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SWAN and a parametric wave model implemented by the Chesapeake Bay Program 

(CBP) were used to simulate wave climate from 1985 to 2005 in Chesapeake Bay (CB). 

Calibrated sea level simulations from the CBP hydrodynamic model were acquired. 

Spatial patterns of sea levels during high wave events were dominated by local north-

south winds in the upper Bay and by remote coastal forcing in the lower Bay.  A dataset 

comprising shoreline erosion rates and related characteristics was combined with the 

wave and sea-level climates to explore the most influential factors affecting erosion. The 

results show that wave power is the most significant factor for erosion in the Maryland 

CB. Marsh shorelines present a nearly linear relationship between wave power and 

erosion rates, whereas bank shorelines are less clear.  The results of this study are 

applicable at large scales.  A more comprehensive data set is needed for building detailed 

local predictive relationships. 
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Chapter 1 Introduction 

Erosion is the process of the wearing away and removal of land by external forces. 

Shoreline erosion of banks or marshes can be described as iterations of a process in 

which waves undercut the cliff/marsh base, the cliff/marsh collapses, and then waves 

resuspend sediments at the cliff/marsh base.  Finally, currents remove these materials. 

There are two components of shoreline erosion: fastland erosion, which occurs above the 

waterline; and nearshore erosion, which operates from the waterline to the base of wave 

action at water depths up to about 2.4 m in Chesapeake Bay (CB). The term ‘erosion rate’ 

used in this study refers primarily to fastland erosion rate, although both components 

must occur in tandem.   

Erosion can lead to nutrient pollution, ecosystem degradation, and economic loss 

(U.S. Army Corp of Engineers and Maryland Department of Natural Resources, 2010; 

Leatherman et al., 1995). Erosion processes have been intensified by sea level rise, land 

subsidence, and increasing rates of shoreline development (Halka et al., 2005). Erosion is 

a complex process to study, not only because it involves various interacting factors but 

also because these factors can behave very differently in different geographic locations.   

Previous studies have explored relationships between erosion rates and potentially 

influential variables, such as wave energy, shoreline type, bank height, tidal range and 

sea level (Sunamura, 1992; Spoeri, 1985). The relationship between sea level and erosion 

on sandy shorelines has been described as a response of the equilibrium shoreline profile 

with wave activity as the hidden cause (Bruun, 1962; Schwartz, 1967; Dean, 1991). 

Several erosion models have been built for sandy beaches, such as Stormed-Induced 
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Beach Erosion (SEARCH) and Generalized Model for Simulating Shoreline Change 

(GENESIS). 

Maryland CB shorelines consist of banks, with height ranges from 1 meter to over 

30 m (such as Calvert Cliffs), and marshes, which are mostly located along the lower 

Eastern Shore of Maryland (Somerset, Wicomico, and Dorchester Counties). Year-round 

beaches only make up about 24 km of the entire CB shoreline (U.S. Army Corps of 

Engineers, 1971). Some regions, especially points and islands, are experiencing severe 

erosion (>2.4 m/year) on Western Shore Maryland (Pt. Lookout to St. Jerome, Holand Pt. 

and Thomas Pt.) and Eastern Shore Maryland (Kent Island, Lowes Pt. to Knapps, Mills Pt. 

to Hills Pt., James Island, Oyster Cove to Punch Island Creek and  Barren Island)(Wang 

et al. 1982). There were 1.9×10
8
 m

2
 of land loss during 1850~1950 along Chesapeake 

shorelines (Slaughter 1967a).  

Chesapeake Bay is the largest estuary in the United States with a shallow average 

depth of 8.5 m. Its length is about 315 km from the Susquehanna River to its outlet to the 

Atlantic Ocean and its width ranges from 5.6 km to 56 km (Langland and Cronin, 2003). 

The Bay’s narrow dendritic geometry consists of about 18803 km of shoreline 

(Chesapeake Bay Program website http://www.chesapeakebay.net/discover/bay101/facts). 

CB receives ocean swell, (which seldom reaches mid-Bay), at its entrance between the 

Virginia Capes. The approximately north-south orientation of CB provides sufficient 

fetch for surface gravity waves, which dominate upper- and mid-Bay (Boon et al., 1996, 

Lin et al., 2002). Typical wave periods are about 3s and significant wave heights (Hsig) 

are less than 2m (Boon, 1998;Lin et al.,1998).  Waves are typically fetch-limited and 

wind generated in CB, but they are still an important forcing for sediment transport 
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(Sanford, 1994; Boon et al., 1996) and shoreline erosion (US Army Corps of Engineers, 

1990). 

