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Atmospheric deposition can be a major source of nutrients to the remote ocean 

where these nutrient species can play a critical role in major biogeochemical cycles 

(e.g. carbon). Atmospheric input of Fe controls phytoplankton growth in high nitrate 

low chlorophyll regions. Fe can also be a rate-limiting nutrient to diazotrophic 

microorganisms and control the N2 fixation in the oligotrophic ocean. Due to low 

solubility of aerosol Fe in the seawater only a small fraction of atmospheric input of 

Fe may be bioavailable.   

This dissertation developed an aqueous sequential extraction procedure to 

measure the labile Fe species in aerosols.  The measured labile Fe species were 

compared to the photo-reducible Fe under the ambient sunlight and to the 

bioavailable forms of aerosol Fe to a diazotrophic microorganism. The diazotroph 

showed a large capacity of luxury uptake of aerosol Fe, and the uptake amount was 

less than the total labile Fe measured in aerosols. Labile and total aerosol Fe was 

found to be highly variable in time and space over the North Atlantic and North 



  

Pacific oceans. The labile aerosol Fe was mostly associated with mineral dust 

transported from North Africa or Asia, although it can also be associated with 

anthropogenic sources and atmospheric processing.  Major nutrients (soluble PO4
3-, 

NO3
- and NH4

+) in aerosols were also found to be temporally variable over these two 

oceanic regions.  Mineral dust transported from North Africa or Asia was a major 

source for soluble PO4
3- only during a certain season. Soluble PO4

3- in aerosols was 

sometimes strongly associated with anthropogenic tracers.  Anthropogenic activities 

were major sources for both aerosol NO3
- and NH4

+.  It was also found that marine 

biogenic source of NH3 could be significant during the spring and summer over the 

remote oceans.  Ratios between the atmospheric inputs of labile Fe, N and P also 

varied seasonally, which may result in a various nutrient limitation to the water 

column. The residence time of dissolved Fe in the upper Pacific was estimated longer 

than those in the Atlantic and the Indian oceans. 
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same goal, sharing failure and success, unhappiness and happiness.  I have been 

drinking and dancing with all those lovely people, and these beautiful memories will 

be appreciated and cherished in my whole life.   
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Chapter 1: Executive Summary 

 

1.1 Introduction 

The atmosphere is an important pathway for the transport of many natural and 

anthropogenic materials from the continents to the oceans.  Estimates of the 

atmospheric fluxes of metals and nutrients to the remote ocean suggest that the 

atmosphere can be a major source in terms of mass (Delany et al., 1967; Duce et al., 

1991; Prospero et al., 1996) and plays a critical role in oceanic biogeochemical cycles 

(Jickells, 1995; Paerl, 1999).  The influence of such atmospheric inputs of nutrients is 

expected to be particularly important in the case of oligotrophic oceanic areas such as 

the open North Atlantic and the North Pacific gyre (Fanning, 1989; Owens et al., 

1992; Baker et al., 2003; Johnson et al., 2003).  The tropical North Atlantic and 

western Pacific are downwind of the major arid and semiarid regions of the earth, 

Saharan Desert/Sahel and Gobi Desert, respectively. They are also under the impact 

of anthropogenic emissions from the most populated and urbanized regions of eastern 

Asia, western Europe and North America.  

Atmospheric deposition is a dominant source of micronutrient iron (Fe) to the 

remote ocean (Duce and Tindale, 1991).  Fe limitation to phytoplankton growth has 

been confirmed in high nitrate low chlorophyll (HNLC) oceanic regions where the 

dust loadings are low (Martin et al, 1994; Coale et al, 1996; Boyd et al, 2000; Tsuda 

et al, 2003).  In certain areas of the oligotrophic ocean such as the tropical North 

Atlantic and the North Pacific gyre, Fe may also be a rate-limiting nutrient to nitrogen 

(N2)-fixing microorganisms and control the N2 fixation (Paerl et al., 1994; Howard 



 

 2 
 

and Rees, 1996; Falkowski, 1997).  Oceanic N2 fixation has recently been identified 

as a significant part of the oceanic N cycling (Capone et al., 1997) and may directly 

affect the sequestration of atmospheric carbon dioxide (CO2) in the ocean by 

providing a source of “new” N to the upper water column (Falkowski, 1997; Karl et 

al., 1995).  Consequently the atmospheric input of Fe to the ocean may affect the 

carbon (C) biogeochemical cycling and thereby global climate both at present and in 

the past (Martin, 1990; Petit et al., 1999; Watson and Lefevre, 1999).  Atmospheric 

Fe flux alone, however, is not the only parameter required to assess aerosol impacts 

on biogeochemical cycling of C and N.  Due to the low solubility of aerosol Fe in the 

seawater (1-10% of total aerosol Fe) (Jickells and Spokes, 2001) only a small fraction 

of atmospheric Fe input may be bioavailable.  Thermal and photochemical reactions 

in atmospheric waters and surface seawater (Siefert et al., 1996; Voelker and Sedlak, 

1995; Chen and Siefert, 2003) could enhance dissolution of aerosol Fe, resulting in 

the production of soluble ferrous Fe (Fe(II)) which is believed to be more readily used 

by phytoplankton (Sunda, 2001).  Labile Fe species including the reducible Fe(III) 

and Fe(II) in aerosols may have a great influence on diazotroph growth in the 

oligotrophic ocean. 

Atmospheric inputs of the major nutrients nitrogen (N) and phosphorus (P) 

may also play an important role in the oceanic biological cycles. Anthropogenic N 

deposition can significantly contribute to eutrophication problems in coastal waters 

(Paerl, 1997; Spokes et al., 2000). P limitation of N2 fixation by Trichodesmium has 

been proposed in the tropical and central North Atlantic (Wu et al., 2000; Sañudo-

Wilhelmy et al., 2001). N2 fixation stimulated by any excess atmospheric Fe supply 
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will tend to drive the ecosystem towards P limitation (Baker et al., 2003).  Ratios 

between the atmospheric fluxes of Fe, N and P may determine nutrient limitation to 

the ecosystem and affect diazotroph growth in the open oligotrophic ocean.  

1.2 Rationale 

Two large collaborative NSF funded studies, Oceanic N2 Fixation and Climate 

(MANTRA) and Factors Effecting, and Impact of Diazotrophic Microorganisms in 

the Western Equatorial Atlantic Ocean (PIRANA), were developed partly on the basis 

of the influences of atmospheric Fe fluxes on oceanic N2 fixation and diazotroph 

growth.  During MANTRA and PIRANA, my research investigated the atmospheric 

inputs of Fe, labile Fe and other nutrient species to the subtropical North Pacific and 

western equatorial Atlantic, where there are large fluxes of atmospheric Fe and strong 

localized N2 fixation (Capone et al., 1997).  The atmospheric Fe fluxes to the North 

Atlantic and North Pacific basins account for 48% and 22% of total flux to the world 

oceans, respectively (Gao et al., 2001).  Trichodesmium, the most prominent 

planktonic marine nitrogen fixer, occurs throughout the open waters of oligotrophic 

tropical and subtropical oceans (Capone et al., 1997).  This cyanobacterium supplies 

up to half of new N used for primary production in the oligotrophic ocean (Karl et al., 

1997).  

Fe has been shown to limit the N2 fixation and growth of natural and cultured 

populations of Trichodesmium spp. (Rueter et al., 1992; Paerl et al., 1994).  Howard 

and Rees (1996) indicated that Fe is a critical nutrient co-factor for the nitrogenase 

enzyme.  N2-fixing Trichodesmium has a high Fe requirement (Berman-Frank et al., 

2001; Kustka et al., 2003a, b), and has a high  Fe : C quota (38 µmol mol-1) that is 2.5 
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to 5-times greater than NH4
+-assimilating phytoplankton (Kustka et al., 2003a, b).  In 

general, Fe is very depleted in the surface water of the open ocean (Johnson et al., 

1997).  And there are indications that the delivery of Fe to the oceans in airborne dust 

may ultimately control the rate of N2 fixation on regional and global scales (Michaels 

et al., 1996; Falkowski, 1997).   

 Most Fe in aerosols is locked into inaccessible refractory mineral lattices (e.g. 

aluminosilicates), and only a small amount of the aerosol Fe is released when in 

contact with seawater.  Aqueous extraction (at pH 1.0 to 4.5) studies on Atlantic (Zhu 

et al., 1993; Johansen et al, 2000; Chen and Siefert, 2004a) and Indian Ocean (Siefert 

et al., 1999) aerosols have found that only a few percent (0.3 to 1.8%) of the total 

aerosol Fe is released as Fe(II), and the soluble Fe(II) is predominantly found in the 

fine aerosol fraction (with aerodynamic diameters less than 2.5µm).  The mechanisms 

controlling the release of Fe from aerosols are not well understood.  Seawater 

conditions, chemical and biological processes in the ocean (Gledhill & van den Berg, 

1994; Rue & Bruland, 1995; Wu & Luther, 1995), atmospheric processing (e.g. cloud 

cycling, photochemical reactions) (Zhuang et al., 1992; Siefert et al., 1996; Zhu et al., 

1997; Keene & Savoie, 1998; Chen & Siefert, 2003), and the terrestrial sources of 

aerosols (Johanson et al., 2000; Chen & Siefert, 2004a) can all affect the speciation of 

Fe in the atmosphere and the ocean.  Processes that are likely to enhance the lability 

of aerosol Fe include: (1) partial dissolution of Fe(III) oxides by acidic aerosols, and 

(2) photochemical reduction to more soluble Fe(II) within humid aerosols, especially 

in the presence of organic matter.   
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The labile aerosol Fe as dissolved species has a great probability of being 

directly utilized by biota or precipitating into Fe oxy-hydroxide colloids that could 

also be bioavailable (Miller and Kester, 1994).  Previous studies have shown that 

bioavailable forms of Fe include not only free or inorganic Fe species (Anderson and 

Morel, 1982; Campbell, 1995; Sunda and Huntsman, 1997), but Fe bound with 

organic ligands (Hutchins et al., 1999; Chen et al., 2003).  Extracellular ligands such 

as siderophores are produced by many marine cyanobacteria as part of high-affinity 

Fe uptake systems (Wilhelm, 1995; Granger and Price, 1999; Reid, 1993).  Algal Fe 

uptake is a two-step process: the diffusion of available Fe species from bulk solution 

to algal cell surface followed by the transport of the cell surface bound Fe into the 

cells (Hudson & Morel, 1990; 1993; Sunda & Huntsman, 1995).  Two distinct pools 

of Fe, scavenged Fe adsorbed to cell surface and interior Fe, exist during the uptake 

process.  The interior Fe pool corresponds to the intracellular “biological” fraction 

strongly correlated with the growth rate of phytoplankton (Sunda et al., 1991; Sunda 

& Huntsman, 1995; 1997).  The diffusion rate of Fe to algal cell surface is inversely 

related to the molecular radius of the diffusing Fe species (Stokes-Einstein equation).  

Size-fractionated measurements (<0.2µm, and 0.2 to 0.4µm) of dissolved Fe in the 

seawater were expected to be important to assess the Fe bioavailability in the ocean 

(Wen et al., 1999; Wu et al., 2001). 

A general lack of correlation between surface seawater Fe (total or dissolved) 

and Trichodesmium abundance, however, has been observed in the Arabian Sea 

(Capone et al., 1998), in the central North Atlantic (Sañudo-Wilhelmy et al., 2001), 

and along a Atlantic Meridional Transect (AMT) (Tyrrell et al., 2003).  There was 
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little difference between dissolved Fe concentrations where Trichodesmium is 

abundant, and where it is scarce in the Atlantic Ocean (Tyrrell et al., 2003).  The 

finding suggested that either Trichodesmium growth was not Fe-limited in these 

oceanic areas, or Trichodesmium uptake of Fe could be a dynamic process depending 

on the amount of Fe supplies (e.g. luxury Fe uptake).  The rate of dust Fe supply was 

also not correlated with the Fe concentration in surface seawater (Johnson et al., 

1997).  So, the Trichodesmium abundance and N2 fixation rate in the ocean may 

depend on the episodic fluxes of aerosol Fe instead of the Fe concentration in the 

seawater.   

 This dissertation hypothesizes that the fraction of total Fe in marine aerosols 

that is labile is a function of atmospheric processing and sources of the aerosol. This 

labile Fe and other nutrient species in aerosols are variable over the remote ocean, 

and this vaiability is controlled strongly by their source contributions and/or by 

atmospheric processing.  It also hypothesizes that an abiotic reductive extraction 

method for quantifying labile Fe fractions can be developed and used to determine the 

amount of aerosol Fe that can be bioavailable to marine diazotrophic microorganisms.  

 The overall goals of the dissertation are to explore the relationship between 

the labile aerosol Fe and diazotrophic available forms of aerosol Fe and investigate 

the sources, fluxes and ecological impacts of labile Fe and other nutrient species in 

aerosols.  The main objectives of the dissertation are as follows: 

1.  Develop an aqueous extraction procedure for shipboard analysis of the 

labile Fe species in marine aerosols.  
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2.  Characterize the temporal and spatial distributions of the labile aerosol Fe 

over the tropical and subtropical North Atlantic and subtropical North Pacific oceans. 

3.  Quantify the diazotroph uptake of aerosol Fe in the surface seawater and 

explore the relationship between the diazotroph available forms of Fe and the labile 

Fe fractions in the aerosol. 

4.  Determine the seasonal variations of aerosol nitrate (NO3
-), ammonium 

(NH4
+) and phosphate (PO4

3-) over the tropical North Atlantic, and assess their source 

contributions and ecosystem impacts when combined with the labile aerosol Fe.  

5.  Examine the atmospheric depositions of labile Fe, N and P species to the 

subtropical North Pacific and their sources and ecosystem impacts. 

1.3 Strategy 

Aerosol samples were collected during seven research cruises (6 January to 18 

February 2001, 9 April to 30 April 2001, 27 June to 15 August 2001, 1 July to 16 July 

2002, 22 September to 16 October 2002, 18 April to 22 May 2003, 5 August to 23 

August 2003) over the subtropical and tropical North Atlantic (0°N to 30°N) and 

subtropical North Pacific (15°N to 30°N) oceans. The quantity and timing of the 

research cruises allowed for the investigation of the spatial and temporal variability in 

the concentrations of the labile Fe and other nutrient species in the atmosphere.  A 

high volume dichotomous virtual impactor (HVDVI, Solomon et al., 1983) was used 

for collection of two size fractions (with aerodynamic diameters greater and less than 

2.5µm) of aerosol particles.  The sample collection was conducted under trace-metal 

clean techniques considering the relatively low concentration of Fe in the atmosphere.   
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A sequential aqueous extraction was developed to measure the labile Fe 

species onboard the ship immediately after collection of aerosol samples (Chapter 2; 

Chen and Siefert, 2003).  Three fractions of labile Fe were determined based on 

potential degree of bioavailability to phytoplankton, including labile Fe(II) fraction 

and a reducible Fe(III) fraction which used hydroxylamine hydrochloride (HA) as a 

reductant.  The HA-reducible aerosol Fe was compared to the Fe(II) produced 

photochemically during the photo-reductive aqueous extraction of aerosol Fe which 

was conducted onboard using the ambient sunlight (Chapter 2; Chen & Siefert, 2003).  

The purpose of this comparison was to show that HA-reducible Fe is similar to the 

maximum concentration of labile Fe when considering photochemical reactions of 

Fe(III) in the atmosphere. 

After development of the sequential extraction method, field measurements of 

the labile Fe species in aerosols were made during the North Atlantic cruises (6 

January to 18 February 2001, 27 June to 15 August 2001, 18 April to 22 May 2003).  

Total Fe concentrations in aerosol samples were determined by microwave assisted 

strong acid digestion of the aerosol samples followed by analysis using inductive 

coupled plasma mass spectrometer (ICPMS, HP 4500) after the cruises.  The purpose 

of these field studies was to characterize the seasonal and spatial distributions and dry 

deposition fluxes of atmospheric labile and total Fe over the subtropical and tropical 

North Atlantic Ocean (Chapter 3, Chen & Siefert, 2004a).  

After determination of the Fe distributions in the atmosphere, in situ 

Trichodesmium uptake of aerosol Fe in the surface seawater was investigated during 

the North Atlantic cruise (18 April to 22 May 2003).  The purpose was to assess the 



 

 9 
 

bioavailability of aerosol Fe to diazotrophs and explore the relationship between the 

bioavailable forms of Fe and the labile Fe species in aerosol particles (Chapter 4; 

Chen et al., 2004).  Antonio Tovar-Sanchez and Sergio Sanudo-Wilhelmy (State 

University of New York) collaborated with these aerosol addition experiments.  

Intracellular and total Fe amounts in Trichodesmium colonies and dissolved and total 

Fe concentrations in seawater were analyzed in Sergio Sanudo-Wilhelmy’s research 

lab by Antonio Tovar-Sanchez. 

After completion of labile Fe measurements, elemental analysis of 14 

elements (Al, Ca, Fe, K, Na, Mg, Cr, Co, Cu, Pb, Mn, Ni, V, Zn), and ion 

measurements of 11 anions (F-, glycolate, acetate, formate, MSA-, Cl-, SO4
2-, oxalate, 

Br-, NO3
-, PO4

3-) and 6 cations (Li+, Na+, NH4
+, K+, Mg2+, Ca2+) in the aerosol 

samples were conducted after research cruises.  The purpose of these chemical 

analyses was to quantify the atmospheric depositions of labile Fe and other nutrient 

species to the subtropical and tropical North Atlantic (Chapter 5; Chen & Siefert, 

2004b) and subtropical North Pacific (Chapter 6; Siefert & Chen, 2004) oceans, 

characterize the sources of labile Fe and other nutrients in the atmosphere, and assess 

the ecological impacts of the aerosol nutrient inputs. 

1.4 Synopsis 

1.4.1 Chapter 2 

The speciation of Fe in the atmosphere is critical to understanding the fraction 

of Fe that will be labile in surface waters after deposition and consequently has 

implications for the bioavailability of this atmospherically derived Fe. In this chapter, 

a sequential aqueous extraction procedure using a pH 4.5 buffer solution and a 
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chemical reductant (HA) was developed to measure various labile Fe fractions. The 

extraction procedure was performed immediately after aerosol sample collection and 

used time series measurements of Fe(II) using long path length absorbance 

spectroscopy (LPAS) for analysis of Fe(II). The method measured both the quantities 

of labile Fe and also the dissolution and reduction kinetics of the labile Fe. 

Comparisons of HA-reducible Fe and photo-reducible Fe concentrations were 

conducted on board and showed that both reduction processes had similar reduction 

kinetics and final Fe(II) concentrations during the initial 90 min reduction. The 

average pseudo-first-order rate constants for the increase in Fe(II) were 0.020 and 

0.0076 min-1 for the photo- and HA-reductive extractions, respectively. This HA-

reducible Fe amount could potentially be used to determine the maximum amount of 

labile atmospheric Fe that is deposited into the ocean. 

1.4.2 Chapter 3 

 Field measurements of Fe concentrations and Fe speciation in aerosols 

provide information crucial to understanding the biological role of atmospheric Fe 

flux to the ocean. In this chapter, 24-hour aerosol samples were collected during 

winter (6 January to 18 February 2001) and summer (27 June to 15 August 2001) 

research cruises over the subtropical and tropical North Atlantic. Three labile Fe 

species, which included Fe(II) and reducible Fe(III) species, were measured in 

aerosol samples using a sequential aqueous extraction method. Microwave assisted 

strong acid digestion of the aerosol samples followed by ICPMS was used to quantify 

total elemental concentrations. A spatial gradient of over nearly 3 orders of 

magnitude in the total Fe concentrations (1.6 ng m-3 at 28.6°N to 1688 ng m-3 at 
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10.9°N) was observed during the winter, although this gradient was not as strong in 

the summer. The mean total Fe concentrations were approximately a factor of 2 

higher during the winter (mean value of 670 ng m-3 between 5°N and 26°N) than in 

the summer (mean value of 324 ng m-3 between 6°N and 26°N). The highest percent 

of labile Fe in total aerosol Fe was observed between 26°N and 30°N during the 

winter with a mean value of 32%, which corresponded to low concentrations of total 

Fe. At latitude 0°N to 10°N where the lowest Fe concentrations were observed in the 

summer, the labile Fe fraction with a mean of 5.0% was similar to that in the region 

of 10°N to 20°N where mineral aerosols were dominant. Air mass back trajectories 

showed that mineral dust transported from North Africa is a significant atmospheric 

Fe source in this Atlantic region. However, the highest labile Fe to total Fe ratios 

were observed in air masses that had circulated over the ocean for greater than 7 days 

and also corresponded to high ratios of non-seasalt-sulfate (NSS SO4
2-) to total Fe and 

oxalate to total Fe. The correlations with NSS SO4
2- and oxalate suggest that labile Fe 

contents may have been influenced by anthropogenic activities from North America 

or Europe. 

1.4.3 Chapter 4  

The episodic fluxes of aerosol Fe to the surface ocean may have a significant 

impact on metabolism of the N2-fixing microorganism, Trichodesmium spp.  

Shipboard aerosol addition experiments were conducted in the western tropical North 

Atlantic using freshly collected aerosols, seawater, and Trichodesmium colonies.  It 

was found that the Trichodesmium took up a significant amount of aerosol Fe that 

included part of the colloidal or particulate Fe besides the dissolved Fe species (<0.4 
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µm) in the seawater.  The uptake amounts increased with increasing amounts of 

aerosol Fe added to the seawater.  Total Fe: P molar ratios in the Trichodesmium were 

found to be lower than the dissolved Fe: P ratios in the western tropical North 

Atlantic, suggesting that the Trichodesmium were not historically Fe-limited.  

However, a high capacity of luxury uptake of aerosol Fe (6 to 1795 times greater than 

needed for moderately Fe-limited growth 0.1 d-1) was demonstrated in the 

Trichodesmium collected from this oceanic region, which is considered as an 

adaptation to the episodic nature of the dust events.  Trichodesmium uptake of Fe was 

less or comparable to the total labile Fe determined by the aqueous extraction 

procedure suggesting that the labile Fe pool may be a threshold of aerosol Fe that can 

be bioavailable by Trichodesmium. The organic ligands produced by Trichodesmium 

may inhibit or assist the aerosol-Fe dissolution into the seawater depending on its 

history of Fe limitation. This is the first field study to investigate the Trichodesmium 

uptake of aerosol Fe and its influences on the aerosol Fe transfer using concurrent 

measurements in aerosol, seawater and Trichodesmium samples. 

1.4.4 Chapter 5 

Deposition of atmospheric aerosols is an important source of Fe and other 

nutrient species to the remote ocean.  Two size fractions of aerosol samples were 

collected over the western tropical North Atlantic (WTNA, 5°N to 15°N, 40°W to 

60°W) during the three month-long cruises in winter 2001, summer 2001 and spring 

2003.  Labile Fe species were measured onboard and soluble PO4
3-, NO3

- and NH4
+ 

determined back in the laboratory using an aqueous extraction method and ion 

chromatography (IC).  The concentrations and sources of the aerosol PO4
3-, NO3

- and 
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NH4
+ over the WTNA showed a markedly seasonal variability.  Total PO4

3- 

concentrations in the winter and spring were found to be significantly higher than 

concentrations in the summer.  The largest concentrations of NO3
- and NH4

+ were 

observed in the spring, and the NO3
- and NH4

+ concentrations declined in the order of 

spring > winter > summer, and spring > summer ≈ winter, respectively.  During the 

winter, PO4
3- in the fine aerosol fraction was principally contributed by mineral dust 

from North Africa, while the mixture of mining dust from North America and 

incineration emissions from North America and/or Europe may be a major source for 

the PO4
3- in the coarse aerosol fraction.  Biomass burning materials from North Africa 

were responsible for the fine fraction PO4
3- during the spring.  Aerosol NO3

- and 

NH4
+ concentrations measured during the winter and spring were primarily 

contributed by anthropogenic and marine biogenic sources, respectively.  During the 

summer, aerosol NO3
- may be principally derived from continental combustion 

emissions, whereas aerosol NH4
+ may be contributed by both combustion and marine 

biogenic sources.  From an only atmospheric view, aerosol inputs of LFe, DIN and 

DIP into the WTNA will first drive the water column towards a short-term N 

limitation, and later on due to the enhanced N2 fixation the nutrient depositions will 

tend to deplete P in the water column.  If considered other flux sources of N and P 

(e.g. shelf fluxes and N2 fixation), atmospheric deposition of labile Fe to the WTNA 

would be a controlling factor for diazotroph growth.  

1.4.5 Chapter 6 

Atmospheric deposition of nutrient species to the central North Pacific plays 

an important role on controlling the N2 fixation in this oceanic region. Two size 
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fractions of ambient aerosols were collected over the central North Pacific (15°N to 

30°N, 150°W to 175°E) during the four separate cruises (9 April to 26 April 2001, 1 

July to 16 July 2002, 23 September to 15 October 2002 and 6 August to 21 August 

2003). Nutrient concentrations including the total and labile Fe, the soluble NH4
+, 

NO3
- and PO4

3- in aerosol samples were measured, demonstrating a clear seasonality. 

The highest mean concentrations of the total Fe (133 ng m-3), the labile Fe(II) (1.24 

ng m-3) and the total labile Fe (2.43 ng m-3) measured in April 2001 were 

approximately a factor of 130, 50 and 60 larger than the lowest mean concentrations 

of the Fe species (correspondingly 10, 0.25, and 0.41 ng m-3) measured in July 2002, 

respectively.  The percentages of labile Fe in total aerosol Fe were found to be 

approximately an order of magnitude lower in April 2001 and August 2003 than in 

July and September 2002. The relatively low percentages were probably a signature 

of mineral aerosols transported from Asian desert regions, while the large labile Fe 

percentages may be due to anthropogenic and/or volcanic emissions.  Correlation 

coefficients calculated between total labile Fe and other chemical components in 

aerosols further confirmed that the labile Fe was primarily contributed by Asian soil 

dust in April 2001 and August 2003, but the dust influence was not as strong in 

August 2003.  The labile aerosol Fe observed in July 2002 was mainly associated 

with anthropogenic emissions from Asia or North America, while volcanic emissions 

from Hawaii may be responsible for the labile aerosol Fe observed in September 

2002.  However, the volcanic emission is only a local source and does not affect a 

large region of the Pacific.  The largest mean concentrations of both aerosol NH4
+ (81 

ng m-3) and aerosol NO3
-(144 ng m-3) were found to be in August 2003, which were 
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approximately a factor of 2 and 5 larger than the lowest mean concentrations 

observed in September 2002 and April 2001, respectively. The relatively low 

concentrations of aerosol NH4
+ and NO3

- measured in April 2001 suggests that Asian 

dust plumes had only a minor contribution to the two nutrient species. Nonetheless, 

the mean soluble PO4
3- concentration in aerosols was found to be the largest (50 ng 

m-3) in April 2001 as a result of the most intensive dust transport from Asia during 

this period.  From an only atmospheric view, the aerosol inputs of LFe, DIP and DIN 

to the central North Pacific generally tend to drive the water column towards P 

limitation (DIN: DIP > 16) during the summer and the fall, whereas during the spring 

the atmospheric nutrient depositions may result in a short-term N limitation at first, 

and then due to the enhanced N2 fixation the ecosystem is ultimately limited by P.  If 

considered other flux sources of nutrients to the euphotic zone, the primary 

productivity in the central North Pacific may be co-limited by P and Fe.  

1.4.6 Chapter 7 

The new data on atmospheric fluxes of labile Fe combined with the reported 

dissolved Fe concentrations in the surface ocean were used to derive estimates of the 

residence times of dissolved Fe in the euphotic zones of three oceanic regions. 

Assuming only the labile fraction of aerosol Fe dissolved into the seawater, the 

estimated residence times of dissolved Fe would be 0.69, 2.7 and 0.72 years for the 

tropical and subtropical North Atlantic, the subtropical North Pacific and the North 

Indian Ocean, respectively. The short residence times for dissolved Fe probably 

reflect its rapid biological uptake and removal in the upper North Atlantic and North 

Indian oceans. By contrast, the relatively longer residence time of dissolved Fe may 
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reflect its retention in the euphotic zone as a result of P limitation in the subtropical 

North Pacific gyre. 

1.5 Implications 

 The main findings and implications of these field measurements and the 

overall study are as follows: 

(1) Given the limited in situ measurements of aerosol Fe over the remote 

ocean, mapping the temporal and spatial distributions of aerosol Fe concentrations is 

essential for estimation of atmospheric Fe fluxes to the global ocean. Over 400 daily 

aerosol samples were collected in this study and total Fe concentrations measured 

over the subtropical and tropical North Atlantic and subtropical North Pacific oceans 

during the winter, spring, summer and fall periods. These in situ measurements of 

aerosol Fe are an important supplement to the Fe data collected from large-scale 

atmospheric networks, which will be used in many biogeochemical models such as 

modeling the C and N global cycling. 

(2) Chemical forms of aerosol Fe are important in oceanic biogeochemistry, 

thus a labile Fe extraction procedure was developed and the labile Fe species in 

aerosols measured along with the total Fe concentrations in this study. Interestingly, 

the distribution patterns of the labile aerosol Fe didn’t completely follow the total 

aerosol Fe, and the percent of labile Fe in total Fe was significantly affected by the 

sources and chemical composition of the aerosols. Mineral aerosols transported from 

North Africa typically contained a few percent of labile Fe species, while oceanic 

origin aerosols (air mass has circulated over the ocean for more than 7 days) can have 

the labile Fe up to 32% of the total Fe.  The high labile Fe percent also corresponded 
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to high ratios of non-seasalt-sulfate (NSS SO4
2-) to total Fe and oxalate to total Fe.  

These in situ labile Fe data will be more appropriate than the total Fe for assessing the 

biogeochemical roles that atmospheric Fe flux plays in the oceanic ecosystem.   

 (3) The bioavailability of aerosol Fe to the phytoplankton was expected to be 

associated with the dissolvable aerosol Fe in the seawater. Quantification of either the 

dissolvable or bioavailable forms of aerosol Fe are crucial for connecting atmospheric 

Fe fluxes and phytoplankton productivity in the remote ocean.  The uptake amounts 

of aerosol Fe by diazotrophic microorganisms and its influences on aerosol Fe 

dissolution were investigated in this study through the in situ experiments.  It was 

found that the labile Fe fractions may be a threshold of aerosol Fe that can be taken 

up by diazotrophs in the seawater.  Trichodesmium collected from the WTNA showed 

a high capacity of luxury uptake of aerosol Fe as a consequence of adaptation to the 

episodic nature of the dust events.  The organic ligands produced by Trichodesmium 

may inhibit or assist the aerosol-Fe dissolution into the seawater depending on its 

history of Fe limitation. 

 (4) Liebig’s law of the minimum said that under conditions of equal 

temperature and light, the nutrient available in the smallest quantity relative to the 

requirement of the plant will limit productivity.  Atmospheric deposition can be a 

major source of nutrient inputs to the remote ocean surface.  Ratios between the 

atmospheric inputs of labile Fe and other nutrient species will determine the nutrient 

limitation to the oceanic ecosystem and N2-fixing microorganisms.  Field 

measurements of other nutrient species such as NH4
+, NO3

- and PO4
3- in aerosols 

were conducted over the subtropical and tropical North Atlantic and subtropical 



 

 18 
 

North Pacific oceans during the winter, spring, summer and fall periods.  It is 

interesting to note that seasons played a significant role in the concentrations and the 

sources of nutrient species present over the two oceanic areas.  From an only 

atmospheric view, aerosol inputs of labile Fe, DIN and DIP into the western tropical 

North Atlantic (WTNA) will first drive the water column towards a short-term N 

limitation (DIN: DIP < 16), and later on due to the enhanced N2 fixation the nutrient 

depositions will tend to deplete P in the water. If considered other flux sources of N 

and P (e.g. shelf fluxes and N2 fixation), atmospheric deposition of labile Fe to the 

WTNA would be a controlling factor for diazotroph growth. The same scenario is 

expected to occur in the central North Pacific. 

(5) The residence time of Fe was one of the most important parameters 

required in modeling the biogeochemical cycling of Fe in the global ocean.  The new 

data of atmospheric fluxes of labile Fe collected in this study together with the 

dissolved Fe concentrations were used to derive estimates of the residence times of 

dissolved Fe in the euphotic zones of the tropical and subtropical North Atlantic, the 

subtropical North Pacific and the North Indian Ocean. The short residence times in 

the studied Atlantic and Indian oceans may reflect a rapid biological uptake and 

removal of atmospheric-deposited Fe, while the relatively longer residence time may 

suggest Fe retention in the euphotic zone as a result of P limitation in the subtropical 

North Pacific. 
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Chapter 2: Determination of Various Types of Labile Atmospheric 
Iron over the Remote Ocean 

 

2.1 Introduction 

Fe is a critical micronutrient that limits the phytoplankton growth in high-

nitrate low chlorophyll (HNLC) oceans (Martin, 1990; Martin et al., 1994; Coale et 

al., 1996; Boyd et al., 2000). Fe may also be one of the limiting factors for nitrogen-

fixing organisms that provide a ‘‘new’’ nitrate source to phytoplankton in 

oligotrophic oceans (Falkowski, 1997). There have been many studies investigating 

the speciation and distributions of Fe in the open ocean where the dissolved Fe 

concentrations (defined as passing through a 0.4 µm filter) are typically lower than 1 

nM (Martin and Gordon, 1988; Martin et al., 1993; Wu and Luther, 1994; Powell et 

al., 1995; Wu et al., 2001). Studies have also investigated the role of organic ligands 

on the solubility of Fe in seawater (Wu et al., 2001; Boye et al., 2001). Several 

analytical methods have been developed to quantify low Fe concentrations and 

speciation in seawater (for a recent review see Achterberg et al., 2001). The methods 

include catalytic cathodic stripping voltammetry (CCSV) (Yokoi and van den Berg, 

1992), competitive ligand exchange-adsorptive cathodic stripping voltammetry (Croot 

and Johansson, 2000), chelating resin concentration with chemiluminescence 

detection (Obata et al., 1993, 1997), and isotope dilution inductively coupled plasma-

mass spectrometery (ICPMS) (Wu and Boyle, 1998). Fe species in seawater have 

been separated as a function of size (Wu et al., 2001) or by the reactivity and lability 

of Fe to specific chelating agents (Gledhill et al., 1998). Fe(II) has also been 
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measured in seawater using chemiluminescence methods (Croot and Laan, 2002; 

O’Sullivan et al., 1995). The distributions and speciation of Fe in seawater have 

provided us with a better understanding of Fe seawater chemistry, but there are still 

questions regarding the relationship between Fe and phytoplankton productivity in the 

remote ocean. 

Atmospheric Fe deposition and its seawater solubility are two other key 

aspects that need to be understood since atmospheric Fe is the primary source of total 

Fe to the open ocean (Duce and Tindale, 1991; Fung et al., 2000). The reported 

solubility of aerosol Fe in seawater spans over two orders of magnitude (<1 to 50% of 

total Fe) although most are on the low end of this range (Zhuang et al., 1990; Chester 

et al., 1993b; Zhu et al., 1992, 1993; Jickells, 1999). Fe solubility is a function of both 

the seawater conditions and the initial aerosol Fe speciation, that is a function of 

aerosol sources and atmospheric processing as the aerosol is transported through the 

atmosphere. The atmospheric processing includes both the reactions occurring in the 

dry or deliquesced aerosol particle, along with chemical and photochemical reactions 

that can occur after an aerosol particle is incorporated into cloud droplets. Subsequent 

evaporation of the cloud droplets would result in a chemically processed aerosol 

particle. Studies of rainwater have also shown that there may be ligands present that 

can stabilize Fe(II) after deposition to seawater (Kieber et al., 2001; Willey et al., 

2004). The total atmospheric Fe flux to the ocean is the sum of Fe in dry and wet 

deposition. The dry deposition is difficult to measure directly and therefore aerosol 

concentrations are used along with a dry deposition velocity to calculate the flux of 
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Fe via dry deposition, and the wet deposition is often calculated by using the aerosol 

concentration and a scavenging ratio (Gao et al., 2001). 

Fewer studies have investigated aerosol Fe speciation and concentrations, 

making it difficult to calculate the atmospheric flux of these Fe species over different 

oceanic regions and seasons. Zhu et al. (1993) measured the concentrations of total 

Fe, total soluble Fe, and total soluble Fe(II) in Barbados aerosol samples and 

indicated that Fe(II) did exist in aqueous aerosol solutions and occupied 1% of total 

Fe and 7.5% of soluble Fe. The concentration of mineral dust was variable at 

Barbados, ranging from 1.99 to 18.4 µg m-3, and Fe constituted on average 3.4% of 

the mineral dust mass. There was a clear day/night pattern in the concentration of 

soluble Fe(II), with a day value (3.7 ng m-3) approximately twice as much as the night 

value (1.5 ng m-3) (Zhu et al., 1997). Siefert et al. (1999) reported total atmospheric 

aqueous labile Fe(II) concentrations between 4.75 and <0.4 ng m-3 during the 

intermonsoon, but below the detection limit during the southwest monsoon over the 

Arabian Sea, and that over 80% of this labile Fe(II) was associated with aerosol 

particles with an aerodynamic diameter less than 2.5 µm. The aqueous labile Fe(II) 

was also always less than 4% of the total Fe in the aerosol samples. The diel 

variability of Fe(II) is evidence of the influence of photochemical reactions on Fe 

speciation in the atmosphere, however, none of the previous studies determined the 

relationship between measured Fe species and photochemically active Fe in aerosols. 

Colorimetric analysis with ferrozine (Stookey, 1970) was used to measure 

labile Fe in ambient aerosols in many of the previous studies due to its simplicity and 

high selectivity. However, the spatial and seasonal variations of labile Fe in aerosols 
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are difficult to detect by the conventional spectrometer cells even with 10 cm path 

length absorbance cells that have a detection limit greater than 10 nM. Long path 

length absorbance spectroscopy (LPAS) using liquid core waveguides (LCW) 

provides a long optical path length by constraining light propagation within a liquid 

medium that has a higher refractive index (RI) than the surrounding solid tubing (Wei 

et al., 1983). The LCWs also have a relatively small sample volume compared to 

conventional cells. Waterbury et al. (1997) used a 4.5-m Teflon AF-2400 LCW to 

lower the detection limit of colorimetric Fe(II) analysis to 0.2 nM. 

This chapter describes the extraction method used to determine labile Fe 

fractions in aerosol samples collected over the remote Atlantic Ocean; subsequent 

chapters will focus on the observed spatial and temporal patterns of labile Fe. In this 

study, daily aerosol samples were collected over the tropical and subtropical North 

Atlantic Ocean, and these samples were used to develop the shipboard aqueous 

extraction procedure for labile Fe measurements. Labile Fe(II) (LFe(II)), labile Fe(III) 

(LFe(III)), and reducible particulate Fe (RPFe) in the aerosol samples are defined by 

the aqueous extraction procedure and quantified using the colorimetric reagent 

ferrozine and LPAS. The extraction method quantifies various labile Fe species and 

also provides dissolution and reduction kinetic information. Investigations of HA-

reducible Fe and photo-reducible Fe concentrations in the extraction solutions were 

also performed to determine if the HA-reducible Fe was consistent with Fe 

photochemically reduced using ambient sunlight. 
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2.2 Experimental Methods 

2.2.1 Aerosol Collection 

A high-volume dichotomous virtual impactor (HVDVI) (Solomon et al., 

1983) was setup above the bridge of the R/V Seward Johnson (winter cruise) or on 

the 02 deck of the R/V Knorr (summer cruise), to collect two size fractions of 

ambient aerosols (with aerodynamic diameters greater and less than 2.5µm). The 

HVDVI aerosol collector was constructed out of polycarbonate with nylon screws in 

order to minimize trace metal contamination and had a total flow rate of 335 ± 15 L 

min-1. The fine and coarse sample fractions were collected on two 90-µm-diameter 

Teflon membrane filters (Gelman Zefluor, 1 µm pore size). The filters, HVDVI, and 

laboratory equipment were acid cleaned using ultrapure acids (Seastar Chemicals 

Inc.) and 18.2 MΩ-cm Nanopure water (Barnstead). The collector was also cleaned 

periodically in the field by wiping the surface with Kimwipes and ethanol. 

Subsampling of the filters for labile Fe analysis occurred immediately after aerosol 

collection, and the remaining portions of the filters were stored frozen in acid-cleaned 

polystyrene petri dishes inside two plastic bags during the cruises. 

A sector-sampling system was used to control the aerosol collector. The 

system was configured to allow collection of ambient aerosol samples only when the 

relative wind direction was ±70° off the bow during both winter and summer Atlantic 

cruises. New filters were loaded every 24 hours, and the sampling duration depended 

on the relative wind directions. 
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2.2.2 Labile Iron Measurements 

Labile Fe concentrations in both fine and coarse aerosol fractions collected on 

the two HVDVI filters were analyzed immediately (within 1 hour) after the filters 

were removed from the HVDVI, in order to minimize any changes in Fe oxidation 

state during sample storage. Fe(II) concentrations were determined colorimetrically 

by complexation with ferrozine (Carter, 1971) and subsequent LPAS measurements 

using an LCW flow cell (1 m path length), an S2000 spectrometer (Ocean Optics 

Inc.), and LabView data acquisition software (National Instruments Inc.). Labile 

Fe(III) species in the extraction solutions (formate-acetate buffer, pH 4.5) were 

measured by reducing the Fe(III) to Fe(II) using HA and subsequently measuring the 

Fe(II) using the ferrozine colorimetric method with the LCW. HA has been used by 

other investigators to investigate Fe(III) species in natural waters (Viollier et al., 

2000). There was a linear absorbance response for Fe(II) concentrations between 1 

and 250 nM. The detection limit of 1.0 nM for the Fe(II) concentration in the 

extraction solution was defined as three times the standard deviation of the 

measurement blank (absorbance was around 0.005). The sample size requirement for 

the analysis was less then 1 mL, and therefore multiple aliquots could be removed 

from the extraction solution that allowed for time series measurements. 

LFe(II), LFe(III), and RPFe species were defined by a sequential aqueous 

extraction procedure in a pH 4.5 buffer solution according to the extraction time and 

addition of the chemical reductant, HA (Figure 2-1). A formate-acetate buffer 

solution was used since these species will not reduce Fe(III) to Fe(II) during the time 

period of the extractions. Formate and acetate can serve as electron donors to reduce  
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Cut a 47mm diameter piece from a filter sample 

Place the filter cut in a Teflon jar 

“Wet” the filter cut by adding approximately 
total 0.1mL ethanol 

Add 50mL of pH 4.5, 0.5mM formate-acetate 
buffer solution to the jar 

Remove two 
aliquots to two 
sample vials at 2 
min, and then every 
30 min. 
 
At 90min, the 
[Fe(II)]max = Labile 
Fe(II) 

At 90min, remove 
another two aliquots to 

two sample vials 

Add 50mM HA to the 
aliquots with a ratio of 
3.3µL of HA to 1 mL 
extraction solution. 
 
At 90min, the 
[Fe(II)]90, HA - Labile 
Fe(II) = Labile Fe(III) 

At 90min, add 50mM HA 
to the remaining extraction 

solution in the jar with a 
ratio of 3.3µL to 1 mL 

extraction solution 

Remove two aliquots to 
two sample vials every 30 
min 
 
At 180min, the [Fe(II)]180, 

HA - Labile Fe(II) - Labile 
Fe(III) = Reducible 
Particulate Fe  

Add 5µL of 10mM ferrozine solution to the sample vial with 2mL 
aliquot, while the other aliquot was used as a background absorbance 

Measure ferrozine-Fe(II) 
absorbance using LCW 

Figure 2-1. Sequential aqueous extraction procedure for measuring labile Fe 

species in ambient aerosol collected on Teflon membrane filters. 
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Fe(III) to Fe(II); however, this occurs at appreciable rates only when initiated 

photochemically using UV light (Pehkonen et al., 1993). A 47-mm diameter 

subsample from the 90-mm filter that collected the aerosol particles was cut using an 

acid-cleaned plastic (polycarbonate) die and a ceramic knife. The subsample was  

placed in a Teflon jar and ‘‘wetted’’ by adding approximately ten 0.01-mL drops of 

ethanol (total 0.1 mL) to increase the affinity between the aqueous extraction solution 

and Teflon membrane filter. Fifty milliliters of pH 4.5, 0.5 mM formate-acetate buffer 

solution were then added to the jar, and the jar was covered and gently swirled. After 

2 min, one 2-mL aliquot and one 1-mL aliquot were removed and transferred to 5-mL 

sample vials. Five microliters of 10 mM ferrozine solution was added to the sample 

vial with 2-mL aliquot, while the 1-mL aliquot was used for a background absorbance 

spectrum. The ethanol and other species extracted from aerosol samples may 

contribute to the background absorbance. The aliquots were removed from the 

extraction solution every 30 min without filtration, and the ferrozine-Fe(II) 

absorbance was measured using LPAS. Fe(II) concentrations in the extraction 

solution usually reached a maximum or steady value after 60 to 90 min, and the Fe(II) 

concentration at the 90-min extraction time was defined as the labile Fe(II) (Figure 2-

1). At 90 min, two other aliquots of the extraction solution were removed, and HA 

was added to the aliquots, with the ratio of 3.3 µL HA per mL of extraction solution, 

to reduce any dissolved or suspended labile Fe(III). The Fe(II) measured in the 

aliquot with HA included both the LFe(II) and the LFe(III) concentrations and was 

used to represent the labile (Fe(II) + Fe(III)) species. The labile Fe(III) concentration 

(Figure 2-1) was then calculated by subtracting the LFe(II) from the labile (Fe(II) + 
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Fe(III)) concentration at 90 min. HA was also added to the remaining extraction 

solution in the Teflon jar at 90 min, which was in contact with the filter subsample to 

dissolve labile Fe(III) particles that can undergo reductive dissolution. The Fe(III) 

particles would include Fe(III) oxyhydroxide minerals. The unfiltered aliquots were 

removed for Fe(II) measurements every 30 min, and the measured Fe(II) 

concentration at 180 min of the extraction procedure was defined as total labile Fe 

that includes LFe(II), LFe(III), and RPFe species. The reducible particulate Fe 

concentration (Figure 2-1) was then defined by subtracting the labile (Fe(II) + Fe(III)) 

out of the total labile Fe. 

2.2.3 Iron Photo-reduction Experiments 

Fe photo-reduction experiments were performed on seven aerosol filter 

samples using ambient sunlight. Five of these experiments were conducted using fine 

aerosol samples, and two of these experiments were conducted using coarse aerosol 

samples. Only the experiments using the fine aerosol samples are discussed since the 

two coarse filter samples had low labile Fe concentrations that made it difficult to 

follow Fe(III) reduction kinetics. Half of the 47-mm filter subsample was used for the 

sequential extraction procedure (Figure 2-1), and the other half was placed in a Teflon 

jar using a polystyrene petri dish as a window for the photo-reduction experiment. 

Equal volumes of the formate-acetate buffer solution were used for each extraction. 

The polystyrene petri dish had a transmission percent from 60% at 300 nm to 84% at 

800 nm. The Teflon jar with the window was exposed to ambient sunlight that 

allowed labile Fe(III) to undergo photo-reduction reactions as opposed to the use of 

the chemical reductant, HA, that was added to the other solution after 90-min  
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Figure 2-2.  Example of the sequential extraction procedure showing Fe(II) 

concentrations in the extraction solution versus time; both fine and coarse fraction 

aerosol samples used in the extraction procedure were collected on 9 January 2001 

over the sub-tropical North Atlantic Ocean. The increase in Fe(II) concentration at 90 

min is where hydroxylamine (HA) was added to the extraction solution. 
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extraction process. Fe(II) concentrations were measured in both extraction solutions 

every 30 min. 

2.3 Results 

2.3.1 Labile Iron Measurements 

The Fe(II) concentrations observed from both the fine and coarse filter 

samples usually increased with the extraction time and arrived at steady values after  

60 to 90 min. Figure 2-2 shows the release of Fe(II) as a function of time following 

the procedure outlined in Figure 2-1 and using the aerosol sample collected on 9 

January 2001, except that there were more time series measurements taken for the 

data in Figure 2-2. The sudden increase in Fe(II) concentration at 90 min (Figure 2-2) 

was after adding HA to the aliquots, showing that significant dissolved or suspended 

labile Fe(III) in the extraction solution can be quickly reduced to Fe(II) by HA. The 

Fe(II) concentration kept increasing after the addition of HA to the extraction solution 

at 90 min, and the rate of increase slowed down from 150 to 180 min (Figure 2-2) 

although it did not always reach a steady value. The increase of Fe(II) concentration 

after 90-min extraction time was probably due to the reductive dissolution of labile 

Fe(III) particles (e.g., Fe oxyhydroxides). Figure 2-2 also shows that the labile Fe 

concentrations extracted from fine fraction samples were higher than those from 

coarse fraction samples during the same day, which are consistent with labile Fe(II) 

measurements from previous studies (Johansen et al., 2000; Siefert et al., 1999). 

2.3.2 Comparison between HA- and Photo-reducible Iron 

A comparison of dissolution kinetics was performed between the HA 

extraction method and a photochemically reduced Fe extraction method using  
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Figure 2-3.  Comparison of reductive extraction processes between photoreduction 

(solid symbols) and HA-reduction (empty symbols).  The fine aerosol fractions (with 

aerodynamic diameters less than 2.5µm) of five aerosol samples collected between 26 

and 30 July 2001 over the tropical North Atlantic Ocean were used for the 

experiments. 
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ambient sunlight.  Figure 2-3 shows all five comparison experiments that were done 

over a time period of 24 hours using the fine fractions of aerosol samples collected 

during 26 to 30 July 2001. Before the addition of HA or the exposure to ambient 

sunlight, labile Fe dissolution kinetics and Fe(II) concentrations in the extraction 

solutions were almost identical between the two methods (refer to the same-day filter 

samples in Figure 2-3). Then Fe(II) concentrations increased rapidly within 1 hour 

after the extraction solution was exposed to ambient sunlight (at approximately local 

noon) and reached a maximum after 90 to 150 min of exposure, where the steady 

state concentration of Fe(II) began to decline. This decrease in Fe(II) was probably 

due to a variety of reasons including the decreasing intensity of ambient sunlight, the 

loss of electron donating ligands, and the increase of photo-oxidants (e.g., hydrogen 

peroxide, hydroxyl radical, superoxide anions, and hydroperoxyl radical) that could 

oxidize Fe(II) in solution. The Fe(II) concentrations produced in the two extraction 

procedures began to diverge after 90-min extraction time due to the mechanisms 

described. However, it is clear that the reductive dissolution of Fe, in the case of the 

HA reduction, continues over a longer time period (over 1 day) compared to the 

photo-extraction in Figure 2-3. For both fine and coarse fractions of aerosol samples 

collected over the tropical and subtropical North Atlantic Oceans, the kinetics of 

Fe(III) reduction using HA in the extraction procedure was similar to that of Fe(III) 

photo-reduction in the formate-acetate buffer solution (pH 4.5) for the initial 90-min 

period. 
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2.4 Discussions 

Three labile Fe species were measured and defined during the aqueous 

extraction procedure (Figure 2-1). The Fe(II) concentration in the extraction solution 

usually arrived at a maximum or steady value after 60 to 90 min (Figure 2-2), which 

indicated that most of the labile Fe(II) in the aerosol sample has been extracted into 

the solution during this time period. In some of the extractions, the Fe(II) 

concentrations were still increasing at 90 min; however, the rate of Fe(II) increase at 

90 min was much slower than the initial rate of Fe(II) increase. The increase in Fe(II) 

during the first 90 min may be due to the dissolution of Fe(II) from the aerosol 

sample matrix and/or the reduction of Fe(III) by reductants from the aerosol sample. 

