
Problem MS tasks Jacobi? Newton itns KMS itns line search itns

Rosenbrock 8 N 12 12 12

Rosenbrock 2 Y 13 25 13

Powell 8 N 9 9 9

Powell 2 Y 9 32 9

Trig 8 N 3 9 3

Trig 2 Y 3 68 3

Elliptic 2 N 2 19 2

Table 1

Performance of the KMS Inexact Newton Algorithm. The algorithm was stopped when f(x) <

10

�5

. The forcing sequence was �

k

= 10

�3

.

[5] P. Concus, G. H. Golub, and D. P. O'Leary, Numerical solution of nonlinear elliptic partial

di�erential equations by a generalized conjugate gradient method, Computing, 19 (1978),

pp. 321{339.

[6] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, Inexact Newton methods, SIAM J. Numer.

Anal., 19 (1982), pp. 400{408.

[7] R. S. Dembo and T. Steihaug, Truncated-Newton algorithms for large-scale unconstrained

optimization, Mathematical Programming, 26 (1983), pp. 190{212.

[8] J. Dennis Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and

Nonlinear Equation, Prentice-Hall, New Jersey, 1893.

[9] C.-M. Huang and D. P. O'Leary, A Krylov multisplitting algorithm for solving linear systems

of equations, Linear Algebra and Its Applications, to appear.

[10] , Preconditioning parallel multisplittings for solving linear systems of equations, in 6th

ACM International Conference on Supercomputing, Washington, DC, July 1992.

[11] J. J. Mor

�

e, B. S. Garbow, and K. E. Hillstrom, Testing unconstrained optimization soft-

ware, ACM Transactions Mathematical Software, (1981), pp. 17{41.

[12] S. G. Nash and A. Sofer, A parallel line search for a Newton-type method, in Computer

Science and Statistics: Proceedings of the 21st Symposium on the Interface, K. Berk and

L. Malone, eds., Alexandria, VA, 1990, American Statistical Assoc., pp. 134{137.

[13] D. P. O'Leary, A discrete Newton algorithm for minimizing a function of many variables,

Mathematical Programming, 23 (1982), pp. 20{33.

[14] D. P. O'Leary and R. E. White, Multi-splittings of matrices and parallel solution of linear

systems, SIAM J. Disc. Math., 6 (1985), pp. 630{640.

[15] R. E. White, Multisplitting with di�erent weighting schemes, SIAM J.Matrix Anal. Appl., 10

(1989), pp. 481{493.

12



We place a uniform mesh of width � =

1

32

on the unit square and denote the approx-

imation to v(x; y) at the mesh point x = i�, y = j� by u

i;j

. Then at an interior

point we obtain, using the standard �ve-point discretization,

1

h

2

(�u

i;j�1

� u

i�1;j

+ 4u

i;j

� u

i+1;j

� u

i;j+1

) + (1� e

�5x

i

)e

u

i;j

= 1:

with stp

max

= 6 and m = 4 An \inner" SSOR splitting is used in this Example.

3

For all of the examples, the convergence criterion for the function F is 1:0

�5

and

the �nite di�erence parameter was h = 1:0

�6

.

We summarize the numerical results in Table 1. Some test cases made use of

an \inner" Jacobi splitting while in others the multisplitting equations were solved

directly. In all of our tests, the Inexact Newton algorithm with KMS converged

rapidly.

The work involved in determining the search direction for the inexact Newton

algorithm with KMS is quite parallel. Set up requires n=p evaluations of the function

g in each multisplitting task Task

l

in order to evaluateM . For each KMS iteration we

need one gradient evaluation in each multisplitting task and one in the accumulation

task Task

0

to form H times a new column. In many cases, only part of the gradient

vector is required by each task, so the work can be further reduced. The line search

requires one evaluation of f per task per iteration.

7. Conclusions. We have implemented an inexact Newton algorithm using a

Krylov subspace method for solving large scale systems of nonlinear equations and

unconstrained optimization problems on machines with MIMD architecture. The

number of synchronization points between the multisplitting tasks and the accumu-

lation task is greatly reduced. This implementation has many advantages for parallel

computations:

1. There is more exibility in this algorithm for adding or dropping directions

from the Krylov subspace than in traditional implementations.

