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The indoor environment has significant impacts on the health and comfort of building 

occupants. In addition, occupant behavior can affect building energy consumption. It is essential 

to consider actual occupant needs when controlling indoor environmental systems. To provide a 

healthy, comfortable, and energy-efficient indoor environment, the present dissertation presents a 

comprehensive research framework for occupant-oriented indoor environmental controls by 

conducting (i) air quality characterization in occupant breathing zone, (ii) data-driven thermal 

comfort identification, and (iii) simultaneous air quality, thermal comfort, and building energy 

controls. 

For air quality characterization in occupant breathing zone, the present dissertation 

characterized aerosol plumes associated with the risk of airborne virus transmission to investigate 

the occupant requirements for air quality controls. The study considered both the aerosol plume 

source strength and convective transport capability by conducting experiments with 18 human 

subjects. The source strength was characterized by the source aerosol emission rate, and the 

convective transport capability was characterized by the plume influence distance. The 



  

performances of multiple mitigation strategies were tested. The findings show that controlling the 

air quality in the breathing zone is crucial for protecting occupants from getting infected by 

airborne infectious microorganisms. 

For data-driven thermal comfort identification, the present dissertation developed data-

driven models to predict actual occupant thermal comfort based on physiological variables. By 

incorporating multiple HRV indices along with wrist temperatures, the performance of the models 

was significantly improved, achieving more than four times the accuracy compared to models 

based solely on wrist temperatures. This highlights the crucial role of HRV as physiological 

variables in accurately predicting thermal comfort. With the F1 score, the performance evaluation 

index of the developed machine learning thermal comfort model, exceeded the value of 0.90, this 

investigation provides a reliable thermal comfort prediction method, which could be used in actual 

building occupant-oriented controls. 

For simultaneous air quality, thermal comfort, and building energy controls, this 

dissertation developed a wearable micro air cleaner and deployed the extremum seeking control. 

The wearable micro air cleaner achieved 60% - 70% protective efficiency for both nasal and mouth 

breathing. Importantly, unlike current mitigation methods such as masks, this device allows users 

to be thermal comfortable when the indoor air temperature is above 25 °C. Additionally, this 

dissertation implemented the extremum seeking control to balance the trade-offs between 

individual thermal comfort preferences and building energy consumption in real-time. This control 

method successfully achieved energy savings of up to 22% compared to a constant temperature 

setpoint of 24 °C. The developed framework for simultaneous air quality, thermal comfort, and 

building energy controls holds great potential in providing building occupants with a healthy, 

comfortable, and energy-efficient indoor environment.  
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1. Introduction 

This chapter presents the background and the literature review. 

1.1 Background 

The importance of occupants in the indoor environment can be seen in several 

ways. First, occupants can influence the quality of indoor air by generating airborne 

disease virus or other pollutants through respiration. The large-scale airborne infectious 

microorganism transmission in recent COVID-19 pandemic highlights the importance 

of the air quality for occupant health [1]. Other activities, such as cooking, showering, 

etc., can also contribute to the buildup of moisture and humidity, which may lead to 

mold growth and other indoor air quality issues [2], [3]. Second, occupants have 

different thermal comfort preferences in the indoor environment. Their perception of 

indoor temperature can affect their productivity and well-being. Even though a state-

of-the-art building system is expected to satisfy the thermal comfort of 80% building 

occupants based on the ASHRAE standard, the average satisfaction rate is still much 

lower than expectation [4]. It is essential to meet the diverse needs of occupants, such 

as utilizing effective methods to provide adequate thermal comfort to different 

individual occupant [5], [6]. Third, buildings account for a significant fraction of global 

electrical energy consumption [7]. The total energy consumption of building is 

expected to grow at least 40% by 2040 [8]. Occupant behavior can significantly affect 

the energy consumption of the building, as they are the ones who use energy for 

heating, cooling, lighting, and other activities. It is important to control the indoor 
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environment and building systems based on occupant requirements and behaviors to 

reduce energy consumption and carbon emissions [9], [10]. 

1.2 Literature review 

The present dissertation conducts the literature review from three perspectives, 

including air quality characterization, thermal comfort identification, as well as indoor 

environmental controls. The literature review presented in this chapter aims to find 

research gaps and develop research objectives. 

1.2.1 Air quality characterization 

In recent times, the COVID-19 pandemic has had a significant impact on indoor 

environments and the activities conducted within them. Indoor activities, such as 

musical performances, serve as illustrative examples with the outbreak of the virus 

linked to choir performances reported in various countries, including the U.S. [11], 

Netherlands [12] Germany [13], France [14], Japan [15], and South Korea [16]. One 

notable instance occurred in Skagit Valley, Washington, where a choir rehearsal took 

place on March 10, 2020. Following the rehearsal, which lasted 2.5 hours and involved 

61 participants, a total of 32 confirmed and 20 probable secondary COVID-19 cases 

were identified, resulting in three hospitalizations and two deaths [11]. The outbreak in 

Skagit Valley, Washington [11] was attributed to aerosol transmission, which has been 

identified as a primary route for the spread of COVID-19 by esteemed organizations 

such as the World Health Organization (WHO) and the U.S. Centers for Disease 

Control and Prevention (CDC). This is particularly significant in the context of choir 

rehearsals, as singing is known to generate a greater number of aerosols compared to 
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regular speech [17], [18] When individuals engage in indoor activities involving 

speaking or singing, exhaled gas plumes containing aerosols are released into the 

surrounding air [19]. These gas plumes disperse and mix with the ambient air due to 

continuous air movement within the indoor space. Consequently, aerosols carrying 

viral particles are continuously transported throughout the environment. Direct 

exposure to the exhaled gas plume from an individual who is an airborne carrier of a 

disease virus poses a high risk of infection due to the elevated concentration of viral 

particles in close proximity. 

Traditional centralized HVAC systems have disadvantages in preventing 

airborne infectious microorganism transmissions. In buildings with centralized 

ventilation, there is a possibility of cross-contamination between different areas [20]. 

If one area becomes contaminated with infectious airborne pathogens, the centralized 

system can spread the contaminants to other parts of the building through the 

ventilation ducts, potentially leading to a wider outbreak. To develop effective air 

quality control method to prevent airborne infectious microorganism transmission in 

indoor activities, it is critical to know the extent of the aerosol plume generated by the 

occupant. The extent is determined by its interactions with thermal plumes around the 

human body and indoor ventilation flow [21],[22],[23]. Prior studies have 

characterized the aerosol plumes from speech [24], [25], and from musical 

performances by focusing on the source strength, such as the aerosol concentration 

[17], [18], [26]–[30] and the air velocity [29], [31], [32], or the convective transport 

capability, such as the transport distance [29], [32]–[34].  
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1.2.2 Thermal comfort identification 

One of the primary functions of buildings is to provide the acceptable indoor 

thermal environment to the occupants [35]. The occupant thermal comfort is 

particularly important for building controls because the HVAC systems, which are 

working continuously to make the occupants achieve the thermal satisfaction, consume 

about 50% of building energy use in developed countries [36].  

Thermal comfort models help researchers and engineers to better analyze and 

design the building environment. A noteworthy example of the thermal comfort 

models, is Fanger’s Predicted Mean Vote/Predicted Percentage of Dissatisfied (PMV/ 

PPD) model [37], which is based on the heat balance over the whole-body surface. This 

PMV/PPD model is currently widely used building operation and design, as well as 

standards, such as ASHRAE-55 [38].Nevertheless, the limitations of this model have 

been well-documented [39]. The possible discrepancy between PMV and the occupant 

Actual Mean Vote (AMV) can be noticed [40]. Also, possible bias in the relationship 

between PMV and PPD may exist [39]. Furthermore, any seasonal psychological 

adaptation on thermal comfort is ignored and a fixed year-round set temperature point 

for all occupants is prescribed by PMV/PPD models [41]. To compensate the 

disadvantages of this model, thermal adaptive model has been introduced for an 

efficient thermal comfort provision. Contrary to the former, the adaptative model 

accounts for occupant’s thermal adaptation [42] and recognizes the influence of 

outdoor climate on thermal comfort based on field studies [43]. Because a broad range 

of thermal comfort zones are preferred, adaptive models’ thermal ranges are not as 

limited as that of the PMV/PPD models. However, these traditional physical-based 
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thermal comfort models have limitations, such as the lack of personalization, lack of 

dynamic interactions, and limited feedback loop. Recently, personal thermal comfort 

models [44] were developed using data-driven methods [45] to provide more flexible 

and reliable thermal comfort prediction for individual occupant in the indoor 

environment.  

1.2.3 Indoor environmental controls 

For the air quality controls, mixing and displacement room air distribution are 

the main principles of centralized ventilation that are applied today in buildings. 

However, the clean air supplied far from the occupants is more or less polluted by the 

time it is inhaled [46], which makes the centralized ventilation to be not enough for 

occupants’ protection in indoor environment. Face masks or respirators could be 

effective and essential equipment to protect healthcare workers and members of the 

general public who may be exposed to the virus [47], however, user discomfort while 

wearing cloth masks is thought to engender behaviors that limit the effectiveness of 

cloth masks as source control (e.g., adjusting or removing one's mask temporarily while 

in public) [48]. Personalized ventilation (PV) in comparison with centralized 

ventilation and masks has two important advantages: first, its potential to improve the 

inhaled air quality and second, each occupant is delegated the authority to optimize and 

control temperature, flow rate (local air velocity) and direction of the locally supplied 

personalized air according to his/her own preference, and thus to improve his/her 

comfort conditions [46]. The PV has been applied to provide clean air to an individual’s 

inhalation by many means, such as being incorporated in seat headrests [49] and 

headsets [50]. In practice, personalized airflow is usually blown toward the face from 
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a nozzle at tens of centimeters away from the face. To properly ventilate the breathing 

zone and protect respiratory health, the PV effectiveness depends on its complex 

interactions with the breathing flow, the convective flow around the human body, and 

the room ventilation flow [51], [52]. Personalized airflow needs a sufficient high 

momentum (speed) to penetrate the convective flow around the face, as well as 

sufficient large flow rate to compensate for its dispersion into the room space by mixing 

with the surrounding air. The distance between the PV nozzle and the face is a key 

factor to determine flow rate and speed of the personalized airflow. To reduce the 

mixing of personalized air and surrounding air, it is necessary to supply the breathing 

zone with the potential core of a PV jet in a sustained manner [53]. 

Buildings account for a significant fraction of global electrical energy 

consumption [54]. The total energy consumption of building is expected to grow at 

least 40% by 2040 [8]. On the other hand, the conventional building is designed to 

maintain homogeneous indoor ambient condition, especially for a comfortable thermal 

and visual environment [54]. The American Society of Heating, Refrigerating and Air-

Conditioning Engineers (ASHRAE) defines the thermal comfort as an important aspect 

in representing human satisfaction [38]. Thermal comfort is the state of mind that 

indicates a person's perceived equilibrium with their environment. The overall comfort 

level of a building's occupants has a direct impact on their energy consumption patterns. 

However, even though a state-of-the-art building system is expected to satisfy 80% of 

the building occupants based on the ASHRAE standard, the average satisfaction rate is 

still much lower than expectation [4]. 
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To address the conflict between thermal comfort demand and energy 

consumption, research on occupant-centric controls (OCC) have increased 

significantly over the past decade [55]. The OCC is a control strategy for the indoor 

environment, which specifically focuses on decreasing building energy consumption 

while meeting the current needs of building occupants. It acquires various data from 

the occupant and indoor environment, and sends the optimal control signals to actuators 

according to occupants’ requirements [56]. Most OCC algorithms for HVAC were 

incorporated in either conventional reactive controllers [57], and model predictive 

controls [58]. Reinforcement learning becomes a popular data-driven occupant-centric 

control method in recent years [59].  
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2. Research objectives and outline 

2.1 Research gaps, objectives and tasks 

According to the literature review, we found the following research gaps: 

1. Need for air quality characterizations in occupant breathing zone: 

Centralized ventilation cannot effectively prevent the airborne infectious 

microorganism transmission. With a centralized ventilation system, if the 

airborne infectious microorganisms are present in the indoor environment, 

recirculating contaminated air can spread the pathogens to different zones, 

potentially increasing the risk of transmission. In addition, centralized 

ventilation systems provide the same ventilation settings for the entire building, 

irrespective of the specific needs of different occupants or areas. This can be 

problematic in situations where some individuals or spaces require higher 

ventilation rates or specific air quality conditions for infection control purposes. 

Therefore, the aerosol plumes associated with the risk of airborne virus 

transmission need to be characterized. In the meantime, the objectives of the 

novel indoor air quality control method are needed to be defined. 

2. Need for data-driven thermal comfort identification: 

Even though studies have developed various of thermal comfort models, the 

models still have limitations in prediction accuracy and actual operation. Some 

models require very specific input variables (e.g., the PMV model needs the 

metabolic rate, mean radiance temperature etc.). These variables are costly and 

almost impossible for real-time monitor by the sensors in the real world. 

Additionally, the inherency of the human thermal physiological regulation is 
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not fully considered. Although some data-driven models are developed based 

on the physiological parameters, mostly only using skin temperature. A reliable 

data-driven method to identify occupant thermal comfort preference for indoor 

environmental controls is needed. 

3. Need for novel air quality, thermal comfort, and building energy controls: 

For air quality control, The current wearable N95 respirators and surgical masks 

rely on users’ lungs to push the air against the filtering surfaces, which is 

uncomfortable and insufficient during prolonged use. Even though the concept 

of the personalized ventilation has been presented, typical personalized 

ventilation provides the localized air supply to the occupant at a fixed location. 

Slight variations in positioning, orientation, and height of the person may 

impact the efficacy of the fixed personalized ventilation. If individuals need to 

move or walk around, such as healthcare and laboratory workers, as well as 

those working in high-density and congregated workplace settings like 

correctional facilities and manufacturing facilities, solely relying on fixed 

personal ventilation may not provide sufficient protection. Most occupant-

centric control (OCC) algorithms for HVAC were incorporated in either 

conventional reactive controllers or model predictive controls. However, the 

conventional controllers cannot handle the uncertainties well. Additionally, the 

insufficient accuracy of the models is the main weakness of the model-based 

controller. Some data-driven control methods, such as the reinforcement 

learning, are not applicable in actual building control scenarios due to the 

requirement of a large amount of data. A novel occupant-oriented control 



 

 

10 
 

method which simultaneously considers the air quality, thermal comfort, and 

building energy is required. 

According to these research gaps, novel devices and methods are needed for 

occupant-oriented air quality and thermal comfort controls, therefore the present 

dissertation brings up three research questions to address occupant needs for indoor 

environmental control in public spaces: 

1. How do localized airborne infectious microorganism sources from occupants 

change the mitigation strategies for air quality controls in indoor environment? 

2. What is the reliable method to identify occupant thermal comfort in indoor 

environment? 

3. How to effectively control the indoor environment to simultaneously meet 

the requirements of air quality and thermal comfort, while at the same time reducing 

the building energy consumption. 

To answer these research questions, the present dissertation proposes the 

following research objectives. 

Objective 1: Air quality characterization in occupant breathing zone. 

Task 1.1 Characterize the aerosol plumes by considering both the source 

strength and convective transport capability. 

Task 1.2 Comprehensively analyze the measured data. 

Task 1.3 Find the objectives of the future generation occupant-oriented air 

quality control. 

Objective 2: Data-driven thermal comfort identification. 
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Task 2.1 Conduct human subject experiments to collect thermal 

sensation/comfort surveys and physiological data. 

Task 2.2 Analyze the data collected in the human subject experiments. 

Task 2.3 Develop data-driven thermal comfort models, which could be used in 

occupant-oriented thermal comfort controls. 

Objective 3: Simultaneous air quality, thermal comfort, and building 

energy controls. 

Task 3.1 Develop a novel occupant-oriented air quality control method. 

Task 3.2 Develop a novel occupant-oriented thermal comfort control method. 

Task 3.3 Develop the control platform which simultaneously considering the 

air quality, thermal comfort, and energy consumptions. 

2.2 Dissertation outline 

The research gaps and objectives allow to define the occupant-oriented 

indoor environmental controls to maintain good air quality in occupant breathing 

zone, satisfied thermal comfort in indoor environment, and minimal building energy 

consumption. Figure 1 shows the overview of the dissertation structure.  
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Figure 1 Overview of the dissertation workflow 

The research objectives and tasks are aligned with four publications that form 

the chapters in this dissertation. The remainder of the present dissertation is organized 

as follows: 

Chapter 3 – Air quality characterization in occupant breathing zone. This 

chapter presents the study conducting aerosol measurements and flow visualizations to 

characterize the aerosol plumes associated with the risk of airborne virus transmission. 

The air quality characterization provides the objectives of the novel occupant-oriented 

air quality control method. The chapter is based on the following publication:  

• L. Wang, T. Lin, H. Da Costa, S. Zhu, T. Stockman, A. Kumar, J. 

Weaver, M. Spede, D. K. Milton, J. Hertzberg, D. Toohey, M. Vance, 

S. L. Miller, J. Srebric, “Characterization of aerosol plumes from 
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singing and playing wind instruments associated with the risk of 

airborne virus transmission,” Indoor Air, vol. 32, no. 6, p. e13064, Jun. 

2022, doi: 10.1111/INA.13064. 

Chapter 4 – Data-driven thermal comfort identification. This chapter presents 

the study conducting human subject experiments to collect thermal sensation/comfort 

questionnaires and physiological data. Based on the collected data, machine learning 

methods are utilized to develop high performance data-driven thermal comfort models. 

The chapter is based on the following publication: 

• L. Wang, D. A. Dalgo, N. Mattise, S. Zhu, and J. Srebric, “Physiological 

responses and data-driven thermal comfort models with personal 

conditioning devices (PCD),” Building and Environment, p. 110290, 

Apr. 2023, doi: 10.1016/J.BUILDENV.2023.110290. 

Chapter 5 – Simultaneous air quality, thermal comfort, and building energy 

control. This chapter presents the study develops a novel wearable micro air cleaner as 

the occupant-oriented air quality control method to promise the air quality in occupant 

breathing zone. The extremum seeking control is implemented as the occupant-oriented 

thermal comfort control method to balance individual occupant thermal preferences 

and building energy consumption. The chapter is based on the following publication:  

• L. Wang, S. A. Romo, E. Sanico, H. Da Costa, T. Lin, N. Rabchevsky, 

M. Kern, S. Zhu, J. Srebric, “A Wearable Micro Air Cleaner for 

Occupant-oriented Indoor Environmental Controls,” Building and 

Environment, (Under Review). 



 

 

14 
 

• L. Wang, T. Hensel, P. Chanpiwat, S. Zhu, and J. Srebric, “Occupant-

centric Control of Building Systems based on Real-time Optimization 

by Extremum Seeking,” in 2022 IEEE International Conference on 

Environment and Electrical Engineering and 2022 IEEE Industrial and 

Commercial Power Systems Europe (EEEIC / I&CPS Europe), 2022, 

pp. 1–6. doi: 10.1109/EEEIC/ICPSEurope54979.2022.9854615. 

Chapter 6 – Discussion. This chapter discusses the implications of the 

dissertation findings and future work. 

Chapter 7 – Conclusions and contributions. This chapter summaries the 

conclusions, contributions, and the publications. 
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3. Air quality characterization in occupant breathing zone 
 
This chapter is reproduced from the following journal paper: 

L. Wang, T. Lin, H. Da Costa, S. Zhu, T. Stockman, A. Kumar, J. Weaver, M. 

Spede, D. K. Milton, J. Hertzberg, D. Toohey, M. Vance, S. L. Miller, J. Srebric, 

“Characterization of aerosol plumes from singing and playing wind instruments 

associated with the risk of airborne virus transmission,” Indoor Air, vol. 32, no. 6, p. 

e13064, Jun. 2022, doi: 10.1111/INA.13064. 

3.1 Introduction 

The Coronavirus Disease 2019 (COVID-19) pandemic has led to a profound 

impact on music communities, with the total shutdown of music production and public 

events after a number of the outbreaks related to choir performances were reported in 

the U.S.[11], Netherlands[12] Germany[13], France[14], Japan[15], and South 

Korea[16]. For example, on March 10, 2020, in Skagit Valley, Washington, following 

a 2.5-hour rehearsal with 61 participants including a symptomatic index patient, 32 

confirmed and 20 probable secondary COVID-19 cases were identified, including three 

hospitalizations and two deaths[11]. Aerosol transmission, which has been recognized 

as a primary route for COVID-19 spread by the World Health Organization (WHO) 

and the U.S. Center for Disease Control (CDC), was considered to account for the choir 

rehearsal outbreak in Skagit Valley, Washington[11], due to much more aerosol being 

produced during singing than talking[17], [18]. During singing, aerosols are released 

with exhaled gas plumes[19]. With the surrounding air continuously engaged, gas 

plumes are dispersed until completely mixing with the ambient air. With this process, 
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aerosols will be continuously transported elsewhere by indoor air currents. Direct 

exposure to the exhaled gas plume from a SARS-CoV-2 virus carrier at a close distance 

will cause a high infection risk due to its high viral concentration. This study names the 

exhaled gas plume to be an "aerosol plume" to emphasize that it contains viral 

bioaerosols.  

To prevent airborne microorganism transmission in musical performances, it is 

critical to know the extent of the aerosol plume generated by musical performances. 

The extent is determined by its interactions with thermal plumes around the human 

body and indoor ventilation flow[21],[22],[23]. Studies have characterized the aerosol 

plumes from speech[24], [25], and from musical performances by focusing on the 

source strength, such as the aerosol concentration[17], [18], [26]–[30] and the air 

velocity[29], [31], [32], or the convective transport capability, such as the transport 

distance[29], [32]–[34]. However, features were not integrated to provide a 

comprehensive characterization of aerosol plumes which could help develop effective 

infection control strategies covering all of the factors contributing to the aerosol 

transmission. Furthermore, the source strength was mostly characterized by the source 

aerosol concentration, ignoring the aerosol plume’s source airflow rate needed for risk 

analyses. 

