
ABSTRACT

Title of Dissertation: SUPPORTING SECURE AND TRANSPARENT

MOBILITY IN WIRELESS LOCAL-AREA

NETWORKS

Arunesh Mishra, Doctor of Philosophy, 2005

Dissertation directed by: Assistant Professor William Arbaugh

Department of Computer Science

Wireless Local Area Networks (WLANs) are experiencing un-

precedented growth as the last mile connectivity solution. Mobility is

an important feature of any wireless communication system. Handoffs

are a crucial link level functionality that enable a mobile user to stay

connected to a wireless network by switching the data connection from

one base station or access point to another. Conceptually the handoff

process can be subdivided into two phases: (i) Discovery - wherein the

client searches for APs in vicinity and (ii) Authentication - the client

authenticates to an AP selected from the discovery phase.

The handoff procedure recommended by the IEEE 802.11 stan-

dard and closely implemented by various wireless vendors is an intrusive

and a brute-force approach. My testbed based study of these algo-

rithms showed that they incur high latencies varying between 400ms to

1.3 seconds depending on the security settings in effect. Such inefficient

handoff mechanisms can have a detrimental impact on applications es-

pecially synchronous multimedia connections such as Voice over IP.

In my dissertation, I have proposed and evaluated the notion of

locality among APs induced by user mobility patterns. A relation is cre-

ated among APs which captures this locality in a graph theoretic man-

ner called neighbor graphs – a distributed structure that autonomously

captures such locality. Based on this, I have designed and evaluated

efficient mechanisms to address the two different phases of this hand-

off process. Through a rigorous testbed based implementation, I have

demonstrated the viability of the concept of mobility induced locality

through good performance improvements. Through extensive simula-

tions I have studied the performance of proposed handoff mechanisms

over various different topologies. This work has shown that a topo-

logical structure which captures the locality relationship among APs is

fundamental to designing mechanisms that make user mobility trans-

parent from the higher layers of the networking stack.

SUPPORTING SECURE AND TRANSPARENT

MOBILITY IN WIRELESS LOCAL-AREA

NETWORKS

by

Arunesh Mishra

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2005

Advisory Committee:

Assistant Professor William Arbaugh, Chairman/Advisor
Professor A. Udaya Shankar
Associate Professor Bobby Bhattacharjee
Professor Raymond Miller
Professor Mark Shayman, Dean’s Representative

c© Copyright by

Arunesh Mishra

2005

DEDICATION

To my late Father who believed strongly in discipline,

systematic approaches to work and a quest for perfection

in everything you do. To my Mother who has provided

constant encouragement during good and bad times and

who has always supported my decisions.

ii

ACKNOWLEDGEMENTS

My graduate study has lasted about 51
2

years at the Uni-

versity of Maryland. During this period a lot of people

have helped me through with various aspects of this work.

I would like to acknowledge the efforts of Mike van Op-

stal who was always available and helpful with the wire-

less testbed and related issues at any time, be it a night

or a weekend. I would like to acknowledge the efforts of

my colleague Min-ho Shin, who has helped extensively with

the implementations, the simulations and staying up in the

night for the experiments apart from fruitful discussions

that we had. I wish him the best with his research. I have to

mention the constant enthusiasm boosters from my friends

notably Chirag Kathrani, Arunchandar Vasan, Srinivasan

iii

Parthasarathy, Vijay Gopalakrishnan and Yuan Yuan who

have always helped immensely during the tough periods of

my graduate study. Without them it would have been very

hard to finish this long journey. I would like to also men-

tion Adithya Nagarajan who has been a good take-a-break-

buddy. He is currently programming away at Microsoft.

I would like to acknowledge the constant help offered by Dr.

Bobby Bhattacharjee on various aspects during my study.

Most importantly I would like to acknowledge the hard work

and efforts of my advisor Dr. Bill Arbaugh. Without his

guidance and support this whole effort would have been

impossible.

Finally, I would not have made it this far in my doctoral

work if not for the constant affection, encouragement and

support from a close friend of mine, Maya Palem.

iv

TABLE OF CONTENTS

List of Tables x

List of Figures xi

1 Introduction 1

1.1 The Research Problem 9

1.1.1 Representing Mobility Induced Locality 10

1.2 The Cost of Mobility in Wireless LANs 13

1.3 Key Contributions . 22

1.4 Organization of Thesis 24

2 Locality in Mobility and Neighbor Graphs 27

2.1 Locality in Association Patterns 31

2.2 Neighbor Graphs . 34

2.3 Discussion . 37

3 The MAC Layer Handoff Process 40

v

3.1 Design of the experiments 43

3.1.1 The Wireless Network Environment 43

3.1.2 The sniffing process 46

3.1.3 The clients . 51

3.2 Logical steps in a handoff 52

3.2.1 Logical steps in a handoff 52

3.3 Experiment Results . 55

3.4 Analysis of the Probe Phase 61

3.4.1 The Probe Function Specification 61

3.4.2 The Probe-Wait time: Observations 63

3.4.3 Probe-Wait Optimizations 67

3.4.4 Hints for Fast-Handoff Strategies 70

3.5 Discussion . 72

4 The Proactive Context Caching Algorithm 75

4.1 Context Transfer Process 84

4.2 Neighbor Graphs . 87

4.2.1 Definitions . 87

4.2.2 Construction and Maintenance 89

4.3 Proactive Caching . 91

4.3.1 Modifications to IAPP 94

4.4 Performance Analysis . 96

vi

4.5 Experiments and Simulations 101

4.5.1 Experiments . 102

4.5.2 Simulations . 107

4.6 Related Work . 114

4.7 Summary . 119

5 The Proactive Key Distribution Technique 122

5.1 IEEE 802.11i Authentication Overview 127

5.1.1 IEEE 802.1X . 128

5.1.2 Extensible Authentication Protocol 130

5.1.3 Transport Layer Security 131

5.1.4 Four way hand-shake 133

5.1.5 TGi Trust Relationships 134

5.1.6 Properties of a Successful Authentication 136

5.2 Pro-active Key Distribution 136

5.2.1 PMK Trees . 137

5.2.2 PMK Synchronization 138

5.2.3 PMK Distribution 138

5.2.4 Two-way handshake 140

5.3 Implementation . 140

5.3.1 The Testbed . 141

5.3.2 Results . 142

vii

5.4 Related Work . 145

5.5 Summary . 147

6 Fast Active Scanning 149

6.1 Current Scanning Algorithms 154

6.2 Overlap Graph . 162

6.2.1 Construction . 164

6.3 OG-Scan and OGPrune-Scan 165

6.3.1 OG-Scan Algorithm 166

6.3.2 OGPrune-Scan Algorithm 168

6.4 Implementation . 172

6.4.1 Testbed Environment 173

6.4.2 Software . 174

6.4.3 Measurement Methodology 176

6.4.4 Experiment Process 177

6.4.5 Experiment Results 178

6.5 Simulations . 184

6.5.1 Simulation Model 184

6.5.2 Simulation Process 187

6.5.3 Simulation Results 189

6.6 Summary . 191

viii

7 Summary 193

ix

LIST OF TABLES

6.1 Summary of Experiment Results. 172

6.2 Constants used in Simulations 186

6.3 Varying Parameters in Simulations 187

6.4 Percentage reduction relative to Obs-Scan. 189

7.1 Overall comparison of the cost improvement for handoffs

using algorithms based on neighbor graphs versus the

IEEE standard. 194

x

LIST OF FIGURES

1.1 Architecture of a typical IEEE 802.11 wireless LAN. . . . 3

1.2 User mobility induces locality among base-stations. . . . 9

1.3 The IEEE 802.11 state machine reflecting a user’s state

of connectivity at the link layer. 16

1.4 The regular structure of a cellular network. 21

2.1 Example illustrating the locality in mobility. 31

2.2 Example illustrating the locality in association patterns. 34

2.3 Example of a wireless network and a user moving

through the indicated path. 35

2.4 View of the locality as captured by the neighbor graph. . 37

3.1 The Handoff Measurement Setup 45

3.2 The loss percentage of the sniffer on neighboring chan-

nels. The traffic was sent on channel one. 47

3.3 The IEEE 802.11 Handoff Procedure (followed by most

cards) . 51

xi

3.4 Handoff Latencies - Cisco 340 STA on umd (Cisco AP)

network. Zero values are not plotted on the log-scale. . . 55

3.5 Handoff Latencies - Lucent STA on umd (Cisco AP) net-

work. 56

3.6 Handoff Latencies - ZoomAir Prism 2.5 NIC on umd

(Cisco AP) network. Zero values are not plotted on the

log-scale. 57

3.7 Handoff Latencies - Average values and standard devia-

tion shown for all nine experiments. 58

3.8 Handoff Latency Breakup - Comparison of the nine ex-

periments. 59

3.9 The Handoff Procedure as observed on the Lucent and

ZoomAir wireless NICs. 60

3.10 The distribution of the probe-wait times with respect to

the number of probe responses received for the Cisco STA. 61

3.11 The messages in an active scan. 63

3.12 The distribution of the probe-wait times with respect to

the number of probe responses received for the Lucent

STA. 64

xii

3.13 The distribution of the probe-wait times with respect to

the number of probe responses received for the ZoomAir

STA. 65

3.14 Cumulative distribution of the maximum probe response

times observed by the three wireless NICs under study

on the umd network. 66

3.15 Cumulative distribution of the maximum probe response

times observed by the three wireless NICs under study

on the cswireless network. 67

3.16 Cumulative distribution of the maximum probe response

times observed by the three wireless NICs under study

on the nist network. 68

3.17 The average probe delay values, and the estimated probe

delay values based on the pessimistic calculation of the

MaxChannelTime for the nine scenarios. Also shown is

the percentage improvement next to the estimated probe

delay values. 69

4.1 Network architecture of a typical 802.11 based WLAN. . 77

4.2 Same network deployed in different physical environments. 82

4.3 IAPP interaction to facilitate context transfer during re-

association. 86

xiii

4.4 Figure shows an example placement of APs and the cor-

responding neighbor graph. 89

4.5 Message sequences during a handoff with context caching. 94

4.6 Figure shows an AP AP1 and its immediate (Level 1)

and one-hop (Level 2) neighbors with respect to incom-

ing edges. 99

4.7 Experiment Environment and the Neighbor Graph. . . . 107

4.8 Re-association latencies at each access point. 108

4.9 Re-association Latencies with Time. 109

4.10 Distribution of Maximum number of clients associated

to an AP during a simulation with 100 APs and 500 users.112

4.11 Plot of clients mobility and the cache hit ratio achieved. 113

4.12 Effect of Cache Size and Client Mobility on Hit Ratio. . 114

4.13 Effect of Cache Size and Number of Users on Hit Ratio. 115

4.14 Variation of Cache Size (as a percentage of Number of

Users) with Hit Ratio. 116

5.1 Typical topology of a wireless LAN. 129

5.2 The entities in an IEEE 802.1X setup. 129

5.3 The EAP stack . 131

5.4 The key structure: PMK and the derived PTK. 133

5.5 The Trust relations in TGi. 135

xiv

5.6 PMK tree . 138

5.7 Figure shows the topological placement of the APs in

our wireless testbed and the resulting structure of the

neighbor graph. 141

5.8 Figure shows the authentication latencies as observed

by the roaming supplicant in the wireless testbed, with

proactive key distribution enabled. As can be seen,

the first authentication reflects the full-authentication

latency and initiates the key distribution mechanism. . . 144

5.9 Figure shows the complete set of messages exchanged

during the (re)association process. In particular, it

shows the EAP-TLS authentication messages, and the

four-way handshake. 147

6.1 Plot of SNR as a station moves from one AP to another.

Handoff occurs at X1 when Th = T1 and at X2 when

Th = T2. The handoff-region shown is when the handoff

threshold Th = T2. 154

6.2 Messages during an Active Scan or Probe. CS&T refers

to the ‘channel switch and transmission overhead’. 162

6.3 Example scenario to illustrate the difference between

neighbor graphs and overlap graphs. 164

xv

6.4 Scenario to illustrate the opportunistic pruning possible

using the non-overlap graph. 168

6.5 The neighbor graph and the overlap graph for the in-

building testbed environment. Directed edges show the

neighbor graph. These edges are present in an undi-

rected form in the overlap graph. Dashed edges are solely

present in the overlap graph. 172

6.6 Active Scan Latencies for the four scan algorithms.

Also shown are the adjusted latencies with the Channel

Switch and Transmission overhead = 10ms. Confidence

intervals are also shown. 174

6.7 Probe count for the four active scan algorithms. Also

shown is the distribution of the probe count attributed

to either MaxChannelTime getting expired, MinChan-

nelTime getting expired or optimal waiting. 176

6.8 Cumulative distribution of probe-wait times for the four

algorithms. 178

xvi

6.9 Performance of the pruning optimization performed by

the OGPrune-Scan algorithm as affected by the aver-

age normalized degree of an AP in the local non-overlap

graph. MSE is the Mean Square Error of the shown

regression line. 179

6.10 Example of a topology generated in simulations. The

dashed circle is the current AP; solid circles are the

neighbor APs. The number in the circle is the assigned

channel. The station, represented by a star, moves as

indicated by an arrow. 182

6.11 Example of a non-overlap graph generated in simulations 183

6.12 Probe latencies of three algorithms vs. the number of

channels. 184

6.13 Effect of the pruning optimization performed by

OGPrune-Scan over OG-Scan versus number of neigh-

bors. 186

6.14 Performance of the pruning optimization performed by

the OGPrune-Scan algorithm as affected by the aver-

age normalized degree of an AP in the local non-overlap

graph. MSE is the Mean Square Error of the shown

regression line. 187

xvii

6.15 Performance improvement of the OG-Scan algorithm

relative to Obs-Scan as a function of number of

Neighbors-per-channel. 189

xviii

Chapter 1

Introduction

The radio music box has no imaginable commercial value. Who would

pay for a message sent to nobody in particular? – David Sarnoff’s

associates in response to his urgings for investment in the radio in the

1920s.

Wireless communications is enjoying its fastest growth period of

the last 100 years, due to the enabling technologies of today. In 1897,

Guglielmo Marconi first demonstrated the radio’s ability to communi-

cate wirelessly among ships sailing in the English channel. Since then

growth in the mobile communications field was slow but closely cou-

pled with technological advancements. The notion of providing mass

wireless communications was not conceived until Bell Laboratories de-

veloped the cellular concept in the 1960s and 70s [1]. The development

of the miniature solid-state radio frequency hardware in the 1970s has

1

matured as a technology today bringing about an explosive growth in

the form of data and multimedia services in the wireless communica-

tions era.

Mobility is an important aspect of a wireless communication sys-

tem. The early mobile radio telephony systems (first introduced in

1946) used a single powerful transceiver called a base-station to cover

large distances (30 miles). Thus, the mobility of users was transparent

within the large region of coverage. This approach became inefficient

in crowded areas such as the New York City market. With such cover-

age, the available 12 independent channels could serve only 543 users

[2]. Bell Labs developed the theory and techniques of cellular radio-

telephony – the concept of breaking a coverage zone into small cells,

each of which reuse portions of the spectrum to increase spectrum us-

age at the expense of greater system infrastructure. Some of today’s

cellular architectures use a micro-cell concept where the cell sizes are

greatly reduced to increase frequency reuse. This also enables the user

radios to be power efficient – an important consideration for today’s

battery powered phones. This cellular approach, however, inevitably

exposes the user to the effects of mobility limited by the granularity of

the cell sizes. Such a design brought about the need for low level primi-

tives which provide for a smooth transition of the phone call across the

2

AP 1 AP 2 AP N
To the internet/
external network

Gateway/RouterNetwork Server (AAA)
such as RADIUS

Access Points

Wireless Clients
Client performing a Handoff

Figure 1.1: Architecture of a typical IEEE 802.11 wireless LAN.

cell boundaries. This is when the first handover or handoff primitives

were designed in the context of wireless networks to provide for the

transition of a phone call across cell boundaries.

Wireless Local-Area Networks (WLANs)

In the late 1980s, the FCC allocated license free bands for low power

spread spectrum devices in the 900 MHz, 2.4. Ghz and the 5.7 Ghz

bands to facilitate private computer communication in the workplace

and the household. The IEEE 802.11 Wireless LAN working group

was founded in 1987. 802.11 was finally standardized by 1997 gaining

impetus from the popularity of the Internet and portable laptop com-

puters. The original IEEE 802.11 standard uses direct sequence spread

spectrum to provide data-rates of up to 2 Mbps in the 2.4 Ghz band.

The higher rate extension, called IEEE 802.11b, provides data-rates

3

of up-to 11 Mbps in the same spectrum. During the last few years,

the IEEE Wireless LAN working group has standardized the 802.11a

and 802.11g technologies which use orthogonal frequency division mul-

tiplexing (OFDM) to provide data-rates up-to 54 Mbps in the 5 Ghz

and the 2.4 Ghz bands respectively.

The basic communication model used in an IEEE 802.11 wireless

LAN is very similar to that of a cellular network. Designated devices,

called access points (APs) perform the function of a base-station in the

cellular counterpart. Each individual user obtains network service from

a single access point and is said to be associated to it. The user com-

municates all data traffic through its associated AP. An access point

together with its associated clients form what is called a basic service

set (BSS), much like a base-station forms a cell in a cellular network.

Multiple APs are used to extend coverage beyond a single BSS. A set of

two or more APs which collectively form one logical wireless network is

called an extended service set (ESS). An extended service set is associ-

ated with an identifier (typically a 8-10 character string) which is used

by clients to search and associate to APs belonging to the correct wire-

less LAN. Such a mechanism allows co-existence of different extended

service sets in the same physical space.

Typically, an access point bridges data traffic over a wired ether-

4

net interface. Thus, installing a wireless network requires proper posi-

tioning of APs along with the ethernet wiring that forms the backbone

of the wireless network (DS). Figure 1.1 shows the backbone architec-

ture typically used to engineer a wireless LAN. The backbone network

connects the APs to a server which performs various management and

accounting functions for the network as a whole. The backbone also

connects to a gateway/router which connects to an external network

such as the Internet.

Since multiple APs are used to extend the coverage of a single

BSS, a mobile user’s data session might suffer disconnections as it moves

out of the coverage of one AP into the coverage of another. To facilitate

such handoffs, the IEEE 802.11 standard defines certain MAC level

functions by which the user can maintain higher layer connectivity while

the link layer switches the APs.

In contrast with wireless LANs, cellular networks have very reg-

ular structures. Each cell has a fixed number of neighbors and regu-

lar coverage contours so a regular hexagon is used to approximate a

base-station’s cell. Wireless LANs have seen popular use in the indoor

environment. Due to the complex nature of radio frequency behavior

in such environments, it becomes difficult to predict coverage and over-

lap among APs. Also a single wireless LAN can be composed of AP

5

devices from different vendors. This makes them loosely coupled in

nature and in fact the former standardized protocol used for inter-AP

communication is was only a recommended practice document rather

than a requirement. Thus it is not surprising that the handoff (or a

re-association) technique presented in the standard is not much differ-

ent from a fresh association. Because of these differences, the problem

of designing efficient handoff mechanisms becomes very different from

that of cellular networks.

Mobility Induced Locality

Handoff is the crucial link level function that enables users to move

while staying connected to a wireless network. This applies equally

well to the two types of networks we discussed before namely, cellular

networks and wireless LANs. As users move within a wireless network,

they induce a relationship among base-stations that they associate with

in succession. We illustrate this with an example shown in Figure

1.2. Here a user is moving in the direction shown by an arrow. The

user first associates to Base-station 1 and moves toward Base-station

2. Once the link quality degrades due to the user’s mobility (and the

resultant signal loss), the user performs a handoff to Base-station 2.

By doing this, the user has created what we call locality among base-

6

stations 1 and 2. Base-stations 1 and 2 are considered local in the sense

that users can obtain service from Base-station 1 and Base-station 2

in succession (or handoff in succession). This locality between Base-

station 1 and 2 was induced by the mobility pattern of the user in

this example. If we aggregate such locality created by all users over the

entire set of base-stations that comprise the network under question, we

observe an interesting locality based relation among the base-stations.

We call this concept, locality in mobility or mobility induced locality

among base-stations or access points. This locality can be thought of

as a set-theoretic ‘relation’ over the set of base-stations. Two base-

stations 〈B1, B2〉 are set to be local if users can perform a handoff from

B1 to B2. We refer to this as the locality relation RL.

In essence, such a notion of locality captures the mobility patterns

of all users in an aggregate manner to the granularity of the coverage

of a base-station. For example, if a large number of low power base-

stations (and thus small coverage region) are used to provide network

coverage to a certain area, they would exhibit good diversity in the

locality relation as opposed to using a few high power base-stations.

Also this locality is a function of how users ‘select’ base-stations. In

a tightly coupled system such as a cellular network where all devices

belong to the same manufacturer and hence use the same algorithm to

7

determine the next base-station during a handoff, the locality relation

would not vary from one user to another. However, in the scenario of a

wireless LAN, the overall locality observed by the network would be an

aggregate of the various individual decisions made by users executing

different handoff algorithms.

It is important to note the asymmetric nature of the RL relation.

In the example of Figure 1.2, the occurrence of a handoff from B1 to

B2 does not imply the definitive occurrence of a handoff from B2 to B1.

This can be seen as follows. We are given that B2 was the best base-

station according to a certain criteria when the user was at the edge

of the coverage of Base-station 1. Now, this does not imply that there

exists a location where Base-station 1 would be the best base-station

assuming that the user was on the edge of the coverage of Base-station

2. That is, the locality relation is asymmetric in nature.

It is trivial to see that for two base-stations to be considered local

according to user mobility, they need to have an overlapping area of

signal coverage. This is because the user needs to be able to perform

a handoff between the two base-stations. If they do not overlap, the

user might loose the network connection and initiate a new session with

another base-station. Thus, the notion of the user maintaining a single

session while moving within the network is important to defining the

8

Base−station 1 Base−station 2

Mobile User

Direction of motion

Figure 1.2: User mobility induces locality among base-stations.

concept of mobility induced locality.

1.1 The Research Problem

The concept of mobility induced locality among base-stations is very

basic to user mobility. This applies in a general fashion to all infrastruc-

ture wireless networks where most communication is performed through

a fixed infrastructure such as base-stations or access points. Represent-

ing such a locality (given by RL) can have very interesting ramifications

for the network designer. For example, this can be used to build better

network management schemes. It can allow for quality of service provi-

sioning among base-stations so as to provide a certain service guarantee

to users. This can also allow for the design of ingenious security and

network monitoring techniques to detect congestion and attacks.

9

In this dissertation, the first question we address is the follow-

ing: Does there exist an efficient method of representing the mobility

induced locality among base-stations or access points in such a manner

that diverse network applications can take advantage of it ? To answer

this, we first define the semantics of what ‘an efficient method’ should

be.

1.1.1 Representing Mobility Induced Locality

Before network designers can take advantage of the locality among base-

stations, we need a good structure that represents it. This structure

needs to exhibit certain important properties discussed below, which

will make it practically usable for diverse applications.

1. Distributed Representation: This structure should be repre-

sentable in a distributed fashion. This is because access points,

base-stations or users who desire to find other base-stations that

are local (according to user mobility) should be able to do so by

using local communication. That is, they should not be required

to contact a central server to find local information. Of course,

applications can trivially centralized a distributed representation

if the need arises, and thus a distributed representation gives im-

mense flexibility to the network designer.

10

2. Robustness to failures/changes: The structure should have meth-

ods associated with it that allow for resilience to failures at the

network side or at the user. Also there could be changes in the

physical environment that can alter the locality relations. For ex-

ample, construction of new walls, streets, or changes to an office

environment can bring about changes in the radio propagation

which translates to changes in the locality relation. The locality

structure needs to exhibit mechanisms that can let it adapt to

such changes and converge to a more accurate form as quickly as

possible.

3. Independence from complex RF models: The structure should not

depend on the validity or computations resulting from the usage

of any simple or complex radio propagation models. For example,

radio map based techniques should not be used. This is important

as it is not possible to contemplate all environments in which

one might apply this structure and thus one cannot guarantee

the validity of any radio propagation model. Also for any given

environment, a propagation model is only approximate and thus

errors can result.

4. Autonomous Nature: This structure will have various methods

associated with it, such as for resilience, adaptation to environ-

11

ment changes and so forth. These methods should not require

any human intervention such as a human dependent trigger or

a decision model. This allows for autonomous operation of di-

verse applications which use such a structure to capture mobility

induced locality.

In this work, we have proposed and evaluated a distributed graph

theoretic structure called Neighbor Graphs to represent mobility in-

duced locality. This structure applies to any wireless network in gen-

eral and exhibits all of the above properties. We evaluate how well

this structure represents locality by applying it to a real world prob-

lem in the context of wireless LANs. We examine the problem of high

handoff costs in WLANs and design efficient schemes to eliminate such

high costs. The success of the schemes depend on how well neighbor

graphs capture this locality and our testbed based evaluations and sim-

ulation based study throw ample light on this subject. Next, we discuss

specifics of the handoff problem in the context of wireless LANs.

12

1.2 The Cost of Mobility in Wireless

LANs

Handoff can be defined as the procedure or process which results

in the transfer of an existing association relationship (〈A, B〉), typi-

cally symbolizing network connectivity, across two different entities (

〈A, B〉 → 〈A, C〉). Here, the common entity (A) is usually the client

which changes connectivity at the link layer across two different base

stations (B, C). The exact implication of this transfer would depend

on the specifics of the wireless communication system used.

Handoff became an important problem in cellular networks in the

late 1980s and the early 1990s. This was primarily because of the in-

crease in an average user’s mobility due to the various cost-effective

means of transportation combined with the explosive growth of the cel-

lular phone industry. Consequently, there is a large body of research

on the handoff problem in cellular networks so much that the handoff

primitive has today become an integral part of the underlying commu-

nication technology (for example UMTS, W-CDMA etc., refer [3] for

further details).

While the handoff primitive allows for a user to be mobile and

stay connected to a wireless network, nevertheless this incurs a cost

13

– the handoff latency. We define this as the duration of time during

which the user stays disconnected to a network in a logical sense. That

is, the user cannot send or receive voice or data signals during this

period. Thus, while handoffs provided greater mobility to users they

nevertheless brought about a cost associated with user mobility.

We first examine the process of handoffs in wireless LANs and dis-

cuss the cost associated with it in terms of the handoff latency. Recall

that a wireless LAN consists of a set of access points (APs) or base-

stations which are connected over a backbone wired network usually an

ethernet. Multiple APs are used to expand the coverage of a single AP.

Below we discuss the various logical steps involved in obtaining net-

work service or performing a handoff as directed by the IEEE 802.11

standard for the wireless LAN.

Handoffs in Wireless LANs

Figure 1.3 shows the IEEE 802.11 state machine. This diagram concep-

tualizes the state of a client’s connection to the 802.11 based wireless

network. Any client desiring to connect to a given wireless network

starts at State 1, where it is not associated and not authenticated.

