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Computer vision has been dominated by classical, CMOS frame-based imaging

sensors for many years. Yet, motion is not well represented in classical cameras and vision

techniques - a consequence of traditional vision being frame-based and only existing ’in

the moment’ while motion is a continuous entity. With the introduction of neuromorphic

hardware, such as the event-based cameras, we are ready to cross the bridge of frame

based vision and develop a new concept - motion-based vision. The event-based sensor

provides dense temporal information about changes on the scene - it can ‘see’ the motion

at an equivalent of almost infinite framerate, making a perfect fit for creating dense, long

term motion trajectories and allowing for a significantly more efficient, generic and at the

same time accurate motion perception.

By its design, an event-based sensor accommodates a large dynamic range, pro-

vides high temporal resolution and low latency – ideal properties for applications where

high quality motion estimation and tolerance towards challenging lighting conditions are

desirable. The price for these properties is indeed heavy - event-based sensors produce a



lot of noise, their resolution is relatively low and their data - typically referred to as event

cloud - is asynchronous and sparse. Event sensors offer new opportunities for robust vi-

sual perception so much needed in autonomous robotics, but challenges associated with

the sensor output, such as high noise, relatively low spatial resolution and sparsity, ask

for different visual processing approaches.

In this dissertation we develop methods and frameworks for motion segmentation

and egomotion estimation on event-based data, starting with a simple optimization-based

approach for camera motion compensation and object tracking and continuing by devel-

oping several deep learning pipelines, while continuing to explore the connection be-

tween the shapes of the event clouds and scene motion. We collect EV-IMO - the first

pixelwise-annotated dataset for motion segmentation for event cameras and propose a 3D

graph-based learning approach for motion segmentation in (x, y, t) domain. Finally we

develop a set of mathematical constraints for event streams which leverage their temporal

density and connect the shape of the event cloud with camera and object motion.
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Chapter 1: Introduction

The recent advancements in imaging sensor development have outpaced the devel-

opment of algorithms for processing image data. Recently, the computer vision com-

munity has started to derive inspiration from the neuromorphic community whose ideas

are based on biological systems to build robust and fast algorithms which run on limited

computing power.

The most challenging problems are encountered during scenarios requiring the pro-

cessing of very fast motion with real-time control of a system. One such scenario is

encountered in autonomous navigation. Although computer vision and robotics com-

munities have put forward a solid mathematical frameworks and have developed many

practical solutions, these solutions are currently not sufficient to deal with scenes with

very high speed motion, high dynamic range, and changing lighting conditions. These

are the scenarios where the event based frameworks excel.

Event-based vision sensors, such as the Dynamic Vision Sensor (DVS), are ideally

suited for real-time motion analysis. The unique properties encompassed in the readings

of such sensors provide high temporal resolution, superior sensitivity to light and low

latency. These properties provide the grounds to estimate motion extremely reliably in

the most sophisticated scenarios but they come at a price - modern event-based vision
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sensors have a lower resolution, compared to the classical cameras, sparse output and

produce a significant amount of noise. Moreover, the asynchronous nature of the event

stream is not compatible with traditional frame-based processing techniques, which calls

for development of novel algorithms and introduction of new paradigms in event-based

computer vision.

1.1 The Dynamic Vision Sensor

Figure 1.1: Event-based cameras are CMOS sensors, similar to conventional frame-based

sensors. Left - Prophesee 640x480 sensor; right - the idea behind event-based signal: for

each pixel, if the light intensity changes by a certain preset logarithmic threshold, the

timestamp is sent to the common bus. Event polarity specifies whether the light intensity

has increased or decreased.

Event-based cameras provide dense temporal information about changes on the

scene - effectively acting like cameras with infinite frame rate; with every pixel acting as

an independent electrical circuit such sensors are not driven by a common clock - every
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pixel reacts to motion independently: when the light intensity on a given pixel changes by

a certain predefined percentage-threshold, that pixel would report the current timestamp t

(at a nanosecond resolution), its coordinates (x, y) and whether the intensity of light has

increased or decreased, which is referred to as polarity p - Fig. 1.1. A set of (x, y, t, p) is

called an event, and is sent independently from each camera pixel over an asynchronous

bus, resulting in a continuous stream of data called an event stream.

For an event camera, every visible moving edge in the scene produces a trail of

events - an event cloud, which lies on a surface (called event-surface or time-surface [1])

in (x, y, t) space. The time-surface contains all the information about structure and mo-

tion, and the shape of the event clouds is constrained by the laws of physics and epipolar

geometry. A certain shape of a cloud, even locally, might signify that two visible objects

occlude each other, collide with each other, change their motion or move closer to the

camera. An example of the event camera output is shown on Fig. 1.3 and Fig. 1.2 - where

event trails from the camera motion and an independently moving object are visible.

With the growing enthusiasm towards technologies such as VR and gesture recog-

nition, many companies [2–5] have started to invest in the development of event-based

cameras. We provide example specifications for a number of modern sensors in Table 1.1.

While easily distinguished by their high dynamic range and low latency, the resolution of

event-based cameras has shown a steady increase over the years from 128× 128 in 2008

to 1280× 800 in 2019.

3



Year Resolution Latency (µs) Sensitivity (%)

iniVation DAVIS128 2008 128×128 12 17

iniVation DAVIS346 2017 346×260 20 14.3

Prophesee Gen3 CD 2017 640×480 40 12

Samsung Gen3 2018 640×480 50 15

Insightness Rino 3 2018 320×262 125 15

CelePixel Celex V 2019 1280×800 8 10

Table 1.1: A comparison of specifications for several modern event-based cameras;

Event-based cameras are a novel type of visual sensor and are being actively developed

by the community and industry. For a full table please refer to [6].
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Figure 1.2: Camera motion and and independently moving cup. Left - events; the color

encodes the timestamps. Right, the classical frames with cup segmented in blue. The

trajectory of the cup can be estimated by analyzing the shape of the event cloud. The

camera moves only in the very beginning of the recording, leaving the cup clearly visible.

1.2 Egomotion and Motion Segmentation

On the algorithmic side, the estimation of 3D motion and scene geometry has been

of great interest in Computer Vision and Robotics for quite a long time, but most works

considered a scene to be static. Earlier classical algorithms studied the problem of Struc-

ture from Motion (SfM) [7] to develop “scene independent” constraints (e.g. the epipolar

constraint or depth positivity constraint) and estimate 3D motion from image to facilitate

subsequent scene reconstruction. In recent years, most works have adopted the SLAM

5



Figure 1.3: Different motion representations acquired from the DAVIS [4] event-based

sensor: (a) Grayscale image from an inbuilt frame-based camera (red bounding box de-

notes a moving object). (b) Motion-compensated projected event cloud. Color denotes

inconsistency in motion. (c) The 3D representation of the event cloud in (x, y, t) coordi-

nate space. Color represents the timestamp with [red - blue] corresponding to [0.0 - 0.5]

seconds. The separately moving object (a quadrotor) is clearly visible as a trail of events

passing through the entire 3D event cloud.

philosophy [8], where depth, 3D motion and image measurements are estimated together

using iterative probabilistic approaches, usually initialized with SfM estimates. Such

reconstruction approaches are known to be computationally heavy and often fail in the

presence of outliers.

Still, it is essential to emphasize the duality of the problems of motion segmentation,

tracking and egomotion estimation. In essence, egomotion estimation can be thought of

as an estimation of the motion and tracking of the ’largest cluster of points’ - although

any rigid body on the scene could be chosen as a point of reference for the egomotion

estimation.
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In this light, we treat all our algorithms as ’Motion Estimation’ - and only use the

term ’Egomotion Estimation’ in future chapters for simplicity. The motion segmentation

provides the capability of choosing the desired point of reference by selecting a particular

cluster, while from the point of view of the event camera the only difference between

egomotion and motion of an independent object is the available spatial distribution of

pixels, which typically allows to estimate egomotion more accurately than the motion of

a small object.

1.3 Challenges of Motion Segmentation

It is important to stress a number of challenges which arise when attempting to per-

form visual segmentation with event-based data: event cameras are differential sensors,

which means they are only capable of perceiving the changes in scene contrast, but not

the structure of the scene per se. The meaningful information is only available on the

edges and is sparse, and while conventional cameras are able to leverage the complimen-

tary appearance-induced data modality, such as object color, event-based processing can

only rely on contour motion. In our work we distinguish between recognition-based seg-

mentation and motion segmentation and attempt to achieve the latter, since conceptually

event cameras suit such tasks much better.

Another challenge is more fundamental and arises from the same fact - that the

meaningful data is only available in regions with high contrast change. The contrast

change by itself does not relate to motion directly - it can be induced by varying lighting

and reflection; a shadow on the floor, for example, produces a false contour which might

7



Figure 1.4: An example of a complex scene for motion segmentation. The toy car (shown

on the right) is moving across the carpet with high texture, while the camera is moving

similarly to the object. On the left - the ground truth motion masks for object 1 (car) and

2 (plane). Middle - the 0.02 sec. slice of the event cloud; the car is almost not discernible

from the background.

change with the motion of the camera or independent object. In addition, low-contrast

regions on the scene are sources of noise and create additional hurdles for event-based

algorithms.

An example of a complex scene from EVIMO dataset (Chapter 5) is shown on

Fig. 1.4. The depth variation between the background (high-textured carpet) and the

foreground (toy car) is small in comparison to the distance to the camera; the velocity

of the toy car in the world coordinate frame is small as well, making the magnitude of

flow not induced by the egomotion small. This scene has few features to segment out the

moving object and will require long-term event cloud analysis to solve reliably, which is

discussed in Chapter 6.
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1.4 The Organization of the Thesis

We develop our frameworks for event-based motion segmentation in several steps.

First, in Chapter 3 we show how the accurate timestamp information of the events can be

used for camera motion compensation and object detection without learning. We develop

the ’Time Image’ representation and use it in many subsequent works. We further expand

on our findings in Chapter 4 by using a similar 4-parameter representation, this time to

compute a 6dof egomotion in a self-driving car scenario using a novel learning pipeline.

To truly enable the leaning approaches on event-based data we develop the first

event-based motion segmentation dataset with real data and pixelwise annotation. We

discuss the dataset collection pipeline in Chapter 5; this is now a publicly released dataset,

which allows the community to work on event-based segmentation for the first time with-

out resorting to simulated scenarios.

We transition to deep learning in Chapter 6 and demonstrate a 3D motion segmen-

tation method capable of taking advantage of event cloud geometry over large periods

of time. We conclude by developing event camera constraints in Chapter 7; these con-

straints connect the camera motion and event surface geometry and allow to use the raw

event cloud to directly optimize for scene depth or egomotion without the need for feature

point detection or matching.
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Chapter 2: Related Work

Scene motion analysis been studied for many years [9–11]. Lately, there has been

an increased interest in these problems due to the applications in autonomous naviga-

tion [12] and robotics. The basic image representation for motion analysis is optical flow,

representing pixelwise motion between two moments in time, while for event-based sen-

sors it can be extended to instantaneous optical flow.

While most works process event data by collapsing information into 2D image

maps, a few approaches have adopted concepts from 3D processing. The best known flow

techniques on event cameras compute normals to local time-surfaces [13–16] to estimate

normal flow. A block matching algorithm by Liu [17] uses similar ideas but can produce

full flow for corner regions. As discussed in [18], local event information is inherently

ambiguous. To resolve the ambiguity Barranco et al. [18] proposed to collect events over

a longer time intervals and compute the motion from the trace of events at contours. Re-

cent motion compensation approaches use the temporal information as a third dimension

within a slice of events to derive flow and local or global motion models [19, 20].

Event-based feature detection research pursues similar ideas, but more global in

temporal domain. Early works used the continuity of the event stream to bridge the gap

between classical camera frames [21]. Later, Zhu et al. . introduced a probabilistic, event-
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only approach to corner extraction [22]. Manderscheid et al. have significantly improved

on existing methods by using deep learning [23]. Lagorce et al. [1, 24] addressed event

cloud analysis in terms of time-surfaces by designing temporal features and demonstrated

them in recognition tasks, and Chandrapla et al. [25] learned motion invariant space-time

features. These works laid the foundations of the spatio-temporal feature analysis on

event clouds and are precursors to the global event-cloud analysis.

Learning approaches on event data are quite numerous, with many authors em-

phasising the importance of encoding temporal information as input features for neural

networks. To name a few, [26] learns optical flow by constructing a discretized map with

event timestamps, similar to the average time image used in [27]. Most recently, Zhu

et al. [26] released the MVSEC dataset [28] and proposed self-supervised learning algo-

rithm to estimate optical flow. An improved work by Zhu [29] uses multiple slices as

input, retaining 3D structure of the cloud better. Barranco et al. [30] used different lo-

cal spatio-temporal features to learn borders of objects. In our previous work, we have

released the EV-IMO pipeline and the dataset [31] for 6-DoF motion estimation and seg-

mentation (Chapter 5).

In pioneering work, Saxena et al. [32] demonstrated that shape can be learned from

single images, inspiring many other supervised depth learning approaches (e.g. [33]). The

concept was recently adopted in the SfM pipeline, and used in stereo [34] and video [35].

Nevertheless, the majority of event-based depth estimation methods [36, 37] use two or

more event cameras. The first works on event-based monocular depth estimation were

presented in [38] and [39]. Rebecq et al. [38] used a space-sweep voting mechanism

and maximization strategy to estimate semi-dense depth maps where the trajectory is
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known. Kim et al. [39] used probabilistic filters to jointly estimate the motion of the

event camera, a 3D map of the scene, and the intensity image. More recently, Gallego et

al. [40] proposed a unified framework for joint estimation of depth, motion and optical

flow.

Many motion segmentation methods used in video applications are based on 2D

measurements only [41, 42]. 3D approaches model the camera’s rigid motion. Thomp-

son and Pong [43] first suggested detecting moving objects by checking contradictions to

the epipolar constraint. Vidal et al. [44] introduced the concept of subspace constraints

for segmenting multiple objects. A good motion segmentation requires both constraints

imposed by the camera motion and some form of scene constraints for clustering into

regions. The latter can be achieved using approximate models of the rigid flow or the

scene in view, for example by modeling the scene as planar, fitting multiple planes using

the plane plus parallax constraint [45], or selecting models depending on the scene com-

plexity [46]. In addition constraints on the occlusion regions [47] and discontinuities [48]

have been used. Recently, machine learning techniques have been used for motion seg-

mentation [49, 50].
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Chapter 3: Event-based Moving Object Detection and Tracking

In this chapter we present an approach to object tracking with asynchronous cam-

eras using a simple optimization framework. We present a novel event stream representa-

tion which enables us to utilize information about the dynamic (temporal) component of

the event stream. The 3D geometry of the event stream is approximated with a parametric

model to motion-compensate for the camera (without feature tracking or explicit optical

flow computation), and then moving objects that don’t conform to the model are detected

in an iterative process - Fig. 3.1. We demonstrate our framework on the task of indepen-

dent motion detection and tracking, where we use the temporal model inconsistencies to

locate differently moving objects in challenging situations of very fast motion.

The dataset used in this work is available at: http://prg.cs.umd.edu/BetterFlow.html

The C++ implementation can be found here: https://github.com/better-flow/better-flow

We provide experimental Python bindings here: https://github.com/better-flow/pydvs

3.1 Motivation

The most challenging problems are encountered during scenarios requiring the pro-

cessing of very fast motion with real-time control of a system. One such scenario is

encountered in autonomous navigation. Although computer vision and robotics commu-
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nities have put forward a solid mathematical framework and have developed many prac-

tical solutions, these solutions are currently not sufficient to deal with scenes with very

high speed motion, high dynamic range, and changing lighting conditions. These are the

scenarios where the event based frameworks excel.

While the majority of works focus on adapting the existing deep learning pipelines

to the new domain of event-based vision, we show that it is possible to directly utilize

the information from event-based camera to achieve reasonable detection and tracking

performance in a lightweight pipeline, without the shortcomings of learning approaches.

3.2 Methods

Our algorithm derives inspiration from 3D point cloud processing techniques, such

as Kinect Fusion [51], which use warp fields to perform a global minimization on point

clouds. The algorithm performs global motion compensation of the camera by fitting a

4-parameter motion model to the cloud of events in a small time interval. These four pa-

rameters are the the x-shift, y- shift, expansion, and 2D rotation denoted as (hx, hy, hz, θ).

