
ABSTRACT

Title of dissertation: ROBOTS LEARNING MANIPULATION TASKS
FROM DEMONSTRATIONS AND PRACTICE

Ren Mao, Doctor of Philosophy, 2017

Dissertation directed by: Professor John S. Baras
Department of Electrical and Computer Engineering

Developing personalized cognitive robots that help with everyday tasks is one

of the on-going topics in robotics research. Such robots should have the capability

to learn skills and perform tasks in new situations. In this thesis, we study three

research problems to explore the learning methods of robots in the setting of ma-

nipulation tasks. In the first problem, we investigate hand movement learning from

human demonstrations. For practical purposes, we propose a system for learning

hand actions from markerless demonstrations, which are captured using the Kinect

sensor. The algorithm autonomously segments an example trajectory into multiple

action units, each described by a movement primitive, and forms a task-specific

model. With that, similar movements for different scenarios can be generated, and

performed on Baxter Robots.

The second problem aims to address learning robot movement adaptation un-

der various environmental constraints. A common approach is to adopt motion

primitives to generate target motions from demonstrations. However, their gener-

alization capability is weak for novel environments. Additionally, traditional mo-

tion generation methods do not consider versatile constraints from different users,

tasks, and environments. In this work, we propose a co-active learning framework

for learning to adapt the movement of robot end-effectors for manipulation tasks.

It is designed to adapt the original imitation trajectories, which are learned from

demonstrations, to novel situations with different constraints. The framework also

considers user feedback towards the adapted trajectories, and it learns to adapt

movement through human-in-the-loop interactions. Experiments on a humanoid

platform validate the effectiveness of our approach.

In order to further adapt robots to perform more complex manipulation tasks,

as the third problem, we are investigating a framework that the robot could not only

plan and execute the sequential task in a new environment, but also refine its actions

by learning subgoals through re-planning/re-execution during the practice. A se-

quential task is naturally considered as a sequence of pre-learned action primitives,

each action primitive has its own goal parameters corresponding to the subgoal. We

propose a system to learn the subgoals distribution of given task model using rein-

forcement learning by iteratively updating the parameters in the trials. As a result,

by considering the learned subgoals distribution in sequential motion planning, the

proposed framework could adaptively select better subgoals to generate movements

for robot to execute the task successfully. We implement the framework for the task

of “openning a microwave” involving a sequence of primitive actions and subgoals

and validate it on Baxter platform.

Robots Learning Manipulation Tasks from Demonstrations and
Practice

by

Ren Mao

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2017

Advisory Committee:
Professor John S. Baras, Chair/Advisor
Professor Yiannis Aloimonos
Professor Cornelia Fermüller
Professor Gang Qu
Professor Behtash Babadi

c© Copyright by
Ren Mao

2017

Acknowledgments

This thesis becomes possible with the kind support and help of many people.

I would like to extend my sincere thanks to all of them who enrich my graduate

experience that I will cherish forever.

Formost, I would like to express my sincere gratitude to my advisor, Professor

John S. Baras for giving me an invaluable opportunity to broaden my knowledge

base and supporting me diving deep into some real-world problems. He continually

and convincingly conveyed a spirit of adventure in regard to amazingly broad areas

of research, and an excitement in regard to chanlleging problems. Without his

deep insights and guidance this dissertation would not have been possible. I would

also like to express my special thanks to Dr. Yiannis Aloimonos and Dr. Cornelia

Fermüller for their persistent help and imparting their knowledge and expertise in

the study. I would like to thank Dr. Gang Qu and Dr. Behtash Babadi for their

efforts to serve on my thesis committee and their invaluable discussions and insights.

In addition, thank you to my girlfriend Lulin Jiang, for all her love and support.

Many thanks to Dr. Yezhou Yang, Dr. Xiangyang Liu, Dr. Xiangnan Weng, Dr.

Yuchen Zhou and Wentao Luan, who have enriched my graduate life in many ways,

with whom I had many fruitful discussions that gave me inspiration for many ideas.

Also I would like to thank Mrs. Kim Edwards for her great administrative support.

Lastly, I would like to acknowledge the support offered by DARPA (through

ARO) grant W911NF1410384, by NSF grants CNS-1035655, CNS-1544787, SMA-

1540917 and SMA-1248056, and by NIST grant 70NANB11H148.

ii

Table of Contents

List of Figures v

1 Introduction 1
1.1 Motivations . 2
1.2 Main contributions . 4

1.2.1 Learning Hand Movements from Markerless Demonstrations . 5
1.2.2 Learning to Adapt Hand Movement in Manipulation Tasks . . 6
1.2.3 Dynamic Motion Planning for Sequential Tasks with Subgoals

Learning . 6
1.3 Outline . 7

2 Learning Hand Movements from Markerless Demonstrations 9
2.1 Motivation . 9
2.2 Related Work . 12
2.3 Movement Learning . 14

2.3.1 Data Acquisition from Markerless Demonstrations 15
2.3.2 Dynamic Movement Primitives (DMPs) Model 16
2.3.3 Movement Segmentation . 19
2.3.4 Movement Generation . 24

2.4 Experiments . 25
2.4.1 DMPs Model training . 26
2.4.2 Experiments in Simulation . 29
2.4.3 Test on the Robot . 32
2.4.4 Grammar Induction for Hand Task 32

2.5 Summary . 33

3 Learning to Adapt Hand Movement in Manipulation Tasks 36
3.1 Motivation . 36
3.2 Related Work . 41
3.3 Co-active Learning for Movement Generalization 44
3.4 Our System . 46

3.4.1 Movement Imitation . 47

iii

3.4.1.1 Learning from Demonstrations 48
3.4.1.2 Trajectory Generation 48

3.4.2 Movement Adaptation . 50
3.4.2.1 Optimization with Constraints 50
3.4.2.2 Model Predictive Control 52
3.4.2.3 Reward Function . 52

3.4.3 Rewards Learning . 56
3.5 Experiments . 59

3.5.1 Movement Imitation . 59
3.5.2 Learning Adaptation . 62

3.6 Summary . 64

4 Dynamic Motion Planning for Sequential Tasks with Subgoals Learning 67
4.1 Motivation . 67
4.2 Related Work . 69
4.3 Formulation . 74

4.3.1 Primitive Motion Planning . 75
4.3.2 Subgoals Reinforcement Learning 77
4.3.3 Subgoals Supervised Learning 80
4.3.4 Sequential Motion Planning 82

4.4 Experiments . 84
4.4.1 Subgoals Learning . 85
4.4.2 Sequential Motion Planning 88

4.5 Summary . 92

5 Conclusions 93

Bibliography 97

iv

List of Figures

1.1 Overview of robots learning for manipulation tasks from demonstra-
tions and practice. 2

2.1 Overview of learning hand movements for humanoid tasks. Placing
task is an example shown here, and the drawing on hand in demon-
stration video is indicating hand tracker. 11

2.2 Block diagram of hand movement learning 14
2.3 Data acquisition and preprocessing for chopping task: (a) Transform

action of Kinect sensor data to trajectories in robot space; (b) Com-
puted motion reference trajectories s(t) for Cartesian dimensions and
finger-gap with λ = 0.5. 27

2.4 Generated trajectories for learning different hand tasks: a) Place, b)
Chop, c) Saw. 28

2.5 Comparison between generated trajectories and observed testing tra-
jectories for different hand tasks: a) Place, b) Chop, c) Saw. 30

2.6 Generated trajectories with different scenarios for chopping task: a)
object is shifted 5 cm in x direction, b) object is shifted 10 cm in y
direction, c) object is shifted 20 cm in both x and y directions. 31

2.7 Baxter Experiment: Front view and 3D trajectory of generated move-
ment for chopping task. 32

2.8 Grammar induction for chopping task: (a) DMPs clusters in 2D PCA
space; (b) Grammar rules induced from observed movement. 34

3.1 System for learning movement adaptation for manipulation tasks.
Dashed lines indicate feedback. 38

3.2 Baxter Transferring Leaking Bottle: (a) Movement imitation, failed
to avoid the bowl; (b) Movement adaptation with initial weights,
successfully avoided the bowl with a path above it but spilled water
into the bowl; (c) Movement adaptation with weights learned for user
preferences, successfully avoided the bowl with a path around it and
avoided spilling water in the bowl. 40

3.3 Illustration of deviation vector feature: vector from original imitation
trajectory to an adapted one. 56

v

3.4 Movement Imitation with ProMPs for Transferring Task: (a) Imita-
tion trajectory predicted based on prior movement and task contexts
in spatial space; (b) Imitation trajectory for joint s0 in joint space,
shaded area indicating the predicted variance. 60

3.5 Learning to Adapt Movement for Transferring a Leaking Bottle: (a)
Movement Imitation failed to avoid the obstacle; (b) Movement adap-
tation with initial weights successfully avoided the obstacle by a path
above it but has a potential danger of spilling water, feedback tra-
jectory is provided afterwards; (c) Movement adaptation for a dif-
ferent situation with new task contexts and obstacle locations, with
updated weights after learning from feedback trajectory, successfully
avoids the obstacle through a path around. Corresponding execution
on the Baxter platform is given by Fig. 3.2. 61

3.6 Rewards Learning from User Feedback for Transferring Leaking Bot-
tle: (a) User feedback via kinethestic demonstration; (b) Learning
curve for adaptation under the same feedback. 63

3.7 Baxter Learning to Adapt Movement for Transferring Knife: (a) (c)
Movement adaptation with initial weights using a path around the
duck doll succesfully avoided it but risked scratches; afterwards feed-
back trajectory is provided for adaptation preferences; (b) (d) Move-
ment adaptation for different situations, with updated weights after
learning from feedback trajectory, successfully avoided the duck doll
using a path above it as desired. 65

4.1 Overview of dynamical motion planning framework for sequential
tasks with subgoals learning. Opening microwave is an example task
shown here. 70

4.2 Block diagram of dynamic motion planning for sequential task with
subgoals learning . 75

4.3 Spatiotemporal roadmap constructed from the configuration space
graph and the primitve sequence of the task. 83

4.4 Subgoals in Learning Iterations for Opening Microwave: (a) Subgoals
for primitive action reaching grasping, which indicates location offset
to grasp handle; (b) Subgoals for primitive action pulling openning,
which indicates pulling angle for openning door; (3) Subgoals for
primitive action inserting openning, which indicates rotation angle
for inserting gripper. Colors of markers are changing from red to
green indicating the decrease of trajectory cost. 87

4.5 Subgoals Learning Curve for Opening Microwave with Different Weight
Parameters λ. 88

4.6 Sequential Motion Planning Results for Openning Microwave: (a)
Planned trajectory for primitive action reaching grasping; (b) Planned
trajectory for primitive action pulling openning; (c) Planned trajec-
tory for primitive action inserting openning. 89

vi

4.7 Planning Results in Simulation for Openning Microwave: (a) Planned
trajectory for primitive action reaching grasping; (b) Planned trajec-
tory for primitive action pulling openning; (c) Planned trajectory for
primitive action inserting openning. 90

4.8 Baxter Execution for Openning Microwave: (a) Execution results
after reaching grasping; (b) Execution results after pulling openning;
(c) Execution results after inserting gripper. (d) Execution results
after fully openning door. 91

vii

Chapter 1: Introduction

Robotics are becoming more and more popular in recent years thanks to var-

ious applications for robots to perform in different environments. In some factories

the robots are already used to perform simple tasks like picking and placing. As

a further step, people are investigating personalized robots to do daily tasks like

cooking in kitchen or assisting the elderly. These personalized robots could also be

used in industries such as serving food, customized manufacturing and even health

care. However, there are still many open research problems in developing such

personalized cognitive robots.

Most of daily tasks that the robots need to perform are manipulation tasks. In

order to have robots perform those tasks, they will need to be capable of adapting

to new scenarios as they may be facing to different objects and tasks. Hence, it

is impractical to preprogram all the skills into these robots. Instead, such robots

should have the capability to learn the skills for manipulating objects autonomously.

In this thesis, we study three research problems to explore the learning meth-

ods of robots in the setting of manipulation tasks. There are many challenges for a

robot to learn a versatile set of manipulation skills.

1

Demonstrations Action Library

Execute

Practice

Learn & Transfer

Chapter 2
Learn & Adapt

Chapter 3

Learn & Improve

Chapter 4

Reach

Grasp

Chop

……

Robot

New situation

Figure 1.1: Overview of robots learning for manipulation tasks from demonstrations
and practice.

1.1 Motivations

Let us consider an example personalized robot where the robot serves as a

butler and prepares meal in a kitchen. To begin with, the robot needs to learn

basic skills so that it can perform the task in new situations. However, even simple

tasks, like cutting a cucumber, may be realized in thousands of different ways.

Therefore, it is impractical to teach robots by enumerating every possible skill.

An intuitive solution is to decompose the task into smaller primitive actions so

that the robot can learn the skills from observing a human. Therefore, as Fig. 1.1

illustrated, in the Chapter 2, we firstly study hand movement learning from human

demonstrations. For practical purposes, we propose a system for learning hand

actions from markerless demonstrations, which are captured using the Kinect sensor.

2

The algorithm autonomously segments an example trajectory into multiple action

units, each described by a movement primitive, and constructs a task-specific model.

With that, the robots could learn and transfer the demonstrations to a library of

skills and therefore generate similar movements for different scenarios to perform

the task.

Then when the robot is asked to perform a task in a new environment, it

could select appropriate skills from the pre-learnt library given the task model.

The next challenge is to generate motions adapting to new scenarios. Traditional

motion generation methods do not consider versatile constraints from different users,

tasks, and environments. For example, the robot may face to an environment where

there are obstacles newly perceived while standard movement imitation learning

only mimicks the motion and may collide with the obstacles. To tackle this problem,

we propose a co-active learning framework for learning to adapt the movement of

robot end-effectors in Chapter 3 as illustrated in Fig. 1.1. It is designed to adapt

the original imitation trajectories, which are learned from demonstrations, to novel

situations with different constraints. The framework also considers user feedback

towards the adapted trajectories, and it learns to adapt movement through human-

in-the-loop interactions.

In order to further adapt robots to perform more complex manipulation tasks,

another challenge is to let robot learn and improve itself by practice. A sequen-

tial task is naturally considered as a sequence of pre-learned action primitives, each

action primitive has its own goal parameters corresponding to the subgoal. For

example, openning a microwave needs a pulling movement after reaching grasping

3

the handle, where the part of handle to be grasped is the subgoal of reaching grasp-

ing action. As the third problem in Chapter 4, as illustrated in Fig. 1.1, we are

investigating a framework that the robot could not only plan and execute the se-

quential task in a new environment, but also refine its actions by learning subgoals

through re-planning/re-execution during the practice. The proposed system learns

the subgoals distribution of given task model using reinforcement learning by itera-

tively updating the parameters in the trials. As a result, by considering the learned

subgoals distribution in sequential motion planning, the proposed framework could

adaptively select better subgoals to generate movements for robot to execute the

task successfully.

1.2 Main contributions

In this thesis, we aim to address the following questions: (1) How to learn

from users’ demonstrations of performing manipulation tasks and produce genera-

tive action models that the robot can use for execution in different scenario? (2)

How to adapt the pre-learnt skill to new environment where there are newly per-

ceived obstacles and other constraints? And how to learn user preferences for such

adaptation? (3) Given a sequential task involving a sequence of primitive actions,

how to learn and improve the subgoals of the primitive actions through practice

so that robot could plan and execute the sequential task successfully? We assume

that manipulation tasks can be decomposed into elemental movements in temporal

domain according to their common structure while each primitive could be specific

4

to the task with different subgoals. In the first question, we are trying to learn

and transfer demonstrations to a library of primitive skills. As a further step, the

second question is trying to learn and adapt primitive action to new environment

with different constraints. Moreover, the third question is to investigate subgoals

learning framework to allow the robot improve itself during the practice.

1.2.1 Learning Hand Movements from Markerless Demonstrations

To answer the first question, we propose an approach for learning the hand

movement from markerless demonstrations for humanoid robot tasks. In this work,

we demonstrate a markerless system for learning hand actions from movement

demonstrations, which are captured using the Kinect sensor. Our approach au-

tonomously segments an example trajectory into multiple action units, each de-

scribed by a movement primitive, and forms a task-specific model with Dynamic

Movement Primitives (DMPs). Using proposed method, we learn a generative model

of a human’s hand task such as cutting from observations. Similar movements for

different scenarios can be generated, and performed on Baxter Robots. The pro-

posed method provides a potentially fully automatic way to learn hand movements

for humanoid robots from demonstrations, and it does not require special hand

motion capturing devices.

5

1.2.2 Learning to Adapt Hand Movement in Manipulation Tasks

To address the second question, we propose an framework for interactive learn-

ing of movement adaptation for manipulation tasks. Our system could generalize

robots’ movements learned from demonstrations to fulfill constraints perceived in a

new environment. It is able to adapt trajectories according to user preferences. We

present an approach for robot learning preferences to adapt trajectories by updat-

ing reward weights based on users’ feedback. The user thus can co-actively train

the robot in-the-loop by demonstrating desired trajectories. We also implement

the optimization schema for the skill of “transferring objects” which considers ob-

stacles and different user preferences for the movements. The implementation is

validated on a humanoid platform (Baxter). The proposed method generalizes of-

fline learned movement skills to novel situations considering obstacle avoidance and

other task-dependent constraints, and it also provides a way to learn how to adapt

the movement in on-line interactions with user’s feedback.

1.2.3 Dynamic Motion Planning for Sequential Tasks with Subgoals

Learning

We answer the last question by proposing an approach of dynamical motion

planning for sequential manipulation tasks with subgoals learning. We present a

system to generate robots’ movements according to sequential task specifcations

with adapted subgoals for each primitive action in the task, considering perception

6

constraints in a new environment and embodiment constraints of robot itself. The

proposed approach allows the robot to improve sugoals of each primitive action by

updating parameters of its distribution through re-planning and re-execution trials.

