were released in the PDB as 

early as 2004 and as recently as May 2019, consisting of complexes that were released after the 

publication of BM5, newly complemented with unbound structures, or overlooked in previous 

searches. 

This benchmark update expands and diversifies the set of antibody-antigen cases for 

docking and affinity prediction. Figure 5.1A highlights notable additions for antibody and antigen 

classifications, as well as an increase of cases designated ‘Medium’ or ‘Difficult’ for docking 

algorithms. Twelve new complexes include camelid nanobodies, giving the antibody-antigen 

benchmark a small, but meaningful, subset of 13 single domain antibodies (sdAbs) that allows for 

comparisons by antibody type within the benchmark. Underscoring the growing therapeutic 

relevance of antibodies, several cases in this benchmark include therapeutic monoclonal antibodies 

(mAbs) in complex with their targets, with 6 new cases in this category, and 12 in total (Table 5.1, 

Table 5.2). Viral antigens in new cases include SARS-CoV spike receptor binding domain, 

Influenza hemagglutinin, human astrovirus 2 (HAstV) spike, vaccinia virus (VACV) D8, and HIV 

gp120. 
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Nearly half of the new complexes are classified as Medium or Difficult, based on binding 

conformational change criteria represented by I-RMSD and fraction of non-native contacts 

(fnon_nat), which were used for previous docking benchmarks (186), for unbound structures 

superposed on bound complexes. This update dramatically increases the number of antibody-

antigen cases with large conformational changes. In BM5, only six out of 28 unbound antibody-

antigen cases (21%) were categorized as Medium or Difficult, a lower percentage than BM5 cases 

from all other categories of interactions (36%) (186). In this antibody-antigen benchmark, 23 of 

67 (34%) cases are classified as Medium or Difficult, resembling the proportion of challenging 

complexes found among all classes of interactions in BM5 (186). 

The addition of 41 new antibody-antigen complexes also expands the breadth and depth of 

CDR3 lengths, interface sizes, and binding affinities available in the benchmark. Sequence lengths 

for the CDR3 region vary greatly among these cases, ranging from 6 to 26 residues for mAb cases 

and 6 to 23 residues for sdAbs (Table 5.4). Benchmark sdAbs were found to have longer CDRH3 

loops than mAbs, with some significance (p = 0.02) (Figure 5.1B). This expanded benchmark 

encompasses a broad range of binding interface sizes (Table 5.1, Figure 5.1C) from 

approximately 1000 Å2 for an sdAb case (5VNW) to over 2500 Å2 for several cases, with an 

average interface size of 1650 Å2. sdAbs (open circles in Figure 5.1C), while lower on average in 

interface size, have several cases with buried surface area at or above 1650 Å2. The wide range of 

experimentally determined binding affinities spans many orders of magnitude (Figure 5.1D), with 

an average ΔG of approximately -11.7 kcal/mol, corresponding to approximately 2 nM KD (25°C), 

which is commensurate with typical antibody-antigen interaction affinities. The range of μM to 

pM affinities in this set allows testing of affinity prediction methods for discrimination of high 

affinity antibody interfaces based on structure. 
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Table 5.1 New antibody-antigen benchmark cases organized by difficulty category. 

Complex 
PDB1 

Antibody 
PDB1 Antibody2 Antigen 

PDB1 Antigen I-RMSD 
(Å)3 fnon-nat

3 ΔASA 
(Å2) 

KD 
(nM) 

ΔG 
(kcal/mol) 

Rigid          

1S78_DC:
A 1L7I_HL pertuzumab 

(Perjeta) 2A91_A ErbB2 1.13 0.38 2175.1 500 -8.45 

3MJ9_HL:
A 3MJ8_HL HL4E10 3MJ6_A JAML 1.48 0.36 2456.6 8 -11.05 

3SE8_HL:
G 5JXA_HL VRC03 3TGT_A HIV 93TH057 

gp120 1.22 0.34 2690.3   

3U7Y_HL:
G 

3U7W_H
L NIH45-46 3TGT_A HIV 93TH057 

gp120 0.84 0.26 2543.9 160 -9.27 

3WD5_HL:
ABC 

4NYL_H
L 

adalimumab 
(Humira) 

1TNF_AB
C TNFalpha 0.93 0.31 2328.2 0.115 -13.56 

4FP8_HL:
A 4FNL_HL C05 4FNK_A

BCDEF 
Influenza H3 

HA 0.34 0.07 1321.5 430 -8.83 

4M5Z_HL:
A 

4M5Y_H
L 5J8 3UYX_A Influenza 

H1N1 HA1 0.73 0.21 1591.1 10 -11.10 

4Y7M_A:C 4QGY_A nb25 4Y7L_A E coli TssM 
CTD 0.84 0.17 1102.5 1.61 -11.79 

5GRJ_HL:
A 4NKI_HL 

avelumab 
scFv 

(Bavencio) 
4Z18_A PD-L1 1.14 0.26 1752.5 0.0421 -14.15 

5JMO_D:B 5JMR_A Nb14 5JXI_A Furin 0.29 0.08 1393.9   

5O14_HL:
A 5UR8_AB 1A12 3KVD_D 

Neisseria 
meningitidis 

fHbp 
0.63 0.21 1523.7 0.019 -14.62 

5O1R_HL:
A 

5NYX_H
L 5H2 6CUJ_A 

Neisseria 
meningitidis 

NHBA 
0.9 0.3 1851.9   

5SV3_C:D 5SV4_A A3C8 1IFT_A Ricin 0.57 0 1293.6 0.627 -12.55 

5WK3_WV
:D 

5WK2_H
L M116 1NR4_A CCL17 0.57 0.18 1222.3   

5WUX_HL
:EFG 

5WUV_H
L 

certolizumab 
(Cimzia) 

1TNF_CB
A TNFalpha 0.8 0.31 2072.8 0.0274 -14.41 

5X0T_AB:
E 5X4G_AB 6H8 3B5H_A CD147 1.25 0.34 1316.2   

5Y9J_HL:
ABC 5Y9K_HL belimumab 

(Benlysta) 
1KXG_A

BC 
B lymphocyte 

stimulator 0.96 0.34 1976.3 0.995 -12.28 

6A77_HL:
A 6A76_HL B5209B 5O5I_A ROBO1 Ig5 0.95 0.22 1532.8   

6B0S_HL:
C 

6B0W_H
L 

1710 Fab 
fragment 3VDJ_A 

circumsporozo
ite protein 

aTSR domain 
0.72 0.31 1353.2 178 -9.11 
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6BPC_EF:
D 6BPB_AB 4F7 5W53_A 

Plasmodium 
vivax 

reticulocyte-
binding 

protein 2b 

0.47 0.19 1644.5   

6CWG_B:
A 6CWK_A A9 1IFT_A Ricin 0.76 0.14 1151.2 0.1 -13.64 

6DBG_C:B 6DBA_A R3-03 1H6T_A 
Listeria 

monocytogene
s internalin B 

0.46 0.15 1525.2 0.15 -13.4 

6OC3_AB:
F 6OBZ_HL FluA-20 6CHX_A 

H1 
hemagglutinin 

head 
0.59 0.29 1536.9   

Medium          

2DD8_HL:
S 2G75_AB m396 2GHV_E SARS-CoV 

spike 2.19 0.2 1709.7 20 -10.5 

3RJQ_B:A 3R0M_A A12 3TGR_A C1086 HIV 
gp120 0.79 0.81 1734.4   

4ETQ_HL:
C 4EBQ_HL LA5 4E9O_X vaccinia D8L 

IMV 0.47 0.41 2277.9 0.18 -13.29 

4M3K_B:A 4M3J_A cAb-H7S 4BLM_A 
B. 

licheniformis 
beta-lactamase 

1.77 0.32 1588   

4POU_B:A 4POY_A VHHmetal 6ETL_A bovine RNase 
A 1.83 0.41 1313.3 157 -9.28 

5CBA_AB:
E 5C2B_HL 3B4 scFv 4ZAI_A CXCL13 1.49 0.76 1790.2 0.3715 -13.38 

5E5M_B:A 5E03_A H11 5E56_A mouse CTLA-
4 1.56 0.43 1341.4   

5HGG_T:A 5HDO_A Nb4 4FUD_A uPA 0.84 0.42 1969 0.054 -14.01 

5HYS_CD:
JK 2XA8_HL omalizumab 

(Xolair) 4GT7_AB IgE-Fc3-4 1 0.47 1331.6 10 -10.91 

5KOV_C:A
B 5I30_HL PL-2 scFv 5KOU_A

B 

astrovirus 2 
capsid protein 
spike domain 

1.69 0.65 1735 1.87 -11.91 

5VNW_D:
A 5VNV_A Nb.b201 1E78_A human serum 

albumin 1.49 0.43 966.8 430 -8.68 

5WHK_HL
:AB 

5WHJ_H
L DX-2507 5BXF_AB FcRn-B2M 1.88 0.35 1849.6 1.81 -11.93 

6A0Z_HL:
A 6A0X_AB 13D4 2FK0_A 

H5N1 
hemagglutinin 

head 
1.28 0.45 1660.7 53 -9.92 

6AL0_HL:
A 

4YNY_A
B NZ-1 6AKQ_A 

A. aeolicus 
site-2 protease 
homolog with 

PA tag 
insertion 

1.89 0.5 1622.8   
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6EY6_I:AB 5FWO_A nb130 6EY5_AB P. gingivalis 
PorM 1.9 0.49 1806.8 8 -11.05 

Difficult          

2FJG_HL:
VW 2FJF_HL G6 4KZN_A

B VEGF 2.51 0.56 1678.2 20 -10.92 

4DW2_HL:
U 

4DVB_A
B mAb-112 4DVA_U uPA 2.27 0.76 2037.6   

5C7X_HL:
A 5D7S_HL MOR04357 2GMF_A GM-CSF 2.31 0.65 2523.3 0.007 -15.22 

 
1PDB code is followed by chain IDs for antibody and antigen chains; for complexes, antibody chains are 
shown first. See also Tables 5.2, 5.3, and 5.4. 
2Trade names for therapeutic antibodies in new benchmark cases are shown in parentheses. 
3Binding interface RMSD (I-RMSD) and fraction of non-native contacts (fnon-nat), which were used to 
assign docking difficulty level, were calculated by superposition of unbound antibody and antigen 
structures onto the bound complex structure using root-mean-square fit of interface residues. 
 
Table 5.2 Additional details for new antibody-antigen test cases. 

Complex Antibody Antigen Antigen 
Source 

Antibody 
Source 

Antibody 
Type Therapeutic1 

Associated 
Disease/Target 

1S78 pertuzumab ErbB2 Human Human mAb Yes (Perjeta) Cancer 

2DD8 m396 SARS spike Virus Human mAb No Viral infection (SARS-
CoV) 

2FJG G6 VEGF Human Human mAb No Cancer 

3MJ9 HL4E10 JAML Mouse Hamster mAb No None (T-cell 
stimulation) 

3SE8 VRC03 HIV 93TH057 
gp120 Virus Human mAb No Viral infection (HIV) 

3U7Y NIH45-46 HIV 93TH057 
gp120 Virus Human mAb No Viral infection (HIV) 

3WD5 adalimumab TNFalpha Human Human mAb Yes 
(Humira) Arthritis/Skin disorders 

4DW2 mAb-112 uPA Human Mouse mAb No Thrombosis/Bleeding 
disorder 

4ETQ LA5 vaccinia D8L 
IMV Virus Mouse mAb No Viral infection (VACV) 

4FP8 C05 Influenza H3 
HA Virus Human mAb No Viral infection 

(Influenza) 

4M5Z 5J8 Influenza HA1 Virus Human mAb No Viral infection 
(Influenza) 

5C7X MOR04357 GM-CSF Human Human mAb No Arthritis/Autoimmunity 

5CBA 3B4 scFv CXCL13 Human Human scFv No None (B lymphocyte 
signaling) 

5GRJ avelumab 
scFv PD-L1 Human Human scFv Yes 

(Bavencio) Cancer 

5HGG Nb4 uPA Human Camel Camelid/
VHH No Thrombosis/Bleeding 

disorder 

5HYS omalizumab IgE-Fc3-4 Human Human 
(humanized) mAb Yes (Xolair) Asthma 

5JMO Nb14 Furin Human Camel Camelid/
VHH No Various (Cancer, 

Infectious disease) 

5KOV PL-2 
astrovirus 2 

capsid protein 
spike domain 

Virus Mouse scFv No Viral infection (HAstV) 

5O14 1A12 
Neisseria 

meningitidis 
fHbp 

Bacterium Human mAb No Bacterial infection 
(Meningitis) 
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5O1R 5H2 
Neisseria 

meningitidis 
NHBA 

Bacterium Human mAb No Bacterial infection 
(Meningitis) 

5SV3 A3C8 Ricin Plant Llama Camelid/
VHH No Protein toxicity 

5WHK DX-2507 FcRn-B2M Human Human mAb No Autoimmune disorders 
5WK3 M116 CCL17 Human Human mAb No Asthma 

5WUX certolizumab TNFalpha Human Human 
(humanized) mAb Yes (Cimzia) Autoimmune disorders 

5X0T 6H8 CD147 Human Human 
(humanized) mAb No Parasitic infection 

(malaria) 

5Y9J belimumab B lymphocyte 
stimulator Human Human mAb Yes 

(Benlysta) Autoimmune disorders 

6A77 B5209B ROBO1 Human Mouse mAb No Cancer 

6A0Z 13D4 
H5N1 

hemagglutinin 
head 

Virus Mouse mAb No Viral infection 
(Influenza) 

6AL0 NZ-1 

A. aeolicus site-
2 protease 

homolog with 
PA tag insertion 

Bacterium Rat mAb No 
None (protein 

tagging/structural 
determination) 

6B0S 1710 
circumsporozoit
e protein aTSR 

domain 
Protozoa Human mAb No Parasitic infection 

(malaria) 

6BPC 4F7 

Plasmodium 
vivax 

reticulocyte-
binding protein 

2b 

Protozoa Mouse mAb No Parasitic infection 
(malaria) 

3RJQ A12 C1086 HIV 
gp120 Virus Llama Camelid/

VHH No Viral infection (HIV) 

4M3K cAb-H7S B. licheniformis 
beta-lactamase Bacterium Llama Camelid/

VHH No Antibiotic resistance 

4POU VHHmetal bovine RNase 
A Animal Llama Camelid/

VHH No None (dual-specific 
metalloproteins) 

4Y7M nb25 E coli TssM 
CTD Bacterium Llama Camelid/

VHH No None (Type VI 
secretion system) 

5E5M H11 mouse CTLA-4 Animal Llama Camelid/
VHH No Cancer 

5VNW Nb.b201 human serum 
albumin Human Llama Camelid/

VHH No None (nanobody 
production) 

6CWG A9 Ricin Plant Llama Camelid/
VHH No Protein toxicity 

6DBG R303 
Listeria 

monocytogenes 
internalin B 

Bacterium Llama Camelid/
VHH No Bacterial infection 

(Listeria) 

6EY6 nb130 P. gingivalis 
PorM Bacterium Llama Camelid/

VHH No Periodonitis 

6OC3 FluA-20 
H1N1 

Hemagglutinin 
head 

Virus Human mAb No Viral infection 
(Influenza) 

1AHW Fab 5g9 Tissue factor Human Mouse mAb No Thrombosis/Bleeding 
disorder 

1DQJ Fab Hyhel63 HEW lysozyme Chicken Human mAb No None (antibody-antigen 
recognition) 

1E6J Fab 13B5 HIV-1 capsid 
protein p24 Virus Mouse mAb No Viral infection (HIV) 

1JPS Fab D3H44 Tissue factor Human Human 
(humanized) mAb No Thrombosis/Bleeding 

disorder 

1MLC Fab44.1 HEW lysozyme Chicken Mouse mAb No None (antibody-antigen 
recognition) 

1VFB Fv D1.3 HEW lysozyme Chicken Mouse scFv No None (antibody-antigen 
recognition) 

1WEJ Fab E8 Cytochrome C Horse Mouse mAb No None (antibody-antigen 
recognition) 

2FD6 Fab ATN-
615 

Plasminogen 
activator 
receptor 

Human Mouse mAb No Cancer 
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2I25 
New Antigen 

Receptor 
PBLA8 

Lysozyme Chicken Nurse shark IgNAR No None (antibody-antigen 
recognition) 

2VIS Fab HC19 Flu virus 
hemagglutinin Virus Mouse mAb No Viral infection 

(Influenza) 

2VXT 

Murine 
reference 
antibody 

125-2H FAB 

Interleukin-18 Human Mouse mAb No Autoimmune disorders 

2W9E 
ICSM 18 

FAB 
fragment 

Prion protein 
fragment Human Mouse mAb No Prion diseases 

3EOA 
Efalizumab 

FAB 
fragment 

Integrin alpha-L 
I domain Human Human 

(humanized) mAb Yes 
(Raptiva) Autoimmune disorders 

3HMX Ustekinumab 
FAB Interleukin-12 Human Human mAb Yes (Stelara) Autoimmune disorders 

3MXW 

Anti-Shh 
5E1 chimera 

FAB 
fragment 

Sonic 
Hedgehog N-

terminal 
domain 

Human Human/Mou
se mAb No Cancer 

3RVW 4C1 FAB DER P 1 
allergen Dust mite Mouse mAb No Asthma 

4DN4 CNTO888 
FAB MCP-1 Human Human mAb Yes 

(Carlumab) Cancer 

4FQI CR9114 
FAB 

H5N1 Influenza 
virus 

hemagglutinin 
Virus Human mAb No Viral infection 

(Influenza) 

4G6J 
Canakinuma
b antibody 
fragment 

Interleukin-1 
beta Human Human mAb Yes (Ilaris) Arthritis/Autoimmunity 

4G6M 
Gevokizuma
b antibody 
fragment 

Interleukin-1 
beta Human Human 

(humanized) mAb Yes (no 
brand name) Arthritis/Autoimmunity 

4GXU 1F1 antibody 1918 H1 
Hemagglutinin Virus Human mAb No Viral infection 

(Influenza) 

3EO1 
GC-1008 

FAB 
fragment 

Transforming 
Growth Factor-

Beta 3 
Human Human mAb 

Yes 
(fresolimuma

b) 
Cancer 

3G6D CNTO607 
FAB Interleukin-13 Human Human mAb No Asthma 

3HI6 AL-57 FAB 
fragment 

Integrin alpha-L 
I domain Human Human mAb No Autoimmune disorders 

3L5W C836 FAB Interleukin-13 Human Human 
(humanized) mAb No Asthma 

3V6Z FAB E6 
Capsid protein 

assembly 
domain 

Virus Human mAb No Viral infection 
(Hepatitis B) 

1Trade names for therapeutic antibodies in benchmark cases are listed in parentheses. 
 
