
ABSTRACT

Title of thesis: USING A DISCRIMINATOR TO IMPROVE
COMPRESSIVE SENSING EFFICIENCY

Kevin Hencke, MA, 2012

Thesis directed by: Dr. John Benedetto
Department of Math

Our work defines, implements, and evaluates a modification to a spectrum-

based compression scheme for data streams coming from jet aircraft health-monitoring

sensors. The modification consists of the addition of a discriminator which sepa-

rates data streams into similar classes. We create and justify a simulation of a jet

sensor network as a source for data streams. The data streams are compressed and

decompressed under the new compression scheme and also under two old ones, and

the reconstructions are evaluated for quality. The discriminator-based modification

to the existing compression algorithm is found to yield better quality than the other

two compression algorithms, at the cost of increased runtime.

USING A DISCRIMINATOR TO IMPROVE
COMPRESSIVE SENSING EFFICIENCY

by

Kevin Hencke

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2012

Advisory Committee:
Professor John Benedetto, Chair/Advisor
Professor Wojciech Czaja
Professor Kasso Okoudjou

© Copyright by
Kevin Hencke

2012

Dedication

To Jess. You are my comfort, joy, and inspiration.

ii

Acknowledgments

I have many people to be grateful to, and I hope those I forget will forgive me.

Many people have helped me on my journey to becoming a mathematician.

I thank my earlier teachers, including Mrs. Smith and Mrs. Helms, for teaching

me to love math. I thank Dr. Todd Moon for giving me something to do with

math by introducing me to signal processing. I thank Dr. Mike Boyle for helping

me continue my journey by directing me to the Norbert Wiener Center. I thank

Dr. John Benedetto and Dr. Wojciech Czaja for mentoring, advising, and supporting

me during these past few years with the NWC, and allowing me to continue my

studies as a graduate student.

I thank Dr. Mike Dellomo for bringing me a fascinating project to work on,

for letting me write my master’s thesis about it, and for many highly informative

and entertaining meetings spent discussing our algorithm (and all manner of other

things). I also thank his associates Mr. Tej Phool and Dr. Gang Qu; thank you for

sharing your project with me.

For things less mathematical but just as important, I thank my friends and

family, especially Jess, for their loving support.

I also thank Ms. Dorothea Brosius for maintaining a tremendously helpful

LaTeX thesis template, at the following site:

http://www.ireap.umd.edu/ireap/theses/LatexThesisTemplate/

iii

Table of Contents

List of Figures vi

1 Introduction 1

2 Theory 3
2.1 Background Information on Aircraft 3

2.1.1 Structure of Jet Engines . 3
2.1.2 Vibration in Aircraft . 5

2.2 Discussion of Compression . 7
2.2.1 Background . 7
2.2.2 Redundancy of Jet Vibrational Data 9

3 Implementation 11
3.1 Note on Discretization . 11
3.2 Generation of Dataset . 11

3.2.1 Plane structure overview . 11
3.2.2 Engine Vibration . 12
3.2.3 Fuselage Vibration . 14
3.2.4 Propagation of Signals . 15
3.2.5 Placement of Sensors . 16
3.2.6 Signal Mixing . 17

3.3 Design of Compression Algorithm . 20
3.3.1 Overview . 20
3.3.2 Initialization of Compression Strategy 20
3.3.3 Performing Compression and Reconstruction 21
3.3.4 Applying Discriminator . 23

3.4 Results . 23
3.4.1 Note on Temperature Sensors 23
3.4.2 Compression Means and Eigenvalues 24
3.4.3 Definition of Performance Metric 27
3.4.4 Performance . 29

4 Conclusion 33
4.1 Summary . 33
4.2 Further Work . 33

A Discussion of Noise Types 36
A.1 White noise . 36
A.2 Brown noise/Brownian Motion . 37
A.3 Pink Noise . 37
A.4 Comparison of Plots . 38

iv

B Source Code 40
B.1 Data Generation . 40

B.1.1 A MAIN normal plane.m . 40
B.1.2 basic plane.m . 42
B.1.3 engine sound.m . 46
B.1.4 fuselage sound.m . 48
B.1.5 mix sensors.m . 50

B.2 Algorithm . 53
B.2.1 large comparison.m . 53
B.2.2 compression test.m . 56
B.2.3 custom pca.m . 61
B.2.4 sig to noise.m . 62

Bibliography 64

v

List of Figures

2.1 Two examples of jet engines. 4

3.1 Magnitude of engine vibration spectra 14
3.2 Weighted Graph depicting propagation of vibration 16
3.3 Magnitude of spectra of one inner engine sensor 18
3.4 Magnitude of spectra of one outer engine sensor 19
3.5 Magnitude of spectra of one fuselage sensor 19
3.6 Spectra of one engine sensor clipping 22
3.7 Spectra of one fuselage sensor clipping 22
3.8 Compression mean in unsorted case 24
3.9 Compression mean of only engine sensors 25
3.10 Compression mean of only fuselage sensors 25
3.11 Plot of eigenvalues of all clippings . 26
3.12 Plot of eigenvalues of engine sensor clippings 26
3.13 Plot of eigenvalues of fuselage sensor clippings 27
3.14 Plot of Compression Ratio vs SNRs 30
3.15 Large-scale Compression Ratio vs SNRs 31

A.1 Comparison of White, Pink, and Brown noise in time domain 38
A.2 Comparison of power spectrum of White, Pink, and Brown noise . . . 39
A.3 Comparison of power spectrum, with first coefficient truncated 39

vi

Chapter 1

Introduction

The task of actively monitoring the health of running aircraft has obvious

worth, and has been the subject of much prior work. Hardware systems employ

sensors to monitor various conditions, including vibration and oil temperature, to

detect damage as it happens and warn pilots of dangerous situations. As technology

has advanced, though, we have become increasingly good at gathering data, to the

point where it becomes cumbersome to handle it all without some type of data

compression.

In this paper we detail a variation of a data compression scheme for transmit-

ting sensor feeds to a central aircraft health monitoring system. The compression is

based on projection of the magnitude frequency spectrum of the data feeds onto a

basis, which is obtained from a number of training clippings by principal component

analysis. We introduce a new variant of the scheme by applying a ‘discriminator,’

which (for now) means manually dividing the sensors into similar classes, and per-

forming the compression algorithm by class.

We begin by explaining and justifying a simulation of aircraft health sensor

data feeds, from which we draw our data to be compressed. We then run a number

of trials on different data sets, applying various compression ratios and grouping

the sensors in three different ways: all in one group, grouped by true class, and

1

processed individually. This entire experiment is intended as preliminary work,

with a future experiment planned that will introduce highly parallel computing and

an automated, algorithmic discriminator.

2

Chapter 2

Theory

2.1 Background Information on Aircraft

In our experiment we model an aircraft whose components are vibrating under

the effects of normal cruising flight. To justify our simulation choices, we will make

some comments on the structure of jet engines, and the nature of vibrations caused

by machinery and airflow.

2.1.1 Structure of Jet Engines

A jet engine is a combustion-driven propulsion system that is commonly used

to propel aircraft. A diagram of two jet engines is provided in Figure 2.1, which is

drawn from [12]. The diagram pictures the engines in cutaway view, with the cutting

plane parallel to the axis of rotation. The inner turbines are shaded dark and the

outer turbines (including their intake fans) are shaded more lightly; the inner and

outer turbines of each engine spin freely and are not coupled to each other.

In the diagram, air flows from the left of the engine to the right. Jet engines

have four stages of combustion, all of which happen simultaneously at different areas

in the engine. Each successive stage occurs further back in the engine:

1. The intake fan and compressor blades at the front of the engine spin, pulling

air in and forcing it into a narrowing duct, pressurizing it.

