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Foreword

“What these graduate students always do with my problems, if I turn them

over to them, is either to spoil the problem for me because they haven’t the capacity

to handle it as I want it handled ... or ... they get good results and at once begin

to think the problem is theirs instead of mine, when in fact knowing what kind of

a problem it is worthwhile to attack is in general more important than the mere

carrying out of the necessary steps.”

-A. A. Michelson as recalled by R. A. Millikan in Reingold N., Science in Nineteenth

Century America (New York: Hill and Wang, 1964)

ii



Dedication

To Richard and Judy Brown.

iii



Acknowledgments

I’d like to thank my advisor, Trey Porto for all of the opportunities he provided

me through the years. He has been a fine example as a researcher and I have grown

to enjoy his hands off, but duty-cycle-modulated, approach to lab management. I

can also credit him with convincing me to keep up with the news, even if I haven’t

made it to NPR.

I would like to thank the thermodynamic limit of excellent post-docs with

whom I have had the pleasure of working directly: Jamie Williams for creating a

research shallow end into which I could wade; Ippei Danshita for encouragement and

discussions; Ludwig Mathey for always having time to talk about problem selection

and correlation functions; Rafel Pooser for guidance in tapered amplifier construc-

tion; Saijun Wu for being the perfect intermediary between theory and experiment,

sharing his work ethic and passion for laser cooling; Steve Olmschenk for being my

guide into experimental construction (from tightening vacuum bolts to programing

FPGA’s); Karl Nelson for practical guidance in all matters of construction; Martin

Zelan for showing me how hard one should push for results once there is an appratus,

opto-mechanics excellence, and good times camping; Bob Wylie for being the set of

measure zero able to debate the relative merits of Henry Rowland’s achievements

versus those of Henry Rollins (and infinite lab view programming); David Norris for

alerting me to the fact that I should graduate after 7 years; Silvio Koller for all of

his early mornings (and of course optics design knowledge); Michael Foss-Feig for

his theory support (and paper torture snacks); and finally Elizabeth Goldschmidt

iv



for being a constant driving force towards project completion.

I would also like to thank my collaborators in the atomic spectroscopy group;

Craig Sansonetti, John Gillaspy, Clayton Simien, Joseph Tan, and Sam Brewer for

being so kind with their time and allowing me broaden my atomic physics horizons.

I would be remiss in my duties if I did not thank the important senior people.

I appreciate Bill Phillips for teaching me about scientific writing in the form paper

torture and about asking questions in the form of all the time. I have benefited

immensely from the brain trust of the central committee including Kris Helmerson,

Paul Lett, Gretchen Campbell, and I am particularly indebted to Ian Spielman who

could turn even the most boring of my half-questions into meaningful discussions of

physics. I thank Steve Rolston for assuming UMD paper work responsibility for me

despite my vanishing UMD physical presence. I must thank Charles Clark and Mike

Coplan for bringing me to NIST and the University of Maryland. I would also like

to thank Catherine Gebbie for creating a wonderful NIST laboratory environment

including semiannual hams.

Shout outs to fellow laser-coolers: Neil Vladimir Corzo-Trejo, Karina Jimenez-

Garcia, Lucas Beguin, Ross Williams, Lindsay LeBlanc, Yu-Ju Lin, Seiji Sugawa,

Matt Beeler, Dina Genkina, Lauren Aycock, Paco y Marcell Gall, Ben Stuhl, Hsin-

I Lu, Nathan Lundblad, Ryan Glasser, Uli Vogl, Jeremy Clark, Prasoon Gupta,

Meng Chang, Quentin Glorieux, Brian Anderson from the University of Arizona (no

not that one), Travis Horrom, Heywon Pechkis, Arne Schwettmann, Paul Grif-

fin, Jonathan Wrubel, Kevin Wright, Brad Blakestad, Fred Jendrzejewski, Stephen

Eckel, Avinash Kumar, and Tian Lee.

v



Mom, Julie, Lalo and Abby ♥.

vi



Table of Contents

Foreword ii

Dedication iii

Acknowledgements iv

Table of Contents vii

List of Tables x

List of Figures xi

List of Abbreviations xiii

1 Introduction 1

2 Laser Spectroscopy of Atomic Li 6
2.1 Dipole Scattering line shape . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Angular dependence . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Line shape impact on extracted frequencies . . . . . . . . . . . 14

2.2 Application to 6,7Li Experimental Data . . . . . . . . . . . . . . . . . 18
2.2.1 Apparent line-strength and frequency variation with θL . . . . 21
2.2.2 Discussion of Systematics . . . . . . . . . . . . . . . . . . . . 23
2.2.3 Results, absolute transition frequencies . . . . . . . . . . . . . 26

2.3 Extraction of relative nuclear charge radii . . . . . . . . . . . . . . . 28
2.4 Calculation of the reduced matrix element . . . . . . . . . . . . . . . 32
2.5 Tables of lineweights and cross-terms for I = 1/2, 1, 3/2 . . . . . . . 34
2.6 Correction for finite numerical aperature . . . . . . . . . . . . . . . . 35
2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

vii



3 Excited to excited atomic transitions for laser cooling 38
3.1 Traditional Laser Cooling . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Dragged atoms and the optical Bloch equations . . . . . . . . 39
3.1.2 Damping force . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.3 Momentum diffusion . . . . . . . . . . . . . . . . . . . . . . . 42
3.1.4 Doppler temperature . . . . . . . . . . . . . . . . . . . . . . . 44
3.1.5 Magneto-optical trapping . . . . . . . . . . . . . . . . . . . . 45
3.1.6 SubDoppler cooling . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Multi-photon Magneto-optical trapping of Cs . . . . . . . . . . . . . 49
3.2.1 Setup and apparatus . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.2 Two-color cooling . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.3 Two-color trapping . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.4 SubDoppler temperatures . . . . . . . . . . . . . . . . . . . . 54

3.3 Excited-state Sisyphus cooling for trapped H(H̄) . . . . . . . . . . . . 55

4 Experimental Setup and Construction 60
4.1 Preface to ultracold atom research . . . . . . . . . . . . . . . . . . . . 60
4.2 Construction overview . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Vacuum system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.1 Vacuum Chamber Design . . . . . . . . . . . . . . . . . . . . 61
4.3.2 Vacuum Chamber Assembly and Bake-out . . . . . . . . . . . 65

4.4 Magnetic trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4.1 Coil design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4.2 Fast switching high current source for magnetic trapping . . . 70
4.4.3 Plumbing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Laser cooling optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.5.1 MOT beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.5.2 Pneumatic mirror system . . . . . . . . . . . . . . . . . . . . . 75
4.5.3 Zeeman slower beams . . . . . . . . . . . . . . . . . . . . . . . 81
4.5.4 Imaging system . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.6 Laser systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.6.1 Cooling lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.6.2 Dipole trapping laser system . . . . . . . . . . . . . . . . . . . 83
4.6.3 Lattice laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.7 Computer control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.8 Microwave and RF system . . . . . . . . . . . . . . . . . . . . . . . . 92

4.8.1 Microwave system . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.8.2 RF system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.9 BEC Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Manybody physics in optical lattices 99
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2 Optical lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2.1 Single atom lattice physics . . . . . . . . . . . . . . . . . . . . 102
5.2.2 Lattice enabled models of manybody physics . . . . . . . . . . 104

viii



5.2.2.1 The Hubbard model and Mott insulator . . . . . . . 104
5.2.2.2 The Heisenberg model . . . . . . . . . . . . . . . . . 106

5.3 Probes of many particle states . . . . . . . . . . . . . . . . . . . . . . 108

6 State-dependent Dynamic Optical Checkerboard Lattice 111
6.1 Idealized double well lattice . . . . . . . . . . . . . . . . . . . . . . . 111
6.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2.1 Imperfections in the lattice . . . . . . . . . . . . . . . . . . . . 116
6.2.2 Crude lattice alignment procedure . . . . . . . . . . . . . . . . 118
6.2.3 Pockels cell temporal response . . . . . . . . . . . . . . . . . . 124
6.2.4 Vertical Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.3 Atomic probes for accurate alignment . . . . . . . . . . . . . . . . . . 126
6.3.1 Lattice diffraction and band mapping . . . . . . . . . . . . . . 126
6.3.2 Talbot Pulsing of the ~k1-~k2 lattice . . . . . . . . . . . . . . . . 128
6.3.3 Sublattice resolving spectroscopy . . . . . . . . . . . . . . . . 130
6.3.4 Lattice offset characterization via phase running . . . . . . . . 132
6.3.5 Number resolving spectroscopy in the MI . . . . . . . . . . . . 136

7 Non-equilibrium dynamics 138
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.2 Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.4 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.6 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.6.1 Experimental Sequence . . . . . . . . . . . . . . . . . . . . . . 151
7.6.2 Tight Binding Parameters . . . . . . . . . . . . . . . . . . . . 152
7.6.3 Superexchange Timescale Estimates . . . . . . . . . . . . . . . 158
7.6.4 The ∆ = U population imbalance resonance . . . . . . . . . . 161
7.6.5 Fractional U sublattice population transfer resonances . . . . . 163

8 Conclusion and Outlook 165

Bibliography 168

ix



List of Tables

2.1 Measured frequencies of the 6,7Li D2 lines . . . . . . . . . . . . . . . . 29
2.2 Representative uncertainty budget . . . . . . . . . . . . . . . . . . . . 29
2.3 Excited state fine-structure intervals. . . . . . . . . . . . . . . . . . . 30
2.4 7,6Li isotope shifts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5 D2 weights and cross-terms for I = 1/2 . . . . . . . . . . . . . . . . . 34
2.6 D2 weights and cross-terms for I = 1 . . . . . . . . . . . . . . . . . . 35
2.7 D2 weights and cross-terms for I = 3/2 . . . . . . . . . . . . . . . . . 35

4.1 UHV pump down and bakeout procedures. . . . . . . . . . . . . . . . 68
4.2 Main microwave setup . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.3 Vertical and Horizontal microwave channels . . . . . . . . . . . . . . 97
4.4 BEC sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.1 Phase running experimental sequence . . . . . . . . . . . . . . . . . . 134

7.1 Tilted spin ordering experimental sequence . . . . . . . . . . . . . . . 153
7.2 Tilted spin ordering experimental sequence pt.2 . . . . . . . . . . . . 154

x



List of Figures

2.1 Coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Interference modified lineshape . . . . . . . . . . . . . . . . . . . . . 15
2.3 Estimated error in hyperfine splitting vs. peak separation . . . . . . . 16
2.4 Error in the measured center of gravity vs. peak separation . . . . . . 17
2.5 6,7Li level structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Schematic diagram of the experimental apparatus . . . . . . . . . . . 20
2.7 Lorentzian only fits to D1 and D2 data. . . . . . . . . . . . . . . . . . 21
2.8 Amplitude of scattered light vs. frequency and polarization angle . . 22
2.9 Line center of the 7Li F = 1 → F ′ = 0, 1, 2 feature . . . . . . . . . . . 23
2.10 7Li ground state hyperfine interval vs. laser polarization angle . . . . 27
2.11 6Li ground state hyperfine interval vs. laser polarization angle. . . . . 28
2.12 Measurements of the 7Li-6Li difference in charge radius . . . . . . . . 31

3.1 Cooling force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Standard MOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Cesium excited state laser cooling levels. . . . . . . . . . . . . . . . . 48
3.4 Two color damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5 Density vs. two photon detuning in a multi-photon MOT. . . . . . . 52
3.6 Two color trapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.7 Temperature vs. two photon detuning in a multi-photon MOT. . . . 54
3.8 Pulsed Sisyphus cooling level diagram . . . . . . . . . . . . . . . . . . 56
3.9 Magnetic trap + optical layout and H cooling trajectories. . . . . . . 58

4.1 Full vacuum chamber perspective drawing . . . . . . . . . . . . . . . 63
4.2 Cross section view of vacuum chamber. . . . . . . . . . . . . . . . . . 64
4.3 Cross section view of tweezer vacuum chamber. . . . . . . . . . . . . 65
4.4 Completed vacuum chamber. . . . . . . . . . . . . . . . . . . . . . . . 66
4.5 Vacuum chamber pressure and temperature during bake. . . . . . . . 67
4.6 Quadrupole coil geometry. . . . . . . . . . . . . . . . . . . . . . . . . 69
4.7 MOSFET bank schematic. . . . . . . . . . . . . . . . . . . . . . . . . 72
4.8 MOSFET servo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.9 Plumbing system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.10 Electric to water connection manifold . . . . . . . . . . . . . . . . . . 74

xi



4.11 MOT launch optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.12 Vertically oriented pneumatic mount . . . . . . . . . . . . . . . . . . 76
4.13 Horizontally oriented and translating pneumatic optic mount . . . . . 78
4.14 Pointing stability of pneumatic mirrors . . . . . . . . . . . . . . . . . 80
4.15 Cooling Laser Level Diagram . . . . . . . . . . . . . . . . . . . . . . 84
4.16 Optical layout of the cooling lasers . . . . . . . . . . . . . . . . . . . 85
4.17 Optical layout of the dipole trapping laser . . . . . . . . . . . . . . . 86
4.18 Ti:Saph frequency noise . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.19 Optical layout of the lattice laser . . . . . . . . . . . . . . . . . . . . 90
4.20 RF coil PCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.1 Double Well Optical layout . . . . . . . . . . . . . . . . . . . . . . . . 112
6.2 Action of the input Pockels cell/Double Slit Experiment . . . . . . . 115
6.3 Lattice state dependence . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.4 PC extinction ratio vs. voltage characterization. . . . . . . . . . . . . 122
6.5 PC phase vs. voltage characterization . . . . . . . . . . . . . . . . . . 123
6.6 PC phase vs. voltage characterization cross sections . . . . . . . . . . 124
6.7 Feedforward to the Pockels cells . . . . . . . . . . . . . . . . . . . . . 125
6.8 Talbot pulse measurement of beam orthogonality. . . . . . . . . . . . 129
6.9 Sublattice resolving spectroscopy . . . . . . . . . . . . . . . . . . . . 131
6.10 Matter wave double slit interference pattern . . . . . . . . . . . . . . 133
6.11 Phase running measurements of sublattice offset . . . . . . . . . . . . 135
6.12 Number resolving spectroscopy in the MI . . . . . . . . . . . . . . . . 137

7.1 Tunable exchange processes . . . . . . . . . . . . . . . . . . . . . . . 141
7.2 Schematic of experimental sequence. . . . . . . . . . . . . . . . . . . 143
7.3 Identification and control of tunneling . . . . . . . . . . . . . . . . . . 146
7.4 Resonant superexchange . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.5 Optical lattice: real and reciprocal space . . . . . . . . . . . . . . . . 156
7.6 Demagnitezation dynamics . . . . . . . . . . . . . . . . . . . . . . . . 160
7.7 Fractional U resonances . . . . . . . . . . . . . . . . . . . . . . . . . 164

xii



List of Abbreviations

AOM acousto-optic modulator
BEC Bose-Einstein Condensate
DD Dynamical Decoupling
DDS direct digital synthesizer
EOM electro-optic modulator
FPGA field programmable gate array
JQI Joint Quantum Institute
MBR Monolithic Block Resonator
MI Mott insulator
MOT Magneto-Optical Trap
NIST National Institute of Standards and Technology
PC Pockels Cell
PLL phase locked loop
RF radio frequency
SF super fluid
TEBD time evolving block decimation
TTL transistor-transistor logic
UHV ultra-high vacuum

xiii



Chapter 1: Introduction

As a Ph.D. student at the University of Maryland, I worked in the lab of Trey

Porto, as part of the laser cooling group, at the National Institute of Standards

and Technology (NIST) in Gaithersburg Maryland from 2009 to 2014. From 2010

to 2013, I also collaborated with the laser spectroscopy group. My research in

atomic physics was divided into three distinct projects: I will summarize them with

extra emphasis on my final project which was the construction and operation of

an experiment using Bose-Einstein condensates in optical lattices as a quantum

simulator of many-body dynamics.

High resolution optical spectroscopy of atoms has long contributed to nuclear

physics, from the optical discovery of deuterium in 1932 [1] to the present discrep-

ancy between the proton charge radius inferred from muonic-hydrogen and electronic

hydrogen [2]. My collaboration with the atomic spectroscopy group began with a

series of discrepant measurements in atomic Lithium where the transition frequen-

cies were measured with a suitable precision to infer the difference in nuclear charge

radius between 6Li and 7Li. The measurements revealed a transition frequency that

apparently changed with the polarization of the light used to probe it. We noted

that the hyperfine structure of atomic lithium is of the order the natural linewidth of

1



the transition, thus the excited state of atomic lithium realizes a frequency domain

version of the double slit experiment where multiple excitation and decay paths

cannot be distinguished. Preforming a perturbative analysis of a single excitation-

decay process though all possible paths revealed a polarization dependent matrix

element which allowed us to quantitatively model the observed spectra. This sys-

tematic effect had not previously been accounted for and resolves the discrepancy

between theory and experiment, enabling a more reliable extraction of the difference

in nuclear charge radius between 6Li and 7Li (see [3, 4] and [5, 6] for details).

Laser cooling is a well-established field with many milestone achievements

including; Doppler cooling of trapped ions, sub-Doppler cooling and Magneto-optical

trapping (MOT) of neutral atoms, and recently laser cooling to quantum degeneracy.

The general principle of laser cooling is the transfer of momentum from photons to

the center of mass motion of atoms. Gas phase alkali atoms have approximately

ten thousand times more momentum than the photons that they most strongly

absorb. This disparity in momenta focused most initial research on ground to excited

state transitions where angular momentum selection rules allow the atoms to scatter

many photons while returning to the same initial state. Our research focused on

using short-lived excited states for laser cooling. This was motivated by a desire to

improve detection of single laser cooled atoms, which has applications in quantum

gas microscopy as well as measuring the concentrations of rare radioactive isotopes

using atom trap trace analysis. The concept was to apply multiple colors of cooling

light to single atoms and observe fluorescence at another, distinct wavelength not

used in cooling. Using this process, atomic detection by florescence would have no

2



background from stray cooling light.

In our initial studies we applied two wavelengths of cooling light. In a modifi-

cation of a standard six beam MOT, we replaced the typical ground to excited state

cooling and trapping light (on the 6S1/2 → 6P3/2 in cesium) with light coupling two

excited states (the 6P3/2 and 8S1/2) along the ẑ direction of our trap. This process

required stepwise two-photon excitation to achieve cooling and trapping in the ẑ

direction. Unexpectedly, we found the polarization of the light required to trap the

atoms to be reversed from the standard MOT configuration, which can be under-

stood with a simple model. At higher excited to excited state intensity, we were able

to observe a novel 2n + 1 photon cooling process where a single ground to excited

state photon allowed the atoms to experience a stimulated 2n photon process due to

multiple scattering of excited state photons before decay. This process is remarkable

in that it works on both sides of two-photon resonance as opposed to only on the

low frequency side of single photon resonance. These studies are reported in [7].

The success of our proof of concept experiment in cesium encouraged us to

consider other open problems in laser cooling, especially the laser cooling of trapped

anti-hydrogen. The standard theory of laser cooling using the 1S to 2P transition

demands a technically challenging vacuum-ultra-violet laser and requires hours to

cool to mK temperatures. Using a two photon Doppler selective excitation between

1S and 2S and applying dressing light from the 2S to the 3P creates a large volume for

excited state Sisyphus cooling thereby decreasing the total cooling time from hours

to 100s of ms and simplifies the required laser system. This proposal is detailed

in [8].

3



My main project in graduate school was on the construction and operation of

an experiment to study quantum many-body dynamics. This work aspires to real-

ize Feynman’s grand vision of quantum simulators where well-controlled quantum

systems are engineered to behave in the same manner as theoretically intractable

or experimentally difficult to control systems. In our case, ultracold atoms in an

optical lattice are designed to mimic spins in a quantum magnet.

In the experiment we create a Bose-Einstein condensate (BEC) of 87Rb by laser

cooling in a standard six beam MOT, followed by evaporative cooling to degeneracy

in a magnetic and then optical trap. We then load a three dimensional optical

lattice with the atom number chosen such that one atom is loaded per lattice site.

This unit filling is confirmed by high resolution microwave spectroscopy of a set

of magnetically insensitive states. By changing the lattice beam polarization, the

lattice can be staggered in a two-dimensional internal-state-dependent checkerboard

pattern allowing atoms on one sub lattice (all black sites on the checkerboard) to

be spin flipped. This prepares a Néel ordered anti-ferromagnetic state. We then

turn off the internal-state-dependent tilt on black sites and apply an internal-state-

independent offset on all red sites. This sublattice offset, if large enough, suppresses

tunneling between sites leaving the spins in an energetically excited state where they

are not able to release their energy by direct tunneling. We then allow the system

to evolve from this initial state for a variable period of time and readout the spin

and sublattice populations.

We observe a decay of the initial well-defined spin order. By carefully control-

ling the atom number and temperature as well as the lattice frequency, amplitude,

4



and polarization, we can control the underlying Hamiltonian governing the decay

dynamics. The Bose-Hubbard Hamiltonian, a celebrated minimal model of strongly

correlated Bosons, has three distinct parameters; a tunneling energy J , an onsite

interaction U , and a sublattice dependent energy offset ∆. Remarkably, the decay

time scale of the initial spin order scales with the inverse of the super exchange en-

ergy J2U/(∆2−U2). Super exchange is a second order virtual process where atoms

lower their energy by first tunneling to an intermediate state with two atoms on

a site, undergoing an onsite interaction, and then tunneling back with their spins

flipped relative to the initial configuration. Such a process is believed to be respon-

sible for ferromagnetism in numerous materials but the dynamics of superexchange

processes remain largely unexplored. (Publication of apparatus development for this

work is reported in [9] additionally, a summary of our experimental observations has

been submitted [10] and is contained in chapter 7.)
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Chapter 2: Laser Spectroscopy of Atomic Li

High precision spectroscopy, one of the earliest atomic experiments, still pro-

vides data that shapes our understanding of physics, from tests of fundamental

symmetries, to atomic clocks, to the determination of nuclear charge radii. In this

chapter, we examine one of the most conceptually foundational atomic physics exper-

iments, where a tunable single frequency laser is scanned across an atomic resonance

and the amount of scattered light is recorded (see [11, 12] and references therein).

The system we study is atomic Lithium. Improved spectroscopy of the Li D lines

is of broad interest in physics because the isotope shift of these lines serves as a

nuclear-model-independent method to measure relative nuclear charge radii, which

are especially interesting in the neutron rich 8,9,11Li [13]. Measured isotope shifts

for the lithium 2s-2p (D lines) [14–18] or 2s-3s [19–22] transitions can be combined

with precise theoretical calculations [13,23,24] to determine relative nuclear charge

radii of lithium isotopes. Additionally, measured D-line transition frequencies are

used as input for the calculation of species-specific “tune in/out” optical lattices

for mixtures of quantum degenerate gases [25–27]. While systematics associated

with motional and external field shifts have long been understood and removed or

reduced, surprisingly, we find a long overlooked systematic due to interference ef-
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fects in light scattering that impact a range of experiments. This interference effect

makes measurements much more sensitive to the intensity and polarization of the

spectroscopy laser and possibly explains previous experimental discrepancies . Most

of this chapter is taken from the author’s manuscript [5, 6].

Determining transition frequencies better than a natural line width requires a

sufficient understanding of the transition line shape. In particular, the Lorentzian

line shape is of fundamental importance in the analysis of resonant phenomena in

many areas of physics [28]. When two or more resonances are separated on the

order of a natural line width, unresolvable in a fundamental sense not limited by

instrumentation, there arises the possibility of interference. The resulting line shape

is, in general, no longer a simple sum of Lorentzians, even in the low intensity limit.

Although this effect has been known in different contexts for many years [29–32], it

has typically been ignored in the interpretation of Doppler free spectra. In previous

spectroscopic measurements [3, 4], NIST atomic spectroscopy group demonstrated

that spectra were polarization sensitive, which we explain was due to quantum

interference. This effect limits accuracy when not properly accounted for, because

the lineshape is no longer Lorentzian. In section 2.1, we derive a more general set

of line-shapes and estimate the systematic errors incurred if strictly Lorentzian line

shapes are assumed. In section 2.2, we use the more complete line shapes to extract

absolute optical transition frequencies from new experimental 6,7Li data and quantify

errors associated with incomplete line shapes. Finally, in section 2.3, we use our new

measurement of the 6,7Li D line isotope shift to extract the relative 6,7Li difference

in mean square nuclear charge radius. The unresolvable hyperfine structure in the
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D2 lines of hydrogen [33], lithium [3,4], potassium [34], francium [35], singly-ionized

beryllium [36], magnesium [37] and excited to further excited transitions such as

the H 2s-4p [38] are additional examples where interference modified Lorentzian

line shapes are expected.

2.1 Dipole Scattering line shape

We begin with a derivation of the corrected line shape, including quantum

interference terms, using the Kramers-Heisenberg formula [39] which describes the

differential scattering rate of light incident on an atom initially in the state |i〉 and

ending in the state |f〉. It can be derived from Fermi’s golden rule [40]

dRi→f

dΩs

=
2π

~
|Mfi|2 ρs, (2.1)

where ~ is Plank’s constant(h) divided by 2π and ρs is the density of scattered

photon states into a solid angle dΩs along the scattering direction ks. The scattering

matrix elementMfi is calculated to second order in the electric dipole coupling. The

scattering matrix element depends on the frequency, wavevector and polarization of

the incident light (ωL,kL, ǫ̂L) and scattered light (ωs,ks, ǫ̂s). The resulting scattering

rate is:

dRi→f

dΩs

=
πE2

Lω
3
s

h3c3ǫ0

∣

∣

∣

∣

∣

∑

j

(ǫ̂∗s ·Dfj) (Dji · ǫ̂L)
ωji − ωL − iΓj/2

∣

∣

∣

∣

∣

2

(2.2)

where c is the speed of light, ǫ0 is the permittivity of free space, and EL is the

amplitude of the electric field of the incident light. The sum is over excited inter-
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mediate states |j〉 with transition frequencies ωji and atomic dipole matrix elements

Dji = 〈j|er|i〉. Here e is the electron charge and r is the position operator of the

valence electron. The finite lifetime of the excited states |j〉 are accounted for [39] by

including the imaginary part iΓj/2 in the transition frequency ωji
1. Here Γj is the

inverse lifetime (or full width half maximum for an isolated Lorentzian line) of |j〉.

Equation 2.2, valid in the low excitation intensity limit, does not include multiple

scattering effects like optical pumping. Additionally, we make the rotating wave

approximation, which is appropriate for near resonant excitation. While Eq. 2.2 is a

Lorentzian distribution if only one term of the sum is considered, since the sum over

intermediate states is inside the square, one can see that interference from different

excited states |j〉 is possible.

For a concrete experimental comparison, we restrict our analysis to the case

where states |i〉 and |f〉 are hyperfine states of a single electronic ground state with

electronic angular momentum J , and the intermediate hyperfine states |j〉 belong to

a single excited electronic state with angular momentum J ′. The states are labeled

by their total angular momentum and z-projection of angular momentum |Fi,mi〉,

|Ff ,mf〉, and |F ′,m′〉.

One can evaluate the atom field coupling matrix element by repeatedly apply-

ing the Wigner-Eckhart theorem. The reduced matrix elements can be written in

1One may consider whether the interference effects described in this paper could also modify the
simple replacement ωji → ωji+iΓj/2 when accounting for the coupling to the continuum. However,
in the cases considered here (a single electronic state split by fine and hyperfine structure), the
effect of interference disappears when integrated over all solid angle. Since the inclusion of Γj

results from summing the coupling to the continuum over all solid angle, it is probable that the
addition of iΓj/2 correctly accounts for the continuum, although a more detailed calculation would
be needed to confirm this. Empirically, the line shapes presented here well fit the observed data
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terms of the electronic excited state linewidth Γ and a reference intensity I0 (see 2.4).

(For a closed transition such as the Li 2s-2p transitions considered here, Γ = Γj.)

This gives

dRi→f

dΩs

=
3

8π

I

I0

(

Γ

2

)3
∣

∣

∣

∣

∣

∑

F ′m′

(ǫ̂s ·AF ′m′

Ffmf
) (AF ′m′

Fimi
· ǫ̂L)

∆F ′

Fi
+ iΓ/2

∣

∣

∣

∣

∣

2

. (2.3)

Here ∆F ′

Fi
= ωL − ωF ′Fi

, and AF ′m′

Ffmf
are the normalized dipole matrix elements

containing all the angular dependence of the atomic dipole. The explicit form for

AF ′m′

Fimi
is given in 2.4.