2. The KMS algorithm can be an e�cient way to solve the Newton equation in

parallel machines.

3. Given enough processors, the number of function evaluations is small in each

multisplitting task. With the exploitation of sparsity of the Hessian matrix,

this number can be further decreased.

4. The algorithms are locally convergent. A local quadratic rate of convergence

is achievable, and global convergence can be achieved under additional as-

sumptions using a line search.

For future research, there is work remaining to be done in using the structure of

the problems in order to develop e�ective multisplittings.

REFERENCES

[1] C. Bischof, A. Carle, G. Corliss, A. Griewank, and P. Hovland, Generating derivative

codes from fortran programs, Scienti�c Computing, (to appear).

[2] P. N. Brown, A local convergence theory for combined inexact-Newton / �nite di�erence

projection methods, SIAM J. on Numer. Anal., 24 (1987), pp. 407{434.

[3] P. N. Brown and Y. Saad, Hybrid Krylov methods for nonlinear systems of equations, SIAM

J. on Sci. and Stat. Computing, 11 (1990), pp. 450{481.

[4] T. Chan, Rank-revealing QR factorization, Lin. Alg. and Its Applics., 88/89 (1987), pp. 67{82.

11



where  is chosen so that the largest step-length is equal to stp

max

. If there is no

step-length satisfying the Goldstein-Armijo criteria (with � = 1:0

�4

and � between

0:7 and 0:9), then the line search can be repeated with stp

max

divided by 2. For

further detail see [12].

The multisplitting we use is the block Jacobi splitting: letM be the block diagonal

part of the Hessian, where each block has dimension n=p. Referring to equations (7)

and (8), we de�ne M

l

= M , l = 1; ::p and D

l

to be zero, with an identity matrix

in the lth diagonal block. Linear systems involving the matrix M

l

are either solved

directly or solved iteratively using 5 iterations of the (point) Jacobi splitting (i.e.,

preconditioning by the diagonal elements). Task

0

minimized the norm of the residual

over the span of all vectors generated by the multisplitting tasks.

Example 1. Extended Rosenbrock function [11]

g

2j�1

(x) = 10(x

2j

� x

2

2j�1

);

g

2j

(x) = 1� x

2j�1

;

with the number of variables n = 64. The inital guess was 1 for the even components

of x

0

and �1:2 for the odd components. We used the parameters stp

max

= 4 and

m = 8.

Example 2. Extended Powell singular function [11]

g

4j�3

(x) = x

4j�3

+ 10x

4j�2

g

4j�2

(x) = 5

1=2

(x

4j�1

� x

4j

)

g

4j�1

(x) = (x

4j�2

� 2x

4j�1

)

2

g

4j

(x) = 10

1=2

(x

4j�3

� x

4j

)

2

with n = 64. The initial guess was x

0

= (3;�1; 0; 1; :::;3;�1; 0;1). We used the

parameters stp

max

= 8 and m = 8.

Example 3. Trigonometric function [11]

g

j

(x) = n�

n

X

l=1

cos x

l

+ j(1� cosx

j

)� sinx

j

with n = 64, stp

max

= 8 and m = 16.

The initial guess was x

0

= 10(1=n; : : : ; 1=n)

T

The two-stage method with an

\inner" Jacobi splitting is expensive for the Trigonometric function, since its second

derivative is a dense matrix.

Example 4. Consider a nonlinear elliptic equation [5]

� v

xx

� v

yy

+ (1� e

�5x

)e

v

= 1(14)

Equation (14) is to be solved on the unit square subject to the boundary conditions

on x = 0 : v = 0

on x = 1 : v = 1

on y = 0 and y = 1 : v = x:

10



4.2. Using Di�erence Quotients to Approximate Matrix-Vector Prod-

ucts. If the matrix H, or a symmetric approximation to it, is not available, then the

conjugate gradient method is not guaranteed to produce a downhill direction. Us-

ing (10) to approximate the product of H(x) with a vector v e�ectively produces a

nonsymmetric approximation to the Hessian matrix, and the conjugate gradient algo-

rithm may fail to converge. In practice, the scheme works well, but it is not possible

to prove convergence [2]. If global convergence is desired, then we should apply the

algorithms in x3 to the problem of minimizing kg(x)k.