3

Figure 2.1: Two examples of jet engines.

2. In the burners, jet fuel is injected into the compressed air, and ignited. The

combustion increases the pressure of the air.

3. The pressurized exhaust blows backwards through the engine, powering the

drive turbines and providing torque to the intake fan and compressor blades.

4. The depleted, pressurized exhaust exits the jet engine, providing thrust to the

aircraft and making room for fresh air.

4

2.1.2 Vibration in Aircraft

One detection method for identifying change or damage to aircraft uses Fourier

analysis. A change in the magnitude of the spectra of vibration on an aircraft

indicates some change to the mechanical component of the aircraft associated with

that spectral component. Machinery is generally designed to minimize superfluous

vibration and heat, as extra vibration and heat constitute an unintended loss of

useful energy, and contribute to wear.

Therefore, it is reasonable to associate increased vibration, noise, and heat

with damage to machinery. Vibration sensors have established utility in detecting

and predicting faults in machinery. [7] It is also useful to consider the spectra of

vibrations, since vibrations produced under stable operation come from components

that exhibit periodic behavior. Past work has made clear the usefulness of Fourier

analysis in fault detection. [2] [11] The magnitude of FFTs is what concerns us the

most. Phase variation is less important to us because it does not contribute to

power. In this work we only study magnitudes of FFTs.

Each rotational component of an engine under stable operation will produce

a periodic vibration pattern as the component makes successive cycles and returns

to its starting point. Suppose there exists a driveshaft in an engine that rotates at

τ Hz, and no other component spins at that speed. Since the driveshaft’s vibration

function is τ -periodic, the FFT of this vibration will consist of harmonics of τ and

will be easily identified among the engine’s vibrational spectra. If we are monitoring

the vibrational spectrum of this engine and we see a sudden increase in the power

5

domain corresponding to τ Hz and its harmonics, it is likely an indication that

something has changed with the functioning of the driveshaft.

In a similar way, we assert that damage to the fuselage of a flying aircraft may

be detected as a change in vibrational spectra. An airplane fuselage in flight will

vibrate with spectra well-approximated by pink noise; a precedent for this assump-

tion is established in [5]. A stable, rigid body subject to strong airflow will vibrate

in a consistent way, and a dramatic change in the character of vibrations may again

be taken to mean that some change, possibly including damage to the fusleage, has

occurred.

Depending on the situation, a change in vibrational spectra may be an indi-

cation of new damage that threatens to cause catastrophic failure [4]. In this case,

monitoring spectra can help to prevent or minimize damage to equipment, or even

prevent injury or death. It may even be the case that by analysis of the spectra and

comparison to previous records of healthy spectra, the damaged component may

be identified specifically, allowing not only prevention of accidents but also ease of

maintenance. [4] [1]

A τ -periodic signal has a spectrum dominated by a sine of frequency τ , plus

harmonics (multiples) of τ . For this reason we model vibrations of single engine

components as simple sine waves, and ignore harmonics. This is simplistic, and it

would be informative to obtain and study real vibrational data from jet engines.

For the purpose of this paper, the vibration of one engine is modeled as the sum of

6

vibrations of turbine shafts, blades, gears, and a zero-mean white noise term:

vi(t) = N i(t) +
T∑

j=1


pS(i,j)sin(2πτ(i,j)t)+

pB(i,j)sin(2πτ(i,j)b(i,j)t)+∑G(i,j)

k=1 pG(i,j,k)sin(2πτ(i,j)g(i,j,k)t)

 (2.1)

We will talk about this summation more specifically in 3.2.2.

We note that vibrations travel throughout machinery; the vibrations produced

by one engine will not remain confined to that engine, and likewise any wind-driven

vibration of the fuselage will also travel to the engines, under the effects of some

attenuation. Accordingly, we assert that when simulating a network of sensors and

noise sources on an aircraft, a weighted graph, whose edges specify attenuation

factors, provides a good model of the movement of vibrations. We will discuss this

more specifically in 3.2.4.

Our algorithm is a compression scheme intended for use with a spectral-based

fault detection system, as it bases reconstruction on the shape of typical spectra. It

does not itself include a fault detection system. We would welcome an augmentation

of this work with such a detection system, and are planning to construct such an

experiment ourselves.

2.2 Discussion of Compression

2.2.1 Background

In any system where data must be transmitted but bandwidth is scarce, it

may be desirable to use some form of data compression. There are many types of

7

compression, and they generally exploit redundancy in the data. As an example,

data with long sequences of identical values may use run-length encoding. Huffman

coding, which exploits commonly occurring patterns, is another possibility; both it

and run-length coding are lossless, but such codes are not our only options. [3] [10]

We may certainly restrict ourselves to lossless encoding, but another option is

to use lossy compression based on discarding unimportant or insignificant informa-

tion. Computationally, this frequently means exploiting sparsity in the data, and

possibly applying a transformation first to obtain the desired sparsity. Sparse data

is easy to compress because by definition it contains large numbers of zeros and is

therefore high in redundancy. If we understand our data well, we may be able to

choose an effective transformation in order to bring many of the data coefficients to

zero, or within some threshhold of zero. We may threshhold the data to obtain high

sparsity at minimal loss of accuracy or meaning. [10]

Two examples of types of lossy transformations useful in compression are

Fourier-based transforms and wavelet transforms. The former exploits periodicity

by projecting onto a basis of trig functions. In contrast, the latter exploits localized

discontinuities by projecting onto a basis that separates matrices into coefficients

describing local averages and local directional changes. Data that is highly peri-

odic (such as an image containing a regular, repeating pattern; for example a brick

wall) is handled well by discrete Fourier transforms, while data with highly localized

discontinuity, such as cartoon images, is handled well by wavelet transforms. [10]

In both the Fourier and wavelet case stated above, we assume that our data,

which lies in some space S, is essentially a linear combination of a relatively small

8

number of basis vectors from a carefully chosen basis, plus insignificant amounts of

noise. Another type of compression along these same lines relies on an assumption

that the data, which may be high-dimensional, takes the form of points on a low-

dimensional linear manifold, plus a small amount of insignificant random noise. If

this is the case, then we may make a guess as to the form of the manifold and/or a

basis set for the manifold. If we manage to guess well, we may compress any high-

dimensional data point by a smaller number of parameters by projecting it onto the

basis set. In this case, we reconstruct it as follows:

x∗ =
∑
bi∈B

bi 〈x, bi〉 for x ∈ span(B) ⊂ S

For x ∈ S that lie close to span(B), this is a good approximation, and if |B| << dim(S),

we may achieve a high compression rate with little effort or loss of data, by choosing

B cleverly. This is the goal of compressive sensing.

2.2.2 Redundancy of Jet Vibrational Data

We assume that our simulated aircraft’s vibration sensors are all picking up

linear combinations of the same five sources: the four engines and the fuselage

noise. Our data, then, is close to 5-dimensional in magnitude spectrum, plus some

noise. We believe that the magnitude spectra of each sensor lie near the subspace

that is spanned by the average magnitude spectra of the five vibrational signal

sources. Principal component analysis is well-established as a technique for undoing

linear mixing, so we attempt to use it to recover the signal sources from the linear

combinations therein that comprise the sensor clippings, and use several of the first

9

resulting principal components as our basis. A detailed treatment of PCA is set

forth in [9].