Table 5.3 Additional details and references for new antibody-antigen affinity cases.  

Complex KD, nM ΔG, kcal/mol Temperature,°C Method1 Reference 
1S78 500 -8.45 20 BLI (412) 
2DD8 20 -10.50 25 SPR (413) 
2FJG 20 -10.92 37 SPR (414) 
3MJ9 8 -11.05 25 SPR (415) 
3U7Y 160 -9.27 25 SPR (416) 
3WD5 0.115 -13.56 25 SPR (417) 
4ETQ 0.18 -13.29 25 SPR (418) 
4FP8 430 -8.83 30 BLI (419) 
4M5Z 10 -11.10 30 BLI (420) 



 

141 
 

 

5C7X 0.007 -15.22 25 SPR (421) 
5CBA 0.3715 -13.38 37 SPR (422) 
5GRJ 0.0421 -14.15 25 SPR (423) 
5HGG 0.054 -14.01 25 SPR (424) 
5HYS 10 -10.91 25 SPR (425) 
5KOV 1.87 -11.91 25 SPR (426) 
5O14 0.019 -14.62 25 SPR (427) 
5SV3 0.627 -12.55 25 SPR (428) 

5WHK 1.81 -11.93 25 SPR (429) 
5WUX 0.0274 -14.41 25 SPR (430) 
5Y9J 0.995 -12.28 25 SPR (431) 
6A0Z 53 -9.92 25 SPR (432) 
6B0S 178 -9.11 22 BLI (433) 
4POU 157 -9.28 25 ITC (434) 
4Y7M 1.61 -11.79 20 SPR (435) 
5VNW 430 -8.68 25 SPR (436) 
6EY6 8 -11.05 25 BLI (437) 
6DBG 0.15 -13.40 25 SPR (438) 
6CWG 0.1 -13.64 25 SPR (439) 

 
1Experimental affinity measurement method used. SPR = surface plasmon resonance, BLI = bio-layer 
interferometry, ITC = isothermal titration calorimetry. 
 
Table 5.4 Antibody CDR loop sequences of benchmark cases. 

Case CDRH11 CDRH21 CDRH31 CDRL1 CDRL2 CDRL3 
1AHW KASGFNIKDYYMH LIDPENGNTI ARDNSYYFDY KASQDIRKYLN YYATSLAD LQHGESPYT 

1DQJ SVTGDSVTSDYWS YISYSGSTY ASWGGDV RASQSISNNLH KYASQSIS QQSNSWPYT 

1E6J KASGYTFTSYTMH YINPSSGYSN SRPVVRLGYNFDY SASSSVSYMH YEISKLAS QQWNYPFT 

1JPS AASGFNIKEYYMH LIDPEQGNTI ARDTAAYFDY RASRDIKSYLN YYATSLAE LQHGESPWT 

1MLC KATGYTFSTYWIE ILPGSGST ARGDGNYGY RASQSISNNLH KYVSQSSS QQSNSWPRT 

1S78 AASGFTFTDYTMD DVNPNSGGSI ARNLGPSFYFDY KASQDVSIGVA YSASYRYT QQYYIYPYT 

1VFB TVSGFSLTGYGVN MIWGDGNTD ARERDYRLDY RASGNIHNYLA YYTTTLAD QHFWSTPRT 

1WEJ TASGFNIKDTYMH RIDPASGNTK AGYDYGNFDY RASGNIHNYLA YNAKTLAD QHFWSTPWT 

2DD8 KASGGTFSSYTIS GITPILGIAN ARDTVMGGMDV GGNNIGSKSVH YDDSDRPS QVWDSSSDYV 

2FD6 KASGYSFTNFYIH WIFHGSDNTE ARWGPHWYFDV SASSSVSYMH FEISKLAS QQWNYPFT 

2FJG AASGFTISDYWIH ITPAGGYT ARFVFFLPYAMDY RASQDVSTAVA YSASFLYS QQSYTTPPT 

2I25 VVRDSRCVLSTG - KPESRYGSYDAVCAALNDQ    

2VIS TVSGFLLISNGVH VIWAGGNTN ARDFYDYDVFYYAMDY RSSTGAVTTSNYAN GGTNNRAP ALWYSNHWV 

2VXT KASGYSFTDYFIY DIDPYNGDTS ARGLRF RASQDIGSKLY YATSSLDS LQYASSPYT 

2W9E KASRNTFTDYNLD NVYPNNGVTG ALYYYDVSY SASSSVSYMH YDTSKLAS HQWRSNPYT 

3EO1 KASGYTFSSNVIS GVIPIVDIAN ASTLGLVLDAMDY RASQSLGSSYLA YGASSRAP QQYADSPIT 

3EOA AASGYSFTGHWMN MIHPSDSETR ARGIYFYGTTYFDY RASKTISKYLA YSGSTLQS QQHNEYPLT 

3G6D AASGFTFNSYWIN GIAYDSSNTL ARGLGAFHWDMQPDY SGDNIGGTFVS YDDNDRPS GTWDMVTNNV 

3HI6 AASGFTFSRYVMW YIWPSGGNTY ASSYDFWSNAFDI RASQSIGSYLN YAASSLQS QQSYSTPS 

3HMX KGSGYSFTTYWLG IMSPVDSDIR ARRRPGQGYFDF RASQGISSWLA YAASSLQS QQYNIYPYT 

3L5W SFSGFSLSTYGMGVG HIWWDDVKR ARMGSDYDVWFDY RASKSISKYLA YSGSTLQS QQHNEYPYT 

3MJ9 TVSGISLSDYGVH IIGHAGGTD ARHFYTYFDV SGDKLSDVYVH YEDNRRPS QSWDGTNSAWV 

3MXW KGSGYTFIDEALH VIRPYSGETN ARDWERGDFFDY KASQSVSNDLT YYASNRYT QQDYGSPPT 

3RJQ TASGRISSSYDMG AISWSGGTTD AAKWRPLRYSDYPSNSDYYD    
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3RVW TVTGYSITSDYAWN YISYSGTTS GRTGVYRYPERAPY KASQDIYSYLS YRANRLIT LQYDEFPYT 

3SE8 RASGYNFRDYSIH WIKPLWGAVS VRRGSCDYCGDFPWQY KASQGGNAMT YDTSRRAS QQFEF 

3U7Y RASGYEFLNCPIN WLKPRGGAVN TRGKYCTARDYYNWDFEH RTSQSGSLA YSGSTRAA QQYEF 

3V6Z AASGFTFSSYGMS TISSGGNYIY TREGAYSGSSSYPMDY KSSQSVLYSSNQKNYLA YWASTRES HQYLSSYMYT 

3WD5 AASGFTFDDYAMH AITWNSGHID AKVSYLSTASSLDY RASQGIRNYLA YAASTLQS QRYNRAPYT 

4DN4 KASGGTFSSYGIS GIIPIFGTAN ARYDGIYGELDF RASQSVSDAYLA YDASSRAT HQYIQLHSFT 

4DW2 SASGFTFSRYAMS SITNGGSTY ERGELTYAMDY RASSTVSFHYLH YATSNLAS QHYSAYPRT 

4ETQ KASGYSFNFYWMH MIDPSESESR TRSNYRYDYFDV SASSSVSYMY YDTSNLAS QQWTSYPLT 

4FP8 VGSGSSFGESTLSYYAVS IINAGGGDID AKHMSMQQVVSAGWERADLVG
DAFDV QASQDIRKFLN YDASNLQR QQYDGLPFT 

4FQI KSSGGTSNNYAIS GISPIFGSTA ARHGNYYYYSGMDV SGSDSNIGRRSVN YSNDQRPS AAWDDSLKGAV 

4G6J AASGFTFSVYGMN IIWYDGDNQY ARDLRTGPFDY RASQSIGSSLH KYASQSFS HQSSSLPFT 

4G6M SFSGFSLSTSGMGVG HIWWDGDES ARNRYDPPWFVD RASQDISNYLS YYTSKLHS LQGKMLPWT 

4GXU AASGFTFSSYAMH VISYDGRNKY ARELLMDYYDHIGYSPGPT SGSSSNIGSYTVN YSLNQRPS AAWDDSLSAHVV 

4M3K AASGSISSITTMG LINSVGDTT NAFMSTNSGRTGSF    

4M5Z AVSGYSISSNYYWG SIYHSGSTY ARHVRSGYPDTAYYFDK GGNNIGTKVLH YDDSDRPS QVWDISTDQAV 

4POU AASGYPHPYLHMG AMDSGGGGTL AAGGYQLRDRTYGH    

4Y7M AASGFTFEDYAIG CISNLDGSTY AAVNAQGIYCTDYIIGPYGMDY    

5C7X AASGFTFSSYWMN GIENKYAGGATY ARGFGTDF SGDSIGKKYAY YKKRPS SAWGDKGMV 

5CBA KASGGTFSSYAIS GIIPIFGTAN AREPDYYDSSGYYPIDAFDI TGTSSDVGAYDWVS FDVNNRPS SSYTRRDTYV 

5E5M AASGSTISSVAVG TSSTSSTTAT KTGLTN    

5GRJ AASGFTFSSYIMM SIYPSGGITF ARIKLGTVTTVDY TGTSSDVGGYNYVS YDVSNRPS SSYTSSSTRV 

5HGG AASGFTLDSYAIG CISASGGSTN AADHPGLCTSESGRRRYLEV    

5HYS AVSGYSITSGYSWN SITYDGSTN ARGSHYFGHWHFAV RASQSVDYDGDSYMN YAASYLES QQSHEDPYT 

5JMO AASGFTFSSYSMY SINRVGSNTD AVGMYAAPPW    

5KOV TVSGFSLIDYGVH VIWTGGSTD GRPYYGNVMDY RASQDISNYLN YYTSRLHS QQGNTFPPT 

5O14 KASGYTFTNYWVV SIHPRDSDAR ARLSQVSGWSPWVGP RASQSISVSLN YAASRLQS QETYSDLMYT 

5O1R TVSGGSVSSGSSYWT YTSYSGSTK ARDRFDVASGSSFDF RASQSISNYLN YAASSLGS QQSYGSPT 

5SV3 TASGRTLGDYGVA VISRSTIITD AVIANPVYATSRNSDDYGH    

5VNW AASGYISDAYYMG TITHGTNTY AVLETRSYSFRY    

5WHK AASGFTFSEYAMG SIGSSGGQTK ARLAIGDSY TGTGSDVGSYNLVS YGDSQRPS ASYAGSGIYV 

5WK3 KGSGYSFTSYWIG IIDPSDSDTR ARVGPADVWDSFDY KSSQSVLLSPWNSNQLA YGASTRES QQYYLIPST 

5WUX AASGYVFTDYGMN WINTYIGEPI ARGYRSYAMDY KASQNVGTNVA YSASFLYS QQYNIYPLT 

5X0T VASGFTFSNFWMN EIRLKSNNYATH TSYDYEY KASENVGTYVS YGASNRYT GQSYSYPFT 

5Y9J KASGGTFNNNAIN GIIPMFGTAK ARSRDLLLFPHHALSP QGDSLRSYYAS YGKNNRPS SSRDSSGNHWV 

6A0Z KATGYTFSGHWIE EILPGSGNIH ARLGTTAVERDWYFDV KASQNVGTHLA YSASYRYS QQYNNFPLT 

6A77 AASGFTFSTYDMS TINSNGGSTY AREALLRPPYYALDY GASENIYGALT YGAINLAD QNVLSTPFT 

6AL0 AASGFTFSNYGMA SISAGGDKTY AKTSRVYFDY KRSTGNIGSNYVN YRDDKRPD HSYSSGIV 

6B0S AASGFTFSSYSMN SITSSSSYIY ARDPGIAAADNHWFDP SGDKLGDKYAC YQDTKRPS QAWDSSTVV 

6BPC TASGFTFSDYYMA NINYDGSTPD ARETVVGSFDY KASQNVGTNVA YSASYRYS QQYNSYPYT 

6CWG AASGRDFSMYMLA AIMCSGGGGGTY AASTTYCSATTYSSDRLYDF    

6DBG AASGHTYSTYCMG RINVGGSSTW TLHRFCNTWSLGTLNV    

6EY6 AASGRTFSSYVMG AISWSGGSIH VAGFAGYGSFTSRSARDSDKYDY    

6OC3 SVSGVSVTSDIYYWT YIFYNGDTN ARGTEDLGYCSSGSCPNH RPSQNIRSFLN YAASNLQS QQSYNTPPT 
 

1For camelid/single-domain antibodies, CDR loop sequences are in the CDRH1/H2/H3 columns. IgNAR 
case 2I25 does not have a CDRH2-equivalent loop. 
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Figure 5.1 Docking and affinity benchmark composition. (A) Composition of antibody-antigen 
benchmark depicted here through classification by antibody type, antigen type, and docking difficulty. 
Separation of categories by stage of benchmark inclusion (BM5, New) highlights differing proportions for 
some categories, increasing overall diversity. (B) Averages of CDR3 length for sdAb, heavy, and light 
chains. Standard deviation for each group is shown in error bars. (C) Interface sizes for antibody-antigen 
complexes in (Å2), with mAb cases shown as black points, sdAb cases as gray points, and mean size as 
black bar. (D) Experimentally determined binding affinities, with mean shown as black bar. KD scale 
shown on right for reference, corresponding to steady-state affinities for 25°C, which was the most 
frequently used temperature in reported affinity measurements. 
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5.3.2 Binding conformational changes 

We calculated conformational changes of benchmark complexes at multiple levels, 

comparing unbound and bound antibody structures by variable domains, antibody CDRs, and 

individual antibody residues. Binding I-RMSDs, a key metric for predicting docking difficulty, 

were also calculated for antibody and antigen structures. Binding RMSDs of antibody CDRs and 

variable domains highlight significant differences in, and extraordinary cases of, structural change 

of antibodies upon binding within the benchmark (Figure 5.2A). Although most antibody CDRs 

remain relatively static upon antigen binding (RMSD < 1 Å; 311 out of 360 CDR loops), several 

Medium and Difficult cases exhibit notable CDR-specific conformational changes (3-7 Å) that 

pose unusual challenges for docking prediction. Most of these dramatic shifts occur in CDR3 

loops, which show the highest RMSDs on average for each antibody chain type. However, 

unexpectedly large conformational changes were also found in CDR1 and CDR2 loops for both 

light and heavy chains. Several CDR1 loops in sdAb chains exhibited these shifts, with the largest 

in 4POU (434) at 3.9 Å (Figure 5.2A). When comparing mAb and sdAb CDR RMSDs, 

conformational changes trended higher in sdAb chains for all CDRs on average, with sdAb CDR1 

chain RMSDs significantly higher than mAb heavy chains (p = 0.006). Figure 5.2B revealed 

higher antibody I-RMSDs for sdAb cases, showing that this observed difference is not limited to 

individual CDR loops. Conversely, antigen I-RMSDs of sdAb chains trended lower than mAb 

chains, though these changes were not statistically significant. 

To further investigate patterns in antibody and antigen binding conformational changes, 

and whether they co-occur or are mutually exclusive, we compared antigen versus antibody I-

RMSDs for all test cases (Figure 5.2C). While antibody and antigen I-RMSDs were distributed 
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broadly, the cases with larger antibody or antigen I-RMSD values (>2 Å) generally had lower I-

RMSD values for the other side of the interface.  

Antibody residues in each variable domain were re-numbered, allowing for calculations of 

average I-RMSD and interface contacts for residues present in mAb heavy, mAb light, or sdAb 

chains (Figure 5.3). sdAb chains showed the highest average I-RMSDs for many segments of the 

variable domain, including CDR1, portions of CDR3, and several framework regions (AHo re-

numbered residues 43-56, 80-90). An example of an sdAb CDR1 with pronounced binding 

conformational change, from test case 4POU, is shown in Figure 5.4A. Surprisingly, sdAb CDR3 

RMSDs show a decrease for residues near the apex of the loop before increasing again, a noticeable 

deviation from mAb CDRH3 conformational changes. To determine whether certain antibody 

amino acids are associated with higher or lower conformational changes upon binding, RMSDs of 

antibody residues near the antigen interface were compared by amino acid type (Figure 5.5). While 

most residues did not display significant differences in binding RMSDs, glycine and proline 

exhibited significantly larger conformational changes, whereas tyrosine and tryptophan were 

associated with smaller conformational changes. These intriguing trends warrant further 

investigation and could possibly be incorporated into predictive antibody modeling and docking 

algorithms. 

Figure 5.3 highlights sdAb and mAb residues that form an interface contact in 50% or 

more of benchmark cases that included the residue. Indicated with black bars in each plot, interface 

contacts were only found in CDR loops, but the amount and residue positions of these contacts 

differed by antibody chain type. mAb heavy chains contained 17 interface contacts, including 

seven in CDRH3. Only 9 interface contacts were found in mAb light chains, largely due to fewer 

interface contacts in CDRL2 and CDRL3. sdAb chains showed 22 prevalent interface contact 
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residues, with 16 in sdAb CDR3 alone. Significantly longer sdAb CDR3s in the benchmark may 

help to account for increased sdAb CDR3 contacts, but structural comparisons of mAb and sdAb 

CDR3s suggest key differences (Figure 5.4B). sdAb case 5HGG (424) contains a relatively long 

CDR3 of 20 aa that folds over the immunoglobulin domain, offering a stark contrast to mAb case 

5CBA (440), in which the CDRH3 of identical length extends from the heavy chain. sdAb CDR3 

folding in 5HGG is influenced by a disulfide bond between CDR2 and CDR3. Interloop disulfide 

bonds are relatively common in sdAbs (441), and were found in four sdAb benchmark cases 

(4Y7M, 5HGG, 6CWG, 6DBG). sdAbs without an interloop disulfide bond showed larger average 

conformational changes than sdAbs with an interloop disulfide bond in the first eight CDR3 

residues (Table 5.5). These unexpected CDR3 orientations in sdAb chains help to explain the 

lower RMSDs shown at the apex of sdAb CDR3 loops when compared to mAb CDRH3 loops. 