This labile Fe(II) species represents the most soluble and therefore the most 

bioavailable Fe pool from the atmospheric deposition that can be utilized by the biota 

in the surface seawater. Hutchins et al. (1999) observed that the uptake of organically 

complexed Fe was equal to or greater than inorganic Fe(III) added to phytoplankton 

where the inorganic Fe(III) additions were in excess of its solubility limit and 

suggested that these organic complexes prevented the precipitation of Fe(III) to less-

available Fe(III) oxyhydroxide species. The photochemical reduction of Fe(III) 

complexes in seawater to form oxidized ligands and Fe(II) has also been shown to 

increase the bioavailability of the Fe (Barbeau et al., 2001). Miller and Kester (1994) 

also observed enhanced diatom growth after inoculating a solution of Fe colloids that 

had been exposed to light where they observed increases in Fe(II). They attributed the 

increase in the bioavailability of Fe to the photo-reductive dissolution of the colloidal 

Fe to Fe(II) and then the oxidation and precipitation of the Fe(II) to more labile Fe 
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oxyhydroxide colloids. The labile Fe(II) released from an aerosol particle into 

seawater upon deposition would be oxidized by dioxygen (with a half-life on the 

order of minutes) unless the Fe(II) is stabilized by a ligand (Miller et al., 1995). Once 

the Fe(II) is oxidized to Fe(III), the Fe(III) could become complexed with organic 

ligands (Millero et al., 1995) or precipitate to form Fe oxyhydroxides. Overall, the 

labile Fe(II) measured in the aerosol samples represents a form of Fe that is more 

labile than the other Fe species measured in ambient aerosol and would be initially 

expected to become truly dissolved in seawater. The labile Fe(II) as a dissolved 

species has a greater probability of being directly utilized by biota or converting to 

another form of dissolved Fe (e.g. organically complexed Fe(III)) that would also be 

bioavailable, or it could also precipitate into a bioavailable Fe oxyhydroxide colloid 

(Miller and Kester, 1994). 

The initial increase in Fe(II) concentration at 90 min (Figure 2-2) was defined 

as the labile Fe(III) species. This fraction of Fe was measured by removing an 

unfiltered aliquot of the extraction solution at 90 min and using HA to reduce the 

labile Fe(III) that was either dissolved or suspended in this aliquot. The combination 

of labile Fe(II) and Fe(III) may represent the maximum dissolvable Fe into the 

seawater without considering photoredox chemistry and could include Fe-ligand 

complexes. However, the dissolution of aerosol Fe into the seawater is much more 

complicated than the extraction process due to high pH that causes the reoxidization 

of Fe(II) and various types of ligands that can form complexes with Fe(III) such as 

dissolved Fe(III)-carboxylate complexes (Voelker et al., 1997) and organic ligands 

(Hutchins et al., 1999). The dissolved Fe concentrations have been used as the 
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bioavailable Fe in the model calculation of atmospheric Fe supply to the upper ocean 

(Fung et al., 2000). The rate of Fe(II) increase slowed down from 150 to180 min, and 

the measured Fe(II) concentration at 180-min extraction time (Figure 2-2) included 

LFe(II), LFe(III), and RPFe species. The RPFe would significantly enlarge the 

bioavailable Fe pool by considering Fe reduction mechanisms that can occur both in 

the atmosphere and in the surface seawater. Labile Fe(II) generated photochemically 

in a pH 4.25 buffer solution was observed in aerosol samples collected from 

Whiteface Mountain, NY, and samples collected from rural and urban areas in 

California, and ranged from 2.8 to 100% of total aerosol Fe (Siefert et al., 1996). 

Voelker and Sedlak (1995) indicated that the reaction of dissolved Fe(III) with 

photochemically produced superoxide radical ( −•
2O ) is a potentially important source 

of Fe(II) in sunlit seawater. In the absence of organic complexation of Fe(III), 

approximately 60% of dissolved Fe (5 nM) was converted into Fe(II) after 20-min 

illumination (Voelker and Sedlak, 1995). Photoinduced ligand-to-metal charge 

transfer (LMCT) reaction of Fe(III)-fulvate complex was observed in the pH 3–5 

experimental solutions and resulted in the reduction of Fe(III) (Voelker et al., 1997). 

Overall, each of these labile species of Fe can potentially be utilized by 

phytoplankton or diazotrophs although there may be differences in the uptake rates of 

the different labile forms of Fe. 

The dry deposition velocity for mineral aerosol is primarily a function of 

particle size, ranging from 0.4 to 2 cm s-1 over the oceans (Prospero, 1995). Jickells 

and Spokes (2001) compared the dust deposition estimates and sediment trap records 

in the Sargasso Sea and suggested that a mean velocity of 1.0 cm s-1 is appropriate for 
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Fe. The well-mixed marine boundary layer (MBL) varies from 500 to 2000 m, so 

using a value of 1000 m for the MBL height and 1.0 cm s-1 for deposition velocity, 

the residence time of aerosols in the MBL can be estimated. The calculated residence 

time was approximately 28 hours for aerosols in the MBL, which indicated that the 

aerosol particles collected by the HVDVI were able to circulate in the MBL for more 

than 1 day before depositing to the surface seawater. And smaller particles would be 

expected to have a longer residence time due to the smaller deposition velocity for 

smaller particles. This residence time in the atmosphere exposes the aerosol particles 

to intense sunlight, and Fe in the aerosol may undergo photochemical reactions that 

process the Fe into more labile, and presumably more bioavailable, species before 

being deposited into the ocean. Furthermore, the residence time for aerosol particles 

in the atmosphere is much longer than 28 hours since they originated from terrestrial 

sources (e.g., North Africa) and were transported aloft for days before being entrained 

into the MBL. And the atmospheric processing may be different between different 

regions of the atmosphere (e.g., MBL, upper troposphere) because of different 

conditions (e.g., UV light intensity, temperature, and humidity). 

The aerosol particles in the atmosphere can undergo aqueous processing when 

the particles become incorporated into cloud droplets or if the aerosol particles are 

deliquesced. Most clouds do not result in precipitation and therefore after the cloud 

evaporates the nonvolatile species (e.g., Fe) will remain in aerosol particles. This 

atmospheric processing of aerosol Fe will most likely lead to more labile forms of Fe 

as more refractory forms of Fe in the original source particle undergo dissolution and 

then precipitate out of solution as the cloud droplet evaporates. Therefore reducible 
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Fe was measured for both fine and coarse fractions of aerosol samples with 

consideration to the potential dissolution and photoredox processing of Fe in the 

atmosphere. The reducible Fe measurements were performed in this study using 

similar reaction conditions with the chemical reductant HA, and therefore the results 

are comparable to conditions expected in the atmosphere. In addition, many of the 

same Fe redox reactions occurring in the atmosphere may also be important to Fe 

redox chemistry in seawater (for Fe redox chemistry examples in natural waters see 

Emmenegger et al., 2001; Miller et al., 1995). 

The production of Fe(II) in both HA and photochemical reductions can be 

approximated by a pseudo-first-order reaction (Siefert et al., 1996), where HA was 

added in excess to Fe(III) in the extraction solution. The labile Fe(III) was reduced to 

Fe(II) in the extraction solution with the pseudo-first-order rate constant k’, and the 

corresponding rate law is given by 

)](['/)]([ IIIFekdtIIIFed −=                                          (1) 

The mass balance on [Fe(II)aq] is given by 

)])([)](([])([])([ 00 IIIFeIIIFeIIFeIIFe aqaq −+=         (2) 

where [Fe(III)]0 is the maximum reducible Fe(III). Integrating equation (1) and 

combining with equation (2) yields: 

)1()]([])([])([ /
00

tk
aqaq eIIIFeIIFeIIFe −−=−               (3) 

The average rate constants for photo- and HA- reduction processes, 

determined by fitting the experimental data (3.5 hours of reduction processes) to 

equation (3), were 0.020 and 0.0076 min-1, respectively (Figure 2-4). The photo-

reduction of Fe(III) was about three times as fast as the HA reduction within the  
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Figure 2-4.  Comparison of rate constants between photo- and HA-reduction 

processes performed in the same buffer solution. The rate constants were determined 

by fitting Fe(II) production versus time to the pseudo-first-order equation.  Aerosol 

samples used for the reduction experiments were collected during 5 continuous days 

(26 to 30 July 2001). The error bars are the standard error for the rate constants 

determined from the least squares fit of the pseudo-first-order equation. 
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initial 2-hour reduction period and then arrived at the maximum before the Fe(II) 

concentration began to decrease. The absolute rates of Fe(II) oxidation and Fe(III) 

reduction should be equal when the Fe(II) reaches a steady value in the photoredox 

experiments; however, a steady value is usually not attained for a significant period of 

time because of decreasing ambient light intensity or increasing photooxidants. Loss 

of electrondonating ligands probably has only a slight effect on photoredox kinetics 

of Fe in aerosol samples. For example, although it is from a polluted area, it has been 

reported that sufficient electron donors were present in the ambient aerosol 

(Pasadena, CA) for the photoreduction of Fe(III) (Siefert et al., 1996). Although the 

photo-reduction of Fe(III) was faster than HA-reduction, the absolute Fe(II) amounts 

produced by both reduction processes were similar after 60 to 90 min, considering the 

different reduction mechanisms. Therefore the reducible Fe concentrations, measured 

by using HA in the extraction procedure with a 90-min reduction time (Figure 2-1), 

represent the minimum photo-reducible Fe in the aerosol samples. 

The clear-sky ambient sunlight photolysis rate constant for the Fe(OH)2+ 

species (at 47.4°N latitude, 440 m elevation, 30 June) is 0.038 min-1 (Faust and 

Hoigne´, 1990). King et al. (1993) also found an apparent first-order rate constant of 

0.08 min-1 (solar noon, 40°N latitude) for Fe(III) photolysis solution at pH 4.4 with 

0.5 M NaCl using a solar simulator. At pH 4.5 the dominant Fe(III) hydroxyl species 

is Fe(OH)2+, and this is also the dominant photo-reactive Fe(III) hydroxy species 

(Faust and Hoigne´, 1990). Both these rate constants are in relatively good agreement 

with the photochemical reduction experiments where the rate constants were between 

0.012 and 0.027 min-1 (Figure 2-4). Overall, the rate constants observed in this study 
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were slightly slower than the rate constants from the laboratory studies. This may be 

due to several reasons including variations in actinic flux due to the configuration of 

the reactor vessel and window used in this study (e.g., the window had a transparency 

of 60% at 300 nm), the formate or acetate in the extraction solution may serve as the 

electron donor in the photolysis reaction (Pehkonen et al., 1993), or there may also be 

other organic ligands in the aerosol sample that form photoactive Fe(III)-ligand 

complexes. 

When the irradiated solution was returned to the lab and monitored over night, 

the Fe(II) concentration decreased to approximately 20% of the maximum, which was 

still approximately twice as high as the Fe(II) concentration measured before solar 

irradiation. Jickells (1999) described that aerosols are exposed to low pH and high 

ionic strength conditions during a number of condensation evaporation cycles in 

clouds before finally being deposited. These conditions may enhance the Fe 

solubility, and this process is not totally reversible. Therefore daily solar radiation 

increases labile Fe concentrations in ambient aerosols. A higher percentage of labile 

Fe(II) in total Fe will be expected to exist in aerosol that has been transported far 

from the original sources and had more opportunities to undergo photochemical 

processing in the atmosphere.  

2.5 Conclusions 

Aerosol samples (24 hour) were collected using an HVDVI during research 

cruises in the tropical and subtropical North Atlantic Ocean. Labile Fe concentrations 

were measured on board by using a sequential aqueous extraction procedure that 

included a chemical reductant (HA) and used LPAS with a detection limit of 1 nM to 



 

 40 
 

measure Fe(II). LFe(II), LFe(III), and RPFe species were defined according to the 

extraction time and addition of chemical reductant HA during the extraction 

procedure. Previous studies investigating Fe uptake by marine microorganisms 

suggest that the labile fractions of Fe measured in this study are related to the Fe 

bioavailability. The extraction procedure also followed the dissolution and reduction 

kinetics of the labile Fe. Reducible Fe concentrations, measured by HA in the 

extraction procedure, were compared to the photoreducible Fe concentrations, 

showing that they had not only similar kinetics (pseudo first order) for reduction 

processes but also approximately equal Fe(II) concentrations produced after a time 

period of about 90 min. This fraction of reducible Fe could potentially be used to 

determine the maximum amount of labile atmospheric Fe that is deposited into the 

ocean. These measurements provide information about the initial speciation of Fe 

upon deposition to surface waters. After deposition to the water, Fe can undergo a 

variety of dissolution, precipitation, complexation, and redox processes that can be 

abiotic and/or biologically controlled. Studying reducible Fe in aerosols represents an 

initial step toward understanding the role of atmospheric Fe solubility and 

bioavailability to marine microorganisms. The results from this study provide further 

evidence of the complexity of Fe speciation in the atmosphere and that understanding 

this initial speciation is critical to understanding how atmospherically derived Fe is 

cycled through marine systems. 
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Chapter 3: Seasonal and Spatial Distributions and Dry Deposition 
Fluxes of Atmospheric Total and Labile Iron over the Tropical and 
Subtropical North Atlantic Ocean 
 

 

3.1 Introduction 

Fe is a critical micronutrient that limits primary productivity in the high-

nitrate low-chlorophyll (HNLC) regions of the ocean (Behrenfeld et al., 1996; Boyd 

et al., 2000). Fe is also a crucial micronutrient for diazotrophic microorganisms and 

therefore may influence nitrogen fixation in oligotrophic oceans (Falkowski, 1997; 

Gruber and Sarmiento, 1997). Atmospheric deposition is the primary source of Fe to 

the oligotrophic ocean, and previous studies have investigated the concentrations, 

deposition and solubility of atmospheric Fe. The reported solubility of atmospheric Fe 

in seawater spans over 2 orders of magnitude (1 to 50%) although most are at the low 

end of this range (Zhuang et al., 1990; Chester et al., 1993b; Zhu et al., 1992, 1993; 

Jickells, 1999). Measuring this soluble Fe fraction along with understanding the 

process that controls the Fe solubility is important since this soluble Fe may be 

associated with the amount of bioavailable Fe derived from the atmospheric 

deposition. 

There are relatively few field studies investigating aerosol Fe speciation in the 

marine boundary layer (MBL) of oligotrophic oceans, which results in large 

uncertainties associated with model calculations of Fe and bioavailable Fe fluxes to 

world oceans. Zhu et al. (1993) measured the total soluble Fe(II), total soluble Fe and 

total Fe concentrations in marine aerosol samples collected at Barbados, and showed 

that only 1% of the total Fe and 7.5% of the soluble Fe were in the Fe(II) oxidation 
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state. A clear diel variability in the concentration of soluble Fe(II), with day values 

(mean 3.7 ng m-3) about twice night values (1.5 ng m-3), was also observed in marine 

mineral aerosols at Barbados (Zhu et al., 1997). Zhu et al. (1993) measured the 

soluble Fe by leaching a filter with the aerosol sample in a pH 1.0 NaCl solution for 5 

min at ambient temperature, and the leached solution was filtered through a 0.2 µm 

Nuclepore filter for Fe(II) analysis. Siefert et al. (1999) reported that the aqueous 

labile Fe(II) concentrations were between 4.75 and <0.4 ng m-3 during the 

intermonsoon but below the detection limit (<0.34 ng m-3) during the southwest 

monsoon over the Indian Ocean. Siefert et al. (1999) measured the aqueous labile 

Fe(II) by extracting a filter with the aerosol sample in a pH 4.2 formate buffer 

solution for 30 min and then filtering the extract through a 0.2 µm cellulose acetate 

syringe filter. Most of the labile Fe(II) was in the fine aerosol size fraction (diameter 

<2.5 µm) during the intermonsoon although most of the total Fe was in the coarse 

fraction. This fine-fraction ‘‘enrichment’’ was also observed over the tropical 

Atlantic ocean where the labile Fe(II) was about 0.5% of total aerosol Fe and 

correlated with NSS SO4
2- and oxalate concentrations (Johansen et al., 2000). The 

correlations with NSS SO4
2- and oxalate may be due to either the chemistry occurring 

in the aerosol or possibly a common origin for these species (e.g., anthropogenic 

activities, Johansen et al., 2000). 

The North Atlantic and North Pacific oceans are the two oceanic basins with 

the highest atmospheric Fe fluxes, accounting for 48% and 22% of the total aerosol 

Fe flux to the world oceans, respectively (Gao et al., 2001). The Fe flux occurs as 

both wet and dry deposition and models predict that the fluxes due to both processes 
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have a similar magnitude over the coastal and open oceans (Gao et al., 2003). In wet 

deposition the aerosol Fe is incorporated into the rain droplets by either serving as the 

cloud condensation nuclei or through within-cloud or below-cloud scavenging 

processes. The dry deposition flux can be calculated by multiplying the atmospheric 

concentration by a deposition velocity that is primarily a function of particle size, 

wind speed and relative humidity. Several comprehensive models have been 

developed for particle deposition to natural water surfaces (Slinn and Slinn, 1980, 

1981; Williams, 1982). Slinn and Slinn’s (1981) model showed that the particles with 

1 to 10 µm radius have a dry deposition velocity around 1.0 cm s-1 under the 

condition of 5 m s-1 wind speed and 100% relative humidity. Jickells and Spokes 

(2001) suggested that a mean value of 1.0 cm s-1 properly represented dry deposition 

velocity of atmospheric Fe by comparing dust deposition estimates and sediment trap 

records in the Sargasso Sea. The North Atlantic Ocean is under the influence of 

mineral dust plumes transported from North Africa (Sahel and Saharan regions) as 

well as anthropogenic sources from North America and Europe. Great variability in 

Fe concentrations and labile Fe(II) fractions have been observed in this tropical and 

subtropical North Atlantic region (Johansen et al., 2000). Moreover, Asian dust 

storms can travel all the way across North America and reach the North Atlantic 

Ocean as observed by Satellite based sunphotometry measurements (Thulasiraman et 

al., 2002) and aerosol data from the Interagency Monitoring Program for improved 

Visual Environments (IMPROVE) network (Jaffe et al., 2003). 

This chapter presents further measurements of labile Fe concentrations using a 

new extraction method that analyzes for reducible labile fractions of Fe along with 
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aqueous labile Fe(II) species (Chen and Siefert, 2003). This more detailed 

investigation of labile forms of Fe in aerosols is important to understanding the 

processes controlling labile Fe fractions along with quantifying the flux of these 

species to oceanic regions where labile Fe may be an important rate limiting nutrient. 

Labile Fe concentrations were measured in aerosol samples collected during two 

research cruises (winter and summer) over the tropical and subtropical North Atlantic 

Ocean. Mineral dust plumes transported by trade winds from North Africa are a 

dominant source of Fe to this North Atlantic region. The zone of maximum dust 

transport off North Africa coast moves north from about 5°N in winter to 20°N in 

summer as evident in satellite images (Husar et al., 1997; Moulin et al., 1997). This 

shift is driven by the seasonal migration of the intertropical convergence zone 

(ITCZ). The data from the two cruises in this study were taken between 0°N and 

30°N and spanned this zone of maximum dust transport. The aerosol samples were 

collected using a dichotomous aerosol sampler and the analysis was performed on 

both the fine-fraction (diameter <2.5 µm) and coarse-fraction (diameter >2.5 µm) 

aerosol samples. Three labile Fe species, including Fe(II) species and reducible 

Fe(III) species, were analyzed using an aqueous extraction procedure and LPAS 

(Chen and Siefert, 2003). The labile Fe fractions measured were hypothesized to have 

different degrees of bioavailability to marine microorganisms. The analysis of labile 

Fe species was performed immediately after sample collection to minimize the effects 

due to sample storage (e.g., redox reactions). Total Fe concentrations were 

determined back in the laboratory using microwave assisted strong acid digestion of 

the filter samples followed by analysis of the digestion solution using inductively 
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coupled plasma mass spectrometer (ICP-MS). The atmospheric Fe data will be 

presented along with the air mass back trajectories (AMBTs), giving a detailed map 

of distributions of Fe and labile Fe fractions in aerosols over the tropical and 

subtropical North Atlantic Ocean. The potential atmospheric Fe sources are discussed 

and mean atmospheric total and labile Fe dry deposition fluxes are calculated. 

3.2 Sampling Sites and Methods 

3.2.1 Aerosol Collection 

Aerosol samples (approximately 24 hour sampling times) were collected 

during two cruises (6 January to February 2001 and 27 June to 15 August 2001) over 

the tropical and subtropical North Atlantic Ocean. A high-volume dichotomous 

virtual impactor (HVDVI) (Solomon et al., 1983) was used to collect two size 

fractions of ambient aerosols with an aerosol aerodynamic diameter cutoff of 2.5 µm. 

The fine- and coarse-fraction aerosols were collected on two 90 mm diameter Zefluor 

Teflon membrane filters (Gelman Zefluor, 1 µm pore size). The HVDVI aerosol 

collector was constructed out of polycarbonate with nylon screws in order to 

minimize trace metal contamination and had a total flow rate of 330 L min-1. The 

filters, HVDVI and laboratory equipment were acid-cleaned using ultrapure acids 

(Seastar Chemicals, Inc.) and 18.2 MΩ cm Nanopure water (Barnstead). An orifice 

plate meter, gas meter and critical orifice were used to control and measure the flow 

rates through the collector. A sector sampling system was used to control the aerosol 

collector. The system was configured to allow collection of ambient aerosol samples 

only when the relative wind direction was ±75° relative to the ship’s bow during both 
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the winter and summer Atlantic cruises. New filters were loaded every 24 hours, and 

the sampling duration depended the time that the system was in sector. 

3.2.2 Labile Iron Analysis 

LFe(II), LFe(III) and RPFe, were the three labile Fe species investigated using 

an aqueous extraction procedure and measured using LPAS immediately after sample 

collection. This method is briefly outlined below, and a more detailed discussion of 

the method is given in Chapter 2 (also see Chen and Siefert, 2003). Labile Fe species 

were operationally defined by the extraction time and reagents. The extraction time 

was determined by following the release of Fe over time and noting the characteristic 

time where Fe had reached a maximum for each step in the aqueous extraction 

procedure. A 47 mm diameter subsample from the 90 mm aerosol filter sample was 

cut for labile Fe measurements. The remaining portion of the aerosol filter sample 

was stored in a freezer and later subsampled and analyzed for total metals and soluble 

ions. The 47 mm subsample was placed in a Teflon jar and ‘‘wetted’’ by adding 

approximately ten 0.01 mL drops of spectrophotometric grade ethanol to increase the 

affinity between the aqueous extraction solution and the hydrophobic Teflon 

membrane filter. The extraction solution (50 mL of pH 4.5, 0.5 mM formate-acetate 

buffer solution) was then added to the jar, and the jar was covered and gently swirled. 

After 2 min, a 2 mL aliquot and a 1 mL aliquot were removed and transferred to 5 mL 

sample vials; 5 µL of 10 mM ferrozine solution was added to the sample vial with 2 

mL aliquot, while the 1 mL aliquot was used for a background absorbance spectrum. 

The ferrozine reagent forms a colored complex with Fe(II) in solution that can be 

used to quantify Fe(II) using absorbance spectrometry (Stookey, 1970). Aliquots were 
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removed from the extraction solution every 30 min without filtration and the 

ferrozine-Fe(II) absorbance was measured using LPAS with a 1 m path length 

(Waterbury et al., 1997). The measured Fe(II) concentration at the 90 min extraction 

time was defined as the LFe(II) since Fe(II) concentrations typically reached a 

maximum by 90 min in the extraction solution. At 90 min another two aliquots of the 

extraction solution were removed and HA (50 mM) added to the aliquots with the 

ratio of 3.3 µL of HA per mL of extraction solution. The Fe(II) concentration 

measured in the aliquot with HA minus the LFe(II) was defined as the LFe(III). HA 

was also added to the remaining extraction solution in the Teflon jar at 90 min, that 

was in contact with the filter subsample to dissolve labile Fe(III) particles that can 

undergo reductive dissolution. The unfiltered aliquots were removed for Fe(II) 

measurements every 30 min, and the measured Fe(II) concentration at 180 min of the 

extraction procedure was defined as total labile Fe. The RPFe species was then 

calculated by subtracting the LFe(II) and LFe(III) from the total labile Fe. Chen and 

Siefert (2003) observed that photochemical reduction of Fe(III) species using ambient 

sunlight had similar Fe(II) production rates as extractions using hydroxylamine as a 

reducing agent. 

3.2.3 Total Elemental Analysis 

A strong-acid microwave digestion procedure followed by ICP-MS (HP 4500) 

was used to measure total elemental concentrations. The digestion procedure was run 

in a batch of six Teflon bombs with four filter samples, one blank and one sample of 

Standard Reference Material (SRM) 2709 San Joaquin Soil (U.S. Department of 

Commerce, National Institute of Standards and Technology) for quality control. Two 
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grams of 10 N nitric acid (Seastar Chemical, Inc.) were added to each Teflon bomb. 

The microwave heating cycle was 200 W for 5 min and then 700 W for 2 min. After 

being cooled to the room temperature, the bombs went through a second heating 

cycle: 200 W for 10 min, addition of 0.1g of 28N hydrofluoric acid (Seastar 

Chemical, Inc.), and then 700 W for 2 min. Finally, 28 g of 18.2W milli-Q water was 

added to each bomb. The mass of each bomb was monitored to check for venting of 

acids in the digestion process, and the total loss was controlled within 0.03 g to 

minimize the effects of matrix variability. A multielement internal standard of Sc, In 

and Bi (SPEX CertiPrep, Inc.) was added to the sample before analysis of total 

elemental concentrations in the digestion solution using ICP-MS. The atmospheric 

concentrations were then calculated using the mass of the extraction solution, the 

concentration of the element, the volume of the air sampled and the fraction of the 

filter sample used in analysis. 

3.2.4 Ion Analysis 

A subsample of the 90 mm Teflon filter sample was analyzed for anions and 

cations using an aqueous extraction technique (Derrick and Moyers, 1981) and ion 

chromatography using a Dionex DX-600 system. Anions were separated and eluted 

using an AS15 anion column (Dionex) using a KOH eluent in gradient mode, and 

cations were separated and eluted using a CS12A cation column (Dionex) using a 

methanesulfonic acid (MSA) eluent in gradient mode. The atmospheric 

concentrations were then calculated using the mass of the extraction solution, the 

concentration of the ion, the volume of the air sampled and the fraction of the filter 

sample used for the analysis. NSS SO4
2- concentrations were calculated by 
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subtracting the sulfate contribution to the aerosol due to sea salt by using the average 

ratio between sulfate and sodium in the seawater along with the sodium 

concentrations in the aerosol (Duce et al., 1983). 

3.2.5 Air Mass Back Trajectories 

AMBTs were calculated from the National Oceanic and Atmospheric 

Administration (NOAA) FNL database using the Hybrid Single-Particle Langrangian 

Integrated Trajectories (HY-SPLIT) program (Draxler, 2002). The model calculation 

method is a hybrid between Eulerian and Lagrangian approaches. Trajectory 

calculations were made in the Lagrangian framework.  The particle passive transport 

by the wind is computed from the average of the three-dimensional velocity vectors at 

the particle’s initial-position P(t) and its first-guess position P’(t+dt). Trajectories 

may be integrated both forward and backward in time.  The error in a trajectory 

calculation is primarily due to the fact that meteorological fields, which vary 

continuously in space and time. The other error is that a particular trajectory may 

have little relationship to the pollutant plume dispersion pattern.  Trajectories only 

represent the flow path of a single particle at the time of the initial release.  As a 

pollutant spreads out both horizontally and vertically, due to dispersion, it may take 

many different paths in addition to the initial trajectory.  The model calculation 

requires surface pressure or terrain height, horizontal wind components, temperature, 

and moisture, but not the settling velocities of the particles. If wet deposition is to be 

included, the model also requires the rainfall field. 

AMBTs were performed at 100 m, 500 m and 1500 m height levels over the 

sampling position at 2000 UTC (corresponding to 7:00 PM local time that was about 
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midway during the sample collection period) for each day of the cruises. Atmospheric 

aerosols do not always follow these trajectories due to scavenging processes and 

gravitational settling of the aerosol (Ellis and Merrill, 1995), and there are errors 

associated with these AMBTs due to the data sets and models. However, the AMBTs 

still provide useful information about the synoptic situation and general source of the 

air mass sampled. 

3.3 Results and Discussions 

3.3.1 Spatial and Seasonal Distributions of Atmospheric Iron 

Table 3-1 lists the concentrations of LFe(II), LFe(III), RPFe, and total Fe in 

both the fine- and coarse-fraction aerosols along with the sampling dates and 

locations. The data have been placed into five categories: (1) 26°N to 30°N Atlantic 

region in winter (WIN26), (2) 5°N to 26°N Atlantic region in winter (WIN15), (3) 

26°N to 30°N Atlantic region in summer (SUM26), (4) 6°N to 26°N Atlantic region 

in summer (SUM15), and (5) 0°N to 6°N Atlantic region in summer (SUM5). This 

categorization was done according to total Fe concentrations, locations, and dates of 

aerosol sample collection (see Figure 3-1). Total NSS SO4
2- and oxalate 

concentrations are also listed in Table 3-1. 
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Figure 3-1. Spatial, size, and seasonal distributions of total Fe in aerosols collected 

during winter (6 January to 19 February 2001) and summer (27 June to 15 August 

2001) research cruises over the Atlantic Ocean. The bubble areas are proportional to 

the concentrations of total Fe. Note that there is a bias toward showing the ‘‘coarse 

total Fe’’ bubbles when data are located close together on the map since all of the 

‘‘coarse total Fe’’ bubbles are placed over all of the ‘‘coarse and fine total Fe’’ 

bubbles. 
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Total Fe concentrations in the fine- and coarse-fraction aerosols were 

extremely low near latitude 30°N during the winter (Figure 3-1). A spatial gradient of 

over nearly 3 orders of magnitude in the total Fe concentrations (from 1.6 ng m-3 at 

28.6°N to 1688 ng m-3 at 10.9°N) was observed during the winter, while this gradient 

was not as strong in the summer. A similar spatial gradient, although not as large in 

magnitude as aerosol Fe, has also been observed for the dissolved Fe concentrations 

in Atlantic surface seawater (Wu and Boyle, 2002; Sanudo-Wilhelmy et al., 2001). 

The observed Fe concentrations were 0.2 nM at latitude 31°N, 0.8 nM at 26°N, and 

0.77 nM at 10°N to 16°N, respectively. It was suggested that the gradient distribution 

of surface seawater Fe is mostly attributed to the latitudinal variation of atmospheric 

Fe deposition that is evident in the winter data (Figure 3-1). However, the latitudinal 

gradient of atmospheric total Fe concentrations over this oceanic region was not as 

significant during the summer. One reason for this decreased latitudinal gradient 

during the summer is that the maximum zone of African dust plume migrated to 

latitude 20°N with the ITCZ (Husar et al., 1997; Moulin et al., 1997), which extended 

the dust impacts to higher latitudes (up to 30°N). The total Fe concentration (fine + 

coarse) reached 235 ng m-3 at the position 29.6°N 45°W, while the averaged Fe 

concentrations in SUM15 were 324 ng m-3 during the summer (Figure 3-1). Low 

concentrations of atmospheric total Fe (mean 17.6 ng m-3) were observed at lower 

latitudes where the influence of mineral dust plumes from North Africa was weaker 

due to the northward migration of the ITCZ in summer. The low Fe concentrations 

and weaker latitudinal gradient may also be caused by the episodic nature of dust 

plumes. Overall, the atmospheric total Fe concentrations in the MBL were 
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approximately a factor of 2 higher during the winter than in the summer when 

comparing the mean total Fe concentrations in the maximum dust plume zone (mean 

670 ng m-3 (median 596 ng m-3) in WIN15 and 324 ng m-3 (median 251 ng m-3) in 

SUM15). 

Long-term measurements of mineral dust concentrations have been done at 

Sal Island (16°45’N, 22°57’W) located in the zone of maximum dust transport. These 

measurements showed a pronounced seasonal pattern with the maximum dust 

concentrations during winter (Chiapello et al., 1995). However, Gao et al. (2001) 

indicated that the highest Fe flux including wet deposition to the tropical and 

subtropical Atlantic Ocean occurred in the summer using their model. At Barbados, 

Gao et al. (2001) predicted the average Fe flux to be about 45 mg m-2 month-1 in the 

summer and significantly higher than the average Fe flux in the winter ( about 20 mg 

m-2 month-1). This different seasonal pattern at Barbados is probably a consequence 

of the long distance between North Africa and Barbados (it takes about 1 week for a 

dust event to travel from North Africa to the Caribbean). This travel time weakens the 

impact of the African mineral dust, especially in winter when a low-level dust 

transport replaces a high-level dust layer in summer (Guelle et al., 2000). Higher 

concentrations of atmospheric total Fe (mean 900 ng m-3) were also observed for a 

few days during the summer cruise when the ship was close to Barbados, where other 

atmospheric Fe sources (e.g., crustal source from South America) may have an effect. 

The winter versus summer trends observed for the aerosol Fe during these two cruises 

highlights the strong gradients and episodic nature of the dust events and does not 
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apply in general for seasonal variations since this data are limited to certain regions 

during 1 year. 

3.3.2 Labile Iron Features 

Three labile Fe species in the aerosol samples were measured using an 

aqueous extraction procedure and LPAS. Most of the total labile Fe concentrations 

(mean 82%) were found in the fine-fraction aerosol (see Figure 3-2 and Table 3-1). 

However, the fine fraction only contributed half (mean 50%) of the total Fe 

concentrations, showing the ‘‘enrichment’’ of the labile Fe species in the fine fraction 

compared to the coarse aerosols. This has previously been observed in aerosol 

samples collected during the intermonsoon season over the Arabian Sea by Siefert et 

al. (1999) where more than 80% of total atmospheric aqueous-labile Fe(II) 

concentrations were present in the fine fraction, and over the tropical Atlantic Ocean 

(Johansen et al., 2000). Siefert et al. (1999) indicated that fine and coarse fractions of 

aerosol particles might have different origins, and over the Arabian Sea, pollution 

sources (e.g., combustion of fossil fuels) may have contributed to the fine aerosols 

with high labile Fe(II) contents. However, differences in the atmospheric processing 

of the fine and coarse aerosol may also explain these observations. Most atmospheric 

Fe in this Atlantic region is carried by the mineral dust plumes originating from North 

Africa, and this long-range transport will favor the suspension of fine particles over 

larger particles due to the greater settling velocity of larger particles. The fine 

particles will therefore have more opportunities to undergo condensation-evaporation 

cycles and be exposed to reductive processes (e.g., photochemical redox reactions) 

and acidic pH conditions that can transform refractory Fe species into more labile Fe  
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Figure 3-2. Spatial, size, and seasonal distributions of labile Fe in aerosols collected 

during winter (6 January to 19 February 2001) and summer (27 June to 15 August 

2001) research cruises over the Atlantic Ocean. The bubble areas are proportional to 

the concentrations of total labile Fe. Note that there is a bias toward showing the 

‘‘coarse total labile Fe’’ bubbles when data are located close together on the map 

since all of the ‘‘coarse total labile Fe’’ bubbles are placed over all of the ‘‘coarse and 

fine total labile Fe’’ bubbles. 



 

 59 
 

species (Chen and Siefert, 2003). Fine particles also have a higher surface area to 

volume ratio than coarse particles, which may also enhance their aqueous dissolution.   

Higher percentages of total labile Fe to total Fe ratios were observed in the 

fine-fraction aerosol than in the coarse fraction for most of the samples except during 

WIN26 where the percentages of total labile Fe to total Fe in both coarse and fine 

fractions became extremely large (mean 33% and 37%, respectively) and not 

significantly different (see Figure 3-3). For labile Fe(II) species (see Table 3-1), fine-

fraction aerosols had even higher percentages than the coarse fraction, including the 

WIN26 where the labile Fe(II) percentage to total Fe in the fine fraction (mean 19%) 

was about twice as much as that in the coarse fraction (mean 8.6%), accounting for 

most of the total labile Fe (mean 58%) observed in fine-fraction aerosols. This large 

contribution of labile Fe(II) to labile Fe species (58% of total labile Fe) in the fine 

fraction in WIN26 suggest a longer atmospheric transportation time for the fine 

aerosols, or possibly a distinctive air mass source in this Atlantic region during this 

time period. These fine aerosols may be associated with high concentrations of 

organic matter that could stabilize the labile Fe(II) produced by photochemical 

reduction process. 

Total Fe concentrations were strongly correlated with the concentrations of 

total Mn and total Al in aerosols collected during both cruises with the exception of 

the fine-fraction aerosols in WIN26 (Table 3-2). Aluminum is typically used as the 

tracer to quantify the mineral aerosol abundance in the atmosphere (Taylor and 

McLennan, 1985). Crustal enrichment factors (EFs) based on X/Al ratios have been 

widely used to identify contribution of crustal and noncrustal sources on observed  
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Figure 3-3. Spatial, size, and seasonal distributions of the ratio of labile Fe to total Fe 

concentrations for aerosols collected during winter (6 January to 19 February 2001) 

and summer (27 June to 15 August 2001) research cruises over the Atlantic Ocean. 

The ratio in all cases is to the sum of the coarse and fine total Fe concentrations. Note 

that there is a bias toward showing the ‘‘coarse total labile Fe to total Fe’’ bubbles 

when data are located close together on the map since all of the ‘‘coarse total labile 

Fe to total Fe’’ bubbles are placed over all of the ‘‘coarse and fine total labile Fe to 

total Fe’’ bubbles. 
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concentrations of trace elements (Kaya and Tuncel, 1997; Al-Momani et al., 1998; 

Chester et al., 1993a; Yatin et al., 2000; Huang et al., 2001). High correlation 

coefficients between the total Fe and total Al (Table 3-2) suggested that the mineral 

dust transported from the Sahel region was the dominant Fe source over the tropical 

and subtropical North Atlantic Ocean. However, total Fe measured in fine aerosols in 

WIN26 showed a weak correlation with Al (0.386) but large correlation coefficients 

with Cu (0.755), Ni (0.809), and V (0.817), which indicated that the aerosol Fe was 

probably influenced strongly by the noncrustal anthropogenic sources from North 

America or Europe. The second Aerosol Characterization Experiment (ACE-2) 

showed that both North American and European urban/industrial sources contributed 

to the aerosols over the North Atlantic region, with North American sources 

dominating under conditions of a strong Azores high (Benkovitz et al., 2003). The 

northeastern United States burns residual oil in winter, and some of the aerosol 

associated with this oil combustion may be transported to the subtropical North 

Atlantic region (Huang et al., 2001). Noncrustal V in the atmosphere is most often 

associated with the combustion of heavy fuel oil (Rahn and Lowenthal, 1984; Yatin et 

al., 2000). High loadings of Cu at Mumbai, India, were generally from nonferrous 

industrial emissions, and Ni may be from pollution sources such as oil and refuse 

burning (Venkataraman et al., 2002). The Fe observed in the fine aerosols during this 

specific time and region may be caused by wearing of metals used in motor vehicles 

(Yatin et al., 2000) or ferrous industries (e.g., metallurgic plants, steel mills, castings) 

in North America.  Other statistical methods such as principal component analysis 

(PCA) were also employed for identification of source contributions to the labile 
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aerosol Fe over the Atlantic Ocean, and the results from PCA are listed in appendices 

II.  The rotated component matrix showed that mineral dust (component 1) had a 

major contribution to aerosol particles over this Atlantic region and the labile Fe were 

mostly associated with this component.  However, it is difficult to identify a single 

source for each component which usually represented a mixed source contrbution 

and/or atmospheric processing of the aerosol.  Therefore our source analysis for labile 

aerosol Fe was based on the correlation matrix which was more straightforward. 

An increase in labile Fe to total Fe ratio generally corresponds to a decrease in 

total Fe concentration (Figure 3-4). In WIN26 the percentage of labile Fe in total Fe 

(mean 35%) was approximately 7 factors higher than that in WIN15 (mean 5.0%) 

when an opposite spatial gradient of atmospheric total Fe concentrations was 

observed (Figure 3-3). The percentage of labile Fe in total Fe in SUM26 was around 

5.7%, only slightly higher than that in SUM15 (mean 2.6%), which corresponded to 

the summer pattern of total Fe concentrations in the atmosphere with a weaker spatial 

gradient (Figure 3-1). In addition, SUM5 had the lowest concentrations of 

atmospheric total Fe observed; however, the labile Fe to total Fe ratio (mean 5.0%) 

was still close to the northern regions. Therefore a low concentration of atmospheric 

total Fe would not always imply a high percentage of labile Fe fractions. Moreover, 

the correlation coefficients between the Fe and Al concentrations in SUM5 were high 

for both fine- (0.972) and coarse- (0.882) fraction aerosols (Table 3-2), indicating a 

crustal source origin for Fe (mineral dust). Ion concentrations in the aerosol samples 

showed that WIN26 had much higher ratios of oxalate and NSS SO4
2- anions to total 

Fe (oxalate/Fe and NSS SO4
2- /Fe mean ratios are 4.8 and 88, respectively) than in 
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Figure 3-4. Ratio of labile Fe to total Fe versus total Fe concentrations in aerosols 

collected during the winter (6 January to 19 February 2001) and summer (27 June to 

15 August 2001) research cruises over the tropical and subtropical North Atlantic 

Oceans. 
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Figure 3-5. Ratios of NSS-sulfate to total Fe and oxalate to total Fe versus the ratio 

of labile Fe to total Fe in aerosol samples collected during the winter (6 January to 19 

February 2001) and summer (27 June to 15 August 2001) research cruises over the 

tropical and subtropical North Atlantic Oceans.
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SUM5 (oxalate/Fe and NSS SO4
2-/Fe mean ratios are 1.1 and 10, respectively) 

(Figure 3-5). These species along with condensation-evaporation cycles in clouds and 

photochemical redox processes may produce the high labile Fe fractions observed in 

these aerosol samples. The source of the Fe may also be noncrustal as indicated by 

the weak correlation with Al (Table 3-2). Oxalate is the final product of 

photochemically induced reactions involving many organic precursors (Kawamura 

and Ikushima, 1993), and it is known to be an efficient electron donor for the 

photochemical reduction of Fe(III) in atmospheric waters (Zuo and Hoigne, 1992). 

Sulfate may indicate a lower aerosol pH which could increase the “stability” of Fe(II) 

with respect to oxidation (Johansen et al., 2000) and also increase the solubility of Fe 

minerals (Meskhidze et al., 2003). Thus the air mass characterized by the highest 

percentage of labile Fe in total Fe in WIN26 may have a different source contribution 

(polluted air masses from North America or Europe) from the others characterized by 

much lower labile Fe percents. 

Previous studies have investigated the percentage of labile Fe(II) species in 

total Fe concentrations in aerosols using various extractions techniques. The labile 

Fe(II) results in this study are comparable to the previous observations. Siefert et al. 

(1999) reported that never more than 4% of the total Fe was released as Fe(II) after 22 

hours of extraction for aerosol samples collected over Arabian Sea, and 

Fe(II)labile/Fetotal ratios in Barbados aerosol samples were observed between 0.47 and 

0.92% (Zhu et al., 1993), which are consistent with our measurements that labile 

Fe(II) species that were approximately 1.8%, 1.0%, 0.33%, and 1.1% of total Fe 

concentrations in WIN15, SUM26, SUM15, and SUM5, respectively. However, 
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much higher percentages of labile Fe(II) in total Fe (10–100% and 2.2–49%) have 

been observed in marine aerosols over the central North Pacific Ocean and Barbados 

(Zhuang et al., 1992), which was explained as a result of increased cloud processing 

of the aerosols. In this study, a high percentage of labile Fe(II) to total Fe (around 

16%) was also observed in WIN26, which may be attributed to different sources (e.g., 

anthropogenic sources from North America or Europe) of the aerosol particles. 

3.3.3 Air Mass Back Trajectories (AMBTs) 

AMBTs were calculated using the HY-SPLIT (isentropic program) for a 7-day 

period. Figure 3-6 shows seven representative AMBTs for this data set. The AMBTs 

showed the dominant northeasterly trade winds transporting mineral dust from North 

Africa over the 0° to 30°N Atlantic region. However, at both ends of this region the 

air masses were seasonally affected by other circulations as a result of latitudinal 

shifting of the ITCZ, which effected the variations of total Fe concentrations and 

labile Fe percents. 

The spatial gradient of increased total Fe concentrations from 30°N to 10°N in 

the winter indicated a stronger impact of African dust in this region. The AMBTs for 

30°N to 10°N in the winter (Figures 3-6b and 3-6c) were consistent with these higher 

concentrations and showed the air masses to have either passed over North Africa or 

to have come close to the coast. Back trajectories at 28°N 45°W (where the ship was 

located on 16 January 2001) showed that the air mass had circulated over the ocean 

for more than 7 days without contact with the land (Figure 3-6a), which was 

consistent with an extremely low concentration of atmospheric total Fe (see 

discussion in section 3.3.2). 
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Figure 3-6. Representative 7 day air mass back trajectories for starting altitudes of 
100 m, 500 m, and 1500 m above ground level (AGL) calculated from the National 
Oceanic and Atmospheric Administration’s FNL database using the Hybrid Single-
Particle Langrangian Integrated Trajectory (HY-SPLIT) model (markers are at 6 hour 
increments): (a) 16 January 2001 (28°N, 45°W), 2000 UTC; (b) 18 January 2001 
(21°30’N, 45°W), 2000 UTC; (c) 22 January 2001 (10°N, 46°30’W), 2000 UTC; (d) 
4 July 2001 (25°30’N, 48°30’W), 2000 UTC; (e) 15 July 2001 (10°N, 45°30’W), 
2000 UTC; and (f ) 31 July 2001 (5°N, 44°W), 2000 UTC. 
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Figure 3-6 (supplement). Representative 7 day air mass back trajectories for starting 

altitudes of 100 m, 500 m, and 1500 m above ground level (AGL) calculated from the 

National Oceanic and Atmospheric Administration’s FNL database using the Hybrid 

Single-Particle Langrangian Integrated Trajectory (HY-SPLIT) model (markers are at 

6 hour increments): (g) 13 January 2001 (29°30’N, 51°W), 2000 UTC; (h) 10 January 

2001 (28°30’N, 63°W) 

 

g h
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Chiapello et al. (1997) labeled samples as ‘‘non-dusty samples’’ of oceanic 

origin when the AMBTs had circulated over the ocean for more than 5 days. Many of 

the AMBTs in this study had circulated over the ocean for more than 7 days and 

thereby contained very low dust concentrations (e.g. Figure 3-6a). The oceanic origin 

aerosols in this study (e.g., at 28°N 45°W) however, had the highest labile Fe 

percentages. This high labile Fe percent may be because the particles had more time 

to undergo photochemical processing than the fresh terrestrial dust or that the aerosol 

Fe had a different source. Almost equal percentages of labile Fe in total Fe were 

observed in both the fine- and coarse-fraction aerosols (labile Fe fraction is dominant 

in fine fraction of mineral dust, see discussion 3.3.2), which may indicate an impact 

of anthropogenic Fe sources (e.g., ferrous-industries from North America or Europe) 

on these oceanic origin aerosols at 28°N (Figure 3-6a). Figure 3-6g and 3-6h 

demonstrate that AMBTs at WIN26 region passed over North America and may 

transport anthropogenic emissions to this Atlantic region during the winter. The two 

lower back trajectories at latitude 21°30’N extended along the North African coast 

which corresponded to a high concentration of total Fe (Figure 3-6b). The back 

trajectories at10°N passed over North Africa (Figure 3-6c) and had even higher Fe 

concentrations. These two locations had similar African dust origins and similar labile 

Fe percents. The maximum concentrations of atmospheric total Fe observed in 

WIN15 were probably due to an additional lower layer transport (below 1.5 to 3 km 

in altitude) of African dust (Chiapello et al., 1995). 

Dust transport off North Africa during summer occurs at high altitudes, from 

about 1.5 km to 5–7 km above sea level, which allows for long-range transport and 
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influences a larger North Atlantic region (Prospero and Carlson, 1972). The 1500 m 

back trajectories at latitude 25°30’N and 10°N (Figure 3-6d) passed over North 

Africa, while the two lower back trajectories circulated over the ocean at 25°30’N or 

extended along the North African coast at 10°N (Figure 3-6e). This was consistent 

with the weaker spatial gradient of atmospheric total Fe in the summer and the lower 

Fe concentrations in the MBL during the winter. Back trajectories at 5°N 44°W 

during the summer showed that the air mass was from the South Atlantic Ocean 

(Figure 3-6f), which indicated that this region was not significantly impacted by 

African dust, corresponding to the low concentrations of atmospheric total Fe. 

3.3.4 Atmospheric Dry Deposition of Iron 

The dry deposition velocity is primarily a function of dust particle size, wind 

speed, and relative humidity. Previous studies have found that the mass median 

diameters (MMD) of aerosols collected over the tropical and subtropical North 

Atlantic Ocean were between one to several micrometers (Prospero, 1995). This 

study shows that labile Fe is a function of particle size and is typically enriched in the 

fine aerosol compared to total Fe, and therefore it is expected that these two size 

fractions would have different deposition velocities and other microphysical 

properties. However, it is somewhat arbitrary to use different deposition velocities for 

the fine- and coarse-fraction aerosols investigated in this study since more 

information is needed about the aerosol microphysical properties (e.g., MMD). Slinn 

and Slinn (1981) showed that particles with 1 to 10 µm radius have a dry deposition 

velocity around 1.0 cm s-1 under the condition of 5 m s-1 wind speed and 100% 

relative humidity. The mean deposition velocity of 1.0 cm s-1 was also suggested by 
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Table 3-3. Atmospheric Dry Depositions of Total Fe and Labile Fe Species Over the 

Tropical and Subtropical North Atlantic Oceans During the Winter (6 January to 19 

February 2001) and Summer (27 June to 15 August 2001)a 

 WIN26 WIN15 SUM15 SUM5 

Aeolian total Fe 2.5±1.44 631.1±355.5 278.4±170.9 15.2±10.93 

Labile Fe(II) 0.3±0.21 11.8±7.45 0.8±0.46 0.2±0.09 

Labile total Fe 0.5±0.46 20±10.7 3.9±2.42 0.3±0.17 

Reducible labile Fe 0.7±0.50 29.6±15.68 6.1±3.30 0.7±0.32 
a Distributions are given as mean±SD in mg m-2 d-1. 
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comparison between dust deposition estimates and sediment trap records (Jickells, 

1999). Therefore Fe dry deposition rates over the tropical and subtropical North 

Atlantic Oceans were calculated by multiplying Fe concentrations in the aerosols with 

the dry deposition velocity of 1.0 cm s-1. Fe dry deposition rates were calculated for 

four subregions WIN26, WIN15, SUM15, and SUM5 according to the spatial and 

seasonal distributions of atmospheric Fe concentrations (see discussion in section 

3.3.2). The dry deposition rates of the various Fe species were calculated. The three 

labile Fe fractions measured in this study represent Fe species with varying abilities 

to dissolve in aqueous solutions. The order from most labile to least labile for these 

fractions would be (1) labile Fe(II), (2) labile Fe(III), (3) reducible particulate Fe, and 

(4) the refractory Fe pool determined by strong acid digestion. The bioavailability of 

these Fe fractions would be expected to follow this same order. The RPFe enlarges 

the bioavailable Fe pool by considering Fe reduction processes in the atmosphere or 

seawater (Chen and Siefert, 2003). The maximum dry deposition rates of total Fe 

(631 mg m-2 d-1) and labile Fe occurred in WIN15 (Table 3-3), which is comparable 

to the Fe dry and wet deposition rates (mean 20 mg m-2 month-1 or 667 mg m-2 d-1) at 

Barbados calculated by Gao et al. (2001). The dry deposition of total Fe in SUM15 

was approximately 278 mg m-2 d-1, about half of the maximum dry deposition in the 

winter, correspondingly, labile Fe dry deposition decreased even further (Table 3-3). 

Low dry deposition rates of total Fe were calculated in WIN26 and SUM5 with the 

former region even lower, approximately 2.5 and 15 mg m-2 d-1, respectively. 

However, the dry deposition rates of labile Fe species were similar between these two 

regions (Table 3-3), indicating that the atmospheric dry deposition may provide 
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almost equal amount of bioavailable Fe to these two oceanic regions.  The larger 

fluxes of labile aerosol Fe over WIN15 or SUM15 region may correspond to the 

higher diazotrophic activities over this Atlantic region.  A strong spatial gradient of 

Trichodesmium biomass (7 times higher at 10°N to 16°N Atlantic than at 0° to 6°N 

Atlantic region) observed in April 1996 (Sanudo-Wilhelmy et al., 2001) may be 

related to the spatial pattern of atmospheric deposition of labile Fe, instead of the 

dissolved Fe concentrations in surface seawater. Trichodesmium blooms in offshore 

waters of the west Florida shelf (Lenes et al., 2001) in summer may also relate to the 

high atmospheric deposition of labile Fe that extended northward in summer. 