We implement the planning schema for the task of “openning a microwave” involving

a sequence of primitive actions and subgoals. And we validate the implementation

on a humanoid platform (Baxter) to support our claims.

1.3 Outline

The chapters of this thesis were written such that they can be read indepen-

dently. Chapter 2 presents the method for learning individual manipulation skills

from demonstrations. Chapter 3 describes the approach for learning to adapt move-

ment skills in new environment with different constraints. In Chapter 4, we discuss

the framework for learning subgoals of sequential task through practice. Fig. 1.1

presents an overview of robots learning framework and the topics covered in the

thesis and their corresponding chapters. In the last sections of Chapter 2 to 4, we

also give a summary of our work and provide additional insights into the future

extensions.

Chapter 2 presents the framework to learn skills from markerless demonstra-

tions, which are captured through the Kinect sensor. The chapter also introduces an

overview of dynamic movement primitives, and how they are used for hand move-

ment learning. This chapter is based on [1].

Chapter 3 describes a movement adaptation approach using model predic-

7

tive control, which generalizes the imitation trajectories to new environment with

different constraints such as obstacle avoidance and safety margin. The chapter

also presents a co-active learning framework for learning preferences of movement

adaptation using users’ feedback. This chapter is based on [2].

Chapter 4 explains methods for learning subgoals distribution for given se-

quential task models through iterative trials. The learned subgoals distribution is

used to connect primitive actions, where each of them is represented as a subgraph

for connectivity of robot states, therefore to construct spatiotemporal graph for

sequential motion planning.

Chapter 5 presents the main conclusions of the thesis. It also summarizes

discussions and potential extensions on related problems for learning manipulation

skills.

8

Chapter 2: Learning Hand Movements from Markerless Demonstra-

tions

We present a framework for generating trajectories of the hand movement

during manipulation actions from demonstrations so the robot can perform similar

actions in new situations. In this work: 1) we extract and transform hand movement

trajectories using a state-of-the-art markerless full hand model tracker from Kinect

sensor data; 2) we develop a new bio-inspired trajectory segmentation method that

automatically segments complex movements into action units, and 3) we develop a

generative method to learn task specific control using Dynamic Movement Primitives

(DMPs). Experiments conducted both on synthetic data and real data using the

Baxter research robot platform validate our approach.

2.1 Motivation

Developing personalized cognitive robots that help with everyday tasks is one

of the on-going topics in robotics research. Such robots should have the capability

to learn how to perform new tasks from human demonstrations. However, even

simple tasks, like making a peanut jelly sandwich, may be realized in thousands of

different ways. Therefore, it is impractical to teach robots by enumerating every

9

possible task. An intuitive solution is to have a generative model to enable the robot

to perform the task learned from observing a human. Since the essence of human

actions can be captured by skeletal hand trajectories, and most of the daily tasks we

are concerned with are performed by the hands, learning new tasks from observing

the motion of the human hands becomes crucial.

There are several previous approaches for learning and generating hand move-

ments for a robot, but they either use external markers or special equipments, such

as DataGloves, to capture the example trajectories [3–5]. Such approaches are not

practical for the kind of actions of daily living, which we consider here. In this work,

our system makes use of a state-of-the-art markerless hand tracker [6], which is able

to reliably track a 26 degree of freedom skeletal hand model. Its good performance

is largely due to reliable 3D sensing using the Kinect sensor and a GPU based op-

timization. Building on this tool, we propose to develop a user-friendly system for

learning hand movements.

The generation of trajectories from example movements using data gloves has

been a hot topic in the field of humanoids recently. Krug and Dimitrov [7] addressed

the problem of generalizing the learned model. They showed that with proper

parameter estimation, the robot can automatically adapt the learned models to new

situations. Stulp and Schaal [8] explored the problem of learning grasp trajectories

under uncertainty. They showed that an adaptation to the direction of approach

and the maximum grip aperture could improve the force-closure performance.

Following the idea that human hand movements are composed of primitives [9,

10], the framework of Dynamic Movement Primitives (DMPs) has become very

10

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

−0.55

−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.15

−0.1

−0.05

0

0.05

Observed Trajectory
Key Points
Generated Trajectory

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

−0.55

−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.15

−0.1

−0.05

0

0.05

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

−0.55

−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.15

−0.1

−0.05

0

0.05

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

−0.55

−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.15

−0.1

−0.05

0

0.05

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

−0.55

−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.15

−0.1

−0.05

0

0.05

Timeline

Movement
Learning

Humanoid
Task

Marker-less
Demonstration

Figure 2.1: Overview of learning hand movements for humanoid tasks. Placing
task is an example shown here, and the drawing on hand in demonstration video is
indicating hand tracker.

popular for encoding robot trajectories recently. This representation is robust to

perturbations and can generate continuous robot movements. Pastor et al. [11]

further extended the DMPs model to include capabilities such as obstacle avoidance

and joint limits avoidance. The ability to segment complex movements into simple

action units plays an important role for the description. With proper segmentation,

each action unit can be well fit into one DMP [12,13].

We propose an approach for learning the hand movement from markerless

demonstrations for humanoid robot tasks. Fig. 2.1 gives an overview of our frame-

work. The main contributions of this work are: 1) We demonstrate a markerless sys-

tem for learning hand actions from movement demonstrations. The demonstrations

are captured using the Kinect sensor; 2) Our approach autonomously segments an

example trajectory into multiple action units, each described by a movement primi-

11

tive, and forms a task-specific model with DMPs; 3) We learn a generative model of

a human’s hand task from observations. Similar movements for different scenarios

can be generated, and performed on Baxter Robots.

2.2 Related Work

A variety of methods [14] have been proposed to visually capture human mo-

tion. For full pose estimation both appearance-based and model-based methods have

been proposed. Appearance-based methods [15] are better suited for the recognition

problem, while model-based methods [6] are preferred for problems requiring an ac-

curate estimation pose. To capture hand movement, Oikonomidis et al. [6] provide

a method to recover and track the real world 3D data from Kinect sensor data using

a model-based approach by minimizing the discrepancy between the 3D structure

and the appearance of hypothesized 3D model instances.

The problem of real-time, goal-directed trajectory generation from a database

of demonstration movements has been studied in many works [16]- [17]. Ude et

al. [16] have shown that utilizing the action targets as a query point in an example

database could generate the learned movement to new situations. Asfour et al. [18]

use Hidden Markov Models to generalize movements demonstrated to a robot multi-

ple times. Forte et al. [17] further address the problem of generalization from robots’

learned knowledge to new situations. They use Gaussian process regression based

on multiple example trajectories to learn task-specific parameters.

Ijspeert et al. [9, 19] have proposed the DMP framework. They start with

12

a simple dynamical system described by multiple linear differential equations and

transform it into a weakly nonlinear system. It has many advantages in generating

motion: It can easily stop the execution of movement without tracking time indices

as it doesn’t directly rely on time, and it can generate smooth motion trajectories

under perturbations. In [8], Stulp et al. present an approach to generate motion

under state estimation uncertainties. They use DMP and a reinforcement learning

algorithm for reaching and reshaping. Rather than grasping an object at a specific

pose, the robot will estimate the possibility of grasping based on the distribution of

state estimation uncertainty. The system is tested with new object positions and

other state estimation uncertainty distributions.

Krug and Dimitrov [7] propose a method to model grasping movement using

movement primitives learned from several demonstrations. They focused on param-

eter estimation of dynamical systems and formulated the problem as a constrained

nonlinear least squares problem and matched the demonstrated trajectories by solv-

ing a quadratic program. An implicit dynamical system is maintained to resemble

multiple demonstrated trajectories. Experimental results show that the implicit sys-

tem learned from combined Dynamic Systems (DS) can ensure predictable behavior

over the state space.

The segmentation of complex movements into a series of action units has re-

cently received attention due to its importance to many applications in the field

of robotics. Meier et al. [13, 20] develop an expectation maximization method to

estimate partially observed trajectories. They reduce the movement segmentation

problem to a sequential movement recognition problem. Patel et al. [21] use a Hier-

13

achical Hidden Markov Model to represent and learn complex tasks by decomposing

them into simple action primitives.

Our method utilizes Kinect sensors to capture real word 3D skeleton data of

human hand from markerless demonstration; then it automatically segments ob-

served trajectories into multiple action units by the motion characteristics; then,

it further represents the hand movement by a generative model based on multiple

DMPs and applies the learned model to generate similar movements for new situa-

tions. The experiments show that the generated trajectory could be used to drive

humanoids with arms and effectors to perform similar tasks. Finally, the generative

model could also be used to induce action grammars for describing the hand task.

2.3 Movement Learning

Data
Acquisition Pre-processing Phase

Segmentation
Manipulation
Segmentation

Generative
Model

DMP
Model Fit

Trajectory
Generation

Robot
Control

Test Inputs

Figure 2.2: Block diagram of hand movement learning

Our hand movement learning method has three steps: 1) acquire trajecto-

14

ries in Cartesian space from demonstration; 2) segment the trajectories using key

points and 3) represent each segment with a generative model. Fig. 2.2 presents an

overview of our approach. Firstly, the data collected from observed trajectories of

the movements of the palm and the fingertips using the markerless hand tracker [6]

are pre-processed by applying moving average smoothing to reduce the noise. Next a

trajectory segmentation method is applied to find in a bio-inspired way the GRASP

and RELEASE points that reflect the phases of movement [22]. Then, because of

the complexity of the hand’s movement when manipulating objects, a second round

of segmentation is applied to the trajectories between the GRASP and RELEASE

points to decompose the real movement into periodical sub-movements. Finally,

we train the model of Dynamical Movement Primitives (DMPs) [4] to generatively

model each sequential movement.

In the following sections, we present each component in Fig. 2.2 in detail.

2.3.1 Data Acquisition from Markerless Demonstrations

The Kinect FORTH Tracking system [6] has been widely used as a state-of-the-

art markerless hand tracking method for manipulation actions [23]. The FORTH

system takes as input RGB + depth data from a Kinect sensor. It models the geom-

etry of the hand and its dynamics using a 26 DOF model, and treats the problem

of tracking the skeletal model of the human hand as an optimization problem using

Particle Swarm Optimization. The hand model parameters are estimated continu-

ously by minimizing the discrepancy between the synthesized appearances from the

15

model and the actual observations.

Unlike most other hand data capturing approaches such as those using Data-

Gloves, the FORTH system is a fully markerless approach, which makes it possible

to achieve a natural human-robot interaction in daily life activities, such as teaching

humanoids kitchen actions with bare hands.

In this work, our humanoid is equipped with the FORTH system to track the

hand. The observed 3D movement trajectories of the hand, palm, and finger joints

are stored as training data.

Since our goal is to generate human-like hand movement on humanoids, we

first convert the collected data from Kinect space into Robot space. The robot

space is the base frame which takes the robot body center as origin. Then we

transform the data from absolute trajectories to relative trajectories with respect to

the demonstrator’s body center, which is fixed during the demonstration. Then we

perform a moving average smoothing on the transformed data to reduce the noise.

In order to learn movements down to the finger level, we also compute the

distance between the index finger and the thumb to the DMPs. Without loss of

generality, we assumed the robot gripper would have a fixed orientation which is set

the same as the demonstrator’s.

2.3.2 Dynamic Movement Primitives (DMPs) Model

DMPs [17] are widely used for encoding stereotypical movements. A DMP

consists of a set of differential equations that compactly represents high dimensional

16

control policies. As an autonomous representation, they are goal directed and do

not directly depend on time, thus they allow the generation of similar movements

under new situations.

In this work we use one DMP to describe one segment of the robot trajectory.

The discrete trajectory of each variable, y, of the robot hand’s Cartesian dimensions,

is represented by the following nonlinear differential equations:

τ v̇ = αv(βv(g − y)− v) + f(x) (2.1)

τ ẏ = v (2.2)

τ ẋ = −αxx, (2.3)

where (1) and (2) include a transformation system and a forcing function f , which

consists of a set of radial basis functions, Ψ(x), (equations (4) and (5)), to enable the

robot to follow a given smooth discrete demonstration from the initial position y0 to

the final configuration g. Equation (3) gives a canonical system to remove explicit

time dependency and x is the phase variable to constrain the multi-dimensional

movement in a set of equations. v is a velocity variable. αx, αv, βv and τ are

specified parameters to make the system converge to the unique equilibrium point

(v, y, x) = (0, g, 0). f(x) and Ψ(x) are defined as:

f(x) =

∑N
k=1 ωkΨk(x)

ΣN
k=1Ψk(x)

x (2.4)

Ψk(x) = exp(−hk(x− ck)2), hk > 0, (2.5)

17

where ck and hk are the intrinsic parameters of the radial basis functions distributed

along the training trajectory.

Trajectory Learning: The parameters ωk in (2.4) are adapted through a learn-

ing process such that the nonlinear function f(x) forces the transformation system

to follow the observed trajectory y(t). To update the parameters, the derivatives

v(t) and v̇(t) are computed for each time step. Based on that, the phase variable

x(t) is evaluated by integrating the canonical system in (3). Then, ftarget(x) is com-

puted according to (2.1), where y0 is the initial point and g is the end point of the

training trajectory. Finally, the parameters ωk are computed by linear regression as

a minimization problem with error criterion J =
∑

x(ftarget(x)− f(x))2.

Trajectory generation: To generate a desired trajectory, we set up the system

at the beginning. The unique equilibrium point condition (v, y, x) = (0, g, 0) is not

appropriate here since it won’t be reached until the system converges to a final

state. The start position is set to be the current position y′0, the goal is set to

be the target position gtarget, and the canonical system is reset by assigning the

phase variable x = 1. By substituting the learned parameters ωk and adapting the

desired movement duration τ , the desired trajectory is obtained via evaluating x(t),

computing f(x), and integrating the transformation system (2.1).

18

2.3.3 Movement Segmentation

In human movement learning, a complex action is commonly segmented into

simple action units. This is realistic since demonstrations performed by humans can

be decomposed into multiple different movement primitives. Specifically for most

common human hand movements, it is reasonable to assume that the observed

trajectory generally has three subaction units: 1) A reach phase, during which the

hand moves from a start location till it comes in contact with the object, just before

the grasp action; 2) A manipulation phase, during which the hand conducts the

manipulation movement on the object; 3) A withdraw phase, which is the movement

after the point of releasing the object.

In both the reach and the withdraw phases, the movements usually can be

modelled well by one DMP. However, the manipulation movement could be too

complicated to model it with only one or two DMPs. Therefore, our approach is to

run a second round of segmentation on the manipulation phase. In this phase we

segment it at detected key points and model each segment with a different DMP.

The generated trajectory from these DMPs would best fit the training one. Next

we describe our segmentation algorithm in detail:

Grasp & Release Candidates: The first step of our algorithm is to identify

the GRASP and RELEASE points in the observed trajectories. Given the observed

trajectory y, the velocity v and acceleration v̇ can be computed by deriving first

and second order derivatives followed by a moving average smoothing. Following

19

the studies on human movement [12], the possible GRASP and RELEASE points

are derived as the minima points in the motion of the palm. We selected the palm

since humans intentionally grasp/release the objects stably by slowing the hand

movement. The GRASP point occurs after the human closes the hand, and we find

it as the local maxima in the motion of the finger-gap trajectory. The RELEASE

point happens before the human opens the hand, and it can be found in a similar way.

In this work, we compute a reference trajectory s(t) for each Cartesian dimension

representing the motion characteristics as a combination of v and v̇ as equation (2.6).

Here λ is used to adjust the weight between velocity and acceleration. We also

compute s(t)gap for the finger-gap trajectory.

s(t) = λ · v(t)2 + (1− λ) · v̇(t)2 (2.6)

s(t)gap = λgap · v(t)2gap + (1− λgap) · v̇gap(t)2 (2.7)

Therefore, for each dimension, the first local minima of s(t) follows the first

maxima of s(t)gap, and is considered a possible GRASP point candidate. The last

local minima of s(t) succeeds the last maxima of s(t)gap, and is considered a possible

RELEASE point candidate. We take up to three extrema for grasping and three

for releasing, and put them into the candidate set Cgrasp and Crelease as described

20

in equation (2.8).

S = {t|t = arg min
t

s(t)}

Sgap = {t|t = arg max
t

s(t)gap}

Sc = {(tgrasp, trelease)|tgrasp < trelease; tgrasp, trelease ∈ S;

∃t ∈ Sgap, t < tgrasp;∃t ∈ Sgap, t > trelease}

(2.8)

Manipulation Segmentation: Given the pair of GRASP and RELEASE points,

we can get the manipulation phase trajectories. We then attempt to segment the

manipulation phase trajectories into subactions. Following the same assumption

that hand movements may change at the local minima of the velocity and acceler-

ation, we extract the candidates of the first key points by selecting the first local

minima, which follows the first maxima of s(t) during the manipulation phase for

each Cartesian dimensional trajectory. If there is no such candidate, our algorithm

directly models the current trajectory’s segment by one DMP and returns the error

between the model-generated and observed trajectories. If there is one possible key

point candidate, we use one DMP to model the former part of the trajectory seg-

mented by it and compute the error. Then we recursively apply the same algorithm

for the rest of the trajectories to compute key points as well as errors. By summing

up the errors, we select the key point with minimal error among all candidates.

The selected key point is added to the key point set as described in equation (2.9).

21

Please refer to Algorithm 1 for details.

(t0, tn) := (tgrasp, trelease),∀(tgrasp, trelease) ∈ Sc

Skey = {(t1, · · · , tn−1)|∀i = 0, · · · , n− 1 : ti < ti+1; ti ∈ S}

Jmani = min
(t1,··· ,tn−1)∈Skey

∑n−1
i=1

∑ti+1

ti
(y(t)− y(t)generated)

2

(2.9)

Evaluation: We consider the movement segmentation as a minimization prob-

lem with error criterion J(t) =
∑

i=1,2,3(y(t)i − y(t)igenerated)
2. It sums up the errors

over all dimensions of the trajectories. For each possible pair of GRASP and RE-

LEASE points (tgrasp ∈ Cgrasp , trelease ∈ Crelease), we first use two separate DMPs

to model the reach and withdraw phase trajectories and compute their errors as

Jreach =
∑tgrasp

t=1 J(t) and Jwithdraw =
∑end

t=trelease
J(t). Given the manipulation phase

trajectory, we segment it further as described above in order to model complex

movement, for example chopping. The error for the manipulation phase trajectory

(Jmani) is then computed. The total error (Jwhole = Jreach + Jwithdraw + Jmanipulation)

is used as the target function. The final GRASP and RELEASE points are obtained

by solving (t∗grasp, t
∗
release) = arg minJwhole as described in equation (2.10).