This study investigated aerosol plumes from musical performances by 

considering both the source strength and convective transport capability to form a 

comprehensive characterization. In addition, the source strength was characterized by 

the source aerosol emission rate, defined as the source aerosol concentration multiplied 

by the source airflow rate. The convective transport capability was characterized by the 
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plume influence distance, defined as the sum of the horizontal jet length and horizontal 

instrument length. An illustration of definitions of these aerosol plume characteristics 

is available in Figure 2. 

 
Figure 2 Description of terminologies in source strength and convective transport 

capability characterization of aerosol plumes from musical performances (a. Instrument, 

b. Singing). 

3.2 Methodology 

Human subject experiments with musicians were conducted under an approved 

Institutional Review Board protocol (IRB 1622465-2). In an environmental chamber, 

we conducted the source strength characterization by measuring the source aerosol 

concentration and the source velocity. At the same time, we conducted the convective 

transport capability characterization by visualizing the aerosol plume. This study also 

evaluated the performance of mitigation methods, including facial masks and bell 

covers. Cloth masks, surgical masks, and N95 masks were tested for singing. Bell 

covers alone and bell covers with MERV-13 filters were tested for playing instruments. 

The MERV-13 filters were used directly out of the packaging without any exposure to 
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disinfecting agents such as alcohol. Masks, bell covers and MERV-13 filters used in 

this study are shown in Figure 3. Experiments took place over roughly five months 

from November 2020 to March 2021. To protect researchers and participants from 

COVID-19 infection, following procedures were implemented: 

(1) COVID-19 tests and COVID-19 screening surveys were completed by all 

researchers and participants within three days before the experiment, and only those 

with a negative test result could participate in the experiment. 

(2) Both researchers and participants were required to wear full personal 

protective equipment (surgical masks and gloves) and keep appropriate social distances 

(> 6 ft) during experiments.  

(3) Before each experiment, the chamber was cleaned by wiping surfaces with 

alcohol-based disinfectants, mopping the floor with diluted bleach solutions, and 

running HEPA filter air cleaners to clean the room’s air.  

 

Figure 3 Mitigation Methods. a. Cloth mask. b. Surgical mask. c. N95 mask. d. Bell 

cover. e. MERV-13 filter. 
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Human Subjects and Experimental Activities 

The musicians in this study were upper-level undergraduate students or 

graduate students aged between 20-30, from the School of Music, University of 

Maryland. The experiment included 18 human subjects, representing most of the 

orchestra’s aerosol-producing musicians, such as singing, French horn, trumpet, 

trombone, flute, clarinet, saxophone and oboe. Detailed information of human subjects 

can be found in Table 1. 

Table 1 Human subject information 

 
Performance 

Category 
Participant Numbers 

Singing Singing 4 

Brass instrument 

French Horn 3 

Trumpet 3 

Trombone 1 

Woodwind 

instrument 

Flute 3 

Clarinet 1 

Saxophone 2 

Oboe 1 

Total  18 

 

The music played by singers and instrument players was consistent for all 

experiments. Instrument players performed “Holt in E-flat for COVID-19 Study,” 

which was specifically written for this study[29]. It consisted of a slurred chromatic 
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scale encompassing each instrument’s normal range, and “Holt in Eb,” which is a piece 

of music in the public domain. For singers, the music sample was “Holy, Holy, Holy,” 

with the tempo to be 106 bpm. All musicians were instructed to keep their sound levels 

at approximately 70-90 dB. A sound level meter was visible to musicians to help 

control sound levels during experiments. Furthermore, at the experiment onset, each 

musician was asked to do a warm-up and practice the maintenance of the sound level. 

During the experiments, each musician was asked to repeat the same piece of music 

twice in a row without a rest interval. The duration of each musical performance was 

approximately one minute. Same procedures were conducted for mitigation method 

tests. Each musical performance was recorded as a time-series dataset, which was used 

to calculate the time-averaged values. The statistical analysis shown in the figures was 

conducted on these time-average values. 

Environmental Chamber Setup 

Experiments were conducted in a climate-controlled chamber, which had a 

volume of 72 m3 (3.96 m × 4.06 m × 4.47 m). It was well sealed to minimize particle 

infiltration or exfiltration. The chamber mimicked a typical indoor environment for 

indoor rehearsal or performance spaces with air temperatures between 22°C ± 2°C, 

relative humidity levels between 30%-40%, and air velocities between 0.05-0.1 m/s. 

There was also a small cubic chamber for the particle image velocimetry (PIV) 

experiment, i.e., PIV chamber, which had dimensions of 1.2 m × 1.2 m × 1.2 m. Figure 

4 shows the setup of the environmental chamber. 
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Figure 4 Environmental chamber setup 

Experiments to Characterize Source Strength 

Two experiments were conducted to investigate the source strength of the 

aerosol plume from singing and playing wind instruments. One is to measure the source 

aerosol concentration and size distribution, the other is to measure the source velocity.  

In our study, source aerosol concentration measurements deployed the particle 

counter (TSI 9306, Aerotrak) at the mouth of the singer or the bell of the instrument. 

The particle counter measures five particle size bins (0.3 µm - 0.5 µm, 0.5 µm - 1 µm, 

1 µm - 3 µm, 3 µm - 5 µm, 5 µm - 10 µm). In each source aerosol concentration 

measurement, three air cleaners with HEPA filters were turned on one hour before 

measuring source aerosol concentrations to reduce the background particle 

concentration from approximately 800 particles/cm3 to 0.5 particles/cm3. Air cleaners 

were kept on during measurements to ensure low background particle concentrations. 

In addition, air cleaners were placed at least two meters away from musicians to avoid 

interference with aerosol plume measurements. Each musician directed their aerosol 

plumes into a metal funnel to further minimize influences of the ambient air during 
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source aerosol concentration measurements. The funnel was also used to help collect 

particles in the related experimental studies on exhaled aerosols[26], [28], [60]–[62]. 

We prepared three funnels with diameters 10.4 cm, 12.7 cm and 14.5 cm to fit various 

dimensions of the mouth and instrument outlet. The funnel was connected to the 

particle counter with a tube as short as 3 cm to minimize losses of particles due to 

adhesions to tube surface. To avoid interferences of ambient air entrainments, the 

funnel was placed as close as possible to aerosol sources, i.e., the mouth or instrument 

outlet. The particle counter was fixed on a tripod when measuring exhaled aerosols 

from a singer, whose mouth was entirely covered by the funnel. When playing 

instruments, it was difficult to conduct measurements with the particle counter fixed 

on the tripod. Therefore, a researcher would hold it and ensure that the funnel could 

sufficiently capture expelled aerosols. If the bell of the instrument was smaller than the 

funnel, it would be entirely covered by the funnel. This was also the case for mouth 

measurements. If the bell was larger than the funnel, the funnel was placed inside the 

bell outlet without direct contact but with their centers aligned. Figure 5 illustrates 

aerosol measurements with funnels. Each measurement continued for the whole 

musical performance at one second sample interval for each trial.  
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Figure 5 Source aerosol measurements with funnels for singing (left) and instrument 

(right) 

The source velocity of aerosol plumes was measured by a hot-wire anemometer 

with an omni-directional probe (Kanomax 6543-2G, measuring range: 0.01 - 5 m/s). 

The velocity was measured at the center of a singer’s mouth or an instrument’s bell. To 

avoid the measurement error introduced by the movement of the participants during 

performances, a researcher held the probe to follow the movement of the singer’s 

mouth or the instrument’s outlet. The sampling interval was one second. Importantly, 

to avoid influence of the background environment, air cleaners were not running in this 

experiment. 

The source airflow rate was calculated by multiplying the measured source 

velocity by the effective opening area available in Table 2. The effective opening area 

calculation used the PIV flow visualization to identify mouth and bell areas discharging 

the airflow jet. This area is actually a cross-sectional area of the airflow jet at its source. 

Furthermore, we calculated the source aerosol emission rate by multiplying the source 

airflow rate with the source aerosol concentration. It was important to recognize that 

the singer/instrument airflow rates could be higher or lower than the sample airflow 

rate of the particle counter (0.047 L/s). If the source airflow rate was higher than the 
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particle counter’s sample airflow rate, some amount of the source airflow was 

bypassing the particle counter. In this case, the source aerosol concentration is equal to 

the aerosol concentration measured by the particle counter. If the source airflow rate 

was lower than the particle counter’s sample airflow rate, the particle counter captured 

the entire source airflow, plus additional airflow from the ambient air that had a 

negligible particle concentration. The additional ambient airflow made the measured 

aerosol concentration to be lower than the source aerosol concentration. In this case, 

we derived the source aerosol concentration according to the mass balance of the 

particle counter’s sampling volume. 

Table 2 Effective flow area of musical performances 

 Category 

Effective 

Opening Area 

(cm2) 

Total Area 

(cm2) 

Effective 

Area 

Percentage 

Singing Singing 3.40 3.40 100% 

Brass 

Instrument 

French horn 6.90 515.39 1% 

Trumpet 5.27 71.13 7% 

Trombone 10.16 210.50 5% 

Woodwind 

Instrument 

Flute End 2.84 2.84 100% 

Flute Mouth 1.00 1.00 100% 

Clarinet 9.38 29.64 32% 

Saxophone 9.19 99.36 9% 

Oboe 3.21 11.48 28% 
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Experiments to Characterize Convective Transport Capability 

This experiment visualized and derived the detailed information of aerosol 

plumes from the singing and instrument by utilizing Background-Oriented Schlieren 

(BOS) and Particle Image Velocimetry (PIV).  

The BOS system consists of four components: a scientific camera (sCMOS), a 

light, a BOS board made of four 2D BOS Random Dot Pattern Targets (1m × 1m), and 

the BOS software. During measurements, the sCMOS camera was placed four meters 

away from the BOS board, and the participant was required to stand at one meter to the 

camera and three meters to the BOS board. Figure 6 shows the experiment setup of the 

BOS. The BOS visualized airflows by detecting density gradients between airflows and 

ambient air due to temperature differences. At each time step, the camera took two 

images with the second as the reference image to show the background (BOS board) 

without airflows. By comparing the two images, the certain pixel that appears at a 

different place was used to derive the density gradients[63]. In this study, it was not 

applicable to conduct BOS to visualize aerosol plums from instrument performances 

because the temperature differences to the ambient air were too small to be used to 

detect density gradients. Thus, the BOS visualization was only conducted for the 

singers. 
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Figure 6 Description of BOS experiment setup 

The PIV can provide detailed velocity distributions of aerosol plumes from 

singing and instrument performances. For a typical PIV recording, small tracer particles 

are added to the flow field. The plane of interest is illuminated twice by a laser light 

sheet. The light scattered by the tracer particles is recorded by a high-speed camera. 

The local displacement vector of the tracer particles of the first and second illumination 

is determined by the cross-correlation. Velocities are computed taking into account the 

time interval between two illuminations[64]. 

In this study, the measuring area was in the PIV chamber built with transparent 

plexiglass acrylic sheets (1.2 m × 1.2 m × 0.003 m) for the bottom and side walls, thick 

Styrofoam sheets (1.2 m × 1.2 m × 0.05 m) for the top and back walls, and thin 

Styrofoam (2.4 m × 1.2 m × 0.03 m) for the front wall. The front wall had an opening 

for exhaled aerosol plumes to flow through. The height and size of the opening were 

adjustable with respect to musical performances to fit the location and dimension of 

singers’ mouths and instruments’ bells. The front wall separated human subjects from 

the PIV measuring area to protect human subjects from laser hazards and avoid 

disturbances to aerosol plumes by ambient airflows, such as ascending thermal plumes 
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and air movements caused by respirations. Front, top, back, and side walls were 

covered by non-scattering black papers to avoid reflections of laser beams. The bottom 

was uncovered to let laser beams through. The wall faced to the camera was also 

uncovered, so that the camera could take photos for particles’ movement highlighted 

by laser sheets. In addition, an airflow outlet was opened on the back wall, which helped 

maintain a constant pressure in the PIV chamber during measurements. The PIV system 

in our experiment was a 2-D PIV, which captured the plane of the flow of interest. The 

test section was illuminated by a high speed pulsed Nd:YAG laser (λ = 532 nm) with a 

pulse intensity of 200 MJ. The light sheet thickness was 2.5 mm. To allow the laser 

emitting from bottom to top, the laser emitter was placed on the floor, under the bottom 

of the PIV chamber. Before the experiment, tracer particles (DEHS, mineral oil, 1 µm 

diameter) were generated by an aerosol generator and uniformly spread in the PIV 

chamber to achieve an optimal concentration. The PIV chamber made it possible to 

keep seedings at a relatively steady state during measurements. As the experiment 

started, the light scattered by tracer particles were captured by a high-speed camera (5.5 

Megapixel scientific CMOS camera with double-frame mode for cross correlation PIV) 

with an exposure of 15 µm. The camera faced perpendicular to the light sheet. The 

imaging frequency was 15 Hz, and the time interval between image pairs was set 

according to estimated velocities of exhaled airflow. The laser was aligned to the 

vertical midline of the opening on the front wall. The camera synchronized with the 

laser would record image frames of particles in the highlighted area of 0.76 m × 0.64 

m in size, and then the processor would calculate velocity vectors with the 32 pixels × 

32 pixels interrogation window. The window had a 75% overlap and noise filtration 
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with 5 × 5 Gaussian smoothing based on particles’ moved distances during the pulse 

interval[64]. During the experiment, participants were required to wear laser goggles 

for eye protection and to stand in front of the PIV chamber’s front wall. They were 

requested to put their mouths against the opening of the front wall, or insert 

instruments’ outlets into the PIV chamber. Figure 7 illustrates the PIV experiment 

setup. Specifications of measurement equipment can be found in Table 3. 

 

Figure 7 Description of PIV experiment setup 

Table 3 Specifications of experiment equipment 

Experiment Equipment Specification 
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Aerosol 

Concentration 

Measurement 

Optical Particle Counter 

(TSI AEROTRAK 9306) 

Channel Size: 0.3, 0.5, 1.0, 3.0, 5.0, 

10.0 μm 

Counting Efficiency: 50% at 0.3 μm; 

100% for particles > 0.45 μm 

Air Velocity 

Measurement 

Hot-wire Anemometer 

(Kanomax, ClimateMaster 

Series 6501 with 6543-2G 

probe) 

Range: 0.01 to 5 m/s 

Accuracy: 0.01 to 0.99: ± 0.02, 

0.99 to 5.00: ± 2% 

Background-

Oriented 

Schlieren 

(BOS) 

Background 

Board with randomly distributed 

black squared dots on a white 

surface. Supplied by Lavision Inc. 

High-speed Camera 

5.5 Megapixel scientific CMOS 

camera with Nikon 50 mm, F1.4. 

Supplied by Lavision Inc. 

Particle 

Image 

Velocimetry 

(PIV) 

Laser 

Nd:YAG Dual Cavity pulsed laser, 2 

x 200 MJ/pulse at 532 nm, 15 Hz 

imaging frequency. Supplied by 

Lavision Inc. 

High-speed Camera 

5.5 Megapixel scientific CMOS 

camera with Nikon 50 mm, F1.4. 

Supplied by Lavision Inc. 
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Processor 

CPU: Intel(R) Xeon(R) W-2135 

CPU @ 3.70GHz, 6 cores 

Ram: 64 GB. Supplied by Lavision 

Inc. 

Aerosol Generator 
DEHS (mineral oil, 0.91 g/cm3, 1 

µm). Supplied by Lavision Inc. 

 
Data analysis 

For the source strength characterization, the temporal data of source aerosol 

concentrations and source velocities collected at singers’ mouths or instrument outlets 

were averaged over the period of musical performance to get the time-averaged data 

for each trial. The statistics were conducted on the time-averaged data of trials of 

musical performances. For the convective transport capability characterization, the 

maximum value of the jet length was selected from the temporal data over the period 

of musical performance for data analysis. Because of the limited sample size, outliers 

were defined to be further than 3 × IQR (where IQR is the inter-quartile range, or the 

distance between the first and third quartiles). Most of the data were not normally 

distributed, so the Kruskal-Wallis H Test, which is a rank-based nonparametric test, 

was conducted to analyze the significance of difference between each group. The 

significant level α was selected to be 0.05. Python was used as the programing language 

for the data analysis. In figures, box and whiskers plots are for the statistics of measured 

data, bar charts are for calculated data. 
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3.3 Results 

Source Strength Characterization 

Here we present the source strength characterization of aerosol plumes from 

musical performances with source aerosol concentrations, source velocities, source 

airflow rates, and source aerosol emission rates as shown in Figure 8 and Figure 9. For 

aerosol plumes generated by flute players, the source velocities at flautist’s mouth and 

the end opening of the flute have noticeable differences. Thus, the measurements were 

conducted at both locations separately, as shown in Figure 8a. One French horn player 

generated much higher source aerosol concentration than the other players. This 

subject's data was categorized as “high shedder FH”, “FH” represents the French horn. 

Given that a high source aerosol concentration influences the source aerosol emission 

rate, the data of the “high shedder FH” was shown both in Figure 8c and 7d.  

Figure 8a compares source velocities of the aerosol plumes from musical 

performances and shows significant differences (p = 0.013 < α). Note that the source 

velocity of the aerosol plume from the flautist’s mouth was one to two magnitudes 

higher than those from the other instruments. Figure 9 shows the same data averaged 

over instrument categories. By treating the flautist mouth data as an outlier and 

excluding it from the dataset, Figure 9a shows the source velocity of singing was the 

highest. It was around three times higher than that of woodwind instruments and six 

times higher than that of brass instruments (p = 1e-4 < α). Figure 8b and Figure 9b 

show the source airflow rates of aerosol plumes. Overall, woodwind instruments—

except for the oboe which uses a double reed—generated higher source airflow rates 

than brass instruments. Figure 8c compares source aerosol concentrations of aerosol 
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plumes from musical performances and shows significant differences (p = 1.2e-5 < α) 

between categories. The source aerosol concentrations greatly varied in the orders of 

magnitude: 104 ~ 105 particles/L for the “high shedder FH” and trombone; 103 ~ 104 

particles/L for trumpet, clarinet, oboe, French horn, singing, and saxophone; and 101 

~ 102 particles/L for flute. The size distribution of the source aerosol concentrations 

can be found in Figure 9. Figure 9c shows that the source aerosol concentration from 

brass instruments was about two times higher than that from singing and woodwind 

instruments (p = 0.02 < α). Figure 8d shows the source aerosol emission rates of aerosol 

plumes. The clarinet had the highest source aerosol emission rate up to 1658 particles/s 

because of its relatively high source aerosol concentration and source airflow rate. 

Notably, due to the low source airflow rate of the French horn, the “high shedder FH” 

was ranked as first for the source aerosol concentration but second for the source 

aerosol emission rate. Figure 9d demonstrates that even though aerosol plumes of 

woodwind instruments had low source aerosol concentration, it still had about 20% 

higher source aerosol emission rates than the average of singing and brass instruments 

due to higher source airflow rates. These results illustrate that only measuring particle 

concentrations but ignoring source airflow rates will cause the source strength 

characterization to be incomplete. Table 4 presents the measured data for the source 

strength characterization that also represent important boundary conditions for future 

numerical studies of musical performances. 
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Figure 8 Source strength characterization of aerosol plumes from musical performances. 

a. Source velocity. b. Source airflow rate. c. Source aerosol concentration including 

high shedder. d. Source aerosol emission rate including high shedder. (note: “source” 

refers to the time-averaged data collected at singer mouth or instrument outlet) 
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Figure 9 Source strength characterization of aerosol plumes from performance 

categories (singing, brass instrument and woodwind instrument). a. Source velocity. b. 

Source airflow rate. c. Source aerosol concentration. d. Source aerosol emission rate 

(note: “source” refers to the time-averaged data collected at singer mouths or 

instrument outlets). 

 
Figure 10 Size distribution of aerosol from musical performances 
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Table 4 Source characterization data of aerosol plumes from musical performances 

Performance 

Source 

Velocity 

(m/s) 

Source 

Airflow Rate 

(L/s) 

Source 

Aerosol 

Concentration 

(particle/L) 

Source 

Aerosol 

Emission 

Rate 

(particle/s) 

Flute 2.24 0.22 91 20 

Oboe 0.06 0.02 3698 74 

French horn 0.06 0.04 3197 128 

Saxophone 0.11 0.10 1519 152 

Singing 0.41 0.14 2899 406 

Trumpet 0.09 0.05 8636 432 

Trombone 0.05 0.05 11277 564 

High Shedder 

FH 
0.06 0.04 25960 1038 

Clarinet 0.23 0.21 7894 1658 

 
Convective Transport Capability Characterization 

For the convective transport capability characterization, aerosol plumes were 

visualized by Particle Image Velocimetry (PIV) and Background-Oriented Schlieren 

(BOS). During musical performances, we observed that the air jet was formed from the 

singer’s mouth or the instrument’s bell. It then left the outlet and traveled forward until 

it fully mixed with the ambient air. The plume influence distance was used for the 
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convective transport capability characterization. It was defined as the sum of the 

instrument length and the aerosol plume’s jet length in the horizontal direction, which 

provided a reference distance from the end of the aerosol plume to the music player. 