3.4 Conclusions 

Field measurements of Fe concentrations and speciation in aerosols were 

conducted during the winter and summer cruises over the tropical and subtropical 

North Atlantic Ocean. A spatial gradient was observed of nearly 3 orders of 

magnitude in the total Fe concentrations, from a low concentration of 1.6 ng m-3 in 

WIN26 to a high concentration of greater than 1688 ng m-3 in WIN15, while this 

gradient was not as significant in the summer due to the migration of the ITCZ. The 

atmospheric total Fe concentrations in the MBL were approximately a factor of 2 

higher during the winter (mean 670 ng m-3 in WIN15) than in the summer (mean 324 

ng m-3 in SUM15). The highest percentage of labile Fe in total Fe (35%) was 

observed in WIN26, corresponding to low concentrations of total Fe and relatively 

high concentrations of oxalate and NSS SO4
2-. However, in SUM5, where the lowest 

Fe concentrations were measured, the labile Fe percent (5.0%) was similar to 

SUM15. AMBTs showed that mineral dust transport off North Africa was a dominant 
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Fe source in this region. However, labile Fe appeared to be influenced by 

anthropogenic activity in some of the winter samples (around 30°N) where 

anthropogenic metals (V, Cu, Ni) were relatively high along with other species (i.e., 

oxalate, NSS SO4
2-) consistent with anthropogenic sources. The highest calculated 

dry deposition fluxes of total Fe and labile Fe occurred in WIN15, whereas the lowest 

fluxes were shown in both WIN26 and SUM5. The highest dry deposition fluxes of 

labile Fe occurred in the region of high N2-fixing diazotrophic activity in the tropical 

North Atlantic region (5°N to 25°N, oligotrophic ocean where diazotrophs are 

favored).  
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Chapter 4: Trichodesmium Uptake of Iron from Aerosol and Its 
Influence on Aerosol Iron Dissolution in the Tropical North Atlantic 
Ocean 
 

 

4.1 Introduction 

  Deposition of atmospheric aerosol is the dominant source of iron to the remote 

ocean (Duce and Tindale, 1991).  Fe limitation to phytoplankton growth has been 

confirmed in high nitrate low chlorophyll (HNLC) areas where there is low 

atmospheric dust deposition (Martin et al, 1994; Coale et al, 1996; Boyd et al, 2000; 

Tsuda et al, 2003).  During the last glacial maximum, atmospheric dust fluxes to the 

ocean were about a factor of 2 higher, which may have greatly enhanced 

phytoplankton growth and contributed to the decrease of atmospheric CO2 level 

(Mahowald et al., 1999; Bopp et al., 2003).   

  The tropical North Atlantic Ocean is under the impact of heavy dust loadings 

transported from North Africa.  However, due to the low solubility of aerosol Fe in 

seawater (1-10% of total aerosol Fe) (Jickells and Spokes, 2001) only a small fraction 

of aerosol Fe inputs may be bioavailable. The labile Fe(II) concentrations extracted 

with a low pH (1.0 to 4.5) buffer solution are typically a few percent (0.3 to 1.8%) of 

total Fe in marine mineral aerosols (Zhu et al., 1993; Siefert et al., 1999; Johansen et 

al., 2000; Chen and Siefert, 2004).  Understanding the processes controlling the 

bioavailability of aerosol Fe that deposited to seawater is critical to assessing the role 

of this trace element as a rate limiting nutrient in a given oceanic region.  Previous 

studies have shown that bioavailable forms of Fe include not only free or inorganic Fe 

species (Anderson and Morel, 1982; Campbell, 1995; Sunda and Huntsman, 1997), 



 

 77 
 

but also Fe bound to organic ligands (Kuma et al., 2000; Wu et al., 2001; Chen et al., 

2003).  Recent size-fractionated measurement showed that >90% of Fe in the 

traditionally defined dissolved phase (<0.2µm) was in fact in the colloidal phase (>1 

kDa) (Wen et al., 1999; Wells et al., 2000; Wu et al., 2001).  It has been found that 

colloidal Fe derived from Fe(III)-hydroxide precipitation could be used by 

Trichodesmium spp. in the EDTA-buffered media (Kustka et al., 2003b). 

Trichodesmium, the most prominent planktonic marine nitrogen fixer, occurs 

throughout the open waters of oligotrophic tropical and subtropical oceans (Capone et 

al., 1997).  This cyanobacterium supplies up to half of new nitrogen used for primary 

production in oligotrophic waters (Karl et al., 1997), and thereby plays a critical role 

in the biogeochemical cycling of C and N (Carpenter and Romans, 1991).  N2-fixing 

Trichodesmium has a high Fe requirement (Berman-Frank et al., 2001; Kustka et al., 

2003a, b), and has a high  Fe : C quota (38 µmol mol-1) that is 2.5 to 5-times greater 

than NH4
+-assimilating phytoplankton (Kustka et al., 2003a, b).  Luxury uptake of 

greater than 13-fold amounts of Fe than needed for moderately Fe-limited growth (0.1 

d-1), was also observed in N2 supported cultures of Trichodesmium (Kustka et al., 

2003a, b).  Nonetheless, a general lack of correlation between surface seawater Fe 

(total or dissolved) and Trichodesmium abundance has been observed in the Arabian 

Sea (Capone et al., 1998), in the central North Atlantic (Sañudo-Wilhelmy et al., 

2001), and along a Atlantic Meridional Transect (AMT) (Tyrrell et al., 2003).  There 

was little difference between dissolved Fe concentrations where Trichodesmium is 

abundant, and where it is scarce in the Atlantic Ocean (Tyrrell et al., 2003).  The 

finding suggested that either Trichodesmium growth was not Fe-limited in these 
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oceanic regions, or Trichodesmium uptake of Fe could be a dynamic process 

depending on the amount of Fe supplies (e.g. luxury Fe uptake).  The rate of dust Fe 

supply was also not correlated with the Fe concentration in surface seawater (Johnson 

et al., 1997), which may be explained by the short residence time of Fe in surface 

seawater due to its rapid precipitation and biological uptake (Hutchins et al., 1993).   

Therefore, the Trichodesmium abundance and nitrogen fixation rate in the North 

Atlantic Ocean may depend on the episodic fluxes of aerosol Fe instead of the Fe 

concentration in surface seawater.  Furthermore, in situ investigations on 

Trichodesmium uptake of aerosol Fe are important for understanding the role that dust 

supply plays in the global carbon cycling and climate change. 

In this chapter, shipboard incubation experiments were conducted in the 

tropical North Atlantic Ocean using freshly collected aerosols, surface seawater and 

Trichodesmium colonies.  The transfer of aerosol Fe to various components in the 

incubation experiments was monitored by measuring the initial total Fe amounts on 

aerosol filters, the total and dissolved Fe concentrations in seawater (after 

incubation), the Fe adsorbed or taken up by Trichodesmium, and the particulate Fe 

remaining on aerosol filters.  The Trichodesmium uptake of aerosol Fe is compared to 

the amount of labile Fe species (Chen and Siefert, 2003) on the aerosol filters added 

to the incubation solution.  We also explore the relation between the uptake Fe and 

the total aerosol Fe released in the seawater.  The influence of Trichodesmium on the 

release of Fe from the aerosol filters and the Fe adsorption/desorption between the 

dissolved and suspended particulate Fe in the seawater are discussed.  A conceptual 

model is built to demonstrate that Trichodesmium mediate the aerosol Fe transfer 
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from the aerosol filters to the colonies that in turn have an impact on the aerosol Fe 

release and dissolution.  This is the first field study to investigate the Trichodesmium 

uptake of aerosol Fe and its influences on the aerosol Fe transfer in areas of heavy 

dust loadings and Trichodesmium blooms, using concurrent measurements in aerosol, 

seawater and Trichodesmium samples. 

4.2 Experimental Section 

4.2.1 Aerosol, Surface Seawater and Trichodesmium Collection 

Aerosol samples (approximately 24 hour sampling times) were collected 

during a spring cruise (18 April to 20 May 2003) over the tropical North Atlantic 

Ocean.  A high-volume dichotomous virtual impactor (HVDVI) (Solomon et al., 

1983) was setup above the bridge of the R/V Seward Johnson to collect fine (with 

aerodynamic diameters less than 2.5µm) and coarse (with aerodynamic diameters 

greater than 2.5µm) fractions of ambient aerosols.  The fine- and coarse-fraction 

aerosols were collected on two 90 mm diameter Teflon filters (Gelman Zefluor, 1µm 

pore size). More details on the aerosol sample collection are described in chapter 2 

(see also Chen and Siefert, 2003).   

Surface seawater was collected from a fish deployed at 2 m below the surface 

and towed at about 5 knots during the cruise.  The seawater was pumped up through 

acid-cleaned Teflon tubing coupled to a 0.5 m section of C-flex tubing (for the pump 

head), and filtered on line through an acid-cleaned polypropylene cartridge filter 

(0.22 µm, MSI, Calyx®). The system was purged, rinsed and conditioned by passing 

at a minimum of 3 L of seawater through it, and then the filtered seawater was 

collected in eight acid-cleaned polycarbonate 300 mL bottles. 
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Trichodesmium colonies were collected using an acid-cleaned all-plastic 100-µm 

mesh plankton net. The net was deployed 6 m away from the ship’s starboard side 

and towed for 5 min at a depth of 4 m. Individual colonies were removed from the 

acid-cleaned polyethylene net collector with a plastic inoculating loop in a class-100 

clean hood. Approximately 100 Trichodesmium colonies were added into each 

polycarbonate bottle filled with the 300 mL filtered seawater.   

4.2.2 Aerosol Addition Experiments 

Six aerosol addition experiments (E1 to E6) were performed during the R/V 

Seward Johnson research cruise in the tropical North Atlantic Ocean (Figure 4-1) 

using freshly collected aerosols, surface seawater, and natural Trichodesmium 

colonies.  Four experiments (E1, E3, E4 and E6) were done at stations inside of the 

plume while E2 and E5 were performed at stations outside of the plume according to 

the salinity data of the seawater samples (Table 4-1). Each aerosol addition 

experiment had four treatments (with duplicates) that included a seawater blank (T1), 

seawater plus aerosol filter sub-samples (T2), seawater plus Trichodesmium colonies 

(T3), and seawater plus aerosol filter sub-samples and Trichodesmium colonies (T4).   

Fine and coarse fractions of aerosol filter sub-samples (Teflon filter cuts) were 

combined and added into the T2 and T4 treatments, and Trichodesmium colonies 

were transferred into the T3 and T4 bottles.   

The total Fe added to the solution from the aerosol filter was in excess (a 

factor of greater than 100) compared to the dissolved seawater Fe and the Fe 

associated with the Trichodesmium colonies. The total labile Fe added to the  
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Figure 4-1.  Locations of the aerosol addition experiments (E1 to E6) performed in 

the Tropical North Atlantic Ocean on the R/V Seward Johnson cruise from 18 April 

to 20 May 2003. 
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Table 4-1.  Salinities, concentrations of initially dissolved Fe (DFe) and P (DP) in the 

seawater collected for the six aerosol addition experiments, and amounts of the 

aerosol Fe added (FeIA) to the incubation solutions and distributed to each 

component as the particulate Fe suspended in the seawater (FePS), the Fe dissolved in 

the seawater (FeDS), the adsorbed and/or intracellular Fe on the Trichodesmium 

(FeTT or FeIT), and the Fe remaining on the Teflon filter sub-samples (FeRF) in the 

two treatments T2 (seawater plus aerosols treatment) and T4 (seawater plus aerosols 

and Trichodesmium treatment) of the six aerosol addition experiments (E1 to E6).  

The total Fe in the seawater (FeTS) is the sum of the FePS and FeDS.  Seawater blank 

(T1) and Trichodesmium blank (T3) have been deducted from the FeDS, FePS, FeTS, 

FeIT and FeTT values of the T2 and T4, respectively.  Relative percent differences 

(RPD) between the FeIA and summation of all other Fe components are calculated.  

Exp.
. 

Sali. 
 
 

DFe 
 

nM 

DP 
 

nM 

 FeIA 
 
µg 

FeDS 
 
µg 

FePS 
 
µg 

FeTS 
 
µg 

FeIT/ 
FeTT* 
µg 

FeRF 
 
µg 

RPD 
 

% 
E1 32.4 0.64 27.5 T2 3.00 ⎯ ⎯ 0.002 ⎯ 3.44 13.7 

    T4 5.73 ⎯ ⎯ 0.051 0.004 6.84 18.4 
E2 36.0 4.84 26.6 T2 13.5 ⎯ ⎯ 1.54 ⎯ 10.5 -11.2

    T4 13.5 ⎯ ⎯ 1.02 0.108 12.9 4.0 
E3 34.7 2.43 ⎯ T2 21.1 0.033 7.78 7.81 ⎯ 14.6 6.3 

    T4 21.1 0.011 2.94 2.95 0.649* 16.6 -3.9 
E4 32.8 2.43 6.05 T2 20.2 0.157 10.2 10.4 ⎯ 10.5 3.7 

    T4 20.2 0.084 8.12 8.20 ⎯ 10.9 -5.2 
E5 ─ 2.43 312 T2 8.20 0.017 3.14 3.16 ⎯ 6.00 11.0 

    T4 8.20 0.398 3.82 4.21 ⎯ 3.89 -1.2 
E6 31.5 1.62 3.76 T2 18.9 0.074 10.6 10.7 ⎯ 8.76 2.9 

    T4 18.9 0.017 5.99 6.00 ⎯ 10.8 -11.8
* means the FeTT.  
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incubation solutions was a small fraction of the total Fe (about 2%) and would result 

in a concentration of 15 ± 3.8 nM if all labile Fe from the aerosol filters were to 

dissolve. This concentration is approximately a factor of 2 to 4 higher than the Fe 

initially dissolved in seawater (Table 4-1) and associated with the Trichodesmium.  

Total average atmospheric labile-Fe concentration measured over this tropical 

Atlantic region during this research cruise was ≈ 15 ng m-3.  The calculated dry 

depositional flux of the labile Fe to the surface ocean during this study was ≈ 13 µg 

m-2 d-1, using a dry deposition velocity of 1.0 cm s-1.  If you assume a mixing depth 

for the surface ocean is on the order of 10 m (this depth is an approximate length 

scale based on the turbulent diffusion of an inert tracer added to the surface of a time 

period of 1 day) and neglect any losses of Fe (e.g. biological uptake), the rate of 

increase in surface seawater Fe (labile) concentration (to a depth of 10 m) would be 

approximately 0.02 nM d-1.  So, over a period of one day, the increase in the total 

labile aerosol Fe (15± 3.8 nM) added to the incubation solutions is almost two orders 

higher than the volume weighted increase in total labile Fe in the upper 10 m of the 

surface ocean. Therefore, the labile or total aerosol Fe additions in the experiments 

were much higher compared to the dust deposition of Fe to the real ocean.  The 

choice to add this quantity of labile aerosol Fe to the experiment was a compromise 

between keeping it low enough to be able to relate the results to the ambient 

conditions during the cruise, and adding enough to be able to detect an effect within 

the capabilities of the analytical techniques. 

The Fe initially associated with the aerosol on the Teflon filter sub-sample 

(Fe-Initial-Aerosol or FeIA) can dissolve into the seawater (Fe-Dissolved-Seawater or 
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FeDS), be suspended in the seawater as particulate Fe (Fe-Particulate-Seawater or 

FePS), be adsorbed onto the surface of the container (Fe-Adsorbed-Container or 

FeAC), be adsorbed onto the surface of the Trichodesmium (Fe-Adsorbed-

Trichodesmium or FeAT), be taken up by Trichodesmium as intracellular Fe (Fe-

Intracellular-Trichodesmium or FeIT), or remain on the original filter sub-sample 

(Fe-Remaining-Filter or FeRF).  The FeDS and FePS, and the FeAT and FeIT can be 

summed up as the total Fe released into the seawater (FeTS = FeDS + FePS) and the 

total Fe associated with the Trichodesmium (FeTT = FeIT + FeAT), respectively.  

About 100 Trichodesmium colonies were transferred into each bottle with 300 mL 

incubation solution, which was comparable to a Trichodesmium bloom situation in 

the real surface ocean (Carpenter et al., 2004). 

  All bottles were placed in a flowing seawater incubator under ambient light 

for 24 hours.  After the incubation, the Trichodesmium colonies were removed from 

the bottles, while the remaining solution and Teflon filter sub-samples were saved for 

Fe analysis for the first three experiments (E1 to E3).  In the E4, E5 and E6, the 

whole solution for each incubation bottle was filtered through an acid-cleaned 

polycarbonate membrane (Nuclepore 0.4µm pore size), which resulted in the 

membrane collecting both the Trichodesmium colonies and particulate Fe, the filtered 

solution, the polycarbonate membrane and the Teflon filter sub-samples were saved 

and analyzed for Fe.  The Trichodesmium colonies removed for the first three 

experiments (E1, E2 and E3) were placed on an acid-cleaned polycarbonate 

membrane (0.22 µm pore size) for intracellular Fe and phosphorus (P) analyses (E1 

and E2), or deposited in a 3 mL Teflon vial for the total fraction analysis (E3).   The 
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membrane was soaked in 5 mL of ultra-clean oxalate reagent (Tovar-Sanchez et al., 

2003) for 5 minutes and then passed by 10 mL of Nanopure water.  The oxalate 

reagent removes the Fe and P (Tovar-Sanchez et al., 2003; Sañudo-Wilhelmy et al., in 

preparation) adsorbed on Trichodesmium surface, allowing for intracellular fraction to 

be determined.  All the experimental operations above and the measurements below 

were done following trace-metal clean techniques. 

4.2.3 Labile and Total Iron, Phosphorus on Membranes 

Three labile Fe species on the Teflon filter were investigated using an aqueous 

extraction procedure and measured using long path length absorbance spectroscopy 

(LPAS) immediately after sample collection. The 0.5 mM of pH 4.5 formate-acetate 

buffer was used as the extraction solution and the 50 mM of hydroxylamine (HA) 

solution used for the Fe reduction.  Fe(II) concentrations were determined 

colorimetrically by complexation with ferrozine (Carter, 1971) and subsequent LPAS 

measurements (Waterbury et al., 1997).  LFe(II), LFe(III) and RPFe were 

operationally defined by the extraction time and reagents (see details at chapter 2). 

A strong-acid microwave digestion procedure followed by Inductively 

Coupled Plasma Mass Spectrometry (ICP-MS, HP 4500) was used to measure total 

Fe on the Teflon filter sub-samples (or polycarbonate membranes). 10 N of nitric acid 

and 28N of hydrofluoric acid (Seastar Chemical Inc.) were used in sample digestion, 

and a multi-element internal standard of Sc, In and Bi (SPEX CertiPrep, Inc.) applied 

in ICP-MS measurement (see details at chapter 3).  Total Fe concentration on the 

filter was then calculated using the volume of the extraction solution and the ICP-MS 

measured Fe concentration.  Water-soluble phosphate concentrations were measured 
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using an aqueous extraction technique (Derrick and Moyers, 1981) and Ion 

Chromatography (Dionex DX-600) (see details at chapter 3). 

4.2.4 Iron and Phosphorus Analyses in Seawater and Trichodesmium 

Seawater samples were acidified with sub-boiling quartz distilled HCl (Q-

HCl) to pH less than 1.5 and stored for at least 1 month prior to analysis.  Fe 

concentrations were determined by ICP-MS (ThermoFinigan, Element 2) after pre-

concentration with an ammonium1-pyrrolidinedithiocarbamate/diethylammonium 

diethyldithiocarbamate (APDC/DDDC) organic extraction (Bruland et al., 1985).  P 

concentrations were determined by MAGnesium Induced Coprecipitation (MAGIC) 

method (Karl and Tien, 1992).  Phosphate in the seawater is scavenged by Mg(OH)2 

precipitation and then dissolved in an acid solution.  The concentrated phosphate was 

measured colorimetrically by adding the molybdenum (Mo) complexing solution. 

  Trichodesmium colonies collected on the polycarbonate membrane or in the 

Teflon vial were stored frozen and transported back to the laboratory for acid 

digestion.  The digestion procedure followed that of Kustka et al. (2003b).  Fe 

contents were determined by ICP-MS (ThermoFinigan, Element 2) and P was 

quantified spectrophotometrically using the methods described by Gieskes et al. 

(1991).  

4.3 Results  

4.3.1 Mass Balance of Aerosol Iron 

The FeIA, FeTS, FeIT and FeRF were measured for E1 and E2; the FeIA, 

FeDS, FePS, FeTT and FeRF were measured for E3; and the FeIA, FeDS, FePS and 

FeRF were measured for E4 to E6 (Table 4-1).  The FeAC was not quantified for the 
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experiments, however this Fe pool was a small fraction of the total Fe based on the 

mass balance calculations for the experiments. The last column of Table 4-1 

summarizes the mass balance for each experiment in terms of relative percent 

difference (RPD) of Fe between the initial aerosol Fe added (FeIA) and the 

summation of the Fe measured in each of the components at the end of the 

experiment.  The initial aerosol Fe added (FeIA) was in a good agreement with the 

sum of the Fe distributed to each component (FeDS, FePS, FeIT and FeRA) for most 

of the experiments.  The Fe RPD during the experimental operation was typically less 

than ±14% of the total aerosol Fe added, which is within our estimated error for the 

initial mass of aerosol Fe on the filter based on the analytical techniques and the filter 

sub-sampling method.  The only experiment with slightly higher Fe RPD was E1 

where the percent difference was 18.4% for the T4.  The filter sub-samples removed 

from the T4 treatment may have been contaminated based on the high Fe values of 

the FeRF, and this contamination probably occurred after the incubation. There also 

may not have been any contamination to this experiment and the higher RPD may 

have been due to inhomogeneous distribution of Fe on the aerosol filter. The E1 was 

still included in the following discussion even though the RPD was slightly higher. 

4.3.2 Trichodesmium Uptake of Aerosol Iron 

The intracellular Fe in the Trichodesmium (FeIT) incubated with aerosol 

filters was significantly higher than those incubated without aerosols, indicating a 

significant uptake of aerosol Fe by Trichodesmium in the aerosol addition 

experiments (E2 and E3, Figure 4-2).  Trichodesmium colonies were carefully 

removed after the incubation for intracellular Fe analysis for experiments E1 and E2.   
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Figure 4-2. Amounts of Fe taken up by Trichodesmium colonies (FeIT) in the T3 

(seawater plus Trichodesmium treatment) and T4 (seawater plus aerosols and 

Trichodesmium treatment) and amounts of the aerosol Fe added (FeIA) to the T4 of 

the three aerosol addition experiments (E1, E2 and E3), the intracellular Fe in the T4 

of the E3 was calculated by assuming 60% of the total Fe associated with the 

Trichodesmium is interior Fe. 
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Figure 4-3.  Relationship between amounts of Fe taken up by Trichodesmium (FeIT) 

and total Fe concentrations released in seawater (FeTS) in the T4 (seawater plus 

aerosols and Trichodesmium treatment) of the three aerosol addition experiments (E1, 

E2 and E3). 
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Figure 4-4.  Amounts of the labile Fe(II) (LFe(II)), labile Fe(III) (LFe(III)) and 

reducible particulate Fe (RPFe) on the Teflon filter sub-samples added to the 

incubation solutions, and the Fe amounts taken up by the Trichodesmium (FeIT) in 

the three aerosol addition experiments (E1, E2 and E3). 
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The FeTT was measured in the E3, and the FeIT was estimated by assuming that 60% 

of total Fe associated with Trichodesmium colonies was interior Fe. This 60% value 

was the average percentage of the FeIT to FeTT observed for the Trichodesmium 

collected directly from the station where E3 was performed (Tovar-Sanchez, unpubl. 

data).  The intracellular Fe was 53, 61 and 30 ng in approximately 200 

Trichodesmium colonies (each treatment) for the E1, E2 and E3 after the 24-hour 

incubation in only filtered seawater (T3), respectively.  However, the intracellular Fe 

in the Trichodesmium incubated with aerosol filters (T4) increased as more aerosol Fe 

was added to the incubation solutions from E1 to E3 (Figure 4-2).  A linear 

relationship (p<0.05, r=0.9974) was found between the FeIT and FeTS in the T4 

treatments for the three experiments (Figure 4-3). 

The measured FeTT was 0.649 µg and the estimated FeIT (60% of the FeTT) 

was 0.389 µg in the T4 treatment for E3, which were about 20 and 12 factors higher 

than the total FeDS (0.033 µg) measured in the T2 of the E3, respectively (Table 4-1).  

Nonetheless, the FeIT amount was found to be less than the amount of the total labile 

Fe (LFeIA), that is the sum of the LFe(II), LFe(III) and RPFe, on the aerosol filter 

sub-samples added to the incubation solutions for the three experiments (E1, E2 and 

E3, Figure 4-4).  The amounts of the total labile Fe (0.49±0.137 µg) on the Teflon 

filter sub-samples were at least a few factors higher than the FeDS (0.12±0.104 µg) 

measured in the T2 of the experiments (E3 to E6). It is difficult to determine a trend 

from this data but for E2 & E3 the uptake of aerosol Fe was on the order of the 

measured labile Fe on the filter (Figure 4-4), which is only a small fraction (about 

2%) of the total Fe. 
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The intracellular P content in the Trichodesmium colonies (PIT) was also 

determined after the 24-hour incubation along with the FeIT for the T3 (seawater plus 

Trichodesmium only) and the T4 (seawater plus aerosols and Trichodesmium) of the 

experiment E1 and E2.  The total fraction of P in the Trichodesmium (PTT) was 

measured along with the FeTT for the E3.  PTT and FeTT for the first two 

experiments were calculated by multiplying the FeIT and PIT by factors of 2 and 4.8, 

respectively.  Theses factors were average ratios between the Fe(P)TT and Fe(P)IT 

for the Trichodesmium colonies collected directly from the surface ocean during the 

cruise (Tovar-Sanchez, unpubl. data).  The molar ratios of FeTT to PTT were 

0.009±0.003 and 0.82±1.38 for the Tichodesmium control (T3) and aerosol addition 

treatment (T4), respectively. The initial amounts of water-soluble phosphate on the 

aerosol filter sub-samples (PIA) added to the incubation solutions were measured, and 

the LFeIA to PIA molar ratios ranged from 0.14 to 0.67.  

4.3.3 Effects of Trichodesmium on Iron Dissolution in Seawater 

The FeRF amounts were always higher in the T4 (contains Trichodesmium) 

than in the T2 (no Trichodesmium) for the aerosol addition experiments with the 

exception of E5 (Table 4-1).  Correspondingly, the FeTS concentrations were found 

to be significantly lower in the T4 than in the T2 treatments for the five experiments 

(E1 to E4, and E6) (Figure 4-5).  The mean FeDS concentration in the T4 was also 

found to be lower than that in the T2 (Figure 4-5), although this difference was not 

statistically significant.  Six aerosol addition experiments were performed at different 

locations (Figure 4-1) and different times, and therefore the aerosols, Trichodesmium 

and seawater collected locally for each experiment may have different properties.   
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Figure 4-5.  Average of the total Fe concentrations suspended in the seawater (FeTS) 

for the aerosol addition experiments E2, E3, E4 and E6, and the average of the 

dissolved Fe concentrations in the seawater (FeDS) for the experiments E3, E4 and 

E6 after the 24-hour incubation with (T4) and without (T2) Trichodesmium. The error 

bars represent plus/minus standard deviation. 
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The molar ratio of dissolved Fe (DFe) to P (DP) (Table 4-1) in the seawater collected 

at the station where E5 was conducted was the lowest value, about a factor of 55 

lower than the highest DFe : DP ratio during the six experiments.    

The FeDS (< 0.4µm) concentrations were measured after 24-hour incubation 

from the E3 to E6.  The FeDS concentrations appear to be affected strongly by the 

Trichodesmium and not correlated with any other Fe pools in the T4 when 

Trichodesmium colonies exist.  In the T2 treatments where only the aerosol-filter was 

added to the seawater, however, more Fe was dissolved into the seawater (FeDS) 

when more particulate Fe (FePS) was released off the Teflon filter sub-samples 

(Table 4-1). 

4.4 Discussions 

 Filtered seawater, aerosol filters and Trichodesmium colonies were combined 

to construct a small ecosystem (T4) to investigate the uptake of Fe from ambient 

aerosol to Trichodesmium. The influence of Trichodesmium on the dissolution and 

suspension of particulate Fe from the ambient aerosol samples were also investigated.  

A conceptual model is built to describe the Fe transfer starting from the aerosol filters 

ending at the Trichodesmium colonies that in turn influence the Fe-transfer process in 

the studied ecosystem (Figure 4-6).  Aerosol Fe on the Teflon filter sub-samples is 

released into the seawater to become the dissolved or suspended particulate Fe 

species, these two Fe pools  can transfer Fe between each other through 

adsorption/desorption process, and then taken up by the Trichodesmium.  The 

Trichodesmium in turn influences the Fe release from the Teflon filter sub-samples  
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Figure 4-6.  Conceptual model of the Fe transfer that starts from the Fe on the aerosol 

filter sub-samples (FeIA) to the dissolved and suspended particulate Fe in the 

seawater (FeDS and FePS), and then ends at the intracellular Fe in the Trichodesmium 

(FeIT).  Trichodesmium in turn influences the aerosol Fe release and the 

adsorption/desorption between the FeDS and FePS in the seawater through the 

organic ligands it excretes.   
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and the Fe adsorption/desorption between the dissolved and particulate Fe species in 

the seawater through the organic ligands it excretes. 

Aerosol Fe released as the dissolved or suspended particulate Fe in the 

seawater from the Teflon filter sub-samples were affected by the presence of 

Trichodesmium (Figure 4-6).  The FeRF increased 4% to 23% by adding the 

Trichodesmium colonies into the incubation solutions (by comparing T4 and T2 in  

Table 4-1), and the averaged FeTS and FeDS in the T2 (no Trichodesmium) were 

about twice as much as those in the T4 (contains Trichodesmium) for the experiments 

E1 to E4 and E6 (Figure 4-5).  Nonetheless, a significantly higher FeTS and FeDS 

were observed in the T4 treatment compared to the T2 for the E5 (Table 4-1). The E5 

was done outside of the plume at the location where the lowest DFe : DP ratio was 

found in the ambient seawater (Table 4-1).  So the discrepancy of the E5 may be 

explained by assuming that the Trichodesmium used in the experiment was 

historically iron-limited and thereby assisted the suspension and dissolution of the 

aerosol Fe.  Trichodesmium may affect the release of aerosol Fe through the organic 

ligands it excretes.  Extracellular ligands such as siderophores are produced by many 

marine cyanobacteria as part of high-affinity Fe uptake systems (Wilhelm, 1995; 

Granger and Price, 1999; Reid, 1993), and intracellular ligands are likely released 

into the water column as cells breakdown (Hutchins et al, 1999).  These organic 

ligands may adsorb to the surface of the Teflon filters (or to the aerosol species 

present on the filter) which is able to lock the Fe-containing surface sites or inhibit 

the particle release. This inhibition may not occur for Fe dissolution in the real ocean 

since the Teflon filter was added artificially to the incubation solutions. 
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 Trichodesmium had a considerable effect on the FeDS (<0.4µm) (by 

comparing T4 and T2 in Table 4-1), suggesting that the dissolved Fe phase had been 

taken up by the Trichodesmium (Figure 4-6).  However, the FeIT (0.389µg) was 

about an order of magnitude higher than the FeDS (0.033µg) in the E3, and there was 

a significant linear relationship (p<0.05, r=0.997) between the FeTS and FeIT from 

the E1 to E3. This suggests that Trichodesmium is able to utilize part of the colloidal 

or particulate Fe species in addition to the dissolved Fe in the seawater (Figure 4-6).  

The similar behavior has been observed in the cultured Trichodesmium (IMS 101) 

(Kustka et al., 2003b) and coastal diatom T. pseudonana (Sunda and Huntsman, 

1995).  They continued to take up Fe within the region where the Fe hydroxides are 

precipitating.  Hutchins et al. (1999) also observed the uptake of organically 

complexed Fe by phytoplankton when the Fe concentration had exceeded the 

solubility limit of inorganic Fe in seawater.   

The FeIT amount was less than or comparable to the LFeIA amount (Figure 4-

4) indicating that the total labile Fe determined by the aqueous extraction procedure 

(Chen and Siefert, 2003) may be a threshold of the Fe that was taken up by 

Trichodesmium in this study.  Total labile Fe includes three labile Fe species, LFe(II), 

LFe(III) and RPFe.  The LFe(II) has the greatest probability of being directly utilized 

by phytoplankton or converting to Fe colloids (e.g. organically complexed Fe(III)) 

that would also be bioavailable (Miller and Kester, 1994).  The LFe(III) and RPFe 

may adsorb to the cell surface and undergo a thermal or photochemical reduction 

before taken up by phytoplankton, or can be reduced to bioavailable forms of Fe in 

the atmosphere or surface seawater (Siefert et al., 1996; Chen and Siefert, 2003;  
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Voelker and Sedlak, 1995).  Nonetheless, due to the limited data in this study the 

correlation between the FeIT and LFeIA cannot be quantified. 

 The Trichodesmium colonies collected in the western tropical North Atlantic 

(the region where the experiments were done) had a larger Fe : P stoichiometry 

compared to the Trichodesmium in the Australian coast and central North Atlantic 

(Table 4-2).  Sanudo-Wilhelmy et al. (2001) suggested the Trichodesmium colonies in 

the central Atlantic were not Fe-limited because the dissolved Fe : P molar ratios 

were 3 to 4 times higher than the ratio measured in Trichodesmium.  In the western 

tropical North Atlantic the dissolved Fe : P ratios (calculated from the column 2 and 3 

of Table 4-1) ranged from 7.8 to 431 mmole mol-1, which were close to or orders of 

magnitude higher than the FeTT : PTT ratios (Table 4-2) measured in the T3 of the 

aerosol addition experiments.  So the Trichodesmium colonies used in the 

experiments were also expected to be not historically Fe-limited.  Moreover, the 

FeTT : PTT ratios (Table 4-2) were about 1 or 2 orders of magnitude lower than the 

LFeIA : PIA ratio (140 to 670 mmol mol-1) added into the incubation solutions.  

Trichodesmium tended to take up aerosol Fe but not phosphorus which caused 1.2 to 

215 times (compare T3 and T4 in Table 4-2) increase in the Fe : P ratio after the 

incubation.  Therefore, the Trichodesmium in this Atlantic region may adapt to a 

luxury uptake of aerosol Fe as a consequence of the episodic nature of the dust events 

from North Africa.   Assuming that the intracellular C : P molar ratio in 

Trichodesmium is at the Redfield ratio of 106: 1, the calculated intracellular Fe : C 

ratios will range from 225 to 6.82×104 µmol mol-1 in the Trichodesmium after the 24-

hour incubation with added aerosol filters.  These Fe : C ratios are about a factor of 6 
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to 1795 larger than the 38 µmol mol-1 Fe/C ratio required for a moderately Fe-limited 

diazotrophic growth (0.1 d-1) , which is consistent with the Trichodesmium luxury 

uptake of Fe observed by Kustka et al. (2003b).  These results seem to indicate that 

the Trichodesmium collected in the western tropical North Atlantic had a large 

capacity for the luxury uptake of aerosol Fe. 

4.5 Conclusions 

The aerosol addition experiments were conducted over the tropical North 

Atlantic Ocean using freshly collected aerosols, seawater, and Trichodesmium 

colonies.  A significant uptake of aerosol Fe by Trichodesmium was observed and the 

uptake amounts increased in incubations with increasing amounts of aerosol Fe.  

Trichodesmium was able to utilize part of the colloidal or even particulate Fe besides 

the dissolved Fe species in the seawater. The organic ligands produced by 

Trichodesmium may play an important role in controlling the aerosol-Fe releasing and 

dissolving into the seawater.  Trichodesmium colonies collected in the western 

tropical North Atlantic have demonstrated a luxury uptake of aerosol Fe in the aerosol 

addition experiments, and the uptake amounts were at least 6 times greater than 

needed for moderately Fe-limited growth (0.1 d-1).  The Trichodesmium uptake of Fe 

was less or comparable to the total labile Fe determined by the aqueous extraction 

procedure suggesting that the labile Fe pool may be a threshold of the aerosol Fe that 

can be taken up by Trichodesmium. 
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Chapter 5: Seasonal Variations of Atmospheric Nutrient 
Concentrations and Sources over the Western Tropical North 
Atlantic 
 

 

5.1 Introduction 

The present study is part of a research program that focused on the factors 

effecting and impact of diazotrophic microorganisms in the western tropical North 

Atlantic (WTNA).  Diazotrophs that influence other phytoplankton and trophic levels 

through input of fixed nitrogen (N) in this Atlantic region are under the impacts of the 

world’s largest freshwater flow from the Amazon River and the heavy dust loadings 

from North Africa.  Long-range transport of African dust to the WTNA, Caribbean 

Sea and even northeastern South America were demonstrated by numerous ground-

based observations (Prospero and Carlson, 1972; Prospero et al., 1970; Prospero et 

al., 1981; Talbot et al., 1990; Swap et al., 1992; Chen and Siefert, 2004; Siefert et al., 

1999) and satellite imagery of aerosol optical thickness (AOT) (Moulin and 

Chiapello, 2004).  The dust mobilized by winds from arid regions (Sahara and/or 

Sahel regions) carries significant amounts of Fe and P to the surface ocean, and the 

estimated atmospheric input of Fe and P to the WTNA (5° to 15°N, 40° to 60°W) are 

up to 8103× and 6109× Kg y-1, respectively (Prospero et al., 1996).   Anthropogenic 

emissions from North America and Europe, and biomass burning products from 

Africa can also be transported over this Atlantic region during different seasons.  

Pollution plumes that emerge from the east coast of North America and west coast of 

Europe over the North Atlantic Ocean are prominent in the spring and summer as 

manifested by AOT distributions (Prospero et al., 1996).  Anthropogenic sources in 
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Europe and the Mediterranean coastal region of North Africa (Med-Africa) can 

potentially contribute to the concentrations of NO3
- and other constituents over the 

Sahara and, subsequently, at Barbados throughout the year (Savoie et al., 1989). The 

importance of European sources is supported by the isotopic composition of Pb in 

aerosols at Barbados (Hamelin et al., 1989). The transport of biomass burning 

products from the savannah and forest regions of North Africa to Barbados only 

occur during the winter and spring as evidenced by the large seasonal variation in the 

NO3
- to non-sea-salt sulfate (NSS SO4

2-) mass ratios (Savoie et al., 1992).   

During the periods impacted by biomass burning, the NO3
-/NSS SO4

2- ratios at 

Barbados are a factor of about 2 higher than those during the summer and during the 

non-impacted winter and spring periods (Savoie et al., 1992).  These mineral and 

anthropogenic aerosols over the WTNA are a source of important nutrient species to 

the surface water, and may play a significant role in controlling N2 fixation and 

primary production in this region.   

 Deposition of atmospheric aerosol is a dominant source of Fe to the remote 

ocean (Duce and Tindale, 1991).  Recent studies have found Fe to be a rate-limiting 

nutrient to phytoplankton growth especially N2-fixing organisms in certain regions of 

the open ocean (Martin et al, 1994; Paerl et al., 1994; Coale et al, 1996; Cooper et al., 

1996; Falkowski, 1997; Sunda et al., 1997; Boyd et al, 2000).  Fe in the atmosphere is 

dominant by ferric oxides and (oxy)hydroxides. These species can undergo thermal or 

photochemical reduction in atmospheric waters and surface ocean (Siefert et al., 

1996; Voelker and Sedlak, 1995; Chen and Siefert, 2003) to become more soluble 

and therefore more bioavailable ferrous Fe (Fe(II)).  Fe(II) species has been found in 
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aqueous aerosol solutions, and the labile Fe(II) concentrations extracted with a low 

pH (1.0 to 4.5) buffer solution are typically a few percent (0.3 to 1.8%) of total Fe in 

marine mineral aerosols (Zhu et al., 1993; Siefert et al., 1999; Johansen et al., 2000; 

Chen and Siefert, 2004a).  Chen and Siefert (2004a) observed a seasonal and spatial 

variability of labile Fe(II) percent (0.3 to 16%) in aerosols over the tropical and sub-

tropical North Atlantic, and indicated that aerosol source origins could influence the 

Fe speciation in aerosols and thereby atmospheric fluxes of bioavailable Fe to the 

surface ocean.  A daily variability of soluble Fe(II), with the mean concentration in 

the day (3.7 ng m-3) twice as much as the night value (1.5 ng m-3), was observed in 

aerosols collected from this Atlantic region (Zhu et al., 1997).  

Atmospheric deposition may have an impact on supplies of major nutrients N 

and P to the surface ocean. The N deposition can affect oceanic N cycling at locations 

near the coasts where atmospheric sources are large, or in the centers of the highly 

stratified gyres where little nitrate is supplied to the surface by vertical mixing of the 

ocean (Michaels et al., 1996). Anthropogenic food and energy production extensively 

mobilize reactive N in the watershed of the North Atlantic Ocean (Galloway et al., 

1996). Anthropogenic N deposition has increased the productivity of the surface 

ocean (Galloway et al., 1996), and significantly contributes to eutrophication 

problems in coastal waters (Paerl, 1997; Spokes et al., 2000). P limitation of N2 

fixation by Trichodesmium has been suspected in the western and central North 

Atlantic Ocean (Wu et al., 2000; Sanudo-Wilhelmy et al., 2001).  Baker et al. (2003) 

indicated that N2 fixation stimulated by excess atmospheric Fe supply and 

phytoplankton utilization of atmospheric nutrient inputs (the measured aerosol N: P 
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was high) will tend to drive the ecosystem towards P limitation. But the N: P ratio in 

aerosol particles may vary seasonally and spatially due to the changes of aerosol 

origins. 

Two size fractions of aerosol samples were collected over the WTNA (5° to 

15°N, 40° to 60°W) during three separate month-long cruises in winter 2001, summer 

2001 and spring 2003.  Labile Fe species were measured onboard immediately after 

sample collection using an aqueous sequential extraction procedure (chapter 2, Chen 

and Siefert, 2003).  Major nutrient (phosphate PO4
3-, nitrate NO3

-, and ammonium 

NH4
+) concentrations were determined back in the laboratory using ion 

chromatography (IC).  Atmospheric labile and total Fe data collected during the 

winter and summer 2001 cruises have been reported in chapter 3 (see also Chen and 

Siefert, 2004a).  In this chapter we present soluble atmospheric PO4
3-, NO3

-, and 

NH4
+ concentrations observed during the three seasonal cruises.  Potential source 

contributions to atmospheric PO4
3-, NO3

-, and NH4
+ over the WTNA are explored 

based on the seasonal variations of these nutrient concentrations and correlations in 

two size fractions of aerosol samples collected.  Dry deposition fluxes of atmospheric 

nutrients N, P and labile Fe are calculated and their influences on the WTNA 

ecosystem discussed for each different season.  

5.2 Sample Collection and Analysis 

5.2.1 Sampling Location and Periods 

Aerosol samples were collected aboard the R/V Seward Johnson during 

winter (20 January to 18 February) 2001 and spring (18 April to 20 May) 2003 and 

aboard the R/V Knorr during summer (9 July to 14 August) 2001 cruises over the  
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Figure 5-1. Sampling locations during three separate month-long cruises in different 

seasons (20 January to 18 February 2001, 9 July to 14 August 2001, 18 April to 20 

May 2003) over the western tropical North Atlantic (5° to 15°N, 40° to 60°W), each 

marker on the map represents an approximately 24-hour aerosol sample collected. 

Winter cruise (20 Jan. to 
18 Feb. 2001) 
Summer cruise (9 Jul. to 
14 Aug. 2001) 
Spring cruise (18 Apr. to 
20 May 2003) 

Atlantic 
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WTNA (5° to 15°N, 40° to 60°W).  The sampling locations are outlined in Figure 5-

1, where each marker represents an approximately 24-hour aerosol sample collected.   

Five-day isentropic air mass back trajectories (AMBTs) were calculated from 

the National Oceanic and Atmospheric Administration (NOAA) FNL database using 

the Hybrid Single-Particle Langrangian Integrated Trajectories (HY-SPLIT) program 

(Draxler, 2002; see Chapter 3 for model description). Although there are errors 

associated with these calculations due to the data sets and models, the AMBTs still 

provide useful information about the synoptic situation and general source of the air 

mass sampled.  Figure 5-2 shows four typical AMBTs calculated at 20 m, 500 m and 

1500 m height levels at 01 or 00 UTC (corresponding to the midway of each 

sampling day) over the WTNA during the sampling seasons. 

 5.2.2 Aerosol Collection 

A high volume dichotomous virtual impactor (HVDVI) (Solomon et al., 1983) 

was setup on 02 deck of the R/V Knorr or above the bridge of the R/V Seward 

Johnson to collect two size fractions (with aerodynamic diameters greater than and 

less than 2.5µm) of ambient aerosols. The fine and coarse fraction aerosols were 

collected on two 90 mm diameter Teflon membrane filters (Gelman Zefluor, 1µm 

pore size). A sector sampling system was used to allow collection of aerosol samples 

only when the relative wind direction was ±75° relative to ship’s bow. Aerosol 

sample collection and chemical analysis below were done following trace-metal clean 

techniques. 
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5.2.3 Chemical Analyses 

Total labile Fe concentrations on the filter were investigated using an aqueous 

sequential extraction procedure and measured using long path length absorbance 

spectroscopy (LPAS) (Waterbury et al., 1997) immediately after sample collection.  

The detailed extraction procedure is given in chapter 2 (see also Chen and Siefert, 

2003).  Briefly, the 0.5 mM of pH 4.5 formate-acetate buffer was used as the 

extraction solution and the 50 mM of HA solution used for the Fe reduction.  Total 

labile Fe was operationally defined by the extraction time and reagents.  Elemental 

analysis of 14 elements (Al, Ca, Fe, K, Na, Mg, Cr, Co, Cu, Pb, Mn, Ni, V, Zn) on the 

sample filters was performed using a strong-acid microwave digestion procedure 

followed by an ICP-MS (HP 4500) analysis.  Anion (F-, glycolate, acetate, formate, 

MSA-, Cl-, SO4
2-, oxalate, Br-, NO3

-, PO4
3-) and cation (Li+, Na+, NH4

+, K+, Mg2+, 

Ca2+) concentrations were analyzed using an aqueous extraction technique (Derrick 

and Moyers, 1981) and a Dionex DX-600 IC.  More details on elemental and ion 

analyses on the filter and calculation of atmospheric concentrations (e.g. NSS SO4
2-) 

are described in chapter 3 (see also Chen and Siefert, 2004). 

5.3 Results and Discussions 

Dust transport from North Africa over the North Atlantic Ocean occurs 

throughout the year (Figure 5-2b), but the dust transport pathway and effected region 

vary due to the seasonal shift of the Inter-Tropical Convergence Zone (ITCZ) (Husar 

et al., 1997; Moulin et al., 1997).  This seasonal north to south shift in the maximum 

zone of African dust from summer to winter influences other air mass circulations  



 

 107 
 

 

 

 

Figure 5-2. Representative 5-day air mass back trajectories over the western 

tropical North Atlantic during different seasons, trajectories are calculated at three 

different final elevations (squares, 20 m; triangles, 500 m; circles, 1500 m) above sea 

level for (a) January 24, 2001; (b) February 5, 2001; (c) April 27, 2003; (d) August 

11, 2001.
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over the studied Atlantic region.  During the month of January, air masses can be 

transported from the central North Atlantic where they may originate from 

anthropogenic emissions from North America or Europe (Figure 5-2a).  On the other 

hand, air masses swept along the eastern coast of South America can reach the 

sampling area during the summer (Figure 5-2d) when the maximum dust zone moves 

to 20°N Atlantic Ocean.  Another situation is that the air masses have circulated over 

the WTNA for more than 5 days before being collected as shown in figure 5-2c, and 

the aerosols in these air masses have had more time to undergo thermal and 

photochemical reactions that can control the chemical composition of the aerosols. 

The dust transport during winter occurs at lower altitudes in the trade wind layer 

(Figure 5-2a & b), while the highest dust loadings at high altitudes take place during 

summer due to the temperature-dependent upward motion of dust-laden air (Chiapello 

et al., 1995, 1997).  Swap et al. (1996) also indicated that dust outbreaks are most 

frequent and extensive during the first 6 months of the year, with an annual peak in 

outbreak activity observed during February through April. 

5.3.1 Nutrient Concentrations in Aerosols 

Aerosol samples collected during three research cruises from the WTNA were 

analyzed for water-soluble PO4
3-, NO3

- and NH4
+.  The percentages of observations 

with reported concentrations below the detection limit are 13.4%, 1.3% and 3.2% for 

soluble PO4
3-, NO3

- and NH4
+, respectively.  Values of half of the detection limit were 

used for samples that were below detection limit in the statistical analysis.  The 

concentrations of the nutrient species in fine and coarse aerosol fractions for the 

different sampling seasons were graphed in Figure 5-3.  Statistical analysis using one- 
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Figure 5-3. Box-and-whiskers plots comparing the concentrations of (a & b) water-

soluble PO4
3-, (c & d) NO3

- and (e & f) NH4
+ in coarse and fine fractions of aerosol 

particles collected during three different seasons (winter, 20 January to 18 February 

2001; summer, 9 July to 14 August 2001; spring, 18 April to 20 May 2003) over the 

western tropical North Atlantic. 
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way ANOVA of the means was performed after log10 transformation of the data, due 

to non-normal distributions of the concentrations. 

The highest soluble PO4
3- concentrations (range from 0.63 to 82 ng m-3, 

median 17 ng m-3) were observed in the winter, and the lowest concentrations (range 

from 0.26 to 70 ng m-3, median 6.5 ng m-3) occurred in the summer (Figure 5-3a) in 

the fine aerosol fraction.  However, soluble PO4
3- concentrations in coarse fraction of 

aerosols were found to decrease in the order of spring > winter > summer (median 17 

> 8.8 > 5.0 ng m-3) (Figure 5-3b).  There was no significant difference between the 

winter and spring in total soluble atmospheric PO4
3- concentrations (fine + coarse 

fractions), but the concentrations in the summer were significantly lower than those in 

the winter (p<0.02) and spring (p<0.001).  Concentrations of total soluble PO4
3-   

 (seasonal medians from 11.5 to 29 ng m-3) measured in the present study are 

comparable to the mean concentrations of seawater leachable PO4
3- in aerosols 

observed over the Mediterranean Sea where the air masses are influenced by both 

Saharan dust and European emissions (Herut et al., 1999; Migon et al., 2001).  The 

mean concentrations of seawater leachable PO4
3- were 48.6 ng m-3 (Herut et al., 1999) 

and 18.8 ng m-3 over the Southeast and Northwest Mediterranean, respectively.  The 

latter one was calculated by multiplying the mean total P concentration (51 ng m-3, 

Migon et al., 2001) with the percentage of leachable P in seawater (10 to 15%, 

Ridame and Guieu, 2002) and then converted to the PO4
3- concentration.  At 

Barbados, West Indies (13°15’ N, 59°30’ W), the reported annual (1989 to 1996) 

mean concentration of mineral dust was around 11 µg m-3 (Prospero, 1999).  Given 

an estimation of total P concentration in Saharan aerosols is 0.09% and the maximum 
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solubility of P in Saharan particles is 21% (Ridame and Guieu, 2002), soluble aerosol 

PO4
3- concentration is estimated to be around 6.4 ng m-3 at Barbados.  This calculated 

concentration is slightly lower than what we measured over the WTNA, because (1) 

mineral dust concentrations at Barbados may be lower than those over the WTNA, 

and/or (2) air masses over the WTNA may be contributed by not only mineral dust 

from North Africa but anthropogenic emissions that contain significant amounts of P 

with a very high solubility.  Over the WTNA, about 66% of soluble PO4
3- 

concentration was found to be associated with the fine aerosol fraction in the winter, 

while during the spring the fine-fraction PO4
3- was only about 41% of total soluble 

PO4
3- concentration in aerosols.  