Jreach =
∑tgrasp

t=1 (y(t)− y(t)generated)
2

Jwithdraw =
∑end

t=trelease
(y(t)− y(t)generated)

2

(t∗grasp, t
∗
release) = arg min

(tgrasp,trelease)∈Sc
Jreach + Jmani + Jwithdraw

(2.10)

22

Algorithm 1 Manipulation Phase Segmentation
Input: tstart, tend
Output: Keys,Jerror

procedure Segment
Keysc = ∅,Keys = ∅
for all Cartesian dimension i ∈ (1, 2, 3) do

Setmin ← Findmins(s(t)i, tstart, tend)

Setmax ← Findmaxs(s(t)i, tstart, tend)

if ∃tc ∈ Setmin > Setmax(0) then

Keysc ← Keysc+ smallest tc
end if

end for

Jerror ← Fitdmp(y(t), tstart, tend)

if Keysc = ∅ then return Keys, Jerror
end if

for all tc ∈ Keysc do

Jformer ← Fitdmp(y(t), tstart, tc)

Keyslatter, Jlatter ← Segment(tc, tend)

if Jerror > Jformer + Jlatter then

Jerror ← Jformer + Jlatter
Keys← tc + Keyslatter

end if

end for

return Keys, Jerror
end procedure

23

2.3.4 Movement Generation

After we have found the best GRASP and RELEASE points along with the

key points set (t1, t2, · · · , tn) during the manipulation phase, our system now is able

to model the hand movement by:

• DMPs: Including two DMPs for the reach and withdraw phases and a set of

DMPs for each segment in the manipulation phase, yielding n+ 3 DMPs.

• Key Points Set: A series of best key points (t0, t1, t2, · · · , tn+1) for movement

segmentation and their corresponding relative motion vectors (~MV 1, ~MV 2, · · · , ~MV n).

The relative motion vectors are computed as ~MV i = ~y(ti) − ~y(ti−1), i =

1, · · · , n, where t0 = tgrasp, tn+1 = trelease. Note that the relative motion

vectors from tn to tn+1 are abundant for our model.

• Grasping Finger-gap: Given the best GRASP and RELEASE points, we

compute the average of the finger-gaps during the manipulation phase for rep-

resenting the distance a parallel gripper should generate for the same object.

Given the testing inputs: the initial locations of the robots palm, the new

locations of the object to grasp and release, and the expected movement time, our

generative model generates the motion trajectories using the following 3 steps:

Step 1) Generate new key points’ locations during the movement (~y(ti)
′, i =

0, 1, · · · , n + 1). Taking the learned relative motion vectors, we compute locations

of new key points as ~y(ti)
′ = ~y(ti−1)

′ + ~MV i, i = 1, · · · , n, where ~y(t0)
′ is the new

grasping location and ~y(tn+1)
′ is the new releasing location for different scenarios.

24

Step 2) Scale the duration time of each segment based on the new total

time/speed. Since we have a key points set in the learned model, the new duration

time for each segment in the manipulation phase τi, i = 0, · · · , n can be computed.

Step 3) Use learned DMPs to generate each of the segments accordingly. The

reach and withdraw phases are generated directly with the test inputs, while the

segments in the manipulation phase are generated according to inputs computed

from the above steps. For example, (~y(ti−1)
′, ~y(ti)

′, τ ′i) would be used as input to

the ith DMP for generating the ith segment trajectory in the manipulation phase.

We then concatenate the generated trajectories into the new movement tra-

jectory ~y(t)′, which is then used to control the robot effector. At the same time, we

also enforce the learned grasping finger-gap on the robot’s parallel gripper during

the manipulation phase.

2.4 Experiments

This section describes experiments conducted to demonstrate that our system

can learn from markerless demonstrations and generate similar actions in new situ-

ations. We first had our robot observe demonstrations. The object was placed on a

table, and a human was asked to move his right hand to grasp the object, manipu-

late it, then release it and withdraw his hand. Three typical tasks are considered:

Place, Chop and Saw. In order to validate our method, for each task we collected

two sequences. One was used for learning and the other was used for testing. The

movement was tracked by the FORTH system [6] at 30 fps and the raw data was

25

Table 2.1: Hand movement learning for different tasks with different weights λ in
motion reference trajectories s(t)

Motion weight Place (m2) Chop (m2) Saw (m2)
λ = 0 0.1302 0.3614 1.5793
λ = 0.1 0.1238 0.3697 0.6058
λ = 0.2 0.1238 0.3539 0.5805
λ = 0.3 0.1238 0.3539 0.5816
λ = 0.4 0.1238 0.3537 0.5826
λ = 0.5 0.1238 0.3537 0.5837
λ = 0.6 0.1238 0.3532 0.5837
λ = 0.7 0.1238 0.3532 0.5848
λ = 0.8 0.1238 0.3532 0.5848
λ = 0.9 0.1238 0.3532 0.5848
λ = 1 0.1238 0.3532 0.5848

transformed into robot space, as shown in Fig. 2.3(a).

2.4.1 DMPs Model training

We calculated the motion reference trajectories s(t) with motion weight λ =

0.5, found the local minima and maxima (Sec. 2.3), as shown in Fig. 2.3(b). Applying

the learning algorithms by fixing the number of basis functions to 30 in each DMP

model, our system generated trajectories (Fig. 2.4).

In order to investigate how motion reference trajectory of palm would be af-

fected by the weight between its velocity and acceleration, we applied our learning

algorithms for different tasks with different weights λ. The learned error for the

whole trajectories in different tasks and different weights are reported in Table 2.1.

26

0 5 10 15 200.4
0.6
0.8

Time (s)

x
(m

)

0 5 10 15 20−1
−0.5

0

Time (s)

y
(m

)

0 5 10 15 20−0.2
0

0.2

Time (s)

z
(m

)

0 5 10 15 200
0.1
0.2

Time (s)Fi
ng

er
−g

ap
 (m

)

Preprocess

(a)

0 5 10 15 200

2

4x 10−5

Time (s)

Fi
ng

er
−g

ap

0 5 10 15 200

0.5

1x 10−4

Time (s)

z

0 5 10 15 200

1

2x 10−4

Time (s)

y

0 5 10 15 200

2

4x 10−5

Time (s)

x

Motion Reference Trajectory s(t)
Local Minimas
Local Maximas

(b)

Figure 2.3: Data acquisition and preprocessing for chopping task: (a) Transform
action of Kinect sensor data to trajectories in robot space; (b) Computed motion
reference trajectories s(t) for Cartesian dimensions and finger-gap with λ = 0.5.

27

0 5 10 150.4

0.6

0.8

Time (s)

x
(m

)

0 5 10 15−1

−0.5

0

Time (s)

y
(m

)

0 5 10 15−0.5

0

0.5

Time (s)

z
(m

)

(a)

0 5 10 15 200.4

0.6

0.8

Time (s)

x
(m

)

0 5 10 15 20−1

−0.5

0

Time (s)

y
(m

)
0 5 10 15 20−0.2

0

0.2

Time (s)
z

(m
)

(b)

0 5 10 15 200

0.5

1

Time (s)

x
(m

)

Observed Trajectory
Key Points
Generated Trajectory

0 5 10 15 20−1

−0.5

0

Time (s)

y
(m

)

0 5 10 15 20−0.2

−0.1

0

Time (s)

z
(m

)

(c)

Figure 2.4: Generated trajectories for learning different hand tasks: a) Place, b)
Chop, c) Saw.

28

2.4.2 Experiments in Simulation

We show how well our approach is able to generalize movement trajectories

for different actions by comparing with the testing sequences. For the testing se-

quence, we applied the same pre-processing to transform it into robot space. We

also extracted the grasping and releasing locations, as well as their duration times.

We passed them as parameters to the trained model. The trajectories generated are

shown in Fig. 2.5.

The motion patterns generated by different humans for the same action largely

differ from each other. After comparing the generated trajectories with the observed

trajectories of the testing sequences of different tasks, we found that in general their

motion patterns are quite similar. Even for relatively complex tasks for example

chop, our generated trajectories are similar to the observed human trajectories. This

shows that our proposed model is good for learning and generating hand movements

for manipulation tasks.

We further tested our trained model by generating trajectories for different

grasping and releasing locations. We offset the grasping and releasing locations by

5, 10 and 20 cm on the table away from the location of the demonstration. The

generated trajectories for the Chop task are shown in Fig. 2.6. The figure shows

that the motion trajectories are still consistent and the generated movements are

still quite similar to the ones from the demonstrations. Our approach achieves a

certain level of spatial generality while maintaining human-like trajectories.

29

0 2 4 6 8 100.4

0.6

0.8

Time (s)

x
(m

)

0 2 4 6 8 10−1

−0.5

0

Time (s)

y
(m

)

0 2 4 6 8 10−0.5

0

0.5

Time (s)

z
(m

)

(a)

0 5 10 15 200.4

0.6

0.8

Time (s)

x
(m

)

0 5 10 15 20−1

−0.5

0

Time (s)

y
(m

)
0 5 10 15 20−0.2

0

0.2

Time (s)
z

(m
)

(b)

0 5 10 150

0.5

1

Time (s)

x
(m

)

0 5 10 15−1

−0.5

0

Time (s)

y
(m

)

0 5 10 15−0.2

−0.1

0

Time (s)

z
(m

)

Key Points
Generated Trajectory
Observed Trajectory

(c)

Figure 2.5: Comparison between generated trajectories and observed testing trajec-
tories for different hand tasks: a) Place, b) Chop, c) Saw.

30

0 5 10 15 200.4

0.6

0.8

Time (s)

x
(m

)

0 5 10 15 20−1

−0.5

0

Time (s)

y
(m

)

0 5 10 15 20−0.2

0

0.2

Time (s)

z
(m

)

(a)

0 5 10 15 200.4

0.6

0.8

Time (s)

x
(m

)

0 5 10 15 20−1

−0.5

0

Time (s)

y
(m

)
0 5 10 15 20−0.2

0

0.2

Time (s)
z

(m
)

(b)

0 5 10 15 200.4

0.6

0.8

Time (s)

x
(m

)

0 5 10 15 20−1

0

1

Time (s)

y
(m

)

0 5 10 15 20−0.2

0

0.2

Time (s)

z
(m

)

 Key Points
Generated Trajectory
Observed Trajectory

(c)

Figure 2.6: Generated trajectories with different scenarios for chopping task: a)
object is shifted 5 cm in x direction, b) object is shifted 10 cm in y direction, c)
object is shifted 20 cm in both x and y directions.

31

Figure 2.7: Baxter Experiment: Front view and 3D trajectory of generated move-
ment for chopping task.

2.4.3 Test on the Robot

In this experiment, we showed that our approach can be used to teach the

Baxter robot to perform a similar task from demonstrations using the FORTH

hand tracking data. We mounted a Kinect sensor on our Baxter. Given the object

location, using our method, we could generate the hand movement trajectories and

use them to control Baxter’s gripper movement. Fig. 2.7 shows the front view and

3D trajectory of the generated movement for the chopping task running on Baxter.

2.4.4 Grammar Induction for Hand Task

A study by [24] suggested that a minimalist generative grammar, similar to the

one in human language, also exists for action understanding and execution. In this

experiment, we demonstrated the applicability of our generative model in grammar

induction for hand tasks.

With learned DMPs as primitives, we induced a context-free action grammar

for the task as follows. Firstly, we concatenated the learned parameters from the

32

different dimensions of the DMPs into feature vectors and applied PCA to transform

these vectors into a lower dimensional space. Then we applied K-means clustering

with multiple repetitions to cluster DMPs into groups. Besides the two groups of

DMPs for Reach and Withdraw phases, we considered two other groups of DMPs

for stretching and contraction in the Manipulation phase.

The labelled data from two trails of the chopping task in PCA space are shown

in Fig. 2.8(a). Based on clustering labels, we could label each DMP and generate

the primitive labels for the observed task. For example, the Chop task in Fig. 2.8(a)

can be represented by the sequence of primitives: “Reach Chop1 Chop2 Chop1

Chop2 Chop1 Chop2 Chop1 Chop2 Withdraw”. Similar sequences can be found

in other Chop trails. After applying the grammar induction technique [25] on the

sequences of the primitives, we induced a set of context-free grammar rules, as shown

in table. 2.8(b). S is the starting non-terminal. This action grammar enables us

to produce generatively new Chop actions and it shows that our generative model

is well suited as a basis for further research on learning hand actions guided by

semantic principles.

2.5 Summary

We presented a framework for learning hand movement from demonstrations

for humanoids. The proposed method provides a potentially fully automatic way to

learn hand movements for humanoid robots from demonstrations, and it does not

require special hand motion capturing devices. Possible extensions include:

33

(a)

(a) DMPs clusters in 2D
PCA space.

Fig. 7. DMPs clusters in 2D PCA space for Chop task

TABLE II
GRAMMAR RULES INDUCED FROM OBSERVED CHOP TASK.

S → Reach A Withdraw (1)
A → A Chop1 Chop2

| Chop1 Chop2 (2)

With learnt DMPs as primitives, we induced a context-free
action grammar for the task as follows. Firstly, we concate-
nated learnt parameters from each dimension of DMPs as
feature vectors and applied Principle Component Analysis to
transform these vectors into a lower dimensional space. Then
we applied K-means clustering with multiple repetitions
to cluster DMPs into groups. Besides the two groups of
DMPs for Reach and Withdraw phases, we considered two
other groups of DMPs for stretching and contraction in the
Manipulation phase.

The labelled data from two trails of the chopping task in
PCA space is shown in Fig. 7. Based on clustering labels,
we could label each DMP and generate the primitive labels
for the observed task. For example, the Chop task in Fig. 7
can be represented by the sequence of primitives: “Reach
Chop1 Chop2 Chop1 Chop2 Chop1 Chop2 Chop1 Chop2
Withdraw”. Similar sequences can be found in other Chop
trails.

After applying the grammar induction technique [27] on
the sequences of the primitives, we can induce a set of
context-free grammar rules in table. II. S is the starting non-
terminal. This action grammar enables us to produce gener-
atively new Chop actions and it shows that our generative
model is well suited as basis for further research on learning
hand actions gudied by semantic principles.

V. CONCLUSION AND FUTURE WORK

We presented a framework for learning hand movement
from demonstration for humanoids. The proposed method
provides a potentially fully automatic way to learn hand
movements for humanoid robots from demonstration, and
it does not require special hand motion capturing devices.

1) Due to the limitation of Baxter’s effector, we can
only map finger-level movements onto a parallel gripper by
transfering the orientation and distance between the thumb
and the index finger. In future work we want to further
investigate the eligibility of using our current model to map
finger-level movements onto robot hands with fingers.

2) Recent studies on human manipulation methods [13],

[23] show that they generally follow a grammatical, recursive
structure. We would like to further investigate the possi-
bility of combining bottom-up (the trajectory segmentation
algorithms presented here) with top-down processing (action
semantics) and develop a method to learn action grammars
for hand movements based on action units segmented by the
presented framework.

3) In this paper, in order to focus on the trajectory
generation problem, we assumed the object location as input
from perception. Currently, we investigate how to integrate
with additional information about objects, such as their
affordances. The modules evaluating object affordance detect
the graspable parts of daily kitchen and workshop tools
using a deep learning mechanism [25]. This will enable our
humanoid to know not only how to grasp, but also where to
grasp.

REFERENCES

[1] P. Pastor and H. Hoffmann and T. Asfour and S. Shchaal, Learnning
and generalization of motor skills by learning from demonstration.
IEEE International Conference Robotics and Automation, 2009.

[2] A.J. Ijspeert and J. Nakanishi and S. Schaal, Learning rhythmic move-
ments by demonstration using nonlinear oscillators. IEEE International
Conference Intelligent Robots and Systems, 2002.

[3] S. Calinon and F. D’halluin and E.L. Sauser and D.G. Caldwell
and A. Billard, Learning and reproduction of gestures by imitation:
an approach based on hidden Markov model and Gaussian mixture
regression. IEEE Robotics and Automation Magazine 7(2), pp. 44-45,
2010.

[4] F. Stulp and S. Schaal, Hierarchical reinforcement learning with
learning movement primitives. IEEE International Conference on
Humanoid Robots, 2011.

[5] F. Stulp and E. Theodorou and J. Buchli and S. Schaal, Learning to
grasp under uncertainty. IEEE International Conference on Robotics
and Automation, 2011.

[6] V. Kruger and D. Herzog and S. Baby and A. Ude and D. Kragic,
Learning actions from observations. IEEE Robotics and Automation
Magazine 17(2), pp. 30-43, 2010.

[7] R. Krug and D. Dimitrov, Representing Movement Primitives as
Implicit Dynamical Systems learned from Multiple Demonstrations.
Interntational Conference on Advanced Robotics (ICAR), 2013.

[8] A. Ude and A. Gams and T. Asfour and J. Morimoto, Task-specific
generalization of discrete and periodic dynamic movement primitives.
IEEE Transactions on Robotics and Automation, 2010.

[9] T. Asfour and R. Dillmann, Human-like Motion of a Humanoid
Robot Arm Based on Closed-Form Solution of the Inverse Kinematics
Problem. IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 407-1412, 2003.

[10] T. Asfour, F. Gyarfas, P. Azad and R. Dillmann, Imitation Learning
of Dual-Arm Manipulation Tasks in Humanoid Robots. IEEE/RAS
International Conference on Humanoid Robots (Humanoids), pp. 40-
47, December, 2006.