Shoreline elevation and orientation, shoreline type (vegetated, protected, bare, 

etc.), sediment type and availability, nearshore morphology, land subsidence, sea level 

rise, hydrodynamic and wave characteristics, and human activity can all be potential 

factors for shoreline erosion. Previous studies indicate that wave climate can be the most 

significant factor that influences erosion process in many places including CB (Skunda, 

2000; Amin, 1997; Wang, 1982; Spoeri, 1985; Perry 2008; Kamphuis, 1987; Schwimmer, 

2001).  

In this study, we create a data set that contains a long-term wave climate (1985-

2005) for the entire CB using Simulating Wave Nearshore (SWAN) and Chesapeake Bay 

Program (CBP) wave models, along with sea level data, which are simulated by CBP 

Hydrodynamic model developed by the U.S. Army Corp Engineers (USACE). All three 

models share the same grids, time duration and input wind fields. Thus, we can 

investigate the distributions and relationships between sea levels and wave height 

individually and jointly along CB shorelines. Sea levels during high-wave events are also 

examined for the purpose of investigating if the combination of high wave height at high 

or low sea level can influence erosion rates differently. Another derived dataset includes 

shoreline erosion rates, shoreline structure information, bank/marsh ratio, and mean bank 

height in 207 reaches in the Maryland portion of CB as assembled by Maryland 

Geological Survey (MGS). Also, a high resolution erosion database is accessible from the 

Coastal Atlas available at the website of Maryland Department of Natural Resources 

(DNR). We incorporate these data sets for implementing statistical analysis, such as 
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linear analysis, curve fitting, Generalized Additive Model (GAM), and Neural Network 

(NN). To date, this is the most comprehensive and high-resolution dataset used for 

analyzing relationships between erosion rates and wave climate, along with other 

shoreline characteristics, in Maryland CB. This study aims to gain a better understanding 

of different roles of controlling variables on erosion rates and attempts to establish a 

simple semi-empirical and statistical relationship between erosion rates and controlling 

variables, which could potentially be used by coastal managers. 
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Chapter 2 Wave climate and sea level in CB from 1985 to 2005 

2.1 Introduction  

Chesapeake Bay (CB) is the largest estuary in the United States. It has a relatively 

shallow average depth of 8.5 m, length of 315 km from the Susquehanna River to its 

outlet to the Atlantic Ocean, and width that ranges from 5.6 km to 56 km (Langland and 

Cronin, 2003). Such a narrow dendritic geometry gives CB 18803 km of shorelines 

(Chesapeake Bay Program website http://www.chesapeakebay.net/discover/bay101/facts). 

The axis of the Bay is mainly north-south orientated, though it is northeast-southwest in 

upper Bay, north-south in mid-Bay and northwest-southeast in the lower Bay.  Generally, 

the mean tidal range is lowest near Annapolis (~0.3 m) and increases toward both ends to 

slightly less than 1m (Zhong and Ming, 2006). CB is a partially mixed estuary and has a 

classic two-layer estuarine circulation, with upper-layer fresh water going downstream 

and lower-layer oceanic water going upstream (Pritchard, 1956). The Susquehanna River 

provides about 60% of the freshwater to the Bay, with the rest from five major western 

tributaries. 

Chesapeake Bay receives ocean swell, which seldom reaches mid-Bay, from 

between the Virginia Capes. The approximately north-south orientation of CB provides 

sufficient fetch for generation of wind-forced surface gravity waves, which dominate the 

upper- and mid-Bay region (Boon et al., 1996; Lin et al., 2002). For these waves, the 

typical period is about 3s and significant wave height (Hsig) is less than 2 m (Boon, 1998; 

Lin et al., 1998). Waves are likely the dominant forcing for sediment transport in shallow 

nearshore CB waters (Sanford, 1994; Boon et al., 1996) and for shoreline erosion (US 

Army Corps of Engineers, 1990). There were 1.9×10
8
 m

2
 of land loss in the century from 
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1850 to1950 along Chesapeake shoreline due to erosion (Slaughter, 1967a). Extra loading 

of sediments can lead to nutrient pollution, ecosystem degradation and economic loss. 