Soluble NO3
- and NH4

+ concentrations in aerosols over the WTNA also 

demonstrated a seasonal variability.  Soluble aerosol NO3
- concentrations measured 

during three different seasons were significantly different from each other (p<0.002), 

and the concentrations declined in the order of spring > winter > summer for both fine 

(median 163 > 111 > 24 ng m-3) and coarse (median 113 > 43 > 19 ng m-3) fractions 

of aerosol samples (Figure 5-3c & d).   Similarly, the highest soluble NH4
+ 

concentrations were also measured during the spring for both fine (range from 15 to 

148 ng m-3, median 80 ng m-3) and coarse (range from 2 to 112 ng m-3, median 14 ng 

m-3) fractions of aerosols, but the lowest concentrations (median 46 and 1.9 ng m-3 for 

the fine and coarse fractions, respectively) were found in the winter (Figure 5-3e & f).  

Differences between the total soluble aerosol NH4
+ concentrations in the spring and 

those in the winter and summer were statistically significant (p<0.001), whereas no 

significant concentration difference was found between the winter and the summer. 
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The current measurements of total (fine + coarse) soluble NO3
- (median 43 to 276 ng 

m-3) and total NH4
+ (median 48 to 94 ng m-3) concentrations range similar to the 

previously reported data from the remote North Atlantic.  Harrison and Peak (1996) 

reported that the average NO3
- and NH4

+ concentrations in aerosols collected from 

June 7 to 16 at Santa Maria (37°N, 25°W) were 240±120 and 80±140 ng m-3, 

respectively.  Quinn et al. (2001) divided the Atlantic into seven regions from which 

Northern Hemisphere marine (31 to 15.5°N, 65.8 to 43.3°W), African dust (15.5 to 

8°N, 43.3 to 32.9°W) and mixture of African dust and biomass burning (8°N to 3°S, 

32.9 to 26°W) regions were closest to our studying area and had mean NO3
- and NH4

+ 

concentrations ranging from 235 to 1330 ng m-3 and 30 to150 ng m-3, respectively.  

56 to 72% of total soluble NO3
- was associated with the fine fraction of aerosol 

particles during the sampling seasons over the WTNA (by comparing Figure 5-3c & 

d).  However, almost all soluble NH4
+ (85 to 96% of total NH4

+) concentration was 

found in the fine aerosol fraction (by comparing Figure 5-3e & f), which is consistent 

with the observations from other studies (Huebert et al., 1998; Quinn et al., 2001; 

Jickells et al., 2003). 

5.3.2 Sources of Soluble Phosphate 

Aerosols over the WTNA are influenced principally by mineral dust 

transported from North Africa as well as anthropogenic emission sources from the 

surrounding continents (Figure 5-2, AMBTs) which may become significant during 

certain seasonal period.  African dust contains on average 0.09% particulate 

phosphorus (Ridame and Guieu, 2002), and copious quantities of the soil-derived dust 

may play an important role in controlling the atmospheric P concentration over the 
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WTNA. However, phosphates transported with the mineral dust are principally bound 

to Fe oxides or associated with Ca, Mg, Al and Fe, which are known to be weakly 

soluble (Bergametti et al., 1992; Ridame and Guieu, 2002).  Therefore anthropogenic 

P emission sources (e.g. incinerators, biomass burning: Migon and Sandroni, 1999; 

Migon et al., 2001; fertilizers, pesticides: Herut et al., 1999) may be also responsible 

for an efficient contribution to soluble atmospheric PO4
3- concentration over the 

WTNA. The aerosol P associated with the marine source is negligible (Bergametti et 

al., 1992).  

Significantly higher concentrations of soluble aerosol PO4
3- were observed 

during the winter and spring than in the summer (Figure 5-3a & b), which may be 

consistent with the most frequent and extensive dust breakouts from North Africa 

during February through April (Swap et al., 1996).  In the winter, 66% of total 

concentration of soluble PO4
3- was found to be in the fine fraction of aerosol particles, 

and the fine-fraction PO4
3- was significantly (p<0.05) correlated with the crustal 

tracers Al and Fe (Table 5-1).  This enrichment in the fine fraction may be a result of 

additional low-altitude transport (below 1.5 to 3 km) of African dust during the winter 

(Chiapello et al., 1995, Figure 5-2a & b) where coarse particles are removed quickly 

from the dust plumes and fine particles are favored in the long-range transport to the 

WTNA. Significant correlations between PO4
3- and Al/Fe (Table 5-1) further 

suggested that the mineral dust from North Africa was a dominant source for soluble 

PO4
3- in the fine fraction of aerosols during the winter. Soluble aerosol PO4

3- 

concentrations measured during the spring showed no relationship with Al/Fe.  By 

contrast, they were significantly coupled with the Cu (p<0.01), NO3
- and NSS SO4

2-  
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Table 5-1.  Correlation coefficients between the soluble PO4
3- and other chemical 

species in fine and coarse fractions of aerosol samples collected during the winter (20 

January to 18 February 2001), spring (18 April to 20 May 2003) and summer (9 July 

to 14 August 2001) periods over the western tropical North Atlantic  

 Winter Spring Summer 
 Coarse Fine  Coarse Fine  Coarse Fine 

Al 0.069 0.428a 0.054 -0.041 -0.027 0.097 
Ca 0.109 0.273 0.250 0.016 -0.049 0.051 
Fe 0.094 0.418a 0.059 0.207 -0.053 0.069 
K 0.293 0.345a 0.152 0.038 -0.028 0.067 
Cu 0.469b -0.338a -0.190 0.584b 0.278 0.084 
Pb 0.203 0.366a 0.071 0.013 -0.034 -0.138 
Zn 0.441a 0.381a -0.155 0.176 0.115 0.126 
Na+ 0.407a 0.669b 0.240 0.117 0.722b 0.534b 
Cl- 0.481b 0.702b 0.270 0.133 0.801b 0.462b 
F- 0.757b 0.078 0.025 0.198 -0.242 0.159 
NO3

- 0.777b 0.213 0.199 0.380a 0.259 0.036 
NH4

+ 0.431a 0.167 0.034 0.241 -0.053 0.159 
NSS SO4

2- 0.454a 0.198 0.114 0.401a 0.878b -0.074 
MSA- 0.232 0.050 -0.145 0.238 -0.153 -0.188 
PO4

3- 1 1 1 1 1 1 
    a and b represent <0.05 and <0.01 significance levels, respectively. 
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(p<0.05) concentrations in the fine fraction of aerosol particles (Table 5-1).  Yamasoe 

et al. (2000) indicated that savanna and tropical forest biomass burning could be 

responsible for a considerable emission of Cu.  NO3
- to NSS SO4

2- mass ratio was 

used as an indicator of biomass burning materials from North Africa, and the ratios at 

Barbados were a factor of 4 higher during the winter and spring that are impacted by 

biomass burning than those in the summer and fall (Savoie et al., 1989).  Likewise, 

over the WTNA the total atmospheric NO3
-/NSS SO4

2- mass ratios observed during 

the spring (median 0.52) were approximately a factor of 3 and 5 higher than those 

observed during the winter (median 0.16) and summer (median 0.10), respectively 

(Figure 5-4).  Therefore, biomass burning materials instead of mineral dust 

transported from North Africa may be a major source for soluble PO4
3- in the fine 

fraction of aerosols during the spring. 

In the winter coarse fraction of aerosols, soluble PO4
3- was correlated with the 

Cu, F-, NO3
- (p<0.01), and Zn, NH4

+, NSS SO4
2- (p<0.05), six species (Table 5-1) that 

are most likely to be emitted through anthropogenic activities.  Due to relatively low 

NO3
- /NSS SO4

2- ratios (median 0.17) during the winter, these species may be a 

signature of the air masses influenced by anthropogenic emissions from North 

America and/or Europe rather than African biomass burning.  F- associated with large 

particulate matter and SO2 are usually emitted during phosphate rock mining 

(Environmental Protection Agency). Florida and North Carolina, the southeastern 

coast of the US, accounted for 85% of the domestic phosphate rock produced 

during1993 (Llewellyn, 1993).  It is speculated that the mining dust (coarse fraction 

aerosol) emitted at the southeastern US could be transported to the WTNA during the  
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Figure 5-4.  Concentrations of total soluble NO3
- versus NSS SO4

2- in fine and coarse 

fraction of aerosol samples collected during the winter (20 January to 18 February 

2001), spring (18 April to 20 May 2003) and summer (9 July to 14 August 2001) 

periods over the western tropical North Atlantic 
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winter when the ITCZ moves to the equator.  Cu, Zn (Hu et al., 2003; Feng et al., 

2000), NO3
-, NH4

+ and NSS SO4
2- may represent another PO4

3- emission source, 

waste incineration (Migon and Sandroni, 1999; Migon et al., 2001), from North 

America and/or Europe.  The incineration emissions may be mixed with the mining 

dust on its transport pathway to the WTNA, and this aerosol mixture may be a 

dominant contributor to soluble PO4
3- in the coarse aerosol fraction during the winter.  

Soluble PO4
3- concentrations in the coarse aerosol fraction during the summer were 

strongly correlated with the NSS SO4
2- (p<0.01) concentrations (Table 5-1), which 

may be also a signature of anthropogenic emission sources for soluble atmospheric 

PO4
3- over the WTNA. 

5.3.3 Sources of Nitrate and Ammonium 

Aerosol NO3
- is produced by the oxidation of NOx and aerosol NH4

+ is 

produced by the gas to particle conversion of gas-phase NH3.  The predominant 

sources of NOx and NH3 are anthropogenic activities such as fuel combustion, 

fertilizer application, and the cultivation of certain crops (Prospero et al., 1996).  In 

the remote marine atmosphere, a substantial natural marine source of NH3 was also 

verified by air-sea exchange measurements (Quinn et al, 1988; Gibb et al., 1999), 

Lagrangian (Zhuang and Huebert, 1996) and isotopic (Jickells et al., 2003) analyses 

of marine aerosols. To explore the source contributions to the measured NO3
- and 

NH4
+ concentrations during the different seasons over the WTNA, correlation 

coefficients were calculated for each pair of the Cu, Zn, NO3
-, NH4

+, NSS SO4
2- and 

MSA- species in aerosols (Table 5-2).   
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Soluble NO3
- concentration in aerosols was significantly correlated with Cu, 

Zn, NH4
+ (p<0.05) and NSS SO4

2- (p<0.01) concentrations during the winter (Table 

5-2).  Concurrent existence of Cu, Zn and NSS SO4
2- in aerosols may be a signature 

of high-temperature combustion (e.g. fossil fuel combustion: Pavageau et al., 2004; 

incineration: Hu et al., 2003; Feng et al., 2000).  No correlation was found between 

NSS SO4
2- and MSA- (Table 5-2), suggesting that marine biogenic NSS SO4

2- 

produced from emissions of DMS (dimethylsulphide) (Liss and Galloway, 1993, 

Johansen et al., 2000) was insignificant during the winter.  MSA- is one of the 

oxidation products of DMS that is used as a surrogate for the biogenically derived 

NSS SO4
2- (Johansen et al., 2000).  Similarly, aerosol NH4

+ was strongly correlated 

with NSS SO4
2- (p<0.01) but not associated with MSA- (Table 5-2), which suggests 

that marine biogenic emission of NH3 was negligible. Thereafter, atmospheric NO3
- 

and NH4
+ measured during the winter over the WTNA were primarily associated with 

anthropogenic emission sources from North America and/or Europe. 

Both soluble NO3
- and NH4

+ concentrations in aerosols were found to be the 

highest during the spring (Figure 5-3).  Enhanced NO3
- concentrations in the spring 

may be a signature for air masses having anthropogenic emissions, for example, 

biomass burning which is at its seasonal peak during the spring and winter (Savoie et 

al., 1992), and fertilizer application which increases greatly in the spring 

corresponding to crop cycles. Increased marine biological activities during this 

growing season may also add considerable amount of NH3 into the atmosphere.  It 

has been proposed that the air-sea cycling of DMS and NH3 may be closely coupled 

and represent an important component of a natural biogenic climate-regulating  
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Table 5-2.  Correlation coefficients between total concentrations (fine + coarse 

fractions) of chemical species in aerosols measured during the (a) winter (20 January 

to 18 February 2001), (b) spring (18 April to 20 May 2003) and (c) summer (9 July to 

14 August 2001) periods over the western tropical North Atlantic  

 Zn NO3
- NH4

+ NSS SO4
2- MSA- 

(a) Winter aerosols, n = 25 
Cu -0.188 0.395a 0.066 0.232 -0.357a 
Zn  0.436a 0.443a 0.574b 0.043 
NO3

-   0.346a 0.575b -0.530b 
NH4

+    0.627b 0.315 
NSS SO4

2-     0.003 

(b) Spring aerosols, n = 26 
Cu 0.223 0.198 0.159 0.191 0.018 
Zn  0.119 0.115 0.011 0.117 
NO3

-   0.790b 0.867b 0.708b 
NH4

+    0.840b 0.623b 
NSS SO4

2-     0.697b 

(c) Summer aerosols, n = 27 
Cu 0.785b 0.416a 0.205 0.676b -0.061 
Zn  0.390a 0.263 0.586b -0.115 
NO3

-   0.455b 0.535b -0.390a 
NH4

+    0.420a 0.342a 
NSS SO4

2-     -0.113 
      a and b represent <0.05 and <0.01 significance levels, respectively. 
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feedback system via aerosol formation (Quinn et al., 1988, 1990; Liss and Galloway, 

1993; Savoie et al., 1993).  During the spring, NO3
-, NH4

+, NSS SO4
2- and MSA- 

species in aerosols were found to be strongly correlated with each other (p<0.01) but 

not correlated with Cu and Zn (Table 5-2).  Strong correlation between NSS SO4
2- 

and MSA- follows their identical major source (DMS oxidation) (Allen et al., 1997), 

with any continental NSS SO4
2- sources having little impact on this relationship.  

Close relationships between NO3
-, NH4

+ and MSA- (Table 5-2) suggest that marine 

biogenic emissions of NH3 was a major source for aerosol NO3
- and NH4

+ 

concentrations during the spring.   

During the summer, aerosol NO3
- and NH4

+ concentrations over the WTNA 

were found to be significantly anti-correlated and correlated with MSA-, respectively 

(Table 5-2).  Moreover, Cu and Zn in aerosols were significant coupled with NO3
- but 

not with NH4
+ (Table 5-2), implying that aerosol NO3

- and NH4
+ probably had 

differently primary source contributions during the summer.  Aerosol NO3
- 

concentrations over the WTNA may principally derived from emissions of high-

temperature combustion from the surrounding continents (South America may also be 

included according to the AMBT in Figure 5-2d) due to its significant correlations 

with Cu, Zn and NSS SO4
2- (Pavageau et al., 2004; Hu et al., 2003; Feng et al., 2000).  

There was also a strong correlation between NH4
+ and NO3

- (p<0.01), suggesting that 

both continental combustion and marine biogenic sources may contribute 

substantially to aerosol NH4
+ concentrations during the summer. 
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5.3.4 Impact of Nutrient Deposition on Ecosystems 

Dry deposition fluxes (Fd) of dissolved inorganic P (DIP), N (DIN) and labile 

Fe (LFe) were estimated from measured species concentrations (Ca) in air and model-

derived or estimated dry deposition velocity (Vd) (Jickells et al., 1987; Duce et al., 

1991) as follows: 

dad VCF ×=  

The term Vd varies with particles size from gravitational settling of large particles to 

impaction and diffusion of small particles (submicrometer) and is dependent on 

climatological and physical conditions in the troposphere.  Our flux estimates used 

the Vd of 0.1 and 2 cm s-1 for fine and coarse aerosol particles, respectively due to 

these factors (Duce et al., 1991), and may have an inherent uncertainty by a factor of 

3.  Total labile Fe concentrations in the fine and coarse fraction of aerosols measured 

over the WTNA during the winter and summer 2001 have been reported in chapter 

3(see also Chen and Siefert, 2004).  Total labile Fe concentrations measured during 

the spring 2003 ranged from 1.9 to 31 (median 11) ng m-3 and from 0.33 to 15 

(median 2.3) ng m-3 for the fine and coarse fraction of aerosol particles, respectively. 

Table 5-3 showed the calculated medians of LFe, DIN and DIP dry fluxes, 

and DIN vs DIP ratios over the WTNA during the winter, spring and summer periods. 

The aerosol input DIN: DIP was found to be only a litter lower than the Redfield ratio 

(N: P = 16: 1) during all three seasons (Table 5-3).  If the primary production was 

solely supported by the aerosol inputs of nutrients in this region, low DIN: DIP ratio 

would suggest that aerosol DIP input could support higher amounts of primary 

production (up to 60% during the winter) than does the input of DIN.  Atmospheric  
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Table 5-3. Calculated dry fluxes (medians) of labile Fe (LFe), dissolved inorganic N 

(DIN: NO3
-+NH4

+) and P (DIP) in units of µmol m-2 d-1, and DIN vs DIP ratios over 

the western tropical North Atlantic (WTNA) during the winter (20 January to 18 

February 2001), spring (18 April to 20 May 2003) and summer (9 July to 14 August 

2001) periods 

Periods LFe DIN DIP DIN:DIP 

Winter 0.24 1.8 0.18 10 : 1 

Spring 0.087 5.1 0.32 15.9 : 1 

Summer 0.058 1.2 0.097 12.4 : 1 
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fluxes would tend to drive the WTNA towards N limitation and favor diozotrophs 

growth (Tyrrell, 1999) which were found to be abundant in this oceanic region 

(Carpenter et al., in preparation).  Aerosol deposition input significant amounts of 

total labile Fe (0.058 to 0.24 µmol m-2 d-1, Table 5-3) that was expected to be 

bioavailble by N2-fixing Trichodesmium (Chen et al., 2004) into the WTNA.   

Berman-Frank et al. (2001) indicated that Fe availability had little effect on the bulk 

C: N: P elemental composition of Trichodesmium IMS101 over the three orders of 

magnitude change in dissolved Fe.  By using the Trichodesmium C: N: P ratios under 

Fe-replete conditions (156: 10: 1, Berman-Frank et al., 2001), we find that the aerosol 

input of DIN estimated here supports slightly higher C production than the DIP input 

(Table 5-3).  Assuming that aerosol nutrient (DIN and DIP) inputs were only used for 

Trichodesmium growth, the new C production driven by aerosol deposition would be 

28, 80 and 19 µmol m-2 d-1 in terms of the DIN inputs for the winter, spring and 

summer, respectively.  These production rates would require at most 0.003 to 0.005 

µmol m-2 d-1 of bioavailable Fe for Trichodesmium growth under Fe-replete 

conditions (Fe: C ratios range from 13 to 168 µmol mol-1, Berman-Frank et al., 2001; 

Kustka et al., 2003).  Therefore, aerosol input of LFe (Table 5-3) was in a large 

excess compared to that (0.003 to 0.005 µmol m-2 d-1) required for the Trichodesmium 

growth driven by other aerosol nutrient (DIN & DIP) depositions.   

The discussion above was from an only atmospheric view.  However, the 

aerosol inputs of DIN and DIP may not be important compared to the horizontal 

fluxes of NO3
- and PO4

3- and the N2 fixation in the WTNA.  The WTNA accepts a 

large Amazon River discharge along with large quantities of continental materials 
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(Mueller-Karger et al. 1989).  The estimated fluxes of NO3
- and PO4

3- from the 

continental shelves to the surface Atlantic Ocean (0° to 10°N) were 0.11×1012 and 

0.014×1012 moles y-1, respectively (Michaels et al., 1996).  Assuming the shelf inputs 

of nutrients were dispersed northward to 15°N and eastward to 60°W by the Amazon 

flow (Kidd and Sander 1979), the calculated fluxes of NO3
- and PO4

3- to the WTNA 

would be 97 and 12 µmol m-2 d-1, respectively.  The average rate of N2 fixation 

reported for the WTNA was 73 µmol N m-2 d-1 (Capone et al., 1997). However the 

vertical fluxes of nutrients to the euphotic zone were expected to be small in this 

region due to the large freshwater discharge to the ocean surface.  The NO3
- (170 

µmol m-2 d-1) and PO4
3- (12 µmol m-2 d-1) supplies from the horizontal fluxes and the 

N2 fixation were found to be 1-2 orders of magnitude larger than the aerosol inputs of 

DIN and DIP (Table 5-3), and the ratio between the total fluxes of N and P was 14.2: 

1.  This N vs P ratio will tend to drive the WTNA towards N limitation and favor 

diozotroph growth.  Similarly, the required fluxes of labile Fe (0.024 to 0.31 µmol m-

2 d-1) for the diazotroph growth driven by the P supply were estimated according to 

the Fe: C: P ratios in Trichodesmium.  The required fluxes 0.024 to 0.31 µmol m-2 d-1 

are just comparable to the aerosol input of labile Fe (0.058 to 0.24) to the WTNA, 

suggesting that the atmospheric deposition of Fe may be a rate-limiting nutrient to 

diazotroph growth in this oceanic region. 

5.4 Conclusions 

Soluble PO4
3-, NO3

- and NH4
+ concentrations in aerosols measured over the 

WTNA showed a markedly seasonal variability.  Total soluble PO4
3- concentrations 

(fine + coarse fractions) in the winter and spring were found to be significantly higher 
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than those in the summer.  The largest concentrations of soluble NO3
- and NH4

+ were 

observed in the spring, and the NO3
- and NH4

+ concentrations declined in the order of 

spring > winter > summer and spring > summer ≈ winter, respectively.  Mineral dust 

transported from North Africa and anthropogenic emission sources from the 

surrounding continents all have an impact on aerosol nutrient species over the 

WTNA.  During the winter, soluble PO4
3- in the fine fraction of aerosols was 

principally contributed by mineral dust from North Africa, while the mixture of 

mining dust from North America and incineration emissions from North America 

and/or Europe may be a major source for soluble PO4
3- in the coarse fraction of 

aerosols.  Biomass burning materials from North Africa were responsible for soluble 

PO4
3- concentrations in the fine fraction of aerosols during the spring.  Aerosol NO3

- 

and NH4
+ concentrations measured during the winter and spring were primarily 

contributed by anthropogenic and marine biogenic sources, respectively.  During the 

summer, aerosol NO3
- may be principally derived from continental combustion 

emissions, whereas aerosol NH4
+ may be contributed by both combustion and marine 

biogenic sources.  From an only atmospheric view, aerosol inputs of LFe, DIN and 

DIP into the WTNA will first drive the water column towards a short-term N 

limitation, and later on due to the enhanced N2 fixation the nutrient depositions will 

tend to deplete P in the water column.  If considered other flux sources of N and P 

(e.g. shelf fluxes and N2 fixation) atmospheric deposition of labile Fe to the WTNA 

would be a controlling factor for diazotroph growth.  
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Chapter 6: Atmospheric Iron and Other Nutrient Species over the 
Central North Pacific: Distributions, Sources, and Ecological 
Impacts 
 

 

6.1 Introduction 

In the contemporary ocean, photosynthetic carbon (C) fixation by marine 

phytoplankton leads to formation of about 45 gigatons of organic carbon per annum, 

of which 16 gigatons are exported to the ocean interior (Falkowski et al., 1998).  

Changes in the magnitude of total and export production can strongly influence 

atmospheric CO2 levels and thereby influence climate on geological time scales.  This 

oceanic primary production is predominantly controlled by the availability of 

essential nutrients such as nitrogen, phosphorus and iron and by sunlight levels.  

When sunlight is sufficient, there is generally a positive correlation between 

macronutrient concentrations and phytoplankton biomass in the water column 

(Levitus et al., 1993).  In high-nitrate low-chlorophyll (HNLC) areas of the ocean, 

where the macronutrients delivered exceed that assimilated, Fe has been hypothesized 

to be a limiting factor for phytoplankton productivity (Martin and Fitzwater, 1988; 

Martin and Gordon, 1988; Martin et al., 1989, 1991).   This Fe limitation hypothesis 

has been supported by in situ Fe enrichment experiments in the equatorial Pacific 

(IRONEX II, Coale et al., 1996), Southern Ocean (SOIREE, Boyd et al., 2000) and in 

the western subarctic Pacific (SEEDS, Tsuda et al., 2003).  Fe was also found to be a 

crucial micronutrient for diazotrophic microorganisms and therefore may influence 

N2 fixation in the oligotrophic ocean (Falkowski, 1997; Gruber and Sarmiento, 1997). 
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 External nutrient supplies to the euphotic zone have three major sources, 

which include atmospheric deposition, vertical mixing, and riverine and continental-

self sediments transport.  In the open ocean such as the central Pacific gyre and the 

Sargasso Sea, atmospheric deposition of dust to the sea surface supplies the majority 

of the new (not acquired via nutrient cycling) Fe required for photosynthetic 

production (Duce, 1986; Duce and Tindale, 1991; Jickells and Spokes, 2001).  It has 

been also found that episodic atmospheric N inputs can contribute to an important 

portion of “new production” in some oligotrophic oceans (Duce, 1986; Owens et al., 

1992; Michaels et al., 1993).  The aerosol inputs of Fe and P species over the central 

North Pacific were highly seasonal with the maximum fluxes in spring (Duce and 

Tindale, 1991; Perry et al., 1999).  This marked seasonality was due to the springtime 

transport of mineral aerosols from northwestern China, the Gobi Desert and the Loess 

Plateau (Merrill et al., 1989; Gao et al., 1992).   

Fe in aerosols is dominated by refractory minerals (e.g. aluminosilicates) and 

the more labile ferric oxides and (oxy)hydroxides that must dissolve in seawater 

before being utilized by phytoplankton. These ferric species can be photochemically 

reduced to soluble ferrous iron (Fe(II)) in atmospheric waters or surface seawater 

(Siefert et al., 1996; Voelker and Sedlak, 1995; Chen and Siefert, 2003).  Studies 

have found that labile Fe(II) did exist in aqueous aerosol solutions, but the Fe(II) 

concentrations extracted with the low pH (1.0 to 4.5) buffers are only a few percent 

(0.3 to 1.8%) of total Fe in marine mineral aerosols (Zhu et al., 1993; Siefert et al., 

1999; Johansen et al., 2000; Chen and Siefert, 2004a).  P transported with the mineral 

aerosols is also known to be weakly soluble (Bergametti et al., 1992; Ridame and 
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Guieu, 2002).  The concentrations of the aerosol Fe(II) and soluble aerosol P over the 

North Atlantic Ocean are influenced significantly by different  aerosol origins during 

the different seasons (Chen and Siefert, 2004a; Chen and Siefert, 2004b).  Asian dust, 

anthropogenic emissions from both Asia and North America (Perry et al., 1999), 

volcanic eruption on Hawaii islands and sea salts (Porter et al., 2002; Sansone et al., 

2002; Carrico et al., 2003) may all have significant contributions to aerosol particles 

over the central North Pacific and thus affect atmospheric inputs of labile Fe and 

other nutrient species to this oceanic ecosystem.   

Four research cruises were performed over the central North Pacific (15°N to 

30°N, 150°W to 175°E) during the spring, summer and fall periods.  Fine and coarse 

fractions of aerosol samples were collected daily on the cruises.  Labile Fe species 

were measured onboard immediately after sample collection using an aqueous 

sequential extraction procedure (Chen and Siefert, 2003).  Major nutrient (PO4
3-, NO3

- 

and NH4
+) concentrations were determined back in the laboratory using aqueous 

extraction and ion chromatography (IC).  Temporal distributions of labile Fe, PO4
3-, 

NO3
-, and NH4

+ concentrations in aerosols over the central North Pacific are 

presented in this chapter.  Potential source contributions to atmospheric labile Fe over 

the central North Pacific are explored based on the correlations between the labile Fe 

and other species concentrations in the two size fractions of aerosols.  Dry deposition 

fluxes of atmospheric N, P and labile Fe are calculated and their influences on the 

central North Pacific ecosystem discussed for each different season. 



 

 129 
 

6.2 Sample Collection and Analysis 

6.2.1 Sampling Location and Periods  

Aerosol samples were collected aboard the R/V Wecoma, R/V Kaimikai-o-

Kanalao, R/V Kilo Moana and R/V Roger Revelle during the spring (9 April to 26 

April) 2001, summer (1 July to 16 July) 2002, fall (23 September to 15 October) 2002 

and summer (6 August to 21 August) 2003 periods over the central North Pacific 

(15°N to 30°N, 150°W to 175°E), respectively.  The sampling locations are outlined 

in Figure 6-1, where each marker represents an approximately 24-hour aerosol sample 

collected.   

Five-day isentropic air mass back trajectories (AMBTs) were calculated from 

the National Oceanic and Atmospheric Administration (NOAA) FNL database using 

the Hybrid Single-Particle Langrangian Integrated Trajectories (HY-SPLIT) program 

(Draxler, 2002).  The detailed model description was presented in Chapter 3.  Figure 

6-2 shows four typical AMBTs calculated at 20 m, 500 m and 1500 m height levels at 

04 UTC (corresponding to the midway of each sampling day) over the central North 

Pacific during the sampling periods. 

6.2.2 Aerosol Collection  

A high volume dichotomous virtual impactor (HVDVI) (Solomon et al., 1983) 

was used to collect two size fractions (with aerodynamic diameters greater than and 

less than 2.5µm) of aerosol samples. The fine and coarse fraction aerosols were 

collected on two 90 mm diameter Teflon membrane filters (Gelman Zefluor, 1µm 

pore size). A sector sampling system was used to allow collection of aerosol samples 

only when the relative wind direction was ±75° relative to ship’s bow. Aerosol  
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Figure 6-1. Sampling locations during four separate research cruises in different 

seasons (spring, 9 April to 26 April 2001; summer, 1 July to 16 July 2002; fall, 23 

September to 15 October 2002; summer, 6 August to 21 August 2003) over the 

central North Pacific (15°N to 30°N, 150°W to 175°E), each marker on the map 

represents an approximately 24-hour aerosol sample collected.

9 April to 26 April 2001 23 September to 15 October 2002
1 July to 16 July 2002 6 August to 21 August 2003  

PACIFIC



 

 131 
 

  

 

 

Figure 6-2. Representative 5-day air mass back trajectories over the central 

North Pacific during different seasons, trajectories are calculated at three different 

final elevations (triangles 20 m; squares, 500 m; circles, 1500 m) above sea level for 

(a) 19 April 2001; (b) 9 July 2002; (c) 25 September 2002; (d) 14 August 2003.
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sample collection and chemical analysis below were done following trace-metal clean 

techniques. 

6.2.3 Chemical Analyses  

Total labile Fe concentrations on the filter were investigated using an aqueous 

sequential extraction procedure and measured using long path length absorbance 

spectroscopy (LPAS) (Waterbury et al., 1997) immediately after sample collection.  

The detailed extraction procedure is given in chapter 2 (see also Chen and Siefert, 

2003).  Elemental analysis of 14 elements (Al, Ca, Fe, K, Na, Mg, Cr, Co, Cu, Pb, 

Mn, Ni, V, Zn) on the sample filters was performed using a strong-acid microwave 

digestion procedure followed by an ICP-MS (HP 4500) analysis.  Anion (F-, 

glycolate, acetate, formate, MSA-, Cl-, SO4
2-, oxalate, Br-, NO3

-, PO4
3-) and cation 

(Li+, Na+, NH4
+, K+, Mg2+, Ca2+) concentrations were analyzed using an aqueous 

extraction technique (Derrick and Moyers, 1981) and a Dionex DX-600 IC.  More 

details on elemental and ion analyses on the filter and calculation of atmospheric 

concentrations (e.g. non-sea-salt sulfate, NSS SO4
2-) are described in chapter 3 (see 

also Chen and Siefert, 2004a). 

6.3 Results and Discussions 

6.3.1 Transport Pathways of Air Masses 

AMBTs calculated from NOAA FNL database showed that low-level 

northeasterly winds at 20 m, 500 m and 1500 m levels frequently passed over the 

central North Pacific (15°N to 30°N, 150°W to 175°E) from July to October (Figure 

6-2b, c, d).  The back trajectories had circulated over the Pacific Ocean for more than 

five days without contacting the continent and sometimes swept through the Hawaii 
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islands (Figure 6-2c) before arriving at reception sites. Extremely low aerosol mass 

concentrations have been observed throughout most of the year at Mauna Loa 

Observatory (MLO) which is located on the island of Hawaii (Parrington and Zoller, 

1984; Zieman et al., 1995; Holmes et al., 1997).  The signature of volcanic plumes 

was occasionally found in the marine aerosols collected over the Pacific Ocean close 

to Hawaii (Carrico et al., 2003).  The aerosol plume produced by lava-seawater 

interactions along the shoreline of Kilauea volcano at Hawaii could contribute 

significant amount of both toxic and nutrient elements to the atmosphere surrounding 

the Hawaii (Sansone et al., 2002).   

In April 2001 back trajectories over the central North Pacific often lead to 

Asia (Figure 6-2a).  Asian dust storms originating from the desert regions in China 

and Mongolia were lifted up to the altitudes of 5-10 km and then carried by westerlies 

to the Pacific Ocean mostly during the spring (Merrill et al., 1989; Zhang et al., 

1998).  Over the central Pacific trajectories turned southeastward, descend into the 

marine boundary layer and eventually reach the R/V Wecoma after 4-5 days (Figure 

6-2a).  The long-range transport of large quantities of Asian dust to the Midway 

Island (28°13’N, 177°22’W, Merrill et al., 1989) and the MLO at Hawaii has been 

observed every spring (Shaw, 1980; Bodhaine et al., 1981; Darzi and Winchester, 

1982; Braaten and Cahill, 1986; Prospero, 1996; Holmes and Zoller, 1996; Holmes et 

al., 1997).  During transport, Asian dust plume could be mixed with anthropogenic 

gases and aerosols over the industrialized regions of China and bring significant 

amount of pollutants to the Pacific Ocean (Miller, 1981; Harris and Kahl, 1990).  The 

Asian dust transport episodes at MLO have been accompanied by increases in aerosol 
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optical absorption, sulfur, nitric acid, methane, and carbon monoxide (Darzi and 

Winchester, 1982; Levy II and Moxin, 1989; Harris et al., 1992; Bodhaine, 1995; 

Zieman et al., 1995; Cahill and Perry, 1996; Jaffe et al., 1997; Perry et al., 1999).  

These anthropogenic pollutants may have great impacts on the speciation and 

deposition fluxes of nutrient elements (Fe, N, P) in aerosols over the central North 

Pacific. 

6.3.2 Temporal Distributions of Total and Labile Fe  

Total Fe concentrations were measured in both fine and coarse fractions of 

aerosol samples collected during the four separate cruises over the central North 

Pacific.  The highest concentrations of the total Fe were observed during the April 

(Figure 6-3a) for both fine and coarse aerosol fractions.  The mean values of 74 ng m-

3 for the fine fraction and 59 ng m-3 for the coarse fraction in April 2001 were about 

an order of magnitude larger than those measured in July 2002, when the lowest Fe 

concentrations were found with the mean values of 4.1 and 5.9 ng m-3 for the fine and 

coarse aerosol fractions, respectively (Figure 6-3b).  This observation of significantly 

high concentrations of aerosol Fe in April 2001 was consistent with the Asian dust 

transport to the central Pacific during the spring (Bodhaine et al., 1981; Holmes et al., 

1997; Perry et al., 1999).  Perry et al. (1999) averaged the monthly elemental 

concentrations in fine aerosols at the MLO from 1993 to 1996 and reported that the 

mean Fe concentration in April was 60 ng m-3, which is similar to our observations of 

the aerosol Fe in April 2001 (mean 74 ng m-3 for fine aerosol fraction).  The Asian 

Pacific Regional Aerosol Characterization Experiment (ACE-Asia) was also 

performed over the Asian-Pacific region from 31 March to 4 May 2001.  Field  



 

 135 
 

 

 

 

 

Figure 6-3. Total Fe concentrations in the fine and coarse fractions of aerosol 

samples collected during the a) 2001 spring (9 to 26 April) and 2003 summer (6 to 21 

August), and b) 2002 summer (1 to 16 July) and 2002 fall (23 September to 15 

October) cruises over the central North Pacific  
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Figure 6-4. Total labile Fe concentrations in the fine and coarse fractions of aerosol 

samples collected during the 2001 spring (9 to 26 April), 2002 summer (1 to 16 July), 

2003 summer (6 to 21 August), and 2002 fall (23 September to 15 October) cruises 

over the central North Pacific 
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Figure 6-5. Labile Fe(II) concentrations in the fine and coarse fractions of aerosol 

samples collected during the 2001 spring (9 to 26 April), 2002 summer (1 to 16 July), 

2003 summer (6 to 21 August), and 2002 fall (23 September to 15 October) cruises 

over the central North Pacific 
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aerosol investigations over the China Dust Storm Research (ChinaDSR) observational 

network stations showed that the most intense and persistent dust events occurred 

from 5 to 20 April 2001 (Zhang et al., 2003). The trans-Pacific transport of Asian dust 

plumes, particularly in the April, was demonstrated by both aerosol model simulation 

and satellite image during the ACE-Asia (Chin et al., 2003; Zhao et al., 2003).  The 

Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport 

(GOCART) model of aerosol optical thickness showed that the trans-Pacific dust 

plume extended to the 20°N of the central Pacific on 14 April 2001 (Chin et al., 

2003).  This southward influence of Asian dust on the Pacific atmosphere was 

reflected in our measurements of aerosol Fe, where the total Fe concentration in 

aerosols reached its second peak value (135 and 96 ng m-3 for the fine and coarse 

fractions, respectively) on 14 April 2001 (Figure 6-3a).  The concentrations of total 

aerosol Fe measured in August 2003 (fine: mean 56 ng m-3, coarse: mean 32 ng m-3) 

were also significantly higher compared to those measured in July and September 

2002 (Figure 6-3a & b).  Around 64% of the mean total Fe was found to be in the fine 

aerosol fraction in August 2003, which was similar to the mean total Fe distribution 

between the fine (56%) and coarse aerosol fractions in April 2001 (Figure 6-3a).  For 

aerosols collected in July and September 2002 the mean Fe concentrations in the fine 

fraction were, however, approximately 41% of the total aerosol Fe (Figure 6-3b).  It 

was speculated that the aerosol Fe over the central North Pacific might also be 

affected by the dust transported from Asia in August 2003, although the effect during 

this time (mean total aerosol Fe: 87 ng m-3) was much weaker than that in April 2001 

(mean total aerosol Fe: 132 ng m-3).  Similarly, the marine aerosols collected in July 
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(mean total aerosol Fe: 10 ng m-3) and September 2002 (mean total aerosol Fe: 26 ng 

m-3) may have the same source origins and were almost free of the Asian dust 

impacts. 

Concentrations of labile Fe(II) and total labile Fe that includes reducible 

Fe(III) species in both fine and coarse aerosol fractions were measured during the 

four separate cruises over the central North Pacific.  For the two size fractions of 

aerosols, the highest (fine: mean 1.8 ng m-3, coarse: mean 0.63 ng m-3) and the lowest 

(fine: mean 0.28 ng m-3, coarse: mean 0.13 ng m-3) concentrations of the total labile 

Fe were observed in April 2001 and in July 2002, respectively (Figure 6-4). The mean 

concentrations of the total labile Fe in both fine and coarse aerosol fractions 

decreased in the order of April 2001 > August 2003 > September 2002 > July 2002 

(Figure 6-4), which followed exactly the temporal distribution of the total Fe in 

aerosols.   

Labile Fe(II) concentrations were found to be extremely high in April 2001 

for both fine (mean 0.98 ng m-3) and coarse (mean 0.26 ng m-3) aerosol fractions, 

which were at least 4 and 3 times higher than those observed from July to October for 

fine and coarse aerosol fractions, respectively (Figure 6-5).  The extremely high 

concentrations of the labile Fe(II) in April 2001 were consistent with the highest total 

Fe concentrations observed during this period.  Nonetheless, the labile Fe(II) 

concentrations measured during the other three cruises (from July to October) 

demonstrated a different pattern from the temporal distribution of the total Fe in 

aerosols.  Instead of approximately 8 times higher mean total Fe in August 2003 than 

that in July 2002, mean labile Fe(II) concentrations during the three periods were very 
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close to each other in both fine (0.21, 0.17, 0.23 ng m for August, July and 

September, respectively) and coarse (0.064, 0.083, 0.067 ng m for August, July and 

September, respectively) aerosol fractions (Figure 6-5).  This distribution discrepancy 

between the labile Fe(II) and the total Fe in aerosols was probably due to the different 

source contributions or different atmospheric processing to the air mass over the 

central North Pacific during the three periods. 

The percentage of labile Fe(II) in total Fe in aerosols was found to be the 

lowest in August 2003 (Figure 6-6).  The mean values of 0.53% and 0.31% for the 

fine and coarse aerosol fractions, respectively, were of the same order of magnitude 

as the mean labile Fe(II) percent in April 2001 (Figure 6-6), which were also 

comparable to the typically labile Fe(II) percent (0.3% to 1.8%) in marine mineral 

aerosols observed elsewhere (Zhu et al., 1993; Siefert et al., 1999; Johansen et al., 

2000; Chen and Siefert, 2004a).  Unlike mineral aerosols, the aerosols collected 

during both July and September 2002 contained a significantly large fraction of the 

labile Fe(II) which were averaged 6.6% and 9.5% of the total Fe in the fine aerosol 

fraction, and 5.9% and 4.7% of the total Fe in the coarse aerosol fraction, respectively 

(Figure 6-6).  The percentages of total labile Fe in total Fe were also found to be 

larger in July and September 2002 than those in April 2001 and August 2003 (Figure 

6-6).  The largest mean values of 16% (fine) and 12% (coarse) observed during 

September 2002 were comparable to the upper bound of the Fe solubility in seawater 

(1-10%, Jickells and Spokes, 2001). The larger percentages of labile Fe observed in 

July and September 2002 may correspond to the larger NSS SO4
2- concentrations in  
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Figure 6-6.  Percentages of the labile Fe species in total Fe in the fine and coarse 

aerosol fractions collected during the 2001 spring (9 to 26 April), 2002 summer (1 to 

16 July), 2003 summer (6 to 21 August), and 2002 fall (23 September to 15 October) 

cruises over the central North Pacific; “F_Fe(II)”, “F_Fe(II)+(III)” and “F_TLFe” 

mean the labile Fe(II), labile Fe(II) & (III), and total labile Fe in the fine aerosol 

fraction, respectively.  Likewise, “C_ ” means the labile Fe species in the coarse 

aerosol fraction. 
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the aerosol (mean concentrations were about a factor of 2 higher than those in April 

and August). It was suggested that SO2 incorporation into the advecting dust plumes 

can lead to mobilization of Fe in mineral dust (Meskhidze et al., 2003). 

6.3.3 Sources for Labile Aerosol Fe 

  Aerosol Fe concentrations over the central North Pacific are mainly 

influenced by Asian dust plumes during the spring, but the anthropogenic emissions 

transported from Asia and North America and the volcanic eruptions may have a 

significant contribution to aerosol Fe during the other seasons.  To identify the source 

contributions to the labile aerosol Fe over the central North Pacific, the correlation 

coefficients between the total labile Fe and other chemical species in both fine and 

coarse aerosol fractions were calculated for April 2001, July 2002, September 2002 

and August 2003 periods, respectively.  The total labile Fe concentrations were found 

to be strongly correlated with the labile Fe(II) concentrations all the time (Table 6-1), 

suggesting that the total labile Fe may be used for a representative of all the labile Fe 

species to identify the source contributions.  Other statistical methods such as 

principal component analysis PCA) were also employed for identification of source 

contributions to the labile aerosol Fe over the Atlantic Ocean, and the results from 

PCA are listed in appendices II.  The rotated component matrix showed that mineral 

dust (component 1) had a major contribution to aerosol particles during the April and 

August and the labile Fe was mostly associated with this component.  However, it is 

difficult to assign a single source for each component which usually represented a 

mixed source contrbution and/or atmospheric processing of the aerosol (especially in  
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Table 6-1. Correlation coefficients between the total labile Fe (TLFe) and other 

chemical species in fine (F) and coarse (C) fractions of aerosol samples collected 

during the 2001 spring (9 to 26 April), 2002 summer (1 to 16 July), 2003 summer (6 

to 21 August), and 2002 fall (23 September to 15 October) cruises over the central 

North Pacific 

April 2001 July 2002 Sept.-Oct. 2002  August 2003 Species 
F C F C F C  F C 

TLFe 1 1 1 1 1 1  1 1 
Fe2+ 0.963b 0.927b 0.875b 0.840b 0.987b 0.739b  0.690b 0.592a 

Fe 0.962b 0.883b 0.216 0.219 -0.138 0.314  -0.103 -0.117 
Al 0.943b 0.891b -0.356 0.215 0.106 0.353  -0.281 0.584a 

Ca 0.332 -0.084 -0.239 0.157 0.009 -0.128  -0.443 0.180 
K 0.344 -0.195 -0.341 0.182 0.246 -0.171  -0.353 0.263 
Mg 0.179 -0.368 -0.271 0.136 0.044 -0.120  -0.355 0.244 
Cr 0.905b 0.832b 0.111 0.182 -0.127 0.222  -0.084 -0.226 
Co 0.866b 0.886b 0.794b 0.351 -0.125 0.182  -0.126 -0.250 
Cu 0.242 -0.305 -0.201 0.254 0.896b 0.340  -0.395 0.098 
Pb 0.700b 0.681b -0.254 0.625a 0.728b 0.054  0.096 0.399 
Mn 0.964b 0.883b 0.099 0.210 -0.152 0.385  -0.106 -0.228 
Ni 0.863b 0.715b 0.127 0.169 -0.127 0.219  -0.083 -0.225 
V 0.926b 0.851b -0.200 0.637a 0.091 0.058  -0.049 0.258 
Zn 0.716b 0.321 -0.104 0.462 0.372 0.198  -0.397 0.427 
NSSS -0.006 0.384 -0.253 0.277 0.848b 0.461  -0.027 0.097 
Oxalate 0.036 0.683b 0.327 0.467 0.420 0.173  0.329 0.488 
NSSS means the non-sea-salt-sulfate.   
a and b represent <0.05 and <0.01 significance levels, respectively. 
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July and September).  Therefore our source analysis for labile aerosol Fe was based 

on the correlation matrix which was more straightforward. 

The total labile Fe concentrations measured in April 2001 were significantly 

coupled with the concentrations of Fe, Al, Cr, Co, Pb, Mn, Ni, V (p<0.01) in both 

fine and coarse aerosol fractions (Table 6-1).  Al and Fe were typically crustal tracers 

and used to identify contribution of crustal and noncrustal sources on observed 

concentrations of trace elements (Kaya and Tuncel, 1997; Al-Momani et al., 1998; 

Chester et al., 1993a; Yatin et al., 2000; Huang et al., 2001).  The strong correlation 

with total Fe and total Al concentrations suggested that the labile aerosol Fe in April 

2001 were primarily contributed by the mineral aerosols, which further confirmed the 

large influence of Asian soil dust on aerosol Fe concentration over the central North 

Pacific during the spring.  The significant correlation with oxalate (p<0.01) in the  

coarse aerosol fraction in April 2001 (Table 6-1) indicated that the labile Fe 

concentrations may be affected by the photochemical reduction in atmospheric 

waters, since oxalate is an efficient electron donor for the photochemical reduction of 

Fe(III) (Zuo and Hoigne, 1992).  A close relationship (p<0.05) between the total 

labile Fe and the Al concentrations was observed in the coarse aerosol fraction in 

August 2003 (Table 6-1), which suggests that the labile Fe concentrations were also 

mainly contributed by mineral aerosols during this time but the influence was not as 

strong as the April 2001.  No relationships were found between the total labile Fe and 

the Al or Fe concentrations in aerosols in July and September 2002 (Table 6-1), 

suggesting that mineral aerosols transported from Asia was not a major source for the 

labile aerosol Fe during the two periods.  In July 2002, the total labile Fe 
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concentrations were significantly correlated with Co (p<0.01) in the fine aerosol 

fraction and with Pb and V (p<0.05) in the coarse aerosol fraction (Table 6-1).  Co, 

Pb and V in aerosols were probably a signature of anthropogenic emissions from Asia 

or North America.  Noncrustal V in the atmosphere is most often associated with the 

combustion of heavy fuel oil (Rahn and Lowenthal, 1984; Yatin et al., 2000), while 

Pb reaches the atmosphere through high-temperature industries such as smelting and 

coal combustion (Johansen and Hoffmann, 2003).  There were significant correlations 

between the total labile Fe and the Cu, Pb and NSS SO4
2- (p<0.01) concentrations in 

the fine aerosol fraction in September 2002 (Table 6-1).  NSS SO4
2- aerosols are 

generally produced by the oxidation of gaseous SO2 that can be emitted from both 

anthropogenic and volcanic sources. Sulfate aerosols may also be emitted directly 

from volcanic vents (Allen et al., 2002).  Large flux rates (average 53 Mg d-1) of 

H2SO4 aerosols were observed from the Kilauea volcano Pu’u O’o vent at Hawaii 

(Porter et al., 2002).  Model studies suggested that the Miyake-jima volcano made a 

major contribution to the SO2 in the central Pacific troposphere during March and 

April 2001 (Tu et al., in preparation).  The close relationship with the NSS SO4
2- in 

September 2002 implies that the volcanic eruption from Hawaii islands may 

contribute significant amount of labile Fe species to the atmosphere in a regional 

scale. 

6.3.4 Temporal Distributions of N and P Species  

Aerosol samples collected during the four separate cruises from the central 

North Pacific were analyzed for water-soluble NH4
+, NO3

- and PO4
3- concentrations.  

The percentages of observations with reported concentrations below the detection  
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Table 6-2. Concentrations (mean ± SD) of nutrient species (NH4
+, NO3

- and PO4
3-) in 

the fine (F) and coarse (C) fractions of aerosol samples collected during the 2001 

spring (9 to 26 April), 2002 summer (1 to 16 July), 2003 summer (6 to 21 August), 

and 2002 fall (23 September to 15 October) cruises over the central North Pacific 

  Nutrient Species (ng m-3) 
  NH4

+ NO3
- PO4

3- 

April 2001 F 40 ± 48 21 ± 11 27 ± 51 
 C 1.5 ± 2.8 8.5 ± 7.4 23 ± 46 

July 2002 F 32 ± 10 55 ± 29 7.4 ± 10.1 
 C 11 ± 7 36 ± 17 4.4 ± 5.0 

Sept.-Oct. 2002 F 30 ± 19 31 ± 22 4.1 ± 3.3 
 C 4.3 ± 2.0 30 ± 17 3.9 ± 3.6 

August 2003 F 69 ± 34 81 ± 45 9.6 ± 10.8 
 C 12 ± 6 63 ± 51 5.5 ± 7.1 



 

 147 
 

limit are 9.7%, 3.7% and 40% for aerosol NH4
+, NO3

- and PO4
3-, respectively.  Values 

of half of the detection limit were used for samples that were below detection limit in 

the statistical analysis.  The mean concentrations of the nutrient species in both fine 

and coarse aerosol fractions measured in April 2001, July 2002, September 2002 and 

August 2003 were given in table 6-2. 

The mean concentrations of the aerosol NH4
+ were found to be the highest 

(fine: 69 ng m-3, coarse: 12 ng m-3) in August 2003 and the lowest (fine: 30 ng m-3, 

coarse: 4.3 ng m-3) in September 2002 (Table 6-2).  The measured mean 

concentrations from 34.3 to 81 ng m-3 (fine + coarse) over the central North Pacific 

are in the range of the previous measurements of NH4
+ aerosol over the Pacific Ocean 

(from 9 to 270 ng m-3, Parungo et al., 1986), and they are also comparable to the 

mean concentration (95 ng m-3) of NH4
+ aerosol over the 15°N to 29°N Pacific 

reported by Quinn et al. (1990).  The highest mean concentrations of aerosol NO3
- 

(fine: 81 ng m-3, coarse: 63 ng m-3) were observed in August 2003, and the lowest 

mean concentrations (fine: 21 ng m-3, coarse: 8.5 ng m-3) were found in April 2001 

(Table 6-2).  The observation of the low NO3
- concentrations in April seems in 

conflict with the monthly mean concentrations of aerosol NO3
- observed at Midway 

Island from 1981 to 2000, where the highest monthly mean of 480 ng m-3 was 

reported for the April (Prospero et al., 2003).  The Midway Island is located about 

2000 km northwest of the Hawaii and affected predominantly by the mineral or 

anthropogenic aerosols transported from Asia which is the most intensive during the 

April.  The aerosols collected in this study around the Hawaii were less affected by 

the Asian dust/pollutants than the Midway air. However they could be significantly 
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influenced by the anthropogenic emissions from North America and volcanic eruption 

from the Hawaii islands.  The mean concentrations of the total aerosol NO3
- (fine + 

coarse) measured in July (91 ng m-3) and September 2002 (61 ng m-3) were 

comparable to the reported NO3
- concentrations (68 ng m-3) over the same North 

Pacific region (Duce et al., 1991; Table 6-2).  Similar mean concentrations of aerosol 

NO3
- with the nighttime value of 82 ng m-3 and the daytime value of 165 ng m-3 were 

also observed at Hawaii MLO (Norton et al., 1992). 