After performing authentication with an particular AP, the client tran-

sitions to State 2. Here, the client associates to the AP and enters

14

State 3 where it gains network access. The client can also re-associate

from State 2 to State 3 depending on whether the client had a prior

association to another AP.

We first discuss the specific functions that are available at the link

level which are implemented by every wireless interface manufacturer

that conforms to the IEEE 802.11 standard.

1. Association: This primitive allows a client to associate to an AP.

After this the client can send and receive wireless traffic through

the AP.

2. Re-association: Performing a re-association with an AP termi-

nates the client’s prior association with a different AP apart from

creating a new association. This can result in transfer of client’s

context information from the old-AP to the new-AP.

3. Scanning: A client can perform an active scan, which is an intru-

sive and reliable method of determining availability of APs. The

client sends explicitly probe messages to search for APs on specific

channels. Another method available in the standard, is a passive

scan, wherein the client passively monitors a channel for activity

and attempts to associate based on collected information. It be-

ing very opportunistic and slow in nature, few wireless vendors

use this method.

15

Deauthentication
notification

DeAuthentication
Notification

Disassociation
NotificationAssociation or

Reassociation

Successful

State 2

State 1

State 3

Class 1
Frames

Class 1 & 2
Frames

Class 1, 2 &
3 Frames

Authenticated,
Unassociated

Authenticated,
and associated

Unauthenticated,
Unassociated

Figure 1.3: The IEEE 802.11 state machine reflecting a user’s state of

connectivity at the link layer.

Most handoff vendors implement a very simplistic handoff tech-

nique wherein they just perform an active scan of all available channels

and associate to an AP that has the strongest signal as obtained by the

scan function. This is essentially a brute force technique of searching

for the next AP to handoff to. Hence, not surprisingly such handoff

algorithms incur a heavy cost in terms of the latency, during which

the client is unable to send or receive data packets. In Chapter 3, we

study such algorithms in detail through testbed experiments. We found

that the scan process incurred a latency of approximately 400 ms on

average.

The scan phase returns a candidate set of APs organized by cer-

tain criteria typically the signal strength of the transmission from the

16

AP. Depending on the security policy in effect, the client would per-

form an IEEE 802.11i [4] based authentication to authenticate itself to

the network and derive session level keys for per-packet confidentiality,

authenticity and integrity. The authentication is performed based on

the IEEE 802.1X [5] framework which uses the Extended Authentica-

tion Protocol (EAP) [6] to encapsulate a wide variety of authentication

methods. This gives the network users flexibility in choosing an authen-

tication method in a standardized and inter-operable fashion. The most

commonly used authentication method is based on the Secure Socket

Layer’s Transport Layer Security protocol (SSL-TLS) [7, 8] which uses

a public-key certificate based authentication.

We implemented the IEEE 802.1X framework as a part of the

founded Open1x [9] effort. The authentication latency using the SSL-

TLS authentication method was measured to be around 800 ms on av-

erage. This furthers the already high 500 ms latency of the scan phase

bringing the handoff costs to around 1.2 seconds. Clearly, such high

handoffs are a deterrent to a variety of applications, specifically voice

over IP and more generally synchronous multimedia connections. How-

ever, the authentication latency comes into effect only if the network

enforces strong IEEE 802.11i standard based authentication. Given the

vulnerability of wireless networks to the so-called parking lot attack[10],

17

a greater number of wireless networks are enforcing tougher security

measures on their served clients.

In addition to the above, if the network implements the Inter-

Access Point Protocol (IAPP) [11] an additional latency might be in-

curred. The IAPP is used by the APs as a vehicle to perform the

transfer of a roaming client’s context information (quality of service pa-

rameters, billing, etc.) to the AP to which the client has re-associated.

The IAPP 802.11f Draft Best Practice achieves this transfer in a secure

and inter-operable manner. We have implemented IAPP over a wireless

testbed and measured this latency to be around 15.3 ms on average.

This latency, albeit small when compared to the other dominating com-

ponents, still furthers the overall handoff latency.

Impact of High Handoff Costs

Based on this discussion, it is apparent that the handoff algorithms

used by 802.11 wireless NIC vendors cause the applications using the

wireless network to suffer due to the mobility of users. They experience

intermittent periods of dis-connectivity which can last between 400 ms

to 1.2 seconds depending on the security policy used. Many of the

current handoff techniques are essentially brute-force as they perform

a full scan of each channel during every handoff. Also the security

18

component of the handoff essentially implements a full-authentication

with each new AP that the client associates to, thus discarding any

trust and security relationship built with past APs.

For client applications especially those that are voice over IP

driven, there is a need to design handoff algorithms that make mo-

bility transparent from the higher layers. The core problem in this

thesis is to research and study the viability of mechanisms that reduce

the effect of user mobility on higher layers of the networking stack. Op-

timally, such mechanisms would totally eliminate the mobility effects

thus making client mobility transparent to any of the upper layers (net-

work, transport etc) and most importantly to the applications utilizing

the network. That is, if a higher layer were to perform a test using

an engineered sequence of packet transmissions, it should be unable to

distinguish user mobility.

In a cellular network due to the regular structure of the cells [12],

smooth and seamless handoffs are much easily achieved. Figure 1.4

shows an example of the regular structure used in a cellular network.

Also shown is a typical channel assignment using three channels. There

are a number of reasons for this. Firstly, the base-stations are fixed at

a particular location for a very long duration of time. Combining this

with the regular structure of cell neighborhood and a very deterministic

19

channel assignment used (example Figure 1.4) it is possible to pre-

program deterministic handoff patterns which can be downloaded into

the client device [13]. Secondly, all base-stations and compatible client

devices are typically bought from a single manufacturer (or more than

one with close collaboration) and thus they can be tightly coupled using

proprietary protocols to pass back and forth information which can aide

in smooth handoff decisions. Thirdly, because of this regular structure

even dynamic handoff decisions can be made in real time owing to the

regularities and tight coupling between the base-station devices [14, 15].

Wireless LANs pose an interesting and difficult problem because

of the above differences. Access points are typically placed in an irreg-

ular fashion which is mostly an artifact of the building structure and

the unpredictability of radio frequency (RF) behavior in indoor envi-

ronments. Thus, it is hard to impose any specific regular structure,

for example an hexagon, on the neighborhood of the BSSs. Also since

the AP and client equipment are expected to be inter-operable with

any manufacturer conforming to the standards, the system becomes

very loosely coupled with regard to information sharing between the

participating entities.

Because of the above observations, wireless LANs become an ex-

cellent playground to evaluate the impact of using a structure like neigh-

20

1

2

3

2 3

2

3

1 3

1

2

1

3 1 2

1

3

1

2

Figure 1.4: The regular structure of a cellular network.

bor graphs to represent mobility induced locality. The primary reason

for this comes from the observation that current handoff algorithms rec-

ommended by the IEEE standard do not take advantage of the locality

among access points or base-stations induced by user mobility patterns.

A structure that accurately captures the locality among base-stations

will lead to significant cost reductions during the handoff process. This

is primarily because a handoff is essentially a local computation and

the latency is attributed to the time required to collect information on

the local neighborhood of a user. Thus, by designing new handoff al-

gorithms that address each phase of the handoff process and studying

their performance, we will be able to understand the real world im-

pact of using neighbor graphs as a representation method for mobility

induced locality among base-stations.

21

1.3 Key Contributions

The primary contribution of this work is the distributed graph theoretic

representation of mobility induced locality (relation RL) which applies

to any wireless network in general. We discuss the notion of Neigh-

bor Graphs which capture this locality in a distributed fashion. We

present various methods that provide robustness to failures and adapt

to changes in the physical environment. These methods do not require

any human intervention and thus allow for autonomous maintenance of

neighbor graphs.

Vertices in a neighbor graph represent access points. Directed

edges reflect handoff relationships between APs. The graph can be

constructed in an autonomous manner by observing handoffs performed

by clients. Thus, using a neighbor graph, the set of APs that form the

local neighborhood of an AP in a graph theoretic sense, captures the

locality in a client’s association patterns.

We evaluate the efficiency of this structure by applying it to a real-

world problem in the context of wireless LANs. We examine the handoff

problem in WLANs due to the high latency costs. We study various

algorithms that address how the different phases of the handoff process

take advantage of the locality in the wireless network. Specifically we

leverage neighbor graphs to proactively transfer a roaming station’s

22

context to the potential set of candidate APs (which store them in

a cache) to eliminate the context-transfer latency due to the IAPP

[11] communication. We use neighbor graphs to design a re-keying

scheme called proactive key distribution which takes advantage of the

initial full-authentication and the established trust relationship between

neighboring APs to generate session key material when a client roams to

the neighbor AP. This method incurs negligible overhead and virtually

eliminates the need for a full and costly IEEE 802.1X authentication

while providing the same security guarantees.

We study algorithms that improve the active scan latency using

this locality information represented as a graph. We study the various

standard and opportunistic optimizations that can improve the scan

latency without compromising on the quality of the candidate set of

APs returned to the client. We evaluate the performance of all the

various mechanisms through rigorous testbed based implementations.

Throughout this dissertation, we implement and study the mechanisms

over an in-building testbed spanning four floors of an office building and

with a capacity of up-to 40 APs in operation. Through simulations we

study the performance of the techniques over various randomly gener-

ated topologies. This case study shows that neighbor graphs are an

efficient and practically usable structure to represent mobility induced

23

locality in wireless networks.

1.4 Organization of Thesis

This dissertation is organized as follows: The next chapter presents the

concept of locality in user mobility in greater detail. We present some

analysis to show how this locality manifests itself into the associations

performed by roaming wireless clients. From this we derive the concept

of neighbor graphs as a structure that captures locality for a wireless

network.

In Chapter 3, we present a detailed study of the handoff process

based on observations over an in-building testbed network. In partic-

ular we note the high cost and the high variation in the costs involved

with the scan phase. We also study the factors that contribute to this

high latency and the variations observed. We performed this study with

the handoff algorithms implemented by three different popular wireless

interface vendors.

Chapter 4 presents the first evaluation of our hypothesis and the

concept of neighbor graphs as a structure that captures the locality

among APs in a wireless network. We discuss methods of constructing

and maintaining the neighbor graph structure in an autonomous and

a light-weight fashion. We evaluate the proactive caching technique

24

which keeps a roaming station’s context one-hop ahead, thus eliminat-

ing the need for an intrusive IAPP communication during the handoff.

We study this approach through a full-fledged testbed based implemen-

tation and examine its asymptotic properties through simulations over

various randomly generated topologies.

Chapter 5 presents the fast re-keying technique called proactive

key distribution. This mechanism leverages existing security material

generated during a full IEEE 802.1X authentication to securely generate

key material when the client roams to a neighboring AP. This key

distribution technique virtually eliminates the need for a full IEEE

802.1X authentication which would have happened otherwise as stated

in the IEEE 802.11i standard. This reduces the authentication costs

of around 800 ms to about 2-3 ms. We study the performance of this

algorithm through a testbed based implementation.

Chapter 6 discusses algorithms to improve the latency of an active

scan. The locality information is represented as an overlap graph, an

extension to the above discussed neighbor graph structure. We discuss

various algorithms that perform standard and opportunistic optimiza-

tions to slice the scan latency and bring it under the 50 ms barrier for

voice over IP[16] applications. As always we study the performance

through a client-side implementation and show the reduction in the

25

latencies. We study various performance properties through rigorous

simulations.

The research presented in this dissertation which specifically in-

cludes the representation of locality using neighbor graphs, its au-

tonomous construction and maintenance methods along with the hand-

off mechanisms, is a crucial step toward making mobility transparent to

the higher layers of the networking stack. As a lesson from this work,

I strongly believe that the concept of locality induced by user mobility

and the methods of capturing locality as a theoretical structure (as a

graph or otherwise) are fundamentally important to developing mecha-

nisms that make mobility transparent to user applications. I hope that

the discourse through the remainder of this prose shows the path to

this observation.

26

Chapter 2

Locality in Mobility and Neighbor

Graphs

The great tragedy of Science – the slaying of a beautiful hypothesis by

an ugly fact.

– Thomas Husley

Locality is a well studied concept in Computer Science. Locality

gave birth to a very fundamental technique known as caching [17]. The

principle behind caching can be stated as follows: Demand for a certain

object A at time T suggests that with high probability there would be

a similar demand for an object B at time T + δ, where object B is

related to A in the following manner. Either A = B or there exists a

distance function D, which defines the ‘distance’ between two objects

in an abstract manner, such that D(A, B) is bounded.

27

Caching is a general concept that takes advantage of this locality.

When a request for the object A originates, the cache stores the ob-

ject A for future and also potentially prefetches all such local objects B

such that D(A, B) is within a certain bound. The bound on D(A, B)

essentially quantifies the notion of locality in this case. The underly-

ing assumption here is that there is locality in the pattern of requests.

Since the cache prefetches such local objects, subsequent requests can

be served directly from the cache. This brings about valuable optimiza-

tions in the turnaround time for the requests.

Locality exists in various arenas in computer systems. Some ex-

amples are as follows. Locality of reference [18] commonly means that

there is locality in references to memory locations, disk sectors, file re-

quests etc. Locality exists in program execution [19] which is used by

various caches present in central processing units. There exists both

spatial and temporal locality in streams of requests arriving at web

servers [20]. Thus, caching based on locality has been extensively used

to speed up system operations, be it file, web or memory requests etc.

As the core concept in this thesis, we explore locality among base-

stations or access points that form a wireless network. We focus on

locality created by user mobility. There has been no prior research

that explicitly states and explores this form of locality in wireless en-

28

vironments. Handover techniques in cellular networks indirectly take

advantage of this locality by ‘reserving’ channels at an impending cell

boundary. However, the regular structures of a cell enable very precise

determination of the next base station and this has prevented system-

atic study of locality in an algorithmic fashion. We now state this

principle of locality in a formal manner.

Locality Principle: Locality in user mobility can be stated formally as

follows. Consider the example shown in Figure 2.1. A user is U moving

with a constant speed s. We allow for the user to change direction, but

assume for simplicity that his speed is constant. He is known to be at

location X at time t = T1. Now at time t = T2 such that |T2 − T1| ≤ δ

where δ is bounded, the location of user U is expected to be accordingly

bounded to a certain region Y as shown. The radius of this circular

region is equal to δ ∗ s. The user might be located anywhere in this

circular region depending on how frequently he changes direction. A

more involved analysis can show a similar bound on this region Y ,

allowing for the user’s speed to vary while placing realistic bounds

on his acceleration. In an in-building wireless LAN environment, this

locality is constrained by the building structures. That is, the physical

barriers in an in-building environment will skew the distribution of the

users location with the region Y shown in Figure 2.1 making certain

29

locations more probable than others.

A direct method of ‘observing’ this locality could be, for example,

to employ a location determination system such as Horus [21] or Radar

[22] which periodically measure a user’s location. As the user moves

through a wireless network, this locality manifests itself into the user’s

observed association pattern, i.e., the patterns of APs it associates with

during this motion. We refer to this as mobility induced locality. We

explore this further in Section 2.1. In Section 2.2 we discuss the notion

of neighbor graph and how they capture this locality in a theoretical

sense.

In this dissertation, we develop efficient handoff algorithms that

improve the handoff costs by taking advantage of the locality induced by

user mobility much like the way caching works. Similar to the concept of

prefetching related items and storing them in a cache, the techniques

of proactive caching and proactive key distribution (discussed later)

prefetch and perform certain precomputations to reduce the handoff

latency. In Section 2.3 we discuss such applications of locality based

on neighbor graphs.

30

Location X, time = T1
Speed = s

Region Y covering possible locations
of user U at time = T2User U

Figure 2.1: Example illustrating the locality in mobility.

2.1 Locality in Association Patterns

A Wireless LAN consists of multiple APs to provide extended coverage.

A network user associates with an AP to become a part of the wire-

less network. The IEEE 802.11 standard defines association as a service

that establishes an access point/station (AP-STA) mapping and results

in the invocation of the distribution system services for the STA. Mo-

bility of the user can cause it to move out of the coverage region of its

associated AP and move into the region of one or more APs operating

on non-overlapping channels. At this point, the user associates with a

different AP and dis-associates with the previous one through a single

procedure termed re-association.

If we look at the sequence of APs that a user associates to in suc-

cession, we can observe the locality manifesting itself in this sequence.

That is, if a user re-associates between two APs ap1 and ap2, these

31

APs cannot be too far apart. That is, they have to be bounded in their

physical separation. This follows directly from the principle of locality

stated in the previous section. We call this sequence an association

pattern as defined below:

Association Pattern: Define the association pattern Γ(c) for client

c as {(ap1, t1), (ap2, t2), . . . , (apn, tn)}, where api is the AP to which the

client re-associates (new-AP) at time ti and {(api, ti) , (api+1, ti+1)} is

such that the handoff occurs from api to api+1 at time ti+1; the client

maintains continuous logical network connectivity from time t1 to tn.

The effect of the locality principle can be reflected onto this asso-

ciation pattern in the following manner: Consider the example shown

in Figure 2.2. Here, the user is associated to an AP apj at time t = Tj.

Thus, its association pattern has an entry (apj, Tj). Now suppose that

the user is associated to an AP apj+k at time Tj+k, that is , the kth

entry after (apj, Tj) in the association pattern is (apj+k, Tj+k).

The locality principle discussed earlier places a bound on the max-

imum distance traveled by the user in a given time frame. This, com-

bined with the fact that an AP has a finite communication range es-

sentially suggests that the physical distance between apj and apj+k is

also bounded indirectly because of the locality principle. This is seen

as follows: The maximum distance that the user could have traveled

32

during δ = Tj+k−Tj is given by δ∗s, where s is the speed of motion. As

Figure 2.2 shows, Duser denotes the spatial separation between user’s

locations at times Tj and Tj+k. Thus, Duser ≤ δ ∗ s. Since, the user

is in communication range with apj at time Tj and with apj+k at time

Tj+k, the maximum distance between apj and apj+k, denoted by Dap is

bounded by Dap ≤ 2 ∗R + δ ∗ s, where R is the maximum range of an

AP. This result follows directly by applying the triangle inequality.

The above analysis shows how the two APs apj and apj+k are

related. They can be thought of as being related via a parameter k,

the ‘distance’ in the association pattern. Smaller values of k indicates

a stricter bound. For the special case where k = 1, it shows the basic

locality relation between successive associations and the corresponding

APs. This relationship between the APs apj and apj+1 will appear

in multiple association patterns belonging to different users. In other

words, apj and apj+1 have a high probability of appearing as succes-

sive associations in any association pattern attributing to user mobility

(such as walking patterns). This defines a relationship between apj and

apj+1.

33

User U at time Tj

Distance Duser

Distance Dap

User U at time Tj+k

APi

APi+1 AP i+m−1

APi+m

Figure 2.2: Example illustrating the locality in association patterns.

2.2 Neighbor Graphs

We now create a formal model that captures such relationships between

APs attributing to locality. We define a ‘re-association relation’ R as a

formal relation between APs. This relates APs that have a high chance

of occurring together in an association pattern. We define this formally

as follows:

Re-association Relationship: Two APs, say, api and apj are

said to have a re-association relationship RL if it is possible for an

STA to perform an 802.11 re-association through some path of motion

between the physical locations of api and apj, for example as shown

using the dashed lines in Figure 2.3(a). In a set theoretic manner, the

tuple 〈api, apj〉 ∈ RL.

We note two important properties of RL:Firstly, RL is asymmetric

in nature. That is, 〈api, apj〉 ∈ RL ; 〈apj, api〉 ∈ RL. This means

that while it is possible to re-associate from api to apj, the other way

34

AP1

AP2 AP3

AP4

AP5

AP6

(a) The physical Environment.

AP1

AP2
AP3

AP6 AP5

AP4

(b) The coverage map.

Figure 2.3: Example of a wireless network and a user moving through

the indicated path.

around need not be true. This asymmetry comes from the nature of

RF in indoor environment and also depends on the criteria used by the

wireless cards to make handoff decisions. Also as a note the relation

RL is non-transitive.

Relations can also be expressed in a graph theoretic manner,

which allows us to build algorithms that take advantage of such struc-

ture. We thus, define a neighbor graph in the following manner:

AP Neighbor Graph: Define a undirected graph G = (V, E)

where V = {ap1, ap2, . . . , apn} is the set of all APs (constituting

the wireless network under consideration), and there is an edge e =

(api, apj) between api and apj if they have a re-association relation-

ship. Define Neighbor(api) = {apik : apik ∈ V, (api, apik) ∈ E}, i.e. it

is the set of all neighbors of api in G.

Given a wireless network, one can construct and maintain a neigh-

35

bor graph structure in a dynamic manner. The edges in the neighbor

graph represent the relation RL and have a finite lifetime. That is, if no

user re-associates along a particular edge for a suitably long period of

time, that edge is removed from the neighbor graph. Edges are added

by observing handoffs performed by users. Such autonomous methods

of edge-addition and deletion keep the neighbor graph fresh and in sync

with changes to the network topology.

The neighbor graph can be implemented either in a centralized

or a distributed manner. In this dissertation, we implement it in a

distributed fashion for one set of applications. The construction and

maintenance of this data-structure (in a distributed fashion) is dis-

cussed further in Chapter 4. We also implement it in a centralized

fashion for the proactive key distribution algorithm which addresses

the problem of fast authentications during handoff, discussed further

in Chapter 5.

Consider an example shown in Figure 2.3(a). A user is moving

within an in-building wireless environment as shown by the dashed

arrows. There are six APs as shown. Figure 2.3(b) shows the coverage

areas of the respective APs. As the user moves around, it performs

handoffs between these APs. Figure 2.4(a) shows the neighbor graph

constructed by observing a large number of handoffs. As can be seen

36

more edges are bidirectional indicating symmetry however, a few edges

are unidirectional. Later in Chapter 4, we present the neighbor graph

constructed over a realistic in-building testbed network.

AP1

AP2
AP3

AP4

AP5

AP6

(a) View from the 802.11 layer.

AP1

AP2
AP3

AP4

AP5

AP6

(b) Localized propagation of sta-

tion’s context and localized scan-

ning.

Figure 2.4: View of the locality as captured by the neighbor graph.

2.3 Discussion

The neighbor graph structure captures the locality in mobility to the

granularity of STA-AP associations. Thus, two APs that have an edge

between them are considered ‘local’. This structure in essence defines

locality at a level that can be used by the wireless networking layer.

An edge in the neighbor graph relates two APs as being ‘local’. Thus,

with a collection of such edges forming a graph, we have a structure

that specifies what locality means at the network level. As a note,

any user movements below the granularity of an 802.11 association are

37

‘invisible’ to the network and are hence not captured. Thus, neighbor

graphs provide the network designer with a well defined algorithmic

structure on top of which various mechanisms can be built. They lay

the ground work for mechanisms that deal with user mobility. We now

summarize how the concept of locality in mobility has been employed

to address the problem of handoff in wireless LANs.

Proactive Caching: This technique propagates a station’s context in-

formation to a localized set of APs such that the context information

is readily available at an AP prior to a re-association. For example, in

Figure 2.4(b), the context information stored at ap3 is propagated to

neighboring APs ap2, ap4 and ap5 via the proactive caching method.

This algorithm refers to the underlying neighbor graph to discover the

APs ap2, ap4 and ap5 as being local to ap3. We study this technique

fully in Chapter 4. Since mobility has locality, this technique performs

well as long as the designated APs can store a user’s context in their

limited memory.

Proactive Key Distribution: This mechanism generates key material for

fast re-authentication of a station during handoff. This key material

is generated prior to the re-association and propagated to a candidate

set of APs. This set is constructed using the neighbor graph which

returns the localized set of neighboring APs. By restricting the propa-

38

gation of the key material to a limited set of APs that are considered

‘local’ to the user’s current AP, the probability that a generated key

will actually be used is greatly increased. Also this places strict bounds

on the computation, communication and storage costs since this local

neighborhood is bounded in size. Also a localized propagation reduces

the chances that a randomly compromised AP can pose a threat to a

moving user. We evaluate this approach in detail in Chapter 5.

Fast Active Scanning: Prior to re-associating with an AP, a station has

to perform a scan of all channels to determine the set of APs along with

their channel mapping. This information is used to create a priority list

of APs according to the signal strength of the transmission from the

AP. The results of this scan essentially gives the user a localized view of

the network topology. This localized view is created by using structures

such as neighbor graphs which define locality for the network. Using

this local information, a client can reduce the number of channels to

scan and the time spent on each channel waiting for responses from

APs. This optimization is possible with the knowledge of the exact set

of APs to scan along with their channel mapping. We shall observe in

Chapter 6 that the currently used brute-force scan algorithms can be

greatly optimized by taking advantage of locality in mobility to restrict

the scan to a smaller set of APs and corresponding channels.

39

Chapter 3

The MAC Layer Handoff Process

Every great advance in science has issued from a new audacity of

imagination.

- John Dewey.

The IEEE 802.11 standard does not recommend any specific hand-

off algorithm for client vendors to implement. The standard, however,

defines certain MAC-level functions such as association, scanning, etc.,

which aide the mobile clients in making handoff decisions. In general,

the goal of a handoff algorithm would be to provide current informa-

tion about in-range APs to the client. This information could consist

of the signal-to-noise ratio of the transmissions from each AP, the ca-

pabilities (data-rates, QoS, etc.) and potentially also load information

in some form. Essentially the information about the set of APs in

range gives a local view of the network to the user. As we shall ob-

40

serve from the analysis presented in this chapter, the current handoff

algorithms essentially use a brute-force approach where they perform

a full scan of each channel during the handoff. Using our concept of

mobility induced locality as discussed in Chapter 2, such algorithms

stand to benefit from prefetched information about the local view of

the network and performing a localized search on specific channels for

specific APs. This local view can be obtained from a neighbor graph

which captures locality among APs in a graph theoretic manner.

The goal of this chapter is to evaluate the costs of performing

handoffs in current wireless LANs as driven by the IEEE 802.11 spec-

ification. This would establish a baseline against which we can later

compare the schemes that we build based on a representation of mobil-

ity induced locality as discussed earlier in Chapter 1. Specifically, we

perform a study of the MAC level handoff process based on empirical

measurements. The cost of this process is the latency incurred by the

handoff algorithm during which the client could potentially be discon-

nected from the data service. Thus, a good handoff algorithm would

provide accurate and concise information about potential ‘next-APs’

and incur minimum possible latency during this process. We conduct

a study of the handoff process based on measurements performed on

indoor wireless testbed networks. The goal of this study is threefold:

41

1. To study the distribution of handoff latencies incurred by mobile

clients.

2. To observe the various 802.11 management messages exchanged

during handoff and perform a logical analysis by categorizing the

messages as belonging to various MAC-level primitives defined in

the standard. This would lead to an outline of a tentative handoff

algorithm.

3. To study the various factors, such as density of APs, response

time, etc, which affect the handoff latency and to quantify such

effects.