Since the denominator in Eq. 2.3 is independent of m′, we can sum the nu-

merator over m′. Defining the function

CF ′

i→f (ǫ̂s, ǫ̂L) =
∑

m′

(ǫ̂s ·AF ′m′

Ffmf
)(AF ′m′

Fimi
· ǫ̂L), (2.4)

we have

dRi→f

dΩs

=
3

8π

I

I0

(

Γ

2

)3
∣

∣

∣

∣

∣

∑

F ′

CF ′

i→f (ǫ̂s, ǫ̂L)

∆F ′

Fi
+ iΓ/2

∣

∣

∣

∣

∣

2

, (2.5)

where CF ′

i→f (ǫ̂s, ǫ̂L) depends on the initial and final state quantum numbers Fi, mi,

Ff and mf .

Equation 2.5 describes the differential scattering rate of light into solid angle

dΩs (along ks) with polarization ǫ̂s for atoms starting in state |Fi,mi〉 and ending

in |Ff ,mf〉. In a typical spectroscopy experiment, the final scattering state is unre-

solved, so the scattering rate RFimi→Ffmf
is summed over final states Ff and mf . To

further simplify the discussion, we assume the detection is polarization insensitive
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and sum over the two scattered polarizations ǫ̂s ⊥ ks for a given detection direction

ks. If, in addition, we assume an unpolarized atomic sample, we must average over

all initial mi. Summing and evaluating the square in Eq. 2.5, gives rise to sums of

Lorentzian components and cross-terms

dRFi
(ǫ̂L)

dΩs

=
1

4π

I

I0

(

Γ

2

)3
(

∑

F ′

f(ks, ǫ̂L, Fi, F
′)

(∆F ′

Fi
)2 + (Γ/2)2

+ (2.6)

∑

F ′ 6=F ′′

2Re

[

g(ks, ǫ̂L, Fi, F
′, F ′′)

(∆F ′

Fi
+ iΓ/2)(∆F ′′

Fi
− iΓ/2)

]

)

,

where the line strengths f(ks, ǫ̂L, Fi, F
′) and cross-term strengths g(ks, ǫ̂L, Fi, F

′, F ′′)

for a particular laser polarization and detected direction are given by

f(ks, ǫ̂L, Fi, F
′) =

3

2gT

∑

s,miFfmf

∣

∣

∣CF ′

i→f (ǫ̂s, ǫ̂L)
∣

∣

∣

2

g(ks, ǫ̂L, Fi, F
′, F ′′) =

3

2gT

∑

s,miFfmf

CF ′

i→f (ǫ̂s, ǫ̂L)
[

CF ′′

i→f (ǫ̂s, ǫ̂L)
]∗
, (2.7)

where gT =
∑

i(2Fi+1) is the total number of Zeeman states in the ground electronic

state, assumed here to be uniformly thermally populated. When the excited state

hyperfine splitting is not well resolved, ∆F ′

Fi
−∆F ′′

Fi
≡ ∆F ′′

F ′ ≈ Γ, then the cross-terms

are not necessarily negligible, as implicitly assumed in the latter portion of [41].

2.1.1 Angular dependence

Dipole scattering of light follows a dipole radiation pattern [42], which for lin-

early polarized light depends only on the angle γ between excitation laser polariza-
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Figure 2.1: Coordinate system: The excitation laser propagates along x̂, so that
the linear polarization direction ǫ̂L lies in the ŷ-ẑ plane, parameterized by θL. The
detection direction ks lies in the x̂-ẑ plane and is parameterized by θs. In the
apparatus light collection is centered along ẑ with an angular spread determined by
the numerical aperture of the imaging system. The atomic beam is along ŷ.

tion ǫL and the fluorescence collection direction ks. The angular dependence of the

dipole scattering is proportional to cos2 γ, and it can always be written as a sum of

a spherically symmetric component and a dipole component (Atot+BP2(cos γ))/4π.

Here Atot is the total line strength integrated over all solid angle, P2(x) = (3x2−1)/2

is the second Legendre polynomial (which has zero integral over solid angle), and

B characterizes the amplitude of the angular dependence. By construction f con-

tains all the scattering linestrength, the integral of the cross-terms g, proportional

to P2(cos γ), over solid angle vanishes. A consequence of this angular dependence

is that f(ks, ǫ̂L, Fi, F
′) does not provide the correct ratio of line strengths of the

Fi → F ′ transitions for an arbitrary choice of detection direction, γ, since B/Atot

is not the same for different F ′. As we will show, however, there exist “magic”

orientations where f does give line strengths consistent with resolved transitions.

More importantly, at these magic conditions the cross-terms g vanish, giving rise to

purely Lorentzian line shapes.
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We parameterize γ in terms of angles relevant to an experimental geometry.

The wave vectors k̂L and k̂s define a plane which we take to be the x̂-ẑ plane.

Without loss of generality we can take k̂L along x̂, so that ǫ̂L lies in the ŷ-ẑ plane,

making an angle θL with respect to ẑ, and k̂s lies in the x̂-ẑ plane making an angle θs

with respect to ẑ, see Fig. 2.1. The scattering is then parameterized by the linearly

independent angles θs and θL; f(ks, ǫ̂L, Fi, F
′) = f(θs, θL, Fi, F

′) and similarly for g

2. The spherical harmonic addition theorem [43] can be used to relate P2(cos γ) to

θs and θL:

P2(cos γ) =
1

2

(

3 cos2 θs cos
2 θL − 1

)

. (2.8)

The general form for f and g is then

f(θs, θL, F, F
′) = AF ′

F +
BF ′

F

2

(

3 cos2 θs cos
2 θL − 1

)

g(θs, θL, F, F
′, F ′′) =

CF ′F ′′

F

2

(

3 cos2 θs cos
2 θL − 1

)

, (2.9)

where AF ′

F , BF ′

F and CF ′F ′′

F are constants determined by evaluating Eq.2.7. When

cos θs cos θL = 1/
√
3, g vanishes and f correctly gives the line strength ratios. This

can occur for a range of geometries. In particular, when the detection ks is or-

thogonal to the excitation kL (θL = γ, θs = 0) as in the apparatus [3, 4], then

θL = arccos( 1√
3
) ≡ θM ≈ 54.73o is the so called “magic” angle. Similar magic an-

gle effects occur in quantum beat spectroscopy, which could be viewed as a time

domain analogue of the effect considered here, where the excitation pulse width

2Alternatively, ǫ̂L could be fixed along ẑ, and ks could be characterized by polar angles (θ′s, φ
′

s).
This would have the advantage that θ′s = γ, but it is more convenient for a fixed scattering
geometry to have θL be one of the free parameters.
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replaces the natural width [12, 44]. Explicit expressions for f(θL, Fi → F ′) and

g(θL, Fi → F ′, Fi → F ′′) are evaluated for lithium with the collection along the ẑ

direction in 2.5.

2.1.2 Line shape impact on extracted frequencies

We now give a qualitative discussion of the effect of the additional interference

terms on Doppler-free, or nearly free, spectra. We choose 6,7Li as an example because

of its fundamentally unresolvable structure (∆F ′′

F ′ /Γ ≈ 1) and because it allows for

direct comparison to experimental data. Fig 2.2 illustrates two primary effects.

First, the maxima of the total line shape are shifted relative to what is predicted by

a simple sum of Lorentzian distributions, which can lead to errors in extracting the

weighted line center. Second, peaks may vary in intensity and prominence depending

on the polarization angle of the laser. For example in Fig 2.2, θL = 0, the amplitude

of the F = 2 → F ′ = 3 component is reduced with respect to the F = 2 → F ′ = 2

component.

Line centers are typically determined by fitting a sum of Lorentzian functions

to the observed spectral profile. We characterize the effect of cross-terms on line cen-

ters (both of individual hyperfine components and of centers of gravity of composite

features) by taking a Doppler-free line shape given by Eq. 2.7 with cross-terms and

fitting to it using only Lorentzian functions (amplitude, center, offset, linewidth).

We then compare the centers given by Eq. 2.7 to the centers extracted from the fit

to estimate the effect of the cross-terms on measured quantities. From Eq. 2.9 (with

14



-20 -10 0 10 20

0.000

0.005

0.010

0.015

0.020

0.025

0.030

ΩL

2Π
HMHzL

dR dW
Ha

.u
.L

-1.0 -0.5 0.0 0.5
0.0145

0.01700.0170

Figure 2.2: The scattering rate (or intensity), dR
dΩ

in arbitrary units, of the F = 2 →
F ′ = 1, 2, 3 Doppler-free feature in 7Li with θL = 0. Red: sum of Lorentzians with
polarization independent weights, Blue dashed: sum of cross-terms, Black: sum
of Lorentzians and cross-terms. The laser frequency, ωL/2π, is the offset from the
F = 2 → F ′ = 2 peak in units of MHz. The inset is the F=2 F = 2 → F ′ = 2 peak
enlarged to show the shift in line center.

θL = γ, θs = 0), one can see that the magnitude of the shifts, proportional to the an-

gular dependent terms, has maxima at θL = 0, π/2 and the sign of the effect changes

at θL = θM. This will be experimentally verified in the next section. The size of

the shifts in Li are on the order of 100 kHz to 1 MHz, large enough to completely

overshadow effects associated with Doppler shifts and optical pumping.

To provide an estimate for other transitions not explicitly considered here, we

imagine atoms with the electronic structure of 6Li or 7Li with variable hyperfine

coupling. We consider shifts of individual hyperfine components as the hyperfine

splitting is varied. We intuitively expect that degenerate resonances would not affect

the measured line position. In the opposite limit, ∆F ′′

F ′ /Γ ≫ 1 we also expect the

line positions to be unperturbed. These two limits imply that there must be an

intermediate hyperfine splitting that maximally affects the measured line positions.

We can see in Fig. 2.3 that this happens when ∆F ′′

F ′ /Γ is of order one.
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Figure 2.3: Error in the measured hyperfine splitting (in units of Γ) for a F =
1/2 → F ′ = 1/2, 3/2 transition as a function of the assumed separation when the
theoretically calculated full line shape is fit as the sum of two Lorentzians. The dash
dotted (solid) curve is for laser polarization θL = π/2 (0). The error in the hyperfine
splitting is greatest where the assumed separation is about 1.3 times the natural line
width. The red vertical line indicates the x-position of the actual hyperfine splitting
for 6Li. Its vertical extent shows the range of errors that can occur when the laser
polarization is varied between 0 and π/2.

To get a feel for the apparent shifts of individual components as a function of

separation, we consider a simple analytically solvable line shape consisting of two

Lorentzian profiles with splitting ∆ and equal amplitude. We take line profiles with

and without cross terms and determine the component positions for each as the

zero crossings of their first derivatives. We examine the difference of the position

of the first component in the Lorentzian only profile, xL, and the position of the

corresponding component in the full line profile including cross terms, xF, as a

function of the splitting ∆. In the limit of distantly spaced resonances, ∆/Γ ≫ 1,

the difference in line centers is xF−xL ≃ Γ2/4∆, in agreement with the large splitting

limit described in [32]. These shifts at large separation have recently been calculated

at the 1 kHz level in meta-stable He [45] and in principle occur in muonic hydrogen,

although at ≈100 MHz they are much too small to account for the discrepancy
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between proton charge radius values [2, 46]. In alkalis with resolvable hyperfine

structure, i.e. 87Rb and 133Cs, these shifts may also appear at the ≈10 kHz level

which, while much smaller than in unresolvable lines is on the order of the reported

experimental uncertainties [47,48]. This zero intensity shift may also arise from fine

structure interference, and for Li is ≈900 Hz (below our experimental uncertainty).

These shifts at large separation may be particularly insidious because they would

only add a weak linear dependance to the background without deforming the line

shape as in the case of unresolvable features.
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Figure 2.4: Error in the measured center of gravity (in units of Γ) for a F = 2 → F ′ =
1, 2, 3 transition as a function of the hyperfine A constant when the theoretically
calculated full line shape is fit as a sum of three Lorentzians. The dash dotted
(solid) curve is for laser polarization θL = π/2 (0). The red vertical line indicates
the x-position of the actual A constant for 7Li. Its vertical extent shows the range
of errors that can occur when the laser polarization is varied between 0 and π/2.

We also investigate the dependence of an unresolved feature’s extracted center

of gravity on hyperfine separation as shown in Fig. 2.4. Using the same procedure,

we generate the full line shape, now with three components (F=2 → F’=1,2,3). We

vary the splitting via the magnetic dipole constant, A3/2, while fixing the electric

quadrupole constant at the value appropriate for 7Li. The same qualitative behavior
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occurs, producing extracted center of gravity shifts which are largest when |A3/2|(∝

∆F ′′

F ′ ) is of order Γ. There is now an additional feature, since there are two resonances

that can shift relative to each other, the sign of the shift can change for a given laser

polarization.

2.2 Application to 6,7Li Experimental Data

Having discussed the nature and theoretical implications of quantum interfer-

ence effects on the observed line shape, we apply our theoretical results to exper-

imentally measured spectra of the lithium D lines, see Fig. 2.5 for complete level

structure, taken at multiple laser polarization angles. The data that this analysis

was based upon was taken in the NIST spectroscopy group [3, 49]. Our additional

analysis provides a determination of the absolute transition frequencies of the 6,7Li

D2 lines. These new data provide an improved measure of the 6,7Li excited state

fine structure, 2s-2p isotope shift, and the isotopic difference in the 2P fine-structure

splitting, the splitting isotope shift (SIS). The SIS provides the best point of com-

parison between theory and experiment. We propose that the interference effect we

describe here is the root cause for some disagreements between previous measure-

ments in Li [14–17] and for the lack of internal consistency of the frequency comb

based measurement in K [34].

A simplified schematic view of the spectroscopy group’s apparatus [3, 4, 49] is

shown in Fig. 2.6. Light from a single frequency diode laser intersects a collimated

thermal beam of lithium atoms at a right angle. A half wave plate controls the angle
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Figure 2.5: Relevant 6,7Li level structure. The hyperfine components for the D2
transition have natural widths of order the hyperfine splitting. IS (isotope shift)

of polarization of the light. The laser beam is retroreflected by a precise corner cube

that provides a return beam anti parallel to better than 1.45 µrad. The return beam

is chopped by a mechanical chopper. The spectrum is observed by scanning the laser

frequency over a lithium component and recording the fluorescence along an axis

approximately orthogonal to both the laser and atomic beams. The frequency of

the spectroscopy laser is referenced to a single tooth of an optical frequency comb

which is in turn referenced to a Cesium atomic clock. To minimize stray light

and magnetic field, the interaction region is surrounded by a three level mu metal

shield and the atomic beam florescence is imaged on a photocathode through 670

nm interference filters. Figure 2.7, taken from [3], shows typical data for both the

F=2→ F’=1,2,3 D2 feature as well as the F=1→ F’=1 and 2 D1 features. When

fit with Voigt functions the D2 features show significant residuals away from the

empirically determined magic angle. This effect is not evident in any of the D1
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Figure 2.6: Simplified schematic diagram of the NIST spectroscopy group’s experi-
mental apparatus. The interaction region is surrounded by three layers of mu-metal
(not shown) to minimize the magnetic field. The coordinate system shown is con-
sistent with Fig.2.1

features.

Doppler free spectra of the Li D lines were taken at different laser polarization

angles θL and fit using the line shapes presented here convolved with a Gaussian

to account for the residual Doppler broadening present in the experiment, typically

≈ 4 MHz. For resolved resonance features without a polarization dependence, such

as the D1 lines, the independent fitting parameters are the line center, the overall

amplitude, a constant background offset, the natural width, and the Doppler width.

The polarization angle of any given data set was fixed. For the unresolved fluores-

cence features, we limited the number of fitting parameters by fixing the excited state

hyperfine splittings to values calculated in [50] and in agreement with [51]. In addi-

tion we fixed the ratio of the unresolved amplitudes to values given by Eq. 2.9, with

numerical values for AF ′

F , BF ′

F , and CF ′,F ′′

F tabulated in 2.5. A small correction was

made to account for the effect of the finite collection angle of the detector (see 2.6).
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Figure 2.7: Lorentzian only fits to D1 and D2 data. Note the scale of the residuals
is nearly a factor of ten larger on the D2 feature.

2.2.1 Apparent line-strength and frequency variation with θL

One of the most striking features present in the more complete line shapes is

the change in the amount of scattered light with excitation polarization. A single

fit to five spectra at different laser polarization angles demonstrates good overall

agreement, including relative line-strengths. Fig. 2.8 shows the F = 1/2 → F ′ =

1/2, 3/2 D2 feature of 6Li (center, ωL/2π ≈0 MHz) and the F = 2 → F ′ = 1, 2 D1

peaks of 7Li (left and right, ωL/2π ≈ ±50 MHz). The 7Li D1 lines have no angular

dependence (in general no D1 lines have angular dependence). The presence of the

D1 lines enable the single fit to multiple data sets because they allow the effect of

background light levels and laser intensity fluctuations to be compensated for in

multiple spectra taken at different times. The fit to these five data sets used only

one natural width and one (mass scaled) Doppler width.

To demonstrate the apparent transition frequency shifts resulting from analysis
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Figure 2.8: Amplitude of scattered light, proportional to Eq. 2.7, as a function of
laser frequency ωL and laser polarization angle θL. The laser frequency is offset from
the 6Li F = 1/2 ground state by 446 THz (see table 2.1 for optical frequencies). The
gray scale surface is the complete theoretical line shape including cross-terms and
the red points are experimental data taken at θL = 0◦, 25◦, 51◦, 75◦and 90◦. The
central feature is the F = 1/2 → F ′ = 1/2, 3/2 transitions in 6Li while the two
constant amplitude side peaks are the F = 1 → F′ = 1, 2 D1 lines of 7Li.

with an incomplete line shape in measured 7Li D2 data, we fit the same spectra taken

at different laser polarizations and extract the line centers, with and without the

cross-terms. In Fig. 2.9, the red points are line centers fit without cross-terms and

the black points are the same data fit with the full theory. The black points are self

consistent, independent of laser polarization while the red points exhibit a strong

polarization dependence. The fit to the red data is of the form A + BP2(cos θL).

The amplitude of the laser polarization dependent shift is of order 1 MHz. Near the

magic angle θL = θM ≈ 54.7 the Lorentzian fits give the same linecenter as the full

line shape.
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Figure 2.9: Line center of the 7Li F = 1 → F ′ = 0, 1, 2 feature fit from experimen-
tally measured spectra as function of laser polarization angle with respect to the
collection direction. Transition frequencies are offset from the 7Li F=1 ground state
by 446 THz (see table 2.1 for optical frequencies). The black (red) data points were
extracted by fitting the data to functions with (without) interference cross-terms.
Error bars represent the uncertainties given in table 2.1.

2.2.2 Discussion of Systematics

Angular offset: To accurately extract line positions at all polarizations, the

angle θL between the laser polarization and the detection optics must be controlled

and understood. Using a waveplate, θL could only be measured up to a small

unknown offset angle θ0. After our theoretical analysis indicated that the offset

angle was an important source of systematics, the spectroscopists made an improved

estimate of θ0 [3, 4] by geometric measurements made when they disassembled the

apparatus, finding θ0 = −0.7(10) degrees.

As a consistency check, we compared the well known ground state hyperfine

intervals (GHI) to GHI values we measure by subtracting optical frequencies at

multiple angles θL. We note that for small offsets θ0, the line shifts near θL = 0, π/2

are insensitive to first order in θ0 because the derivative of the angular dependence (∝

sin θL cos θL|θL=γ, θs=0) vanishes. This is of practical utility since data fit at θL =
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0, π/2 with the complete line shape including cross-terms should be accurate as well

as equal to each other. We found that while the GHI’s derived from measurements

of the resolved D1 lines [3, 4] were consistent with known values [52], the GHI’s

derived from the unresolved D2 lines at θL = 0, π/2 differed from the known values

by as much as 30 kHz. This disagreement indicates the importance of intensity

dependent shifts on the fitted line shapes when cross-terms are significant.

Intensity dependent shifts: For isolated lines, the fitted amplitudes are taken

to be free parameters and the fitted line centers are independent of fitted amplitude.

As a consequence, the centers of the resolved lines are not sensitive to intensity de-

pendent effects like optical pumping that modify the line ratios from their theoret-

ical values. For unresolvable lines, however, the fitted line positions depend on the

fixed relative values of f and g used in the fit. The unresolvable lines are therefore

sensitive to intensity dependent effects. To explore the impact of excitation laser

intensity on extracted line centers, a subset of spectra were measured at multiple

laser powers and we performed a full optical Bloch equation (OBE) simulation of

the scattering, including all the ground and excited Zeeman levels [53, 54]. We nu-

merically solve the OBE with a time-dependent Rabi frequency proportional to the

Gaussian intensity profile seen by the atom as it transverses the excitation laser

beam. We then generate a Doppler free line shape by calculating the directional

photon scattering rates derived from the OBE, as a function of laser frequency. At

the intensities used here and in [3, 4], we find these intensity dependent effects are

small but important (≈ 20 kHz). However, we suggest that larger previously re-

ported uncertainties (≈ 100 kHz) in 39,41K [34] ascribed to optical pumping could
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likely be removed by using a line shape that includes crossterms.

To quantitatively account for intensity dependent light shifts and optical

pumping effects on the line positions, we generate numerical OBE data at sev-

eral different intensities and fit the numerical data using the analytically calculated

line strengths f and g appropriate for low intensity. (We confirm that in the low

intensity limit, the numerical data matches both the expected line positions and

line strengths.) We then determine the linear intensity-dependent line shifts from

this numerical data, and apply this shift to the measured line positions 3. The

laser intensities were determined experimentally from the relative line strengths of

the resolved features taken at different laser intensities. This estimate of the inten-

sity is somewhat lower than estimates based on measured beam waists and laser

power (typically 3.5 mm and 3 µW respectively) but removes uncertainty associ-

ated with secondary measurements of beam waist and power. For most features,

the shift was of order a few kHz/µW, but for the 7Li D2 F = 1 → F ′ = 0, 1, 2

transitions it was as large as 6.7 kHz/µW (for our beam waist). The uncertainty

in this correction was set equal to the value of the applied shift and represents one

of the largest sources of uncertainty in the experiment. For the unresolvable lines

considered here, we find that optical pumping can have a larger systematic effect

than the light shifts alone. Future experiments should be careful to work at low

intensities to avoid these shifts on unresolvable lines.

Doppler correction: The correction of the first order Doppler effect was deter-

3Another approach might be to fit the numerical data with free line weights and use the deter-
mined intensity dependent line weight ratios in the experimental fits. This provides a large number
of free parameters, however, and the fits to numerical data were unstable in some cases.
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mined from simultaneously recorded forward and reverse beam signals using a corner

cube to retro-reflect the excitation laser beam. For the polarization independent D1

lines [3,4] the systematic contribution to the uncertainty of this correction is 1.4 kHz

due to imperfections of the corner cube retroreflector. Because the retroreflector

does not preserve the laser polarization, the Doppler correction for the polarization

sensitive unresolved D2 lines could not be determined using the corner cube, and

is taken instead from a linear fit of correction versus time for resolved components

measured on the same day. This is necessary because the laser alignment drifts

slightly over hours of data taking, and results in a larger Doppler uncertainty of

about 10 kHz.

2.2.3 Results, absolute transition frequencies

Including the Doppler corrections and the power dependent shifts, the GHI

values at θL = 0, π/2 are in agreement with each other and the known values [52] (see

Figs. 2.10 and 2.11). The value of θ0 that minimizes the sin θL cos θL angular de-

pendence is consistent with the geometrically determined value. The final reported

line positions, shown in table 2.1, represent an average over θL. A representative

uncertainty budget is given in table 2.2.

Measurements at multiple laser polarizations analyzed with the correct line

shape provide an important tool to independently estimate systematic errors asso-

ciated with the offset angle θ0. For example, power-dependent shifts such as optical

pumping can partially cancel the effect of θ0 on the line shape and GHI. Minimizing
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Figure 2.10: 7Li ground state hyperfine interval (F = 1 → F = 2) as function of
laser polarization angle. The measured GHI was determined by subtracting absolute
measurements of the excited state F = 1 → F ′ = 0, 1, 2 and F = 2 → F ′ = 1, 2, 3
features including Doppler and intensity dependent corrections (see the text).
The red (black, blue) data is for an angular offset of −3.7◦ (−0.7◦,2.3◦). The
red (black,blue) curve is of the form Aθ0 sin(θ) cos(θ) + GHI0, where GHI0 is the
value measured in [52] and Aθ0 is fit to the data. The triangular point is data
from [3, 4] re-analyzed using the procedure described in the present work. Error
bars represent the uncertainties given in table 2.1.

residuals and comparing the GHI near θm can still lead to small systematic shifts in

the line positions. These effects are more prominent in 7Li than 6Li, and our new

determinations of the absolute cog transition frequencies differ from our previous

results [3, 4], by 83 kHz and 19 kHz, respectively. From the absolute frequencies

the excited state fine structure splitting (Table 2.3), as well as the 2s-2p IS and the

SIS (Table 2.4) are calculated and compared to the existing literature. As discussed

in [24], both quantum electrodynamic and nuclear size corrections largely cancel

when calculating the SIS. It is, therefore, the most reliable result of theory and has

been suggested as a benchmark for testing the internal consistency of experimental

data. Previously reported results have disagreed with each other and with theory

far beyond their reported uncertainties (Table 2.4). Our current result resolves these

discrepancies and is in full agreement with the most recent theoretical result [50].
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Figure 2.11: 6Li ground state hyperfine interval (F = 1/2 → F = 3/2) as function of
laser polarization angle. The measured GHI was determined by subtracting absolute
measurements of the excited state F = 1/2 → F ′ = 1/2, 3/2 and F = 3/2 → F ′ =
1/2, 3/2, 5/2 features. The solid line is the value measured in [52]. Error bars
represent the uncertainties given in table 2.1.

This supports the theory that underlies the use of D-line IS’s to determine mean

square nuclear charge radii for short lived Li isotopes.

2.3 Extraction of relative nuclear charge radii

Finally, we calculate the difference in the 6,7Li nuclear charge radii using the

measured D2 isotope shifts reported in Table 2.4 and the D1 shifts reported in [3,

4]. This serves as a point of comparison amongst different types of measurements

including elastic electron scattering [57], optical isotope shift measurements on the

3S1 →3 P0,1,2 transition in Li+ [58], and optical isotope shift measurements of the 2s-

3s, D1, and D2 transitions in neutral Li [14–22] as shown in Fig. 2.12. We calculate

the difference in nuclear charge radius using Eq. (40) of [13],

δ〈r2c〉(7,6Li) = 〈r2c〉(7Li)− 〈r2c〉(6Li) =
(Emeas − E0)

C0

(2.10)
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Table 2.1: Measured frequencies of hyperfine components and centers of grav-
ity (cog) of the 6,7Li D2 lines.

Line F F ′ Frequency (MHz)
6Li D2 3/2 5/2 446799571.067(21)

3/2 3/2 446799573.962(21)
3/2 1/2 446799575.673(21)
1/2 3/2 446799802.172(16)
1/2 1/2 446799803.883(16)

6Li D2 cog 446799648.870(15)
7Li D2 2 3 446809874.895(20)

2 2 446809884.357(20)
2 1 446809890.170(20)
1 2 446810687.873(25)
1 1 446810693.687(25)
1 0 446810696.445(25)

7Li D2 cog 446810183.163(16)

Table 2.2: Representative uncertainty budget (kHz).

Uncertainty 6Li D2
Component F = 3/2 → F ′ = 5/2, 3/2, 1/2
Statistical variation 4
First order Doppler effect 10
Estimate of θm 3
Laser power dependent shifts4 17
Laser intensity variation 3
Hyperfine constant inaccuracy 2
Imaging system imperfections 2
Magnetic field shift < 1
Fine structure interference < 1
Reference frequency 0.089

Total 21
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Table 2.3: Excited state fine-structure intervals.

Interval5 Splitting (MHz) Reference
6Li 2p 2P fs 10052.779(17) this work

10052.799(22) Sansonetti [3, 4]
10052.76(22) Brog [55]
10052.044(91) Walls [16]
10052.964(50) Noble [17]
10052.862(41) Das [18]
10050.932(8) 6 Puchalski(theory) [50]

7Li 2p 2P fs 10053.310(17) this work
10053.393(21) Sansonetti [3, 4]
10053.184(58) Orth [56]
10052.37(11) Walls [16]
10053.119(58) Noble [17]
10051.999(41) Das [18]
10051.477(8) Puchalski(theory) [50]

Table 2.4: 7,6Li isotope shifts.

Transition Shift (MHz) Reference
D2 IS 10534.293(22) this work

10534.357(29) Sansonetti [3, 4]
10533.59(14) Walls [16]
10534.194(104) Noble [17]
10533.352(68) Das [18]

SIS7 0.531(24) this work

0.594(30) Sansonetti [3, 4]
-0.67(14) Walls [16]
0.155(60) Noble [17]
-0.863(79) Das [18]
0.396(9) Yan(theory) [24]
0.5447(1) Puchalski(theory) [50]
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where 〈r2c〉(iLi) is the mean square nuclear charge radius of the ith isotope in fm2,

Emeas is the measured isotope shift in MHz, E0 = −10532.5682(−10532.0237) MHz

is the theoretically calculated isotope shift excluding the finite size corrections for

the D2(D1) transitions [59] and C0 = −2.4658 MHz/fm2 [59].
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Figure 2.12: Measurements of the difference in mean square charge radius between
7Li and 6Li. The points are grouped by type of measurement and are then ordered
chronologically within different types of measurement. The solid black line is the
weighted average of the results of references [23, 57, 58], along with the D1 value
from [3,4] and the D2 value from this work. Error bars for the present work represent
the uncertainties given in table 2.4, all other error bars represent the uncertainties
given in the original references.