This length can be used to assess the minimum social distance that should be used 

between players to keep them out of each other’s plumes. The horizontal jet length was 

defined as the farthest horizontal distance of the aerosol plume maintaining a velocity 

greater than 0.05 m/s. This demonstrates the extent of the area potentially having a non-

negligible infection risk. For singing and instruments with bells close to the player’s 

body, such as the French horn and saxophone, the horizontal instrument lengths were 

treated as zero. The detailed instrument dimensions can be found in Table 5. Only the 

horizontal dimension was considered, as it is the main flow direction which influences 

the risk of the infection. The description of the features of convective transport 

capability characterization can be found in Figure 2. 

Table 5 Convective capability characterization data of aerosol plumes from musical 

performances  

Performance 

Horizontal 

Instrument 

Dimension (mm) 

Horizontal Jet 

Length (mm) 

Plume Influence 

Distance (mm) 

French horn 0 253 253 

Saxophone 0 319 319 

Singing 0 604 604 

Oboe 438 273 711 
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Trombone 400 338 739 

Trumpet 483 331 814 

Clarinet 467 407 874 

Flute 660 522 1182 

 

During a performance, the horizontal jet length changed over time. The jets 

produced by playing a whole song were more dynamic than those by playing a single 

note. Figure 11 shows the fully developed jets moments before they were dissipated in 

the surrounding environment. We can see that the jets were complex and unsteady. The 

length and direction of the air jets by musical performances varied due to different 

instrument orientations and source velocities. To simplify the analysis of the complex 

time-dependent flow, the maximum jet lengths from performances were selected for 

the data analysis. From Figure 12a, jets of aerosol plumes produced from singing and 

playing the flute (both form the flautist’s mouth and flute end) horizontally traveled 

around 500 mm, farther than those from other instruments, which varied from around 

100 mm to 400 mm. The differences were significant (p = 1e-5 < α) between 

instruments. Figure 12b shows that the aerosol plume from singing had the longest 

horizontal jet length with an average of around 600 mm. The aerosol plume from brass 

instruments had the shortest horizontal jet length with an average of 300 mm. The 

difference between each performance category was also significant (p = 8.16e-7 < α). 

From Figure 12c, due to the longer jet length and long horizontal instrument length, the 

plume influence distance of playing flute reached about 1200 mm, which was clearly 

the farthest. Thus, the plume influence distance of woodwinds was about 30% greater 
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than that of singing and brass instruments (Figure 12d). The data of plume influence 

distances can be found in Table 5. 

 

Figure 11 a. Jets of the aerosol plumes from brass instruments. b. Jets of the aerosol 

plumes from woodwind instruments. c. Jets of the aerosol plumes from singing and 

flute. Note that the velocity scale is different in each panel. 
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Figure 12 Convective transport capability characterization of aerosol plumes. a. 

Horizontal jet lengths (musical performance). b. Horizontal jet lengths (performance 

categories). c. Plume influence distances (musical performance). d. Plume influence 

distances (performance categories). 

Comprehensive Characterization 

According to our findings, it is insufficient to independently study the source 

strength and convective transport capability because such an evaluation would provide 

incomplete understanding of risk from playing an instrument and singing. Here, we 

comprehensively characterized the aerosol plumes from musical performances by 

combining the source strength and convective transport capability to the 

comprehensive characterization factor. The weight of these two plume characteristics 

was set to be equal. The characterization factors were calculated based on the weighted 
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sum method. Firstly, we normalized the source strength and convective transport 

capability data by their maximums to get values from zero to one. Secondly, the two 

normalized values were summed with weights to get the comprehensive 

characterization factor. The comprehensive characterization factor was classified into 

three categories: high (0.66-1), medium (0.33-0.66), and low (0-0.33). These bins are 

evenly distributed because they have equal importance. From Table 6, the clarinet was 

classified as high. The flute, trombone, trumpet, “high shedder FH”, and singing were 

classified as medium. The oboe, saxophone, and French horn were classified as low. 

Figure 13 illustrates the comprehensive characterizations of the aerosol plumes. Figure 

14 provides a qualitative visual comparison which allows simultaneous observation of 

plume size and averaged particle concentrations with the assumption of nearly real-

time dispersion of aerosol. 

 

Figure 13 Comprehensive characterization of aerosol plumes 
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Figure 14 Qualitative comparison of measured average aerosol concentration in 

different jets of aerosol plumes. (Note: The values of the concentrations can be found 

in Table 4) 

Table 6 Comprehensive characterization of aerosol plumes from musical performances 

Performan
ce 

Aeroso
l 

Emissi
on Rate 
(particl

e/s) 

Normali
zed 

Aerosol 
Emissio
n Rate 

Plume 
Influen

ce 
Distan

ce 
(mm) 

Normali
zed 

Plume 
Influenc

e 
Distance 

Comprehens
ive 

Characteriza
tion Factor 

Comprehens
ive 

Characteriza
tion 

Category 

French 
horn 128 0.08 253 0.21 0.15 

Low Saxophon
e 152 0.09 319 0.27 0.18 

Oboe 74 0.04 711 0.60 0.32 
Singing 406 0.24 604 0.51 0.38 

Medium 

High 
Shedder 

FH 
1038 0.63 253 0.21 0.42 

Trumpet 432 0.26 814 0.69 0.48 
Trombone 564 0.34 739 0.62 0.48 

Flute 20 0.01 1182 1 0.51 
Clarinet 1658 1 874 0.74 0.87 High 

 
Mitigation Methods 
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Mitigation methods, such as masks for singers and bell covers with MERV-13 

filters for instruments, were tested in the experiments. Measurements were conducted 

in front of masks and bell covers, leakage areas were not considered in this study. 

Figure 15 shows the source aerosol concentration and the horizontal jet length 

comparison with and without mitigation methods for singing and clarinet performance. 

Based on the measurements, mitigation methods reduced source aerosol concentrations 

and the momentum of the airflow at the same time. All the other performances follow 

the similar trend shown in the figure. According to Table 7 and Table 8, for singing, 

wearing masks can bring source aerosol concentrations to the background level in front 

of a singer and reduce plume influence distances by 65%. For instruments, bell covers 

with filters can bring source aerosol concentrations to the background level in front of 

the instrument bells and reduce plume influence distances by up to 57%. It is 

noteworthy that only a bell cover without filters cannot promise the reduction of the 

source aerosol concentration. 
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Figure 15 Source Aerosol concentration and horizontal jet length reduction by 

mitigation methods (singing and clarinet). a. Real-time source aerosol concentration of 

aerosol plumes from singing (with/without mitigation methods). b. Real-time source 

aerosol concentration of aerosol plumes from clarinet (with/without mitigation 

methods). c. horizontal jet length comparison of singing (with/without mitigation 

methods). d. horizontal jet length comparison of clarinet (with/without mitigation 

methods). 
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Table 7 Source Aerosol concentration (particle/L) reduction by mitigation methods 

Category Performance 
No Mitigation 

Methods 

With 

Mitigation 

Methods 

Reduction 

Percentage 

Singing Singing 2899 ~ 0  100% 

Brass 

Instrument 

French horn 3197 ~ 0  100% 

High Shedder 

FH 
25960 1657 94% 

Trumpet 8636 ~ 0  100% 

Trombone 11277 ~ 0  100% 

Woodwind 

Instrument 

Clarinet 7894 ~ 0  100% 

Saxophone 1519 ~ 0  100% 

Oboe 3698 ~ 0  100% 

 
Table 8 Horizontal jet length (mm) reduction by mitigation methods 

Category Performance 
No Mitigation 

Methods 

With 

Mitigation 

Methods 

Reduction 

Percentage 

Singing Singing 604 211 65% 

Brass 

Instrument 

French horn 253 157 38% 

Trumpet 331 175 47% 

Woodwind 

Instrument 

Clarinet 407 260 36% 

Saxophone 319 253 21% 
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Oboe 273 117 57% 

 

3.4 Discussion 

The acoustics of musical performances may partly account for the generation 

of aerosol plumes. Brass instrument players produce sound by vibrating the lips[65], 

while the woodwind instrument players produce sound by reed or air vibration[66], and 

the singer vibrates vocal cords[67]. The lip vibration may generate more aerosols than 

the vibration of the reed and the vocal cord. This may due to frequent accumulations of 

saliva in the instrument requiring release through water valves; brass instruments would 

then produce higher source aerosol concentrations than singing and wood instruments. 

Another cause could be condensations inside the brass tube due to the low surface 

temperature of brass instruments. Additionally, a curved, long, and keyhole-less 

instrument means that more aerosols would impact the walls than in the case of 

woodwinds. Moreover, the instrument’s body resonates with the air flowing through it 

during performances[65]; as a result, the vibration may lead to more aerosols being 

generated from the condensate on the walls. The tube of a woodwind instrument is 

usually short, straight, and has a number of keyholes on the tube where exhaled air may 

contact ambient air. Therefore, compared to the brass instrument, when playing a wood 

instrument, there is much less water condensations in the tube and aerosols can spread 

faster by air mixing.  

The airflow of aerosol plumes from musical performances may also be 

influenced by the acoustics. The flute had the highest source air velocity and source 

airflow rate among the instruments because it produces sound by air vibration[68]. The 
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air jet formed by singing also had a relatively high source velocity, because it was 

directly released to indoor air without periodic valving actions of reeds or lips. The air 

jets formed by playing woodwind instruments with a single reed had higher velocities 

than those of brass instruments. This may result from different interactions of the reed 

and lips. A single reed may have an opening area greater than one formed by lipping 

on a brass instrument, allowing more air flow. The oboe, which uses a double reed, had 

the lowest velocity among woodwind instruments and the lowest source airflow rate 

among all the instruments. Compared to air-jet instruments (flute) and single-reed 

instruments (clarinet and saxophone), double-reed instruments can generate much 

higher intraoral pressure with decreased source airflow rate for exhaled air because of 

the smaller gap between the blades of the reed[69]. Playing posture could be a source 

determinant for the horizontal length of the aerosol plume, as it would affect the 

direction of the jet. Furthermore, the length and shape of an air jet are determined by 

the physical characteristics of the instruments and the musicians’ blowing techniques. 

Future research is needed to focus on the aerosol generation and airflow formation 

mechanisms influenced by the acoustics of musical performances. 

Aerosol plumes created by the same instrument can vary widely in the source 

aerosol concentration, source velocity, and horizontal jet length for different human 

subjects. For the French horn, we measured source aerosol concentrations to be 

approximately 26000 particle/L, 6700 particle/L and 1800 particle/L, respectively, for 

three human subjects. The high shedder had the highest concentration at about five 

times higher than the average concentration of the other two French horn players.  

Notably, this player was observed to more frequently remove condensations in the 
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instrument in comparison to the other players. This could confirm that the accumulated 

condensation generates a significantly greater amount of aerosol or indicate that the 

player employed wetter lips, generating more aerosol at the mouthpiece. Therefore, 

even though singing and brass instruments produce a measurably lower risk on average 

than the woodwind instruments, it is possible to have an individual musician with high 

particle shedding rate and associated risk. However, the occurrence of this phenomenon 

was roughly 5% in this study, the sample was too small to make any conclusions 

regarding the general population of musicians. Different characteristics of aerosol 

plumes between each human subject might have been caused by diverse playing 

techniques and personal features. Further work is required to explore the variances 

caused by individual musician differences.  

Implementing mitigation strategies is strongly recommended in musical 

performances to prevent airborne microorganism transmission. The comprehensive 

characterization factors and categorization can offer a reference for the protection 

strategies in musical performances. For example, if the musical performance has 

multiple instruments, which were listed in different categories, the decision maker can 

customize the protection strategy with the help of the comprehensive characterization. 

Higher level protection, such as a greater social distancing amount, could be 

implemented for the instruments with higher comprehensive characterization factors. 

Aerosol measurements should consider the evaporation of particles because it 

influences particle diameters[70]–[73]. The present study focused on particles with 

diameters between 0.3 µm and 10 µm because of their potential for aerosol transmission 

of viruses that is much more difficult to control than a spray of virus droplets 
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characterized by larger particles. The measured air velocities were lower than 5 m/s, 

indoor air temperatures were at 22°C ± 2°C, and relative humidity levels were between 

30% and 40%. Under these environmental conditions, the evaporation of particles is 

almost instantaneous[70], so particles were fully-evaporated before reaching the 

particle counter. Nicas et al.[74] identified that evaporation of aerosols rapidly reaches 

steady state with the particle dimeter equal to half of its original size in typical indoor 

environmental conditions, similar to the experimental conditions in the present study. 

Therefore, the diameters of the sampled fully-evaporated aerosols were roughly half of 

their original diameters at the musician mouth openings or instrument outlets. 

However, high uncertainties are possible because the one-half shrinkage factor was a 

rough estimation from Nicas et al.[74], and no other studies directly investigating the 

shrinkage of expelled respiratory particles were found[74].  

Importantly, the transport of aerosols close to the source with resultant near-

field aerosol concentrations is dominated by the source aerosol emission rate and a 

plume primarily driven by the initial air jet momentum. Further from the source, the 

transport of aerosols with resultant far-field aerosol concentrations is also impacted by 

the indoor airflow field. The present study focuses on characterizing the near field 

aerosol plume properties because this is the first step in analyzing the far field aerosol 

concentrations and transport. Future research could use the findings in the present study 

to predict and analyze far field aerosol concentrations and transport. 

Previous studies provided valuable data to evaluate our measurements. 

Importantly, in the present study, the data collection instrument allowed for collection 

of aerosols with particle diameters between 0.3 μm and 10 μm, which is a typical range 
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for airborne aerosols. Therefore, the comparative analysis between the current and 

existing studies used 0.3 μm to 10 μm range of aerosol diameters. Smaller aerosols than 

this range are also important[75], but were not collected because the particle counter 

used in this study cannot collect particles smaller than 0.3 μm. Lager particles are 

droplets that were outside of the scope of the present study. During each of aerosol 

measurement experiments, the background concentration of particles was maintained 

at a very low level of 0.5 particle/cm3. The saturation limit of the data collection 

device[76], of 210 particle/cm3, was never reached during our experiments. In the 

comparison, most of our results are in the same magnitude as the results of Alsved et 

al.[17], Gregson et al.[26], He et al.[28], Stockman et al.[29], and McCarthy et al.[30]. 

The differences might be caused by different sampling sizes, sample variances, and 

different measuring equipment and setups in each experiment. For the source air 

velocity, our measurements are comparable to Stockman et al.[29], Bahl et al.[31], and 

Becher et al.[32]. For the jet length, our measurements are in the same magnitude of 

the result from Becher et al.[32]. However, the plume influence distance is shorter than 

the result from Gantner et al.[34]. The differences may be caused by different 

experiment methods and setups. Our experimental investigation could be limited by the 

number of human subjects. Also, for the convective transport characterization, the PIV 

imaging area may not fully cover the whole flow area of the musical performances with 

high velocities. Finally, some laser reflections by the instrument body during the PIV 

experiment, e.g. trombone, could also influence the accuracy of the measurements. 
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3.5 Summary 

This study concluded that the characterization of aerosol plumes requires the 

source strength, characterized by the aerosol emission rate (brass 383 particle/s, singing 

408 particle/s, woodwind 480 particle/s), and the convective transport capability, 

characterized by the plume influence distance (brass 0.6 m, singing 0.6 m, woodwind 

0.8 m), to indicate risk of airborne virus transmission. The source strength, 

characterized by the source aerosol emission rate, requires the measurements of both 

source aerosol concentrations and source airflow rates. If only the source aerosol 

concentration is measured, important information about the air flow is ignored, so the 

source strength characterization will be incomplete. For example, the clarinet showed 

medium source aerosol concentration, but the highest source aerosol emission rate due 

to a high source airflow rate. Therefore, the source strength of aerosol plumes from 

clarinet would have been underestimated, if the source airflow rate had not been 

measured. From the results of the convective transport capability, the study found that 

the length and direction of the aerosol plumes in front of the musicians varied due to 

different instrument orientations and source velocities. To offer comprehensive 

information on the aerosol plume within a specified musical performance, it is 

necessary to comprehensively consider its source strength and convective transport 

capability simultaneously. As an example, playing flute generated aerosol plumes with 

the lowest source strength, but the highest convective transport capability. If we only 

considered the characteristic of the source strength, the risk assessment of the infection 

transmission caused by the aerosol plume from flute playing would be biased in an 

unsafe way. It is important to note that the comprehensive results show that airflow 
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from musical performances is a critical component which influences the risk of 

airborne microorganism transmission. Overall, woodwind instruments showed the 

highest risk with around 20% higher source aerosol emission rates and 30% higher 

plume influence distances compared to the average of the same risk indicators for 

singing and brass instruments.  
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4. Data-driven thermal comfort identification 

This chapter is reproduced from the following journal paper: 

L. Wang, D. A. Dalgo, N. Mattise, S. Zhu, and J. Srebric, “Physiological 

responses and data-driven thermal comfort models with personal conditioning devices 

(PCD),” Building and Environment, p. 110290, Apr. 2023, doi: 

10.1016/J.BUILDENV.2023.110290. 

4.1 Introduction 

One of the primary functions of building systems is to provide an acceptable 

indoor thermal environment to the occupants [35]. Based on the thermal comfort 

standard of American Society of Heating, Refrigerating and Air-Conditioning 

Engineers (ASHRAE) [77], the state of art centralized heating, ventilation, and air-

conditioning (HVAC) system is designed to satisfy 80% of the building occupants, but 

the common real satisfaction rate is only about 50% [78]. One main reason is that the 

uniform indoor environment with the centralized HVAC can be perceived differently 

by its occupants because of large individual differences in actual occupant needs. Thus, 

personalized air conditioning has been proposed to regulate the microenvironment in 

the proximity of occupants in accordance with their thermal preferences [46]. As an 

expression of this concept, a personal conditioning device (PCD) was developed to 

provide both localized thermal comfort and simultaneously allowed for energy savings 

[79], [80]. The PCD units created comfortable microenvironment due to the forced 

convection of local air-conditioning given the fact that occupants prefer higher levels 

of air movement in hot environmental conditions [81]. Importantly, the PCD-based 
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thermoregulation in an occupant’s microenvironment allow for a potential increase of 

the indoor setpoint temperatures in the uniform environment, resulting in overall 

energy savings and reduced carbon footprint for future building that might use this 

technology coupled with the central HVAC systems [80]. 

Modeling of thermal sensation and comfort is critical to the design, evaluation, 

and control of indoor thermal environment. Thermal comfort of occupants in uniform 

environments with centralized HVAC systems have been investigated for decades. The 

most popular thermal comfort model is Fanger’s Predicted Mean Vote/Predicted 

Percentage of Dissatisfied (PMV/PPD) model [37], which is adopted in the domestic 

and international standards, such as ASHRAE-55 [77] and ISO-7730 [82]. Fanger’s 

model was based on the mathematical deduction of heat transfer process, originally 

developed for a group of people in uniform, steady, and thermally neutral indoor 

environments [83]. However, due to the frequent changes of the indoor environment 

and activity levels, people’s thermal comfort is unsteady most of the time. Moreover, 

because of the influences of social, cultural, and personal factors [84], individual 

occupant’s thermal sensation and comfort may differ from one another when exposed 

to the same thermal stimulation [85]. In recent years, personal thermal comfort models 

were developed to predict thermal comfort requirements of individual occupants more 

accurately than the predictions with aggregate models in uniform environments. 

Studies have shown that the personal thermal comfort models can increase energy 

benefits and occupant associated acceptability in both single-occupant and shared built 

environment [44].  
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The development of sensor techniques has made it possible for the real-time 

monitoring of physiological data, such as skin temperature, heart rate, and skin 

conductivity, which are associated with a person’s thermoregulatory process [86]. As 

a result, studies presented data-driven models to predict personal thermal comfort based 

on physiological data collected in real time [45], [87], [88]. Multiple review papers 

[45], [89], [90] summarized the commonly used machine learning methods for data-

driven thermal comfort model development. The machine learning methods used in 

relevant studies include regression methods [91], k nearest neighbor (KNN) [92], 

support vector machine (SVM) [93], artificial neural network (ANN) [94], random 

forest (RF) [95], decision tree (DT) [96], naïve Bayes (NB) [97], etc. Among these 

machine learning methods, SVM, ANN, and RF are the most frequently used ones [89]. 

SVM can find the optimal margin between classes and obtain good performance with 

a relatively small data set [98]. ANN has strong power to effectively solve non-linear 

and complex problems [99]. RF ensembles multiple decision trees to avoid the possible 

overfitting caused by a single decision tree [100]. In addition, KNN was also used by 

relevant studies because of its simplicity and good performance [96], [101], [102]. 

The existing aggregate or personal thermal comfort models, either physical or 

data-driven, were mostly developed for the occupants in a uniform environment 

controlled by the centralized HVAC system. Several studies [103], [104] used thermal 

comfort models developed for uniform environment on the cases of PCDS, such as 

Fanger’s model [37] and bio-heat comfort model [105]. However, the PCD aims to 

only condition a relatively small space of the user, microenvironment, with nonuniform 

or non-steady-state thermal conditions. Thus, the thermal comfort models for 
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microenvironments created by centralized HVAC may not be applicable to the 

occupant comfort in nonuniform microenvironments [106]–[109]. Only few studies 

focused on the thermal comfort modeling with PCD [102], [110]. A study compared 

different machine learning methods and sensing techniques to build personal comfort 

models with a local fan or heater [102]. It shows that the data-driven thermal comfort 

model for centralized HVAC system had low accuracy (about 0.5) in PCD conditions. 

Based on this, this study suggested better sensing and modeling methods for the PCD 

with 0.88 overall prediction accuracy. Another study [110] quantitatively described the 

occupant thermal preference adaptation method, and proposed a classification method 

of occupant thermal preference recognition in personal microenvironment. Overall, it 

is necessary to develop high accuracy thermal comfort models that can quickly and 

effectively capture the thermal comfort variation triggered by local thermal stimulation 

caused by a PCD [102], no matter PCD is used alone or together with centralized 

HVAC.  