The measurements were done on three co-existing wireless net-

works (utilizing APs from different vendors) using three wireless NICs

from different vendors. We analyze the handoff latencies by breaking

down the handoff process into phases to assess the contribution of each

phase to the handoff latency. Our results show that the probe phase

is the significant contributor to the handoff latency. We performed an

analysis of the probe phase and conclude with an evaluation of possible

optimizations.

This chapter is organized as follows. Section 3.1 discusses the de-

sign of the experiment setup. Section 3.2 presents the observed handoff

process divided into various phases and corresponding latencies. Sec-

42

tion 3.3 shows the distribution of the handoff latencies with the de-

tailed breakup into various contributing phases. Section 3.4 presents a

detailed analysis of the probe phase which is the primary contributor

to the MAC level handoff latency. We summarize the key insights from

this study in Section 3.5.

3.1 Design of the experiments

The experimental setup consisted of three in-building wireless networks,

a mobile wireless client, and a mobile sniffing system. As shown in

Figure 3.1 , the basic methodology behind the experiments, is to use

the sniffer (in close proximity to the client) to capture all packets of

interest related to the client for the analysis. This section describes the

testbed networks, the sniffing system, and the client setup in detail.

3.1.1 The Wireless Network Environment

All the experiments were done in the A.V. Williams Building at the

University of Maryland, College Park campus. This building hosts three

co-existing wireless networks namely cswireless, umd and nist spanning

four floors in all. The three networks have overlapping coverage, with

umd covering the whole building, nist having half the coverage of umd,

and cswireless covering one floor of the building. They are described

43

below :

1. The umd network: This network has 35 Cisco 350 APs distributed

over four floors. This network uses open authentication. The

gateway does a MAC address based access control for the data

packets, and this does not have any effect on the MAC layer

handoff process. The APs are configured to use channels 1, 6 and

11 only.

2. The nist network: This network has 17 APs covering roughly

half of the building. The APs are built using a Soekris board

[23], each using a Demarctech Prism 2.5 200mW wireless card,

running OpenBSD 3.1 and using the hostap driver [24] for the

AP functionality on the wireless interface. This network uses

open authentication without access control. Again the APs use

channels 1,6,11 only.

3. The cswireless network: This network has 8 Lucent APs in total.

It uses a static shared key for WEP encryption. The APs are

present on 8 different channels.

Methodology of each Experiment

The experiments were done in the following manner. A person with

a mobile station walks through the building following a fixed path of

44

BACKBONE NETWORK

Access Points

Wireless station

Handoff

SNIFFER

Figure 3.1: The Handoff Measurement Setup

travel (to minimize effects from the layout of APs) during each run. The

duration of the walk, which is the duration of a single run of the exper-

iment is approximately 30 minutes. Each experiment is characterized

by the (i) wireless NIC used at the mobile station and (ii) the wire-

less network used. The mobile client sends negligible periodic ICMP

messages to the network to maintain and display connectivity. Thus as

the station moves, it performs handoffs as it leaves a BSS and enters

another.

During the experiment on one wireless network, the other two co-

existing networks were shutdown i.e., the environment had absolutely

no RF interference apart from the entities taking part in the experi-

ment. Also the experiments were done when there was negligible user

activity (during the early morning hours of weekends). This was done

in order to minimize the effects of channel contention on the various

latencies measured. Thus, the results in this work reflect zero con-

45

tention, and we reason that channel contention will only worsen the

handoff latencies.

The mobile station is accompanied by a sniffing system which is

designed (see Section 3.1.2) to capture packets of ‘interest’ i.e. the

management frames constituting the handoff process. The sniffer is

always in close proximity to the client, i.e. as close as physically possible

and also moves with the station during the experiment. This helps in

validating the sniffing system in the following manner :

1. Since the sniffer and station are in close proximity, any packets

received by the client, will also (accuracy measured in the next

section) be captured by the sniffer.

2. Frames sent by the station on a neighboring channel with respect

to the sniffer, will be captured with high probability.

3.1.2 The sniffing process

In this section, we describe the sniffing system used, the accuracy of

our sniffing method and its limitations.

Capturing packets on one channel

The wireless NICs based on the Prism 2.5 chipset from Intersil [24] have

a monitor mode in which the NIC captures all traffic (management and

46

data) on one particular channel and passes it to the driver. The wlan-

ng linux driver [25] provides the functionality to capture the traffic, the

ethereal sniffing program was used to capture and filter the traffic. A

laptop with a PCMCIA prism 2.5 based wireless NIC was used to sniff

one channel.

We measured the accuracy of this setup by having a source ma-

chine send sequenced UDP packets over a wireless network to a sink

machine on the wired segment. The experiment was done in an RF

free environment (i.e. no other STAs or APs were present in the RF

medium). The sniffer was placed in close proximity to the source to

reflect the sniffing setup in our later experiments. We observed a loss

percentage of 0.2% averaged over five experiments, each sending 1032

packets in an interval of 10 seconds.

Figure 3.2: The loss percentage of the sniffer on neighboring channels.

The traffic was sent on channel one.

47

Capturing packets on neighboring channels

Depending on the data rate, packets sent on one channel can be cap-

tured by the above sniffer on a neighboring channel. We performed

an experiment to empirically observe the accuracy of sniffing traffic on

neighboring channels.

The experiment consists of a source machine transmitting se-

quenced UDP packets through the wireless network on channel 1. The

sniffer is progressively moved from channel 1 through 11. Figure 3.2

shows the loss ratio for various data rates. As can be seen, for packets

sent at a data rate of 1Mbps, the sniffer can capture packets up to three

neighboring channels (in either direction) with a maximum loss of 12%

1. As a note, handoffs with missing packets (which can be detected

using missing sequence numbers), were not taken into account during

the analysis in this work. Hence although the loss effects the number

of handoffs that can be studied, it does not compromise the accuracy

of the latency measurements.

We reason to our best knowledge that because of poor selectivity

of the radios used in the wireless NICs employed for sniffing, a strong

signal on an adjacent channel is treated as a weak signal on the sniffing

channel (since the transmitting client is always in close proximity to

1At 5.5Mbps and 11Mbps, no traffic was observed on any neighboring channel.

48

the receiver). This phenomenon, also known as adjacent channel in-

terference [26], is being exploited by our sniffing mechanism to capture

packets transmitted by the client on adjacent channels.

Design of the sniffer system

Based on the above observations we design the sniffing system in the

following manner. The frames of interest are the Probe Requests and

Responses, the Re-association and the Authentication frames. These

frames are sent at the lowest data rate allowed i.e. 1Mbps (for maxi-

mum range and compatibility).

1. For frames sent by the STA (at 1Mbps), the sniffer (which is

in close proximity) has to be capturing packets in a neighboring

channel (or on the same channel), as discussed in Section 3.1.2.

2. For frames sent by an AP on a particular channel, the sniffer has

to be capturing packets on the same channel for high accuracy.

We require this constraint because the AP is not in close proximity

to the sniffer.

Based on the above principles, we designed the sniffing system for the

three networks in the following manner:

1. For the umd and the nist networks: Here the APs are on channels

1, 6 and 11. Thus the sniffer needs one NIC capturing packets on

49

each of these channels. We use two Linux machines, one with a

single wireless NIC and the other with two wireless NICs (PCM-

CIA based) which sniff the three channels independently. The

captured data is then merged using the timestamp on each packet.

To minimize the inaccuracy caused by the inconsistencies of the

system clock in the two machines, they were synchronized using

the Network Time Protocol (NTP) through a point-point ethernet

connection between the machines. Throughout the experiment,

we maintained a clock accuracy of 80 µs or better between the

machines (an error of less than 0.08% for latency of 1 ms). The

GNU/Linux machines we used were IBM ThinkPad laptops with

Pentium III 866 MHz and 256 MB RAM. The software for sniffing

on each NIC was as discussed in Section 3.1.2.

2. For the cswireless network we used six Linux machines, sniffing

all eleven channels. Five machines had two wireless NICs and

one had a single wireless NIC. The machines were synchronized

using NTP in a similar manner. The traces were combined and

the duplicate packets were removed using the 802.11 sequence

numbers.

50

3.1.3 The clients

The wireless NICs studied for the handoff process were from three dif-

ferent vendors, namely, Lucent Orinoco, Cisco 340, and ZoomAir prism

2.52. The mobile station performing the handoff was an IBM Thinkpad

T30 with Pentium IV and 512 MB RAM. The machine was running

RedHat Linux 8.0 as the operating system.

Station performing a handoff

Probe Response

Probe Request

(broadcast)

Probe Request

Probe Response

Authentication

Reassociation Request

All APs within range on all channels

Authentication

PROBE DELAY

AUTHENTICATION DELAY

A

D

C

B

E

F

G

New AP

D
IS

C
O

V
E

R
Y

P
H

A
S

E

Old AP

Message Identifier

H

Reassociation Response

P
H

A
S

E
R

E
A

U
TH

E
N

TI
C

A
TI

O
N

REASSOCIATION DELAY

TO
TA

L
H

A
N

D
O

FF
 L

A
TE

N
C

Y

IAPP: Ack Security block

IAPP: Send security block

IAPP: Move Request

IAPP: Move Response

Figure 3.3: The IEEE 802.11 Handoff Procedure (followed by most

cards)

2The secondary firmware versions on these NICs were as follows : Lucent Orinoco

– 7.28.1, Cisco 340 – 4.25.10 and ZoomAir – 0.8.3.

51

3.2 Logical steps in a handoff

Here, we discuss the handoff process as observed in our experiments.

Based on an observation of the sequence of messages, we first discuss

the logical steps involved, and we analyze the latencies later in Section

3.3.

3.2.1 Logical steps in a handoff

The complete handoff process can be divided into two distinct logical

steps:(i) Discovery and (ii) Re-authentication as described below.

1. Discovery: Attributing to mobility, the signal strength and

the signal-to-noise ratio of the signal from a station’s current AP might

degrade and cause it to begin to loose connectivity and to initiate a

handoff. At this point, the client might not be able to communicate

with its current AP. Thus, the client needs to find the potential APs

(in range) for a new association. This is accomplished by a MAC layer

function: scan. During a scan, the card listens for beacon messages

(sent out periodically by APs at the default rate of 10 ms), on assigned

channels. Thus the station can create a candidate set of APs prioritized

by the received signal strength.

There are two methods of scanning defined in the standard : ac-

tive and passive. As the names suggest, in the active mode, apart from

52

listening to beacon messages (which is passive), the station sends addi-

tional probe broadcast packets on each channel and receives responses

from APs. Thus, the station actively probes for the APs.

2. Re-authentication: The station attempts to re-authenticate

to an AP according to the priority list. The re-authentication pro-

cess typically involves an authentication and a re-association to the

posterior AP. The re-authentication phase involves the transfer of cre-

dentials and other state information from the old-AP. As mentioned

earlier, this can be achieved through a protocol such as IAPP [27]. In

the experiments detailed in this paper, we do not utilize the standard

IAPP communications, but we do permit the proprietary inter-access

point communications (between APs of the same vendor). Thus, the

authentication phase is just a null authentication in our experiments.

Figure 3.3 shows the sequence of messages typically observed dur-

ing a handoff process. The handoff process starts with the first probe

request message and ends with a re-association response message from

an AP. We divide the entire handoff latency into three delays which we

detail below.

1. Probe Delay: Messages A to E are the probe messages from an

active scan. Consequently, we call the latency for this process,

probe delay. The actual number of messages during the probe

53

process may vary from 3 to 11.

2. Authentication Delay: This is the latency incurred during the

exchange of the authentication frames (messages E and F). Au-

thentication consists of two or four consecutive frames depend-

ing on the authentication method used by the AP. Some wireless

NICs try to initiate re-association prior to authentication, which

introduces an additional delay in the handoff process and is also

a violation of the IEEE 802.11 [28] state machine.

3. Re-association Delay: This is the latency incurred during the

exchange of the re-association frames (messages G and H). Upon

successful authentication, the station sends a re-association re-

quest frame to the AP and receives a re-association response frame

and completes the handoff. Future implementations may also

include additional IAPP messages during this phase which will

further increase the re-association delay.

As a note, according to our analysis presented above, the messages

during the probe delay form the discovery phase, while the authentica-

tion and re-association delay form the re-authentication phase. Apart

from the latencies discussed above, there will potentially be a bridging

delay caused by the time taken for the MAC address updates (using

54

the IEEE 802.1d protocol) to the ethernet switches forming the distri-

bution system (the backbone ethernet). The results in our experiments

do not reflect this latency.

Figure 3.4: Handoff Latencies - Cisco 340 STA on umd (Cisco AP)

network. Zero values are not plotted on the log-scale.

3.3 Experiment Results

Three wireless NICs and three different networks give nine experiments

to run. Each experiment is characterized by the wireless NIC and wire-

less network being used. The experiments were performed as discussed

in Section 3.1.

As a representative set, Figures 3.4,3.5 and 3.6 show the raw-

breakup of the handoff latencies on the umd network for the three

client NICs used. Figure 3.4 shows the handoff latencies for the Cisco

55

Figure 3.5: Handoff Latencies - Lucent STA on umd (Cisco AP) net-

work.

340 STA, Figure 3.5 shows the latencies for the Lucent STA and Figure

3.6 shows the latencies for the ZoomAir STA. Figures 3.5 and 3.6 show a

fourth delay, namely, de-authentication delay which comes into picture

because of a different sequence of handoff messages followed by these

NICs (Figure 3.9), discussed later.

Figure 3.7 shows the average values of the total handoff latency

for the nine experiments along with the standard deviation (shown

graphically on the bars). Figure 3.8 shows the average values of the

four delays in the nine experiments.

Based on these results, the following direct conclusions can be

drawn.

1. Probe delay is the dominating component: From Figure

3.8 it is clear that the probe delay accounts for more than 90%

56

Figure 3.6: Handoff Latencies - ZoomAir Prism 2.5 NIC on umd (Cisco

AP) network. Zero values are not plotted on the log-scale.

of the overall handoff delay, regardless of the particular STA, AP

combination. Also even in the number of messages exchanged

between the STA and the APs involved, the probe phase accounts

for more than 80% of these in all cases. Thus any handoff scheme

that uses techniques/heuristics that either cache or deduce AP

information without having to actually perform a complete active

scan clearly stand to significantly improve the handoff process.

2. The wireless hardware used (AP,STA) affects the hand-

off latency: We can infer this by observing two facts. Firstly,

keeping the AP fixed, we can see that the client wireless card af-

fects the latency. Figure 3.7 compares the average values of the

latency among all nine configurations. Keeping the AP fixed, we

can see a maximum average difference of 367.5 ms (Lucent STA

57

Figure 3.7: Handoff Latencies - Average values and standard deviation

shown for all nine experiments.

and Cisco STA with Cisco AP). This is a huge variation by just

changing the client card being used. Secondly, keeping the client

card fixed, the AP also affects the latency but to a much lower

extent (around 60% less): The maximum average difference (be-

tween the two APs for any fixed client) is 150.2 ms (Lucent AP

vs Cisco AP for ZoomAir STA). This supports our previous result

that the probe function is the dominating component since it is a

firmware function (and implemented differently by different ven-

dors) of the NIC cards. Refer to Section 3.4.2 for further analysis

and reasoning on this observation.

3. There are large variations in the handoff latency: Apart

from the variations in the latency with different configurations,

58

Figure 3.8: Handoff Latency Breakup - Comparison of the nine exper-

iments.

we find significant variations in the latency from one handoff to

another within the same configuration. This is also supported by

the high standard deviations (Figure 3.7). Cisco STA on Cisco

AP (umd network) has the largest standard deviation of 63.2ms.

Also, we observe that the larger the handoff latency, the higher

the variation.

4. Different wireless cards follow different sequence of mes-

sages: This is an observation from looking at the traces offline.

We found that the ZoomAir and the Lucent NICs follow a slightly

different procedure from the Cisco NIC, as shown in Figure 3.9.

The figure shows that the card sends a re-associate message prior

to authentication which it performed when the AP sends a de-

authentication message. The figure also shows the modified se-

mantics of the re-association delay and the authentication delay

59

Station performing a handoff

Probe Request

(broadcast)

New AP

All APs within range on all channels

T
O

T
A

L
H

A
N

D
O

F
F

 L
A

T
E

N
C

Y

Probe Response

Probe Request

Probe Response

Reassociation Response

Authentication

Authentication

Reassociation Request

AUTHENTICATION DELAY

D
E

A
U

T
H

E
N

T
IC

A
T

IO
N

 D

E
LA

Y

R
E

A
S

S
O

C
IA

T
IO

N

 D

E
LA

Y

PROBE DELAY

Reassociation Request

Deauthentication

Figure 3.9: The Handoff Procedure as observed on the Lucent and

ZoomAir wireless NICs.

for the ZoomAir cards. In order to attribute the delay caused

by this modified sequence, we call the latency between the first

re-association and the first authentication message as the de-

authentication delay. This latency includes the de-authentication

message as shown in Figure 3.9.

Thus the probe delay is accountable for the high handoff latency

and also the variations in some cases. We present a detailed analysis

of this phase based on the traces collected in the above experiments.

60

Figure 3.10: The distribution of the probe-wait times with respect to

the number of probe responses received for the Cisco STA.

3.4 Analysis of the Probe Phase

In this section, we present a detailed analysis of the probe phase based

on the experiment data. Presented first is the specification of the active

scan algorithm from the standard ([28]), a discussion of the observa-

tions, and suggestions for improvement of the probe latencies.

3.4.1 The Probe Function Specification

The probe function is the IEEE 802.11 MAC active scan function and

the standard specifies this as follows (modified for brevity):

For each channel to be scanned,

1. Send a probe request with broadcast destination, desired SSID,

and broadcast BSSID.

61

2. Start a ProbeTimer.

3. If medium is not busy before the ProbeTimer reaches MinChan-

nelTime, scan the next channel, else when ProbeTimer reaches

MaxChannelTime, process all received probe responses and pro-

ceed to next channel.

As can be seen from the algorithm, MinChannelTime and Max-

ChannelTime are two parameters that determine the duration of scan

for each channel. Figure 3.11 shows the messages in a probe phase.

The STA transmits a probe request message and waits for responses

from APs on each channel. Let Probe-Wait latency be the time an STA

waits on one particular channel after sending the probe request. We

measure this as the time difference between subsequent probe request

messages. Thus the STA waits on one channel for MinChannelTime,

and if any traffic (data or management frames) was observed or a probe

response was received, the STA further extends the probe-wait period

to MaxChannelTime. Thus according to the above procedure, the traf-

fic on the channel and the timing of probe response messages affects

the probe-wait time, i.e. the probe-wait time should be expected to be

distributed between a MinChannelTime and a MaxChannelTime value.

Hence the total probe delay, say t, for probing N channels, would be

bounded by:

62

STA

Probe Request

Probe Responses

APs on channel 1

Channel 1

Channel 2

Channel N

Probe Request

Probe Responses

Probe Responses

Probe Request

PR
O

BE
 W

AI
T

LA
TE

NC
Y

Figure 3.11: The messages in an active scan.

N ∗MinChannelT ime ≤ t ≤ N ∗MaxChannelT ime

In the next subsection, we present the empirical observations on

the probe-wait time. We contrast this with the expected behavior ac-

cording to the standard.

3.4.2 The Probe-Wait time: Observations

We study the probe-wait times for the three wireless NICs under study

over the umd network.

63

Figure 3.12: The distribution of the probe-wait times with respect to

the number of probe responses received for the Lucent STA.

1. Cisco 340 STA: Figure 3.10 shows the various probe-wait times

with respect to the number of probe response messages received

by the Cisco STA on the umd (Cisco AP) network. The scatter-

plot shows two clusters being formed, which more-or-less corre-

spond to the MinChannelTime and MaxChannelTime values from

the active scan algorithm. When no probe responses are received,

(and the channel has no traffic, probably since there were no APs

present) the probe-wait time is equal to the MinChannelTime

which is around 17ms for the Cisco NICs. When there are re-

sponses (or traffic) on the channel, the NIC spends MaxChan-

nelTime on the channel which is around 38ms. The Cisco STA

sends 11 probe requests in all, one on each channel.

64

Figure 3.13: The distribution of the probe-wait times with respect to

the number of probe responses received for the ZoomAir STA.

2. Lucent STA: Figure 3.12 shows the distribution for the Lucent

STA on the umd network. Here the probe-wait times do not

have significant correlation with the number of probe responses.

Also the Lucent STA sends only 3 probe requests, one each on

channels 1, 6 and 11. The probe requests are sent at 1Mbps, and

can be received by the APs on the neighboring channels. Also

the variation is not much, having a standard deviation of 4.2ms.

3. ZoomAir STA: Figure 3.13 shows the probe-wait times for the

ZoomAir STA on the umd network. Like the Lucent STA,

ZoomAir also sends only 3 probe requests on channels 1, 6 and

11. The probe-wait times for the first two requests cluster around

63ms while the times for the third probe-wait clusters around

73ms. The third (i.e. the last) probe wait time is measured as the

65

Figure 3.14: Cumulative distribution of the maximum probe response

times observed by the three wireless NICs under study on the umd

network.

difference between the last probe request and the re-association

request frame sent by the STA. Thus the additional 10ms (on

average) potentially goes into the processing of the probe results,

making a decision about the AP to re-associate to and sending

the re-association request. However, we did not observe a similar

difference in the probe-wait times for the other STAs.

From the above analysis, it is clear that vendors implement dif-

ferent probing methods which reflect the large variation in the probe

delays from one STA to another.

66

Figure 3.15: Cumulative distribution of the maximum probe response

times observed by the three wireless NICs under study on the cswireless

network.

3.4.3 Probe-Wait Optimizations

In this section, we discuss some optimizations on the probe-wait time

based on the observations. In particular, we analyze the probe re-

sponses to determine a good value for the MinChannelTime and Max-

ChannelTime parameters which effect the probe-wait time.

Let AP api be on channel L and assume that STA C is perform-

ing a probe. We define the probe response time from api to be the

time between the probe request message sent by C on L and the cor-

responding probe response sent by the AP api. The maximum probe

response time is the time between the probe request and the last probe

response received by the STA C from any AP on channel L. Ideally

the probe-wait time on every channel should be no larger than the

67

Figure 3.16: Cumulative distribution of the maximum probe response

times observed by the three wireless NICs under study on the nist

network.

maximum probe response time on that channel.

Figure 3.14 shows the cumulative distribution function of the

probe response times for all three wireless NICs (on the umd network).

From the graph it can be seen that all probe responses are received by a

station within (approx.) 11ms for the umd network. Also in 90% of the

cases all probe responses are received within (approx.) 6.5ms. Hence

a direct conclusion is that a MinChannelTime of around 6.5ms would

a very good indicator of the presence of APs on the channel. And a

MaxChannelTime of around 11ms would be sufficient to capture all the

probe responses. This optimization can bring about a drastic reduction

in the overall handoff latency. Even using a pessimistic probe-wait time

of 11ms, brings the handoff latency for the Cisco STA to around 121ms

68

Figure 3.17: The average probe delay values, and the estimated probe

delay values based on the pessimistic calculation of the MaxChannel-

Time for the nine scenarios. Also shown is the percentage improvement

next to the estimated probe delay values.

for the 11 probe requests (from an average of 399.8ms, a reduction of

around 70%), for the Lucent and ZoomAir to 33ms for the 3 probe

requests (reduction of around 12% for Lucent and around 83.2% for

ZoomAir).

Figures 3.15 and 3.16 show the same distribution calculated for

the experiments done on the cswireless and the nist networks respec-

tively. For the nist network, all responses are received within 9ms, while

for cswireless the value is around 15ms. Using these pessimistic esti-

mates (MaxChannelTimes), Figure 3.17 shows the expected probe-wait

time improvements for the nine scenarios.

69

3.4.4 Hints for Fast-Handoff Strategies

Based on the observations from the previous sections, we present some

simple heuristics to improve the probe-wait latency and also the overall

handoff latency.

Reducing the Probe-Wait Latency

Based on observations from Section 3.4.3, we have the following meth-

ods to improve the probe-wait latency. These heuristics basically esti-

mate a better fit for the MinChannelTime and MaxChannelTime pa-

rameters, thereby improving the probe-wait time:

1. An offline empirical analysis of the network as done in this work,

can help come up with a good static value for these parameters

which could be broadcast in the beacon messages or probe re-

sponse messages from the APs.

2. The average AP density (i.e. number of APs visible per channel)

could be broadcast in the beacon or probe response messages. The

STA can wait for the corresponding number of probe responses

and decide to switch to the next channel.

3. The STA could wait sufficiently long on one channel for the last

probe response and empirically learn the maximum probe re-

70

sponse time. It can thus dynamically refine the probe wait time

accordingly.

Other Optimizations

Handoff heuristics that require the least number of active scans will

tend to perform the best. The following methods (or a combination of

them) might be used to design heuristics and these are all attempts to

avoid an active scan:

1. Using a distributed data-structure such as Neighbor Graphs.

The AP-neighborhood relationship can be captured as a data-

structure stored in the APs in a distributed manner. Each AP

maintains a list of its neighbors, and using this information the

STA performing the handoff can proactively determine its next

AP instead of performing the scan process. Since this information

it not dynamic (i.e. the AP topology does not change rapidly),

it can bring about significant improvements in the overall hand-

off latency by potentially eliminating the probe phase completely.

We discuss this initiative further in Chapters 4 and 6.

2. Query an external agent that provides hints on the potential next

APs and their channels i.e a map of the APs based on the location.

Pack et. al. in [29], [30] propose a technique in this category.

71

3. Interleave scan messages with data during normal connectivity

and use that information to perform a partial active scan (or no

scan at all) during the handoff. Also passive scanning (listening

for beacon messages) might be performed during normal connec-

tivity to build up the list of APs.

4. Since the probe-wait time depends on the number of probe re-

sponses, another strategy might be to create an ordering among

the APs such that a single AP or a small set of APs is respon-

sible for probe requests (i.e. the number of probe responses is a

constant).

3.5 Discussion

In this chapter, we performed a detailed analysis of the handoff process,

the factors that bring about the high latency and the variation and the

various messages/steps involved. We find that out of the three basic

functions (probe, authentication and re-association), carried out by the

STA, the probe phase has the dominant latency regardless of the AP-

STA being used.

We also performed a detailed analysis of the probe phase, and

account for the large variation to the probe-wait time which essentially

72

depends on the particular heuristic employed by the wireless client NIC

being used. We observed that two specific parameters namely Min-

ChannelTime and MaxChannelTime have a significant effect on the

overall handoff latency.

In our experiments we used wireless PC cards from three vendors,

namely Lucent Orinoco, Cisco Aironet, and ZoomAir and the APs from

Lucent, Cisco and Demarctech. This provided good diversity in our

experiments, and we find that there is large variation in the latency

with the particular AP-STA hardware being used. Also we find that

the sequence of messages exchanged during the handoff process can also

differ with the STA being used.