[11] D. Forte and A. Gams and J. Morimoto and A. Ude, On-line motion
synthesis and adaptation using a trajectory database. Robotics and
Autonomous Systems, 2012.

[12] C. Smith, Y. Karayiannidis, L. Nalpantidis, X. Gratal, P. Qi, D.
V. Dimarogonas, and D. Kragic, Dual arm manipulationa survey,
Robotics and Autonomous Systems, 2012.

[13] R. Dillmann, Teaching and learning of robot tasks via observation of
human performance. Robotics and Autonomous Systems 47(2-3), pp.
109-116, 2004.

[14] A. Ijspeert and J. Nakanishi and S. Schaal, Movement imitation with
nonlinear dynamical systems in humanoid robots. In Proc. of the IEEE
International Conference on Robotics and Automation (ICRA), 2002.

[15] A. Ijspeert and J. Nakanishi and P. Pastor and H. Hoffmann and S.
Schaal, Dynamical movement primitives: Learning attractor models
for motor behaviors. Neural Computation, vol. 25, pp. 328-373, 2013.

[16] I. Oikonomidis and N. Kyriazis and A. Argyros, Efficient model-based
3D tracking of hand articulations using Kinect. British Machine Vision
Conference, 2011.

(b) Grammar rules induced
from observed movement.

Fig. 7. DMPs clustering and Grammar Induction for chopping task

With learnt DMPs as primitives, we induced a context-free
action grammar for the task as follows. Firstly, we concate-
nated learnt parameters from each dimension of DMPs as
feature vectors and applied Principle Component Analysis to
transform these vectors into a lower dimensional space. Then
we applied K-means clustering with multiple repetitions
to cluster DMPs into groups. Besides the two groups of
DMPs for Reach and Withdraw phases, we considered two
other groups of DMPs for stretching and contraction in the
Manipulation phase.

The labelled data from two trails of the chopping task
in PCA space is shown in Fig. 7(a). Based on clustering
labels, we could label each DMP and generate the primitive
labels for the observed task. For example, the Chop task in
Fig. 7(a) can be represented by the sequence of primitives:
“Reach Chop1 Chop2 Chop1 Chop2 Chop1 Chop2 Chop1
Chop2 Withdraw”. Similar sequences can be found in other
Chop trails.

After applying the grammar induction technique [27] on
the sequences of the primitives, we can induce a set of
context-free grammar rules in table. ??. S is the starting
non-terminal. This action grammar enables us to produce
generatively new Chop actions and it shows that our gener-
ative model is well suited as basis for further research on
learning hand actions gudied by semantic principles.

V. CONCLUSION AND FUTURE WORK

We presented a framework for learning hand movement
from demonstration for humanoids. The proposed method
provides a potentially fully automatic way to learn hand
movements for humanoid robots from demonstration, and
it does not require special hand motion capturing devices.

1) Due to the limitation of Baxter’s effector, we can
only map finger-level movements onto a parallel gripper by
transfering the orientation and distance between the thumb
and the index finger. In future work we want to further
investigate the eligibility of using our current model to map
finger-level movements onto robot hands with fingers.

2) Recent studies on human manipulation methods [13],
[23] show that they generally follow a grammatical, recursive
structure. We would like to further investigate the possi-
bility of combining bottom-up (the trajectory segmentation
algorithms presented here) with top-down processing (action

semantics) and develop a method to learn action grammars
for hand movements based on action units segmented by the
presented framework.

3) In this paper, in order to focus on the trajectory
generation problem, we assumed the object location as input
from perception. Currently, we investigate how to integrate
with additional information about objects, such as their
affordances. The modules evaluating object affordance detect
the graspable parts of daily kitchen and workshop tools
using a deep learning mechanism [25]. This will enable our
humanoid to know not only how to grasp, but also where to
grasp.

REFERENCES

[1] P. Pastor and H. Hoffmann and T. Asfour and S. Shchaal, Learnning
and generalization of motor skills by learning from demonstration.
IEEE International Conference Robotics and Automation, 2009.

[2] A.J. Ijspeert and J. Nakanishi and S. Schaal, Learning rhythmic move-
ments by demonstration using nonlinear oscillators. IEEE International
Conference Intelligent Robots and Systems, 2002.

[3] S. Calinon and F. D’halluin and E.L. Sauser and D.G. Caldwell
and A. Billard, Learning and reproduction of gestures by imitation:
an approach based on hidden Markov model and Gaussian mixture
regression. IEEE Robotics and Automation Magazine 7(2), pp. 44-45,
2010.

[4] F. Stulp and S. Schaal, Hierarchical reinforcement learning with
learning movement primitives. IEEE International Conference on
Humanoid Robots, 2011.

[5] F. Stulp and E. Theodorou and J. Buchli and S. Schaal, Learning to
grasp under uncertainty. IEEE International Conference on Robotics
and Automation, 2011.

[6] V. Kruger and D. Herzog and S. Baby and A. Ude and D. Kragic,
Learning actions from observations. IEEE Robotics and Automation
Magazine 17(2), pp. 30-43, 2010.

[7] R. Krug and D. Dimitrov, Representing Movement Primitives as
Implicit Dynamical Systems learned from Multiple Demonstrations.
Interntational Conference on Advanced Robotics (ICAR), 2013.

[8] A. Ude and A. Gams and T. Asfour and J. Morimoto, Task-specific
generalization of discrete and periodic dynamic movement primitives.
IEEE Transactions on Robotics and Automation, 2010.

[9] T. Asfour and R. Dillmann, Human-like Motion of a Humanoid
Robot Arm Based on Closed-Form Solution of the Inverse Kinematics
Problem. IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 407-1412, 2003.

[10] T. Asfour, F. Gyarfas, P. Azad and R. Dillmann, Imitation Learning
of Dual-Arm Manipulation Tasks in Humanoid Robots. IEEE/RAS
International Conference on Humanoid Robots (Humanoids), pp. 40-
47, December, 2006.

[11] D. Forte and A. Gams and J. Morimoto and A. Ude, On-line motion
synthesis and adaptation using a trajectory database. Robotics and
Autonomous Systems, 2012.

[12] C. Smith, Y. Karayiannidis, L. Nalpantidis, X. Gratal, P. Qi, D.
V. Dimarogonas, and D. Kragic, Dual arm manipulationa survey,
Robotics and Autonomous Systems, 2012.

[13] R. Dillmann, Teaching and learning of robot tasks via observation of
human performance. Robotics and Autonomous Systems 47(2-3), pp.
109-116, 2004.

[14] A. Ijspeert and J. Nakanishi and S. Schaal, Movement imitation with
nonlinear dynamical systems in humanoid robots. In Proc. of the IEEE
International Conference on Robotics and Automation (ICRA), 2002.

[15] A. Ijspeert and J. Nakanishi and P. Pastor and H. Hoffmann and S.
Schaal, Dynamical movement primitives: Learning attractor models
for motor behaviors. Neural Computation, vol. 25, pp. 328-373, 2013.

[16] I. Oikonomidis and N. Kyriazis and A. Argyros, Efficient model-based
3D tracking of hand articulations using Kinect. British Machine Vision
Conference, 2011.

[17] A. Erol and G. Bebis and M. Nicolescu and R.D. Boyle and X.
Twombly, Vision-based Hand Pose Estimation: A revview. Computer
Vision and Image Understanding, 108(1-2):52-73, 2007.

(b)

Figure 2.8: Grammar induction for chopping task: (a) DMPs clusters in 2D PCA
space; (b) Grammar rules induced from observed movement.

1) Due to the limitation of Baxter’s effector, we can only map finger-level move-

ments onto a parallel gripper by transfering the orientation and distance between

the thumb and the index finger. One potential extension is to further investigate

the eligibility of using our current model to map finger-level movements onto robot

hands with fingers.

2) Recent studies on human manipulation methods [22, 26] show that they

generally follow a grammatical, recursive structure. It would be very interesting to

further investigate the possibility of combining bottom-up (the trajectory segmen-

tation algorithms presented here) with top-down processing (action semantics) and

develop a method to learn action grammars based on action units segmented by the

presented framework.

3) In this work, in order to focus on the trajectory generation problem, we

assumed the object location as input from perception. Currently, we investigate how

to integrate additional information about objects, such as their affordances. The

modules evaluating object affordances detect the graspable parts of daily kitchen

34

and workshop tools using different learning mechanisms [27]. This will enable our

humanoid to know not only how but also where to grasp.

35

Chapter 3: Learning to Adapt Hand Movement in Manipulation Tasks

In this work we address the problem of interactive robot movement adap-

tation under various environmental constraints. A common approach is to adopt

motion primitives to generate target motions from demonstrations. However, their

generalization capability is weak for novel environments. Additionally, traditional

motion generation methods do not consider versatile constraints from different users,

tasks, and environments. In this work, we propose a co-active learning framework

for learning to adapt the movement of robot end-effectors for manipulation tasks.

It is designed to adapt the original imitation trajectories, which are learned from

demonstrations, to novel situations with different constraints. The framework also

considers user feedback towards the adapted trajectories, and it learns to adapt

movement through human-in-the-loop interactions. Experiments on a humanoid

platform validate the effectiveness of our approach.

3.1 Motivation

Trajectory learning from human demonstrations has been studied in the field

of Robotics for decades because of to its wide range of applications in both industrial

and domestic environments. A popular approach uses so-called Motion Primitives

36

(MPs) to parameterize the observed human motion and reproduce similar motions

with different initial and target states. However, it is widely known that general MPs

methods, such as Dynamic Movement Primitives (DMPs) [4], exhibit limited capa-

bility for generalizing to new environments involving other constraints. Moreover,

the learning used in standard MPs does not allow incorporating user preferences,

such as preferred movements under geometric constraints. However, humanoid ap-

plications in real world environments would greatly benefit from a practical robot

movement learning framework that take user preferences and environmental con-

straints into consideration.

Let’s start with a common example. A human user teaches a humanoid how to

transfer a bottle from different start and end states. Using an off-the-shelf approach,

the robot can learn the motion by acquiring MPs from demonstrated trajectories

and applying them to generate new trajectories given different initial and target

states. However, solely following the generated trajectories may fail in a slightly

altered environment, such as when a bowl is blocking the trajectory as illustrated

in Fig. 3.2(a). Therefore, while being able to imitate the movement pattern learned

from human demonstrations, at the same time the robot should be able to adapt

the learned movement to a novel environment with newly introduced constraints

for a successful execution. Here we assume that these constraints are presented

to the robot only during the task execution phase (testing phase), and not during

the training phase. In this work, we propose an optimization based framework for

adapting trained movements to novel environments. The first goal of our system

is to generate adapted trajectories, as shown in Fig. 3.2(b), that can: 1) follow

37

Figure 3.1: System for learning movement adaptation for manipulation tasks.
Dashed lines indicate feedback.

38

demonstrated trajectories for the purpose of preserving movement patterns, and 2)

fulfill novel constraints perceived from the environment during the testing phase.

Moreover, new environmental constraints perceived during the testing phase

could be more complex than simply encountering an obstacle. Building on the last

example, this time, let’s consider the situation where the target bottle is leaking.

Ideally an intelligent robot that understands the situation should avoid moving the

bottle over the bowl, but follow the movement path around it. We could simply

adjust in the optimization the objective function for movement adaptation. But

what if in another scenario the robot is asked to transfer a knife while avoiding

obstacles above them to prevent potential scratches? Constraints of this nature

are not only associated with the context of the task, i.e, leaking bottle or knife as

the manipulated object, but also with the user’s preference, i.e, avoiding the bowl

in a certain manner. To account for these preferences, a human-in-the-loop on-

line adaptation system is necessary. In the optimization framework for generating

manipulation trajectories presented in this work, we first treat the reward weights as

adjustable parameters that adapt the quality of the trajectory. Then based on user

feedback, the framework learns the preferred behavior, that fulfills constraints, by

updating the the reward weights. Therefore, the learned behavior can be generalized

to different situations with similar constraints. As illustrated in Fig. 3.2(c), after a

few iterations of on-line learning, the robot is able to generate a trajectory adapted

in accordance with the learned preferences.

This work proposes an approach for interactive learning of movement adap-

tation for manipulation tasks. Fig. 3.1 illustrates the proposed system. The main

39

(a)

(b)

(c)

Figure 3.2: Baxter Transferring Leaking Bottle: (a) Movement imitation, failed to
avoid the bowl; (b) Movement adaptation with initial weights, successfully avoided
the bowl with a path above it but spilled water into the bowl; (c) Movement adap-
tation with weights learned for user preferences, successfully avoided the bowl with
a path around it and avoided spilling water in the bowl.

40

contributions of this work are: 1) A system to generalize robots’ movements learned

from demonstrations to fulfill constraints perceived in a new environment. It is

able to adapt trajectories according to user preferences; 2) An approach for robot

learning to adapt trajectories by updating reward weights based on users’ feedback.

The user thus can co-actively train the robot in-the-loop by demonstrating desired

trajectories; 3) An implementation of the optimization schema for the skill of “trans-

ferring objects”, considering obstacles and different geometric user preferences for

the movements. We validate the implementation on a humanoid platform (Baxter),

and the experimental results support our claims.

3.2 Related Work

Various approaches have been proposed in robotics for learning manipula-

tion movements. A well known approach is imitation learning [18], which focuses

on mimicking human demonstrations, and this approach works well when learning

from demonstration (LfD) techniques [11] are applicable. However, it only allows to

reproduce learned movements in similar environments. To deal with novel environ-

ments, extended approaches [28] augment the trajectory generation with additional

cost terms or different objective functions as criterion of the trajectories’ quality.

The criterion is based on human experts’ prior knowledge about the task or en-

vironment before the execution phase. Then, the motion is generalized to similar

situations using predefined constraints. These approaches do not consider user pref-

erences. Here, we present another layer of exploration and learning to adapt the

41

trained movement by considering novel environment constraints, such as observed

obstacles and task preferences.

Approaches [29] for encoding the trajectory as motion primitives have been

proposed for various forms of generalization and modulation, such as Gaussian mix-

ture regression and Gaussian mixture models [5, 30]. In [31], a mixture model was

used to estimate the entire movement skill from several sample trajectories. Another

class of approaches employs Hidden Markov models [32].

One popular representation to encode motion from demonstrated trajectories,

originally introduced in [4], is Dynamic Movement Primitives (DMPs). It con-

sists of differential equations with well-defined attractor properties and a non-linear

learnable component that allows modeling of almost arbitrarily complex motion. A

number of methods have been developed to expand DMPs to cope with new envi-

ronments. To avoid obstacles in new environments, Guenter et al. [30] developed a

Gaussian mixture model to enable the robot adapting in a constrained environment

by combining dynamical system with reinforcement learning. Park et al. [33] intro-

duced the gradient of a dynamic potential field to the differential equation of the

DMPs as an acceleration term, which depended on the relative distance and veloc-

ity between a robots end effector and an obstacle. Hoffmann et al. [34] also added

an acceleration term in the DMP formulation inspired by biology to avoid colliding

with a moving obstacle, relating the position of the end effector to the position of

the obstacle. Calinon et al. [35] also proposed to safely avoid collision with a hu-

man by estimating a risk indicator that modulates repulsive force. Besides obstacle

avoidance, other modulations for trajectory generated by DMPs are studied such as

42

force feedback modulation [36,37] and joint-angle limits [29].

Recently, Probabilistic Movement Primitives (ProMPs) [38] was proposed as

an alternative representation. It learns a trajectory distribution from multiple

demonstrations and modulates the movement by conditioning on desired target

states. Incorporating the variance of demonstrations, the ProMPs approach handles

noise from different demonstrations and provides increased flexibility for reproduc-

ing movement. However, all these approaches hardly deal with novel environments

such as involving different obstacles. In our work, we first train the robot using

ProMPs, and then generalize these trained motion primitives to newly introduced

environmental constraints.

In order to enable MPs to adapt to novel environments with obstacles [33],

Kober et al. [28] proposed an augmented version of DMPs which incorporates per-

ceptual coupling to an external variable. They first learned the initial dynamic mod-

els by standard imitation learning and subsequently used a reinforcement learning

method for self-improvement. Ghalamzan et al. [39] proposed a three-tiered ap-

proach for robot learning from demonstration that can generalize noisy task demon-

strations to new target states and to environments with obstacles. They encoded

the nominal path generated from a Gaussian Mixture Model with DMPs and gen-

erated a trajectory for a new target state. Then they adapted the DMP-generated

trajectory to avoid obstacles by formulating an optimal control problem regarding

the reward function learned from demonstrations by inverse optimal control. This

approach allows a non-expert user to teach a robot the desired response to different

objects but requires offline training in the environment containing the obstacles to

43

learn the reward function. However, in real world scenarios, the human users often

have different preferences for the generated trajectories according to various environ-

ments and tasks, while it is extremely challenging for them to provide the optimal

trajectories in every situation. To account for this, in our approach, the human users

can interactively provide sub-optimal suggestions on how to improve the trajectory

and the robot learns the preference for different constraints, and incorporates it to

generate more applicable trajectories.

User preferences for a robot’s trajectories have been studied in the field of

human robot interaction (HRI). Sisbot et al. [40] proposed to model user specified

preferences as constraints on the distance of the robot from the user, the visibility

of the robot and the users arm comfort. Then a path planner fulfilling such user

preferences was provided. Ashesh Jain et al. [41] proposed a co-active learning

method to learn user preferences over generated trajectories for manipulation tasks

by iteratively taking user sub-optimal feedback, and the optimal trajectory was

selected based on the learned reward function. In our work, we adopt the co-

active learning paradigm and further propose a reward formulation to model user

preferences over constraints for movement generation. Then we integrate it with

movement adaptation through optimization based planning.

3.3 Co-active Learning for Movement Generalization

For the problem of robot learning from demonstrations [11], a common practice

is to offline learn the skills by encoding the trajectories with movement patterns

44

such as DMPs [1]. During the testing phase, they can then be used to generalize

the movement to novel situations with slight alterations, such as different initial

and target states. However, this generalization capability does not apply to novel

environments with different obstacles or to a new task contexts with a variety of

manipulated objects. In this work, we propose a complementary framework for

generalizing off-line learned movement skills to novel situations, and in addition we

incorporate on-line learning preferences of how to generalize from human’s feedback

co-actively.