The values of the difference in mean square nuclear charge radius are

−0.705(3) fm2 for the D1 and −0.700(9) fm2 for the D2 lines. These values are

self consistent and have the smallest uncertainties yet reported. They bring the D-
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line measurements into full agreement with the best values from electron scattering

and optical IS measurements on 2s-3s and 3S1 →3 P0,1,2 transitions in Li and Li+

respectively.

2.4 Calculation of the reduced matrix element

Expressions for the normalized dipole matrix elements: The vector components

of A are easiest to describe in the spherical vector basis Aq appropriate for σ+, π

and σ− light, where

A1 = −(Ax + iAy)/
√
2

A0 = Az

A−1 = (Ax − iAy)/
√
2. (2.11)

Using the Wigner-Eckart theorem, the dipole matrix elements are given in terms of

reduced matrix elements as

(DF ′m′

Fm )q =
〈F ′||D||F 〉√

2F ′ + 1
〈Fm; 1q|F ′m′〉, (2.12)

where 〈Fm; 1q|F ′m′〉 is the Clebsch-Gordan coefficient for adding |F,m〉 to |1, q〉 to

get |F ′,m′〉. Under the assumption that the hyperfine interaction does not modify

the electronic structure of the state, the F -reduced matrix elements can be written
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in terms of J-reduced elements

〈F ′||D||F 〉 = 〈J ′||D||J〉
√

fF ′

F , (2.13)

where the reduced oscillator strength fF ′

F for the F -F ′ transition can be written in

terms of Wigner 6-j symbols:

√

fF ′

F = (−1)F+I+1+J ′
√
2F + 1

√
2F ′ + 1















J ′ J 1

F F ′ I















. (2.14)

Defining the components of the matrix elements (AF ′m′

Fm )q for each J → J ′ transition

(AF ′m′

Fm )q =

√
2J ′ + 1√
2F ′ + 1

〈Fm; 1q|F ′m′〉
√

fF ′

F , (2.15)

the dipole matrix elements can be written as

(DF ′m′

Fm )q =
〈J ′||D||J〉√

2J ′ + 1
(AF ′m′

Fm )q . (2.16)

Pulling the reduced matrix element 〈J ′||D||J〉 out of the sum, Eq. 2.2 can be written

in terms of the inverse scattering rate Γ and a saturation intensity I0,

Γ =
1

τ
=

ω3

3πǫ0~c3
|〈J ′||D||J〉|2
(2J ′ + 1)

, (2.17)

and

I0 =
πhcΓ

3λ3
, (2.18)

33



giving Eq. 2.3, where ω and λ are the frequency and wavelength of the transition.

2.5 Tables of lineweights and cross-terms for I = 1/2, 1, 3/2

Calculation of weights f and g: The dipole radiation weights f and g are

calculated using the expression for AF ′m′

Fm (Eq. 2.15) to determine CF ′

i→f (Eq. 2.4),

evaluating the sums in Eq. 2.7 and then comparing to the dipole radiation pattern

Eq. 2.9. Taking ks along ẑ, (i.e. θs = 0), with the two scattered polarizations

ǫ̂s1 = x̂ and ǫ̂s2 = ŷ, and ǫ̂L to lie in the ẑ-ŷ plane as in Fig 2.1, the terms in the

sum are given by

ǫ̂s1 ·AF ′m′

Fm =
−1√
2

(

(AF ′m′

Fm )1 − (AF ′m′

Fm )−1

)

(2.19)

ǫ̂s2 ·AF ′m′

Fm =
i√
2

(

(AF ′m′

Fm )1 + (AF ′m′

Fm )−1

)

(2.20)

ǫ̂L ·AF ′m′

Fm =
i sin θL√

2

(

(AF ′m′

Fm )1 + (AF ′m′

Fm )−1

)

+cos θL

(

AF ′m′

Fm

)

0
. (2.21)

We report line weights and cross-terms for the D2 transitions, 2S1/2 → 2P3/2,

of alkali atoms and hydrogen with I = 1/2, 1, and 3/2 in tables 2.5, 2.6, and 2.7

respectively.

Table 2.5: D2 weights and cross-terms for I = 1/2 applicable to H, 11BeII

F F’ F” AF ′

F BF ′

F CF ′,F”
F

0 1 1/6 -1/12
1 1 2 1/12 1/48 -1/16
1 2 5/12 -7/48
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Table 2.6: D2 weights and cross-terms for I = 1 applicable to 2H and 6Li,28Na

F F’ F” AF ′

F BF ′

F CF ′,F”
F

1/2 1/2 3/2 8/81 0 -4/81
1/2 3/2 10/81 -1/81
3/2 1/2 3/2 1/81 0 2/405
3/2 3/2 5/2 8/81 16/2025 -14/225
3/2 5/2 1/2 1/3 -7/75 -1/90

Table 2.7: D2 weights and cross-terms for I = 3/2 applicable to 7,9,11Li,21,23,34Na,
39,41K and 87Rb, 7,9BeII

F F’ F” AF ′

F BF ′

F CF ′,F”
F

1 0 1 1/24 0 0
1 1 2 5/48 -1/48 -1/32
1 2 0 5/48 0 -1/48
2 1 2 1/48 1/1200 1/160
2 2 3 5/48 0 -7/120
2 3 1 7/24 -7/100 -7/400

Note that there is no angular dependence to the D1 terms, and therefore no

dipole dependence (BF ′

F = CF ′,F ′′

F = 0 for D1). Also note that CF ′,F ′′

F = CF ′′,F ′

F ,

physically this is because scattering through F ′′ is indistinguishable from scattering

through F ′ when the F ′′ and F ′ are overlapped within the natural width.

2.6 Correction for finite numerical aperature

Collection optics correction: If fluorescence is collected over all solid angle

there is no polarization dependent modification to the line shape. The equations

given in the text are valid for light scattered into an infinitesimal solid angle. Here

we find the modification to the angular dependent part of the line weights and

cross-terms due to the finite numerical aperture of the fluorescence collection optics
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assuming that collection efficiency per solid angle is constant. For a given laser

polarization ǫ̂L, we may integrate over the final scattering directions k̂s allowed by

the collection optics (parameterized by θs, φs).

ǫ̂L = sin θL ŷ + cos θL ẑ

k̂s = sin θs cosφs x̂+ sin θs sinφs ŷ + cos θs ẑ

ǫ̂L · k̂s = cos γ (2.22)

Performing the angular integrations over the isotropic part, where dΩs = dφd cos(θs),

we find
¨ 2π,θC

0,0

dΩs = 2π(1− cos θC) ≡ S0. (2.23)

The angle dependent dipole part is scaled by

¨ 2π,θC

0,0

dΩsP2(cos γ) = π cos θC sin2 θCP2(cos θL)

≡ S2P2(cos θL). (2.24)

Here θC is the half angle of the fluorescence collection cone, and we assume that

the detector efficiency is uniform for all solid angle. For determining experimentally

relevant fitting functions, the ratio of the constant and dipole part is important, and

we find that the dipole components are reduced relative to the constant components

as,

S2/S0 = cos θC cos2
(

θC
2

)

. (2.25)
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These scaling factors are included as part of the fitting functions to account for the

numerical aperture of the imaging system. Failure to include these scaling factors

shifts the extracted line centers by ≈ 6 kHz for θC = 26.6o used in this experiment.

2.7 Conclusion

After investigating the Doppler free laser spectroscopy of alkali atoms with

unresolvable hyperfine structure, we find that the effects of light polarization and

quantum interference alter the relative line strengths and quantitatively affect the

extraction of transition frequencies from data, even in the low intensity limit. Opti-

cal pumping effects at finite excitation power can further complicate the line shape,

which we account for numerically. This leads to an improved determination of the

6,7Li D2 line frequencies and splitting isotope shift. This effect may affect several

species for which these complete line shapes will enable the next generation of mea-

surements.
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“There are no two level atoms and Cesium is not one of them.” - W.D.P.

Chapter 3: Excited to excited atomic transitions for laser cooling

Once a resonance as been identified spectroscopically, it is natural to ask how

it may be used to manipulate atoms. In this chapter, we reexamine the light-matter

interaction as a tool to control external motional states, rather than as a high pre-

cision probe for internal states. Specifically, we review an experiment that used the

mechanical effect of light, scattered between two short lived excited states, to cool

and confine Cesium atoms in a Magneto-Optical Trap [7]. This experiment led to

a proposal to use excited state scattering to laser-cool magnetically confined (Anti-

) H [8]. This chapter is organized as follows: we first review basic processes in laser

cooling not only for their intrinsic value and applicability to quantum degenerate

gas production but also so that they may be generalized to guide the interpretation

of experimental results.

Laser cooling in its present state is a broad field applicable to ions, to neu-

tral atoms ( Li [60], Na [61], K [62], Rb [63], Cs [64], Fr [65], Mg [66], Ca [67],

Sr [67], Ba [68], Ra [69], He [70], Ne [71], Ar [72], Kr [72], Xe [73], Cr [74],

Yb [75], Ag [76], Er [77], Cd [78], Hg [79], Dy [80], Tm [81], and Ho [82].), and

increasingly to molecules (SrF [83], YO [84], CH3F [85] ). Conceptually, it has

also grown from Doppler cooling [86, 87] to include, polarization gradient [88–90],
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velocity selective coherent population trapping [91], raman sideband [92–94], blue-

detuned Sisyphus [95], “Pritchard-type” Sisyphus cooling of trapped particles [96],

“Doppleron” [97] and numerous other cooling mechanisms. Despite this diver-

sity, nearly all of the aforementioned processes rely on transitions between a long-

lived ground state and an excited state. Some notable exceptions used an excited

to further excited transitions to control the linewidth of Doppler cooling transi-

tions [98–100] or create lightshifted darkspots allowing laser cooling to Bose-Einstein

condensation [101]. However, useful mechanical effects from excited to further ex-

cited transitions are fairly rare [102]. The motivation for our exploration is manyfold.

From a technical point of view, the development of robust and easy to use diode

and fiber lasers invites experiments that may have previously been too ambitious.

Additionally, we seek a cooling process where the cooling light and atomic flores-

cence are nanometers different, enabling more efficient single atom detection useful

for applications ranging from quantum gas microscopes [103] to atom trap trace

analysis [104]. Finally, new cooling processes may further expand the applicability

of laser cooling to as of yet uncooled atoms, ions, and molecules.

3.1 Traditional Laser Cooling

3.1.1 Dragged atoms and the optical Bloch equations

The general approach is to treat the atom-light interaction quantum mechan-

ically (at least semiclassically) and treat the external degrees of freedom classically.

This is justified if a single atomic wavepacket satisfies the Heisenberg inequality,
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∆~R∆~P ≥ ~, which can be fulfilled if the spread in position is small compared to a

wavelength of light (∆~R ≪ λL) and if spread in momentum is small compared to the

natural linewidth,(∆~P ≪ MλLΓ). The assumption ∆~R ≈ h/
√
MatomkBT ≪ λL,

remains valid for heavy Alkali atoms into the 100µK range, however, one must be

more careful when considering H or Li. When an atom satisfies these conditions the

external coordinates maybe treated as classical parameters and the internal state

response can be calculated. This is the dragged atom approximation.

In the following, we introduce the Optical Bloch Equations (OBE) to de-

scribe quantum mechanical internal state evolution and calculate relevant observ-

ables, namely the cooling (velocity damping) force and the momentum diffusion

constant. The atomic Hamiltonian is modeled as a free particle with a single ex-

cited state HA = ~ω0|e〉〈e|. The atom scatters light via electric dipole interactions

VA,L = −~d · ~E, and the electric field of the laser is ~E(~R) = ~E0(~R)cos(ωLt + φ(~R))

where the dipole operator is ~d = d~ǫz(|e〉〈g| + |g〉〈e|) and the laser frequency is ωL.

We define the Rabi frequency, Ω(~R) = d~ǫz · ~E0(~R)/~, that describes the coupling

strength of the atom to the driving field. Making the transformation to the frame

“rotating” with the laser, ρ′ge = ρgee
i(ωLt) and ρ′eg = ρege

−i(ωLt), the Hamiltonian

becomes time independent. We define the “detuning” as δ = ωL − ω0. We can now

write the simplified atom field in matrix form.

H = ~









0 Ω(~R)
2
e−iφ(~R)

Ω(~R)
2
eiφ(

~R) δ









(3.1)
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Thus far we have stated the Rabi problem, however, we must include the

natural width to describe irreversible spontaneous scattering events necessary for

cooling. This can be done phenomenologically using the optical Bloch equations

where atomic coherences damp at a rate of Γ/2 and populations damp at a rate

of Γ. The full equation of motion for the atomic density matrix has a conservative

Hamiltonian evolution, the first term, and dissipative Liouvillian evolution, the last

three terms.

~ρ̇(t) = −i[H, ρ]− ~Γspon

2
(c†cρ+ ρc†c− 2cρc†) (3.2)

Here, c = |g〉〈e|, is the so called quantum jump or Lindblad operator that lowers

the internal atomic state. The second and third terms in 3.2 act as if the Hamil-

tonian had an imaginary probability-nonconserving part. These terms, along with

the Hamiltonian, constitute a possible description of photoionization dynamics in-

duced by an optical field. The fourth term effectively restores the probability lost

from the excited states back to the groundstate. Finally, the saturation parame-

ter, s = 2Ω2/Γ2, quantifies how much a transition needs to be driven, Ω, in order

to overcome the loss from spontaneous decay, Γ. Note, the definition of s varies

between references, see [90] vs. [105] for example.

3.1.2 Damping force

The expectation value of the force can be calculated in the standard way as,

〈~F 〉 = −〈∇H〉 = i
~
〈[H, ~p]〉. If we consider only the dissipative part of the force

not derivable from a potential (because cooling cannot arise from a conservative
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Figure 3.1: Damping force: The energy levels of a free particle. The
Doppler shift from the motion of the atom relative to the cooling beams
brings the counter propagating beam near resonance leading to increased
scattering against the atom’s direction of motion.

process), we find that ~Fdiss = ~~kΓρee. This can be understood as the scattered

photon momentum ~k times the scattering rate for excited atoms Γ, times the

population in the excited state ρee (which is calculated from the OBE’s). Since ρee

is, in general, a function of δ we can substitute δ → δ + kv to account for atomic

motion. Such a process is schematically shown in fig. 3.1. For small velocities we

can approximate the force as fz ∝ −αv, which is damping for δ < 0 (red detuning).

3.1.3 Momentum diffusion

The momentum diffusion constant describes the increase in the variance of the

atomic momentum due to interaction with the electromagnetic field. Qualitatively,

it can be interpreted as a random walk in momentum space with step size ~kL

and number of steps proportional to the population in the excited state times Γδt.
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Mathematically, the momentum diffusion coefficient is defined as,

2D =
d

dt
〈(P (t)− 〈P (t)〉)2〉 = 2

ˆ

dτ〈δF (t)δF (t− τ)〉 (3.3)

where δF (t) = F (t) − 〈F (t)〉. The calculation of this two-time quantum mechan-

ical correlation function is aided by the fact that the equations of motion for the

two-time expectation values can be related to the solution for one-time expectation

values. This result is known as the quantum regression theorem [106], see [105]

and [107] for further discussion of the derivation. We briefly note that the momen-

tum diffusion coefficient may be thought to originate from three different physical

processes namely; fluctuations in spontaneous emission, fluctuations in photon ab-

sorbtion, and fluctuations in the dipole force. The last two processes can be nicely

thought of in the nodes and antinodes of a standing wave. At the antinodes, the

intensity is largest and the probability of being kicked due to absorption is highest

but the gradient in the field, proportional to the kick, is near zero. At the nodes

of the light, the situation is reversed. The probability of excitation is low but the

momentum kick will be largest.
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3.1.4 Doppler temperature

We can find the lowest achievable “Doppler” temperature by equating the

momentum diffusion heating rate and cooling rates.

Ėcool = Ėheat (3.4)

~F (v) · ~v =
d

dt

〈(P (t)− 〈P (t)〉)2〉
2M

(3.5)

Now, we can solve for the temperature by equating it to the kinetic energy. This step

is really only justified when a Maxwell-Boltzmann velocity distribution is generated

by the cooling process. However, it is common practice to apply this definition in

order to obtain an order of magnitude estimate even when the velocity distribution

deviates from Maxwellian.

1

2
kBT =

1

2
Mv2 =

D

2α
(3.6)

At low intensity (s≪ 1) and low velocity (δ ≫ kL · v), we can use expressions for α

and D to find the equilibrium temperature as a function of detuning,

kBT = −~Γ

4
(
Γ

2δ
+

2δ

Γ
). (3.7)

The minimum value is at, kBTD = ~Γ
2
. For cesium and sodium the Doppler tem-

peratures are 125µK and 240µK respectively. Remarkably TD is independent of

atomic mass, frequency of the cooling transition, and most other potentially rele-

vant atomic properties. The dependence of the temperature on the scattering rate,
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Figure 3.2: The physical layout and and energy level structure in a stan-
dard MOT. Six laser beams intersect at the field zero of anti-Helmholtz
coils. Beams in the plane of the coils are σ+ polarized w.r.t their prop-
agation direction. The beams along the coil axis are σ− polarized.

Γ, is somewhat easy to anticipate because the model relies on the scattering force

that is intrinsically limited by the lifetime of the excited state. Measurements in

agreement with the above two-level theory have only recently been made [108].

3.1.5 Magneto-optical trapping

We discuss a simple generalization to two-state laser cooling which enables

robust trapping. The principle of the trap was proposed by Dalibard, implemented

in [61] and, consists of applying an external magnetic field gradient to shift the

Zeeman sublevels of the excited state of a 0 − 1 atomic transition in a spatially

dependent way, see the right side of Fig. 3.2. When the transitions are driven by

red detuned spatially uniform circularly polarized light, atoms at the edge of the
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trap are closer to resonance with the desired Zeeman sublevel and therefore, scatter

light more efficiently, pushing the atom to the center of the trap. This spatially

dependent trapping force combined with the velocity dependent damping force from

optical molasses creates a trap that compresses atoms in phase space. The magnetic

field used in this trap is a “spherical quadrupole” made using anti-Helmholtz coils.

It is important to note that the primary atom-field interaction in a MOT is still ~E · ~d

and not from the ~µ · ~B interaction of the atomic magnetic dipole with the magnetic

field. In common experimental conditions, the force from the magnetic field is two

orders of magnitude smaller than the force from the laser field [109]. There are

notable exceptions in the strongly magnetic lanthanides that can Magneto-optically

trap using only one laser beam [77].

3.1.6 SubDoppler cooling

The measurement of “sub-Doppler” temperatures in both single [110] and mul-

tiple photon laser cooling [7](fig. 3.7) makes it clear that a more complete theory

of laser cooling must be constructed. Since the Doppler limit depends only on the

radiative lifetime, 1
Γ
, observation of sub-Doppler temperatures implies that there

must be a longer relevant time scale. This time scale is the optical pumping time

between Zeeman sublevels in the ground state. In fact, the temperature limiting

process may now become scattering a single photon, or less if atoms are optically

pumped into a dark state. The previous assumption of a two-level atom does not

fully describe the behavior of atoms in a standing light field. To capture the dy-
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namics of this motion-coupled optical pumping, we must include both the Zeeman

sublevels and the polarization of the light.

There are several complementary models for sub-Doppler cooling by polariza-

tion gradients [88]. Among them are: F = 1/2 → F ′ = 3/2 atoms with lin ⊥ lin

optical coupling (Sisyphus cooling), F = 1 → F ′ = 2 atoms with σ+ σ− optical

coupling, and F = 1 → F ′ = 1 atoms with σ+ σ− optical coupling (velocity selec-

tive coherent population trapping). The first method is often discussed but rarely

implemented, the second is often implemented but rarely discussed and the third is

rarely discussed or implemented. I will attempt to give a bit of discussion about the

second case.

The general theoretical procedure is to “adiabatically eliminate” the excited

state and write equitations of motion for the effective-groundstate populations. This

process gives the groundstate a finite linewidth which may be spatially dependent.

Adiabatic elimination works when the excited state dynamics are fast compared to

the ground state optical pumping time typically of order Γ.

In the case of the F = 1 → F ′ = 2 atoms with σ+ σ− optical coupling, there

is no intensity dependence to the light field. It is always linearly polarized but, the

direction of the polarization varies by 2π on the order of an optical wavelength. The

coupling of the light field optically pumps the atoms to maintain an equal population

in the mf = ±1 ground states. However, motion in this light field preferentially

populates one of the Zeeman states over the other. When the population in the

Zeeman states is unequal the atom will preferentially scatter light from the counter

propagating beam (due to non-adiabatic optical pumping rather than the Doppler
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Figure 3.3: Cesium excited state laser cooling setup and energy lev-
els. Here, Ωge and Ωee′ are the Rabi frequencies of the laser couplings,
Γ/2π = 5.2 MHz and γ/2π = 1.5 MHz are the linewidths of the 6P3/2 and
8S1/2 states respectively, and ∆1 and δ2 are the 1-photon and 2-photon
detunings.

shift) and be cooled.

In the low intensity limit when the light shift (or optical pumping rate) be-

comes small, cooling eventually fails and this is known as“décrochage” (the atoms

become “unhooked” from the light field).
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3.2 Multi-photon Magneto-optical trapping of Cs

3.2.1 Setup and apparatus

The experimental setup consists of three external cavity diode lasers, which

allow us to access the relevant levels in cesium shown in figure 3.3. The 852 nm

laser is a home-built design (SDL-5411 G1 nominally producing 100 mW) which is

locked 50 MHz above the 4-5 crossover saturated absorption feature of Cesium. The

remaining three lasers are locked to the stabilized 852 nm laser via cavity trans-

fer. The reference cavity (Thorlabs SA 200-7A Fabry Perot cavity FSR 1.5 GHz)

length is first locked to the frequency modulated transmission peak of the 852 nm

laser. The light from each of the remaining lasers (all were Sacher Lasertechnik

Lynx Littrow model TEC 120 nominally producing 80 mW) passes through a fiber

EOM (EO Space PM-0K5-10-PFU-PFU-850-UL-S, PM-05K-10-PFA-PFA-780-UL-

S) which adds a sideband. The frequency modulated transmission peak of the

sideband is then locked to the reference cavity, and the laser frequency sent to the

experiment can be tuned by changing the EOM sideband frequency. The 795 nm

laser was amplified to 500 mW using a home-built cage mounted tapered amplifier

based around an Eagleyard (EYP-TPA-0795-00500-3006-CMT03) gain chip. The

standard MOT beams were free space coupled and retro reflected. The 852 nm

and 795 nm beams were combined on a Semrock dichroic mirror. Fluorescence or

absorption images are recorded with a CCD camera.

The experimental chamber was quite simple, and based around a 3x3x8 cm
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Figure 3.4: Two color damping forces. To the left an two-photon process
and to the right a 2n+ 1 photon process (for the n = 1 case).

glass cell connected to an oven consisting of a needle valve connected to a 1 1/3”

heated(≈ 30C) bellows containing 1g 133Cs metal. Connected to the experimental

cell and oven was a 4-way 2 3/4” conflat cross containing: a window (for probe and

repump beams), an Ion pump (Varian 911-5005), a 2 3/4” T which connected to an

ion gauge, and a gate valve turbo pump-out connection.

3.2.2 Two-color cooling

We may now generalize our understanding of Doppler cooling to include multi-

photon processes observed in our experiment. The first and simplest process is two-

photon Doppler cooling, illustrated on the left of fig. 3.4. Consider motion along

ẑ: a Doppler insensitive ground to excited state excitation in the x̂ − ŷ plane is
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followed by a Doppler selective momentum kick along ẑ against the direction of

motion. The scattering rate, eqn. 3.8, for the two photon process resulting in one

unit of ẑ momentum transfer, scales like the normalized product of single photon

excitation rates times the scattering rate of the highest excited state γ.

R
(2)

î,̂j
=

γ|ΩgeΩee′ |2
16|(∆̃1 − kgêi · v)(δ̃2 − kgêi · v − kee′ ĵ · v)|2

(3.8)

where kge and kee′ are the wavenumbers of the laser beams, ∆̃1 = ∆1 + iΓ/2, and

δ̃2 = δ2 + iγ/2. We define both ground and excited state saturation parameters as,

sge = 2Ω2
ge/Γ

2 and see′ = 2Ω2
ee′/γ

2. From eqn. 3.8 we can verify that for δ2 < 0,

the force along ẑ is damping eg. f
(2)
z ∝ −α(2)vz. This process only works on

the red side of two-photon resonance as in the standard two-level Doppler cooling

theory. Essentially, it is standard Doppler cooling after a first excitation to the

intermediate excited state. Data showing the two-photon cooling process is shown

in red in figure 3.5, where see′=40 is the low intensity excited transition saturation

parameter.

For higher intensity see′ , a new multi-photon process can dominate. In this

process, an initial Doppler insensitive ground transition photon plus 2n Doppler-

sensetive excited transition photons transfer momentum. The three photon version

of this process is shown in right side of figure 3.4. Since the process happens at

high intensity, the excited transition coupling drives Raman processes between the

lower of the two excited states. This effectively adiabatically eliminates the highest

excited state, thus the natural scattering rate for this process is Γ not γ. The
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reduced population in the e’ state adds an additional exciting feature. The cooling

process becomes independent of the sign of δ2 as long as ∆ < 0. This is shown for

see′ = 100, 150, 450 in fig. 3.5. The three photon scattering rate is given by,

R
(3)

î,̂j,−ĵ
=

|Ωee′ |2
4|∆̃1 − kgêi · v − 2kee′ ĵ · v|2

Γ

γ
R

(2)

î,̂j
, (3.9)

with R
(2)

î,̂j
as in Eq. (3.8). In this case, the momentum transfer multiplying this

scattering rate is 2~kee′ because there is a two photon process along ẑ. Again for

∆ < 0, the three photon force becomes damping, f
(3)
z ∝ −α(3)vz.

Figure 3.5: MOT density as a function of two photon detuning. At low saturation
See′ = 40 (red) the cooling works as shown in the left side of figure 3.4. At high
saturation the MOT begins to operate on the blue side of two-photon resonance, and
over a wider range of detunings in agreement with the cooling mechanism described
in the right of figure 3.4.
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Figure 3.6: Two color trapping level diagram.

3.2.3 Two-color trapping

In figure 3.6, we consider the simplest excited state generalization to magneto-

optical trapping using a 0 − 1 − 0 ladder atomic system. Trapping along the axis

with excited to further excited coupling light is an inherently two photon process.

The atom must first absorb the in-plane ground to excited 0− 1 coupling light then

it makes a 1 − 0 transition to the spin 0 excited state. This reversal of angular

momentum between the ground to excited and the excited to further excited state

has the important practical consequence that the polarization of excited to fur-

ther excited state coupling light must be reversed relative to the traditional MOT

setup. However, like standard MOT’s, the trapping is relatively robust against im-

perfections in the excited transition beam polarization and can tolerate errors in the

quarter-waveplate axis by of order 10◦.
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3.2.4 SubDoppler temperatures

Figure 3.7: Temperature as a function of two photon detuning in a multi-photon
MOT. The solid blue data points are along the ẑ direction with e-e’ coupling. The
open red data points are in the x̂− ŷ plane with standard g-e coupling.

Surprisingly, we measure the temperature of the trapped cloud to be below

the Doppler temperature. In a system with two excited states, there are Doppler

temperatures associated with the natural width of each state. In our system

TD 6p3/2 = 125 µK and TD 8s1/2 = 36 µK. We measured the temperature of the

cloud along the vertical and in-plane directions by imaging the atomic cloud after

time of flight expansion and the data are summarized in fig. 3.7. For δ2 > 0 along the

ẑ direction, the observed temperature is below both of the Doppler temperatures.

One explanation of this observation is that the atoms are moving in a two

color nonseparable dissipative optical potential and that subDoppler cooling in the
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x̂ − ŷ plane may be mixed into the ẑ direction by the potential. Another theory

is that the subDoppler temperatures are caused by two-color polarization-gradient

cooling. An extension of [88] from a F=1 to F’=2 system to a F=1 to F’=2 to

F”=1 system is an appealing minimal model of such a process. There are two key

polarization configurations to consider, linear or σ+, σ+ polarization coupling F=1

to F’=2 with σ+, σ+ polarization coupling F’=2 to F”=1. Since the Hilbert space

of this model is still rather large and the choice of states to adiabatically eliminate

is not completely straightforward, we have explored this by numerically solving the

OBE’s and computing the expectation value of the damping force. In addition to a

three photon Doppler force peak in the force vs. velocity curve, we find a smaller

polarization gradient peak at a lower velocity in analogy with what is calculated in

two level systems.