We use two different error functions in the minimization in different stages of the algo-

rithm, which are defined in equations 3.4 and 3.6. It can be shown that the 4-parameter

model is a good approximation for rigid camera motion and fronto-parallel planar scene

regions. The algorithm then looks for the event clusters which do not conform to the mo-

tion model and labels them as separately moving regions, while at the same time fitting

the motion model to each of the detected regions.

Sec. 3.3.1 describes the general notation used in this chapter, and Secs. 3.3.2 and

14



3.3.3 provide an intuition for the error functions used for motion compensation. The

details of the algorithm are described in Sec. 3.4 (motion compensation) and 3.5 (object

detection and tracking).

3.3 Preliminaries

3.3.1 Notation

Let the input events in a temporal segment [t0, t0 + δt] be represented by a 3-tuple

C{x, y, t} ∈ R3. Here {x, y} denote the spatial coordinates in the image plane and t

denotes the event timestamps1. t0 can be arbitrarily chosen, as the DVS data is continuous.

However, the algorithm functions on a small time segment δt.

Let us denote the 2D displacement that maps events (x, y) at time t to their locations

(x′, y′) at time t0 by a warp field φ(x, y, t − t0) : (x, y, t) −→ (x′, y′, t). Our goal is to

find the motion compensating warp field φ : R3 → R3 such that the motion compensated

events, when projected onto the image plane, have maximum density. Let us denote these

motion compensated events as:

C ′ = Π{φ(C)} = Π{φ(x, y, t− t0)} (3.1)

= {x′, y′, 0} ∀{x, y, t} ∈ C

Due to the geometric properties of the events, such a warp field encodes the per-
1The data from the DVS sensor is four-dimensional, with the additional, fourth component a binary

value denoting the sign of intensity change. However, because of noise at object boundaries, we do not

utilize this value here.
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event optical flow. Here Π is the temporal projection function projecting motion com-

pensated events along the time axis. Π is used to reduce the dimensionality of the data

from R3 → R2 and simplify the minimization process. We represent the data available in

C with two discretized maps which encode the temporal and intensity properties of the

event stream.

3.3.2 Event Count Image

To calculate the event density D of C ′ = Π{φ(C)}, we discretize the image plane

into pixels of a chosen size. We use symbols (i, j) ∈ N2 to denote the integer pixel

(discretization bin) coordinates, while (x′, y′, t) ∈ R3 represent real-valued warped event

coordinates. Each projected event from C ′ is mapped to a certain discrete pixel, and the

total number of events mapped to the pixel is recorded as a value of that pixel. We

will henceforth refer to this data structure as event-count image I. Let

ξij = {{x′, y′, t} : {x′, y′, 0} ∈ C ′, i = x′, j = y′} (3.2)

be the proposed event trajectory - a set of warped events along the temporal axis

which get projected onto the pixel (i, j) after the φ operation has been applied. Then the

event-count image pixel Iij is defined as:

Iij = |ξij| (3.3)

Here, |A| is the cardinality of the set A. The event density D is computed as:

D =

∑
i,j Iij
#I

=
|C ′|
#I

(3.4)
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where, #I denotes the number of pixels with at least one event mapped on it. Since |C ′|

is a constant for a given time slice, the problem can be reformulated as the minimization

of the total area S = #I on the event-count image. A similar formulation was used

in [52] to estimate the rotation of the camera with the acutance as an error metric, instead

of the area.

3.3.3 Time-image T

Keen readers would observe that the event-count image representation I suffers

from a subtle drawback. When the projection operation is performed, events produced by

different edges (edges corresponding to different parts of the same real-world object or

different real-world objects) can get projected onto the same pixel. This is a very common

situation which occurs during fast motion in highly textured scenes.

To alleviate this problem, we utilize the information from the event timestamps t by

proposing a novel representation which we call the time-image T . Similar to I described

before, T is a discretized plane with each pixel containing the average timestamp of the

events mapped to it by the warp field φ.

Tij =
1

Iij

∑
t : t ∈ ξij (3.5)

Computing the mean of timestamps allows us to increase fidelity of our results by

making use of all available DVS events. An alternative approach would be to consider

only the latest timestamps [26], where performance would suffer in low light situations.

This is because the signal to noise ratio in DVS events depends on the average illumina-
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tion, the smaller the average illumination, the larger the noise. Note that the value of a

time-image pixel Tij (or better its deviation from the mean value) correlates with the prob-

ability that the motion was not compensated locally - this will be used later for motion

detection in Sec. 3.5.1. T follows the 3D structure of the event cloud, and its gradient (G)

provides the global metrics of the motion-compensation error which will be minimized

by the algorithm:

Error =
∑
‖G[i, j]‖ =

∑
(G2

x[i, j] +G2
y[i, j]) (3.6)

Here (Gx[i, j], Gy[i, j]) denote the local spatial gradient of T along the (x) or (y)

axes. Equation 3.6 is a global error which takes into account local motion inconsistencies

of the warped event cloud. Together with the rigid body motion assumption, equation 3.6

can be decomposed into equations:

dx =

∑
Gx[i, j]

#I
, dy =

∑
Gy[i, j]

#I
(3.7)

dz =

∑
(Gx[i, j], Gy[i, j]) · (i, j)

#I
(3.8)

dθ =

∑
(Gx[i, j], Gy[i, j])× (i, j)

#I
(3.9)

Equations 3.7, 3.8 and 3.9 will be used to provide gradients for the motion compensation

algorithm in Sec. 3.3.4 - each of them correspond to the error for one of the model

parameters: (hx, hy, hz, hθ), which represent shift in the image plane, expansion and 2D

rotation.
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3.3.4 Minimization Constraints

The local gradients of T and the event density D both quantify the error in event

cloud motion compensation. We model the global warp field φG(x, y, t) with a 4 param-

eter global motion modelMG = {hx, hy, hz, θ} to describe the distortion induced in the

event cloud by the camera motion. The resulting coordinate transformation amounts to:

x′
y′

 =

x
y

− t ∗
[hx

hy

+ (hz + 1) ∗

∣∣∣∣∣∣∣∣
cos θ − sin θ

sin θ cos θ

∣∣∣∣∣∣∣∣ ·
x
y

−
x
y


]

(3.10)

Here the the original event coordinates {x, y, t} are transformed into new coordi-

nates {x′, y′, t}. Note that the timestamp remains unchanged in the transformation and is

omitted in Eq. 3.10 for simplicity. Furthermore, we assume linear event trajectories ξij

(Eq. 3.2) within the time slice.

The parameters of the model denote the shift (hx, hy) parallel to the image plane,

a motion (hz) towards the image plane, effectively a radial expansion of the event cloud,

and a rotation (θ) around the Z axis, effectively a circular component of the event cloud.

3.4 Camera Motion Compensation

Our pipeline (see Fig. 3.2) consists of camera motion compensation and subsequent

motion inconsistency analysis to detect independently moving objects. To compensate for

the global background motion, the four parameter modelMG presented in Sec. 3.3.4 is

used. The background motion is estimated, and objects are detected. Then the background

model is refined using data from the background region only (not the detected objects)
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(Fig. 3.3), and four-parameter models are fit to the segmented objects for tracking.

As outlined in Secs. 3.3.2 and 3.3.4, T and I are local metrics of event cloud

misalignment but based on different sources of data - event timestamps and event rates.

T provides a poor error metric when the optimizer is close to the minima due to the event

averaging scheme employed. In particular, the global error gradient functions (Eqs. 3.7 -

3.9) have very small values and are unreliable.

Note that, T provides reliable gradients of the parameters of model MG even in

the presence of noise and fast motion, when events from different edges overlap during

projection (see Fig. 3.6).

For the aforementioned reasons, the global motion minimization is performed in

two stages: coarse motion minimization on T and fine motion refinement on the I.

Algorithm 1 Global motion compensation in event space using T .
Data:MG

i−1, C, d, ξ

Result:MG
i , C

′, T

C ′ ← warpEventCloud(C,MG
i−1)

T ← getTimestampImage(C ′, d)

MG
i ← updateModel(MG

i−1, T )

while ||MG
i−1 −MG

i ||2> ξ do
C ′ ← warpEventCloud(C,MG

i )

T ← getTimestampImage(C ′, d)

MG
i−1 ←MG

i

MG
i ← updateModel(MG

i , T )

end
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3.4.1 Coarse Global Motion Minimization on T

An algorithm for coarse motion compensation of the event cloud is presented in

Algorithm 1.

The input is the previous model MG
i−1, original event cloud C, the discretization

grid size d and accuracy parameter ξ. The warpEventCloud function applies the warp

field ψ as per equation (3.10). The time-image T is then generated on the warped event

cloud C ′ according to (3.5). Finally, updateModel computes gradient images Gx and Gy

(a simple Sobel operator is applied) and the gradients for the motion model parameters

MG
i are computed with (3.7 - 3.9). The parameters ofMG

i are then updated in a gradient

descent fashion. Here, the discretization parameter d has been chosen as 0.3 of the DVS

pixel size.

3.4.2 Fine Global Motion Refinement on I

An additional fine motion refinement is done by maximizing the density D (3.4) of

the event-count image I. The density D function does not explicitly provide the gradient

values for a given model, so variations of model parameters are used to acquire the deriva-

tives and perform minimization. The corresponding algorithm is given in Algorithm 2.
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Algorithm 2 Global motion compensation in event space with event count image
Data:MG

i−1, C, d, ξ

Result:MG
i , C

′, I

MG
i ←MG

i−1

C ′ ← warpEventCloud(C,MG
i−1)

I ← getEventCountImage(C ′, d)

D ← getEventDensity(I)

D′ ← 0

while ||D − D′||> ξ do
D ← D′

for Parameter p in ModelMG
i do

D′ ← getEventDensityCloud(C, d,MG
i + p)

if D′ > D then
MG

i ←MG
i + p

C ′ ← warpEventCloud(C,MG
i )

I ← getEventCountImage(C ′, d)

end

end

end

3.5 Multiple Object Detection And Tracking

In this section, we describe the approach of the detection of independently moving

objects by observing the inconsistencies of T . The detected objects are then tracked using

a traditional Kalman Filter.
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3.5.1 Detection

We use a simple detection scheme: We detect pixels as independently moving using

a thresholding operation and then group pixels into objects using morphological opera-

tions. Each pixel {i, j} ∈ T is associated with a score ρ(xi, yj) ∈ [−1, 1] defined in

Eq. 3.11, which quantitatively denotes the misalignment of independently moving ob-

jects with respect to the background. ρ is used as a measure for classifying a pixel as

either background B or independently moving objects Ok.

ρ(i, j) =
T (i, j)−< Ti,j >

4t
(3.11)

with <> denoting the mean. Now, let us define B and Ok.

B = {(i, j)|ρ(i, j) ≤ 0} O = {(i, j)|ρ(i, j) > λ} (3.12)

here O = O1

⋃
...On (n is the number of independently moving objects) and λ is a pre-

defined minimum confidence values for objects to be classified as independently moving.

To detect independently moving objects, we then group foreground pixels using simple

morphological operations.

3.5.2 Tracking

The detection algorithm presented in Subsec. 3.5.1 runs in real-time (processing

time < δt) and is quite robust. To account for missing and wrong detections, especially in

the presence of occlusion, we employ a simple Kalman Filter with a constant acceleration
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model. For the sake of brevity, we only define the state (Xk) and measurement vectors

(Zk) for the kth object.

Xk = [x̂k, ŷk, hx, hy, hz, θ, ûk, v̂k]
T (3.13)

Zk = [x̂k, ŷk, hx, hy, hz, θ]
T (3.14)

where {x̂k, ŷk} represent the mean coordinates of Ok, hx, hy, hz, θ represent the

model parameters of the object, which is obtained by motion-compensating Ok as de-

scribed in 3.4 and ûk, v̂k represents the average velocity of the kth object.

3.6 Datasets and Evaluation

The Extreme Event Dataset (EED) was collected using the DAVIS [4] sensor under

two scenarios. First, it was mounted on a quadrotor (Fig. 3.7), and second in a hand-held

setup to accommodate for a variety of non-rigid camera motions. The recordings feature

objects of multiple sizes moving at different speeds in a variety of lighting conditions. We

emphasize the ability of our pipeline to perform detection at very high rates, and include

several sequences where the tracked object changes its speed abruptly.

We have collected over 30 recordings in total but the centerpiece of our dataset is

the ’Strobe Light’ sequence. In this sequence, a periodically flashing bright light in a dark

room creates significant noise. At the same time an object, another quadrotor is moving in

the room. This is a challenge for traditional visual systems, but our bio-inspired algorithm

shows excellent performance by leveraging the high temporal event density of the DAVIS
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sensor.

3.6.1 Dataset collection

The dataset was collected using the DAVIS240B bio-inspired sensor equipped with

a 3.3mm. lens with a horizontal and vertical field of view of 80◦. Most of the sequences

were created in a hand-held setting. For the quadropter sequences, we modified a Qual-

comm FlightTM [53] platform to connect the DAVIS240B sensor to the onboard computer

and collect data in a realistic scenario.

The setup of the quadrotor+sensor platform can be seen in Fig. 3.7. The overall

weight of the fully loaded platform is ≈ 500g. and it is equipped with the Snapdragon

APQ8074 ARM CPU, featuring 4 cores with up to 2.3GHz frequencies.

3.6.2 Computation Times

On a single thread of Intel CoreTM i7 3.2GHz processor, Algorithms 1 and 2 take

10ms and 7ms on average for a single iteration step. However, both algorithms are based

on a warp-and-project Π{φ(C)} operation which is highly parallelizable and thus well fit

for implementation on a Graphical Processing Unit (GPU) or a Field-Programmable Gate

Array (FPGA) to acquire very low latency and high processing speeds.

While a low level hardware implementation is beyond the scope of this research,

we tested a prototype of the algorithm on an NVIDIA Titan X PascalTM GPU with CUDA

acceleration. A single iteration for Algorithms 1 and 2 takes 0.01ms and 0.003ms on

average, respectively, which is a 1000X and 2333X speed-up. We have empirically found
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that the minimization converges on average in less than 30 iterations which ensures a

faster-than-real-time computation speed with a high margin.

The recordings are organized into several sequences according to the nature of sce-

narios present in the scenes. All recording feature a variety of camera motions, with both

rotational and translational motion (See fig. 3.9):

• ”Fast Moving Drone” - A sequence featuring a single small remotely controlled

quadrotor. Quadrotor has a rich texture and moves across various backgrounds in

daylight lighting conditions following a variety of trajectories.

• ”Multiple objects ” - This sequence consists of multiple recordings with 1 to 3

moving objects under normal lighting conditions. The objects are simple, some of

them have little to no texture. The objects move at a variety of speeds, either along

linear trajectories or they bump from a surface.

• ”Lighting variation” - A strobe light flashing at frequencies of 1-2 Hz was placed

in a dark room to produce a lot of noise in the event sensor. This is an extremely

challenging sequence, otherwise similar to the ”Fast Moving Drone”.

• ”What is a Background?” - In most tracking algorithm evaluations, object moves

in front of the background. The following toy sequence was included, to show

that it is possible to track an object even when the background occupies the space

in between the camera and the object: A simple object was placed behind the net

and the motion could only be seen through the net. Recordings contain a variety

of distances between the net and the camera and the object is thrown at different

speeds.
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Table 3.1: Evaluation of the motion compensation pipeline on the EED

Sequence ”Fast Moving Drone” ”Multiple objects ” ”Lighting variation” ”What is a Background?” ”Occluded Sequence”

Success Rate 92.78% 87.32% 84.52% 89.21% 90.83%

• ”Occluded Sequence” - The sole purpose of this sequence is to test the reliability

of tracking in scenarios when detection is not possible for a small period of time.

Several recordings feature object motion in occluded scenes.

3.6.3 Metrics and Evaluation

We define our evaluation metrics in form of success rate: We have acquired the

ground truth by hand labeling the RGB frames of the recordings. We then computed a

separate success rate for every time slice corresponding to an RGB frame from the DAVIS

sensor as the percentage of the detected objects with at least 50% overlap with the object

visible in the RGB frame. The mean of those scores for all sequences is reported in Table

3.1.