5. Multisplitting Examples for Solving the Newton Equation.

Example 1. Let the Hessian matrix be split as H(x) = M (x)� N (x), where

M (x) =

0

B

B

B

B

@

M

1

(x)

:

:

:

M

p

(x)

1

C

C

C

C

A

;

is a block diagonal matrix. Each M

l

(x), 1 � l � p, is a relatively small size matrix,

and we assume that each is evaluated explicitly. Then each multisplitting task Task

l

solves or approximates the equation

M

l

(x)z

j+1

l

= N

l

(x)z

j

+ b

l

:

If N

l

(x) is not explicitly available, we can approximate the product N

l

(x)z

j

by

N

l

(x)z

j

�

g

(l)

(x+ hv) � g

(l)

(x)

h

where v equals z

j

, except that its l-th block is set to zero and g

(l)

denotes the lth

block of g. Thus, if necessary, we can perform a block splitting without evaluating

the o�-diagonal blocks of the derivative matrix.

Thus we can solve the multisplitting equations without evaluating the Hessian

matrix.

Example 2. We can replace the equation M

l

(x)z

j+1

l

= N

l

(x)z

j

+ b

l

using a splitting

M

l

(x) = F

l

(x) � G

l

(x). De�ne c

l

= N

l

(x)z

j

+ b

l

, and set y

0

l

= 0. Then we use

the inner iteration F

l

(x)y

m+1

l

= G

l

(x)y

m

l

+ c

l

for 0 � m � s � 1 to form a vector

z

j+1

l

= y

s

l

. As above, it is not necessary to explicitly calculate G

l

(x).

6. Numerical Examples. In this section we report the results of some numer-

ical experiments using the Inexact Newton Method with KMS.

The test problems of this section are solved on MATLAB, and a parallel line

search described in [12] was simulated. Let assume that we have m processors, each

capable of evaluating the objective function f(x). The function is evaluated at m

distinct points with maximum step-length stp

max

. We use the �rst m points of the

sequence

f1; 1=2; ; 1=4; 

2

; 1=8; 

3

; : : :g; if stp

max

> 1

f; =2; =4; : : :g; if stp

max

� 1

9



The �rst term is the computed residual, and the second can be bounded in terms of

the �nite di�erence parameter h

k

and a Lipschitz constant for H (Lemma 4.1.12 of

[8]:

jg(x

k

)

T

r

k

j � jg(x

k

)

T

r

computed

k

j+



2

h

k

kg(x

k

)kkd

k

k

Thus, if h

k

and �

k

are small enough, the direction will be downhill.

We add a Goldstein-Armijo line search in order to ensure that progress is made

at each iteration: we choose parameters � 2 (0; 1) and � 2 (�; 1), and we demand

that the line search parameter t

k

is chosen so that s

k

= t

k

d

k

satis�es

F (x

k+1

) < F (x

k

) + �g(x

k

)

T

H(x

k

)s

k

(12)

g(x

k+1

)

T

H(x

k+1

)s

k

� �g(x

k

)

T

H(x

k

)s

k

:(13)

Theorem 3.3. Global Convergence Conditions In addition to the assump-

tions of Theorem 3.1 or Theorem 3.2, assume that the line search produces a step that

satis�es (12) and (13), � < 1=2, and the sequences fh

k

g and f�

k

g are sequences are

chosen to ensure that each direction is downhill. Then the algorithm will be globally

convergent, and the convergence rate is ultimately superlinear.

Proof. This result follows from standard arguments using Theorems 6.3.3 and

6.3.4 in Dennis and Schnabel [8].

4. KMS Truncated-Newton for UnconstrainedOptimization. In this sec-

tion we consider Problem 2, the unconstrained optimization problem.