The soluble PO4
3- concentrations in aerosols over the central North Pacific 

were generally low.  The mean concentrations of aerosol PO4
3- measured in July 

2002, September 2002 and August 2003 were range from 4.1 to 9.6 ng m-3 and from 

3.9 to 5.5 ng m-3 for the fine and coarse aerosol fractions, respectively (Table 6-2).  

Nonetheless, in April 2001 the mean concentrations of the soluble PO4
3- reached 27 

and 23 ng m-3 in the fine and coarse aerosol fractions, respectively (Table 6-2).  The 

highest concentrations of the soluble PO4
3- in aerosols in April 2001 were probably a 

result of the most intense dust transport from Asia during this period.  The mineral 

aerosol contains 0.1% of particulate phosphorus according to the upper continental 

crustal abundances (Taylor and McLennan, 1985), of which about 20% is soluble 

(Ridame and Guieu, 2002).  The soluble aerosol PO4
3- may also be contributed by the 

anthropogenic emissions transported from Asia (e.g. incinerators, biomass burning: 

Migon and Sandroni, 1999; Migon et al., 2001; fertilizers, pesticides: Herut et al., 

1999).  The range of the mean total PO4
3- concentrations (fine + coarse: from 8 to 50 

ng m-3, Table 6-2) was comparable to the concentrations of the soluble aerosol PO4
3- 
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observed over the remote North Atlantic (from 12 to 29 ng m-3, Chen and Siefert, 

2004b) and the Southeast Mediterranean Sea (49 ng m-3, Herut et al., 1999). 

 

6.3.5 Ecological Impacts of Atmospheric Nutrient Depositions  

Dry deposition fluxes (Fd) of dissolved inorganic P (DIP: PO4
3-), N (DIN: 

NH4
+ + NO3

-) and labile Fe (LFe) were estimated from measured species 

concentrations (Ca) in aerosols and model derived or estimated dry deposition 

velocity (Vd) (Jickells et al., 1987; Duce et al., 1991) as follows: 

dad VCF ×=  

The term Vd varies with particles size from gravitational settling of large particles to 

impaction and diffusion of small particles (submicrometer) and is dependent on 

climatological and physical conditions in the troposphere. The flux estimates in this 

chapter used the Vd of 0.1 and 2 cm s-1
 for fine and coarse aerosol particles, 

respectively due to these factors, and may have an inherent uncertainty by a factor of 

3 (Duce et al., 1991).  

Table 6-3 shows the calculated mean dry fluxes of the LFe, DIN and DIP, and 

DIN vs DIP ratios over the central North Pacific in April 2001, July 2002, September 

2002 and August 2003 periods. The ratios between the flux rate of DIN and DIP from 

aerosols were generally higher than the Redfield ratio (N: P = 16: 1) from the July to 

October (Table 6-3). If atmospheric dry flux was the only nutrient source that is 

considered, the high DIN: DIP ratio would tend to drive the central North Pacific 

towards P limitation.  Based on the Redfield ratio (C: P = 106: 1) and the Fe: C ratio 

(4.5 µmol: mol-1) within the phytoplankton cells in the subtropical (15°N to 35°N) 
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Table 6-3. Calculated mean dry fluxes of labile Fe (LFe), dissolved inorganic N 

(DIN: NO3
- + NH4

+) and P (DIP: PO4
3-) in units of µmol m-2 d-1, and DIN vs DIP 

ratios over the central North Pacific during the 2001 spring (9 to 26 April), 2002 

summer (1 to 16 July), 2002 fall (23 September to 15 October) and 2003 summer (6 

to 21 August) periods 

 Dry deposition fluxes (µmol m-2 d-1) 
 LFe DIN DIP DIN:DIP 

April 2001 0.022 0.60 0.44 1.4 : 1 
July 2002 0.0044 2.29 0.087 26 : 1 

Sept.-Oct. 2002 0.0068 1.44 0.075 19 : 1 
August 2003 0.011 3.35 0.11 30 : 1 
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North Pacific (Fung et al., 2000), the Fe flux rate required for the phytoplankton 

growth would be 0.041, 0.036 and 0.054 nmol m-2 d-1 for July 2002, September 2002 

and August 2003 periods, respectively.  The required Fe supplies (based on aerosol 

input of DIP) are about 2 orders of magnitude lower than the measured flux rates 

(Table 6-3: 4.4, 6.8 and 11 nmol m-2 d-1) of the total labile Fe (assumed bioavailable, 

Chen et al., 2004) from aerosols during the three periods.   

In spring 2001 the flux rate of DIN vs DIP from aerosols to the central North 

Pacific was 1.4: 1 (Table 6-3), which was approximately an order of magnitude lower 

than the Redfield ratio (16: 1). With this low ratio of aerosol inputs of DIN and DIP 

in April 2001 tend to drive the ecosystem towards N limitation, and therefore favor 

the diazotroph growth (Tyrrell, 1999). The shift from N to P limitation caused by N2 

fixation has been revealed by 7 years of time-series observations in the subtropical 

North Pacific Ocean gyre (Karl et al., 1997). Berman-Frank et al. (2001) indicated 

that Fe availability had little effect on the bulk C: N: P elemental composition of 

Trichodesmium IMS101 over the three orders of magnitude change in dissolved Fe. 

By using the Trichodesmium C: N: P ratios under Fe-replete conditions (156: 10: 1, 

Berman-Frank et al., 2001), we find that the aerosol input of DIP estimated here can 

support 69 µmol m-2 d-1 of the new C production.  This new production would require 

at most 0.90 to 12 nmol m-2 d-1 of bioavailable Fe for Trichodesmium growth under 

Fe-repletion conditions (Fe: C ratios range from 13 to 168 µmol mol-1, Berman-Frank 

et al., 2001; Kustka et al., 2003).  Thereafter, aerosol input of LFe (22 nmol m-2 d-1) 

was in a large excess compared to that (from 0.90 to 12 nmol m-2 d-1) required for the 

Trichodesmium growth driven by the aerosol DIP supply.   
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The discussion above was from an only atmospheric view.  However, the 

aerosol input of DIN (0.6 to 3.35 µmol m-2 d-1) was approximately 2 orders of 

magnitude lower than the N2 fixation rate (140 µmol m-2 d-1) measured in the central 

North Pacific (Karl et al., 1997). This strong N2 fixation will tend to drive the water 

column towards P limitation during all seasons. There were no direct estimates for the 

vertical fluxes of NO3
- and PO4

3- to the euphotic zone of the central Pacific.  The 

vertical flux of NO3
- (148 µmol m-2 d-1) can be calculated by subtracting the N2 

fixation rate from the export flux of particulate N from the euphotic zone (288 µmol 

m-2 d-1, Karl et al., 1997).  The vertical fluxes of NO3
- vs PO4

3- are typically near the 

Redfield ratio of 16: 1, nonetheless more vertical flux of PO4
3- (greater than 9 µmol 

m-2 d-1) is expected in the central North Pacfic due to the dissolved P depletion (N: P 

> 16) observed in the surface water (Karl et al., 1997).  In this situation, 

phytoplankton growth will require at least 0.0043µmol m-2 d-1 of the labile Fe 

according to the Fe: C: P cell ratios in the subtropical North Atlantic.  The lower limit 

of the Fe requirement is less than the dry deposition fluxes of labile Fe in April and 

August, but is comparable to the fluxes in July and September 2002 (Table 6-3), 

which suggested that primary productivity in this Pacific region may be limited by 

both P and Fe. 

6.4 Conclusions 

 Asian dust storms, anthropogenic emissions transported from Asia and North 

America, and volcanic eruptions from Hawaii islands all affect the air mass over the 

central North Pacific, and their contributions to the nutrient species in aerosols over 

this oceanic region demonstrated a marked seasonality. The concentrations of the 
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total Fe and the labile Fe species in aerosols were found to be the highest in April 

2001, due to the most intensive dust storms from Asia during the spring.  The mean 

concentrations of the total Fe (133 ng m-3), the labile Fe(II) (1.24 ng m-3) and the total 

labile Fe (2.43 ng m-3) measured in April 2001 were approximately a factor of 130, 

50 and 60 larger than the lowest mean concentrations of the Fe species 

(correspondingly 10, 0.25, and 0.41 ng m-3) measured in July 2002, respectively.  The 

percentages of labile Fe(II) in total aerosol Fe were found to be similar between April 

2001 and August 2003, and between July 2002 and September 2002.  The mean 

percents of the labile Fe(II) observed in April 2001 were 1.5% and 0.53% for the fine 

and coarse aerosol fractions, respectively, which were approximately an order of 

magnitude lower than those observed (fine: 9.5%, coarse: 4.7%) in September 2002.  

Likewise, the percentages of total labile Fe in total aerosol Fe were significantly 

lower in April 2001 and August 2003 than in July and September 2002. The relatively 

low percentages of labile Fe species in total aerosol Fe were probably a signature of 

mineral aerosols transported from Asian desert regions, while the large labile Fe 

percents may be due to anthropogenic and/or volcanic emissions.  The correlations 

calculated between the total labile Fe and other chemical components in aerosols 

further confirmed that the labile Fe species were primarily contributed by Asian soil 

dust in April 2001 and August 2003, but the dust influence was not as strong in 

August 2003.  The labile aerosol Fe observed in July 2002 was mainly associated 

with anthropogenic emissions from Asia or North America, while the volcanic 

eruptions from Hawaii islands were responsible for significant amount of labile 

aerosol Fe over the central North Pacific in September 2002. 
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 Seasonal variations of the soluble NH4
+, NO3

- and PO4
3- concentrations in 

aerosols were also observed over the central North Pacific.  The largest mean 

concentrations of both aerosol NH4
+ (81 ng m-3) and aerosol NO3

-(144 ng m-3) were 

found to be in August 2003, which were approximately a factor of 2 and 5 larger than 

the lowest mean concentrations observed in September 2002 and April 2001, 

respectively. The relatively low concentrations of aerosol NH4
+ and NO3

- measured in 

April 2001 suggests that Asian dust plumes had only a minor contribution to the two 

nutrient species, instead, anthropogenic emissions from North America and volcanic 

eruptions from Hawaii may significantly affect the N nutrient concentrations over the 

central North Pacific. Nonetheless, the mean soluble PO4
3- concentration in aerosols 

was found to be the largest (50 ng m-3) in April 2001 as a result of the most intensive 

dust transport from Asia during this period.  From an only atmospheric view, the 

aerosol inputs of LFe, DIP and DIN to the central North Pacific generally tend to 

drive the water column towards P limitation (DIN: DIP > 16) during the summer and 

the fall, whereas during the spring the atmospheric nutrient depositions may result in 

a short-term N limitation at first, and then due to the enhanced N2 fixation the 

ecosystem is ultimately limited by P.  If considered other flux sources of nutrients to 

the euphotic zone, the primary productivity in the central North Pacific may be co-

limited by P and Fe.  
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Chapter 7: Estimation of Residence Times for Dissolved Iron in the 
Remote Upper Oceans  
 

 

7.1 Introduction 

Iron (Fe) has been known to be a rate-limiting nutrient for phytoplankton 

production in high-nitrate low-chlorophyll (HNLC) regions of the world’s oceans 

(Martin et al., 1994; Coale et al., 1996; Boyd et al., 2000; Tsuda et al, 2003). Fe 

vertical profile in the ocean exhibits a mixture of the nutrient- and scavenged-type 

behaviors, and its concentrations are controlled by both internal biogeochemical 

cycles, physical mixing and circulation patterns and external inputs (Bruland et al., 

1994). Deposition of aeolian dust is the predominant external source of Fe to the 

remote oceans (Duce and Tindale, 1991). The atmospheric-deposited Fe is typically 

removed from surface waters by biological uptake and then remineralized at depth, as 

well as removed from the water column by scavenging onto sinking particles. It was 

suggested that the variable aeolian input into each oceanic basin coupled with the 

biological processes of uptake/regeneration and the metallic property of scavenging 

could explain the profile of Fe in the ocean (Bruland et al., 1994; Boyle, 1997). 

Several models have been developed to examine the parameterizations of Fe cycling 

in the global ocean which include scavenging only, scavenging and desorption of Fe 

to and from particles, and complexation and so on (Lefevre and Watson, 1999; 

Archer and Johnson, 2000; Parekh et al., 2004). The residence time of Fe was one of 

the most important parameters required in these model simulations. The net 

scavenging model was found to be able to capture the broad features of the Fe 
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distribution for a deep-water residence time of approximately a hundred years 

(Parekh et al., 2004). This 100 years assumption was in the range of the estimated 

residence time (between 70 and 140 years) for Fe in the deep ocean (Bruland et al., 

1994), however, over the depth range 0 to 1400 m the estimated values were around 2 

to 13 years (Landing and Bruland, 1987).   

 This paper presents a quantitative estimation of residence times for dissolved 

Fe in the upper ocean based on the new data of atmospheric Fe fluxes from the North 

Atlantic, North Pacific and Indian oceans.  The dry deposition fluxes of total and 

labile Fe species were calculated in terms of the concentrations of total and labile 

aerosol Fe measured during three research cruises over the tropical and subtropical 

North Atlantic (Chen & Siefert, 2004a), four cruises over the subtropical North 

Pacific (Siefert & Chen, 2004) and one cruise over the Indian Ocean. The various 

types of labile Fe in the atmosphere were measured to approximate the amount of 

aerosol Fe that can be dissolved in the ocean by considering the dissolution and 

photochemical redox of Fe in atmospheric waters and seawater. Although some 

colloidal Fe species were found to be bioavailable (Kustka et al., 2003; Sunda and 

Huntsman, 1995), the dissolved Fe has the most probability of being directly utilized 

by phytoplankton (Brand, 1991; Wells et al., 1995; Sunda and Huntsman, 1997) and 

thereby plays the most critical role in the biogeochemical cycling of Fe in the ocean. 

It was also found that the total labile Fe may be a threshold for aerosol Fe that can be 

taken up by Trichodesmium (Chen et al., 2004).  This study applies the direct 

measurements of the labile Fe fractions instead of an assumption of Fe solubility (1-

10%, Jickells and Spokes, 2001) in the aerosol and the dissolved Fe concentrations in 
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the surface ocean, to quantify the residence times for bioavailable Fe in several 

oceanic regions. 

7.2 Atmospheric Fluxes of Labile Fe 

7.2.1 Sampling and Analyses 

 Three labile Fe species, labile Fe(II) (LFe(II)), labile Fe(III) (LFe(III)) and 

reducible particulate Fe (RPFe), were analyzed for the aerosol samples collected 

during the three cruises (6 January to 19 February 2001, 27 June to 15 August 2001, 

and 18 April to 20 May 2003) over the North Atlantic (0° to 30°N) and four cruises (9 

April to 26 April 2001, 1 July to 16 July 2002, 23 September to 15 October 2002, 6 

August to 21 August 2003) over the North Pacific (15°N to 30°N, 150°W to 175°E). 

The details in aerosol sample collection, labile Fe determination, temporal and spatial 

distributions of labile Fe concentrations, and dry deposition fluxes of labile Fe over 

the two Atlantic and Pacific regions have been presented by our previous papers 

(Chen and Siefert, 2003; Chen and Siefert, 2004a; Chen and Siefert, 2004b; Siefert 

and Chen, 2004).  

Only total Fe concentration was analyzed for the aerosol samples collected 

from the Indian Ocean (20°S to 20°N) during 22 February to 30 March 1999 

INDOEX campaign (Figure 7-1).  A high-volume bulk sampler (Sierra Instruments) 

together with Whatman 41 cellulous filters were used for the sample collection (see 

details in Ball et al, 2003).  Total Fe concentration on the cellulous filter was 

measured using a strong-acid digestion procedure followed by inductively coupled 

plasma mass spectrometer (ICP-MS, HP 4500) analysis. The digestion procedure was 

run in a batch of twelve acid-cleaned beakers with ten filter sample cuts (1/96 of the  
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Figure 7-1. Cruise track of the R/V Ronald H. Brown during the 1999 INDOEX 

campaign (22 February to 30 March 1999).  The ship traveled from Mauritius to 

Male’ (from 22 February to 1 March 1999), into the Arabian Sea, south across the 

intertropical convergence zone (ITCZ) back north into the Bay of Bengal and back to 

Male’ (30 March 1999).
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Whatman 41 filter), one blank and one sample of Standard Reference Material 2709 

San Joaquin Soil (US department of commerce, National Institute of standards and 

Technology) for quality control.  The twelve beakers filled with the samples were 

placed at 550°F to undergo ashing overnight.  After ashing 2 g of 10 N nitric acid 

(Seastar Chemical, Inc.) was added to each beaker.  The beakers were then covered 

with watch dishes and heated at hotplate (below the boiling point) for approximately 

2 hours until almost dry. After cooled to the room temperature certain amount of the 

nitric acid was added to compensate the lost acid during heating process.  Finally, 0.1 

g of 28 N hydrofluoric acid (Seastar Chemical, Inc.) and 28g of 18.2 MΩ-cm water 

were added to each beaker. The digestion solution was analyzed for elemental 

concentrations using ICP-MS (Chen and Siefert, 2004a). 

7.2.2 Deposition Fluxes of Labile Fe 

 Dry deposition rates of labile Fe over the tropical and subtropical North 

Atlantic and subtropical North Pacific were calculated by multiplying mean labile Fe 

concentrations with the dry deposition velocity of 1.0 cm s-1 that was estimated from 

sediment trap records in the Sargasso Sea (Jickells, 1999; Jickells and Spokes, 2001) 

and is comparable to the particle-size-based estimates (range from 0.25 to 1.1 cm s-1) 

of dry deposition velocities (Arimoto et al., 1997). The mean deposition fluxes of 

LFe(II), soluble Fe (sum of LFe(II) and LFe(III)) and total labile Fe (sum of LFe(II), 

LFe(III) and RPFe) over the studied Atlantic (0° to 25°N) and Pacific (15°N to 30°N, 

150°W to 175°E) regions were calculated for each cruise period (Table 7-1). Due to a 

significantly spatial gradient of labile Fe concentrations over the North Atlantic, only 

the data from the aerosol samples collected between 0°N and 25°N Atlantic region 
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Table 7-1. Mean dry deposition fluxes of labile atmospheric Fe to the North Atlantic 

(0°N to 25°N), North Pacific (15°N to 30°N, 150°W to 175°E) and Indian (0°N to 

20°N) oceans during the different month periods. 

  Labile Fe(II) Soluble Fe Total labile Fe 
Oceans Cruise Periods µmol m-2 yr-1 

Atlantic 6 Jan. ⎯ 19 Feb. 2001 57 99 142 
 27 Jun. ⎯ 15 Aug. 2001 4.3 20 31 
 18 Apr. ⎯ 20 May 2003 20 50 84 

Pacific 9 Apr. ⎯ 26 Apr. 2001 7.0 10 13 
 1 Jul. ⎯ 16 Jul. 2002 1.4 2.0 2.3 
 23 Sep. ⎯ 15 Oct. 2002 1.7 2.6 3.3 
 6 Aug. ⎯ 21 Aug. 2003 1.5 3.6 5.2 

Indian 22 Feb. ⎯ 1 Mar. 1999 27 ⎯ 84 
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were used in the flux calculation. The calculated labile Fe(II) fluxes (Table 7-1) 

represent the most soluble and therefore most bioavailable Fe pool from the 

atmospheric deposition that may control the biogeochemical cycling of Fe in the 

upper ocean. The soluble Fe fluxes (Table 7-1) may represent the maximum 

dissolvable Fe into the seawater that can be a result of photoredox chemistry and 

complexation with ligands in the surface ocean. The fluxes of the total labile Fe 

(Table 7-1) include, moreover, the dissolvable Fe from the reduction mechanisms 

occurring in the atmospheric waters. This study applied the deposition fluxes of the 

soluble Fe for estimation of residence times because this Fe fraction was in the 

middle of the three labile Fe species, and was also the closest to the dust-Fe solubility 

(1-10%) that has been typically used in models for dissolved Fe calculation (Fung et 

al., 2000; Gao et al., 2003). The dry deposition fluxes of soluble Fe to the North 

Atlantic and North Pacific oceans showed a clear seasonality with the fluxes in a 

relatively “dusty” season (winter for the Atlantic, spring for the Pacific) 

approximately a factor of 5 larger than those in “non-dusty” seasons (Table 7-1). 

 Total Fe concentrations instead of the labile Fe species were measured for the 

aerosol samples collected over the Indian Ocean in 1999 INDOEX campaign. 

Relatively low concentrations of aerosol Fe were observed during the first several 

days of the campaign (Figure 7-2) when the ship traveled from Mauritius to Male’ 

located south of the intertropical convergence zone (ITCZ, Figure 7-1). The mean 

concentration of total aerosol Fe measured at south of the ITCZ (48 ng m-3) was 

approximately an order of magnitude lower than that measured over the North Indian 

Ocean (371 ng m-3). Due to this large spatial variation of total aerosol Fe over the  
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Figure 7-2. Concentrations of total aerosol Fe measured during the INDOEX 

campaign (22 February to 30 March 1999, Julian day 53 to 89) over the Indian 

Ocean; the relatively low concentrations of total aerosol Fe were observed from 

Julian day 53 to 58 over the South Indian Ocean, which were excluded from the 

calculation of the mean total Fe concentration and then the mean deposition flux of 

labile Fe in Table 7-1.
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Indian Ocean, only the data from the North Indian Ocean was used for estimation of 

the labile Fe flux. Moreover, the mean concentration (371 ng m-3) of aerosol Fe 

observed over the North Indian Ocean was close to the reported mean Fe 

concentration (720 ng m-3) over the Arabian Sea (Johansen and Hoffmann, 2003). 

The dry deposition fluxes of labile Fe to the Indian Ocean were calculated by 

multiplying mean concentration of total aerosol Fe measured over the North Indian 

Ocean with the labile Fe(II) percentage (1.3 to 4%) reported for this oceanic region 

(Siefert et al., 1999; Johansen and Hoffmann, 2003) and then multiplied by the 

deposition velocity of 1.0 cm s-1 (Table 7-1). 

Total atmospheric delivery of soluble Fe to the ocean includes the dry and wet 

deposition mechanisms. Both observations and model results suggested that aeolian 

Fe input by wet deposition accounts for an average of approximately 60% of the total 

deposition over open oceans (Gao et al., 2003). Thus the total deposition fluxes of 

soluble Fe from the atmosphere (Table 7-2) were estimated by dividing the dry 

deposition fluxes of 20⎯99, 2⎯10 and 27⎯84 µmol m-2 yr-1 by 40% for the tropical 

and subtropical North Atlantic, the subtropical North Pacific and the North Indian 

oceans, respectively. The estimated total atmospheric fluxes of soluble Fe in this 

study (Table 7-2) were consistent with the previous estimates of total aeolian Fe 

inputs (at a dust-Fe solubility of 10%) to the North Subtropics Atlantic (47 µmol m-2 

yr-1), the North Subtropics Pacific (20 µmol m-2 yr-1) and the Indian Ocean (49 µmol 

m-2 yr-1) (Fung et al., 2000).  

7.3 Dissolved Fe Concentrations in the Surface Ocean 

To estimate residence times of dissolved Fe in the three oceanic regions, we  
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Table 7-2. Estimates of residence times of dissolved Fe in the upper 100 m of the 

tropical and subtropical North Atlantic, the subtropical North Pacific and the North 

Indian Ocean. 

Oceans Periods Atmospheric 
Input 

(µmol m-2 yr-1) 

Dissolved Fe 
(nM or 

µmol m-3) 

Upwelling 
Input 

(µmol m-2 yr-1) 

Residence 
time 

(year) 
Atlantic Jan. ⎯ Feb. 248  

 Jun. ⎯ Aug. 50  
 Apr. ⎯ May 125 0.86 

 
2.0 

 
0.69 

Pacific Apr. 25 0.68 
 Jul. 5  
 Sep. ⎯ Oct. 7  
 Aug. 9  

 
0.9 

 
2.7 

Indian Feb. ⎯ Mar. 139 1.0 3.1 0.72 
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applied the corresponding concentrations of the dissolved Fe in the surface oceans as 

listed in Table 7-2. The mean concentrations of dissolved Fe in the surface tropical 

(0.95 nM) and subtropical (0.77 nM) North Atlantic were measured along the two 

transects in April 1996 (Sanudo-Wilhelmy et al., 2001), which correspond to the 

atmospheric deposition flux of soluble Fe observed during the April. Similar mean 

concentration of dissolved Fe (0.88 nM) was also observed by Wu et al. (2001) in the 

eastern subtropical North Atlantic (September 1999, 22.8°N, 36.8°W), and the 

relatively low concentration (0.6 nM) was found to be in the North Atlantic near 

Bermuda (July 1998, 34.8°N, 56.8°W) (Wu et al., 2001).  Bermuda is north of the 

Atlantic region that we calculated the atmospheric Fe fluxes for, which was less 

affected by African dust compared to our studied Atlantic region. Therefore an 

averaged concentration of dissolved Fe (0.86 nM) in the tropical and subtropical 

North Atlantic was used for the residence time calculation.   

Johnson et al. (2003) reported the dissolved Fe concentrations in the surface 

seawater for a transit from California to Hawaii in March 2001 and on the return in 

May 2001, and the mean concentrations in the central North Pacific (155° to 160°W) 

were 0.22 nM and 0.68 nM for the March and the May, respectively. Boyle et al. 

(2004) observed a significant variability of dissolved Fe (<0.4 µm) concentrations, 

both inter-annually and on a seasonal and sub-seasonal basis, in the mixed layer of 

the central North Pacific.  The dissolved Fe concentrations at Hawaii Ocean Time-

series (HOT) station ALOHA ranged from 0.22 to 0.73 nM with the highest 

concentration (0.73 nM) seen in late April 2001 (Boyle et al., 2004).  The surface Fe 

concentration in the central North Pacific is expected to reach the maximum in April 
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due to the most intense dust storms transported from Asian (Bodhaine et al., 1981; 

Holmes et al., 1997; Perry et al., 1999), therefore, the mean concentration of 0.68 nM 

along with the atmospheric deposition of soluble Fe during the April was used for 

estimation of Fe residence time in this Pacific region (Table 7-2).  

The dissolved Fe concentrations in the surface Indian Ocean were measured 

during five cruises of the 1995 US JGOFS Arabian Sea Process Study (Measures and 

Vink, 1999). The dissolved Fe concentrations were relatively uniform between 

January and April ranging from 0.5 to 2.4 nM (mean 1.0 nM), which were applied for 

estimation of Fe residence time in the Indian Ocean (Table 7-2). 

7.4 Residence Time Calculation 

The atmospheric inputs were combined with values for inputs from below the 

euphotic zone via upwelling and diffusion and used together with surface water 

concentrations to yield euphotic zone residence times for dissolved Fe in the tropical 

and subtropical North Atlantic, the subtropical North Pacific and the North Indian 

oceans (Table 7-2). For this purpose, the surface zone was considered to be the upper 

100 m, which is generally the depth of the mixed layer. The estimates of upwelling 

fluxes of dissolved Fe were rather uncertain, and were simply extracted from the 

previous model results for the North Subtropics Atlantic (2.0 µmol m-2 yr-1), the 

North Subtropics Pacific (0.9 µmol m-2 yr-1) and the Indian Ocean (3.1 µmol m-2 yr-1) 

(Fung et al., 2000). Nonetheless, the upwelling fluxes are about 1 or 2 orders of 

magnitude lower than the atmospheric fluxes of dissolved Fe to the three oceanic 

regions and thereby are negligible (Table 7-2). High fluxes of dissolved Fe were 

observed from sediments on the continental shelf to the water column (Elrod et al., 
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2004). The lower limit value of benthic dissolved Fe reaching the euphotic zone was 

estimated 2.2×109 mol yr-1, which is of similar magnitude to global input of dissolved 

Fe from aerosols (2-12×109 mol yr-1, Fung et al., 2000; Jickells and Spokes, 2001).  

The horizontal fluxes of dissolved Fe from coastal surface water to the remote ocean 

depend on the extent to which the water is transported offshore.  Although the 

influence of nearshore Fe inputs was observed at least 600 km offshore (Johnson et 

al., 2003), the horizontal fluxes may not significant for the remote oceans.  Thus the 

atmospheric flux was the only source considered for the dissolved Fe to the studied 

upper oceans. The residence times of dissolved Fe in the upper ocean (Table 7-2) 

were calculated by the following equation:  

)(
100)(

12

3

−−

−

⋅⋅
×⋅

==
yrmmolF

mmmolC
F
Itr µ

µ  

where tr represents the residence time of dissolved Fe (yr) in the upper ocean; I means 

the inventory of dissolved Fe (µmol m-2); C represents dissolved Fe concentrations in 

the surface ocean (nM or µmol m-3); and F represents total fluxes of dissolved Fe to 

the upper ocean (µmol m-2 yr-1). The estimated residence time of dissolved Fe (252 

days, Table 7-2) in the upper 100 m of the North Atlantic is similar to the previous 

estimates of Fe residence times (214-291 days) in the upper Sargasso Sea (Jickells, 

1999). However, Landing and Bruland (1987) suggested that the residence times for 

the scavenging of dissolved Fe from the upper Pacific Ocean were 2-13 years, which 

is comparable to the residence time of dissolved Fe (2.7 years, Table 7-2) estimated 

for the North Pacific in this study. The residence time of dissolved Fe in the upper 

North Pacific is approximately a factor of 4 longer than those estimated for the North 
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Atlantic and the North Indian oceans (Table 7-2). The short residence times for 

dissolved Fe probably reflect its rapid biological uptake and removal in the upper 

North Atlantic and North Indian oceans (Johnson et al., 1997; Hutchins et al., 1993). 

By contrast, the relatively longer residence time of dissolved Fe may reflect its 

retention in the euphotic zone as a result of phosphorus limitation in the subtropical 

North Pacific gyre (Karl, 1999). 
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Chapter 8: Conclusions and Future Directions 
 

 

8.1 Summary of Major Findings  

Atmospheric deposition of nutrient species has a great impact on 

biogeochemical cycling of C and N in the remote ocean. Limited field measurements 

of atmospheric nutrient concentrations over the remote ocean have been reported, and 

the fraction of aerosol Fe that can dissolve into seawater and then be bioavailable is 

still uncertain. This dissertation provides an expansive and unique set of atmospheric 

aerosol nutrient data from direct measurements performed during three research 

cruises over the Atlantic Ocean, four research cruises over the Pacific Ocean and one 

research cruise over the Indian Ocean.  This data has found that atmospheric Fe is 

highly variable and the factors controlling the labile fraction of Fe include 

atmospheric processing, different source regions and anthropogenic activities. The 

data also shows the complicated nature of the other nutrient species in the atmosphere 

and that they also need to be considered.  Overall, we have the following major 

findings: 

1) Reducible particulate Fe defined is comparable to the photo-reducible Fe 

under ambient sunlight.  

2) Trichodesmium shows a luxury uptake of aerosol Fe in the western tropical 

North Atlantic. 

3) Total labile Fe defined may be a threshold of Fe uptake by Trichodesmium. 

4) The labile fraction varies spatially and temporally. 

5) The labile fraction is greater in the Pacific than in the Atlantic. 
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6) Factors such as atmospheric processes and anthropogenic activities seem to 

control the ratio. 

7) Different terrestrial sources may also be a factor controlling the labile 

fraction. 

8) Atmospheric contents of N and P are also affected by both natural and 

anthropogenic sources. 

9) Dry deposition fluxes of labile Fe generally control the primary 

productivity in these two oceanic regions. 

10) Residence time of dissolved Fe in the upper Pacific appears to be longer 

than those in the Atlantic and Indian oceans. 

8.2 New Questions 

This dissertation has provided more insight into the role of the atmosphere as 

a source of nutrient species to the oceans by investigating the spatial and temporal 

distribution of these aerosol species along with other chemical species.  The 

measurements were also used to predict their impacts on the oceanic biological cycle.  

However, atmospheric deposition of nutrients and their roles on controlling 

biogeochemical cycling of C and N is a very complicated process, and there are many 

questions that have developed as a result of this dissertation.   

These questions include: 

1) What explains the difference observed between the Pacific and the Atlantic 

oceans? 
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2) Does anthropogenic emission of other chemical species (e.g., organics, 

precursor acidic specie) promote the dissolution of Fe or P during atmospheric 

transport? 

3) What is the importance of the different source regions (e.g., Gobi Desert, 

Sahel) on the labile forms of Fe or P? 

4) How important are direct anthropogenic sources of atmospheric labile Fe 

and other nutrient species (e.g., through combustion or smelting activities) on a global 

basis? 

5) Does luxury uptake of aerosol Fe always occur? 

6) What is the relationship between the labile Fe and the bioavailable forms of 

aerosol Fe? 

8.3 Future Studies to Answer these Questions 

Future studies to answer these new questions are outlined below:  

1) Do further analyses and experiments based on our archived aerosol 

samples.  We may measure other tracers of aerosol sources such as Pb isotopes and 

organics used for tracking biomass sources.  We may do more aerosol dissolution 

experiments including abiotic (i.e. seawater dissolution) and biotic (using cultured 

organisms) dissolutions.  These studies will increase our knowledge in bioavailable 

forms of aerosol nutrients. 

2) Develop a large field program to quantify the roles of sources and 

atmospheric processes on controlling the labile Fe and other nutrient species in the 

atmosphere.  We can follow an air mass (e.g. dust storm) from its over the oceans 

while measuring the chemical composition of the aerosol samples collected.  Aircraft 



 

 172 
 

sampling coordinated with land-based or ship-based platforms could be used for this 

large field campaign.   

3) Do modeling exercises.  We can hypothesize different 

mechanisms/processes and sources that contribute to the labile Fe and other nutrient 

species over the remote ocean, and then test using the field measurements. 
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Appendices I 
 

 

Chemical compositions of aerosols measured from three cruises (6 January to 19 
February 2001, 27 June to 14 August 2001, and 18 April to 20 May 2003) over the 
North Atlantic Ocean, four cruises (9 April to 26 April 2001, 1 July to 16 July 2002, 
23 September to 15 October 2002, and 6 August to 20 August 2003) over the North 
Pacific Ocean, and one cruise (22 February to 30 March 1999) over the Indian Ocean 
 
Note: The detection limit varied for each sample and species measured because of the 
detection limit of the analytical method and the air volumes collected for each aerosol 
filter samples.  BDL means below detection limit. 
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Julian day Latitude  Longitude  

 °N °W 
Fe(II) 

ng m-3 
Fe(II)+Fe(III) 

ng m-3 
Total Labile Fe 

ng m-3 
Fe 

ng m-3 
Al 

ng m-3 
   Fine coarse Fine coarse Fine coarse Fine coarse Fine coarse 

1/6/01-
2/19/01             

6 ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ 13.5 17.8 15.5 37.5 
7 27.8 75.5 ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ 15.1 25.9 9.69 42.3 
8 28.1 70.9 1.98 0.37 2.1 0.5 2.34 0.64 4.58 6.05 2.28 22.6 
9 28.4 66.9 0.32 0.32 0.66 0.74 0.76 0.82 <1.3 2.83 <0.08 1.27 

10 28.6 63.3 0.34 0.1 0.42 0.19 1.5 0.37 0.83 0.81 3.31 4.72 
12 29.2 55.2 0.36 0.05 0.5 0.09 0.76 0.16 2.44 <5.4 2.86 1.79 
13 29.5 51.3 ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ 2.11 0.72 2.21 2.08 
14 29.9 48.2 0.13 0.04 0.16 0.04 0.35 0.08 2.08 3.73 0.35 <0.08 
15 29.6 46.5 0.05 0.01 0.08 0.01 0.13 0.05 <0.6 0.1 <0.09 <0.09 
16 27.8 45 0.1 0.02 0.14 0.04 0.23 0.04 1.67 0.29 4.21 1.07 
17 25.3 45 0.44 0.07 0.61 0.19 0.85 0.31 21.3 13.9 67.2 13.7 
18 21.5 45 0.73 0.04 1.03 0.29 1.39 0.49 18 18.9 19.5 27.2 
19 16.8 45 1.13 0.3 3.42 1.23 2.18 1.88 186 108 250 154 
20 13.2 45 2.89 1.43 3.05 1.93 2.13 5.82 397 249 769 500 
21 10.2 45.2 3.87 0.89 19.1 1.3 19.9 3.09 729 161 1411 333 
22 10.2 46.5 3.31 0.49 12.7 0.95 17.7 2.7 230 181 304 253 
23 10.5 47.8 12.5 6.24 17.6 12.2 18 14.1 27.5 7.16 31.1 2.65 
29 10.5 47.8 1.78 0.16 3.62 0.94 4.98 1.19 87.7 32.9 166 43 
30 10.5 55.3 0.44 0.09 0.82 0.11 1.46 0.31 21.1 5.93 33.4 9.45 
31 10.1 53.5 1.1 0.08 1.55 0.62 2.38 0.88 51.5 33 97.4 50.5 
32 9.19 51.2 1.65 0.47 2.62 0.8 3.29 1.19 42.6 22.9 79 48.3 
33 9.24 49.3 0.24 0.02 0.27 0.05 0.57 0.14 4.75 2.24 9.82 6.35 
34 9.36 47.5 4.15 1.25 5.14 1.54 7.19 2.11 116 67 202 127 
35 7.41 48.2 10.8 3.71 18.6 4.38 27.6 7.67 647 320 1211 577 
36 6.31 47.1 6.88 0.98 13.2 2.77 26.7 6.83 454 142 839 280 
37 7.22 45.1 10.7 2.1 25.4 3.86 26.7 7.09 529 139 964 224 
38 7.17 43 10.1 3.79 15.5 4.57 20.8 6.6 418 137 748 254 
39 8.61 41.3 5.44 2.48 17.8 2.1 25.7 4.59 301 128 501 228 
40 9.34 41.5 5.52 1.75 6.42 3.7 16.4 4.46 345 170 613 311 
41 10.9 42.4 19.9 7.9 25 13.9 42.2 20.8 404 369 756 748 
42 10.1 44.7 12.1 5.02 22.2 7.65 36.5 10.4 729 352 1414 699 
43 9.81 44.5 22.4 2.67 27.7 8.32 42.2 11.7 836 383 1642 824 
44 10.6 46.6 15.8 6.71 21.9 7.48 34 9.78 484 213 1002 420 
45 9.44 49.2 14.4 5.97 19.5 8.65 33.1 10.3 415 149 764 274 
46 9.08 51.8 7.8 3.48 12.8 4.23 16.2 5.62 351 154 640 336 
47 9.41 55.3 12.5 5.77 24.6 6.61 32.3 9.87 825 381 1227 602 
48 10.9 56.1 9.54 3.68 21.8 6.03 29 11 1167 521 2067 988 
49 11.3 54.8 12.1 8.89 28.8 11.9 36.3 16.2 698 402 1314 813 

6/27/01-
8/14/01             

178 29.2 27.4 0.07 <0.04 0.13 0.06 0.27 0.09 3.15 2.67 1.87 1.38 
179 29.3 29.6 0.08 0.02 0.17 0.06 0.24 0.12 2.74 1.79 7.57 2.14 
180 29.4 33.5 0.06 <0.03 0.16 0.02 0.24 0.07 2.07 4.88 4.96 10.2 
181 29.5 37.4 0.11 0.09 0.19 0.17 0.29 0.34 2.4 66.4 4.99 206 
182 29.5 39.3 0.25 0.04 0.65 0.24 0.72 0.31 23.2 79.1 48.6 244 
183 29.6 43.2 0.24 0.01 0.64 0.07 0.68 0.09 8.53 7.17 18.4 15.6 
184 29.6 45 0.74 0.17 3.02 1.01 4.56 2.73 80.5 154 169 424 
185 25.5 48.6 0.78 0.04 2.51 0.58 3.6 1.2 70.3 137 158 375 
186 22.6 51.3 0.56 <0.02 2.08 0.17 2.91 0.52 59.1 62.9 148 134 
187 16.3 56.8 0.94 0.05 2.9 0.51 4.11 0.99 102 145 224 338 
188 ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ 115 114 263 268 
190 11.8 54.4 0.53 <0.05 2.1 0.43 3.08 0.99 79.7 61.7 241 143 
190 11.8 54.4 0.27 0.08 1.26 0.51 2.07 1.08 91.4 77.4 195 214 
191 10.4 48.1 1.54 0.41 8.42 1.89 11.3 3.11 320 356 797 894 
192 10.4 48.1 1.02 0.08 4.17 0.79 6.57 1.78 199 117 508 285 
193 10.4 48.1 0.33 ⎯ 1.19 ⎯ 2.33 ⎯ 108 81.1 315 233 
194 9.8 45.3 ⎯ 0.17 ⎯ 1.02 ⎯ 1.67 223 195 575 504 
195 10.1 45.4 0.63 0.09 3.91 0.98 5.54 1.7 256 266 679 701 
196 10.2 45.5 0.66 0.09 3.06 0.66 4.91 1.62 205 283 538 751 
197 11 49.3 1.36 0.22 7.01 1.67 8.59 1.99 304 558 788 1468 
198 ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ 271 242 519 571 
200 11.6 58.2 0.7 0.01 6.71 1.09 8.68 1.89 229 263 517 905 
201 10.3 56.3 0.49 0.26 3.45 1.06 4.71 2.04 92.8 147 207 322 
202 10.2 56.3 1.15 0.09 4.85 1.21 7.05 2.17 143 138 318 311 
203 10.2 56.3 ⎯ 0.2 ⎯ 0.88 ⎯ 1.71 106 61.2 303 116 
207 11.9 54.9 0.5 0.02 2.84 0.36 4.58 1.02 104 95.7 304 219 
208 10.4 53 0.81 0.1 4.05 0.69 7.41 1.99 250 249 587 564 
209 8.74 51 0.6 0.02 2.2 0.42 5.37 0.98 137 67.3 316 132 
210 7.23 48.5 0.2 <0.03 0.69 0.17 0.95 0.34 22.4 20 42 62.8 
211 5.65 46.4 0.16 0.02 0.47 0.15 0.95 0.31 19.8 23.7 61.2 29.3 
212 4.76 43.9 0.03 <0.03 0.07 <0.03 0.13 0.03 2.18 0.75 1.02 <0.1 
213 3.83 42.8 0.26 0.01 0.32 0.06 0.77 0.12 12.2 6.37 11.9 7.24 
214 3.27 44.2 0.07 0.05 0.1 0.11 0.29 0.25 3.16 8.64 3.3 11.6 
215 3.93 46.1 0.18 <0.06 0.25 0.01 0.49 0.17 0.39 11.3 0.79 18.3 
216 5.79 48 0.22 0.11 0.31 0.15 0.66 0.19 9.61 9.2 10.6 11 
217 6.17 50.1 0.13 0.03 0.26 0.1 0.42 0.23 5.86 10.1 6.8 14.2 
219 8.21 52.8 0.82 0.1 2.81 0.6 4.22 1.24 120 147 248 301 
221 10.5 55 1.34 <0.03 5.03 0.6 7.25 1.49 223 157 423 319 
222 10.6 55.8 1.44 <0.04 2.98 0.46 5.3 1.3 125 126 262 256 
223 12.5 55 1.42 0.08 8.6 0.39 11 1.94 384 290 722 572 
224 12.5 54.1 0.94 0.26 5.05 1.45 7.59 2.42 194 240 484 494 
225 11.4 53.8 1.61 <0.05 4.13 0.28 5.61 1.3 90.3 48.2 117 111 
226 11.8 54.6 0.18 0.05 0.51 0.16 0.56 0.33 15.7 23 10.4 21.5 
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Julian day Latitude  Longitude  
 °N °W 

Fe(II) 
ng m-3 

Fe(II)+Fe(III) 
ng m-3 

Total Labile Fe 
ng m-3 

Fe 
ng m-3 

Al 
ng m-3 

   Fine coarse Fine coarse Fine coarse Fine coarse Fine coarse 
4/18/03-
5/20/03             

108 12 57.6 ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ 35.9 59.1 29.4 101 
109 11.4 55.5 0.23 0.08 0.98 0.16 2.14 0.33 16.8 46.4 6.49 5.7 
110 11.1 53.4 0.49 0.16 0.97 0.27 1.92 0.52 21.1 28.6 5.11 1.3 
111 9.86 52.1 1.8 0.16 3.84 0.66 9.25 1.67 114 74 97.5 56.1 
112 7.93 52 3.8 0.58 7.24 1.18 16 4.64 348 156 298 177 
113 6.98 51 4.24 <0.03 10.4 0.75 17.4 1.74 366 269 662 505 
114 7.68 50.8 3.33 0.76 8.02 0.4 15 5.39 343 147 340 170 
115 9.08 52.9 3.13 0.49 6.72 1.04 11.5 2.2 331 152 272 233 
116 10.5 55.1 2.54 4.55 5.08 10.1 9.02 14.6 496 275 988 462 
117 12.1 56.5 0.97 0.06 2.01 1 4.08 1.21 144 135 167 235 
120 12.3 56.2 1.51 0.19 4.62 1.16 7.59 2.31 251 195 262 210 
121 11 55.4 1.65 0.49 4.72 1.37 7.85 2.92 190 568 329 1061 
122 9.4 55.4 2.56 0.51 7.92 1.79 11.7 3.08 325 496 561 890 
123 7.98 54.9 4.49 0.65 18.3 1.48 30.9 5.45 852 708 1520 1250 
124 8.53 54.9 4.73 1.05 13.6 2.02 21.3 6.95 524 401 949 739 
125 10.8 55.9 4.07 <0.1 9.09 2.94 15.1 5.39 788 1223 1330 2428 
126 12.1 56.1 3.87 0.75 7.29 2.2 10.6 2.99 289 482 519 627 
127 11.8 56.3 1.46 0.05 3.6 0.37 5.59 1.13 172 157 283 305 
130 11 55.4 1.68 0.16 2.07 1 5.68 1.68 130 106 196 185 
131 10.7 53.4 1.72 0.39 4.59 0.96 7.97 2.02 290 375 471 727 
132 10.6 51.3 2.69 0.5 8.92 2.16 12.2 3.2 416 473 638 869 
133 10.5 49.2 3.4 0.38 7.56 0.71 11.5 1.71 390 412 724 659 
134 9.4 48.4 2.4 0.65 8.7 0.73 11.8 2.33 92.2 55.5 169 115 
135 8.1 49.4 6.44 2.53 18.1 3.98 21.2 7.2 730 603 1319 1103 
136 8.12 53 4.01 1.06 7.36 3.77 10.5 4.65 561 410 532 816 
138 9.14 56.7 3.87 0.6 8.58 1.06 12.8 2.2 286 239 416 344 
139 10.3 56.6 3.98 0.18 7.52 0.79 10.5 2.11 233 201 451 361 
140 10.8 55.2 2.64 0.09 6.19 0.92 9.93 2.04 280 293 559 507 

4/9/01-
4/26/01             

99 21.5 160 0.24 0.08 0.37 0.21 0.54 0.41 10.6 30.5 <0.2 10.1 
100 22.2 162 0.42 0.18 0.7 0.39 1.04 0.52 37.8 30.6 36.5 32.4 
101 23.3 168 0.2 0.13 0.33 0.27 0.49 0.47 10.3 52.8 10.3 11.1 
102 24.4 172 0.15 0.09 0.27 0.19 0.37 0.31 15.6 11.7 20.7 15.8 
103 26.1 175 0.92 0.49 1.13 0.95 1.59 1.07 74 88.3 135 161 
104 26.8 181 1.17 0.52 2.11 1.02 3.03 1.19 135 96 352 255 
105 27.3 185 0.35 0.06 0.35 0.11 0.51 0.15 34.6 19.5 61.6 40.9 
106 27.6 190 0.36 0.21 0.37 0.3 0.52 0.34 30.4 22.3 39.3 30 
107 27.6 190 2.19 0.28 2.37 0.57 2.76 0.51 68.7 57.3 122 105 
108 27.4 187 1.03 0.3 1.17 0.58 1.43 0.48 85.6 72.7 162 145 
109 26.7 182 4.68 0.78 5.57 1.42 7.1 1.69 376 282 727 557 
110 26 175 0.87 0.25 1.23 0.47 1.65 0.63 44.8 36.1 60.1 50.1 
111 25.6 174 0.42 0.14 0.42 0.19 0.6 0.23 27.9 17.9 35.2 21.4 
112 24.8 171 0.62 0.21 1.37 0.58 1.77 0.76 65.1 50 81.5 67.7 
114 24.2 166 0.85 0.33 1.75 0.51 2.36 0.63 105 46.6 136 65.7 
116 22.5 158 1.26 0.12 1.75 0.48 2.19 0.64 55.4 26.7 71.7 37.5 

7/1/02-
7/16/02             

182 22.8 158 0.19 0.06 0.27 0.13 0.27 0.14 3.36 1.85 4.41 1.78 
183 22.8 158 0.18 0.13 0.25 0.18 0.33 0.27 6.25 3.03 2.34 0.72 
184 23.5 162 0.28 0.1 0.36 0.17 0.39 0.17 4.28 4.42 1.82 4.85 
185 24 165 0.38 0.11 0.37 0.14 0.37 0.14 1.63 5.03 <0.2 <0.2 
186 24.5 167 0.25 0.28 0.42 0.26 0.43 0.25 3.03 1.31 <0.4 <0.4 
187 24.9 170 0.3 0.22 0.38 0.21 0.47 0.21 2.86 <3 <0.4 <0.4 
189 26.1 175 0.08 0.05 0.14 0.1 0.16 0.11 0.98 <1 1.26 <0.1 
190 26 175 0.1 0.05 0.16 0.04 0.19 0.07 2.07 1.22 11.9 <0.1 
191 26 175 0.07 0.04 0.16 0.04 0.2 0.04 1.56 <0.9 0.82 <0.1 
192 26 175 0.12 <0.03 0.26 0.06 0.26 0.07 1.84 0.22 1.26 <0.1 
193 26 175 0.09 0.01 0.18 0.05 0.22 0.06 3.4 1.24 1.35 0.38 
194 24.7 170 0.09 <0.03 0.18 0.04 0.19 0.04 1.97 1.75 <0.1 <0.1 
195 23.6 167 0.15 0.08 0.25 0.15 0.32 0.18 22.9 63.9 1.07 0.7 
196 22.9 164 0.1 0.04 0.13 0.07 0.18 0.09 1.86 0.71 2.52 0.71 
197 22.8 160 0.13 0.05 0.16 0.12 0.24 0.14 2.81 2.11 2.46 3.54 

9/23/02-
10/15/02             

266 22.5 157 0.1 0.08 0.18 0.2 0.18 0.2 4.08 61.1 0.74 1.31 
267 23.5 157 0.1 0.02 0.23 0.22 0.23 0.22 6.05 9.37 <0.1 0.17 
268 23.5 157 0.32 0.17 0.53 0.25 0.53 0.5 9.55 49.9 2.19 6.59 
269 24.2 156 0.06 0.02 0.08 0.07 0.18 0.08 16.6 2.58 1.66 1.85 
270 24.2 155 0.06 0.02 0.12 0.06 0.14 0.07 1.58 1.39 2.85 2.11 
271 23.7 156 0.23 0.03 0.26 0.08 0.35 0.08 13.8 3.68 6.47 3.67 
273 23.3 157 0.21 0.05 0.37 0.2 0.58 0.2 ⎯ ⎯ ⎯ ⎯ 
274 23.3 159 0.15 0.2 0.17 0.2 0.27 0.19 66.6 <2 0.06 0.24 
275 23.8 159 0.02 0.01 0.13 0.09 0.22 0.19 17.5 100 0.01 0.86 
276 22.5 159 ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ 30.4 2.9 1.78 4.67 
278 19.7 156 0.21 0.06 0.36 0.21 0.36 0.25 1.7 23.7 1.74 18.7 
279 19.4 156 1.21 0.2 1.54 0.36 1.54 0.4 2.97 6.09 2.01 5.28 
280 19.8 155 0.38 0.02 0.46 0.13 0.66 0.12 13.4 0.02 2.7 1.17 
281 20.3 156 0.14 0.07 0.32 0.16 0.36 0.2 <1 1.97 1.06 1.4 
282 20.1 156 0.09 0.02 0.16 0.05 0.26 0.14 1.42 <0.7 2.79 0.78 
283 20.9 156 0.21 0.06 0.22 0.06 0.32 0.17 3.09 23.4 3.86 1.12 
284 22.6 157 0.16 0.07 0.26 0.06 0.26 0.17 0.63 0.57 0.56 0.43 
285 23.2 158 0.07 0.03 0.07 0.05 0.24 0.11 9.53 <1 1.7 2.53 
286 21.6 158 0.26 0.08 0.29 0.12 0.36 0.18 1.95 7.44 2.83 6.51 
287 20.2 157 0.39 0.09 0.39 0.09 0.5 0.24 1.86 <0.8 2.13 2.58 
288 19.8 156 ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ <0.7 <0.7 0.85 0.37 
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Julian day Latitude  Longitude  
 °N °W 