In this way, by choosing and projecting onto a basis of size 100 or less, a vector

of length 213 is reduced to 100 coefficients or fewer. It is important to note that we

must store the compression basis we are using, which itself contains many vectors

of length 213, on both sides of the restrictive channel. However this is a one-time

cost, and is easier than continually passing new vectors of length 213 through the

channel. We take several training clippings to form our basis, and then we only

transmit coefficients from then on.

Our innovation consists of sorting the sensor feeds. Rather than compress-

ing the temperature, fuselage, and engine sensors all together, or separating them

entirely, we group them manually into their three natural classes. In this way we

hope to observe that a better, more fitting basis may be created for each class. In

running trials, we look for an improvement in efficiency or performance given by the

different compression schemes made possible by sorting the data streams by class

before determining a compression scheme.

All analysis and compression is done in the spectral domain. The time series

vibrational data is real-valued and represents pressure with respect to time, as in the

usual case of auditory or vibrational data. A fast Fourier Transform is performed

on each clipping, and the absolute value of the resulting frequency-domain data is

taken. The result is a nonnegative, real-valued spectrum. In taking the absolute

value we discard the phase information of the clippings; as discussed previously, we

do not consider phase data in this project.

10

Chapter 3

Implementation

3.1 Note on Discretization

We noted that the highest-frequency sine arising from our experiment was that

corresponding to the blade frequency of an inner turbine, which had an average

frequency of 3.3786 · 103. [13] With this in mind, we estimate that the Nyquist

frequency [8] is about 8000, and as such we chose to simulate a sampling rate of

213 = 8192 samples per second. We ran the experiment for 64 seconds, for a total

of N = 219 discrete moments in time. Thus the previously discussed matrix S has

12 columns and 219 rows. For purposes of compression, we will divide the sensor

streams into clippings of length 8192.

All of our computations are done in MATLAB, and the PCA is done based on

the built-in SVD algorithm. The source code used to generate the data, compress

and decompress, and evaluate performance are set forth in Appendix B.

3.2 Generation of Dataset

3.2.1 Plane structure overview

We model our plane as having five engine sources: four unique engines, and

the wind rushing over the fuselage. We simulate there being one vibration sensor on

11

each engine and four along the length of the fuselage. We also simulate temperature

sensors on each engine, for a total of 12 sensors.

3.2.2 Engine Vibration

As previously discussed in 2.1.2, we model engine vibration as a sum of sines,

with frequencies and magnitudes chosen to represent the shafts, blades, and gears of

an engine, as well as additive white noise. When viewed as a function, the vibrational

signal vi coming from the ith engine takes the form of the sum of the vibration of

shafts, blades, gears, and white noise, or:

vi(t) = N i(t) +
T∑

j=1


pS(i,j)sin(2πτ(i,j)t)+

pB(i,j)sin(2πτ(i,j)b(i,j)t)+∑G(i,j)

k=1 pG(i,j,k)sin(2πτ(i,j)g(i,j,k)t)

 (3.1)

Here j indexes each of the T turbines. The rotational speed of the jth turbine

shaft in the ith engine, measured in Hz, is denoted τ(i,j). The various p coefficients

parameterize the volume of each component. The constant b(i,j) is defined as the

number of blades of the jth turbine of the ith engine. G(i,j) is the number of gears

engaged with a turbine, and g(i,j,k) are the corresponding gear ratios. Overall, we

have a sum of a shaft sine, a blade sine, and gear sines, and we sum this value across

all turbines of the engine. The function N i(t) is a random variable with Gaussian

distribution and some given scalar constant establishing magnitude; this term adds

white noise to the engine.

In our experiment, we use four identical engines, with slight variations intro-

duced into the rotational speeds of the turbines and volumes of the gears. We base

12

the specifications of our simulated engines on [13]. For each engine, we model two

turbines (outer and inner) in each engine, with 20 blades on the outer turbine and 21

on the inner. We let the outer turbine’s rotational speed be 2069 rpms, and we set

the inner turbine to spin at 9653 rpms. We then multiply each turbine’s spin speed

by an iid random coefficient X, uniformly distributed on [.95, 1.05], to introduce 5%

random variation. We then converted rpms to Hz to get

τi,1 = 2069X/60, τi,2 = 9653X/60

We set the volume scaling parameters pS(i,j) = pB(i,j) = 1. It would be interesting

to see the experiment repeated with other values for these parameters.

For each engine we model one gear engaging the outer turbine with gear ratio

5/13, and two gears engaging the inner turbine with ratios 7/4 and 1/2. We let

each coefficient p(i,j,k) have mean 10−3/20 and multiply by an iid random coefficient,

uniformly distributed on [.95, 1.05], as we did previously with turbine shaft spin

speeds. Thus

p(i,j,k) = 10−3/20X ∀(i, j, k) (3.2)

g(i,1,1) = 5/13 (3.3)

g(i,2,1) = 7/4 (3.4)

g(i,2,2) = 1/2 (3.5)

Now that we have defined the vibration function for each engine, we discretize

it as vin = vi(2−13n), defined in terms of the nth moment in time and the sampling

rate 213. We may now take the FFT of the vector v̂i, which consists of every vin

13

Figure 3.1: Magnitude of engine vibration spectra

gathered together. The magnitude of the FFT of one such v̂i, the entire vibrational

signal from one engine, is displayed in Figure 3.1.

3.2.3 Fuselage Vibration

In our experiment, fuselage vibration is modeled as pink noise, as is cockpit

vibration in [5]. We create our pink noise in terms of its FFT, with 1/f magnitude

and phase randomized uniformly over [0, 2π]. We must be careful in our definition

of this noise because we want our time-domain signal to be entirely real, so we

must ensure that the FFT of our pink noise is symmetric. For some background

information on types of noise, see Appendix A.

We start by defining the vector x with xj = 1/j for j = {1 . . . (N/2)− 1}. We

then remove the last term from x and reverse the order of the remaining coefficients

to define r. Thus the vector [x, r] is palindromic. Finally, we define the concatenated

vector m = [0, x, r]; this is the magnitude of the FFT of the fuselage vibration.

14

We define the phase by a similar process, letting y be defined as (N/2) − 1

realizations of a random variable U that is uniformly distributed over [0, 2π). We

then exponentiate to create z, letting zj = eiyj , where i is used as the imaginary

unit in this case. We now let s be formed from z as r was formed from x before; we

truncate the last term of z and reverse the order to get s. Now we define the vector

p = [1, z, s]; this is the phase of the fuselage vibration’s FFT.

We form the vector f̂ by the following rule:

f̂j = 1000mjpj

We use the constant 1000 to adjust the overall power of the fuselage noise. We now

take the inverse FFT of f̂ to obtain the vector of fuselage vibrational signals, f .

Because we have defined the magintude and phase of the FFT symmetrically, the

resulting f is real-valued, as desired.

3.2.4 Propagation of Signals

Figure 3.2 describes the propogation of vibration through the aircraft in our

simulation. One engine and one sensor are located at each of points E1-E4, while

the fuselage sensors are located at points F1-F4. The blank point in the middle of

the graph contains no sensors and produces no noise and only serves as a conduit

for vibration. The engines at points E1-E4 produce vibrations which are attenuated

by the multiplicative constants {a, b, c, d} ∈ (0, 1) as they travel along each node

of the graph. As an example, the sensor at F1 picks up the vibrations created by

engine E4, with an overall attenuation factor of a · b · c · c = abc2.

15

F1

F2

F3

F4

E1 E2 E3 E4

c

c

d

d

a b b a

Figure 3.2: Weighted Graph depicting propagation of vibration

In our experiment we let (a, b, c, d) = (10−10/20, 10−16/20, 10−18/20, 10−13/20).