While facing a novel situation, the robot is given a manipulation task context

xc that describes the environment, the objects and any other task-related informa-

tion. It could compute an imitation movement trajectory yD by generalizing offline

learned skills to new initial and target states. Such a trajectory can be executed

if the new environment does not have obstacles and there are no other constraints

inherited from the task.

To further generalize learned movement skills to more challenging situations,

the robot has to generate an adapted trajectory y based on the task contexts xc and

the computed imitation trajectory yD. Here we use a reward function f ∗(y,xc,yD)

to reflect how much reward the adapted trajectory y can achieve for different con-

texts. This way, we can adapt the movement by solving an optimal control problem

which outputs an adapted trajectory by maximizing the reward function f ∗. The

reward function consists of a Imitation Reward fD describing the tendency to fol-

low the imitation trajectory yD, a Control Reward fC describing the smoothness

of executing the adapted trajectory y and a Response Reward fE describing the

45

expected response given the environment. Although this reward function can be

recovered from demonstrations by Inverse Optimal Control, as [39] suggests, it as-

sumes that demonstrations are from experts, which bears an oracle reward function.

In fact, it is common for non-expert users to provide non-optimal trajectories in

practice. Also, [39] requires the manipulated objects or obstacles to exist during

demonstration, and is hard to update the learned reward function online when the

robot is facing situations that involve new objects. To learn the reward function

which controls how the robot adapts trajectories under new contexts, we apply a

co-active learning technique [41] in which the user only corrects the robot by pro-

viding an improved trajectory ȳ and then the robot updates the parameter w of

f(·;w) based on the user’s feedback. It is worth noting that this feedback only in-

dicates f ∗(ȳ,xc,yD) > f ∗(y,xc,yD), and ȳ may be non-optimal trajectories. With

iterations of improvement, the robot could learn a function that approximates the

oracle f ∗(·) tightly.

3.4 Our System

Overall, after the robot has offline learned the movement skill from demon-

strations, when facing a different task context xc in a novel environment, the testing

phase includes three stages: 1) Movement Imitation, which computes an imitation

trajectory yD by generalizing demonstrated movement to new initial and target

states; 2) Movement Adaptation, which generates an adapted trajectory y under

new task and environment contexts by maximizing the given reward function; 3)

46

Rewards Learning, which updates the parameters of estimated reward function ac-

cording to the user’s feedback through co-active learning. Fig. 3.1 demonstrates our

proposed framework. In the following sections, we formulate each stage.

3.4.1 Movement Imitation

At the beginning, our system offline learns movement skills in an environment

without obstacle or other constraints. In this work, we adopt the Probabilistic

Movement Primitives (ProMPs) [38] for offline learning and movement imitation.

It obtains a distribution over trajectories from multiple demonstrations, which cap-

tures the variations, and can be easily generalized to new initial and target states

while imitating the movement.

To be specific, we consider that a robot’s end-effector has d degrees of freedom

(DOF) along with its arm, with its state denoted as y(t) = [y1(t), . . . , yd(t)]
T . The

trajectory of the robot’s end effector is represented as a sequence T = {y(t)}t=0,...,T .

We model each dimension i of y(t) using linear regression with n Gaussian time-

dependent basis functions ψ and a n-dimensional weight vectors wi as

yi(t) = ψ(t)Twi + εy, (3.1)

where εy ∼ N (0, σ2
y) denotes zero-mean i.i.d. Gaussian noise. With the underlying

weight vectors w = [wT1 , . . . , w
T
d]T , the probability of observing a trajectory T can

47

be given by

p(T |w) =
∏
t

p(y(t)|w) =
∏
t

N (y(t)|Ψ(t)Tw,Σy), (3.2)

where Ψ(t) = diag(

d︷ ︸︸ ︷
ψ(t), . . . , ψ(t)) and Σy = σ2

yId×d.

3.4.1.1 Learning from Demonstrations

For each demonstration, the trajectory can be easily represented by a weight

vector w which has fewer dimensions than the number of time steps. To capture

trajectory variations from multiple demonstrations of the movement, a Gaussian

distribution p(w;θ) = N (w|µw,Σw) over the weights w is estimated. Therefore,

the distribution of the trajectory p(T |w) can be represented as

p(T ;θ) =

∫
p(T |w)p(w;θ)dw (3.3)

=
∏
t

N (y(t)|Ψ(t)Tµw,Ψ(t)TΣwΨ(t)T + Σy) (3.4)

We can then estimate the parameters θ = {µw,Σw} by using maximum likelihood

estimation as suggested in [38].

3.4.1.2 Trajectory Generation

In novel situations, the trajectory could be modulated by conditioning with

different observed states. By adding an observation vector of Y ∗ = [y∗T0 ,y∗TT]T

48

indicating the desired initial state y∗0 and target state y∗T with accuracy Σ∗y, we

apply Bayes theorem and represent conditional distribution for w as

p(w|Y ∗) = N (w|µ′w,Σ′w) ∝ N
(
Y ∗|Ψ∗Tw,Σ∗Y

)
p(w)

µ′w = µw + ΣwΨ∗
(
Σ∗Y + Ψ∗TΣwΨ∗

)−1 (
Y ∗ −Ψ∗Tµw

)
Σ′w = Σw −ΣwΨ∗

(
Σ∗Y + Ψ∗TΣwΨ∗

)−1
Ψ∗TΣw

(3.5)

where Ψ∗ = [Ψ(0),Ψ(T)] and Σ∗Y = diag(Σ∗y,Σ
∗
y) are augmented for observation

vector Y ∗.

With a conditional distribution of w, we can generate conditional trajectory

distribution and easily evaluate the mean yD and the variance ΣD of the trajectory

T for any time point t according to Eq.(3.2) and Eq.(3.3). Therefore, the mean

trajectory yD(t) can be used as the imitation trajectory in movement adaptation

and the variance ΣD(t) can be used to indicate which parts or dimensions of the

trajectory are more flexible to adapt. A larger variance reflects higher variations in

demonstrations. It means more flexibility for modifying the corresponding part of

the trajectory.

It is worth mentioning that, although we adopt ProMPs for movement imita-

tion in this work, the proposed Movement Adaptation framework can be integrated

into any other movement imitation learning technique.

49

3.4.2 Movement Adaptation

As mentioned before, if the environment of a new situation is exactly the same

as the one during demonstration when ProMPs are learned, e.g, no obstacle, safety

constraints or other new considerations, the robot can perform the movement opti-

mally by directly following the imitation trajectory yD ∈ Rd generated by learned

ProMPs in discrete time.

In this work, we want to have a system that can adapt to an environment with

novel constraints. Thus, we model the movement adaptation as an optimal control

problem with fixed time horizon T in discrete time. The output of the adaptation

system is a new trajectory y ∈ Rd in discrete time. The input consists of the task

context xc that describes the environment, the objects and any other task-related

information which are obtained from the perception module, the imitation trajectory

yD which is generated from learned ProMPs, and the reward function f(y,xc,yD)

which represents the reward of the adapted trajectory y corresponding to the new

situation.

3.4.2.1 Optimization with Constraints

Let’s consider that the perception module detects Nobj objects in the envi-

ronment, which may be obstacles during the manipulation. Each object is ab-

stracted as a sphere in the space represented by its center location and semi-diameter

{Ok, dk}, k = 1, . . . , Nobj. We assume that the reward function can be modeled as

50

accumulated sum of rewards from each state y(t) at time step t:

f(y,xc,yD) =
T∑
t=0

ft(y(t),xc,yD). (3.6)

Because we are only modulating the trajectory, we can model the adaptation system

as linear dynamics with the control signal a ∈ Rm, as it does not involve real physical

dynamics. Considering the embodiment of robotic end-effectors, we can compute the

end-effector’s position in spatial space E(y) following the kinematics modeling [42].

Then, considering obstacles avoidance in spatial space, the target optimal policy

π∗ = {a(t)∗}t=0,...,T−1 can be defined from Eq. (3.7) with constraints.

max
y(t)

T∑
t=0

ft(y(t),xc,yD) (3.7)

subj. to ∀t = 0, · · · , T − 1 (3.8)

U ≥ y(t) ≥ L (3.9)

‖E(y(t))−Ok‖2 ≥ d2k, ∀k = 1, · · · , Nobj (3.10)

y(T) = yD(T), (3.11)

where A,B,C are system matrices, Eq.(3.11) constrains the final position of the

adapted trajectory, Eq.(3.9) constrains the trajectory within feasible limits, and

Eq. 3.10 ensures the adapted trajectory can avoid obstacles safely by keeping a

minimum distance dk between the robot’s end-effector and any object.

51

3.4.2.2 Model Predictive Control

In order to find an optimal solution of such a system with continuous state

and action spaces, we adopt Model Predictive Control which computes the optimal

actions in a finite prediction horizon. Therefore, by considering a prediction time

horizon Tp, the optimal action a(i)∗, at time step i = 0, . . . , T −1, can be solved by:

max
(a(i),··· ,a(i+Tp−1))

∑i+Tp
t=i+1 ft(y(t),xc,yD)

subj. to ∀t = i, · · · , i+ Tp − 1

z(t+ 1) = Az(t) +Ba(t)

y(t) = Cz(t)

U ≥ y(t) ≥ L

‖E(y(t))−Ok‖2 ≥ d2k, ∀k = 1, · · · , Nobj

y(T) = yD(T).

(3.12)

At each step i, the optimal actions {a(i)∗, · · · ,a(i+ Tp − 1)∗} for Tp decision steps

in the future are computed but only the action for the current step a(i)∗ is per-

formed. Therefore, it can deal with changing environments as these changes could

be considered in the next decision steps.

3.4.2.3 Reward Function

In order to adapt robot movements to perform well in novel situations, consid-

ering only hard constraints such as obstacle avoidance, Eq.(3.10), does not suffice.

52

Thus, our framework further models a reward function f(y,xc,yD) that reflects the

amount of rewards that an adapted trajectory y can gain within the context xc and

yD. As the reward function f(y) is assumed temporally discrete in Eq.(3.6), we

model the reward function ft(y(t)) at t by three parts:

ft(y(t);w) = fD,t(y(t);wD) + fC,t(y(t);wC) + fE,t(y(t);wE), (3.13)

where the Imitation Reward fD models the tendency to follow the imitation trajec-

tory yD, the Control Reward fC models the smoothness of executing the adapted

trajectory y and the Response Reward fE characterizes the expected response to

the environment. Meanwhile, w = [wT
D,w

T
C ,w

T
E]T are parameters that affect the

behavior of the movement adaptation. Next we describe each reward function in

detail.

Imitation Reward: The Imitation Reward characterizes how well the adapted

trajectory can imitate the demonstrations by the distance between points on y

and yD. Recall that we have the variance ΣD(t) of the imitation trajectory yD

by Movement Imitation 3.4.1.2, which indicates how flexible we can adapt the tra-

jectory. Considering ΣD(t) = diag(σ2
1(t), . . . , σ2

d(t)) to be diagonal for the sake of

simplicity, we model the Imitation Reward by the weighted distance:

fD,t(y(t);wD) = −(y(t)− yD(t))TV (t)(y(t)− yD(t)) (3.14)

V (t) = diag(wD)diag(e−σ
2
1(t), . . . , e−σ

2
d(t)), (3.15)

53

where V (t) is a weight matrix consisting of parameters wD and {e−σ2
i (t)} in which

the variances learned from demonstrations ΣD(t) are modeled to affect adaptation

rewards.

Control Reward: The Control Reward fC characterizes the smoothness of exe-

cuting the adapted trajectory y using the following formulation:

fC,t(y(t);wC) = −wC‖(y(t)− y(t− 1))‖2, (3.16)

where wC is the parameter to weigh this reward.

Response Reward: The Response reward fE describes the expected response to

the environment, such as safety considerations for obstacles and objects under ma-

nipulation. Here we give an intuitive examples for the Response Reward. Although

we can ensure minimum distance to avoid obstacles using Eq.(3.12), as human users

we still expect the robot to transfer a cup full of water around a laptop instead of

above it, to avoid potential spills. Another example is that the user would prefer

that the robot when manipulating sharp objects, such as knives, keeps a relatively

larger distance from the human for safety consideration. As another example, for

safety consideration, we prefer the robot to transfer fragile objects while staying

close to the table top to maintain a safety margin. All the above preferences are

specific to objects under manipulation and the exact environment. Thus, we set the

Response Reward such that the better the adapted trajectory fulfills the preferences,

the higher the reward is.

54

To formally represent the Response Reward, let us consider a scenario with

Nobj obstacles on the table. The leftmost and rightmost locations of the table are

B1,B2 and the table surface is S, we then can formulate the Response Rewards as

follows:

fE,t(y(t);wE) = −

Nobj∑
k=1

wT
O,kφO,k + wBφB + wSφS

 (3.17)

φTO,k =
[
−‖E(y(t))−Ok‖, (E(yD(t))−E(y(t)))T

]
· exp

(
−‖E(y(t))−Ok‖2

dk

) (3.18)

φB =
2∑
i=1

exp

(
−‖E(y(t))−Bi‖2

dmin

)
(3.19)

φS = ‖E(y(t))− S‖2, (3.20)

where φO,k represents the feature vector for preferences in avoiding obstacle Ok, of

which the first element denotes avoiding distance and the second element denotes

the deviation vector as shown in Fig. 3.3. The preferred deviation vector is given

as reward weights and the inner product between two vectors indicates the rewards

of deviation considering the given preference. The exponential decay function is

applied so that the features are only effective when the robot’s end-effector is close

to the obstacles. φB and φS are features related to safety by considering boarders and

surface of the table. wE = [wT
O,1, . . . ,w

T
O,Nobj

, wB, wS]T are weights corresponding

to the features respectively.

Given a set of parameters w = [wT
D,w

T
C ,w

T
E]T , the MPC module generates

an adapted trajectory by maximizing f(·;w). The robot could follow the adapted

55

trajectory and execute the task facing the novel situation. However, the generated

trajectory may not be sufficiently satisfying from a user’s perspective, since the

given or initialized parameters may not be accurate for modeling the rewards. To

accommodate this issue, after the movement execution, our system allows the user

to provide a better trajectory as feedback to update the parameters during the

following Rewards Learning section.

Imitation
Trajectory

Adaptation
Trajectory

Desired
Deviation Vector

Deviation
Vector

Figure 3.3: Illustration of deviation vector feature: vector from original imitation
trajectory to an adapted one.

3.4.3 Rewards Learning

In this section, we describe how our system learns the reward function. Let

us assume there is an oracle reward function f ∗(y,xc,yD) that reflects exactly how

much reward the adapted trajectory y can gain for each context. The goal of this

module is to estimate such a reward function f(y,xc,yD;w), where w are the

parameters to be learned, that approximate the oracle reward f ∗(·) tightly.

By rewriting Eq.(3.6) and Eq.(3.13) for the entire trajectory, we can have

56

the reward function in a linear form represented by features and weights:

f(y,xc,yD;w) = wT
DφD +wT

CφC +wT
EφE (3.21)

φD = [φD,1, . . . , φD,d]
T , φD,i = −

T∑
t=0

(yi(t)− yD,i(t))2 e−σ
2
i (t) (3.22)

φC = −
T∑
t=1

‖(y(t)− y(t− 1))‖2 (3.23)

φE = −
T∑
t=0

[
φTO,1(y(t)), . . . ,φTO,Nobj(y(t)), φB(y(t)), φS(y(t))

]T
(3.24)

where φD,φC ,φE represent features of the entire trajectory corresponding to Imi-

tation, Control and Response Rewards.

Since the user only provides a feedback trajectory ȳ and the system can not di-

rectly observe the reward function, we apply the co-active learning technique [41] in

which the robot iteratively updates the parameter w of f(·;w) based on user’s feed-

back. Note that this feedback only needs to indicate f ∗(ȳ,xc,yD) > f ∗(y,xc,yD)

and ȳ could be non-optimal trajectories. Algorithm 2 gives our learning algorithm

for movement adaptation.

Note that α is a learning rate, which decays along iterations, and C in the

weights projection part is a bounded set to ensure that the updated parameters w

are in a feasible space. After iterations of improvements, the robot can learn an es-

timated reward function f(·;w∗) that approximates the oracle reward function f ∗(·)

as proven in [43]. By maximizing the estimated reward function f(y,xc,yD;w∗),

the robot can generate an adapted trajectory y that maximizes the rewards facing

situation xc based on imitation trajectory yD.

57

Algorithm 2 Rewards Learning for Movement Adaptation

Initialize w(0) = [w
(0)T
D ,w

(0)T
C ,w

(0)T
E]T

for Iteration i = 0 to Tl do
Task Context and Environment Perception: x

(i)
c

Movement Imitation:

y
(i)
D ,Σ

(i)
D ← p(T |x(i)

c)

Movement Adaptation:

π∗(i) = arg maxπf(y,x
(i)
c ,y

(i)
D ;w(i))

y(i) ← π∗(i)

Movement Execution: y(i)

if User Provides Feedback: ȳ(i) then

α(i) = 1/
√
i

w
(i+1)
D = w

(i)
D + α(i)(φD(ȳ(i),y

(i)
D)− φD(y(i),y

(i)
D))

w
(i+1)
C = w

(i)
C + α(i)(φC(ȳ(i))− φC(y(i)))

w
(i+1)
E = w

(i)
E + α(i)(φE(ȳ(i),x

(i)
c)− φE(y(i),x

(i)
c))

Weights Projection:

w̄(i+1) = [w
(i+1)T
D ,w

(i+1)T
C ,w

(i+1)T
E]T

w(i+1) = arg minw∈C‖w − w̄(i+1)‖2
else w(i+1) = w(i)

end if
end for

58

3.5 Experiments

To validate the system described above, we design and conduct the following

experiments on a Baxter humanoid platform. The Baxter robot is asked to do manip-

ulation tasks such as cleaning on a table top, with the surface as S = (0, 0,−0.1), the

leftmost location as B1 = (0, 0.8, 0) and the rightmost location as B2 = (0,−0.8, 0)

in robot spatial space described in meters. It needs to learn transferring the manipu-

lated object between different locations while avoiding obstacles in desired manners.

