
Practical Parallel Algorithms for PersonalizedCommunication and Integer SortingDavid A. Bader� David R. Helman Joseph J�aJ�ayInstitute for Advanced Computer Studies, andDepartment of Electrical Engineering,University of Maryland, College Park, MD 20742fdbader, helman, josephg@umiacs.umd.eduNovember 28, 1995AbstractA fundamental challenge for parallel computing is to obtain high-level, architecture independent, algorithmswhich e�ciently execute on general-purpose parallel machines. With the emergence of message passing stan-dards such as MPI, it has become easier to design e�cient and portable parallel algorithms by making useof these communication primitives. While existing primitives allow an assortment of collective communicationroutines, they do not handle an important communication event when most or all processors have non-uniformlysized personalized messages to exchange with each other. We focus in this paper on the h-relation personal-ized communication whose e�cient implementation will allow high performance implementations of a largeclass of algorithms. While most previous h-relation algorithms use randomization, this paper presents a newdeterministic approach for h-relation personalized communication. As an application, we present an e�cientalgorithm for stable integer sorting.The algorithms presented in this paper have been coded in Split-C and run on a variety of platforms,including the Thinking Machines CM-5, IBM SP-1 and SP-2, Cray Research T3D, Meiko Scienti�c CS-2, andthe Intel Paragon. Our experimental results are consistent with the theoretical analysis and illustrate thescalability and e�ciency of our algorithms across di�erent platforms. In fact, they seem to outperform allsimilar algorithms known to the authors on these platforms.Keywords: Parallel Algorithms, Personalized Communication, Integer Sorting, Radix Sort, Com-munication Primitives, Routing h-Relations, Parallel Performance.1 Problem OverviewA fundamental challenge for parallel computing is to obtain high-level, architecture independent, algo-rithms which e�ciently execute on general-purpose parallel machines. This problem has become moretractable with the advent of message passing standards such as MPI [32], which seek to guarantee�The support by NASA Graduate Student Researcher Fellowship No. NGT-50951 is gratefully acknowledged.ySupported in part by NSF grant No. CCR-9103135 and NSF HPCC/GCAG grant No. BIR-9318183.1

the availability of e�cient implementations of certain basic collective communication routines. How-ever, these proposed primitives are all regular in nature and exclude certain pervasive non-uniformcommunication tasks such as the h-relation personalized communication. In this problem, eachprocessor has possibly di�erent amounts of data to share with some subset of the other processors, suchthat each processor is the origin or destination of at most h messages. Clearly, such a task is endemicin parallel processing (e.g. [22, 44, 35]), and several authors have identi�ed its e�cient implementationas a prerequisite to e�cient general purpose computing ([44]). In particular, in his \bridging model"for parallel computation, Valiant has identi�ed the h-relation personalized communication as the basisfor organizing communication between two consecutive major computation steps.Previous parallel algorithms for personalized communication (typically for a hypercube, e.g. [28,40, 36, 12, 13, 10, 1], a mesh, e.g. [24, 39, 14, 25], or other circuit switched network machines, e.g.[33, 19, 31, 37]) tend to be network or machine dependent, and thus not e�cient when ported tocurrent parallel machines. In this paper, we introduce a novel deterministic algorithm that is shownto be both e�cient and scalable across a number of di�erent platforms. In addition, the performanceof our algorithm is invariant over the set of possible input distributions, unlike most of the publishedimplementations.As an application of this primitive, we consider the problem of sorting a set of n integers spreadacross a p-processor distributed memory machine, where n � p2. Fast integer sorting is crucial forsolving problems in many domains, and, as such, is used as a kernel in several parallel benchmarks suchas NAS1 [8] and SPLASH [46]. Because of the extensive and irregular communication requirements,previous parallel algorithms for sorting (a hypercube, e.g. [11, 1], or a mesh, e.g. [21, 30]) tend to benetwork or machine dependent, and therefore not e�cient across current parallel machines. In thispaper, we present an algorithm for integer sorting which couples the well known parallel radix sortalgorithm together with our algorithm for personalized communication. We show that this sortingalgorithm is both e�cient and scalable across a number of di�erent platforms.Our algorithms are implemented in Split-C [17], an extension of C for distributed memory ma-chines. The algorithms make use of MPI-like communication primitives but do not make any assump-tions as to how these primitives are actually implemented. The basic data transport is a read orwrite operation. The remote read and write typically have both blocking and non-blocking versions.Also, when reading or writing more than a single element, bulk data transports are provided withcorresponding bulk read and bulk write primitives. Our collective communication primitives, de-scribed in detail in [7], are similar to those of MPI [32], the IBM POWERparallel [9], and the CrayMPP systems [16] and, for example, include the following: transpose, bcast, gather, and scatter.Brief descriptions of these are as follows. The transpose primitive is an all-to-all personalized com-1Note that the NAS IS benchmark requires that the integers be ranked and not necessarily placed in sorted order.2