Although we did not discover sequences where the motion-compensation pipeline

performs poorly, the particular difficulty for the tracking algorithm were the strobe light

scenes where noise from the strobe light completely covered the tracked object and pre-

vented detection - the noise on such scenes was even further amplified by the low lighting

conditions.

Interestingly, a high performance was achieved on the ”What is a Background?”

sequence. The object was partially occluded by the net (located between the camera and
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the object), but in favor for the algorithm, the high texture of the net allowed for a robust

camera motion compensation.

other challenging time sequences were the ones which featured objects whose paths

crossed in the image. The Kalman filter often was able to distinguish between the tracked

objects based on the difference in states (effectively, the difference in the previous motion)

To conclude this section, we feel the need to discuss some common failure cases.

Figure 3.8 demonstrates a frame from the ”Fast Moving Drone” sequence - the motion of

the drone with respect to the background is close to zero. The motion-compensation stage

successfully compensates the camera motion but fails to recognize a separately moving

object at that specific moment of time.

Another cause for failure is the presence of severe noise, as demonstrated by the

”Lighting variation” sequence. The motion compensation pipeline is robust only if a

sufficient amount of background is visible. Figure 3.8 (right image) demonstrates that

in some conditions too much noise is projected on the time image which renders both

motion compensation and detection stages unreliable.

3.7 Conclusions

We argue that event-based sensing can fill a void in the area of robotic visual navi-

gation. Classical frame-based Computer and Robot vision has great challenges in scenes

with fast motion, low-lighting, or changing lighting conditions. We believe that event-

based sensing coupled with active purposive algorithmic approaches can provide the nec-

essary solutions. Along this thinking, we have presented an event-based only method for
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motion segmentation under unconstrained conditions. The essence of the algorithm lies in

a method for efficiently and robustly estimating the effects of 3D camera motion from the

event stream. Experiments in challenging conditions of fast motion with multiple moving

objects and lighting variations demonstrate the usefulness of the method.
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(a) (b)

(c) (d)

Figure 3.1: Illustration of parametric model-fitting by alignment. The input is a cloud of events

within a small time interval δt. Visualization of event counts (a), and average time stamps (b)

mapped to the image pixels after reprojection. Motion-compensated event count (c) and time

image (d) acquired after the minimization stage. Colors encode the event time stamp value (with

blue for oldest and green for the most recent events). Note the hand that moves independently from

the camera is clearly visible on the time image, which is the basis for the subsequent detection and

tracking.
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Figure 3.2: Motion compensation and independent object tracking pipeline. The event cloud

motion is minimized with the error functions defined on the time-image T and then, the motion is

refined by maximizing the event density on the event-count image I. The subsets of events with

high probability of misalignment (shown in red bounding box) are removed and tracked and the

remaining event cloud is again motion-compensated.
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Figure 3.3: An example output of the motion compensating algorithm - the time-image. The

colors denote the average timestamps (blue is t0, green is t0+ δt). On this example the separately

moving object (drone) occupies the large area of the frame but the camera motion compensation

still succeeds.
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Figure 3.4: A frame from the ’Two Objects’ dataset. The left image shows the misalignment

of the two objects after the global motion compensation (green color corresponds to the most

recent events). The right image is the corresponding grayscale image - the objects (highlighted by

bounding boxes) are poorly visible due to severe motion blur.

Figure 3.5: An example from the strobe dataset. A single object moves in a dark room with a

bright strobe light which produces a lot of noise on the sensor output. Since the motion model is

global, the minimization and detection are tolerant to such noise. The detection output is shown

with a superimposed bounding box.
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Figure 3.6: An experiment with high texture and fast motion. The event cloud is a set of tilted

planes which overlap during vertical projection. The time-image is a robust enough metric to

compute the correct minimization gradient for the motion compensation. Images from left to right:

3D representation of event cloud, unminimized time-image, minimized time-image.

Figure 3.7: Drone used in the dataset collection. 1 - mounted DAVIS240B camera, 2 - Customized

Qualcomm Flight platform with onboard computer
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Figure 3.8: Common failure cases. Top row: RGB frames, bottom row: time-images. Left: A

setting featuring an object which does not move with respect to the background - a failure case for

the detection stage, even though the edges are visible. Right: High noise scenario with the tracked

object not visible in the gray-scale image.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.9: Sample frames from the EED dataset are shown. Top row shows RGB frames with

superimposed bounding boxes for tracked object. The bottom row displays the corresponding

time-images. (a) - Remote Controlled Quadrotor recording, (b), (c) and (d) - Single, two and three

simultaneously moving objects, (e) - Strobe Light sequence, (f) - low lighting (no strobe), (g) - An

”Occluded Sequence”, (h) - ”What is a Background?” sequence

36



Chapter 4: Learning Sensori-Motor Control with Neuromorphic Sensors

Using Hyperdimensional Binary Vectors

4.1 Methods

As was shown in Chapter 3, the temporal information contained within Time im-

ages is complimentary to scene optical flow and can directly be used in motion estimation

tasks. Here we use a theory developed by Kanerva [54], and which has been most of-

ten used for text processing, to develop a learning system which solves an egomotion

estimation task with event-based sensor.

The essence of the Kanerva’s theory, is that if the information can be presented via

a sufficiently long binary vector such that the statistical distribution of bits within this

vector correlates with the desired output, it is possible to construct a system capable of

learning on very small data samples (500 frames in our experiments) in a single pass,

and performing inference at extremely high rates. We delve deeper in the theory behind

our method in Appendix B; for now we just outline our encoding scheme and findings.

Similar to Chapter 3, we start by constructing Time images; we then compute the 4-

parameter model using Gray codes - to ensure that similar numbers are close in Hamming

space and use the resulting encodings to build a Hyperdimensional Binary Vector (HBV).
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During the learning stage, we cluster images with similar velocities (along each degree

of freedom separately) - a...z below - and combine them using Consensus Sum (here ′+′)

and XOR (shown as multiplication). The equivalent of the trained model in HBVs is

called a ’memory’:

m = v1(a1 + a2 + ...) + v2(b1 + b2 + ...) + ...+ vn(z1 + z2 + ...) (4.1)

Here, v1..vn are randomly generated ’basis’ vectors which can be then used to sepa-

rate encoded motion classes from each other. This model is used to generalize and extract

the egomotion in a self driving car scenario.

4.2 Implementation

To perform our experiments, we have developed an open-source library for Python

for accelerated manipulations with long binary vectors (pyhdc). The library supports

vector lengths of up to 8000 bits and is capable of performing 1.4 ∗ 105 permutations per

second and 3.0 ∗ 107 XORs per second on a modern laptop in a single thread. The code

is available online: https://github.com/ncos/pyhdc.

4.3 Results

We want to emphasize the ability of our pipeline to train in a single pass in our

experiments, with only 500 samples, taken from outdoor day 1, while producing compa-

rable results on this and other sequences. Neural approaches tend to use a much higher

ratio of training to test set. We present the qualitative results of our ego-motion estimation
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in Fig. 4.1 on outdoor day 1, as well as the other subsets. We also provide quantitative

results in Table 4.1. The binning of velocity sizes is directly proportional to our inference

time. For 500 velocity classes, we perform at an average of 572 inferences per second

(time slices per second). If we halve the number of velocity classes (250), then the infer-

ence rate approximately doubles (1084). Training time is extremely fast and proportional

to the number of training frames, requiring only 0.5 and 2 s for 500 and 1500 frames, re-

spectively. Retraining on the fly is possible, and training can be done in an online fashion.

We received these results on a regular laptop central processing unit, running at 3 GHz.
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Table 4.1: Quantitative results for the MVSEC dataset across the five subsets. The table gives the

number of frames in each subset, length in seconds, the size of the angular and linear bins used

for HBVs, number of vectors in the rotation, X and Z, and the Average Endpoint Error (AEE),

average relative pose error (ARPE), and the average relative rotational error (ARRE).

MVSEC subset Outdoor day 1 Outdoor day 2 Outdoor night 1 Outdoor night 2 Outdoor night 3

Frames 5134 12196 5133 5497 5429

Length (s) 128.3 304.9 128.3 137.4 135.7

Ang. bin (rad/s) 0.02 0.02 0.02 0.02 0.02

Lin. bin (m/s) 0.08 0.08 0.08 0.08 0.08

Rotation (clusters) 104 101 40 74 87

X (left-right, clusters) 47 44 24 40 33

Z (front-back, clusters) 119 311 244 251 228

AEE 0.810 1.03 0.933 1.16 0.940

ARPE 0.122 0.225 0.243 0.0948 0.0831

ARRE 0.0994 0.108 0.0632 0.116 0.121
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Figure 4.1: Results for HBVs on outdoor day 1 in the MVSEC dataset. Qualitative results on

the outdoor day 1 subset of the MVSEC dataset. The probability plots show the likelihood of each

velocity class being correct across all inferences, with a light-green color indicating the higher

probabilities. One can see that the light green forms the path of predictions across the probability

field.
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Chapter 5: EVIMO: A Dataset for Motion Segmentation with Event-

Based Cameras

5.1 Introduction

EVIMO is a collection of indoor datasets for motion segmentation and egomo-

tion estimation gathered with a variety of event-based sensors (currently, only monocular

DAVIS346C dataset is available, but the list of recordings is being expanded). The dataset

features 6 DoF poses for Camera and Independently Moving Objects updated at 200 Hz,

and pixelwise object masks at 40 Hz. Due to the way the data was collected, the object

masks can be re-generated at any frame rate up to 200 Hz, or higher with pose interpola-

tion. Depth maps and classical camera frames are also available for most sequences. We

support Python (numpy) .npz format, as well as plain text format. We also provide raw

ROS .bag recordings and C++ code used to process the recordings.

We release the dataset and raw recordings here: https://better-flow.github.io/evimo/index.html

The code for the labeling pipeline can be found here: https://github.com/better-flow/evimo
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Figure 5.1: An example from EVIMO dataset. Motion segmentation masks can be provided at

up to 200 frames per second (or higher, with motion interpolation). The dataset is annotated

automatically by combining motion capture data with static scans of the environment and objects.

5.2 EV-IMO Dataset

Event-based sensors essentially do not suffer from motion blur, and are capable of

working in poor light conditions where classical cameras fail. To provide the best possible

ground truth, we use Vicon motion capture system to track the locations of the camera

and objects. The ground truth depth and masks are then synthesized offline during data

postprocessing by projecting static 3D scans of the room and the objects onto camera

plane. This approach allows to capture data in extreme dark and avoid motion blur for

fast moving objects, without sacrificing the quality of the dataset. EV-IMO dataset is the

first event camera dataset to include multiple independently moving objects and camera

motion (at high speed motion), while providing accurate depth maps, per-object masks

and trajectories at over 200 frames per second. We used this dataset in [31] and Chapter 6.
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5.2.0.1 Methodology

Event cameras such as the DAVIS are designed to capture high speed motion and

work in difficult lighting conditions. For such conditions classical methods of collecting

depth ground truth, by calibrating a depth sensor with the camera, are extremely hard to

apply - the motion blur from the fast motion would render such ground truth unreliable.

Depth sensors have severe limitations in their frame rate as well. Furthermore it would be

impossible to automatically acquire object masks - manual (or semi-automatic) annotation

would be necessary. To circumvent these issues we designed a new approach (Fig. 5.2

demonstrates the interface of the auto annotation tool):

1. A static high resolution 3D scan of the objects, as well as 3D room reconstruction

is performed before the dataset recording takes place.

2. The Vicon® motion capture system is used to track both the objects and the camera

during the recording.

3. The camera center as well as the object and room scans are calibrated with respect

to the the Vicon coordinate frame.

4. For every pose update from the Vicon motion capture, the 3D point clouds are

transformed and projected on the camera plane, generating the per-pixel mask and

ground truth depth.

This method allows to record accurate depth at very high frame rate, avoiding the

problems induced by frame-based collection techniques. While we acknowledge that
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Figure 5.2: a) - The main interface of the automatic annotation tool. Camera cone of vision,

depth and motion masks are visible. b) - Example object used in the dataset. c) 3D scan of the

object.

this approach requires expensive equipment, we argue that our method is superior for

event-based sensors, since it allows to acquire the ground truth at virtually any event time

stamp (by interpolating poses provided at 200 Hz) - something impossible to achieve with

manual annotation.

5.2.0.2 Dataset Generation

Each of the candidate objects (up to 3 were recorded) were fitted with Vicon® mo-

tion capture reflective markers and 3D scanned using an industrial high quality 3D scan-

ner. We use RANSAC to locate marker positions in the point cloud frame and using

acquired point correspondences we transform the point cloud to the world frame at every

update of the Vicon. To scan the room, we place reflective markers on the Asus Xtion
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RGB-D sensor and use the tracking as an initialization for global ICP alignment.

To compute the position of the DAVIS camera center in the world frame we follow

a simple calibration procedure, using a wand that is tracked by both Vicon and camera.

The calibration recordings will be provided with the dataset. The static pointcloud is then

projected to the pixel coordinates (x, y) in the camera center frame following equation

5.1:

(x, y, 1)T = KCP−1davisPcloudXi (5.1)

Here, K is the camera matrix, Pdavis is a 4 × 4 transformation matrix between reflective

markers on the DAVIS camera and the world, C is the transformation between reflective

markers on the DAVIS and DAVIS camera center, Pcloud is the transformation between

markers in the 3D pointcloud and reflective markers in the world coordinate frame, and

Xi is the point in the 3D scan of the object.

Or dataset provides high resolution depth, pixel-wise object masks and accurate

camera and object trajectories. We additionally compute, for every depth ground truth

frame, the instantaneous camera velocity and the per-object velocity in the camera frame,

which we use in our evaluations. We would like to mention, that our dataset allows to set

varying ground truth frame rate - in all our experiments we generated ground truth at 40

frames per second.
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5.3 Sequences

A short qualitative description of the sequences is given in Table 5.1. We recorded 6

sets, each consisting of 3 to 19 sequences. The sets differ in the background (in both depth

and the amount of texture), the number of moving objects, motion speeds and lighting

conditions.

A note on the dataset diversity: it is important to note, that for event-based cameras

(which capture only edge information of the scene) the most important factor of diversity

is the variability on motion. Different motions create 3D event clouds which vary signif-

icantly in their structure, even with similar backgrounds. Nevertheless, we organize our

sequences into four background groups - ’table’, ’boxes’, ’plain wall’ and ’floor’ (see Fig

5.3), with the latter two having varying amounts of texture - an important factor for event

cameras. We also include several tabletop scenes, with clutter and independently moving

objects.

5.4 Results on Learning Pipelines

Here we provide some results on motion estimation, segmentation and depth es-

timation from our previous work [31] - a convolutional neural network based on SfM-

Learner. A dual neural network consists of separate depth and pose networks, jointly

trained using both ground truth and a warping loss.

A depth network uses an encoder-decoder architecture and is trained in supervised

mode to estimate scene depth. A pose network takes consecutive event slices to generate

47



Figure 5.3: Types of background geometry featured in the EV-IMO dataset (from left to right):

’table’, ’boxes’, ’plain wall’, ’floor’ and ’tabletop’.

a mixture model for the pixel-wise pose. The outputs of the two networks are combined

to generate the optical flow, then to inversely warp the inputs and backpropagate the error

- to provide dense depth, egomotion, pixelwise motion for independently moving objects

and motion masks.

Please refer to Chapter 6 and Appendix A for additional results on segmentation in

(x, y, t) space.