The probe phase which dominates the MAC layer handoff latency

essentially discovers the ‘position’ of the client in the wireless network

relative to the APs. In Chapter 2, we discussed how the locality ‘binds’

APs that have a re-association relationship. Thus, between successive

handoffs the results of the active scans are very much related. This fol-

lows directly from the locality principle presented in Chapter 2. Specif-

ically if a user performs a handoff from api to apj, this implies that

apj was the AP with the strongest signal as a result of the active scan,

while api was the best AP as a result of the previous active scan. This

shows the relationship between api and apj as captured by the neighbor

73

graph.

The current active scan algorithms used by popular vendors are

very simplistic in the sense that they do not utilize any information

about the local topology. As a result, they have to scan each and

every channel regardless of whether APs are present or not. And so

they incur very high latencies which will not meet the expectations of

the Fourth generation wireless networks. This is because the handoff

latencies we measured far exceed guidelines for jitter in voice over IP

(VoIP) applications where the overall latency is recommended not to

exceed 50ms [16].

Since the results of successive active scans (as a part of successive

handoffs) are very much related by locality, this brings about the possi-

bility of interesting optimizations which take advantage of this locality.

Neighbor graphs provide a robust and autonomous mechanism of cap-

turing this locality among APs in a graph theoretic sense. In Chapter

6, we design active scan algorithms which employ ‘prefetched’ infor-

mation that gives a local view of the network, to perform fast active

scans.

74

Chapter 4

The Proactive Context Caching

Algorithm

From a network architecture point of view, a wireless LAN very closely

follows the design of a wired network based on the IEEE 802.3 Ether-

net standard. In wired ethernet, end-user machines are connected to a

bridge/hub which acts as a layer-2 relay. A collection of such bridges

are connected to a switch. In a wireless LAN, an access point (AP)

acts as a layer-2 bridge between 802.11 based wireless media and the

wired ethernet. Although the IEEE 802.11 standard also specifies a

Wireless Distribution System (WDS) wherein the backbone network is

built using multi-hop link-level connections, the most common architec-

ture followed by today’s widely deployed WLANs is similar to the one

shown in Figure 4.1. Figure shows a set of N APs connected via ether-

75

net backbone to a gateway and a central server. Such a backbone could

be expanded using a network of switches to support a greater number of

APs. The optional gateway routes traffic to an external network (such

as the Internet). The central server performs the role of authentica-

tion, accounting and authorization (AAA) and is hence called a AAA

server. This communicates with the APs using an AAA protocol such

as RADIUS [31], for performing the various AAA functions.

The most important distinction of a wireless network over its

wired counterpart is the mobility of its users. In the current network

architecture which spans the hardware and the various layers of the net-

working stack, reflections of user mobility or other characteristics which

distinguish one deployment from another are absent. We illustrate this

with an example. Figure 4.2 shows two different physical environments

where the same network consisting of 3 APs is deployed. From an ar-

chitectural and topological perspective, one can observe that currently

both deployments are considered indistinguishable. That is, there is no

state information present internally in the network that captures key

differences between different deployments.

Lets elaborate on the above issue. In the first situation shown

in Figure 4.2, the 3 APs cover a large conference hall. Here, all APs

roughly experience similar load and have a similar pattern of roam-

76

Wireless Clients

AP 1 AP 2 AP N

Access Points

To the internet/
external network

Gateway/RouterNetwork Server (AAA)
such as RADIUS

Figure 4.1: Network architecture of a typical 802.11 based WLAN.

ing users. This happens as the user density is typically distributed

uniformly across the conference hall. The second situation shows three

APs covering a classroom and the corridors around it. Here, AP1 covers

bulk of the classroom where most of the users are physically located.

AP1 serves users which are mostly stationary and tend to load the

wireless network, while the other two APs serve users who are mostly

roaming and do not tend to create a lot of network load. Thus, the

physical environment where a wireless network gets deployed can com-

pletely alter the network usage pattern in terms of load, handoffs, etc,

as observed by each individual AP. These observations have been re-

flected earlier in empirical network studies such as [32, 33, 34, 35].

From a topological perspective, both networks of Figure 4.2 have

the same network topology, while they experience widely different us-

age and service patterns. To the network and link level entities, such as

APs, backend servers and gateways, both scenarios are logically indis-

77

tinguishable. This is primarily because the IEEE 802.11 architecture

(as discussed earlier) does not contain any means or apparatus for cap-

turing the effects of the physical environment in which the network is

being deployed. Lack of this basic ability is the prime hindrance to the

development of sophisticated algorithms which can dynamically adapt

and fine tune the network to the demands and characteristics of the

wireless users.

Mobility Induced Locality

We had presented the concept of locality in user mobility in Chapter

2. This principle states that there is strong correlation between succes-

sive associations in an association pattern (which is defined as the set

of APs that a client associates in succession). This locality is the key

characteristic that distinguishes one deployment from another. In the

example of Figure 4.2, the users move differently and hence associate

differently, thus bringing about wide dis-similarities in the usage pat-

terns although both networks have the same topology from an network

standpoint. This difference in locality is a property of the physical

environment which manifests itself into the usage patterns.

In Chapter 2, we discussed the notion of neighbor graphs. We

discussed how neighbor graphs capture this locality as an asymmetric

78

relation between APs. We construct a relationship between APs based

on the mobility characteristics of the users in the wireless environment.

In particular, we construct a directed edge between two APs api and apj

if a handoff occurred from api to apj. This signified that the two APs

api and apj were related due to locality. The graph thus constructed

is called a neighbor graph. In essence, neighbor graphs capture the

mobility topology of the wireless network as discussed earlier and can

be constructed by real-time examination of the handoffs occurring in

the network in either a distributed fashion at an AP, or in a centralized

fashion at the AAA server. A path in a neighbor graph consisting of a

set of directed edges represents a mobility path or an association pattern

between the vertices, or APs. Therefore, given any edge, e = (u, v),

the neighbors of v represent the local neighborhood of the vertex/AP v.

This information can be used to construct a set of potential next-APs

for handoff. We present efficient distributed algorithms to construct

and maintain the neighbor graph for a wireless network in Section 4.2.

The neighbor graphs constructed for the example of Figure 4.2

would bring out the differences between the usage patterns. The neigh-

bor graph structure is readily available to the network layer in the form

of state information at the APs or at a central server. This lays the

groundwork for developing algorithms which improve the handoff la-

79

tencies by taking advantage of this locality information available at the

network layer in the form of neighbor graphs.

Proactive Caching

Previous studies of wireless network mobility have shown that users

tend to roam in what we call discrete mobility where the user utilizes

the network while stationary (or connected to the same base station)

and before moving the user ceases operation only to continue using

the network after moving to a new location [32, 33, 34, 35]. That is,

the users do not usually move while using the network because the

majority of current network applications and equipment do not easily

lend themselves to what we call continuous mobility where the user

moves while utilizing the network.

Voice based applications are the usual application in continuous

mobility as seen in the current cellular networks. We expect voice and

multimedia applications will serve as the catalyst for continuous mobil-

ity in Wi-Fi networks much as they did for the cellular networks once

multi-mode handsets and end-user applications become more widely

available.

Supporting voice and multimedia with continuous mobility im-

plies that the total latency (layer 2 and layer 3) of handoffs between

80

base stations must be fast. Specifically, the overall latency should not

exceed 50 ms to prevent excessive jitter [16]. Unfortunately, the vast

majority of Wi-Fi based networks do not currently meet this goal with

the layer 2 latencies contributing approximately 90% of the overall la-

tency which exceeds 100 ms [36, 37]. [36] suggests various mechanisms

to reduce the layer 2 latency to within 20 to 60 ms depending on the

client. Handoffs involve transfer of station context [38], which is the

station’s session, QoS and security related state information, via inter-

access point communication. This transfer only furthers the handoff

delay by an average 15.37 ms.

One method of reducing the context transfer latency of handoffs

is to transfer or cache context ahead of a mobile station in a pro-active

fashion. Unfortunately, the previous work on context transfer has fo-

cused solely on reactive context transfers, i.e. the context transfer is

initiated only after the mobile station associates with the next base

station or access router resulting in an overall increase in the latency

of the handoff rather than reducing it [37, 39]. The problem with pro-

active approaches, however, is how to determine the set of potential

next base stations without examining the network topology and man-

ually creating the set.

From our discussion on locality, it is evident that this set of po-

81

���
�

���
�

���
�

AP 1

AP 2

AP 3
���
���	

	

�
�

A Conference Room

AP 2
AP 3

AP 1

A Classroom

Figure 4.2: Same network deployed in different physical environments.

tential next base stations is essentially the local neighborhood of the

client with respect to the APs. Based on our locality principle, neigh-

bor graphs capture this locality in form of a graph theoretic structure

readily available at the APs in a distributed manner or at a central

server. Thus, it makes algorithmic sense to construct the candidate set

of APs proactively by taking advantage of the locality as captured by

the neighbor graph. Because of the validity of the locality principle, as

discussed in Chapter 2, such schemes are bound to predict this set of

candidate APs very accurately.

In this chapter, as an application of neighbor graphs, we develop

an algorithm, called proactive caching that pre-positions a roaming sta-

tion’s context one-hop ahead of its current AP. We have implemented

neighbor graphs using the IEEE Inter-Access Point Protocol ([39]). We

find that using neighbor graphs the re-association latency reduces from

15.37 ms to 1.69 ms. We also find through simulations that as users

82

become more mobile the effectiveness of our solution increases, i.e.

the context cache hit ratio increases to over 98% in most cases with

reasonable cache sizes. The proactive context caching and forwarding

algorithm presented in this work has been included in the IAPP stan-

dard [39]. These empirical results strongly confirm the validity of the

locality principle which was shown analytically in Chapter 2. It also

shows the usefulness of neighbor graphs as a vehicle that captures lo-

cality in a graph theoretic sense and makes it readily available to the

network layer for possible optimizations.

The rest of this chapter is organized as follows. The next section

discusses the context transfer process in detail. Section 4.2 recapitulates

neighbor graphs and discusses their construction methods in detail.

Section 4.3 discusses the proactive caching algorithm based on neighbor

graphs. Section 4.4 provides an analytic evaluation of the performance

of the caching mechanism which dictates the handoff latency resulting

from the cache hits/misses. Section 4.5 evaluates the proactive caching

approach experimentally through a testbed implementation and using

extensive simulations. Section 4.6 discusses prior research work related

to the proactive caching solution. We summarize the key contributions

in this chapter in Section 4.7.

83

4.1 Context Transfer Process

A roaming client’s context consists of state information created dur-

ing the first association performed by the client. Such state informa-

tion could consist of service agreement parameters, QoS information,

client capability information, etc. The IEEE standard on inter-AP

communication [39], specifies such a protocol, called the Inter-Access

Point Protocol (IAPP) for the transfer of a station’s context during

re-association. Figure 4.3 shows the messages exchanged during the

re-association phase. For a complete description of the handoff process

and its constituent phases, the reader is referred to Chapter 2.

The IEEE IAPP standard specifies two types of interaction for

completing context transfer [40]. The first form of interaction occurs

between APs during a handoff and is achieved by the IAPP protocol,

and the second form of interaction is between an AP and the RADIUS

server[41].

IAPP plays a significant role during a handoff. The two main

objectives achieved by inter-access point communication are : (a) Single

Association Invariant: Maintaining a single association of a station

with the wireless network, and (b) the secure transfer of state and

context information between APs involved in a re-association. The

client context information [38] can include but is not limited to IP flow

84

context, security context, quality of service (QOS) information, header

compression information and accounting information.

Association and re-association events change a station’s point of

access to the network. When a station first associates to an AP, the

AP broadcasts an Add-Notify message notifying all APs of the station’s

association. Upon receiving an Add-Notify, the APs clear all stale asso-

ciations and state for the station. This enforces a unique association for

the station with respect to the network. When a station re-associates

to a new-AP, it informs the old-AP of the re-association using IAPP

messages, see Figure 4.3.

At the beginning of a re-association, the new-AP can optionally

send a Security Block message to the old-AP, each of which acknowl-

edges with an Ack-Security-Block message. This message contains secu-

rity information to establish a secure communication channel between

the APs. The new-AP sends a Move-Notify message to the old-AP re-

questing station context information and notifying the old-AP of the

re-association. The old-AP responds by sending a Move-Response mes-

sage.

For confidentiality of the context information, IAPP recommends

the use of an AAA server such as RADIUS (to obtain shared keys) to

secure the communication between APs. The RADIUS server can also

85

Request

Reassociation

Reassociation
Delay

New APSTA

ResponseReassociation

Old AP

Move−resp

Move−notify

Security−Block

Acknowledge

Figure 4.3: IAPP interaction to facilitate context transfer during re-

association.

provide the address mapping between the MAC addresses and the IP

addresses of the APs, which is necessary for IAPP communication at

the network layer.

Although the IAPP communications serve to fulfill the manda-

tory DS functions, they invariably increase the overall handoff latency

because of their reactive nature. In our testbed implementation, we

observed the IAPP context transfer latency to be average of 15.39ms

(Section 4.5.1). In this chapter, we leverage neighbor graphs for opti-

mizations which eliminate this context transfer latency with high prob-

ability.

86

4.2 Neighbor Graphs

In this section, we summarize the definition of neighbor graphs. The

reader is referred to Chapter 2 for a more detailed discussion of this

concept.

As seen in Figure 4.3, the re-association phase primarily involves

the transfer of station context from the old-AP to the new-AP. In or-

der to improve the re-association latency, the context transfer process

(using IAPP) must be separated from the re-association process. This

can be achieved by providing the new-AP with the client-context prior

to the handoff, or pro-actively. Since we are unable to predict the mo-

bile station’s movement, we leverage neighbor graphs for determining

the candidate set of potential new-APs to perform the transfer prior

to the handoff. Neighbor graphs provide the basis for identifying this

candidate set.

4.2.1 Definitions

Re-association Relationship: Two APs, say, api and apj are said to have

a re-association relationship if it is possible for an STA to perform an

802.11 re-association through some path of motion between the physical

locations of api and apj.

The re-association relationship depends on the placement of APs,

87

signal strength and other topological factors and in most cases corre-

sponds to the physical distance (vicinity) between the APs. Given a

wireless network, we can construct and maintain the neighbor graph

structure in a dynamic manner.

Association Pattern: Define the association pattern Γ(c) for client

c as {(ap1, t1), (ap2, t2), . . . , (apn, tn)}, where api is the AP to which the

client re-associates (new-AP) at time ti and {(api, ti) , (api+1, ti+1)} is

such that the handoff occurs from api to api+1 at time ti+1; the client

maintains continuous logical network connectivity from time t1 to tn.

AP Neighbor Graph: Define a undirected graph G = (V, E) where

V = {ap1, ap2, . . . , apn} is the set of all APs (constituting the wireless

network under consideration), and there is an edge e = (api, apj) be-

tween api and apj if they have a re-association relationship. Define

Neighbor(api) = {apik : apik ∈ V, (api, apik) ∈ E}, i.e. it is the set of

all neighbors of api in G.

The neighbor graph can be implemented either in a centralized

or a distributed manner. In this work, we are implementing it in a

distributed fashion, with each AP storing its set of neighbors. The

construction and maintenance of this data-structure (in a distributed

fashion) is discussed next.

88

Corresponding Neighbor GraphPhysical Topology of the Wireless Network

C

A

C

A

E

B

Access Point

B
D

E

D

Movement of the Station

Figure 4.4: Figure shows an example placement of APs and the corre-

sponding neighbor graph.

4.2.2 Construction and Maintenance

The neighbor graph can be automatically generated (i.e. learned) by

the individual access points over time. There are two ways that APs can

learn the edges in the graph. Firstly, when an AP receives an 802.11 re-

association request frame from a STA, the message contains the MAC

(BSSID) of the old-AP and hence establishes the re-association relation-

ship between the two APs. Secondly, receipt of a Move-Notify message

from another AP via IAPP also establishes the relationship. These two

methods of adding edges are complementary, and the graph will remain

undirected.

Each AP maintains the edges locally with a timestamp. This

is necessary in order to eliminate the outliers, i.e. incorrectly added

edges, or edges that need to be ‘un-learnt’ due to changes in the net-

work topology (such as changes in AP positions, etc). For example, an

89

edge could be added incorrectly as follows: Consider a situation where

a client goes into the power save mode and wakes up in a different

location to re-associate to an arbitrarily different AP on the wireless

network. A timestamp based approach would guarantee the freshness

of the neighbor graph and eliminate the outlier edges over time.

The autonomous generation also eliminates the need for any sur-

vey or other manual based construction methods. As a result, this also

makes the data-structure adaptive to dynamism in the re-association

relationship (i.e. changes in AP placements, physical topology changes,

etc).

The graph is generated by executing the following pseudo-code

at each AP. aphost is the AP on which the algorithm is assumed to be

executing:

1. Receipt of a re-association request: When a client c re-associates

to aphost from api, add edge api as a neighbor of aphost (i.e. aphost

adds api to its list of neighbors).

2. Receipt of an IAPP Move-Notify: When aphost receives a Move-

Notify from api, add api to the list of neighbors.

90

4.3 Proactive Caching

We employ neighbor graphs to develop a distributed algorithm that

proactively pre-positions a roaming station’s context to potential ‘next-

APs’. This strategy, called proactive caching, maintains the context

one-hop ahead of the mobile user. The APs, being memory-constrained

embedded systems, store the context of such mobile users in a fixed size

context-cache. The proactive caching algorithm specifies the context

forwarding technique and the caching details.

Caching strategies are based on some locality principle, eg: local-

ity of reference, execution etc. In this environment, we have locality in

the client’s association pattern. In this section we discuss the proactive

caching strategy, based on locality of mobility as discussed earlier in

Chapter 2.

The following functions/notations are used to describe the algo-

rithm:

1. Context(c): Denotes the context information related to client c.

2. Cache(apk): Denotes the cache data-structure maintained at apk.

3. Propagate Context(api, c, apj): denotes the propagation of client

c’s context information from api to apj. This can be achieved by

sending a Context-Notify message from api to apj (as discussed

91

later in section 4.3.1).

4. Obtain Context(apfrom, c, apto): apto obtains Context(c) from

apfrom using IAPP Move-Notify message as discussed in section

4.1.

5. Remove Context(apold, c, apnghbr): apold sends a Cache-Invalidate

message to apnghbr in order to remove Context(c) from

Cache(apnghbr).

6. Insert Cache(apj, Context(c)): Insert the context of client, c, in

to the cache data-structure at apj. Perform an LRU replacement

if necessary.

The Proactive Caching Algorithm: The access points use the fol-

lowing algorithm for proactive caching:

At each AP, the cache replacement algorithm used is a least re-

cently used (LRU) approach. The cache can be implemented as a

hash table over a sorted linked list (according to the insertion time).

This would give a cache lookup of O(1) and a cache replacement of

O(1) as well. The method Propagate Context requires sending the

context to each neighbor and hence would incur an execution cost

of O(degree(apj) ∗ propagation time), where propagation time is the

round-trip time for communication between the two APs under consid-

92

Algorithm 1 Proactive Caching Algorithm (apj, c, api)

Require: Algorithm executes on AP apj, api is the old-AP, c is the
client.

1: if client c associates to apj then
2: for all api ∈ Neighbor(apj) do
3: Propagate Context(apj, c, api)
4: end for
5: end if
6: if client c re-associates to apj from apk then
7: if Context(c) not in Cache(apj) then
8: Obtain Context(apk, c, apj)
9: end if

10: for all api ∈ Neighbor(apj) do
11: Propagate Context(apj, c, api)
12: end for
13: end if
14: if client c re-associates to apk from apj then
15: for all api ∈ Neighbor(apj) do
16: Remove Context(apj, c, api)
17: end for
18: end if
19: if apj received Context(c) from api then
20: Insert Cache(apj, Context(c))
21: end if

93

eration.

During the initial learning of the neighbor graph, the clients are

expected to incur the usual re-association latency. Specifically, the first

client to traverse an edge incurs a high handoff latency. But, the edge is

added to the graph, and the cost is amortized over subsequent handoffs.

Thus after O(|E|) high latency handoffs, the algorithm converges to its

expected performance. The algorithm has a O(1) running time per

re-association.

4.3.1 Modifications to IAPP

Request

Reassociation

Reassociation
Delay

Request

Reassociation

Old AP

Reassociation
Delay

New APSTA

NeighborAPsResponseReassociation

Old AP

Cache−notify

Cache−response

Move−resp

Move−notify

Security−Block

Acknowledge

Cache−Invalidate

NeighborAPs

Cache−Invalidate

New APSTA NeighborAPs

Cache−response

Cache−notify

ResponseReassociation

Security−Block

Acknowledge

Move−notify

Move−resp

Cache−response

NeighborAPs

(b) Reassociation with IAPP and cache hit(a) Reassociation with IAPP and cache miss

Figure 4.5: Message sequences during a handoff with context caching.

In this section, we discuss the modifications to an early draft of

IAPP [27] to incorporate proactive caching using neighbor graphs. The

modifications consist of two new messages; Cache-Notify, and Cache-

94

Response for the purposes of implementing the Propagate Context()

method discussed in Section 4.3. These changes are now included in

the IAPP standard [39].

Figure 4.5 shows the modified re-association process (compared

to Figure 4.3). For the sake of clarity, the probe and authentication

messages are not shown.

1. Cache-Notify: This message is sent from an AP to its neighbor

and carries the context information pertaining to the client. It is

sent following a re-association or an association request.

2. Cache-Response: This is sent in order to acknowledge the receipt

of Cache-Notify. A timeout on this message results in removal of

the edge, as the neighbor AP might not be alive.

3. Cache-Invalidate: This message is sent from an AP to its neighbor

in order to remove the context information from the neighbor’s

cache. It is sent following a re-association or a disassociation

involving an STA leaving the AP.

As can be seen from Figure 4.5, a cache-hit avoids the Move-

Notify and Security-Block communication latency during re-association

resulting in a faster handoff.

The knowledge of neighboring APs at each AP is essential for

95

the effective operation of proactive caching. To avoid the management

overhead of manually maintained neighbor graphs, IAPP now includes

the algorithms from Section 4.3.

4.4 Performance Analysis

In this section we present an analysis of the proactive caching algorithm

based on neighbor graphs. We present two useful properties of the

caching algorithm: (i) Firstly, we show that the cache sizes have a upper

bound, i.e., with sufficient memory there exists a reasonable cache size

which would result in a 100% cache hit,i.e., fast re-association with

probability one, (ii) Secondly, we show that the scheme benefits users

that are affected by the latency the most, i.e., users that perform higher

number of handoffs on average have a higher probability of a cache hit.

Upper bound on the cache size

Assuming there is an upper bound on the number of users associated to

any AP, there is an upper bound on the cache size, i.e., the cache would

not grow beyond a particular limit. Hence, providing each AP with

sufficient memory would guarantee a 100% cache hit ratio. Let G =

(V, E) be a neighbor graph. Let Clientlist(api) denote the set of clients

associated to api. If client c re-associates from api to apj, Context(c)

96

is propagated to Neighbors(apj) and removed from Neighbors(api).

Hence :

Context(c) ∈ Cache(api) =⇒ c ∈
⋃

apk∈Neighbor(api)

Clientlist(apk) (4.1)

From Equation 4.1 it follows that :| Cache(api) |≤ Napi
∗ M where

Napi
=| Neighbor(api) |= degree(api) and M = maximum number of

clients associated to any AP. Summing up Equation 4.1 for all vertices,

we get the total memory used by caches over all APs :

∑
api∈V

| Cache(api) |≤ M ∗
∑

api∈V

Napi
= M ∗ 2∗ | E | (4.2)

Since M is bounded for any AP, the above equation gives an upper

bound on the memory requirement at an AP.

Characterizing the Cache Misses

As discussed earlier, the caching algorithm is based on the locality of

mobility principle. Since re-association relationships are captured in

the neighbor graphs and client-context is forwarded to all neighbor

APs, technically we would expect a 100% cache hit ratio for the re-

associations. This assumes that the neighbor graph has been learned

and the cache size is unlimited (i.e. the cache at each AP is large

enough according to Equation 4.1).

97

The above assumption takes us to the two kinds of cache misses

possible during a re-association:

1. Re-association between non-neighbor APs: When a re-association

occurs between two APs that are not neighbors, the station-

context does not get forwarded and results in a cache miss. The

edge subsequently is added to the graph through the learning

process. Thus when a wireless network is first brought up (or re-

booted), the initial re-associations in the network would be cache

misses.

2. Context evicted by LRU replacement: This happens when the

client-context is evicted at the new-AP because of other clients

re-associating to neighboring APs.

As discussed in the previous section, the first type of cache miss

would occur only once per edge and has a nominal effect towards the

performance in the long run. The second type of cache miss depends

on mobility of other users, and hence dictates the performance of the

algorithm. Presented below is a simplified analysis which calculates the

probability distribution of the cache lifetimes of a client’s context.

Let the cache size at a particular AP AP1 be n. Lets divide the

time into discrete intervals and assume for simplicity that handoffs are

synchronized with these time steps. Lets assume that we are interested

98

AP
1

LEVEL ZERO

LEVEL ONE

LEVEL TWO

AP
2

AP
3

AP
4

AP
9

AP
8

AP
7

AP
6

AP
5

Cache with n entries

Figure 4.6: Figure shows an AP AP1 and its immediate (Level 1) and

one-hop (Level 2) neighbors with respect to incoming edges.

in the context of a client c which was inserted into the cache of AP1

at timestep t = 0. This is possible only if the client (re-)associated

with one of the APs that is one hop away from a neighbor of AP1, as

illustrated in Figure 4.6. For ease of illustration, lets call AP1 as Level

0, neighbors of AP1 as Level 1, and the subsequent neighbors as Level

2 as shown in Figure 4.6.

Lets assume that any client can perform a handoff with a fixed

probability p during any time step. Let M be the number of clients

associated to APs at Level 2. Note that implicitly M ≥ n, else there

would be no cache misses at all. These are the potential clients that can

handoff to an AP at Level 1, thus having their context inserted into the

cache at AP1. For simplicity of analysis, we assume that the expected

99

number of clients associated to any set of APs remains constant, i.e., the

clients move uniformly at random among APs with constant probability

p.

Let ζ(t) denote the probability distribution of cache lifetimes in

discrete timesteps, i.e., the amount of time that a client’s context spent

in the cache. Say, T timesteps have passed. In timestep i, say xi clients

(i ∈ {0 . . . T}) moved to an AP at level 1 thus causing xi insertions

into AP1’s cache. Note that the client c’s context will get evicted once

n cache insertions have been performed on AP1. The probability that

out of the M clients associated to APs at Level 2, xi of them performed

a handoff given that each client performs a handoff independently with

probability p, is given by
(

M
xi

)
pxi(1− p)(M−xi) = ξ(xi) (say).

Given one particular set of 〈x1, x2, . . . , xT 〉 such that
∑

i=1...T xi =

n and xi ≥ 0 ∀i ∈ {1 . . . (T − 1)} and xT ≥ 1, the probability of that

event happening is given by Πi=1...T ξ(xi), which simplifies to:

M !

x1!x2! . . . xT !
pnp(M−n) (4.3)

Thus, the probability that the context gets evicted exactly in T

timesteps is given by

F (T, n) =
∑

x1,x2,...,xT

M !

x1!x2! . . . xT !
pnp(M−n) (4.4)

100

where
∑

x1,x2,...,xT
indicates that the sum is carried over all values

of xi, i = {1 . . . T} such that xi ≥ 0 and
∑

i=1...T xi = (T − 1).