munication in which each processor has to send a unique block of data to every processor, and all theblocks are of the same size. The bcast primitive is called to broadcast a block of data from a singlesource to all the remaining processors. The primitives gather and scatter are companion primitiveswhereby scatter divides a single array residing on a processor into equal-sized blocks which are thendistributed to the remaining processors, and gather coalesces these blocks residing on the di�erentprocessors into a single array on one processor. See [7, 6, 5] for algorithmic details, performanceanalyses, and empirical results for these communication primitives.The organization of this paper is as follows. Section 2 presents our computation model for analyzingparallel algorithms. The Communication Library Primitive operations which are fundamental to thedesign of high-level algorithms are given in [7]. Section 3 introduces a practical algorithm for realizingh-relation personalized communication using these primitives. A parallel radix sort algorithm using therouting of h-relations is presented in Section 4. Finally, we describe our data sets and the experimentalperformance of our integer sorting algorithm in Section 5.2 The Parallel Computation ModelWe use a simple model to analyze the performance of our parallel algorithms. Each of our hardwareplatforms can be viewed as a collection of powerful processors connected by a communication networkthat can be modeled as a complete graph on which communication is subject to the restrictionsimposed by the latency and the bandwidth properties of the network. We view a parallel algorithmas a sequence of local computations interleaved with communication steps, and we allow computationand communication to overlap. We account for communication costs as follows.The transfer of a block consisting ofm contiguous words, assuming no congestion, takes O(� + �m)time, where � is an upper bound on the latency of the network and � is the time per word at which aprocessor can inject or receive data from the network. The cost of each of the communication primitiveswill be modeled by O(� + � max (m; p)), where m is the maximum amount of data transmitted orreceived by a processor. Such cost (which is an overestimate) can be justi�ed by using our earlierwork [26, 27, 6, 7]. Using this cost model, we can evaluate the communication time Tcomm(n; p) of analgorithm as a function of the input size n, the number of processors p , and the parameters � and �.The coe�cient of � gives the total number of times collective communication primitives are used, andthe coe�cient of � gives the maximum total amount of data exchanged between a processor and theremaining processors.This communication model is close to a number of similar models (e.g. [18, 44, 2]) that haverecently appeared in the literature and seems to be well-suited for designing parallel algorithms oncurrent high performance platforms.We de�ne the computation time Tcomp(n; p) as the maximum time it takes a processor to perform3

all the local computation steps. In general, the overall performance Tcomp(n; p)+Tcomm(n; p) involvesa tradeo� between Tcomm(n; p) and Tcomp(n; p). Our aim is to develop parallel algorithms that achieveTcomp(n; p) = O�Tseqp � such that Tcomm(n; p) is minimum, where Tseq is the complexity of the bestsequential algorithm. Such optimization has worked very well for the problems we have looked at,but other optimization criteria are possible. The important point to notice is that, in addition toscalability, our optimization criterion requires that the parallel algorithm be an e�cient sequentialalgorithm (i.e., the total number of operations of the parallel algorithm is of the same order as Tseq).3 An h-Relation Personalized CommunicationConsider a set of n elements evenly distributed amongst p processors in such a manner that noprocessor holds more than np elements. Each element consists of a pair hdata; desti, where dest is thelocation to where the data is to be routed. There are no assumptions made about the pattern of dataredistribution, except that no processor is the destination of more than h elements. We assume forsimplicity (and without loss of generality) that h is an integral multiple of p.A straightforward solution to this problem might attempt to sort the elements by destination andthen route those elements with a given destination directly to the correct processor. No matter howthe messages are scheduled, there exist cases that give rise to large variations of message sizes, andhence will result in an ine�cient use of the communication bandwidth. Moreover, such a schemecannot take advantage of regular communication primitives proposed under the MPI standard.In our solution, we use two rounds of the transpose collective communication primitive. In the�rst round, each element is routed to an intermediate destination, and during the second round, it isrouted to its �nal destination.The pseudocode for our algorithm is as follows:� Step (1): Each processor Pi, for (0 � i � p�1), assigns its np elements to one of p bins accordingto the following rule: if element k is the �rst occurrence of an element with destination j, thenit is placed into bin (i+ j) mod p. Otherwise, if the last element with destination j was placedin bin b, then element k is placed into bin (b+ 1) mod p.� Step (2): Each processor Pi routes the contents of bin j to processor Pj , for (0 � i; j � p� 1).Since we will establish later that no bin can have more than np2 + p2 elements, this is the equivalentto performing a transpose communication primitive with block size np2 + p2 .� Step (3): Each processor Pi rearranges the elements received in Step (2) into bins accordingto each element's �nal destination.� Step (4): Each processor Pi routes the contents of bin j to processor Pj , for (0 � i; j � p� 1).Since we will establish later that no bin can have more than hp + p2 elements, this is equivalent4

to performing a transpose primitive with block size hp + p2 .CorrectnessTo prove the correctness of our algorithm, we need to establish the bounds on the bin sizes claimedin Steps (2) and (4). To establish the bound on the size of each bin in Step (2), we note thatthe assignment process in this step is equivalent to sorting all the elements held in processor Piby destination and then assigning all those elements with a common destination j one by one tosuccessive bins2, beginning with bin (i+j) mod p. Thus, the kth element with destination j goes to bin(i+j+k) mod p. Let nj be the number of elements a processor initially has with destination j. Noticethat with this placement scheme, each bin will have at least aj = bnjp c elements with destination j,corresponding to the number of complete passes made around the bins, with bj = nj mod p consecutivebins having one additional element for j. Moreover, this run of additional elements will begin fromthat bin to which we originally started placing those elements with destination j. This means that ifbin l holds an additional element with destination j, the preceding (l�(i+j)) mod p bins will also holdan additional element with destination j. Further, note that if bin l holds exactly q such additionalelements, each such element from this set will have a unique destination. Since for each destination,the run of additional elements originates from a unique bin, for each distinct additional element inbin l, a unique number of consecutive bins preceding it will also hold an additional element withdestination j. Consequently, if bin l holds exactly q additional elements, there must be a minimumof 1 + 2 + 3 + ::::+ (q � 3) + (q � 2) + (q � 1) additional elements in the bins preceding bin l for aminimum total of q2(q + 1) additional elements distributed amongst the p bins.Consider the largest bin which holds A = Pp�1j=0 aj of the evenly placed elements and � of theadditional elements, and let its size be binsize = A + �. Recall that if a bin holds � additionalelements, then there must be at least �2(� + 1) additional elements somehow distributed amongst thep bins. Thus, np = p�1Xj=0nj = pXj aj +Xj bj� pA+ �2(� + 1): (1)Rearranging, we get A � np2 � �2p(� + 1): (2)Thus, we have that binsize � np2 � �2p(� + 1) + �: (3)2The successor of bin p� 1 is bin 0. 5