5.4.1 Qualitative Results

We present a qualitative evaluation in Fig. 5.4. The per-object pose visualization

(Fig. 5.4, columns 4 and 5) directly maps the 3D linear velocity to RGB color space. The

network [31] is capable of predicting masks and pixel-wise pose in scenes with different

amount of motion, number of objects or texture.
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background speed texture occlusions objects light

Set 1 boxes low medium low 1-2 normal

Set 2 floor/wall low low low 1-3 normal

Set 3 table high high medium 2-3 normal

Set 4 tabletop low high high 1 normal

Set 5 tabletop medium high high 2 normal

Set 6 boxes high medium low 1-3 dark / flicker

Table 5.1: EV-IMO sequences

5.4.2 Motion Estimation and Segmentation

To evaluate the linear components of the velocities, for both egomotion and object

motion, we compute the classical Average Endpoint Error (AEE). Since our pipeline is

monocular, we apply the scale from the ground truth data in all our evaluations. To

account for the rotational error of the camera (which does not need scaling) we compute

the Average Relative Rotation Error RRE = ‖logm(RT
predRgt)‖2. Here logm is the

matrix logarithm, and R are Euler rotation matrices. The RRE essentially amounts to

the total 3-dimensional angular rotation error of the camera. We also extract several

sequences featuring fast camera motion and evaluate them separately. We present AEE

in m/s, and ARRE in radians/s in Table 5.2.
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Figure 5.4: Qualitative results from our evaluation. The table entries from left to right: DVS

input, ground truth for depth, network output for depth, ground truth pixel-wise pose, predicted

pixel-wise pose, predicted motion mask. Examples were collected from EV-IMO dataset. Best

viewed in color.

5.4.3 Depth Estimation

Both egomotion and depth estimation is significantly harder with complex 3D mo-

tion. We evaluate [31] against a recent method [27] - ECN network, which estimates

optical flow and depth on the event-based camera output. The method was originally de-

signed and evaluated on a road driving sequence (which features a notably more simple

and static environment, as well as significantly rudimentary egomotion). Still, we were

able to tune [27] and train it on EV-IMO. We provide the comparison for the depth for our

baseline method, the smaller version of our network (with just 40k parameters) and ECN

in Table 5.3.
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Cam AEE Cam ARRE Obj AEE IOU

table 0.07 (0.09) 0.05 (0.08) 0.19 0.83 (0.63)

plainwall 0.17 (0.23) 0.16 (0.24) 0.38 0.75 (0.58)

fastmotion 0.23 (0.28) 0.20 (0.26) 0.43 0.73 (0.59)

Table 5.2: Evaluation on segmentation and motion estimation. The numbers in braces are values

for the 40k version of the network. AEE is in m/s, ARRE is in rad/s.

Error metric Accuracy metric

Abs Rel RMSE log SILog δ < 1.25 δ < 1.252 δ < 1.253

Baseline Approach

plain wall 0.16 0.26 0.07 0.87 0.95 0.97

cube background 0.13 0.20 0.04 0.87 0.97 0.99

table background 0.31 0.32 0.12 0.74 0.90 0.95

ECN

plain wall 0.67 0.59 0.33 0.27 0.52 0.80

cube background 0.60 0.56 0.30 0.29 0.53 0.78

table background 0.47 0.48 0.23 0.45 0.69 0.86

Table 5.3: Evaluation of the depth estimation
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Chapter 6: Learning motion segmentation in (x, y, t) space using edge

convolutional neural networks

6.1 Introduction

Scene motion exists in time. Changes in the scene over short time interval provide

some information, but tasks, such as occlusion detection, segmentation of multiple mov-

ing objects, and detecting objects with a motion similar to the camera, require capturing

the changes over longer time-intervals to resolve ambiguities. In classical vision, feature

point tracking allows for long-term estimation of pixel motion trajectories. That way, by

analyzing pixel matches over large time intervals the ambiguity in motion can be resolved.

Classic frame-based vision, however, is not naturally designed to provide tempo-

ral information. The technical trends to increase the image resolution is well aligned

with the goals of static visual challenges like recognition or semantic segmentation. The

appearance-based algorithms, which attempt to analyze how the world around is, are not

naturally designed to provide temporal information; this can be in part due to past tech-

nical trends which shaped the evolution of a modern camera. The possibility to instanta-

neously capture a scene in high detail was indeed very appealing and not without merit

- it is well aligned with the goals of static visual challenges like recognition or semantic
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(a) (b) (c) (d)

Figure 6.1: Illustration of event cloud shape properties depending on camera or object motion.

Each point is an event, the timestamp is shown with color: blue - 0 sec, red - 1 sec. (a) - translation

parallel to camera plane (along y axis), (b) - roll (rotation around y axis), (c) - translation along

z axis (object moves closer to camera), (d) - yaw (rotation around z axis)

segmentation. The works pursuing to extract scene motion, on the other hand, had to

make use of the same sensors and rely on artificially crafted approaches tailored to work

with static data: feature points, and the concept of matching is one of them; this idea to

use appearance of the scene to extract object motion is by itself forced by the nature of

classical cameras.

Examples of event-based input are shown in Fig. 6.1. For four object motions, the

event clouds are illustrated (the color of points corresponds to the event timestamp, in the

range of 0 to 1 sec.): (a) translation does not change the shape of the object across time,

only its spatial coordinate; (b) roll, or rotation around the axis parallel to the camera plane

reveals previously occluded parts of the object, and the shape of the cloud cross-section

changes. (c) With translation along the camera’s optical axis, as the object approaches

the camera its contour becomes larger. (d) Rotation around optical axis produces a very
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discernible twist pattern. In addition, it is easy to see how natural the object tracking

problem becomes, given the high temporal density of events. We conduct formal analysis

of 3D motion pattern features in Sec. 6.2.

The time-surfaces have their origin in the Epipolar plane image analysis introduced

in the late 80’s [55]. As the camera moves along a linear path, images were taken in such

rapid succession that they formed a solid block of data. The technique utilized knowledge

of the camera motion to form and analyze slices of this solid. These slices directly encode

not only the three-dimensional positions of objects, but also spatiotemporal events such

as the occlusion of one object by another. For straight-line camera motions, these slices

have a simple linear structure that makes them easy to analyze.

Generalizing this concept, we work with time-surfaces in (x, y, t) produced by an

event camera to perform the task of foreground-background segmentation of moving ob-

jects. The complexity of this task comes from the enormous amount of asynchronous data

which needs to be processed, high levels of noise produced by the event camera and, most

importantly, the fact that the variability of object and camera motion changes the shape

of the event cloud, making it more difficult to learn local 3D features. In summary, our

contributions are:

• The first learning approach capable of working on 3D event clouds over large time

intervals.

• We show theoretically and with experiments that larger temporal slices yield better

performance.

• We perform comparisons to current state of the art, using PointNet++ [56] and
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EVIMO [31] as baselines, and show that our method is faster and yields better

results.

6.2 Event Clouds and Scene Motion

Event cameras record a continuous stream of brightness change events. Each event

is encoded by its pixel position x, y, timestamp, t, accurate to microseconds, and an

additional bit denoting whether brightness increased or decreased. We will refer to the

events in a fixed-time interval as ’slice’ of events. A single slice can contain millions of

events (practically, 106 per second on EVIMO [31] dataset collected with DAVIS 346C,

and 6 ∗ 106 for a newer PROPHESEE high resolution sensor [3]).

The events are generated by the motion of image contours (object boundaries, or

texture edges on objects) over time. We can look at these events as points on trajectories

tj(t) = (x(t), y(t), t) - this makes it natural to look at events as points in 3D (x, y, t)

space. The rest of this section is devoted to analyzing some geometric properties of the

event clouds. Since pixel motion is constrained by the laws of physics, the rigidity of bod-

ies and epipolar geometry, event clouds are significantly different from 3D pointclouds in

(x, y, z) space.

6.2.1 Surface Normals, Normal Flow, & Optical Flow

Earlier works [13,14] have analyzed surface normals of event clouds in the context

of optical flow estimation. With some abuse of notation, similar as in [13], we describe

the event cloud as a function t(x, y), with t the time and x, y the spatial coordinates,

55



Figure 6.2: Event cloud in (x,y,t) space; the color gradient corresponds to event timestamps.

For a single rigid object, curvatures on the cloud would define a trajectory of a point of this

object, while for a pair of objects such structure can identify an occlusion. On the top right - a

point with two possible optical flow values, which only occur during occlusions. Bottom right:

T -corner; during occlusion its shape defines which object is on the foreground and which is on

the background (see Sec. 6.2.3)

and consider it a surface (actually multiple x, y may map to the same t violating the

definition of a function). Then the partial derivates ∂t(x,y)
∂x

, ∂t(x,y)
∂y

provide the inverse of the

observed velocity components. Thus, from the normal to this surface n with components

(nx, ny, nt), the instantaneous normal flow at an image pixel can be obtained as vn =

( nt

nx
, nt

ny
).

More importantly though is the notion that the full flow of a point p = (x, y, t)

would lie in the plane with the normal n and passing through p. Now, we can impose an

additional assumption, which is often called smoothness constraint - that flow in the local
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Figure 6.3: An illustration of the architecture. 5 Graph Convolutional layers aggregate multiscale

features around each point; the features are concatenated and fed into a fully connected layer to

predict point class.

region is similar; this is not true for the boundaries, and we analyze boundary regions

separately below.

More specifically, for a region of a small radius r around the point p0 = (x, y, t) we

will assume that all points pi ∈ Br(p0) have the same (normalized) optical flow vector

v = (vx, vy, vt). This results in a constraint: the optical flow at p0 lies at the intersection

of all local planes given by normals ni and passing through p0. If the assumption holds

true, and flow is the same for all local points, then all planes ni will intersect on a single

line v. The intersection of two planes given by ni and nj is simply v = ni × nj . Given a

set of planes in Br(p0), we formulate the constraint on flow as a least squares problem:

v = minv
∑
||v × ni||2 (6.1)

Here, we deviate from the common notion of optical flow as a 2D vector field; given

the frame-less nature of the event stream, v should rather be thought of as the temporal

derivative of the pixel trajectory, while instantaneous flow in a traditional sense can be

written as vxy = (vx
vt
, vy
vt

).
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6.2.2 Continuity in Time

The flow is the derivative of the point trajectory v = d(tj)
dt

= (dx
dt
, dy
dt
, 1). Due to the

continuity in time of the event stream, sometimes it is possible to recover the full trajectory

of a point. A trajectory is unambiguously recoverable if all its points are generalized

corners - that is, for all points Eq. 6.1 needs to have a single minima. Then, using a

sequence of candidate points pi and their corresponding flow vi, it is possible to extract

the full trajectories of these points. Even, if the data is discontinous, we may be able

to obtain the trajectory. Note, a property of event camera is that it does not generate

events when there is lack of relative motion. In such case, at a point pi (given the relative

motion, or flow is zero), vi = (0, 0, 1) will point vertically upwards, and since there was

no motion, the point pi+1 will be directly above pi, allowing to recover from the gap in

the event stream.

6.2.3 Boundary Regions and Occlusions

Corner detection for event cameras has been studied previously [23]. However,

existing methods don’t allow to distinguish between object corners, and structures caused

by occlusions (see Fig. 6.2). Next we discuss how to distinguish these cases.

A consequence of Eq. 6.1 is that every point with nonzero curvature will have an

unambiguous optical flow vector associated with it. If a point region Br(p0) includes

events from boundaries of two separate objects (which can happen during occlusions)

Eq. 6.1 will have multiple distinct minima. An example is shown in Fig. 6.2: on the top -

a typical occlusion of the background (shown as large, flat cluster of points) by a smaller
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foreground object (shown as a ’tube’ cutting through the background motion plane).

To distinguish between a corner corresponding to a point trajectory (shown in red

in Fig. 6.2) and a corner caused by the occlusion (shown in green), it is enough to analyze

the local distribution of the optical flow vectors. On the bottom left - the red point has

multiple possible flow vectors, and its trajectory d(tj)
dt

= ∞. These special points can be

found and corresponding corner regions labeled as occlusion boundaries.

It is also possible to extract at the occlusion, information about which of the two

object is in the foreground, and which is in the background. Since due to occlusion

the texture on the occluded object is not visible, the foreground edge surface will be

hollow inside and the background surface will be intersected by the foreground one. On

the occlusion boundary this will always result in a T -shaped corner, shown on Fig. 6.2,

bottom right.

6.3 The Architecture

6.3.1 Motion Segmentation in 3D

State-of-the-art 3D point cloud segmentation networks such as PointNet++ [56],

EdgeConv [57], and 3DCNN [58] are tailored to extract static 3D feature descriptors

in a uniform 3D metric space. The event cloud differs in that it has a temporal axis; the

motion of the object itself controls the shape of the cloud and hence static (x, y, t) features

cannot be learnt as descriptors. The metric space also allows for efficient downsampling

and mesh simplifications, with modern sensors having notably less noise as opposed to

event cameras - hence only a handful of methods is capable of handling millions of points
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produced by event cameras. In this work we use PointNet++ as a baseline and develop

network based on Graph Convolutional Networks to perform the task of background-

foreground motion segmentation.

6.3.2 Network Design

Our network architecture is shown in Figure 6.3 - it consists of five consecutive

Graph Convolutional (GConv) layers and three fully connected hidden layers which share

the same weights across all points and perform global feature aggregation. The input to

the network is an unstructured graph which consists of events in (x, y, t) space as nodes

(combined with per-point surface normals (nx, ny, nt)) and a set of edges computed as

described in Sec. 6.3.3.

In each GConv layer, every point feature is aggregated from its neighbours, making

points with similar vertices clustered together. When training multiple GConv layers,

it is equivalent to a multi-scale clustering of the point features that also preserves local

geometric structures [59]. Each GConv layer has 64 input channels and maps the features

to 64 output channels at different scales across the entire graph [59]. Then, the 5 sets of

64 multi-scale features extracted by the five GConv layers are concatenated and fed to

a MLP classifier. The MLP starts with 256 initial channels and reduces the channels by

a rate of 4 into 16 channels in the last hidden layer. Then, the outputs of the MLP are

connected to a fully connected layer to merge into a single point-wise score.

We supervise our training as a regression problem instead of a classification prob-

lem to decrease the possibility of overfiting to object contours. The raw response values
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are compared with the point-wise ground truth labels ∈ [0, 1] by Binary Cross Entropy

with Logits Loss.

6.3.3 Edge Computation

A central concept for Graph Convolutional neural networks is edge computation

strategy. A high density of points in event cloud could cause exponential grow in the

number of edges, making large edge radii prohibitively expensive to compute and use. To

get around this limitation, while preserving connections with neighbouring points along

possible motion trajectories, we filter the edges in a sphere radius r so that they are parallel

to event-surface. The Eq. 6.3-(a) along with Fig. 6.4-(b) signifies this relation: given

a point p0 and its normal n0, we would keep only the edges orthogonal to n0, with a

certain filtering threshold α. Most of the temporal motion information of an event is

contained within a plane parallel to time-surface, and this filtering strategy is a good

trade-off between the richness of surface features and computational performance. Yet,

our experiments have shown that most surface patches are rather isolated in the absence of

strong texture or extremely fast motion, and in practice no filtering is required to produce

edge pattern following Eq. 6.3(a).

We notice that for a given point it is enough to consider just the points in the up-

per (along temporal axis) hemisphere - this halves the number of edges with little to no

decrease in network performance. Essentially, we combine Eq. 6.3(a) and (b), to pro-

duce sparse edges which will maximally align with possible local optical flow values (see

Sec. 6.2). In our experiments we use r = 10 pixels (scaling of temporal axis is described
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in Sec. 6.4.1.1) and we perform an ablation study on various radii, shown on Fig. 6.7(b).

(a) : {pi|∀pi ∈ Br(p0) & (pi − p0) · n0 < α} (6.2)

(b) : {pi|∀pi ∈ Br(p0) & pti > pt0} (6.3)

(a) (b) (c)

Figure 6.4: Edge configurations: (a) - all points are used to create edges - a typical configu-

ration used in 3D processing; (b) - only points in the upper hemisphere are used (we use this

configuration in all our experiments); (c) - edges are parallel to time-surface.

6.3.4 Temporal Augmentation

Following intuitions in Sec. 6.2, we propose temporal augmentation to artificially

introduce variations in object speed (and hence - cloud shape) and improve generalization

on varying motion. Given a point in an input cloud p = (x, y, t) with a normal n =

(nx, ny, nt) the augmented point p′ and its normal n′ are computed as:

p′ = (x, y, α ∗ t) n′ = (α ∗ nx, α ∗ ny, nt) (6.4)

Where α is a random scaling parameter (in our work, 0.8− 1.2) and n′ is normalized to a

unit vector length.
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The motivation of this method is that the cues which signify a separate object do

not depend on its (or camera) speed, but rather on spatio-temporal anomalies - such as T -

corners, points with multiple flow values or continuity of event cloud; this augmentation

forces the neural network to learn such features (which remain unaffected by augmenta-

tion), and reduce overfitting to the local shape of the cloud. We perform ablation studies

in Sec. 6.4.3 and find that the model generalizes better when this augmentation is used.