Fe(II) 
ng m-3 

Fe(II)+Fe(III) 
ng m-3 

Total Labile Fe 
ng m-3 

Fe 
ng m-3 

Al 
ng m-3 

   Fine coarse Fine coarse Fine coarse Fine coarse Fine coarse 
8/6/03-
8/20/03             

218 19.7 157 0.18 0.04 0.38 0.16 0.55 0.26 48.4 32.6 17.9 6.81 
219 18.5 157 0.09 0.03 0.17 0.13 0.28 0.22 29 75.8 0.6 <0.1 
220 18.7 156 0.09 0.03 0.19 0.08 0.26 0.07 47 7.95 27.8 3.79 
221 19.2 156 0.15 0.05 0.44 0.27 0.54 0.55 158 5.81 2.68 14.9 
222 19.5 157 0.09 0.05 0.47 0.15 0.54 0.15 33.8 75.7 3.17 15 
223 19.5 158 0.22 0.06 0.55 0.18 0.63 0.17 28.7 32.6 0.72 9.75 
224 19.5 159 0.24 0.05 0.59 0.2 1.13 0.13 42.7 0.12 1.88 7.26 
225 20 160 0.18 0.06 0.37 0.19 0.68 0.45 21.3 31.6 9.7 15.4 
226 20.8 160 0.39 0.12 0.63 0.2 0.88 0.33 35.5 24.9 6.79 4.55 
227 21 159 0.32 0.14 0.64 0.45 0.71 0.92 25.7 26.2 8.76 18.5 
228 20.6 158 0.4 0.06 0.62 0.18 0.79 0.4 49.2 31 18.2 20.7 
229 20.3 158 0.18 0.05 0.45 0.23 0.62 0.31 40.3 59.5 7.41 8.88 
230 19.7 161 0.24 0.03 0.42 0.28 0.47 0.24 42.7 39.5 10.6 9.57 
231 19.1 162 0.17 0.1 0.4 0.18 0.58 0.26 170 23.7 11.7 14.7 
232 19.8 162 0.15 0.09 0.24 0.13 0.53 0.22 61.5 10.7 6.33 10.1 

2/22/99-
3/30/99             

53p         
54a         
54p         
55a         
55p         
56a         
56p         
57a         
57p         
58a         
58p         
59a         
63p         
64a         
64p         
65a         
65p         
66a         
66p         
67a         
67p         
68a         
68p         
69a         
69p         

71         
72p         
73a         
73p         
74a         
74p         
75a         
75p         
76a         
76p         

77         
78         
79         
80         

81p         
85p         
86a         
86p         

87         
88a         
88p         
89a         

25.1 
69.7 
40.9 
28 

74.9 
45.4 
32.1 
32.9 
32.7 
41.8 
110 
135 
551 
443 
491 
507 
485 
800 
506 
135 
589 
327 
510 
685 
469 
387 
512 
342 
510 
499 
451 
281 
241 
143 
188 
187 
32.9 
124 
203 
697 
348 
175 
133 
129 
229 
434 
469 

33.6 
121 
21 

25.8 
124 
52.9 
45.2 
48 

51.7 
40.9 
208 
254 
1395 
796 
808 
821 
826 
2501 
1097 
307 
1360 
751 
1052 
1378 
1061 
730 
927 
627 
946 
919 
850 
480 
431 
238 
320 
302 
59.3 
236 
349 
1640 
674 
385 
248 
276 
269 
467 
487 
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Julian day Latitude  Longitude  

 °N °W 
Ca 

ng m-3 
K 

ng m-3 
Na 

ng m-3 
Mg 

ng m-3 
Cr 

ng m-3 
   Fine Coarse Fine Coarse Fine Coarse Fine Coarse Fine Coarse 

1/6/01-
2/19/01   

  
        

6 ⎯ ⎯ 21.9 77.2 29.2 17.1 68.5 329 10.4 39.7 0.16 0.31 
7 27.8 75.5 16.5 68.3 20.6 46.3 323 1406 33.9 160 0.07 0.24 
8 28.1 70.9 14.2 47.5 28.9 46.3 551 1602 55.4 163 0.1 0.06 
9 28.4 66.9 <0.9 72.8 0.08 73.2 19.9 2244 2.76 212 0.22 0.26 

10 28.6 63.3 16.4 100 22.4 105 458 2123 75.1 445 <0.2 0.03 
12 29.2 55.2 10.9 22 12.6 20.2 314 463 41.6 68.7 0.01 0.02 
13 29.5 51.3 12.7 8.58 12.4 9.13 276 223 39.4 33.3 0.01 <0.1 
14 29.9 48.2 8.63 27.7 9.59 26.5 248 658 36.8 95 <0.06 <0.06 
15 29.6 46.5 9.18 18.7 7.9 17.5 405 674 32.2 61 <0.07 <0.07 
16 27.8 45 11.4 24.1 10.8 21.7 362 822 30.6 74.1 <0.1 <0.1 
17 25.3 45 22.9 26 44.8 19.2 879 1026 40.1 44.7 0.08 0.06 
18 21.5 45 19.6 47.2 38.8 34.8 736 2211 30.5 91.2 0.1 0.05 
19 16.8 45 214 266 97.7 124 1596 4409 195 403 0.66 0.41 
20 13.2 45 228 285 329 198 1909 3665 259 373 1.33 0.92 
21 10.2 45.2 448 173 454 108 6084 4039 490 228 2.1 0.51 
22 10.2 46.5 170 256 125 173 3310 8000 203 403 1 0.63 
23 10.5 47.8 55 95 63.8 98.4 2131 5062 147 315 <0.08 0.06 
29 10.5 47.8 83.8 62.7 110 48.2 2196 1896 148 136 0.33 0.09 
30 10.5 55.3 57.7 38.8 64.3 33.2 3149 1970 143 106 0.18 0.14 
31 10.1 53.5 144 113 147 101 4763 4884 261 208 0.42 0.32 
32 9.19 51.2 76.3 86.3 72.7 59.9 1238 1640 131 180 0.09 0.03 
33 9.24 49.3 31.7 55.2 36.6 50.5 1258 1578 108 162 <0.07 <0.07 
34 9.36 47.5 133 150 155 99.5 1842 2438 210 269 0.16 <0.07 
35 7.41 48.2 639 450 457 195 1551 1661 403 305 2 0.7 
36 6.31 47.1 396 214 282 98.9 1463 1056 298 154 1.41 0.48 
37 7.22 45.1 374 187 318 89.1 2266 1167 361 182 1.52 0.28 
38 7.17 43 328 197 255 106 1811 1500 305 206 1.08 0.37 
39 8.61 41.3 202 166 181 89.5 1794 1111 324 175 0.76 0.5 
40 9.34 41.5 189 176 132 97.1 777 978 169 166 0.99 0.59 
41 10.9 42.4 177 323 205 205 1252 3084 303 321 0.98 1.14 
42 10.1 44.7 427 312 326 156 1670 1161 309 215 1.94 0.97 
43 9.81 44.5 470 366 425 211 2696 1781 529 283 2.42 1.22 
44 10.6 46.6 250 187 244 108 1571 993 193 157 1.44 0.67 
45 9.44 49.2 202 146 231 95.4 671 725 225 189 1.76 0.75 
46 9.08 51.8 37.7 226 211 128 877 1066 226 251 0.81 <0.2 
47 9.41 55.3 358 322 350 202 1397 1643 361 325 2.18 1.15 
48 10.9 56.1 586 379 486 249 1001 918 465 267 3.22 1.39 
49 11.3 54.8 412 376 306 223 900 1390 346 290 1.78 1.09 

6/27/01-
8/14/01             

178 29.2 27.4 17.5 30.3 9.33 21.5 234 377 19.7 61.6 0.07 <0.1 
179 29.3 29.6 16.4 26.6 7.73 12.8 179 224 14.5 35.7 0 <0.07 
180 29.4 33.5 13.7 21 8.42 18.5 96.7 221 17.7 47.4 0.01 0.05 
181 29.5 37.4 7.3 72.2 8.42 73.5 105 271 17 80.4 <0.07 0.2 
182 29.5 39.3 106 59.9 128 62.6 561 162 226 42 0.11 0.29 
183 29.6 43.2 60.5 34.8 30.4 25.7 206 314 74.5 51.1 0.06 0.28 
184 29.6 45 87.1 271 85.3 332 676 6908 289 929 0.3 1.15 
185 25.5 48.6 83.5 169 125 218 2272 4400 249 620 0.62 0.68 
186 22.6 51.3 119 127 111 125 2680 2262 360 270 0.47 0.37 
187 16.3 56.8 105 209 113 189 1681 3026 219 356 0.53 0.65 
188 ⎯ ⎯ 80 151 90.3 125 587 1299 115 226 0.78 0.66 
190 11.8 54.4 51.9 79.8 49.6 67.9 343 616 83.5 120 0.29 0.76 
190 11.8 54.4 75.6 105 62.6 71.3 972 1555 117 168 0.21 0.5 
191 10.4 48.1 287 418 154 220 1419 2979 223 375 1.14 1.28 
192 10.4 48.1 166 136 101 76.9 1240 1336 165 139 0.9 0.55 
193 10.4 48.1 156 106 84.3 83.7 1652 2164 176 205 0.26 0.4 
194 9.8 45.3 247 175 151 117 2016 1504 273 185 0.9 0.78 
195 10.1 45.4 216 221 169 151 3044 1904 330 236 1 0.97 
196 10.2 45.5 152 336 145 326 2175 6144 251 632 0.97 1.2 
197 11 49.3 209 473 165 368 1352 3334 212 470 1.19 2.04 
198 ⎯ ⎯ 160 212 120 133 590 1620 144 242 1.22 1.06 
200 11.6 58.2 150 261 101 132 794 1091 156 210 1 1.02 
201 10.3 56.3 83.4 138 89.7 75.8 1244 478 265 83.7 0.81 0.92 
202 10.2 56.3 105 155 91.3 74.5 556 348 90.9 87 1.3 0.91 
203 10.2 56.3 72.9 84.1 69 45.7 615 826 80 86.1 <0.08 0.12 
207 11.9 54.9 88.8 113 60.6 70.5 862 1170 98.3 123 <0.08 0.19 
208 10.4 53 190 237 127 223 1387 1929 184 229 1.03 1 
209 8.74 51 91.7 72.6 61.1 44.1 443 743 70.3 79.8 0.67 0.41 
210 7.23 48.5 22.2 28.3 30.9 24.7 491 672 45.4 59.2 0.08 0.07 
211 5.65 46.4 32.1 56.7 40 79.6 944 1787 73.9 145 0.04 0.1 
212 4.76 43.9 23.8 35.2 31 34.5 884 1355 72 113 <0.07 <0.07 
213 3.83 42.8 19.5 48.1 20 72 497 1629 46.4 139 0.02 <0.1 
214 3.27 44.2 47.5 69.9 52.5 65.7 1968 2631 151 196 0.01 0.06 
215 3.93 46.1 39.6 96.3 40.5 95.2 1522 3856 114 285 <0.2 <0.2 
216 5.79 48 38.7 93.7 42.3 94.5 1328 3727 106 287 <0.2 <0.2 
217 6.17 50.1 19.5 40.6 26.4 34.4 737 1302 56.4 101 0.67 <0.06 
219 8.21 52.8 80.3 138 58.4 80 325 590 74.4 112 0.58 0.54 
221 10.5 55 132 132 91.9 70 348 338 105 83.9 0.83 0.7 
222 10.6 55.8 77.3 118 67.5 72.6 280 502 64.1 80.8 0.8 0.54 
223 12.5 55 364 323 201 173 1188 1723 223 229 1.37 0.98 
224 12.5 54.1 155 288 120 177 1016 2719 151 318 0.3 0.76 
225 11.4 53.8 69.5 68.1 69.8 53.6 652 1256 81 122 <0.1 <0.1 
226 11.8 54.6 31 64.9 66.8 62.7 1028 2214 91 274 0.02 0.01 
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Julian day Latitude  Longitude  
 °N °W 

Ca 
ng m-3 

K 
ng m-3 

Na 
ng m-3 

Mg 
ng m-3 

Cr 
ng m-3 

   Fine Coarse Fine Coarse Fine Coarse Fine Coarse Fine Coarse 
4/18/03-
5/20/03             

108 12 57.6 25.3 74.7 26.9 58.9 761 2072 74 225 6 6.72 
109 11.4 55.5 22.3 39.4 17.4 33.6 784 1197 71.6 115 4.1 17.1 
110 11.1 53.4 12.4 26 18.1 26.3 451 770 50.1 80.1 5.32 9.14 
111 9.86 52.1 53.5 67.2 53.5 57.4 951 1175 101 132 7.5 8.71 
112 7.93 52 139 173 122 122 1502 2633 192 300 44.7 7.35 
113 6.98 51 252 310 208 182 1379 2715 232 386 3.17 7.37 
114 7.68 50.8 129 116 132 94 1202 1926 158 182 54.4 14.1 
115 9.08 52.9 129 206 129 163 1209 3782 161 397 57.5 12 
116 10.5 55.1 425 147 264 130 2686 380 410 119 12.3 16.5 
117 12.1 56.5 72.7 135 68.6 95.6 695 1968 109 216 23.8 8.57 
120 12.3 56.2 91.4 88 116 79.9 571 697 110 117 47.8 37.7 
121 11 55.4 109 328 109 300 1212 2634 163 446 10 6.5 
122 9.4 55.4 162 359 169 295 1252 4125 230 508 19.2 7.73 
123 7.98 54.9 479 422 334 308 1556 2856 436 440 29.5 40.7 
124 8.53 54.9 267 284 228 199 1014 1767 264 285 21.4 18.1 
125 10.8 55.9 377 805 374 566 1129 2774 327 663 43 25.4 
126 12.1 56.1 141 299 143 224 1249 2980 197 393 8.99 61.6 
127 11.8 56.3 92 166 107 146 1420 2556 175 304 7.9 1 
130 11 55.4 89.9 121 77.9 83.1 1244 1590 142 186 9.86 8.56 
131 10.7 53.4 176 429 148 309 1544 5409 224 638 14.1 1.78 
132 10.6 51.3 205 391 155 255 1319 3000 236 430 18.7 7.86 
133 10.5 49.2 226 330 185 226 1472 3908 256 508 12.2 24.7 
134 9.4 48.4 74.3 102 52.9 63.5 604 1348 86.5 167 2.91 0.78 
135 8.1 49.4 463 595 309 364 2382 5134 449 653 23.2 23 
136 8.12 53 193 392 179 271 1259 4207 205 523 101 15.9 
138 9.14 56.7 151 151 150 113 1519 1835 209 214 32.8 35.7 
139 10.3 56.6 181 242 154 141 1175 2383 180 282 2.32 4.12 
140 10.8 55.2 215 297 166 171 1320 2526 213 313 2.45 9.15 

4/9/01-
4/26/01             

99 21.5 160 66.8 243 69.4 351 2512 9365 323 1111 0.06 0.12 
100 22.2 162 125 373 175 469 3297 ⎯ 342 1112 0.14 0.08 
101 23.3 168 66.6 290 62.7 400 2319 10123 184 941 0.13 0.04 
102 24.4 172 59.2 85.2 44.5 94.2 1254 1587 115 194 0.08 0.05 
103 26.1 175 109 217 59.7 125 408 1048 92.6 181 0.33 0.26 
104 26.8 181 181 178 128 104 363 544 167 164 0.35 0.23 
105 27.3 185 905 858 1126 932 ⎯ ⎯ 3147 2989 0.1 0.03 
106 27.6 190 130 55.2 141 13.8 2003 420 207 61.1 0.07 0.03 
107 27.6 190 93.6 145 90.3 92.5 1193 1771 146 224 0.22 0.15 
108 27.4 187 1204 395 1709 351 ⎯ ⎯ 4824 1026 0.29 0.26 
109 26.7 182 797 355 1144 325 ⎯ 3479 2064 364 1.54 0.65 
110 26 175 70.2 62.2 103 49.2 1800 912 240 107 0.02 0.03 
111 25.6 174 88 59.4 81 51.1 3177 1477 195 136 0.03 0.07 
112 24.8 171 98 107 67.8 72.5 1523 1628 129 162 0.08 0.06 
114 24.2 166 538 108 1217 ⎯ 35581 ⎯ 2606 ⎯ 0.12 0.04 
116 22.5 158 419 82.4 352 42.2 8561 1653 644 134 0.16 <0.2 

7/1/02-
7/16/02             

182 22.8 158 31.4 33.2 30.8 29.5 1010 1072 91.7 95.3 <0.09 <0.09 
183 22.8 158 29.9 49.6 28.7 45 922 1613 82.8 197 <0.1 <0.1 
184 23.5 162 30.3 72.4 34.7 65.9 218 2077 110 207 0.01 <0.2 
185 24 165 23.2 59.4 25.7 58.1 ⎯ 1803 84.2 185 <0.2 <0.2 
186 24.5 167 34.3 60.6 31.9 61.4 1076 2217 99.4 205 0.04 0.03 
187 24.9 170 24.3 31.4 29.3 33.6 939 1287 88 120 <0.3 0.01 
189 26.1 175 22.6 41.2 23.4 37.2 818 1389 77.8 131 <0.1 <0.1 
190 26 175 33.9 43.9 71.9 39.1 1140 1509 107 142 <0.07 <0.07 
191 26 175 33.6 38.5 33.4 35.8 1209 1345 104 118 0.08 0.02 
192 26 175 44.2 58.2 42.4 53.2 1504 2074 131 238 0.05 0.09 
193 26 175 56.4 63.5 34.3 48.4 1250 ⎯ 143 225 0.2 0.1 
194 24.7 170 11.7 19.6 9.65 18.6 289 670 27.2 60.6 0.2 0.19 
195 23.6 167 29.2 24.8 23.1 14.8 738 501 67.2 44.7 8.45 26.8 
196 22.9 164 81.3 44.5 148 39.6 3480 1570 307 138 0.03 <0.07 
197 22.8 160 164 61.3 109 105 2460 2377 296 313 <0.06 <0.06 

9/23/02-
10/15/02             

266 22.5 157 17.3 32 7.99 9.76 210 329 20.3 29.5 <0.1 23.2 
267 23.5 157 14.4 7.49 5.69 7.96 132 274 11.6 25 <0.08 <0.08 
268 23.5 157 9.08 22 8.5 15.1 258 569 24 54 3.46 17.6 
269 24.2 156 18.8 29 17.6 25 646 852 59.5 87.7 6.51 0.76 
270 24.2 155 19.8 35.6 16.7 30.7 563 1208 51.9 110 <0.08 0.14 
271 23.7 156 27.8 41.5 24.9 35.2 766 1335 72.8 172 3.6 0.58 
274 23.3 159 44.2 20.7 38.3 16.9 1460 1029 139 58.5 28 <0.2 
275 23.8 159 30.4 38.3 28.2 37.3 1078 1332 103 123 7.54 42.7 
276 22.5 159 24.2 49 23.3 38.3 791 1479 71.2 188 11.5 <0.09 
278 19.7 156 16.9 57.6 19.1 46.4 648 1459 60.2 140 <0.09 0.19 
279 19.4 156 25.3 38.2 27 33.9 733 1255 65.7 157 <0.08 <0.08 
280 19.8 155 26.8 41.6 27.7 38.4 885 1426 80.4 124 4.91 <0.08 
281 20.3 156 21.2 34.4 18.1 29.3 715 1124 64.9 102 <0.1 0.09 
282 20.1 156 28.2 33.9 25.1 29.7 1038 1115 80.1 103 <0.1 <0.08 
283 20.9 156 41.1 30.6 25.6 15.3 741 596 78.7 51.7 0.01 9.29 
284 22.6 157 12.2 11 8.09 10.9 217 431 25.5 37.2 0.02 0.05 
285 23.2 158 18.4 25.4 9.41 23.5 482 871 33.8 80.1 <0.1 <0.1 
286 21.6 158 21.3 44 18.4 35 670 1291 60.3 119 <0.07 0.01 
287 20.2 157 19.8 36.2 17.7 30.8 657 1356 60.5 120 <0.09 <0.09 
288 19.8 156 10.3 27.4 9.71 24.3 373 957 34.8 84.6 <0.08 <0.08 
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Julian day Latitude  Longitude  
 °N °W 

Ca 
ng m-3 

K 
ng m-3 

Na 
ng m-3 

Mg 
ng m-3 

Cr 
ng m-3 

   Fine Coarse Fine Coarse Fine Coarse Fine Coarse Fine Coarse 
8/6/03-
8/20/03             

218 19.7 157 177 72 173 43 4873 1249 563 151 9.57 7.61 
219 18.5 157 39 42.9 35.8 37.8 818 946 107 133 11.6 30 
220 18.7 156 4873 <0.4 893 ⎯ ⎯ 95.7 5698  7.59 2.67 
221 19.2 156 20.2 48 6.43 57.6 755 1182 73.1 151 63.5 <0.2 
222 19.5 157 51.1 61.6 35.5 43.9 740 1007 91.5 141 8.66 17.5 
223 19.5 158 34.6 76.1 37.8 58.3 764 1561 107 202 5.82 6.14 
224 19.5 159 18 46.5 13.7 40.7 973 987 75.2 128 13.2 0.24 
225 20 160 37.8 88.4 40.1 73.5 933 2194 114 266 7.01 7.98 
226 20.8 160 35.6 50.9 39.4 46.1 872 1124 201 260 9.5 6.89 
227 21 159 45.6 85.2 41.5 67.4 945 1666 217 387 5.29 1.91 
228 20.6 158 397 475 427 232 ⎯ ⎯ 2375 1388 13.5 5.15 
229 20.3 158 53 172 84.9 155 2159 7381 247 921 11.2 22.6 
230 19.7 161 55 130 41.1 73.9 1568 3182 213 421 11.7 10.9 
231 19.1 162 68.5 98.5 60.3 81.8 2592 3813 315 473 64.8 5.21 
232 19.8 162 35 82.7 33.5 51 1360 2403 170 296 24.1 0.34 

2/22/99-
3/30/99             

53p   
54a   
54p   
55a   
55p   
56a   
56p   
57a   
57p   
58a   
58p   
59a   
63p   
64a   
64p   
65a   
65p   
66a   
66p   
67a   
67p   
68a   
68p   
69a   
69p   

71   
72p   
73a   
73p   
74a   
74p   
75a   
75p   
76a   
76p   

77   
78   
79   
80   

81p   
85p   
86a   
86p   

87   
88a   
88p   
89a   

148 
199 
92.1 
68.6 
132 
72.9 
64.3 
67.9 
66.1 
68.7 
118 
159 
473 
359 
417 
376 
474 
2022 
1281 
510 
1187 
992 
1529 
2103 
884 
426 
906 
834 
864 
734 
680 
406 
395 
273 
362 
471 
202 
340 
317 
1097 
446 
223 
217 
267 
244 
405 
483 

18.7 
67.1 
3.55 
4.22 
31.4 
15.6 
10.1 
14.9 
12.8 
11.3 
23 

17.9 
434 
455 
645 
615 
684 
244 
114 
38.4 
154 
64.8 
80.8 
109 
43.3 
97.3 
116 
81.3 
61.3 
79.5 
190 
208 
32.7 
14 

15.6 
13.1 
15.7 
19.9 
21.2 
70 

356 
55.3 
12.9 
18.5 
182 
648 
585 

6803 
7624 
4500 
3160 
5542 
2252 
2683 
2120 
2211 
2707 
3878 
4649 
5455 
4590 
4053 
2536 
3022 

17957 
17937 
8276 

11338 
13069 
19441 
22514 
21711 
5677 
9873 

10197 
10098 
8412 
8545 
3675 
5182 
6002 
8647 
9044 
9439 

10932 
5943 

18793 
2394 
2397 
3798 
8121 
3020 
1580 
1187 

326 
356 
197 
128 
217 
106 
118 
82.3 
85.9 
104 
151 
174 
301 
231 
200 
169 
221 

1010 
837 
369 
633 
565 
911 

1229 
813 
247 
575 
554 
559 
468 
456 
213 
265 
309 
452 
691 
477 
614 
411 

1342 
225 
136 
200 
420 
171 
164 
187 

0.13 
0.89 
4.1 

0.79 
2.15 
0.86 
0.51 
0.42 
0.43 
0.67 
0.9 
0.9 

4.72 
3.01 
3.46 
4.16 
3.17 
3.94 
2.67 
1.68 
3.39 
2.01 
1.97 
3.11 
4.91 
1.8 

2.99 
2.69 
3.64 
3.45 
3.4 

2.74 
0.9 

0.19 
0.51 
BDL  
0.06 
0.51 
1.15 
2.88 
0.82 
0.25 
0.08 
BDL  
0.84 
1.06 
1.75 

 



 

 180 
 

 
Julian day Lat  Long  

 °N °W 
Co 

ng m-3 
Cu 

ng m-3 
Pb 

ng m-3 
Mn 

ng m-3 
Ni 

ng m-3 
V 

ng m-3 
Zn 

ng m-3 
   Fine Coarse Fine Coarse Fine Coarse Fine Coars Fine Coarse Fine Coarse Fine Coars

1/6/01- 
2/19/01 

                

6 ⎯ ⎯ ⎯ ⎯ 0.77 0.59 0.98 0.23 0.58 0.59 1.87 0.41 4.7 0.94 10.8 4.19 
7 27.8 75.5 ⎯ ⎯ 0.42 1.62 0.45 0.15 0.31 0.55 0.39 0.07 1.13 0.14 24.2 8.97 
8 28.1 70.9 <0.04 <0.04 0.16 0.47 0.39 0.06 0.12 0.12 0.98 0.05 2.98 0.16 11.9 2.11 
9 28.4 66.9 <0.05 <0.05 <0.1 0.52 0.08 0.22 <0.2 <0.2 0.02 0.36 <0.1 0.25 0.45 2.37 

10 28.6 63.3 <0.06 <0.06 0.09 0.38 0.17 0.03 0.03 0.01 0.02 <0.07 0.13 0.01 3.15 1.31 
12 29.2 55.2 <0.2 <0.2 0.04 0.06 0.17 0.17 0.06 <0.03 0.1 <0.05 0.41 <0.01 3.49 0.6 
13 29.5 51.3 <0.03 <0.03 0.07 0.04 0.14 0.02 0.03 <0.03 0.05 <0.05 0.21 <0.01 3.27 1.92 
14 29.9 48.2 <0.02 <0.02 0.07 0.06 0.02 0.01 <0.05 <0.05 <0.1 <0.1 0.08 <0.03 5.06 2.34 
15 29.6 46.5 <0.02 <0.02 <0.07 <0.07 0.02 <0.03 <0.04 <0.04 <0.07 0.02 0.09 <0.02 1.16 0.66 
16 27.8 45 <0.04 <0.04 <0.1 0.02 0.01 <0.02 <0.03 <0.03 0.03 0.02 0.04 <0.02 1.36 0.81 
17 25.3 45 <0.03 0.04 0.1 0.05 <0.02 <0.02 0.53 0.31 0.07 0.02 0.16 0.05 1.66 0.21 
18 21.5 45 0.03 0.01 0.04 0.08 <0.03 <0.03 0.33 0.46 0.09 <0.07 0.19 0.04 2.57 1.16 
19 16.8 45 0.11 0.06 0.34 0.51 <0.05 <0.05 4.18 2.52 0.51 0.23 0.76 0.29 7.21 2.49 
20 13.2 45 0.28 0.17 0.5 0.66 0.28 0.08 9.24 6.5 0.61 0.63 1.39 0.78 4.73 1.84 
21 10.2 45.2 0.35 0.07 0.77 0.28 0.49 0.06 14.5 3.37 0.93 0.18 2.7 0.53 3.31 0.53 
22 10.2 46.5 0.11 0.11 0.19 1.16 <0.09 <0.09 4.7 3.73 0.4 0.33 0.75 0.49 1.59 1.47 
23 10.5 47.8 <0.03 <0.03 <0.07 <0.07 <0.2 <0.2 0.3 0.06 <0.5 <0.5 <0.1 <0.1 4.85 2.23 
29 10.5 47.8 0.05 0.01 0.27 0.15 0.1 <0.02 1.99 0.75 0.22 0.03 0.61 0.1 0.85 0.23 
30 10.5 55.3 0.06 0.02 0.63 0.2 <0.03 0.11 0.51 0.15 0.15 0.06 0.19 <0.02 2.07 0.45 
31 10.1 53.5 0.04 0.03 0.41 0.35 0.02 0.03 1.12 0.72 0.21 0.11 0.23 0.07 1.14 0.38 
32 9.19 51.2 0.04 0.05 <0.09 <0.09 0.09 0.04 1.01 0.61 0.12 0.06 0.4 0.15 1.39 0.4 
33 9.24 49.3 0.04 <0.02 <0.07 <0.07 0.04 <0.02 0.21 0.07 0.06 <0.05 0.18 <0.01 1.02 0.16 
34 9.36 47.5 0.12 <0.02 <0.07 <0.07 0.22 0.06 2.55 1.65 0.19 0.04 0.63 0.19 3.05 0.71 
35 7.41 48.2 0.32 0.13 0.78 <0.07 0.68 0.16 12.4 6.44 0.54 0.45 1.3 1.1 4.04 1.38 
36 6.31 47.1 0.23 0.07 0.54 0.24 0.52 0.08 8.79 2.74 0.39 <0.05 0.88 <0.01 1.82 0.28 
37 7.22 45.1 0.15 <0.03 0.69 0.19 0.72 <0.02 10.5 1.56 0.3 <0.05 1.07 <0.01 2 <0.03 
38 7.17 43 0.06 <0.02 0.5 0.24 0.53 <0.02 7.18 2 0.14 <0.05 0.77 <0.01 1.31 0.22 
39 8.61 41.3 0.14 2.08 0.54 <0.06 0.34 0.15 5.43 3.29 0.07 0.31 <0.02 0.68 3.19 1.18 
40 9.34 41.5 0.18 0.11 0.4 <0.06 0.31 0.14 7.2 4.34 0.25 0.3 0.34 0.73 2.89 1.21 
41 10.9 42.4 0.1 0.14 0.5 <0.1 0.01 0.23 5.24 9.49 <0.2 0.54 <0.06 1.27 1.43 1.54 
42 10.1 44.7 0.38 0.18 0.77 0.42 0.58 0.14 15.9 8.22 0.71 0.23 1.46 0.31 3.49 0.82 
43 9.81 44.5 0.37 0.23 <0.3 <0.3 0.7 0.23 18.7 9.71 <0.1 <0.1 2.97 1.28 5.29 1.27 
44 10.6 46.6 0.17 0.09 <0.07 <0.07 0.44 0.14 11.3 5.65 <0.1 <0.1 1.66 0.69 2.93 0.77 
45 9.44 49.2 0.21 0.09 <0.2 <0.2 0.58 0.18 14.1 6.07 0.77 0.32 2.21 0.75 6.58 1.74 
46 9.08 51.8 1.29 <0.05 <0.1 <0.1 0.24 <0.05 7.77 3.8 0.12 10.8 1.2 0.48 5.41 4.75 
47 9.41 55.3 0.37 0.22 <0.2 <0.2 0.46 0.19 13.8 6.66 <0.06 <0.06 2.21 1.01 5.3 1.31 
48 10.9 56.1 0.6 0.26 <0.2 <0.2 0.7 0.27 23 10 0.6 0.01 3.89 1.64 3.27 1.09 
49 11.3 54.8 0.19 0.08 <0.07 <0.07 0.22 0.06 14.7 8.53 <0.07 <0.07 2.26 1.18 3.2 1.2 

6/27/01-
8/14/01 

                

178 29.2 27.4 <0.04 <0.04 <0.1 <0.1 <0.04 <0.04 <0.05 <0.05 <0.09 <0.09 0.13 <0.02 0.05 0.04 
179 29.3 29.6 <0.02 <0.02 <0.07 <0.07 0.01 <0.02 <0.03 <0.03 <0.06 <0.06 0.16 <0.02 0.1 <0.03 
180 29.4 33.5 <0.03 <0.03 0.02 <0.08 0.1 0.01 0.07 0.11 0.05 0.02 0.14 <0.02 0.3 0.06 
181 29.5 37.4 <0.02 0.04 <0.07 0.07 0.05 0.04 0.07 1.32 0.04 0.08 0.22 0.21 0.23 0.28 
182 29.5 39.3 0.01 0.04 0.11 0.05 0.1 0.05 0.46 1.69 0.15 0.11 0.46 0.24 0.6 0.3 
183 29.6 43.2 <0.02 0.03 0.02 0.11 0.12 0.04 0.21 0.2 0.11 0.15 0.35 <0.02 0.51 0.13 
184 29.6 45 0.04 0.02 0.17 1.13 0.22 0.05 1.62 3.4 0.18 0.44 0.57 0.63 1.67 1.61 
185 25.5 48.6 <0.03 0.01 0.36 0.57 0.12 0.03 1.75 2.82 0.27 0.28 0.57 0.47 0.54 0.64 
186 22.6 51.3 <0.02 <0.02 0.36 0.33 0.07 <0.02 1.15 1.5 0.17 0.13 0.36 0.21 0.39 0.28 
187 16.3 56.8 0.01 0.05 0.3 0.51 0.12 0.05 2.3 3.33 0.23 0.27 0.5 0.54 0.56 0.48 
188 ⎯ ⎯ <0.03 0.01 0.24 0.35 0.1 0.01 2.66 2.73 0.25 0.22 0.58 0.47 0.51 0.38 
190 11.8 54.4 0.07 <0.04 0.25 0.19 0.12 <0.04 1.62 1.41 0.09 0.2 0.29 0.24 0.34 0.37 
190 11.8 54.4 <0.02 <0.02 0.03 0.2 0.05 0.01 1.95 1.73 0.1 0.12 0.37 0.27 0.4 0.42 
191 10.4 48.1 0.14 0.16 0.41 0.59 0.36 0.18 6.9 7.7 0.56 0.51 1.46 1.18 1.22 1.22 
192 10.4 48.1 <0.05 <0.05 0.29 0.21 0.16 <0.04 4.21 2.31 0.38 0.2 0.79 0.34 1.2 0.65 
193 10.4 48.1 <0.03 <0.03 0.18 0.51 0.09 0.04 2.19 1.77 0.14 0.07 0.58 0.17 0.69 0.63 
194 9.8 45.3 0.08 0.06 0.47 0.32 0.23 0.07 4.72 4.48 0.47 0.37 1.02 0.66 1.15 0.8 
195 10.1 45.4 0.09 0.11 0.55 0.43 0.29 0.12 5.91 6.13 0.48 0.43 1.2 0.87 1.14 0.81 
196 10.2 45.5 0.01 0.09 0.41 0.87 0.15 0.1 4.68 6.69 0.41 0.46 0.82 0.93 0.96 0.89 
197 11 49.3 0.11 0.29 0.41 0.86 0.27 0.29 6.85 12.8 0.54 0.86 1.22 1.88 1.12 1.39 
198 ⎯ ⎯ 0.07 0.09 0.33 0.4 0.23 0.1 5.75 5.85 0.49 0.39 1.2 0.88 0.96 0.7 
200 11.6 58.2 0.08 0.12 0.34 0.37 0.3 0.14 5.38 6.02 0.43 0.4 1.11 0.93 1.24 0.81 
201 10.3 56.3 <0.03 0.01 0.23 0.21 0.06 0.03 2.08 3.19 0.28 0.28 0.43 0.48 1.66 0.39 
202 10.2 56.3 <0.05 <0.05 0.21 0.15 0.1 <0.04 3.32 3.09 0.38 0.27 0.72 0.47 0.99 0.44 
203 10.2 56.3 <0.03 <0.03 0.03 0.04 0.11 <0.02 1.93 1.01 0.09 0.03 0.5 0.16 0.65 0.03 
207 11.9 54.9 <0.03 <0.03 0.09 0.1 <0.02 <0.02 1.92 1.71 0.07 0.06 0.37 0.28 0.27 0.03 
208 10.4 53 0.04 0.06 0.39 0.39 0.22 0.06 5.15 4.96 0.48 0.35 1.02 0.74 1.42 1.28 
209 8.74 51 0.01 <0.03 0.2 0.11 0.16 <0.02 2.86 1.36 0.26 0.14 0.66 0.21 0.75 0.17 
210 7.23 48.5 0.01 <0.03 0.08 0.07 0.38 0.03 0.44 0.35 0.11 0.02 0.47 0.05 0.49 0.09 
211 5.65 46.4 <0.02 <0.02 0.12 0.16 0.19 0.03 0.37 0.36 0.06 0.03 0.21 0.05 0.3 0.17 
212 4.76 43.9 <0.02 <0.02 0.02 0.19 0.01 <0.02 0.04 0.01 0.08 <0.06 0.27 <0.02 0.2 0.07 
213 3.83 42.8 <0.03 <0.03 0.02 0.08 0.11 <0.03 0.16 0.12 <0.07 <0.07 0.07 <0.02 69.9 <0.04 
214 3.27 44.2 <0.05 <0.05 0.06 0.13 0.19 0.02 0.15 0.2 0.08 0.05 0.13 <0.03 0.92 0.42 
215 3.93 46.1 <0.05 <0.05 0.05 0.15 0.21 0.03 0.09 0.29 0.06 <0.1 0.18 <0.03 0.91 0.11 
216 5.79 48 <0.05 <0.05 0.09 0.15 0.22 0.02 0.21 0.18 0.04 <0.1 0.07 <0.03 0.94 0.25 
217 6.17 50.1 <0.02 <0.02 0.4 0.1 0.36 0.03 0.18 0.24 0.47 <0.04 0.14 0.03 0.47 0.21 
219 8.21 52.8 0.06 0.06 0.25 0.23 0.29 0.1 2.53 2.99 0.3 0.21 1.33 0.63 0.89 0.32 
221 10.5 55 0.09 0.07 0.33 0.22 0.3 0.09 4.32 3.16 0.33 0.2 0.96 0.51 0.84 0.4 
222 10.6 55.8 0.03 0.05 0.21 0.19 0.18 0.08 2.51 2.58 0.22 0.17 0.59 0.44 0.56 0.26 
223 12.5 55 0.17 0.12 0.61 0.43 0.5 0.14 8.27 5.86 0.58 0.41 1.6 0.89 1.2 0.55 
224 12.5 54.1 0.01 0.11 <0.1 0.12 <0.03 <0.03 3.72 5.16 0.06 0.28 0.83 0.86 1.33 0.82 
225 11.4 53.8 <0.04 <0.04 <0.1 <0.1 <0.04 <0.04 1.78 0.91 0.02 <0.1 0.55 0.17 0.75 0.13 
226 11.8 54.6 <0.03 <0.03 0.03 0.03 0.2 0.01 0.23 0.36 0.03 <0.08 0.49 0.09 0.74 0.15 

                 
                 
                 



 

 181 
 

Julian day Lat  Long  
 °N °W 

Co 
ng m-3 

Cu 
ng m-3 

Pb 
ng m-3 

Mn 
ng m-3 

Ni 
ng m-3 

V 
ng m-3 

Zn 
ng m-3 

   Fine Coarse Fine Coarse Fine Coarse Fine Coars Fine Coarse Fine Coarse Fine Coars
4/18/03-
5/20/03 

                

108 12 57.6 <0.05 <0.05 1.05 2.43 0.07 0.07 <0.06 0.51 3.02 3.97 <0.03 <0.03 7.15 5.07 
109 11.4 55.5 <0.03 0.01 0.21 0.35 0.06 <0.03 <0.04 0.79 1.72 8.59 <0.02 <0.02 3.25 0.55 
110 11.1 53.4 <0.03 <0.03 0.13 0.21 0.03 <0.02 <0.03 0.24 2.91 5 <0.02 <0.02 4.42 0.92 
111 9.86 52.1 <0.05 <0.05 0.33 0.29 0.08 0.01 1.2 0.9 4.3 4.79 <0.03 <0.03 12.7 5.28 
112 7.93 52 0.22 <0.07 1.06 0.57 0.22 0.05 6.43 2.53 21.8 4.01 <0.04 <0.04 54.4 11.3 
113 6.98 51 0.22 0.18 0.68 0.83 0.28 0.09 7.6 6.23 1.62 3.59 0.83 <0.02 10.9 2.67 
114 7.68 50.8 0.36 0.08 1.13 0.53 0.01 <0.08 8.36 3.54 27.7 7.03 <0.05 <0.05 21.3 4.47 
115 9.08 52.9 0.43 0.11 1.18 0.67 0.06 <0.05 8.05 3.63 29.8 6.17 <0.04 <0.04 17.1 4.35 
116 10.5 55.1 0.3 1.3 0.85 0.62 0.19 0.24 12.8 6.46 5.66 8.5 <0.04 <0.04 4.57 5.47 
117 12.1 56.5 0.18 0.09 0.54 0.41 0.11 0.03 3.88 3.72 12.6 4.64 <0.02 <0.02 4.33 1.14 
120 12.3 56.2 0.57 0.4 1.16 0.78 0.07 <0.04 5.67 4.51 25.9 20.6 <0.03 <0.03 5.21 0.79 
121 11 55.4 0.17 0.35 0.49 1.13 0.42 0.31 4.7 13.6 5.63 2.99 <0.03 0.69 6.55 3.78 
122 9.4 55.4 0.3 0.28 0.68 0.94 0.26 0.17 7.37 11.8 10.2 3.98 <0.04 <0.04 7.24 2.7 
123 7.98 54.9 0.64 0.69 1.22 1.46 0.44 0.22 19.8 17.7 15.3 22.2 <0.04 <0.04 10.8 2.05 
124 8.53 54.9 0.38 0.33 0.9 0.63 0.26 0.07 11.7 9.49 10.5 8.68 <0.04 <0.04 8.39 1.43 
125 10.8 55.9 0.64 0.78 1.16 1.69 0.27 0.95 17.3 28.8 21.2 12.8 <0.06 <0.06 8.42 5.18 
126 12.1 56.1 0.15 0.55 0.34 1.08 0.34 0.18 6.36 11.9 4.45 31.9 <0.02 <0.02 5.55 1.31 
127 11.8 56.3 0.09 0.05 0.18 0.1 0.18 0.07 3.89 3.59 4.06 0.46 <0.02 0.22 4.13 0.77 
130 11 55.4 0.05 0.08 0.27 0.34 0.14 0.06 2.95 2.53 4.57 4.49 <0.02 <0.02 3.88 1.15 
131 10.7 53.4 0.18 0.17 0.54 0.78 0.28 0.21 6.82 8.86 7.31 0.81 <0.02 0.81 4.02 1.48 
132 10.6 51.3 0.28 0.26 0.59 0.49 0.35 0.26 9.21 11.1 9.46 3.71 <0.02 <0.02 3.52 1.64 
133 10.5 49.2 0.21 0.31 0.45 0.66 0.37 0.19 8.64 9.54 6.7 12.6 <0.02 <0.02 4.07 1.6 
134 9.4 48.4 0.1 <0.1 0.41 <0.3 0.25 <0.09 1.8 0.83 1.71 0.42 0.04 <0.06 2.67 0.82 
135 8.1 49.4 0.44 0.4 0.92 0.82 0.88 0.33 16.5 14.2 11.8 11.8 <0.03 <0.03 7.62 2.88 
136 8.12 53 52.8 <0.06 1.92 0.72 0.4 0.23 13.2 9.15 52.5 8.16 <0.04 <0.04 6.38 3.63 
138 9.14 56.7 0.13 0.17 0.54 0.83 0.23 0.06 6 4.91 16.9 18.8 <0.04 <0.04 7.71 2.61 
139 10.3 56.6 0.08 0.1 0.37 0.49 0.44 0.13 5.03 4.96 1.2 1.76 0.84 <0.02 5.4 2.05 
140 10.8 55.2 0.16 0.19 0.63 0.69 0.52 0.18 6.36 7.32 1.29 4.54 1.05 <0.02 8.93 2.57 

4/9/01- 
4/26/01 

                

99 21.5 160 <0.04 <0.04 0.92 0.65 0.17 0.08 0.11 0.43 0.19 0.13 0.2 0.12 0.53 0.97 
100 22.2 162 <0.06 <0.06 0.3 0.93 0.57 0.08 0.91 0.68 0.08 0.06 0.01 0.03 1.28 0.49 
101 23.3 168 <0.06 <0.06 0.14 2.12 0.13 0.03 0.23 0.41 0.11 0.04 <0.04 <0.04 0.72 1.36 
102 24.4 172 0.03 0.01 0.22 0.33 0.12 0.04 0.41 0.32 0.1 0.02 0.08 0.02 0.43 0.17 
103 26.1 175 0.03 0.05 0.13 0.18 0.3 0.15 1.99 2.47 0.14 0.14 0.22 0.26 0.68 7.84 
104 26.8 181 0.06 0.05 0.2 0.19 0.45 0.11 3.69 2.69 0.21 0.16 0.45 0.28 0.46 0.03 
105 27.3 185 0.03 <0.04 2.34 1.67 0.09 0.02 0.96 0.51 0.19 0.07 0.08 0.01 <.06 <0.06 
106 27.6 190 <0.03 <0.03 0.21 0.01 0.13 0.03 0.77 0.63 0.07 0.04 0.12 0.03 0.39 0.13 
107 27.6 190 0.03 0.02 0.31 0.22 1.79 0.22 2.14 1.59 0.22 0.15 0.42 0.17 3.45 0.6 
108 27.4 187 0.04 0.03 2.84 0.65 2.02 0.21 2.69 2.02 0.23 0.28 0.42 0.18 2.81 1.6 
109 26.7 182 0.18 0.12 1.85 0.39 2.82 0.34 11.1 8.16 0.76 0.38 1.19 0.94 4.44 0.95 
110 26 175 <0.08 <0.08 0.15 0.79 0.64 0.13 1.39 1.12 0.11 0.11 0.05 0.04 1.08 0.38 
111 25.6 174 <0.03 0.02 0.59 0.2 0.88 0.05 0.87 0.49 0.13 0.05 0.1 0.02 1.44 0.29 
112 24.8 171 0.02 <0.09 0.09 0.05 0.66 0.06 1.74 1.35 <0.2 <0.2 0.1 0.02 1.25 0.29 
114 24.2 166 <0.02 <0.1 2.73 0.7 0.37 <0.1 2.75 1.28 0.13 <0.3 0.21 <0.08 1.24 1.39 
116 22.5 158 0.05 <0.07 0.89 <0.2 2.5 0.19 1.75 0.59 <0.2 <0.2 0.27 <0.05 3.55 0.72 

7/1/02- 
7/16/02 

                

182 22.8 158 <0.03 <0.03 0.01 <0.09 0.01 <0.03 0.07 0.04 0.01 0.02 0.09 <0.02 0.11 0.07 
183 22.8 158 <0.04 <0.04 <0.1 <0.1 <0.03 <0.03 0.1 0.05 0.01 <0.08 0.02 <0.02 0.15 <0.04 
184 23.5 162 <0.07 <0.07 <0.2 <0.2 0.03 <0.06 0.06 0.06 <0.1 <0.2 0.03 0.01 <.01 0.48 
185 24 165 <0.06 <0.06 <0.2 <0.2 <0.01 <0.06 0.01 0.01 <0.1 0.03 0.07 <0.04 0.05 0.14 
186 24.5 167 <0.1 <0.1 <0.3 <0.3 <0.01 <0.09 0.01 <0.01 <0.2 <0.2 <0.06 <0.06 0.28 1.85 
187 24.9 170 <0.09 <0.09 <0.3 <0.3 0.01 <0.08 0.04 <0.1 0.02 <0.2 0.02 <0.06 0.14 0.12 
189 26.1 175 <0.04 0.01 0.02 0.05 0.01 0.01 0.02 0.02 0.01 0.02 0.01 <0.04 0.06 0.21 
190 26 175 <0.02 <0.02 0.04 0.05 0.03 <0.02 0.05 0.02 0.03 0.01 0.05 <0.02 0.24 0.33 
191 26 175 0.01 <0.01 4.31 <0.09 0.02 <0.03 0.05 0.01 0.06 0.01 0.13 <0.02 0.2 0.03 
192 26 175 0.02 <0.03 0.1 0.28 0.05 <0.02 0.06 0.01 0.03 1.33 0.07 <0.02 0.28 0.12 
193 26 175 <0.02 <0.02 <0.06 0.02 0.02 <0.02 0.06 0.03 0.03 0.01 <0.01 <0.01 0.02 <0.02 
194 24.7 170 <0.03 <0.03 <0.07 <0.07 <0.02 <0.02 0.04 0.03 0.02 0.03 <0.02 <0.02 <.03 <0.03 
195 23.6 167 0.06 0.24 0.04 0.27 <0.02 <0.02 0.41 1.07 4.32 14.2 <0.01 <0.01 0.07 0.04 
196 22.9 164 <0.02 <0.02 0.05 <0.06 <0.02 <0.02 0.02 <0.01 0.02 <0.05 0.05 <0.01 0.36 0.04 
197 22.8 160 <0.02 <0.02 0.09 0.08 0.02 <0.02 0.05 0.05 0.02 <0.04 0.1 0.01 0.1 0.05 

9/23/02-
10/15/02 

                

266 22.5 157 <0.03 0.2 <0.09 0.28 0.03 0.02 <0.04 1.1 <0.07 12.7 0.04 <0.02 0.27 0.25 
267 23.5 157 <0.03 <0.03 <0.08 <0.08 0.02 <0.02 <0.03 0.02 <0.06 <0.06 0.02 <0.02 0.29 0.15 
268 23.5 157 0.01 0.12 0.08 0.3 0.07 <0.03 0.19 1.13 2.21 9.39 <0.02 <0.02 0.13 <0.04 
269 24.2 156 0.02 <0.02 0.08 0.04 0.03 <0.02 0.36 0.05 3.41 0.43 <0.02 <0.02 0.14 0.03 
270 24.2 155 <0.03 <0.03 <0.07 <0.04 0.05 <0.02 0.03 0.01 <0.06 <0.06 0.06 <0.02 0.07 <0.03 
271 23.7 156 0.01 <0.02 0.08 0.09 0.17 0.02 0.32 0.09 1.95 0.28 <0.01 <0.01 0.24 0.01 
274 23.3 159 0.17 <0.06 0.28 <0.2 0.02 0.05 1.37 <0.07 15.2 <0.1 <0.04 <0.04 <.07 <0.07 
275 23.8 159 <0.04 0.37 0.06 0.48 0.03 0.01 0.46 1.75 4.06 23 <0.02 <0.02 <.04 <0.04 
276 22.5 159 0.12 <0.03 0.25 0.07 0.09 0.03 0.58 0.07 7.08 <0.07 <0.02 0.08 1.49 0.07 
278 19.7 156 <0.03 <0.03 0.06 0.08 0.05 0.01 0.02 0.64 <0.07 <0.07 0.02 0.04 0.2 0.12 
279 19.4 156 <0.03 <0.03 0.91 0.07 0.31 0.02 0.01 0.15 <0.06 <0.06 0.1 <0.02 1.13 0.08 
280 19.8 155 <0.03 <0.03 0.29 0.05 0.08 0.01 0.22 <0.03 2.56 <0.06 <0.02 <0.02 0.21 <0.03 
281 20.3 156 <0.04 <0.04 <0.1 <0.1 0.06 0.21 <0.05 <0.05 <0.09 <0.09 <0.02 <0.02 0.12 <0.05 
282 20.1 156 <0.03 <0.03 <0.07 <0.07 0.1 <0.02 0.03 <0.03 <0.06 <0.06 0.01 <0.02 0.26 <0.03 
283 20.9 156 <0.02 0.06 0.2 0.18 0.13 0.02 0.07 0.57 <0.05 5.05 0.03 <0.01 0.31 <0.03 
284 22.6 157 <0.02 <0.02 <0.07 <0.07 0.03 0.01 <0.03 <0.03 <0.05 <0.05 <0.01 <0.01 0.34 0.01 
285 23.2 158 <0.04 <0.04 <0.1 <0.1 0.02 <0.01 <0.03 <0.04 0.01 <0.08 0.12 <0.02 1.54 <0.04 
286 21.6 158 0.01 <0.02 0.01 0.05 0.23 0.03 0.05 0.18 0.93 0.07 0.53 0.07 1.23 0.09 
287 20.2 157 <0.03 <0.03 0.01 <0.09 0.05 <0.03 <0.03 <0.04 0.01 <0.07 0.09 <0.02 0.23 <0.04 
288 19.8 156 <0.03 <0.03 <0.07 <0.08 0.01 <0.02 <0.03 <0.03 <0.06 <0.06 0.01 <0.02 0.24 0.05 
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Julian day Lat  Long  
 °N °W 