Since the right hand side of this equation is maximized over � 2 f0; : : : ; p � 1g when � = p � 1, itfollows that binsize � np2 + p� 12 : 2 (4)One can show that this bound is tight as there are cases for which the upper bound is achieved.To bound the bin size in Step (4), recall that the number of elements in bin j at processor i issimply the number of elements which arrive at processor i in Step (2) which are bound for destinationj. Since the elements which arrive at processor i in Step (2) are simply the contents of the ith binsformed at the end of Step (1) in processors 0 through p � 1, bounding Step (4) is simply the taskof bounding the number of elements marked for destination j which are put in any of the p ith binsin Step (1). For our purposes, then, we can think of the concatenation of these p ith bins as beingone superbin, and we can view Step (1) as a process in which each processor deals its set of njelements bound for destination j into p possible superbins, each beginning with a unique superbin(i+ j) mod p. This is precisely the situation considered in our analysis of the �rst phase, except nowthe total number of elements to be distributed is at most h. By the previous argument, the bin sizefor the second phase is bounded by binsize � hp + p� 12 : 2 (5)Overall Complexity of the AlgorithmClearly, all computation in this algorithm can be performed in Tcomp(n; p) = O(h). The transposeprimitive, whose analysis is given in [7], takes Tcomm(n; p) � � +� np2 + p2� (p� 1)� in the second step,and Tcomm(n; p) � �+�hp + p2� (p�1)� in the last step. Thus, the overall complexity of our algorithmis given by T (n; p) = Tcomp(n; p) + Tcomm(n; p)= O(h+ � + �h+ np + p2��)= O(h+ � + �h+ p2� �); (6)for p2 � n. Clearly, the local computation bound is asymptotically optimal. As for the communicationbound, � + �h + np�� is a lower bound as in the worst case a processor sends np elements and receivesh elements.A similar two-stage algorithm for personalized communication which appeared after an earlierdraft of this manuscript ([4]) is the transportation primitive (TP) by Ranka et al. ([34, 38]). It isimportant to note the di�erences between the TP and our algorithm. First, our algorithm is completelydeterministic. Second, our intermediate communication steps use the transpose operation, which isextremely important for high performance, since many parallel machines ([9, 16]) and standards, e.g.6

MPI [32], o�er low-level library implementations for the transpose primitive. Third, we use lessoverhead. For example, the TP requires an initial O�p2� communication step to distribute a globalcontrol matrix, to calculate statistics from this control matrix, and to communicate with irregularbu�er sizes. In contrast, our routing algorithm functions in an entirely distributed fashion, with noneed for global control structures.Despite its simplicity, our algorithm compares favorably with those developed recently by otherresearchers. For example, Gerbessiotis and Valiant [22] reported that they could route an h-relationusing 2hp (1 + o(1)) + O(log p) total exchange rounds with high probability for h = !(p log p) 3, wherethey de�ne a total exchange as the transpose of a p� p array. Rao et al. [35] improved this boundto 2hp (1 + o(1)) + O(log� p) total exchange rounds with high probability and for h = !(p log� p).By contrast, our deterministic algorithm requires at most 2hp (1 + o(1)) of their total exchanges forh = !�p2 log� p�.3.1 Experimental Results
2n/h - 1

h

Final Distribution of Elements

Processors

210 p-1

E
le

m
en

ts

Figure 1: Final distribution of the keys corresponding to our input data setsWe examine the performance of our h-relation algorithm on various con�gurations of the TMC CM-5,IBM SP-2, Meiko CS-2, and Cray T3D, using four values of h: h = np , 2np , 4np , and 8np . The data setsused in these experiments are de�ned as follows. Our input of size n is initially distributed cyclicallyacross the p processors such that each processor Pi initially holds np keys, for (0 � i � p � 1). Forh = np the input consists of v0 = np keys labelled for P0, followed by v1 = np keys labelled for P1, andso forth, (with vi = np keys labelled for Pi), with the last vp�1 = np keys labelled for Pp�1. Note that3Note that f(n) = !(g(n)) i� g(n) = o(f(n)). 7