The possibility of performing the temporal augmentation is a major advantage of learning

on 3D event clouds and would be not feasible in metric (x, y, z) space.

6.4 Experiments

6.4.1 Dataset

EVIMO is the only publicly available event-based segmentation dataset. It includes

pixelwise masks at 200Hz and roughly 30 minutes of recording, although the dataset

was collected in a single room and only includes three objects, so segmentation methods

might be prone to overfitting. To alleviate these issues, our pipeline is not trained on

depth so overfitting to room structure is unlikely. The 3D shape of the objects varies a lot,

depending on object motion, but overfitting on contours is still possible. We perform an

ablation study in the supplementary material, where we train a NN using only sequences

with 2 of the objects and evaluate on sequences with the third object.
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Figure 6.5: Qualitative results - the event cloud was downprojected, color represents the normal-

ized timestamp. The subsampling rate increases from top to bottom; small time slices are shown

on the left, and large on the right. Experiments with 0.5 second slices were only possible to achieve

with u = 5 uniform downsampling factor, but the dramatic decrease in feature quality yields poor

results compared to 0.3 second slice with no subsampling. Note how the results improve for larger

slice width, especially in the presence of texture.
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6.4.1.1 Data Preprocessing

We preprocess the raw data provided in EVIMO. We upscale the temporal axis of

the event cloud by a factor of 200 to keep the density of events more uniform across

the x,y,t axes. The normals are precomputed using PCA, with r = 5 (after temporal

upscaling). We also apply a radius outlier filter with r = 3 and k = 30 - which removes

all points having less than 30 points in a radius of 3 pixels; this results in approximately

10% to 15% points removed. To further reduce the number of points, we use random

subsampling with a factor u, which keeps 1 random point out of u (in practice, we use

u = 1 for no subsampling or u = 2, to remove half the points). We precompute edges

within a radius of 10 pixels for all points, and (optionally) keep up to 30 edges connected

to nearest points.

The ground truth provided in EVIMO is image-based, sampled at 200Hz. For every

event, we approximate its class by locating the nearest class mask according to mask and

event timestamps and downprojecting the event coordinate onto the image. This produces

good results in practice, even for fast motion; we show a sample of the event cloud with

class annotations in the supplementary material.

6.4.2 Implementation Details

Our network architecture consists of five consecutive Graph Convolutional(GC)

layers and three fully connected hidden layers. As input features we use spatio-temporal

event locations (x, y, t), time-surface normals (nx, ny, nt), and a per-event binary polarity

value (p ∈
[
0, 1

]
) which signifies whether the brightness has increased or decreased at
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pixel (x, y), at time t.

In our current implementation (6.3.2), the network has 117k trainable parameters.

We train the network with a batch size of 3 using three Nvidia GTX 1080Ti GPUs. Larger

batch sizes are difficult to achieve in practice because the size of time slices is very high.

We use the Adam optimizer with a learning rate of 7e−4 and cosine annealing scheduling

strategy. We train our models for 200 epochs on a full train section of EV IMO [31]

dataset. The model takes 6-minutes to train for each epoch with a slice width of 0.3

seconds and no subsampling.

As baseline we use the state-of-the-art PointNet++ [56] on event clouds. We take

the segmentation implementation of PointNet++ presented in the paper [56] which in-

spired by and further improved results on 3DCNN [58] and PointNet [60]. The im-

plementation consists of two hierarchical sampling & grouping modules, followed by

one k-nearest-neighbours interpolation and three forward passing modules. K-nearest-

neighbours are searched with a ratio and a radius of 0.2/0.2 in the first sampling layer

and 0.25/0.4 in the second sampling layer. The responses from the last forward passing

modules are passed into three concatenated layers of fully connected network to produce

a one label output for each point.

6.4.3 Ablation Studies

6.4.3.1 Effects of the Slice Width

We conduct an experiment to investigate the effects of slice width and cloud sub-

sampling on the performance of the network. Fig. 6.6 shows results on boxes valida-
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boxes floor wall table fast

0.3 0.1 0.02 0.3 0.1 0.02 0.3 0.1 0.02 0.3 0.1 0.02 0.3 0.1 0.02

GConv 84±9 81±8 60±18 80±9 79±7 55±19 85±8 83±4 51±16 87±7 80±7 57±14 77±10 74±17 39±19

GConvu2 85±5 70±11 54±10 81±12 69±8 52±14 83±4 71±9 61±17 85±11 77±19 59±19 74±19 69±24 37±11

PointNet+ + [56] 69±17 71±22 80±15 66±19 68±18 76±10 71±17 75±19 74±20 59±22 62±28 68±23 21±12 24±10 20±6

EV IMO [31] 70±5 59±9 78±5 79±6 67±3

Table 6.1: Segmentation results on EVIMO event-based dataset. Metric is mIoU(%) on points;

the 3D methods were evaluated on 3 different time-slice widths: 0.3, 0.1 and 0.02 seconds. The

best results are shown in bold for every separate validation set type.

tion set for the first 12k iterations of training. The experiments on full resolution clouds

(shown in solid lines) perform notably better, as to be expected, but the training speed is

30% lower (for results on training speed see Table 6.2).

We observe that the biggest advantage form increasing the slice width comes for

larger slice widths - the u2, w0.1 and u1, w0.1 perform similarly, while u1, w0.3 is 10%

better than u2, w0.3. Intuitively, this can be due to the lack of temporal features in smaller

slices - a similar effect is observed with edge radius (Fig. 6.7-(b)), since the edge radius,

together with the network depth, essentially controls the maximum size of global features.

6.4.3.2 Temporal Augmentation

Temporal augmentation is designed to reduce overfitting of the network to the lo-

cal 3D feature descriptors by randomly scaling the event cloud along time axis. The

EVIMO dataset has high variation in object velocities, including across training and val-

idation sets; the velocity of the object defines the shape of the cloud (as explained in

Sec. 6.2.1), which can cause significant drop in scores when transferring to unseen se-
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Figure 6.6: Comparison of inference performance, in mIoU , for the first 12k iterations of train-

ing for slice widths w = 0.02, 0.1, 0.3sec. Dashed line corresponds to subsampling factor u = 2.

The solid line corresponds to experiments with no subsampling (u = 1).

quences in validation set. We show the comparison for learning with and without aug-

mentation in Fig. 6.7-(a) by training on the boxes dataset and evaluation on fast dataset.

6.4.4 Results

Both GConv and PointNet + + were trained on all EVIMO train sequences con-

taining objects: boxes, floor, wall and table and evaluated separately on boxes, floor, wall,

table and fast validation sets with the 0.02 sec. temporal step between slices, α = 0.2 for

temporal augmentation (disabled for validation), subsampling rates of u = 1 and u = 2

and slice widths w = 0.02, 0.1 and 0.3 sec. The quantitative results are presented in
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(a) (b)

Figure 6.7: mIoU scores on the box validation set by disabling temporal augmentation and

reducing the maximum edge radius. (a) - The temporal augmentation is described in Sec. 6.3.4.

Plots are shown for α = 0.0 (no augmentation) and α = 0.2 for the first 12k iterations of

training. (b) - The maximum edge radius is reduced from 10 to 7 and 5, which results in significant

performance drop.

Table 6.4.2.

For EVIMO method, which outputs dense masks, we set the slice width at 0.025sec.

We up-project the inferenced masks on the event cloud (similar to how we handle ground

truth, Sec. 6.4.1.1) and compute IoU scores on the labeled event cloud.

6.4.4.1 Qualitative Results

We show qualitative results in Fig. 6.5 by downprojecting events along time axis.

The color corresponds to event timestamp (blue is 0, red is slice width). The top section of
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the figure compares results with no subsampling for a 0.02 slice and 0.3 slice. Note how

significantly more prominent motion of the object on larger slice improves segmentation

quality even in textured regions. The subsampling factor u = 2, which removes half

the points from event cloud also produces high quality results, but is more prone to false

positives. For the bottom section of the figure, 80% of the points were removed. The

quality of input suffers significantly, with many spatial and temporal features lost, and the

network performs poorly in high-textured regions.

6.4.4.2 Performance Considerations

We present the forward timings for our GConv and for PointNet++ across different

time slice widths and event cloud subsampling factors in Table 6.2, measured on a single

NVIDIA GTX1080Ti. In all experiments, PointNet++ is notably slower than GConv,

but starting from 0.1 second slice GConve is not real time as well without subsampling.

This problem can be practically addressed by constructing a lookup table [61] and avoid

recomputing features when sequential time slices overlap.

6.5 Conclusion

Our approach operates on large slices in time - this allows the neural network to

observe a history of scene motion, and potentially make better decisions based on the

global temporal features - all without relying on LSTM-like approaches (which essentially

memorize scene content). On the other hand, modern event-based cameras are capable

of generating up to 107 events per second, and with increased resolution, the amount
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GConv PointNet+ +

params 117.5k 1.4M

#
pt
s

u 1 2 2 5

20ms 0.016 0.012 0.219 0.134 23073

0.1s 0.109 0.048 4.260 0.663 170503

0.3s 0.275 0.140 22.93 6.792 417315

Table 6.2: Forward time (seconds) for different uniform downsampling and temporal slice widths

of event cloud.

of local edge connections between graph nodes can grow exponentially. In this work,

we were able to achieve slice widths of up to 0.3 seconds (and 0.5 seconds with severe

downsampling) due to the large amount of memory consumed by 3D points. A dedicated

GPU-optimized module could alleviate many of the shortcomings we have witnessed. We

also observe that edges are useful mostly for extracting local features, and hence a dual

neural network - one to extract local features on thin temporal slices and another to extract

temporal features on large slices will be among our future efforts.
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Chapter 7: Event-based constraints on camera egomotion, event surface

normals and depth

7.1 Introduction

This chapter presents a mathematical formulation and a set of constraints for event-

based vision, and to the best of authors’ knowledge is the first to analyze the problem of

event-based processing without relying on feature detection and tracking or conversion to

frame-like representations. The derived constraints for a monocular event camera connect

the per-event scaled depth, full optical flow and camera egomotion and allow to use depth

positivity or photometric error functions in either minimization or learning frameworks.

We also present a constraint on second order derivatives of event surface, which can be

directly used to optimize for camera egomotion.

7.1.1 Motion Estimation and Event Cloud Structure

There is a number of works which attempt to recover scene motion from the 3D,

(x, y, t), structure of the event cloud. Local methods [13–16] are often focused on normal

flow estimation and usually based on event surface normal estimation. Egomotion can be

recovered from flow, which has been explored for classical cameras as well, for example
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in [62]. A number of matching [17] and tracking [18,22] methods are capable of comput-

ing full optical flow and producing tracks which could be used for egomotion estimation.

On the other hand, global methods [19, 20] apply a model to the entire pixel space, but

can only produce results locally in time.

7.2 Preliminaries

In the context of event-based sensors, every visible moving contour on the scene

produces a trail of events on the image plane of the camera, referred to as time-surface [1]

or event cloud [31]. This trail consists of points {x, y, t}, with pixel coordinates x and y,

while timestamp t specifies the exact moment when the edge passes through that pixel.

7.2.1 Event Surface Parameterization

Without the loss of generality, let us assume that all contours on the scene can be

described in terms of X̂ = X̂(σ) - a 3D curve given in the camera frame at the initial

moment of time t = 0, and parameterized by its arc length σ. For a given contour X̂ , if

the motion of the camera R = R(t) and T = T (t) is given, the triplet

{X̂(σ), R(t), T (t)} (7.1)

completely describes the Event Surface geometry produced by the given contour

(this statement will be further explored below). By combining Event Surfaces from all

visible edges the complete event cloud can be described. This parameterization does not

describe occluded regions, but this will not be significant in our future derivations; an
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analysis of contours in presence of occlusions is conducted by Åström in [63].

7.2.2 Notation

We define the world coordinate frame as a coordinate frame of the camera at t = 0,

all variables given in this frame are marked by ˆ symbol. The lowercase x =

[
x y

]T
defines normalized pixel coordinates on the camera plane. We define the time derivative

d
dt

of a function f(t) with ḟ ; to avoid confusion, for multivariate functions ḟ defines a

partial derivative, with other variables fixed. Following this, ẋ(σ, t) = d
dt
x(σ, t)|σ=const

defines the derivative of the pixel trajectory as the contour moves relative to the camera,

which we refer to as ’optical flow’.

The parameterization of the camera motion is defined with respect to a particular

rigid contour X̂(σ), and is given as {R(t), T (t)}, such as

X(σ, t) = R(X̂ − T ), Ẋ(σ, t) = ΩX + V

R(0) = I T (0) =

[
0 0 0

]T (7.2)

Here X is the 3D coordinate of the contour point σ in the local camera frame at

time t, Ω is a skew-symmetric matrix specifying the angular velocity of the camera, and

V is a column vector specifying its linear velocity. The derivations for Ω and V are

presented in Sec. 7.7. It is worth mentioning, that while X̂ , R and T are defined in the

world coordinate frame, X , Ω and V are in the local camera frame.
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7.3 Constraint on Event Surface Normals

The property of the optical flow to be orthogonal to Event Surface normals has been

explored in prior works [13–16]. Indeed, vector ẋ =

[
ẋ ẏ ṫ

]T
=

[
ẋ ẏ 1

]T
(being a

derivative of the surface) is tangential to the Event Surface.

Here we derive a constraint which connects scene depth and the shape of the event

cloud. By defining n =

[
nx ny nz

]
:

0 =

[
ẋ ẏ 1

]T
·
[
nx ny nz

]
=⇒

[
−nx

nz
−ny

nz

]
ẋ = 1 (7.3)

Let c(σ, t) =

[
−nx

nz
−ny

nz

]
. Using Eq. 7.7 from Sec. 7.4 and Eq. 7.3:

cẋ = 1, ẋ = A(Ωb+
V

Z
) =⇒ cA(Ωb+

V

Z
) = 1

=⇒ Z =
cAV

1− cAΩb

(7.4)

Eq. 7.4 is fundamental in a sense that it connects local normal of the Event Sur-

face and depth; in other words, the shape of the Event Surface in (x, y, t) space can be

connected to the geometry of the scene through the camera instantaneous velocity.

7.4 Optical Flow Equation

It is important to notice, that our definition of optical flow, given in Sec. 7.2.2,

does not completely coincide with its classical definition as a vector field warping image

pixels between to discrete moments in time t0 and t1. The connection between the two

definitions (where f̃ is the discrete flow) can be expressed as:
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f̃ =

∫ t=t1

t=t0

ẋ(σ, t)dt (7.5)

Let X =

[
X Y Z

]T
; define projection function P(X)

P(X) =

[
X
Z

Y
Z

]T
then x = P (X)

ẋ =
dP

dX
Ẋ =

1

Z

1 0 −x

0 1 −y

 (ΩX + V )

(7.6)

Or, by defining

A =

1 0 −x

0 1 −y

 , b =

[
x y 1

]T

ẋ = A(Ωb+
V

Z
)

(7.7)

We can now substitute the results acquired in Eq. 7.4:

ẋ = AΩb+
1

Z
AV, Z =

cAV

1− cAΩb

ẋ = AΩb+ (1− cAΩb)
AV

cAV

(7.8)

The Eq. 7.8 is the optical flow equation for Event Surfaces, and does not depend on

the scene geometry.