4.1. Using the Hessian or a Symmetric Approximation to It. If it is pos-

sible to form matrix-vector products involving the Hessian matrix A � H(x

k

) (com-

puted, for example, from adifor [1]) or a symmetric positive de�nite approximation

A � H(x

k

), then the KMS-CG algorithm can be used to �nd an approximation to the

Newton direction. The multisplitting matrix G of (6) should be symmetric positive

de�nite.

Although not required to prove local convergence of the algorithm, a satisfying

consequence of using the KMS-CG algorithm is that each direction d

k

computed by

the algorithm is guaranteed to be downhill for the Newton iteration, independent of

the choice of �nite di�erence parameter h

k

or relative residual tolerance �

k

. To see

this, we use the fact that d

k

minimizes the error function (9) over all vectors in the

space spanned by the columns of Q

j

. Thus,

d

k

= �Q

j

(Q

T

j

AQ

j

)

�1

Q

T

j

g(x

k

):

It then follows that g(x

k

)

T

d

k

< 0 if A is positive de�nite.

The other KMS variants can also be used, but the downhill property is not com-

mon to all of them.

The local convergence of the inexact Newton algorithm using KMS to �nd the

search direction follows from Theorem 3.1 of x3, when step lengths t

k

= 1 are used.

For global convergence, we use a Goldstein-Armijo line search: we choose param-

eters � 2 (0; 1) and � 2 (�; 1) and demand that the line search parameter t

k

is chosen

so that s

k

= t

k

d

k

satis�es

f(x

k+1

) < f(x

k

) + �g(x

k

)

T

s

k

g(x

k+1

)

T

s

k

� �g(x

k

)

T

s

k

:

Then Theorem 3.3 guarantees global, and ultimately quadratic, convergence.

8



Choose �

k

=

1

2

�

k

kg(x

k

)k

2

, and suppose that

�h

k

�

min

< min

�

1;

�

max

kg(x

k

)k

2

2

�

:

Then the iterates satisfy (11).

Proof. If �nite di�erences are used to form the matrix-vector, then in order to

apply Brown's result, we need to verify that kr

k

k

2

� �

k

kg(x

k

)k

2

2

. We note that

h

k

� �=

p

n, and we denote the �nite di�erence approximation to the product H(x

k

)v

by [H(x

k

)v]

h

. Then

kr

k

k

2

� kr

comp

k

k

2

+ k[H(x

k

)Q]

h

�H(x

k

)Qk

2

kzk

2

;

where d

k

= Qz is the solution computed by the accumulation task and r

comp

k

is the

corresponding residual computed using �nite di�erences. By Lemma 4.1.12 of [8],

kg(x

k

+ h

k

v

j

) � g(x

k

)� h

k

H(x

k

)v

j

k

2

�



2

h

2

k

;

so

k[H(x

k

)Q]

h

�H(x

k

)Qk

2

�



2

h

2

k

p

n �

�h

k

2

:

For R-KMS-GMRES, the solution is given by z = R

�1

ĝ, where R is the right-

triangular factor in the QR factorization of [H(x

k

)Q]

h

and ĝ has the same norm

as g(x

k

). Therefore,

kzk

2

� kR

�1

k

2

kg(x

k

)k

2

:

The norm of R

�1

is its smallest singular value, equal to the inverse of the smallest

singular value �

min

of [H(x

k

)Q]

h

, where

�

min

> �

min

�

�h

k

2

= �

min

(1 �

�h

k

2�

min

) �

�

min

2

:

Therefore,

kr

k

k

2

�

1

2

�

max

kg(x

k

)k

2

2

+

�h

k

2

2

�

min

kg(x

k

)k

2

� �

max

kg(x

k

)k

2

2

as desired.

A locally linear rate of convergence can be established under a weaker condition

for the KMS tolerances �

k

: �

k

� �

k

[2].