3.3 Excited-state Sisyphus cooling for trapped H(H̄)

While the laser cooling of atomic hydrogen is conceptually simple using the

standard cycling transition, it is technically demanding. The lowest lying optical

transition is still well into the vacuum ultra-violet at 121 nm. This makes traditional

optical components, as simple as high reflectivity mirrors, quite difficult to obtain.

It has been laser cooled but not as a proper MOT. Rather, it was cryogenically

cooled to 1 K, then magnetically trapped, and finally laser cooled with optical

pulses [111]. The concept of laser cooling H for precision measurement is appealing

because there are many theoretical predictions that are orders of magnitude better
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than present measurements. However, even more appealing and challenging is the

precision measurement of H̄ for comparison to H as a probe of matter-antimatter

symmetry. The production of trapped H̄ has recently been achieved [112–114]. It is

far more challenging than the production of H because it is produced in such small

quantities that traditional buffer gas methods would be impractical (and potentially

could cause annihilation). Thus optical cooling is a likely starting point [115–117].

Even with a trapped H̄ sample and a 121 nm source, the phase-space address-

ability of Doppler cooling is extremely limited. In real space, it is desirable to have

the cooling beam overlap the entire magnetic trapping volume, which places power

constraints on the cooling laser. In momentum space, the cooling laser must be

red-detuned of even the hottest, fastest-moving atoms allowing them to be cooled

before the cooling light could be brought to address slightly cooler atoms. It is these

constraints that motivate our proposal to laser cool H(H̄) using excited-to-excited

state transitions.

Figure 3.8: (a): Bare level diagram for the proposed cooling cycle (b):
Relevant dressed-excited state and Doppler selective two photon excita-
tion.
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Our proposal utilizes a relatively general three level system shown in fig. 3.8. In

it, a Doppler-sensitive pulsed two-photon excitation excites atoms into a relatively

long lived excited state |e〉. The |e〉 state is dressed by light that couples to the

short lived |e′〉 state. This creates a dissipative excited state optical lattice, shown

in fig. 3.8-b, where the minima have long lived |e〉 character but the potential energy

peaks have short lived |e′〉 character. This dressed state lattice preferentially scatters

atoms that have climbed up potential hills. After another excitation pulse, the atoms

will be preferentially returned to the bottoms of the potential to re-climb another

hill as in the Sisyphus myth. In atomic H the levels are |g〉 = 1S1/2, |e〉 = 2S1/2,

and |e′〉 = 3P3/2.

Figure 3.9 shows the real space configuration of beams forming the excited-

state dissipative optical lattice; an approximation of the trapping volume, of the

presently used magnetic trap at CERN. This configuration is appealing because

the volume of the optical lattice is nearly the same as the trap volume and the

visible lattice light at 656 nm is easier to generate and manipulate. The excitation

to the lattice is a pulsed two photon excitation. There are two potential schemes

to achieve this excitation, degenerate 243 nm radiation or a two-color (174.8 nm

and 399.5 nm) pulse where one of the photons cannot photo-ionize H from the 2S

state [118] (while this is more technically demanding, it does allow more cooling per

photo-ionization event). Due to the pulse width, the pulsed excitation gives more

range in excitation frequency thus addresses more momentum phase space, while

the excited state lattice makes a larger cooling volume. Every cooling cycle removes

both a ~k · ~v of energy from the excitation, and up to the depth of the e-e’ lattice in
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Figure 3.9: a) Excited state dissipative lattice beams b) Magnetic trap
c & d) Velocity and real space cooling trajectories for trapped H.

kinetic energy.

A typical velocity (and position) cooling trajectory is show in fig 3.9-c(d). Nu-

merical simulation of three dimensional cooling is challenging because H is too light

to justify the dragged atom approximation, allowing the problem to be separated

into a classical kinematics problem and a three-internal state system. However, a

fully quantum mechanical problem is too difficult due the large separation in atomic

and trap scales. A semiclassical stochastic wavefunction approximation enabled suit-

able accuracy, by treating the motion as classical until a quantum jump from the

excited state lattice occurs associated with a change in momentum of the classical

trajectory.

In summary, pulsed excitation plus dissipative lattice cooling scheme could be
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highly efficient. The simulation shows that ≈ 4 104 pulses can cool from ≈ 1 K to

. 10 mK in three dimensions. If limited only excited state lifetimes the full cooling

process could happen as quickly as 80 ms, however, the more likely limitation could

remain available laser power. Even with reduced laser power, the cooling time could

remain faster than Doppler cooling by several orders of magnitude.
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Chapter 4: Experimental Setup and Construction

4.1 Preface to ultracold atom research

The following chapters describe the central effort of this thesis which was the

construction and operation of an experiment to observe nonequilibrium quantum

magnetism using ultracold atoms in optical lattices. The use of ultracold atoms to

study collective quantum mechanical effects has been one of the most productive

lines of research in atomic physics in the last 20 years, with numerous substantial

achievements including Bose-Einstein condensation [119,120], production of a degen-

erate Fermi gas [121], BEC to BCS crossover [122–124], creation of an atomic Mott

insulator in an optical lattice [125] and realization of a spin-orbit coupled BEC [126].

The general trends and long term goals are toward quantum correlated manybody

systems. Current frontiers of this research include progress toward: fractional quan-

tum hall physics via optical flux lattices [127], high spin symmetry [128, 129] and

multi-orbital Kondo lattice model physics [130] enabled by alkali earth atoms, and

the exploration of quantum magnetism utilizing a variety of approaches to generate

long range atomic interactions [131]. In this thesis, we focus on using a dynam-

ically controllable optical lattice to generate nontrivial manybody excited states

and observe their time evolution. By using the optical lattice to tune single par-
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ticle energy scales, we are able to observe super-exchange dominated dynamics in

a 2D system. The following chapters describe the construction of an apparatus for

the production of Bose-Einstein condensates, the setup and characterization of a

dynamically controllable state dependent optical lattice, and finally, the study of

manybody non-equilibrium dynamics.

4.2 Construction overview

In this chapter, we describe the design and construction of a third generation

87Rb condensate machine. The design follows the apparatus described in [132] but,

expands upon the former design by including a primary chamber for experiments

using BEC’s in a state dependent double well optical lattice, as well as, second

science chamber including intra-vacuum optics to trap and image atoms in an optical

lattice with 1 µm diffraction limited resolution. Full time work on this machine

began in January of 2011 although planning of the tweezer chamber preceded this

by a couple of years. As the sole PhD student working on this apparatus, I attempt

to document all aspects of the apparatus for future generations of students and

postdocs.

4.3 Vacuum system

4.3.1 Vacuum Chamber Design

The vacuum system, shown in Fig.4.1 is comprised of two separate vacuum

regions; an oven, and a UHV zone separated by a differential pumping tube sur-
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rounded by Zeeman slower coils. The UHV side of the vacuum contains the main

science chamber, in which experiments in the double well optical lattice take place,

and the tweezer chamber shown in Fig.4.2. The internal optical layout of the tweezer

chamber is shown in Fig.4.3.

The base of the oven is a 1.33” conflat bellows containing 5 g of natural

abundance Rb in a glass ampule, where the glass was broken under vacuum while

being pumped by a turbo pump. In operation, it is heated to 85 ◦C by Aerotech

twisted pair heaters. The bellows is then connected to a 1.33” “T” and 4” nipple

(known for historical reasons as the bright-wall) which is kept at 105◦C to prevent

migration of the Rb metal from the oven to the rest of the system. Inside the bright-

wall there is a standard copper pinch-off tube press fit onto a steel collimation tube

for the atomic beam with a 40:1 aspect ratio. The bright wall is connected to a 4.5”

Kimball Physics spherical octagon, the 4.5” flange of which connects to a 125 l/s

ion pump (Varian VacIon Plus 150 Ion Starcel) of the same dimension to optimize

vacuum conductance. Within the octagon, there is a copper “cold cup” to collect

and sequester diverging parts of the atomic beam. A commercial Uniblitz shutter

is torr-sealed to a Swage-lok mount which, is in turn, connected to another pinch

off tube on the far side of the octagon to mechanically shutter the atomic beam.

The cold cup is thermally contacted to the exterior of the vacuum chamber using

a high current copper feedthrough which has been machined to mount to the cold

cup. It is cooled outside the vacuum chamber by a Peltier cooler to -24◦C. The

hot side of the Peltier is, in turn, water cooled and flushed with dry nitrogen to

reduce condensation/frost. Finally, there is a pneumatic gate valve interlocked to
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Figure 4.1: The bottom left side is the oven while the top right is the UHV.

an ion gauge to separate the oven assembly from the Zeeman slower. A custom 1.5”

long 1.33” diameter conflat bellows flexibly connects the slower to gate valve/oven

setup. The slower is a standard zero-crossing field design that has been used in the

laser cooling group on many apparatuses [133, 134]. Inside the slower field coils is

electronic heater tape used for Baking to UHV and a variable diameter nipple with

1.33”(2.75”) conflat connectors on the oven (main chamber) sides.

The main science chamber used in this experiment is based around a spherical

octagon (Kimbal Physics MFC600-SO 200800) with eight 2.75” ports and two 6”

ports with recessed “Bucket” windows (custom made by UKAEA). The recessed

windows allow the magnetic trapping coils and optics to be placed as close as possible

to the atoms, increasing trapping efficiency and numerical aperture respectively. All
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Figure 4.2: Cross section view of the UHV chambers. The main experi-
mental chamber is on the right while the tweezer chamber is to the left.

windows are anti-reflection coated (by Lattice Electro Optics Inc.) at 780 nm, 810

nm, 1064 nm, and 1550 nm. The UHV chambers are designed to optimize the

functionality of Ti-sub pumps (Agilent P/N 9160050) by placing them closest to

the chambers to maximize vacuum conductance. The filaments are placed inside

stainless steel bellows, so that under normal atmospheric pressure, the filaments

will drop down into the main chamber. This maximizes the surface area that the

sublimated titanium can coat. Hand rotatable baffles on feedthroughs can be rotated

to block the line of sight to the windows and thus prevent the sublimated titanium

from coating the vacuum windows inside the chamber. Under typical experimental

operating conditions, the filaments are retracted out of the optical beam paths.

Past the main chamber, Ti-sub pump is the UHV chamber ion pump (Varian Star
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Figure 4.3: Cross section view of tweezer vacuum chamber.

cell with a speed of 55 l/s), an ion gauge, and a bakeable valve protected from

atmosphere by a copper pinch-off.

4.3.2 Vacuum Chamber Assembly and Bake-out

In order to obtain trapped-atom-lifetimes that are not dominated by collisions

with background gas atoms, we conduct our experiments at ultra-high vacuum in

the 10−10 Torr range. We briefly outline our procedures for ultra-high vacuum

preparation, construction, and pump-down/bake-out. Prepare chamber parts, tools,

and area: Wearing nitrile gloves and face masks, acetone wash the un-waxed side

of Al foil and apply to all workspace surfaces (dry with lint-free chem wipes as

necessary). Next wash all vacuum chamber parts in an acetone ultrasonic bath.

Wrap all parts in clean foil and air bake at 400 F for a week. This creates a chrome-
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Figure 4.4: The nearly completed vacuum chamber.

oxide layer near the surface which makes the steel less permeable to hydrogen [135].

Assembly and bakeout preparation: Re-clean parts in an ultrasonic bath and cover

the optical table with cleaned foil as shown in figure 4.4. We assembled the chamber

using silver coated bolts and standard conflat flanges with copper gaskets. We were

careful to keep the knife edge of the conflat clean and defect free, as well as, to mount

rotatable flanges to fixed flanges to ensure enough degrees of freedom to line up bolt

holes. To ensure that the copper gaskets were evenly compressed, we tightened

bolts in an alternating sequence depending on the number of bolts on the flange.

For example in a six bolt flange the sequence would be; 1, 3, 5, 2, 4, 6, 3, 5, 1, 4,...

We compressed the copper gaskets until there was steel to steel contact. Once the

system is sealed up, we leak checked the chamber by pumping the system down using

a turbo pump (Pfeiffer Vacuum HiCube 80 Eco) and an RGA (Dyson/AMETEK

Quadrupole gas analyzer model MD014110-1, or SRS RGA 100) and applying either

Acetone or Helium to suspect vacuum connections. If Helium was applied we would
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Figure 4.5: Vacuum chamber pressure and temperature during bake,
t=0 corresponds to day 0 in the table of notes on bake out.

look for a peak in He partial pressure on the RGA. However, if acetone was applied

we would look for a dip in pressure as the large molecules temporarily filled the

small leaks.

Bake: Once there were no obvious leaks, we baked-out the chamber to remove

residual Hydrogen and impurities like water. Since our chamber is too large to fit

in an oven, we wrapped the chamber in Al foil, then heater tape (being careful

not to layer heat tape on itself), and finally, with more Al foil to create our own

oven. We control the temperature of the heater tape using Variacs and monitor it in

many different locations with K type thermocouples on a 16 channel thermocouple

monitor (SRS model 630). To monitor thermal gradients across the chamber, there

was about one thermocouple per piece of heater tape. We typically heat at a rate

of less than 3 C per ten minutes and limit the maximum temperature to < 200◦C
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Table 4.1: UHV pump down and bakeout procedures.

Day Notes
-5 Turbo pump vacuum
-4 at 10−6 range, start RGA(s) and degass all ion gauges

≈1min
-2 Degas ion pumps, turn ion pumps on by “burping”: run

at 3kV until high current (2 ∗ 10−2 A), turn off, run at
5kV until high current, turn off, then run at 7kV until high
current, finally drop down to normal operating voltage 3kV
or 5kV

-1 Degas all Ti:sub filaments
0 room temperature under turbo pump vacuum, begin bake

(gate valve between oven and UHV closed)
15 degas ion gauges, ion pumps, and Ti:Sub filaments
21 hand tighten bakeable valve, start cooling, and degas ion

gauge at lower pressure
22 cold, open gate valve

to protect the glass to metal view port seals and A/R coatings. See figure 4.5 for

temperature and pressure as a function of time and see table 4.1 for additional notes

on the bake. During the bake we periodically checked the in-vacuum shutter to verify

its functionality. When cooling down the chamber, the pressure is anticipated to

drop below the limit of the turbo pump so, we separate it from the rest of the UHV

system by closing the bakeable valve. If the bakeable valve is tightened while hot,

it will not be reusable. We have found that “hand tight” is sufficient to separate

the turbo pump vacuum from the UHV side during the cool down. When cool, we

tightened the bakeable valve to 15 ft-lbs using a torque wrench.
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A B

Figure 4.6: A) Quadrupole coil geometry (all dimensions in mm). B)
Magnitude of the z component of the field along the z axis(axis of the
quadrupole) for a 150 A current.

4.4 Magnetic trap

4.4.1 Coil design

We use a quadrupole magnetic field to confine atoms during the early stages

of evaporation while they are still, on average, too hot to spin flip near the trap field

zero. These coils also provide the magnetic field gradient for the MOT. The coils

were wound using square cross-section hollow copper tubing and the main constraint

was the size of the vacuum chamber, which was primarily determined by the internal

size of the “Bucket” windows and by size of the MOT beams/longest desirable time

of flight for imaging. The coils were mounted in a machined G-10 fiberglass coil form

to reduce eddy currents induced during switching of the field. The quadrupole coil

geometry (pictured in Fig.4.6 A), consists of two inner layers with 5 turns and two

outer layers with 4 turns. The field was simulated using the Mathematica package
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“Radia” and is plotted in Fig.4.6 B. Near the center of the trap, the magnetic field

gradient is 10.5 mT m−1 A−1 (or 1.05 G/(cm A)). Due to the closer proximity of the

coils to the atoms, this is more than a factor of 2 improvement than the apparatus

in [132]. We used the following coil winding procedure: 1) Cut ≈4 m (number of

turns + leads) of square cross section coil. 2) Fix coil form to flat surface elevated

off of table such that the coil winding guide tool can clear above the table (since we

use square tubing the orientation of the coil must be controlled using a coil winding

guide). 3) File the corners on coil form and cover it with Kapton tape so that the

coil’s insulation will not be harmed during winding. 4) Clamp the coil onto the

bottom of the coil form, on the side opposite to the hole, through which the leads

will pass when completed. 5) Wind the coil up the form keeping the square tubing

correctly oriented while maintaining tension on the coil (this is a 2 person job, one

person to guide, and the second person to maintain tension). 6)Bend the coil out

of the hole for the leads at the top of the coil form (a half inch post makes a good

bend radius). 7)Apply a layer of epoxy to the outside of the first layer of wound

coil. 8)Repeat steps 5-7 for all remaining layers of coil.

4.4.2 Fast switching high current source for magnetic trapping

The MOT and magnetic trap coils are the same, which eliminates transverse

magnetic trap alignment issues, present in Ioffe-Pritchard traps, as the atoms from

the MOT are transferred to the magnetic trap (Gravitational and radiation pressure

imbalances can complicate this picture, nevertheless it is preferable to the previous
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Ioffe-Pritchard design). However, this method of BEC production also requires that

the field coils must be switched as fast as possible from ~B = 0 during the optical

molasses stage to their maximum magnetic trap depth during the beginning of RF

evaporation. This is a classic technical problem for ultra cold atom experiments

with numerous solutions. Our setup uses a current supply (Agilent 6690, 440 A, 15

V) operated in constant voltage mode at 15V as the current source. The current is

sensed by Hall probes (Danfysik 866) and is fedback to control the current, using a

water-cooled MOSFET bank, shown in figure 4.7. The bank is designed to split the

≈ 400 A (in practice we limit the computer control request current to 155 A) from

the supply across 20 MOSFETs rated for ≈30 A. The resistance of the MOSFET

bank is controlled by a PID circuit which is buffered, in order to overcome the

substantial parallel gate capacitance of the MOSFETs. The set point of the PID

is computer controlled by an analog output from a NI 6733 with 16 bit resolution.

Since control, monitoring, and field coils are in a different room from the PID and

current supply, ground isolation of the PID is important to manage ground loops.

The characteristic switching time is 1 ms. All of this system, except for the field

coils, is located outside of the lab in a service corridor to better separate the thermal,

acoustic, and magnetic noise from the main experiment.

4.4.3 Plumbing

The heat generated by resistive current flow in the magnetic coils, typically

on the order of a kW, must be dissipated by chilled water. The block diagram
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Figure 4.7: MOSFET bank schematic. Components: MOSFETs Q1-20;
STE250NS ≈30A max each, Resistors 1-20; 200Ω, Zener diodes labeled
“R21”; 93 V zener diode, “93 V”; 93 V varistor. The Zener diodes and
varistor are for suppression of transient voltages during switching. The
gate voltage is the output of the PID locking circuit, while V+ comes
from the Agilent 6690 through the experimental coils.

Figure 4.8: MOSFET servo.
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Figure 4.9: Block diagram of plumbing system.

of the complete plumbing system is shown in Fig.4.9. Filtered pressurized (pump:

Dayton model 9k862A) wall water is sent to a main manifold where it is split off

to two sets of quadrupole coils, Zeeman slower coils, a fiber laser amplifier, and

microwave amplifiers. To cool more efficiently, the water is run in parallel through

the quadrupole coils. On the lower pressure return side of the system, we use Proteus

100C110 flow switches to monitor the flow rate. The outputs of the flow switches

are interlocked together and drive a reed switch giving the necessary open-closed

logic to the quadrupole current supply (the logic of the current supply is such that

an open circuit allows current to flow to the coils so care must be taken to never

disconnect the reed switch from the power supply).

A manifold to organize and secure large high current electrical+plumbing con-

nections is shown in Fig.4.10. It is designed in modules of two connections (supply
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Figure 4.10: A single supply/return module of the electric to water con-
nection manifold.

and return) can be scaled for different experiments. The plastic manifold (gray) fits

around 1010 80/20 and has slots on the front to hold 2 copper pins. The copper pins

slide into the plastic and are bolted in from the top. The copper pins have holes for

multiple common sizes of coil (1/8” round 1/4” round and .17” square tubing) and

for bolting on high current lugs.

4.5 Laser cooling optics

4.5.1 MOT beams

In order to create a compact and robust quantum gas production system, our

MOT beams are produced on a separate optical table and delivered to the experi-

mental chamber via optical fiber. MOT beam shaping and polarization control are

achieved in a simple package shown in figure 4.11. The light emerging from the

fiber is circularly polarized with a quarter wave plate, then expanded through a

plano-concave f=-25mm lens, then collimated by the combination of a f=150 mm
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Figure 4.11: MOT launch optics package. The red lines indicate approx-
imate rays of the MOT beams.

meniscus lens and a f=150 mm plano-convex lens. The entire package is kinemati-

cally adjustable and is mounted on the bottom of the second story instead of directly

on the first level breadboard to preserve space on our breadboard. The beams are

periscoped downwards off retractable pneumatic mirrors and into the chamber.

4.5.2 Pneumatic mirror system

Most of this subsection is from the author’s manuscript [9], in which we

describe a pneumatically actuated mirror system with long term repeatable sub-

milliradian pointing stability ensured by a 3-point kinematic positioning system.

This system is easily capable of moving 50 mm (2”) optical components nearly

the full throw of a pneumatic piston cylinder in < 1 s (≈ 36 mm to 50 mm for

the designs presented, though longer actuation distances could be achieved with
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Figure 4.12: Cross section and assembled view of vertically oriented and
translating optic mount. The 12.5 mm (0.5”) diameter optic rod and
piston connected to it below are shown in the compressed position. The
post can be extended the to the full throw of the piston minus a small
amount of translation to ensure that kinematic contact is made. The
piston throw is 38 mm (1.5”) and the throw of the actuated post is 36 mm
(1.42”). In the extended position, the kinematic bearings are coincident
with the kinematic stops. The upper cylinder, lower cylinder, kinematic
bearing plate, and optic rod are custom parts. The pneumatic piston
cylinder, elbow, and locking nuts are standard commercial products.

straight-forward modifications). The vertically oriented design occupies the same

space on an optical table as a typical 38 mm (1.5”) post, is compatible with fork-

type optical clamps, and its actuation requires no additional space on the optical

table. The system components are relatively inexpensive and cost < $1200 for a set

of 4 vertical and 2 horizontal units. The motivation for this project comes from the

long term failure modes of commercially available “flipper” mounts used in [132].

The vertically-oriented design, shown in FIG. 4.12, is based on a single-acting
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spring return pneumatic cylinder with a 1.5” throw (SMC Corporation NCMKB088-

150CS) 1. The overall height of the assembly and choice of piston throw are deter-

mined by the height of the beam above the optical table (which in our case is 25.4 cm

(10”)) and by the size of the optic to be actuated (50 mm (2”) elliptical gold mir-

rors), respectively. The assembly includes 4 custom designed parts: a lower cylinder,

an upper cylinder, a kinematic bearing plate, and an optic rod. The piston is housed

in the lower cylinder of the assembly which contains a center hole for mounting the

piston, four threaded holes to mount to the upper cylinder, and a flange around

the bottom compatible with standard fork optical clamps. The piston is secured to

the lower cylinder by a locking nut included with the piston. The piston actuates

a 12.5 mm (0.5”) diameter optic rod threaded for mounting to optics and a kine-

matic bearing plate with three ball bearings to create a repeatable stable mechanical

structure [136]. The kinematic bearing plate is fixed in place between a locking nut

(bottom) and the optic rod (top). When extended, the three ball bearings of the

kinematic bearing plate make contact with the kinematic stop hardware screwed

into the upper cylinder. We use standard three point kinematic stops with three

distinct pieces: a cone, a flat, and a V-cut groove (Hitek Hardware; KC-1032-TH,

KF-1032-TH, and KS-1032-TH).

The horizontally-oriented design is based on a horizontally-mounted pneu-

matic cylinder (SMC NCMR106-0200CS) and a commercially available linear

guide rail and carriage system (IKO Nippon Thompson; LWLF14R150BPS2 and

1All product names and part numbers are for specificity only and do not constitute an endorse-
ment by the authors or their parent institutions.
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Figure 4.13: Horizontally oriented and translating design. The carriage
and piston are shown in the compressed position. In the extended po-
sition, the kinematic bearings are coincident with the kinematic stops
and the carriage assembly is repeatability positioned. The carriage can
be translated by nearly the full throw of the piston ≈ 50 mm (2”). The
base plate, translating optic holder, and return flag are custom designed.
The carriage, guide rail, and pneumatic piston cylinder are commercially
available.

LWLF14C1BPS2). The design includes three custom pieces shown in FIG. 4.13.

The first is a monolithic base plate containing threaded mounting holes for the hor-

izontally oriented piston, pedestal mounts, and linear guide rail, as well as, a three

counter bores to hold the kinematic hardware as discussed in vertical design. Next,

the translating optic holder is designed to be mounted on the moving carriage and

has threaded holes for the specific optic mount to be translated. It also contains

three press-fit ball bearings to make the necessary 3-point contact with the kine-

matic stops. The end of the piston, padded by a rubber stopper, presses on this

piece in the extended position. The final custom piece is a return flag which allows

the carriage to be retracted by the piston. As the piston retracts, the flag catches

on a nut around the piston.

The pneumatic control system uses laboratory compressed air regulated to

78



330 kPa (48 PSI) to minimize the vibrational disturbance of other optics while main-

taining a reasonable actuation time. An electrically controlled solenoid valve (SMC

VQC2101-5 mounted to SMC VQ2000-PW-02T) switches the air to a 6 way split-

ter (SMC KQ2ZT01-34S) for all pistons simultaneously. Most exhaust gas is released

at the solenoid valve through 35dBA silencers (SMC AN202-02) which can be lo-

cated meters away from the experimental chamber, reducing acoustic noise and air

currents, as well as, electrical noise associated with the switching of the solenoid

valve. We use 5/32” OD tubing before the splitter (≈ 3 m) and 1/8” OD tubing

between the splitter and the pistons (≈ 1 m). The solenoid valve is TTL controlled

so that pistons can be synchronized with the rest of the experimental cycle. It is

important to consider interlocking the position of the piston with respect to the

on/off state of the other beams behind it. This can prevent safety hazards asso-

ciated with unintentionally scattered laser light or, in the case of higher powered

beams, damage to the piston and optics on it. In our experiment, we accomplish

this by interlocking the piston TTL signal to the high-power dipole trapping beam

TTL signal.

We characterize the mechanical stability of the mounts in terms of the posi-

tion stability of the optical beams they actuate (which, for example, would lead to

intensity/number fluctuations in a MOT). To make position stability measurements

path length independent, we measure the angular pointing stability. We reflect a

collimated 635 nm laser beam from a single-mode fiber with a 1/e2 beam diameter of

700 µm off the actuated mirror, and image the position of the beam on a CCD beam

profiler [137,138]. In all test measurements, the mirror was an elliptical 25 mm (1”)
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Figure 4.14: Pointing stability of pneumatic mirrors; The points are
the x, y angular displacements, αx,y, in µrad (corresponding to spatial
displacements < 1.5 mm, while the length of a CCD pixel was 6.4 µm) of
the peak centers on the CCD located 165 (1) cm away from the actuated
mirror. The vertical pneumatic design is in blue along x and violet along
y while the horizontal pneumatic design is in red along x and yellow along
y.

diameter gold mirror epoxied onto a 25 mm (1”) diameter post angled at 45o which

weighed ≈ 45 g (the 50 mm (2”) elliptical gold mirrors used in the apparatus are

≈ 100 g). An individual position measurement cycle is 4 s with 1.6 s to actuate

the mirror and allow vibrations to damp (the vibrations on the optical table were

measured to damp out in < 100ms using an accelerometer) , then a 100 ms expo-

sure on the CCD, 300 ms dark time, and another 2 s to retract and stabilize the

mirror. This cycle was repeated 9800 times over ≈ 12 hrs where the temperature

in the room was 21oC and fluctuated by ≤ 0.5oC. We estimate the angular pointing

stability from the spread of the data points in FIG. 4.14 and the beam path length

from the pneumatic mirror to the beam profiler, 165 (1) cm (In the experimental

apparatus, 30 cm beam paths are used.). We also estimate “short term” pointing
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stability by binning the data into 100 shot intervals and computing the standard

deviation for each interval. Averaging over all collected intervals, the short term

standard deviation is less than 35 µrad while, the standard deviation of the worst

100 shot interval was 300 µrad. As a final more qualitative discussion of repeatabil-

ity/durability, we note that our system of four vertically oriented cylindrical mirrors

has functioned successfully for more than 2 years without replacement of any mount

components. We tweak up the alignment of the mirrors every 2 to 4 months.