Newly introduced cases also increased structural diversity among benchmark cases that 

bind to highly similar or identical antigens, as shown in a superposition of benchmark mAbs on 

Influenza hemagglutinin (Figure 5.4C). This antibody-antigen benchmark update adds four 

hemagglutinin antigen cases (4FP8, 4M5Z, 6A0Z, 6OC3) to the three cases present in BM5 (2VIS, 

4FQI, 4GXU).  
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Figure 5.2 Binding conformational changes of antibody-antigen benchmark cases. (A) RMSDs of 
CDR loops and variable domains of sdAb, heavy, and light chains. sdAb chains (N=12) were plotted 
independently of mAb heavy and light chains (N=54). For clarity, RMSD values are capped at 4 Å in this 
plot, and four CDR RMSDs > 4 Å are not shown. These values occur in sdAb CDR3 (5.0 Å; 4M3K), 
mAb CDRH2 (6.7 Å; 2FJG), CDRL1 (5.3 Å; 5WHK), and CDRL2 (5.9 Å; 5C7X) loops. Median RMSD 
for each group is shown as a black bar. (B) I-RMSDs of sdAb and mAb cases by antibody alone, antigen 
alone, and the entire interface. The plot includes all sdAb (N=13) and mAb (N=54) benchmark cases. 
Median I-RMSD for each group is shown as a black bar. (C) Antigen versus antibody I-RMSD for all test 
cases, categorized by benchmark version (BM5, New) and docking difficulty, with sdAbs shown 
separately (12 of 13 in New). 
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Figure 5.3 Comparison of residue-level conformational changes by antibody chain type. Average 
residue-level conformational changes (RMSDs) for (A) light, (B) heavy, and (C) sdAb chains. Red lines 
represent average RMSD at each residue, re-numbered according to the AHo scheme (408). CDR regions 
are highlighted with gray shading. Residues were included in the analysis only when present in ~40% or 
more cases for a given chain type (N > 5 for sdAb, N > 20 for heavy/light). As a result, residue gaps vary 
in size between chain types, particularly in CDR3 loops. Plots are aligned numerically for easier 
comparisons, maintaining the same x-axis except for the last AHo re-numbered residue before the gap in 
CDR3 numbering (114 for heavy, 111 for light, and 117 for sdAb). Residue number 60 in the light chain 
is marked with an asterisk because it was not present in any mAb benchmark cases, but was included for 
consistency with other panels. Black rectangles above the x-axis indicate which AHo re-numbered 
residues formed an interface contact in at least 50% of benchmark cases that contained the residue. 
 
 



 

149 
 

 

 
Figure 5.4 Structural diversity of benchmark cases. (A) Visualization of superposed bound and 
unbound interface of case 4POU (434), with flexibility of CDR1 highlighted. Unbound CDR1 is colored 
orange, bound CDR1 is colored red, and the rest of the antibody chains are in grey. Unbound and bound 
antigen chains are colored light blue. (B) Superposed antibody chains for test cases 5CBA (440) and 
5HGG (424), with CDR3 loops highlighted. 5CBA CDRH3 is colored light green, while 5HGG CDR3 is 
colored magenta. The disulfide bond between CDR2 and CDR3 in 5HGG is visualized by yellow sticks. 
(C) Structures of seven benchmark cases with Influenza hemagglutinin as antigen (419, 420, 432, 442-
445). All cases were aligned into the same reference frame using two chains from the 4FQI antigen, 
which is depicted in green and cyan with transparent surfaces. Heavy and light chains of each anti-
hemagglutinin mAb were given the same color for better visualization of individual antibody structures. 
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Figure 5.5 Binding conformational changes of antibody residues near the antigen interface by 
amino acid. (A) Binding conformational changes, calculated for each residue as Cα atom I-RMSDs after 
superposing unbound and bound Fv domains, are shown with amino acids identified by their three letter 
codes. Asterisks indicate significant differences between I-RMSDs of that amino acid and the combined 
I-RMSDs of all other amino acids (*, p < 0.05; ***, p < 0.001), calculated by Wilcoxon rank sum test. 81 
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RMSD values greater than 2.5 Å are not shown, allowing for better visualization of differences in average 
I-RMSD by residue. (B) The same boxplot as (A), with y-axis scaled to show the outlier I-RMSDs. Due 
to residue preferences of antibody interface residues, the numbers of I-RMSD values vary substantially 
among the amino acids. Amino acids with N < 10: CYS, MET. Amino acids with N between 25 and 50: 
ALA, GLN, GLU, HIS, LYS, PRO, VAL. Amino acids with N between 51 and 100: ARG, ILE, LEU, 
PHE, TRP. Amino acids with N between 101 and 200: ASN, ASP, GLY, THR. Amino acids with N > 
200: SER, TYR. 
 
Table 5.5 sdAb CDR3 average RMSDs for subsets with or without interloop disulfide.  

CDR3 
residue1 

sdAb Average 
RMSD (Å) 

No disulfide 
average RMSD (Å)2 

Disulfide average 
RMSD (Å)3 

No disulfide 
count4 

Disulfide 
count5 

107 0.36 0.41 0.26 8 4 
108 0.46 0.58 0.23 8 4 
109 0.47 0.61 0.18 8 4 
110 1.1 1.45 0.41 8 4 
111 1.08 1.40 0.51 7 4 
112 1.69 2.28 0.65 7 4 
113 2.15 3.17 0.62 6 4 
114 1.62 2.45 0.58 5 4 
115 0.65 0.78 0.56 3 4 
116 0.81 0.69 0.93 3 3 
117 0.74 0.60 0.83 2 3 
130 0.76 0.42 1.10 3 3 
131 0.76 0.44 1.08 3 3 
132 1.04 0.57 1.40 3 4 
133 1.55 2.08 0.90 5 4 
134 1.32 1.76 0.67 6 4 
135 1.13 1.35 0.75 7 4 
136 0.91 1.09 0.58 7 4 
137 1.22 1.63 0.39 8 4 
138 0.75 0.93 0.40 8 4 

 
1Residue number, by AHo numbering scheme (408). 
2Average RMSD by CDR3 residue for sdAb structures with no interloop disulfide (N=8). 
3Average RMSD by CDR3 residue for sdAb structures with interloop disulfide (N=4). 
4Number of sdAb structures without an interloop disulfide that include the CDR3 residue. 
5Number of sdAb structures with an interloop disulfide that include the CDR3 residue. 

5.3.3 Global docking prediction 

For an initial assessment of the test cases and their docking difficulty, we performed global 

protein docking simulations with the unbound structures as input. To assess shared or divergent 

patterns in docking performance across the benchmark from different methods, we used two global 
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docking programs: ZDOCK (165, 393) and ClusPro (396). For ClusPro docking, the antibody-

antigen potential was selected, as it was reported to improve performance on this class of 

complexes (172). For both ZDOCK and ClusPro, framework regions of antibodies were blocked 

or masked during docking to favor models with antibody CDR loops in the interface. The ClusPro 

server returned between 20 and 30 models for each case, with a median of 30 models, while 

ZDOCK generated 3600 models per case.  

Performance of these docking algorithms on the benchmark is shown in Figure 5.6, with 

detailed results given in Table 5.6. As expected, performance on the Rigid cases was higher than 

for the Medium and Difficult classes of cases. Both algorithms exhibited comparable performance 

on the benchmark overall, with ClusPro showing moderately higher success rates on the 

benchmark (34% success for top 10, 45% success for top 30), although ZDOCK produced more 

Medium accuracy or higher models (22% success for top 30, versus 16% for ClusPro). While some 

cases, particularly in the Rigid subset, had successful predictions from both methods (e.g. 6DBG, 

3MXW), there are also many cases of divergent performance between docking methods. Cases of 

Medium difficulty, particularly below 5CBA in Figure 5.6 (corresponding to binding I-RMSD > 

1.5 Å), were more challenging, though both ZDOCK and ClusPro produced models of Acceptable 

accuracy for several cases above this I-RMSD threshold. 

To determine docking performance when larger sets of models are considered, success 

rates were computed for ZDOCK for up to 2000 models per case (Figure 5.7A). In ZDOCK, 

models of both Acceptable and Medium accuracy increased with the total number of models 

generated, with success rates of approximately 66% for Medium accuracy models and 90% for 

Acceptable accuracy models, given that 2000 models were allowed per case. This result suggests 

the need for model selection and refinement methods to improve the overall rankings of near-
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native predictions, which are evidently identified within larger sets of models, but ranked below 

incorrect predictions. To assess possible differential performance on new cases versus the previous 

set of BM5 cases, comparison of ZDOCK performance between these subsets of cases is shown 

in Figure 5.7B. Only cases with Rigid docking difficulty were evaluated to avoid bias due to a 

higher proportion of Medium and Difficult category cases in the new benchmark (Figure 5.1A). 

No major overall difference in docking success was observed between the BM5 and new Rigid 

cases, though minor reductions of success were seen for docking model ranks < 100. 

As antigen glycosylation can be an important factor in antibody-antigen recognition, 

including antibody recognition of viral glycoproteins, we tested ZDOCK using a subset of 

benchmark cases with glycans present in the experimentally determined structures of the unbound 

antigens. ZDOCK results were compared with the same structures with glycans removed (Table 

5.7), corresponding to the ZDOCK results reported above. The presence of glycans did not 

markedly affect ZDOCK’s performance, though future studies could explore this in more detail on 

a larger set of cases, for instance using modeled N-glycans (446, 447), and possible improvement 

of N-glycan parameters in ZDOCK.  
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Figure 5.6 Docking performance on the antibody-antigen benchmark. Global docking methods 
ZDOCK and ClusPro were assessed for predictive modeling of all 67 antibody-antigen cases, using 
unbound proteins as input. SnugDock was used to perform local docking perturbations on the same set of 
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cases (except IgNAR case 2I25) using unbound proteins aligned to the bound antibody-antigen complex 
as input, to test for the prediction of binding funnels at the native binding site. To compare with 
SnugDock score, ZRANK2 was also tested for binding funnel prediction through rescoring of the set of 
all locally perturbed models from SnugDock for each case. The top 10 (T10) and top 30 (T30) ranked 
models from global docking methods and the top 1 (T1) and top 10 (T10) ranked models from local 
perturbations were assessed for near-native predictions using CAPRI criteria of High, Medium, or 
Acceptable accuracy. Cases are classified by docking difficulty and sorted by I-RMSD within each 
classification. Newly added cases and sdAbs are also indicated. Success rates, calculated as the percent of 
test cases with near-native predictions from the corresponding method for a given range of top-ranked 
models, are shown at the bottom, with bars colored according to CAPRI accuracy. 
 
Table 5.6 Global docking ranks of top Acceptable and Medium models. 

 ClusPro Antibody  ZDOCK 3.0.2 

Case Top 
Acceptable 

Top 
Medium 

Top 
Acceptable 

Top 
Medium 

1AHW 3 - 210 443 
1DQJ - - 460 - 
1E6J 1 - 23 56 
1JPS 3 - 853 972 

1MLC - - 30 30 
1VFB 2 2 27 562 
1WEJ 1 1 28 28 
2FD6 19 19 5 18 
2I25 - - 5 5 
2VIS - - 413 732 
4G6J - - 329 329 
4G6M 2 - 6 9 
2VXT 4 - 3 3 
3EOA - - 164 164 
3RVW 1 - 127 497 
2W9E 19 2 11 108 

3MXW 1 7 1 1 
4DN4 3 - 32 164 
3HMX 2 - 5 5 
4FQI - 1 123 1569 

4GXU - - 3377 - 
3EO1 - 1 349 1255 
3G6D 18 - 54 - 
3HI6 - - 173 - 
3L5W 8 2 107 175 
3V6Z - - 449 - 
1S78 - - 205 - 
3MJ9 - - 766 2592 
3SE8 - - 8 8 
3U7Y - - 67 67 
3WD5 6 - 228 1062 
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4FP8 21 - - - 
4M5Z 1 - 4 78 
4Y7M - - 5 32 
5GRJ - - 211 - 
5JMO 12 12 13 13 
5O14 - - 29 106 
5O1R 15 - 308 308 
5SV3 - - 37 37 
5WK3 17 17 23 28 
5WUX - - 248 459 
5X0T - - 28 28 
5Y9J - - 231 1631 
6A77 10 - 5 5 
6B0S 5 - 2513 - 
6BPC - - 1391 - 
6CWG - - 23 81 
6DBG 1 4 3 3 
6OC3 - - 205 424 
2DD8 11 - 199 - 
3RJQ - - 416 - 
4M3K - - 512 512 
4ETQ 6 - 6 6 
4POU - - 12 65 
5CBA 9 - 6 412 
5E5M 12 - 92 - 
5HGG - - 5 - 
5HYS - - 2923 - 
5KOV - - 38 54 
5VNW - - 855 - 
5WHK - - 186 - 
6A0Z - - 3419 - 
6AL0 - - - - 
6EY6 - - 2568 - 
2FJG 4 - 57 431 
4DW2 - - 648 - 
5C7X - - 1100 - 

 
Docking model assessments of Acceptable and Medium are based on CAPRI docking criteria (197), and 
rank given for Acceptable or Medium denotes the highest-ranked docking model with Acceptable or 
higher accuracy, or Medium or higher accuracy, respectively. Top Acceptable or Medium hits in the top 
30 ranked docking models for any case are highlighted in green. “-” indicates no predictions of that 
accuracy within the full sets of models from the docking method. 
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Figure 5.7 Comparison of docking success rates in ZDOCK models. Success rates from top 1 to top 
2000 ranked models from ZDOCK are shown for (A) All cases and (B) Rigid-body cases. (A) Success 
rates for CAPRI criteria of Acceptable accuracy or higher, and Medium accuracy or higher, are compared. 
(B) Success rates for Acceptable accuracy or higher models for new rigid-body cases (N=23) in 
comparison with rigid-body cases from BM5 (N=21).  
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Table 5.7 Comparison of ZDOCK results with or without glycans removed in unbound antigen.  

    No Glycans With Glycans 

Case Category # Glycans1 # 
Acc2 

Rank 
Acc3 

# 
Med2 

Rank 
Med3 

# 
Acc2 

Rank 
Acc3 

# 
Med2 

Rank 
Med3 

4FP8 Rigid 16 0 - 0 - 0 - 0 - 
3U7Y Rigid 10 10 67 3 67 11 34 3 103 
1S78 Rigid 3 4 205 0 - 4 251 0 - 
3SE8 Rigid 10 9 8 1 8 12 25 0 - 
3MJ9 Rigid 3 7 766 1 2592 2 1424 0 - 
3RJQ Medium 8 4 416 0 - 1 368 0 - 
5HYS Medium 2 1 2923 0 - 0 - 0 - 
6A0Z Medium 2 1 3419 0 - 0 - 0 - 
2FJG Difficult 2 13 57 3 431 15 253 2 376 

  
1Number of N-glycans present in the unbound antigen PDB file. 
2Number of Acceptable or higher accuracy (# Acc) or Medium or higher accuracy (# Med) models in the 
3600 ZDOCK models for that test case. 
3Rank of first Acceptable or higher accuracy (Rank Acc) or Medium or higher accuracy (Rank Med) in 
ZDOCK models for the test case. “-” denotes no models with that accuracy in the ZDOCK models. 
 

5.3.4 Local docking perturbations 

In addition to global rigid-body docking simulations, we performed local docking with the 

SnugDock algorithm (178), to test for the presence of binding energy funnels near the native 

complexes with the unbound antibody and antigen structures as input (Figure 5.6; additional 

details in Table 5.8). This algorithm samples side chains and CDR backbone conformations during 

the docking search, thus providing a modeling method distinct from global rigid-body docking 

algorithms we tested. For comparison of binding funnel detection versus the SnugDock Rosetta 

interface score, all SnugDock models were scored and re-ranked using the ZRANK2 algorithm 

(180). Unbound structures were superposed onto bound complex structures prior to SnugDock 

simulations, giving the low initial I-RMSDs for most cases (Table 5.8). The goal of these 

simulations was to detect binding energy funnels and near-native top-ranked models in the context 
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of local flexible perturbations, and not to improve I-RMSD or accuracy over the input (i.e. 

superposed unbound structures). 

Numerous antibody-antigen cases had highly ranked near-native models in Figure 5.6, 

indicative of binding energy funnels in the SnugDock simulations, while others were more 

challenging for local docking. SnugDock and ZRANK2 scoring resulted in different performance 

for several cases, including case 6CWG, where a High accuracy model was ranked in the top 10 

for SnugDock, and case 3MXW, where a High accuracy model was ranked #1 by ZRANK2 score. 

Two representative SnugDock score versus I-RMSD plots, both from the Rigid docking category 

and with relatively low binding conformational changes, are shown in Figure 5.8. Plots of 

SnugDock score versus I-RMSD for rigid cases (Figure 5.9) and medium or difficult cases (Figure 

5.10) further show the range of success in reaching binding energy funnels. As can be seen in 

Figure 5.8, even Rigid cases can exhibit vastly different binding energy funnels in SnugDock, 

bearing further investigation; the affinity for the complex in test case 4FP8, with a less distinctive 

funnel in Figure 5.8B, is relatively low, and previous analysis showed that lower affinities may 

be associated with lower docking success (186).  
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Table 5.8 SnugDock local perturbation performance by test case.  