this results in the same data movement as the transpose primitive4. For h > np , instead of an equalnumber of elements destined for each processor, the function vi, for (0 � i � p � 1), is characterizedby 8>><>>: jh �1� h2n�h i�k ; if i < 2nh ; i 6= p� 1;0; if 2nh � i < p� 1;n �P 2nh �1j=0 jh �1� h2n�h j�k ; if i = p� 1: (7)The result of this data movement, shown in Figure 1, is that processor 0 receives the largest imbalanceof elements, i.e. h, while other processors receive varying block sizes ranging from 0 to at most h.For h = 8np , approximately 3p4 processors receive no elements, and hence this represents an extremelyunbalanced case. Note that in these tests, each element consists of two integer5 �elds, data and dest,although only the destination �eld dest is used to route each element.As shown in Figure 2, the time to route an h-relation personalized communication for a given inputsize on a varying number of processors (p) scales inversely with p whenever n is large compared with p.For small inputs compared with the machine size, however, the communication time is dominated byO�p2� as shown in the case of the 128-processor Cray T3D with n = 256K. The routing time for a �xedproblem and machine size varies directly with the parameter h (see Figure 6 in Appendix A). Theseempirical results from a variety of parallel machines are consistent with the analysis given in Eq. (8).We have used vendor-supplied libraries for collective communication primitives on the IBM SP-2implementation. The other machines used in this experiment do not have vendor-supported collectivecommunication libraries, and hence we used our generic communication primitives as described in[7, 6, 5].3.2 Comparison with Single-Phase AlgorithmsIt has been widely believed that an e�cient algorithm for personalized communication is a single-phase algorithm in which data travels directly from source to destination with no intermediate routing.These single-phase algorithms generally partition messages into contention-free routing steps separatedby global synchronizations. As far as we can tell, this algorithm was �rst reported (in Japanese) byTake ([40]) for the hypercube network topology. Later, several variations of this algorithm weredeveloped (still dependent upon network topology) such as the Optimal Circuit Switched, Hypercube,or Mesh Algorithm ([37, 10, 25, 36, 12, 13, 14, 1, 31, 23, 33, 19, 24]), the Pairwise-Exchange (PEX)algorithm ([43, 41, 42]), and the general Linear Permutation algorithm ([45]). For our comparison,we consider the standard algorithm consisting of p steps, such that during step i, (0 � i � p �1), processor j sends data labelled for processor k = i � j directly to Pk. Figure 3 presents the4Note that the personalized communication is more general than a transpose primitive and does not make the assumptionthat data is already held in contiguous, regular sized bu�ers.5In all our test machines, an integer is 4-bytes, except the Cray T3D, where an integer is 8-bytes.8

TMC CM-5 IBM SP-2
Meiko CS-2 Cray Research T3DFigure 2: Performance of personalized communication (h = 4np) with respect to machine and problem size9

TMC CM-5 IBM SP-2Figure 3: Comparison of one- and two-phase personalized communication algorithmsresults of our comparison, providing empirical support for the notion that our two-phase personalizedcommunication scheme is faster than the single-phase communication algorithm described above.3.3 General CaseWe now consider the general case in which each processor is the source of at most h1 elements andthe destination of at most h2 elements. We can use the same deterministic algorithm with the blocksize of the transpose in Step (2) being h1p + p2 and the block size of the transpose in Step (4)being h2p + p2 . The resulting overall complexity is O(h1 + h2 + � + �h1 + h2 + p2��). Alternativelyfor large variances (h1 � h2), we can use our dynamic data redistribution algorithm in [7] followed byour deterministic algorithm described earlier. The resulting overall complexity will also be the same.4 Parallel Integer SortingConsider the problem of sorting n integer keys in the range [0;M � 1] that are distributed equallyover a p-processor distributed memory machine. An e�cient algorithm is radix sort that decomposeseach key into groups of r-bit blocks, for a suitably chosen r, and sorts the keys by sorting on eachof the r-bit blocks beginning with the block containing the least signi�cant bit positions [29]. LetR = 2r � p. Assume (w.l.o.g.) that the number of processors is a power of two, say p = 2k, andhence Rp is an integer = 2r�k � 1. Our algorithm demonstrates e�cient uses of the transposecommunication primitive, as well as the h-relation communication scheme.10

4.1 Counting Sort AlgorithmWe start by describing the counting sort algorithm used to sort on individual blocks of the keys. TheCounting Sort algorithm sorts n integers in the range [0; R� 1] by using R counters to accumulatethe number of keys equal to i in bucket Bi, for 0 � i � R � 1, followed by determining the rank ofthe each element. Once the rank of each element is known, we can use our h-relation personalizedcommunication to move each element into the correct position; in this case h = np . Counting Sort is astable sorting routine, that is, if two keys are identical, their relative order in the �nal sort remainsthe same as their initial order.In a practical integer sorting problem, we expect R � np . The pseudocode for our Counting Sortalgorithm uses six major steps and is as follows.� Step (1): For each processor i, count the frequency of its np keys; that is, compute I [i][k], thenumber of keys equal to k, for (0 � k � R� 1).� Step (2): Apply the transpose primitive to the I array using the block size Rp . Hence, at theend of this step, each processor will hold Rp consecutive rows of I .� Step (3): Each processor locally computes the pre�x-sums of its rows of the array I .� Step (4): Apply the (inverse) transpose primitive to the R corresponding pre�x-sums aug-mented by the total count for each bin. The block size of the transpose primitive is 2Rp .� Step (5): Each processor computes the ranks of local elements.� Step (6): Perform a personalized communication of keys to rank location using our h-relationalgorithm for h = np .The analysis of our counting sort algorithm is as follows.Steps (1), (3), and (5) execute inO�np +R� local computation time with no communication. Steps (2), (4), and (6) are communica-tion supersets and have the following analysis. Steps (2) and (4) are the transpose primitive withblock sizes Rp and 2Rp and hence result in O(� + R�) communication. Step (6) uses the personalizedcommunication primitive for n elements distributed equally across p processors. Because this routingis a permutation (h = np), it has the following complexityT (n; p) = O(np + � + �np + p2��) (8)provided that p2 � n. Thus, the overall complexity of our Counting Sort algorithm is given byT (n; p) = Tcomp(n; p) + Tcomm(n; p)= O(np +R+ � + �R+ np + p2��): (9)Notice that an obvious lower bound to sort the integers is
�np + � + np��, and hence our algorithmis asymptotically optimal when R = O�np� and p3 = O(n).11