Vibration are simulated as traveling instantaneously; this may be unrealistic, and it

would be interesting to see the experiment repeated with delays added at each node

of the graph.

3.2.5 Placement of Sensors

Our experiments use twelve sensors, labeled S1–S12. Sensors S1–S8 are vi-

brational sensors and S9–S12 are temperature sensors. Referring again to Figure

3.2, S1–S4 are located at points E1–E4, while S5–S8 are located at F1–F4. The

temperature sensors S9–S12 are also located at E1–E4. Temperature is a constant

value unique to each engine, which does not propagate. The sensors S9–S12 read a

single, constant value throughout the experiment.

16

3.2.6 Signal Mixing

We may consider the realizations of sensors S1–S12 at timestep n as the values

{s1
n, . . . , s

12
n }. Similarly, we label the engine vibrations and temperatures produced

at timestep n by the engines at E1–E4 as {v1
n, . . . , v

4
n} and {t1n, . . . , t4n}, and the

fuselage vibration as fn.

The temperature sensors S9–S12 are always exactly equal to the temperatures

of the corresponding engines and there is no mixing, so we will not discuss them

further. However, the values read by the vibration sensors at time n are determined

by the fuselage and engine vibrations by a matrix multiplication, for a mixing matrix

M defined as follows in equation (3.6):


s1
n

...

s8
n

 =



1 a ab2 a2b2 abc2

a 1 b2 ab2 bc2

ab2 b2 1 a bc2

a2b a2b ab 1 abc2

abc2 bc2 bc2 abc2 1

abc bc bc abc c

abd bd bd abd cd

abd2 bd2 bd2 abd2 cd2





v1
n

...

v4
n

fn


(3.6)

We anticipate further work on this project. As such, since running the experiments

whose results we include in this paper, we have made minor adjustments to our

weighted graph and our mixing matrix. We have represented these revised forms in

Equation 3.6 and Figure 3.2. The general form and function of these are the same

17

Figure 3.3: Magnitude of spectra of one inner engine sensor

as the graph and mixing matrix used in our experiments.

We stack the vectors s̄n = [s1
n . . . s

12
n] vertically, forming the overall sensor data

matrix S set forth in equation (3.7).

S =


s̄1

...

s̄N

 =


s1

1 . . . s12
1

...
...

s1
N . . . s12

N

 (3.7)

Examples of the magnitudes of the spectra of an inner engine sensor, outer

engine sensor, and a fuselage sensor are provided in figures 3.3, 3.4, and 3.5. The

stronger low-frequency signal provided by the fuselage vibrations is visible in the

lower frequency range of 3.5.

18

Figure 3.4: Magnitude of spectra of one outer engine sensor

Figure 3.5: Magnitude of spectra of one fuselage sensor

19

3.3 Design of Compression Algorithm

3.3.1 Overview

Our compression strategy is to divide each sensor feed into clippings and take

the FFTs of these, discarding the phase and keeping only the magnitude. We

then subtract an previously computed average vector, the “compression mean,”

and project the result onto a “compression basis” and then transmit the resulting

basis coefficients. We decompress by reversing this process; note that phase is not

reconstructed.

3.3.2 Initialization of Compression Strategy

Before we can perform compression, we must build the compression mean and

compression basis. These are computed from a number of training clippings taken

from the sensor data matrix S, by the following procedure:

1. Establish a desired number y of basis vectors; this establishes the compression

ratio as 8192/y

2. Choose a sensor index set Λ ⊂ {1, . . . , 12}, of size |Λ| = x

3. Form the matrix SΛ = [sΛ1 , . . . , sΛx] drawn from the total sensor recordings

4. Establish a desired number z of training clippings from the sensors

5. Choose a training index set Γ ⊂ {1, . . . , N − 8192}, of size k = dz/xe

20

6. Form the training matrix T of dimensions 8192× kx, as T = [T1, . . . , Tk] with

Ti =


SΛ(Γi, 1) . . . SΛ(Γi, x)

...
...

SΛ(Γi + 8192, 1) . . . SΛ(Γi + 8192, x)


7. Take the FFT of the columns of T to obtain T̂

8. Take the absolute value of all values of T̂ , discarding all phase information

and retaining only magnitude information. Label this U

9. Take the row-wise means of U to obtain a single average column vector µ of

size 8192× 1

10. Subtract µ from every column of U to obtain the matrix V

11. Perform PCA on the columns of V to get a basis B of column vectors of size

8192× 8192

12. Truncate the basis B to be size 8192× y

This yields the compression mean µ and the compression basis B.

3.3.3 Performing Compression and Reconstruction

Given a clipping a of size 8192 × 1 taken from one of the sensors of SΛ, to

compress it we define b = |FFT [a]|−µ, and then project b onto the basis B to form

the coefficient vector c = BT b. c has size y × 1, for a compression ratio of 8192/y.

To reconstruct, we compute a∗ = IFFT [Bc+ µ].

21

Figure 3.6: Spectra of one engine sensor clipping

Figure 3.7: Spectra of one fuselage sensor clipping

An example of the magnitude spectrum of a 8192 × 1 engine sensor clipping

is displayed in Figure 3.6, and the magnitude spectrum of a clipping of a fuselage

sensor is pictured in Figure 3.7. Frequency spikes, caused by the powerful sines

contributed by engines, are visible in each plot. The white noise is also visible, and

the 1/f magnitude pink noise of the fuselage sensor is apparent in the low-frequency

range of Figure 3.7.

22

3.3.4 Applying Discriminator

Work has already been done in this area using a full sensor index set Λ =

{1, . . . , 12} or the degenerate case of Λ = k ∈ {1, . . . , 12}; this corresponds to com-

pressing every sensor at once by the same basis, or every sensor individually. The

novel idea applied in our work is the discrimination of sensors into three different

classes, corresponding to Λ1 = {1, . . . , 4}, Λ2 = {5, . . . , 8}, and Λ3 = {9, . . . , 12},

and applying the compression algorithm set forth above to each class separately.

This yields three compression bases and three compression means. We run recon-

struction performance comparisons on the cases of the undiscriminated case, the

three-class discriminated case, and the signal-by-signal, using the same total num-

ber of basis vectors in each case, but dividing them between classes by hand.

In the three-class case we discriminate by hand with a priori knowlege, but we

intend to continue our work with an automated discriminator which requires no a

priori knowledge and which can separate the sensors into classes automatically, as

well as allocate basis vectors to each class automatically.

3.4 Results

3.4.1 Note on Temperature Sensors

Since we simulated the temperature sensors as having constant values, they

are computationally uninteresting. When the temperature sensors are treated as

a separate class, the compression mean alone is sufficient to perfectly reconstruct

23

Figure 3.8: Compression mean in unsorted case

every clipping.

3.4.2 Compression Means and Eigenvalues

For an example case, a dataset was generated and the compression strategy

was initialized for the undiscriminated and three-class discriminated case. 80 basis

vectors total were allocated in both cases. In the discriminated case, the engine

sensors were allocated 54 basis vectors and the fuselage sensors were given 25, while

the temperature sensors received only a single basis vector.

By allocating the same total number of basis vectors in both cases, we hoped to

closely compare the performance of the discriminated and undiscriminated compres-

sor. It is important to note that the undiscriminated case has only one compression

mean and the discriminated case has 3, but we feel this may be overlooked as the

compression mean is a one-time cost. Once the mean/s are stored, the same number

of compressed coefficients are transmitted for every clipping.