Case Input I-
RMSD1 

Snugdock 
I-RMSD2 

Top Rank 
Acceptable3 

Top Rank 
Medium3 

Top Rank 
High3 

ZRANK2 
I-RMSD2 

5JMO 0.39 0.98 1 1 1 1.08 
1WEJ 0.58 8.01 4 11 1001 5.52 
4FP8 0.57 8.08 3 1001 1001 8.08 
3EOA 3.01 5.86 16 1001 1001 11.43 
6DBG 0.51 1.11 1 1 1001 2.01 
6BPC 1.96 1.23 1 1 1001 13.32 

3MXW 0.82 2.59 1 3 3 0.98 
3RVW 0.63 7.7 4 5 1001 2.56 
1JPS 0.63 2.02 1 1 1001 2.12 

4G6M 0.58 1.77 1 1 1001 2.3 
5SV3 0.58 2.8 1 2 1001 11.57 
5WK3 0.97 2.47 1 1 1001 3.54 
6OC3 0.85 13.68 3 13 1001 13.68 
1MLC 0.85 2.4 1 1 1001 1.92 
4G6J 2 14.37 2 4 1001 2.4 
5O14 0.78 5.07 4 51 1001 3.81 

1AHW 0.94 2.03 1 3 1001 5.35 
6B0S 6.33 6.3 1001 1001 1001 10.91 

3HMX 2.23 2.13 1 2 1001 3.25 
4M5Z 1.27 2.03 1 1 1001 9.5 
1DQJ 1.12 14.1 4 36 86 9.07 
6CWG 0.79 1.28 1 1 4 5.57 
4GXU 1.93 4.6 11 1001 1001 9.14 
2VIS 3.75 5.03 1001 1001 1001 11.44 

5WUX 0.95 14.84 11 1001 1001 5.15 
4DN4 2.52 2.62 1 16 1001 2.41 
3U7Y 0.93 6.96 5 35 1001 2.37 
4Y7M 0.85 7.78 6 30 30 11.94 
5O1R 1.06 5.38 2 2 1001 1.82 
3WD5 1.02 4.66 2 5 1001 4.43 
6A77 2.91 8.81 12 251 1001 9.54 
5Y9J 1.08 2.54 1 1 1001 14.73 
1VFB 1.03 12.4 4 5 1001 12.51 
1E6J 1.15 2.35 1 1 1001 2.35 
2FD6 1.99 12.69 44 51 1001 13.15 
4FQI 2.04 9.95 3 42 1001 2.67 
2W9E 1.25 1.88 1 1 1001 7.07 
1S78 1.78 3.01 1 4 1001 2.03 
5GRJ 1.98 3.35 1 1001 1001 5.86 
3SE8 1.36 11.67 16 16 1001 5.53 
5X0T 1.37 3.98 1 5 1001 3.33 
2VXT 1.48 10.53 2 2 1001 2.41 
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3MJ9 4.99 15.9 127 1001 1001 14.69 
4ETQ 0.56 1.09 1 1 19 4.15 
3L5W 0.79 2.71 1 1 1001 1.49 
3RJQ 0.91 8.4 1001 1001 1001 12.13 
5HGG 0.85 8.23 12 1001 1001 10.15 
5HYS 1.14 15.1 2 1001 1001 9.83 
6A0Z 1.36 10.11 5 1001 1001 15.88 
3EO1 1.98 3.22 1 29 1001 3.37 
5CBA 1.53 11.64 7 1001 1001 11.78 
5VNW 2.67 2.89 1 23 1001 9.56 
5E5M 1.54 10.5 4 1001 1001 5.63 
3HI6 1.95 13.17 8 12 1001 8.73 

5KOV 1.82 5.49 22 249 1001 9.12 
4M3K 1.87 8.29 5 20 1001 2.23 
3V6Z 1.92 13.38 4 1001 1001 4.79 
4POU 1.86 8.26 2 59 1001 6.9 
3G6D 4.55 14 8 1001 1001 3.51 
5WHK 1.93 4.35 3 1001 1001 3.61 
6AL0 3.41 8.79 23 1001 1001 4.17 
6EY6 2.22 3.55 1 1001 1001 4.22 
2DD8 4.04 8.38 75 1001 1001 15.49 
4DW2 2.52 10.06 2 1001 1001 8.17 
5C7X 6.83 11.06 1001 1001 1001 6.08 
2FJG 2.67 4.73 2 31 1001 5.17 

 
1I-RMSD from bound complex for pose input to SnugDock, prior to minimization and ensemble 
generation. 
2I-RMSD from bound complex for top-ranked model from SnugDock local perturbation based on 
SnugDock’s interface score or ZRANK2 score. 
3Top-ranked SnugDock model at indicated level of CAPRI accuracy, based on SnugDock interface score. 
As 1000 models were generated, a rank of 1001 denotes no models within the SnugDock set with that 
CAPRI accuracy. Figure provided by Jing Zhou. 
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Figure 5.8 SnugDock binding funnels for two benchmark cases. Rosetta interface score versus I-
RMSD is shown for rigid-body docking cases (A) 5JMO (Nb14 camelid/Furin) and (B) 4FP8 (C05 
Fab/Influenza H3 hemagglutinin). Each point represents one of the 1000 SnugDock models generated for 
each case. Point types and colors represent model accuracy according to CAPRI criteria (197), as detailed 
in the legend of panel A. 
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Figure 5.9 SnugDock binding funnels for Rigid benchmark cases. Docking perturbations were 
performed on all cases in SnugDock, generating 1000 models for each case. In each plot, Rosetta 
interface score versus interface RMSD between model and bound structure is shown. Point types 
represent model accuracies based on CAPRI criteria (197): Incorrect (gray circles), Acceptable (pink 
circles), Medium (red squares), High (dark red triangles).  
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Figure 5.10 SnugDock binding funnels for Medium and Difficult benchmark cases. Docking 
perturbations were performed on all cases in SnugDock, generating 1000 models for each case. For each 
case, Rosetta interface score versus interface RMSD between model and bound structure is shown. Point 
types represent model accuracies based on CAPRI criteria (197): Incorrect (gray circles), Acceptable 
(pink circles), Medium (red squares), High (dark red triangles). 
 

5.3.5 Binding affinity prediction 

Given the implications for protein interface design, several algorithms have been reported 

that predict binding affinities based on protein structures, though comprehensive comparative 

assessments of these methods in the context of varied antibody-antigen interfaces have been 

limited (210). We tested a variety of affinity prediction functions and interface descriptors to 

determine performance, as well as similarities between functions, on the set of 51 experimentally 

determined antibody-antigen affinities (Figure 5.11). Bound structures of the cases were used as 

input to affinity calculations, and all structures were pre-processed using the Rosetta “score” 
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application (399) to ensure consistent atom naming, remove double occupancy atoms, and add 

missing side chain atoms, without performing side chain packing of intact residues or backbone 

minimization. Additionally, complexes scored by Rosetta Energy Function 2015 (“REF15”) (204) 

or the “beta16” Rosetta scoring function were pre-processed through constrained minimization 

using the FastRelax protocol in Rosetta (397).  

Resultant correlations between scores and experimental ΔGs varied widely, up to 

approximately r = 0.46 for REF15. Some relatively simple descriptors, such as ΔASA (r = 0.17) 

and hydrogen bonding energetics computed by PyRosetta (403) (HBOND2; r = 0.29) suggest that 

interface size and specific energetic components are key determinants of antibody affinity, and 

composite functions with weighted combinations of terms, such as ZRANK (179) (r = 0.32), the 

beta_nov16 score function (an update of REF15) (r = 0.40), and the antibody-antigen potential of 

FireDock (448) (FIREDOCK_AB; r = 0.37), performed comparatively well. Interestingly, two 

statistical contact potential functions alone also exhibited relatively high predictive performance 

on this set: TB (405) (r = 0.33) and T2 (404) (r = 0.42). With the exception of ΔASA, all of the 

correlations with ΔG noted above were significant (p < 0.05), ranging from p = 0.04 (HBOND2) 

to p = 0.0007 (REF15) (Table 5.9). 

Given the previously noted relationship between interface size and affinity, which was 

specifically exhibited for complexes with limited binding conformational change (217), we 

examined whether this relationship is observed for the antibody-antigen complexes in this set, and 

also evaluated any changes in correlations for the top-performing scoring function (REF15) when 

stratifying the cases according to I-RMSD (Figure 5.12). Unexpectedly, we found that higher 

correlations with experimentally determined ΔGs were observed for the subset of cases with high 

binding conformational change (I-RMSD ≥ 1 Å), for both ΔASA and REF15. Though several 
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outlier points were observed, it does not appear that these were responsible for this effect, nor were 

the ranges of ΔG values, or number of data points, markedly different between subsets of cases. 

To examine this effect in more detail, we calculated ΔG correlations with ΔASA and REF15 based 

on stratification using antibody or antigen I-RMSD alone (Table 5.10). Based on this analysis, 

greater antibody conformational change is associated with the higher correlations observed for the 

cases with high binding conformational change (antibody I-RMSD ³ 1.0), with correlations with 

experimental ΔGs of r = 0.63 for ΔASA and r = 0.74 for REF15. Despite the lower number of 

cases (N=15), p-values for both correlations were significant (p = 0.01, 0.002 for ΔASA and 

REF15, respectively; Table 5.10), and more significant than p-values for the corresponding subset 

identified by overall I-RMSD (p = 0.16, 0.004 for ΔASA and REF15).  
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Figure 5.11 Affinity predictions on benchmark cases. A set of 20 scoring functions representing 
protein modeling functions, statistical potentials, and interface descriptors were used to assess the 51 
affinity prediction cases, and are compared with experimentally determined ΔGs (kcal/mol). For heatmap 
generation, scores for each term were scaled and clustered hierarchically to assess similarities between 
functions; the dendrogram is shown above the heatmap. ΔASA values were negated to facilitate 
comparison with energetic functions and ΔG. Pearson correlation coefficients with experimental ΔGs for 
all scoring methods are shown at the bottom. 
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Table 5.9 Pearson correlation, and correlation p-value, of functions/terms with experimentally 
determined ΔGs.  

Function/Term1 Correlation p-value 
ΔASA 0.18 0.205 
REF15 0.46 0.001 

beta_nov16 0.41 0.003 
ZRANK 0.32 0.021 
ZRANK2 0.28 0.047 

LISA 0.27 0.059 
ZAPP 0.24 0.086 

PYDOCK_TOT 0.17 0.236 
dDFIRE 0.19 0.193 

PISA 0.36 0.010 
FIREDOCK_AB 0.37 0.008 
ROSETTADOCK 0.24 0.091 

T2 0.40 0.003 
CP_TB 0.34 0.014 

LK_SOLV 0.21 0.136 
ELE 0.24 0.087 

DDG_W 0.18 0.212 
HBOND2 0.29 0.039 

VDW 0.12 0.393 
DCOMPLEX 0.16 0.263 
Ab I-RMSD 0.16 0.256 
Ag I-RMSD -0.08 0.564 

I-RMSD 0.08 0.566 
 
1Functions and terms are from structural analysis and scoring algorithms applied to the bound complex 
structures, as detailed in the Methods. Ab I-RMSD, Ag I-RMSD and I-RMSD are root-mean-squared 
distances between unbound and bound interface residue Cα atoms, corresponding to binding 
conformational change of antibody (Ab I-RMSD), antigen (Ag I-RMSD), or both (I-RMSD). 
 



 

169 
 

 

 
Figure 5.12 I-RMSD, ΔASA, and Rosetta REF15 scores versus experimentally determined ΔGs. (A) 
I-RMSD, (B) negative ΔASA, and (C) Rosetta REF15 score is compared with experimentally determined 
ΔG for 51 cases. For (B) and (C), cases are stratified by I-RMSD, with open circles representing cases 
with I-RMSD < 1 Å (N=28), while filled circles represent cases with I-RMSD ≥ 1 Å (N=23). Dashed 
lines show linear fits, excluding labeled outliers in (A) and (B), and including only filled circles in (B) 
and (C). Pearson correlation coefficients are shown on the right of each plot. 
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Table 5.10 Correlations with experimental ΔG values for ΔASA and Rosetta REF15 stratified by I-
RMSD. 

Subset N1 ΔASA2 p-value REF152 p-value 
I-RMSD < 1 Å 28 0.12 0.55 0.38 0.047 
I-RMSD ≥ 1 Å 23 0.31 0.16 0.57 0.004 

Antibody 
 I-RMSD < 1 Å 36 -0.05 0.77 0.27 0.1 

Antibody 
 I-RMSD ≥ 1 Å 15 0.63 0.01 0.74 0.002 

Antigen I-RMSD < 
1 Å 31 0.036 0.84 0.38 0.035 

Antigen I-RMSD ≥ 
1 Å 20 0.31 0.18 0.56 0.01 

 
1Number of test cases in subset. 
2Pearson correlation coefficients between negated ΔASA or Rosetta REF15 score with experimental ΔG 
values for subset of affinity benchmark. Correlations greater than 0.5, and corresponding p-values, are 
shown in bold. 

5.4 Discussion 

This antibody-antigen benchmark represents an expanded set of non-redundant and 

structurally diverse complexes, which can provide robust and challenging tests for docking and 

affinity prediction algorithms. Initial assessments of the benchmark not only reflect its diversity, 

but also raise important questions regarding conformational changes and predictive challenge that 

can be addressed by further research.  

As antibody-antigen docking algorithms are evaluated and compared using benchmarks 

(172, 388, 389, 449), it is critical to understand how to improve predictive success and areas 

needing improvement. Initial benchmarking of rigid-body and flexible docking reported here 

highlights the challenge posed by this class of interfaces. Even for local docking perturbations, 

several cases did not have top-ranked hits or prominent binding funnels, including Rigid cases 

with minimal binding conformational changes. Possible factors underlying lack of local docking 

successes include low binding affinity, which as noted before can negatively impact success (186), 
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as well as suboptimal initial positioning for local docking perturbation searches, CDR loop 

sampling away from key bound-like conformations, or lack of explicit sampling of antigen 

backbone flexibility. Additionally, accurate modeling of glycosylation of antigens, including viral 

glycoproteins, is another possible avenue to reduce false positive docking predictions, or detect 

favorable docking poses near the native binding site, by representing glycan surface masking and 

glycan-antibody interactions.  

Correlations of predictive methods with experimental affinities show that the antibody-

antigen benchmark provides challenging tests of affinity prediction. Unexpectedly, success of 

affinity predictions was found to be higher for antibody-antigen complexes with larger 

conformational changes, both for REF15, the affinity predictor with highest overall correlation 

with ΔG, and ΔASA. This contradicts previous results based on a more general set of protein-

protein interaction affinities (217), which were later used to generate a linear model incorporating 

I-RMSD and ΔASA to predict affinities (220). The reasons for this intriguing shift with respect to 

previous studies are unclear, but the focus on antibody-antigen complexes in this benchmark may 

have played a substantial role. Future studies, possibly with explicit dynamics simulations, can be 

used to understand how the predictability of antibody-antigen affinities may be influenced by 

binding mobility and conformational changes. 

Past successes in structure-based antibody design have demonstrated the utility of rational 

design methods (159, 416, 450-452), yet previous benchmarking of several computational design 

methods showed relatively low correlations with experimental data (210). This new and updated 

set of affinities provides a wide range of interfaces and ΔG values, representing a complementary 

dataset to an existing benchmark with binding energy changes in antibody-antigen interfaces 

(ΔΔGs) (210); these can collectively be used to assess predictive performance of antibody affinity 
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prediction methods, or an element of assessments that incorporate distinct datasets of affinities for 

other classes of interactions with experimentally determined structures (207, 453, 454).  

Future efforts to develop advanced predictive antibody docking methods can utilize this 

expanded antibody-antigen benchmark to train and test algorithms. Recent studies have indicated 

that machine learning approaches trained on protein interface data can lead to improved selection 

of protein-protein docking models (183, 455, 456), and this set can provide test cases to assess, 

and potentially optimize, predictive success for antibody-antigen complexes with these methods. 

Algorithm development to address challenging areas including “cross-docking” to predict 

antibody targets using docking simulations (457, 458) and integrative epitope prediction (459-462) 

likewise can be facilitated by this benchmark. 

Prospective benchmark updates can incorporate antibody-antigen structural information 

that does not adhere to the limits that were set when building this benchmark, offering more options 

to assess docking and affinity predictions as well as modeling accuracy. For antibody-antigen 

complexes without a corresponding experimentally determined unbound antibody or antigen 

structure, the missing component could be modeled and docked to the structure of its binding 

partner. Indeed, use of a modeled unbound antibody structure for docking represents a more 

common predictive modeling scenario, as an experimentally determined unbound antibody 

structure is not likely to be available for a given antibody sequence. We plan to identify new 

antibody-antigen cases from the PDB on a regular basis, and we will include these on the 

benchmark site as a pre-release prior to the next major benchmark version, to aid algorithm 

development and testing by the community. 
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Chapter 6: A curated dataset of antibody-antigen affinities and structures 
to facilitate development of affinity prediction algorithms 
 
 

Abstract 

Antibody recognition of antigens represents a unique class of immune system interactions, 

with binding affinities ranging from micromolar to picomolar. Current methods for in silico 

prediction of antibody-antigen affinity leave room for improvement, and more robust affinity 

predictors would aid antibody design and therapeutic development. Several databases report 

antibody-antigen affinities, but the lack of a dedicated and updated affinity dataset has limited the 

resources needed for training and developing new algorithms. Here, we present a curated dataset 

of antibody-antigen binding affinities paired with experimentally determined complex structures, 

allowing us to demonstrate the utility of this data for training new or optimized functions for 

affinity prediction. 401 binding free energy (ΔG) values in kcal/mol were included in this dataset 

following extensive searches connecting affinity data in the literature to available antibody-antigen 

complex structures in the Protein Data Bank (PDB). Scoring functions from Rosetta and other 

programs showed promising correlations to antibody-antigen affinity values even though they 

were not optimized or designed solely for affinity prediction. Using the affinity dataset for training, 

existing scoring functions with weights optimized through multilinear regression showed 

improved correlations to antibody-antigen affinities. These retrained models were evaluated with 

cross-validation and an independent test set. This dataset represents an improved and centralized 

resource for antibody-antigen affinity prediction, and it can be used to test new approaches or 

optimize current methods. Information about the full dataset can be found at 

https://piercelab.ibbr.umd.edu/Draft_antibody_antigen_affinity_dataset.xlsx. 
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6.1 Introduction 

Antibody-antigen recognition is a unique class of protein-protein interactions, and an 

improved understanding of what dictates these interactions can lead to advances in protein design 

and therapeutics development. Powerful and promising in silico tools have helped alleviate 

experimental resource constraints, including computational prediction of antibody-antigen 

interfaces through protein docking and of antibody-antigen interaction strength through affinity 

prediction. As discussed in Chapter 5, a variety of methods have been developed to predict protein-

protein binding affinities (201, 202, 218, 220, 380, 463, 464). Some of these methods utilized a 

benchmark of 144 affinities for training (217), where each protein-protein interface of the 

corresponding structure was scored by a predictive physics-based or knowledge-based potential 

and then compared to experimentally determined ΔG values (often in kcal/mol). Despite the 

progress made in addressing affinity prediction, the applicability of potentials trained on general 

protein-protein interactions may be limited when specifically predicting antibody-antigen affinity. 