Most of the thermal comfort models take the skin temperature, heart rate, and 

skin conductance, etc., as thermal physiological inputs [86]. However, these parameters 

may be not good enough to account for one’s thermoregulatory process, which is 

specifically controlled by the autonomic nervous system [111]. The autonomic nervous 

system consists of the parasympathetic nervous system (PNS), accounting for the 

rest/digest activities and the restoration of in vivo thermal balance, and the sympathetic 

nervous system (SNS), responsible for the fight-or-flight response when exposed to 

stressful environments, such as a hot environment. The balance between the PNS and 

SNS can be assessed by the heart rate variability (HRV) [112]. HRV indices include 
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time-domain, frequency domain, and non-linear variables [113]. Time-domain HRVs 

quantify the amount of variability in measurements of time intervals between 

successive heartbeats, which is called inter-beat interval (IBI). Frequency-domain 

HRVs estimate the distribution of absolute or relative power of the IBI into four 

frequency bands, which are ultra-low-frequency (ULF, ≤ 0.003 Hz), very-low-

frequency (VLF, 0.003-0.04 Hz), low-frequency (LF, 0.04-0.15 Hz), and high-

frequency (HF, 0.15-0.40 Hz). Non-linear HRVs are usually used to quantify the 

unpredictability of the time series, which represents the complexity of the HRV 

regulation mechanisms. Earliest in 1995, Hasebe et al. [114] used R-R interval and the 

coefficient of variation in R-R intervals (CVR-R) to point out the potential to evaluate 

thermal comfort with HRV. The R-R interval is defined as the time elapsed between 

two successive heartbeats. After that, the frequency domain HRV LF/HF was focused 

by numerous follow-up studies, because it is the key parameter that represents the ratio 

of the sympathetic nervous activity and parasympathetic nervous activity. A number of 

studies show that LF/HF is high for people staying in a cold or hot environment, and 

low for people in a comfortable thermal environment [115]–[120]. Thus, it becomes a 

representative HRV index to evaluate human thermal comfort. Another HRV index, 

pNN50, was also investigated by a study [121]. The results show that pNN50 decreased 

when human subjects feel hot. Some studies explored the feasibility to evaluate 

occupant thermal sensation and comfort with multiple HRV indices by data-driven 

methods for the uniform environment created by centralized HVAC system [122]–

[124]. The prediction accuracies achieved by these studies vary from 0.79 to 0.93. 

Hilbert Transform was used by a study to extract the instantaneous amplitude (iA) of 
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the LF and HF, the highest prediction accuracy reached 0.73 [125]. However, it is also 

found that the variations of indoor air temperatures may not cause significant changes 

on LF/HF [122], [126]. Time-domain, frequency-domain, and non-linear HRV indices 

can show various trends with the change of the room temperature [122]. In addition, 

most of the relevant studies were conducted for the whole-room environment created 

by the centralized HVAC systems [122]–[124]. Almost no study was found considering 

HRV indices with the PCD. Accordingly, the HRV responses and the possibility of 

using HRV to evaluate thermal comfort with the PCD need to be investigated. 

Based on the above literature review, we can see the lack of a high-performance 

model to predict thermal comfort in real time when using a PCD. HRV indices appear 

useful for such a model as they represent the principle of the thermoregulatory process 

to thermal stimulation. Therefore, this study considers HRV indices in addition to the 

wrist temperature to be the physiological variables for the thermal comfort prediction. 

We conducted human subject experiments to monitor human subjects’ time-domain, 

frequency-domain HRV indices, as well as wrist temperature using a self-made non-

invasive bracelet sensor. The thermal sensation and comfort were collected by the 

questionnaire survey. The changes of physiological variables with the PCD may be not 

as obvious as the cases with the centralized HVAC system due to the nonuniform 

thermal environment. In this case, data-driven modeling may provide the possibility to 

predict thermal comfort from the continuous physiological variables. Therefore, we 

explored the responses of the collected physiological data and surveys, at the same time 

used machine learning methods to develop data-driven models for the real-time thermal 

sensation and comfort prediction with the PCD. 
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4.2 Methodology 

Figure 16 presents a graphical illustration of the research scheme applied in this 

study, which includes the data collection, data analysis, and machine learning. In this 

section, we provide the details of the methodology of this study, including human 

subject information, sensor information, experimental setup and procedure, HRV 

indices, data process, and machine learning methods. The human subject experiment 

was approved by the Institutional Review Board (IRB) of the University of Maryland 

(IRB: 655690). 

 

Figure 16 Research scheme of this study 

Human subject information 
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In our study, the human subjects were randomly sampled to represent the target 

population. The genders were balanced in the sampling. The selection criteria for 

human subjects specified healthy adults with no ongoing fever, cold/flu symptoms, or 

chronic diseases that could potentially affect the physiological variables being 

monitored. A total of 14 human subjects participated in the experiments. Each human 

subject provided information about their physical attributes, such as body weight, 

height, age, and gender. According to their Body Mass Index (BMI), all the human 

subjects were classified as normal weight (18.5 – 24.9). The human subjects were aged 

from 20 to 29, and most of them were undergraduate students. Table 9 lists the 

information of human subjects. Each human subject was required to wear office type 

clothing (pants, shirt, and closed-toe shoes), which resulted in a clothing level of 

approximately 1.0 clo [77]. The thermal resistance of the office chair is important when 

considering thermal comfort in a quiescent fluid resulting in natural convection around 

the whole human body. In our experiments, the same chair was used to keep its thermal 

resistance identical for each human subject. Therefore, both chair and clothing thermal 

resistance were constant in our experiments and did not influence measurements of 

comfort and physiological outcomes with the changing personal environmental 

conditions. 

Table 9 Information of human subjects. 

Information Values 

Number of Human Subjects 14 

Weight (kg) Mean: 65.6, Min: 54.0, Max: 79.4, SD: 8.8 

Height (cm) Mean: 172.3, Min: 156.0, Max: 185.9, SD: 9.1 
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Gender 6 Male 8 Female 

 

Sensor information 

It is increasingly popular and important to monitor physiological data with 

wearable technologies without interfering with people in real-world applications. 

Therefore, we designed and developed a bracelet sensor to non-invasively collect the 

wrist temperature and HRV of the human subjects with the sensors controlled by a 

processor (Arduino pro-mini 5V) and packaged in a 3D printed bracelet-type housing, 

as shown in Figure 17. With the bracelet sensor device, wrist temperature was measured 

by 2 DS18B20 sensors at a frequency of 2 Hz, and the photoplethysmography (PPG) 

signal was measured by the pulse sensor at a frequency of 230 Hz. PPG uses a light 

source and a photodetector to measure the volumetric variations of blood circulation. 

This bracelet sensor was able to measure the PPG signal with a similar trend compared 

to the more intrusive and expensive electrocardiograms used in other studies [127]. The 

HRV indices were calculated by the python package HeartPy [128] based on the 

collected PPG signal. Importantly, wearing the bracelet did not increase the wrist 

temperature by producing heat or cause skin sweating at the wrist during the 

experiment. The ambient temperature and relative humidity were measured by the 

temperature transmitter and relative humidity transmitter located in the return air duct 

of the environmental chamber. To secure privacy of the human subjects, all the data 

was sent, stored, and analyzed in a local server. The technical specifications of the 

bracelet sensor components are shown in Table 10.  

Table 10 Technical specification of the sensors. 
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Components Technical information Accuracy 

Processor 
Arduino Pro Mini, 5 Volts, 16 

MHZ 
N/A 

PPG Sensor Pulse sensor, 5 Volts N/A 

Wrist 

Temperature 

Sensor 

DS18B20, 0.5 °C resolution 
± 0.5 °C from -10 °C to 

+85 °C 

Ambient 

Temperature 

Sensor 

Temperature Transmitter, ACI, 

0.1 °C resolution 

± 0.2% of full scale for 

spans < 275 °C 

Ambient RH 

Sensor 

Humidity Transmitter, ACI, 

0.1% RH resolution 

± 1% over 20% span 

(between 20 to 90%) 

 

 

Figure 17 Human subject wearing the bracelet sensor. 
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Experimental setup and procedure 

The experiments were conducted from April 2017 to March 2018. We 

conducted experiments with human subjects in an environmental chamber (4 × 4 × 4.5 

m) with two desks and two computers. During the design phase of the experiment, we 

exanimated the spatial variability of the air temperature and relative humidity in the 

environmental chamber. The DHT22 sensors were placed on the locations suggested 

by ASHRAE standard 55 [77]. The measured variation range of the air temperature and 

relative humidity were ± 0.5 °C and ± 5 %, respectively. No significant spatial 

variabilities were detected. Because of the same experimental setup, the spatial 

variabilities were identical in each experiment. Therefore, they were not repetitively 

measured. The air temperature and relative humidity sensors in the return air duct can 

accurately represent the uniform environment of the environmental chamber. Before 

each experiment, the human subjects were arranged to stay in the anteroom, an office 

room maintained at a temperature of 24 °C, for 15 minutes to acclimatize to a neutral 

thermal condition. In the anteroom, first a visual inspection was carried out to make 

sure that human subjects had appropriate clothing. Then a detail explanation of the 

experiment and appropriate documentation were provided to the human subjects to 

ensure full consent. A relevant study [129] showed that, human’s thermal 

sensation/comfort and skin temperature can reach near steady-state in 15 minutes after 

a step temperature change. 10-15 minutes time interval is commonly used for the pre-

experimental acclimatization in multiple relevant studies conducted human subject 

thermal comfort experiments [102], [129]–[132]. After 15 minutes, the human subjects 

would be introduced into the environmental chamber and stayed there for 100 minutes. 
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As the studies investigated the dynamic thermal comfort [132]–[134], in the 

experiment, we dynamically changed the uniform indoor environmental conditions to 

make human subjects experience thermal discomfort. In this case, human subjects 

would consider to request the PCD to adjust their personal microenvironmental 

conditions to relieve thermal discomfort. The air temperature in the chamber was 

maintained at 28 ± 0.5 °C during the first 50 minutes, then increased and maintained at 

30 ± 0.5 °C during the latter 50 minutes. Moreover, the relative humidity during the 

experiments was maintained at 50 ± 5%. To simulate a real-world office environment, 

throughout the 100-minute period, each human subject was asked to perform office 

type activities, such as reading, writing, and typing, with an activity level of around 

1.0-1.2 Met [77]. Each human subject had a PCD located approximately 1 ± 0.1 m 

away at his/her left or right side, and was provided the option to use the PCD at any 

point in time upon request, except during the time interval of the indoor air temperature 

change from 28 °C to 30 °C. Specifically, the PCD device used in this study was the 

Prototype Y2V1 Ice RoCo with technical details available in the literature [79], [135]. 

It was reported that local thermal sensation of upper body is more weighted to the 

overall thermal sensation than the local thermal sensation of head and lower body, with 

the weights of 0.6, 0.21, and 0.19, respectively [136]. Therefore, the PCD supplied 

cooled air towards the upper torso with about 5 °C lower than the room air temperature 

and at airflow rates varying between 18.8 ± 5 L/s and 28.3 ± 5 L/s. The outlet diameter 

of the PCD is 7.62 cm. The area is 45.6 cm2. The air velocities vary between 4.12 ± 1 

m/s and 6.21 ± 1m/s. The temperature and flow rate of the supplied air were designed 

based on the thermal comfort study using CFD [137]. Moreover, the human subjects 
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continuously reported their thermal sensation and thermal comfort levels every 10 

minutes. The thermal sensation levels were based on a -3 to 3 scale used in the 

ASHRAE Standard 55 (hot, warm, slightly warm, neutral, slightly cool, cool, and cold) 

[77]. The thermal comfort levels were based on a 5-point scale (very uncomfortable, 

uncomfortable, neutral, comfortable, very comfortable) used in relevant studies [123], 

[138]. 

HRV Indices 

HRV can be analyzed in terms of time domain or frequency domain. Time-

domain HRV indices quantify the amount of variability of the time period between 

successive heart beats, while Frequency-domain HRV indices transfer the time series 

data of the heartbeat to frequency domain to calculate its power by using transforming 

methods, e.g., Fast Fourier Transform (FFT). This study adopted both the time domain 

and frequency domain HRV indices [113] as introduced below. 

Time-domain indices 

Four time-domain indices were used in this study:  

SDNN, the standard deviation of intervals between normal heartbeats: 
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SDSD, the standard deviation of successive differences between adjacent R-R 

intervals: 
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RMSSD, the root mean square of successive differences between adjacent R-R 

intervals: 
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 (3) 

pNNx, percentage of R-R interval that differ by x milliseconds, 20 and 50 are the 

typical value of x:  
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where 𝑅𝑅𝑅𝑅 is the time interval between two successive heart beats (ms), 𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is the 

difference between the adjacent heartbeat time intervals (ms). 

Frequency-domain index 

LF/HF ratio can well represent the cooperation of PNS and SNS because LF 

power may be generated by the SNS, and HF power may be produced by the PNS. 

Homeostasis based on the complementary actions of PNS and SNS represents a human 

body’s ability to uphold optimum conditions when encountering the changes in external 

stimuli [139]. Therefore, in this study, we used the LF/HF ratio as frequency-domain 

index, with LF (0.04–0.15 Hz) and HF (0.15–0.4 Hz) signals extracted from the 

measured PPG signals.  

In this study, all the time domain and frequency domain HRV indices were 

calculated as the short-term in a 5-minute window. 

Data process and analysis 

Due to individual differences in thermal tolerance, the PCD usage varied among 

human subjects. For data process, we mark the moment of turning on the PCD, i.e., 
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PCD requesting, as time 0. Negative and positive time value represents the time before 

and after the moment of PCD requesting. To avoid the disturbance and noise brought 

by the start and the end of the experiments, we calculated and visualized the mean and 

95% confidence interval of the 60-minute effective time series data among all human 

subjects, 30-minute time interval before and after the moment of PCD requesting. To 

statistically study the significance of the PCD requesting impact, we selected the data 

in a 10-minute time interval before and after the moment of PCD requesting to conduct 

the two-sample t-test. The significant level α was selected to be 0.05. Python was used 

as the tool of data process and analysis. 

Machine learning 

To implement the machine learning methods to develop the data-driven models, 

we did the pre-processing to clean data, resample data and normalize data. First, data 

was cleaned by replacing the outliers with the medium of the dataset. Next, we 

resampled raw data measured in different sampling frequencies, with linear 

interpolation for up-sampling and mean value method for down-sampling. Finally, the 

Min-Max scaler was used to scale the data to be with zero mean and unit variance. The 

dataset was split in training (75%) and test (25%) using stratified sampling. After the 

pre-processing, the python machine learning package, scikit-learn, was used as the tool 

for model development and performance evaluation. The dataset of the present study 

has labels, which are thermal sensation and comfort indices, so we used supervised 

learning methods. The thermal sensation and thermal comfort indices are categorical, 

therefore the machine learning methods we selected are classifiers. Based on the 

relatively small size of our dataset, this study did not use the machine learning methods 
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for large datasets, such as the neural network. Importantly, because different datasets 

have their own properties, such as different complexities and dimensionalities, there 

are no strict rules on selecting the machine learning methods for a supervised 

classification problem. It is common to try multiple machine learning methods and 

selected the one with the highest accuracy [140]. Therefore, due to the uniqueness and 

high dimensionality of our dataset, which includes the wrist temperature and 6 HRV 

indices in time and frequency domains, we believe it is important to investigate the 

performances of multiple commonly used machine learning classification methods 

mentioned in relevant studies. Based on the literature review of the machine methods 

in thermal comfort studies, we selected four most commonly used methods including 

linear support vector machine (SVM_L), k nearest neighbor (KNN), random forest 

(RF), and support vector machine with RBF kernel (SVM_RBF). We did not use the 

neural network due to its complexity of hyperparameter tuning.  

Linear support vector machine (SVM_L) 

The linear support vector machine is one of the most widely used machine 

learning classification methods. It separates data using hyperplanes as decision 

boundaries based on the linear combination of input features. The hyperplanes are 

optimized to have the largest margin between the data and the decision boundary. We 

selected the linear support vector machine as the baseline model to compare with the 

other machine learning methods, because it can achieve acceptable performance in 

most applications. The regularization parameter C was tuned in the model 

development. The candidate values of C were 0.1, 1, 10, and 100.  

K-Nearest Neighbour (KNN) 
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The KNN is a non-linear supervised machine learning method. The principle 

behind the KNN is to find a predefined number of training samples closest in distance 

to the new point and predict the label. The Euclidean distance is the most common 

choice to measure the distance of between data points. We tuned k, the hyperparameter 

of the KNN model, which decides the number of closest training samples. The value 

range of k was from 2 to 50. 

Random forest (RF) 

Random forest is an ensemble of decision trees. It trains a group of decision 

trees based on different random subset of the training set, and makes the prediction by 

selecting the most voted class among the predictions of all individual trees. To optimize 

the model performance, the hyperparameters we tuned for random forest include the 

number of trees and the maximum depth of trees. The number of trees was selected 

from 10, 50, 100, 200, and 300. The maximum depth of trees was selected from 3, 5, 

and 10. 

Support vector machine with RBF kernel (SVM_RBF) 

Even though the linear support vector machine works well with the linear 

separable data, a lot of real-world data sets are nonlinear. Therefore, a non-linear kernel 

can be used to help solve this issue. We used the Gaussian Radial Basis Function (RBF) 

as the non-linear kernel. The regularization parameter C and kernel coefficient γ are 

the hyperparameters needed to be tuned. The candidates of C and γ were 0.1, 1, 10, and 

50.  

Feature selection 
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Table 11 shows the value range of the measured physiological variables (input 

features) and thermal comfort/sensation indices (output). During the machine learning 

model fitting, all the input features were scaled to be with zero mean and unit variance. 

Table 11 Value range of the physiological variables and thermal comfort/sensation 

indices. 

Name Unit Minimum Maximum 

Wrist Temp °C 30.10 36.65 

SDNN ms 40.06 147.29 

SDSD ms 11.52 107.18 

RMSSD ms 17.96 160.98 

pNN20 % 33.01 99.77 

pNN50 % 1.17 92.76 

LF/HF - 0.03 3.82 

Thermal Sensation - -1.00 3.00 

Thermal Comfort - -1.00 1.00 

 

One of the objectives of our study is to explore the performance improvement 

by using HRV indices. The skin temperature is commonly used for thermal comfort 

modeling by relevant studies [141], [142], because it is the most straightforward 

physiological variable related to human thermal regulation. Therefore, we developed 

M1 as the baseline feature group which only using the wrist temperature. Time domain 

and frequency domain HRV indices may have different influences on the thermal 

sensation/comfort prediction. To explore these effects of HRV indices in different 
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domains, we developed the feature groups M2 andM3. with one typical HRV indices 

in time domain (SDNN) and frequency domain (LF/HF) in addition to wrist 

temperature. Because the feature space is high-dimensional, we evaluated the feature 

importance using the random forest. Figure 18 shows the feature importance of thermal 

sensation and comfort. The wrist temperature has the highest score for thermal 

sensation, while the pNN20 is the most important feature for thermal comfort. We 

selected the first four important features (wrist temperature, pNN20, pNN50, and 

SDNN) for both thermal sensation and comfort as the feature group M4. Finally, we 

developed M5 using the wrist temperature and all calculated HRV indices to evaluate 

the performance improvement, including SDNN, SDSD, RMSSD, pNN20, pNN50 and 

LF/HF. The feature groups (M1-M5) were introduced in Table 12. 

 

Figure 18 Feature importance analysis of (A) thermal sensation (B) thermal comfort 

Table 12 Feature group description. 

Groups Feature Description 

M1 Wrist Temperature 

M2 Wrist Temperature + SDNN 
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M3 Wrist Temperature + LF/HF 

M4 Wrist Temperature + SDNN + pNN20 + pNN50 

M5 
Wrist Temperature + SDNN + SDSD + RMSSD + pNN20 + pNN50 + 

LF/HF 

 

Hyperparameter tuning 

We used the exhaustive grid search with the 5-fold cross validation to tune the 

hyper parameter of the machine learning models. The optimal hyperparameters of 

thermal sensation and thermal comfort models with different feature groups are listed 

in Table 13. 

Table 13 Optimal hyperparameters of machine learning models 

 SVM_L KNN RF SVM_RBF 

 C k max depth number of trees C γ 

TS-M1 10 15 10 300 50 50 

TS-M2 100 7 10 300 50 50 

TS-M3 100 6 10 100 50 50 

TS-M4 100 2 10 200 50 50 

TS-M5 100 2 10 300 10 50 

TC-M1 0.1 25 10 200 50 50 

TC-M2 0.1 3 10 200 50 50 

TC-M3 0.1 3 10 300 50 50 

TC-M4 0.1 3 10 300 50 50 
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TC-M5 10 3 10 100 10 50 

 

Performance evaluation 

To validate the generalizability of the models, the k-fold cross-validation was 

implemented on the training dataset with 5 folds (k=5). Multiple indices were used to 

evaluate the performance of the machine learning classification models: 

• Accuracy: The accuracy score is a widely-used performance evaluation 

method of machine learning models defined as the fraction of correct 

predictions. If the entire set of the prediction matches with the true 

values, the accuracy is 1. Otherwise, it is 0. 

• F1 score: If the imbalance of the classes exists in the datasets of a 

classification problem, the commonly used accuracy score may fail to 

evaluate the performance of the model. Thus, we also report the F1 score 

[143], which is a suitable measure of models with imbalanced classes, 

to evaluate the model performances. The F1 score is a way to combine 

the precision and recall of the model. It is defined as the harmonic mean 

of the model’s precision and recall. Because each class is treated to be 

equally important in our case, the F1 score of the model is the macro 

average of those among all classes. 