4.5.3 Zeeman slower beams

The collimated output of polarization maintaining fibers for the slower cool-

ing (3 mW) and repump (7 mW) are combined on a PBS followed by a quarter

wave plate that circularly polarizes the cooling light. A f=-25 mm and 150 mm

lens system expands the beam after the second lens and slowly focuses the beam

approximately 145 cm from the slower entrance vacuum window, which puts the fo-

cus just before the gate valve separating the oven from the slower coils. The optical

system is mechanically secured using cage hardware and attached to the chamber

with a custom flange that contains a bolt circle for both the vacuum bolts, as well

as, threaded holes for 60 mm cage hardware, which simplifies the alignment process.

4.5.4 Imaging system

We image the atoms by absorption of a collimated resonant probe beam with

an intensity below saturation. We have imaging systems along two directions. In one
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direction the probe beam propagates vertically downwards to image the behavior of

the atoms in the 2D horizontal plane. The images are formed by two lenses: A f=100

achromatic lens (25 mm aperture) at focal distance after 27 ms TOF of the atoms

and a f=400 mm plano-convex lens (50 mm aperture) at focal distance to the image

plane, a CCD camera (Princeton Instruments). The distance between the lenses is

about 10 cm. This system has a field of view of ≈ 1.25 mm radius, a focal depth of ±

450 µm , and a numerical aperture of 0.13. The focal depth should not be reduced to

image the 3D BEC sharply as there are stigmatic aberrations. The second direction

of imaging is ≈ 5 degrees off of the tightly confining dipole beam and images the

vertical and one in plane direction. This imaging system is two f=400 mm (25 mm

aperture) plano-convex lenses, which form a condenser lens, which images the atoms

onto a second CCD camera (Point Grey Flea 3). This imaging system has a field of

view radius of 8 mm and a focal depth of ± 800 µm. We experimentally calibrated

the magnification of the imaging system to be ≈ 0.98 by watching atoms fall from

rest under gravity to determine a well defined length within the vacuum chamber.

All lenses are aligned by overlapping the different reflexions from the lenses on the

incoming beam.

4.6 Laser systems

4.6.1 Cooling lasers

Our cooling/probing laser system consists of three lasers; a master frequency

reference laser (New Focus Vortex 6013) locked to the 87Rb F=2 to F’=2-3 crossover
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feature created by saturated absorption spectroscopy (see for instance [139] and ref-

erences therein), a cooling laser (Toptica TA pro) beatnote locked [140] to master

near the F=2 to F’=3 transition (≈ 780.246nm, ≈1.23 W) and finally a repump-

ing laser (Toptica Dl-100) also beatnote locked to master near the F=1 to F’=2

transition (≈ 780.235nm, ≈60 mW). This reference laser plus beatnote locking sys-

tem is quite flexible and allows the frequency of the light sent to the experiment

to be dynamically changed via a voltage controlled oscillator reference during the

experimental cycle. [See fig. 4.15 for a detailed level diagram including all beam

paths and relevant AOM offsets. To control the intensity of near resonant light to

the experiment, all beams are AOM-switched and shuttered (to insure essentially

perfect extinction). The full optical layout for the three cooling lasers is shown in

Fig. 4.16 2. All lasers are boxed to improve eye safety, thermal stability, and to

prevent stray scattered light from interacting with atoms in the science chamber.

All light is fiber coupled to the experiment, separating experimental and “supply”

side alignment problems.]

4.6.2 Dipole trapping laser system

In order to achieve internal-state-independent trapping of our atoms we uti-

lize a crossed optical dipole trap, see [141] and references therein. This is different

from the previously reported apparatus [132] which used a hybrid state-dependent

single optical dipole beam + quadrupole magnetic field trap (during my tenure as

2The optical schematics in this Chapter are based on Alexander Franzen’s Component Li-
brary,14 which is licensed under the Creative Commons Attribution-Non Commercial 3.0 Unported
License.15.
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Figure 4.15: Cooling Laser Level Diagram
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Figure 4.16: The optical layouts for the cooling lasers.
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Figure 4.17: Optical layout of the dipole trapping laser; light coming
from the optically isolated fiber amplifier is split between two beam
paths using a half-wave plate and PBS. The dipole intensity servo is
implemented via feedback to AOM RF power and the intensity locked
beams are sent to the experiment via hollow core optical fiber. Due
to the high power of the beams, the shutters actuate high reflectivity
mirrors to steer the unwanted beams into heat sunk beam dumps.

a graduate student, we have achieved BEC in four different dipole beam configu-

rations including: 1550 nm single beam, 1064 nm single beam, 1064 nm crossed

with 1 elliptical and one circular beam, and our final configuration). We use a fiber

laser system that is intensity-stabilized by acousto-optical modulators and mechani-

cally shuttered with moving mirrors to provide the necessary optical dipole trapping

power to the experiment. The free space optical layout is pictured in Fig. 4.17. Our

fiber laser seed is from Orbits Lightwave producing 75 mW of linearly polarized 1064

nm light. This laser has a self calibrating PID, to optimize its current-temperature

setpoint, which can produce 1-10 Hz power fluctuations for approximately the first

hour of operation. We have operated it without power cycling for ≈3 years. I wrote

a labview interface for serial over USB communication with the unit to check diag-
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nostic information.The seed laser has enough power to simultaneously run two fiber

amplifiers, a Nufern brand amplifier producing 50 W requiring 50 mW input opti-

cal power and an IPG brand amplifier producing 30W from ≈9 mW input power.

The Nufern amplifier requires water cooling and is interlocked to the cooling water

supply. Additionally, both lasers are interlocked to the door and pneumatic MOT

mirrors for eye safety. Hollow core optical fibers (PN) deliver the beams to the ex-

perimental optical table and decouple trap and supply alignment issues.The beam

waists at the atoms are approximately; 30 µm by 80 µm in Dipole 1 and 70 µm by

275 µm in Dipole 2. In the typical configuration for BEC, the trap frequencies are:

10Hz (along tightly confining Dipole 1 dominated by Dipole 2), 50Hz (along Dipole

2), and 130Hz (vertically).

4.6.3 Lattice laser

We generate the optical lattice light using Coherent MBR (Monolithic Block

Resonator) 110 titanium sapphire(Ti:saph) laser pumped by a Coherent Verdi V-10.

Details of the lattice will be discussed in the following chapter, here we simply note

the general layout and technical issues. We use a Ti:saph for its wavelength tune-

ability, necessary for optimizing the vector light shift. Additionally, its relatively

high power (≥1 W) and narrow bandwidth (100 kHz to≈1 kHz depending on locking

configuration) allow us to generate deep three dimensional lattices, consisting of an

in-plane 2D and vertical lattice, for Rubidium. The supply side optics layout is

shown in figure 4.19. We have had one noteworthy technical issue with our Verdi
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+ MBR system, an internal spot on the Verdi output window changed the spatial

mode of the pump enough to make the MBR lase unreliably. This problem is one

of the few “user serviceable” failure modes of a Verdi. It can be fixed by removing

the Verdi cover, removing the sealed shutter housing, and cleaning the inside of the

window with methanol or acetone as necessary.

The lifetime of atoms in an optical lattice should be limited by single par-

ticle spontaneous scattering of off-resonant lattice light, however, there are many

technical factors that must be overcome in order to reach this noise floor. An im-

portant diagnostic is to look for frequency “noise” sidebands on the light. This

could come from many sources including acoustic motion of optics but, in practice

we observe noise primarily from the thin etalon used to lock the Ti:saph, as well as,

the intensity stabilization lock. Figure 4.18 shows a typical power spectrum of the

lattice light after the intensity lock. There are clear noise peaks at the fundamental

and harmonics of the thin etalon drive frequency, as well as, a small peak from the

intensity stabilization circuit. These technical noise sidebands manifest themselves

as resonant heating/atom loss at specific lattice depths when the frequency of the

noise sideband matches a band of the lattice. The intensity lock PID gain settings

are tuned to remove the excess sideband. Initially, we increased the MBR resonant

drive frequency to allow us to work at deeper lattice depths without heating. How-

ever, the final solution was to unplug the ≈90 kHz frequency drive and operate the

MBR without a frequency lock. This came at the price of operational stability, as

the MBR could now go multimode.
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Figure 4.18: Power spectrum of noise in the output light of the Ti:Saph

4.7 Computer control

Our experiment is controlled by a main computer running our “setlist” user

interface built on Labview 2012 64 bit (formerly 32 bit with the Luaview scripting

language). The “setlist” user interface takes experimental line-level timing and

output requests and converts them into hardware level commands which are then

parsed and sent to the appropriate hardware. Setlist generates TTL pulse sequences

for a master timing device, whose digital output is used to trigger outputs from other

programmed devices during an experimental run. In order to make a triggerable

device compatible with setlist, one must provide: 1) a software driver that takes the

line commands from the user interface and turns them into list of triggers from a
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Figure 4.19: Optical layout of the lattice laser dipole trap: upon exit-
ing the MBR the lattice light passes through an optical isolator and is
variably split on a PBS using a waveplate. The two emerging beams
then pass though AOM’s where the opposite ± first orders are taken so
that the vertical and horizontal lattices are separated in frequency by
≈ 160MHz which prevents them from interfering. The beams then pass
through hard disk drive shutters and are then fiber coupled over to the
main experiment optical table. The lattice light is monitored on a Fabry
Perot(FP) cavity,and a wavemeter.

90



master TTL line and a set of outputs to occur at each trigger, e.g. as a step-through

FIFO, and 2) a device programmer to communicate with the device. Running an

experiment in setlist corresponds to parsing the commands into device output and

pulse tables, programming the devices, and starting the master timing device. Setlist

also publishes information, such as the values of the variables that are being used,

to a networked Labview variable that can be accessed remotely.

Our master device is a Pulse Blaster USB (Programmable TTL Pulse Gen-

erator/Digital Word Generator and Timing Engine) which has 24 digital output

lines (TTL levels) with programmable timing for every output line (minimum 50 ns

pulses and 10 ns resolution). The pulse blaster “wait for event” function enables AC

line triggering so that the entire experiment can be synchronized to 60 Hz magnetic

fields.

We use several different slave device types in our experiment: NI USB Multi-

function DAQ’s (for analog control of current, cooling laser intensity and frequency )

and custom-built FPGA-controlled DDS boards (for RF and microwave pulse/sweep

generation and laser intensity locking). The 3 National Instruments 6363 USB Mul-

tifunction DAQ’s are electrically isolated from the main control computer using

optical USB extenders (Icron USB ranger 2224). The NI 6363’s main relevant spec-

ifications are, 48 Digital I/O Channels (5 V TTL, 1 MHz clock rate), and 4 AO

Channels (16 bits, -10 V to 10 V, 3 MS/s update rate). For additional analog I/O

lines we also use a NI 6733 (16 bit, 8 channels) and 6713 (12 bit, 8 channels) PCI

cards. Additionally, we use a home-built combination FPGA+DDS to generate RF

signals for atomic manipulation, as well as, to drive AOM’s. The design, adapted
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from the Monroe group, uses an FPGA (Altera Cyclone II) to trigger and input

parameters into a DDS (AD9954 DDS IC). The FPGA also functions as a PID for

AOM based intensity locking. The key DDS specifications are; frequency range 0-

200 MHz (as configured), ≈0.1 Hz frequency resolution, 14-bit amplitude resolution,

14-bit phase resolution, and has automated linear frequency sweeps. We found that

the clock multiplier chip on the DDS daughter board must be bypassed in order to

generate reliable timing signals. This requires that we distribute our own 400 MHz

signal to all devices in place of a standard 10 MHz signal.

We collect our images on two CCD cameras, a PointGrey Flea 3 and, a Prince-

ton instruments Pixis. The images are readout and stored in a second imaging

computer networked to the main control computer. The networked variables are

grabbed and their data stored with the images (in the HDF5 format). After storing

the images, the Labview camera drivers call a command, in the software program

Igor, that loads and processes the images. The images are analyzed in real time

using a custom made GUI in Igor. Typical analysis done in Igor includes fitting to

images of Kapitza-Dirac diffraction or Stren-Gerlach-separated atomic clouds and

computing the relative populations.

4.8 Microwave and RF system

4.8.1 Microwave system

The collisional stability of 87Rb combined with state independent optical dipole

trapping allows us to occupy all eight possible F=1 and F=2 ground states. Due to
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the initial magnetic trapping, the BEC is typically produced in the |F,mf〉 = |1,−1〉

state. Microwaves around 6.8GHz allow the upper F=2 Zeeman states to be deter-

ministically populated. We generate the necessary 6.8GHz microwaves (with below

Hz level accuracy) by frequency doubling the output of a Rhode and Schwartz fre-

quency synthesizer (SMT 06) operating at a fixed frequency of 3.438 GHz, which is

then mixed with a variable ≈40MHz RF signal generated from an FPGA controlled

DDS device. This microwave signal is then sent through a TTL controlled switch,

amplified, impedance matched using stub tuners, and sent to the experiment using

a homemade microwave horn. The horn is made of a copper pipe closed at one

end except for a hole in back with a radius chosen to be below cutoff for 6.8 GHz.

The hole provides optical access for the MOT/imaging repumping beam. The horn

has vertically and horizontally (this defines the convention used in table 4.3) placed

SMA connectors to provide polarization selectivity. The detailed system is given

in tables 4.2 and 4.3. The final stage of microwave amplifiers requires water cool-

ing which is interlocked to the flow switches using a MOSFET to switch the DC

power to the amplifiers. All RF and microwave sources are referenced to the same

amplified 10MHz rubidium clock (SRS FS 275 & distribution amplifier SRS 735).

It is important to monitor the PLL lock on the rubidium clock to verify that the

frequency is stable, as on occasion have observed non-repeatable microwave transfer

resulting from unlocked rubidium clock sources.

Using this microwave source, we measured a Rabi coupling strength a of

Ω/2/(2π) = 17kHz by observing the internal state evolution of an optically trapped

BEC prepared in |1,−1〉 as it coherently coupled to |2,−2〉. The vertical channel has
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Table 4.2: Main microwave setup

Element Power (dBm) Manufacturer (part number)
Source 13 Rhode and Schwartz SMT

06 3.438GHz
Isolator 11.8 Pasternack
cable 10.3

Doubler Marki (D-0308 LA)
Bandpass Filter 9.3 Minicircuits (VBFZ-6200-

S+)
Attenuator 5.9

Amplifier 30dB 23.8 Marki (A-0206 EZP)
Attenuator 18
Isolator 17.7 Pasternack

Power Splitter Minicircuits

approximately a factor of two higher microwave power than the horizontal channel.

Although the steel chamber makes it difficult to maintain microwave polarization,

after multiple reflections, the coupling strength to a given transition does change as

a function of static bias magnetic field.

4.8.2 RF system

The RF for evaporation and internal state manipulation in the 2-25MHz range

is generated using the FPGA + DDS box. The output of the FPGA+DDS is sent

to an RF switch (Mini Circuits ZYSWA-2-50DR) with better than 40dB isolation,

amplified (Mini Circuits ZHL-5W-1), sent to the atoms via a pair of coils pictured

in Fig.4.20, then 20 dB attenuated and, 50 Ω terminated on a digital oscilloscope.

The PCB coil has the advantage of being repeatably manufactured and rigidly

mountable to the chamber. The RF coils were mounted between the vacuum bucket

window and the quadrupole coils. To characterize the coupling strength of the ẑ
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Figure 4.20: RF coil PCB.

RF field, we measured a Rabi frequency of Ω/2/(2π) = 4.76 kHz by observing

the internal state evolution of an optically trapped BEC prepared in |1,−1〉 as it

coherently oscillated into |1, 0〉 and |1, 1〉 and back at a bias magnetic field where the

levels were linearly Zeeman split by ≈ 2.25 MHz. At the beginning of evaporation,

≈20MHz, the reflection from the coils is approximately a factor of ten larger than

at the end of evaporation, around 2 MHz.

4.9 BEC Sequence

Having introduced the hardware necessary for BEC production, we outline the

typical sequence of BEC production in table 4.4. The sequence is very similar to a

number of other labs producing 87Rb condensates [132]. We load the six beam MOT

from the Zeeman slowed atomic beam to collect a sufficient number of atoms (≈

109). We then spatially compress the MOT by increasing the quadrupole field
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gradient and then initiate optical molasses by turning off the quadrupole field while

linearly increasing the cooling beam detuning to ≈ 10Γ. After polarization gradient

cooling, we shutter the repumping beam and allow atoms to accumulate in F = 1

in preparation for magnetic trapping. To load the magnetic trap, we switch the

quadrupole field back onto its full value (> 10x the MOT field) in 1 ms. We then

perform forced RF evaporation in the magnetic trap by ramping a DDS frequency

in 3 steps with the crossed dipole beams at their full value. After evaporation, the

atoms are loaded into the crossed dipole beams (located below the quadrupole field

zero position) by adiabatically ramping the amplitude of the quadrupole field to

zero. Finally, the dipole beams are exponentially ramped down to produce a BEC

with no visible thermal component. The atoms are typically held in the trap for an

additional half second before synchronizing the subsequent experiment to the 60 Hz

power grid.
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Table 4.3: Vertical and Horizontal microwave channels

Vertical antenna Horizontal antenna
Element Manufacturer (part

number)
Element Manufacturer (part

number)
Mixer Marki (IRW0618

LXW-2) mixes in sig-
nal from “DDSuW2”
≈ 40MHz

Mixer Marki (IRW0618
LXW-2) mixes in
signal from “UCF-
PGA7” ≈ 40MHz

Bandpass fil-
ter

5.6-7GHz Bandpass fil-
ter

5.6-7GHz

TTL switch Pulsar (PMC
SW1AD-15)

TTL switch Pulsar (PMC
SW1AD-15)

Amplifier Microwave Power
L0607-35

Attenuator -6dB

Isolator Pasternack (PE
8302)

Amplifier Microwave Solutions
(MSH-5727901)

Directional
coupler

Pasternack (PE
8302) reflected power
to 50Ω

Isolator Pasternack (PE
8302)

Directional
coupler

Pasternack (PE
8302) reflected power
20 dB attenuated to
power meter Minicir-
cuits (ZX47-40-St)

Directional
coupler

Pasternack (PE
8302) reflected power
to power meter Mini-
circuits (ZX47-40-St)

Stub tuner Directional
coupler

Pasternack (PE
8302) reflected power
20 dB attenuated to
power meter Minicir-
cuits (ZX47-40-St)

Antenna (V) in horn Stub tuner
Antenna (H) in horn
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Table 4.4: BEC sequence

Step time(s)
load MOT 3-5
compressed MOT 0.01
optical molasses 0.01
optical pumping 0.002
Magnetic trap + RF evaporation (22-18.5 MHz) 0.7
Magnetic trap + X dipole trap + RF evaporation (18.5-
8-2 MHz)

2.0,2.3

Adiabatic decompression of Magnetic trap with X dipole
trap (Iquad=155-115-38)

0.5,1.0,0.25

X dipole trap evaporation 2.0
X dipole trap hold + line trigger 0.5
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Chapter 5: Manybody physics in optical lattices

5.1 Introduction

Optical lattices have long been a part of atomic physics [142, 143]. Standing

wave intensity patterns are central to the explanation of subDoppler cooling pro-

cesses and even before BEC (or before the mass production of BEC), they served as

an important tool to create defect-free crystals of light with atomic motion quantized

in bands analogous to electrons in solids. Even today, a profitable line of research

can be made by extending experiments with laser cooled atoms and optical lattices

into the ultracold regime [144]. High phase space density atomic samples in optical

lattices have transcended their single particle origins and now enable experiments

where the effective system dimensionality and interactions are important and can

be tuned. This has led to the current program of “quantum simulation” [145] where

experiments that are well controlled at the single particle level can be operated in

an interacting regime where the Hilbert space becomes intractably large on classical

computers.

While BEC may be understood at its simplest level as a non-interacting statis-

tical effect, optical lattices allow one to effectively control the energy of atom-atom

interactions relative to their kinetic energy. A remarkable example of this is the
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superfluid-to-Mott insulator quantum phase transition, where, as the interaction be-

tween atoms is increased, the qualitative nature of the ground state wave function

changes from weakly interacting superfluid to strongly correlated insulator. This

process happens theoretically at zero temperature in the absence of environmental

coupling. Realized experimentally in [146], this was a paradigmatic demonstration

of a interaction driven quantum phase transition using ultra-cold atoms in an op-

tical lattice. Such quantum phase transitions have been previously observed in a

traditional condensed matter context [147,148] but, it is hoped that the methods of

atomic physics may enable further unprecedented observation and control of many-

body states.

The realization of the Hubbard model in optical lattices naturally inspires us

to push to ever lower energy scales in pursuit of more exotic physics. The low energy

behavior of the Hubbard model can be mapped onto the Heisenberg model describing

quantum magnetism. A canonical example of this is the rich phase diagram of the

cuprates, where the doping of antiferromagnetic magnetic insulators leads to the

emergence of high-Tc superconductivity. The realization of such physics in optical

lattices is profoundly difficult because the magnetic spin-spin interactions in the

Heisenberg model are mediated by second order “superexchange” processes in the

parent Hubbard model. This means that in traditional simple cubic lattices the

superexchange energy (describing the tunneling of an atom to a neighboring lattice

site, interaction on site, and return tunneling) must always be small compared to the

tunneling energy. There has been progress toward cooling [149] and observation of

antiferromagnetic order in extended lattices [150]. However, an alternative route to
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observation of superexchange is the use of lattices with two sites per unit cell [151–

153]. In this case, the lattice can be used to control an additional band structure

energy scale as in “superlattice” semiconductor heterostructures [154], as well as

to isolate pairs of atoms generating a massive reduction in effective system Hilbert

space.

A second theme of our research in ultracold atoms in optical lattices is the

exploration of manybody dynamics in regimes where dissipation limits traditional

condensed matter experiments [155–157]. In this context, dynamic multi-period

lattice control [158–161] enables the preparation and manipulation of manybody

excited states. At a few particle level, this control enables basic quantum compu-

tation operations such as the
√
SWAP enabled by the exchange interaction of two

particles merged onto the same site [162]. Of particular interest is the adiabatic

preparation of excited spin states [163,164]. In the absence of lattice mediated cou-

pling to the environment, the high energy spin system would only be able to relax its

energy via high order tunneling processes that would connect the bulk of the system

to impurities on the edges. Another inspiration of our work is the investigation of

the paradigm of critical slow down [165, 166] where system relaxation time scales

diverge for weakly interacting systems near a critical point. There has recently been

numerical evidence that strongly interacting systems in certain contexts critically

speed up [167]. It is hoped that ultracold atomic systems could be a useful platform

to controllably tune these interactions and observe the ensuing dynamics.
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5.2 Optical lattices

5.2.1 Single atom lattice physics

An optical lattice is a standing wave interference pattern created by the electric

fields from a laser. The simplest case is a linearly polarized beam reflected back on

itself. The field maxima will add creating an intensity pattern with half the spatial

period of the electric field (λ/2 spaced). In the context of condensed matter quantum

simulation, we will work in a regime where the frequency of the lattice light is far

from atomic resonance. Far from resonance light scattering is suppressed and we

may think of the optical lattice as a conservative potential for atomic motion. The

full potential the atoms experience is [168],

V = − ~E∗ · α̂ · ~E − µ · ~B (5.1)

where α̂ is the atomic polarizability tensor, ~E is the electric field of the lattice laser, µ

is the magnetic dipole moment, and ~B is a static magnetic field. The operator α̂ has

scalar, vector, and tensor components. Typically only the scalar part is considered

in the limit that the lattice light is far detuned with respect the fine and hyperfine

structure splitting. However we utilize a lattice detuning on the order of the fine

structure splitting so both the vector, (∝ ~Beff · ~F where ~Beff ∝ ~E∗ × ~E), and

scalar, (∝ | ~E|2), parts of the dipole interaction are relevant while the second rank

part is suppressed. By the projection theorem, the vector lightshift must behave in
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a manner similar to real magnetic field applying a mf dependent shift. The vector

light shift is different from its real counter part in that the effective field now can

change direction on the scale of an optical wavelength and that it only interacts via

the Bohr magneton and not also via the nuclear magneton (typically this is a small

effect).

Once our state-dependent periodic optical potential is established by beam

geometry, polarization, and detuning, we may find the single-particle Bloch function

eigenstates and energies. In the case of a one dimensional lattice with a single

spatial frequency, the Schrodinger equation may be solved analytically in terms of

Mathieu functions. These band solutions smoothly interpolate from free particle

plane waves in the low lattice limit to an array of uncoupled harmonic oscillators in

the deep lattice limit. With lattices that have multiple spatial frequencies in higher

dimensions it is often more useful to represent the lattice Hamiltonian in a plane

wave basis and retain only the necessary terms to achieve a given accuracy for an

observable, say the band energy at a given quasi momentum. Although the plane

wave basis is often the natural choice because it exploits the underlying translational

symmetry of the potential, it is useful, in the context of contact interactions, to

consider a spatially localized basis of Wannier functions. The Wannier function of a

given band can be constructed by Fourier transforming the Bloch functions over the

domain of the given Brillouin zone. This cut off in momentum space implies that

the real space Wannier functions cannot be infinitely well localized. This Fourier

transform definition of Wannier functions also leaves a phase ambiguity on the wave-

function and in general requires care to create maximally localized states, see [169]
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for a review.

5.2.2 Lattice enabled models of manybody physics

5.2.2.1 The Hubbard model and Mott insulator

The Hubbard Model was originally introduced as a minimal theoretical

model to include the effects of electron-electron interactions on the conduction in

solids [170]. Its most essential features are a term that describes particle motion

(typically a single band tight binding model) and a term that describes density-

density interactions. The Hubbard model was extended to bosons in [171], the

Bose-glass phase was explored in [172], and its realization in optical lattices was

proposed in [173].

H =
∑

<i,j>,σ

Jσ(â
†
j,σâi,σ + h.c.) +

∑

i,σ

Uσ

2
(n̂i,σ(n̂i,σ − 1))

+
∑

i,σ,σ′

Uσ,σ′n̂i,σ(n̂i,σ′) +
∑

i,σ

ǫ(i)n̂i,σ (5.2)

where âj,σ(n̂j,σ) is the destruction(number) operator of a particle of spin σ on site

j. The top line constitutes the two essential terms, tunneling and interaction. Spin

dependent contact interactions are parametrized by Uσ,σ′ (for the F = 1, 2 hyperfine

states of 87Rb U↑,↓ ≈ U↑,↑ = U↓,↓). The onsite energy ǫ(i) can be used to describe a

external trapping potential or simply to tune the onsite occupation.

The model is quartic in field operators and cannot be exactly solved analyti-

cally, though a basic intuitive picture can be made by considering two limits. When
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J ≪ U the wave function localizes on lattice sites and the compressibility vanishes.

The real space occupation basis is ideal and the kinetic energy terms can be treated

perturbatively. This is the Mott insulator state [174,175] (proposed to explain the

extremely low conductivity observed in NiO). It is special because two particle in-

teractions drive the qualitative change in behavior as opposed to a standard “band”

insulator where the chemical potential lies within the band gap which is effectively a

single particle/statistical effect. Well into the Mott Insulating phase, the excitation

spectrum of this state is gapped, as particles must have approximately the onsite

interaction energy U to conduct. In the opposite limit, J ≫ U, the diagonal basis is

plane wave eigenstates. In this case, interactions can be treated perturbatively and

the ground state is superfluid. The superfluid excitation spectrum is not gapped

because an extended system can support infinitely long wavelength excitations. It

should be noted that the superfluid state may have interactions which changes the

dispersion from quadratic (free particles) to linear (sound waves).

The Bose-Hubbard model mean-field phase diagram, as a function of Hamil-

tonian parameters, can be readily calculated as in the first section of [172]. When

scaled by the coordination number the phase diagram is independent of dimension.

However, assuming a two nearest neighbors per dimension the extent of the lobes

grows with decreasing dimensionality (where quantum fluctuations become increas-

ingly important). The mean-field phase diagram can be numerically improved upon

at the MI-SF phase boundary where expectation of the superfluid filling is near an

integer (the tips of the Mott lobes). Corrected phase diagrams have been calculated

with more advanced numerical methods [176,177].
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The tunneling parameters are defined in terms of overlap integrals of Wannier

functions on site j with spin σ, wσ(x− xj), as,

Jσ =

ˆ

dx wσ(x− xi)(−
~
2∇2

2m
+ Vlatt(x))wσ(x− xj). (5.3)

The density-density interaction energy, U, is the overlap of two Bosons in the same

state,

Uσ =

ˆ

dx g|wσ(x− xi)|4 (5.4)

where g = 4π~2as/m. The realization of Hubbard physics requires the temperature

of the system to be small compared to the Mott melting temperature. A generally

accepted value for the melting temperature is kBT ≤ 0.2U [178].