Less than 200 protein-protein binding affinities have been used for training from the affinity 

benchmark and several docking benchmarks (186, 195), and a small fraction of those cases 

represent antibody-antigen interactions, forming a small potential training set for predicting 

antibody-antigen ΔG values. The unique properties of antibody-antigen interfaces have been 

explicitly addressed by protein docking algorithms such as ClusPro (172) and FireDock (181), 

showing how antibody-antigen recognition can be treated as separate from all protein-protein 

interactions. Though predictions of affinities specific to antibody-antigen recognition have been 

studied recently, the suitability of current datasets for benchmarking remains unclear. 

Another study noted the dearth of antibody-antigen complexes and affinities currently 

available for benchmarking and presented Docking Benchmark 5.5 (BM5.5), an expanded set of 
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antibody-antigen cases for docking and affinity prediction, with full details in Chapter 5 (465). 

The expanded set of antibody-antigen affinities consisted of 51 cases, which were evaluated by a 

variety of functions that score protein-protein interface structures, reporting correlations between 

resulting scores and experimentally determined ΔG values. The correlations found were modest at 

best, with Pearson correlation coefficients of less than 0.5, suggesting that there is substantial room 

for improvement in predicting antibody-antigen affinities. In response, recent work has presented 

CSM-AB, an antibody-antigen affinity prediction algorithm using graph-based machine learning 

methods (214) that improved on correlations with ΔG values when training on a dataset of over 

400 affinities obtained from PDBbind (216). Yet correlations were still modest despite 

improvements, showing that more algorithmic development is needed to address this difficult 

problem, possibly through optimization of existing functions tested on BM5.5 (465). At the same 

time, the affinity data used for training had to be assembled from a yearly-updated database of 

protein-protein binding affinities (216); other datasets dedicated to antibody-antigen complexes 

are available and frequently updated, but at most include affinity data occasionally (153). This 

situation sits in stark contrast with antibody-antigen ΔΔG values, where several curated datasets 

(209, 210) have spurred more advancements in ΔΔG prediction through machine learning (211, 

213, 466). Without similar dedication to a dataset of antibody-antigen ΔG values, future advances 

in algorithm development of affinity predictors may be limited by the suboptimal size and 

accessibility of validated ΔG values that can be used for benchmarking. Furthermore, this deficit 

undercuts previous presentations of ΔG and ΔΔG prediction as equally valuable efforts that may 

work in tandem to increase understanding of protein-protein interactions, which could aid the 

design of therapeutics (467). 
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 Here, we present a curated and annotated dataset of 401 antibody-antigen ΔG values, each 

validated in the literature with a documented temperature and a corresponding complex structure. 

This dataset represents a wide range of ΔG values from micromolar to picomolar, along with broad 

diversity in antigen origin and type of antibody. Correlations between experimental affinities and 

scoring functions REF15, beta16, IRAD, and ZRANK were calculated, showing modest predictive 

performance on the expanded dataset. The dataset was also broken into subsets based on method 

of affinity measurement and structure resolution, but correlations between ΔG values and each 

scoring function did not differ substantially by subset. To demonstrate the utility of this curated 

dataset for improving antibody-antigen affinity prediction, we assessed the correlations of 

individual terms from tested scoring functions, then attempted to optimize the weights of these 

terms for antibody-antigen affinity prediction using stepwise regression and cross-validation. 

Several retrained models showed modest improvements in ΔG correlations with existing scoring 

functions, and additional methods of regression trained on the affinity dataset did not yield the 

same improvements. Though these models showed higher correlations with the affinity dataset, 

they showed lower correlations than existing functions to an independent test set of antibody-

antigen affinities after scoring the corresponding modeled complexes. However, two of the top 

models did show improved correlations with a smaller set of neutralization data during this 

validation stage. This dataset represents the largest and most detailed standalone database for 

antibody-antigen ΔG values, providing a useful resource that can stimulate development of affinity 

prediction algorithms. 



 

177 
 

 

6.2 Methods 

6.2.1 Collection of cases in the antibody-antigen affinity dataset 

Each case in this affinity dataset consists of an experimentally determined antibody-antigen 

affinity value (calculated as ΔG, in kcal/mol) and a corresponding antibody-antigen complex 

structure deposited in the PDB; (336). Counterintuitively, collection of these cases started with 

antibody-antigen structures in PDB, followed by manual inspection of the reported methods, 

results, and supplemental files of any publications reporting the affinity of a particular complex. 

In most cases, a structure was linked to a publication through its PDB web page; if affinity of this 

complex was measured, it was often reported in this publication. Antibody-antigen complex 

structures were also visualized in PyMOL (Schrödinger), in part to confirm correspondence 

between a given structure and affinity value that would form a case. For PDB structures released 

prior to 2020, SAbDab (153) and PDBbind (216) datasets were compared to connect any structures 

listed in SAbDab to any affinity values for the same structure listed in PDBbind. The list of PDB 

codes found in both databases formed an initial list of affinity values and were investigated 

individually. Antibody-antigen complex structures listed in SAbDab with search criteria of protein 

antigen and <3.3 Å resolution, and that did not have a corresponding affinity value in PDBbind, 

were manually inspected for possible affinity values. Each affinity value was confirmed through 

literature searches; papers that reported an affinity corresponding to a PDB structure either 

reported the affinity value and structure or reported an affinity value exclusively, with the structure 

published in a subsequent paper. 

Affinity values for corresponding structures were only included in the dataset if there was 

a documented temperature for the affinity measurement in the supporting literature for the structure 

or in literature that the paper directly cited in a description of its methods. If the temperature was 
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listed as RT or room temperature, it was assumed to be 25°C. The experimentally determined 

dissociation constant (KD) and listed temperature were used to calculate ΔG (in kcal/mol) for each 

case. More specifically, ΔG was calculated using the equation ΔG = RTlnKD, where R is the gas 

constant and T is the temperature in degrees Kelvin. In four cases, an experimentally determined 

association constant (KA) that corresponded to a particular structure was used to calculate KD 

through the equation KD = 1/KA, which was then used to calculate ΔG in the same fashion. 

Structures with a resolution of <3.25 Å, a documented affinity value and temperature in the 

literature, and a match between the antibody-antigen complex used in structure and the antibody-

antigen complex used to measure affinity were placed on a preliminary list of new affinity cases. 

Possible redundancy amongst new cases and between new cases and BM5.5 cases (465) was 

evaluated using BLAST (362). The sequence identity of heavy chain variable domains was used 

to determine redundancy, with <90% sequence identity set as a threshold for non-redundant cases, 

except where antigens are already non-redundant (<80% sequence identity) even though heavy 

chain variable domain sequence identity is >90%. 

6.2.2 Curation of antibody-antigen affinity dataset 

Several characteristics of the affinity measurement for each new case were collected to add 

background information and enable comparisons between affinity measurement methods. 

Recorded information from supporting literature included the method of affinity measurement, 

often surface plasmon resonance (SPR), bio-layer interferometry (BLI), or isothermal titration 

calorimetry (ITC), organization of the affinity measurement (whether the antibody or antigen was 

immobilized), and additional notes about comparisons between the complex structure and the 

complex affinity. The resolution of the corresponding structure was collected from a batch 

download of PDB structure information. 
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The number of non-water hetero atoms (HETATMs) in the interface of each new affinity 

case was found using an in-house Perl script. All atoms within 6 Å of an atom of its binding partner 

were defined as interface contacts, and included contacts between non-water HETATMs, between 

non-water HETATMs and amino acid atoms, and between amino acid atoms. This list of interface 

contacts was used to define the level of HETATM involvement, as measured by the percentage of 

interface contacts that include a HETATM. This method was primarily utilized as a mechanism to 

initially screen affinity dataset structures for substantial HETATM interface contacts. The 

permissive detection of HETATM contacts (i.e. not restricted to previously defined antibody-

antigen interface residues) likely inflated the percentage of HETATM contacts in some cases. 

Manual inspection of structures in PyMOL was ultimately used to determine the degree and impact 

of non-water HETATM contacts in antibody-antigen interfaces. Any affinity case with a 

substantial percentage of contacts (>30%) that involved non-water HETATMs with a suspected 

effect on antibody recognition in the corresponding literature was defined as a “high HETATM” 

case. Five cases were classified as “high HETATM”, with substantial involvement originating 

from either N-linked glycan (4JM2, 4TVP, 5CEZ, 6J11) or ATP (7DC8) HETATMs in the 

interface. These cases were not utilized in the analysis and optimization of affinity predictors, but 

have been included in the affinity dataset for future affinity prediction efforts that may integrate 

HETATMs. 

Two cases, corresponding to structures 7A29 and 7D2Z, satisfied the criteria outlined here, 

but were excluded due to uncertainty in correspondence between the resolved structure of the 

complex and the experimentally determined ΔG value. We confirmed an affinity measurement for 

7A29, a SARS-CoV-2 spike trimer in complex with a nanobody, but it was unclear if this 

measurement would correspond to binding the receptor binding domain (RBD) in an up or down 
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conformation (468). Since the structure contained both conformations of the RBD and these 

conformations showed different numbers of interface residues contacting the nanobody, we 

decided to remove the case. We also confirmed an affinity measurement for 7D2Z, a SARS-CoV-

2 RBD in complex with a nanobody, but found a portion of an N-terminal signal peptide and a C-

terminal cleaved 3C protease site on the RBD that were resolved in the structure and formed a 

substantial part of the antibody-antigen interface (469). Since additional C-terminal tags appeared 

to be included in RBD protein used for the affinity measurement, this discrepancy led to 

uncertainty regarding the correspondence between structure and affinity, and ultimately the case 

was removed. 

6.2.3 Analysis of affinity predictors 

Prior to refinement and scoring of affinity cases, any hydrogens, double occupancy, or 

HETATMs in all chains of structures were removed. The “high HETATM” cases were not 

included in this analysis. Affinity cases were refined using Rosetta FastRelax (weekly release 

2020.28) (397) with two variations: constrained sidechain atoms and unconstrained sidechain 

atoms. In both variations of the refinement protocol, backbone atoms were constrained. A typical 

command in Rosetta for the refinement stage is as follows, with the “coord_constrain_sidechains” 

flag removed when refining with unconstrained sidechains: 

 

-ignore_zero_occupancy false 

-ignore_unrecognized_res 

-relax:constrain_relax_to_start_coords 

-relax:coord_constrain_sidechains 

-relax:ramp_constraints false 

-relax:fast 
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-ex1 

-ex2 

-use_input_sc 

-no_his_his_pairE 

-no_optH false 

-flip_HNQ 

-renumber_pdb F 

-overwrite 

-nstruct 1 

 

Following refinement, the binding score of each case was determined by REF15 and beta16 

scoring functions (204) in Rosetta using the score application (weekly release 2020.28). Each case 

was scored as a complex and separated by components. The binding score for each case was 

calculated as the difference between the complex score and the sum of the scores of each 

component when separated. Pearson correlation coefficients between experimental affinity values 

and binding scores were calculated in R (366), both for the total score and for individual terms of 

each scoring function. Integrated Residue- and Atom-based potentials for Docking (IRAD; (182)) 

and ZRANK (179) functions were also used to separately score affinity cases by running each 

application on the command line in a Unix environment. Pearson correlation coefficients between 

experimental affinity values and IRAD scores, ZRANK scores, IRAD individual terms, or 

ZRANK individual terms were also calculated in R. 

6.2.4 Comparison of correlations in affinity subsets 

Affinity cases were separated by resolution into four subsets: <= 2 Å, 2 Å < x < 2.5 Å, 2.5 

Å < x < 3 Å, and > 3 Å. To separate affinity cases by method of affinity measurement, four subsets 
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were determined: Measurement by SPR, measurement by BLI, measurement by ITC, and 

measurement by a method that was not solely defined by one of the other three techniques and 

classified as “Other”. Techniques in the “Other” subset for measuring affinity include enzyme-

linked immunosorbent assay (ELISA), competition inhibition assays, radioligand binding assays, 

kinetic exclusion assay (KinExA), spectroscopy, radioactive iodination and ultracentrifugation, 

fluorescence polarization, stopped-flow fluorescence kinetics, and microscale thermophoresis. 

Correlations between experimental affinity values and REF15 binding scores in each subset were 

calculated in R. 

6.2.5 Additional case information in affinity dataset 

The full table for the affinity dataset contains additional annotations for each case. The 

reference for each affinity found in the literature is shown in the “Reference” column, often 

showing the PubMed ID number (pubmed.ncbi.nlm.nih.gov) for the publication. In several cases, 

the documented temperature for a given affinity measurement was gathered from a publication 

referenced by the publication that reported the affinity. When this situation occurred, the reference 

for the temperature was placed in a separate column as a PubMed ID to signify that a second 

reference was needed to calculate ΔG. Affinity measurements were found to be oriented in a 

variety of ways in the literature, sometimes with the antigen immobilized and the antibody as the 

analyte, and sometimes vice versa. To provide more description of affinity measurements beyond 

naming the technique, we added a “Method notes” column. This column was primarily used to 

indicate what component of the measurement was immobilized if applicable, with the common 

note “Immobilized IgG” showing that the antibody was immobilized. Immobilized antigen and 

antibody as analyte was treated as the default orientation for affinity measurements in this table, 

so any case with “Method notes” left blank had affinity measured in this format. PDB validation 
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metrics are also included in the table to annotate cases with measurements of structure quality 

beyond resolution. These metrics, which are placed in separate columns, include Rfree, 

Clashscore, Ramachandran outliers, Sidechain outliers, and RSRZ outliers. PDB validation reports 

for each case were downloaded from rcsb.org in xml format and parsed to retrieve the above 

metrics using in-house Bash scripts. If “N/A” is listed as a value in any of these five columns, the 

validation metric with this value was not calculated for this case. 

6.2.5 Individual terms in REF15 and beta16 scoring functions 

In addition to the binding score, calculated values for each individual term in these Rosetta 

scoring functions were obtained for all antibody-antigen affinity cases except for “high HETATM” 

cases (N = 396). REF15 includes a total of 19 individual weighted terms, while beta16 includes a 

total of 26 individual weighted terms. However, only eight terms in REF15 and eleven terms in 

beta16 contributed to binding score calculated from each scoring function, and only those terms 

are listed and described here. The values for all other individual terms were zero or approximately 

zero when the sum of scores from complex components were subtracted from the score of the 

entire complex structure. Most terms are shared between REF15 and beta16; if a particular term is 

only present in one scoring function, it is indicated below. The “Δ” placed before each term in the 

results was included to signify that these scoring terms were calculated from the difference 

between scores of the complex structure and the sum of its components. This symbol is not present 

in the original description of these scoring terms. 

Brief descriptions of REF15 and beta16 terms (204, 470): 

fa_atr – Lennard-Jones attractive energy between two atoms on different residues 

fa_rep – Lennard-Jones repulsive energy between two atoms on different residues 

fa_sol – Gaussian exclusion implicit solvation energy 
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lk_ball (beta16 only) – Anisotropic contribution to the solvation 

lk_ball_iso (beta16 only) – Same as fa_sol 

lk_ball_wtd (REF15 only) – weighted sum of lk_ball and lk_ball_iso 

lk_ball_bridge (beta16 only) – Solvation bonus from bridging waters, as measured from 
interactions of polar atoms 
 
lk_ball_bridge_uncpl (beta16 only) – Same as lk_ball_bridge, but the value is uncoupled with 
dGfree 
 
fa_elec – Energy of interaction between two nonbonded charged atoms 

hbond_lr_bb – Energy of long-range backbone-backbone hydrogen bonds 

hbond_bb_sc – Energy of backbone-sidechain hydrogen bonds 

hbond_sc – Energy of sidechain-sidechain hydrogen bonds  

6.2.6 Individual terms in IRAD and ZRANK scoring functions 

Calculated values of individual terms for IRAD and ZRANK scoring functions were output 

by IRAD while scoring complex structures on the command line in a Unix environment. These 

terms include atom-based and residue-based contact potentials, numbers of atoms or residues used 

to calculate potentials, and individual ZRANK terms that include van der Waals and electrostatic 

components. IRAD also output electrostatic terms from the Zlab Affinity for Protein-Protein 

interaction (ZAPP; (380)) free energy function. These terms were considered as input for 

subsequent regression analyses even though correlations between ZAPP scores and ΔG values 

were not assessed. 