24

Figure 3.9: Compression mean of only engine sensors

Figure 3.10: Compression mean of only fuselage sensors

25

Figure 3.11: Plot of eigenvalues of all clippings

Figure 3.12: Plot of eigenvalues of engine sensor clippings

The compression means are pictured in Figures 3.8, 3.9, and 3.10. The com-

pression mean in the undiscriminated case, shown in Figure 3.8, is plotted with

marked points to accentuate the zeroth FFT coefficient. This spike corresponds to

the constant, high-magnitude of the temperature sensors. This feature is not present

in any vibrational sensor and we expect to improve our performance by discrimi-

nating out the temperature sensors and removing this irrelevant feature from the

compression of vibrational sensors.

26

Figure 3.13: Plot of eigenvalues of fuselage sensor clippings

The eigenvalues returned by the SVD in the PCA computation in the dis-

criminated and undiscriminated case are presented in Figures , , and . We do not

observe any clear dropoff in the plot corresponding to the undiscriminated case for

many indices, but we do see clearer jumps sooner in the discriminated cases.

3.4.3 Definition of Performance Metric

To evaluate the quality of the reconstructions given by each strategy, we first

initialize the compression strategies, then establish ∆ ⊂ {1, . . . , N}, a set of starting

indices for testing with |∆| = k. We use care when choosing both our testing indices

and our training indices, in order to ensure that all testing indices ∆ are strictly

greater than any indices in the training index set Γ, so as not to include any clippings

in both the training and testing sets.

We then sort the columns of S according to our discrimination strategy Λ1,Λ2,Λ3

and use ∆ to draw a number of testing clippings from SΛi
in the same way as we did

27

for our training clippings. We label these testing clippings a(i,j) for the ith sensor

and jth clipping of that sensor. Each clipping a has dimensions 8192× 1.

For each a, we compute Q[a], for the SNR-based reconstruction quality func-

tion we will define below. For both the undiscriminated and discriminated case, we

compute the average SNR-based quality as

1

8k

8∑
i=1

k∑
j=1

Q[a(i,j)]

Note that we exclude every temperature sensor from this error evaluation, as the

constant nature of the temperature makes the signal uninterestingly simple to recon-

struct. In our experiments with unsorted compression, we observed that the value

of Q[t] for some temperature clipping t was, reliably, much higher than that of the

quality value for a non-temperature clipping. As a matter of fact, in the discrim-

inated case, temperature clippings were reconstructed well enough to yield infinite

values for Q[t]. As this invalidated any attempt to calculate average Q, we have

not included temperature sensors in our quantitative evaluation of reconstruction

quality.

We define the quality function Q[a] as a mean-based calculation of signal to

noise power ratio. In this case, the ‘noise’ is the error introduced by reconstruction

in spectral magnitude of clippings. In terms of the FFTs of a and a∗, respectively â

28

and â∗:

Q[a] = 10 log10

(
Po

Pe

)
, with (3.8)

Po =
1

8192

8192∑
i=1

|âi|2 and (3.9)

Pe =
1

8192

8192∑
i=1

|âi − â∗i |2 (3.10)

3.4.4 Performance

To perform a thorough test of the performance of the three-classes discrim-

inated compression algorithm as compared with the undiscriminated case or the

entirely separated sensor case, a number of experiments were run. Five different

datasets were generated and after each compression strategy was initialized, 100

test clippings were drawn, with care used to avoid using any clipping as both train-

ing and testing data.

Various numbers were chosen as the total basis size constraint, and the com-

pression ratio was computed based on these. For each pair of one compression ratio

and one compression strategy, the Q function was averaged over every clipping, sen-

sor, and dataset. This yielded one single average SNR for every compression ratio

and compression strategy, and the results were plotted in Figure 3.14.

The highlighted points of Figure 3.14 show that the discriminator raises the

compression ratio from 45.52 to 58.53 with no loss in quality. The individual sensor

compression strategy performs increasingly well at higher compression ratios, and

as can be seen in the larger-scale plot in Figure 3.15, it eventually outperforms both

other methods. The non-discriminated case is most prone to decline in quality, and

29

Figure 3.14: Plot of Compression Ratio vs SNRs

30

Figure 3.15: Large-scale Compression Ratio vs SNRs

31

while it starts out as good as the discriminated case and better than the individually

compressed sensors, it quickly drops into last place.

Runtime tends to be greater in the discriminated case and greater still for in-

dividually compressed sensors, but the structure of the code is highly parallelizable.

An extension of this work employing parallel computing would be highly informa-

tive; we plan to try this ourselves.

32

Chapter 4

Conclusion

4.1 Summary

In this paper, we set forth a discriminator-based modification to a compression

algorithm. The compression algorithm is intended for use with sensor feeds for a jet

health monitoring system. We implemented the algorithm and compared it to two

other methods, by designing and creating a simulation of sensor feeds and evaluating

the reconstruction performance of each grouping strategy on the simulated data.

Ultimately, we saw that our novel discriminator-based strategy does perform

better than either other technique, in certain circumstances. It would appear that

our algorithm may indeed be of true practical use in certain situations, though it is

slower than one of the other methods tried.

4.2 Further Work

We expect that the runtime of our algorithm would be improved by parallelized

computing; this has been supported by some preliminary testing. We intend to

continue our experiment by adding parallelization support, as well as an automated

discriminator. We would also like to see how the discriminator-aided compression

works together with a fault-detection algorithm, and whether the discriminator is

33

benificial or detrimental to its success. It would be most interesting to the author if

the experiment could be repeated on real-world recorded data from a true jet flight.

This would provide a much more compelling study.

One concern associated with the algorithm is the fact that it is most effective

at compressing data clippings that are similar to those that arose previously and

were used as training clippings to initialize the algorithm. If an entirely novel signal

arises—perhaps in the case of a sudden, unprecedented and catastrophic mechanical

failure—it may be too unlike the various previous training clippings to be captured

well. If it is near orthogonal to our training basis, a dramatically different signal

may go undetected.

Other possibilities for improvement or diversification of the experiment could

involve: adding delays between the nodes of the vibration-spreading weighted graph,

using dimensionality reduction tools other than PCA, not removing the compression

means at all, substituting different types of noise for the white and pink noise used in

this experiment, and adding additional wind-based noise sources to more points on

the graph. It would also be highly informative to compute two identical datasets and

then add the white noise only to one of them, and then see how well reconstructions

from the noisy dataset match the noiseless dataset.

As a final point, we would like to repeat the experiment with a new type of

discriminator classes; we suspect that we may see better results by grouping single

branches of the weighted graph into compression classes. To explain this in terms of

the weighted graph diagram Figure 3.2 from 3.2.4, we would use the classes (E1,E2),

(F1,F2), (E3,E4), and (F3,F4). It is our belief that since the center node merges all

34

vibrational data from all signals, the contribution to any one branch by way of this

central conduit will be close to 1-dimensional. We would like to explore this idea.

35

Appendix A

Discussion of Noise Types

Herein we will define and discuss the discrete versions of the signals known as

white and pink noise, the two types of noises used in our implementation. We will

also compare them to brown noise, which is one name given to noise associated with

Brownian motion.

Brown noise and white noise are well-studied, and form convenient reference

points from which to describe pink noise. As we will see, pink noise forms a middle

ground between the other two types of noise. The three types of noise are related

by their spectra; each has magnitude S(f) = k/fp for frequency f and constants

k ∈ R+ and p ∈ Z. [6]

A.1 White noise

White noise characterized by independent Gaussian-drawn samples. It is a

signal made up of a number of samples drawn identically and independently from a

gaussian distribution. To express this in an equation, with w̄ defined as a vector of

n samples of white noise,

∀i ∈ {1, . . . , n}, w̄i ∼ N(µ, σ2)

for some appropriately chosen µ and σ. The FFT of white noise is characterized by

the exponent p = 0; thus, its FFT forms a uniform distribution S(f) = k. [6]

36

A.2 Brown noise/Brownian Motion

[6] Brown noise is characterized by independent Gaussian-drawn increments.