7.5 Constraint on the Second Order Derivatives

In this section we investigate the second order derivative of the pixel trajectory.
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7.5.1 Derivative of Optical Flow

Following Eq. 7.6 and Eq. 7.2:

d2x

dt2
=

d

dt

dP

dX
Ẋ +

dP

dX
Ẍ (7.9)

Here and below all temporal derivatives are partial. Evaluating the first term of

Eq. 7.9:

d

dt

dP

dX
Ẋ =

d

dt
(

1

Z
A)Ẋ =

− Ż
Z2 0 − Ẋ

Z2 + 2XŻ
Z3

0 − Ż
Z2 − Ẏ

Z2 + 2Y Ż
Z3



Ẋ

Ẏ

Ż

 =

=

− ŻẊ
Z2 − ŻẊ

Z2 + 2XŻ2

Z3

− ŻẎ
Z2 − ŻẎ

Z2 + 2Y Ż2

Z3

 = −2Ż

Z2

Ẋ − xŻ
Ẏ − yŻ

 =

= −2Ż

Z2
AẊ = −2Ż

Z

dP

dX
Ẋ = −2Ż

Z
ẋ

(7.10)

Using the definition of Ω =

[
w1 w2 w3

]T
×

:
Ẋ

Ẏ

Ż

 =


0 −w3 w2

w3 0 −w1

−w2 w1 0




X

Y

Z

+


Vx

Vy

Vz


=⇒ Ż

Z
= w1y − w2x+

Vz
Z

(7.11)

Returning to Eq. 7.9:

Ẍ = Ω̇X + ΩẊ + V̇ = Ω̇X + Ω(ΩX + V ) + V̇

ẍ = −2Ż

Z
ẋ+ AΩ̇b+ AΩ(Ωb+

V

Z
) + A

V̇

Z

(7.12)
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7.5.2 Derivative of Surface Normal Constraint

Now we will analyze the constraint on the Event Surface normals. From Eq. 7.3:

1 = c · ẋ =⇒ ċẋ+ cẍ = 0

[
ċ1 ċ2

]
=

[
ẋ ẏ

] d
dx
c1

d
dx
c2

d
dy
c1

d
dy
c2

 = ẋTD

=⇒ ẋTDẋ+ cẍ = 0

(7.13)

7.5.3 Second Order Constraint on Event Surfaces

Finally, by combining Eq. 7.10- 7.13, Eq. 7.8 and Eq. 7.4:

0 = ẋTDẋ− 2(w1y − w2x+
Vz
Z

) + cA(Ω̇ + Ω2)b+ cAΩ
V

Z
+ cA

V̇

Z
(7.14)

or, using Eq. 7.29:

0 = ẋTDẋ− 2(w1y − w2x) + 2
cAΩV − Vz

Z
+ cAR̈R−1b− cART̈

Z
(7.15)

7.6 Experiments

7.6.1 Dataset

We have collected a dataset using the latest 640 × 480 camera from Prophesee,

which in our setup generates 7M events per second. The dataset was collected with a
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handheld camera indoors and features a variety of motions across all 6 degrees of freedom.

The ground truth is provided by Vicon motion capture system, which has been calibrated

with the camera center. We use a lens with 100◦ horizontal field of view. We show several

frames from hi-res dataset on Fig. 7.2.

The equations 7.4, 7.8 and 7.14 require surface derivatives (c and D) and event

coordinates (A and b) to be determined with high accuracy - in particular due to our

requirement in derivation of 7.4, that optical flow is orthogonal to surface normals. To

improve the quality of event surfaces we apply the radius outlier filter with threshold

of 20 points, within an ellipsoid or 3 pixels by 7 milliseconds in (x, y, t) space. We

further reconstruct the surface using a Moving Least Squares (MLS) method, by fitting

locally cubic polynomials - we show the comparison for the data before and after the

preprocessing stage on Fig. 7.3. Parameters c and D can be directly determined from the

coefficients of the fitted polynomials.

7.6.2 Error Functions

We design a set of error functions based on the Eq. 7.4, 7.8 and 7.14. All of these

functions are instantaneous in time, which means that they are valid for an infinitely small

time slice of events, and instantaneous linear and angular velocities V and Ω. In practice,

a large time slice can be used, in conjunction with spline-interpolated set of instantaneous

velocities in a global optimization framework.
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7.6.2.1 Depth Positivity Error

The simplest error function is based on Eq. 7.4, and is just a percentage of points

with non-positive depth values in the slice, given an egomotion input:

Edp(Ω, V ) =
1

N

∑
δ(xi,Ω, V ), δ(xi,Ω, V ) =


0 Z(xi,Ω, V ) < 0

1 Z(xi,Ω, V ) ≥ 0

(7.16)

We show the plot of this function on Fig. 7.4 - (a); this constraint is the weakest and is

unstable for small values of linear velocity V . Provided that the number of events is large

enough, the function is smooth and has a gradient.

7.6.2.2 Photometric Error

The analogue of a classical photometric error in (x, y, t) space would measure the

similarity between two event clouds corrected with optical flow at two distinct moments

of time. Here we use Eq. 7.8 to compute optical flow f(Ω, V ); we motion-compensate

the event cloud with optical flow (similar to [19]) and voxelize the event cloud:

Ij =
1

Nj

∑
(xi + fi), where xi ∈ Îj (7.17)

In practice, we choose voxel regions Îi to be the size of 1 pixel and with temporal

height of the event slice - this approach results in two event maps I− and I+, the first

one built with events below the average slice timestamp, and the other one is with events

above. We compute the mean distance between corresponding cells of I− and I+:

Ephoto =
1

N

∑
|I−j − I+j |2 (7.18)
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The plot of this function is given in Fig. 7.4 - (b). It is worth mentioning that

this error is a measure of the similarity of pixel motion within a small time interval,

and is not related to the intensity or contrast of the image, the name photometric here

is for simplicity - since the idea of comparing the pixel intensities over two frames for

conventional cameras is similar to the idea of comparing pixel motion for event-based

cameras.

7.6.2.3 Variance Error

We design Variance Error in the same spirit as the photometric error, but in addition

we use the notion that the variance of events along the direction orthogonal to the edge

(along local surface normal) should be minimal given the correct optical flow estimate.

Similar to Eq. 7.17 we construct I (a single map for the entire slice) and measure the

variance of the event distribution within each cell Îi along the mean normal direction n̄:

Ivarj =
1

Nj

∑
|(xi + fi − Ij) · n̄|2, where xi ∈ Îj

Evar =
1

N

∑
Ivarj

(7.19)

Although slightly more difficult to compute, our experiments show that the variance

error provides a sharper gradient than the photometric error. We plot variance error as a

function of linear velocity on Fig. 7.4 - (c).
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7.6.2.4 Second Order Error

All previous error functions are approximations - they require an event slice large

enough to apply optical flow for correction, and thus require the assumption that both

the camera velocity and optical flow remain approximately constant within a small time

interval. Moreover, optical flow in Eq. 7.8 is instantaneous and is tangential to event

surface, and hence this flow does not provide the true pixel-to-pixel mapping if surface

has non-zero curvature.

The only truly instantaneous constraint is Eq. 7.14, which provides a solid criteria

for egomotion correctness and does not require extrapolations.

g(Ω, V, Ω̇, V̇ ) = ẋTDẋ− 2(w1y − w2x+
Vz
Z

) + cA(Ω̇ + Ω2)b+ cAΩ
V

Z
+ cA

V̇

Z

Eso =
1

N

∑
gi(Ω, V, Ω̇, V̇ )2 for all xi in event cloud

(7.20)

We plot this function on Fig. 7.4 - (d); the downside of this approach is twofold:

first, it is a second order constraint and required matrix D - the second order derivative

of the event surface, which is difficult to compute and which is not robust against noise.

Another downside is the double number of parameters in comparison to flow-based or

depth-based errors. As a result, this method is only feasible as a refinement step af-

ter approximate egomotion is determined. The parameter count can also be reduced via

spline-based trajectory estimation, where all derivatives of the trajectory are easy to com-

pute.
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7.6.3 Results

Figure 7.1: Motion estimation with a self-supervised learning on 3D pointcloud, using the vari-

ance error, Eq. 7.19, as loss. The camera resolution is 640 × 480 and is handheld; the ground

truth (in blue) is collected using Vicon motion capture system. Note the loss of accuracy on the

Z axis - a consequence of flow equation (with depth substituted from Eq. 7.4) having very small

gradient along Z axis.

To demonstrate the practical applications of the new error functions we use our ego-

motion dataset, collected with a handheld Prophesee 640× 480 camera and featuring fast

6 DoF motion and high accelerations. The learning pipeline was adapted from Chapter 6,

with loss function replaced by Variance Error (Eq. 7.19); the Photometric Error (Eq. 7.18)

achieves similar results in our experiments. This learning is completely self-suprevized

and requires no ground truth, We show the inference results on Fig. 7.1.
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7.7 Camera Motion Model

In our implementation, the ground truth from motion capture system, as well as all

estimates for system rotation are represented as Euler angles, in x − y − z format. The

Euler angle representation is chosen as it provides for a more intuitive way to filter the

data using univariate splines for each axis of rotation. Specifically the rotation matrix R

is defined as:

R = Rx ·Ry ·Rz =

=


1 0 0

0 cos(α) −sin(α)

0 sin(α) cos(α)




cos(β) 0 sin(β)

0 1 0

−sin(β) 0 cos(β)




cos(γ) −sin(γ) 0

sin(γ) cos(γ) 0

0 0 1


(7.21)

Lets define X̂ as a 3D coordinate of the scene point in camera coordinate frame at

t = 0, when camera rotation R = I and translation T =

[
0 0 0

]T
; we will define with

X = X(t), X̂ = X(0) the coordinate of the same point in the camera coordinate frame

at time t. Furthermore, let R and T be defined such that:

X = R(X̂ − T ) (7.22)

Then

Ẋ = Ṙ(X̂ − T )−RṪ

Ẋ = ṘR−1X + (−RṪ )

(7.23)
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Define Ω = ṘR−1, and V = −RṪ , then:

Ẋ = ΩX + V (7.24)

7.7.1 Derivations for Angular Velocity and Acceleration

Let α = α(t), β = β(t) and γ = γ(t) be the Euler angles of camera rotation around

X , Y and Z axes (see Eq. 7.21) in the initial coordinate frame of the camera at t = 0.

Evaluating Ṙx at t = t0 :

Ṙx = α̇ ·


0 0 0

0 −sin(α) −cos(α)

0 cos(α) −sin(α)

 = α̇ ·Rx


0 0 0

0 0 −1

0 1 0

 (7.25)

Here for brevity α = α(t0) and α̇ = α̇(t0). Define:

A =


0 0 0

0 0 −1

0 1 0

B =


0 0 1

0 0 0

−1 0 0

 C =


0 −1 0

1 0 0

0 0 0

 (7.26)

Then, following the derivation of Eq. 7.25, it is easy to show that:

Ṙx = α̇RxA

Ṙy = β̇RyB

Ṙz = γ̇RzC

and

RxA = ARx

RyB = BRy

RzC = CRz

(7.27)
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Finally, from Eq. 7.21 and Eq. 7.23:

Ω = ṘR−1 = (ṘxRyRz +RxṘyRz +RxRyṘz) ·R−1 =

= (α̇AR + β̇RxBRyRz + γ̇RC) ·R−1 = α̇A+ β̇RxBR−1x + γ̇RCR−1
(7.28)

The derivatives Ω̇ and V̇ can be expressed as:

V = −RṪ Ω = ṘR−1

V̇ = −ṘṪ −RT̈ = −ΩRṪ −RT̈ = ΩV −RT̈

Ω̇ = R̈R−1 − ṘR−1ṘR−1 = R̈R−1 − Ω2

(7.29)
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Figure 7.2: Dataset for egomotion estimation collected with a 640 × 480 Prophesee Gen3 VGA

event camera. Left - input time slice, 0.04 sec. wide (color gradient shows event timestamp);

middle - warped time slice, motion-corrected using optical flow (Eq. 7.8) after optimization for

egomotion. Right - classical RGB frame.
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Figure 7.3: The dataset is preprocessed by applying a radius outlier filter to events, with sub-

sequent moving least squares surface reconstruction. Top: raw event data before preprocessing;

the normals and points are superimposed for easier comparison. Bottom: event cloud after pre-

processing stage. Note the increase of event density on the surface and reduction of the noise in

normals.
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(a) depth positivity error (b) photometric error

(c) variance error (d) second order constraint

Figure 7.4: Error function behavior parameterized by the direction of the linear velocity vector

in spherical coordinates. The rotation is set to ground truth; in addition, for the second order

constraint accelerations are set to ground truth values.
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Appendix A: Learning Visual Motion Segmentation using Event Sur-

faces - Additional Experiments

(a) (b)

Figure A.1: The effects of using edges computed within different radii r. (a) - all edges within

a sphere are used; (b) - only edges in the upper hemisphere along time axis are used. We show

the plots for the first 30 epochs on ’boxes’ validation set, with subsampling u = 2 and slice width

w = 0.3 sec.
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A.1 Edge Configurations - Ablation Study

Our main results were computed with ’upper hemisphere’ edge configuration; the

motivation to use only edges in the upper hemisphere is the ability to remove half the

edges around each point, significantly reducing memory footprint on GPU. We perform

additional ablation studies to compare how full (all edges in the sphere) and upper hemi-

sphere edge configurations affect the quality of training for different values of r. All ex-

periments use boxes validation set, and are trained on boxes train set, with u = 2, w = 0.3.

On the Fig. A.1 (a) we show mIoU scores for the first 30 epochs of training with

the full edge configuration. Starting from r = 5 the results do not show significant

improvements as r increases. In this setting, each point on the first layer aggregates

features in a sphere with diameter d = 2r - from 10 to 30 pixels for r > 5, and the network

might reach saturation in the amount of locally available information. On the Fig. A.1 (b)

we perform similar experiments with our baseline upper hemisphere configuration. The

results improve as r increases, but IoU is slightly lower than for the full configuration.

The experiments with r = 1 show the performance of the network with no spatial

connections - since pixel coordinates are discretized, only connections along temporal

axis can exist. We show additional side-by-side edge configuration comparisons for each

radii on Fig. A.3; the per-step runtime for these experiments is shown in Table A.1.
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A.2 Training Time

We show additional timing measurements in Table A.1, with upper hemisphere and

full configurations, for u = 2, w = 0.3, r = 1..15. Although slowdown is expected with

full configuration, the main reason behind using only the upper hemisphere was high

memory consumption with small u values and large r.

r 1 3 5 7 10 15

upper 0.293 0.415 0.636 0.748 0.975 1.340

full 0.267 0.669 0.858 0.984 1.282 1.751

Table A.1: Average time per training step (forward and backward pass), in seconds, with batch

size b = 3, subsampling u = 2, slice width w = 0.3 sec. for edge radii r = 1 to 15 pixels. full

corresponds to all edges in a sphere of radius r, upper corresponds to edges only in the upper

hemisphere along time axis. The results were collected using 3 Nvidia GTX 1080Ti GPUs.

A.3 Additional Qualitative Results

A.3.1 Dataset

A sample of EVIMO dataset (boxes validation, sequence 0) is shown on Fig. A.2.

The points are colored according the corresponding event polarity in green channel, and

object id in red channel. The background is shown in green and blue, and the object

motion is visible on the upper part of the image, in white and purple. Note how the shape

of the cloud follows scene motion.
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A.3.2 Inference with Large w

We train a baseline neural network with w = 0.3, r = 10, u = 2 and apply it to

the cloud with w = 1.0. The qualitative result is shown on Fig. A.4 - the ground truth is

on the left, and inference is on the right; the object is shown in blue color. We achieve

similar mIoU scores on larger slices as on the original ones.

A.3.3 Additional Qualitative Results

Fig. A.5 shows 3D renderings on the segmentation results, on boxes validation set.

For each figure, inference is on the left, ground truth is on the right; background shown in

black. Most of the loss in IoU is due to lower recall, while precision is reasonably high.

We attach the .ply models for these results together with this supplementary material.
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Figure A.2: A sample of the preprocessed EVIMO dataset, plotted in 3D (time axis is vertical).

Red color channel encodes object id, and green encodes event polarity; a separately moving

object is visible on the top part of the image in white and purple colors. The green and blue colors

represent background.