We can obtain a global convergence result if we add some further restrictions, as

discussed by Brown and Saad [3]. For these results, we return to the minimization

formulation, F (x) =

1

2

kg(x)k

2

. We note that any search direction d

k

produced by

the KMS algorithm is a downhill direction for F (x) as long as the residual r

k

=

H(x

k

)d

k

+ g(x

k

) is small enough, since

�g(x

k

)

T

H(x

k

)d

k

= g(x

k

)

T

g(x

k

)� g(x

k

)

T

r

k

;

and H(x

k

)

T

g(x

k

) is the gradient of F (x

k

). To ensure that the direction is downhill, it

is su�cient to force the relative residual (3), evaluated with the exact matrix H(x

k

),

to be less than 1. If we are using an approximate derivative matrix, then

g(x

k

)

T

r

k

= g(x

k

)

T

(Ad

k

+ g(x

k

)) + g(x

k

)

T

(H(x) �A)d

k

:

7



2. R-KMS-Arnoldi: Make the residual g + Ad orthog-

onal to all vectors in the Krylov subspace.

3. R-KMS-GMRES:Minimize the norm of the residual

kg + Adk over all vectors d in the Krylov subspace

spanned by the columns of Q

j

.

If

jjg+Adjj

2

jjgjj

2

� �

k

then send halt signal to Task

1

,: : : ,Task

p

,

and Exit.

endfor

3. KMS Truncated-Newton for Nonlinear Equations. The GMRES or

Arnoldi variants (left or right preconditioning) of the KMS algorithm can be used

to compute an approximate Newton direction for a system of nonlinear equations.

Matrix-vector products involving the derivative matrix can be evaluated, for ex-

ample, using the adifor package of Bischof et al [1]. This package generates a repre-

sentation of the derivative matrix from the fortran code for evaluating g(x).

If a representation of the derivative matrix is not available, a common method for

approximating the product of H times a vector v is to form the di�erence quotient

[H(x)v]

h

�

g(x+ hv) � g(x)

h

:(10)

In the limit as h ! 0 this quantity equals Hv. Unfortunately, though, the basis

generated using �nite di�erences can di�er quite substantially from that for the Krylov

subspace, and this makes the convergence analysis more di�cult.

The local convergence of the inexact Newton algorithm using KMS to �nd the

search direction follows from results of Brown [2], who studied the use of the GMRES

and Arnoldi iterations to compute an inexact Newton direction. This result is appli-

cable only because we use an orthogonal basis in Task

0

. His result, applied to our

algorithm, can be restated as follows:

Theorem 3.1. Brown Thm 2.2 [2] Local Convergence Conditions Assume

that there exists a point x

�

such that g(x

�

) = 0, H(x

�

) is nonsingular, and H(x)

is Lipschitz continuous in a neighborhood of x

�

with constant . Let the largest

and smallest singular values of H(x

�

) be denoted as �

max

and �

min

. Let the KMS

tolerance be �

k

= �

k

kg(x

k

)k

2

, where 0 � �

k

� �

max

< 1.

Then there exists a � > 0 such that, if kx

0

� x

�

k � �, then the sequence fx

k

g

formed by using steplengths t

k

� 1 is well de�ned, convergent to x

�

, and satis�es

kx

k+1

� x

�

k �

1

�

min

 

 + 2�

max

�

�

max

+

�

2

�

2

!

kx

k

� x

�

k

2

; k = 0; 1; 2; ::::(11)

Some further assumptions are needed to apply this result to �nite di�erence ap-

proximations. We use R-KMS-GMRES as an example of such a result.

Theorem 3.2. In addition to the assumptions of Thm 3.1, suppose R-KMS-

GMRES is used in Task

0

and that the �nite di�erence step lengths h

k

used at iteration

k form a nonincreasing sequence, small enough that the vectors f(g(x

k

+ h

k

v

j

) �

g(x

k

))=h

k

g computed in Task

0

are linearly independent, j = 1; 2; :::;m. Assume that

there exists a positive constant � such that

k[h

1

; h

2

; :::; h

max(n;k)

]k

2

� �:

6



Although these algorithms are quite e�cient implementations of the GMRES or

Arnoldi iterations, they are ine�cient for the conjugate gradient iteration if many

iterations are required, since all of the old vectors need to be stored.