5.2.2.2 The Heisenberg model

The Heisenberg model is a canonical quantum interacting spin model and it

is a useful model for studying magnetic phase transitions [179]. In the Heisenberg

model a given lattice site may contain a spin-1/2 particle which may be oriented in

3D (in place of an up or down classical spin found in an Ising model). In a fixed

lattice with no motional degrees of freedom, the spins on different sites interact

with coupling strength or Jex
1. The Heisenberg model may be considered the low-

energy effective description of the Hubbard model valid at unit filling of Bosons

(half filling for Fermions) for J/U ≪ 1. The key idea is that when the particles are

1The dynamics of ultracold atoms creates a notional conundrum because t is frequently used for
time not tunnel coupling, and the tunnel coupling becomes J , leaving no conventionally accepted
notation for the magnetic exchange coupling.
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nearly immobile, a restricted set of the full Hubbard model Hilbert space maybe

considered and the energetics within this restricted Hilbert space is the same as

that of a nearest neighbor Heisenberg model with magnetic coupling Jex = 4J2/U

(physically, the “exchange” of two neighboring spins occurs as a second-order virtual

tunneling process through an intermediate doubly-occupied state). An application

of this transformation to ultracold atoms in optical lattices was given in [180]. In

order to make tunable spin-spin interactions, as well as to make the onsite Hilbert

space for Bosons spin-1/2 (or larger) a state dependent optical lattice was a key

ingredient for this proposal. The so called XXZ model is an important special case,

HXXZ = Jex
∑

j

(Ŝx
j Ŝ

x
j+1 + Ŝy

j Ŝ
y
j+1 +∆zŜ

z
j Ŝ

z
j+1) (5.5)

where the in-plane interaction energies, Jex = J↑J↓/U↑↓, are equal and the out-of-

plane interaction energy, Jex∆z = (J2
↑+J

2
↓ )/(2U↑↓)−J2

↑/U↑↑−J2
↓/U↓↓, can be tuned to

be different from the in-plane interaction energy. The spin operators defined in-terms

of Hubbard operators are: Ŝx
j = 1/2(â†j,↑âj,↓+ â†j,↓âj,↑), Ŝ

y
j = −i/2(â†j,↑âj,↓− â†j,↓âj,↑),

and Ŝz
j = 1/2(n̂j,↑ − n̂j,↓). The ground state phases are controlled by ∆z, and there

is a phase transition at ∆z = 1. For |∆z| < 1 the excitations are gapless spin

waves but for ∆z > 1 the excitations are gapped and the ground state is an Ising

ordered antiferromagnet. The realization of ground state quantum phases in this

model requires that kBT . J2/U which is in the 100 pK range. In addition to this

stringent temperature requirement, the parasitic heating rate of the lattice must also

be small compared to the J2/U scale in order for long range magnetic correlations
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to form. This is particularly limiting for Alkali fermions because their fine structure

splitting, of order the spin-dependent lattice detuning, produces an unacceptably

large scattering rate. In the final chapter of this thesis we will consider a Heisenberg

model with an additional tunable lattice energy scale which relaxes these conditions

and enables the observation of dynamics.

5.3 Probes of many particle states

The momentum distribution of the 3D SF-MI transition was first observed via

TOF and absorption imaging in [125]. For low lattice depths, the population in the

diffracted orders increases with increasing lattice depths. When the lattice depth at

the center of the cloud crosses the phase transition from superfluid to insulating, the

diffraction signal from the superfluid gains an additional broad incoherent part (as

there is no well-defined phase from insulating site to insulating site). As the size

of the central Mott state grows with increasing lattice depth, the incoherent back-

ground becomes the dominant feature. Due to this inhomogeneity and the finite

size of the system, the sharp quantum phase transition from SF to MI is broadened

into a slower cross-over.

The excitation spectrum of MI state was further probed by using a transport

like measurement, where a magnetic field gradient to ”tilt” the lattice such that

ground motional state of one lattice site was energetically separated from the mo-

tional ground state of the neighboring site [125]. When the tilt energy equals the

onsite interaction energy, resonant tunneling may occur since the system no longer
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needs to pay the U energy cost to create a double occupancy. This tunneling in

the presence of a field gradient at deep lattice depth, partially dephases the super-

fluid wavefunction created when the lattice is ramped back down. This results in

broadened superfluid diffraction peaks. Monitoring the diffraction peak width as a

function of applied magnetic field gradient reveals resonant peaks at energies of U

and 2U. The peak at 2U is further broadened due to competing degenerate processes

eg. the creation of two doublon-hole pairs is degenerate with the co-tunneling of

two atoms or tunneling from a doubly to singly occupied sites. This spectroscopy

also allows one to measure U as a function of lattice depth. An alternate transport

measurement enabled by moving the magnetic trap containing the BEC relative to

the lattice beams was implemented in [181]. Such a measurement is not a direct

probe of the manybody spectrum but does give insight into the properties of the

the ground state quantum phase.

Since the observation of the superfluid-insulator transition, a number of al-

ternative spectroscopic techniques have been implemented to gain further insight

to the manybody spectrum. Bragg spectroscopy has been used to probe both the

BEC dispersion curve [182,183] and the Mott insulator spectrum [184] (a proposed

variation on this is lattice phase modulation [185]). A technique complementary to

the observation of momentum space diffraction peaks is to use a matter wave anal-

ogy of the Hanbury-Brown Twiss effect. While the momentum spectrum of a Mott

insulator is broad and unpeaked, its noise correlations reveal sharp peaks associated

with real space order of atoms in the lattice [186]. Another technique unavailable

in condensed matter due to a lack of electron internal structure is interaction shift
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resolving microwave spectroscopy of an internal state [187](this technique will be

implemented and further discussed in the following chapter). Finally, single lattice

site resolving optical microscopes are enabling the study of quantum gases on the

single atom level [103, 188]. In the following we develop and demonstrate direct

probes of staggered magnetization.
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Chapter 6: State-dependent Dynamic Optical Checkerboard Lattice

6.1 Idealized double well lattice

Before describing the checkerboard lattice in detail, I will review the sim-

plest idealized version of our single-beam retro-reflected lattice originally reported

in [189]. While much of the basic physical intuition about this lattice has been

described in this initial publication, substantial subsequent advances have occurred,

including but not limited to sublattice addressing [190] and precision measurement

of sublattice energetic offset via phase running in the Mott insulator regime [191].

The goal of this chapter is to tie together and perfect these techniques in order to

enable the use of this lattice as a tool for manybody physics.

The optical layout of the lattice is shown in fig 6.1. The lattice is a 4-beam

2D lattice contained in the x̂− ŷ plane, generated by folding a single beam back on

itself. The initial input beam is linearly polarized in the 2D plane of the lattice. It

passes through a Pockels cell/electro optic modulator (PC1 or the input Pockels cell)

oriented with the extraordinary axis rotated 45◦ out of the plane, which allows the

polarization to be continuously transformed from horizontal linear through elliptical

to circular and elliptical back to vertical linear. The voltage dependent retardence

of PC1 is parameterized by θ(V ). The lattice in the horizontally and vertically
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Figure 6.1: Double Well Optical Lattice layout: lattice beams are in red,
dipole beams are in light blue, wave vectors are in white, and polarization
vectors are in yellow).

polarized limits will form conceptual building blocks of our lattice intuition in terms

of λ/2 and λ spaced lattices, formed by either a pair of independent 2-beam lattices

or full 4-beam interference. The input beam, with wavevector ~k1 and polarization

~ǫ1, is focused down onto the atomic cloud. The beam is then collimated and passes

through a second Pockels cell (PC2) with its extraordinary axis in the horizontal

2D plane, allowing us to control the relative phase, β(V ), between the in-plane

and the out-of-plane polarization components, resulting in polarization ~ǫ2. The

beam with wavevector ~k2, encounters the atoms a second time orthogonal to ~k1

after being focused back down. The beam is then reflected off of a curved mirror
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which refocuses the light as it propagates back forming ~k3 = −~k2. The “~k4” beam

propagates through PC2 again and then back opposite to ~k1.

This single beam retro-reflected lattice is inherently phase stable. This means

that phase noise due to translation of the mirrors forming the lattice will lead only

to a translation of the lattice intensity pattern and not to change in shape/topology

of the lattice. If this motion is slow enough, the atoms will adiabatically follow and

heating will not occur. It is generally true that when a D dimensional lattice is

formed using ≤D+1 beams [192] it is phase stable. The intuition for this is simple,

D+1 beams will have D relative independent phases. Each of these phases can be be

associated with translation in one dimension. Lattices created using more than D+1

independent beams must have their “time phase” actively stabilized [193]. Despite

the violation of this inequality, (we make a 2D lattice using 4 beams) the retro

reflected nature of the lattice removes the extra degree of freedom ensuring phase

stability [194]. Another way to view this argument is to realize that you never can

independently align ~k4. We have three independent wavevectors to align, exactly in

agreement with the inequality.

In the following, we consider the lattices formed by different polarization con-

figurations of the single retro reflected beam. With the polarization horizontal in

the plane of the page and with ~k1 · ~k2 = 0, the light polarization vectors ~ǫ1 and ~ǫ2

are orthogonal. Thus only ~k1-~k4 and ~k2-~k3 can interfere. These two sets of 2-beam

interferences give a typical two dimensional λ/2 spaced lattice. However, the input

Pockels cell can be set to the half wave voltage, giving vertical, out-of-plane linearly

polarized light. In this case, all four beams can interfere giving a λ/
√
2 spaced lattice
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rotated 45◦ with respect to the λ/2 spaced lattice. Along the lattice direction of the

λ/2 spaced lattice, the spacing is λ, hence we will call it the “λ lattice” configura-

tion. Any intermediate input Pockels cell rotation results in a combination of both

λ/2 and λ lattices giving a 2D array of double wells which, in general, do not have

equal depths.The qualitative picture is of two independent lattices with a relative

amplitude controlled by PC1 and with relative phase (offset position) controlled by

PC2.

Figure 6.2 shows the action of PC1 as it changes the polarization from vertical

linear through elliptical down to horizontal linear with the phase of PC2 chosen to

be in between λ/2 lattice sites. PC1 smoothly connects the “typical” λ/2 lattice

shown on the right to the four times deeper λ lattice shown on the left. This lattice

deformation allows us to split atomic wave packets localized on a single lattice site,

realizing a matter wave version of double slit interference. The Pockels cells can

be switched (apply ≈ 1 rad phase shift) in a few µs, which is faster than the time

scale associated with typical band spacings (10 µs) and considerably faster than the

coherence time of double slit interference(100 µs - 1 ms). When we realize matter

wave double slit interference, we are careful to split the lattice sites slower than the

band gap. The phase of the lattice containing a vertical polarization component

can be swept along one direction a full wave length (from −π to π) by changing the

voltage of PC2.

In addition to the scalar lattice potential discussed so far, there is, in general,

a vector lattice potential giving rise to a fictitious Zeeman field. For the vector light

shift to be nonzero, the light must be near detuned relative to the fine structure
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Figure 6.2: Action of the input Pockels cell: Contour plots of the scalar
lattice potential as the input polarization is adjusted from vertical to
horizontal. The lattice is deformed from λ spacing to λ/2 spacing. This
deformation process, from λ to λ/2, leads to double slit matter wave
interference as atomic wavepackets in one well are split in two then
recombined in time of flight.

splitting, and the light polarization must have some ellipticity so that ~Beff ∝ ~E∗ ×

~E 6= 0. A typical vector field lies in the lattice plane, and is plotted over the scalar

potential contour plot in fig. 6.3. The local field in neighboring sites is orthogonal

although the relative field amplitudes may also vary dramatically. In the presence of

a large bias field ~B0 ≫ ~Beff , the total spin-dependent staggered offset δσ ∝ | ~B0+ ~Beff |

depends on the relative angle between ~B0 and ~Beff :
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This local field direction allows us to define A and B sublattices. By tuning the

direction of the bias magnetic field ~B0, we can tune the state dependence of the

sublattices. If ~Beff for one sublattice points along ~B0 the two fields add linearly,

however, the other sublattice will now have ~Beff ⊥ ~B0. In this case the total field

magnitude is the quadrature sum of the two which is dominated by ~B0 rendering

the other sublattice effectively state independent.
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Figure 6.3: A λ/2 spaced lattice with a small offset applied. The contour
plot shows the scalar potential (blue shading indicates lower potential).

The red arrows indicate the local effective Zeeman field ~Beff , and the

blue arrow represents the bias magnetic field ~B0. The right hand side is
a cross section of the potential along the white dotted line. The colored
dashed curves are the potentials seen by the five internal spin states of
87Rb and the solid black curve is the scalar mf = 0 potential. In this
field configuration the, B sites have a state dependence.

6.2 Implementation

6.2.1 Imperfections in the lattice

In this section, we expand the description of the lattice to include additional

degrees of freedom and their effects that must be controlled in the laboratory. While

we do not have to actively stabilize an interferometer to remove time phase issues, we

do rely on the passive stability and purity in polarization of our lattice light. Many

of the technical challenges reported in the following are related to characterizing

and controlling polarization at a sufficient level.
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Following the previous section, we will enumerate the potential lattice errors

in the order of light propagation through the lattice. The input polarization is ide-

ally horizontal with respect to the table, and α0 parametrizes the angle of the input

polarization from horizontal. This is a relatively forgiving imperfection because the

induced sublattice offset energy, ∆U = 4U0 sin
2(α0) (where U0 is the lattice depth),

scales quadratically with α0. The next imperfection, α1, is the misalignment of the

axis of PC1 from 45◦ with respect to the plane of the lattice beams. It manifests

itself as imperfections in the λ lattice preventing it from achieving perfect vertical

polarization. The misalignment of the axis of the 2D Pockels cell from horizontal

to the lattice plane, α2, manifests itself as a residual moving lambda lattice when

the polarization should be confined to be in the plane. In the λ/2 lattice, the most

serious source of imperfection arises when the lattice beams don’t intersect at 90◦.

We denote the deviation from 90◦ by ǫ and the site-to-site energetic offset scales

linearly for small ǫ, ∆U = 4U0 sin(ǫ). Characterization of this offset is discussed in

section 6.3.2. Additionally, attenuation through windows leads to reduced lattice

depth upon retroreflection. The imperfect beam-power-balance has been dramat-

ically reduced with AR coated optics and viewports in the new apparatus, to the

percent level from the 10 percent level with the old cell. Finally, to insure the correct

state dependence, the bias magnetic field direction must be oriented in the lattice

plane and along the local effective Zeeman field of the lattice using techniques in

6.3.2 and 6.3.3.
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6.2.2 Crude lattice alignment procedure

In this section we detail the technical steps associated with the alignment and

characterization of the optical components of our lattice. Once the output beam of

the fiber to the experiment is collimated (translating an aspheric lens and looking at

a shearing interferometer), the first step is to linearly polarize the beam in the plane

of the optical table. Place a kinematically adjustable glass plate at Brewster’s angle

with respect to the incident beam. Then adjust the beam so that it is a fixed height

above the optical table ∼1 m distance away and rotate the polarizer to minimize the

transmission. We estimate the uncertainty in the angle between the polarization and

the optical table to be ∼0.001 rad. The process of finding the Brewster angle and

subsequent polarizer adjustment should be iterated several times until subsequent

adjustment converges to the same position.

Once the beam height and input polarization are fixed, the lattice plane polar-

ization is defined. We can make a pair of mobile crossed polarizers, one vertical and

one horizontal. It is useful to mount a double Glan-Taylor calcite polarizer with a

∼4◦ field of view, and 1:105 polarization extinction ratio (6 non-AR coated surfaces

inherently reduce transmission, be careful to note this when calculating extinction

ratios) in a kinematic mount capable of pitch, yaw, and barrel rotation. The vertical

polarization can be found by maximizing the extinction of the horizontally polarized

beam then reversing the polarizer with respect to beam propagation direction and

re-maximizing and repeating until the extinction is globally maximized.

Once the polarization of the input beam is set, the first pass of the lattice beam
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should be aligned to the BEC with PC1 in place but not carefully optimized. The

first step toward this is aligning the beam using a mechanical target on the chamber

windows. To avoid additional parasitic lattices arising from reflections off of the

nominally AR coated windows, the in-plane lattice beams are rotated by ≈ 3.5◦

from normal incidence to the windows. Using targets with ≈ 100µm printed lines

and a vacuum chamber of order 20 cm, one can achieve approximately 0.005 rad

angular accuracy. If the dipole trapping beams are aligned to the same target, this

is typically enough to quickly observe an effect on trapped atoms in the chamber.

However, if this approach is insufficient, the next step is to tune the Ti:saph near

atomic resonance (within a nanometer) and steer the lattice beam around until loss

of atoms due to near resonant scattering out of the BEC or magnetically trapped

thermal cloud is observed. This alignment can then be quickly improved by noting

the zero time of flight BEC position and trapping atoms in the “~k1” lattice beam and

the dipole beam nominally orthogonal to ~k1 and then overlapping the “~k1” trapped

cloud with the crossed dipole BEC position. The beam height can be optimized by

maximizing the number of trapped atoms.

The alignment of ~k1 onto the BEC should be checked by “dipole pulling”,

where the lattice beam is used as a competing dipole trap to displace the BEC from

its lattice-unperturbed-position in the dipole trap. As one scans a lattice beam

across the BEC from far-off on one side to far-off on the other side the position

of the BEC is: first unaffected, then pulled off center toward the lattice beam,

then again unaffected as the lattice beam overlaps the BEC, then pulled off to the

other side with the lattice beam, and finally unaffected again when the lattice beam

119



is far off on the other side. This dispersive feature in BEC position vs. lattice

position is colloquially referred to as the “S” curve, and being centered on it is a

reliable signal for lattice position optimization. It is a difficult procedure in the sense

that no displacement can mean perfectly aligned or completely misaligned without

directional information.

Once the ~k1 beam is initially aligned on the atoms, the next step is to optimize

the alignment of the input Pockels cell (Linos Pockels cell driven by a Trek 5kV

amplifier). The first step is to center the beam on the input aperture and observe

the so-called isogyre or Malteese cross. To do this, you must add a second vertically

oriented polarizer after the PC and a diffusing object (ground glass, tissue paper

or scotch tape all work, although the tape may have undesirable stress induced

birefringence) before the PC. Looking on a screen after the vertical polarizer, the

Malteese cross is a dark cross with the axes of the polarizers defining the axes of

the cross and radially symmetric interference pattern which should change as a

function of applied voltage on the PC. The goal is to center the residual transmitted

beam on the axes of the cross. The next step is the fine adjustment of the beam

center by minimizing transmission through crossed polarizers, with the vertically

oriented polarizer located just before the photodiode. To adjust the polarization

from horizontal linear to vertical linear, the extraordinary/fast axis must be oriented

at 45◦ with respect to the table. An accurate, if potentially lethal (the HV amplifier

can drive 80 mA at 5 kV) way of orienting the fast axis at 45◦, is by maximizing the

extrema in extinction ratio by rotating the PC while sweeping to ± the half-wave

voltage in a triangle pattern (safety note, “class 0” electrical safety gloves protect
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up to 5 kV). This ramp must be kept relatively slow, below a few Hz, in order to

avoid hysteretic drift effects from ramp to ramp.

This PC alignment process should then be repeated for PC2, however, the

fast axis of the PC should now be optimized to be in the horizontal plane. This

configuration does not change the amount of horizontally and vertically polarized

components, it just induces a phase between them. There are several ways to opti-

mize PC2. First one can temporarily place a polarizer at 45 ◦ and detect with vertical

polarization, giving a full extinction ratio measurement as minimizing transmission

through crossed polarizers while the PC2 is swept. A second approach uses hor-

izontally polarized light. One can verify that the transmission through a vertical

polarizer does not change as the 2D PC is swept. This configuration is an insensitive

measure of the field because I ∝ |E|2 so, a 10−4 extinction intensity measurement

gives only percent level field information.

Once both PC’s are aligned with acceptable extinction ratios (typically ≈

1x10−4), we characterize their full voltage response to determine θ(V ) and β(V ).

We do this by setting a polarizer and photodiode after PC2 (or the chamber if you

wish to know about viewport birefringence) and sweeping the PC control voltages

while simultaneously reading out the photodiode voltage. In this way, we can record

the transmission for all potential operation settings. To gain the most information

we use two polarizer settings, crossed vertical and 45◦ as shown in figures 6.4 and 6.5.

The vertical polarizer setting, Fig. 6.4, returns the most information about PC1 and

is nearly independent of the voltage applied to PC2. The 45◦ setting, Fig. 6.5, is

best for calibrating the phase response of PC2. For clearer comparison Fig. 6.6
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shows cross sections of the surface represented in Fig. 6.5.
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Figure 6.4: Characterization of the light transmitted through a vertical
polarizer for all Pockels cell voltages. Data is represented by the col-
ored plot and a best fit is displayed as a gray scale contour plot. Red
corresponds to minimal transmission while blue corresponds to nearly
full transmission. Ideally, in this configuration the input PC entirely
controls the amount of vertically polarized light and the second PC has
no effect. After alignment of the axis of the second PC there is little
dependence. The gray scale contours correspond to a two variable fit to
the data surface.

Next the second pass of the lattice beam through the atomic cloud, ~k2, must

be aligned. This is most easily realized by recording the insitu (zero time of flight)

position of the BEC and then loading the lattice and dipole 1, (with the lattice retro-

reflector, ~k3 and ~k4, blocked) and looking for an increase in atomic density at the

overlap of the beams. Since the atoms are localized along a 1D tube, we only need

to blindly search in the vertical direction and this method converges rapidly. Once

a density peak is found, it can be readily adjusted to be centered on the position of
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Figure 6.5: Characterization of the light transmitted through a 45◦ po-
larizer for all Pockels cell voltages. Data is represented by the colored
plot and a best fit is displayed as a gray scale contour plot. Red cor-
responds to minimal transmission while blue corresponds to nearly full
transmission. Extinction ratios in this case are limited by our ability to
correctly set the polarizer to 45◦. However, we can still extract the phase
of the 2D Pockels cell as a function of voltage. The gray scale contours
correspond to a two variable fit to the data surface.

the BEC. Again, the outcome of this process should be checked by “dipole pulling”.

With the first two k vectors of the lattice aligned to the BEC, the next step

is to align the retro reflecting mirror, thus fixing both ~k3 and ~k4. The first step is

simply overlapping the back reflection from the retro mirror onto the incident beam.

Since the lever arm from the retro mirror is ≈ 80 cm from the lattice fiber launch

and the spotsize of the lattice beam is ≈ 1 mm, the angular accuracy of this basic

alignment is again quite good, and an effect on the BEC should be immediately

visible. The last step of this alignment is to use diffraction of the BEC off of the 2D
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Figure 6.6: Characterization of the light transmitted through a 45◦ po-
larizer for approximate quarter wave values of the input Pockels cell.

optical lattice to optimize the retro reflector alignment. The optimum short-pulse

diffraction pattern will have the most possible occupation in the highest momentum

orders and will be as symmetric in 2D as possible (all four first order diffraction

peaks should have the same population).

6.2.3 Pockels cell temporal response

Once the lattice is spatially aligned and characterized, the temporal response

of the PC’s must also be characterized. When switching from a large applied voltage

to a small applied voltage (as in moving from addressing to dynamics configurations

in the lattice), we have observed 100 ms scale relaxation of the transmitted light

through a crossed polarizer. This behavior is shown in the red trace in Fig. 6.7. This

relaxation could be due to leakage to a capacitance in the lines to the PC as well as
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within the PC itself. In fact, we have only observed significant relaxation behavior

in PC1 while PC2 seemed relatively well-behaved. By measuring the polarization

response for several control voltages, we were able to choose parameters to remove

the drift by feeding forward an exponentially decaying voltage offset in addition to

the standard control voltage. The black trace in Fig. 6.7 shows the response with

feed forward implemented. Any remaining noise and residual drift would show up

as . 10 Hz lattice imperfections.
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Figure 6.7: Measured polarization relaxation of PC1.

6.2.4 Vertical Lattice

To complete the three dimensional confinement of atoms, we implemented a

vertical lattice in a “Bow tie” configuration derived from the Ti:saph, but offset in

frequency from the 2D lattice by ≈160 MHz. In this configuration, two linearly

polarized beams intersect at 142◦ and the resultant lattice is formed with a period-
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icity, λ/(2 sin(θvert)) (about 430 nm in practice). The plane, defined by the lattice

beams, is orthogonal to the Zeeman slower and produces a lattice along ẑ. This

bow tie setup allows imaging along the direction of gravity. The angle of the beam

intersection is just larger than the numerical aperture of the imaging system. The

beam waists are ≈250 µm and the power in the beams is typically ≈250 mW. The

depth is calibrated daily by Kapitza-Dirac diffraction to check for relative alignment

drift between the lattice and the crossed dipole trap.

6.3 Atomic probes for accurate alignment

Once the lattice is roughly aligned following the procedures just outlined, one

can begin a number of further explorations to better understand the lattice. Our

diagnostic tools include; lattice diffraction, bandmapping, Talbot enhanced diffrac-

tion, magnetic field sensitive and insensitive microwave spectroscopy, “ground-band

diffraction” [189], and “phase running” in a double slit experiment [191].

6.3.1 Lattice diffraction and band mapping

Perhaps the most obvious and simple to implement probe of the lattice struc-

ture is atomic diffraction by the optical lattice. Diffraction probes the momentum

space structure of the lattice and allows us to qualitatively compare the λ/2 spaced

lattice to λ (again actually λ/
√
2 rotated by 45◦) spaced lattice. Since the recoil

momentum in the longer wavelength λ/
√
2 lattice is smaller, the first order diffrac-

tion peaks after time of flight, appear 1/
√
2 closer to the central un-diffracted peak
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than the λ/2 spaced lattice.

In the Kapitza-Dirac limit, we ignore the kinetic energy term and atom-atom

interactions in the Hamiltonian compared to the potential energy of the lattice.

This is valid if the atoms move little compared to a lattice spacing during the

lattice pulse time. We use this method to calibrate the lattice depth by measuring

the relative populations in the zeroth and first order diffraction peaks. In this

limit, the lattice depth as a function of diffraction ratio has a simple functional

form, R0/1 = J2
0 (x)/J

2
1 (x) where x = (Ulatttpulse)/(2~), which can be inverted to

determine lattice depth. This measurement is most accurate when the peaks have

approximately equal weight and any optical-depth dependent systematics cancel out.

However, we rarely observe a significant diffraction ratio dependent discrepancy in

calculated lattice depth.

The difference between lattices can also be observed by ”band mapping”, ide-

ally, lowering the lattice adiabatically with respect to band excitation but quickly

compared to atom-atom scattering interactions [195]. As the lattice is loaded, the

atomic dispersion changes from parabolic, as a free particle, to nearly momentum in-

dependent in a deep lattice. The momentum of the BEC evolves from localized near

zero to fill the lowest band of the lattice. Adiabatic deformation of the dispersion

relation to back to parabolic during bandmapping should return a sharp momentum

distribution. However, interactions and even small lattice induced heating prevent

this. Thus the lowest Brillouin zone becomes nearly filled, and after time of flight

provides a direct visualization of the Brillouin zones. The lowest Brillouin zone of

the λ/2 lattice appears as a square with width 2~k and the lowest Brillouin zone of
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the λ lattice appears as a diamond with its edges at the centers of the λ/2 lattice

Brillouin zone (again the with in momnetum space of the λ lattice is reduced by a

factor of 1/
√
2). In practice, it is often hard to convincingly see diamond of the λ

lattice Brillouin zone. A lack of sharp corners from bandmapping could be due to a

lack of population at higher momentum due to low temperatures.

6.3.2 Talbot Pulsing of the ~k1-~k2 lattice

The lattice beam orthogonality can be tested by blocking the retro reflecting

mirror (~k3 and ~k4) and looking for diffraction from the ~k1-~k2 beams polarized in the

plane. If the two beams were perfectly orthogonal and the polarization was perfectly

in the 2D plane, there would be no diffraction at all. However, any imperfections

will allow diffraction to occur from a small residual ~k1-~k2 lattice. The Zeeman

projection of the atoms is also crucial, since even for perfectly orthogonal beams,

there is still a standing wave polarization interference pattern which will diffract

mf 6= 0 atoms. The small diffraction signals can be magnified by Talbot pulsing

the lattice for a duration of half the Talbot time [196], τTalbot/2 = h/(8Er) = 68 µs,

interspersed by dark times of half the Talbot time. This process coherently places

atomic population in higher momentum orders and amplifies the diffraction signal.

In practice, we typically use 8 Talbot pulses, though sometimes, more does increase

the signal. Varying input PC voltage we can check that zero applied voltage results

in zero diffraction. Figure 6.8 shows the typical characterization of lattice beam

orthogonality via Talbot pulsing. The diffraction ratio in this case is the amount
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of atomic population in higher momentum states. Using all Ti:saph power and 23,

68us pulses, we could detect a faint diffraction peak from a ~k1-~k2 lattice. From this

we ended up moving the k2 lattice mirror ≈0.25 mrad. This corresponds to a 100 Hz

offset in a 30 Er lattice.