Brief descriptions of IRAD and ZRANK terms (179, 182): 

pot1atot – total of potential 1 from Zhang et al. (471), actual center of mass 

pot2atot – total of potential 2 from Zhang et al., actual center of mass 

pot1ptot – total of potential 1 from Zhang et al., parameterized center of mass 
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pot2ptot – total of potential 2 from Zhang et al., parameterized center of mass 

npot1atot – number of atom pairs identified in calculation of pot1atot 

npot2atot – number of atom pairs identified in calculation of pot2atot 

npot1ptot – number of atom pairs identified in calculation of pot1ptot 

npot2ptot – number of atom pairs identified in calculation of pot2ptot 

presa – Chakrabarti and Janin’s potentials based on interface propensities (472) with Yang’s 
contacting definition, actual center of mass 
 
presp – Chakrabarti and Janin’s potentials based on interface propensities with Yang’s contacting 
definition, parameterized center of mass 
 
nresa – number of interface residues identified in calculation of presa 

nresp – number of interface residues identified in calculation of presp 

potctot – Yang’s potential (471) with 4.5 Å cutoff used for defining contacts 

npotctot – number of atom pairs identified in calculation of potctot 

presc – Chakrabarti and Janin’s potentials with 4.5 Å cutoff used for defining contacts 

nresc – number of interface residues identified in calculation of presc 

pottbtot – Tobi and Bahar potential for protein-protein docking (405) 

npottbtot – number of interactions identified in calculation of pottbtot 

prestb – Chakrabarti and Janin’s potentials with contacting definition from Tobi and Bahar 
potential 
 
nrestb – number of interface residues identified in calculation of nrestb 

potllstot – Lu, Lu, and Skolnick potential for protein-protein interactions (473) 

npotllstot – number of interactions identified in calculation of potllstot 

potg1tot – Potential from Glaser et al. for interface residue contact preferences (474), with a 
cutoff of 6 Å for contacting definition 
 
potg2tot – Normalized potential from Glaser et al. for interface residue contact preferences, with 
a cutoff of 6 Å for contacting definition 
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npotgtot – number of interactions identified in calculation of potential from Glaser et al. 

presg – Chakrabarti and Janin’s potentials with contacting definition from Glaser et al. potential 

nresg – number of interface residues identified in calculation of presg 

acont4 – number of atom contacts within 4 Å cutoff 

acont5 - number of atom contacts within 5 Å cutoff 

acont6 - number of atom contacts within 6 Å cutoff 

solvlk – Lazaridis-Karplus implicit solvation model, with cutoff distance optimized to match 
Rosetta (475) 
 
vdw_atr – van der Waals attractive force from ZRANK 

vdw_rep – van der Waals repulsive force from ZRANK 

elec_sra – short-range electrostatics attractive force from ZRANK 

elec_srr – short-range electrostatics repulsive force from ZRANK 

elec_lra – long-range electrostatics attractive force from ZRANK 

elec_lrr – long-range electrostatics repulsive force from ZRANK 

ace – statistical contact potential of atomic contact energies derived from monomeric protein 
structures (476) 
 
iface – statistical contact potential of interface atomic contact energies derived from protein-
protein complex structures (477) 
 
elec_sra_x – short-range electrostatics attractive force from ZAPP (380) 

elec_srr_x – short-range electrostatics repulsive force from ZAPP 

elec_lra_x – long-range electrostatics attractive force from ZAPP 

elec_lrr_x – long-range electrostatics repulsive force from ZAPP 
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6.2.7 Regression analysis and cross-validation 

Stepwise regression was conducted in R on all sets of terms using the StepAIC() command 

of the MASS package (478), with selection of terms set in both directions. Optimization was 

performed on eight different sets of input terms, either from one scoring function or terms 

combined from several scoring functions, to predict ΔG values of antibody-antigen affinity cases. 

Following selection of input terms for each set, linear regression with stepwise selected terms was 

conducted in R using the train() command of the caret package (479). Ridge, Least Absolute 

Shrinkage and Selection Operator (LASSO), and Elastic net regressions were conducted in R on 

all sets of terms using the train() command of the caret package, with glmnet as a dependency 

(480). All methods of cross-validation during regression (leave-one-out, 5-fold, or 10-fold) were 

specified and automated using the trainControl() command of the caret package. To ensure 

reproducibility, a constant seed of 123 was set with set.seed() immediately prior to any regression 

analysis. 

Sets of input terms from REF15/beta16, IRAD, and ZRANK were combined in several 

different ways for regression analysis. Descriptions of these sets were broken into categories based 

on the source of input terms. 

6.2.8 REF15/beta16-based sets 

The eight REF15 terms that contributed to binding score calculations were used as a set of 

input terms. The eleven beta16 terms that contributed to binding score calculations formed a 

separate set of input terms.  

6.2.9 IRAD/ZRANK-based sets 

Individual terms output by IRAD were combined into several different sets. One set only 

included eight terms from IRAD and ZRANK that previously formed an optimized scoring 
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function for ranking protein docking models (182). These terms include vdw_atr, vdw_rep, elec_s, 

elec_l, ace, iface, potctot, and npotctot. The terms elec_s and elec_l are separate sums of short-

range and long-range electrostatic force calculations from IRAD. elec_s values were determined 

by calculating the sum of terms elec_sra and elec_srr output by IRAD. elec_l values were 

determined by calculating the sum of terms elec_lra and elec_lrr output by IRAD. Another set was 

a combination of terms output by IRAD that calculated potentials and all ZRANK terms, totaling 

23 terms in all (“IRAD + pot”). Finally, a larger set included all values output by IRAD as input 

terms, including calculated potentials, counts of residues or interactions determined by potentials, 

ZRANK individual terms, and ZAPP electrostatic terms, totaling 43 terms in all (“IRAD + 

pot/count”). 

6.2.9 Composite REF15/IRAD sets 

Additional sets were formed with combinations of individual terms from different sources, 

namely REF15 and IRAD. One set of terms combined the eight REF15 terms contributing to 

binding score with all calculated potentials output by IRAD for a broader set of 22 individual terms 

(“REF15 + pot”). The other composite set contained the REF15 and IRAD potential terms, but 

also added the terms for counts output by IRAD, leading to a set of 38 terms (“REF15 + 

pot/count”). 

6.2.10 Data for independent test set 

60 VRC01-class germline antibodies were isolated from transgenic mice, namely VRC01gHL 

mice expressing both heavy and light chains of broadly neutralizing antibody VRC01 germline 

version, which were immunized with HIV-1 Env by the lab of Yuxing Li (University of Maryland 

IBBR) and characterized for binding affinity to and neutralization of six HIV-1 isolates (481). 

Antibody heavy and light chain sequences, isolate gp120/gp41 sequences, binding affinity data, 
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and neutralization data were kindly shared by Lin Lei and Andrey Galkin in Yuxing Li’s lab. 

Binding affinities were quantified in ELISA assays using area under the curve (auc) calculations. 

These auc values were negated and log10-transformed to better match the range and direction of 

predicted ΔG values and binding scores. Neutralization values were quantified as IC50s in ELISA 

and reported in µg/ml concentration. These values were log10-transformed prior to correlations 

with predicted ΔG values and binding scores. 

6.2.11 Modeling and scoring of antibody-antigen complexes from independent test set 

Antibody-antigen complexes were modeled using a structural template of SOSIP from the 

45_01dG5 isolate (482, 483) bound to a VRC01-class intermediate antibody (481), a structure that 

was determined through cryo-EM and kindly shared by Andrey Galkin. This structure was also 

modified to complete the antibody-antigen interface by grafting a gp120 loop (residues 59-67) 

from a VRC01-bound SOSIP structure (PDB code: 5FYK (45)) to the cryo-EM structure, which 

did not have this loop resolved. To graft this loop, 5FYK and the cryo-EM structure were first 

superposed and visualized in PyMOL (Schrödinger) to ensure that the resolved loop would fit into 

the disordered region of the cryo-EM structure. This loop was then extracted from 5FYK and 

included with the coordinates of the cryo-EM structure, forming a new template for modeling. 

Provided sequences for intermediate antibodies and isolates were modeled as a trimeric SOSIP 

construct bound to three intermediate antibodies through a custom homology modeling pipeline 

using the MODELLER program (484). For stages of refinement and scoring, two gp120 chains 

and one antibody (heavy and light chains) were extracted from the full model to reduce 

computation time while keeping the antibody-antigen interface intact. Each model was then refined 

by Rosetta FastRelax, with both backbone and sidechain atoms constrained. REF15 binding score 

was calculated for modeled gp120-antibody complexes using the same procedure outlined for 
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scoring antibody-antigen affinity case structures. IRAD scores of modeled structures were also 

calculated as previously outlined. 

6.2.12 Predictions of optimized scoring functions on independent test set 

Performance of retrained scoring functions on an independent test set was assessed by 

calculating correlations between negated and log10-transformed affinity or log10-transformed 

neutralization values and the calculated scores of modeled structures of gp120-antibody 

complexes. To calculate predicted ΔG values for each modeled complex, scores of individual 

terms output by REF15 and IRAD were combined according to the components included in each 

retrained function, multiplied by the corresponding weight for each term derived during model 

optimization, then added together with the intercept value for a given function. Pearson correlation 

coefficients and p-values between predicted ΔG values and experimental affinity or neutralization 

values were calculated in R. Correlations of REF15 and IRAD scores with affinity or neutralization 

values were calculated in the same fashion, and these correlations were used as a baseline for 

comparisons to performance with retrained functions. 

6.3 Results 

6.3.1 Dataset assembly and diversity 

This curated dataset of antibody-antigen affinities includes 401 cases that have both an 

experimental ΔG value for antibody-antigen affinity and a corresponding structure of the antibody-

antigen complex in the PDB. Five of these cases form a small but unique set of antibody-antigen 

complexes with a substantial number of hetero atom (HETATM) interface contacts, often due to 

the presence of N-glycans in the interface. These cases were not utilized in antibody-antigen 

affinity prediction for this research, but they may be useful to include in any future prediction 
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algorithms that explicitly address HETATMs, and especially N-glycans, as part of their analysis. 

A summary of cases in the antibody-antigen affinity dataset is shown in Figure 6.1, which 

illustrates the diversity of this dataset. Affinity values were obtained from structures that were 

released in the PDB between 1998 and July 2021, covering a variety of antigens and methods of 

affinity measurement. In 177 cases, or about 44% of this affinity dataset, an affinity value for a 

corresponding antibody-antigen structure had not been reported in any commonly-used database 

of ΔG values, including PDBbind (216). A sizeable portion of cases that do not overlap with 

PDBbind were released in 2020 or 2021, making their absence from PDBbind expected since the 

database currently contains affinity values through 2019 (pdbbind.org.cn, accessed February 

2022). However, approximately 100 ΔG values in this affinity dataset were released before 2020 

and have not been reported by PDBbind.  

In the full dataset, 96 structures contain a nanobody, comprising ~24% of affinity cases in 

this database, which is a higher proportion of nanobody affinities than contained in Docking 

Benchmark 5.5 (BM5.5) (~18%; (465)). This expanded affinity dataset also includes a higher 

proportion of non-human antigens (~60%) than BM5.5 (~53%), another indication of increased 

benchmark diversity. A noticeable increase in viral antigens was observed as well, with a higher 

proportion of viral antigens in new cases (~35% of dataset) when compared with BM5.5 (~24%). 

A large majority of experimental affinity values were measured with surface plasmon resonance 

(SPR), bio-layer interferometry (BLI), or isothermal titration calorimetry (ITC) methods, with the 

largest number of affinity values collected using SPR (~62% of dataset). Any trends in the 

changing composition of evaluated antibody-antigen affinities may reflect broader trends in 

favored techniques for affinity measurement and in the biological focus of structural 

determination, underscoring the need for an up-to-date set of antibody-antigen affinity data.  
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This dataset contains 51 experimental affinity values previously reported in BM5.5 (465), 

and we wanted to examine any shifts in the distribution of affinity values or structural resolution 

following the expansion of cases, which may affect the suitability of this dataset for antibody-

antigen affinity prediction. Additional cases exhibited a broader range of ΔG values than BM5.5 

cases, but median values were largely unchanged, showing that this expanded dataset largely 

resembles the dataset of affinity values established previously (Figure 6.2A). The median 

structural resolution of cases from BM5.5 was also unchanged when compared to newly added 

cases (Figure 6.2B). Though the median resolution of additional cases was slightly lower, these 

cases also expanded the range of structure resolutions observed in the dataset, notably through 

eight cases between 1.1 and 1.5 Å. The resolution of antibody-antigen complex structures showed 

a large range of values from ~1.2 Å to ~3.3 Å, with the median resolution at 2.5 Å. Affinity values 

from BM5.5 were previously correlated with scoring functions or potentials analyzing the 

structures of antibody-antigen interfaces (465), and little change in median affinity or resolution 

suggests that this larger affinity dataset can also be used to assess methods of affinity prediction.  
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Figure 6.1 Summary of diversity in the antibody-antigen affinity dataset. Broad categories of antigen 
origin, antibody type, and affinity measurement method are shown, with cases from Docking Benchmark 
5.5 (BM5.5; N = 51) and new additions (N = 350) separated into different columns. Types of antibodies 
include Fab, single-chain variable fragment (scFv), and single domain antibody (sdAb). 
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Figure 6.2 Ranges of ΔG values and structural resolution in affinity dataset. (A) Experimental 
affinity values plotted for cases originating from BM5.5 (N = 51) and cases added to form the affinity 
dataset (N = 350). (B) Resolution of structures for antibody-antigen affinity cases originating in BM5.5 
and added to affinity dataset. Median values for ΔG and resolution in Å are shown as black bars for all 
subsets. 

6.3.2 Performance of existing scoring functions as affinity predictors 

To assess existing scoring functions and potentials as possible affinity predictors, antibody-

antigen structures were refined, scored, and evaluated for correlations between predicted score of 

the complex and the corresponding ΔG value. Rosetta scoring functions REF15 and beta16 (204), 

integrated residue-based and atom-based potentials for docking (IRAD) (182), and ZRANK (179) 

algorithms were used to score all complexes in the dataset following refinement with Rosetta 
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variations on refinement were named “constrained sidechains” and “unconstrained sidechains”, 

respectively. Following refinement, both sets of complexes were scored with REF15 or beta16 and 

correlations with experimental affinity values were determined (Table 6.1). Pearson correlation 

coefficients between binding scores derived from Rosetta and affinity values were between R = 

0.27 and R = 0.29, a notable drop from the correlation found when ΔG values from BM5.5 were 

correlated with REF15 scores (R = 0.45; (465)). However, the p-values for Pearson correlation 

coefficients with the complete affinity dataset showed higher significance (p << 0.001) than the p-

value for the Pearson correlation coefficient between REF15 binding score and affinity values 

from BM5.5 (p = 0.001), suggesting that both scoring functions show some promise in predicting 

antibody-antigen affinity values. These correlations were also clearly higher with refinement than 

without (R = 0.09-0.13), showing that a refinement protocol can mitigate possible structural errors 

and better reflect experimental ΔG.  

Though Pearson correlation coefficients were similar overall, scoring and refinement with 

constrained sidechains was the combination that produced the highest Pearson correlation 

coefficients for both scoring functions (R ~ 0.29). Based on this result, complexes were refined 

with constrained sidechains prior to scoring with other functions or potentials included in this 

analysis. Correlations of IRAD and ZRANK scores were checked for correlations with the affinity 

dataset, finding Pearson correlation coefficients near REF15 correlations (R ~ 0.3; Table 6.1). 

Both scoring functions were originally designed to rank or re-rank models from rigid-body docking 

algorithms, likely making their scoring term weights suboptimal for antibody-antigen affinity 

prediction, along with the weights of individual terms in REF15 and beta16. In addition, some 

contact potentials and counts were calculated by IRAD and tested for predictive performance but 

excluded from the published scoring function, providing more terms that can be evaluated 
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specifically for antibody-antigen affinity prediction The tested scoring functions showed some 

promise as affinity predictors, leading to a more detailed analysis of scoring terms and how they 

correlate with ΔG values individually. 

Table 6.1 Correlations of REF15, beta16, IRAD, and ZRANK scores with ΔG values. 

Scoring 
function 

Sidechain 
refinement 

Pearson 
correlation^ 

REF15 No refinement 0.09 
REF15 Constrained 0.29*** 
REF15 Not constrained 0.27*** 
beta16 No refinement 0.13* 
beta16 Constrained 0.29*** 
beta16 Not constrained 0.27*** 
IRAD Constrained 0.30*** 
ZRANK Constrained 0.29*** 

 
^Scores for all cases in the affinity dataset except for five high-HETATM cases were correlated with ΔG 
values (N = 396). P-value significance of all correlation coefficients is shown in asterisks. * < 0.05, *** < 
0.001 

6.3.3 Correlations of predictors by annotation subset 

To better understand the correlations between scores and affinity values, results for REF15, 

beta16, IRAD, and ZRANK were individually plotted (Figure 6.3A-D). As suggested by Pearson 

correlation coefficients around R = 0.3, the highest affinity values, or lowest ΔG values, tended to 

have the lowest calculated scores, or an estimate of higher free energy. Each scatterplot shows 

noticeable and consistent variation around this trend, including some lower affinity cases with 

higher calculated scores and some higher affinity cases with lower calculated scores. One case 

(7D2Z) showed substantially higher scores than suggested by its affinity value, and was later 

removed from the dataset after the match between affinity and structure was found to be uncertain, 

as detailed in the methods. Since cases in the affinity dataset represented various methods of 

affinity measurement and a range of structure resolutions, we separated cases into subsets based 

on this information and determined correlations with ΔG values for each subset. REF15 score 
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correlations to ΔG values showed some differences in subsets of affinity measurement method, 

which included SPR, BLI, ITC, and Other (Table 6.2). Correlations for the SPR and BLI subsets 

were significant for all affinity predictors and exhibited a range of Pearson correlation coefficients 

(R = 0.255-0.367) that were largely consistent with correlations to the entire dataset. While all 

correlations for the ITC subset were also relatively consistent with full dataset correlations (R = 

0.255-0.39), these correlations were found to be significant only for IRAD and ZRANK. Cases 

with a method of measurement classified as Other showed no significance between ΔG values and 

scores of affinity predictors when tested as a subset, and Pearson correlation coefficients for 

REF15 and beta16 scores were notably lower (R = 0.06-0.07) than correlations with the entire 

dataset. Though it suggests that measurement method may influence affinity prediction by REF15 

and beta16, this observation comes with caveats that include the nature of this subset (combination 

of several unrelated measurement methods) and its small size (N = 29). Decreased correlations in 

this small subset are also likely to be influenced by cases that deviate from the trendline in the 

entire dataset, if these cases happen to use a measurement method classified as Other. The case 

6C9U may reduce the Pearson correlation coefficient substantially on its own in this subset, as it 

has a low ΔG value but a higher REF15 score. IRAD and ZRANK correlations for this subset (R 

= 0.239-0.295) were not significant, but much closer to the correlation for the entire dataset.  