4.2 Radix Sort AlgorithmRadix Sort makes several passes of the previous Counting Sort in order to completely sort integerkeys. Counting Sort can be used as the intermediate sorting routine because it provides a stable sort.Let the n integer keys fall in the range [0;M � 1], and M = 2b. Then we need br passes of CountingSort; each pass works on r-bit blocks of the input keys, starting from the least signi�cant block of rbits to the most signi�cant block. Therefore, the overall complexity of Radix Sort is exactly br timesthat of Counting Sort. We choose the radix R to be np (note that we are assuming p2 � n), and atypical value is R = 1024. Assuming that M is polynomial in n, br becomes a constant, and therefore,the total complexity reduces to T (n; p) = O(np + � + �np + p2� �). Thus, the computational analysisderived for radix sort is asymptotically optimal since sequential radix sort runs in �(n) wheneverthe range of integers is polynomial in n. The lower bound for communication is � + np� since eachprocessor might need to inject all of its elements into the network, and the communication complexityis asymptotically optimal whenever p3 = O(n).5 Performance Evaluation of Radix Sort5.1 Data setsFive input distributions are used to test our integer sorting algorithm.� [R]: random integers with entropy of 31 bits per key6;� [S]: random integers with entropy of 6:2 bits per key7;� [C]: keys are consecutive in value (from 0 to n�1) and are placed cyclically across the processors;� [N]: this input is taken from the NAS Parallel Benchmark for Integer Sorting [8]. Keys areintegers in the range [0; 219), and each key is the average of four consecutive uniformly distributedpseudo-random numbers generated by the following recurrence:xk+1 = axk (mod 246)where a = 513 and the seed x0 = 314159265. Thus, the distribution of the key values is aGaussian approximation. On a p-processor machine, the �rst np generated keys are assigned toP0, the next np to P1, and so forth, until each processor has np keys.6Entropy of 31 implies that keys values are uniformly distributed in the range [0; 231).7Entropy of 6.2 implies that each key is the result of the bitwise-AND boolean operation applied to �ve successive keysof entropy 31. 12

5.2 Experimental Results: Radix SortFor each experiment, the input contains a total of n = 2d integers distributed evenly across p pro-cessors. The output consists of the sorted elements held in an array congruent with the input. Eachprocessor's output block of elements is in non-descending order, and no element in processor i isgreater than any element in processor j, for all i < j. Note that we use 32-bit keys and sort using all32-bits, even when the input distribution is known to be more restrictive, such as the N input whichcontains only 19 signi�cant bits.
Figure 4: Performance is independent of key distributionThe performance of our radix sort is independent of input distribution, as shown in Figure 4.. This�gure presents results from the IBM SP-2; results obtained from other machines, such as the CM-5,CS-2, and T3D, validate this claim as well.As shown in Figure 5, the execution time of radix sort using a �xed number of processors is linearin input size n. Note that this �gure is a log-log plot. Since br and R are constants for a given problemsize, the running time is O�np�, validating our prediction from the bounds in the previous section. Inaddition, the execution time of radix sort for a given input size on a varying number of processors (p)scales inversely with p. Again, this was predicted by our earlier analysis.13

TMC CM-5 IBM SP-2
Meiko CS-2 Cray Research T3DFigure 5: Scalability of Radix Sort With Respect to Machine and Problem Size14

5.3 Comparison with Other ImplementationsTable I presents a comparison of our radix sort with that of an implementation using only single phaserouting by Alexandrov et al.8 which we will refer to as the AIS code. Performance of the latter code,which had been optimized for the Meiko CS-2, is given in [2]. Note that the AIS implementation isbased upon the original version by Dusseau ([20, 18]). Also, all codes in this comparison have beenwritten in the Split-C language [17]. Our algorithm is referred to as BHJ.Input SP-2 p = 16 CM-5 p = 32[AIS+95] [BHJ95] [AIS+95] [BHJ95][R], np = 4K 0.474 0.107 1.63 0.163[R], np = 64K 0.938 0.592 3.41 1.91[R], np = 512K 4.13 4.03 19.2 15.1[C], np = 4K 0.479 0.107 1.64 0.163[C], np = 64K 0.958 0.584 3.31 1.89[C], np = 512K 4.13 4.02 16.4 14.9[N], np = 4K 0.475 0.109 1.63 0.163[N], np = 64K 0.907 0.613 3.55 1.89[N], np = 512K 4.22 4.12 18.2 15.0Input CS-2 p = 16[AIS+95] [BHJ95][R], np = 4K 0.664 0.083[R], np = 64K 1.33 0.808[R], np = 256K 4.13 3.55[R], np = 512K 7.75 7.33[C], np = 4K 0.641 0.081[C], np = 64K 1.23 0.790[C], np = 256K 3.87 3.27[C], np = 512K 6.86 6.65[N], np = 4K 0.623 0.085[N], np = 64K 1.22 0.815[N], np = 256K 3.57 3.53[N], np = 512K 6.34 7.29Table I: Total Execution Time for Radix Sort on 32-bit Integers (in seconds), Comparing the AIS and OurImplementations8Thanks to Mihai Ionescu and Klaus Schauser from UC Santa Barbara for providing the source code.15