94



(a) (b)

(c) (d)

(e) (f)

Figure A.3: Additional ablation study for full and upper hemisphere edge configurations and for

different radii. For r = 1 pixels, most edges connect to events only along time axis. We show the

plots for the first 30 epochs on ’boxes’ validation set, with subsampling u = 2 and slice width

w = 0.3 sec.
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Figure A.4: Additional qualitative results: the network was trained on 0.3 sec. slices with

r = 10, u = 2 and tested on 1.0 sec. slices to validate the invariance to slice width. Time axis is

vertical; the object is in blue, black color is background. The left image represents ground truth,

right is inference.
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(a) (b)

(c) (d)

(e) (f)

Figure A.5: Additional qualitative results: the network was trained with w = 0.3, r = 10, u = 2.

For each figure: left is inference and right is ground truth (two figures per line are shown). Blue

represents an object, black is background.
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Appendix B: Towards Hyperdimensional Active Perception

This appendix is based on the paper: A. Mitrokhin, P. Sutor, C. Fermüller, Y. Aloimonos.

”Learning Sensori-Motor Control with Neuromorphic Sensors: Towards Hyperdimensional Active

Perception”, Science Robotics, 2019 [64]

B.1 Introduction

The culprit of modern robotics is the ability to directly fuse the platform’s per-

ception with its motoric ability - the concept often referred to as “active perception”.

Nevertheless, we find action and perception are often kept in separated spaces, which

is a consequence of traditional vision being frame-based and only existing ’in the mo-

ment’, while motion being a continuous entity. This bridge is crossed by the Dynamic

Vision Sensor (DVS) - a neuromorphic camera which can see the motion. We propose a

method of encoding actions and perceptions together into a single space that is meaning-

ful, semantically informed, and consistent by use of Hyperdimensional Binary Vectors

(HBVs). We use DVS for visual perception and show that the visual component can

be bound with the systems velocity to enable dynamic world perception, which creates

an opportunity for real-time navigation and obstacle avoidance. Actions performed by

an agent are directly bound to the perceptions experienced, to form its own “memory”.
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Furthermore, since HBVs can encode entire histories of actions and perceptions - from

atomic to arbitrary sequences - as constant-sized vectors, this is also the first instance of

auto-associative memory being combined with deep learning paradigms for controls. We

demonstrate these properties on a quadcopter drone ego-motion inference task and the

MVSEC dataset.

In recent years, the limits of modern AI and learning have been thoroughly explored

in a plethora of datasets, learning architectures, general tasks to solve, and modalities of

data. More and more, focus is shifting on what AI can do for modern robotics, and

what new forms of it are necessary. What is the science of putting together the different

cognitive modalities of an intelligent system, such as vision, motoric actions, audio, and

other sensors. Currently, there are no real theories on how to feasibly achieve this, mainly

because the representations and processing or learning techniques involved in the different

disciplines also differ greatly from each other. Each time a new task is explored, scientists

tend to start from the individual components.

One of the more important facets of modern robotics is the notion of integrating the

sensory perceptions experienced by an agent with its motoric capabilities - the actions it

can perform - to facilitating Active Perception [1, 2], which is considered vital to the exis-

tence of autonomous, learning agents that experience the world and are required to interact

with it to the best of their abilities [3, 4, 5]. Indeed, the issue of separation of modalities

is present in this discipline; the perceptual space and the action space are mainly kept

separate, with a central learning mechanism to infer the action given the perception or

vice versa. Likewise, the various forms of perception themselves are largely learned or

processed separately, embedded into vector representations and essentially concatenated
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together as input to the aforementioned central learning mechanism. It is clear we must

do better than this. Ideally, the perceptions and actions experienced in the moment and in

the past should influence the future actions of the agent, and perhaps even bias its expec-

tations for future perception. The main concern is how can we integrate the two vastly

different modalities of action and perception together in an effective way.

We propose starting with an integration constraint from the raw data itself; that is,

from the beginning we require that perception and action need to eventually “bind” to-

gether. For this to happen, there should be some currency through which the perceptual

module will interact with the control module or the planning module and so on. This

currency is the hyper-dimensional vector, a vector that exists in an extremely high di-

mensional space. In this paper, we mainly concern ourselves with Hyperdimensional Bi-

nary Vectors (HBVs) and the notion of facilitating Hyperdimensional Active Perception

(HAP). Whether you are an image, video, motion sequence, control sequence, a concept,

word or sound, you are represented by an associated HBV. Furthermore, if you are a se-

quence of any of these modalities, you are also a HBV of equal dimension constructed

by constituent elements of the sequence, thereby existing in the same space as an encod-

ing. Finally, when considered together, such as a mix of modalities or sequences of them,

this is also represented by an HBV constructed by binding each modality together, with,

yet again, equal dimension. The integration problem now acquires new meaning - all

information is represented as long binary vectors that are meaningfully constructed.

While the philosophy of how to handle different modalities of data is important to

facilitate active perception, we must also consider the “hardware” aspects. Some sensors

are more suited to perceiving information we consider suitable to the problem. Classical
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vision tends to focus on cameras that are RGB light intensity based, though we find that

the biological side tends to interpret signals in very particular ways. One example of this

is motion. Motion is not well represented in classical cameras and vision techniques - a

consequence of traditional vision being frame-based and only existing ’in the moment’

while motion is a continuous entity. So-called neuromorphic cameras attempt to capture

this notion of seeing motion. The more recent development of the Dynamic Vision Sensor

(DVS) follows these lines in an interesting way, seeing sparse events in time, as opposed

to pixels and intensities. With the introduction of such neuromorphic hardware, we are

ready to cross the bridge of frame based vision and develop a new concept - motion-

based vision. The event-based sensor provides dense temporal information about scene

changes, allowing for accurate, fast, and sparse perception of the dynamic aspect of the

world. When it comes to the marriage of action and perception, the fast, asynchronous

events that the DVS sees are desirable for facilitating action. As of now, there are no

real standards for how to effectively learn from DVS in the manner done for regular RGB

cameras - it is all experimental.

Following recent accounts in the field [6] an “active perceiver knows why it wishes

to sense, and then chooses what to perceive, and determines how, when and where to

achieve that perception”. The “what” question has to do with scene selection and fix-

ation. The “when” question has to do with temporal selection, an instant in time and

an extent (a history or episodic memory). The “how” question has to do with mechan-

ical alignment, sensor alignment and priming, and the “where” question has to do with

viewpoint selection and the relationship between agent pose, sensor pose and object pose.

All these questions can be addressed using our hyper dimensional framework. In-
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deed, the “what” question amounts to developing a scene model from a series of fixations.

Each fixation is characterized by “location” and “content” (the image in a window around

the fixation point). IfXi is the hyper vector denoting the fixation location and Yi the hyper

vector denoting the image aroundXi , then by bindingXi to Yi and summing up the hyper

vectors for all fixations, we obtain σXi × Y i , a scene hyper vector based on fixations.

Similarly, the when question can be addressed with hyper vectors. If V (t) and M(t) are

the visual and motor signals during an action over time t, then for any t, the binding of

the hyper vector V (t) with M(t) gives a new hypervector which is an “instant”. Turning

a sequence of such “instants” into a new hypervector leads to a history vector. The same

can be said about the rest of the questions: for example, alignment problems amount to

servoing of different kinds, where servoing is viewed as prediction of an action with a

goal. All of the above constitute future research goals.

Here, we focus on a simple problem that will allow us to evaluate our approach in

depth. Thus, we focus on the problem of 3D motion. First, we describe a framework for

integrating multiple modalities such as perception and action together into a single space,

to produce features for learning in a manner that’s desirable for active perception. Addi-

tionally, we show how the DVS can be used in such a framework. We begin with some

background information about HBVs and what they are capable of. Next, we describe

how recent work on HBVs can be used to effectively generate meaningful, semantically

informed HBVs and integrate them together to form representations for sequences or sets

of data. Following that, a method for encoding more complex signals such as images is

discussed. We then describe recent work on DVS that is used to generate motion based

perception, and how HBV representations of this can be made. Additionally, we describe
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a method for integrating action and perception into a single space and show how the

resulting HBVs can be used as “memories” of prior actions and perceptions. We show

results on the use of HBVs with DVS based information and how it compares with a more

traditional vision approach to DVS signals to predict velocity and ego-motion. Finally,

we discuss our results and how they can be used in future applications to further facilitate

the use of HAP and form a more coherent path to better AI in robotics.

B.2 The Properties of Hyperdimensional Binary Vectors (HBVs)

Much of the inspiration behind the ideas discussed in this paper come from Kan-

erva’s work on Hyperdimensional Computing [7]. The basic idea is to think about what

sort of operations and information are computable and encodable with vectors of extreme

dimensions. In the case of binary inputs, we find that there are several desirable properties

inherent to the space of HBVs. We describe these in this section, in order to provide some

necessary background.

Consider the case of a binary vector space of 10000 dimensions, containing a stag-

gering number of unique vectors; exactly 210000. It’s unlikely that any system will require

so many unique vectors, as it would not even have enough time to enumerate all possibil-

ities. Since the space forms a very high dimensional hypercube, with as many vertices as

unique points, it is apparent that the distribution of points (vertices) from the perspective

of any one point (vertex) is always the same. This is akin to how a cube looks the same

from the perspective of any corner. Thus, binary vectors are a way to create “arbitrary”

representational vectors for computers.
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Consider the Hamming Distance (H) between two binary vectors: |a × b|, where

× is the bitwise XOR operation and magnitude is the number of 1’s in the result. The

number of components of disagreement between a and b is thus the distance between

them. We can normalize this value to be agnostic to the dimensions of the vectors. If

n is the dimension of the vectors, H can be normalized to the range of values between

0 and 1 by dividing the result by n, referred to as Normalized Hamming Distance (Hn).

By assuming each binary vector is equally likely, it’s clear that the average Hn between

vectors is 0.5 (5, 000 bits), with a standard deviation of 0.005 (50 bits), by a binomial

distribution. The same is true of the distribution of distances from any one point to any

other point. Yet, straying from the average distance of 0.5 is very difficult. As each

increment 0.005 is a standard deviation, it is highly unusual for two random vectors to

have a distance of 0.475 or 0.525, as this is a whole 5 standard deviations. Indeed, even

a distance of 0.333 is far too unlikely to be random. As a result, HBVs are quite tolerant

to noise in measurement. A distance deviating a few standard deviations from 0 may

as well be the same vector in most applications. Likewise, randomly drawn vectors are

nearly guaranteed to be close to a distance of 0.5. As a consequence, HBVs are very good

candidates for encoding various forms of information into constant sized vectors.

Kanerva describes 3 particular operations that are well suited for encoding infor-

mation:

1. The XOR operation: Since XOR is an involution when one operand is fixed, and

associative and commutative, we have that c×a = (a× b)×a = b. We can exactly

recover a or b if we have one or the other, or approximately when noise is present.
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2. The permutation Π: This permutes a vector x’s components into a new order, by

computing the product Πx. If the permutation is randomly generated for a long

binary vector, the new binary vector is very likely to have a Hn ≈ 0.5. We can

represent Π as a permutation of index locations 1 to n. The product simply swaps

components of x to the order in Π.

3. The consensus sum, c+(A), over the set of vectors A, or simply x + cy + cz: This

sum counts 1’s and 0’s component-wise across each element of A, and sets the

component to the corresponding value with the bigger count. Ties, only possible in

a sum of an even number of elements, can be broken by randomly choosing 0 or 1.

Other options exist for encoding, but these 3 are of particular concern to this chapter.

Note that mapping by XOR or permuting preserves distances. For a given mapping a:

H(a× x, a× y) = |a× x× a× y|= |a× a× x× y|= |x× y| (B.1)

H(Πx,Πy) = |Πx × Πy|= |Π(x× y)|= |x× y| (B.2)

The permutation example, in particular, is due to permutations distributing across

XOR and the fact that permutations due not change the number of 1’s or 0’s in the result

of an XOR.

With the 3 operations above, we can now represent more complex data structures

entirely with HBVs:

1. A set can be represented as follows: given C1, C2, ..., Cn and a mapping of each

element to HBVs z1, z2, ..., zn, we encode the set as the XOR of each HBV, or
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z = z1 × z2 × ...× zn (B.3)

No matter the order of each Ci , the representation will always be the same, thus

imitating a set. There are some limits to this representation. For example, while

testing equivalency is simple (check if XOR is the 0 vector), testing membership

and enumeration cannot be done without having another binary vector representa-

tion in place specifically for this. Furthermore, adding the same element has the

effect of removing it, and care must be taken to prevent that from occurring.

2. Similarly, for an ordered pair (A,B), we can choose a random permutation Π and

encode the pair as c = Π(a × b), where a and b are the HBVs associated with A

and B. The permutation Π thus encodes the datatype of the ordered pair, as well.

Given c, and knowing Π, and one of the pairs, the other can be found.

3. Sequences can be interpreted as a succession of ordered pairs. Thus, a sequence

C1C2...Cn is equivalent to

c = Πn−1c1 × Πn−2c2 × ...× cn (B.4)

where ci are the corresponding HBVs. The Πi refers to a permutation that has ap-

plied itself to itself i times, before being applied to the HBV’s components. Note

that XORing two separate sequences will remove any patterns they both share. Fur-

thermore, sequences can be shifted by permuting the vector again with Π to move

further backwards (to add a new part of the sequence), or it can be shifted forward
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in time by applying Π−1, or the de-permutation.

4. Data Records are referred to by Kanerva as a method for storing object-like proper-

ties. For example, a data record could consist of name, age, and sex. Each of these

is given a random identifier ri , and the data record format can be represented as a

matrix R = [r1r2...rn]. To “bind” a value to each identifier, we can XOR the value

with the corresponding identifier. Thus, given i values, vi, a particular data record

is represented as

R× V = [r1r2...rn][v1v2...vn]T = r1 × v1 +c r2 × v2 +c ...+c rn × vn (B.5)

Where the bracket notation defines a “matrix” of vectors, with multiplication of

matrices following the typical notation, but with XOR and consensus sum replacing

multiplication and addition of elements. To isolate the value of a field, we simply

computeR×ri, orR×vi if we wish to find the data type a value is associated with.

This is due to the fact that each term in the consensus sum will produce random

noise (as distributing the XOR across the data record will yield randomness), but the

term containing the value will be significant. You will get an approximately similar

result; that is, the nearest neighbor will be, with high likelihood, the corresponding

value or identifier.

With these simple structures, data records, sets and sequences can be combined to

encode and represent all manner of data in a consistent way.
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B.3 Numerical vs. Categorical Values

One of the simplest and most necessary forms of data are that of raw numerical

values. How should the distance H between vectors representing numbers correlate to

their objective value? One simple answer is to directly embed the linear relationship

between numbers in a higher dimensional space, as a line or a curve in that space. This

is clearly possible with binary vectors, though some care should be taken to ensure that

these values make sense in their distances. For example, a given valueX , the valuesX−1

and X + 1 should be nearest neighbors to X , but on roughly opposite locations in space

from X .

With categorical values, we are unsure of what the appropriate distance from them

should be. For example, what is the distance between a and b? For this we must rely on

distributional semantics, where the distributional properties of how these values occur and

co-occur in data resolve their semantic meaning towards each other. Values that appear

in similar distributions of data are taken to be closer in meaning. It is clear that both

numerical and categorical data are important in AI. The real difficulty in representing

them comes into play when we consider that they have to exist in the same space.

B.4 Representing Numerical and Categorical Data

In prior work [8], a method for encoding multiple modalities was developed to

both create HBVs for observations of data, using distributional semantics, and give a

framework for forming more complex sequences and sets of differing modalities, with
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potential for their own distributed semantics. Although this is not the particular subject of

this paper, it is worth remarking on this process, as we use the numerical representations

of it in our experiments.

Consider that you have multiple modalities, such as vision, audio, text, etc. Each

of these has a finite number of unique values to represent an atomic piece of information.

Consider the special case where the atomic piece of information does not actually have

any distance associated with it. This is true for characters, as any meaning ascribed to

them is purely distributional (how these values are distributed in relation to others). Pixel

intensity and related measures all have inherent meaning in their values, directly tied to the

distance between each value (e.g., red channel intensity of 55 vs. 123). Thus, we desire

the ability to both encode distributional and non-distributional values in a framework for

HBV representation of multiple modalities.