It is the cumulative sum (or integral) of white noise; that is, the differences between

successive samples are drawn iid from a gaussian distribution. Thus the vectorized

form b̄ of n samples has the following property:

∀i ∈ {1, . . . , n}, b̄i − b̄(i−1) ∼ N(µ, σ2)

again for some appropriately chosen µ and σ. Brown noise has a distrubition in

the frequency domain characterized by the power exponent p = 2. This noise has

magnitude of S(f) = k/f 2, where k ∈ R+ and f is the frequency at any given point,

as previously discussed. [6]

A.3 Pink Noise

Pink noise, as stated, forms a middle ground between brown noise and white

noise. It does not have a simple explanation in the time domain, but its spectra is

easy to explain in terms of what we have already said. The power exponent p of

pink noise is 1; thus, for pink noise, S(f) = k/f . [6] We take advantage of this fact

in the paper by implementing pink noise by first defining the magnitude at every

point of the FFT of our pink noise, and then adding randomized values for phase.

37

Figure A.1: Comparison of White, Pink, and Brown noise in time domain

A.4 Comparison of Plots

Experimental noise data was generated, and a series of plots of white, pink,

and brown noise are provided in Figures A.1, A.2, and A.3. In each plot, white

noise is pictured in the top subplot, pink noise in the center, and brown noise on the

bottom. We note that linear interpolation does not imply meaning between mesh

points as these signals are only defined on a discrete index set. A line plot was

chosen solely because it shows clearer trends than a scatter plot.

The time-series data pictured in Figure A.1 demonstrates the behavior of each

type of noise. White noise is entirely incoherent, which is consistent with its def-

inition as independent samples. On the other hand, the value of each sample of

brown noise is determined primarily by the immediately preceeding value, with only

a small change introduced by each increment. As stated before, pink noise provides

a middle ground between white and brown, and the time-series plot of pink noise

supports this.

38

Figure A.2: Comparison of power spectrum of White, Pink, and Brown noise

Figure A.3: Comparison of power spectrum, with first coefficient truncated

The power spectrum of each type of noise is pictured in Figures A.2 and A.3.

The plots are logarithmic in both variables, which allows linear trends to appear.

Once the first coefficient, corresponding to the constant component of each signal,

is truncated, we are able to see that each magnitude spectrum takes the form of

a noisy line of some slope, when viewed on a log/log plot. This provides another

indication of the relationship between the three types of noise.

39

Appendix B

Source Code

We implement and run our experiment entirely in unmodified MATLAB R2010a.

The following source code files encompass the whole of the code used in the produc-

tion of this paper.

B.1 Data Generation

The following files generate the simulated data that we use to test our algo-

rithm. ‘A MAIN normal plane.m’ is the top-level script, which invokes each of the

others.

B.1.1 A MAIN normal plane.m

%% normal plane.m : Make database

%{

This file generates a single ordinary plane, with 4 engines that

include noise and with fuselage noise. There are 4 engine sensors

and 4 fuselage sensors, and 4 temperature sensors.

The temperature sensors are a self−contained system, but the

40

fuselage and engine sensors hear some of the same vibrational data.

The engine sound comes through strong on the engine sensors and

weakly on the fuselage sensors, and vice versa for the fuselage

sound.

%}

%% init

tag = 'normal plane';

filename = tag;

basic plane

%% tweak

%Make any desired adjustments to parameters here, i.e. introduce

%volume increases indicating fault conditions

%% sense/mix

mix sensors

%% save

%Uncomment to save a .mat file for later use

%save(filename);

beep

'Database complete'

41

B.1.2 basic plane.m

%% basic plane.m

%{

use the engine sound function four times with same values except for slight speed variation

4 engines

4 wing sensors,

4 fusel. sensors

4 temp. sensors

multiply the engine matrix by the mixing matrix

Engine sounds matrix has a row for each engine and a column for each tick.

Mixing matrix has a row for each sensor and a column for each engine.

Mixing * Engine = [sensor x engine][engine x tick] = [sensor x tick]

Highest freq is going to be inner rpm * inner blades / 60 sec/min,

which is 3.3786e+003 or about 4000.

Therefore Nyquist freq. is less than 8000 samp/sec. We'll use

8192 = 2ˆ13 because it's a power of two and plays nice with FFTs.

We add a little bit of randomness to the loudness

of gears, turbine speed, etc.

42

%}

%% global init

samp rate = 2ˆ13;

rng = gmdistribution(0,1,1);

ticks = ((1:2ˆ19)−1)'; %our set of times

%% randomization init

%these parameters will take the form of a constant describing the maximum

%multaplicative difference between a specified parameter and the randomized

%one; for example, if 50 is specified and .1 is the randomization param,

%then the actual value will range from 50*.9 = 45 to 50*1.1 = 55.

%The multiplicative randomization factor will be distributed uniformly.

%When creating the multiplicative factor for scaling the specified param,

%do it in the form 1+(rand param*2*rand − rand param).

gear rand = .05;

out rpm rand = .05;

in rpm rand = .05;

eng noise rand = .05;

fus noise rand = .05;

%% Engine parameters init

gear vol = 10ˆ(−3/20);

43

gear properties = [1 2 2; 5/13 7/4 1/2; ...

gear vol * (1+ gear rand * 2 * rand −gear rand) ...

gear vol * (1+ gear rand * 2 * rand −gear rand) ...

gear vol * (1+ gear rand * 2 * rand −gear rand)];

%see noise section for noise volume

base temp = 696; %in celsius

outer rpms = 2069;

inner rpms = 9653;

outer vol = 1;

inner vol = 1;

outer blades = 20;

inner blades = 21;

out blade vol = 1;

in blade vol = 1;

%{

FORMAT:

OUT RPMS IN RPMS

OUT VOLUME IN VOLUME

OUT BLADES IN BLADES

OUT BLADE VOL IN BLADE VOL

%}

turbine A properties = [outer rpms*(.95+.1*rand) ...

44

inner rpms*(.95+.1*rand); outer vol inner vol; ...

outer blades inner blades; out blade vol in blade vol];

turbine B properties = [outer rpms*(.95+.1*rand) ...

inner rpms*(.95+.1*rand); outer vol inner vol; ...

outer blades inner blades; out blade vol in blade vol];

turbine C properties = [outer rpms*(.95+.1*rand) ...

inner rpms*(.95+.1*rand); outer vol inner vol; ...

outer blades inner blades; out blade vol in blade vol];

turbine D properties = [outer rpms*(.95+.1*rand) ...

inner rpms*(.95+.1*rand); outer vol inner vol; ...

outer blades inner blades; out blade vol in blade vol];

engine temps = ones(1,4) * base temp;

%indices here are inner/outer, parameter, engine#

turbine properties = cat(3, turbine A properties, turbine B properties, ...

turbine C properties, turbine D properties);

%% Noise init

%originally just 1; volume of the pink fuselage noise

fuselage volume = 1e3;

%volume of the white noise at each engine

noise volume = .3;

%% after this script:

45

%continue by introducing any desired faults,

%and then by mixing sensor data

B.1.3 engine sound.m

%% engine sound.m

%{

This file was converted from a script to a function. It was

originally designed to create a noise that sounds like a jet. It is now a

function that can be called to do the same thing, but has many parameters

to control exactly how that will happen.

param.s: matrix of gear linkages/ratios/noise levels

Number of engines needn't be given as this function can be called multiple

times, and also it will be implicit in the dimension of the square mixing

matrix when we start using multiple engines.