Stray reflections of of optics may also create extremely weak, but still relevant,

optical lattices with spacing λ/2. We check for these using the same procedure but

with τTalbot/2 = 34 µs to account for the shorter period. We removed back reflections

off of elements by tilting optical surfaces slightly and checking for the disappearance

of a diffraction signal.
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Figure 6.8: Talbot pulse measurement of beam orthogonality. The initial
configuration shows a double minima structure due to the zero crossing
of the tilt. The final configuration shows single minimum consistent with
a tilt near zero.

Angular alignment of the bias magnetic field in the plane of the lattice is also

done by Talbot pulsing atoms in states with mf 6= 0. If there is a component of

the bias field out of the plane, it will add with the ~k1-~k2 interference pattern and
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produce diffraction. By monitoring diffracted atom population as a function of ẑ

bias magnetic field, we can find a minimum (with no detectable diffraction) and set

the field direction.

Angular alignment of the magnetic field in the plane is done by performing

Rabi spectroscopy for different values of the shim fields. The measured linecen-

ters as a function of applied field and a Breit-Rabi calculation allow us to extract

the ambient field magnitude and the current response of the shim coils. There is

an overall angular uncertainty related to the relative angle between lattice beams

and the mounting of the coils to the chamber but, this estimate can be further

refined by preforming high resolution site resolving spectroscopy and observing the

disappearance of a sublattice-dependence

6.3.3 Sublattice resolving spectroscopy

An important probe of the vector light shift from our lattice is RF or microwave

spectroscopy as originally reported in [190]. We expect to be able to apply of order

10 kHz effective field shift, which we can probe directly with Rabi spectroscopy

provided that Fourier limit of our Rabi pulse is smaller than the applied shift.

Since we must probe magnetically sensitive transitions, our pulse time is limited

to less than a quarter period of the 60 Hz magnetic field noise associated with AC

power. Using the bias magnetic field described in section 6.1 the shift from ~Beff

can be applied to one sub lattice leaving the other un-shifted. The sublattices will

be degenerate for horizontal linear polarization. Increasing the beam ellipticity by
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Figure 6.9: The A sites, left, experience no vector light shift while the
B sites are spectroscopically separated with increasing lattice beam elip-
ticity.

applying a voltage to PC1 breaks the sublattice degeneracy. We use the |1,−1〉 →

|2,−2〉 transition because it has (from the g factor) three times the magnetic field

sensitivity of a mf = 1 → mf = 0 transition, so we get the most shift per applied

~Beff .

We check this transition daily with the vector tilt applied to the B sites us-

ing 108µs pulses (136µs is a π pulse) to tweak up the microwave transition cen-

ter frequencies and check for drifts in the lattice alignment or bias magnetic field.

Figure 6.9 shows three spectra taken with different lattice elipticities. The most

distantly separated peaks represent the lattice during typical addressing conditions

for the experiment reported in the following chapter. The day-to-day drift in tilt is

≈ 100 Hz out of ≈27 kHz. Repeating this spectroscopic procedure with the scalar
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tilt applied on A sites using 2.5 ms pulses showed ≈250 Hz broadening, which places

an upper bound on the inhomogeneity in ~Beff .

6.3.4 Lattice offset characterization via phase running

One of the central problems in setting up this lattice is accurately character-

izing the sublattice offset ∆ as a function of lattice control parameters. We have

discussed the accuracy with which various “offline” measurements can determine

lattice parameters. Even if they could be estimated with sufficient accuracy, we

must still demand verification “with the atoms”. There are two conceptually re-

lated methods (“ground band diffraction” and “phase running”) that determine ∆

by taking an initial wave function, splitting it, allowing it to time evolve in the

presence of the sublattice offset ∆. The first of these methods is “ground band

diffraction”, where a BEC is loaded into the 2D lattice quickly compared to in-

teractions, but slow compared to lattice band spacings (hence the ground band

part), allowed to time evolve in a staggered lattice and then snapped off, creating

a diffraction pattern. In this experiment, the populations in the reciprocal lattice

space oscillate between the λ/2 and λ lattice. The rate of oscillation is proportional

to the applied ∆. This technique has the advantage that the lattice is in steady state

with respect to PC relaxation time scales because it does not need to be dynamically

manipulated. Ground band diffraction in principle provides sufficient information

in a less experimentally demanding configuration than “phase running” (described

below). However, there remain a number of uncontrolled systematics likely related
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Figure 6.10: An absorption image of matter wave double slit interference,
created when a λ period lattice is loaded then quickly deformed into a
λ/2 period lattice. The lattice is then snapped off and the atomic cloud
is allowed to expand and interfere with itself in time of flight.

to density and inhomogeneous lattice dephasing that complicate the interpretation

of the time evolution of the diffraction pattern.

The second method is double slit phase running [191], and despite its technical

demands (vertical lattice, low filling, PC hyseteretic dynamics and associated band

excitation) it is a favorite characterization technique because it is able to measure

not only the magnitude of the lattice offset, but also the sign of the offset. In this

experiment, the 3D lattice with λ spacing in the 2D plane, is loaded slowly compared

to interactions into Mott insulating state. The 3D array of isolated sites are then

split, as shown in figure 6.2, and a tilt is applied to the “state independent” B

sublattice. After waiting a variable time, the lattice is snapped off, and the split

atoms interfere in time of flight, yielding a double slit interference pattern shown

in 6.10. The timing of the phase running experiment is outlined in table 6.1. (The

necessary Pockels cell manipulations mean that the Pockels cells have not fully
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relaxed and thus the tilt is not at its steady state value which must be taken into

account.) As the atomic phase winds due to the applied ∆, the position of the

interference fringes translates as a function of the hold time in the tilted-isolated

double wells. By fitting to the absorption image, we record this position and measure

the velocity of the fringe motion. To increase accuracy, we measure after a revival so

that the interaction time is sufficient to resolve slow fringe time evolution. Repeating

this experiment for different hold times, applied offsets ∆ and different internal spin

state generates the summary plot shown in fig. 6.11. This plot is central to our

characterization of the lattice and comparison to our lattice simulation. We found

that for the measured depth and PC responses the fit curves matched well to our

lattice calculations up to an overall voltage shift, related to the fact that the PC’s

were characterized in steady state and the phase running measurements were taken

before relaxation could occur. Perfect alignment would mean that the curves for all

three Zeeman projections would cross at zero sublattice offset. In this measurement,

we observe imperfections on the order of 100 Hz in a 33 Er lattice (≈ 115 kHz total

depth).

Table 6.1: Phase running experimental sequence
Step Time
Load a λ lattice 32.7Er 100ms
split lambda lattice sites in half 466µs
move 2D PC to B sites 466 µs
tilt B sites 466µs
wait for time evolution <2ms
snap off lattice ≈ 1µs
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6.3.5 Number resolving spectroscopy in the MI

We have discussed microwave spectroscopy as a probe for state dependent

shifts. If we wish to probe the state of the atoms rather than the lattice we may

use field insensitive transitions. Such transitions are called clock transitions because

their environmental isolation makes them well suited as oscillators for time keeping.

Previously, our group has investigated a number of magic wavelength configura-

tions [197, 198] where the differential AC Stark shift on microwave transitions can

be controlled by lattice and magnetic field configurations which have applications to

trapped atom clocks. However in this experiment, we probe the first order magneti-

cally insensitive |1,−1〉 → |2, 1〉 transition which around 3.23G is linearly insensitive

to magnetic field [187, 199] using a two field microwave+RF coupling with a .100

kHz intermediate detuning from the |2, 0〉 state. Due to percent level differences in

the F=1 and F=2 scattering lengths [200], Rubidium has a spin dependent interac-

tion energy which gives rise to a frequency shift, δν = U(a21 − a11)/(ha11), which

in a ≈ 30ER lattice this gives δν ≈ 50 Hz. Due to the environmental decoupling,

we are able to use 80 ms Rabi pulses with an area < π. This resolution enables us

to see atomic interaction shifts as shown in figure 6.12. In a system with continu-

ous density variation, this would create an asymmetric lineshape where the greatest

frequency shift occurs at the peak density but with vanishing weight due to the

small fraction of the sample at the peak density. In a Mott insulator however, the

density is discretized to have integer filling per lattice site. This creates discrete

peaks in the spectrum rather than a broadened lineshape. It should be noted that
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Figure 6.12: Reduction of the 2’s peak with increasing throwaway. Black
trace is with 14∗103 atoms, lavender trace is with 10∗103 atoms. Both
data sets are fit with two Gaussian functions.

direct interpretation of the weights of this spectrum is involved and may well require

knowledge of trap anharmonicities [201]. But, it is easy to get qualitative insight

into the relative number of singly and doubly occupied sites. As we reduce the

atom number, the peak associated with double occupation vanishes. Shot-to-shot

fluctuations limit our knowledge of double occupation at the percent level.
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Chapter 7: Non-equilibrium dynamics

The interplay of magnetic exchange interactions and tunneling underlies many

complex quantum phenomena observed in real materials1. We study nonequilibrium

magnetization dynamics in an extended 2D system by loading effective spin-1/2

bosons into a spin-dependent optical lattice, and we use the lattice to separately

control the resonance conditions for tunneling and superexchange. After preparing a

nonequilibrium antiferromagnetically ordered state, we observe relaxation dynamics

governed by two well-separated rates, which scale with the underlying Hamiltonian

parameters associated with superexchange and tunneling. Remarkably, with tun-

neling off-resonantly suppressed, we are able to observe superexchange dominated

dynamics over two orders of magnitude in magnetic coupling strength, despite the

presence of vacancies. In this regime, the measured timescales are in agreement

with simple theoretical estimates, but the detailed dynamics of this 2D, strongly-

correlated, and far-from-equilibrium quantum system remain out of reach of current

computational techniques.

1At the time of this writing, the bulk of this chapter has been submitted [10]
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7.1 Introduction

The interplay of spin and motion underlies some of the most intriguing and

poorly understood behaviors in many-body quantum systems [179]. A well known

example is the onset of superconductivity in cuprate compounds when mobile holes

are introduced into an otherwise insulating 2D quantum magnet [202]; understand-

ing this behavior is particularly challenging because the dimensionality is low enough

to support strong quantum correlations, but high enough to prohibit numerical solu-

tion. Ultracold atoms in optical lattices realize tunable, idealized models of such be-

havior, and can naturally operate in a regime where the quantum motion (tunneling)

of particles and magnetic interactions (superexchange) explicitly compete [173,180].

For ultracold atoms in equilibrium, the extremely small energy scale associ-

ated with superexchange interactions makes the observation of magnetism challeng-

ing, and short-range antiferromagnetic correlations resulting from superexchange

have only recently been observed [150, 153]. Out of equilibrium, superexchange-

dominated dynamics has been demonstrated in isolated pairs of atoms [151], in 1D

systems with single atom spin impurities [203], and recently in the decay of spin-

density waves [204]. However, the perturbative origin of superexchange in these

systems requires that it be weak compared to tunneling, and thus the manifestation

of superexchange requires extremely low motional entropy. Dipolar gases [131] and

ultracold polar molecules [205] in lattices provide a promising route toward achiev-

ing large (non-perturbative) magnetic interactions [206], but, technical limitations

in these systems currently complicate the simultaneous observation of motional and
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spin-exchange effects.

Here, we study the magnetization dynamics of effective spin-1/2 bosons in

a 2D optical lattice following a global quench from an initially antiferromagneti-

cally ordered state [167]. The dynamics we observe is governed by a bosonic t-J

model [207–211]. Utilizing a checkerboard optical lattice, we continuously tune the

magnetization dynamics from a tunneling-dominated regime into a regime where

superexchange is dominant, even at relatively high motional entropies. This exper-

iment bridges the gap between experiments studying the non-equilibrium behavior

of systems with exclusively motional [155, 212–215] or spin degrees [216, 217] of

freedom, demonstrating the requisite control to explore the intriguing intermediate

territory in which they compete. In addition, the techniques we demonstrate lay the

groundwork for adiabatic preparation of low entropy spin states relevant for studies

of equilibrium quantum magnetism [163,164].

Our experiment uses two hyperfine spin states (denoted by ↑, ↓) of ultra-

cold 87Rb atoms trapped in a dynamically controlled, 2D checkerboard optical

lattice [189] comprised of two sub lattices A and B (Fig. 1a). For most experi-

mental conditions presented here, our system is well described by a Bose-Hubbard

model [173] characterized by a nearest neighbor tunneling energy J , and an on-

site interaction energy U > 0. In addition, we use the lattice to apply an en-

ergy offset ∆σ = ∆ + δσ between the A and B sub-lattices, consisting of a spin-

independent part ∆ and a spin-dependent part δσ acting as a staggered magnetic

field (σ ∈ {↑, ↓}) [190]. All of these parameters can be dynamically controlled, which

we exploit to prepare initial states with 2D anti-ferromagnetic order and to observe

140



Figure 7.1: Tunable exchange processes. (A) Schematic of terms
in the underlying Bose-Hubbard Hamiltonian: onsite interaction energy
between two atoms U , tunneling J , and sub lattice offset, ∆. (B) Sec-
ond order magnetic coupling processes arising from exchange between
occupied nearest neighbor sites (Jex) or hole-mediated exchange associ-
ated with hopping of a hole within one sub-lattice (V+ and V−). These
couplings dominate the magnetization dynamics when tunneling is sup-
pressed by tuning |∆| ≫ J .

the resulting dynamics following a quench to different values of J , U , ∆, and δσ.

7.2 Hamiltonian

At unit filling, for U ≫ J and ∆σ = 0, double occupation at each site is allowed

only virtually and the Bose-Hubbard model can be mapped onto a ferromagnetic

Heisenberg model [180, 218] with a nearest neighbor magnetic interaction strength

Jex that is second order in the tunneling energy. In the presence of hole impurities,

first order tunneling (with the much larger energy scale J) must be included, which

significantly modifies the dynamics even at low hole concentrations [204]. The offset

∆σ provides the flexibility to tune the relative importance of first order tunneling and

second order superexchange processes. For example, below unit filling, if |U −∆| ≫
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J and δσ, the Bose-Hubbard model can be mapped onto a bosonic t-J model (a

J-Jex model in our notation, since t represents time) with a staggered energy offset:

H = −J
∑

〈i,j〉,σ
a†iσajσ −

∑

j∈A,σ

∆σa
†
jσajσ (7.1)

−Jex
∑

〈i,j〉
Si · Sj −

∑

〈i,j,k〉,σσ′

Vj

(

a†iστσσ′akσ′

)

· Sj .

The local spin operators are defined as Si = 1
2

∑

σσ′ a
†
iστσσ′aiσ′ , where aiσ (a†iσ)

annihilates (creates) a hardcore boson of spin σ on site i, and τ is a vector of Pauli

matrices. The notation 〈i, j〉 indicates the sum over i and j is restricted to nearest

neighbors, and 〈i, j, k〉 indicates the sum is restricted to sites i, j, k such that i 6= k

are both nearest neighbors of j. The superexchange energy Jex = 4J2U/(U2 −∆2)

(Fig. 1b) can be either ferromagnetic (U > ∆) or anti-ferromagnetic (U < ∆) [151].

The last term describes hole-mediated exchange between sub lattices where an atom

on site k interacts via superexchange with an atom on site j, while simultaneously

hopping to site i (Fig. 1b). Here Vj = V± ≡ J2/(U ±∆), where −(+) applies when

j ∈ A(B). In writing Eqn. 7.1 we have ignored second-order processes [219, 220]

that conserve sub-lattice magnetization [221]. When |∆| . J , first order tunneling

is resonant and dominates over hole mediated exchange. For |∆| ≫ J , however,

first order tunneling is effectively suppressed, in which case the frequently ignored

Vj term plays an important role in hole motion and must be included. Similarly,

superexchange is resonant when |δσ| . Jex, but is suppressed when |δσ| ≫ Jex. The

values of J , U , ∆, and δσ are determined from an experimentally calibrated model

of the lattice [221]. Inhomogeneity in the system, arising e.g. from trap curvature,
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Figure 7.2: Schematic of experimental sequence. (A) Spin/sub
lattice mapping: Atoms in |↑〉 (red) or |↓〉 (blue) occupy either the A or
B sub-lattice (shown on the left). Applying a spin dependent address-
ing offset to the B sub-lattice spectroscopically resolves the A and B
sub-lattices (colored lines correspond to the potentials and energy levels
seen by different hyperfine states). The |A, ↑〉 and |A, ↓〉 populations
are microwave transferred to two different hyperfine states (yellow and
green respectively), and the four mapped populations are measured by
absorption imaging after Stern-Gerlach separation (shown on the right).
(B) Initial lattice loading: A spin-polarized |↑〉 unit filled Mott insula-
tor. (C) Microwave state preparation: B sites are microwave transferred
from |↑〉 to |↓〉 using similar techniques to those employed for the state
readout shown in (A). (D) Time evolution: After the lattice is quenched
to a specific configuration, the sub-lattice/spin populations are measured
as a function of time (including the non-participating mF = 0 hyperfine
state shown in gray).

primarily enters via inhomogeneities in the parameters ∆ and δσ.

7.3 Experiment

The experiments begin with . 12 × 103 87Rb atoms loaded into a square 3D

optical lattice with one atom per site [221], initially spin polarized in the state |↑〉 .

We use the hyperfine states |↑〉 ≡ |F =1,mF =−1〉 and |↓〉 ≡ |1,+1〉 to represent
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the pseudo-spin-1/2 system. The 3D lattice is comprised of a vertical lattice along

z which confines the atoms to an array of independent 2D planes, along with the

dynamic 2D checkerboard lattice in the x-y plane. The vertical lattice depth is

typically Vz = 35 ER, held constant throughout the experiment, and the 2D lattice

depth is initially Vxy = 30 ER with no staggered offset, ∆σ = 0 (The recoil energy

ER = h2/(2mλ2), ER/h = 3.47 kHz, where m is the mass of 87Rb and λ = 813 nm).

The atoms occupy roughly 13-15 2D planes, with the central plane containing 800-

1100 atoms. The ratio of surface lattice sites to total lattice sites of the trapped

cloud is ≈15 % and sets a zero temperature lower bound for the number of sites with

neighboring holes. Based on spectroscopic measurements and assuming a thermal

distribution [221], we estimate the hole density averaged over the entire cloud to be

about 25 %, and the hole density at the center of the cloud to be about 7 %.

To measure the spin population independently on each sub-lattice, we map

the four spin-spatial states |A ↑〉 , |A ↓〉 , |B ↑〉 and |B ↓〉 on to four distinct Zeeman

states (Fig. 2a): By applying a large state-dependent offset δσ to all B sites we trans-

fer the spectroscopically resolved A-site atoms to two additional readout hyperfine

states, |A ↑〉 → |2,−2〉 and |A ↓〉 → |2,+2〉 [190]. The four normalized popula-

tions Pα,σ (α ∈ {A, B}) are measured with absorption imaging after Stern-Gerlach

separation in a magnetic field gradient.

To perform the experiment, we start with a spin polarized configuration

(Fig. 2b), and construct an initial state with staggered magnetization by apply-

ing the addressing offset δσ and transferring the B-site atoms to |↓〉 (Fig. 2c). After

returning δσ to zero we initiate dynamics by quenching to a given configuration with

144



lattice depth Vxy and offsets ∆ and δσ (Fig. 2d). The ramp time for the quench of

200 µs was chosen to be fast with respect to subsequent dynamics but slow enough

to avoid band excitation. After a variable hold time, we freeze the dynamics by

raising Vxy to 30 ER and read out the populations Pα,σ, from which we determine

the staggered magnetization Ms and the sub lattice population difference PA−B:

Ms(t) ≡ PA,↑(t) + PB,↓(t)− PA,↓(t)− PB,↑(t),

PA−B(t) ≡ PA,↑(t) + PA,↓(t)− PB,↑(t)− PB,↓(t). (7.2)

The exchange terms in Eqn. 7.1 conserve PA−B, while the first order tunneling does

not, allowing for population transport between sub lattices. We also monitor the

total spin imbalance P↑−↓ and the mF=0 population to quantify unwanted spin-

changing processes that drive the atoms out of the spin-1/2 manifold containing

|↑〉 and |↓〉 . We measure the time for depopulation of the spin-1/2 manifold to be

greater than 6 s and the atom number lifetime in the lattice to be greater than 3 s.

7.4 Observations

For the lattice parameters studied in this paper, the magnetization dynamics

is well described by exponential decay, with decay time scales ranging between

0.5 ms and 500 ms. Example decay curves are shown in Fig. 3a for a lattice depth

Vxy = 15 ER and different offsets ∆. For some Vxy and ∆ the exponential decay

clearly occurs on two well separated time scales (Fig. 3a inset): a fast time scale,

τf , which dominates the behavior in shallow lattices when ∆ ≈ 0 or ∆ ≈ U , and a
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Figure 7.3: Identification and control of tunneling (A) Decay of
magnetization at a lattice depth of 15 ER for different offsets ∆/h of
1000 Hz (green), 300 Hz (blue), and -50 Hz (red). The inset shows the
short time evolution, with two timescales (τf ≈ 2 ms and τs ≈ 50 ms),
both visible in the ∆/h= 300 Hz (blue) trace. The solid lines are double
exponential fits. The vertical gray line indicates the fixed decay time at
which the data in b) was taken. (B) Magnetization Ms (filled circles)
and sub lattice population PA−B (open circles) as a function of ∆ at a
fixed wait time of 5 ms & τf after the quench. The fast magnetization
decay is resonant at ∆ = 0 and ∆ = U , while sub-lattice transport
occurs near ∆ = U . The vertical gray band represents the calculated
U with an uncertainty due to parameter extraction from the two band
model [221]. (C) The fast time scale, τf , vs. calculated tunneling time
scale h/J for different lattice depths and ∆. J . The solid line is τf =
(h/J)/22, and the gray band represents the uncertainty in the location of
the 2D superfluid-insulator transition reported in Ref. [222]. (error bars
represent the 1 standard deviation statistical uncertainties from fitting).146



slow time scale, τs, which dominates the behavior in deep lattices with larger offset,

|∆| ≫ U, J .

To investigate the faster time scale, we measureMs and PA−B at a fixed decay

time for different ∆, as shown in Fig. 3b for Vxy =15 ER. The 5 ms decay time

(indicated by the vertical line in Fig. 3a) was chosen so that nearly all of the fast

decay but little of the slow decay occurred. The fast magnetization decay reveals

resonant features at ∆ = 0 and U , where the decay rate at ∆ = 0 is twice as fast

as at ∆ = U . In addition, PA−B shows sub-lattice transport from B to A sites at

∆ = U , indicative of resonant first order tunneling. At ∆ ≈ 0 the demagnetizing sub

lattice transport B → A and A → B are balanced. We theoretically estimate the

expected width of the ∆ = U resonance in PA−B to be 5J/h = 110 Hz [221], which

is significantly narrower than the 500 Hz width that we observe experimentally, sug-

gesting inhomogeneous broadening. We note however, that the observed broadening

is beyond what is expected from the measured trap curvature, and is inconsistent

with estimates of light shift inhomogeneity from spectroscopic measurements [221].

A residual δσ could account for the width.

The measured decay times τf for a range of lattice depths are plotted against

the calculated tunneling time h/J in Fig. 3a, showing a decay rate linear in J/h, with

h/(Jτf ) = 22(2). This slope is comparable to a simple theoretical estimate taking

only resonant tunneling into account, which predicts h/(Jτf ) ≈ 2π
√
2z ≈ 18, with

z = 4 the lattice coordination number. Given the relatively large average hole

density near the surface of the cloud, the agreement with a non-interacting estimate

is not surprising, though we would expect interactions to reduce the decay rate.
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Figure 7.4: Resonant superexchange (A) Magnetization (filled cir-
cles) and sub lattice population difference (open circles) at a fixed wait
time of 70 ms vs. spin dependent energy offset δσ for Vxy = 9.4 ER

and ∆/h = 4.3 kHz. The initial and final states of the second order
processes are resonant (δσ=0), increasing the magnetization decay. The
inset lattice potentials show the sign change of δσ across resonance for
a fixed offset ∆ > U . (B) Measured slow decay time τs vs. calculated
superexchange time h/Jex: The filled purple, red, blue, yellow, and green
markers represent lattice depths of 14.7, 13.2, 11.3, 9.4, and 7.5 ER re-
spectively. Inset: measured slow decay rate vs applied staggered offset
∆. The decay time scale, τs, collapses with h/Jex over roughly two or-
ders of magnitude in Jex. The black line is a perturbative estimate of
the scaling, which was checked in small systems by comparing to exact
diagonalization averaged over hole-induced disorder [221]. The gray line
is a fit to a saturated linear dependence of τs on h/Jex (see text).
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To investigate the slow dynamics, we measure the magnetization decay time

τs for ∆ > U , where first order tunneling was negligible and superexchange should

dominate the dynamics. To determine the dependence of τs on the spin-dependent

staggered offset δσ, we measure the remaining staggered magnetization Ms and

population difference PA−B after a fixed wait time ≈ τs, as shown in Fig. 4a for

a lattice depth 9.4 ER and offset ∆/h=4.3 kHz. As expected for superexchange

dynamics, the magnetization decay is resonant in δσ. The full width at half max-

imum of the Lorentzian fit to the resonance is 126(14) Hz, considerably narrower

than the observed tunneling resonances shown in Fig. 3b, and is most likely domi-

nated by inhomogeneous broadening (second order exchange processes are sensitive

to inhomogeneity in both ∆ and δσ). Figure 4a also shows that there is negligible

sub-lattice transport associated with the demagnetization resonance. We note that

at these values of ∆, the ground state of the system would have all atoms on the

lower sub-lattice, and the conservation of PA−B indicates that the spin dynamics

occurs within a meta-stable manifold with respect to population.

Figure 4b shows the measured resonant decay times τs vs. calculated h/Jex

for different Vxy and ∆, with δσ = 0 and ∆ chosen to be larger than U but consid-

erably less than the next excited band. The decay time τs scales with h/Jex over

two orders of magnitude in Jex. The solid gray line through the data is a fit to

the expected linear dependence, including a constant rate Γ0 needed to capture the

apparent saturation of τs at large h/Jex: τs = (AJex/h+Γ0)
−1, with A = 7.8(4) and

Γ−1
0 = 0.57(2) s. A quantitative calculation of the decay rate in 2D, including the

effects of holes, is extremely challenging. However, the existence of a single energy
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scale contributing to the demagnetization in this regime justifies (at a qualitative

level) a short-time perturbative treatment, from which we extract A ≈ 2π
√

z/2 ≈ 9,

in agreement with the experimentally measured value [?]. Surprisingly, this result is

largely independent of the hole density, which can be attributed to the approximate

cancellation of two competing effects of holes: they decrease the rate of superex-

change dynamics, but simultaneously open new demagnetization channels through

the hole-mediated exchange term in Eqn. (1). The empirically determined timescale

Γ−1
0 is shorter than the measured times for depopulation of the spin manifold or loss

of atoms, and may be related to the non-zero relaxation processes observed outside

the δσ = 0 resonance in Fig. 4a. The mechanism for this off-resonant decay is not

clear, but since the initial and final states differ in energy by significantly more than

Jex it must arise from energy-nonconserving processes such as noise assisted relax-

ation or doublon production [155]. Corrections to Jex due to excited band virtual

processes [203], which we estimate to be of order 10-20 % at the largest ∆ and

smallest Vxy shown in Fig. 4(b), may partially explain the observed saturation.

7.5 Conclusion

The scaling and resonant behavior of the fast and slow relaxation processes

clearly reveal their origin as first-order tunneling and superexchange, respectively.

For ∆ ≫ J , our experiment realizes an unusual situation where tunneling, which is

only active within a given sublattice, is comparable in strength to the superexchange

coupling. This feature—which is crucial to our ability to observe superexchange
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dominated dynamics—may have interesting implications for the equilibration of a

doped antiferromagnetic state, since it determines the extent to which entropy (ini-

tially introduced in the motional degrees of freedom) is shared by the spin degrees of

freedom. For smaller but non-zero ∆, the ability to observe both tunneling and su-

perexchange, often simultaneously and at experimentally accessible entropies, opens

exciting opportunities to explore the nonequilibrium interplay of spin-exchange and

motion. Understanding the detailed dynamics of this strongly-correlated, 2D quan-

tum system is a formidable challenge, which may require the development of new

theoretical techniques.

7.6 Methods

7.6.1 Experimental Sequence

All experiments begin with a 87Rb BEC with no discernible thermal fraction in

the |F = 1,mF = −1〉 internal Zeeman state, optically trapped with trap frequencies

{νx, νy, νz} = {12, 40, 100} Hz. Control of the atom number, independent of trap

parameters, is achieved by microwave removal of a fraction of atoms before the

final stage of cooling. The BEC is then adiabatically loaded into a deep (≈ 30 Er)

3D λ/2-spaced lattice with λ =813 nm, by loading the vertical lattice in 200 ms

and the 2D lattice in 100 ms, starting 100 ms after beginning the vertical lattice

ramp. The absence of doubly occupied sites is verified by number resolved microwave

spectroscopy [187] of the magnetically insensitive |1,−1〉 → |2, 1〉 clock-transition

near 0.323 mT using 80 ms pulses.
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Spectroscopic estimates of the total average trap inhomogeneity were made by

measuring the broadening of the clock transition and the state-dependent address-

ing transition (|1,−1〉 → |2,−2〉). These measurements indicate scalar and vector

light shift inhomogeneity over the ≈ 10 µm atom cloud is less than a percent of

the total shift, about 800 Hz and 250 Hz respectively. Since ∆ and δσ are only

sensitive to light shift differences on the small length scale of λ/2, we expect the

inhomogeneity in A-B offsets to be substantially smaller than the measured globally

averaged inhomogeneity.