Co 
ng m-3 

Cu 
ng m-3 

Pb 
ng m-3 

Mn 
ng m-3 

Ni 
ng m-3 

V 
ng m-3 

Zn 
ng m-3 

   Fine Coarse Fine Coarse Fine Coarse Fine Coars Fine Coarse Fine Coarse Fine Coars
8/6/03- 
8/20/03 

                

218 19.7 157 0.04 0.01 1.1 0.27 0.12 0.12 1.22 0.78 5 3.91 <0.02 <0.02 1.44 0.23 
219 18.5 157 0.04 0.16 0.24 0.57 <0.03 <0.03 0.87 2.15 5.7 14.9 <0.02 <0.02 1.86 0.31 
220 18.7 156 0.07 <0.02 3.19 <0.06 0.03 <0.02 0.72 0.11 4.52 1.36 <0.01 <0.01 1.05 0.49 
221 19.2 156 0.31 <0.06 1.14 0.13 <0.06 <0.06 4.47 0.09 33.2 <0.1 <0.04 <0.04 1.06 0.28 
222 19.5 157 0.06 0.17 0.23 0.45 0.02 <0.03 0.69 1.65 4.55 9.23 <0.02 <0.02 0.11 0.07 
223 19.5 158 <0.04 0.1 0.22 1.87 0.04 0.04 0.46 0.7 3.15 3.33 <0.02 <0.02 0.5 0.98 
224 19.5 159 0.02 <0.03 0.28 0.09 <0.03 <0.03 0.87 0.1 6.77 0.19 <0.02 <0.02 0.32 0.1 
225 20 160 <0.04 0.01 0.2 0.4 0.01 <0.03 0.48 0.82 3.6 4.2 <0.02 <0.02 0.36 0.42 
226 20.8 160 0.07 0.08 0.27 0.29 0.04 0.03 0.24 0.19 5.32 3.77 <0.01 <0.01 0.27 0.14 
227 21 159 0.08 0.02 0.28 0.76 0.15 0.07 <0.03 0.05 3.42 1.08 <0.02 <0.02 0.97 0.88 
228 20.6 158 0.14 0.05 1.47 0.85 0.15 0.03 1.28 0.64 7.24 2.68 <0.02 <0.02 1.46 0.51 
229 20.3 158 0.06 0.17 0.33 0.85 0.03 0.02 0.93 1.67 5.66 11.9 <0.02 <0.02 0.97 0.31 
230 19.7 161 0.13 0.1 0.35 0.41 0.12 <0.03 <0.05 0 6.2 5.67 <0.02 <0.02 0.47 0.15 
231 19.1 162 0.61 0.08 0.94 0.33 0.06 0.01 2.36 0.15 34.4 2.73 <0.01 <0.01 0.63 0.17 
232 19.8 162 0.22 <0.03 0.41 0.17 0.04 <0.02 1.18 0.24 12.5 0.19 <0.02 <0.02 0.22 0.14 

2/22/99-
3/30/99 

                

53p   
54a   
54p   
55a   
55p   
56a   
56p   
57a   
57p   
58a   
58p   
59a   
63p   
64a   
64p   
65a   
65p   
66a   
66p   
67a   
67p   
68a   
68p   
69a   
69p   

71   
72p   
73a   
73p   
74a   
74p   
75a   
75p   
76a   
76p   

77   
78   
79   
80   

81p   
85p   
86a   
86p   

87   
88a   
88p   
89a   

BDL 
BDL 
BDL 
BDL 
BDL 
BDL 
BDL 
BDL 
BDL 
BDL 
BDL 
BDL 
0.23 
0.15 
0.19 
0.23 
0.27 
0.26 
0.12 
BDL 
0.14 
BDL 
0.11 
0.17 
0.03 
0.11 
0.33 
0.31 
0.32 
0.34 
0.34 
0.24 
0.07 
BDL 
BDL 
BDL 
BDL 
BDL 
BDL 
0.05 
BDL 
BDL 
BDL 
BDL 
0.04 
0.23 
0.19 

1.82 
2.52 
4.66 
4.18 
9.14 
2.96 
1.17 
2.99 
2.32 
4.65 
2.45 
9.35 
4.21 
5.29 
3.35 
4.18 
4.9 

4.03 
4.53 
3.41 
7.01 
2.58 
2.81 

3 
5.94 
3.85 
2.84 
3.24 
3.61 
3.29 
3.23 
2.34 
2.76 
5.75 
1.67 
1.75 
1.41 
1.7 

1.25 
3.7 

2.28 
2.14 
1.77 
2.32 
2.79 
3.05 
3.35 

0.92 
2.47 
0.2 
BDL 
0.44 
0.46 
0.48 
0.41 
0.61 
0.91 
4.46 
4.25 
10.2 
10.8 
10.3 
10 

10.4 
2.76 
1.26 
0.56 
1.17 
1.3 

0.45 
1.11 
6.62 
2.67 
3.49 
2.8 

5.04 
4.24 
6.5 

3.85 
2.46 
0.22 
0.46 
BDL 
0.09 
0.32 
0.37 
1.22 
3.66 
1.94 
1.54 
1.88 
3.85 
5.6 

25.7 

0.01 
0.36 
0.11 
BDL 
0.5 

0.17 
0.21 
0.22 
0.31 
0.31 
5.08 
5.57 
16.2 
15.3 
12.8 
19 
12 

29.1 
17.7 
7.23 
22.5 
11 

17.1 
22.8 
17.2 
12.8 
14.5 
11.4 
16.8 
15.5 
13.1 
7.86 
7.27 
4.52 
4.95 
5.17 
0.6 

2.94 
4.62 
18.9 
8.12 
4.69 
3.71 
3.87 
6.81 
14 

14.6 

0.05 
0.28 
4.19 
0.17 
1.17 
0.32 
0.14 
0.1 

0.13 
0.23 
0.58 
0.65 
2.84 
2.45 
1.85 
1.92 
2.15 
2.44 
2.15 
1.09 
1.84 
0.99 
1.26 
2.09 
1.9 
1 

1.65 
1.47 
1.73 
1.76 
1.74 
1.06 
0.85 
1.11 
0.51 
0.46 
BDL 
BDL 
BDL 
BDL 
BDL 
BDL 
BDL 
BDL 

1 
1.04 
1.19 

BDL 
BDL 
BDL 
BDL 
BDL 
BDL 
BDL 
BDL 
BDL 
BDL 
1.14 
1.56 
4.45 
4.72 
3.74 
3.53 
4.53 
5.41 
3.74 
1.09 
2.12 
1.22 
1.95 
4.27 
3.56 
2.83 
4.22 
3.41 
4.62 
4.26 
4.25 
2.24 
1.76 
0.79 
0.86 
0.92 
0.07 
0.55 
1.11 
5.1 

2.99 
1.44 
1.19 
1.03 
2.51 
2.18 
1.9 

0.49 
1.12 
1.97 
0.87 
8.93 
0.89 
1.24 
0.09 
0.96 
1.61 
13.1 
13.2 
34.1 
31.9 
33.1 
30 

27.9 
6.07 
3.07 
1.36 
2.6 

1.92 
1.79 
3.66 
20.4 
9.3 

8.95 
8.28 
12.6 
12.6 
14.4 
11.1 
7.3 

5.32 
2.65 
2.29 
0.59 
0.97 
1.88 
9.48 
10.5 
5.59 
4.59 
5.52 
8.68 
13.9 
13.9 
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Julian day Lat Long Fluoride Glycolate Acetate Formate MSA Chloride 

 °N °W nmol m-3 nmol m-3 nmol m-3 nmol m-3 nmol m-3 nmol m-3 
   Fine Coarse Fine Coarse Fine Coarse Fine Coarse Fine Coarse Fine Coarse 

1/6/01- 
2/19/01 

              

6   0.27 0.19 0.12 0 0.07 <2E-3 0.62 <0.02 <0.01 <0.01 0.56 5.19 
7 27.8 75.5 0.23 0.17 0.04 <2E-4 0.01 <2E-3 0.14 <0.02 <0.01 <0.01 7.93 52.2 
8 28.1 70.9 0.32 0.19 3E-4 <2E-4 0.03 <3E-3 0.08 0.17 <0.01 <0.01 6.07 48.9 
9 28.4 66.9 0.76 0.29 <7E-4 <7E-4 <0.01 <0.01 <0.08 0.33 <0.05 <0.05 23.6 9.41 

10 28.6 63.3 0.1 0.07 <1E-4 <1E-4 <2E-3 <2E-3 0.02 0.05 <0.01 <0.01 26.9 38.8 
12 29.2 55.2 0.05 0.06 <8E-5 <8E-5 <1E-3 <1E-3 <0.01 <0.01 <5E-3 <5E-3 10.8 17.9 
13 29.5 51.3 0.05 0.07 <9E-5 <9E-5 <1E-3 <1E-3 <0.01 <0.01 <0.01 <0.01 13.3 6.69 
14 29.9 48.2 0.24 0.06 <2E-4 <2E-4 <2E-3 <2E-3 <0.02 <0.02 <0.01 <0.01 13 25.3 
15 29.6 46.5 0.13 0.04 <1E-4 <1E-4 <2E-3 <2E-3 <0.01 <0.01 <0.01 <0.01 11.9 12.6 
16 27.8 45 <0.04 0.06 <1E-4 <1E-4 <1E-2 <1E-2 0.69 <0.01 <0.01 <0.01 16.4 16.5 
17 25.3 45 0.09 <0.04 <9E-5 <9E-5 <1E-3 <1E-3 <0.01 <0.01 <0.01 <0.01 7.6 12.4 
18 21.5 45 0.17 0.1 <1E-4 <1E-4 0.02 <1E-3 0.03 0.02 <0.01 <0.01 12 23.1 
19 16.8 45 0.37 0.21 <2E-4 0.01 <3E-3 0.06 0.05 0.34 <0.01 <0.01 42.3 128 
20 13.2 45 1.66 0.14 0.08 0.02 0.21 <3E-3 0.4 0.16 <0.01 <0.01 69.6 194 
21 10.2 45.2 0.71 0.43 0.08 <1E-4 0.01 0.02 0.27 0.22 <0.01 <0.01 158 103 
22 10.2 46.5 3.75 0.97 <1E-4 <4E-4 <0.01 <0.01 0.18 0.16 <0.02 <0.02 116 56.9 
23 10.5 47.8 5.98 5.26 <4E-4 <8E-4 0.52 <0.01 0.51 3.47 <0.05 <0.05 108 108 
29 10.5 47.8 0.21 0.08 <8E-4 <9E-5 <1E-3 <1E-3 0.02 0.01 0.07 0.01 38.8 22.3 
30 10.5 55.3 0.12 0.08 <9E-5 <1E-4 <1E-3 <1E-3 <0.01 <0.01 0.06 0.02 20.7 22.1 
31 10.1 53.5 0.18 0.1 <1E-4 <9E-5 0.01 <1E-3 0.04 0.06 0.05 0.01 26.3 36 
32 9.19 51.2 0.19 0.11 <9E-5 <9E-5 0.02 <1E-3 0.04 0.01 0.12 0.01 64.5 28.8 
33 9.24 49.3 0.14 0.11 <9E-5 <9E-5 <1E-3 <1E-3 <0.01 <0.01 0.08 0.02 42.5 36.5 
34 9.36 47.5 0.21 0.12 <1E-4 <1E-4 0.04 <2E-3 0.03 0.07 0.17 0.01 95.7 72.4 
35 7.41 48.2 0.25 0.25 0.09 0.02 0.08 <2E-3 0.34 0.48 0.19 0.02 116 109 
36 6.31 47.1 0.2 0.12 0.03 <8E-5 0.03 0 0.24 0.16 0.17 0.02 84.2 61.7 
37 7.22 45.1 0.21 0.09 <8E-5 <8E-5 0.02 <1E-3 0.11 0.19 0.14 0.01 77.6 74.4 
38 7.17 43 0.17 0.07 0.02 <8E-5 0.02 0.01 0.09 0.14 0.14 0.01 71.8 110 
39 8.61 41.3 0.13 0.3 <1E-4 <1E-4 <2E-3 <2E-3 0.13 0.12 0.13 <0.01 90.5 44.3 
40 9.34 41.5 0.11 0.09 <9E-5 <9E-5 <1E-3 0.04 0.14 0.22 0.12 0.02 65.2 107 
41 10.9 42.4 0.64 0.4 <4E-4 <4E-4 <5E-3 <5E-3 0.29 0.51 0.21 0.01 130 84.4 
42 10.1 44.7 0.21 0.14 <9E-5 <9E-5 0.03 0.01 0.27 0.19 0.14 0.02 140 83.5 
43 9.81 44.5 0.4 0.27 <2E-4 <2E-4 <3E-3 <3E-3 0.34 0.28 0.16 <0.01 133 109 
44 10.6 46.6 0.3 0.22 <2E-4 <2E-4 0.17 <3E-3 0.82 0.23 0.13 0.01 274 75.8 
45 9.44 49.2 1 0.64 <3E-4 <3E-4 <4E-3 0.07 0.35 1.02 0.13 0.01 260 181 
46 9.08 51.8 0.61 0.44 <2E-4 <2E-4 <3E-3 <3E-3 0.22 0.23 0.15 <0.01 258 84 
47 9.41 55.3 0.28 0.36 0.11 <9E-5 0.67 <1E-3 1.11 0.62 0.11 0.02 149 243 
48 10.9 56.1 0.36 0.14 <9E-5 <9E-5 <1E-3 <1E-3 0.31 0.21 0.1 <0.01 37.3 45 
49 11.3 54.8 0.5 0.24 <1E-4 0.01 0.04 0.05 0.23 0.29 0.11 0.02 84.1 83.9 

6/27/01-
8/14/01 

              

178 29.2 27.4 0.03 <0.02 <0.01 <0.01 <0.04 <0.03 <0.01 <0.01 0.2 <0.03 4.28 3.2 
179 29.3 29.6 0.04 0.03 <0.01 <0.01 <0.02 <0.02 <4E-3 <4E-3 0.19 0.02 4.55 10.4 
180 29.4 33.5 0.04 0.02 <0.01 <0.01 <0.02 <0.02 <5E-3 <4E-3 0.2 0.02 5.27 7.23 
181 29.5 37.4 0.04 0.06 0.7 <0.01 <0.02 <0.02 <4E-3 <4E-3 0.22 0.03 2.21 14.5 
182 29.5 39.3 0.05 0.07 <0.01 <0.01 <0.02 <0.02 <4E-3 <4E-3 0.32 0.02 10.1 7.07 
183 29.6 43.2 0.03 0.03 <0.01 <0.01 <0.02 <0.02 <4E-3 <4E-3 0.21 0.03 2.86 12.4 
184 29.6 45 0.14 0.14 <0.01 <0.01 <0.03 <0.03 <0.01 0.41 0.31 0.05 34 154 
185 25.5 48.6 0.04 0.1 <0.01 <0.01 <0.02 <0.02 <5E-3 0.22 0.26 0.07 46.7 110 
186 22.6 51.3 0.07 0.02 <0.01 <0.01 <0.02 <0.01 <3E-3 0.23 0.3 0.02 62.7 68.7 
187 16.3 56.8 0.05 0.03 0.01 <4E-3 <0.01 <0.01 <3E-3 0.17 0.11 0.02 49.4 90.9 
188 ⎯ ⎯ 0.04 0.07 0.03 0.01 <0.02 0.08 0.02 0.36 0.09 0.02 34.3 72.1 
190 11.8 54.4 0.11 0.07 <0.01 0.02 0.51 <0.03 0.36 0.06 0.06 0.02 18.6 34.7 
190 11.8 54.4 0.07 0.06 0.01 0.01 <0.02 <0.02 0.01 0.17 0.1 0.02 26.4 37.1 
191 10.4 48.1 0.06 0.09 <5E-3 <5E-3 <0.01 <0.01 0.04 0.13 0.14 0.02 32.4 64.8 
192 10.4 48.1 0.15 0.13 <0.01 <0.01 <0.04 <0.03 0.02 0.15 0.12 <0.03 37.6 36.6 
193 10.4 48.1 0.11 0.07 0.01 0.01 <0.02 <0.02 0.05 0.15 0.09 0.04 32.4 226 
194 9.8 45.3 0.08 0.07 0.01 0.01 <0.02 <0.02 <4E-3 0.14 0.11 0.02 31.2 26.9 
195 10.1 45.4 0.09 0.04 0.01 0.01 <0.02 <0.02 0 0.25 0.13 0.02 58.7 43.6 
196 10.2 45.5 0.09 0.12 0.01 0.01 <0.03 <0.03 0.01 0.48 0.14 0.04 65.4 122 
197 11 49.3 0.09 0.08 0.01 0.01 <0.02 <0.02 0.03 0.39 0.15 0.02 25.1 63.4 
198 ⎯ ⎯ 0.07 0.07 0.01 <0.01 <0.02 <0.02 0.02 0.32 0.13 0.02 25.6 26.9 
200 11.6 58.2 0.05 0.04 0.04 0.02 <0.01 <0.01 0.05 0.37 0.14 0.02 11.3 20.2 
201 10.3 56.3 0.06 0.06 0.01 0.01 <0.02 <0.02 0.02 0.1 0.15 0.02 12.9 15.7 
202 10.2 56.3 0.17 0.14 0.02 0.01 <0.04 <0.04 0.06 0.15 0.13 0.04 56.2 6.17 
203 10.2 56.3 0.05 0.08 0.01 0.01 <0.02 0.03 0.07 0.1 0.12 0.02 17.6 16.2 
207 11.9 54.9 0.06 0.06 <0.01 <0.01 <0.02 <0.02 0.07 0.16 0.07 0.02 15.8 25.2 
208 10.4 53 0.12 0.08 <0.01 <0.01 <0.03 <0.02 0.07 0.46 0.11 0.03 27.8 68 
209 8.74 51 0.07 0.07 <0.01 <0.01 <0.02 0.05 0.01 0.23 0.08 0.03 7.91 20.6 
210 7.23 48.5 0.06 0.06 0.01 <0.01 0.14 <0.01 0.19 <3E-3 0.16 0.01 9.13 15.6 
211 5.65 46.4 0.09 0.09 0.04 <0.01 0.11 <0.02 0.03 <3E-3 0.07 <0.01 10.9 33.1 
212 4.76 43.9 0.09 0.15 <0.01 <0.01 <0.02 <0.02 <4E-3 <4E-3 0.07 0.06 8.95 25.9 
213 3.83 42.8 ⎯ 0.11 ⎯ <0.01 ⎯ <0.02 ⎯ <0.01 ⎯ 0.67 ⎯ 42.9 
214 3.27 44.2 0.36 0.35 <0.01 <0.01 0.08 <0.03 <0.01 <0.01 0.11 <0.03 34.4 36.5 
215 3.93 46.1 0.29 0.27 <0.01 <0.01 <0.04 <0.04 <0.01 <0.01 0.09 0.05 27.7 66.9 
216 5.79 48 0.13 0.16 <0.01 <0.01 <0.04 <0.04 <0.01 0.11 <0.03 0.05 8.77 59.3 
217 6.17 50.1 0.15 0.05 <0.01 0.05 <0.01 <0.01 0.03 0.01 0.07 0.02 10.3 21.3 
219 8.21 52.8 0.08 0.04 <3E-3 <3E-3 <0.01 <0.01 <2E-3 0.18 0.05 0.02 5.75 10.1 
221 10.5 55 0.15 0.14 0.06 <0.01 0.02 5.36 0.02 <4E-3 0.07 1.19 5.9 6.84 
222 10.6 55.8 0.19 0.11 0.07 <0.01 <0.02 11.7 0.1 <0.01 0.07 1.91 4.21 8.95 
223 12.5 55 0.27 0.14 <0.01 <0.01 0.07 <0.03 <0.01 0.08 2.09 <0.03 22.8 27.3 
224 12.5 54.1 ⎯ 0.11 ⎯ <0.01 ⎯ <0.02 ⎯ 0.55 ⎯ 0.04 ⎯ 23 
225 11.4 53.8 0.15 0.24 0.04 0.03 7.61 <0.03 0.08 <0.01 3.24 <0.03 9.71 21.4 
226 11.8 54.6 0.16 0.14 <0.01 0.17 <0.02 0.09 <0.01 <0.01 0.09 0.03 14.1 38.7 
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Julian day Lat Long 
 °N °W 

Fluoride 
nmol m-3 

Glycolate 
nmol m-3 

Acetate 
nmol m-3 

Formate 
nmol m-3 

MSA 
nmol m-3 

Chloride 
nmol m-3 

   Fine Coarse Fine Coarse Fine Coarse Fine Coarse Fine Coarse Fine Coarse 
4/18/03-
5/20/03 

              

108 12 57.6 0.09 0.12 BDL BDL BDL BDL BDL 2.79 BDL BDL 8.65 36.8 
109 11.4 55.5 0.04 0.01 BDL BDL BDL BDL 0.33 0.05 BDL BDL 15.3 23.7 
110 11.1 53.4 0.05 0.02 BDL BDL BDL BDL 0.26 BDL 0.48 0.2 23.5 85.3 
111 9.86 52.1 0.09 0.11 BDL BDL BDL BDL 0.23 0.49 0.45 0.27 20.9 41.8 
112 7.93 52 0.11 0.14 BDL BDL BDL BDL 0.63 1 1.01 0.21 41.1 85.6 
113 6.98 51 0.15 0.05 BDL BDL BDL BDL 0.11 1.86 1.08 0.04 39.5 63.5 
114 7.68 50.8 0.21 0.44 0.04 BDL 0.54 1.12 0.63 2.1 1.11 0.34 35.8 104 
115 9.08 52.9 0.37 0.18 0.53 BDL 0.43 0.79 0.15 1.04 1.11 0.25 30.3 104 
116 10.5 55.1 0.48 0.15 BDL 0.16 BDL BDL 3.26 BDL 0.49 1.42 88.2 18 
117 12.1 56.5 0.08 0.1 BDL BDL 0.79 <0.01 0.72 0.35 1.01 0.39 14.2 59.4 
121 11 55.4 0.17 0.16 0.26 0.54 BDL 0.45 0.25 2.85 0.95 0.25 19.5 79.3 
122 9.4 55.4 0.24 0.24 0.95 0.49 0.4 0.31 0.32 3.49 1.09 0.18 42.3 129 
123 7.98 54.9 0.42 0.42 1.2 BDL 0.38 BDL 1.19 2.1 1.33 BDL 50.3 80.8 
124 8.53 54.9 0.57 0.32 BDL BDL 0.61 BDL 0.23 5.2 1.13 BDL 54.7 138 
125 10.8 55.9 0.43 0.26 1.21 0.25 3.31 BDL 2.58 5.84 0.75 0.24 46.1 107 
126 12.1 56.1 0.15 0.13 0.44 0.39 0.24 0.14 0.14 1.98 1.15 0.14 40.9 117 
127 11.8 56.3 0.15 0.18 BDL BDL BDL 0.17 0.03 0.64 1.02 0.14 43.2 97.2 
130 11 55.4 0.16 0.08 0.5 0.44 0.69 0.12 0.37 2.41 1.46 0.21 42.6 114 
131 10.7 53.4 0.27 0.07 0.57 0.02 BDL BDL 0.17 0.77 1.17 BDL 51.2 76 
132 10.6 51.3 0.2 0.08 0.52 0.12 BDL BDL 0.14 2.66 1.1 0.05 50.7 133 
133 10.5 49.2 0.22 0.2 0.6 0.24 BDL BDL 1.71 1.21 0.67 0.14 219 141 
135 8.1 49.4 0.22 0.24 0.76 0.24 0.34 BDL 0.4 2.1 1.36 0.1 88.6 131 
136 8.12 53 0.29 0.16 0.58 BDL BDL BDL 0.09 1.81 1.05 0.09 71.2 102 
138 9.14 56.7 0.29 0.16 0.4 BDL 0.77 BDL 0.6 1.99 1.11 0.09 71.6 133 
139 10.3 56.6 0.1 0.04 BDL BDL BDL BDL 0.67 0.87 0.66 BDL 23.9 60.6 
140 10.8 55.2 0.1 0.1 BDL BDL BDL BDL 0.16 0.8 0.51 0.11 26.6 53.1 

4/9/01- 
4/26/01 

              

99 21.5 160 0.2 0.02 <1E-3 <1E-3 <4E-3 <3E-3 <0.01 0.03 0.08 <0.03 69.5 28.4 
100 22.2 162 0.27 0.01 <2E-3 <2E-3 0.08 <4E-3 <0.01 <0.01 0.1 <0.04 62.5 11 
101 23.3 168 0.26 0.19 <2E-3 <2E-3 <5E-3 <5E-3 0.05 <0.01 0.1 0.12 44.9 217 
102 24.4 172 0.2 <0.01 <7E-4 <1E-3 0.02 0.03 <3E-3 <3E-3 0.1 <0.02 12.9 1.2 
103 26.1 175 0.2 0.15 <8E-4 <1E-3 0.82 0.07 <4E-3 <4E-3 0.11 0.04 15 22.1 
104 26.8 181 0.08 0.09 <7E-4 <1E-3 11 <2E-3 <3E-3 <3E-3 0.1 0.06 8.88 15.3 
105 27.3 185 0.36 0.29 <2E-3 <2E-3 16.9 <4E-3 <0.01 <0.01 0.17 0.25 585 598 
106 27.6 190 0.21 0.11 <1E-3 <1E-3 0.02 <2E-3 <5E-3 0.06 0.15 0.05 88.1 8.03 
107 27.6 190 1.03 <0.02 <8E-4 <1E-3 <2E-3 <2E-3 0.04 0.02 0.29 <0.02 24.9 <0.5 
108 27.4 187 1.02 0.61 0.03 <1E-3 <2E-3 <2E-3 0.48 0.1 0.17 0.03 1801 <0.5 
109 26.7 182 0.19 0.96 <2E-3 <2E-3 0.07 1.54 <0.01 <0.01 0.09 0.2 47.5 90.2 
110 26 175 5.09 4.71 <3E-3 <3E-3 <0.01 <0.01 0.25 0.07 0.2 0.08 180 132 
111 25.6 174 1.98 1.77 0.03 <1E-3 0.01 <3E-3 <0.01 <0.01 0.18 0.03 27.3 39.7 
112 24.8 171 2.75 2.58 <3E-3 <3E-3 <0.01 <0.01 0.27 <0.01 0.13 <0.07 312 50.4 
114 24.2 166 4.87 3.92 <4E-3 <4E-3 0.01 <0.01 0.14 <0.02 1.07 <0.1 552 84.5 
116 22.5 158 2.57 2.14 <2E-3 <2E-3 6.7 <0.01 <0.01 <0.01 0.18 0.07 288 14.5 

7/1/02- 
7/16/02 

              

182 22.8 158 0.11 0.11 <1E-3 <1E-3 <2E-3 <3E-3 0.38 0.16 1.01 0.4 17.2 21.5 
183 22.8 158 0.12 0.12 <1E-3 <1E-3 0.04 0.27 0.31 0.53 1.28 0.51 15.2 34.6 
184 23.5 162 0.31 0.33 <2E-3 <2E-3 <0.01 <0.01 0.53 0.28 2.13 0.92 25.9 36.3 
185 24 165 0.13 0.2 <2E-3 <2E-3 0.01 <0.01 0.66 0.35 2.03 0.89 21.5 44.3 
186 24.5 167 0.38 0.27 <3E-3 <3E-3 <0.01 <0.01 0.52 0.74 2.09 1.54 23.4 47.9 
187 24.9 170 0.4 0.31 <3E-3 <3E-3 1.84 <0.01 2.64 0.23 1.7 1.08 13.9 25.4 
189 26.1 175 0.15 0.17 <1E-3 <1E-3 <3E-3 <3E-3 0.34 0.24 0.83 0.56 17.6 30.1 
190 26 175 0.08 0.1 <1E-3 <1E-3 <2E-3 <2E-3 0.18 0.12 0.86 0.33 20.5 40 
191 26 175 0.15 0.12 <1E-3 <1E-3 <3E-3 <3E-3 0.22 0.22 0.94 0.38 20.9 30.9 
192 26 175 0.09 0.08 <1E-3 <1E-3 <2E-3 <2E-3 0.15 0.14 2.15 0.31 21.9 42.4 
193 26 175 0.05 0.05 <1E-3 <1E-3 <2E-3 <2E-3 0.12 0.12 147 -14 40.6 40.3 
194 24.7 170 0.07 0.06 <1E-3 <1E-3 <2E-3 <2E-3 1.05 0.03 1.08 0.31 10.8 13.8 
195 23.6 167 0.07 0.09 <1E-3 <1E-3 <1E-3 <1E-3 0.61 0.59 1.06 0.24 12.6 25.1 
196 22.9 164 0.11 0.07 0.05 <1E-3 <2E-3 <2E-3 0.07 1.01 1.06 0.41 88.8 42.1 
197 22.8 160 0.07 0.07 <1E-3 <1E-3 <2E-3 <2E-3 0.91 0.76 1.38 0.33 69.3 43.6 

9/23/02-
10/15/02 

              

266 22.5 157 0.07 0.11 <2E-3 <1E-3 0.15 <2E-3 0.45 0.02 0.85 0.35 3.37 4.71 
267 23.5 157 0.02 0.07 <1E-3 <1E-3 <2E-3 0.09 0.02 0.17 0.75 0.26 1.25 8.57 
268 23.5 157 0.08 0.12 <1E-3 <1E-3 <3E-3 <3E-3 0.11 0.07 1.35 0.37 3.6 8.15 
269 24.2 156 0.1 0.12 <1E-3 <1E-3 <2E-3 <2E-3 0.09 0.1 0.75 0.4 6.22 22.5 
270 24.2 155 0.06 0.09 <1E-3 <1E-3 <3E-3 <2E-3 0.07 0.06 1.22 0.37 9.11 26.4 
271 23.7 156 0.04 0.02 <1E-3 <1E-3 <2E-3 <2E-3 0.1 0.01 1.22 0.26 13.2 24.7 
273 23.3 157 0.31 0.14 <2E-3 <3E-3 <5E-3 <0.01 0.36 0.51 2.23 0.9 36.7 59.7 
274 23.3 159 0.29 0.11 <1E-3 <1E-3 0.33 <3E-3 8.71 <0.01 0.56 0.57 16.7 5.78 
275 23.8 159 0.16 0.08 <1E-3 <1E-3 <2E-3 <2E-3 1.33 <5E-3 0.69 0.31 16 16.4 
276 22.5 159 0.06 0.09 <1E-3 <1E-3 <2E-3 <3E-3 0.13 <0.01 0.77 0.4 10.9 29.2 
278 19.7 156 0.07 0.12 <1E-3 <1E-3 <2E-3 <2E-3 1.51 0.01 0.82 0.35 0.8 27.9 
279 19.4 156 0.11 0.15 <1E-3 <1E-3 <2E-3 <2E-3 0.15 0.1 0.76 0.36 2.49 22 
280 19.8 155 0.16 0.11 <2E-3 0.21 <4E-3 <3E-3 1.65 1.86 1.43 0.54 22.8 37.1 
281 20.3 156 0.1 0.09 <1E-3 <1E-3 <2E-3 <2E-3 0.07 1.33 0.57 0.47 6.85 13.1 
282 20.1 156 0.09 0.09 <1E-3 <1E-3 <2E-3 <2E-3 0.13 0.11 0.83 0.31 11.4 21.2 
283 20.9 156 0.11 0.07 <1E-3 <1E-3 <2E-3 <2E-3 1 0.57 0.89 0.35 9.9 11.9 
285 23.2 158 0.09 0.1 <1E-3 <1E-3 <3E-3 <3E-3 1.76 1.66 0.93 0.56 10.1 14.2 
286 21.6 158 0.09 0.1 <1E-3 <1E-3 0.08 <2E-3 0.46 0.08 1.21 0.32 10.1 27.6 
287 20.2 157 0.09 0.11 <1E-3 <1E-3 <3E-3 <3E-3 0.2 0.18 1.12 0.41 4.08 25.8 
288 19.8 156 0.12 0.12 <1E-3 <1E-3 <3E-3 <3E-3 0.2 0.19 0.69 0.48 5.9 19.5 
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Julian day Lat Long 
 °N °W 

Fluoride 
nmol m-3 

Glycolate 
nmol m-3 

Acetate 
nmol m-3 

Formate 
nmol m-3 

MSA 
nmol m-3 

Chloride 
nmol m-3 

   Fine Coarse Fine Coarse Fine Coarse Fine Coarse Fine Coarse Fine Coarse 
8/6/03- 
8/20/03 

              

218 19.7 157 0.05 0.07 <1E-3 <1E-3 <3E-3 0.23 0.1 1.74 0.77 0.14 78.8 56.7 
219 18.5 157 0.04 0.04 <1E-3 <1E-3 0.22 <2E-3 0.12 0 0.54 0.05 28.4 51.9 
220 18.7 156 0.09 0.03 <1E-3 <1E-3 0.36 0.07 0.86 0.13 0.3 <0.02 412 <0.5 
221 19.2 156 0.1 0.1 <2E-3 <2E-3 <5E-3 0.3 0.04 0.22 0.5 <0.05 59.6 63.1 
222 19.5 157 0.08 0.06 <1E-3 <1E-3 0.28 0.41 0.21 0.31 0.48 0.09 44.5 50.3 
223 19.5 158 0.07 0.04 <1E-3 <1E-3 0.2 <2E-3 0.16 0.04 0.62 0.09 32.1 65.3 
224 19.5 159 0.06 0.07 <1E-3 0.09 0.54 <2E-3 0.28 0.05 0.46 0.09 45.5 41.1 
225 20 160 0.25 0.13 <1E-3 <1E-3 <3E-3 <3E-3 0.13 0.12 0.33 0.13 23.4 86.5 
226 20.8 160 0.06 0.08 <1E-3 <1E-3 0.27 <2E-3 0.22 0.03 0.93 0.07 52 40.3 
227 21 159 0.06 0.2 <1E-3 0.28 <2E-3 <2E-3 0.14 0.11 1.18 0.19 25.1 63.4 
228 20.6 158 0.08 0.07 0.47 0.25 0.16 <2E-3 0.09 0.76 1.21 0.01 357 225 
229 20.3 158 0.13 0.08 <1E-3 <1E-3 <3E-3 0.34 0.09 0.11 1.07 0.06 53.6 104 
230 19.7 161 0.08 0.1 0.34 0.45 <3E-3 <3E-3 0.12 0.54 1.18 0.11 61.3 93.7 
231 19.1 162 0.07 0.06 0.26 0.31 0.2 <1E-3 0.36 0.02 1.19 0.09 36.2 111 
232 19.8 162 0.04 0.03 <0.01 <0.01 <2E-3 <2E-3 0.02 0.01 0.05 0.02 28.3 40.9 
233 ⎯ ⎯ 0.05 0.04 0.01 <0.01 0.02 0.01 0.02 0.01 0.05 0.01 21.7 40.9 
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Julian day Latitude  Longitude 

 °N °W 
Sulfate 

nmol m-3 
Oxalate 
nmol m-3 

Bromide 
nmol m-3 

Nitrate 
nmol m-3 

Phosphate 
nmol m-3 

   Fine Coarse Fine Coarse Fine Coarse Fine Coarse Fine Coarse 
1/6/01- 
2/19/01             

6 ⎯ ⎯ 20.4 1.01 1.41 0.08 <0.02 <0.02 3.71 12.1 0.08 <0.02 
7 27.8 75.5 20.2 2.85 0.88 0.17 <0.02 0.03 6.3 13.3 0.3 <0.03 
8 28.1 70.9 20.5 2.93 0.87 0.34 <0.03 <0.03 4.8 10.2 <0.04 <0.04 
9 28.4 66.9 6.58 0.27 0.43 <0.1 <0.09 <0.09 3.69 3.13 2.89 <0.1 

10 28.6 63.3 11.5 1.39 0.21 <0.02 <0.02 0.03 3.57 1.15 <0.02 <0.02 
12 29.2 55.2 3.57 0.79 0.13 <0.01 <0.01 <0.01 1.42 0.88 <0.01 <0.01 
13 29.5 51.3 2.71 0.42 0.12 0.03 <0.01 <0.01 1.03 0.75 <0.01 0.03 
14 29.9 48.2 2.07 1.33 0.08 0.03 <0.02 0.12 0.9 0.55 0.06 0.09 
15 29.6 46.5 1.52 0.71 0.07 0.03 <0.01 <0.01 0.84 0.39 0.06 <0.02 
16 27.8 45 2.47 0.79 0.14 0.02 <0.01 <0.01 1.83 0.42 <0.01 <0.01 
17 25.3 45 2.71 0.7 0.18 0.05 <0.01 <0.01 1.54 1.39 <0.01 <0.01 
18 21.5 45 4.38 1.49 0.25 0.07 <0.01 <0.01 2.12 2.73 0.08 0.03 
19 16.8 45 6.89 7.44 0.21 0.06 <0.03 0.09 3.85 2.91 0.29 0.01 
20 13.2 45 15.6 11.9 1.01 0.24 <0.02 <0.02 11.4 10.6 0.19 0.46 
21 10.2 45.2 18.8 6.06 0.55 0.05 0.04 0.06 7.18 1.91 0.19 0.09 
22 10.2 46.5 13.8 2.5 0.58 <0.01 <0.05 <0.05 6.76 0.78 0.49 0.5 
23 10.5 47.8 11.1 8.26 0.26 0.26 <0.1 <0.1 8.07 13.5 <0.1 0.8 
29 10.5 47.8 5.12 1.4 0.21 0.03 <0.01 <0.01 0.53 0.19 0.03 <0.01 
30 10.5 55.3 4.19 1.31 0.18 0.03 <0.01 <0.01 0.32 0.21 0.03 <0.02 
31 10.1 53.5 3.5 1.96 0.17 0.04 <0.01 <0.01 0.29 0.2 <0.01 0.03 
32 9.19 51.2 7.75 1.72 0.32 0.03 <0.01 <0.01 0.68 0.24 0.06 0.03 
33 9.24 49.3 4.6 2.3 0.18 0.03 <0.01 <0.01 0.28 0.14 <0.01 0.04 
34 9.36 47.5 10.8 3.85 0.54 0.05 <0.02 <0.02 0.98 0.45 0.08 0.03 
35 7.41 48.2 18.2 7.69 1.28 0.34 <0.01 <0.01 2.81 1.36 0.18 0.09 
36 6.31 47.1 12.1 3.77 0.73 0.12 <0.01 <0.01 1.8 0.59 0.34 0.03 
37 7.22 45.1 11.1 5.07 0.5 0.1 <0.01 <0.01 1.25 0.69 0.15 0.05 
38 7.17 43 11.4 4.64 0.48 0.09 <0.01 <0.01 1.16 0.57 0.02 0.03 
39 8.61 41.3 10.1 2.32 0.28 0.08 0.04 <0.02 0.99 0.32 0.06 0.02 
40 9.34 41.5 8.18 6.46 0.27 0.16 0.03 0.03 0.81 0.56 0.11 0.06 
41 10.9 42.4 22.5 5.57 0.87 0.21 <0.04 0.06 2.5 1.19 <0.05 0.23 
42 10.1 44.7 13 5.06 0.74 0.18 0.05 0.05 2 0.8 0.18 0.11 
43 9.81 44.5 16 6.83 0.72 0.18 0.2 0.05 2.33 0.86 0.42 0.15 
44 10.6 46.6 15.8 5.2 0.65 0.17 0.07 0.07 2.63 1.01 0.86 0.18 
45 9.44 49.2 22.5 8.16 0.63 0.16 0.13 0.04 3 1.94 0.35 0.52 
46 9.08 51.8 17.8 4.73 0.54 0.07 0.13 <0.03 2.17 0.77 0.35 0.1 
47 9.41 55.3 14.3 15.3 0.63 0.25 0.08 0.18 2.21 1.36 0.34 0.23 
48 10.9 56.1 8.62 3.87 0.48 0.13 0.01 0.01 1.12 0.36 0.25 0.16 
49 11.3 54.8 8.1 4.87 0.38 0.12 0.02 0.07 0.86 0.35 0.24 0.19 

6/27/01- 
8/14/01             

178 29.2 27.4 6.85 <0.05 0.24 <0.01 <0.02 <0.01 0.23 <2E-3 0.08 <0.01 
179 29.3 29.6 4.01 1.13 0.22 0.09 <0.01 <0.01 0.14 0.19 0.01 0.02 
180 29.4 33.5 4.25 0.51 0.23 0.05 <0.01 <0.01 0.12 0.19 0.04 0.04 
181 29.5 37.4 3.87 1.48 0.28 0.1 <0.01 <0.01 0.14 0.35 0.01 <0.01 
182 29.5 39.3 7.2 1.17 0.24 0.05 0.03 0.01 0.26 0.44 0.12 0.02 
183 29.6 43.2 7.17 1.53 0.18 0.07 <0.01 <0.01 0.2 0.51 0.04 0 
184 29.6 45 10.2 10.9 0.31 0.17 0.03 0.19 0.5 0.74 0.11 0.04 
185 25.5 48.6 7.11 6.81 0.17 0.09 0.03 0.09 0.44 0.5 0.04 0.06 
186 22.6 51.3 8.97 3.9 0.42 0.04 0.04 0.02 0.57 0.25 <0.01 <5E-3 
187 16.3 56.8 5.41 5.09 0.2 0.04 0.02 0.04 0.52 0.35 0.01 0.02 
188 ⎯ ⎯ 4.87 5.54 0.22 0.09 <0.01 0.1 0.37 0.33 0.09 0.03 
190 11.8 54.4 2.99 2.14 0.1 0.07 0.05 0.08 0.23 0.15 0.06 0.13 
190 11.8 54.4 5.32 2.66 0.18 0.05 0.03 0.05 0.37 0.18 0.05 0.11 
191 10.4 48.1 8.88 4.93 0.38 0.14 0.03 0.07 0.77 0.49 0.12 0.03 
192 10.4 48.1 6.16 2.11 0.27 0.06 0.06 0.04 0.53 0.18 0.14 0.05 
193 10.4 48.1 6.91 17.8 0.17 0.43 0.06 0.3 0.32 0.63 0.1 0.62 
194 9.8 45.3 7.61 2.31 0.23 0.06 0.05 0.03 0.4 0.32 0.22 0.11 
195 10.1 45.4 9.91 2.88 0.23 0.09 0.07 0.03 0.59 0.46 0.06 0.04 
196 10.2 45.5 8.91 7.78 0.25 0.15 0.05 0.15 0.61 0.55 0.1 0.06 
197 11 49.3 7.93 4.27 0.34 0.15 0.02 0.06 0.84 0.59 0.1 0.05 
198 ⎯ ⎯ 5.99 2.79 0.22 0.1 0.02 0.03 0.44 0.34 0.06 0.06 
200 11.6 58.2 4.6 2.41 0.42 0.18 0.03 0.02 0.32 0.34 0.06 0.05 
201 10.3 56.3 4.65 1.41 0.55 0.13 0.04 0.03 0.29 0.23 0.07 0.05 
202 10.2 56.3 5.82 1.2 0.43 0.11 0.09 0.02 0.32 0.32 0.73 0.02 
203 10.2 56.3 4.23 1.35 0.59 0.12 0.06 0.03 0.3 0.29 0.1 0.07 
207 11.9 54.9 3.09 1.69 0.21 0.04 0.03 0.04 0.15 0.05 0.06 0.02 
208 10.4 53 5.47 4.34 0.21 0.1 0.05 0.08 0.48 0.31 0.07 0.06 
209 8.74 51 4.28 1.34 0.27 0.06 0.03 0.04 0.39 0.25 0.07 0.05 
210 7.23 48.5 5.03 1.28 0.78 0.15 0.03 0.02 0.58 0.57 0.05 0.04 
211 5.65 46.4 2.91 2.27 0.35 0.09 <0.01 0.08 0.34 0.35 <0.01 <0.01 
212 4.76 43.9 1.64 1.9 0.06 0.02 <0.01 <0.01 0.15 0.23 <0.01 <0.01 
213 3.83 42.8 ⎯ 1.66 ⎯ <0.01 ⎯ <0.01 ⎯ 0.16 ⎯ <0.01 
214 3.27 44.2 4.71 1.8 0.23 0.01 <0.02 <0.01 0.59 0.27 <0.01 <0.01 
215 3.93 46.1 3.34 4.16 0.2 0.04 <0.02 0.15 0.46 0.46 <0.01 0.28 
216 5.79 48 1.35 3.42 0.27 <0.01 <0.02 0.16 0.21 0.26 <0.01 <0.01 
217 6.17 50.1 2.51 1.83 0.37 0.08 <0.01 <0.01 0.43 0.44 0.15 0.09 
219 8.21 52.8 3.83 0.87 0.34 0.06 <4E-3 <4E-3 0.38 0.26 0.08 0.06 
221 10.5 55 5.01 0.69 0.08 0.05 <0.01 <0.01 0.4 <1E-3 0.12 <0.01 
222 10.6 55.8 3.28 0.95 0.25 0.05 <0.01 <0.01 0.32 <2E-3 0.11 <0.01 
223 12.5 55 8.6 1.49 0.29 0.01 <0.01 0.12 0.22 0.26 <0.01 0.15 
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Julian day Latitude  Longitude 
 °N °W 

Sulfate 
nmol m-3 

Oxalate 
nmol m-3 

Bromide 
nmol m-3 

Nitrate 
nmol m-3 

Phosphate 
nmol m-3 

   Fine Coarse Fine Coarse Fine Coarse Fine Coarse Fine Coarse 
224 12.5 54.1 ⎯ 1.72 ⎯ 0.01 ⎯ <0.01 ⎯ 0.17 ⎯ <0.01 
225 11.4 53.8 2.68 1.41 0.23 0.05 <0.01 0.11 0.05 0.32 <0.01 <0.01 
226 11.8 54.6 5.6 2.84 0.71 0.24 0.11 0.06 0.59 0.92 <0.01 <0.01 

4/18/03- 
5/20/03             

108 12 57.6 1.24 1.86 BDL  0.32 BDL  0.12 1.56 1.1 BDL  BDL  
109 11.4 55.5 1.45 1.29 0.14 0.21 0.14 0.05 1.07 0.44 BDL  0.06 
110 11.1 53.4 3.32 4.58 2.74 1.29 BDL  0.06 1.55 1.16 0.12 0.19 
111 9.86 52.1 3.79 2.65 3.14 1.27 BDL  0.09 1.7 0.97 0.27 0.06 
112 7.93 52 6.98 4.64 5.22 1.1 BDL  0.09 3.15 1.6 0.47 0.15 
113 6.98 51 7.79 3.52 5.66 2.27 BDL  0.06 4.04 1.53 0.13 0.29 
114 7.68 50.8 8.19 6.71 9.74 3.69 BDL  0.11 4.04 3.36 0.26 0.28 
115 9.08 52.9 5.94 6.05 3.97 2.52 BDL  0.13 2.86 1.87 0.37 0.17 
116 10.5 55.1 6.8 8.59 4.92 8.93 0.09 BDL 5.41 4.07 0.32 0.29 
117 12.1 56.5 3.66 3.52 2.93 2.32 0.05 0.05 1.36 1.72 0.18 0.08 
121 11 55.4 5.45 6.13 2.68 3.28 BDL  0.08 1.29 1.84 0.04 0.03 
122 9.4 55.4 7.83 7.13 6.48 2.02 BDL  0.1 2.71 2.3 0.06 0.03 
123 7.98 54.9 8.29 4.64 5.84 3.05 0.09 0.08 3.97 1.2 0.15 0.03 
124 8.53 54.9 9.42 8.09 8.27 2.92 BDL  0.17 4.46 2.87 0.1 0.08 
125 10.8 55.9 6.78 7.31 4.13 3.43 BDL  0.15 2.4 1.28 0.08 0.11 
126 12.1 56.1 7.45 7.09 4.87 2.93 0.05 0.09 2.48 2.51 0.1 0.25 
127 11.8 56.3 6.38 5.09 4.1 1.52 BDL  0.06 2.31 1.47 0.13 0.84 
130 11 55.4 7.57 6.65 6.41 0.81 BDL  0.07 2.43 2.39 0.17 0.09 
131 10.7 53.4 8.45 3.24 5.44 0.9 0.05 0.05 3.03 1 0.59 0.3 
132 10.6 51.3 7.94 7.99 5.47 2.61 0.05 0.15 2.94 2.25 0.31 0.01 
133 10.5 49.2 9.1 8.34 4.44 1.4 0.14 0.19 2.05 1.64 0.1 0.96 
135 8.1 49.4 14.3 8.13 8.49 3.52 0.08 0.08 4.48 2.5 0.09 1.58 
136 8.12 53 12.2 6.74 7.65 1.75 0.07 0.09 4.11 2.23 1.38 0.61 
138 9.14 56.7 13.1 7.36 12.7 2.68 BDL  0.11 4.7 2.65 0.4 0.72 
139 10.3 56.6 6.65 3.76 4.93 1.93 0.04 0.03 2.28 2.11 0.04 0.9 
140 10.8 55.2 7.52 3.15 5.24 1.87 0.04 BDL  2.56 1.81 0.11 0.6 

4/9/01- 
4/26/01             

99 21.5 160 4.18 1.41 0.05 <0.01 0.14 0.1 0.42 0.04 <0.01 <0.01 
100 22.2 162 6.72 0.3 0.16 <0.01 0.16 0.11 0.61 <0.05 <0.01 <0.01 
101 23.3 168 5 13.9 0.07 0.02 0.26 0.39 0.34 0.3 <0.02 <0.02 
102 24.4 172 3.36 <0.2 0.09 <3E-3 <0.01 0.04 0.17 0 <0.01 <0.01 
103 26.1 175 2.88 1.67 0.13 0.02 <0.02 0.07 0.46 0.05 <0.01 <0.01 
104 26.8 181 3.01 1.42 0.15 0.04 0.05 0.04 0.2 0.08 0.05 <0.01 
105 27.3 185 28.5 27.1 0.05 0.03 0.87 1.01 <0.05 <0.05 0.18 0.25 
106 27.6 190 6.39 0.69 0.04 0.01 0.2 0.07 0.17 0.11 0.3 0.07 
107 27.6 190 11.5 <0.2 0.48 <4E-3 0.11 <0.01 0.55 <0.02 0.12 <0.01 
108 27.4 187 79.7 2.86 0.18 0.07 2.99 <0.01 0.6 0.27 2.14 1.62 
109 26.7 182 2.95 6.56 <0.01 0.13 0.2 0.22 0.08 <0.05 0.23 1.28 
110 26 175 15.8 3.3 0.35 <0.01 0.45 0.26 0.4 0.26 0.58 0.23 
111 25.6 174 5.13 2.03 0.13 0.01 0.11 0.08 0.22 0.25 <0.01 <0.01 
112 24.8 171 11.7 3.28 0.09 <0.01 0.28 0.2 0.37 0.33 0.34 0.36 
114 24.2 166 26.5 11.9 0.02 0.04 1.1 0.24 0.43 0.22 0.61 <0.03 
116 22.5 158 19.6 3.32 0.35 0 0.45 0.09 0.4 0.22 <0.02 <0.02 