6 AcknowledgementsWe would like to thank the CASTLE/Split-C group at The University of California, Berkeley, espe-cially for the help and encouragement from David Culler, Arvind Krishnamurthy, and Lok Tin Liu.Computational support on UC Berkeley's 64-processor TMC CM-5 was provided by NSF Infrastruc-ture Grant number CDA-8722788.The University of California, Santa Barbara, parallel radix sort code was provided to us by MihaiIonescu. Also, Klaus Schauser, Oscar Ibarra, Chris Scheiman, and David Probert of UC Santa Barbara,provided help and access to the UCSB 64-node Meiko CS-2. The Meiko CS-2 Computing Facilitywas acquired through NSF CISE Infrastructure Grant number CDA-9218202, with support from theCollege of Engineering and the UCSB O�ce of Research, for research in parallel computing.Arvind Krishnamurthy provided additional help with his port of Split-C to the Cray ResearchT3D [3]. The Jet Propulsion Lab/Caltech 256-node Cray T3D Supercomputer used in this investiga-tion was provided by funding from the NASA O�ces of Mission to Planet Earth, Aeronautics, andSpace Science. We also acknowledge William Carlson and Jesse Draper from the Center for Comput-ing Science (formerly Supercomputing Research Center) for writing the parallel compiler AC (version2.6) [15] on which the T3D port of Split-C has been based.This work also utilized the CM-5 at National Center for Supercomputing Applications, Universityof Illinois at Urbana-Champaign, under grant number ASC960008N.We also thank Je�rey Hollingsworth from UMCP's Computer Science Department for his sugges-tions and encouragement.We would like to acknowledge the use of the UMIACS 16-node IBM SP-2-TN2, which was providedby an IBM Shared University Research award and an NSF Academic Research Infrastructure GrantNo. CDA9401151.Please see http://www.umiacs.umd.edu/~dbader for additional performance information. In ad-dition, all the code used in this paper is freely available for interested parties from our anonymous ftpsite, ftp://ftp.umiacs.umd.edu/pub/dbader. We encourage other researchers to compare with ourresults for similar inputs.
16

A Additional Performance Results
TMC CM-5 IBM SP-2
Meiko CS-2 Cray Research T3DFigure 6: Performance of personalized communication with respect to machine and problem size

17

B Deterministic Routing AlgorithmThe following is run on processor i:Algorithm 1 Deterministic Routing AlgorithmShared Memory Model Algorithm for routing an h-relation.Input:f i g is my processor number;f p g is the total number of processors, labelled from 0 to p� 1;f A g is the np � p input array of elements (data; i);f B g is the h � p output array;f T g is the p� p array used for holding tags when placing elements;f C g is an �np + p2 + p�� p auxiliary array of elements (data; i);f D g is an �np + p2 + p�� p auxiliary array of elements (data; i);f E g is an �h+ p2�� p auxiliary array of elements (data; i);f F g is an �h+ p2�� p auxiliary array of elements (data; i);begin1. Set blksz1 = np2 + p2 + 1.2. For k = 0 to p� 1 do:2.1 Set C[i][k � blksz1] = 0.2.2 Set T [i][k] = i+ k mod p.3. For k = 0 to np � 1 do:3.1 Set l = (A[i][k])! address.3.2 Set d = T [i][l].3.3 Increment C[i][d � blksz1] =) m.3.4 Set C[i][d � blksz1 +m] = A[i][k].3.5 Set T [i][l] = T [i][l] + 1 mod p.4. D = transpose (C).5. Set blksz2 = hp + p2 .6. For k = 0 to p� 1 do:6.1 Set E[i][k � blksz2] = 0.7. For k = 0 to p� 1 do:7.1 For l = 1 to D[i][k � blksz1] do:7.1.1 Set d = (D[i][k � blksz1 + l])! address.7.1.2 Increment E[i][d � blksz2] =) m.7.1.3 Set E[i][d � blksz2 +m] = D[i][k � blksz1 + l].8. F = transpose(E)9. Set z = 0.10. For k = 0 to p� 1 do:10.1 For l = 1 to F [i][k � blksz2] do:10.1.1 Set B[i][z] = F [i][k � blksz2 + l].10.1.2 Increment z.end 18

C Counting Sort AlgorithmAlgorithm 2 Counting Sort AlgorithmShared Memory Model Algorithm to sort n integer keys in the range [0; R� 1].Input:f i g is my processor number;f p g is the total number of processors, labelled from 0 to p� 1;f Key g is the np � p input array of integer keys in the range [0; R� 1];f Addr g is the np � p array which is used for destination label of keys;f Index g is the R� p array which is used for counting local keys;f ScanTran g is the �Rp � p�� p array which holds the transpose of Index;f IntLeaveScan g is the �2Rp � p�� p array which will be inverse transposed to Scans;f Scans g is the 2R� p array which is decomposed into MyScan and Total;f MyScan g is the R� p array which is used for holding the scan of Index;f Total g is the R� p array which is used for holding the total count of keys;f O�set g is the 1� p array which is used for holding the current o�set of rank;begin1. For k = 0 to R� 1 do:1.1 Set Index[i][k] = 0.2. For k = 0 to np � 1 do:2.1 Increment Index[i] [Key[i][k]].3. ScanTran = transpose(Index).4. For j = 0 to Rp � 1 do:4.1 For k = 1 to p� 1 do:4.1.1 Set ScanTran[i]([k][j]) = ScanTran[i]([k� 1][j]) + ScanTran[i]([k][j])./* Compose IntLeaveScan by interleaving scans in ScanTranand totals in IntLeaveScan[p-1][?] */5. For j = 0 to p� 1 do:5.1 For k = 0 to Rp � 1 do:5.1.1 Set IntLeaveScan[i]([j][2k]) = ScanTran[i]([j][k]).5.1.2 Set IntLeaveScan[i]([j][2k+ 1]) = ScanTran[i]([p� 1][k]).6. Scans = (inverse) transpose(IntLeaveScans).7. For k = 0 to R� 1 do: /* Decompose Scans */7.1 Set MyScan[i][k] = Scans[i][2k].7.2 Set Total[i][k] = Scans[i][2k+ 1].8. Set O�set[i] = 0.9. For k = 0 to R� 1 do:9.1 Set Index[i][k] = MyScan[i][k] + O�set[i].9.2 Set O�set[i] = O�set[i] + Total[i][k].10. For k = 0 to np � 1 do:10.1 Set Addr[i][k] = Index[i] [Key[i][k]].10.2 Increment Index[i] [Key[i][k]].11. Routing of h-Relation (h = np) of DKey; �proc: jAddrp k ; position: Addr mod p�E.end 19