• AUC: The AUC is defined as the area under curve of the receiver 

operating characteristic (ROC) curve, a graphical plot illustrates the 

performance of classifier as its discrimination threshold is varied [144]. 
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A perfect classifier has an AUC equal to 1, a worst classifier has an 

AUC equal to 0.5. 

4.3 Results 

This section introduces the data analysis of the thermal sensation/comfort 

patterns and physiological responses with the PCD, as well as the performances of the 

data-driven models. 

Thermal Sensation Responses 

Figure 19(A) shows the mean and 95% confidence interval of the time-series 

thermal sensation data among all the human subjects. Time 0 on the x axis represents 

the moment of PCD requesting. Negative and positive values on the x axis represent 

the time before and after PCD requesting. From the plot we can see that the mean 

thermal sensation before PCD requesting started from around 1.5 (slightly warm to 

warm), and gradually increased to be higher than 2 (warm to hot) right prior to PCD 

requesting. Then, the mean thermal sensation dropped to around 0.5 (neutral to slightly 

warm) soon after starting to use the PCD and deceased to around 0 (neutral). Figure 

19(B) visualizes and compares the thermal sensation distribution in 10-minute time 

intervals before and after PCD requesting. The mean value of thermal sensation was 

about 2 (warm) before PCD requesting, and 0.5 (neutral to slightly warm) after PCD 

requesting. The p-value of the two-sample t-test was 3.83e-6 < 0.05, which shows a 

significant difference in thermal sensation before and after PCD requesting. According 

to these results, in our experiment, the PCD can significantly change people’s thermal 

sensation from warm to neutral. 
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Figure 19 Statistical analysis results for thermal sensation. (A) Mean and 95% 

confidence interval of thermal sensation. (B) Comparison of the thermal sensation 

distribution before and after PCD requesting. 

Thermal Comfort Responses 

Figure 20(A) shows the mean and 95% confidence interval of the time-series 

thermal comfort data among all the human subjects. From the plot we can see that the 

mean thermal comfort before PCD requesting started from about 0 (neutral); however, 

it continuously decreased due to the high temperature environment, and reached around 

-0.5 (uncomfortable) before using PCD. Soon after PCD requesting, the mean thermal 

sensation jumped to be higher than 0.2 (neutral to comfortable) and maintained in the 

comfortable region. Figure 20(B) visualizes and compares the thermal comfort 

distribution in 10-minute time intervals before and after PCD requesting. The mean 

value of the thermal comfort was about -0.4 (uncomfortable) before PCD requesting, 

and 0.2 (neutral to comfortable) after PCD requesting. The p-value of the two-sample 

t-test was 4.7e-5 < 0.05, which shows a significant difference in thermal comfort before 

and after PCD requesting. These results show that running the PCD can significantly 
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change the thermal comfort of the human subjects from uncomfortable to neutral or 

comfortable. 

 

Figure 20 Statistical analysis results for thermal comfort. (A) Mean and 95% 

confidence interval of thermal comfort. (B) Comparison of the thermal comfort 

distribution before and after PCD requesting. 

Wrist Temperature Responses 

Figure 21(A) shows the mean and 95% confidence interval of the time-series 

wrist temperature data among all the human subjects. The wrist temperature fluctuated 

randomly between 33 °C to 34 °C. No clear patterns of wrist temperature response can 

be identified from the time-series data. Figure 21(B) visualizes and compares the wrist 

temperature distribution in 10-minute time intervals before and after PCD requesting. 

The mean wrist temperatures before and after requesting the PCD were both about 34 

°C. The use of PCD could not make an observable change. The p-value of the two-

sample t-test was 0.11 > 0.05, which shows the difference between the two samples 

were non-significant.  

The non-significant change on wrist temperature can be explained as follows. 

Varying the indoor air setpoint temperature controlled by the centralized HVAC can 
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cause the heat transfer on human’s overall body surfaces, thus the wrist temperature 

follows the pattern of the setpoint temperature. However, using the PCD particularly 

affects the limited body surfaces exposed to the personalized airflow [145]. In our 

experiment, the convective heat transfer caused by the PCD mainly happened on the 

upper torso, not the overall human body. As a result, the wrist temperature cannot show 

a clear pattern with using the PCD. In this case, the traditional thermal comfort models 

based on skin temperatures for uniform indoor environment may not be compatible 

with this unclear wrist temperature pattern to provide successful prediction with the 

PCD. 

 

Figure 21 Statistical analysis results for wrist temperature. (A) Mean and 95% 

confidence interval of the wrist temperature. (B) Comparison of the wrist temperature 

distribution before and after PCD requesting. 

Heart Rate Variability (HRV) Responses 

The mean and 95% confidence interval time series data are shown in  

Figure 22(A) for SDNN and in  

Figure 22(C) for LF/HF. Some spikes can be noticed, but only a noisy pattern 

of SDNN and LF/HF responses can be found on the time-series data. The visualization 
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and comparison of the distributions in a 10-minute time interval before and after PCD 

requesting are shown on  

Figure 22(B) for SDNN and  

Figure 22(D) for LF/HF. From the box plots, we can find that the mean values 

of SDNN and LF/HF are close to each other. The p-values of the two-sample t-test 

were 0.75 > 0.05 for SDNN and 0.22 > 0.05 for LF/HF, both showing non-significant 

differences before and after PCD requesting. 

 

Figure 22 Statistical analysis results for SDNN and LF/HF. (A) Mean and 95% 

confidence interval of the SDNN. (B) Comparison of the SDNN distribution before and 

after the PCD requesting. (C) Mean and 95% confidence interval of the LF/HF. (D) 

Comparison of the LF/HF distribution before and after the PCD requesting. 

Machine Learning 
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The physiological responses with unclear patterns measured in the nonuniform 

environments created by the PCD could be incompatible with traditional thermal 

comfort models for uniform environments. Therefore, this study implemented machine 

learning methods as powerful tools to predict thermal sensation and comfort for PCD 

users based on these physiological responses with unclear patterns. 

Table 14 - Table 17 show the values of performance indices of machine learning 

methods with different feature groups for thermal sensation and thermal comfort 

prediction. No big deviations were found among the training, cross-validation, and test 

accuracies, which shows no overfitting happened. The test accuracy, test F1 score and 

test AUC show similar patterns. However, in some cases, especially for the Linear 

SVM, the test F1 scores are significantly lower than the test accuracies because of the 

class imbalance. Therefore, the F1 score could be a more suitable performance index 

than the other two to objectively represent the classification performance with our 

dataset. 

Table 14 Values of performance indices of the linear SVM models. 

 
Training 

Accuracy 

Cross 

Validation 

Accuracy 

Test 

Accuracy 

Test F1 

Score 
Test AUC 

TS-M1 0.219 0.206 0.215 0.093 0.614 

TS-M2 0.245 0.246 0.227 0.094 0.646 

TS-M3 0.274 0.270 0.272 0.125 0.677 

TS-M4 0.321 0.322 0.331 0.179 0.700 
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TS-M5 0.330 0.329 0.316 0.158 0.757 

TC-M1 0.398 0.398 0.398 0.114 0.576 

TC-M2 0.398 0.398 0.398 0.114 0.630 

TC-M3 0.398 0.398 0.398 0.114 0.560 

TC-M4 0.398 0.398 0.398 0.114 0.628 

TC-M5 0.422 0.419 0.426 0.166 0.707 

 

Table 15 Values of performance indices of the KNN models. 

 
Training 

Accuracy 

Cross 

Validation 

Accuracy 

Test 

Accuracy 

Test F1 

Score 
Test AUC 

TS-M1 0.439 0.419 0.392 0.288 0.802 

TS-M2 0.600 0.455 0.499 0.488 0.851 

TS-M3 0.646 0.501 0.553 0.527 0.860 

TS-M4 0.939 0.799 0.836 0.848 0.948 

TS-M5 0.968 0.866 0.884 0.900 0.972 

TC-M1 0.535 0.509 0.519 0.381 0.749 

TC-M2 0.743 0.563 0.569 0.476 0.770 

TC-M3 0.753 0.570 0.648 0.546 0.793 

TC-M4 0.939 0.845 0.881 0.900 0.974 

TC-M5 0.970 0.884 0.924 0.917 0.988 
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Table 16 Values of performance indices of the RF models. 

 
Training 

Accuracy 

Cross 

Validation 

Accuracy 

Test 

Accuracy 

Test F1 

Score 
Test AUC 

TS-M1 0.470 0.431 0.410 0.297 0.852 

TS-M2 0.805 0.538 0.577 0.547 0.917 

TS-M3 0.800 0.554 0.577 0.530 0.914 

TS-M4 0.956 0.767 0.835 0.834 0.980 

TS-M5 0.984 0.830 0.852 0.856 0.986 

TC-M1 0.563 0.548 0.539 0.406 0.828 

TC-M2 0.844 0.623 0.615 0.536 0.889 

TC-M3 0.850 0.647 0.692 0.603 0.907 

TC-M4 0.960 0.822 0.841 0.778 0.973 

TC-M5 0.967 0.844 0.869 0.760 0.981 

 

Table 17 Values of performance indices of the SVM with RBF kernel models. 

 
Training 

Accuracy 

Cross 

Validation 

Accuracy 

Test 

Accuracy 

Test F1 

Score 
Test AUC 

TS-M1 0.366 0.327 0.320 0.209 0.759 

TS-M2 0.536 0.460 0.471 0.416 0.870 

TS-M3 0.560 0.504 0.501 0.459 0.879 
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TS-M4 0.968 0.860 0.881 0.889 0.989 

TS-M5 0.989 0.922 0.918 0.922 0.996 

TC-M1 0.436 0.416 0.438 0.238 0.720 

TC-M2 0.575 0.510 0.495 0.423 0.805 

TC-M3 0.616 0.559 0.608 0.521 0.854 

TC-M4 0.963 0.884 0.900 0.878 0.987 

TC-M5 0.989 0.935 0.958 0.966 0.997 

 

Analysis of feature groups 

We calculated the average test F1 score of each feature group among all the 

machine learning methods to evaluate the performance of the feature groups. With the 

baseline feature group M1, which only includes the wrist temperature, the average test 

F1 scores are poor on predicting TS (0.222) and TC (0.285). This confirms that the 

commonly used temperature-based thermal comfort models for the uniform indoor 

environment may not work well for the nonuniform microenvironment created by the 

PCD. Comparing to the baseline feature group M1, adding additional HRV features 

(M2-M5) can improve the performance of most models. We calculated the percentage 

to assess the performance improvements. The average test F1 scores of M2, with one 

time-domain HRV (SDNN) and wrist temperature, are 0.386 for both TS and TC 

prediction. Comparing to M1, the performances are improved by 74% for TS and 35% 

for TC. The average test F1 scores of M3, with one frequency-domain HRV (LF/HF) 

and wrist temperature, are 0.410 for TS prediction and 0.446 for TC prediction. The 

performances are improved by 85% for TS and 56% for TC versus M1. M4 includes 
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the top four features selected according to the feature importance, which has the 

average test F1 scores to be 0.688 for TS and 0.668 for TC. The improving percentages 

reach 210 % for TS and 134% for TC in comparison with M1. M5 uses all the HRV 

indices in addition to the wrist temperature as features. The average test F1 scores of 

M5 achieve the highest values, which are 0.709 for TS and 0.752 for TC. The 

performances are increased by 219% for TS and 164% for TC against the baseline 

feature group. Figure 23 shows the average performance indices of different feature 

groups. The results demonstrate that, even though the patterns of physiological 

responses were unclear in the nonuniform microenvironment created by the PCD, 

adding HRVs can still provide useful information of human’s thermoregulation system 

to improve the model performance. 

 

Figure 23 Average performance indices of different feature groups 

Analysis of machine learning methods 
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Among all the machine learning methods, the linear SVM has the lowest 

performance because of the nonlinearity of the dataset. The highest test F1 scores of 

linear SVM were 0.179 for TS and 0.166 for TC. In addition, with linear SVM, adding 

part of the HRV indices cannot improve the performance of the TC prediction (TC-M2 

~ TC-M4) comparing to TC-M1. RF has the highest test F1 scores of 0.856 for TS and 

0.778 for TC. These scores are higher than those of linear SVM, but lower than those 

of KNN and SVM with RBF kernel. The highest test F1 scores of KNN reach 0.900 

for TS and 0.917 for TC, about four times higher than the those of the linear SVM. The 

SVM with RBF kernel achieves the best performance among all the machine learning 

methods, with the highest test F1 scores to be 0.922 for TS and 0.966 for TC. Figure 

24 shows the average performance indices of different machine learning methods with 

feature group M5.  

 

Figure 24 Average performance indices of different machine learning methods with 

M5 
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4.4 Discussion 

Multiple studies [103], [104] used thermal comfort models developed for 

uniform environment on the cases of PCDs. To our best knowledge, only one study 

[102] is found to publish results directly comparable to the present study results. This 

prior study developed data-driven thermal comfort models for personal conditioning 

systems using machine learning methods. The models were developed with RF, KNN, 

SVM with a cubic kernel, and decision trees based on environmental information and 

skin temperature. The highest accuracy was about 0.88 achieved by KNN for using the 

PCD (Fan Segment). In present study, the KNN also achieved good performance, 

which is consistent to the findings of the prior study. However, there are differences in 

two research findings, such as model performances, which could be due to a variety of 

factors. The main reason could be the feature selection. The prior study stated that using 

environmental sensors resulted in slightly better accuracy than physiological sensors. 

However, the present study did not use any environmental information as features, 

because the area of the jet region on user’s chest created by the personalized 

conditioning device’s is small (10-20 cm2). If the environmental sensor is not placed 

closed to the center line of the jet, the collected data would not represent the 

microenvironment created by the PCD. Users could find it difficult to position the 

sensors correctly in actual applications. Instead, the present study used six HRV indices 

in addition to the wrist temperature to provide comprehensive information of the human 

thermoregulation system. The results show that only using physiological data can 

provide high thermal sensation and comfort prediction performance. The other reasons 
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for the result differences could be the distinctions between the personal conditioning 

devices and machine learning methods used in these two studies. 

Importantly, the developed models can be potentially used in the occupant-

centric autonomous control agent of the PCD. Specifically, the control agent can 

reliably predict user’s thermal sensation and comfort based on collected wrist 

temperatures and HRVs. The costs of environmental sensors can be saved because only 

physiological sensors are needed for this system. The flow rate and temperature of the 

PCD supplied air could be automatically adjusted based on the predicted thermal 

sensation and comfort from the model. This autonomous control of the PCD with the 

developed models could allow a possible increase of the indoor setpoint temperatures 

in the uniform environment. The setpoint temperature increase would result in overall 

energy savings and reduced carbon footprint for future building that might use PCD 

coupled with central HVAC systems. With regards to the machine learning methods, 

the SVM with RBF kernel and KNN could be used in actual application scenarios 

because both of them achieved high performances and the hyperparameters are 

relatively easy to tune. Overall, coupled PCD and central HVAC systems integrated 

with these developed models could provide sustainable energy savings. 

One of the limitations of this study is that it involved 14 human subjects. Even 

though the dataset is comparable to similar previous studies [87], [88], [95], [102], 

[146], the performance of the machine learning models trained on our dataset may be 

slightly different from the models trained on a bigger dataset. Longer observations and 

larger number of human subjects are needed for future investigation. 
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4.5 Summary 

This study conducts human-subject experiments to collect physiological data 

and thermal sensation/comfort surveys for occupants who used a personal conditioning 

device (PCD) to provide localized cooling based on individual thermal preferences. 

Specifically, the physiological data allow the development of data-driven thermal 

sensation and comfort models for occupants using a PCD device. The thermal sensation 

and comfort data show significant differences before and after requesting the PCD. 

However, because the thermal stimulus of the PCD are nonuniform and localized 

compared to the thermal stimuli of the centralized HVAC system, the physiological 

responses of the PCD users do not show clear patterns as those measured by studies 

conducted in uniform environments only controlled by centralized HVAC systems. 

Therefore, the physiological responses with PCD could be incompatible with the 

traditional aggregate or personal thermal comfort models developed for uniform 

environments. In this case, this study develops a new set of data-driven models based 

on occupant physiological responses to nonuniform thermal environments created by 

the PCD. 

The skin temperature, especially the wrist temperature, is a common 

physiological variable for the thermal sensation and comfort modeling. However, our 

results show that only using wrist temperature for the data-driven model development 

cannot achieve sufficient accuracy. Adding HRV indices as additional features can 

improve the model performance even though the patterns of the physiological 

responses could be unclear to an observer. Among machine learning methods, the SVM 

with RBF kernel produced the best performance with the feature group M5, which 
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combines wrist temperature and six HRV variables. The F1 scores of models based on 

feature group M5 are more than four times higher than those of the models only using 

the wrist temperature as the feature (M1). The highest test F1 scores achieved by this 

study are higher than 0.9 for both thermal sensation and thermal comfort predictions. 

We suggested using the SVM with RBF kernel based on the feature group M5 in actual 

applications to provide the reliably solution for predicting users’ thermal sensation and 

comfort variations triggered by local nonuniform thermal stimuli from the PCD units. 

Future research studies could collect additional data to increase the generalizability of 

the models. 
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5. Simultaneous air quality, thermal comfort, and building 
energy controls 

 

This chapter is reproduced from the following papers: 

L. Wang, S. A. Romo, E. Sanico, H. Da Costa, T. Lin, N. Rabchevsky, M. Kern, 

S. Zhu, J. Srebric, “A Wearable Micro Air Cleaner for Occupant-oriented Indoor 

Environmental Controls,” Building and Environment, (Under Review) 

L. Wang, T. Hensel, P. Chanpiwat, S. Zhu, and J. Srebric, “Occupant-centric 

Control of Building Systems based on Real-time Optimization by Extremum Seeking,” 

in 2022 IEEE International Conference on Environment and Electrical Engineering 

and 2022 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS 

Europe), 2022, pp. 1–6. doi: 10.1109/EEEIC/ICPSEurope54979.2022.9854615. 

5.1 Introduction 

The air pollution has emerged as a significant global health challenge in recent 

years, affecting millions of people on a daily basis [147]. The air pollution has been 

linked to various of illnesses and health conditions, such as respiratory diseases [148] 

including asthma [149] and chronic obstructive pulmonary disease (COPD) [150], as 

well as cardiovascular diseases [151], lung cancer [152], and other serious health 

problems. Despite the growing awareness of the health risks associated with air 

pollution, progress in reducing pollution levels is still slow in many parts of the world 

[153], [154]. In addition to air pollution, airborne diseases pose another significant 

health threat. These diseases are caused by airborne infectious microorganisms, such 

as bacteria or viruses, which can spread through the air from one person to another 
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[155]. These pathogens are usually present in respiratory secretions, such as mucus or 

saliva, and can be released into the air when an infected person talks, coughs, or sneezes 

[156]. Examples of airborne diseases include COVID-19 [1], tuberculosis [157], and 

influenza, etc. Because airborne infectious microorganisms can spread easily from 

person to person, they can be highly contagious and have the potential to cause 

widespread outbreaks if appropriate prevention and control measures are not taken 

[11]. 

Ensuring a healthy indoor environment is essential for public health, 

considering that people spend a significant amount of time indoors [158]. Poor indoor 

air quality poses a greater health risk in enclosed spaces with higher population density, 

such as hospitals [159] and schools [160]. Prior studies showed that higher ventilation 

rate may reduce the risk of the air pollution and airborne infectious microorganisms 

[161]. However, centralized ventilation systems may not be able to provide enough 

protection, especially in situations where the short-range transmission occurs within 

people’s breathing zone, such as music performances [11], [162], [163] and health care 

in hospitals [164]. In fact, such systems may even contribute to the transmission of 

infectious diseases by recirculating contaminated air throughout the building [165]. 

Other technologies, such as ultraviolet (UV) [166] have been investigated for their 

protective performance. However, their effectiveness depends on range and coverage, 

and there may be safety concerns regarding human exposure. Recently, by 

characterizing the aerosol plumes generated from the potential airborne microorganism 

source [162], [163], studies show that it is imperative to implement effective mitigation 

methods that specifically target the breathing zone of individuals. 
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Respirators could be worn by individuals and provide physical barrier between 

the user and the contaminates in their breathing zone [167]. The N95 respirator is most 

commonly used for preventing the inhalation of contaminants and airborne infectious 

microorganisms [168]. However, N95 respirators rely on users’ lungs to push the air 

against the filtering surfaces, which may cause increased facial skin temperature, 

breathing difficulties and thermal discomfort [169] for prolonged use. Other types of 

respirators, such as powered air-purifying respirators (PAPRs) [170] etc., utilize head 

gears of facepieces. These physical components have been found to interfere with many 

physical, physiological, and psychological aspects of user’s task performance. The 

interference can affect respiration, thermal equilibrium, vision, communication, 

feelings of well-being, and everyday activities such as eating and sneezing [167]. On 

the other hand, personalized ventilation systems offer an alternative approach to 

prevent the spread of pollution and airborne infectious microorganisms without relying 

on a physical barrier directly on the individual's breathing zone [46], [171]. Typical 

personalized ventilation systems supply the localized airflow to the occupant at a fixed 

location [172]–[178]. However, slight variations in positioning, orientation, and height 

of the person may impact the effectiveness of the fixed personalized ventilation [178]. 

In situations where individuals need to move or walk around, such as healthcare and 

laboratory workers or those in high-density and congested workplaces like 

manufacturing facilities, relying solely on fixed personalized ventilation may not be 

sufficient. 

A wearable air cleaner could be a solution for providing protection to the 

moving users with the minimum interference due to lack of the physical barrier on 
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human’s breathing zone. Patented wearable air cleaner could be found in the market 

[179], but there is limited documentation on their performance. Among prior studies, 

Alshitawi et al. [180] conducted CFD simulations of a personalized air curtain concept. 