The Right-KMS algorithm corresponds to a change of variables: instead of solving

Ad = �g, we solve A

^

G

^

d = �g, where d �

^

G

^

d and

^

G �

p

X

l=1

M

�1

l

D

l

:

The resulting Krylov subspace is K(A

^

G; g; k) � spanfg;A

^

Gg; :::(A

^

G)

k�1

gg. We see

that

A

^

G =

p

X

l=1

AM

�1

l

D

l

=

p

X

l=1

(M

l

� N

l

)M

�1

l

D

l

= I �

p

X

l=1

N

l

M

�1

l

D

l

� I �

^

B:

Thus the Krylov subspace K(A

^

G; g; k) is equivalent to K(

^

B; g; k).

The resulting algorithm is as follows.

The Right-KMS Algorithm

Algorithm for multisplitting Task

l

, l = 1; :::; p:

Initialize ĝ

0

= g.

Form M

�1

l

D

l

ĝ

0

For j = 0; 1; : : :, until receiving a halt signal from Task

0

,

Form N

l

(M

�1

l

D

l

ĝ

j

) and participate with the other multi-

splitting tasks in forming ĝ

j+1

by summing these values.

Form M

�1

l

D

l

ĝ

j+1

.

Send

^

G(ĝ

j+1

� ĝ

j

) to Task

0

for accumulation.

endfor

Algorithm for accumulation Task

0

:

Given termination criteria �

k

.

For j = 0; 1; : : :

Receive vector v

j

from the multisplitting tasks.

Update orthogonal basis Q

j

to include v

j

. The last column

q

j

is our new basis vector.

Choose d to satisfy one of the following conditions:

1. R-KMS-CG: Minimize the error function

kd� d

�

k

2

A

� (d� d

�

)

T

A(d� d

�

)

over all vectors d in the Krylov subspace spanned by

the columns of Q

j

.

5



Receive the latest multisplitting iterate, ẑ

j

and call it z

0

.

Determine z

1

by solving M

l

z

1

= N

l

z

0

� g:

Form z

j+1

l

= D

l

z

1

, and participate with the other mul-

tisplitting tasks in forming ẑ

j+1

by summing the z

j+1

l

,

l = 1; :::; p.

Send ẑ

j+1

� ẑ

j

to Task

0

for accumulation.

endfor

Algorithm for accumulation Task

0

:

Given termination criteria �

k

.

For j = 0; 1; : : :

Receive vector v

j

from the multisplitting tasks.

Update orthogonal basis Q

j

to include v

j

. The last column

q

j

is the new basis vector.

Choose d to satisfy one of the following conditions:

1. L-KMS-CG: Minimize the error function

kd� d

�

k

2

A

� (d� d

�

)

T

A(d� d

�

)(9)

over all vectors d in the Krylov subspace spanned by

the columns of Q

j

.

2. L-KMS-Arnoldi: Make the residual G(g + Ad) or-

thogonal to all vectors in the Krylov subspace.

3. L-KMS-GMRES:Minimize the norm of the residual

kG(g+Ad)k over all vectors d in the Krylov subspace

spanned by the columns of Q

j

.

If

jjg+Adjj

2

jjgjj

2

� �

k

then send halt signal to Task

1

,: : : ,Task

p

,

and exit.

endfor

In theory, the vectors v

j

are guaranteed to be linearly independent as long as the

residual vector is nonzero. It is possible that �nite di�erence approximations to H

could produce linear dependence. In this case, we can either generate a new basis

vector for Q

j

orthogonal to the previous ones or restart the iteration from the current

d vector.

There are several variants on this basic algorithm that can improve the parallel

utilization. For example, the multisplittings can run several iterations at a time before

generating the next Krylov vector, or two stage (inner-outer) methods can be used to

solve linear systems involving the matrix M

l

. See [10] and x5 for more details.

When the conjugate gradient variant is used (L-KMS-CG), the orthogonalization

of the basis vectors ensures that the matrix A

j

= Q

T

j

AQ

j

involved in determining the

vector d is at least as well-conditioned as A is. We use a rank-revealing QR factor-

ization of A

j

P = QR where the rectangular matrix Q is orthogonal, R is an upper

triangular matrix, and the columns of A

j

causing near linear dependencies are pushed

to the right by the permutation matrix P

j

. We pick a maximal leading principal sub-

matrix R

a

of R that corresponds to a well conditioned subset of the orthogonal basis

Q

a

, and solve a reduced system. (See [4] and [9]). Thus the minimization of the error

function is performed over a subspace of the Krylov subspace if ill-conditioning is

evident. The rank-revealing factorization is updated at each iteration using standard

techniques. Analogous techniques are used for L-KMS-A and L-KMS-GMRES.