References[1] B. Abali, F. �Ozg�uner, and A. Bataineh. Balanced Parallel Sort on Hypercube Multiprocessors.IEEE Transactions on Parallel and Distributed Systems, 4(5):572{581, 1993.[2] A. Alexandrov, M. Ionescu, K. Schauser, and C. Scheiman. LogGP: Incorporating Long Messagesinto the LogP model - One step closer towards a realistic model for parallel computation. In 7thAnnual ACM Symposium on Parallel Algorithms and Architectures, pages 95{105, Santa Barbara,CA, July 1995.[3] R.H. Arpaci, D.E. Culler, A. Krishnamurthy, S.G. Steinberg, and K. Yelick. Empirical Evaluationof the CRAY-T3D: A Compiler Perspective. In ACM Press, editor, Proceedings of the 22ndAnnual International Symposium on Computer Architecture, pages 320{331, Santa MargheritaLigure, Italy, June 1995.[4] D. Bader. Randomized and Deterministic Routing Algorithms for h-Relations. ENEE 648X ClassReport, April 1, 1994.[5] D. A. Bader and J. J�aJ�a. Parallel Algorithms for Image Histogramming and Connected Com-ponents with an Experimental Study. Technical Report CS-TR-3384 and UMIACS-TR-94-133,UMIACS and Electrical Engineering, University of Maryland, College Park, MD, December 1994.[6] D. A. Bader and J. J�aJ�a. Parallel Algorithms for Image Histogramming and Connected Com-ponents with an Experimental Study. In Fifth ACM SIGPLAN Symposium of Principles andPractice of Parallel Programming, pages 123{133, Santa Barbara, CA, July 1995.[7] D. A. Bader and J. J�aJ�a. Practical Parallel Algorithms for Dynamic Data Redistribution, MedianFinding, and Selection. Technical Report CS-TR-3494 and UMIACS-TR-95-74, UMIACS andElectrical Engineering, University of Maryland, College Park, MD, July 1995.[8] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, S. Fineberg,P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan, and S. Weeratunga.The NAS Parallel Benchmarks. Technical Report RNR-94-007, Numerical Aerodynamic Simula-tion Facility, NASA Ames Research Center, Mo�ett Field, CA, March 1994.[9] V. Bala, J. Bruck, R. Cypher, P. Elustondo, A. Ho, C.-T. Ho, S. Kipnis, and M. Snir. CCL: APortable and Tunable Collective Communication Library for Scalable Parallel Computers. IEEETransactions on Parallel and Distributed Systems, 6:154{164, 1995.[10] D.P. Bertsekas, C. �Ozveren, G.D. Stamoulis, P. Tseng, and J.N. Tsitsiklis. Optimal Communi-cation Algorithms for Hypercubes. Journal of Parallel and Distributed Computing, 11:263{275,1991. 20

[11] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith, and M. Zagha. AComparison of Sorting Algorithms for the Connection Machine CM-2. In Proceedings of theACM Symposium on Parallel Algorithms and Architectures, pages 3{16, July 1991.[12] S.H. Bokhari. Complete Exchange on the iPSC-860. ICASE Report No. 91-4, ICASE, NASALangley Research Center, Hampton, VA, January 1991.[13] S.H. Bokhari. Multiphase Complete Exchange on a Circuit Switched Hypercube. In Proceedingsof the 1991 International Conference on Parallel Processing, pages I{525 { I{529, August 1991.Also appeared as NASA ICASE Report No. 91-5.[14] S.H. Bokhari and H. Berryman. Complete Exchange on a Circuit Switched Mesh. In Proceedingsof Scalable High Performance Computing Conference, pages 300{306, Williamsburg, VA, April1992.[15] W.W. Carlson and J.M. Draper. AC for the T3D. Technical Report SRC-TR-95-141, Supercom-puting Research Center, Bowie, MD, February 1995.[16] Cray Research, Inc. SHMEM Technical Note for C, October 1994. Revision 2.3.[17] D.E. Culler, A. Dusseau, S.C. Goldstein, A. Krishnamurthy, S. Lumetta, S. Luna, T. von Eicken,and K. Yelick. Introduction to Split-C. Computer Science Division - EECS, University of Cali-fornia, Berkeley, version 1.0 edition, March 6, 1994.[18] D.E. Culler, R.M. Karp, D.A. Patterson, A. Sahay, K.E. Schauser, E. Santos, R. Subramonian,and T. von Eicken. LogP: Towards a Realistic Model of Parallel Computation. In Fourth ACMSIGPLAN Symposium on Principles and Practice of Parallel Programming, May 1993.[19] V.V. Dimakopoulos and N.J. Dimopoulos. Optimal Total Exchange in Linear Arrays and Rings.In Proceedings of the 1994 International Symposium on Parallel Architectures, Algorithms, andNetworks, pages 230{237, Kanazawa, Japan, December 1994.[20] A.C. Dusseau. Modeling Parallel Sorts with LogP on the CM-5. Technical Report UCB//CSD-94-829, Computer Science Division, University of California, Berkeley, 1994.[21] N. Folwell, S. Guha, and I. Suzuki. A Practical Algorithm for Integer Sorting on a Mesh-Connected Computer. In Proceedings of the High Performance Computing Symposium, pages281{291, Montreal, Canada, July 1995. Preliminary Version.[22] A.V. Gerbessiotis and L.G. Valiant. Direct Bulk-Synchronous Parallel Algorithms. Journal ofParallel and Distributed Computing, 22(2):251{267, 1994.[23] S. Heller. Congestion-Free Routing on the CM-5 Data Router. In Proceedings of the First Inter-national Workshop on Parallel Computer Routing and Communication, pages 176{184, Seattle,WA, May 1994. Springer-Verlag. 21