7/1/02- 
7/16/02             

182 22.8 158 2.86 1.16 1.49 0.48 0.07 0.05 1.31 0.4 0.09 <0.01 
183 22.8 158 2.43 1.9 1.32 0.92 <0.02 0.09 0.84 0.67 <0.01 0.18 
184 23.5 162 3.73 1.94 3.94 1.29 <0.04 <0.05 2.04 0.85 0.15 0.14 
185 24 165 3.64 2.4 4.11 0.76 0.13 0.09 1.21 0.89 <0.02 <0.02 
186 24.5 167 3.1 2.86 3.19 1.44 <0.07 0.15 1.34 1.19 0.34 <0.03 
187 24.9 170 2.63 1.46 2.23 1.04 0.15 0.11 1.31 0.99 0.29 <0.03 
189 26.1 175 1.71 1.65 0.89 0.3 <0.02 0.07 0.53 0.28 0.1 0.06 
190 26 175 2.37 2.05 1.33 0.67 0.04 0.04 0.56 0.41 0.06 0.04 
191 26 175 2.74 1.61 1.3 0.42 <0.02 0.06 0.57 0.38 <0.01 0.07 
192 26 175 6.84 2.16 6.07 1.02 0.08 0.07 0.83 0.6 <0.01 0.05 
193 26 175 8.31 2.16 4.09 0.7 <0.01 0.04 0.67 0.41 0.05 <0.01 
194 24.7 170 3.6 0.87 1.93 0.93 0.05 0.03 0.46 0.43 0.05 0.06 
195 23.6 167 3.23 1.35 1.24 0.55 0.03 0.04 0.39 0.31 <4E-3 <4E-3 
196 22.9 164 10.9 1.62 1.56 0.75 0.18 0.07 0.45 0.37 <0.01 0.05 
197 22.8 160 6.38 2.21 1.5 0.59 0.11 0.07 0.79 0.47 <0.01 <0.01 

9/23/02- 
10/15/02             

266 22.5 157 2.92 0.45 <0.01 0.19 <0.03 <0.02 0.36 0.38 <0.01 <0.01 
267 23.5 157 5.17 0.98 0.37 0.5 <0.01 <0.01 0.23 0.53 0.04 0.04 
268 23.5 157 13 0.85 0.66 0.95 <0.02 <0.02 0.45 1.08 <0.01 <0.01 
269 24.2 156 1.74 1.47 0.87 0.2 <0.02 0.05 0.37 0.5 <0.01 <0.01 
270 24.2 155 2.61 1.52 1.03 0.19 0.05 0.04 0.73 0.81 <0.01 0.06 
271 23.7 156 2.98 1.55 2.53 0.7 <0.01 <0.01 0.51 0.48 <0.01 0.03 
273 23.3 157 5.51 3.19 4.57 0.51 0.1 <0.05 1.71 1.11 <0.02 0.14 
274 23.3 159 1.12 1.16 0.35 0.46 <0.03 <0.03 0.29 0.25 <0.01 <0.01 
275 23.8 159 1.75 0.86 0.57 0.2 <0.02 <0.02 0.32 0.21 <0.01 <0.01 
276 22.5 159 3.86 1.66 0.64 0.59 <0.02 <0.02 0.61 0.54 0.07 <0.01 
278 19.7 156 10 2.45 3.03 0.4 <0.02 0.06 0.2 0.36 0.06 0.09 
279 19.4 156 22.2 3.29 2.11 0.11 0.07 0.04 0.18 0.54 0.04 0.07 
280 19.8 155 3.68 1.92 1.22 1.13 0.07 0.06 0.8 0.49 0.1 0.07 
281 20.3 156 1.25 0.7 0.35 0.03 <0.02 <0.02 0.27 0.23 0.07 0.05 
282 20.1 156 2.18 1.14 0.47 0.2 <0.02 0.04 0.37 0.29 0.06 0.07 
283 20.9 156 2.23 0.63 0.69 0.13 <0.02 0.03 0.42 0.23 0.08 <0.01 
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Julian day Latitude  Longitude 
 °N °W 

Sulfate 
nmol m-3 

Oxalate 
nmol m-3 

Bromide 
nmol m-3 

Nitrate 
nmol m-3 

Phosphate 
nmol m-3 

   Fine Coarse Fine Coarse Fine Coarse Fine Coarse Fine Coarse 
285 23.2 158 1.41 0.96 0.41 0.26 <0.02 0.05 0.38 0.33 0.09 0.06 
286 21.6 158 4.34 1.47 1.76 0.78 0.07 0.04 1.02 0.79 0.06 0.04 
287 20.2 157 8.81 1.76 1.89 0.8 0.09 0.07 0.34 0.45 0.07 <0.01 
288 19.8 156 1.31 1.13 0.38 0.61 0.06 0.07 0.31 0.23 0.09 0.06 

8/6/03- 
8/20/03             

218 19.7 157 11.4 3.79 1.8 0.64 0.08 0.07 0.89 0.76 0.07 0.06 
219 18.5 157 3.16 2.75 1.05 0.36 0.05 0.06 0.5 0.3 0.07 0.2 
220 18.7 156 25.9 <0.2 0.12 0.03 0.68 <0.01 0.42 0.03 0.06 0.01 
221 19.2 156 6.92 3.6 1.48 0.64 0.14 0.1 0.68 0.4 0.4 0.11 
222 19.5 157 9.32 3.03 2.34 0.65 0.06 0.05 0.65 0.47 0.11 0.1 
223 19.5 158 10.1 3.85 3.24 1.25 0.06 0.04 0.87 0.97 0.35 <0.01 
224 19.5 159 7.41 2.43 1.9 0.46 0.05 0.04 0.82 0.51 0.03 0.02 
225 20 160 3.16 5.04 1.4 1.6 0.06 0.09 1 1.09 0.08 0.02 
226 20.8 160 6.51 2.34 3.69 0.81 0.05 0.03 1.58 0.81 0.14 0.25 
227 21 159 6.5 3.7 6.94 1.6 0.04 0.03 2.52 3.27 0.03 <0.01 
228 20.6 158 25.5 21.9 2.89 1.69 0.54 0.32 2.65 0.73 0.04 0.06 
229 20.3 158 8.42 5.81 2.67 1.1 0.06 0.13 1.73 0.8 0.09 0.07 
230 19.7 161 11.3 7.56 4.67 0.96 0.06 0.1 2.11 2.19 0.12 <0.01 
231 19.1 162 11.8 6.98 <3E-3 2.07 0.04 0.08 1.47 1.54 <5E-3 <5E-3 
232 19.8 162 4.78 3.42 0.12 0.05 0.02 0.05 0.87 0.68 0.03 <0.01 
233 ⎯ ⎯ 6.85 2.65 0.22 0.05 0.03 0.03 2.09 1.74 <5E-3 <5E-3 
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Julian day Latitude Longitude Sodium Ammonium Potassium Magnesium Calcium 

 °N °W nmol m-3 nmol m-3 nmol m-3 nmol m-3 nmol m-3 
   Fine Coarse Fine Coarse Fine Coarse Fine Coarse Fine Coarse 

1/6/01- 
2/19/01 

            

6 ⎯ ⎯ 4.64 10.7 28 1.94 1.09 0.3 0.48 1.31 0.85 1.91 
7 27.8 75.5 14.5 46 18 0.24 0.86 0.98 1.63 6.98 0.75 <0.07 
8 28.1 70.9 12.9 39 16.7 0.4 0.82 0.84 1.44 4.41 0.47 0.97 
9 28.4 66.9 21.6 4.84 7.67 0.52 0.83 0.33 2 0.47 0.96 0.23 

10 28.6 63.3 31.6 33.6 5.42 <0.01 0.77 0.71 3.56 3.74 0.7 0.71 
12 29.2 55.2 12.3 15.4 1.29 0.06 0.23 0.31 1.11 1.53 0.26 0.32 
13 29.5 51.3 12.7 6.24 0.87 0.19 0.28 0.14 1.45 0.67 0.29 0.16 
14 29.9 48.2 11.8 18.1 1.03 0.28 0.28 0.37 1.2 2.04 0.27 0.37 
15 29.6 46.5 8.74 10.5 0.56 0.19 0.21 0.25 0.93 1.14 0.22 0.24 
16 27.8 45 11.9 14.5 0.71 0.12 0.31 0.35 1.25 1.76 0.28 0.33 
17 25.3 45 8.79 11.6 2.02 0.13 0.67 0.25 0.86 1.05 0.37 0.37 
18 21.5 45 13.6 19.8 3.04 0.2 1.08 0.5 1.33 2.09 0.54 1 
19 16.8 45 29.2 83.8 2.42 0.27 0.97 1.93 3.54 9.61 3.92 4.37 
20 13.2 45 48.7 113 5.48 0.35 5.24 3.05 5.97 13.6 4.82 7.85 
21 10.2 45.2 91.5 58.3 2.13 0.06 2.96 1.46 11.1 6.93 9.95 4.53 
22 10.2 46.5 73.1 32.9 3.52 0.28 2.13 0.66 7.96 3.32 6.17 1.53 
23 10.5 47.8 67.6 71.5 4.05 <0.07 1.91 4.82 6.85 6.43 1.98 4.18 
29 10.5 47.8 41.3 20 1.2 0.02 1.16 0.53 3.82 2.48 1.59 0.78 
30 10.5 55.3 22.7 21.2 1.59 0.06 0.86 0.51 2.51 2.58 0.66 0.66 
31 10.1 53.5 24.9 35.1 1.51 0.09 0.93 0.73 2.6 3.54 1.21 1.35 
32 9.19 51.2 67.3 26.3 1.89 0.07 2.04 0.67 5.67 3.54 2.13 1.03 
33 9.24 49.3 44 31 1.37 0.11 0.91 0.82 3.79 4.25 0.96 0.79 
34 9.36 47.5 89.3 55.4 4.37 <0.01 3.76 1.41 8.66 7.3 3.34 2.26 
35 7.41 48.2 100 86 3.25 0.16 8.18 2.64 14.6 11.5 21.9 17.3 
36 6.31 47.1 71 48.5 2.34 0.04 4.3 1.39 10.3 6.12 12.2 7.1 
37 7.22 45.1 57.4 60.2 2.53 0.23 2.74 1.73 6.35 7.76 7.11 7.03 
38 7.17 43 63.1 89.9 3.21 0.15 2.62 1.57 7.49 7.19 6.79 5.41 
39 8.61 41.3 84.6 34.4 2.49 0.05 2.55 0.93 9.9 3.97 6.53 2.87 
40 9.34 41.5 64.2 93.3 2.07 0.1 2.26 2.21 7.18 10.2 7.47 9.04 
41 10.9 42.4 110 75.9 9.9 0.11 10.4 2.11 31.4 8.59 13.7 11.4 
42 10.1 44.7 142 74.8 3.2 0.06 5.46 1.97 9.39 8.53 14.2 10.3 
43 9.81 44.5 118 96 5.02 0.25 7.12 2.49 20.3 24.4 15.6 <0.09 
44 10.6 46.6 184 75.8 4.04 0.48 5.31 2.28 9.66 9.54 9.93 8.89 
45 9.44 49.2 155 118 5.78 0.58 7.66 2.57 21.8 11.1 8.19 7.58 
46 9.08 51.8 144 47.1 4.96 0.23 5.19 1.34 16.4 5.9 5.83 3.72 
47 9.41 55.3 97.5 120 2.35 0.29 4.77 3.26 11.9 14.9 15.1 13.6 
48 10.9 56.1 52.2 34.2 1.14 0.11 3.21 1.31 7.39 5.07 20.3 10.7 
49 11.3 54.8 70.8 66.6 1.49 0.13 2.44 1.48 8.17 6.62 14.1 9.33 

6/27/01- 
8/14/01 

            

178 29.2 27.4 14.2 33.5 2.25 0.2 0.5 0.48 1.01 1.34 1.7 1.4 
179 29.3 29.6 10.3 13.3 1.73 0.26 0.26 0.27 0.55 0.71 0.62 0.95 
180 29.4 33.5 14 10.2 2.51 0.32 0.29 0.29 0.47 0.82 0.35 0.88 
181 29.5 37.4 9.36 15.7 2.74 0.43 0.33 0.46 0.57 1.52 0.51 1.69 
182 29.5 39.3 14.1 10.2 3.92 0.29 0.59 0.29 2.31 0.75 1.8 0.88 
183 29.6 43.2 18.5 13.1 4.34 0.42 0.42 0.4 1.36 1.27 1.26 0.62 
184 29.6 45 53.8 126 7.38 0.59 1.59 3.71 6 14.1 2.88 6.69 
185 25.5 48.6 60.1 86.8 5.22 0.11 1.89 2.62 8.44 9.91 3.31 4.64 
186 22.6 51.3 65.8 72.5 2.29 0.36 1.77 1.93 7.74 8.31 2.12 3.48 
187 16.3 56.8 58.8 85.8 3.46 0.25 1.42 2.23 6.93 10.7 2.87 4.62 
188 ⎯ ⎯ 35.3 49.4 2.43 0.15 1.1 2.09 3.63 9.81 2.73 3.5 
190 11.8 54.4 31 30.9 2.13 0.21 0.87 0.74 2.85 2.58 2.24 1.93 
190 11.8 54.4 29.5 31.1 2.12 0.18 0.89 0.81 3.17 3.52 1.67 2 
191 10.4 48.1 28.3 60.2 2.75 0.24 1.27 1.65 4.55 7.48 5.22 6.28 
192 10.4 48.1 37 33.4 3 0.23 1.29 0.98 4.13 3.93 3.34 2.05 
193 10.4 48.1 39.4 176 3.34 0.22 1.06 5.64 4.35 21.8 2.5 12.5 
194 9.8 45.3 32.9 25.5 3.24 0.25 1.1 0.75 4.5 2.82 3 2.09 
195 10.1 45.4 51.6 29.9 3.04 0.35 1.66 0.99 6.81 3.97 3.32 2.9 
196 10.2 45.5 50.8 120 2.82 0.29 1.68 3.03 6.98 14.8 2.96 5.65 
197 11 49.3 28.5 58.7 3.31 0.16 1.04 1.73 3.41 7.65 3.57 6.6 
198 ⎯ ⎯ 29.8 31.4 3.38 0.24 0.85 0.86 2.56 3.34 2.34 3.01 
200 11.6 58.2 16.7 22.3 2.29 0.05 0.62 0.86 1.71 3.19 1.83 4.87 
201 10.3 56.3 20.4 14.9 2.77 0.09 0.59 0.46 1.87 1.45 1.85 1.98 
202 10.2 56.3 62.9 15.3 3.63 0.26 1.4 0.45 3.11 0.79 1.74 0.86 
203 10.2 56.3 19.6 14.3 2.16 0.12 0.83 0.39 1.71 1.23 1.52 1.06 
207 11.9 54.9 16.6 23.6 0.81 0.07 0.54 0.63 1.67 2.34 1.8 1.57 
208 10.4 53 28.3 24.9 2.51 <0.06 0.96 0.67 2.84 2.96 2.71 1.96 
209 8.74 51 10.7 16 2.44 0.12 0.42 0.42 0.87 1.34 1.19 1.19 
210 7.23 48.5 17.6 14.5 4.58 0.04 0.67 0.4 1.41 1.41 0.96 0.7 
211 5.65 46.4 13.2 30.5 1.84 0.18 0.5 0.75 1.4 3.29 0.78 1.12 
212 4.76 43.9 15.9 24.4 1.37 0.12 0.48 0.61 1.18 2.67 0.22 0.82 
213 3.83 42.8 ⎯ 38.6 ⎯ 0.25 ⎯ 1.04 ⎯ 4.68 ⎯ 1.6 
214 3.27 44.2 40.6 34.5 2.21 0.19 1.11 0.83 4.37 2.92 1.72 0.62 
215 3.93 46.1 32.6 63.3 2 0.26 0.87 1.52 2.99 6.64 1.27 2.18 
216 5.79 48 27.6 60.2 1.26 0.3 0.88 1.39 2.99 6.37 1.9 2.01 
217 6.17 50.1 14.4 22.8 1.66 0.12 0.52 0.53 0.97 2.41 0.28 0.71 
219 8.21 52.8 8.84 8.52 2 0.12 0.4 0.27 0.99 0.96 1.23 1.31 
221 10.5 55 9.39 6.52 3.35 0.13 0.51 0.23 1.13 0.68 2.05 1.43 
222 10.6 55.8 7.55 8.98 2.53 0.28 0.39 0.28 0.72 0.85 1.34 1.42 
223 12.5 55 25.3 26 4.05 0.22 1 0.57 2.91 2.35 5.83 3.13 
224 12.5 54.1 ⎯ 47.2 ⎯ 0.73 ⎯ 1.33 ⎯ 5.75 ⎯ 4.67 
225 11.4 53.8 21.4 21 3.69 0.22 0.82 0.55 1.55 2.01 1.84 1.08 
226 11.8 54.6 24.6 42.3 4.26 0.24 1.17 0.96 1.69 4.05 0.42 1.45 
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Julian day Latitude Longitude 
 °N °W 

Sodium 
nmol m-3 

Ammonium 
nmol m-3 

Potassium 
nmol m-3 

Magnesium 
nmol m-3 

Calcium 
nmol m-3 

   Fine Coarse Fine Coarse Fine Coarse Fine Coarse Fine Coarse 
4/18/03- 
5/20/03 

            

108 12 57.6 16.7 37 1.42 0.54 0.41 1 0.41 1.98 0.06 0.36 
109 11.4 55.5 18.1 21.1 0.83 0.36 0.45 0.48 0.75 1.02 0.15 0.15 
110 11.1 53.4 23.2 66.8 2.25 0.48 0.55 1.66 1.55 7.15 0.26 0.94 
111 9.86 52.1 21.1 34.7 2.68 0.64 0.69 0.88 0.87 1.79 0.25 0.27 
112 7.93 52 41.4 69.9 4.78 0.49 1.39 1.74 1.89 5.16 0.73 1.36 
113 6.98 51 34.9 48.2 3.41 0.37 1.85 1.27 3.33 4.8 2.19 1.99 
114 7.68 50.8 37.2 84 6.23 1.65 2.07 2.27 1.97 7.42 1.56 2.55 
115 9.08 52.9 29.8 79.9 4.51 0.82 1.4 1.88 1.27 6.73 0.74 1.7 
116 10.5 55.1 70.1 20.6 1.12 6.2 2.43 2.04 6.17 1.02 3.74 1.5 
117 12.1 56.5 14.3 48.4 2.94 1.03 0.48 1.16 0.56 3.38 0.23 0.9 
121 11 55.4 22.3 79.9 4.85 1.27 0.82 2.33 1.13 7.72 0.69 3.05 
122 9.4 55.4 42.7 99.9 5.73 1.14 1.58 2.62 2.4 9.11 1.12 2.98 
123 7.98 54.9 43.1 62.1 4.23 0.86 2.07 1.7 3.6 4.16 3.73 2.52 
124 8.53 54.9 51.3 105 5.36 1.05 2.34 2.9 2.52 8.51 2.34 5.18 
125 10.8 55.9 44.4 87.6 3.5 1.83 1.75 2.71 2.08 6.96 2.33 6.24 
126 12.1 56.1 37.9 86 4.4 0.94 1.5 2.71 2.88 6.03 1.27 2.82 
127 11.8 56.3 38.9 75 3.3 0.75 1.19 1.85 3.1 3.87 0.83 1.76 
130 11 55.4 41.9 87.6 4.5 0.96 1.19 2.37 3.35 6.61 1.16 1.96 
131 10.7 53.4 45.5 57.2 4.17 BDL 1.77 1.37 4.67 2.62 1.67 1.88 
132 10.6 51.3 45.1 94.4 4.1 BDL 1.63 2.88 3.43 8.44 2.11 3.51 
133 10.5 49.2 192 102 4.49 0.75 3.22 2.89 5.29 9.93 3.03 1.77 
135 8.1 49.4 74.4 102 7.46 1.39 2.51 2.7 6.78 5.66 4.5 3.57 
136 8.12 53 63 79.1 5.93 0.58 2.39 2.04 5.14 6.92 2.86 2.94 
138 9.14 56.7 70.4 101 8.22 1.34 2.68 2.5 5.01 9.79 2.07 3.02 
139 10.3 56.6 31.9 47 5.92 0.73 1.62 1.21 2.82 4.9 1.42 1.99 
140 10.8 55.2 25.5 41.4 4.77 0.58 1.25 1.09 2.19 3.64 1.39 1.83 

4/9/01- 
4/26/01 

            

99 21.5 160 71.7 121 0.5 0.1 1.38 3.3 5.09 12.8 2.14 2.82 
100 22.2 162 67.7 255 1.6 0.1 1.62 6.22 6.44 28.3 2.33 6.32 
101 23.3 168 49.9 203 1.59 0.23 1.31 4.92 5.07 21.6 1.83 5.71 
102 24.4 172 16.5 4.07 1.41 <2E-3 0.42 0.11 1.66 0.49 0.72 0.13 
103 26.1 175 15.6 24.1 1.39 0.13 0.47 0.58 1.68 3.08 1.8 2.8 
104 26.8 181 10.4 13 1.67 0.1 0.34 0.37 1.43 1.67 2.09 2.59 
105 27.3 185 505 532 1.56 <4E-3 11.5 12.8 57.3 62.6 11.1 12.7 
106 27.6 190 73.5 12.6 2.15 0.02 2.39 0.25 7.53 1.23 3.41 1.07 
107 27.6 190 39.6 38.9 7.12 0.61 1.07 1.01 3.65 3.94 1.53 1.86 
108 27.4 187 1519 13.3 0.35 <2E-3 35 0.39 171 2.49 33.7 2.8 
109 26.7 182 527 47.4 9.46 <4E-3 12.7 0.84 62.4 3.28 12.8 6.16 
110 26 175 181 140 <0.01 <0.01 4.31 2.02 20.8 7.06 3.82 1.35 
111 25.6 174 37.7 40.8 1.93 <3E-3 0.74 1.04 2.47 4.59 1.49 1.34 
112 24.8 171 331 62 <0.01 <0.01 2.32 0.98 9.38 3.6 9.58 0.96 
114 24.2 166 508 101 <0.01 <0.01 13.2 0.91 61.4 2.8 9.59 10.9 
116 22.5 158 271 22.1 4.74 <0.01 6.33 0.52 30.5 1.37 5.94 2.72 

7/1/02- 
7/16/02 

            

182 22.8 158 16.1 16.7 2.01 0.23 0.67 0.56 1.45 1.52 0.4 0.33 
183 22.8 158 13.5 27.1 1.96 0.46 0.51 0.81 0.95 2.56 0.32 0.58 
184 23.5 162 23.5 25.2 2.44 0.69 0.83 0.95 1.53 1.92 0.6 0.56 
185 24 165 19.1 34.8 2.63 0.85 0.54 1.14 1.19 2.72 0.45 0.56 
186 24.5 167 19.2 37.1 2.35 1.74 0.46 1.24 0.9 2.69 0.38 0.5 
187 24.9 170 13 18.4 2.15 1.18 0.46 0.55 0.49 0.99 0.5 0.21 
189 26.1 175 14.7 22.6 1 0.55 0.44 0.6 1.02 1.83 0.19 0.4 
190 26 175 17.4 26.3 1.02 0.45 0.5 0.79 1.39 2.64 0.33 0.36 
191 26 175 18.2 20.6 1.1 0.52 0.49 0.6 1.42 1.85 0.38 0.28 
192 26 175 23.5 28.7 2.3 0.5 0.64 0.79 2.22 3.05 0.52 0.46 
193 26 175 29 31.9 1.65 0.44 0.83 0.88 3.38 3.81 0.6 0.8 
194 24.7 170 12.1 11.2 1.27 0.31 0.41 0.27 1.03 0.73 0.55 0.2 
195 23.6 167 13.4 18.9 1.33 0.31 0.35 0.52 1.26 2.05 0.38 0.38 
196 22.9 164 64 36.4 1.24 0.36 1.52 0.8 5.58 3.39 3.27 0.3 
197 22.8 160 62.2 31.8 1.9 0.42 1.48 0.81 5.66 3.57 1.24 0.59 

9/23/02- 
10/15/02 

            

266 22.5 157 4.43 4.1 1.19 0.11 0.07 0.13 0.35 0.27 0.27 0.08 
267 23.5 157 4.32 7.23 1.47 0.23 0.17 0.26 0.33 0.61 0.2 0.14 
268 23.5 157 9.43 7.49 3.12 0.2 0.4 0.27 0.75 0.6 0.59 0.22 
269 24.2 156 5.81 16.1 1.08 0.21 0.23 0.55 0.42 1.76 0.18 0.28 
270 24.2 155 8.79 18.7 1.95 0.24 0.35 0.53 0.63 1.75 0.22 0.28 
271 23.7 156 11.4 16.9 1.55 0.21 0.4 0.54 0.99 1.99 0.4 0.34 
273 23.3 157 30.7 40.3 3.24 0.55 0.93 1.11 1.87 3.65 0.66 0.63 
274 23.3 159 11.6 5.43 0.3 0.32 0.36 0.07 1.09 0.18 0.31 0.07 
275 23.8 159 12.8 10.9 0.49 0.12 0.36 0.27 0.86 0.89 0.34 0.18 
276 22.5 159 10.4 19.9 2.5 0.36 0.34 0.58 0.9 1.65 0.22 0.39 
278 19.7 156 10.6 18.3 3.05 0.28 0.33 0.6 0.66 1.93 0.34 0.41 
279 19.4 156 13 16.4 3.69 0.42 0.5 0.49 1.59 1.69 0.5 0.29 
280 19.8 155 18.7 24.8 1.73 0.25 0.67 0.62 1.57 2.52 0.39 0.4 
281 20.3 156 5.41 8.98 0.65 0.15 0.19 0.21 0.28 0.59 0.13 0.13 
282 20.1 156 8.96 11.8 0.94 0.12 0.3 0.33 0.6 0.97 0.23 0.24 
283 20.9 156 8.73 8.56 0.83 0.17 0.29 0.23 0.72 0.61 0.24 0.14 
285 23.2 158 8.85 9.52 0.73 0.2 0.21 0.27 0.33 0.64 0.14 0.22 
286 21.6 158 10.1 16.7 2.6 0.18 0.38 0.46 0.67 1.68 0.21 0.36 
287 20.2 157 9.84 13.9 1.53 0.27 0.31 0.42 0.73 1.26 0.28 0.28 
288 19.8 156 5.17 11 0.7 0.16 0.17 0.3 0.26 0.69 0.12 0.16 
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Julian day Latitude Longitude 
 °N °W 

Sodium 
nmol m-3 

Ammonium 
nmol m-3 

Potassium 
nmol m-3 

Magnesium 
nmol m-3 

Calcium 
nmol m-3 

   Fine Coarse Fine Coarse Fine Coarse Fine Coarse Fine Coarse 
8/6/03- 
8/20/03 

            

218 19.7 157 72.4 49.4 3.98 0.46 1.65 1.47 6.28 5.13 1.17 1.01 
219 18.5 157 27.2 41 1.16 0.37 0.67 0.97 1.75 3.33 0.37 0.49 
220 18.7 156 300 ⎯ 0.64 ⎯ 7.5 ⎯ 28.8 ⎯ 6.16 ⎯ 
221 19.2 156 54 50.4 3.38 0.63 1.21 1.19 2.65 3.14 0.23 0.49 
222 19.5 157 45.8 40.3 3.73 0.4 0.71 1 2.38 3.41 0.45 0.48 
223 19.5 158 33.7 51.9 3.13 0.65 1.15 1.16 3.7 4.71 0.71 1.14 
224 19.5 159 45.4 35.6 2.5 0.42 0.85 0.8 2.19 2.13 0.77 0.64 
225 20 160 25.4 69.9 1.78 1.05 0.56 1.57 0.74 5.63 0.55 1.12 
226 20.8 160 46.8 32.4 3.7 0.55 0.99 0.76 3.04 2.33 0.83 0.51 
227 21 159 29.4 52.2 4.43 0.84 0.64 1.15 1.54 4.28 0.38 0.93 
228 20.6 158 258 173 5.5 0.95 6.62 3.77 26 19.8 2.82 12.5 
229 20.3 158 52 81.3 4.42 0.96 1.05 1.9 2.52 7.12 0.76 1.31 
230 19.7 161 59.1 73.9 7.49 1.13 0.98 2.05 2.88 8.56 1.99 2.59 
231 19.1 162 41.7 86 6.07 1.06 0.99 2.1 3.15 9.9 0.83 2.11 
232 19.8 162 24.2 32.8 2.87 0.71 0.65 1.05 1.43 3.4 0.19 0.81 
233 ⎯ ⎯ 24.1 29.7 6.28 0.39 0.68 0.76 2.03 2.34 0.25 0.36 
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Appendices II 
 

 

Principal component analysis for aerosol data collected from three cruises (6 January 
to 19 February 2001, 26 June to 14 August 2001, and 18 April to 20 May 2003) over 
the North Atlantic Ocean and four cruises (9 April to 26 April 2001, 1 July to 16 July 
2002, 23 September to 15 October 2002, and 6 August to 20 August 2003) over the 
North Pacific Ocean. 
 

Note: 19 aerosol chemical species used for principal component analysis and their 
symbols in Rotated Compoenet Matrix are: labile Fe(II) (FE2), labile Fe((II)+(III)) 
(FE23), total labile Fe (TLFE), Fe (FE), AL (Al), CA (Ca), K, NA (Na), MG (Mg), 
CR (Cr), CO (Co), CU (Cu), PB (Pb), MN (Mn), NI (Ni), V, ZN (Zn), Oxalate 
(OXA), Non-seasalt-sulfate (NSSS).  Only the components with the eigenvalues 
greater than 1 are listed in rotated component matrix. 
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1.  Fine aerosol data from 01/06/01-02/19/01 Atlantic cruise 

 

Rotated Component Matrix a

.439 .846 .104 -3.96E-02

.602 .731 5.634E-02 .124

.555 .791 5.667E-02 9.315E-02

.878 .403 9.470E-02 .186

.871 .413 9.597E-02 .203

.757 .392 9.233E-02 .414

.802 .386 .160 .383

.173 -6.06E-02 -2.77E-02 .810

.727 .424 7.950E-02 .457

.863 .379 .150 .226

.675 3.283E-02 .172 -.125
9.639E-02 .204 .147 .861

.695 .367 .326 .192

.895 .366 .139 .145

.285 -.160 .767 .409

.803 7.185E-02 .484 -2.56E-02

.173 -5.64E-02 .825 -.284

.280 .532 .612 .236
4.912E-02 .389 .836 .160

FE2
FE23
TLFE
FE
AL
CA
K
NA
MG
CR
CO
CU
PB
MN
NI
V
ZN
OXA
NSSS

1 2 3 4
Component

Extraction Method: Principal Component Analysis. 
Rotation Method: Varimax with Kaiser Normalization.

Rotation converged in 9 iterations.a.  

 

2.  Coarse aerosol data from 01/06/01-02/19/01 Atlantic cruise 

Rotated Component Matrix a

.754 -.213 .130 .473

.755 -.163 8.677E-02 .524

.840 -.104 5.649E-02 .430

.967 7.527E-02 1.761E-02 -9.16E-04

.965 2.881E-02 3.369E-02 -2.91E-03

.893 .267 .118 3.099E-02

.896 .367 .123 6.970E-02
-4.73E-02 .869 -1.33E-02 .165

.464 .717 .238 .167

.961 .145 -9.19E-02 -2.77E-02

.292 -.148 5.440E-02 -.600
-6.06E-02 .884 -2.34E-02 -.144

.736 -.137 -3.13E-02 -.112

.970 3.996E-02 5.731E-02 -3.57E-03
-1.96E-02 -7.98E-02 .920 -3.71E-02

.931 2.571E-02 .116 -9.36E-02
9.781E-02 .162 .903 8.357E-02

.578 -1.04E-02 .104 .452

.425 .286 .237 .361

FE2
FE23
TLFE
FE
AL
CA
K
NA
MG
CR
CO
CU
PB
MN
NI
V
ZN
OXA
NSSS

1 2 3 4
Component

Extraction Method: Principal Component Analysis. 
Rotation Method: Varimax with Kaiser Normalization.

Rotation converged in 9 iterations.a. 
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3.  Fine aerosol data from 06/27/01-08/14/01 Atlantic cruise 

Rotated Component Matrix a

.850 4.991E-02 -6.00E-02

.939 .172 .114

.948 .167 7.110E-02

.945 .269 6.996E-02

.901 .331 4.145E-02

.840 .446 6.784E-02

.697 .659 7.067E-02
4.001E-02 .920 -3.56E-02

.264 .920 5.846E-02

.837 .299 .185

.835 8.315E-02 .185

.721 .510 .154

.520 4.915E-02 .657

.936 .294 8.430E-02

.806 .339 .263

.891 .211 .228

.515 .400 .391
-.112 9.136E-03 .885
.386 .387 .265

FE2
FE23
TLFE
FE
AL
CA
K
NA
MG
CR
CO
CU
PB
MN
NI
V
ZN
OXA
NSSS

1 2 3
Component

Extraction Method: Principal Component Analysis. 
Rotation Method: Varimax with Kaiser Normalization.

Rotation converged in 3 iterations.a. 
 

 

4.  Coarse aerosol data from 06/27/01-08/14/01 Atlantic cruise 

Rotated Component Matrix a

.833 -.219 .139 -.311

.841 -.172 9.714E-02 -.366

.906 -.109 6.326E-02 -.263

.949 .108 4.606E-04 .162

.948 6.208E-02 1.652E-02 .165

.880 .301 9.594E-02 .114

.887 .395 .101 7.258E-02
-1.28E-02 .867 -1.17E-02 -.184

.488 .725 .215 -8.90E-02

.936 .174 -.107 .183

.188 -.112 3.487E-02 .679
-9.34E-02 .887 -2.64E-02 9.421E-02

.713 -9.47E-02 -4.87E-02 .255

.953 7.365E-02 4.011E-02 .169
-8.42E-03 -5.87E-02 .915 6.586E-02

.901 6.180E-02 9.591E-02 .258
9.679E-02 .131 .903 -5.63E-02

.658 1.234E-02 .101 -.318

.484 .299 .234 -.266

FE2
FE23
TLFE
FE
AL
CA
K
NA
MG
CR
CO
CU
PB
MN
NI
V
ZN
OXA
NSSS

1 2 3 4
Component

Extraction Method: Principal Component Analysis. 
Rotation Method: Varimax with Kaiser Normalization.

Rotation converged in 5 iterations.a. 
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5.  Fine aerosol data from 04/18/03-05/20/03 Atlantic cruise 

Rotated Component Matrix a

.708 .217 .517 .264

.820 9.540E-02 .387 .242

.780 .105 .280 .432

.922 .342 7.534E-02 8.520E-02

.983 4.851E-02 7.364E-02 -4.44E-02

.979 3.861E-02 9.861E-02 -4.83E-02

.953 .131 .109 -5.13E-03

.672 -3.55E-02 .165 -4.41E-02

.975 2.394E-02 .101 -3.61E-02
9.689E-02 .962 2.521E-02 .220
-5.97E-02 .856 .160 -.338

.463 .807 8.258E-02 .219

.613 -5.36E-02 .528 -.284

.922 .362 5.191E-02 3.247E-02
8.839E-02 .965 2.955E-02 .205
-3.50E-02 -.344 .570 -.127
-3.69E-02 .166 2.474E-02 .881

.270 .317 .662 .237

.308 .371 .785 6.133E-02

FE2
FE23
TLFE
FE
AL
CA
K
NA
MG
CR
CO
CU
PB
MN
NI
V
ZN
OXA
NSSS

1 2 3 4
Component

Extraction Method: Principal Component Analysis. 
Rotation Method: Varimax with Kaiser Normalization.

Rotation converged in 5 iterations.a. 
 

 

6.  Coarse aerosol data from 04/18/03-05/20/03 Atlantic cruise 

Rotated Component Matrix a

-4.29E-02 .963 2.606E-02 6.672E-02
.149 .952 6.502E-03 -4.66E-02
.192 .921 1.131E-02 -.172
.956 .163 .192 -1.79E-02
.964 .152 9.493E-02 -1.98E-02
.961 9.016E-02 1.537E-02 .143
.978 .118 4.329E-03 .151
.578 -.158 -.153 .602
.868 -4.16E-02 -8.75E-02 .403
.229 .146 .932 9.608E-03
.410 .792 .290 -9.17E-02
.848 .119 .338 -6.28E-02
.899 .214 1.200E-02 -.148
.949 .165 .210 6.437E-03
.218 .140 .934 4.306E-03
.226 -4.88E-02 -.437 .543
.164 .235 -.342 -.622
.116 .921 .108 -.138

3.184E-02 .942 9.600E-02 -9.41E-02

FE2
FE23
TLFE
FE
AL
CA
K
NA
MG
CR
CO
CU
PB
MN
NI
V
ZN
OXA
NSSS

1 2 3 4
Component

Extraction Method: Principal Component Analysis. 
Rotation Method: Varimax with Kaiser Normalization.

Rotation converged in 9 iterations.a. 
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7.  Fine aerosol data from 04/09/01-04/26/01 Pacific cruise 

Rotated Component Matrix a

.947 .146 .250

.955 .121 .185

.961 .106 .137

.963 .216 -7.22E-02

.960 .174 -8.86E-02

.252 .953 -6.72E-03

.240 .958 -6.13E-02

.369 .878 -.127
8.100E-02 .987 -4.91E-02

.965 .174 -8.64E-02

.929 .144 -1.60E-02

.130 .949 -9.43E-02

.634 .340 .607

.965 .230 -3.14E-02

.922 .270 -7.49E-02

.938 .245 8.753E-02

.643 .277 .633
-9.60E-02 -.173 .948
-6.44E-02 -.466 .795

FE2
FE23
TLFE
FE
AL
CA
K
NA
MG
CR
CO
CU
PB
MN
NI
V
ZN
OXA
NSSS

1 2 3
Component

Extraction Method: Principal Component Analysis. 
Rotation Method: Varimax with Kaiser Normalization.

Rotation converged in 4 iterations.a. 
 

 

8.  Coarse aerosol data from 04/09/01-04/26/01 Pacific cruise 

Rotated Component Matrix a

.912 -.170 .107 .232

.912 -.217 1.944E-02 .242

.887 -.236 2.096E-02 .223

.984 2.295E-02 9.327E-03 2.398E-02

.988 -5.78E-03 -1.56E-02 -2.28E-03

.145 .962 -4.69E-02 6.047E-03
-3.21E-02 .694 .693 5.283E-04

-.114 .674 .550 -2.92E-02
-.114 .188 .956 4.049E-02
.972 3.325E-02 -.101 8.318E-02
.908 -.154 .209 5.792E-02

-.200 .786 .135 -3.48E-02
.826 -.117 -.122 5.047E-03
.989 -1.74E-02 1.371E-02 1.022E-02
.902 7.569E-02 .162 5.382E-04
.977 9.925E-03 -6.79E-02 2.104E-02
.167 -1.78E-02 -2.43E-03 .970
.894 .253 .244 -8.22E-02
.445 -1.69E-02 .840 -4.26E-02

FE2
FE23
TLFE
FE
AL
CA
K
NA
MG
CR
CO
CU
PB
MN
NI
V
ZN
OXA
NSSS

1 2 3 4
Component

Extraction Method: Principal Component Analysis. 
Rotation Method: Varimax with Kaiser Normalization.

Rotation converged in 5 iterations.a. 
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9.  Fine aerosol data from 07/01/02-07/16/02 Pacific cruise 

Rotated Component Matrixa

-7.97E-02 .908 -8.94E-02 -5.54E-02 -3.04E-02 .368 2.434E-04
-1.75E-02 .952 -.233 -5.36E-02 8.536E-02 6.835E-02 -8.83E-02
9.927E-02 .940 -.148 -7.46E-02 -7.10E-03 -3.57E-03 -.119

.978 9.121E-02 -6.68E-02 -.103 -6.63E-02 -2.06E-02 -1.08E-02
-6.54E-02 -.236 .111 -6.37E-02 5.818E-03 -.126 .922
-1.54E-02 -.183 .862 7.988E-02 7.240E-03 7.800E-02 1.697E-02

-.118 -.170 .924 -6.14E-03 -2.44E-02 -.173 .176
-.129 .372 3.884E-02 .105 3.320E-02 .788 -4.81E-02
-.124 -.147 .963 3.179E-02 5.493E-02 -7.99E-02 -3.13E-02
.985 2.187E-02 -6.10E-02 -5.39E-02 -6.58E-02 1.416E-02 -4.97E-02
.536 .726 -.233 -.192 -.131 -.100 -.162

-4.60E-02 -.203 -.157 .898 -4.57E-02 -.145 -.187
-2.97E-02 -.235 4.396E-02 .226 .814 -.165 .314

.985 -3.02E-02 -9.50E-02 -4.24E-02 -9.59E-03 -2.45E-02 2.971E-02

.986 3.917E-02 -5.21E-02 -4.13E-02 -6.28E-02 5.164E-03 -4.08E-02
-.230 -3.49E-02 .360 .827 9.262E-02 .147 .189
-.164 .114 .448 .236 .112 -.656 .160
-.196 .352 -4.20E-02 -.115 .850 .151 -.233

-4.03E-02 -.233 .519 -.280 .541 -8.48E-02 -.411

FE2
FE23
TLFE
FE
AL
CA
K
NA
MG
CR
CO
CU
PB
MN
NI
V
ZN
OXA
NSSS

1 2 3 4 5 6 7
Component

Extraction Method: Principal Component Analysis. 
Rotation Method: Varimax with Kaiser Normalization.

Rotation converged in 7 iterations.a. 
 

 

10.  Coarse aerosol data from 07/01/02-07/16/02 Pacific cruise 

Rotated Component Matrix a

.960 4.582E-02 -9.23E-03 -.177

.841 .224 .212 -.361

.741 .263 .204 -.410
-6.99E-02 .976 -.133 -9.80E-02
-5.90E-02 6.531E-02 .772 -.438

.210 -.222 .843 .301

.156 -.236 .896 5.505E-02
-.231 -6.72E-02 .157 .617
.128 -.278 .862 .285

-9.33E-02 .974 -.168 -6.93E-02
.131 .969 -.150 -9.29E-02
.344 .697 5.391E-02 .222
.923 -.101 4.799E-02 -8.52E-02

-9.37E-02 .976 -.141 -9.96E-02
-8.89E-02 .982 -.155 -2.96E-02

.904 -.115 -.163 3.503E-02

.784 -4.48E-02 .118 .153

.749 -8.24E-02 .224 9.151E-02

.520 6.614E-02 .154 .453

FE2
FE23
TLFE
FE
AL
CA
K
NA
MG
CR
CO
CU
PB
MN
NI
V
ZN
OXA
NSSS

1 2 3 4
Component

Extraction Method: Principal Component Analysis. 
Rotation Method: Varimax with Kaiser Normalization.

Rotation converged in 5 iterations.a. 
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11.  Fine aerosol data from 09/23/02-10/15/02 Pacific cruise 

Rotated Component Matrix a

-5.00E-03 .972 .143 .131
-7.14E-02 .988 7.583E-02 5.451E-02
1.106E-03 .976 .122 8.777E-02

.849 -7.37E-02 -.448 -6.18E-02
-3.87E-02 8.845E-03 .832 7.307E-02

.855 -2.46E-02 .253 -2.88E-02

.894 .207 .337 -9.89E-02

.913 4.176E-03 .222 -4.70E-02

.939 1.095E-02 .219 -8.83E-02

.875 -6.18E-02 -.421 -.107

.805 -4.45E-02 -.502 3.690E-02

.266 .907 1.391E-02 3.744E-02
3.481E-02 .655 .510 .463

.891 -8.96E-02 -.353 -.113

.875 -6.46E-02 -.419 -5.94E-02
-6.00E-02 1.198E-03 .128 .930

-.204 .285 1.540E-02 .836
-2.36E-02 .402 .579 9.877E-02

-.271 .903 -3.28E-02 1.531E-02

FE2
FE23
TLFE
FE
AL
CA
K
NA
MG
CR
CO
CU
PB
MN
NI
V
ZN
OXA
NSSS

1 2 3 4
Component

Extraction Method: Principal Component Analysis. 
Rotation Method: Varimax with Kaiser Normalization.

Rotation converged in 5 iterations.a. 
 

 

12.  Coarse aerosol data from 09/23/02-10/15/02 Pacific cruise 

Rotated Component Matrix a

-3.26E-02 -.109 .894 -5.61E-02 4.142E-03
5.816E-02 -.117 .902 .241 -.101

.265 -9.71E-02 .885 5.628E-02 .111

.989 -6.36E-02 4.013E-02 .112 5.816E-03
-1.77E-02 .482 .313 .651 .165
7.207E-02 .870 -9.13E-02 .363 -2.16E-02
-5.36E-02 .978 -8.83E-02 .102 2.661E-02

-.143 .956 -3.69E-02 -8.76E-02 4.275E-02
-.132 .946 4.075E-02 -6.45E-02 7.677E-03
.992 -8.27E-02 -3.84E-02 -5.80E-02 -1.48E-02
.980 -5.22E-02 -4.85E-02 -5.02E-02 -6.22E-02
.979 -8.22E-02 9.226E-02 -7.43E-02 4.895E-02

-.127 5.706E-02 .120 -.157 -.713
.973 -1.79E-02 9.953E-02 .147 5.668E-02
.991 -8.64E-02 -4.05E-02 -5.49E-02 -1.70E-02

-.128 .292 3.317E-02 .708 .188
.171 -.405 .185 .758 -.151

-.116 .111 .126 -4.70E-02 .838
-.281 .373 .724 .177 -2.38E-02

FE2
FE23
TLFE
FE
AL
CA
K
NA
MG
CR
CO
CU
PB
MN
NI
V
ZN
OXA
NSSS

1 2 3 4 5
Component

Extraction Method: Principal Component Analysis. 
Rotation Method: Varimax with Kaiser Normalization.

Rotation converged in 5 iterations.a. 
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13.  Fine aerosol data from 08/06/03-08/20/03 Pacific cruise 

Rotated Component Matrix a

-1.68E-02 -.142 .796 .450 -4.68E-02
-.199 -6.59E-02 .904 .286 -3.30E-04
-.223 -4.58E-02 .913 -.115 -8.11E-02

2.245E-02 .992 -4.87E-02 -6.27E-03 6.230E-02
.842 -5.88E-04 -.124 .329 -.175
.889 -.106 -.265 -.171 -.117
.982 -.108 -.141 3.495E-02 -3.95E-02
.935 -5.68E-02 7.502E-02 .140 6.374E-02
.978 -8.57E-02 -.136 -9.36E-03 -5.56E-02

-8.99E-02 .982 -5.67E-02 -6.33E-02 .103
-2.01E-02 .940 -9.70E-02 .151 -.225

.947 .216 -.174 2.039E-02 7.258E-02

.153 -2.57E-02 .236 .918 5.560E-02
4.182E-02 .843 -3.90E-02 -.173 .490
-7.70E-02 .984 -4.97E-02 -5.19E-02 9.045E-02

-.307 .232 4.427E-02 -8.14E-02 .834
.314 -1.48E-02 -.348 .406 .608

-.289 -.430 .444 .575 8.319E-02
.470 .252 .164 .524 -.327

FE2
FE23
TLFE
FE
AL
CA
K
NA
MG
CR
CO
CU
PB
MN
NI
V
ZN
OXA
NSSS

1 2 3 4 5
Component

Extraction Method: Principal Component Analysis. 
Rotation Method: Varimax with Kaiser Normalization.

Rotation converged in 8 iterations.a. 
 

 

14.  Coarse aerosol data from 08/06/03-08/20/03 Pacific cruise 

Rotated Component Matrix a

-1.45E-02 -.257 .749 7.534E-02 -.437
-5.53E-03 -7.93E-02 .870 .158 .259

.108 -.138 .865 .177 .303
5.509E-02 .961 7.327E-03 5.983E-02 -9.68E-03

.567 -.220 .587 5.496E-02 .157

.987 4.134E-02 5.866E-02 7.449E-02 1.834E-02

.940 .160 .187 5.684E-02 2.277E-02

.955 -7.56E-02 -7.20E-02 7.776E-02 2.319E-02

.926 .144 .198 2.139E-02 -8.28E-02
-2.91E-02 .973 -.141 -4.00E-02 -8.13E-03
4.032E-02 .920 -1.56E-02 -1.77E-02 -.128

.255 .334 8.880E-02 .825 -.106
-.140 -.154 .225 .459 .361

3.732E-02 .901 -.219 7.967E-02 .109
-2.48E-02 .978 -.130 -3.94E-02 -1.77E-02
4.984E-02 -8.39E-03 .138 -9.77E-03 .921
8.231E-02 -.109 .211 .912 -5.05E-04

.483 4.933E-02 .618 .258 -.272

.963 -9.48E-02 -4.47E-02 1.962E-02 6.982E-03

FE2
FE23
TLFE
FE
AL
CA
K
NA
MG
CR
CO
CU
PB
MN
NI
V
ZN
OXA
NSSS

1 2 3 4 5
Component

Extraction Method: Principal Component Analysis. 
Rotation Method: Varimax with Kaiser Normalization.

Rotation converged in 5 iterations.a. 
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Glossary 

 

ACE-2 ⎯ Aerosol Characterization Experiment 

AGL ⎯ above ground level 

AMBTs ⎯ air mass back trajectories 

AMT ⎯ Atlantic Meridional Transect 

AOT ⎯ aerosol optical thickness 

BDL ⎯ below detection limit 

CCSV ⎯ catalytic cathodic stripping voltammetry 

DFe ⎯ dissolved Fe in ambient seawater 

DIN ⎯ dissolved inorganic nitrogen 

DIP ⎯ dissolved inorganic phosphorus 

DMS ⎯ dimethylsulphide 

DP ⎯ dissolved phosphorus in ambient seawater 

FeAC ⎯ Fe adsorbed to the incubation container 

FeAT ⎯ Fe adsorbed to the surface of the incubation Trichodesmium 

FeDS ⎯ Fe dissolved in the incubation seawater 

FeIA ⎯ Fe in aerosols added to the incubation solution 

FeIT ⎯ intracellular Fe in the incubation Trichodesmium 

FePS ⎯ particulate Fe suspended in the incubation seawater 

FeRF ⎯ Fe remaining on the Teflon filter sub-sample after the incubation 
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FeTS ⎯ total Fe in the incubation seawater 

FeTT ⎯ total Fe associated with the incubation Trichodesmium 

HA ⎯ hydroxylamine hydrochloride  

HNLC ⎯ high nitrate low chlorophyll 

HVDVI ⎯ high volume dichotomous virtual impactor  

HY-SPLIT ⎯ Hybrid Single-Particle Langrangian Intergrated Trajectories 

IC ⎯ ion chromatography 

ICPMS ⎯ inductive coupled plasma mass spectrometer 

ITCZ ⎯ intertropical convergence zone 

LCW ⎯ liquid core waveguide 

LFe ⎯ labile aerosol Fe 

LFe(II) ⎯ labile Fe(II) 

LFe(III) ⎯ labile Fe(III) 

LFeIA ⎯ total labile Fe on filter subsamples added to the incubation solution 

LMCT ⎯ ligand-to-metal charge transfer 

LPAS ⎯ long path length absorbance spectroscopy 

MAGIC ⎯ magnesium induced coprecipitation  

MBL ⎯ marine boundary layer 

Med-Africa ⎯ Mediterranean coastal region of North Africa 

MLO ⎯ Mauna Loa Observatory 

MMD ⎯ mass median diameters 

MSA ⎯ methanesulfonic acid 
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NOAA ⎯ National Oceanic and Atmospheric Administration 

NSS SO4
2- ⎯ non-seasalt-sulfate 

PIA ⎯ phosphorus in aerosols added to the incubation solution 

PIT ⎯ intracellular phosphorus in the incubation Trichodesmium 

PTT ⎯ total phosphorus associated with the incubation Trichodesmium 

RPD ⎯ relative percent difference 

RPFe ⎯ reducible particulate Fe 

SRM ⎯ standard reference material 

SUM26 ⎯ 26°N to 30°N Atlantic region in summer 

SUM15 ⎯ 6°N to 26°N Atlantic region in summer 

SUM5 ⎯ 0° to 6°N Atlantic region in summer 

WIN26 ⎯ 26°N to 30°N Atlantic region in winter 

WIN15 ⎯ 5°N to 26°N Atlantic region in winter 

WTNA ⎯ western tropical North Atlantic 
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