Equation 4.4 can be written as a recurrence relation in the fol-

lowing manner :

F (T, n) =
∑

i=0...n

F (T − 1, n− i)

i!

(
p

1− p

)i

(4.5)

The above equation shows that the probability of a cache miss in-

creases rapidly with T . Thus, a faster client (i.e. higher mobility) would

spend less time at each AP and hence would have a higher probability

of a cache hit. Thus, the performance of the algorithm as perceived by

a client would be expected to improve with its mobility. We confirm

this theoretical result with extensive simulations and experiments in

Section 4.5.

4.5 Experiments and Simulations

We present both simulation and implementation results to demonstrate

the performance of proactive caching. Section 4.5.1 discusses the im-

plementation results and the simulation results are presented in section

4.5.2

101

4.5.1 Experiments

In this section, we discuss the implementation of IAPP with neighbor

graphs in a custom wireless testbed. We describe the testbed config-

uration, the process of the experiments, and the results. In brief, we

measured 114 re-associations in the testbed resulting in an average re-

association latency of 15.37 ms for a cache-miss without an outlier and

23.58 ms with the outlier (which is the traditional IAPP communication

latency) and 1.7 ms for a cache-hit– achieving an order of magnitude

improvement in the re-association latency.

The Wireless Testbed

The wireless testbed spans a section of two floors (2nd and 3rd) of an

office building. There were five APs on the third floor and four on the

second. The geometry of the floors (L-shape and the dimensions) and

topology of nine access points are shown in Figure 4.7. The gray circles

in the figure represent APs, labeled by an identifier. Three channels,

namely 1, 6 and 11 were used by the APs. There were 4 APs on channel

1 and 11 each and one AP on channel 6. These channels were assigned

in a fashion to avoid interference with other wireless networks operating

in the building resulting in a less than optimal RF design.

The APs used for the experiments were based on a Soekris [42]

102

board NET4521 which has a 133 MHz AMD processor, 64MB SDRAM,

two PC-Card/Cardbus slots for wireless adapters and one Compact-

Flash socket. A 200mW Prism 2.5 based wireless card was used as the

AP interface with a 1ft yagi antenna. OpenBSD 3.1 with access point

functionality was used as the operating system.

The IAPP protocol, neighbor graphs, and the caching algorithm

were implemented in the driver (for the wireless interface) along with

the AP functionality.

Experiment Process

To preclude possible interference, we shutdown the other wireless net-

works in the building during the experiments. A mobile unit consisting

of a client laptop, and a sniffer was used in the experiments. A laptop

with Pentium III 750 MHz CPU and 256 MB RAM and a Prism 2.5

based ZoomAir wireless card was used as the client. The re-association

latencies were measured by capturing management frames on channels

1, 6 and 11. This was done by the sniffer which had a wireless card

dedicated to capturing traffic on each channel (1, 6, and 11). Since

the APs were configured only on the above three channels, it was guar-

anteed that the sniffer would capture all management frames destined

to or transmitted by an AP in the testbed (with respect to the STA)

103

(primarily re-association request and response frames). Three wireless

interfaces in two laptops constituted the sniffer.

Two experiments were conducted. The first experiment was con-

ducted with fresh APs, i.e. there were no neighbor relationships prior

to the start of the experiment. The goal of this experiment was to

study the effect of the learning process on the re-association latencies

with time. The second experiment (following the first) was to confirm

guaranteed cache hits once the neighbor graph had been learnt by the

APs. We discuss the detailed setup of each experiment below.

Experiment A: The first experiment consisted of a random walk

with the mobile unit, through the physical span of the testbed. There

were no neighbor relationships existing among APs prior to the start of

the experiment. The experiment started with the client associating to

AP-2 (refer Figure 4.7), and a random path of motion covered all APs

on third floor. The unit then moved to the second floor, covered all APs,

and returned to the initial point of association (AP-2). This was one

round of the experiment and nine rounds were conducted for statistical

confidence in the measurements. This resulted in one association, and

114 re-associations during the entire experiment.

Experiment B: The second experiment, followed the first, con-

sisted of two short rounds using a different client. The purpose of this

104

experiment was to verify the existence of neighbor graphs (i.e learned

from the first experiment) at each AP by observing a cache hit on all

re-associations.

Experiment Results

Figure 4.7 depicts the (3D) neighbor graph created during the exper-

iment. The graph was constructed by observing the re-association re-

quest frames captured by the sniffer. The directed edges indicate the

direction of the re-association (from the old-AP to the new-AP). The

solid edges are intra-floor edges and the rest are inter-floor edges. The

graph shows 23 distinct pairs of APs, between which the STA could

re-associate.

Experiment A: Figure 4.8 shows the re-association latencies at

each AP 1. The Y-axis is the latency in logarithmic scale. The circular

points represent re-association with a cache-miss and cross points are

the cache-hits. Most of cache-miss latencies reside around 16 ms except

an outlier of 81 ms at AP-8. The cache-hit latencies are clustered

around an average of 1.69 ms. There are a few cache-hits with latencies

more than 4 ms. We reason that these outliers (involved with AP-4

and 5) are due to poor coverage design with respect to the building

1The re-association latency is attributed to the new-AP

105

topology. AP-4 and AP-5 had a relatively small transmission range

when compared to other APs and they were physically close to each

other. Since they were the only APs covering a large area, the re-

association latencies were effected by packet errors/retransmits. There

was another extreme outlier of 2.36 seconds with a cache-hit caused by

a sniffing error. This value was excluded from the analysis.

Figure 4.9 shows the re-association latencies observed over time.

During the experiment, there was a cache-miss for the first re-

association to each AP (except AP-2) as the neighbor graph was built.

Figure 4.9 clearly shows how context caching decreases re-association

latencies with time. Except the very first re-associations and a few

outliers, most re-association latencies lie below 2 ms. In total, there

were 8 cache-misses with average of 15.37 ms 2 and 105 cache-hits with

average latency of 1.69 ms.

Experiment B: The second experiment, was done with a different

client. The APs had learnt the neighbor graph, and hence during the

experiment there were no cache misses. Each association/re-association

forwarded the context to the neighbors, and hence the client’s context

2The outlier of 81 ms has been excluded from the average calculation. We

eliminated it since it would unfairly distort our result by making it higher, i.e.

better, than what is clearly the average of 16 ms.

106

310 feet

1

3

5

6

8

4

9

7

2

244 feet

85 feet

2nd floor

3rd floorCH = 1

CH = 6

CH = 11

CH = 11CH = 1

CH = 1

CH = 11

CH = 11

CH = 1

Figure 4.7: Experiment Environment and the Neighbor Graph.

was always found in cache during a re-association 3. This experiment

had 18 re-association, all cache hits, resulting in an average latency of

1.5 ms.

Thus the experiment results show that proactive caching with

neighbor graphs reduces the re-association latency by an order of mag-

nitude.

4.5.2 Simulations

Access points, unlike cellular base-stations, are embedded systems with

limited resources (computing power and memory) as vendors attempt

to lower their costs. A typical access point has around 4MB of RAM

and 1 MB of flash. Client context information could potentially consist

of security credentials, QoS information etc. Thus an AP can store only

3Since we had only one client in the experiment, there were no cache evictions.

107

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 1 2 3 4 5 6 7 8 9

R
ea

ss
oc

ia
tio

n
La

te
nc

y
(m

s)

Access Point Number

cache miss
cache hit

Figure 4.8: Re-association latencies at each access point.

a limited number of contexts in its cache (LRU cache replacement). In

this section, we present results on how the algorithm performs while

varying the mobility, the number of clients and the number of APs in

the network.

Simulation Objectives:

1. To observe the effect of cache size, number of clients and the

mobility of clients on the cache hit ratio.

2. To observe the performance of caching with various neighbor

graphs.

Each simulation starts with a set of APs, a neighbor graph struc-

ture connecting them, a set of clients and their initial distribution on

108

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 0 1000 2000 3000 4000 5000

R
ea

ss
oc

ia
tio

n
La

te
nc

y
(m

s)

Experiment Time (sec)

cache-miss
cache-hit

Figure 4.9: Re-association Latencies with Time.

the APs. Each client is assigned a mobility index (defined later), which

dictates the mobility of the client throughout the simulation. The as-

sumptions and the model we used are:

Simulation Model and Assumptions:

1. AP Neighbor Graph does not change during the simulation: As

noted earlier, changes in the AP neighbor graph would cost (in

the worst case), one high latency handoff per edge, and has a

nominal effect on the overall cache performance.

2. Correctness and completeness of the Neighbor Graphs: We are as-

suming that the neighbor graphs are correct and complete, i.e. the

simulations do not consider any re-associations which are not cov-

109

ered as edges in the graph 4. This makes it sufficient to simulate

re-associations according to the neighbor graph without main-

taining any correspondence with the physical placement of APs

(that would produce the neighbor graph).

3. Initial User-AP distribution: We have assumed a uniform dis-

tribution of clients across APs to at the start of the simulation.

Figure 4.10 shows the distribution of the maximum number of

users associated to each AP during a simulation with 100 APs,

and 500 clients.

4. Roaming Model: The client roams according to the following

model:

(a) Let client c have an association pattern Γ(c) =

{(ap1, t1), (ap2, t2), . . . , (apn, tn)}. The client c is said to

roam from ap1 to apn if (i) the time associated at each

api, (1 < i < n) : ti+1 − ti is of the order of a typical re-

association latency (around 100 ms, [36]) and (ii) the time

the client spends on ap1 and apn is of the order of a typ-

ical client session [35]. Thus the client stays for a session-

4As discussed earlier, such re-associations would have resulted in the edge being

added to the graph

110

duration with an AP, roams to another AP (according to an

association pattern), and stays for another session.

(b) At any given point of time during the simulation, the client

is either roaming (according to definition above) or staying

associated to its current AP.

(c) The association pattern of a roam is decided randomly: If

the client c is associated to api, it can move to any one of

its neighbors (api1 , api2 , . . . , apik) with equal probability.

5. User Mobility: Define mobility index of a client as the probability

that the client is roaming at any given point of time during the

simulation. At the end of the simulation it converges to the (Total

time spent in roaming/Total simulation time). Mobility indices

are assigned to clients on a scale of 1 . . . 100. The distribution of

mobility indices on clients is uniform.

Simulation Environment

1. The simulation uses random and connected neighbor graphs with

10, 20, 50 and 100 vertices.

2. Duration of the Simulation: The simulation runs for one million

re-association events uniformly distributed over the users accord-

111

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25

N
um

be
r o

f A
P

s

Maximum Number of Clients

Distribution of Clients across APs

Figure 4.10: Distribution of Maximum number of clients associated to

an AP during a simulation with 100 APs and 500 users.

ing to their mobility indices. This makes the duration of the

simulation large enough for statistical confidence in the results.

Simulation Results

1. Mobility Improves Proactive Caching Performance: Figure 4.11

shows the cache hit ratio achieved by clients according to their

mobility index. The figure compares the hit ratio performance

over neighbor graphs of size 10, 20, 100 vertices keeping the cache

size constant. In all three curves, the hit ratio increases with

client mobility as previously discussed in Section 4.4. The relative

improvement diminishes with increasing number of vertices in the

NG graph, and the prime reason for this being the constant cache

112

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

C
ac

he
 H

it
R

at
io

Client Mobility (Index)

Mobility Improves the Proactive Caching Performance

Cache Size = 20, Users = 50, Vertices = 10
Cache Size = 20, Users = 100, Vertices = 20
Cache Size = 20, Users = 500, Vertices = 100

Figure 4.11: Plot of clients mobility and the cache hit ratio achieved.

size. Later plots elucidate this observation.

2. Effect of Cache Size and Client Mobility on Hit Ratio: Figure

4.12 shows the effect of cache size on the hit ratio keeping the

number of clients, and the NG graph the same. The graph has

100 vertices, and 200 users. Clearly an increase in the cache size

has a direct impact on the cache hit ratio, to the extent that for

a cache size of 40 (or 20% of the number of users), all clients have

a hit-ratio of 98% or better.

3. Effect of Cache Size and Number of Users on Hit Ratio: The

number of clients in the network has a direct impact on the per-

formance. Figure 4.13 shows the effect of the two parameters on

hit ratio. Figure 4.14 shows the effect of the cache size as a per-

centage of the number of users on the hit ratio. The data points

113

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

C
ac

he
 H

it
R

at
io

Client Mobility (Index)

Effect of Cache Size and Client Mobility on Hit Ratio

Users = 200, Vertices = 100
Cache Size = 20
Cache Size = 30
Cache Size = 40

Figure 4.12: Effect of Cache Size and Client Mobility on Hit Ratio.

were taken for cache sizes varying from 20 to 50 and the number

of users varying from 200 to 500 in increments of 100. Thus, a

15 percent cache size is sufficient for a hit ratio of 98 % while a

cache size of 20 percent gives a hit ratio of 100 %.

4.6 Related Work

The related work is broken into two distinct categories: context trans-

fers, and algorithms that dynamically generate the topology of wireless

networks.

The previous work on context transfers has mostly focused on the

IP layer using reactive transfer mechanisms [37], and general purpose

transfer mechanisms without detailing transfer triggers [43]. The only

previous work on link layer context caching was also originally reactive

114

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20 25 30 35 40 45 50

H
it

R
at

io

Cache Size

Effect of Cache Size and Number of Users on Hit Ratio

Vertices = 100 200 users
300 users
400 users
500 users

Figure 4.13: Effect of Cache Size and Number of Users on Hit Ratio.

until neighbor graphs were recently added [44].

The IP layer context transfer mechanisms focus solely on the

transfer of context from access router to access router, and while

Koodli [37] mentions access points briefly– indicating that access

routers and access points can be co-located. The context transfer

mechanisms are designed solely for access routers and are reactive

rather than pro-active as in neighbor graphs [37]. In the case of the

SEAMOBY context transfer protocol, the protocol provides a generic

framework for either reactive or pro-active context transfers [43]. The

framework, however, does not define methods for implementing either

reactive or pro-active context transfers. As a result, our approach can

easily be integrated into the SEAMOBY protocol providing a pro-active

context transfer mechanism as it was with IAPP.

115

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20

A
ve

ra
ge

 C
ac

he
 H

it
R

at
io

Cache Size : As a percentage of the Number of Users

Variation of Cache Size (as a percentage of Number of Users) with Hit Ratio

Vertices = 100

Figure 4.14: Variation of Cache Size (as a percentage of Number of

Users) with Hit Ratio.

The previous work on topology algorithms has focused on pre-

authentication, automated bridge learning, and sharing of public key

certificates [45, 46, 47].

Pack proposes pre-authentication be performed to the k most

likely next access points. The k stations are selected using a weighted

matrix representing the likelihood (based on the analysis of past net-

work behavior) that a station, associated to APi, will move to APj.

The mobile station may select only the most likely next access points

to pre-authenticate, or it may select all of the potential next access

points [45, 46]. Pack uses the notion of a frequent handoff region (FHR)

to represent the adjacent access points, or neighbors, which is obtained

by examining the weighted matrix. The weights within the matrix

116

are based on an O(n2) analysis of authentication server’s log informa-

tion using the inverse of the ratio of the number of handoffs from APi

to APj to the time spent by the mobile station at APi prior to the

handoff. While the FHR notion represents neighboring access points,

it requires O(n2) computation and space, where n is the number of

access points in the network, and must be created at the authentica-

tion server. Furthermore, the FHR notion does not quickly adapt to

changes in the network topology. This is in contrast to neighbor graphs

which require O(degree(ap)) computation and storage space per AP5

and which quickly adapts to changes in the network topology. Addi-

tionally, neighbor graphs can be utilized either in a distributed fashion

at each access point, or client, and in a centralized fashion at the au-

thentication server.

Capkun et. al. leverage station mobility to create an ad-hoc pub-

lic key infrastructure by neighboring stations exchanging public key

certificates to create a certificate graph [47]. The idea is that a neigh-

boring station can most likely verify the identity of another station,

and after successfully doing so add the certificate to their graph. The

resultant graph represents the mobility pattern with respect to other

stations. While this mobility graph has a different focus and use than

5The cache consumes an O(1) storage and computation.

117

neighbor graphs, it none-the-less uses the notion of neighbors, and we

include a discussion of it for completeness.

In the 1980’s to overcome the geographic limitation of a LAN,

LANs were connected using bridges. In this approach, a bridge con-

necting two or more links listens promiscuously to all packets and for-

wards them to a link on which the destination station is known to

reside. A bridge also dynamically learns the locations of stations so

that it can forward traffic to the correct link. In [48], Perlman pro-

posed a self-configuring and distributed algorithm to allow bridges to

learn the loop-free subset of the topology that connects all LANs, by

communicating with other bridges. This subset is required to be loop-

free (a spanning tree) to avoid unnecessary congestion caused by

infinitely circulating packets. This Spanning Tree Algorithm / Proto-

col [49] is self-configuring because the only apriori information neces-

sary in a bridge is its own unique ID (MAC address). The algorithm

requires a very small bounded amount of memory per bridge, and a

bounded amount of communications bandwidth for each LAN. Fur-

thermore, there is no requirement for modifications to stations and the

algorithm inter-operates with older bridges. Neighbor graphs are also

self-configuring and operate in the same manner– examining network

traffic, specifically layer 2 management frames or AAA messages, to

118

create the wireless network topology dynamically. The two algorithms,

and their purposes are different however.

4.7 Summary

In this chapter, we have performed an empirical evaluation of neigh-

bor graphs, which captures the locality in mobility of the users by

autonomously monitoring the handoffs. This structure abstracts the

physical topology of the network into a neighbor relationship which

can be used as a vehicle for numerous applications. Neighbor graphs

add valuable structure to the distribution system (DS) interconnecting

the APs forming the wireless network. This structure, which provides

information about the locality among the APs (see Chapter 2), can

be leveraged for optimizations on existing algorithms (load balancing,

network management, and key pre-distribution) and may lay the foun-

dation for other interesting and novel applications.

As an application for neighbor graphs, we implemented and stud-

ied the performance of the proactive caching algorithm for faster wireless

handoffs. The caching algorithm uses neighbor graphs to send station-

context to its neighbors prior to the handoff and hence separates the

context transfer process from re-association. We have implemented the

approach using an early version of IAPP [40] running on a dedicated

119

wireless testbed and presented results from experiments conducted on

the testbed and as a result of our early experiments proactive caching

using neighbor graphs has been added to the final version of IAPP [44].

In our experiments, 114 re-associations occurred with an average

re-association latency of 23.58 ms (including the one outlier) and 15.37

ms (without the outlier) for a cache-miss (traditional handoff), and

1.69 ms for a cache-hit, an order of magnitude improvement due to

proactive caching. In our simulations, we studied the performance of

the algorithm under varying network characteristics : user mobility,

the number of users associated to the network, and the number of

APs forming the network. We conclude that the performance of the

algorithm (hit-ratio) improves as the user mobility increases eventually

reaching a 100% hit-ratio under certain network configurations. As

expected, we find that the cache size plays an important role in the

performance of the algorithm and that a cache size of 15% (of the

number of users associated to the network) gives a minimum cache

hit-ratio of 98%.

This empirical study has shown the validity of the locality princi-

ple as the hypothesis of this dissertation discussed in Chapter 1 and 2.

We had performed an analytical verification of this principle in Chapter

2. More importantly, the results of this chapter support the hypothesis

120

using a real world optimization called proactive caching. The strong

success of proactive caching in reducing the context transfer latency

as shown through the implementation and simulations stems from the

locality present in user mobility patterns.

In the next chapter, we leverage neighbor graphs to devise fast

re-authentication schemes that bypass the full-authentication specified

by the IEEE 802.11i standard and maintain the same security proper-

ties. Later in Chapter 6, we extend neighbor graphs to include edges

indicating certain types of overlap in coverage areas of APs, called Over-

lap Graphs. We devise fast scanning algorithms that use such overlap

graphs to reduce the scanning latency component of 802.11 handoffs.

121

Chapter 5

The Proactive Key Distribution

Technique

Treat your password like your toothbrush. Don’t let anybody else use

it, and get a new one every six months. - Clifford Stoll.

In the previous chapter, we studied how locality in user mobility

as captured by a neighbor graph could speed up the handoff latency

by eliminating the costly context transfer process. We studied a proac-

tive caching algorithm which placed a moving station’s context onto

a candidate set of APs determined using the locality information. In

the previous chapters, we have not considered the role of security in

the handoff process. The IEEE 802.11i standard defines a new security

architecture called the Robust Security Network Architecture (RSNA),

which addresses the ailments suffered by the earlier Wired Equivalent

122

Privacy (WEP) protocol and provides robust per-packet confidentiality

and integrity along with authentication 1.

In this chapter, we study how security and locality in user mobil-

ity are inter-coupled. We show how valuable insights and improvements

can be gained by applying our locality hypothesis (see Chapters 1 and

2) to the problem of securing handoffs. The current mechanisms require

a full authentication upon each handoff. We show that this is wasteful

by taking advantage of the locality to develop fast re-authentication

schemes which provide the same security guarantees as a full authenti-

cation.

Current Authentication Methods

Figure 5.1 shows the network architecture typically used for a wireless

LAN. The IEEE 802.11i standard uses the IEEE 802.1X [5] framework

for authentication which is based on a three-party model: the sup-

plicant, which requires access; the authenticator, which grants access;

and the authentication server, which gives permission. In the 802.11

space, a client is the supplicant, which is authenticated by an AP (the

authenticator) to a central AAA (Authentication, Authorization and

1For a summary of the problems associated with WEP and how the IEEE 802.11i

standard addresses these, the interested reader is referred to [50].

123

Accounting) server (the authentication server). This authentication

process establishes the association mapping between the AP and the

client in a secure manner. It also results in creation of key material

for per-packet encryption and authentication between the AP and the

client. Further details of this process are discussed in Section 5.1.

The IEEE 802.1X standard provides a state machine based frame-

work for the functioning of the supplicant, the authenticator, and the

authentication server. The actual communication between these enti-

ties takes place through a standardized protocol called the Extensible

Authentication Protocol (EAP). EAP, specified as RFC 2716, provides

a flexible vehicle to carry authentication traffic independent of the au-

thentication method used. Various authentication methods such as

password-based (CHAP), Transport Layer Security (TLS), Tunelled

TLS, Kerberos, etc., are supported by EAP as specific authentication

types. The 802.1X/EAP standards find applicability to a wide variety

of networking technologies including wireless and wired LANs, dial-up,

Virtual Private Networks (VPNs) and token ring networks. When ap-

plied to the wireless domain, authentication based on Transport Layer

Security (TLS) (a Secure Socket Layer technology [7]) is the most com-

monly used. The authentication process in TLS is based on a Server-

certificate and hence provides for a robust asymmetric authentication

124

method.

Because of the active involvement of APs in the security pro-

cess, the IEEE 802.11i standard mandates a fresh full-authentication

when the client roams to a different AP. Thus, from a security per-

spective there is no difference between a first-association and a handoff

(re-association). From a performance perspective, the secure key ma-

terial generated during a full-authentication is completely discarded as

the user roams to a different AP. In order to evaluate this penalty, we

constructed a testbed based implementation of the 802.1X setup. As a

part of the open-source Open1x effort2, the IEEE 802.1X authentication

mechanisms were implemented as client (called Xsupplicant) and as an

authenticator. The TLS mechanism was implemented as the authenti-

cation method. Based on this, we performed experiments to measure

the latency incurred by a full 802.1X authentication. We measure this

latency to be 800ms on average which is a significant additional cost

to the handoff latency.

Our Contributions

In this chapter, we design a fast re-authentication/key distribution

scheme based on neighbor graphs which takes advantage of the key

2See http://www.open1x.org

125

material generated during the first authentication to perform fast re-

authentication at neighboring APs. This scheme takes advantage of

the locality present in user mobility (Chapters 1 and 2) by comput-

ing and exposing this key material only to a limited set of APs which

characterize the local neighborhood into which a user might potentially

move. This neighborhood is bounded as shown analytically in Chapter

1 and as a result the computation costs for this scheme are bounded

as well. The key distribution scheme provides the same security guar-

antees as a full TLS authentication in a small fraction of the time. We

discuss this scheme in detail and evaluate it through our testbed based

implementation.

The rest of this chapter is organized as follows. Section 5.1 pro-

vides a brief overview of the IEEE 802.11 Security Architecture (the

IEEE 802.11I standard). Section 5.2 discusses the proactive key dis-

tribution method using neighbor graphs. We present implementation

results from an in-building wireless network testbed in Section 5.3. A

detailed description of related techniques to reduce the authentication

latency, a discussion on proactive key distribution is provided in section

5.4. Finally we summarize the contributions of this chapter in Section

5.5.

126

5.1 IEEE 802.11i Authentication

Overview

The authentication framework developed by the IEEE Task Group I

– Security (TGi) is a complex combination of several different proto-

cols. While a thorough understanding of each of these protocols is

not required, basic knowledge of each will assist in understanding the

problems we are addressing as well as our solution.

Figure 5.1 shows the architecture of a wireless LAN. The APs

are typically connected together to a backend authentication server

(AAA server such as RADIUS) over an ethernet (or VLAN). As in any

architecture, the trust assumptions are key to the correct operation of

the system. TGi makes the following trust assumptions:

• The AAA server is trusted.

• The access point to which a mobile station is associated is

trusted– Non-associated AP’s are not trusted.

These assumptions, which are different from those in a cellular

network, are due to the nature of 802.11 equipment. Access points are

low cost devices that are often placed in locations which lack proper

physical security. Therefore, it is important to prevent the compromise

of a single AP permitting a compromise of the entire network.

127

5.1.1 IEEE 802.1X

The IEEE 802.1X [5] standard provides an architectural framework

to facilitate network access control at the link layer for various link

technologies (IEEE 802.11, FDDI, Token Ring, IEEE 802.3 Ethernet,

etc.). The standard abstracts the notion of three entities: the sup-

plicant, the authenticator or the network port, and the authentication

server. Figure 5.2 shows the typical communication setup. A suppli-

cant is an entity that desires to use a service (link layer connectivity)

offered via the notion of a port on the authenticator (such as a switch

or an access point). Thus for a single network there will be many

ports through which supplicants can authenticate themselves and ob-

tain network access. An authenticator is in control of a set of ports,

and a network might have multiple authenticators. As an example, an

ethernet switch can be an authenticator, which controls network ac-

cess on multiple physical ethernet ports available on the device. In the

IEEE 802.11 scenario, a port corresponds to an association between a

supplicant and the authenticator (access point).

The supplicant authenticates via the authenticator to a central

authentication server which directs the authenticator to provide access

after successful authentication. Typically the authentication server and

the authenticator communicate using the Remote Authentication Dial-

128

In User Service (RADIUS) protocol. The RADIUS protocol contains

mechanisms for per-packet authenticity and integrity verification be-

tween the AP and the RADIUS server– although these measures are

not as strong as desired.