Turbine properties is a matrix of column vectors. each vector contains,

in order, turbine rpms, turbine volume, number of blades, blade volume.

If turbine properties is m by n, there are n turbines and only the first

four rows are used.

Gear properties is also a matrix of column vectors. each vector contains,

in order, gear linkage index, gear ratio, gear volume.

%}

46

function foo = engine sound(ticks, rng, turbine properties, ...

gear properties, noise volume)

%% Init everything

gear sounds = 0; %this will remain 0 if no gears are specified

%% Establish properties of the turbines

turbines = size(turbine properties,2);

freqs = turbine properties(1,:) / 60; %convert from RPMs to Hz

blades = turbine properties(2,:);

%% Generate sounds for each turbine

sine turbines = zeros(size(ticks));

sine blades = sine turbines;

for k = 1:turbines

temp freq = 2*pi*freqs(1,k);

shaft vol = turbine properties(2,k);

blade vol = turbine properties(4,k);

sine turbines = sine turbines + sin(ticks * temp freq) * shaft vol;

sine blades = sine blades + sin(ticks * temp freq * blades(k))*blade vol;

end

%% Generate gear sounds

47

if exist('gear properties', 'var')

connections = gear properties(1,:); %which turbine is the gear connected to?

gear ratio = gear properties(2,:); %what's the gear differential?

gears = length(connections); %number of gears

gear sounds = zeros(length(ticks), gears);

gear freq = gear sounds;

for k = 1:gears

gear freq(k) = freqs(connections(k)) * gear ratio(k);

temp vol = gear properties(3,k);

gear sounds(:, k) = sin(2*pi*gear freq(k)*ticks) * temp vol;

end

gear sounds = sum(gear sounds, 2);

end

%% Generate noise

%establish some noise according to specified distribution

noise = random(rng,length(ticks));

noise = noise * noise volume;

%% combine all the signals

foo = sine turbines + sine blades + gear sounds + noise;

B.1.4 fuselage sound.m

48

%% fuselage sound.m

%{

This file was adapted from jet sound.m, which generates engine noise, to

be a function that generates fuselage wind noise.

It takes in some basic params about the environment we're using as well as

the parameters for noise, consisting of volume and frequency envelope.

%}

function fus = fuselage sound(ticks, noise volume)

%% establish a 1/f power spectrum

pow = 1./(ticks(1:end/2)+1);

mag = sqrt(pow);

flip mag = mag(end−1:−1:1);

mag = [0; mag; flip mag];

%% establish randomized phase

phase = exp(2*pi*1i*rand(length(ticks)/2, 1));

flip imag = phase(end−1:−1:1);

flip imag = real(flip imag) − 1i*imag(flip imag);

phase = [1; phase; flip imag];

%% package and return it

fus transf = mag.*phase;

fus = noise volume * real(ifft(fus transf));

49

B.1.5 mix sensors.m

%% mix sensors

%{

This file picks up where the param init scripts leave off.

It takes the various vars that have been init'ed and uses them

to generate the data of the entire plane's sensors.

%}

%% establish mixing procedure

%reduction from one engine to the next

a = 10ˆ(−10/20);

%reduction across the fuselage

b = 10ˆ(−16/20);

%reduction toward nose of fuselage

c = 10ˆ(−18/20);

%reduction toward tail of fuselage

d = 10ˆ(−13/20);

%{

one sensor on each engine, four on fuselage.

50

order is: left outer, left inner, right inner, right outer,

nose, front mid, back mid, tail.

Columns are first thru fourth engine and then fuselage noise.

%}

mixing = [...

1 a a*b*b a*b*b*a; ...

a 1 b*b b*b*a; ...

a*b*b b*b 1 a; ...

a*b*a b*a a 1; ...

a*b*cˆ2 b*cˆ2 b*cˆ2 cˆ2*b*a; ...

a*b*c b*c b*c c*b*a; ...

a*b*d b*d b*d d*b*a; ...

a*b*dˆ2 b*dˆ2 b*dˆ2 dˆ2*b*a ...

];

fuselage noise mixer = [a*b*cˆ2 b*cˆ2 cˆ2*b cˆ2*b*a 1 c c*d c*d*d]';

mixing = [mixing fuselage noise mixer];

%% generate raw unsensed engine data

num engines = size(turbine properties, 3);

engine data = zeros(length(ticks), num engines);

for k = 1:num engines

foo = engine sound(ticks, rng, turbine properties(:,:,k), ...

gear properties, noise volume);

51

engine data(:,k) = foo;

end

%% generate fuselage data

fuselage data = fuselage sound(ticks, fuselage volume);

%% generate temperature data

temperature data = repmat(engine temps, size(engine data,1), 1);

%% Mix the generated signals

%the temperature data does not have any kind of mixing applied to it,

%so we just append it after we do the mixing

premix data = [engine data fuselage data];

mixed data = premix data * mixing';

sensor data = [mixed data temperature data];

52

B.2 Algorithm

These source files were used for analyzing the data. The top-level function

‘large comparison.m’ calls each of the others. For our evaluation of the algorithm’s

performance, we used this file with a varying range of parameters, and slight modi-

fications.

B.2.1 large comparison.m

%% large comparison.m

%{

This file generates 30 different datasets and runs 10 trials on each of

them. It checks to see which method (grouped/ungrouped) does best SNR−wise

on the compression algorithm.

%}

basis sizes = 100:−10:20;

sub trials = 10;

%take note of how the compression is actually doing

clipping size = 2ˆ13;

num coeffs = clipping size./2 + 1;

compression rate = num coeffs./basis sizes;

53

avg unsorted = zeros(size(basis sizes));

avg sorted = avg unsorted;

exec time unsorted = avg unsorted;

exec time sorted = avg unsorted;

sub avg ungrouped = zeros(1,3);

sub avg grouped = sub avg ungrouped;

sub exec time unsorted = sub avg ungrouped;

sub exec time sorted = sub avg ungrouped;

for iter = 1:length(basis sizes)

basis size = basis sizes(iter)

fus basis size = basis size/2;

eng basis size = fus basis size−1;

%tmp basis size = 1;

for sup trial = 1:3

run data generation scripts\A MAIN normal plane.m

tic

snrmat all = compression test(sensor data, basis size, sub trials);

sub exec time unsorted(sup trial) = toc;

%EXCLUDE the temp sensors from the averaging

54

sub avg ungrouped(sup trial) = mean(mean(snrmat all(:,1:8)));

tic

snrmat eng = compression test(sensor data(:,1:4), eng basis size, sub trials);

snrmat fus = compression test(sensor data(:,5:8), fus basis size, sub trials);

sub exec time sorted(sup trial) = toc;

%%%snrmat tmp = compression test(sensor data(:,9:12), tmp basis size, sub trials);

snrmat agg = [snrmat eng snrmat fus];

sub avg grouped(sup trial) = mean(mean(snrmat agg));

end

avg unsorted(iter) = mean(sub avg ungrouped);

avg sorted(iter) = mean(sub avg grouped);

exec time unsorted(mean(sub exec time unsorted));

exec time sorted(mean(sub exec time sorted));

end

beep

beep

beep

'DONE!!'