More recently, a helmet-based personalized air curtain was presented, and a series of 

studies were conducted to assess its performance [181]–[183]. Wei et al. [181] studied 

multiple influencing factors, such as opening angle, tilt angle, velocity, and width of 

the helmet-based personalized air curtain by CFD simulations and experiments. They 

also optimized the air outlet and the flow rates of this device under the static condition 

(without human movement)[182]. Ma et al. [183] investigated the impact of human 

body heat, breathing modes and air curtain characters on protective efficiency of the 

helmet-based personalized air curtain by using CFD. However, the air supplying 

system of the device, such as the fan could be worn by the user, was not introduced in 

the studies. The recommended flow rate of helmet-based personalized air curtain is 8-

10 L/s [182]. The size and weight of the fan providing this recommended flow rate 

could be challenging for the user to wear. An applicable and wearable micro air cleaner 

with appropriate fan and diffuser size is needed to be developed. In addition, the jet of 

the wearable personalized ventilation device could cause significant convective heat 

transfer on user’s face. User’s thermal comfort during the usage of the device also 

needed to be investigated. 

The present study develops a wearable micro air cleaner [184] for occupant-

oriented indoor environmental controls, which allows for safety and comfort for the 

users during moving and prolonged use. The device operates by driving air through a 

supplying fan mounted on the user's waist. A filter is attached to the supplying fan to 
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effectively filter out particles and airborne infectious microorganisms. The clean air is 

then supplied directly into the user's breathing zone through a diffuser mounted on a 

safety goggle. Since the interaction between airflow and the human breathing zone is 

intricate and can affect the protective performance and thermal comfort, the supplied 

air location and flow rate must be carefully designed. The present study conducted 

tracer gas experiments to optimize the design of the air supply and to evaluate the 

protective performance. Additionally, human subject experiments were conducted to 

investigate the thermal comfort experienced by the users during the usage of the 

wearable micro air cleaner. 

Besides the challenge of the indoor air quality, buildings also account for a 

significant fraction of global electrical energy consumption [54]. The total energy 

consumption of building is expected to grow at least 40% by 2040 [8]. At the same 

time, buildings are designed to maintain homogeneous indoor ambient condition, 

especially for a comfortable thermal and visual environment [54]. The American 

Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) defines 

the thermal comfort as an important aspect in representing human satisfaction [38]. 

Thermal comfort is the state of mind that indicates a person’s perceived equilibrium 

with their environment. The overall comfort level of a building’s occupants has a direct 

impact on their energy consumption patterns. However, even though a state-of-theart 

building system is expected to satisfy 80% of the building occupants based on the 

ASHRAE standard, the average satisfaction rate is still much lower than expectation 

[4]. Overall, traditional building heating, ventilation, and air-conditioning (HVAC) 

systems, which ignore real-time occupant behavior and requirements, are exactly the 
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cause of the waste of energy and unsatisfied human thermal comfort. There is a need 

to develop the technologies considering the individual expectation to the indoor thermal 

environment. 

To address the conflict between indoor comfort demand and energy 

consumption, research on occupant-centric controls (OCC) have increased 

significantly over the past decade [55]. The OCC is a control strategy for the indoor 

environment, which specifically focuses on decreasing building energy consumption  

while meeting the current needs of building occupants. It acquires various data from 

the occupant and indoor environment, and sends the optimal control  signals to 

actuators according to occupants’ requirements [56]. Most OCC algorithms for HVAC 

were incorporated in either conventional reactive controllers [57] or model predictive 

controls [58]. However, the conventional controllers cannot handle the uncertainties 

well.  Additionally, the insufficient accuracy of the models is the main weakness of the 

model-based controller [185].  

To overcome the limitations of conventional control strategies, the extremum 

seeking control (ESC), which is a model-free real-time adaptive control algorithm, 

becomes popular due to its independence to the system models. ESC is also useful to 

solve static optimization problems and to optimize parameters of dynamic systems. For 

building systems, ESC has been implemented in heat pump systems [186], [187], 

chilled water systems [188], air-side economized systems [189], [190], lighting 

systems [191], and a virtual thermal environment by Computational Fluid Dynamics 

(CFD) [192]. However, there is no prior study to apply ESC for the OCC of building 

systems. Therefore, in this study, we evaluate and analyze the performance of 
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implementing ESC as the OCC to optimize the building operations based on occupant 

behavior in an office environment. 

5.2 Methodology 

This section outlines the methodology used in the air quality and thermal 

comfort controls.  

Air quality control 

Both the protective performance and thermal comfort evaluation were carried 

out within a biosafety level 1 (BSL-1) environmental chamber (4.5 m × 4.1 m × 4.6 

m), situated at the University of Maryland, College Park, USA. It is worth mentioning 

that the thermal comfort evaluation experiments involving human subjects received 

approval from the Institutional Review Board (IRB) of the University of Maryland 

(IRB: 1973659). 

Figure 25 shows the user wearing the wearable micro air cleaner. A supporter 

with an air diffusor was mounted on a safety goggle to supply clean air to user’s 

breathing zone. The diffusor was connected to a portable fan mounted on users’ waist 

by a flexible tube. The area of the diffuser is about 5 cm2. A filter made by the material 

of the surgical mask was placed on the fan to clean the air. The filtration efficiency of 

the filter is 70% - 99% depends on particle sizes [193]. The design of the fan is critical 

to make the whole device wearable. By balancing the trade-offs between the 

wearability and performance, the dimension of the fan selected for the wearable micro 

air cleaner is 120 mm x 112 mm x 32 mm. The flow rate of this wearable micro air 

cleaner is about 4 L/s. With this flow rate, the air velocity at the diffuser is about 8 m/s. 
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Figure 25 User wearing the wearable micro air cleaner 

Protective Performance Evaluation 

The protective performance of the wearable micro air cleaner was evaluated by 

conducting the tracer gas experiments. Multiple indices were developed by prior 

studies to assess the protective performance, such as personal exposure effectiveness 

[194], intake fraction [195], and the personal exposure reduction effectiveness (PER) 

[196]. The present study supplied high concentration tracer gas from the diffuser of the 

wearable micro air cleaner to manikin’s breathing zone. Therefore, the AQI [197] was 

used as the protective performance index. This index represents the percentage of the 

tracer gas inhaled by the human subject, which is defined as the following equation: 

 𝐴𝐴𝐴𝐴𝐴𝐴 =
𝐶𝐶𝑖𝑖 − 𝐶𝐶𝑎𝑎
𝐶𝐶𝑑𝑑 − 𝐶𝐶𝑎𝑎

  (5) 

where 𝐶𝐶𝑖𝑖  is the tracer gas concentration of the inhaled air, 𝐶𝐶𝑑𝑑  is the tracer gas 

concentration at the diffuser of the wearable micro air cleaner, 𝐶𝐶𝑎𝑎  is the tracer gas 

concentration of the ambient air. 
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To simulate human’s inhalation, a 3-D printed NIOSH standard manikin head 

was connected to a pump. Both the nasal and mouth inhalation were considered. The 

flow rate of the inhalation was set to about 8 L/min [198]. CO2 was used as the tracer 

gas in the experiment. High concentration CO2 (about 5000 ppm) was supplied to the 

wearable micro air cleaner fan through a hose, then supplied to manikin’s breathing 

zone through the diffuser. No mixing happended between the high concentration CO2 

and ambient air in the chamber during the supplying. Because the CO2 concentration 

in the hose is the same to the CO2 concentration at the diffuser, a CO2 sensor was placed 

next to the the wearable micro air cleaner fan in the hose to measure 𝐶𝐶𝑑𝑑. One CO2 

sensor was placed at the end of the inhalation loop to measure the inhaled air 

concentration 𝐶𝐶𝑖𝑖 . Another CO2 sensor was placed in the chamber to measure the 

ambient air concentration 𝐶𝐶𝑎𝑎. The spatial variability of the CO2 was verified before the 

experiment. No significant spatial variability was detected. Figure 26 shows the 

diagram of the experimental setup. 

 

Figure 26 Experimental setup of the protective performance evaluation 

Thermal Comfort Evaluation 
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The objective of the thermal comfort evaluation is to investigate the thermal 

sensation/comfort and physiological response of users resulting from the operation of 

the wearable micro air cleaner. Data-driven thermal comfort models were developed 

using collected environmental and physiological data. The human subjects were 

randomly selected to ensure representation of the target population. The genders were 

balanced. The selection criteria for human subjects specified healthy adults who were 

free from fever, cold/flu symptoms, or chronic diseases that could potentially impact 

the monitored physiological variables. A total of 20 human subjects participated in the 

experiments. Each human subject provided information about their physical attributes, 

such as body weight, height, age, and gender. Each human subject was required to wear 

office-type clothing (pants, shirt, and closed-toe shoes), resulting in a clothing level of 

approximately 1.0 clo [77]. Please refer to Table 18 for detailed information of the 

human subjects. 

Table 18 Information of human subjects. 

Information Values 

Number of Human Subjects 20 

Weight (kg) 62.7 

Height (cm) 169.45 

Gender 10 Male, 10 Female 

 

Because the wearable micro air cleaner may cause significant convective heat 

transfer on user’s face, both the overall and local (face) thermal sensation and comfort 

were collected by the questinoaire. The face temperature, a commonly used 
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physiological variable for thermal comfort evaluation, was measured using a 

MLX90640 thermal camera at a sampling rate of 1 second. An averaged face 

temperature was calculated based on the measured temperature array. Previous studies 

have demonstrated the benefits of incorporating heart rate variability (HRV) in 

predicting thermal sensation/comfort [199], [200]. Therefore, multiple HRV indices in 

the time and frequency domains were measured, including SDNN, SDSD, RMSSD, 

pNN20, pNN50, and LF/HF [113]. The photoplethysmography (PPG) signal was 

measured by a pulse sensor at the sample rate of 230 Hz. The HRV indices were 

calculated by the python package HeartPy [128] based on the collected PPG signal. 

The ambient temperature and relative humidity within the environmental chamber were 

measured using temperature and relative humidity transmitters located in the return air 

duct. To ensure the privacy of the human subjects, all data was transmitted, stored, and 

analyzed on a local server. The technical specifications of the sensor are shown in Table 

19.  

Table 19 Technical specification of the sensors. 

Components Technical information Accuracy 

Processor 
Arduino Nano, 5 Volts, 16 

MHZ 

N/A 

PPG Sensor Pulse sensor, 5 Volts N/A 

Face Temperature 

Sensor 
MLX90640 thermal camera 

± 1 °C from 0 °C to 

100 °C 
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Ambient 

Temperature 

Sensor 

Temperature Transmitter, ACI, 

0.1 °C resolution 

± 0.2% of full scale for 

spans < 275 °C 

Ambient RH 

Sensor 

Humidity Transmitter, ACI, 

0.1% RH resolution 

± 1% over 20% span 

(between 20 to 90%) 

 

The experiments were conducted from April 2023 to June 2023. Prior to each 

experiment, the human subjects were instructed to spend 15 minutes in the 

environmental chamber maintained at a temperature of 25 °C to acclimate to a neutral 

thermal condition. A visual inspection was conducted to ensure that the human subjects 

were appropriately dressed. Detailed explanations of the experiments were provided, 

and appropriate documentation was given to the subjects to ensure their full consent. 

As the wearable micro air cleaner can be used in various indoor air temperatures, the 

experiments were divided into three sections, each conducted at a different indoor air 

temperature: 22 °C, 25 °C, and 28 °C. Each section lasted approximately 40 minutes. 

For the first 20 minutes of each section, the wearable micro air cleaner was turned off, 

while for the second 20 minutes, it was turned on. The relative humidity was 

maintained at 50 ± 10% throughout the experiments. To simulate a typical office 

environment, the human subjects were allowed to engage in office-type activities such 

as reading, writing, and typing, with an activity level ranging from 1.0 to 1.2 Met [77]. 

At regular intervals of 5 minutes, the human subjects provided continuous reports of 

their overall and local thermal sensation/comfort levels. The thermal sensation levels 

were assessed on a scale of -3 to 3, as defined in the ASHRAE Standard 55 (ranging 
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from hot, warm, slightly warm, neutral, slightly cool, cool, to cold) [77]. The thermal 

comfort levels were evaluated using a 7-point scale based on relevant studies [123], 

[138]. 

In the present study, the mean values of the time series data were calculated and 

visualized across all human subjects. To examine the statistical significance of the 

impact of the wearable micro air cleaner on thermal comfort and physiological 

variables, paired t-tests were performed on the data collected before and after the 

operation of the wearable micro air cleaner. The significant level α was selected to be 

0.05. Additionally, Cohen's d value was calculated to assess the effect size. An absolute 

Cohen's d value below 0.3 indicates a small effect size, while values between 0.3 and 

0.5 represent a moderate effect size. If the absolute Cohen's d value exceeds 0.7, the 

effect size is considered large. Positive and negative values indicate positive and 

negative relationships, respectively. Python was used as the tool of data process and 

analysis. 

In order to develop data-driven models using machine learning methods, the 

present study performed several data pre-processing steps, including data cleaning, data 

resampling, and data normalization. Firstly, the data was cleaned by replacing outliers 

with the median value of the dataset. Subsequently, the raw data, which was measured 

at different sampling frequencies, was resampled to a frequency of 30 seconds. Linear 

interpolation was used for up-sampling, while the mean value method was applied for 

down-sampling. Finally, the Min-Max scaler was employed to normalize the data, 

ensuring zero mean and unit variance. After the pre-processing stage, the machine 

learning models were developed and evaluated using the scikit-learn package in 
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Python. The dataset was divided into training (75%) and test (25%) sets using stratified 

sampling. Given the unique nature and high dimensionality of the dataset, three 

commonly used nonlinear machine learning algorithms were selected: k nearest 

neighbor (KNN), random forest (RF), and support vector machine with RBF kernel 

(SVM_RBF). The feature importance was calculated based on the random forest 

method. The hyperparameters of the machine learning methods were tuned using grid-

search, and cross-validations were performed to exam overfitting. Multiple model 

performance evaluation metrics, such as accuracy, F1 score, and AUC (Area Under the 

Curve), were chosen as indices to assess the performance of the machine learning 

models. 

Thermal comfort control 

Thermal Comfort Model 

In this study, Fanger's Predicted Mean Vote (PMV) and Predicted Percent 

Dissatisfied (PPD) model [37], on which the ISO and ASHRAE thermal comfort 

standards are based, is selected to develop the extremum seeking controller. The PMV-

PPD was originally developed to predict thermal comfort at steady states, so it does not 

account for the dynamic response to the changes in indoor thermal environment. To 

apply this model, we assume that the occupants’ thermal comfort changes immediately 

with the indoor environment. The PMV-PPD model accounts the following heat 

transfer processes on a human body: 

Rate of convective heat loss from the skin (𝐶𝐶: 

 𝐶𝐶 = 𝑓𝑓𝑐𝑐𝑐𝑐ℎ𝑐𝑐(𝑇𝑇𝑐𝑐𝑐𝑐 − 𝑇𝑇𝑎𝑎) (6) 

Rate of radiative heat loss from the skin (𝑅𝑅): 
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 𝑅𝑅 = −3.96 ∗ 10𝑒𝑒−8𝑓𝑓𝑐𝑐𝑐𝑐[(𝑇𝑇𝑐𝑐𝑐𝑐 + 273)4 − (𝑇𝑇𝑟𝑟 + 273)4] (7) 

Dry respiration heat loss (𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟): 

 𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 = 0.014𝑀𝑀(34 − 𝑇𝑇𝑎𝑎) (8) 

Latent respiration heat loss (𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟): 

 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 = 0.0173𝑀𝑀(5.867 − 𝑃𝑃𝑎𝑎) (9) 

Heat loss by vapor diffusion through skin (𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑): 

 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑 = 3.05[5.733 − 0.007(𝑀𝑀−𝑊𝑊) − 𝑃𝑃𝑎𝑎] (10) 

Rate of evaporative heat loss from the skin through sweating (𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟): 

 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 = 0.42(𝑀𝑀−𝑊𝑊 − 58.2) (11) 

where 𝑓𝑓𝑐𝑐𝑐𝑐  is clothing area factor (non-dimensional), ℎ𝑐𝑐  is convective heat transfer 

coefficient (𝑊𝑊𝑚𝑚−2𝐾𝐾−1), 𝑇𝑇𝑐𝑐𝑐𝑐 is mean temperature over the clothed body (°C), 𝑇𝑇𝑎𝑎 is air 

temperature (°C), 𝑇𝑇𝑟𝑟 is mean radiant temperature (°C), 𝑀𝑀 is rate of metabolic energy 

production (𝑊𝑊𝑚𝑚−2), 𝑃𝑃𝑎𝑎 is partial pressure of water vapor in air (kPa), and 𝑊𝑊 is rate of 

mechanical work (𝑊𝑊𝑚𝑚−2).  

All heat transfer terms provide the PMV equation: 

 
PMV = (0.303𝑒𝑒−0.036𝑀𝑀 + 0.0275){𝑀𝑀 −𝑊𝑊

− [�𝐶𝐶 + 𝑅𝑅 + 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 + 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑� + (𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 + 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟)]} 
(12) 

PMV evaluates the thermal sensation. There are seven scales from hot (+3) to 

cold (-3). PMV = 0 is the neutral thermal sensation. PPD establishes a quantitative 

prediction of the percentage of thermal dissatisfaction, and it can be determined as a 

function of PMV: 

 𝑃𝑃𝑃𝑃𝑃𝑃 = 100 − 95𝑒𝑒[−(0.03353𝑃𝑃𝑃𝑃𝑉𝑉4+0.2179𝑃𝑃𝑃𝑃𝑉𝑉2)] (13) 
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The PPD can range from 5% to 100%, depending on the PMV value. Intuitively, 

the PMV metric indicates the predicted thermal sensation that respondents would 

experience in a given environment, and the PPD translates the PMV metric to a measure 

of what percentage of respondents are expected to be satisfied with their perceived 

thermal sensation. A PMV between -0.5 and 0.5 is considered satisfactory. It is 

important to note that PPD transforms PMV into a symmetric, convex function 

representing thermal comfort. This is necessary to establish the optimality of 

temperature setpoints in later sections. 

To simplify the model, some parameters in the PMV model are treated as 

constant. The assumptions are listed in Table 20. 

Table 20 Assumptions for thermal comfort model 

Index Assumptions 

1 Constant heat transfer coefficient [201]: ℎ𝑐𝑐 = 3 W/m2K 

2 Constant cloth temperature [202]: 𝑇𝑇𝑐𝑐𝑐𝑐 = 32 °C 

3 Mean radiant temperature [203]: 𝑇𝑇𝑟𝑟 = 𝑇𝑇𝑎𝑎 + 1 °C 

4 Clothing insulation [201]: 0.6 clo (1 clo = 0.155 m2K/W) 

5 Constant relative humidity: 40% 

 

Energy Model 

Multiple tools have been developed for building energy modeling, e.g., 

EnergyPlus. However, the tools usually consider detailed geometry and thermal zones 

which make the calculation expensive. Also, the discontinuity of the simulation results 

can make it more challenging to solve the optimization problem. In our study, we 
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selected the building environment to be an office room. The energy model is simplified 

to be a steady-state heat balance equation: 

 𝑄𝑄 = ℎ𝐴𝐴(𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑇𝑇𝑖𝑖𝑖𝑖) (14) 

where h is the heat transfer coefficient (𝑊𝑊𝑚𝑚−2𝐾𝐾−1), A is the surface area (m2), 

and Q is the energy consumption (W). 

The convective heat transfer area of the office was assumed to be one exterior 

wall, which was 5 m x 4 m. The heat transfer coefficient h is calculated by Chartered 

Institute of Building Services (CIBS) Guide Book [204]: 

 ℎ = 4.1𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙 + 5.8 (15) 

The 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙 is the local wind velocity, which is assumed to be 3 m/s for typical 

outdoor environment. 

Optimization Problem 

Before designing the extremum seeking controller, the static multi-objective 

optimization should be formed. The weights of objective functions in the extremum 

controlled can be selected according to the optimization results. Two optimization 

problems are formulated. The first one is a two-objective optimization problem that 

considers the thermal comfort of two types of occupants with different metabolic rates. 

The second is a three-objective optimization problem that includes an additional 

objective on energy consumption. 

Two-objective Optimization Problem 

Figure 27 shows thermal comfort responses of two types of occupants with 

different metabolic rates. We found that both the optimal temperatures and the 

steepness of PPD profile are different between the two types of occupants. To explore 
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the inherent trade-offs between minimizing the thermal comfort index of each 

occupant, we formulated the optimization objective as a linear combination of two 

occupants' PPD models. Using a parameter β as the weight, the two-objective 

optimization problem can be expressed as follows: 

 min𝛽𝛽 ∗ 𝑃𝑃𝑃𝑃𝐷𝐷1(𝑇𝑇𝑎𝑎,𝑀𝑀) + (1 − 𝛽𝛽) ∗ 𝑃𝑃𝑃𝑃𝐷𝐷2(𝑇𝑇𝑎𝑎,𝑀𝑀) (16) 

 

Figure 27 Thermal Comfort Response of Occupants with Different Metabolic Rate 

Three-objective Optimization Problem 

Energy usage should be considered in addition to occupant comfort in building 

system control. The most energy-efficient ways to condition the room is to use the 

outdoor air temperature, but it will have a direct impact on the occupant thermal 

comfort. The three-objective optimization problem is formulated as a linear 

combination of two occupants' PPD model and the squared energy consumption. 

 min𝑤𝑤1 ∗ 𝑃𝑃𝑃𝑃𝐷𝐷1(𝑇𝑇𝑎𝑎,𝑀𝑀) + 𝑤𝑤2 ∗ 𝑃𝑃𝑃𝑃𝐷𝐷2(𝑇𝑇𝑎𝑎,𝑀𝑀) + 𝑤𝑤3𝑄𝑄(𝑇𝑇𝑎𝑎)2 (17) 
Extremum Seeking Control 

The ESC is developed to optimize an objective function, which can be a 

function of unknown input parameters, or to determine the targeted states to maintain 

an operation at the extreme value of a function [205]. Its goal is to find input uopt(t) in 
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real time that optimizes the online measurement of the generally unknown and/or time-

varying objective function, f(t,u), see Eqn. 13. 

 𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓(𝑡𝑡, 𝑢𝑢) (18) 

u is the input vector. The objective function of the ESC is assumed to be convex 

and linear. The general setting of the ESC with dither is shown in Figure 28. The 

transfer function FI(s) is the input dynamics, and the transfer function FO(s) is the sensor 

dynamic. y is the output of the objective function that can be perturbed by noise n. 

However, the noise is not considered in this study. This output y can be directly 

measurable for the feedback. d1(t) and d2(t) are demodulation and signals dither, 

respectively, where α and ω are phase angle and frequency. 

In this diagram, the dither outputs signal d2(t) that goes through the high-pass 

filter FHP(s). Then, it is multiplied by the demodulating signal d1(t) and low-pass filter 

FLP(s). As a result, the signal is proportional to the gradient df/du(û). When closing the 

loop, the integrator helps eliminate the gradient. The stability or transient performance 

can be enhanced with the compensator K(s). 

 

Figure 28 Extremum seeking control system 

In this study, the extremum seeking controller solves the same optimization 

problems we formed in the previous section without the constraints. The outputs of the 
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plant are the weighted linear combination of energy and thermal comfort models. If 

considering the real-world implementation, the real-time thermal comfort index can 

either be collected from questionnaires provided from the occupants or be estimated by 

models based on physiological data collected by sensors. The energy consumption can 

be sensed by the energy meter. The input is indoor air temperature. The extremum 

seeking controller keeps tracking the optimum temperature, which balances the trade-

offs between different occupants' thermal comfort and building energy consumption. 

5.3 Results 

Air quality control 

The fan of the wearable micro air cleaner achieved a maximum flow rate of 

approximately 4 L/s. In terms of the protective performance of the wearable micro air 

cleaner, the location of the diffuser and the flow rate of the supplied air are crucial 

factors. We tested two diffuser locations, one is above user’s eyes (Figure 29 left), 

another is in front of user’s face (Figure 29 right). 

 

Figure 29 Diffuser locations, (left) Diffuser above the eyes, (right) Diffuser in front of 

the face 
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In the case of the diffuser located above the user's eyes, with the highest flow 

rate of 4 L/s, the protective efficiency for mouth breathing was approximately 50%, 

and for nasal breathing, it was only around 20%. These results did not meet the 

expectations, which were set at approximately 60%-70% for both mouth and nasal 

breathing. In the case of the diffuser location in front of user’s face, this study 

investigated three different distances: 2.54 cm (1"), 3.81 cm (1.5"), 5.08 cm (2"). The 

diffuser was positioned at a horizontal angle of 45°, directed towards the nose and 

mouth. Table 21 shows the results of the protective efficiencies with the three locations 

of the air diffuser. With a distance of 2.54 cm (1"), the protective efficiency reached 

77% for mouth breathing and 63% for nasal breathing. With the distance increased to 

3.81 cm (1.5"), the protective efficiencies decreased to 60% for mouth breathing and 

51% for nasal breathing. Further increasing the distance to 5.08 cm (2") resulted in a 

decline in protective efficiencies, reaching approximately 50% for both mouth and 

nasal breathing. Considering these findings, only the 2.54 cm (1") distance met the 

expected performance. Consequently, the diffuser was fixed at this distance for 

subsequent experiments. 

Table 21 Protective efficiencies with different location for air diffuser. 

Distance to face 
Efficiency of mouth 

breathing 

Efficiency of nasal 

breathing 

2.54 cm (1") 77% 63% 

3.81 cm (1.5") 60% 51% 

5.08 cm (2") 48% 50% 
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After fixing the diffuser at a distance of 2.54 cm (1"), this study further 

examined the relationship between protective performance and flow rates. The flow 

rates were selected to be 2 L/s, 3 L/s, and 4 L/s. The corresponding air velocities at the 

diffuser were 4 m/s, 6 m/s, and 8 m/s. Table 22 shows the protective efficiencies at 

different flow rates. At the flow rate of 4 L/s, the protective performance achieved 77% 

for mouth breathing and 63% for nasal breathing. When the flow rate was reduced to 3 

L/s, the protective efficiency dropped to approximately 69% for mouth breathing and 

50% for nasal breathing.  Similarly, at a flow rate of 2 L/s, the protective efficiency 

reached 61% for mouth breathing and 50% for nasal breathing. These results indicate 

that an airflow rate of 4 L/s is necessary to achieve the expected protective efficiency. 

Table 22 Protective efficiencies with varied airflow rates for air supply. 

Flow rates (Air velocity) 
Efficiency of mouth 

breathing 

Efficiency of nasal 

breathing 

4 L/s (8 m/s) 77% 63% 

3 L/s (6 m/s) 69% 50% 

2 L/s (4 m/s) 61% 50% 

 

Investigating the thermal comfort impacts resulting from the operation of the 

wearable micro air cleaner is another crucial factor addressed in this study. The present 

study visualized the thermal sensation/comfort questionnaires and physiological data. 

The average time series data among all the human subjects are shown in Figure 30 and 

Figure 31. In these figures, time 0 represents the moment when the wearable micro air 

cleaner was activated, while negative and positive values indicate the time before and 



 

 

110 
 

after its operation. To determine whether the wearable micro air cleaner operation had 

a significant impact on user’s thermal comfort, paired t-tests were conducted to assess 

statistical significance, and Cohen's d values were calculated to measure the effect size. 

The p-values of the paired t-test and Cohen’s d values are listed in Table 23. Figure 30 

shows the responses of the overall/local thermal sensation and comfort. The overall 

thermal sensation exhibited a significant decrease at the indoor air temperature of 25 

°C (p = 0.02, d = -0.59). No significant changes were observed at the indoor air 

temperature of 22 °C (p = 0.18, d = -0.26) and 28 °C (p = 0.12, d = -0.43). Regarding 

overall thermal comfort, a significant decrease was observed at the indoor air 

temperature of 22 °C (p = 0.02, d = -0.72), while no significant changes were found at 

25 °C (p = 0.25, d = -0.27). At 28 °C, the overall thermal comfort can be observed 

slightly increased from the visualization, but this change was not statistically 

significant (p = 0.21, d = 0.41). Notably, all overall thermal comfort values were above 

0 at all indoor air temperatures, indicating the absence of overall discomfort. The local 

thermal sensation significantly decreased at all three indoor air temperatures due to the 

strong convective heat transfer caused by the wearable micro air cleaner (22 °C: p = 

2e-4, d = -1.35; 25 °C: p = 2e-5, d = -1.40; 28 °C: p = 4e-3, d = -1.17). At 22 °C, the 

local thermal comfort experienced a significant drop (p = 2e-4, d = -1.36) from about 

1 (slightly comfortable) to -1 (slightly uncomfortable). At 25 °C, the local thermal 

comfort also significantly decreased (p = 8e-3, d = -0.79), but all values remained above 

0. At 28 °C, the local thermal comfort did not have significant change (p = 0.82, d = 

0.08). The results indicating the wearable micro air cleaner operation may generate 



 

 

111 
 

local thermal discomfort at 22 °C, but no overall and local discomfort were caused at 

the indoor air temperature of 25 °C and 28 °C. 

 

Figure 30 Thermal sensation and comfort responses at different indoor air 

temperatures. (A) Overall thermal sensation. (B) Overall thermal comfort. (C) Local 

thermal sensation. (D) Local thermal comfort. 

Figure 31 displays the responses of some representative physiological variables, 

including the face temperature, heart rate, one typical time domain HRV (SDNN), and 

one typical frequency domain HRV (LF/HF). At all the indoor air temperatures, the 

face temperature significantly decreased because of the convective heat transfer caused 

by the jet of the wearable mircro air cleaner (22 °C: p = 2e-11, d = -4.90; 25 °C: p = 

1e-13, d = -5.14; 28 °C: p = 1e-10, d = -3.31). Because of the big temperature 
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differences bewteen the face temperature and the indoor air temperature at 22 °C, the 

face temperature decreased by about 6 °C, from about 34 °C to 28 °C. The face 

temperature reductions were approximately 4 °C and 3 °C, at indoor air temperatures 

of 25 °C and 28 °C, respectively. For the heart rate, SDNN, and LF/HF, no clear 

patterns or significant changes were observed in the time-series data or statistical 

analysis.  

 

Figure 31 Physiological responses at different indoor air temperatures. (A) Face 

temperature. (B) Heart rate. (C) SDNN. (D) LF/HF. 
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Table 23 p-values and Cohen’s d values of each variable at different indoor air 

temperatures 

 22 °C 25 °C 28 °C 

 p-value Cohen’s d p-value Cohen’s d p-value Cohen’s d 

Overall TS 0.18 -0.26 0.02 -0.59 0.12 -0.43 

Local TS 2e-4 -1.35 2e-5 -1.40 4e-3 -1.17 

Overall TC 0.02 -0.72 0.25 -0.27 0.21 0.41 

Local TC 2e-4 -1.36 8e-3 -0.79 0.82 0.08 

Face 

Temperature 
2e-11 -4.90 1e-13 -5.14 1e-10 -3.31 

Heart Rate 0.04 -0.21 0.01 -0.39 8e-5 -0.16 

SDNN 0.39 0.15 0.44 -0.12 0.08 0.16 

SDSD 0.63 -0.09 0.17 -0.22 0.50 0.09 

RMSSD 0.66 -0.07 0.27 -0.19 0.41 0.08 

pNN20 0.51 0.07 0.41 0.08 0.40 0.07 

pNN50 0.87 0.02 0.54 -0.06 0.30 0.08 

LF/HF 0.55 0.13 0.68 0.04 0.59 0.12 

 

To develop machine learning models to predict the thermal sensation and 

comfort, the present study first conducted the feature importance analysis by using the 

random forest method. Figure 32 illustrates the feature importances for overall and 

local thermal sensation and comfort. Among all the features, heart rate and face 

temperature demonstrated relatively higher importance. Regarding the HRV indices, 
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several time domain measures, including pNN20 and pNN50, exhibited greater 

importance compared to other HRV indices. These findings indicate that these specific 

HRV indices may carry more significant information for predicting thermal sensation 

and comfort. 

 

Figure 32 Feature importance of the overall and local thermal sensation and comfort 

In order to assess the performance enhancements attributed to specific features, 

particularly heart rate and HRV indices, the present study developed five feature groups 

denoted as M1 to M5. The temperature, being a crucial and widely utilized variable in 

both physical and data-driven thermal comfort modeling, was chosen as the main focus 

for the baseline feature group, M1. This group incorporated indoor air and face 

temperature. Considering the high feature importance of heart rate, M2 included heart 

rate as an additional feature to M1. The objective was to investigate the extent to which 

heart rate could improve the performance of the baseline feature group. For M3, 
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clculated HRV indices were added as supplementary features to M1. This was done to 

analyze the performance improvement brought by the inclusion of HRV indices. 

Taking into account the high feature importance of heart rate, face temperature, pNN20, 

and pNN50, these variables were selected to construct M4. Finally, M5 incorporated 

all variables available to develop a comprehensive feature group. Table 24 shows the 

descriptions of each feature group. 

Table 24 Feature group descriptions 

Group name Features 

M1 Indoor air temperature, Face temperature 

M2 Indoor air temperature, Face temperature, Heart rate 

M3 Indoor air temperature, Face temperature, pNN20, pNN50, 

SDNN, SDSD, RMSSD, LF/HF 

M4 Face temperature, Heart rate, pNN20, pNN50 

M5 Indoor air temperature, Face temperature, Heart rate, pNN20, 

pNN50, SDNN, SDSD, RMSSD, LF/HF 

 

Among all the evaluation indices, the F1 scores was selected to analyze the 

model performances, as it can represent the model performance with inbalanced 

categories. Table 25 and Figure 33 present the test F1 scores of machine learning 

models developed based on different feature groups. It is observed that the model 

performances for different outputs are similar within the same feature group. The 

baseline feature group, M1, which solely employs indoor air temperature and face 

temperature, demonstrated the lowest performance ranging from 0.2 to 0.3. By 
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introducing heart rate as an additional feature, feature group M2 achieved a 

performance improvement to the range of 0.6 to 0.7. The average performance of M2 

increased by approximately 140% compared to M1. Feature group M3, which includes 

multiple HRV indices, further enhanced the performance to the range of 0.8 to 0.9. The 

performance improvement of M3 over the baseline feature group M1 was around 

207%. The comparison between M2 and M3 indicates that incorporating multiple HRV 

indices provided more information relevant to thermal comfort than using heart rate 

alone. Both feature groups M4 and M5 achieved similar performances, ranging from 

0.8 to 0.9. Within the same feature group, the KNN, RF, and SVM_RBF models 

demonstrated comparable performances. Table 26, Table 27, and Table 28 show all the 

calculated training and test scores of KNN, RF, and SVM_RBF. It is observed that 

there were no significant differences between the training and test scores, suggesting 

that the models were not overfitting. 

Table 25 Test F1 scores of machine learning models with different feature groups 

 Machine 

Learning 
M1 M2 M3 M4 M5 

Overall TS 

KNN 0.36 0.68 0.90 0.86 0.94 

RF 0.35 0.68 0.79 0.79 0.88 

SVM_RBF 0.34 0.67 0.92 0.87 0.96 

Overall TC 

KNN 0.24 0.65 0.88 0.84 0.91 

RF 0.20 0.62 0.72 0.79 0.84 

SVM_RBF 0.19 0.64 0.91 0.86 0.95 

Local TS KNN 0.31 0.69 0.91 0.84 0.94 
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RF 0.30 0.71 0.84 0.78 0.89 

SVM_RBF 0.30 0.67 0.93 0.88 0.95 

Local TC 

KNN 0.32 0.70 0.83 0.80 0.87 

RF 0.25 0.74 0.80 0.80 0.89 

SVM_RBF 0.25 0.69 0.86 0.83 0.92 

 

 

Figure 33 Test F1 scores of feature groups 

 

Table 26 Training and test scores of KNN models 

 
Training 

Accuracy 

Cross Validation 

Accuracy 

Test 

Accuracy 

Test F1 

Score 

Test 

AUC 

Overall 

TS-M1 
0.53 0.49 0.52 0.36 0.83 

Overall 

TS-M2 
0.87 0.75 0.76 0.68 0.9 
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Overall 

TS-M3 
0.96 0.87 0.89 0.9 0.98 

Overall 

TS-M4 
0.93 0.82 0.86 0.86 0.96 

Overall 

TS-M5 
0.98 0.91 0.93 0.94 0.99 

Overall 

TC-M1 
0.53 0.51 0.50 0.24 0.81 

Overall 

TC-M2 
0.82 0.76 0.75 0.65 0.94 

Overall 

TC-M3 
0.96 0.88 0.89 0.88 0.97 

Overall 

TC-M4 
0.93 0.85 0.85 0.84 0.95 

Overall 

TC-M5 
0.98 0.92 0.93 0.91 0.98 

Local TS-

M1 
0.55 0.51 0.49 0.31 0.84 

Local TS-

M2 
0.87 0.75 0.74 0.69 0.88 

Local TS-

M3 
0.95 0.86 0.91 0.91 0.97 
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Local TS-

M4 
0.93 0.82 0.85 0.84 0.95 

Local TS-

M5 
0.97 0.90 0.94 0.94 0.98 

Local TC-

M1 
0.48 0.46 0.46 0.32 0.82 

Local TC-

M2 
0.82 0.74 0.73 0.70 0.92 

Local TC-

M3 
0.96 0.86 0.87 0.83 0.97 

Local TC-

M4 
0.92 0.83 0.84 0.80 0.94 

Local TC-

M5 
0.97 0.90 0.91 0.87 0.98 

 

Table 27 Training and test scores of RF models 

 
Training 

Accuracy 

Cross Validation 

Accuracy 

Test 

Accuracy 

Test F1 

Score 

Test 

AUC 

Overall 

TS-M1 
0.52 0.49 0.49 0.35 0.83 

Overall 

TS-M2 
0.88 0.75 0.76 0.68 0.95 
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Overall 

TS-M3 
0.93 0.83 0.82 0.79 0.98 

Overall 

TS-M4 
0.92 0.79 0.81 0.79 0.97 

Overall 

TS-M5 
0.97 0.87 0.87 0.88 0.99 

Overall 

TC-M1 
0.53 0.51 0.51 0.2 0.8 

Overall 

TC-M2 
0.92 0.77 0.76 0.62 0.96 

Overall 

TC-M3 
0.94 0.81 0.81 0.72 0.98 

Overall 

TC-M4 
0.95 0.81 0.81 0.79 0.97 

Overall 

TC-M5 
0.97 0.87 0.87 0.84 0.99 

Local TS-

M1 
0.55 0.52 0.5 0.3 0.85 

Local TS-

M2 
0.89 0.75 0.74 0.71 0.95 

Local TS-

M3 
0.93 0.83 0.84 0.84 0.98 
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Local TS-

M4 
0.94 0.82 0.81 0.78 0.97 

Local TS-

M5 
0.97 0.89 0.89 0.89 0.99 

Local TC-

M1 
0.47 0.45 0.46 0.25 0.82 

Local TC-

M2 
0.9 0.74 0.75 0.74 0.96 

Local TC-

M3 
0.94 0.79 0.82 0.8 0.98 

Local TC-

M4 
0.92 0.79 0.79 0.8 0.97 

Local TC-

M5 
0.96 0.86 0.87 0.89 0.99 

 

Table 28 Training and test scores of SVM_RBF models 

 
Training 

Accuracy 

Cross Validation 

Accuracy 

Test 

Accuracy 

Test F1 

Score 

Test 

AUC 

Overall 

TS-M1 
0.51 0.49 0.49 0.34 0.82 

Overall 

TS-M2 
0.76 0.72 0.7 0.67 0.94 
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Overall 

TS-M3 
0.99 0.91 0.91 0.92 0.99 

Overall 

TS-M4 
0.94 0.83 0.87 0.87 0.98 

Overall 

TS-M5 
0.99 0.94 0.95 0.96 1 

Overall 

TC-M1 
0.52 0.51 0.51 0.19 0.79 

Overall 

TC-M2 
0.78 0.73 0.73 0.64 0.95 

Overall 

TC-M3 
0.98 0.91 0.91 0.91 0.98 

Overall 

TC-M4 
0.94 0.85 0.85 0.86 0.98 

Overall 

TC-M5 
1 0.94 0.95 0.95 0.99 

Local TS-

M1 
0.53 0.52 0.49 0.3 0.84 

Local TS-

M2 
0.77 0.73 0.72 0.67 0.94 

Local TS-

M3 
1 0.89 0.93 0.93 0.99 
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Local TS-

M4 
0.93 0.85 0.87 0.88 0.98 

Local TS-

M5 
0.99 0.93 0.95 0.95 0.99 

Local TC-

M1 
0.46 0.46 0.46 0.25 0.81 

Local TC-

M2 
0.75 0.7 0.72 0.69 0.95 

Local TC-

M3 
0.99 0.89 0.9 0.86 0.99 

Local TC-

M4 
0.94 0.84 0.83 0.83 0.97 

Local TC-

M5 
1 0.93 0.94 0.92 1 

 

Thermal comfort control 

Static Optimization 

Two-objective Optimization: The occupant with lower metabolic rate (60 

W/m2) is named as Occupant 1, the occupant with a higher metabolic rate (100 W/m2) 

is named as Occupant 2. Figure 34 shows the Pareto front of the two-objective 

optimization. From Figure 27, we can see that the thermal comfort changes at different 

rates as the occupants have different metabolic rate. Occupant 1 has more thermal 

sensitivity than the Occupant 2. The Pareto front in Figure 34 verifies this, because as 
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the weight changes from 0 to 1, the thermal comfort of Occupant 1 with lower 

metabolic rate changes more quickly. 

 

Figure 34 Pareto Front of Two-objective Optimization (PPD of Occupant 1 Vs. PPD 

of Occupant 2) 

Three-objective Optimization: Figure 35 shows the Pareto front of the three-

objective optimization problem. When the instantaneous energy consumption is low, 

both PPD of Occupant 1 and PPD of Occupant 2 tend towards almost 100, which is far 

less acceptable than the alternative of high energy consumption. Conversely, as the 

thermal comfort index of the two occupants decreases, the energy consumption starts 

to increase. 
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Figure 35 Pareto Front of Three-objective Optimization (PPD of Occupant 1 vs. PPD 

of Occupant 2 vs. Energy consumption) 

Extremum Seeking Control 

Weight Selection: In this study, the weights used in the extremum seeking 

control were selected according to the results obtained by mapping the two and three-

objective Pareto fronts. However, users can adjust the weights in different 

implementation cases according to specific practical purposes.  

Scenarios: Five scenarios were simulated in a Simulink model of PPD of 

Occupants 1 and 2. The outdoor temperature was set to be 35 °C. The simulated time 

was nine hours, which was a typical working hour. The following optimization 

objective functions were used: 1. energy usage only; 2. single-occupant with no energy 

usage; 3. two occupants; 4. two occupants + energy usage; and 5. "staggered" (time-
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dependent) two occupants + energy usage. The initial air supply temperature was set to 

be 21 °C. 