Take characters as an example for convenience, we can find distributionally mean-

ingful HBVs for the space of characters by the method described in [8]. First, assign

every character a randomly selected HBV. Then, obtain distributional counts of how of-

ten two characters may co-occur. The distributional counts can be naturally represented as

a graph, where the vertices are characters, and the directed edges are co-occurrences. This

is similar to systems such as word2vec [9] or GloVE [10]. Each character has a “mass”, of

how often it is seen, and an edge weight determined by how often that occurrence occurs.

A good choice of HBVs for each character would make sure that characters that co-occur

often are nearer than those that do not. This is referred to as a geometric interpretation

of semantics. To find such vectors, we can simulate a model that characterizes energy in

the current system of HBVs. Let X(k) be a matrix of current HBVs, with m rows/vertices
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and n columns/bit length. The problem is formulated as:

argmin(T (X(k) +X)) (B.6)

Here, T is a function that measures the total energy in the system described by

a given matrix. Our goal is to find a perturbation of 1’s and 0’s referred to as X , that

minimizes the energy measure by T . Then X(k+1) = X(x) + X becomes our new set of

vectors. We repeat this process until the energy is minimized. The energy is computed

as:

T (A) = ΣΣmax(Fconn(A, i, j) + Fprox(A, i, j), 0) (B.7)

This formula expresses the sum of all unresolved forces in the matrix A, given a

graph of co-occurrences. The functions Fconn and Fprox represent the connective and

proximal forces of the system. Together, they enumerate the force being applied on the

bit at row i and column j to switch its value. The connective force for a vertex is the resul-

tant force across all co-occurrence pairs of that vertex. An edge’s weight (co-occurrence

likelihood) dictates its force. The connective force is computed by the following, where

Mi is the relative mass of vertex i and Wi,k is the edge weight between vertex i and k

(note that the weight is 0 if a connection does not exist):

Fconn(A, i, j) = ΣMiWi,kCconn(Ai,j, Ak,j) (B.8)

The proximal force is caused by the proximity of a vertex to a vertex that it shares

a co- occurrence edge with. The force each vertex generates scales with its mass (occur-
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Figure B.1: An example of how tension is minimized in a graph represented the co-occurrences

of vertices. As the total energy in the system decreases with each iterations, the positions of the

HBVs associated with each vertex are in geometrically “better” locations, relative to each other.

When proximal force is turned off, the system is enabled to reach a singularity state, and thus, the

tension will naturally reach 0.

rence likelihood). The proximal force is computed by the following, where Hn(a, b) is

the normalized Hamming Distance between vertexes a and b:

Fprox(A, i, j) = Σ
MiMk

Hn(Ai, Ak)
Cprox(Ai,j, Ak,j) (B.9)

The functions Cconn and Cprox are simply functions that determine whether the bit

in question wants to change or not, given its current state and the state of its incident

vertex

Cconn(a, b) =


−1 if a = b

1 if a 6= b

Cprox(a, b) =


1 if a = b

−1 if a 6= b

(B.10)

Techniques exist for minimization of T and are stochastic in nature, involving grad-
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ual flipping of bits to minimize energy, often using simulated annealing. As shown in

B.1, the energy of the same system generated by random graphs of equal number of ver-

tices with and without proximal force only reaches exact 0 when the proximal force is

off.

B.5 Encoding images as HBVs

To be able to encode more complex structures as HBVs, such as images, care must

be taken to preserve the meaningfulness of both the values of pixel intensity and loca-

tion. How can this be done with the basic structures we can encode? First, we describe

how pixel intensity is represented with HBVs. Consider the case of a single-channel,

gray-scale image. We have 256 unique values across the space of intensities, all evenly

spaced from one another. To reconstruct this with vectors, we first require 256 vectors

and then require them to be spaced such that the nearest neighbors of a particular inten-

sity vertex are the closest intensities in reality. Likewise, intensities that are further away

in value should have a further H or Hn distance proportionally. A proportionally similar

distance should be found for pixels in lesser or greater intensities. Essentially, the intensi-

ties, which are naturally visualized as a 1D line, are embedded into a higher-dimensional

space as a curve or a line of vectors. We can visualize this by taking a particular vertex

and connecting it to each other vertex, requiring that the edge weights decrease propor-

tionally to the difference in intensity between the vertices, evenly spaced out. Applied to

every vertex, we arrive at the realization that a fully connected graph (apart from vertices

connected to themselves) is
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Figure B.2: A visualization of intensity minimization. We start with random vectors for four

intensities ranging from 0 to 3. A complete graph is formed, connecting each vertex to each other,

with decreasing weight in proportion to the intensity difference. When minimization is performed,

the result forms a line or semicircle of appropriate distances.

required. Thus, every vertex should have a vector that satisfies the properties of

the intensity scale. Fig. B.2 shows how that this is visualized on a small scale. When

this graph is minimized with the technique described in the previous section, the result

forms a distance matrix much like the one shown in Fig. B.3. As we can see, the distances

increase away from the diagonal entry, much like intensities do in a single channel, from

the perspective of a particular intensity value.

With representations for the intensities, we can now focus on representing location.

Permutations hold the positional semantics for sequences of HBVs; a particular permuta-

tion is attached to a sequence of a single data type. This is movement through sequences

in a one directional sense. For 2D data such as images, we require two permutation op-

erations, one for the row and one for the column location. For each location, we permute

the intensity representations appropriately. Consider a single such pixel; we can place it
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Figure B.3: Hamming distance visualization of intensities. Visualization of the Hamming dis-

tance between intensity values in the range of 0 to 25. Note the increasing distances away from

the diagonal, as one would expect. For DVS or images, a full 256-intensity range can be easily

developed with the same properties.

in the proper location in an image by permutations before XORing with other pixels—the

concept of which is shown in Fig. B.4. As a small example, consider a 3 by 3 image

I . Let Iij be the pixel intensity representation at row i and column j. Then, the HBV

representation of the image is constructed as follows

(X00 ∗CX01 ∗C2X02) ∗R(X10 ∗CX11 ∗C2X12) ∗R2(X20 ∗CX21 ∗C2X22) (B.11)

This simple but powerful formulation allows us to encode an image of arbitrary

dimensions in meaningful ways. Much like with sequence, permutations of the resulting

HBV will shift the image in space accordingly, and entire sections of the image can be

removed or concatenated with others by first XORing with the section to remove in the

full image and XORing with a section to add, as shown in Fig. B.5.
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Figure B.4: Moving pixels spatially. A pixel p is relocated from the origin position to row 2 and

column 4 by performing a permutation R2C4p

Figure B.5: Composing image encodings. A simple example of how an image encoding can be

manipulated. The reference pixel can be arbitrarily moved through permutations as shown in (A)

by permuting the current encoding appropriately; in the case of (B), this is a permutation of R−8.

A new image (C), aligned on a similar reference pixel (the origin here); the two images can be

composed to construct an arbitrary image (D).

B.6 Creating memories with HBVs

With the ability of HBVs to combine with other HBVs to encode more and more in-

formation but in the same vector length, we have a natural method to create semantically
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significant and informed memories. As an example, a series of images can be “remem-

bered” by forming a data record with HBVs of each image, where a particular vector

is taken to signify the location in time of the image. When presented with a particular

image, its existence inside of a memory can be checked by simply XORing the memory

with the image. The nearest neighbor of the result will be the location in time of the

image. Likewise, when interested in the image at a particular location, the same process

will reveal what the nearest matching image will be.

B.7 Experiments

B.7.1 Using neuromorphic visual information

We extracted the motion information from the event timestamps by building a “time

image”: In a given time slice of the (x, y, t) space (that is, for a small interval of time),

the events are projected on the image plane and the timestamps of the events that fall

on the same pixel are averaged out, so the pixel intensity is a function of time t. This

representation has several benefits: It is easy to compute, is robust toward noise, allows for

asynchronous data analysis (because the time image can be computed at any moment in

time), and preserves the motion information stored within the event stream. An example

of the time image, together with the corresponding “classical” frame, can be seen in

Fig. B.6.
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Figure B.6: An example of DVS data visualization. On the left, a time image is shown, in which

green is the average timestamp, and the positive/negative per pixel event counts are shown in

red/blue. On the right, the corresponding grayscale image of the scene is shown. Note the motion

blur on the classical frame.

B.7.2 Learning with HBVs

To test how well visual data can be encoded by HBVs when compared to classi-

cal techniques, we set up an experiment where a classical convolutional neural network

(CNN) architecture, inspired by NVIDIA’s PilotNet, was trained on the DVS event stream

to predict velocities. The input layer of the CNN accepted time images as described in the

previous section, essentially interpreted as a single-channel image. Both the event stream

and velocities were collected via an autonomous robotic platform that was tracked by the

VICON Motion Capture System. The magnitudes of the velocities were in the order of 1

m/s, and the DVS camera experienced 6D motion. With this setup, the CNN was able to

achieve an accuracy of up to 7 cm/s, amounting to 7% of the velocity magnitude, despite

the sparseness of the event data.

117



Likewise, the time image data were also converted into HBV encodings in a fashion

similar to how image codes are constructed. This was achieved by first constructing an

intensity space consisting of 255 HBVs of length 8000, each corresponding to one of the

255 intensity values of the time image and minimizing it to generate appropriate HBV

representations. When visualized, this space is similar to what is shown in Fig. B.3 with

25 intensity values. We only used 255 HBVs because the intensity value of 0 indicates

no event and thus does not need to be encoded into the HBV. These representations are

then used to generate sequences encoding the pixel intensities and their locations in each

time image into a single HBV. Because of the fact that bits in HBVs do not necessarily

correlate to neighboring bits, it does not make sense to use a similar, CNN-based network

for HBVs as we did in our first experiment. As a result, a fully connected, six layered

neural network was used with a similar number of parameters. When trained, HBV-based

learning achieved an error of about 9 cm/s. Although slightly worse than the CNN, this

result is impressive because the size of the input was naturally compressed as HBVs, from

the DVS’s resolution of 346 ∗ 260 (about 90,000 pixels) to 8000 bits. Inspired by these

results, we then investigated the HBV’s ability to encode sequences of frames as data

records and binding the velocity vectors to the frame vectors.

B.7.3 Perception to action binding with HBVs

The HBV vectors allow any amount of data of any type to be represented in a

fixed length of bits, up to the informational capacity provided by the binary space. We

would expect HBVs to be able to create data records from different modalities to bind
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them together in a single representational space—ideally, binding perception to action as

a single data record. We constructed an experiment where, given the visual input, the

system was able to remember the action it needed to take in the form of a velocity vector.

First, we describe how to represent a 3D velocity vector as an HBV. We construct

HBV representations of each component individually, that is, we run vector space mini-

mization three times with different starting seeds for random HBVs. We then create a data

record from the three spaces for a single velocity. To do this, we must select three random

binary vectors as identifiers for the X , Y , and Z components of velocity to construct the

data record with. We will refer to these as X , Y , and Z. Because these are random, they

are nearly unrelated, with distances close to 4000 bits from each other (to be consistent,

we use 8000-bit vectors in all our experiments). When component values are bound to the

identifiers, they each create three separate uncorrelated HBVs. This velocity data record

is extended with an entry for the associated time image HBV encoding. Likewise, this

encoding is bound to a randomly selected identifier for time images, referred to as T . The

resultant data record thus exists in an action perception space and can be considered a

memory.

To create many such memories, we take a DVS recording with corresponding mo-

tion ground truth and create a memory of each time image and velocity. Our experiment:

Given a time image, find the correctly associated velocity using only memories. To iso-

late the time image in the data record of the memory, we XOR T with the memory m

and find the nearest neighbor to the input time image encoding. Afterward, we XOR the

candidate memory with X , Y , and Z to retrieve individual velocity components. In all

our experiments, we achieved 100% accuracy. This means that the information capacity
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of the data record with 8000 bits far exceeds the requirements to store the time image and

velocities encoded within.

B.7.4 Information capacity of HBVs

A natural next experiment would be to see how much information can be fit into

8000-bit vectors. Because each time image contains quite a bit of information, we chose to

encode entire sequences of time images in a single data record, with randomly generated

HBV identifiers Ti tied to each frame position in the sequence. We then tested the ability

of data records to localize the given image in the memories containing only time image

sequences.

Fig. B.7 shows our findings. We conducted the experiments for sequences of up

to 700 frames in length and measured the Hamming distance of the input frame HBV to

the closest match in memory of sequences. Naturally, the longer the sequence, the more

information is contained within every data record. Thus, we expect that the Hamming dis-

tances will grow closer and closer to 4000, which corresponds to completely uncorrelated

vectors. Our results confirm this trend and show that we can safely code up to around 200

frames without worry of false positives. However, the likelihood of errors is small even

after this point. In conclusion, a single 8000-bit HBV can provide for huge information

density, without needing any learning.
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Figure B.7: Hamming distance decay in data records. The decay in nearest neighbor matches of

Hamming distance as the number of time images in a memory increases. As more frames of motion

are put into the encoding, more noise is introduced, making the deviation caused by a match less

and less statistically significant. At 700 frames, we are still about 3 to 4 SDs of likelihood away

from random vectors.

B.7.4.1 Theoretical limits on capacity of HBVs

Although we have empirical results on how well information can be encoded into

HBVs, we can arrive at more practical bounds for this in relation to the accuracy of

recall. Regardless of the length of the HBVs, the odds of a particular bit being 0 or 1

is 0.5, assuming that the vectors are randomly generated. Suppose we have performed a

consensus sum on a number of data points using random vectors as a basis for identifying

each data point (i.e., a data record). The result can be thought of as a memory consisting

of these data points. Let m be the memory, then (with the right-most side as shorthand

notation)
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m = x1 ∗ a+c x2 ∗ b+c x3 ∗ c... = x1a+ x2b+ x3c+ ... (B.12)

When we test for the presence of a particular value d, we first compute m ∗ d. The

result should be close to a particular xi, if d is present. Naturally, to determine this, we

compute the distance H . This involves another XOR with each xi individually. Consider

the following example:

|m ∗ d ∗ x1|= |x1adx1 + x2bdx1 + x3cdx1 + ...|= |ad+ x1x2bd+ x1x3cd+ ...| (B.13)

When computing the Hn distance, the above becomes the probability of each bit being

1 in this vector. Because we are computing a consensus sum, the above is equivalent to

tossing a coin the same number of times as you have terms in the sum and setting the

consensus to whichever side landed more often. This is true because we know that, if

the vectors are random, then the XOR of two random vectors yields a random vector.

However, if a = d, then the term ad = 0. This would create a bias; one of our coin tosses

will now always be the same. More generally, let the probability of 1 for the term ad be p.

This bias is what causes our consensus sum to give a Hn that is different in a statistically

significant way than the expected value of 0.5. Given n vectors in a consensus sum and

p, the probability for a bit in |m ∗ d ∗ x1| being 1 is

(1− p)
n−1∑
k=n/2

(n− 1)!

2n−1k! (n− k − 1)!
+ p

n−1∑
k=n/2−1

(n− 1)!

2n−1k! (n− k − 1)!
(B.14)
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B.7.5 Sensorimotor representation through binding visual and motor in-

formation

To demonstrate an example application of our framework, we applied it to the task

of ego-motion estimation in the autonomous vehicle setting. We used the multivehicle

stereo event camera (MVSEC) dataset for our experiments. The MVSEC dataset features

DAVIS240 event recordings together with ground truth velocity, taken from a car driving

during the day and night. We formed a separate memory for each degree of freedom using

the first 15 s of the “outdoor day 1” sequence and then demonstrated the performance on

the rest of the sequences (two during the day and three during the night). We compute the

memory as follows, for each degree of freedom

m = v1(a1 + a2 + ...) + v2(b1 + b2 + ...) + ...+ vn(z1 + z2 + ...) (B.15)

Here, the vectors vi are basis vectors for our velocity space, that is, every vector

represents a particular range of velocities with a certain step. In our experiments, 0.001

was used as the step. The distinct letters in ai, ..., zi represent groups of images by their

ground truth velocity class. Conceptually, the memory m is just a consensus sum of

every image vector bound to every corresponding 1D velocity represented as an HBV.

We then compute the probability of the vector d representing an incoming image being

associated with each of the basis velocity vectors vi and choose the vi yielding the highest

probability, equivalent to the smallest H between mvi and d.
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