AP AP AP

AAA Server (typically RADIUS)

Stations

Handoff

Wired LAN (Ethernet)

Figure 5.1: Typical topology of a wireless LAN.

APEAP Over Lan
(wireless)

Supplicant

W
ir

ed
 L

A
N

 (E
th

er
ne

t)

E
A

P
ov

er
 R

A
D

IU
S

AAA Server (typically RADIUS)

Authenticator

Figure 5.2: The entities in an IEEE 802.1X setup.

The authentication process between the authentication server and

the supplicant (via the authenticator) is carried over an Extensible

129

Authentication Protocol (EAP), which is described in the following

section.

5.1.2 Extensible Authentication Protocol

The IEEE 802.1X standard employs the Extensible Authentication Pro-

tocol to permit a variety of authentication mechanisms. Figure 5.3

shows the protocol layers for communication between the supplicant

and the authenticator. EAP is built around the challenge-response

communication paradigm. There are four types of messages: EAP

Request, EAP Response, EAP Success and EAP Failure. The EAP

Request message is sent to the supplicant indicating a challenge, and

the supplicant replies using the EAP Response message. After multiple

exchanges of the Request/Response messages the EAP Success/Failure

message is used to notify the supplicant of the outcome. A multitude

of authentication methods can be encapsulated in the EAP protocol –

most notably, EAP-TLS, EAP-MD5, EAP-AKA, EAP-SIM, etc. We

discuss the TLS authentication method in further detail in the next

Section.

The EAP messages do not have an addressing mechanism and are

encapsulated over an EAP Over Lan (EAPOL [5]) protocol between the

supplicant and the authenticator and are carried as a RADIUS attribute

130

EAP Over Lans (EAPOL)

PPP

TLS CHAP Kerberos

Extensible Authentication Procotol (EAP)

802.11802.5802.3

EAP Layer

MAC Layer

Authentication
Layer

Figure 5.3: The EAP stack

between the authenticator and the authentication server. The EAPOL

protocol also provides for a four-way handshake mechanism (discussed

later).

5.1.3 Transport Layer Security

The Transport Layer Security protocol as described in RFC-2246, pro-

vides strong authentication and encryption at the transport level. It is

divided into two protocols : the handshake protocol which handles the

communication for the authentication and derives strong key material

for the data transfer which is carried over the record protocol. The

authentication part of the TLS has been exported as an authentication

mechanism over EAP in the EAP-TLS RFC2716. This is the most com-

monly used authentication mechanism over EAP within 802.11 based

networks, and fits into the IEEE 802.1X model. Figure 5.9 shows the

complete set of messages exchanged during a full EAP-TLS authenti-

cation.

131

In the application of TLS to IEEE 802.1X, the supplicant and

the authentication server have a certificate from a common trusted

certificate authority (CA). The mutual authentication process based

on these credentials achieves the following: (i) mutual authentication

of the client and the server, (ii) a strong shared secret master key (MK)

(iii) an initialized sets of pseudo-random functions (PRFs) which can

be utilized for generating further key material. Let TLS-PRF denote

the PRFs generated as a result of the authentication. The MK is used

to derive a Pairwise Master Key (PMK) by using equation 5.1.

PMK = TLS-PRF(MK, clientHello.random |

serverHello.random)

(5.1)

The PMK is used along with certain cipher methods to derive four

Pairwise Transient Keys which are used for various purposes as shown in

Figure 5.4 [10]. The first key EAPOL-MIC key and the EAPOL-Encr.

keys are used to provide data origin authenticity and confidentiality for

the four-way handshake discussed later. The other two keys are used

for link layer encryption and authenticity depending on the cipher suite

being employed.

132

512 bits

EAPOL MIC Key Data Encrypt Key Data MIC Key
128 bits 128 bits 128 bits 128 bits

256 bits
Pairwise Master Key − PMK

Pairwise Transient Key − PTK

EAPOL Encrypt Key

Key
Handshakes

Protect
Data

Protect

Figure 5.4: The key structure: PMK and the derived PTK.

5.1.4 Four way hand-shake

The IEEE 802.11 Task Group I defines an IEEE 802.1X protocol called

a four-way handshake. This protocol is used to confirm the liveness of

the AP and the station(STA), guarantees the freshness and synchro-

nizes the shared session key and binds the PMK to the MAC address of

the STA. The communication is carried using EAPOL key messages[4].

1. Message (A) Authenticator −→ Supplicant: This is the first

EAPOL-Key message and is sent from the authenticator to the

supplicant. It contains ANonce – a nonce value generated by the

authenticator. Once the supplicant has received this message it

can compute the four temporal keys.

2. Message (B) Supplicant −→ Authenticator: This message con-

tains SNonce – a supplicant generated nonce and a MIC over the

message to protect its integrity. The authenticator uses SNonce

133

to generate the temporal keys, and verifies the MIC.

3. Message (C) Authenticator −→ Supplicant: This message in-

cludes the earlier ANonce and a MIC check which can be verified

by the supplicant proving that the authenticator has a matching

PMK.

4. Message (D) Supplicant −→ Authenticator: This message signi-

fies the completion of the four-way handshake and signals the

installation of the keys by both entities for the data communica-

tion.

The four-way handshake protocol is used during a full-

authentication and during re-authentication, and hence this cost (i.e.

the overhead incurred) will be present in both situations. We also do

not include the cost of the hand-shake in the timings of EAP-TLS. In

this work, we do not implement the handshake for the above reason,

instead we have implemented a simpler two-way handshake mechanism

for demonstration purposes.

5.1.5 TGi Trust Relationships

One of the interesting, and disappointing, problems with TGi’s new

802.11 security architecture are the trust relationships in an operational

134

Implicit trust

StationAPAAA

Trust via shared secret

Trust via EAP/TLS

Figure 5.5: The Trust relations in TGi.

network. Many people believe that the access point is a trusted party,

and this isn’t completely correct.

Figure 5.5 depicts the trust relationships within TGi. The solid

arrows represent an explicit mutual trust relationship while the dotted

line represents an implicit trust relationship that MUST be created in

order to make security claims about the communications path. This

trust relationship between the AP and the STA is transitive and derived

from the fact that the station trusts the AAA server and the AAA

server trusts the AP. This, unfortunately, is not ideal since in many

cases the trust relationship between the AAA server and the AP will

not exist if shared keys are not used to protect the RADIUS traffic.

However, the majority of the AP vendors in TGi had a strong desire

for an inexpensive AP which was more of a relay than a participant in

the communications.

135

5.1.6 Properties of a Successful Authentication

After the successful completion of the EAP-TLS authentication phase

the following statements hold:

1. The mobile station’s identity has been proved.

2. Based on the above identity, the mobile station’s access to the

network has been granted by the AAA server.

3. The mobile station and the AAA server share a strong master

secret, MK.

4. The mobile station, the AAA server, and the associated access

point all share a common secret, pairwise master key or PMK,

derived from the MK.

5. A session key, PTK, is derived from the PMK using the four-

way handshake and is only shared between the mobile station and

the associated access point.

5.2 Pro-active Key Distribution

Pro-active key distribution seeks to reduce the latency of the authenti-

cation phase by pre-distributing key material ahead of a mobile station.

Our approach provides all of the same properties of a full EAP-TLS

136

authentication, but at significantly less cost in terms of latency and

computational power of the mobile station. In this section, we assume

that the neighbor graph mechanisms have been implemented by the

wireless network in a distributed or centralized fashion. The details of

neighbor graphs, their construction and maintenance are discussed in

Chapter 4.

5.2.1 PMK Trees

In the current, 802.11i framework the PMK is derived from the MK

by Equation 5.1. Pre-distributing this PMK, which is permitted in

the current IEEE 802.11 TGi draft as PMK caching, violates the TGi

trust assumptions. Rather than pre-distribute this PMK, we change

the derivation of the PMK to the recurrence shown in Equation 5.2,

where n represents the nth re-association for n >= 0.

PMK0 = TLS-PRF(MK, clientHello.random |

serverHello.random)

PMKn = TLS-PRF(MK, PMKn−1| AP MAC

| STA MAC)

(5.2)

The recurrence shown in equation creates a PMK tree with the

re-association pattern, Γ(STA), a path within the tree as shown in

137

Figure 5.6: PMK tree

Figure 5.6. In Figure 5.6, the re-association pattern is Γ(STA) =

A, B, C,D.

5.2.2 PMK Synchronization

There are two conditions that can exist when a mobile station arrives

at an access point with respect to the pre-distribution of the correct

PMK: either the AP and the mobile station share the same PMK, or

they do not. The handshake (two-way in our case and four-way in the

case of TGi) determines which of these cases exist. This also ensures

both liveness and freshness of the key.

5.2.3 PMK Distribution

Once a mobile station completes an initial full EAP-TLS authentication

as denoted by the AAA server sending an ACCESS-ACCEPT message

to the access point indicating successful completion of the authenti-

138

cation process as well as PMK0. At this point, the AAA server and

the mobile station share the MK, and the AAA server, the access

point, and the mobile station all share PMK0. The AAA server now

determines the neighbors of the associated access point and sends a

NOTIFY-REQUEST that a specific mobile station may roam into the

coverage area of each of the neighboring access points. This message is

advisory only, and an access point may or may not decide to request the

security association, or PMK from the AAA server at this time. If the

AP does decide to request the PMK, then the AP sends a NOTIFY-

ACCEPT message. If not, then the AP sends a NOTIFY-REJECT

message to the AAA server. Upon receiving the NOTIFY-ACCEPT

message, the AAA server responds with an ACCESS-ACCEPT message

which contains the appropriate PMK as well as authorization for the

mobile station to remain connected to the network. As a note, RADIUS

messages have been designed around a challenge response paradigm and

technically we violate it here by introducing the NOTIFY-REQUEST

message. The IETF is working on DIAMETER (a enhanced AAA

server backward compatible to RADIUS), which includes the kind of

messages we discussed above and our approach fits nicely into DIAM-

ETER.

139

5.2.4 Two-way handshake

After the key distribution, the four-way handshake (discussed earlier)

confirms the freshness of the keys being used by the AP and the roaming

STA. In our implementation, we used a simpler two-way handshake

(an EAPOL start message, and an EAP-Success message if the AP

has the correct key) for purposes of demonstration. Since the four-way

handshake is performed during both – a full authentication and the fast

re-authentication, it does not effect the key distribution scheme.

5.3 Implementation

In this section, we present implementation results to demonstrate the

performance of the pro-active key distribution scheme. We have im-

plemented the pro-active key distribution method and the standard

full-authentication over an in-building wireless testbed network com-

prised of 9 access points spread over three floors. Since the four-way

handshake process appears in both schemes after the key has been

delivered, we did not implement the full handshake and we instead im-

plemented a simple 2-way handshake to verify the key freshness. We

measured 90 full EAP-TLS authentication latencies with an average

of approx. 1.1 seconds. Using the pro-active key distribution scheme

140

for fast re-authentication we obtained an average latency of 25 ms (a

99.6% reduction).

We also measured the overhead on the wired distribution system

added by the two additional messages between the RADIUS server

and the authenticator. With eight neighbors to distribute the key, the

overhead was approx. 21 ms on average. Note that this overhead plays

no role in the re-authentication latency, and just adds to the load on

the RADIUS server and the distribution system. We have included it

for completeness.

5.3.1 The Testbed

41

2

3

5

6

7 8

9

2nd FL

4th FL

3rd FL

Figure 5.7: Figure shows the topological placement of the APs in our

wireless testbed and the resulting structure of the neighbor graph.

The wireless testbed network spans three floors (2nd, 3rd and 4th)

141

of a university building and consists of nine APs as shown in Figure

5.7. The access point is based on a NET4521 Soekris board, which has

a 133 MHz AMD processor, 64MB SDRAM, two PC-Card/Cardbus

slots for wireless adapters and one CompactFlash socket. The board

is powered using Power Over Ethernet through the ethernet cable. A

200mW Prism 2.5 based wireless card is used as the AP interface with a

1ft yagi antenna. OpenBSD 3.3 with access point functionality is used

as the operating system.

The supplicant and the authenticator software is based on the

open1x implementation built at the University of Maryland, College

Park (http://www.open1x.org). We also use the Freeradius software for

the RADIUS server, modified to implement the key distribution scheme

and maintain the neighbor graph data structure. The RADIUS server

is installed on a backend machine (PIII 551.247 MHz, 128 MB RAM).

The Xsupplicant and the authenticator software was modified to include

the simple two-way handshake instead of the four-way handshake for

purposes of demonstration.

5.3.2 Results

The experimental setup consisted of a supplicant roaming in the wire-

less testbed. A laptop with PIII 1.8 GHz, 256 MB RAM and a Prism

142

2.5 based DemarcTech wireless card is used as the supplicant. Three

experiments were done to measure three different latencies as detailed

below:

1. Measuring Full-authentication Latency: The supplicant was made

to roam from one AP to another in the wireless network, and a

full IEEE 802.1X EAP TLS authentication was performed at each

re-association. We measured 90 such authentications resulting in

an average latency of 1.1 seconds.

2. Fast Re-authentication: Fast re-authentication using proactive

key distribution was enabled on the RADIUS and the authen-

ticators. The RADIUS server was initialized with the neigh-

bor graph shown in figure 5.7. We use a static neighbor graph

for ease of demonstration. The graph used in our experiments

was constructed by human observation of the re-association mes-

sages. Autonomous construction methods detailed earlier should

be used in order to keep the neighbor graph fresh and dynamic

and this has no effect on the performance of the key distribution

scheme. Figure 5.8 shows the authentication latencies. The first

authentication (which occurs at the start of a session), is a full-

authentication and hence incurs a high latency (approx. 800 ms);

while all subsequent 18 re-authentications reflect the latency of

143

the two-way handshake.

3. Overhead at the RADIUS server: In this experiment we measured

the additional overhead incurred by communication required for

distributing the keys proactive using the Notify-Request, Notify-

Accept and the Access-Accept messages. We measured 80 authen-

tications and obtained an average latency of 21 ms. This overhead

does not increase the handoff latency.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
ut

he
nt

ic
at

io
n

La
te

nc
y

Authentication Number

Full Authentication

Re-Authentications (Avg = 50 ms)

Figure 5.8: Figure shows the authentication latencies as observed by

the roaming supplicant in the wireless testbed, with proactive key dis-

tribution enabled. As can be seen, the first authentication reflects the

full-authentication latency and initiates the key distribution mecha-

nism.

144

5.4 Related Work

There has been prior work at reducing the authentication latency

by doing a predictive pre-authentication to a set of access points.

Pack [45, 46] proposes a fast handoff scheme using a predictive au-

thentication method based on IEEE 802.1X model. In their scheme,

pre-authentication is performed to the k most likely next access points.

The k stations are selected using a weighted matrix representing the

likelihood (based on the analysis of past network behavior) that a sta-

tion, associated to APi, will move to APj. The mobile station may

select only the most likely next access points to pre-authenticate, or it

may select all of the potential next access points [45, 46]. Pack uses

the notion of a frequent handoff region (FHR) to represent the adjacent

access points which is obtained by examining the weighted matrix. The

weights within the matrix are based on an O(n2) analysis of RADIUS

log information using the inverse of the ratio the number of handoffs

from APi to APj to the time spent by the mobile station at APi prior to

the handoff. In their paper [45], pre-authentication means the follow-

ing. When a station authenticates to APi, authentication server (AAA

server) sends security information not only to APi but also to other

APs in FHR. As a consequence, the next handoff to one of APs in FHR

does not require any message exchanges between the AP and the AAA

145

server, because the AP already has the security information.

There are several issues with pre-authentication. Firstly, pre-

authentication can not occur beyond the first access router due to the

fact that EAPOL packets are used to carry authentication information.

This severely limits the ability to pre-authenticate to single LANs only

and prohibits WAN and Inter-network roaming. Secondly, the cost of

a full re-association is prohibitive for a capable device as in the laptop

used in our experiments. Imagine the times for a small handset using

a low powered processor. In addition, the authentication process must

be accomplished to each potential neighbor. Thus, the cost is several

seconds rather than milli-seconds. During the authentication time, by

the way, the mobile station is on a different channel and unable to pro-

cess traffic from or from the currently associated access point. Finally,

unless there is a significant overlap in coverage pre-authentication will

just not work due to the length of times cited earlier.

For the construction of FHR matrix, it requires O(n2) computa-

tion and space, where n is the number of access points in the net-

work, and must be created at the authentication server (AS). Fur-

thermore, the FHR notion does not quickly adapt to changes in the

network topology. This is in contrast to our neighbor graphs which re-

quire O(degree(ap)) computation and storage space per AP and which

146

quickly adapt to changes in the network topology. Additionally, neigh-

bor graphs can be utilized either in a distributed fashion at each access

point, or client, and in a centralized fashion at the AS.

Process
(Re)Association

AuthenticatorXsupplicant Auth Server

EAPOL−Start

EAP−TLS:Chello

EAP−Resp/Id

EAP−TLS:Empty

EAP−TLS:Start

EAP−TLS:SHello,SCert,Done

EAP−Req/Id

EAP−TLS:Cert,Change Cipher,Finished

EAP−TLS:Change Cipher,Finished

EAP−Success

EAPOL−Key:Message(A)

EAPOL−Key:Message(B)

EAPOL−Key:Message(C)

EAPOL−Key:Message(D)

Association
Delay

Four−Way
Handshake

Delay

Authentication
Delay

Figure 5.9: Figure shows the complete set of messages exchanged dur-

ing the (re)association process. In particular, it shows the EAP-TLS

authentication messages, and the four-way handshake.

5.5 Summary

In this chapter, we discussed the role played by security in the handoff

process. Specifically, we observed that 802.11I based authentication

increases the handoff latency by a huge value of 800 ms.

147

Through this study we showed how our locality hypothesis

can improve security in a wireless network. We developed fast re-

authentication schemes which generate key material prior to a handoff.

This key material is propagated to a limited set of APs determined

using the neighbor graph. As noted earlier, neighbor graphs capture

locality in user mobility. This locality relates APs that a user associates

to in succession. Such a relation places bounds on the key material gen-

eration costs for the proactive key distribution scheme. This shows that

our scheme achieves the same security properties as a full authentica-

tion while at the same time incurs bounded and minimal costs in terms

of the handoff latencies, key computation costs and storage. A four-

way handshake process, defined in the IEEE 802.11I standard ensures

the freshness properties of the distributed keys.

We evaluated our approach through a rigorous testbed based im-

plementation and observed that our approach reduces this authentica-

tion latency from 800 ms to 25 ms on average. In the next Chapter,

we apply our hypothesis of locality in user mobility to address the scan

component of the handoff latency. We discuss extensions to neighbor

graphs which provide further details on the local neighborhood of a

client to design fast scanning algorithms.

148

Chapter 6

Fast Active Scanning

A critical component of the handoff process is the active scan function

which is also a dominant contributor to the total latency. In Chapter

3, we performed an empirical study based on various experiments in

an in-building testbed environment. We had observed that the probe

or the active scan phase consumes over 90 % of the total handoff la-

tency at the MAC layer (which was measured to be around 400 ms

on average). Note that this latency excludes the delay incurred for

authentication mechanisms, such as based on the IEEE 802.11i stan-

dard. The 802.11i authentication, which happens after the MAC layer

handoff takes around 800 ms on average. In Chapter 5, we discussed a

key distribution mechanism which uses our locality hypothesis for fast

re-keying to eliminate the need for full authentication during hand-

off. This reduced the authentication latency of 800 ms to the fast

149

re-authentication latency of around 3-5 ms on average. The focus of

this chapter is to address the active scan component of the handoff

process.

In this chapter we explore how the locality principle can be em-

ployed to design faster scan algorithms. The key insight comes from the

fact that the results of successive scans (as part of successive handoffs)

are related via locality. This is much like the way two successive APs

in an association pattern are related via locality. This is discussed in

detail in Chapter 2. In this chapter, we built fast and efficient active

scan techniques that take advantage of the local view of the network

topology.

The probe (or active scan) returns a set of APs along with signal

strength information which aids the client in making handoff decisions.

Choosing a good AP to handoff to is an important factor that affects

the application throughput. The current active scan algorithm used by

most wireless NIC vendors is to scan each channel (Chapter 3 Section

3.4). In IEEE 802.11b, there are 11 channels available and the station

would scan each of these channels to search for APs. We call this naive

approach, Full-Scanning or Full-Scan for short. Some wireless ven-

dors (specifically Lucent) implement a slightly modified version, where

the station observes which channels are used by the wireless network

150

and scans only those channels during handoff. We call this algorithm,

Observed-Scanning or Obs-Scan for short. This can yield latency im-

provements if, for example, the wireless network used only 2 or 3 chan-

nels out of 11. We note that 802.11b has 11 channels, however, only 3

of them are non-overlapping (channels 1, 6 and 11). Some network ad-

ministrators decide to use only these non-overlapping channels to avoid

unnecessary interference. In such cases, Obs-Scan can perform better

however, the latencies incurred are still significant.

Recall that a station scans a particular channel in the follow-

ing manner: The station sends a broadcast Probe-Request message to

which APs reply with a unicast Probe-Response (which is ACK-ed by

the station). Since the station has no prior information on how many

responses to expect, “how long to wait” on a particular channel be-

comes a non-trivial question. This is because the total time needed to

collect all the responses depends on the number of APs, the contention

present in the channel and whether each individual AP received the

broadcast Probe-Response correctly. The heuristic recommended in the

IEEE 802.11 standard specifies that the station wait for a fixed and

deterministic period given by the MinChannelTime parameter and if

it detects activity on that channel, the wait period is extended to Max-

ChannelTime . Through observations, we measured that most vendors

151

use constants of 17 ms and 34 ms, respectively. With these values, the

latency to scan N channels would fall between 17N and 34N , which

for N = 11, become 187 ms and 374 ms which is significant.

APs bridge traffic between the wired and the wireless segment.

These devices form a fixed infrastructure and hence their location is

expected to change infrequently relative to user mobility. Also taking

advantage of the locality in mobility principle (Chapter 2), obtaining

precomputed information that will aid a station in the active scan pro-

cess is a viable optimization. In the earlier chapters, this locality was

captured using neighbor graphs. An edge in a neighbor graph repre-

sents a path of re-association. However, the results of a scan contain a

list of all APs in range. Thus, two APs might have significant overlap

in their coverage areas and might not have any edges between them in

the corresponding neighbor graph. To provide detailed information to

a client prior to scanning, we extend neighbor graphs by making edges

signify the symmetric relation of overlap in coverage.

We build a graph structure, called overlap graphs, as an exten-

sion to neighbor graphs (Chapter 4), to provide the client with a set of

local APs along with their channel information which can be utilized

by the scanning algorithms. Here, an edge is added between two APs

if their coverage areas overlap regardless of their channel of operation.

152

Overlap is determined by the clients. If a client can communicate with

two APs at the same location, their coverage is said to overlap. Sym-

metric nature of the overlap relation makes the graph undirected. Each

AP/vertex in the graph is also marked with its assigned channel to aid

in the active scan.

There are two optimizations that can be performed by using pre-

computed information from overlap graphs. First, a client need not scan

a channel if there is no expectation to find any AP on that channel.

This information can be obtained from the overlap graph by observing

the channel assignment of all APs that are neighbors to the client’s cur-

rent AP in the overlap graph. Second, a client can determine exactly

how many responses to expect on a given channel from the overlap

graph. This can be actively used in determining how long to wait on a

particular channel instead of using the heuristic specified in the IEEE

standard. For example, our testbed evaluation in Chapter 3 found that

in most cases 4-5 ms of wait time was sufficient to collect all responses.

This duration is almost four times less than MinChannelTime which

would be the minimum time a station would wait on any given chan-

nel. Because of the above two reasons, we expect such optimizations to

perform significantly better than the existing active scan algorithms,

namely Obs-Scan and Full-Scan.

153

We first discuss the existing scanning algorithms, namely Full-

Scan and Obs-Scan in further detail in Section 6.1. We discuss the

notion of overlap graphs in Section 6.2. We discuss two active scan

algorithms, namely, OG-Scan and OGPrune-Scan which perform the

optimizations discussed above in Section 6.3. We present our evalu-

ation of these algorithms using a testbed implementation in Section

6.4 and using simulations in Section 6.5. We summarize this chapter’s

contribution in Section 6.6.

6.1 Current Scanning Algorithms

1X X2

T1

T2

gT

AP−2

SNR

AP−1

Grey Area

Hub

Ethernet

Hub

Ethernet

Figure 6.1: Plot of SNR as a station moves from one AP to another.

Handoff occurs at X1 when Th = T1 and at X2 when Th = T2. The

handoff-region shown is when the handoff threshold Th = T2.

We present a brief discussion of the active scan functionality in

154

802.11 for background purposes. The reader is referred to Chapter 3

for further details. We also discuss the two commonly used scanning

algorithms, Full-Scan and Obs-Scan in detail.

A station leaving an access point (AP) initiates the handoff pro-

cess for finding a candidate set of next-APs to associate with. The

station must handoff to maintain service continuity[51]. Also handoff

decisions could take into account load balancing constraints, as dis-

cussed in [51]. To make this service disruption imperceptible to appli-

cations, fast handoff is critical. For example, a handoff completed in

less than 50ms provides a VoIP user not only continuous conversation

but also a smooth transition of the call [52], [53]. [54]. Therefore, when

and how to handoff is an important design issue.

When to initiate handoff in the cellular domain has been studied

previously [54] [55] [56]. A handoff criteria called the relative signal

strength with hysteresis and threshold used by Lucent [57] is described

below. Figure 6.1 depicts the typical signal-to-noise ratio1 (SNR [58])

changes between two adjacent access points, AP1 and AP2. As the

station moves from AP1 to AP2, the SNR from AP1 decreases while

SNR from AP2 increases. We denote SNR values from AP1 and AP2

1Other metrics may be used for hand-off decision, such as Received Signal

Strength Indicator (RSSI), Bit Error Rate (BER) or Signal-to-Interference Ratio

(SIR). We select SNR in our implementation.

155

at position x by S1(x) and S2(x), respectively. Hand-off initiation is

based on two parameters, handoff threshold Th and hysteresis ∆, both

positive. At any position x, the station currently associated to AP1

initiates hand-off procedure from AP1 to AP2 if and only if the following

conditions hold : 
S1(x) < Th

S2(x)− S1(x) > ∆

(6.1)

In Figure 6.1, the station triggers the hand-off process at position

X1 if Th = T1 and X2 if Th = T2. The threshold condition avoids

unnecessary hand-offs when the current link quality is sufficient, and

the hysteresis condition avoids the ping-pong effect [54].

As soon as the hand-off condition holds, the station initiates a

hand-off procedure. Below, we discuss the various phases and the re-

spective chapters that address them along with the work presented in

this chapter to give the reader an overall picture:

1. Active Scan or Probe : Construct a set of candidate APs for hand-

off, by performing a scan on each channel of operation (Chapter

3 and 6).