We measure the average number of holes throughout the atom cloud by per-

forming number resolved microwave spectroscopy [187] after merging neighboring

pairs of sites into one site. Any pair of sites that contains a hole is counted as

having one atom, and comparing the merged two-atom signal to the merged one-

atom signal gives a measure of the average hole density. We estimate the central

hole density by assuming a Fermi-Dirac distribution in the harmonic trap (under

the assumption that there are no doubly occupied sites and the system is in ther-

mal equilibrium) having a chemical potential and temperature that matches the

measured number and average merged one atom fraction.

7.6.2 Tight Binding Parameters

While this chapter was written in collaboration with the coauthors listed in

[10], I would especially like to thank Michael Foss-Feig for his contributions to the

following lattice parameters and lattice timescale extraction sections.
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Table 7.1: Tilted spin ordering experimental sequence

Step Time
Load λ/2 lattice 30 Er (load vertical lattice 30Ervert) 100ms(200ms)
apply site selective tilt (26 kHz |1,−1〉 → |2,−2〉) 466µs
apply site selective microwave shelving sweep to A 300 µs
sites |1,−1〉 → |2,−2〉
apply microwave sweeps to B sites 2.3 ms
|1,−1〉 → |2, 0〉 then |2, 0〉 → |1, 1〉 300 µs
apply site selective microwave unshelving 1.357 ms
sweep to A sites |2,−2〉 → |1,−1〉
un- tilt lattice 466µs
move 2D PC from B sites to A sites 200 µs
apply state independent tilt to A sites 200 µs
quench lattice depth ≈ 5Er 200 µs

The tight binding parameters U , J , ∆ and δσ are determined from an exper-

imentally calibrated model of the 2D lattice potential. The details of the checker-

board optical lattice are described in Ref. [189], and we only give a brief description

here relevant for extracting tight binding parameters. The lattice is generated from

a single laser beam folded to produce four interfering beams propagating along the

x and y directions, resulting in a position-dependent total field

~Elatt(x, y) = (E1ê1e
−ikx + E2ê2e

−iky + E3ê3e
iky + E4ê4e

ikx), (7.3)

where k = 2π/λ, λ = 813 nm is the wavelength of the lattice light, and Ei are

the single beam field amplitudes. The orientation and phase of the complex unit

vectors êi are controlled with electro-optic modulators (EOMs). The local intensity

Ilatt = cǫ0| ~Elatt|2 and circular polarization i( ~E∗
latt × ~Elatt) give rise to a scalar light

shift potential Vlatt(x, y) and effective Zeeman field ~Beff(x, y) respectively [223]. The
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Table 7.2: Tilted spin ordering experimental sequence pt.2

Step Time
hold for tunneling dynamics 2 µs-1 s
quench lattice depth 30Er 200 µs
remove state independent tilt from A sites 200 µs
move 2D PC from A sites to B sites 200 µs
apply site selective tilt (26 kHz |1,−1〉 → |2,−2〉) 200µs
apply site selective microwave sweep 300 µs
|1,−1〉 → |2,−2〉 on A sites
apply site selective microwave sweep 300 µs
|1, 1〉 → |2, 2〉 on A sites
un- tilt lattice 466µs
band-map 300 µs
Stern-Gerlach 3.5 ms

lattice can be tuned between a square lattice with λ/2 periodicity along x and y, and

a square lattice with λ/
√
2 periodicity along x + y and x− y. The spin-dependent

lattice potential is calibrated for our geometry using the measured transmission

losses, the calibrated polarization responses of the EOMs (including hysteresis),

the measured deviation from orthogonality of the beams along x and y, microwave

spectroscopy [190], diffraction phase winding measurements [189, 191] and pulsed

diffraction to calibrate the depth [224]. The input field is calibrated in terms of

the measured lattice depth E1 = (1/2)
√

(Vxy/ER), where the lattice depth in recoil

units Vxy/ER is determined for the configuration of a square λ/2 lattice.

The full lattice potential, including imperfections, is used in the calculation

of Bose-Hubbard parameters described below, but the approach we take is simplest

to describe without lattice imperfections. In the absence of transmission losses or
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birefringence (Ei = Exy), the scalar part can be written as

Vlatt(x, y) = V‖(θ1) (cos 2kx+ cos 2ky) + V⊥(θ1) [cos (kx− θ2) + cos ky]2 . (7.4)

Here θ1 and θ2 are controlled by two separate EOM’s, and V‖(θ1) = Vxy(1/2) cos
2 θ1

and V⊥(θ1) = Vxy sin
2 θ1 are parameterized by Vxy determined when θ1 = 0. (For

θ1 = π/2, the total lattice depth would be 4Vxy.) In the limit of small θ1, V⊥ ≪ V‖.

If in addition θ2 = 0 or π, the lattice can be described as a square lattice of spacing

λ/2 with a staggered offset ∆ ≈ 4Vxy sin
2 θ1 (Fig. 7.5a). We use experimentally

measured values of ∆ under different conditions to calibrate the lattice model and

the dependence of ∆ on {Vxy, θ1, θ2}. The effective field ~Beff(x, y) lies in the xy

plane and is similarly controlled by θ1 and θ2. In the presence of a large bias field

~B0 ≫ ~Beft, the total spin-dependent staggered offset δσ ∝ | ~B0 + ~Beff | depends on

the relative angle between ~B0 and ~Beff :

∣

∣

∣

~B0 + ~Beff(x, y)
∣

∣

∣
≈
∣

∣

∣

~B0

∣

∣

∣
+ ~Beff(x, y) ·





~B0
∣

∣

∣

~B0

∣

∣

∣



 . (7.5)

We control the size of the spin-dependent shift δσ by changing the orientation of ~B0

with respect to the lattice, so that δσ ≈ 0 when ~B0 ⊥ ~Beff . Microwave spectroscopy

is used to calibrate δσ as a function of {Vxy, θ1, θ2, ~B0}.

The tunneling parameter J is extracted from band structure calculations based

on the full lattice potential. Except in the limit when θ1 = 0, the potential is not

separable in Cartesian coordinates and the band structure calculations must be
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Figure 7.5: (a) The 2D optical lattice potential used for dynamics ex-
periments, showing a unit cell outlined in black. (b) Typical example of
the lowest two bands of the lattice (in the limit ∆ ≫ J) in the first Bril-
louin zone, which is reciprocal to the unit cell drawn in (a). (c) Lattice
sites divided into two sub lattices, and examples of the matrix elements
entering the tight-binding model used to calculate the band structure in
7.6.

carried out in 2D. The primitive unit cell of our lattice, shown in Fig. 7.5a, is

spanned by primitive vectors ǫ1 and ǫ2 of length a = λ/
√
2. A typical example

of the lowest two bands, E−(q) and E+(q) (where q = {q1, q2} has components

conjugate to ǫ1 and ǫ2), is shown in Fig. 7.5b. In order to determine the inter-

sublattice tunneling matrix elements, we first calculate the lowest two bands of a

suitable two-band tight-binding model analytically.

In the limit ∆ ≫ J , the bandwidth contribution to either of the lowest two

bands from the direct hopping J can be estimated perturbatively as ∼ J2/∆, which

scales with Vxy similarly to the next-nearest-neighbor tunneling amplitudes directly

connecting sites of the A(B) sublattice, denoted Jnn
A(B) (Fig. 7.5c). As a result, an

accurate tight binding model must include Jnn
A and Jnn

B , in which case we find tight
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binding bands

E±(q : ∆, J, Jnn
A , Jnn

B ) = ∆/2 −2(Jnn
A + Jnn

B ) cos q1a cos q2a

± (
(

∆/2− 2(Jnn
A − Jnn

B ) cos q1a cos q2a
)2

+ 4J2
(

1 + cos q1a+ cos q2a+ cos q1a cos q2a
)

)1/2. (7.6)

We extract the dependence of J on {Vxy, θ1, θ2} by fitting E±(q : ∆, J, Jnn
A , Jnn

B )

to the numerically calculated E±(q, Vxy, θ1, θ2). With the next-nearest-neighbor tun-

nelings included, the fits typically produce a Brillouin zone averaged fractional error

in the band energies on the order of 10−3. Under almost all conditions in the pa-

per, the extracted J is essentially independent of ∆ and can be determined from

the ∆ = 0 lattice with equivalent depth Vxy. The interaction energy U is given by

U = g
´

d3r |φ(r)|4 where g = 4π~2as/m, as is the s-wave scattering length, m is

mass of 87Rb, and φ(r) is the localized Wannier function on a lattice site. Assuming

φ is a gaussian wave function (appropriate for a harmonic expansion of the lattice

site), U = g/((2π)3/2axayaz) where ax,y,z are the harmonic oscillator lengths associ-

ated with the local lattice site curvature. The anharmonicity on a lattice site in a

square ∆ = 0 lattice can be approximately accounted for by using a Gaussian wave

function with a modified width of ax = (λ/2π)/
√

√

Vxy − 1/2. A calculation of Jex

that takes into account the ∆ 6= 0 impact on U deviates by less than 6 % from the

∆ = 0 value over the range of ∆ considered here, and we use the simple ∆ = 0

analytical expression for U described above.
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7.6.3 Superexchange Timescale Estimates

When |U − ∆| ≫ J , (and assuming that δσ ≪ ∆), double occupancies are

forbidden and the Bose-Hubbard model can be mapped onto a bosonic t-J model

with a sub-lattice detuning,

H = −J
∑

〈i,j〉,σ
a†iσajσ −

∑

j∈A,σ

∆σa
†
jσajσ

− Jex
∑

〈i,j〉
Si · Sj −

∑

〈i,j,k〉,σσ′

Vj

(

a†iστσσ′akσ′

)

· Sj

− 3

2

∑

〈i,j,k〉,σ
Vja

†
iσakσnj. (7.7)

Here

Jex =
4J2U

U2 −∆2
Vj =

J2

U − κj∆
, (7.8)

and κj = +1 or κj = −1 depending on whether j is contained in the A or B sub

lattice, respectively. For all of the data in Fig. 4 of the manuscript, ∆ ≫ J . As a

result, terms which change the sub lattice population (i.e. the remaining hopping

processes which move a single atom between two adjacent and otherwise empty

lattice sites) can also be integrated out at second order in the small parameter J/∆,
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yielding

H = −Jex
∑

〈i,j〉
Si · Sj −

∑

〈i,j,k〉,σσ′

Ṽj

(

a†iστσσ′akσ′

)

· Sj

− 3

2

∑

〈i,j,k〉,σ
Ṽja

†
iσakσnj +

∑

〈i,j,k〉,σ

J2

κj∆
a†iσakσ. (7.9)

Here Ṽj = J2/(U − κj∆) + J2/(κj∆) is modified from the previously defined Vj to

account for second order hole motion consistent with the hardcore constraint. We

note that the first two terms couple states with different sub lattice magnetization,

while the second two do not.

A priori, for a finite hole density (i.e. when the demagnetization channel

associated with the second term in 7.9 is active), the demagnetization rate at short

times does not need to scale with Jex. However, we find that over a broad range of

densities, the short-time demagnetization rate does indeed scale with Jex to a good

approximation, as we now show. Because the initial state is an eigenstate of the

staggered magnetization operator

M̂s = 2
(

∑

j∈A
Sz
j −

∑

j∈B
Sz
j

)

/N, (7.10)

with N the total number of atoms, the initial decay of the magnetization must be

quadratic in time. Defining Ms(t) = 〈ψ(t)|M̂s|ψ(t)〉, we can choose to expand the

magnetization as Ms(t) = exp[−m2t
2 +O(t3)], where

m2 =
1

2
〈[H, [H, M̂s]]〉/~2. (7.11)
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Figure 7.6: (a) Demagnitezation dynamics from a unit-filled Neél state.
The blue solid line is from exact diagonalization of a 4 × 4 plaquette
with periodic boundary conditions, and the blue dotted line is a fit to
an exponential e−γt. The red solid line is from perturbation theory, and
the red dotted line is once again a fit to an exponential (this procedure
gives the slope of the gray line plotted in Fig. 4b). (b) Demagnetization
rate calculated at second-order in short-time perturbation theory, as a
function of density. The blue shaded region reflects a range of the ratio
1 < ∆/U < 5, which encompasses all data points shown in Fig. 4 of
the manuscript, while the black-dashed line shows the superexchange
time-scale at unit filling.

Working to second order, we then extract a time-scale by fitting e−m2t2 to an ex-

ponential e−γt, giving γ ≈ √
m2. This approximation is only expected to give a

qualitative estimate of the decay time scale, valid under the assumption that a

significant portion of the decay occurs at or below the timescale ~/Jex. However,

this estimate is fairly accurate when compared to exact diagonalization results for

a superexchange model on a 4× 4 plaquette (see Fig. 7.6a).

Under the assumption that holes are distributed randomly, extensive but

straightforward algebra leads to

γ ≈ 1

~

√

nz

2
× J2

ex + 2n(1− n)z(z − 1)×
(

(Ṽ+)2 + (Ṽ−)2
)

, (7.12)
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where n is the density, z = 4 is the lattice coordination number, and Ṽ+(Ṽ−) is

equal to Ṽj when j is contained in the B(A) sub lattice. This result is plotted (in

units of Jex/h) for a range of values of U/∆ in Fig. 7.6b, where we see that for a

broad range of densities (n & 0.3) the rate is in good quantitative agreement with

the one extracted at unit filling
(

γ ≈ (Jex/~)
√

z/2, dashed line
)

, where Jex is the

only relevant energy scale in the Hamiltonian.

7.6.4 The ∆ = U population imbalance resonance

When U ≫ J and the staggered offset is near ∆ = U , all dynamics occurs

within the subspace where the A sub lattice has either one or two atoms on each site,

while every site of the B sub lattice has either one or zero atoms. If, for simplicity,

we ignore the spin degrees of freedom, and consider doubly occupied A sites to be

particles and singly occupied A sites to be holes, the density degrees of freedom map

onto hardcore spinless bosons hopping with strength J ,

Hres = −J
∑

〈i,j〉
b†ibj + ∆̃

∑

j∈A
b†jbj. (7.13)

Here the operator b (b†) annihilates (creates) a hardcore boson, the sub lattice offset

is related to the actually staggered offset by ∆̃ = U − ∆, and the initial state

contains a single boson on every site of the B sub lattice and none on the A sub

lattice. Note that the tunneling energy for the hardcore bosons in this model is

ambiguous up to a factor of
√
2, since the matrix element for an atom to hop from

the B to the A sub lattice depends on whether the “hole” on the A sub lattice has
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the same spin as the hopping particle. Assuming a translationally invariant lattice

with N sites, the average hardcore boson density on the A(B) sub lattice is given

by ñA(B) = (2/N )
∑

j∈A(B)〈b†jbj〉. The tilde in ñA(B) indicates that these are not

the densities of the physical atoms, which we denote by nA and nB, and are related

by nA = ñA + 1 and nB = ñB. At unit filling (nA + nB = 2), the experimentally-

measured population difference, PA−B(t) = 1
2
[nA(t) − nB(t)], can be expressed as

PA−B(t) = 1 − nB(t) = 1 − ñB(t). As described above, the initial state in the

hardcore boson picture has ñB(0) = 1, and hence PA−B(0) = 0. The steady-state

(at ∆̃ = 0, i.e. on resonance) must have ñA = ñB = 1/2, and hence PA−B = 1/2.

The steady-state population imbalance is given by P ss
A−B(∆̃) = 1 − ñB for

t ≫ ~/J , and we would like to know how P ss
A−B(∆̃) depends on the sub lattice

detuning ∆̃ (this is what is measured experimentally (blue data points) in Fig. 3(b)

of the manuscript). A simple estimate can be obtained by just relaxing the hardcore

constraint, in which case the problem becomes non-interacting. We can then obtain

ñB(t) by solving the dynamics of a single atom starting on theB sub lattice. Working

in quasi-momentum space, the single-particle eigenstates in a staggered lattice can

be obtained by diagonalizing the matrix

H(q) =









∆̃/2 ε(q)

ε(q) −∆̃/2









, (7.14)

where ε(q) = 2J(cos qxa+ cos qya) is the single-particle spectrum at zero detuning.

Our initial state is evenly distributed across the Brillouin zone, but at every q it
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will be decomposed differently onto the eigenvectors of the above matrix. Obtaining

ñB(t) simply requires solving a standard off-resonant Rabi problem at each q, with

generalized Rabi frequency Ω(q) =
√

∆̃2 + 4ε(q)2. Integrating such solutions over

the first Brillouin zone, we obtain

ñB(t) =
1

Abz

ˆ

bz

d2q
Ω(q)2 + 2ε(q)2 (cosΩ(q)t− 1)

Ω(q)2
, (7.15)

where Abz is the first Brillouin zone area. The size of the time-dependent term in

this integral decreases at large t as 1/
√
t (as can be seen from a stationary phase

approximation), and so only the time-independent piece survives at long time, giving

P ss
A−B(∆̃) =

1

Abz

ˆ

bz

d2q
2ε(q)2

Ω(q)2
. (7.16)

Taking the integral numerically, we find that the full-width at half-max of this reso-

nance is approximately 5J , which is significantly narrower than the experimentally

measured feature.

7.6.5 Fractional U sublattice population transfer resonances

In addition to first order tunneling resonance, we also observe two second order

resonances at ∆ = U/2 and ∆ = 3U/2. These resonances are shown in fig. 7.7.

The resonance at ∆ = U/2 can be understood by considering three sites, where

two occupied sites in the high energy sublattice neighboring an unoccupied site in

the low energy sublattice. The two particles may tunnel to the lower sublattice
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Figure 7.7: Fractional U tunneling resonances, the gray bands are the calculated
values of ∆ = U/2, U, 3U/2.

but conserve energy because of the on-site interaction. Likewise, the resonance at

∆ = 3U/2 can be understood by considering three sites, where two occupied sites in

the high energy sublattice neighboring an occupied site in the low energy sublattice.

The two particles may tunnel to the lower sublattice but conserve energy with a

larger applied offset because there are not 3 units of on-site interaction.
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Chapter 8: Conclusion and Outlook

We have discussed three distinct projects. At the present time two of the three

projects have ended, nevertheless we believe there are still many paths forward for

each topic.

In the atomic spectroscopy project we identified and quantified a systematic

effect common to transitions with unresolvable structure. Its application to atomic

lithium represents a sweet spot in research where the required technology is widely

available and the resolution of the discrepancy has impacts on both electronic struc-

ture calculations and determinations of nuclear charge radii. In the future it, this

analysis can applied more systems including excited states, more fundamental and

technically demanding H, as well as, to other widely studied species such as K.

While investigating excited-to-excited state transitions for laser cooling we

demonstrated multiphoton cooling and trapping processes and proposed a dressed

dissipative lattice for the cooling of H. One immediate extension of this work would

be to further investigate the sub-Doppler temperatures and cooling processes ob-

served in Cesium. More generally, we hope that some variant of these techniques

finds applicability in quantum gas research. Perhaps a natural context for this

would be in Rydberg atoms with a two photon excitation process. While the long
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lifetime of Rydberg states would impede traditional cooling, we have demonstrated

that the highest excited (Rydberg) state may be adiabatically eliminated. Thinking

about this also led to ideas to use the D1 transition to subDoppler cool atoms with

unresovable hyperfine structure such as Li and K.

Finally, the program of quantum emulation/simulation is likely to continue

for the foreseeable future, due to both the diversity of the field and the funda-

mental difficulty of the underlying manybody problem. Using ultracold atoms in a

state-dependent checkerboard optical lattice, we were able to prepare and readout

staggered magnetic order. Critically, we were also able to tune the strength of near-

est neighbor superexchange interactions in an extended system. This enabled us to

observe dynamics governed by either tunneling or superexchange. It will be very

exciting to observe the competition of these energy scales in a controlled setting as

these mechanisms are believed give rise to pairing in cuprate superconductors. It

would also be interesting to add microwave dressing control over the superexchange

energy scales to realize a controllable XXZ Heisenberg model.

The two main experimental avenues of searching for emergent quantum phe-

nomena are engineering more exotic single particle states and realizing long range

interactions. Currently, lattices of optical flux represent one of the most exciting

paths in optical potential control of ultracold atoms. On the interaction side Su-

perexchange can be optimized by using light atoms (eg. Li) to achieve a larger

J tunneling energy scale, while maintaining tunability with a double well lattice

(the lattice for Li cannot be state-dependent b/c the detuning implied by the fine-

structure splitting would limit the lifetime). There are a number of other paths to-
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wards long range interactions including: Feshbach resonance, mixtures of ultracold

atoms where one species could be used to mediate longrange interactions between

the other, Rydberg state dressing, atoms with permanent magnetic moments (such

as Cr, Er, and Dy), polar molecules with permanent electric dipole moments (such

as RbK and the promising endothermic NaK), and BEC in optical cavities creat-

ing effectively infinite range interactions. Going forward it will be exciting to see

how rapidly these approaches are implemented in order to realize progressively more

exotic quantum states and dynamics.
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C. Geppert, H.-J. Kluge, J. Krämer, M. Nothhelfer, D. Tiedemann, D. F. A.
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[21] B. A. Bushaw, W. Nörtershäuser, G. Ewald, A. Dax, and G. W. F. Drake,
“Hyperfine Splitting, Isotope Shift, and Level Energy of the 3S States of 6,7Li,”
Phys. Rev. Lett. 91, 043 004 (2003).
http://link.aps.org/doi/10.1103/PhysRevLett.91.043004
(Cited on pages 6 and 28.)
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mer, L. D. van Buuren, M. Motsch, and G. Rempe, “Sisyphus cooling of
electrically trapped polyatomic molecules,” Nature 491, 570–573 (2012).
(Cited on page 38.)
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[116] V. Zehnlé and J. C. Garreau, “Continuous-wave Doppler cooling of hydrogen
atoms with two-photon transitions,” Phys. Rev. A 63, 021 402 (2001).
http://link.aps.org/doi/10.1103/PhysRevA.63.021402
(Cited on page 56.)

181



[117] D. Kielpinski, “Laser cooling of atoms and molecules with ultrafast pulses,”
Phys. Rev. A 73, 063 407 (2006).
http://link.aps.org/doi/10.1103/PhysRevA.73.063407
(Cited on page 56.)

[118] L. P. Yatsenko, B. W. Shore, T. Halfmann, K. Bergmann, and A. Vardi,
“Source of metastable H(2s) atoms using the Stark chirped rapid-adiabatic-
passage technique,” Phys. Rev. A 60, R4237–R4240 (1999).
http://link.aps.org/doi/10.1103/PhysRevA.60.R4237
(Cited on page 57.)

[119] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A.
Cornell, “Observation of Bose-Einstein Condensation in a Dilute Atomic Va-
por,” Science 269, 198–201 (1995).
http://www.sciencemag.org/content/269/5221/198.abstract
(Cited on page 60.)

[120] K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Dur-
fee, D. M. Kurn, and W. Ketterle, “Bose-Einstein Condensation in a Gas of
Sodium Atoms,” Phys. Rev. Lett. 75, 3969–3973 (1995).
http://link.aps.org/doi/10.1103/PhysRevLett.75.3969
(Cited on page 60.)

[121] B. DeMarco and D. S. Jin, “Onset of Fermi Degeneracy in a Trapped Atomic
Gas,” Science 285, 1703–1706 (1999).
http://www.sciencemag.org/content/285/5434/1703.abstract
(Cited on page 60.)

[122] C. A. Regal, M. Greiner, and D. S. Jin, “Observation of Resonance Conden-
sation of Fermionic Atom Pairs,” Phys. Rev. Lett. 92, 040 403 (2004).
http://link.aps.org/doi/10.1103/PhysRevLett.92.040403
(Cited on page 60.)

[123] M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, A. J. Kerman,
and W. Ketterle, “Condensation of Pairs of Fermionic Atoms near a Feshbach
Resonance,” Phys. Rev. Lett. 92, 120 403 (2004).
http://link.aps.org/doi/10.1103/PhysRevLett.92.120403
(Cited on page 60.)

[124] M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J. H. Denschlag,
and R. Grimm, “Collective Excitations of a Degenerate Gas at the BEC-BCS
Crossover,” Phys. Rev. Lett. 92, 203 201 (2004).
http://link.aps.org/doi/10.1103/PhysRevLett.92.203201
(Cited on page 60.)

[125] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, “Quantum
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L. Santos, O. Gorceix, L. Vernac, and B. Laburthe-Tolra, “Nonequilibrium
Quantum Magnetism in a Dipolar Lattice Gas,” Phys. Rev. Lett. 111, 185 305
(2013).
http://link.aps.org/doi/10.1103/PhysRevLett.111.185305
(Cited on pages 60 and 139.)

[132] Y.-J. Lin, A. R. Perry, R. L. Compton, I. B. Spielman, and J. V. Porto, “Rapid
production of 87Rb Bose-Einstein condensates in a combined magnetic and
optical potential,” Phys. Rev. A 79, 063 631 (2009).
http://link.aps.org/doi/10.1103/PhysRevA.79.063631
(Cited on pages 61, 70, 76, 83, and 95.)

[133] W. D. Phillips and H. Metcalf, “Laser Deceleration of an Atomic Beam,” Phys.
Rev. Lett. 48, 596–599 (1982).
http://link.aps.org/doi/10.1103/PhysRevLett.48.596
(Cited on page 63.)

[134] S. C. Bell, M. Junker, M. Jasperse, L. D. Turner, Y.-J. Lin, I. B. Spielman,
and R. E. Scholten., “A slow atom source using a collimated effusive oven and

183



a single-layer variable pitch coil Zeeman slower,” Rev. Sci. Inst. 81, 013 105
(2010).
(Cited on page 63.)

[135] K. Odaka and S. Ueda, “Dependence of outgassing rate on surface oxide layer
thickness in type 304 stainless steel before and after surface oxidation in air,”
Vacuum 47, 689 – 692 (1996), proceedings of the 13th International Vacuum
Congress and the 9th International Conference on Solid Surfaces.
http://www.sciencedirect.com/science/article/pii/0042207X96000486
(Cited on page 66.)

[136] J. C. Maxwell, Scientific Papers 2, 505 (1890).
(Cited on page 77.)

[137] ISO Standard 11670, Lasers and laser-related equipment - Test methods for
laser beam parameters - Beam positional stability.
(Cited on page 79.)

[138] R. Paschotta, “Noise in Laser Technology,” Optik and Photonik 5, 55–57
(2010).
http://dx.doi.org/10.1002/opph.201190083
(Cited on page 79.)

[139] K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow band tunable diode
laser system with grating feedback, and a saturated absorption spectrometer
for Cs and Rb,” American Journal of Physics 60, 1098–1111 (1992).
http://scitation.aip.org/content/aapt/journal/ajp/60/12/10.1119/1.16955
(Cited on page 83.)

[140] U. Schnemann, H. Engler, R. Grimm, M. Weidemller, and M. Zielonkowski,
“Simple scheme for tunable frequency offset locking of two lasers,” Review of
Scientific Instruments 70, 242–243 (1999).
http://scitation.aip.org/content/aip/journal/rsi/70/1/10.1063/1.1149573
(Cited on page 83.)

[141] R. Grimm, M. Weidemueller, and Y. B. Ovchinnikov, “Optical Dipole Traps
for Neutral Atoms,” 42, 95 – 170 (2000).
http://www.sciencedirect.com/science/article/pii/S1049250X0860186X
(Cited on page 83.)

[142] V. Letokhov, “Doppler line narrowing in a standing light wave,” JETP Lett.
7, 272–274 (1968).
(Cited on page 99.)

[143] C. I. Westbrook, R. N. Watts, C. E. Tanner, S. L. Rolston, W. D. Phillips,
P. D. Lett, and P. L. Gould, “Localization of atoms in a three-dimensional
standing wave,” Phys. Rev. Lett. 65, 33–36 (1990).

184



http://link.aps.org/doi/10.1103/PhysRevLett.65.33
(Cited on page 99.)

[144] S. K. Dutta, B. K. Teo, and G. Raithel, “Tunneling Dynamics and Gauge
Potentials in Optical Lattices,” Phys. Rev. Lett. 83, 1934–1937 (1999).
http://link.aps.org/doi/10.1103/PhysRevLett.83.1934
(Cited on page 99.)

[145] R. Feynman, “Simulating physics with computers,” International Journal of
Theoretical Physics 21, 467–488 (1982).
http://dx.doi.org/10.1007/BF02650179
(Cited on page 99.)

[146] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, “Quantum
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