During an off-line learning phase, the robot learns the movement skill from

multiple kinethestic demonstrations with no obstacles on the table. During the

online learning stage, a variety of obstacles are located randomly on the table,

and we assume the robot can obtain their locations from perception modules. The

system learns iteratively to adapt the movement skill in novel situations such as with

different manners avoiding obstacles, and at the same time it follows the similar

movement pattern from off-line demonstrations.

3.5.1 Movement Imitation

In the first stage of the experiments, we have our robot learn off-line the

movement skill from demonstrations. All trajectories are sampled discretely and

normalized to T = 200 steps for transferring movement in joint space, and the left

arm of the Baxter has d = 7 degrees of freedom. The training trajectories are

encoded by ProMPs with n = 10 Gaussian basis functions so that the movement

skill can be generalized to different initial and target states.

59

(a) (b)

Figure 3.4: Movement Imitation with ProMPs for Transferring Task: (a) Imitation
trajectory predicted based on prior movement and task contexts in spatial space; (b)
Imitation trajectory for joint s0 in joint space, shaded area indicating the predicted
variance.

Fig. 3.4(a) shows an example of our generated imitation trajectory in spatial

space for new task contexts using ProMPs. Fig. 3.4(b) shows the corresponding

imitation trajectory of joint s0 in joint space. The blue crosses here are desired

new initial and target states, and the shaded area is the estimated variance for the

imitation trajectory, which reflects the variations of demonstrations. True trajectory

here means a trajectory recorded from user demonstration in the testing scenario for

comparison. It is not hard to see that the predicted mean of the imitation trajectory

well generalizes to new initial and target states and follows the same movement

pattern as the prior mean trajectory learned from demonstrations. Therefore, the

robot can perform the task well by following this imitation trajectory if there are

no obstacles or other safety constraints.

60

(a) (b)

(c)

Figure 3.5: Learning to Adapt Movement for Transferring a Leaking Bottle: (a)
Movement Imitation failed to avoid the obstacle; (b) Movement adaptation with
initial weights successfully avoided the obstacle by a path above it but has a potential
danger of spilling water, feedback trajectory is provided afterwards; (c) Movement
adaptation for a different situation with new task contexts and obstacle locations,
with updated weights after learning from feedback trajectory, successfully avoids the
obstacle through a path around. Corresponding execution on the Baxter platform
is given by Fig. 3.2.

61

3.5.2 Learning Adaptation

We consider the situation, where the robot, while facing the task of transferring

a leaking bottle, finds a bowl filled with food as obstacle on the table. We assume

that the bowl’s center location O1 and minimum safety distance d1 are obtained

through perception.

For movement adaptation, we set the prediction horizon Tp = 11 in the model

predictive control and select system matrices A = 0.9 · I,B = C = I to make

the system stable in the prediction window as suggested in [39]. The limits of

joints could be found from the Baxter hardware specification. The minimum safety

distance to the table boarder is set as dmin = 0.1. And the weights for reward

function are initialized to wD = 30 · 1,wC = 10,wE = 0. We apply the native

Matlab Gradient-based optimization method fmincon to solve the optimization at

each time step.

Fig. 3.5(a) shows the output from movement imitation for transferring the

leaking bottle, which failed to avoid the obstacle even though the trajectory gener-

alizes to a novel initial and target states. Fig. 3.5(b) shows the movement adaptation

with initial weights. There is no preference specified in the reward function about

how to avoid obstacles or take safety considerations about boarders. Therefore, even

though the adapted trajectory could avoid the obstacle successfully, it may be not

an ideal trajectory.

To learn the user preference, we then provide feedback via kinethestic demon-

stration illustrated in Fig. 3.6(a) and the feedback trajectory is shown in Fig. 3.5(b)

62

(a)

(b)

Figure 3.6: Rewards Learning from User Feedback for Transferring Leaking Bottle:
(a) User feedback via kinethestic demonstration; (b) Learning curve for adaptation
under the same feedback.

as dashed line to indicate user preferences. Following Algo. 2, the robot iteratively

updates the rewards weights based on the user feedback. Weights are limited via

projection in the feasible set C where wD ∈ [1, 100]7,wC ∈ [1, 100],wE ∈ [0, 100]

except that the last two parameters in wO,k indicating preferred deviation direction

could be [−100, 100]. To quantitatively validate the performance of our method

in movement adaptation, we consider the metric of cumulative error between the

adapted trajectory and the feedback trajectory e(i) = 1
T

∑T
t=0

(
ȳ(i)(t)− y(i)(t)

)2
as

63

the learning error at iteration i. Since the metric is affected by different situations

such as obstacles’ locations, we consider the feedback trajectory as fixed and let

the robot iteratively learn several times to see how it performs, and we record the

“learning curve” under the same feedback. From Fig. 3.6(b), we can see that the

error decreases and converges after several iterations, and it only requires a few

iterations to achieve an adapted trajectory as desired preference according to the

feedback.

After learning, the robot uses the updated weights for movement adaptation

in a different situation with novel initial/target states and obstacles’ locations.

Fig. 3.5(c) shows the adapted trajectory based on the updated weights after one

iteration, where it successfully avoids the obstacle via the desired direction.

In a second scenario where a robot is transferring a knife around some fragile

obstacle, the user may prefer the robot to avoid the obstacle above it instead of

around it. With the same methods here, we could also generate adapted trajectories

as shown in Fig. 3.7(a) and Fig. 3.7(c) for initial weights. With the user provided

feedback trajectory, the robot successfully learns the user specified preferences for

movement adaptation and generates the improved adapted trajectories for different

situations as shown in Fig. 3.7(b) and Fig. 3.7(d).

3.6 Summary

We presented a framework for learning to adapt robot end effector movement

for manipulation tasks. The proposed method generalizes offline learned movement

64

(a) (b)

(c) (d)

Figure 3.7: Baxter Learning to Adapt Movement for Transferring Knife: (a) (c)
Movement adaptation with initial weights using a path around the duck doll succes-
fully avoided it but risked scratches; afterwards feedback trajectory is provided for
adaptation preferences; (b) (d) Movement adaptation for different situations, with
updated weights after learning from feedback trajectory, successfully avoided the
duck doll using a path above it as desired.

skills to novel situations considering obstacle avoidance and other task-dependent

constraints. It adapts the imitation trajectory generated from demonstrations, while

maintaining the learned movement pattern and considering variations in the geome-

try. Here we considered as variations, avoiding obstacles with movements in desired

directions, and keeping certain distances for a safety margin within a workspace.

65

The methods also provides a way to learn how to adapt the movement in on-line

interactions with user’s feedback.

Another interesting way to incorporate environmental constraints would be

to consider visual information of objects and the environment as an indication of

the preferences for movement adaptation. For instance, the deviation direction for

avoiding a knife could be directly inferred from the location and orientation of its

blade from visual input. A possible extension is to further investigate the possibility

of directly learning the preferences to adapt movement from visual perception for

the task context.

66

Chapter 4: Dynamic Motion Planning for Sequential Tasks with Sub-

goals Learning

In the first two problems, we studied how to learn the movement of endeffectors

from human demonstrations and how to learn online adaptation to new environmen-

tal constraints according to user’s preference. However, in order to adapt robots to

various complex manipulation tasks, which is a sequence composed of pre-learnt

primitive actions and their subgoals, we need to investigate a planning and learning

framework that allows the robot to select good subgoals for sequences of primitive

actions, and then plan and execute the task. At the same time, the robot should be

able to refine its actions by planning/execution and re-planning/re-execution during

practice.

4.1 Motivation

In robotics, learning complex tasks is very challenging due to the inherent

high-dimensional continuous state and action spaces. A promising idea to tacle

this challenge is to use elemental behaviours as action primitives to compose more

complex behaivour. Many robot tasks can be decomposed into elemental movements

in temporal domain according to their common structure while each primitive could

67

be specific to the task. For example, opening a door and opening a bottle both can

be decomposed into reaching and turning movements, while opening a microwave

needs a pulling movement after reaching. Therefore, we could naturally consider a

sequential task as a sequence of action primitives and their subgoals. Each action

primitive has its own subgoal parameters for successful execution of the whole task

such as where to reach and how much angle to pull open. Different task specifications

give the robot different sequences of action primitives. To let the robot execute

those versatile action sequences in the new environment, which differs from the one

in the demonstration phase, we could have a planning algorithm generate motion

trajectories for each primitive action that considers the task model, i.e, the action

sequence to plan, the environment constraints, i.e, geometry of obstacles and objects

from perception, and the embodiment constraints, i.e, kinematics of the robotic

arms. At the same time, due to the changing nature of the environment, such

as different locations and even different geometry of target objects, the subgoals

of the action primitives need to be changed to satisfy the different constraints.

Therefore, we propose a dynamic motion planning framework for such sequential

tasks, which learns subgoals distribution of action primitives through re-planning

and re-execution and adapts learned subgoals in the motion planning.

Take the opening task as a case study here. A daily robot needs to open the

door handles, microwaves, bottles, drawers, boxes and all the different objects in

order to achieve the manipulation task. On one hand, this problem requires robots

to be adaptive enough to generate motion sequences for different task logic models

due to different objects, such as turning opening for bottle caps and pull open-

68

ing for microwaves. On the other hand, among the sequential task specifications,

there is a sequence of action primitives with different subgoals, which needs to be

adapted during the execution. Therefore, the robot needs to refine autonomously

the sequence of action primitives to achieve the task goal.

In this work we propose an approach of dynamical motion planning for se-

quential manipulation tasks with subgoals learning. Fig. 4.1 gives an overview of

our framework. The main contributions of this work are: 1) A system to generate a

robot’s movements according to sequential task specifcations with adapted subgoals

for each primitive action in the task, fulfilling perception constraints in a new envi-

ronment and constraints from the embodiment of the robot itself; 2) An approach

for robot learning to improve the sugoals of each primitive action by updating the

parameters of its distribution through re-planning and re-execution trials; 3) An

implementation of the planning schema for the task of “openning a microwave”

involving a sequence of primitive actions and subgoals. We validate the implemen-

tation on a humanoid platform (Baxter), and the experimental results support our

claims.

4.2 Related Work

There are several studies on robot learning of complex behaviours. Ben-

tivenga [44] proposed a framework to decompose complex behaviour into primi-

tives and learn them from observations. To deal with the variety of situations and

environments that robots may face, one approach is that we could provide users

69

Figure 4.1: Overview of dynamical motion planning framework for sequential tasks
with subgoals learning. Opening microwave is an example task shown here.

with simple methods for programming robots that do not require the skill of an

expert. For this reason, learning from demonstration (LfD) has become a popular

alternative to traditional robot programming methods, aiming to provide a natural

mechanism for quickly teaching robots. There are lots of approaches that apply

LfD at the symbolic level for task learning. One common way is to segment and

encode the task according to sequences of predefined actions, described as symbols,

then regenerate the sequences of these actions through planning techniques. [45]

is one of the first papers to learn task-execution plans from demonstrations. The

robot learns a hierarchical task plan for an object manipulation task by observing

the movements of the teacher’s hand through visual sensor, where the objects and

primitive actions are already known to the robots.

70

Nicolescu et al. [46] presented a graph-based representation of a task, where

each node of the graph represents a different action primitive described in terms of

preconditions and postconditions. The robot is capable of generalizing from multiple

demonstrations by task segmentation and supervised execution phases. Ekvall et

al. [47] proposed a task-level planning approach to learn an abstract task goal from

demonstrations and use a symbolic planner in run time to choose best action policy

according to environment state. They learn spatio-temporal constraints on object

manipulations and relations between objects to generailize states and therefore task

goal. In [48] robot learns spatial relations among objects as concepts in conceptual

spaces and then learns high level task goal described in first order predicate logic,

which is used in symbolic planner to reproduce the goal.

Akihiko et al. [49] explored the pouring skills by modeling robot behaivour

as primitive action selection and behavioral parameters selection through planning

and learning methods where the entire pouring process is modelled as hierarchical

finite state machine where the primitve actions are manually defined. Robot is able

to learn how to select appropriate primitive actions and parameters as well to adapt

to variations of pouring task from practice feedback.

Reinforcement learning techniques have been applied to a range of robotic

problems in both high-level control [50] and low-level motor control [51]. Broadly,

reinforcement learning can be categorized as model-free methods, which directly

learn a control policy from data measurements interacting with environment [52],

and model-based methods [53], which optimizes the policy under some model of the

system dynamics, where the model could be given or learned. Model-based methods

71

can be substaintially more sample efficient and typically achieve the fastest learning

times, but they require a model representation that can be used to learn an accurate

estimate of the true dynamics, which closely depends on given task. da Silva et

al. [54] learned a mapping from task parameters to skill parameters through low-

dimensional subspace extraction and used that for parameters initialization followed

by policy improvement. It considerably improves the generalization of the skills but

leads to sample-inefficient policy updates since they work almost independently

except initialization of policy search. To relax this limitation, Neumann et al. [55]

integrated skill generalization and improvement in reinforcement learning algorithm

by proposed contextual policy search methods that learns a policy choosing the

control parameters in accordance the context vector.

For learning motion primitive goals, [56] proposed an approach to optimize

the goal parameters of a dynamic movement primitive(DMP) through reinforcement

learning, by iteratively approximating a continuous value function in state space.

The robot learns to pour liquid into a container in a 2-D parameter space, as only

allowing two of the six degrees of freedom (DOFs) at the end-effector pose. [57]

further determined the moving goal of a movement such that a prespecified velocity

vector is achieved when coming into contact with a table tennis ball. [58] extends the

policy improvement with path integrals algorithm to simultaneously optimize shape

and goal parameters. It also applies the algorithm to learn subgoals of sequence

of primitive actions, where each primitive action is represented as DMP. In our

work, we propose to learn subgoal distributions for sequence of primitive actions for

motion planning.

72

On the other hand, sampling-based methods have been highly successful for

computing feasible (and optimal) motion plans for a wide variety of robots, in-

cluding manipulators with many degrees of freedom. Most of motion planners are

aiming to minimize metrics such as Euclidean distance in the workspace or config-

uration space, but more and more methods have investigated incorporating more

general task-based cost functions. [59] extended rapidly exploring random trees

(RRTs) [60], a common used sampling-based method for computing feasible and

obstacle-avoiding trajectories. The extended RRT algorithm samples only inside a

user-specified number of standard deviations of a mean demonstrated trajectory. [61]

proposed asymptotically optimal motion planning algorithms such as probabilis-

tic roadmaps star(PRM*) that guarantee asymptotic optimality. [62] integrated a

learned hidden Markov Model(HMM) representing a task with a sampling-based

motion planner, PRM*, to achieve optimal motion plans for the given task model.

During task execution, their motion planner quickly searches in the Cartesian prod-

uct of the task model and a probabilistic roadmap for a plan with features most

similar to the demonstrations given the locations of the task-relevant objects. Our

work is to connect a sequence of probabilistic roadmaps, each one corresponds to

a primitive action, by using learned distribution of subgoals and therefore bias the

planner to select subgoals with higher successful rate of executing given task.

73

4.3 Formulation

A sequential task specification can be naturally decomposed into distinct

phases and subgoals. Within the action primitive paradigm, each phase corresponds

to an action primitive, and the subgoals correspond to the goal parameters of the

primitives. Therefore, we represent the task as sequentially organized action prim-

itives, {p1, · · · , pN}, each primitive pi has subgoal parameter gi. As the following

primitive depends on the subgoal of the preceding one, the goal parameters have

to be adapted carefully to the states of robots and environments so that the whole

sequence could be planned and executed successfully. We consider that the states

of robot is q ∈ C, where C ⊆ Rd is the d-dimensional feasible configuration space of

the robot. The robot also has a perception module to sense environment states se,

which consists of L task-relevant objects. Therefore, we represent the system state

by combining the robot states and the environment states s = [q, se]. In order to

successfully generate complete motion for this sequential task, our framework has

three steps: 1) Subgoals Reinforcement Learning, in which we learn the subgoal

parameters g = {gi} for given initial system states s by iterative improvements,

thereby for a set of different initial states {sj}, we could learn a corresponding set

of goal parameters {gj}; 2) Subgoals Supervised Learning, in which we learn the

subgoal policy g(s) using training samples generated from reinforcement learning

results for different initial states. Therefore, we could generailize the subgoal policy

to different situations. 3) Sequential Motion Planning, in which we use the learned

subgoal policy to construct a spatiotemporal graph, where each primitive action is

74

a subgraph, to find a shortest path (minimized costs) for the whole sequential task.

The block diagram of the system is presented in the Fig. 4.2.

Task Specification

Subgoals

Subgoals
Generation

Spatio-temporal Graph

Sequential Motion
Planning

Graph Replanning

World
Model

Environment
Constraints

Embodiment
Constraints Trajectories

Robot
Execution

Perception Subgoals Learning

Parameters

Update

Failure/Success

Figure 4.2: Block diagram of dynamic motion planning for sequential task with
subgoals learning

4.3.1 Primitive Motion Planning

For each action primitive, we generate the trajectory through general motion

planning framework. Each primitive motion planning problem is defined as a tuple

< C,E, h, F, e0, et >, where:

• C is the space of possible configurations of a robot (the joint space for robotic

manipulator),

• E is the space of possible poses (Cartesian coordinates and orientation) of the

75

robot’s gripper,

• h : C → {0, 1} is a bollean function that determines whether or not a config-

uration of the robot is in collision based on geometric shape of environment

which is introduced by perception,

• e0, et are the initial and target poses of the robot’s gripper in its workspace E,

• F : C → E is forward kinematic defined by the geometry shape of the robotic

arm and maps from a joint configuration to a pose of the robot end-effector.