2. Layer-2 Authentication : Used for WEP-based shared key authen-

tication. With IEEE 802.11i, this is a dummy exchange, present

only as an artifact of the 802.11 state machine and contributes

156

negligibly to the overall handoff latency. Hence, we ignore this

phase for all practical purposes.

3. Re-association : Establish layer-2 connectivity with a particu-

lar AP. This involves transfer of station context according to the

IAPP protocol [11] (Chapter 4).

4. Re-authentication : Authenticate the user using the IEEE 802.1X

[5] framework as described in the IEEE 802.11i Standard [4]

(Chapter 5).

5. Layer-3 Hand-off : Update binding information and the care of

address [59]. This also includes packet forwarding to minimize

packet loss. This step is omitted if the station roams to another

AP in the same wireless network. In this thesis, we restrict our-

selves to such scenarios of mobility where the client stays within

a single network domain, also referred to as micro-mobility.

The purpose of the probe phase is to construct a set of candidate

APs within the client’s range. This is achieved by performing an active

scan or a probe of each channel of operation. During a probe2, the

client broadcasts a probe request messages to which APs respond with

2Another method specified in the standard is a passive scan, which few NIC

vendors follow.

157

a probe response. Figure 6.2 shows the active scan procedure in detail.

As shown in the figure, say N distinct channels are selected for probe.

To scan a channel, the client performs the following steps:

1. The client has to first switch to the target channel and wait for

a chance to transmit by following the IEEE 802.11 DCF mecha-

nism. We call this latency, the channel switch and transmission

overhead (CST) as indicated in the figure.

2. The client transmits the probe-request frame.

3. The client waits for probe-responses from APs that received the

probe-request frame. The duration of wait is controlled by the

Algorithm 2 and discussed in detail later.

After completing a scan of the selected N channels, the client constructs

a list of candidate APs according to a certain criteria – such as strength

of received signal, available data rates, etc. An AP is selected from this

list for reassociation.

We define the amount of time spent by a client waiting for probe-

responses, i.e. time spent in step 3 above, as the probe-wait time. This

variable is critical in determining the total probe latency – defined as

the total time spent in the probe or the active scan phase.

The above probe process is described in Algorithm 2. This

158

algorithm takes as input a set S of channels to scan. If this is

equal to the set of all available channels, we call it a Full-scanning

(or Full-Scan) algorithm. If this set is restricted to the channels

on which APs were found during an earlier probe, we call the algo-

rithm Observed-scanning (Obs-Scan). MinChannelTime and Max-

ChannelTime are two parameters used by the algorithm which af-

fect the probe-wait time in the following manner (steps 6-10 of Algo-

rithm 2) – a client waits for MinChannelTime on a particular chan-

nel after sending the probe-request. If any transmission is detected

during this period (i.e. there are other stations utilizing this chan-

nel), the client extends the wait period up-to MaxChannelTime (

MinChannelTime ≤MaxChannelTime). Thus, if |S| = N and let

MinCT =MinChannelTime and MaxCT =MaxChannelTime, then

the total probe latency Γ(N) (say) is given by

Γ(N) =
∑

i=1...N

[
MinCT + F (i) ∗ (MaxCT −MinCT)

]
(6.2)

where

F (i) =


0 Medium was idle on channel i,

1 Otherwise.

(6.3)

Clearly, we can upper and lower bound Γ(N) as follows:

159

N ∗MinCT

≤
∑

i=1...N

[
MinCT + F (i) ∗ (MaxCT −MinCT)

]

≤ N ∗MaxCT

(6.4)

Figure 6.2 shows an example. Say N channels are to be scanned

and APs are present on channels 1 and N . The scan on channel 1 takes

MaxChannelTime as a probe-response is received before MinChannel-

Time expires, indicating that the medium was not idle. The scan of

channel 2 . . . (N − 1) takes MinChannelTime as there are no APs and

stations on those channels, thus no transmission can be detected dur-

ing MinChannelTime. Similarly, on channel N the client has to spend

MaxChannelTime.

Note that the client did not have to scan channels 2 . . . (N − 1) if

it had the information that no neighboring APs were present on those

channels. Also on channel N , the station need not have to wait up until

MaxChannelTime after receiving the single probe-response message.

We shall discuss mechanisms and algorithms in Section 6.3 which will

leverage such optimizations to reduce the overall probe latency.

160

Algorithm 2 Full/Observed-scanning algorithm

S = set of channels to probe.

1: for each channel ch ∈ S do

2: Broadcast probe-request on this channel ch

3: Start probe timer T = 0

4: while True do

5: Wait for probe-responses from APs

6: if Medium is idle until T ≥MinChannelTime then

7: break { Move to next channel if medium has been idle

for MinChannelTime }

8: end if

9: if T ≥MaxChannelTime then

10: break { Wait for MaxChannelTime if medium was not

idle }

11: end if

12: end while

13: end for

161

STA

AP AP AP

Pr
ob

e
R

eq
ue

st
 (b

ro
ad

ca
st

)

Ch−2

Pr
ob

e
R

eq
ue

st
 (b

ro
ad

ca
st

)

Ch−N

Pr
ob

e
R

eq
ue

st
 (b

ro
ad

ca
st

)

Ch−1

Probe R
esponse

Probe R
esponse

MinChannelTime
Probe R

esponse
CS&T MaxChannelTimeMinChannelTime

MaxChannelTime

CS&T CS&T

CS&T

Probing Latency

Wasted Channel Wasted Probe−Wait

Pr
ob

e
R

eq
ue

st

Figure 6.2: Messages during an Active Scan or Probe. CS&T refers to

the ‘channel switch and transmission overhead’.

6.2 Overlap Graph

The purpose of the active scan is to provide the client with a list of

APs along with their signal strength information such that the client

can make a good decision on the next access point. From the discussion

presented in the previous section, it is clear that the active scan latency

depends on (i) the number of channels scanned, and (ii) the duration

of wait on each channel in order to receive the probe responses. Both

these latencies can be reduced if the client has sufficient information on

the neighboring APs and their channel of operation.

Based on this idea, we construct a graph called an Overlap Graph

where an edge between two APs indicates overlap in their coverage.

That is, there exists a location such that a scan of all channels would

162

result in both APs being reported in the scan results - we call this the

overlap relation. The symmetric nature of the overlap relation makes

the graph undirected in nature.

Neighbor graphs (Chapter 4) capture the asymmetric relation

of handoff between two APs. Consider the example shown in Figure

6.3(a). Assume that a client is associated to AP1. At location Y, the

client decides to handoff and thus re-associates to AP3. Because of

circular ranges, a similar re-association from AP3 to AP1 is possible.

Figure 6.3(b) shows the neighbor graph which has directed edges be-

tween AP1 and AP3. Now consider location X. Here, the two APs have

an overlap in coverage and a scan at location X would include AP3.

However, the signal strength of AP3 would be weak and very similar

to the signal strength of AP1 at X. Thus, the difference in the signal

strengths would be insufficient for the client to handoff between AP1

and AP3 (it could possibly handoff to a third AP not shown in the

figure). In order to make our active scan accurate, AP3 should be a

neighbor of AP1 as shown in the overlap graph in Figure 6.3(c). How-

ever, the neighbor graph does not have any edges between AP1 and

AP3 because of the handoff condition not being satisfied.

Formally, the overlap graph (OG) is an undirected graph over the

set of all access points in the network. An edge of an overlap graph,

163

AP 1

AP 2

AP 3

The Neighbor Graph

AP 1

AP 2

AP 3

The Overlap Graph

AP 1

AP 3

X

Y

AP 2

(a) (b) (c)

Figure 6.3: Example scenario to illustrate the difference between neigh-

bor graphs and overlap graphs.

〈APi, APj〉 represents the overlap relation between access points. APi

and APj overlap if there exists a location where a mobile station can

communicate to both of them with ‘acceptable’ link quality. That is,

a probe request at such a location would elicit a probe response from

both APs.

6.2.1 Construction

An overlap graph can be obtained by a mobile station’s random mea-

surements of signal strengths from various access points. With a very

small probability pOG, a station is selected to perform a scan of all

channels. The station initiates a full-scan and reports the results to

the system. Overlap among APs can be determined from these scan

results as per the definition. We call this an overlap test. Note that

with a sufficient number of stations, generation of the overlap graph

using the overlap tests can be completed faster than the generation of

164

a neighbor graph because it doesn’t require user mobility.

Figure 6.5 shows the overlap graph and the neighbor graph for an

in-building testbed environment. The testbed used for the experiments

in this chapter spanned two floors of an office building comprising of 20

APs. The overlap graph shown in the figure was constructed by per-

forming scans at various points in the building. The arrows indicate the

directed edges which are a part of the neighbor graphs. The undirected

version of these edges belong to the overlap graph. Undirected edges

which belong to the overlap graph and do not belong to the neighbor

graph are shown using dashed lines.

6.3 OG-Scan and OGPrune-Scan

As discussed earlier, the probe phase accounts for a significant portion

of the total handoff latency. Thus, for fast handoffs, it is critical to

optimize this phase as much as possible. The purpose of the probe

phase is to obtain a candidate set of APs for re-association.

We discuss two algorithms, namely, OG-Scan and OGPrune-

Scan . The OG-Scan algorithm utilizes the overlap graph to reduce the

number of channels to be scanned and to reduce the duration of wait on

each channel by knowing exactly how many probe responses to expect.

The OGPrune-Scan algorithm improves over the OG-Scan algorithm

165

by constructing an additional temporary data-structure, called a non-

overlap graph using the overlap graph. This is utilized in performing

opportunistic pruning of the set of APs to be scanned. We discuss

this further in Section 6.3.2. We first present the OG-Scan algorithm

below.

6.3.1 OG-Scan Algorithm

The OG-Scan algorithm performs the following optimizations using the

overlap graph over the active scan presented in Algorithm 2. Steps 1

and 8 are the improvements over Algorithm 2. The OG-Scan algorithm

is presented as Algorithm 3.

1. Reduce the number of channels to be probed: If there are no neigh-

boring APs present on a particular channel (with respect to the

current AP in the overlap graph), that channel is not probed –

step 1 in Algorithm 3.

2. Reduce the probe-wait time: Probe-wait time is the duration spent

by a station on a particular channel waiting for probe responses

from the APs. If all APs on a particular channel have responded,

the client can move to the next channel instead of waiting for

the MaxChannelTime timer to expire. Knowledge of the overlap

graph gives the client a fine-grained control over the duration of

166

wait on a particular channel – step 8 in Algorithm 3.

Algorithm 3 : OG-Scan algorithm

1: for all channel i where any neighbor AP is running do

2: Broadcast probe request on channel i

3: Start probe timer

4: while True do

5: Receive probe responses

6: if Medium is idle until MinChannelTime expires then

7: break

8: else if all APs on channel i have replied then

9: break

10: else if MaxChannelTime expires then

11: break

12: end if

13: end while

14: end for

Depending on the density of the wireless network, the OG-

Scan algorithm can improve the probe latency significantly. We eval-

uate the performance of OG-Scan via simulations in Section 6.5 and

via implementation on a testbed network in Section 6.4.

167

AP 1 AP 2 AP 3

(a)

YX

Ch 1 Ch 6 Ch 1

(b)

AP 1 AP 3

(c)

The Non−overlap GraphThe Overlap Graph

AP 1

AP 2

AP 3

Figure 6.4: Scenario to illustrate the opportunistic pruning possible

using the non-overlap graph.

6.3.2 OGPrune-Scan Algorithm

The OGPrune-Scan algorithm improves over the previous algorithm

by performing certain opportunistic optimizations. Consider the ex-

ample shown in Figure 6.4(a). Here the coverage of AP2 overlaps with

both AP1 and AP3. Both AP1 and AP3 are on channel 1. Thus, OG-

Scan would wait for a response from both APs or for MaxChannel-

Time whichever would come first. However, there is no location where

a client can communicate with both AP1 and AP2. Thus, the client

needs to wait precisely for one probe response, either AP1 (for example

at location X) or AP2 (at location Y).

We capture the above opportunistic optimization in an algorith-

mic manner by constructing a non-overlap graph confined to the set of

APs that overlap with the client’s current AP. Figure 6.4(b) shows the

overlap graph for the scenario of Figure 6.4(a). We construct a non-

168

overlap graph over the set of neighbors of AP2, which are {AP1, AP3}.

The non-overlap graph is shown in Figure 6.4(c). As the client waits

for probe responses on channel 1, it can perform opportunistic pruning

using the non-overlap graph as given by the following pruning principle

:

Non-overlap based Pruning: If the client receives probe response

from an APi, it implies that the client is within coverage of APi. Thus,

let Ni = {APi1 , APi2 , . . . , APik} denote the set of neighbors of APi in

the non-overlap graph. This implies that each such edge 〈APi, APij〉 for

j ∈ {1 . . . k} is present in the non-overlap graph. Thus, since the client

is within range of APi, it is not within range of each AP in the set Ni.

These APs as denoted by Ni can thus be pruned from the non-overlap

graph after the client receives a probe response from APi.

The above pruning principle is exploited by the OGPrune-

Scan algorithm in addition to the optimizations performed by OG-

Scan.

In order to capture the non-overlap relation in a more formal

manner, we define the following: A Non-Overlap Graph (NOG) is the

complement of an overlap graph, meaning that 〈api, apj〉 is an edge in

the non-overlap graph if and only if 〈api, apj〉 is NOT an edge in the

169

overlap graph. That is,

NOG
def
= OGc. (6.5)

When the non-overlap graph is constrained to the set of APs that

are a neighbor to the client’s current AP, we call it a local non-overlap

graph. We use the NOG to dynamically prune the set of APs to scan.

This may even reduce the number of channels to probe if a pruned-AP

was the only AP on its channel. Algorithm 4 describes the OGPrune-

Scan algorithm.

In Step 1, a local non-overlap graph (NOG) is constructed. This

is the induced subgraph of the global non-overlap graph by restricting

the APs to the neighbors of the client’s current AP in the overlap

graph. In Step 3, the degree of each AP in the local non-overlap graph

is examined. We select an AP with the maximum degree following the

strategy discussed in [60] for the set-cover problem. If a particular AP

api responds with a probe response message, this implies reachability to

api. Hence, we prune all other APs that are non-overlapping with api –

that is, all APs that have an edge to api in the local non-overlap graph.

As a result of this pruning, some channels might become devoid of APs

to scan, thus resulting in further improvement of the probe latency.

170

Algorithm 4 : OGPrune-Scan algorithm

1: let NOG be the local non-overlap graph with respect to the client’s

current AP

2: while not all APs are probed or pruned do

3: ch = channel of AP with maximum degree in the local NOG

4: Broadcast probe request on channel ch

5: while True do

6: Probe response received from APr

7: if Medium is idle until MinChannelTime then

8: break

9: end if

10: Prune all APs that are non-overlapping with APr (computed

using local NOG)

11: if All neighbor APs on channel ch responded or were pruned

then

12: break

13: end if

14: if MaxChannelTime has expired then

15: break

16: end if

17: end while

18: end while

171

1

1 1

1

1

1

6

6

6

6

6

6

6

11

11

11

11

11
11

11

3rd FL

2nd FL

Figure 6.5: The neighbor graph and the overlap graph for the in-

building testbed environment. Directed edges show the neighbor graph.

These edges are present in an undirected form in the overlap graph.

Dashed edges are solely present in the overlap graph.

6.4 Implementation

In this section, we discuss the implementation of the active scan al-

gorithms over a deployed IEEE 802.11b indoor network. We describe

the network configuration, implementation, process of performing the

experiments and the results. In brief, we implemented four different

Table 6.1: Summary of Experiment Results.

Algorithms Probe Count Probe-Wait Latency

Full-Scan 11.0 10.9 ms 362 ms

Obs-Scan 3.0 11.0 ms 101 ms

OG-Scan 2.5 6.3 ms 70 ms

OGPrune-Scan 2.2 4.4 ms 59 ms

172

algorithms (Full-Scan, Obs-Scan, OG-Scan, and OGPrune-Scan) and

measured approximately 250 handoffs on the testbed network.

The OG-Scan algorithm reduced the probe latencies of Full-

Scan and Obs-Scan by 80.7% and 30.8%, respectively. The OGPrune-

Scan algorithm reduced them by 83.9% and 42.1%, respectively. Table

6.1 summarizes the results. In Table 6.1, probe count refers to the aver-

age number of probe request messages sent by the client, which equals

the number of channels probed. Probe-wait is the duration spent by

the client on a particular channel waiting for probe responses. Table

6.1 shows the average probe-wait times as measured. Note that both

OG-Scan and OGPrune-Scan reduce the probe-wait time and the

probe count while Obs-Scan only reduces the probe count.

6.4.1 Testbed Environment

The deployed wireless network spans two U-shaped floors in a campus

building (Figure 6.5). There are nine APs on the third floor and eleven

APs on the 2nd floor. Each access point is a Cisco 350 with an omni-

directional antenna on the ceiling. Open authentication is used for

layer 2 authentication, and the access points are assigned channels 1,

6 and 11, which are known to be non-overlapping in IEEE 802.11b

[61]. The geometry of the floors and topologies of the twenty access

173

points are shown in Figure 6.5. For the mobile station, a laptop with

an Intel Pentium 4 Mobile 1.8 GHz and 256 MB RAM, equipped with

a Prism 2.5 based Demarctech card [62] was used. Linux was used as

the operating system.

Full−Scan Obs−Scan OG−Scan OGPrune−Scan
0

50

100

150

200

250

300

350

400

Active Scan Algorithms

A
ct

iv
e

S
ca

n
La

te
nc

ie
s

(m
s)

Experiment
Adjusted

58.5
69.9

101.0

362.0

231.0

64.9

40.3 31.8

Figure 6.6: Active Scan Latencies for the four scan algorithms. Also

shown are the adjusted latencies with the Channel Switch and Trans-

mission overhead = 10ms. Confidence intervals are also shown.

6.4.2 Software

In most commercial wireless cards, the handoff process is implemented

inside the firmware for efficient operation. This includes fast chang-

ing of channels for the active scans. Thus, when implemented in the

firmware the channel switch and transmission overhead is typically of

the order of 1 or 2 ms.

174

Because the firmware is proprietary and it is hard to obtain

firmware source to implement the various scan algorithms, we imple-

mented them as a user-space daemon. The Prism 2 wireless card has

a mode which allows the host programs to perform the scan opera-

tions. However, when using this interface to do host-based scanning we

observed that the channel switch and transmission overhead becomes

very high. We measured this overhead to be around 22.2 ms (11.3 ms

for channel switch and 10.9 ms for transmission). Thus, we note that

when implemented in firmware the scan algorithms would not incur

this latency. While reporting the handoff latencies, we report the ac-

tual measured latency and also the adjusted latency where we reduce

the channel switch and transmission overhead to a more realistic value.

We implemented the four scanning algorithms using Airjack [63],

an open source linux based driver for Prism wireless cards. We used

Airjack to implement a roaming daemon in user-space that performs

the active scan using the different algorithms. The daemon program,

named roamd, communicates with the customized Airjack driver so

that the mobile station continuously monitors the signal quality with

its current AP and initiates the handoff when a certain handoff con-

dition holds. The Airjack driver was customized for the monitoring

functionality.

175

Full−Scan Obs−Scan OG−Scan OGPrune−Scan
0

2

4

6

8

10

12

Active Scan Algorithms

MaxChanTime Expired
MinChanTime Expired
Optimal Waiting

11.0

3.0
2.5 2.2N

um
be

r o
f P

ro
be

 R
eq

ue
st

s

Figure 6.7: Probe count for the four active scan algorithms. Also shown

is the distribution of the probe count attributed to either MaxChannel-

Time getting expired, MinChannelTime getting expired or optimal

waiting.

6.4.3 Measurement Methodology

In our implementation, the probe algorithms are executed as a user-

space daemon. We measured the latencies inside the daemon for accu-

racy. To overcome the clock resolution of 10ms in Linux, we patched

the kernel to get microsecond resolution [64].

A common method used by researchers [65, 66] in the wireless

community is to capture all packets over the air using a dedicated sys-

tem. This approach is called packet sniffing and the system is called a

packet sniffer. One advantage of packet sniffing is its independence from

the system executing the implemented algorithms. However, packet

176

sniffing fails to measure latencies inside the system. The actual probe

latency begins with the internal state transition of the driver/firmware

from a normal state (where it is associated to an AP) to a probe state

and not with the end of successful transmission of the first probe re-

quest frame (which will be the only event observed by a packet sniffer).

Thus, our approach uses internal measurements from the user-space

daemon rather than sniffing.

6.4.4 Experiment Process

Our experiments consists of the following two parts.

1. Generation of the overlap graph.

In order to generate the overlap graph, we issued 475 random

overlap tests throughout the area. We used these results to gen-

erate the overlap graph offline. This graph structure was stored

locally as a file on the mobile station performing the experiments.

2. Measurement of the probe latencies.

For measuring the probe latencies, we induced 250 handoffs for

each of the four different algorithms. These handoffs occurred

along fixed paths of motion which were carefully chosen to cover

all the handoff edges in the neighbor graph shown in Figure 6.5.

177

To maintain identical conditions across the algorithms, we fol-

lowed the same exact path for each algorithm during periods of

low network activity.

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

100

Probe Wait Time (ms)

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

(%
)

Obs−Scan
Full−Scan
OG−Scan
OGPrune−Scan

OGPrune−Scan

OG−Scan

Obs−Scan Full−Scan

Figure 6.8: Cumulative distribution of probe-wait times for the four

algorithms.

6.4.5 Experiment Results

Figure 6.5 shows the neighbor graph and overlap graph constructed by

the generation phase. Each circle represents an access point with the

assigned channel inside the circle. Arrows with solid lines represent an

edge present in both the neighbor graph and the overlap graph. The

direction of an arrow shows the direction of the handoff relationship.

A dashed line represents an edge present only in the overlap graph.

We found that the number of neighbors was 3.15 on average with a

178

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Normalized Degree

P
er

ce
nt

ag
e

of
 A

P
s

pr
un

ed

Experiment
Regression

Y = 0.9 X + 0.07

MSE = 0.0043

Regression :

Figure 6.9: Performance of the pruning optimization performed by the

OGPrune-Scan algorithm as affected by the average normalized degree

of an AP in the local non-overlap graph. MSE is the Mean Square Error

of the shown regression line.

maximum of 6 while the average neighboring channels that were used

was 2.25 (out of 11).

Probe Latencies and Adjusted Latencies

The measured probe latencies are shown in Figure 6.6. The x-axis

shows the four different algorithms tested and the y-axis shows the

probe latencies in milliseconds. The left bars are the results of our ex-

periments while the right bars show adjusted probe latencies that one

could achieve when the channel switch and transmission overhead was

10ms, which would be a very pessimistic estimate if the algorithm was

179

implemented in firmware3. From the experiments, the OG-Scan al-

gorithm reduces the probe latencies relative to Full-Scan and Obs-

Scan by 80.7% and 30.8%, respectively. The OGPrune-Scan algo-

rithm reduced them by 83.9% and 42.1%, respectively. The adjusted

probe latencies show that this latency can be less than 50ms with our

algorithms.

Probe Count and Probe-Wait Time

Probe Count refers to the number of channels that were selected for

scanning during a single handoff. For example, the Full-Scan algo-

rithm would scan all 11 channels, thus resulting in a probe count of 11.

This parameter measures the effect of the optimizations performed by

the OG-Scan algorithm using overlap graphs and the opportunistic op-

timizations performed by the OGPrune-Scan algorithm using the non-

overlap graphs. Probe wait refers to the duration spent by the station

on a single channel waiting for probe responses. The OG-Scan reduces

this duration by having a knowledge of how many probe responses to

expect. The OGPrune-Scan algorithm dynamically decides to wait

longer or shorter depending on the probe responses received and the

knowledge of the non-overlap graph.

3Our measurements indicate channel switch and transmission latencies of around

2-3 ms for the scanning algorithms implemented in firmware.

180

The analysis of the probe count and the probe-wait times are

provided in Figure 6.7 and 6.8. We observe that the OG-Scan and the

OGPrune-Scan algorithms reduce the probe count when compared to

Full-Scan by 77.45% and 79.82% respectively. When compared to Obs-

Scan they reduce the probe count by 17.33% and 26.00% respectively.

We use the term optimal wait to indicate the optimal amount of

time needed to wait on a particular channel. This time can be com-

puted offline after observing the probe responses. Ideally the client

should wait for the optimal duration (as indicated by optimal wait)

on each channel. Information using overlap graphs and pruning us-

ing non-overlap graphs aid the client in determining the optimal wait

duration. Thus, we can classify each scan as a MaxChannelTime ex-

piration (the client probably waited too long), an optimal wait (the

client spent the right amount of time) or MinChannelTime expiration

(the client unnecessarily scanned that channel only to find no activity).

Figure 6.7 shows that more than 97% of single channel scans resulted

in MaxChannelTime expirations for both Full-Scan and Obs-Scan al-

gorithms. Figure 6.7 also shows that 46 % of the single channel scans

turned out to be optimal waits for the OG-Scan algorithm. This num-

ber was boosted to 72 % for the OGPrune-Scan algorithm indicating

the success of the opportunistic pruning performed by OGPrune-Scan.

181

In these experiments, MaxChannelTime was set at 11ms and Min-

ChannelTime at 7ms as recommended in [65]. The duration of optimal

waits was measured to be 2.7ms on average with a standard deviation

of 1.4ms.

Figure 6.8 shows the cumulative distribution of the probe-wait

times for each algorithm. The graph shows that OG-Scan and

OGPrune-Scan have much shorter probe-wait times than the other

two algorithms. For example, scans that take less than 7ms occur

46.6% of the time for OG-Scan and 71.2% of the time for OGPrune-

Scan . The peaks at 7ms and 11ms explain the high density around

MinChannelTime(7ms) and MaxChannelTime(11ms).

4

1

2
1

2

3

A

B

C

D

E

Figure 6.10: Example of a topology generated in simulations. The

dashed circle is the current AP; solid circles are the neighbor APs. The

number in the circle is the assigned channel. The station, represented

by a star, moves as indicated by an arrow.

182

OGPrune-Scan performance vs the number of neighbors

As discussed earlier in Section 6.3.2, the OGPrune-Scan algorithm im-

proves the scan latency by performing opportunistic pruning of the set

of APs to be scanned and thereafter also the number of channels to be

scanned. This optimization is done by considering the local non-overlap

graph. The number of APs that get pruned would depend on the aver-

age degree of the APs in the non-overlap graph. This observation was

reflected in our measurements.

We observed that higher the average degree of APs in the non-

overlap graph, greater was the number of APs that got pruned by

the OGPrune-Scan algorithm. Figure 6.9 shows this result. The x-

axis shows the average degree of an AP in the local non-overlap graph

normalized by the size of that graph. The y-axis shows the percentage

of APs that were pruned out of all the APs present in the non-overlap

graph.