The affinity dataset was also separated into subsets by structural resolution, specifically 

groups of <=2 Å, 2 Å < x <= 2.5 Å, 2.5 Å < x <= 3 Å, and >3 Å (Table 6.3). These subsets did 

not lead to an even distribution of cases, largely because the >3 Å subset was less than half the 

size of any other subset (N = 40), but the resulting subsets were more evenly distributed than cases 

separated by methods of affinity measurement. All resolution subsets showed significant p-values 

for Pearson correlation coefficients between ΔG values and all affinity predictors, suggesting that 
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one resolution subset does not have a dramatic impact on overall correlations. The observed 

correlations by subset also suggest that lower resolution structures do not impede antibody-antigen 

affinity prediction by these functions, as the subset with the lowest resolution (>3 Å) showed some 

of the highest Pearson correlation coefficients (R = 0.327-0.389), which were occasionally higher 

than correlations with the highest resolution subset (<=2 Å; R = 0.331-0.352). The lowest 

correlations were found for cases between 2.5 and 3 Å (R = 0.218-0.257), which may be due to its 

size (N = 145) and the greater likelihood of including cases that show higher deviations from the 

overall trend. Overall, these results show that correlations between ΔG values and affinity 

predictors were largely unaffected by crucial characteristics of structure and affinity measurement, 

demonstrating the consistency and quality of cases in this affinity dataset.  
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Figure 6.3 Predictive performance of existing scoring functions. Correlation plots for prediction of ΔG 
values by scoring functions (A) REF15 (R = 0.29), (B) beta16 (R = 0.29), (C) IRAD (R = 0.30), and (D) 
ZRANK (R = 0.29). The trend for each plot is shown as a red line. 
 
Table 6.2 Scoring function correlations with affinity values by measurement method. 

Measurement 
method 

REF15 
correlation^ 

beta16 
correlation^ 

IRAD 
correlation^ 

ZRANK 
correlation^ 

# of 
cases 

SPR 0.35*** 0.338*** 0.284*** 0.287*** 245 
BLI 0.255* 0.282* 0.367*** 0.317** 82 
ITC 0.271 0.25 0.342* 0.39* 40 
Other 0.069 0.064 0.295 0.239 29 

 
^P-value significance of all correlation coefficients is shown in asterisks. * < 0.05, ** < 0.01, *** < 0.001  
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Table 6.3 Scoring function correlations with affinity values by structure resolution. 

Structure 
resolution (Å) 

REF15 
correlation^ 

beta16 
correlation^ 

IRAD 
correlation^ 

ZRANK 
correlation^ 

# of 
cases 

<= 2 Å 0.463*** 0.44*** 0.352*** 0.331** 89 
> 2 and <= 2.5 Å 0.27** 0.284** 0.30*** 0.329*** 122 
> 2.5 and <= 3 Å 0.257** 0.252** 0.25** 0.218** 145 
> 3 Å  0.327* 0.329* 0.359* 0.382* 40 

 
^P-value significance of all correlation coefficients is shown in asterisks. * < 0.05, ** < 0.01, *** < 0.001 

6.3.4 Correlations of individual terms with ΔG values 

Individual scoring terms for tested affinity predictors were also calculated and assessed 

independently for correlations with ΔG values. Since the IRAD scoring function contains 

individual terms from ZRANK (182), only REF15, beta16 and IRAD scoring terms were 

investigated directly to minimize redundancy. The REF15 scoring function contains eight 

individual terms that contributed to calculated binding score, less than half the total number of 

terms (204). Beta16 contains eleven terms that contributed to binding score, including several 

terms that overlap with REF15, highlighting the similarity of these scoring functions. Correlations 

between ΔG values and assessed REF15 and beta16 terms are shown in Table 6.4. Unsurprisingly, 

Pearson correlation coefficients for individual terms were lower than the complete REF15 scoring 

function, with the change in van der Waals attractive force (Δfa_atr) showing the highest 

correlation among individual terms (R = 0.23). Other terms exhibited lower but significant 

correlations with ΔG values, including the change in sidechain-sidechain hydrogen bond potential 

(Δhbond_sc), the change in electrostatics (Δfa_elec), and the change in van der Waals repulsive 

force (Δfa_rep). More terms in beta16 showed significant correlations, due to the addition of terms 

that measure the change in solvation (Δlk_ball, Δlk_ball_iso). Interestingly, a weighted 

combination of these terms did not show significant correlations in REF15 scores (Δlk_ball_wtd), 
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possibly because this combination also included solvation components that did not show 

significant correlations with ΔG values on their own (Δlk_ball_bridge, Δlk_ball_bridge_uncpl).  

Though the published IRAD scoring function contains eight terms (182), a total of 43 terms 

were output during scoring of antibody-antigen structures. The score for each term output by IRAD 

was also correlated with ΔG values, finding significant correlations with 24 terms (Table 6.5). A 

ZRANK term measuring van der Waals attractive force (vdw_atr) exhibited one of the highest 

Pearson correlation coefficients (R = 0.21), corroborating the findings of the correlation for Δfa_atr 

in REF15. Eight other terms output by IRAD showed significant positive correlations and were 

generally atom-based or residue-based potentials, including IFACE (iface; (477)), potential 2 from 

Zhang et al. (pot2atot; (471)), and Tobi-Bahar (pottbtot; (405)). All other terms showed significant 

negative correlations with ΔG values, and these terms tended to be counts output during the 

calculation of potentials. Of the terms included in the existing IRAD scoring function, only 

vdw_atr, elec_s (a combination of elec_sra and elec_srr), iface, and potctot showed significant 

correlations with ΔG values, suggesting that a reexamined and optimized set of terms from IRAD 

could improve prediction of antibody-antigen affinities in this dataset. Since some terms output by 

IRAD had similar characteristics and showed very similar correlations, we assessed how the scores 

of individual terms correlated with each other through hierarchical clustering and visualization 

(Figure 6.4). A heatmap of this correlation data highlights the similarity in scores for several large 

groups of terms output by IRAD, including one with 12 terms of potentials and another set of 18 

terms primarily consisting of counts. Terms with significant individual correlations with ΔG values 

also tended to cluster together. Surprisingly, the vdw_atr term from ZRANK showed high 

correlations with the counts of interface atoms in specified distance cutoffs (acont4-6). Short-range 

electrostatics terms clustered together, but also with the solvlk term, which measures solvation and 
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not electrostatics in interfaces. These clustering results show both intuitive and unexpected 

similarities in the scores of terms output by IRAD, demonstrating patterns in these output terms 

and potentially informing optimization of affinity prediction using these terms in combination. 

Table 6.4 Correlations of REF15 and beta16 scoring terms with affinity values. 

REF15 scoring 
term 

Pearson 
correlation^ 

beta16 scoring term Pearson 
correlation^ 

Δfa_atr 0.23*** Δfa_atr 0.23*** 
Δhbond_sc 0.18*** Δhbond_sc 0.18*** 
Δfa_elec 0.12* Δlk_ball_iso 0.14** 
Δfa_rep -0.11* Δlk_ball -0.13** 
Δfa_sol -0.08 Δfa_elec 0.11* 
Δhbond_bb_sc 0.05 Δfa_rep -0.11* 
Δlk_ball_wtd -0.04 Δfa_sol -0.08 
Δhbond_lr_bb -0.03 Δlk_ball_bridge_uncpl 0.06 
  Δhbond_bb_sc 0.05 
  Δlk_ball_bridge 0.04 
  Δhbond_lr_bb -0.03 

 
^P-value significance of all correlation coefficients is shown in asterisks. * < 0.05, ** < 0.01, *** < 0.001 
 
Table 6.5 Correlations of IRAD and ZRANK scoring terms with affinity values.  

Scoring term Pearson correlation^ 
npot2atot -0.24*** 
ZRANK vdw_atr 0.22*** 
acont4 -0.21*** 
nresa -0.21*** 
acont6 -0.20*** 
acont5 -0.20*** 
nresc -0.18*** 
nresp -0.17*** 
nprestb -0.17*** 
npotctot/npotllstot& -0.16** 
npot1ptot -0.16** 
pot2atot 0.15** 
pottbtot 0.15** 
iface 0.14** 
npot2ptot -0.13** 
potg2tot -0.13** 
solvlk 0.13** 
ZAPP elec_sra_x 0.12* 
ZRANK elec_sra 0.12* 
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ZAPP elec_srr_x -0.11* 
potllstot 0.11* 
potctot 0.11* 
ZRANK elec_srr -0.10* 

 
^P-value significance of all correlation coefficients is shown in asterisks. * < 0.05, ** < 0.01, *** < 0.001 
&Numbers of interactions counted by npotctot and npotllstot were identical for all complex structures, and 
resulted in identical Pearson correlation coefficients 
 

 
Figure 6.4 Heatmap of correlations between terms output by IRAD. Listed terms were ordered 
through hierarchical clustering of squared Pearson correlation coefficients between scores. Black lines on 
the y-axis of the heatmap highlight terms that have a significant correlation with ΔG values. A black line 
shows that all terms within the range of the black line share a significant correlation (p < 0.05) with ΔG 
values. 

6.3.5 Selection and retraining of input terms for antibody-antigen affinity prediction 

Analysis of correlations between antibody-antigen affinity values and existing scoring 

functions revealed the potential to improve predictions of antibody-antigen affinities following 

optimization of the weights for individual scoring terms. As a proof of concept for utilizing this 
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dataset to improve antibody-antigen ΔG prediction, we utilized several regression methods in R to 

investigate optimized sets of scoring terms from REF15, beta16, IRAD, and ZRANK, either from 

one function or a combination of these functions. Eight sets of terms were implemented, and the 

scores of these terms on affinity cases not classified as high HETATM (N = 396) were directly 

compared with ΔG values through multilinear regression. Four of these sets consisted of input 

terms from a single scoring function, with one retrained model for each scoring function. Two 

other sets of terms built on the integration of ZRANK terms into the published IRAD scoring 

function by adding other potentials output by IRAD (“IRAD + pot”) or all other terms output by 

IRAD (“IRAD + pot/count”). Lastly, two more sets directly combined REF15 terms either with 

potentials output by IRAD (“REF15 + pot”) or with potentials and counts output by IRAD 

(“REF15 + pot/count”). It should be noted that terms from Rosetta scoring functions and ZRANK 

terms were not combined with each other in a set, as the characteristics of included terms (e.g. van 

der Waals, electrostatics) substantially overlapped.  

On each set of terms, we performed stepwise linear regression analysis to select a reduced 

set of terms with individual weights (Table 6.6). The number of input terms varied widely by 

model, from seven or eight terms in retrained existing functions to several dozen terms in 

composite sets. In all stepwise regression analyses, at least two terms in the input set were not 

selected in the retrained model, and the number of selected terms (not including the intercept) 

ranged from four (REF15, beta16) to 13 (IRAD + pot/count, REF15 + pot/count). Since the scores 

of input terms were not centered or scaled prior to analysis, the weights determined by stepwise 

regression are not indicative of the importance of individual terms. Interestingly, some individual 

terms with significant correlations with ΔG values were not included in retrained models, while 

other terms with lower correlations such as Δfa_sol and prestb were selected in multiple models. 
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A few models also contain terms output by IRAD that are correlated as shown in Figure 6.4, 

suggesting that multicollinearity between terms may be present following regression, especially in 

retrained models with higher numbers of terms. 

Each set of terms selected by stepwise regression was then tested for antibody-antigen 

affinity prediction through several variations of cross-validation (leave-one-out, 5-fold, 10-fold). 

The root-mean-square error (RMSE) and Pearson correlation coefficients were computed and 

compared with the same metrics of the existing scoring functions, showing that several retrained 

models yielded improvements in ΔG prediction (Table 6.7). Models with terms from several 

sources tended to show the most improvement, though an increase in number of terms may 

contribute to this trend. However, retrained REF15 and beta16 models with just four selected terms 

also showed lower RMSE and higher Pearson correlation coefficients following cross-validation. 

These models contain two terms (Δfa_atr, Δhbond_sc) with highly significant correlations with 

ΔG values, suggesting that even a minimal set of impactful terms can increase predictive 

performance when retrained. Two composite models also included the selected terms from 

REF15/beta16, along with four potentials output by IRAD (REF15 + pot) or with Δfa_rep, five 

potentials output by IRAD, and three counts output by IRAD (REF15 + pot/count). Another 

composite model with greater predictive performance (IRAD + pot/count) did not include REF15 

terms as input, but stepwise regression still selected several electrostatics and solvation terms, 

suggesting that these types of terms may be important components for antibody-antigen affinity 

prediction.  

Following these results, predictions from leave-one-out cross-validation were plotted for 

the top performing retrained models (Figure 6.5). The RMSE and correlation coefficients 

produced by these models were comparable to graph-based antibody-antigen prediction models 
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trained on a dataset of similar size (214), suggesting that training scoring functions with this 

antibody-antigen affinity dataset can meaningfully improve predictive performance. However, 

these retrained models still leave ample room for improvement of antibody-antigen affinity 

prediction, with substantial differences between predicted and actual ΔG values shown for several 

cases in each correlation plot. Though correlations improved with retraining, the modest 

correlations of these models to ΔG are exemplified by stark differences in the ranges of predicted 

and actual ΔG values. Even the top retrained models contain just a four-log ΔG range in predictions 

(-10 to -14 kcal/mol), far narrower than the nine-log ΔG range in this dataset (-16 to -7 kcal/mol). 

The worst predictions of ΔG were concentrated in cases with the highest (ΔG < -14 kcal/mol) and 

lowest (ΔG > -10 kcal/mol) affinities, suggesting that the retrained models are limited in their 

ability to recognize properties of antibody-antigen interfaces that lead to very strong or very weak 

affinities within the context of this dataset.  

This result could be attributed to suboptimal selection of input terms by stepwise 

regression, and additional methods of regression were tested on the same sets of input terms to 

help address this possibility. Ridge, Least Absolute Shrinkage and Selection Operator (LASSO), 

and Elastic net regression were also used to develop retrained models. These regression methods 

can either penalize or remove multicollinear terms, which could be especially beneficial for 

reweighing the largest sets of input terms. Though models with removed terms and different 

weights were generated, training and cross-validation showed RMSE and correlation coefficients 

that did not match the top models from stepwise regression, and in some cases showed decreased 

correlations when compared to existing functions (Table 6.8). Models trained with ridge 

regression, where all input terms were kept but penalized for multicollinearity, showed the lowest 

correlations overall, especially when training the largest sets of input terms. LASSO and Elastic 
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net regression often converged following training and cross-validation, finding the same set of 

selected terms and similar correlations. The performance of these regression methods suggests that 

selection of terms by stepwise regression did not result in suboptimal retrained functions. Instead, 

the narrower range of ΔG predictions may be due to limitations inherent to the scores output by 

these terms, which could be missing key characteristics in the energetics of antibody-antigen 

interfaces, despite measurements of van der Waals, solvation, and electrostatic forces. Overall, the 

top performing models were generating using stepwise regression, and the improvements in 

affinity prediction highlight the utility of this antibody-antigen affinity dataset in future 

algorithmic developments. 
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Table 6.6 Terms and weights of retrained models selected by stepwise regression. 

Individual 
term* 

REF15 beta16 IRAD ZRANK IRAD 
+ pot 

IRAD + 
pot/count 

REF15 
+ pot 

REF15 + 
pot/count 

(Intercept) -9.04 -9.03 -9.51 -9.61 -9.55 -9.51 -9.04 -8.99 
ace X X 0.022 - - - X X 
acont4 X X X X X -0.024 X - 
elec_l X X 0.015 X X X X X 
elec_lra X X X 0.013 0.011 0.009 X X 
elec_lrr X X X 0.023 0.019 0.019 X X 
elec_s X X 0.005 X X X X X 
elec_sra X X X 0.005 0.005 0.006 X X 
elec_srr X X X 0.006 0.005 0.006 X X 
fa_atr 0.051 0.052 X X X X 0.062 0.078 
fa_elec 0.042 0.039 X X X X 0.032 0.031 
fa_rep - - X X X X - 0.059 
fa_sol 0.057 0.057 X X X X 0.056 0.068 
hbond_sc 0.136 0.145 X X X X 0.136 0.146 
iface X X - X - -0.001 X X 
npot1atot X X X X X - X 0.08 
npot2atot X X X X X -0.064 X - 
npotgtot X X X X X 0.074 X 0.062 
nresa X X X X X - X -0.036 
pot2atot X X X X 0.064 0.047 0.09 0.082 
potctot X X 0.025 X - - - - 
potg2tot X X X X - -0.016 - -0.013 
potllstot X X X X - - -0.027 -0.035 
presa X X X X -0.09 -0.104 - - 
presc X X X X - - -0.105 -0.103 
prestb X X X X 0.119 0.12 0.128 0.125 
solvlk X X X X - -0.063 X X 
vdw_atr X X 0.016 0.025 0.021 - X X 

 
*For each term, the weight given by the model following stepwise regression is shown. Terms that were 
not present in one or more models are indicated as “X” (this term was not included as input for this 
model) or “-“ (this term was included as input for this model, but was not selected during stepwise 
regression).  
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Table 6.7 ΔG prediction of models retrained through stepwise regression.  