[24] S. Hinrichs, C. Kosak, D.R. O'Hallaron, T.M. Strickler, and R. Take. An architecture for optimalall-to-all personalized communication. Technical Report CMU-CS-94-140, School of ComputerScience, Carnegie Mellon University, September 1994.[25] T. Horie and K. Hayashi. All-to-All Personalized Communication on a Wrap-around Mesh. InProceedings of the Second Fujitsu-ANU CAP Workshop, Canberra, Austrailia, November 1991.10 pp.[26] J. J�aJ�a and K.W. Ryu. The Block Distributed Memory Model. Technical Report CS-TR-3207,Computer Science Department, University of Maryland, College Park, January 1994.[27] J.F. J�aJ�a and K.W. Ryu. The Block Distributed Memory Model for Shared Memory Multipro-cessors. In Proceedings of the 8th International Parallel Processing Symposium, pages 752{756,Canc�un, Mexico, April 1994. (Extended Abstract).[28] S.L. Johnsson and C.-T. Ho. Optimal Broadcasting and Personalized Communication in Hyper-cubes. IEEE Transactions on Computers, 38(9):1249{1268, 1989.[29] D.E. Knuth. The Art of Computer Programming: Sorting and Searching, volume 3. Addison-Wesley Publishing Company, Reading, MA, 1973.[30] D. Krizanc. Integer Sorting on a Mesh-Connected Array of Processors. Information ProcessingLetters, 47(6):283{289, 1993.[31] Y.-D. Lyuu and E. Schenfeld. Total Exchange on a Recon�gurable Parallel Architecture. InProceedings of the Fifth IEEE Symposium on Parallel and Distributed Processing, pages 2{10,Dallas, TX, December 1993.[32] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard. Technical report,University of Tennessee, Knoxville, TN, June 1995. Version 1.1.[33] S.R. �Ohring and S.K. Das. E�cient Communication in the Foldned Petersen InterconnectionNetworks. In Proceedings of the Sixth International Parallel Architectures and Languages EuropeConference, pages 25{36, Athens, Greece, July 1994. Springer-Verlag.[34] S. Ranka, R.V. Shankar, and K.A. Alsabti. Many-to-many Personalized Communication withBounded Tra�c. In The Fifth Symposium on the Frontiers of Massively Parallel Computation,pages 20{27, McLean, VA, February 1995.[35] S. Rao, T. Suel, T. Tsantilas, and M. Goudreau. E�cient Communication Using Total-Exchange.In Proceedings of the 9th International Parallel Processing Symposium, pages 544{550, SantaBarbara, CA, April 1995.[36] T. Schmiermund and S.R. Seidel. A Communication Model for the Intel iPSC/2. TechnicalReport Technical Report CS-TR 9002, Dept. of Computer Science, Michigan Tech. Univ., April1990. 22

[37] D.S. Scott. E�cient All-to-All Communication Patterns in Hypercube and Mesh Topologies. InProceedings of the 6th Distributed Memory Computing Conference, pages 398{403, Portland, OR,April 1991.[38] R.V. Shankar, K.A. Alsabti, and S. Ranka. The Transportation Primitive. Personal communica-tion, August 1994.[39] T. Suel. Routing and Sorting on Meshes with Row and Column Buses. Technical ReportUTA//CS-TR-94-09, Department of Computer Sciences, University of Texas at Austin, Octo-ber 1994.[40] R. Take. A Routing Method for All-to-All Burst on Hypercube Networks. In Proceedings of the35th National Conference of Information Processing Society of Japan, pages 151{152, 1987. InJapanese. Translation by personal communication with R. Take.[41] R. Thakur and A. Choudhary. All-to-All Communication on Meshes with Wormhole Routing.In Proceedings of the 8th International Parallel Processing Symposium, pages 561{565, Canc�un,Mexico, April 1994.[42] R. Thakur, A. Choudhary, and G. Fox. Complete Exchange on a Wormhole Routed Mesh.Report SCCS-505, Northeast Parallel Architectures Center, Syracuse University, Syracuse, NY,July 1993.[43] R. Thakur, R. Ponnusamy, A. Choudhary, and G. Fox. Complete Exchange on the CM-5 andTouchstone Delta. Journal of Supercomputing, 8:305{328, 1995. (An earlier version of this paperwas presented at Supercomputing '92.).[44] L.G. Valiant. A Bridging Model for Parallel Computation. Communication of the ACM,33(8):103{111, 1990.[45] J.-C. Wang, T.-H. Lin, and S. Ranka. Distributed Scheduling of Unstructured Collective Com-munication on the CM-5. Technical Report CRPC-TR94502, Syracuse University, Syracuse, NY,1994.[46] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta. The SPLASH-2 Programs: Charac-terization and Methodological Considerations. In Proceedings of the 22nd Annual InternationalSymposium on Computer Architecture, pages 24{36, June 1995.
23