Energy Usage: This simulation result presents the baseline optimization 

problem of minimizing energy usage. As seen in Figure 36, the optimal result is to let 

the air supply temperature changing from the initial temperature to the ambient 

temperature, which is about 35 °C. If human thermal comfort is not a concern, there is 

no need to adjust the environmental conditions in a manner suitable for occupants. 

 
Figure 36 Energy Consumption and Temperature for Energy Usage Optimization 

Single-Occupant Thermal Comfort: The model of single occupant was 

exercised, with the results shown in Figure 37. The optimum temperature 

corresponding to thermal equilibrium for Occupant's BMR of 100W/m2 is reached 

within three to four hours. The steady state temperature is about 23.3 °C, which is much 

lower than the optimal temperature in the energy usage case. 
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Figure 37 Thermal Comfort and Temperature for Single-Occupant Thermal Comfort 

Optimization 

Two-objective Extremum Seeking Control: The weights for the two types of 

occupants' thermal comfort metrics (PPD) should consider their individual physiology. 

According to the two-factor Pareto Front (Fig. 3), the range of the thermal comfort 

change of Occupant 1 (M = 60 W/m2) is larger than Occupant 2 (M = 100 W/m2). 

Occupant 1 is more thermally sensitive than Occupant 2. Based on the above reasoning, 

we selected the weight with β = 0.6, 1- β = 0.4. Even though the thermal comfort of 

Occupant 2 factors less into the controller's behavior, the resulting loss of comfort will 

not be very large due to their comparatively lower thermal sensitivity. 
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Figure 38 Thermal Comfort and Temperature for Two-objective Extremum Seeking 

Control 

In the simulation results for this scenario shown as Fig. 7, we see the controller 

drives the air supply temperature to about 25.4 °C. This temperature falls reasonably 

within the optimum temperature range for both occupants. The temperature is slightly 

skewed towards Occupant 1's optimal temperature due to their higher weighting in the 

objective function. The steady state temperature is about 2 degrees higher than the 

single-occupant thermal comfort case.  

Three-objective Extremum Seeking Control: The three-objective problem 

balances the two types of occupants' thermal comfort and the instantaneous energy 

usage. When the energy consumption is minimized, the air supply temperature and 

outdoor temperature are the same, and both occupants feel extremely uncomfortable. 

In the three-objective optimization, we found that when the objective weight of energy 

is higher than 0.1, the resulting air temperature action tends strongly towards energy 

minimization (resulting in high PPDs). Based on this rationale, a weight of 0.1 for 

energy consumption should be selected, which can promise reasonable thermal comfort 

values while keeping energy usage low. The rationale of the weights on the occupants' 
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thermal comfort is the same as the two-objective extremum seeking control: two 

roughly similar weights, with one higher to reflect Occupant 1's higher thermal 

sensitivity. The weights are selected to be w1 = 0.5, w2 = 0.4, w3 = 0.1. 

The three-objective extremum seeking control simulation results are shown in 

Fig. 8. In the first few hours, the energy usage is high due to the large difference in air 

supply temperature and ambient temperature. After two to three hours, the thermal 

comfort metrics for both occupants have improved---however, Occupant 2 has slightly 

higher PPD than Occupant 1 due to the higher final temperature. This is simply the 

result achieved by the above selection of weights on each term in the objective function. 

The steady state temperature is about 25.8 °C. That means in this case, the temperature 

is higher than the two-objective case because it tends to increase the temperature to 

save energy. Even though the occupants may not be as comfortable as in the two-

objective case, the thermal comforts are still in an acceptable range. 

 

Figure 39 Thermal Comfort, Energy Consumption, and Temperature for Three-

objective Extremum Seeking Control 
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Staggered Three-objective Extremum Seeking Control: This scenario involved 

staggering the two occupants' presences throughout the workday, with Occupant 1 

working the first two-thirds of the day; Occupant 2 working the middle third of the day; 

and only the energy management system for the last third of the day. The weights were 

set to be w1 = 0.9, w2 = 0, w3 = 0.1 for the first one-third of the day; w1 = 0.5, w2 = 0.4, 

w3 = 0.1 for the second one-third of the day; and w1 = 0, w2 = 0, w3 = 1 for the last one-

third of the day. As is seen in Fig. 9, the entrance of Occupant 2 impacted the ESC 

temperature result to have about 0.2 degrees decreasing. The PPDs shown in this figure 

indicate the thermal comfort experienced by the occupants when present. After both 

occupants leave, the energy usage sub-objective is the only one active and rises to meet 

the ambient temperature. 

 

Figure 40 Thermal Comfort, Energy Consumption and Temperature for Staggered 

Three-objective Extremum Seeking Control 

From the results, we can see that the staggered three-objective extremum 

seeking control can optimize the temperature setpoint in real-time based on occupant 

behavior. We also compared the energy consumption of the staggered ESC to that of a 
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constant temperature setpoint (assuming 24 °C) case, which is widely used in a lot of 

real-world buildings. In nine hours, the constant temperature setpoint case consumed 

35.8 kWh, while this staggered ESC consumed 28.0 kWh. The energy consumption 

reduction was 22%. 

5.4 Discussion 

With the diffuser location above user’s eyes, the low performance could be due 

to the relatively small diffuser area comparing to the device developed by the prior 

study [182]. The generated jet from the small diffuser might not adequately cover the 

mouth and nose region, resulting in reduced effectiveness in providing protection. 

Additionally, when the diffuser is positioned in front of the user's face, it could 

potentially lead to dryness of the eyes and lips. Furthermore, the weight of the tube 

connecting the goggle may exert pressure on the user's ears and nose, which could 

affect wearing comfort. Future research could focus on exploring the comfort aspects 

of wearing this device. In terms of thermal comfort, the visualization results indicate 

that the wearable micro air cleaner has the potential to improve the overall and local 

thermal comfort of users at 28 °C. If multiple occupants within a building wear the 

wearable micro air cleaner, it may be possible to increase the indoor air temperature 

setpoint to 28 °C. This relatively higher setpoint temperature has the potential to reduce 

energy consumption for cooling in the building during warmer seasons. 

By incorporating HRV as additional features, the data-driven thermal comfort 

models exhibited improved performance compared to the baseline feature group, which 

only considered indoor and face temperatures. This finding aligns with the previous 

study [199], which confirms that HRV indices could provide valuable information 
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regarding human thermal comfort. Feature groups M3, M4, and M5 achieved similar 

performance, with test F1 scores ranging from approximately 0.8 to 0.9. Among these 

feature groups, M4 could be considered the preferable choice due to its lower number 

of features. The low feature dimensionality in M4 has the potential to save 

computational resources and avoid overfit. 

For the extremum seeking control, the present study only focuses on verifying 

the theoretical feasibility. For the actual applications, the parameters of the controller 

need to be tuned to meet the performances of the actuators and the sensors, such as 

responding speed, etc. Future studies are needed to implemented the extremum seeking 

controller in environmental chambers or real buildings to test the performance of the 

controller. The wearable micro air cleaner and the extremum seeking control provides 

the simultaneous occupant-oriented environmental controls which considers occupant 

health, thermal comfort, and building energy consumptions. 

5.5 Summary 

The present study introduced a novel wearable micro air cleaner designed for 

occupant-oriented indoor environmental controls, which effectively provides 

personalized protection in the breathing zone without disrupting the user's behavior and 

thermal comfort. Tracer gas experiments were conducted to investigate the protective 

performance of the device. Through optimization of the diffuser location and flow rate, 

the wearable micro air cleaner achieved a maximum protective efficiency of 77% for 

mouth breathing and 63% for nasal breathing. To investigate the impact of the device 

operation on user’s thermal comfort, this study conducted human subject experiments 

with 20 participants at different indoor air temperatures. The findings indicate that the 
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device reduced the thermal comfort at an indoor air temperature of 22 °C. However, 

when the indoor air temperature exceeded 25 °C, the operation of the device did not 

significantly affect user's thermal comfort. Comparing to traditional personal 

ventilation at fixed locations, the protective performance of the wearable micro air 

cleaner would not be influenced by user’s movements and daily behaviors. Moreover, 

this study developed data-driven thermal comfort models based on the collected 

physiological data in the human subject experiments. HRV indices showed the 

capability to improve the model performance. With the highest performance exceeded 

0.9, these models could be potentially implemented in the automatic control of the 

wearable micro air cleaner based on occupant thermal comfort requirements. 

The present study also presents a novel application of the extremum seeking 

control in multiple occupant-centrical scenarios for real-time optimization of building 

system operation. Based on different scenarios, we demonstrated that the extremum 

seeking control is effective at managing multiple occupants’ thermal comfort 

preferences and the energy consumption simultaneously. Even though we only 

considered a small office with two types of occupants in this paper, this implementation 

shows that extremum seeking control in actual buildings is possible. In actual buildings, 

the thermal comfort preferences become more complicated because of the much higher 

occupant density. However, the problem can be simplified by classifying the thermal 

comfort preferences of all occupants into several categories, e.g. two categories 

presented in this study. According to the results, the staggered ESC, which can be 

realized with modern building sensor systems that detect occupant presences, saved 
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about 22% of energy compared to the building energy usage with the constant 

temperature setpoint.  

The wearable micro air cleaner and extremum seeking provides a 

comprehensive occupant-oriented indoor environmental control framework which 

simultaneously considers the air quality, thermal comfort, and building energy 

consumptions. The developed simultaneous control could provide a healthy, comfort, 

and energy-efficient indoor environment for building occupants. 
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6. Discussion 

This chapter presents the implications of the dissertation findings, limitations, 

and future work. 

6.1 Implications of the dissertation findings 

For the air quality characterization in occupant breathing zone, previous aerosol 

plume studies only characterized either source strength or convective transport 

capability. This study comprehensively analyzes the aerosol plumes associated with the 

transmission of airborne infectious microorganisms by combining the aerosol 

generation rate and convective transport capability into one factor. The measured 

aerosol concentration, air velocity, and airflow rate could be used as boundary 

conditions for CFD simulations related to aerosol transmission in indoor environment. 

The implications of this study extend beyond the characterization of aerosol plumes. 

Specifically, the findings provide valuable insights into the design and implementation 

of air quality control strategies. Understanding the aerosol dispersion and the factors 

influencing source strength and convective transport can inform the development of 

more effective mitigation measures. The tested effectiveness of different mitigation 

methods shows the importance of the protection of users breathing zone, which 

highlights the objectives of the occupant-oriented indoor air quality control. 

For data-driven thermal comfort identification, even though several studies 

showed the potentials of HRV to be correlated to thermal comfort, few studies used 

HRVs to develop thermal comfort models. The present dissertation conducted two sets 

of human subject experiments with the personal condition device to collect HRV data 
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and develop data-driven models. With the possible thermo-regulation system 

information provided by HRVs, the performances of the thermal comfort predictions 

are significantly improved comparing to traditional models. The incorporation of HRV 

indices as additional features enhances the predictive capabilities, enabling a more 

precise understanding of how users perceive and experience thermal conditions in 

nonuniform environments. In the present study, the HRV data were not collected by 

medical devices but by portable Arduino-based sensors, which shows the convenience 

of using HRV-based thermal comfort models in actual occupant-oriented thermal 

comfort controls. 

Traditional centralized HVAC system does not effectively control the airborne 

microorganism transmission in indoor environment. The wearable micro air cleaner 

provides the next generation occupant-oriented air quality control method for occupant 

breathing zone. In addition, with the convection caused by this device, occupant does 

not need to experience the thermal discomfort and breath hardness caused by traditional 

protection device, such as masks. For some occupants, this device could increase the 

thermal comfort in high indoor air temperature, such as 28 °C. In this case, the indoor 

air set point temperature could be potentially increased to save the building energy 

consumption during the cooling seasons. Resolving the conflicts between occupant 

individual thermal preferences are challenging for traditional building controllers. This 

study firstly implements the extremum seeking control on occupant-oriented building 

controls. By running real-time multi-objective optimization, the extremum seeking 

control successfully tracks the optimal indoor air set point temperature which makes 

all the occupant feel relatively comfortable, at the same time saves the building energy 
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consumption. By effectively addressing air quality concerns, enhancing thermal 

comfort, and optimizing energy usage, these approaches offer a comprehensive 

framework for creating energy-efficient indoor environments that prioritize the well-

being and comfort of occupants. 

6.2 Future work 

For the air quality characterization, future research could explore the reason of 

the diverse source strength and convective transport capability of aerosol plumes 

generated by different human subjects or instruments. For thermal comfort 

identification, more studies could be conducted to validate the effect of heart rate 

variability on thermal comfort prediction. Future studies could use the HRV-based 

data-driven thermal comfort model in thermal comfort prediction scenarios or building 

control applications to test the model performance with unknown data. Future research 

could also further explore the impact of nonuniform thermal stimuli on physiological 

responses and investigate the generalizability of the developed model across diverse 

populations and settings. Continued efforts in this field will contribute to the 

development of more effective and personalized approaches to thermal comfort 

management. For the air quality controls, future studies could optimize the design of 

the wearable micro air cleaner according to user’s wearing comfort. The potential 

performance improvement of the wearable micro air cleaner could also be explored. 

The optimal parameters of the extremum seeking control are needed to be found by 

considering the dynamic of the building system, e.g. the response speed of the HVAC 

actuators and occupant thermal sensation. Future studies could experimentally 

implement the extremum seeking control in environmental chamber or actual building 
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applications. Additionally, assessing the air quality and thermal comfort control 

performance across diverse building types and occupant profiles will contribute to their 

wider adoption and application in real-world scenarios. Overall, future studies could 

experimentally integrate multi-scale building systems and technologies developed by 

the present dissertation. 
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7. Conclusions and contributions 

7.1 Conclusions 

The present dissertation developed the comprehensive research framework for 

next generation occupant-oriented indoor environmental control, which simultaneously 

considers the air quality, thermal comfort, as well as building energy consumptions. 

For air quality characterization in occupant breathing zone, the present 

dissertation conducted the aerosol concentration measurements, airflow rates 

measurements, and flow visualization to characterize the source strength and 

convective capability of the aerosol plumes associated with airborne microorganism 

transmission. The findings underscore the importance of considering both the source 

strength and convective transport simultaneously when characterizing aerosol plumes. 

Neglecting either parameter would result in an incomplete understanding of their 

characteristics, hindering accurate risk assessment. The measurements of source 

aerosol concentrations and airflow rates is essential for a comprehensive 

characterization of the source strength. Moreover, the study emphasized the 

significance of the occupant breathing zone in terms of air quality control. This specific 

area, where the highest concentration of potentially infectious aerosol particles may be 

present, necessitates targeted interventions and measures. Effective air quality control 

strategies within the occupant breathing zone are crucial for minimizing the risks 

associated with airborne diseases. 

For data-driven thermal comfort identification, the present research study 

conducted human subject experiments to collect physiological data and thermal 

sensation/comfort surveys. However, the physiological responses of participants did 
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not exhibit clear patterns, which may not align with traditional aggregate or personal 

thermal comfort models. To address this challenge, the present study incorporated heart 

rate variability (HRV) indices as additional features to enhance the model performance 

by providing more information of human thermo-regulation system. The HRV-based 

data-driven models were developed by multiple machine learning methods, such as 

KNN, RF, and SVM_RBF. Remarkably, the highest achieved test F1 scores for thermal 

sensation and thermal comfort predictions exceeded 0.9. This method offers a reliable 

solution for predicting users' thermal sensation and comfort in indoor environmental 

controls. 

For simultaneous air quality, thermal comfort, and building energy controls, the 

present dissertation developed a wearable micro air cleaner to provide protection for 

user’s breathing zone, at the same time to minimize the thermal comfort impacts. Tracer 

gas experiments were conducted to assess the protective performance, while human 

subject experiments evaluated the thermal comfort influence at three different indoor 

air temperatures. The wearable micro air cleaner demonstrates approximately 60% - 

70% protective efficiency for both nasal and mouth breathing. Unlike traditional 

mitigation methods like face masks, the wearable micro air cleaner offers acceptable 

thermal comfort for users at indoor air temperatures exceeding 25 °C. Additionally, the 

individual thermal preference and energy consumption also needed to be balanced in 

building controls. This study implemented the extremum seeking control to conduct 

real-time optimization of building temperature set-point. The staggered extremum 

seeking control, which can be realized with modern building sensor systems that detect 

occupant presences, saved about 22% of energy compared to the building energy usage 
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with the constant temperature setpoint (24 °C). Overall, the wearable micro air cleaner 

and extremum seeking control represented promising occupant-oriented control 

methods to address occupant requirements related to air quality, thermal comfort, and 

energy consumption in indoor environments. Their implementation can contribute to 

healthier and more comfortable built environments while promoting energy-efficient 

building operation. 

7.2 Contributions 

The key contributions from the current research are summarized as follows: 

1. Air quality characterization in occupant breathing zone:  

• The air quality characterization finds the breathing zone is critical for 

providing effective protection to occupant from getting infected by 

airborne infectious microorganisms. 

• The study finds the characterization of aerosol plumes and associated 

risk of airborne virus transmission requires both the source aerosol 

emission rate and plume influence distance. 

• Woodwind instruments produce aerosol plumes with approximately 

20% higher source aerosol emission rates and 30% greater plume 

influence distances compared to the average values of the same risk 

indicators for singing and brass instruments.  

• Well-fitted masks are strongly recommended for singing because they 

can bring source aerosol concentrations to the background level in front 

of a singer and reduce plume influence distances by 65%. 
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• Bell covers with filters are strongly recommended for brass and 

woodwind instruments performances because they can bring source 

aerosol concentrations to the background level in front of the instrument 

bells and reduce plume influence distances by up to 57%. 

• An individual musician could produce aerosol plumes with five times 

higher source aerosol concentrations than those of the other musicians 

who played the same instrument, resulting in enhanced transmission 

risk. 

2. Data-driven thermal comfort identification: 

• The data-driven thermal comfort identification provides a reliable 

method for thermal comfort prediction in actual building control 

applications. 

• The thermal comfort identification considers HRV for comforts in 

nonuniform microenvironments created by PCD. 

• The PCD creates physiological responses incompatible with traditional 

comfort models. 

• SVM with RBF kernel achieves the best performance among machine 

learning methods. 

• Including multiple HRVs in addition to wrist temperatures improves the 

model performance. 

• The highest model performance indices exceed 0.9 for both thermal 

sensation and comfort. 

3. Simultaneous air quality, thermal comfort, and building energy controls: 



 

 

143 
 

• The study provides a novel occupant-oriented indoor environmental 

control framework which simultaneously considers air quality, thermal 

comfort, and building energy consumption. 

• A wearable micro air cleaner is developed to promise the air quality in 

occupant breathing zone without impacting user’s thermal comfort. 

• The wearable micro air cleaner achieves about 60% - 70% protective 

efficiency for both nasal and mouth breathing. 

• The wearable micro air cleaner provides acceptable thermal comfort at 

the indoor temperatures higher than 25 °C. 

• The extremum seeking control is able to balance the conflicts between 

individual thermal preferences and building energy consumption. 

• The extremum seeking control saves about 22% of energy compared to 

the building energy usage with the constant indoor air temperature 

setpoint (24 °C). 

7.3 Summary of publications 

The present dissertation resulted in the following publications: 

Journal articles: 

• L. Wang, T. Lin, H. Da Costa, S. Zhu, T. Stockman, A. Kumar, J. 

Weaver, M. Spede, D. K. Milton, J. Hertzberg, D. Toohey, M. Vance, 

S. L. Miller, J. Srebric, “Characterization of aerosol plumes from 

singing and playing wind instruments associated with the risk of 

airborne virus transmission,” Indoor Air, vol. 32, no. 6, p. e13064, Jun. 

2022, doi: 10.1111/INA.13064. 
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• L. Wang, D. A. Dalgo, N. Mattise, S. Zhu, and J. Srebric, “Physiological 

responses and data-driven thermal comfort models with personal 

conditioning devices (PCD),” Building and Environment, p. 110290, 

Apr. 2023, doi: 10.1016/J.BUILDENV.2023.110290. 

• L. Wang, S. A. Romo, E. Sanico, H. Da Costa, T. Lin, N. Rabchevsky, 

M. Kern, S. Zhu, J. Srebric, “A Wearable Micro Air Cleaner for 

Occupant-oriented Indoor Environmental Controls,” Building and 

Environment, (Under Review). 

Conference proceedings: 

• L. Wang, T. Hensel, P. Chanpiwat, S. Zhu, and J. Srebric, “Occupant-

centric Control of Building Systems based on Real-time Optimization 

by Extremum Seeking,” in 2022 IEEE International Conference on 

Environment and Electrical Engineering and 2022 IEEE Industrial and 

Commercial Power Systems Europe (EEEIC / I&CPS Europe), 2022, 

pp. 1–6. doi: 10.1109/EEEIC/ICPSEurope54979.2022.9854615. 

• L. Wang, D. A. Dalgo, N. Mattise, S. Zhu, and J. Srebric, “Evaluation 

of Machine Learning Methods for Thermal Sensation and Comfort 

Predictions in Microenvironments Created by Personal Conditioning 

Devices: Poster Abstract,” in Proceedings of the 9th ACM International 

Conference on Systems for Energy-Efficient Buildings, Cities, and 

Transportation, in BuildSys ’22. New York, NY, USA: Association for 

Computing Machinery, 2022, pp. 305–306. doi: 

10.1145/3563357.3567758. 
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Patent: 

• J. Srebric, A. Layne, N. Mattise, S. Zhu, S. Romo, L. Wang, “Wearable 

Air Cleaning Device,” US20220040508A1, United States, June 10, 

2020. 

Technical reports for Centers for Disease Control and Prevention (CDC), USA: 

• Budget period 1: Quarterly report 1-4. 

• Budget period 2: Quarterly report 5-8. 
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