Linear model Validation RMSE^ Pearson 
correlation^ 

REF15 bind score N/A 1.62 0.29 
beta16 bind score N/A 1.62 0.29 
IRAD score N/A 1.61 0.3 
ZRANK score N/A 1.62 0.29 
REF15 Leave-one-out 1.61 0.31 
REF15 5-fold cross 1.6 0.34 
REF15 10-fold cross 1.6 0.35 
beta16 Leave-one-out 1.61 0.31 
beta16 5-fold cross 1.6 0.34 
beta16 10-fold cross 1.6 0.35 
IRAD Leave-one-out 1.63 0.26 
IRAD 5-fold cross 1.63 0.3 
IRAD 10-fold cross 1.63 0.29 
ZRANK Leave-one-out 1.63 0.26 
ZRANK 5-fold cross 1.64 0.3 
ZRANK 10-fold cross 1.63 0.3 
IRAD + pot Leave-one-out 1.62 0.29 
IRAD + pot 5-fold cross 1.62 0.32 
IRAD + pot 10-fold cross 1.62 0.32 
IRAD + pot/count Leave-one-out 1.6 0.34 
IRAD + pot/count 5-fold cross 1.59 0.37 
IRAD + pot/count 10-fold cross 1.6 0.35 
REF15 + pot Leave-one-out 1.59 0.34 
REF15 + pot 5-fold cross 1.59 0.36 
REF15 + pot 10-fold cross 1.58 0.37 
REF15 + pot/count Leave-one-out 1.58 0.36 
REF15 + pot/count 5-fold cross 1.57 0.38 
REF15 + pot/count 10-fold cross 1.57 0.39 

 
^RMSE and Pearson correlation coefficients are highlighted in bold if both metrics were improved for a 
retrained model when compared to existing scoring functions 
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Figure 6.5 Predictive performance of top retrained models. Correlation plots of ΔG predictions for 
retrained models (A) IRAD + pot/count (R = 0.34), (B) REF15 + pot (R = 0.34), and (C) REF15 + 
pot/count (R = 0.36) from leave-one-out cross-validation. The trend for each plot is shown as a red line. 
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Table 6.8 Affinity prediction of models retrained with Ridge, LASSO, Elastic net regression 
following 5-fold cross-validation. 

 REF15 + pot IRAD + pot/count REF15 + pot/count 
Regression RMSE R^ # of 

terms 
RMSE R^ # of 

terms 
RMSE R^ # of 

terms 
Ridge 1.63 0.27 22 1.64 0.28 43 1.63 0.29 38 
LASSO 1.62 0.3 5 1.63 0.31 3 1.62 0.31 4 
Elastic net 1.62 0.3 5 1.63 0.3 11 1.62 0.31 4 

 
^Pearson correlation coefficient 

6.3.6 Performance of top retrained models on independent test set 

Although models retrained through multilinear regression improved antibody-antigen 

affinity predictions within the presented affinity dataset, its ability to predict affinity of antibody-

antigen complexes not used for training was uncertain. We tested the best performing retrained 

models (IRAD + pot/count, REF15 + pot, and REF15 + pot/count) on an independent set of 

experimental affinity values and compared the resultant correlations with predictions made by 

existing scoring functions REF15 and IRAD. This independent test set contains the affinity values 

of VRC01-class intermediate antibodies to HIV-1 gp120 from six different isolates (481). Each 

affinity value was paired with a model of the gp120-antibody complex, which was then scored by 

each retrained model, REF15, and IRAD. Neutralization data of modeled complexes were also 

available, but correlations to retrained models were examined on a smaller scale due to a reduced 

dataset and concerns about distance between model and template sequences. Correlation 

coefficients between retrained model scores and affinity values (R = 0.3-0.41) were lower than 

REF15 (R = 0.56) and IRAD (R = 0.54) for the entire dataset (N = 360), with all correlations 

shown in Table 6.9.  

The use of this independent set comes with several caveats, as models trained on high-

resolution antibody-antigen structures may be less effective in predicting the affinity modeled 



 

212 
 

 

complexes, which also may have modeling inaccuracies due to varying degrees of sequence 

identity with the structural template. Interestingly, correlations between neutralization data for 

isolate 45_01dG5 and scores of retrained models REF15 + pot and REF15 + pot/count were higher 

than correlations established by REF15 and IRAD (Table 6.10). The predictions of these models 

may be more robust or generalizable than IRAD + pot/count, which showed little to no correlation 

between ΔG predictions and antibody neutralization. Though this dataset is small (N = 48), these 

improvements in correlations suggest that retrained models may better distinguish between a range 

of antibody-antigen interfaces, which in this case differed widely by neutralization of 45_01dG5. 

The plots for REF15 + pot and REF15 + pot/count showed their significant correlations to 

neutralization data, but also revealed individual complex scores that deviate from these trends 

(Figure 6.6). In both plots, complexes for antibodies that best neutralize 45_01dG5 (log IC50 < -

1) have a substantial range of predicted ΔG values around the trendline, showing that these 

retrained models could not consistently distinguish between complexes with the highest 

neutralization values and complexes with the lowest neutralization values (log IC50 > 0) in this 

dataset. Despite yielding higher correlations with neutralization data, REF15 + pot and REF15 + 

pot/count plots demonstrate that these improvements on existing scoring functions are quite 

limited. Overall, predictive performance of retrained models on an independent test set showed 

little to no improvements over existing scoring functions, showing the importance of testing 

affinity predictors carefully and extensively with data withheld during training. 
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Table 6.9 Correlations of top retrained models with affinities in independent test set. 

Isolate REF15 
+ pot 

IRAD + 
pot/count 

REF15 + 
pot/count 

REF15 
bind score 

IRAD 
score 

% identity& 

dG5 0.39** 0.43*** 0.46*** 0.62*** 0.56*** 95 
dG5_K278T 0.36** 0.36** 0.37** 0.64*** 0.6*** 95 
dH5 0.33** 0.27* 0.34** 0.5*** 0.58*** 88 
BG505 0.33** 0.23 0.31* 0.51*** 0.46*** 78 
BG505_T278A 0.55*** 0.48*** 0.55*** 0.64*** 0.6*** 78 
426c 0.53*** 0.49*** 0.46*** 0.64*** 0.56*** 73 
All 0.36*** 0.3*** 0.4*** 0.56*** 0.54*** N/A 

 
^P-value significance of all correlation coefficients is shown in asterisks. * < 0.05, ** < 0.01, *** < 
0.001. All other tested correlations were not significant. 
&Percent identity of gp120 structure template sequence to the isolate gp120 sequence that was modeled in 
complex with antibody structures. 
 
Table 6.10 Correlations of top retrained models with neutralization data of 45_01dG5 isolate in 
independent test set. 

Affinity predictor Pearson correlation^ 
REF15 + pot 0.45** 
IRAD + pot/count -0.1 
REF15 + pot/count 0.29* 
REF15 (existing function) 0.21 
IRAD (existing function) 0.13 

 
^P-value significance of all correlation coefficients is shown in asterisks. * < 0.05, ** < 0.01. All other 
tested correlations were not significant. 
 

 
Figure 6.6 Predictions of retrained models with significant correlations to 45_01dG5 neutralization 
data. Correlation plots between 45_01dG5 neutralization data and ΔG predictions of gp120-antibody 
complex models from (A) REF15 + pot (R = 0.45) and (B) REF15 + pot/count (R = 0.29). The trend for 
each plot is shown as a red line. 
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6.4 Discussion 

We have collected and annotated a large dataset of 401 antibody-antigen affinities and 

corresponding structures. This dataset represents a diverse group of antibody types, antigen targets, 

and calculated ΔG values. We found modest correlations between the ΔG values and scores from 

four scoring functions, suggesting that optimization of terms in these functions could improve 

antibody-antigen affinity prediction. To examine the potential to improve predictions, we trained 

and tested linear regression models of input terms from Rosetta scoring functions REF15 and 

beta16, docking model scoring functions IRAD and ZRANK, or a combination of both. Retraining 

and cross-validation of input terms generated several linear models with improved correlations 

with ΔG values in the affinity dataset, and the largest improvements tended to occur when 

retraining models with input terms from multiple sources. Finally, top retrained models showed 

lower correlations than existing scoring functions with affinity values of modeled HIV gp120-

antibody complexes in an independent test set, but two models did show higher correlations with 

a limited set of neutralization values. This in-depth regression analysis provided an example of 

how this curated set of affinities can be utilized for future development of algorithms for antibody-

antigen ΔG prediction.  

The antibody-antigen affinity dataset presented here represents a dedicated effort to 

compile and annotate high-quality affinities and structures, but the tremendous diversity of this 

dataset poses clear challenges to reliable affinity prediction. Given the modest correlations 

observed in this study and elsewhere, it is possible that these challenges may stem in part from 

limitations inherent to including data with variable affinity measurement and structure 

determination, both in method and relative quality. Apart from different methods of affinity 

measurement, variability in documentation of affinity measurements such as proper controls in the 
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literature may make reported affinities in this dataset less reliable (485). The potential reliability 

of measurements was not directly evaluated in this study, but the corresponding literature used to 

confirm antibody-antigen affinities could be assessed in future work to recommend best or 

common practices for reporting experimental affinities. At the same time, inconsistent 

documentation in the literature prevented this curated dataset from growing even larger, potentially 

offering a more robust dataset. We found numerous cases with an antibody-antigen structure and 

affinity value, but that could not be included because there was no documented temperature for 

the affinity measurement in the literature. Based on this experience, it would be beneficial for 

future studies to include a recorded temperature when presenting affinity values, as adopting this 

standard would allow for more ΔG values to be calculated accurately and for more cases to be 

included in subsequent updates of this affinity dataset.  

In addition, the nature of structure determination and interface properties for a given 

complex may have led to aberrant predicted scores, which could affect the strength of correlations 

with experimental ΔG values. Metrics of structure quality such as Rfree and Ramachandran 

outliers were included to annotate cases in the affinity dataset, but these metrics were not explicitly 

tested for their possible contributions to changes in predictive performance. Though refinement 

with FastRelax alone may minimize or resolve aberrant determination of antibody-antigen 

interfaces that could affect scoring by affinity predictors, any applications of this affinity dataset 

may filter cases based on quality metrics prior to training, offering flexibility to various demands 

of research efforts in algorithmic development. Future research on the affinity dataset could also 

explore utilizing PDB_REDO, a repository and server that aims to optimize PDB structures by 

correcting crystallographic errors and improving fits to electron density (486). Analyzing 

optimized antibody-antigen interfaces could reduce the risk of spurious scores due to variable 
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structure quality, which may better capture the utility of tested scoring functions for affinity 

prediction. In addition, future research should test affinity predictors in more practical applications 

useful for therapeutic design, such as predicting affinities of high-quality antibody-antigen 

complex models from in silico screening. 

Despite retraining of scoring terms with this affinity dataset, cross-validation of these 

multilinear regression models yielded minor improvements to the modest Pearson correlation 

coefficients of existing scoring functions. These results highlight potential limitations to this 

method of antibody-antigen affinity prediction. First, structural analysis and scoring of antibody-

antigen interfaces by affinity predictors only involves the bound complex. However, ΔG values 

stem from thermodynamic free energy shifts from an unbound-unbound complex state to the bound 

interface, and the strength of ΔG is determined by the free energy demands in forming a particular 

interaction, which can be influenced by associated conformational changes (217, 220) and by 

entropy loss through desolvation and the formation of hydrogen bonds (487). Considering just the 

bound state in affinity prediction may fail to capture important thermodynamic properties, adding 

substantial noise to ΔG predictions and affecting the proper training of multilinear regression 

models. Second, complex scoring functions that can contain colinear terms may be at a higher risk 

of overtraining on antibody-antigen affinity prediction, as suggested by the lower correlations of 

top retrained models to experimental ΔG values in the independent test set. This risk of 

overtraining has been previously discussed when combining separate potentials into a function for 

selection of near-native docking models (488). To mitigate overtraining, future developments of 

predictive scoring functions could implement additional assessments of trained models, such as 

testing correlations on a portion of the affinity dataset withheld from training and cross-validation. 

Regression methods could also be used only on a set of input terms more restricted by evidence of 
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collinearity, where a clustering analysis of correlations between terms (see Figure 6.4) may reduce 

the number of terms utilized for training. Despite these suggestions for assessing future scoring 

functions with this dataset, there are caveats regarding the prediction of affinities in the 

independent test set that should be mentioned. Linear models trained on high-resolution and non-

redundant antibody-antigen structures may naturally be less adept when scoring modeled 

complexes, which have various levels of sequence identity between model and template that could 

result in modelling errors. At the same time, distinguishing the affinities of highly similar 

antibodies to the same epitope could require a different set of scoring terms that may not have been 

selected in top retrained models. Overall, considering the applicability of trained models to specific 

situations of antibody-antigen affinity prediction is crucial for any future developments. 

Though optimization of a scoring function composed of linearly weighted terms may 

improve correlations with antibody-antigen affinities, non-linear models generated from various 

machine learning methods may be better suited to affinity predictions. Several algorithms have 

already shown promise in ΔG and ΔΔG prediction (206, 214, 215), providing additional templates 

for affinity prediction algorithms that can be trained on this affinity dataset. The predictive 

performance of multilinear models could also improve when training scoring terms that can better 

distinguish antibody-antigen interface properties that lead to the wide range of observed ΔG 

values. Future efforts in modeling with this affinity dataset could incorporate an even broader set 

of scoring potentials, such as those listed in CCharPPI (400, 488), as well as antibody-specific 

interface features that can be output from Rosetta (159). A weighted scoring function that improves 

predictions of ΔG values would become a valuable tool for understanding and characterizing 

antibody-antigen interactions in silico. However, the presented models were not tested on ΔΔG 

prediction, which could have demonstrated additional utility for therapeutic antibody design 
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efforts to increase affinity to a desired antigen using a complex structure as a template. These 

retrained models, or any that utilize the affinity dataset, should also be evaluated for ΔΔG 

prediction through validation with one or more available datasets (209, 210). As examined with 

CSM-AB (214), top performing affinity prediction models could also be tested in ranking of 

docking predictions to see if improvements in affinity prediction translated to protein docking. In 

testing affinity predictors on docking success, this research may help determine if docking and 

affinity prediction can be addressed with one algorithm or may require different foundations for 

algorithm development. In any case, this affinity dataset provides an expanded training set that can 

help advance antibody-antigen affinity prediction. 
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Chapter 7: Summary and future directions 
 

The research in this thesis examined approaches of vaccine design and computational 

analysis for HCV and expanded the resources available for computational modeling and prediction 

of all antibody-antigen interactions. We were able to design and validate multiple iterations of a 

soluble and secreted HCV vaccine candidate, providing new insights into how HCV E1E2 

heterodimer can be scaffolded to maintain native-like antigenicity and immunogenicity while 

avoiding the more difficult process of extracting E1E2 from the viral membrane. Computational 

analysis of antibody interactions with HCV led to novel predictions of sequence contributions to 

neutralization and heterodimerization, which could have broad implications for future directions 

of HCV vaccine design. This interest in antibody-antigen interactions was also applied to the 

development of an antibody-antigen benchmark, expanding resources for the entire research 

community to facilitate improved antibody-antigen docking and affinity predictions. 

The vaccine design work presented in this thesis (chapters 2 and 3) represents an intriguing 

proof of concept that is now being pursued as an HCV vaccine candidate. The success of certain 

scaffolded E1E2 assemblies can provide insights into the determinants of proper glycoprotein 

presentation in a heterodimeric and hetero-hexameric state, despite the recent report of the E1E2 

heterodimer structure. In collaboration with Alexander Ploss and others, we have begun to quantify 

the immunogenicity of top sE1E2 vaccine candidates, with promising results showing an increase 

in the neutralization of heterologous isolates compared with mbE1E2 (489). Multimerization or 

multivalent scaffolding of these sE1E2 designs is also being explored, and the current success of 

some designs provides a template for targeted HCV scaffold designs, either through fixed 

backbone or de novo techniques. As discussed in chapter 2, we expect to assess the viability of 

sE1E2 as a platform for HCV isolates from multiple genotypes, with incorporation of additional 
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isolates and consensus sequences shown in chapter 3. Since sE1E2 is easier to produce while still 

recognized by HCV antibodies, this antigen may become a useful resource for the HCV 

community in further characterization of HCV antigenicity and immunogenicity. 

Research involving predictions of important HCV E1E2 residues based on computational 

analysis (chapter 4) can be expanded in several directions. We can engage with collaborators to 

have our long list of predicted polymorphisms and E1E2 interface residues be tested and validated 

experimentally. Verifying the neutralization change for predicted polymorphisms and a loss of 

E1E2 assembly for predicted heterodimerization residues would help elucidate the sequence 

changes most impactful to vaccine design and determine possible mechanisms of immune evasion. 

We can also utilize additional mutagenesis or neutralization data to make more predictions using 

the same techniques, with any overlap in predicted contributors potentially providing further 

support for those residues. Validated polymorphisms can be tested against a larger set of antibodies 

to elucidate the true breadth of neutralization change, which could also offer insights into the actual 

mechanism, be it a change in the glycan shield, a shift in glycoprotein dynamics, or an alteration 

of receptor binding. In addition, the impact of predicted polymorphisms on E1E2 flexibility and 

dynamics can be addressed with molecular dynamics simulations on a small set of polymorphisms 

found to induce the largest changes in antibody neutralization. 

An updated antibody-antigen benchmark and expanded antibody-antigen affinity dataset 

(chapters 5 and 6) can lead to some exciting developments in docking and affinity prediction while 

providing useful resources for the community. We plan to update both datasets frequently, keeping 

pace with rapidly accumulating structure and affinity data. With more cases available, 

development of protein-protein docking or affinity prediction algorithms will utilize a more robust 

and diverse set of prediction challenges, which will likely result in improved predictors. We can 
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work to better understand the differential docking and affinity prediction success observed, 

possibly revealing trends in performance on the benchmark and defining the limitations of current 

algorithms. The lab is also taking benchmark structures in new directions of prediction, modeling 

some complexes in the benchmark with AlphaFold-Multimer (490, 491) to assess and potentially 

improve its ability to correctly predict antibody-antigen interfaces. This research could result in 

improved docking algorithms, either by optimizing current algorithms such as ZDOCK for 

antibody-antigen docking, or by identifying native antibody-antigen interfaces through deep 

learning. We can continue to improve predictions of ΔG using the affinity dataset through 

integration of more scoring functions or potentials, as well as the application of non-linear 

predictive methods with machine learning. This research can inspire further developments in 

assembling and presenting benchmarks, incorporating key computational techniques such as 

antibody modeling and design or ΔΔG prediction that allow for testing of current algorithms with 

a curated and updated set of cases. 
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