4



Multisplittings induce the iterative method z

j+1

= Bz

j

+Gb; computed by forming

z

j+1

=

p

X

l=1

D

l

ẑ

j+1

(l)

;(7)

where

M

l

ẑ

j+1

(l)

= N

l

z

j

(l)

+ b:(8)

Such iterations can be painfully slow unless accelerated by Krylov subspace iteration.

Huang and O'Leary ([9, 10]) have developed a Krylov multisplitting algorithm

(KMS algorithm) that can achieve much higher parallelism than other implementa-

tions of Krylov subspace iterations. In this algorithm there are p + 1 tasks, p for the

multisplitting and one for accumulation of the approximate solution for the linear sys-

tem. Each splitting is assigned to a subset of processors. The multisplittings report

individually to the accumulation task and do not need to wait for a response. This

reduces waiting time at the cost of some additional complication in the accumulation,

and it is shown that the subspace over which the error function is minimized equals

the Krylov subspace used in the standard algorithm. Although no synchronization

signals are sent from the accumulation task to the multisplittings, the accumulation

task can be implemented in a way that makes the algorithm deterministic rather than

chaotic. In practice, due to round-o� error, the accumulation task must periodically

reinitialize the multisplittings, but this can be done infrequently. (For more detail,

see [9].)

We are concerned in this work with algorithm variants that preserve superlinear

convergence of the inexact Newton iteration. In x2 we present some variants of the

Krylov Multisplitting (KMS) algorithm. In x3 we discuss the use of these algorithms

in solving Problem 1 (nonlinear equations). Convergence of the algorithms is veri�ed.

Problem 2 (unconstrained optimization) is studied in x4. Section 5 gives some example

multisplittings for Newton equations. The results of numerical examples on sequential

machines are presented in x6.

2. Some Variants of the KMS algorithm. We study two classes of algo-

rithms: the left-preconditioned KMS algorithm and the right-preconditioned KMS

algorithm. Right multisplittings were �rst proposed by White [15], and we now pro-

pose their use as KMS preconditioners (postconditioners).

Suppose we wish to solve the nonsingular linear system Ad = �g. The Left-KMS

algorithm corresponds to a rescaling of the linear system to

GAd = �Gg;

where G is de�ned by (6). The Left-KMS algorithm generates the Krylov subspace

K(GA;Gg; k) � spanfGg;GAGg; :::; (GA)

k�1

Ggg

In the following algorithm, Task

0

accumulates the approximate solution to the

linear system, and the multisplitting tasks are denoted by Task

l

, l = 1; : : : ; p.

The Left-KMS Algorithm

Algorithm for multisplitting Task

l

, l = 1; :::; p:

Initialize ẑ

0

= 0.

For j = 0; 1; : : :, until receiving a halt signal from Task

0

,

3



Inexact Newton methods form an approximate solution to this equation, so that the

residual

r

k

� H(x

k

)d

k

+ g(x

k

)

satis�es

jjr

k

jj

jjg(x

k

)jj

� �

k

:(3)

The quantity on the left of (3) is sometimes called the relative residual; the nonnegative

forcing sequence f�

k

g is used to control the level of accuracy when solving the linear

system, allowing a rather inaccurate Newton direction when far from the solution

x

�

and expending greater e�ort in the computation of the direction when Newton's

method is working from a point close to x

�

[7, 6, 13].

Combining the inexact Newton methods with a line search, and exploiting paral-

lelism in the algorithm, we have following schema for solving the problems:

A Parallel Inexact Newton Method

For k = 0; 1; : : : until convergence

Use a parallel algorithm to �nd some step d

k

so that

r

k

= H(x

k

)d

k

+ g(x

k

) satis�es

jjr

k

jj

jjg(x

k

)jj

� �

k

.

Perform a parallel line search, and produce a step

s

k

= t

k

d

k

, a multiple of d

k

.