Solving motion planning in mathematical form is to find a feasible path in C

space defined by γ : [0, T]→ C which satisfies following constraints:

γ0 = F−1(e0) (4.1)

γT = F−1(et) (4.2)

||γi − γi−1|| ≤ δ, ∀i ∈ [1, T] (4.3)

γi ∈ C, ∀i ∈ [0, T] (4.4)

h(γi) = 0,∀i ∈ [0, T] (4.5)

As a further step, the optimal motion planner could not only find a feasible

path but also the optimal on (minimized costs). Many motion planning approaches

could be used to solve this problem, such as probablistic roadmap star (PRM*) [61].

A roadmap is a graph in which vertices represent the states of the robot and edges

76

represent feasible local plans between these states. In the simplest case these lo-

cal plans are just straight line trajectories in configuration space. It constructs a

roadmap as undirected graph and finds the shortest path as follows:

1. Randomly draw N configurations q0, · · · , qN from configuration space C with-

out collision with obstacles via rejection sampling.

2. Edges are constructed between all configurations qi and qj for which ||qi −

qj||d < ε if a feasible local plan can be found. Each edge has cost for trajectory

between two vertices as user defined cost function.

3. Find the shortest path between initial and target states using Dijkstras algo-

rithm.

However, for task with sequential action primitives, as different action prim-

itives may have different constraints and subgoals, this motion planning algorithm

is not sufficient as they could not be constructed into a single graph. Therefore,

we propose to connect the primitive graphs, where each of them is a probabilistic

roadmap for a single primitive action, by considering the distributions of subgoals

for successful execution of the task. We will firstly present our approach for learning

subgoals distribution of the given task.

4.3.2 Subgoals Reinforcement Learning

For a given task model, which is a fixed sequence of action primitives {p1, · · · , pN},

and given initial system states s, we assume the subgoals distribution for successful

77

exectuion of the task is a Gaussian distribution with mean parameters to be learned

and known independent standard covariance. We firstly initialize mean parameters

for subgoals g = {gi} for corresponding primitive actions {pi}, then we could se-

quentially generate motion segment trajectories {Ti} for the action primitives using

primitive motion planning and then concatenate segments as full motion trajectory

T = {Ti} for the sequential task.

The aim of reinforcement learning here is to tune the mean parameters for

subgoals g, i.e goal parameters for each primitive in action sequence, such that

they minimize a cost function regarding to the generated trajectory T from motion

planning. In this work, we consider the generic trajectory cost function for each

segment of trajectory Ti as following:

J(Ti) = φTi +
∑Ti−1

t=0 rt (4.6)

φTi = wT · (1− success) (4.7)

rt =


wc · ‖yt+1 − yt‖2 if success

0 if not success

(4.8)

where J is the finite horzion cost over the trajectory Ti, which is discretized to Ti

steps as {y0, · · · , yTi}. This cost consists of a terminal cost φTi , which is a binary

term penalizing the failure cases for the task, and an immediate cost rt, which

prefers a shorter path over long one if the task is successfully executed. wT and wc

are hyper weight parameters for adjusting terminal cost and immediate cost.

However, since the subgoal parameter gi is also determining the start state of

78

next action primitive pi+1 in the sequence, and may thus have influence on the cost

of planning and executing the subsequent primitives. Therefore, we optimize goal

parameters gi with respect to the cost of the current action primitive, as well as the

costs of the rest of the action primitves in the sequence.

We formalize this by denoting a sequence trajectory Γi = [Ti, · · · , TN] which is

the trajectories starting from action primitive pi till the end of the task pN , and we

can compute the sequential costs for it, i.e, the total cost of the current trajectory

and all subsequent trajectories in the sequence.

J(Γi) =
N∑
d=i

J(Td) (4.9)

Exploration of this reinforcement learning is done by planning and executing

the sequential trajectory K times, each time with slightly different subgoal parame-

ters {g}k sampled from its distribution N (µg,Σg). Each different parameters may

generate (or fail to plan/execute) different trajectories {T }k, which lead to differ-

ent costs. We refer to the planning and execution of such an action sequence as a

“episode”, and the set of K exploration trials as an “iteration”. Given the costs

and sampled subgoal parameters of the K trials of episodes, policy improvement

methods then update the mean parameter vector µg such that it is expected to

generate movements that lead to lower costs.

In each iteration, the set of exploration parameters {g}k=1,··· ,K is sampled at

the beginning of the iteration. Then we can use the sequential cost of the trajectory

J({Γi}k) to compute corresponding probabilty P ({Γi}k). The motivation behind

79

this is that as the effect of g remains constant during execution, there is no temporal

dependence of g on the cost. Thus, probability-weighted averaging could be used

to update the mean parameter µgi for each primitive in the action sequence as

following:

P ({Γi}k) =
e−

1
λ
J({Γi}k)∑K

l=1[e
− 1
λ
J({Γi}l)]

(4.10)

µgi =
∑K

k=1[P ({Γi}k) · {gi}k] (4.11)

4.3.3 Subgoals Supervised Learning

After improvements of iterations in subgoals reinforcement learning, we could

get the goal parameters gj tuned for given initial system state sj. In order to

generalize such subgoals for different situations, we use supervised learning technique

as an outer loop learning method here.

Given a set of different initial system states {sj}, for each sample situaion

sj, we could use above reinforcement learning techinque to tune the subgoal mean

parameters µjg. Then we could get a set of expected means for subgoals {µjg} as

labels corresponding to different initial states. Thus, we assume the linear model

regarding to feature vector φ(s) with weight vector w as following:

µg = w · φ(s) (4.12)

The feature vector φ(s) is task-dependent according to sequence of primitive

actions. For example, in “pick-place” task, we have action sequence {reaching,

80

grasping, transporting, placing, withdrawing}, corresponding subgoal parameters

are reaching distance offset to the object, grasping angle respect to the obejct,

transporting location offset to the target area, placing angle and the withdrawing

distance offset. And the features are relative distance and direction from object to

robotic hand, relative location of target area to the object. The cost function we

are using for training is the residual sum of squares between the observed responses

and the predicted approximations.

In overall, the algorithm for our subgoals learning is as following:

Algorithm 3 Subgoals Learning for Sequential Manipulation Task

for Training situations: j = 0 to M do
Initialize system state sj

Initialize subgoal parameters mean µ
(0)
g and covariance Σg

for Iteration: l = 0 to L do

Randomly sample K subgoal vectors {g}(l)k from distribution N (µ
(l)
g ,Σg)

for Episode: k = 1 to K do

Generate trajectory {T }(l)k through primitive motion planning

Collect sequential costs J({Γi}(l)k) for each primitive i = 0, · · · , N :

J({Γi}(l)k) =
∑N

d=i J({Td}(l)k)

end for

Compute probability weight for each sample trajectory:

P ({Γi}(l)k) =
e−

1
λ
J({Γi}

(l)
k)∑K

p=1[e
− 1
λ
J({Γi}

(l)
p)]

Update subgoal parameters mean for each primitive action in the sequence:

µ
(l+1)
gi =

∑K
k=1[P ({Γi}(l)k) · {gi}(l)k]

end for

Collect tuned subgoal mean vectors µjg
end for
Compute weights w with samples {sj,µjg}

With iterations of learning, we could learn subgoals distributionN (µg(s),Σg)

which can guide the subgoals decision to highly likely successful regions.

81

4.3.4 Sequential Motion Planning

For sequential motion planning, our method first builds a spatiotemporal

roadmap, following the idea from [62], in which the edge costs between subsequent

primitive actions are set based on the learned subgoal distribution. During task

execution, we efficiently update the roadmap edge costs and perform searches on

the roadmap to plan and replan the sequential trajectory for changing environment.

Recall that in primitive motion planning, for each action primitive, we con-

struct a spatial roadmap. In order to accommodate dependence on the time step

in the sequential task, we have a temporal roadmap, where primitive actions in the

task correspond to vertices in the graph, and edges represents the transitions in the

action sequence.

Therefore, we construct a spatiotemporal roadmap, a directed graph that com-

bines the information in the spatial and temporal roadmaps. The vertices of the

spatiotemporal roadmaps are each defined by a pair composed of a vertex from the

spatial roadmap and a vertex from the temporal roadmap. The set of edges are given

by the vertex-wise union of edges in the spatial and temporal roadmaps Fig. 4.3.

For each subgraph of primitive action, edges in the roadmap are assigned

costs based on the lengths of the local plans they represent as defined in trajectory

cost function. Among the transitions of primitive actions, we are aiming to find

transitions of subgoals which are most likely to successfully perform the task, so

we choose edge costs based on learned subgoals distribution N (µg(s),Σg), which

can guide the graph seach to paths with subgoals that have higher probability to

82

Configuration
Space Graph

Primitive Temporal
Sequence

Figure 4.3: Spatiotemporal roadmap constructed from the configuration space graph
and the primitve sequence of the task.

succeed in the sequential task. Specifically we define a notion of cost which, when

minimized, maximizes probability of successfully executing the sequential task as

learned in the subgoals distribution.

By the construction of spatiotemporal roadmap, each edge are between two

primitives pi and pi+1 with same configuration q. The configuration q is the target

state of primitive pi and start state of primitive pi+1, thus could be determined

according to the subgoal parameter gi. Our edge cost is defined based on the negative

log probability of subgoal for transition from primitive pi to primitive pi+1, which is

as following:

−log(P (q|pi, pi+1)) = −log(P (gi|pi, pi+1)) (4.13)

P (gi|pi, pi+1) ∼N (µgi(s),Σgi) (4.14)

Then, we could use graph search algorithm to find shortest path that minimizes

83

the sum of the edge costs, which means to minimize spatial paths and to maximize

the joint probability of successful transitions using sampled subgoals in the task.

During execution, we update the roadmap using the latest sensed information

and query roadmap in a closed-loop manner. In each replanning cycle, the spa-

tial roadmap is firstly expanded to add more waypoints in order to be sufficient

to produce high quality plan, particularly when the environment changes dramati-

cally. Then, roadmap edge costs are re-evaluted using latest system states and thus

updated probability distributions of subgoal parameters.

The overall algorithm is as following:

Algorithm 4 Planning and Replanning for Sequential Task

With learned weight parameters w for subgoal mean parameters
while task is not finished do

Collect task relevant objects and environment states s with Perception

Generate subgoals mean value: µg ← w · φ(s)

Compute subgoals distribution P (g|s) ∼N (µg,Σg)

Construct and update spatiotemporal graph for sequential task with edge costs

Find shortest path T starting from current state in the spatiotemporal graph

Execute the trajectory until next perception updating cycle
end while

4.4 Experiments

To validate the system described above, we design and conduct the following

experiments on a Baxter humanoid platform. The Baxter robot is asked to do

manipulation tasks such as openning microwave on a table top, with different initial

state such as the microwave initial location and orientation. Given task specification

of openning the microwave in steps of primitive actions {reaching grasping, pulling

84

openning, inserting openning}, the robot needs to learn subgoals distribution of

each primitive action for different initial states and therefore to successfully plan

and execute the sequential task in new situations.

4.4.1 Subgoals Learning

During the learning phase, the robot learns the subgoals distribution for the

given sequential task. Assuming the microwave is on a flat tabletop, we set the

initial location of the microwave is changing at [(0.7, 0.1,−0.1) − (0.9, 0.3, 0.1)] in

robot spatial space described in meters, and its rotation angles along z−axis (Yaw)

is varying from [−0.5, 0.5] in rads facing to the robot. We set the grid step as 5cm

for each axis and 0.25 rads for Yaw angle. Therefore, we have 625 different initial

states for training.

For given sequential task specification, we have subgoals for primitive actions

{p1, p2, p3} as following. p1 is primitive action for reaching and grasping the handle

of the microwave, and the subgoal for this action is defined as g1, the z-axis offset

relative to the center location of the handle. This subgoal indicates where to grasp

for the handle and affects if the task could be successfully planed and executed

due to different initial locations of the microwave. We could imagine that the robot

should be grasping the upper part of the handle if the microwave is in a lower height

position for higher successful rate. p2 is primitive action of pulling openning with

subgoal defined as g2, the angles between the desired opened door and microwave

frame to indicate how much to partially open the door. p3 is the action of inserting

85

gripper between partially opened microwave door and its frame, then pushing the

door to fully opened. Its subgoal parameter is defined as g3, which is the pitch angle

of gripper for inserting and pushing the door.

Firstly, for each different initial state of the microwave, we initialize the mean

values of subgoals as (p1 = −0.1, p2 = 0.8, p3 = 0) and use reinforcement learning

to update the mean values iteratively. During each iteration, we used K = 10

samples for generating trajectories and collecting sequential costs corresponding to

different sampled subgoal parameters. Then we compute probability weight for

each sample and update subgoal parameters. Fig. 4.4 presents the subgoals for

each primitive action during learning iterations. The color of markers indicates the

costs of sequential costs. Decreasing costs are shown in color changing from red to

green. Fig. 4.4.1 shows the learning result that the sequential cost of the trajectories

decreases along with updating iterations under different weight parameters λ in

calculating the probability weight. Here we found that with λ = 1 the algorithm

can get a reasonable convergence rate in our scenario during learning iterations.

Secondly, we collect the learned subgoal parameters for each scenario and we

split the data into training and testing sets by ratio of 4:1. Then we use standard

linear regression to find parameters w by minimizing the residual sum of squares

between the observed responses in the training dataset, and the responses predicted

by the linear approximation. The features we are using in this task are locations

and orientations of the microwave handle in the coordinate system relative to the

robot torso.

86

(a)

(b)

(c)

Figure 4.4: Subgoals in Learning Iterations for Opening Microwave: (a) Subgoals for
primitive action reaching grasping, which indicates location offset to grasp handle;
(b) Subgoals for primitive action pulling openning, which indicates pulling angle for
openning door; (3) Subgoals for primitive action inserting openning, which indicates
rotation angle for inserting gripper. Colors of markers are changing from red to green
indicating the decrease of trajectory cost.

87

0 2 4 6 8 10
Learning iterations

10

15

20

25

30

35

40

45

T
ra

je
c
to

ry
 c

o
s
ts

λ = 1
λ = 10
λ = 100

Figure 4.5: Subgoals Learning Curve for Opening Microwave with Different Weight
Parameters λ.

4.4.2 Sequential Motion Planning

During the testing phase, the robot is facing to a different initial state where

the microwave is located in random place with random orientation. It needs to rea-

son correct subgoals according to the newly perceived environment and successfully

plan and execute the sequential task.

According to the learned distribution of subgoals, we sampled 10 subgoal states

for each primitive action and construct the spatiotemporal graph where different

temporal components are corresponding to sequential primitives in the task speci-

fication. The temporal components are connected through the subgoal states with

weights of log probability of its distribution. The higher weight indicates lower

successful rate for planning and executing the task. Fig. 4.6 shows the planned

trajectories for each primitive action. Fig. 4.7 visualizes the results in RVIZ during

88

(a) (b)

(c)

Figure 4.6: Sequential Motion Planning Results for Openning Microwave: (a)
Planned trajectory for primitive action reaching grasping; (b) Planned trajectory
for primitive action pulling openning; (c) Planned trajectory for primitive action
inserting openning.

89

(a)

(b)

(c)

Figure 4.7: Planning Results in Simulation for Openning Microwave: (a) Planned
trajectory for primitive action reaching grasping; (b) Planned trajectory for prim-
itive action pulling openning; (c) Planned trajectory for primitive action inserting
openning.

90

(a)

(b)

(c)

(d)

Figure 4.8: Baxter Execution for Openning Microwave: (a) Execution results after
reaching grasping; (b) Execution results after pulling openning; (c) Execution results
after inserting gripper. (d) Execution results after fully openning door.

91

simulation environment. The real execution of Baxter for the openning microwave

task is shown in Fig. 4.8.

4.5 Summary

We presented a framework for dynamical motion planning of sequential ma-

nipulation tasks with learning subgoals for primitive actions. The proposed method

generates robots’ movements according to sequential task specifications by consid-

ering the learned subgoal distributions for each primitive action in the task, while

fulfilling perception constraints in a new environment and embodiment constraints

of robot itself. It gives us better successful rate in the task planning and execution

as the planning algorithm could adapt subgoals according to learned experiences.

The robot is learning subgoals of each primitive action by iteratively improving

the parameters of its distribution trhough re-planning and re-execution trials. We

illustrated the framework using the Baxter platform for the task of “openning a

microwave” involving a sequence of primitive actions and subgoals.

As potential extension work, one could consider better generalizations of sub-

goals learning with complex features and methods to handle more complex tasks that

require integration of task and motion planning such as different type of microwaves

that needs to be opened in different sequence of actions. It is also interesting to

investigate methods to make replanning faster, including using demonstrated tra-

jectories or pre-plans to boost sampling in spatiotemporal graph construction and

path search.

92

Chapter 5: Conclusions

In this dissertation, we proposed three research problems to explore the learn-

ing methods of robots in the setting of manipulation tasks. Most of daily tasks that

the robots need to perform are manipulation tasks. In order to have robots perform

those tasks, they will need to be capable of adapting to new scenarios as they may

be facing to different objects and tasks. Hence, it is impractical to preprogram all

the skills into these robots. Instead, such robots should have the capability to learn

the skills for manipulating objects autonomously.

To begin with, we firstly enable robots the capability to learn basic skills so

that it can perform the task in new situations. However, even simple tasks, like

cutting a cucumber, may be realized in thousands of different ways. An intuitive

solution is to decompose the task into smaller primitive actions so that the robot can

learn the skills from observing a human. Therefore, in the first problem, we firstly

study hand movement learning from human demonstrations. For practical purposes,

we propose a system for learning hand actions from markerless demonstrations,

which are captured using the Kinect sensor. The proposed algorithm autonomously

segments an example trajectory into multiple action units, each described by a move-

ment primitive, and constructs a task-specific model. Using proposed method, we

93

learn a generative model of a human’s hand task such as cutting from observations.