%uncomment to save .mat of results

%save('large comparison results')

55

return

%% display output

%invoke for standard plot

figure

title('SNR vs Compression Ratio')

hold on

plot(avg unsorted, compression rate, 'r−o')

plot(avg sorted, compression rate, 'b−*')

xlabel('Average SNR of reconstruction')

ylabel('Compression ratio')

legend('Unsorted compression', 'Sorted compression')

figure

title('Compression Ratio vs Execution Time')

hold on

plot(compression rate, exec time unsorted, 'r−o')

plot(compression rate, exec time sorted, 'b−*')

xlabel('Compression ratio')

ylabel('Execution time')

legend('Unsorted compression', 'Sorted compression')

B.2.2 compression test.m

%% Compression test.m

56

%{

Provide this function with recordings from at least one sensor,

and specify other parameters as well, to test how well the algorithm

does under those conditions.

%}

function snrmat = compression test(sensor data, basis size, tests)

%% init

%This code requires that the input matrix position the individual sensors

%vertically.

[samples sensors] = size(sensor data);

clip length = 8192;

training clippings = ceil(basis size / sensors) * 2;

non training start = training clippings + 1;

num clippings = tests + training clippings;

%% establish clipping spacing

%this establishes uniform spacing between clippings.

interval = samples/(num clippings + 2);

%make a list of places to start.

57

%this may lead to problems if clipping length is very long or

%num clippings is too large, causing us to run past the end of

%sensor data in forming clippings

start list = round((0:num clippings−1)*interval + 1);

%% store clippings (NOT their fft's)

clippings = cell(1, num clippings);

for k = 1:num clippings

start = start list(k);

%make a list of clippings

clippings{k} = sensor data(start:start+clip length−1, :);

end

%% %%%%%%%%%%%%% establish compression basis

%% gather judge clippings

judge clippings = zeros(clip length, sensors * training clippings);

for k = 1:training clippings

judge clippings(:, 1+(k−1)*sensors:k*sensors) = clippings{k};

end

judge fft = abs(fft(judge clippings));

%% remove means (results in a column vector)

compression mean = mean(judge fft, 2);

demeaned = judge fft − repmat(compression mean, 1, sensors * training clippings);

[pre basis eigvals] = custom pca(demeaned, basis size);

58

compression basis = pre basis;

%% normalize compression basis

%Depending on the implementation of PCA, this may already have happened

for k = 1:basis size

temp = compression basis(:,k);

temp pow = sum(abs(temp).ˆ2);

compression basis(:,k) = compression basis(:,k) / sqrt(temp pow);

end

%% Compress AND decompress, and compute SNR

compressed clippings = cell(1,tests);

reconstructed ffts = cell(1,tests);

%average SNR for each sensor during each trial

snrmat = zeros(tests,sensors);

%iterate across every trial clipping

for k = 1:tests

%make a list of clippings; make each col be a clipping

%get a list of the top 28 eigenvectors for one of the

%clipping's FFT's SVD. make this into a matrix of columns,

%each column being an eigenvector.

59

%multiply the transpose of the clipping column matrix by the

%eigenvector matrix to get a matrix whose rows comprise the

%eigendecomposition coefficients of each of the many sensor rows.

%SKIP all training clippings by adding an offset here

orig = clippings{k + training clippings};

orig fft = abs(fft(orig));

%REMOVE MEAN

orig demeaned = orig fft − repmat(compression mean, 1, sensors);

%compute coefficients

compressed clipping = compression basis' * orig demeaned;

compressed clippings{k} = compressed clipping;

%compute reconstruction

reconstructed fft = compression basis * compressed clippings{k};

%REPLACE MEAN

reconstructed fft = reconstructed fft + repmat(compression mean, 1, sensors);

reconstructed ffts{k} = reconstructed fft;

%get average SNR for this clipping

temp = 0;

60

for sensor = 1:sensors

%NOTE that we must compute the SNR based on the abs. of the

%fft, or else we may gain error based on any phase

%distortion, which does not matter to us.

foo = sig to noise(abs(orig fft(:,sensor)), ...

abs(reconstructed fft(:, sensor)));

snrmat(k,sensor) = foo;

temp = temp + foo;

end

end

end

B.2.3 custom pca.m

%{

This function will NOT subtract the mean for you; you have do to that

manually before calling this, if you want it done.

%}

function [eigenvectors D] = custom pca(sensors, dims)

[U D V] = svd(sensors);

61

clearvars V;

[a b] = size(D);

if a ˜= 1 && b ˜= 1

D = diag(D);

end

eigenvectors = U(:,1:dims);

end

B.2.4 sig to noise.m

%{

The higher this is, the better we did.

signal divided by noise:

log10 of the square of the ratio of avg signal amp. to avg noise amp.

power is mean of squares of signals

%}

function ratio = sig to noise(orig, altered)

if any(size(orig) ˜= size(altered))

size(orig)

size(altered)

error('Improper sizing!')

end

62

stop = size(orig,2);

ratio = zeros(1,stop);

for k = 1:stop

%get what we'll compare to

base = orig(:,k);

%define error

err = base − altered(:,k);

%define power

pre Pe = abs(err).ˆ2;

pre Po = abs(base).ˆ2;

Pe = mean(pre Pe);

Po = mean(pre Po);

ratio(k) = 10 * log(Po/Pe)/log(10);

end

63

Bibliography

[1] A. Abbasion, A. Rafsanjani, A. Farshidianfar, N. Irani. ”Rolling element bear-
ings multi-fault classification based on the wavelet denoising and support vector
machine.” Mechanical Systems and Signal Processing. (March 2007)

[2] Massimo Cavacece and Alberto Introini. ”Analysis of Damage of Ball Bear-
ings of Aeronautical Transmissions by Auto-Power Spectrum and Cross-Power
Spectrum.” J. Vib. Acoust. Vol 124. 180 (2002)

[3] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Hobo-
ken, NJ: Wiley, 2006.

[4] Michael R Dellomo. ”Fault detection in helicopter gearboxes using neural net-
works”, J Acoust. Soc. Am. Vol. 91. 4 (Apr 1992) 2359.

[5] Lisa A Griffin. ”Comparison of the speech transmission index and the modified
rhyme test in simulated cockpit ambient noise.” J Acoust. Soc. Am. Vol. 91. 4
(Apr 1992) 2328.

[6] John M. Halley. ”Ecology, evolution, and 1/f -noise.” TREE Vol. 11. 1 (January
1996) 33–37

[7] Paul Hayton, Simukai Utete, Dennis King, Steve King,
Paul Anuzis, Lionel Tarassenko. ”Static and Dynamic Nov-
elty Detection Methods for Jet Engine Health Monitoring.”
Philosophical Transactions: Mathematical, Physical and Engineering Sciences
Vol. 365. 1851 (15 Feb 2007) 493–514

[8] C. E. Shannon. ”Communication in the presence of noise”,
Proc. Institute of Radio Engineers. Vol. 37, no. 1, (Jan. 1949) 10–21

[9] John A. Lee and Michel Veryelsen. Nonlinear Dimensionality Reduction. New
York: Springer, 2007.

[10] Mladen Victor Wickerhauser. Mathematics for Multimedia. Boston:
Birkhauser, 2004.

[11] Zengbing Xu, Jianping Xuan, Tielin Shi, Bo Wu, Youmin Hu. ”Application of a
modified fuzzy ARTMAP with feature-weight learning for the fault diagnosis of
bearing.” Expert Systems With Applications. Vol. 36, no. 6. (2009) 9961–9968

64

[12] Joe Yoon. ”Jet Engine Types.” Aerospaceweb.org. (1 July 2001) Accessed 22
Apr, 2012 <http://www.aerospaceweb.org/question/propulsion/q0033.

shtml>

[13] GE Aviation. ”Engines 101.” Accessed Oct 2011 <http://www.geaviation.

com/education/engines101>.

65