Set x

k+1

= x

k

+ s

k

.

In order to obtain an e�cient parallel algorithm, it is crucial that the solution

to the linear system and the line search both have good parallel utilization. In many

situations the line search can be avoided by setting t

k

� 1 for all k. Parallel line search

algorithms are needed, however, to establish global convergence of the algorithms. A

method of Nash and Sofer [12] takes advantage of simultaneous function evaluations,

one per processor. If the line search conditions are satis�ed by the parameter t

k

= 1,

the full step x

k+1

= x

k

+ d

k

is taken; otherwise, some parameter t

k

< 1 is chosen.

This paper focuses on e�cient algorithms for obtaining an approximate solution to

the linear system r

k

= 0, preserving superlinear convergence of the Newton algorithm.

One way to achieve e�ciency in the solution of the linear system is to exploit

structure in the problem by the use of multisplitting preconditioners. If we wish to

solve the linear system Az = b, and the matrix can be partitioned in several ways,

A =M

l

�N

l

; l = 1; :::; p;(4)

then O'Leary and White [14] de�ne a multisplitting of A to be

B =

p

X

l=1

D

l

M

�1

l

N

l

(5)

where the matrices D

l

are nonnegative diagonal matrices that sum to the identity

matrix. We denote by G the e�ective preconditioning matrix

G =

p

X

l=1

D

l

M

�1

l

:(6)

2



A PARALLEL INEXACT NEWTON METHOD USING

A KRYLOV MULTISPLITTING ALGORITHM

CHIOU-MING HUANG

�

AND DIANNE P. O'LEARY

y

Abstract. We present a parallel variant of the inexact Newton algorithm that uses the Krylov

multisplitting algorithm (KMS) to compute the approximate Newton direction. The algorithm can

be used for solving unconstrained optimization problems or systems of nonlinear equations. The

KMS algorithm is a more e�cient parallel implementation of Krylov subspace methods (GMRES,

Arnoldi, etc.) with multisplitting preconditioners. The work of the KMS algorithm is divided into

the multisplitting tasks and a direction forming task. There is a great deal of parallelism within each

task and the number of synchronization points between the tasks is greatly reduced. We study the

local and global convergence properties of the algorithm and present results of numerical examples

on a sequential computer.

Key words. conjugate gradient algorithm, preconditioning, GMRES, Krylov subspaces, multi-

splittings, inexact Newton method, solving nonlinear equations, unconstrained optimization.

AMS(MOS) subject classi�cations. 65H10, 65K10, 65F10.

July 30, 1993

Running title: KMS Multisplitting

1. Introduction. As we attempt to solve larger optimization problems and sys-

tems of nonlinear equations, it becomes more important to develop e�cient ways

to exploit sparsity and inherent parallelism. This paper concerns these issues. We

consider two problems:

Problem 1: Nonlinear Equations:

g(x

�

) = 0(1)

where g : D � R

n

�! R

n

,D is an open convex set, and g is continuously di�erentiable

on D. We denote rg(x) by H(x).

Problem 2: Unconstrained Optimization:

min

x2D

f(x)(2)

where f : D � R

n

�! R, D is an open convex set, f is twice continuously di�er-

entiable and bounded below, and the second derivative H(x) � r

2

f(x) 2 R

n�n

is

symmetric positive de�nite. We denote the gradient of f by g(x), and note that any

solution x

�

to the problem satis�es g(x

�

) = 0.

The only essential di�erence between the problems is that H(x) is symmetric

positive de�nite for Problem 2, but not for Problem 1. To unify the notation, we will

denote the function to be minimized, either f(x) or

1

2

kg(x)k

2

, by F (x).

Many algorithms have been proposed for these problems. These include Newton

methods, the conjugate gradient algorithm, and the inexact Newton methods. The

Newton search direction is de�ned to be the solution d to the linear system

H(x

k

)d+ g(x

k

) = 0:

�

Department of Computer Science, University of Maryland, College Park, MD 20742.

y

Department of Computer Science and Institute for Advanced Computer Studies, University of

Maryland, College Park, MD 20742. This work was supported under grant NSF CCR 9115568.

1