1

2
1

2

3

A

B

C

D

E

Figure 6.11: Example of a non-overlap graph generated in simulations

183

3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

120

140

160

Number of Channels

P
ro

be
 L

at
en

cy
 (m

s)

Observed−Scanning

OG−Scan

OGPrune−Scan

Figure 6.12: Probe latencies of three algorithms vs. the number of

channels.

6.5 Simulations

The goal of the simulations is to investigate the performance of the

various scanning algorithms under different configurations:

• The number of independent channels from 3 to 12

• The number of neighbors from 2 to 8

We assume optimal channel assignments in which no adjacent APs have

the same channel, if possible. We only simulate local topologies, i.e,

the current AP and its neighbors.

6.5.1 Simulation Model

The following assumptions are made for simplicity.

184

1. The radio coverages of all APs are identical circles centered at

the corresponding APs.

2. The positions of neighbors, {AP1, AP2, . . . , APm} where m is the

number of neighbors, are randomly chosen around the current

access point, APc with the following conditions :

For i = 1, 2, . . . ,m,

R ≤ Distance(APc, APi) ≤ 2×R

For distinct neighbors APi and APj,

Distance(APi, APj) ≥ R

where R is the radius of the coverage and Distance() is the Eu-

clidean distance.

3. Access points APi and APj overlap each other if

Distance(APi, APj) ≤ 2×R

4. The direction of the mobile station is randomly chosen so that

there exists at least one neighbor AP to handoff.

5. APi is considered to be reachable by the mobile station c if and

only if

Distance(c, APi) ≤ R

185

6. There exists no contention from other mobile stations

The constant values are shown in Table 6.2.

2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

Number of Neighbors

P
ro

be
 L

at
en

ci
es

 (m
s)

OG−Scan

OGPrune−Scan

Figure 6.13: Effect of the pruning optimization performed by OGPrune-

Scan over OG-Scan versus number of neighbors.

Table 6.2: Constants used in Simulations

Constants Values

MaxChannelTime 11 ms

MinChannelTime 7 ms

Round Trip Time (RTT) 2 ms

Channel Switch & Transmission 5 ms

186

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

Normalized Degree

P
er

ce
nt

ag
e

of
 A

P
s

P
ru

ne
d

Simulation
Regression

Regression :
Y = 0.72 X − 0.02
MSE = 0.0047

Figure 6.14: Performance of the pruning optimization performed by

the OGPrune-Scan algorithm as affected by the average normalized

degree of an AP in the local non-overlap graph. MSE is the Mean

Square Error of the shown regression line.

6.5.2 Simulation Process

Table 6.3 shows the various parameters used in the simulations. For

each combination of the parameters, ten different local topologies were

randomly generated according to the model. Channels are assigned to

the APs according to the following rules :

Table 6.3: Varying Parameters in Simulations

Varying Parameters Values

The Number of Neighbors {2, 3, . . . , 8}

The Number of Channels {3, 5, 8, 12}

187

• The channel used by an AP is not assigned to any of its neighbors.

• If channel count > neighbor count, then

assign distinct channels to the neighbors while leaving one channel

for the current AP. Here, channel count refers to the number of

available channels and neighbor count refers to the number of

neighbors.

• otherwise,

assign (channel count − 1) channels so that no overlapping

neighbors have the same channel. When channel count = 3,

assigning the same channel to overlapping APs may be inevitable

Once topology and channel assignment are determined, the mo-

bile station makes ten different handoffs in randomly chosen directions.

The probe latencies are measured using the four different algorithms.

Figure 6.10 illustrates an example of a generated topology when the

neighbor count is 5 and the channel count is 4. The dashed circle is

the current AP and the others are its neighbors. The numbers repre-

sent the assigned channels while the letters are for reference purposes.

The star and an arrow illustrate the mobility of a station. Note that

only access points D and E are reachable to the mobile station at the

point of handoff. Also the neighboring cells need not cover the entire

188

boundary of the current AP.

Figure 6.11 shows the generated local non-overlap graph from the

above topology which has an average degree of 2.8.

Table 6.4: Percentage reduction relative to Obs-Scan.

Channel Count OG-Scan OGPrune-Scan

3 33.8 % 56.1 %

8 47.6 % 66.5 %

12 63.8 % 75.6 %

0 1 2 3
0

10

20

30

40

50

60

70

80

90

100

Number of Neighbors per Channel

R
ed

uc
ed

 P
ro

be
 L

at
en

ci
es

 (%
)

channel < neighborchannel > neighbor

Figure 6.15: Performance improvement of the OG-Scan algorithm rel-

ative to Obs-Scan as a function of number of Neighbors-per-channel.

6.5.3 Simulation Results

Below we present the salient points of our simulation results.

189

Increasing Number of Channels Improves Performance

Figure 6.12 shows that the performance of our algorithms improve when

the number of independent channels increase. Table 6.4 shows the

percentage-reduction of the probe latencies relative to the Obs-Scan al-

gorithm for three different channel counts (i.e. number of available

channels).

Table 6.4 shows that the percentage reduction in the scan latency

grows almost linearly with a coefficient of 3.48 for OG-Scan and 2.26 for

OGPrune-Scan, obtained by a linear regression using the least squares

method.

Smaller Neighbor-per-Channel Density Helps

Neighbor-per-channel density is the average number of neighbors of

a randomly selected AP per channel. The smaller the value, greater

is the performance improvement of the OG-Scan algorithm over the

Obs-Scan algorithm as shown in Figure 6.15. But when the neighbor

count becomes greater than the channel count (right side of the vertical

dotted lines), the local channel reuse increases resulting in a reduction

in the performance gain of OG-Scan algorithm over OGPrune-Scan.

190

Better Pruning with Increasing Number of Neighbors

Figure 6.13 shows the performance differences between OG-Scan and

OGPrune-Scan versus neighbor count. As shown in the graph, the per-

formance gap between OGPrune-Scan and OG-Scan increases with

greater number of neighbors. Figure 6.14 shows the relationship of

pruning performance and non-overlap degree to the neighbor count ra-

tio. Similar but extended results of the experiments are shown in Figure

6.9.

6.6 Summary

In this chapter, we focussed on the scanning latency. We constructed

a graph that captures overlap in coverage among APs. This overlap

graph positions the client with respect to a localized set of APs. The

localized information about the APs and their channel of operation is

used by the scanning algorithms. Overlap graph was used to design a

fast active scan algorithm called OG-Scan that improves the latency

by (i) reducing the number of channels to scan and (ii) reducing the

duration of wait on each channel being scanned. We also discussed a

pruning method to opportunistically shrink the set of APs that need

to be scanned by computing a non-overlap graph structure.

191

We evaluated both algorithms in contrast with the current active

scanning techniques using a testbed implementation and through simu-

lations. We observed that both algorithms perform very well relative to

the current best known techniques and bring about reductions between

40-80% depending on various parameters. These algorithms performed

well in practice and in simulations precisely because they made use of

the information available on the local APs. This information proved to

be useful because of the locality present in user mobility. The results

of this study thus support our hypothesis that there is locality in user

mobility.

192

Chapter 7

Summary

For a successful technology, reality must take precedence over public

relations, for Nature cannot be fooled. - Richard P. Feynman.

The primary contribution of this thesis is the development and

analysis of the notion of mobility induced locality among base-stations

or access points that form a wireless network. We proposed and eval-

uated an efficient structure called Neighbor Graphs that captures this

locality in a distributed fashion and provides important properties of

resilience and autonomous maintenance. This notion and representa-

tion applies to any infrastructure wireless network such as a cellular

network or a wireless LAN. We evaluated the practical usefulness of

this mechanism by applying it to the real-world problem of handoffs in

the context of wireless LANs.

The notion of mobility induced locality simply states that there

193

Scanning Re-association Re-authentication

IEEE Method 400 ms 15 ms 800 ms

Neighbor Graphs 50 ms 2-3 ms 20 ms

Table 7.1: Overall comparison of the cost improvement for handoffs

using algorithms based on neighbor graphs versus the IEEE standard.

is locality in user mobility measured to within any realistic accuracy.

When applied to user mobility in a wireless LAN environment, this

relates access points (APs) through which users perform handoffs. Two

APs through which a user can perform a handoff are said to be ‘local’

to each other. This crucial observation allows us to firstly define what

a local neighborhood of a client is with respect to the APs around

it. Secondly, this allows us to take advantage of this locality in user

mobility by designing schemes that are aware of this local view of the

network topology as the user moves. These schemes perform certain

pre-computations by prefetching necessary information such that the

amount of computation and time spent during the handoff is minimized.

This is similar to how caching in various areas in Computer Science

takes advantage of locality in file accesses, memory and web requests

as some examples.

In this dissertation, we performed a detailed study of this hand-

194

off process in wireless LAN environments. This process as described

by the IEEE 802.11, 802.1X and 802.11i standards can be divided into

two conceptual phases: (i) Discovery: The client performing a handoff

scans the available channels to search for APs belonging to a desired

extended service set (ESS) or more loosely a wireless LAN. Through

experiments over an in-building wireless testbed, we measured this la-

tency to be around 400 ms on average. (ii) Re-authentication: This

(optional) phase depends on the security settings in effect. An IEEE

802.11i compliant network would require a full 802.1X based authenti-

cation upon each handoff. This essentially being a brute-force approach

consequently incurs a heavy performance latency. Our testbed based

implementation showed an average latency of about 800 ms per authen-

tication.

From a testbed based evaluation (Chapter 2) we concluded that

the current handoff mechanisms were inadequate to support seamless

mobility of users. In fact given the high handoff cost of about 1.3

seconds, this became a deterrent to user mobility instead of enabling

it, contrary to the expectations of a wireless network. The mobility of

a user was exposed to the higher layers of the networking stack in the

form of delay jitters and packet losses lasting for the duration of the

handoff.

195

Representing Locality Using Neighbor Graphs

Given notion that user mobility induced locality among APs, the first

challenge was to capture this locality in the form of an algorithmic

structure. This was an easier problem in the context of cellular networks

where each cell has regular coverage and a fixed number of neighbors.

We used the notion of locality to create a graph theoretic structure

called neighbor graphs. This structure captured the locality topology of

a wireless LAN. Two APs were designated as neighbors if a client could

perform a handoff between them. By observing handoffs, the network

could construct and maintain (against infrequent topology changes)

this structure to reflect the locality in the physical environment. The

neighbor graph is directed in nature indicating the asymmetry present

in the RF and handoff behavior.

The neighbor graph as a general directed graph was the much

needed base to develop algorithms for the two phases of the handoff

process. For example, when applied to a cellular network a neighbor

graph would exhibit very regular properties and can be approximated

using a bounded and fixed degree graph. Thus handoff algorithms

which operated on the general assumption of a neighbor graph and

required no other inputs from the wireless network would perform well

in diverse network deployments both indoor and outdoor.

196

By applying neighbor graphs to the problem of handoffs which

benefits from locality induced by mobility, we observe that neighbor

graphs are a good structure to represent such locality. Table 7.1 shows

the overall performance improvements we achieved by using neighbor

graphs. An overall factor of 10 reduction in the handoff latencies show

the practical viability of this representation mechanism. We next sum-

marize the improvements obtained in each phase individually.

Proactive Caching

Based on the hypothesis of locality in mobility (Chapter 2) and the

neighbor graph structure that captures this locality in a wireless LAN

environment, we developed a proactive caching algorithm that pre-

positions a roaming client’s context information to maintain it one-hop

ahead. In the normal case, the Inter-Access Point Protocol (IAPP [39])

was used to perform a reactive transfer of the station’s context. This

method incurred a latency of about 15 ms as observed in our testbed

based implementation.

The proactive caching algorithm prepositioned a roaming client’s

context to the set of candidate APs determined using the neighbor

graph. The candidate APs maintain all such contexts in a fixed size

memory cache as APs are memory constrained devices. Thus, a cache-

197

hit indicates that the latency for an IAPP transfer was averted and the

caching algorithm was successful.

We evaluated the performance of this algorithm extensively

through simulations which considered various randomly generated

topologies of different sizes and densities. We observed that the algo-

rithm was scalable in the number of users and the performance degraded

gracefully. We also demonstrated the performance through a testbed

based implementation and observed a reduction of the re-association

latency (without authentication) from 15 ms to about 2 ms on average.

Proactive Key Distribution

The IEEE 802.11i mandated that a fresh full authentication be per-

formed during each re-association. Thus for a secure network, the

handoff latency was furthered by about 800 ms. This was essentially

a brute-force approach as the security relationship that was built with

the previous AP during a handoff was discarded away.

We employed neighbor graphs to build a fast and secure key dis-

tribution scheme that provided perfect forward secrecy and the same

security properties of a full authentication and costed about 25 ms

on average. The backend authentication server (AAA) implementing

the scheme constructed the key material in a secure fashion and pre-

198

distributed it to the candidate set of APs determined using the neighbor

graph. We evaluated this approach through a rigorous testbed based

implementation and observed that the latency reduced to about 25 ms

on average.

Fast Active Scanning

As discussed earlier, the discovery phase of the handoff process deals

with searching for a candidate set of APs in the vicinity of the roaming

client. Our testbed evaluation showed that most vendors implement a

simple brute force approach of scanning each channel available, thus

incurring a high latency of about 400 ms on average.

In Chapter 6, we discussed methods to improve the active scan la-

tency by extending neighbor graphs to include edges indicating overlap

among APs. Specifically, we constructed an overlap graph structure

that captures overlap in coverage among APs. This graph was used

to design a fast active scan algorithm that improves the scan latency

by (i) reducing the number of channels to scan and (ii) reducing the

duration of wait on each channel being scanned. We also discussed a

pruning method to opportunistically shrink the set of APs that need to

be scanned by computing a non-overlap graph structure. We evaluated

both algorithms in contrast with current active scanning techniques us-

199

ing a testbed implementation and through simulations. We observed

that both algorithms perform very well relative to current best known

techniques and bring about reductions of about 40-80% depending on

various parameters.

Further Applications

Neighbor graphs have shown solid applicability as a locality topology

for important optimizations in the wireless LAN environment. They

present interesting venues for further applications to mobility and wire-

less networking in general. We discuss one such possibility in detail:

Given the development of the newer metropolitan scale wireless

networks (WiMAX), popularity of the wireless LANs and competition

from the cellular companies, a user has multiple options to obtain net-

work connectivity. This inevitably gives a large number of choices and

roaming possibilities. Neighbor graphs can have interesting applica-

tions here with edges indicating certain types of handoff possibilities.

Edges can be categorized as intra-network or inter-network edges. An

inter-network edge informs the client of the possibility of using a dif-

ferent network to obtain service. This information can be proactively

obtained prior to an impending handoff. A user policy-driven decision

mechanism can start the process for a layer-3 handoff to a different

200

wireless network much before the deadline to perform such a handoff.

Such possibilities can realize seamless user mobility both within and

among overlapping wireless networks.

In this particular application, neighbor graphs still retain their

essence as a locality topology. At the same time, they provide valuable

hints on locality among different wireless networks apart from locality

among base-stations belonging to the same network. This ‘hierarchical’

structure of locality as captured by our modifications to the neighbor

graphs can have a profound impact on the growing inter-network mo-

bility problem.

This dissertation has proposed and evaluated the concept of lo-

cality induced by user mobility in wireless networks. Specifically, we

have demonstrated the importance of a graph theoretic structure that

captures this locality in a wireless network. Through this research ex-

perience we believe that the wireless networks of today and the ones to

be designed tomorrow will indeed need to capture locality in user mo-

bility in an algorithmic fashion much like a neighbor graph in order to

eliminate the effects of mobility on the higher layers of the networking

stack.

201

BIBLIOGRAPHY

[1] Daniel Noble. The history of land-mobile radio communications.

In Institute of Radio Engineers, May 1962.

[2] George Calhoun. Digital Cellular Radio. Arctech House Inc, 1988.

[3] Theodore S. Rappaport. Wireless Communications: Principles

and Practice. Prentice Hall Communications, 2002.

[4] IEEE. Standards for local and metropolitan area networks:

Medium access control (mac) security enhancements‘. IEEE Stan-

dard 802.11I, 2004.

[5] IEEE. Standards for local and metropolitan area networks: Stan-

dard for port based network access control. IEEE Standard 802.1X,

2002.

[6] L. Blunk and J. Vollbrecht. Ppp extensible authentication protocol

(eap). RFC 2284, March 1998.

202

[7] T. Dierks and C. Allen. The TLS Protocol. RFC 2246, January

1999.

[8] B. Aboba and D. Simon. Ppp eap tls authentication protocol. RFC

2716, October 1999.

[9] Open-source implementation of ieee 802.1x standard. URL:

http://www.open1x.org.

[10] Jon Edney and William Arbaugh. Real 802.11 Security: Wi-Fi

Protected Access and 802.11i. Addison-Wesley Professional, 2003.

[11] IEEE. Ieee recommended practice for multi-vendor access point

interoperability via an inter-access point protocol across distribu-

tion systems supporting ieee 802.11 operation. IEEE Standard

802.11F, 2003.

[12] How mobile phone networks work. URL:

http://www.sitefinder.radio.gov.uk/mobilework.htm.

[13] J. Li, N. Shroff, and E.K.P. Chong. Channel carrying: A novel

handoff scheme for mobile cellular networks. In Proceedings of

IEEE Infocom, 1997.

[14] Tara Salih and Kemal M. Fidanboylu. Performance analysis and

modeling of two-tier cellular networks with queuing handoff calls.

203

In Proceedings of the Eighth IEEE International Symposium on

Computers and Communications, 2003.

[15] Sang-Joon Park, Ji-Young Song, Jongchan Lee, Kwan-Joong Kim,

and Byung-Gi Kim. A handover scheme in clustered cellular net-

works. Future Gener. Comput. Syst., 20(2):221–227, 2004.

[16] International Telecommunication Union. General Characteristics

of International Telephone Connections and International Tele-

phone Circuits. ITU-TG.114, 1988.

[17] Mark Brehob and Richard Enbody. An analytical model of lo-

cality and caching. ichigan State Univ. Computer Science Dept.

Technical Report, 1996.

[18] Armand M. Makowski Sarut Vanichpun. Comparing strength of

locality of reference popularity, majorization, and some folk theo-

rems. In Proceedings of IEEE Infocom, 2004.

[19] Yijun Yu, Kristof Beyls, and Erik H. D’Hollander. Visualizing the

impact of the cache on program execution. Journal for the Inte-

grated Study of AI, Cognitive Science and Applied Epistemology,

2004.

[20] Virg’ilio Almeida, Azer Bestavros, Mark Crovella, and Adriana

de Oliveira. Characterizing reference locality in the www. In Pro-

204

ceedings of IEEE Conference on Parallel and Distributed Informa-

tion Systems, 1996.

[21] Moustafa Yossef and Ashok Agrawala. The horus wlan location

determination system. In Proceedings of the Third International

Conference on Mobile Systems, Applications, and Services (Mo-

biSys 2005), 2005.

[22] Paramvir Bahl and Venkata N. Padmanabhan. Radar: An in-

building rf-based user location and tracking system. In Proceedings

of IEEE Infocom, 2000.

[23] OpenBSD based access points using the Soekris Boards. URL:

http://www.missl.cs.umd.edu/wireless/testbed/.

[24] Host AP driver for Intersil Prism Cards. URL:

http://hostap.epitest.fi.

[25] Linux driver for Prism based wireless cards. URL:

http://www.linux-wlan.com/linux-wlan/.

[26] Charles Chien. Digital Radio Systems on a Chip. Kluwer Academic

Publishers, 2001.

[27] IEEE. Draft Recommended Practice for Multi-Vendor Access

Point Interoperability via an Inter-Access Point Protocol Across

205

Distribution Systems Supporting IEEE 802.11 Operation. IEEE

Draft 802.1f/D3, January 2002.

[28] IEEE. Part 11: Wireless LAN Medium Access Control (MAC)

and Physical Layer (PHY) Specifications. IEEE Standard 802.11,

1999.

[29] Sangheon Pack and Yanghee Choi. Pre-Authenticated Fast Hand-

off in a Public Wireless LAN based on IEEE 802.1x Model. IFIP

TC6 Personal Wireless Communications 2002, October 2002.

[30] Sangheon Pack and Yanghee Choi. Fast Inter-AP Handoff us-

ing Predictive-Authentication Scheme in a Public Wireless LAN.

IEEE Networks 2002, August 2002.

[31] C. Rigney, W. Willats, and P. Calhoun. Remote Authentication

Dial In User Service (RADIUS). RFC 2869, June 2000.

[32] Diane Tang and Mary Baker. Analysis of a metropolitan-area

wireless network. In Mobile Computing and Networking, pages

13–23, 1999.

[33] Kevin Lai, Mema Roussopoulos, Diane Tang, Xinhua Zhao, and

Mary Baker. Experiences with a mobile testbed. In Proceedings

of The Second International Conference on Worldwide Computing

and its Applications (WWCA’98), Mar 1998.

206

[34] A. Balachandran, G. Voelker, P. Bahl, and P. Rangan. Character-

izing user behavior and network performance in a public wireless

lan, 2002.

[35] Magdalena Balazinska and Paul Castro. Characterizing Mobility

and Network Usage in a Corporate Wireless Local-Area Network.

In International Conference on Mobile Systems, Applications, and

Services, May 2003.

[36] Arunesh Mishra, Minho Shin, and William Arbaugh. An empirical

analysis of the ieee 802.11 mac layer handoff process. In Computer

Communications Review (ACM SIGCOMM) (To Appear), 2003.

[37] R. Koodli and C.E. Perkins. Fast Handover and Context Reloca-

tion in Mobile Networks. ACM SIGCOMM Computer Communi-

cation Review, 31(5), October 2001.

[38] Pat Calhoun and James Kempf. Context transfer, hand-

off candidate discovery, and dormant mode host alerting.

http://www.ietf.org/html.charters/seamoby-charter.html.

[39] IEEE. Recommended Practice for Multi-Vendor Access Point In-

teroperability via an Inter-Access Point Protocol Across Distribu-

tion Systems Supporting IEEE 802.11 Operation. IEEE Standard

802.1f, July 2003.

207

[40] IEEE. Draft 4 Recommended Practice for Multi-Vendor Access

Point Interoperability via an Inter-Access Point Protocol Across

Distribution Systems Supporting IEEE 802.11 Operation. IEEE

Draft 802.1f/D4, July 2002.

[41] C. Rigney, S. Willens, A. Rubens, and W. Simpson. Remote Au-

thentication Dial In User Service (RADIUS). RFC 2865, June

2000.

[42] Soekris Engineering. URL: http://www.soekris.com.

[43] M. Nakhjiri, C. Perkins, and R. Koodli. Context Transfer Protocol.

Internet Draft : draft-ietf-seamoby-ctp-01.txt, March 2003.

[44] IEEE. Recommended Practice for Multi-Vendor Access Point In-

teroperability via an Inter-Access Point Protocol Across Distri-

bution Systems Supporting IEEE 802.11 Operation. IEEE Draft

802.1f/Final Version, January 2003.

[45] Sangheon Pack and Yanghee Choi. Fast Inter-AP Handoff us-

ing Predictive-Authentication Scheme in a Public Wireless LAN.

IEEE Networks 2002 (To Appear), August 2002.

[46] Sangheon Pack and Yanghee Choi. Pre-Authenticated Fast Hand-

off in a Public Wireless LAN based on IEEE 802.1x Model. IFIP

208

TC6 Personal Wireless Communications 2002 (To Appear), Octo-

ber 2002.

[47] S. Capkun, Levente Buttyan, and Jean-Pierre Hubaux. Self-

Organized Public-Key Management for Mobile Ad Hoc Networks.

IEEE Transactions on Mobile Computings, 2003.

[48] Radia Perlman. An algorithm for distributed computation of a

spanningtree in an extended lan. In Proceedings of the ninth sym-

posium on Data communications, pages 44–53, 1985.

[49] Radia Perlman. Interconnections, Second Edition: Bridges,

Routers, Switches and Internetworking Protocols. Pearson Edu-

cation, September 1999.

[50] Arunesh Mishra, Nick Petroni, William Arbaugh, and Timothy

Fraser. Security issues in ieee 802.11 wireless local area networks:

A survey. Wireless Communications and Mobile Computing, 2004.

[51] Fahd K. Al-Bin-Ali, Prasad Boddupalli, and Nigel Davies. An

Inter-Access Point Handoff Mechanism for Wireless Network Man-

agement: The Sabino System. In ICNN 2003, 2003.

[52] R. Shirdokar, J. Kabara, and P. Krishnamurthy. A QoS-based

Indoor Wireless Data Network Design for VoIP. In Vehicular

209

Technology Conference, 2001. VTC 2001 Fall. IEEE VTS 54th,

volume 4, pages 2594–2598, October 2001.

[53] Arunesh Mishra, Minho Shin, and William Arbaugh. Context

Caching using Neighbor Graphs for Fast Handoffs in a Wireless

Network. In Proceedings of IEEE Infocom, 2004.

[54] G. P. Pollini. Trends in Handover Design. IEEE Communications

Magazine, March 1996.

[55] Mikael Gudmundson. Analysis of Handover Algorithms. In IEEE

Vehicular Technology Conference, VTC91, pages 537–542, 1991.

[56] N. Zhang and Jack M. Holtzman. Analysis of Handoff Algorithms

using Both Absolute and Relative Measurements. IEEE Transac-

tions on Vehicular Technology, 45(1):174–179, February 1996.

[57] Lucent Technologies Inc. Roaming with WaveLAN/IEEE 802.11.

Technical Report WaveLan Technical Bulletin 021/A, December

1998.

[58] Hiroto Aida, Yosuke Tamura, Yoshito Tobe, and Hideyuki Tokuda.

Wireless Packet Scheduling with Signal-to-Noise Ratio Monitoring.

In 25th Annual IEEE Conference on Local Computer Networks

(LCN’00), November 2000.

210

[59] D. B. Johnson, C. E. Perkins, and J. Arkko. Mobility Support in

IPv6. Internet Draft draft-ietf-mobileip-ipv6-18.txt, Internet Engi-

neering Task Force (IETF), June 2002.

[60] David S. Johnson. Approximation Algorithms for Combinatorial

Problems. In Proceedings of the Fifth Annual ACM Symposium on

Theory of Computing, pages 38–49, 1973.

[61] Lucent Technologies Inc. IEEE 802.11 Channel Selection Guide-

lines. Technical Report WaveLan Technical Bulletin 003/A,

November 1998.

[62] Demarc Technologies Group. URL: http://www.demarctech.com.

[63] Robert Baird and Michael Lynn. Airjack Driver.

http://802.11ninja.net/airjack.

[64] High Resolution POSIX Timers.

http://sourceforge.net/projects/high-res-timers.

[65] Arunesh Mishra, Minho Shin, and William A. Arbaugh. An Em-

pirical Analysis of the IEEE 802.11 MAC Layer Handoff Process.

ACM Computer Communications Review, 2003.

211

[66] J. Yeo, S. Banerjee, and A. Agrawala. Measuring Traffic on the

Wireless Medium: Experience and Pitfalls. Technical Report CS-

TR 4421, December 2002.

212