Similar movements for different scenarios can be generated, and performed on Bax-

ter Robots. The proposed method provides a potentially fully automatic way to

learn hand movements for humanoid robots from demonstrations, and it does not

require special hand motion capturing devices. With that, the robots could learn

and transfer the demonstrations to a library of skills and therefore generate similar

movements for different scenarios to perform the task.

Then we tackle the problem for robot generating motions adapting to new sce-

narios. When the robot is asked to perform a task in a new environment, it could

select appropriate skills from the pre-learnt library given the task model. However,

traditional motion generation methods do not consider versatile constraints from

different users, tasks, and environments. For example, the robot may face to an

environment where there are obstacles newly perceived while standard movement

imitation learning only mimicks the motion and may collide with the obstacles. We

propose a co-active learning framework for learning to adapt the movement of robot

end-effectors. Our system could generalize robots’ movements learned from demon-

strations to fulfill constraints perceived in a new environment. By using model

predictive control, we generalize the imitation trajectories to new environment with

different constraints such as obstacle avoidance and safety margin. Meanwhile, it is

able to adapt trajectories according to user preferences. We present an approach for

robot learning preferences to adapt trajectories by updating reward weights based

on users’ feedback. The user thus can co-actively train the robot in-the-loop by

demonstrating desired trajectories. We also implement the optimization schema for

94

the skill of “transferring objects” which considers obstacles and different user prefer-

ences for the movements. The implementation is validated on a humanoid platform

(Baxter). The proposed method generalizes offline learned movement skills to novel

situations considering obstacle avoidance and other task-dependent constraints, and

it also provides a way to learn how to adapt the movement in on-line interactions

with user’s feedback. A possible extension is to further investigate the possibility

of directly learning the preferences to adapt movement from visual perception for

the task context. For instance, the deviation direction for avoiding a knife could be

directly inferred from the location and orientation of its blade from visual input.

With the proposed framework, the robots could learn and adapt the pre-learnt skill

to new environments where different constraints are perceived.

In order to further adapt robots to perform more complex manipulation tasks,

we at last present a system to generate robots’ movements according to task specif-

cations by sequential motion planning and subgoals learning. A sequential task

is naturally considered as a sequence of pre-learned action primitives, each action

primitive has its own goal parameters corresponding to the subgoal. The proposed

system learns the subgoals distribution of given task model using reinforcement

learning by iteratively updating the parameters in the trials. The learned subgoals

distribution is used to connect primitive actions, where each of them is represented

as a subgraph for connectivity of robot states, therefore to construct spatiotempo-

ral graph for sequential motion planning. As a result, by considering the learned

subgoals distribution in sequential motion planning, the proposed framework could

adaptively select better subgoals that lead higher probability for robot to execute

95

the task successfully. We implement the planning schema for the task of “openning a

microwave” involving a sequence of primitive actions and subgoals. And we validate

the implementation on a humanoid platform (Baxter) to support our claims. The

proposed approach allows the robot to learn and improve sugoals of each primitive

action through re-planning and re-execution trials during the practice.

96

Bibliography

[1] Ren Mao, Yezhou Yang, Cornelia Fermüller, Yiannis Aloimonos, and John S
Baras. Learning hand movements from markerless demonstrations for humanoid
tasks. In 2014 IEEE-RAS International Conference on Humanoid Robots, pages
938–943. IEEE, 2014.

[2] Ren Mao, John S Baras, Yezhou Yang, and Cornelia Fermuller. Co-active
learning to adapt humanoid movement for manipulation. arXiv preprint
arXiv:1609.03628, 2016.

[3] F Stulp and S Schaal. Hierarchical reinforcement learning with learning move-
ment primitives. In IEEE International Conference on Humanoid Robots, 2011.

[4] Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and Stefan
Schaal. Dynamical movement primitives: learning attractor models for motor
behaviors. Neural computation, 25(2):328–373, 2013.

[5] Sylvain Calinon, Florent D’halluin, Eric L Sauser, Darwin G Caldwell, and
Aude G Billard. Learning and reproduction of gestures by imitation. Robotics
& Automation Magazine, IEEE, 17(2):44–54, 2010.

[6] Iason Oikonomidis, Nikolaos Kyriazis, and Antonis A Argyros. Efficient model-
based 3d tracking of hand articulations using kinect. In BMVC, volume 1,
page 3, 2011.

[7] Robert Krug and Dimitar Dimitrovz. Representing movement primitives as
implicit dynamical systems learned from multiple demonstrations. In Advanced
Robotics (ICAR), 2013 16th International Conference on, pages 1–8. IEEE,
2013.

[8] Freek Stulp, Evangelos Theodorou, Jonas Buchli, and Stefan Schaal. Learning
to grasp under uncertainty. In Robotics and Automation (ICRA), 2011 IEEE
International Conference on, pages 5703–5708. IEEE, 2011.

97

[9] Auke Jan Ijspeert, Jun Nakanishi, and Stefan Schaal. Movement imitation
with nonlinear dynamical systems in humanoid robots. In Robotics and Au-
tomation, 2002. Proceedings. ICRA’02. IEEE International Conference on, vol-
ume 2, pages 1398–1403. IEEE, 2002.

[10] Volker Krüger, Dennis L Herzog, Sanmohan Baby, Ales Ude, and Danica
Kragic. Learning actions from observations. Robotics & Automation Maga-
zine, IEEE, 17(2):30–43, 2010.

[11] Peter Pastor, Heiko Hoffmann, Tamim Asfour, and Stefan Schaal. Learning
and generalization of motor skills by learning from demonstration. In Robotics
and Automation, 2009. ICRA’09. IEEE International Conference on, pages
763–768. IEEE, 2009.

[12] Daniel Weinland, Remi Ronfard, and Edmond Boyer. A survey of vision-based
methods for action representation, segmentation and recognition. Computer
Vision and Image Understanding, 115(2):224–241, 2011.

[13] Franziska Meier, Evangelos Theodorou, and Stefan Schaal. Movement segmen-
tation and recognition for imitation learning. In International Conference on
Artificial Intelligence and Statistics, pages 761–769, 2012.

[14] Ali Erol, George Bebis, Mircea Nicolescu, Richard D Boyle, and Xander
Twombly. Vision-based hand pose estimation: A review. Computer Vision
and Image Understanding, 108(1):52–73, 2007.

[15] Jamie Shotton, Toby Sharp, Alex Kipman, Andrew Fitzgibbon, Mark Finoc-
chio, Andrew Blake, Mat Cook, and Richard Moore. Real-time human pose
recognition in parts from single depth images. Communications of the ACM,
56(1):116–124, 2013.

[16] Aleš Ude, Andrej Gams, Tamim Asfour, and Jun Morimoto. Task-specific
generalization of discrete and periodic dynamic movement primitives. Robotics,
IEEE Transactions on, 26(5):800–815, 2010.

[17] Denis Forte, Andrej Gams, Jun Morimoto, and Aleš Ude. On-line motion
synthesis and adaptation using a trajectory database. Robotics and Autonomous
Systems, 60(10):1327–1339, 2012.

[18] Tamim Asfour, Pedram Azad, Florian Gyarfas, and Rüdiger Dillmann. Imita-
tion learning of dual-arm manipulation tasks in humanoid robots. International
Journal of Humanoid Robotics, 5(02):183–202, 2008.

[19] Auke Jan Ijspeert, Jun Nakanishi, and Stefan Schaal. Learning rhythmic
movements by demonstration using nonlinear oscillators. In Proceedings of
the IEEE/RSJ int. conference on intelligent robots and systems (IROS2002),
number BIOROB-CONF-2002-003, pages 958–963, 2002.

98

[20] Franziska Meier, Evangelos Theodorou, Freek Stulp, and Stefan Schaal. Move-
ment segmentation using a primitive library. In Intelligent Robots and Systems
(IROS), 2011 IEEE/RSJ International Conference on, pages 3407–3412. IEEE,
2011.

[21] Mitesh Patel, Carl Henrik Ek, Nikolaos Kyriazis, Antonis Argyros, Jaime Valls
Miro, and Danica Kragic. Language for learning complex human-object inter-
actions. In Robotics and Automation (ICRA), 2013 IEEE International Con-
ference on, pages 4997–5002. IEEE, 2013.

[22] J Randall Flanagan and Roland S Johansson. Action plans used in action
observation. Nature, 424(6950):769–771, 2003.

[23] Cem Keskin, Furkan Kıraç, Yunus Emre Kara, and Lale Akarun. Real time
hand pose estimation using depth sensors. In Consumer Depth Cameras for
Computer Vision, pages 119–137. Springer, 2013.

[24] Noam Chomsky. Lectures on government and binding: The Pisa lectures. Num-
ber 9. Walter de Gruyter, 1993.

[25] Craig G. Nevill-Manning and Ian H. Witten. Identifying hierarchical strcture
in sequences: A linear-time algorithm. J. Artif. Intell. Res.(JAIR), 7:67–82,
1997.

[26] Rüdiger Dillmann. Teaching and learning of robot tasks via observation of
human performance. Robotics and Autonomous Systems, 47(2):109–116, 2004.

[27] Austin Myers, Angjoo Kanazawa, Cornelia Fermuller, and Yiannis Aloimonos.
Affordance of object parts from geometric features. In Workshop on Vision
meets Cognition, CVPR, 2014.

[28] Jens Kober, Betty Mohler, and Jan Peters. Learning perceptual coupling
for motor primitives. In Intelligent Robots and Systems, 2008. IROS 2008.
IEEE/RSJ International Conference on, pages 834–839. IEEE, 2008.

[29] Andrej Gams, Auke J Ijspeert, Stefan Schaal, and Jadran Lenarčič. On-line
learning and modulation of periodic movements with nonlinear dynamical sys-
tems. Autonomous robots, 27(1):3–23, 2009.

[30] Florent Guenter, Micha Hersch, Sylvain Calinon, and Aude Billard. Rein-
forcement learning for imitating constrained reaching movements. Advanced
Robotics, 21(13):1521–1544, 2007.

[31] S Mohammad Khansari-Zadeh and Aude Billard. Imitation learning of globally
stable non-linear point-to-point robot motions using nonlinear programming.
In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Con-
ference on, pages 2676–2683. IEEE, 2010.

99

[32] Tetsunari Inamura, Iwaki Toshima, Hiroaki Tanie, and Yoshihiko Nakamura.
Embodied symbol emergence based on mimesis theory. The International Jour-
nal of Robotics Research, 23(4-5):363–377, 2004.

[33] Dae-Hyung Park, Peter Pastor, Stefan Schaal, et al. Movement reproduction
and obstacle avoidance with dynamic movement primitives and potential fields.
In Humanoid Robots, 2008. Humanoids 2008. 8th IEEE-RAS International
Conference on, pages 91–98. IEEE, 2008.

[34] Heiko Hoffmann, Peter Pastor, Dae-Hyung Park, and Stefan Schaal.
Biologically-inspired dynamical systems for movement generation: automatic
real-time goal adaptation and obstacle avoidance. In Robotics and Automation,
2009. ICRA’09. IEEE International Conference on, pages 2587–2592. IEEE,
2009.

[35] Sylvain Calinon, Irene Sardellitti, and Darwin G Caldwell. Learning-based
control strategy for safe human-robot interaction exploiting task and robot
redundancies. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ In-
ternational Conference on, pages 249–254. IEEE, 2010.

[36] Peter Pastor, Ludovic Righetti, Mrinal Kalakrishnan, and Stefan Schaal. On-
line movement adaptation based on previous sensor experiences. In Intelli-
gent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference
on, pages 365–371. IEEE, 2011.

[37] Andrej Gams, Bojan Nemec, Auke J Ijspeert, and Ales Ude. Coupling
movement primitives: interaction with the environment and bimanual tasks.
Robotics, IEEE Transactions on, 30(4):816–830, 2014.

[38] Alexandros Paraschos, Christian Daniel, Jan R Peters, and Gerhard Neumann.
Probabilistic movement primitives. In Advances in neural information process-
ing systems, pages 2616–2624, 2013.

[39] Amir M. Ghalamzan E., Chris Paxton, Gregory D Hager, and Luca Bascetta.
An incremental approach to learning generalizable robot tasks from human
demonstration. In Robotics and Automation (ICRA), 2015 IEEE International
Conference on, pages 5616–5621. IEEE, 2015.

[40] Emrah Akin Sisbot, Luis F Marin, and Rachid Alami. Spatial reasoning for
human robot interaction. In Intelligent Robots and Systems, 2007. IROS 2007.
IEEE/RSJ International Conference on, pages 2281–2287. IEEE, 2007.

[41] Ashesh Jain, Shikhar Sharma, Thorsten Joachims, and Ashutosh Saxena.
Learning preferences for manipulation tasks from online coactive feedback. The
International Journal of Robotics Research, page 0278364915581193, 2015.

[42] Zhangfeng Ju, Chenguang Yang, and Hongbin Ma. Kinematics modeling and
experimental verification of baxter robot. In Control Conference (CCC), 2014
33rd Chinese, pages 8518–8523. IEEE, 2014.

100

[43] Giovanni Ciná and Ulle Endriss. Proving classical theorems of social choice
theory in modal logic. Autonomous Agents and Multi-Agent Systems, pages
1–27, 2016.

[44] Darrin C Bentivegna. Learning from observation using primitives. PhD thesis,
Citeseer, 2004.

[45] Yasuo Kuniyoshi, Masayuki Inaba, and Hirochika Inoue. Learning by watching:
Extracting reusable task knowledge from visual observation of human perfor-
mance. Robotics and Automation, IEEE Transactions on, 10(6):799–822, 1994.

[46] Monica N Nicolescu and Maja J Mataric. Natural methods for robot task learn-
ing: Instructive demonstrations, generalization and practice. In Proceedings of
the second international joint conference on Autonomous agents and multiagent
systems, pages 241–248. ACM, 2003.

[47] Staffan Ekvall and Danica Kragic. Robot learning from demonstration: a task-
level planning approach. International Journal of Advanced Robotic Systems,
5(3):223–234, 2008.

[48] Richard Cubek, Wolfgang Ertel, and Gunther Palm. High-level learning from
demonstration with conceptual spaces and subspace clustering. In Robotics
and Automation (ICRA), 2015 IEEE International Conference on, pages 2592–
2597. IEEE, 2015.

[49] Akihiko Yamaguchi, Christopher G Atkeson, and Tsukasa Ogasawara. Pouring
skills with planning and learning modeled from human demonstrations. Inter-
national Journal of Humanoid Robotics, 12(03):1550030, 2015.

[50] Hendry Ferreira Chame and Philippe Martinet. Cognitive modeling for au-
tomating learning in visually-guided manipulative tasks. In Informatics in
Control, Automation and Robotics, pages 37–53. Springer, 2015.

[51] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in
robotics: A survey. The International Journal of Robotics Research, page
0278364913495721, 2013.

[52] Jens Kober, Andreas Wilhelm, Erhan Oztop, and Jan Peters. Reinforce-
ment learning to adjust parametrized motor primitives to new situations. Au-
tonomous Robots, 33(4):361–379, 2012.

[53] Marc Peter Deisenroth, Gerhard Neumann, Jan Peters, et al. A survey on
policy search for robotics. Foundations and Trends in Robotics, 2(1-2):1–142,
2013.

[54] Bruno Da Silva, George Konidaris, and Andrew Barto. Learning parameterized
skills. arXiv preprint arXiv:1206.6398, 2012.

101

[55] Gerhard Neumann, Christian Daniel, Alexandros Paraschos, Andras Kupcsik,
and Jan Peters. Learning modular policies for robotics. Frontiers in computa-
tional neuroscience, 8, 2014.

[56] Minija Tamosiunaite, Bojan Nemec, Aleš Ude, and Florentin Wörgötter. Learn-
ing to pour with a robot arm combining goal and shape learning for dynamic
movement primitives. Robotics and Autonomous Systems, 59(11):910–922,
2011.

[57] Katharina Mülling, Jens Kober, and Jan Peters. Simulating human table tennis
with a biomimetic robot setup. In International Conference on Simulation of
Adaptive Behavior, pages 273–282. Springer, 2010.

[58] Freek Stulp, Evangelos A Theodorou, and Stefan Schaal. Reinforcement learn-
ing with sequences of motion primitives for robust manipulation. IEEE Trans-
actions on robotics, 28(6):1360–1370, 2012.

[59] Jonathan Claassens. An rrt-based path planner for use in trajectory imitation.
In Robotics and Automation (ICRA), 2010 IEEE International Conference on,
pages 3090–3095. IEEE, 2010.

[60] Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

[61] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal
motion planning. The International Journal of Robotics Research, 30(7):846–
894, 2011.

[62] Chris Bowen and Ron Alterovitz. Closed-loop global motion planning for re-
active execution of learned tasks. In 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 1754–1760. IEEE, 2014.

102

	List of Figures
	Introduction
	Motivations
	Main contributions
	Learning Hand Movements from Markerless Demonstrations
	Learning to Adapt Hand Movement in Manipulation Tasks
	Dynamic Motion Planning for Sequential Tasks with Subgoals Learning

	Outline

	Learning Hand Movements from Markerless Demonstrations
	Motivation
	Related Work
	Movement Learning
	Data Acquisition from Markerless Demonstrations
	Dynamic Movement Primitives (DMPs) Model
	Movement Segmentation
	Movement Generation

	Experiments
	DMPs Model training
	Experiments in Simulation
	Test on the Robot
	Grammar Induction for Hand Task

	Summary

	Learning to Adapt Hand Movement in Manipulation Tasks
	Motivation
	Related Work
	Co-active Learning for Movement Generalization
	Our System
	Movement Imitation
	Movement Adaptation
	Rewards Learning

	Experiments
	Movement Imitation
	Learning Adaptation

	Summary

	Dynamic Motion Planning for Sequential Tasks with Subgoals Learning
	Motivation
	Related Work
	Formulation
	Primitive Motion Planning
	Subgoals Reinforcement Learning
	Subgoals Supervised Learning
	Sequential Motion Planning

	Experiments
	Subgoals Learning
	Sequential Motion Planning

	Summary

	Conclusions
	Bibliography