This process has been intensified by sea level rise, land subsidence and increasing rates 

of shoreline development (Halka et al., 2005). 

Although there have been previous modeling studies of wind-waves in CB (e.g., 

Lin et al. 2002), these studies have either been short in duration or their predictions have 

not been thoroughly investigated. The motivation of this study is to build a long-term 

wave-climate data set for supporting shoreline erosion studies and to improve the 

understanding of the joint probability distribution between sea level and wave climate in 

CB. In this study, the SWAN and Chesapeake Bay Program (CBP) wave models were 

implemented in CB for long-term wave climate simulations from 1985 to 2005, and wave 

variability was compared to separately predicted sea level variability.  

2.2 SWAN and CBP wave models 

2.2.1 SWAN model  

SWAN is a third generation wave model that is based on Eulerian formulation of 

the discrete spectral balance of wave action density. This model simulates random, short 

crested waves in coastal regions over arbitrary bathymetry, wind and current fields. 

SWAN is driven by boundary conditions and local winds.  It accounts for triad wave-

wave interaction, shoaling, refraction, white capping, bottom friction, depth-induced 

breaking, dissipation and diffraction. (Booij et al., 1999; Ris et al., 1999). 

The version 40.91 of SWAN with 2D and third generation mode is used in this 

test. The configuration of the runs is as follows: Cartesian coordinates and curvilinear 



7 

 

grids are applied; wave period cutoff limits are 0.001 s and 25 s; the peak period is used 

as characteristic wave period; the wave-growth term from Cavaleri and Malanotte-Rizzoli 

(1981) and the surface drag coefficient from Wu (1982) are used; and the default 

JONSWAP coefficient of 0.067 is adopted for bottom friction (Hasselmann et al., 1973). 

The calculation time step is 10 minutes, a significant wave height of 0 m and peak period 

of 0.1 s are used as ocean boundary conditions, and zero wave height and wave period 

everywhere is used as the initial condition. Activated physical processes include white 

capping, nonlinear quadruplet wave interactions, and triad wave-wave interactions.  

2.2.2 CBP model  

Young and Verhagen (1996) developed a semi-empirical method for calculating 

fetch-limited wave growth that calculates wave heights and periods from water depths, 

wind inputs and fetch. Noting the deep water asymptotic limits: JONSWAP relationship 

(Hasselmann et al., 1973) and relationship of frequency and fetch (Kahma and Calkoen, 

1992), Young and Verhagen (1996) proposed a fetch-limited and depth-limited shallow-

water waves relationship, of which the empirical parameters are based on measurements 

at Lake George, which is approximately 20 km long and 10 km wide and has a relatively 

uniform bathymetry of 2 m deep (Young and Verhagen, 1996). The expression of the 

relationship is as follows:   

 3 1
1

1

=3.64 10 tanh
tanh

n

B
A

A
ε −

   
×   

   
   (2.1) 

 2
2

2

=0.133 tanh
tanh

m

B
A

A
ν

   
  
   

  (2.2) 
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1 1.3 1 1 1 3 1 0.27

5 8
1 1 2 20.292 ; (4.396 10 ) ;  1.505 ;  16.391 ;n n n n m m m mA B A Bδ χ δ χ

−
−= = × = =  

where ε is the non-dimensional wave energy; ν is the non-dimensional  wave frequency; 

χ  is the non-dimensional fetch; δ is the non-dimensional water depth. ��,	��, ��, ��, m 

and n are all empirical parameters .Young and Verhagen (1996) calculated n = 1.74 and 

m = -0.37. From its expression, we can see that wave height and period can be calculated 

from fetch and bathymetry at each grid point. Solving this expression requires neither 

boundaries nor initial conditions, because it assumes instantaneous steady state at each 

point in time. 

Following this method, the Engineer Research and Development Center (ERDC) 

of the U.S. Army Corp Engineers (USACE) developed a simple parametric wind-wave 

model (Harris et al., 2012).  The most complex calculation in this model is determining 

smoothed effective overwater fetch at each grid point for each time step, which is 

accomplished by allowing for cosine-weighted spreading of the wind direction to avoid 

sudden changes in fetch due to slight changes in wind direction.  We refer to this wave 

model as the CBP wave model for this study. 

2.2.3 Model configuration 

Hourly outputs of sea level for entire CB from 1985 to 2005 were available from 

the Waterways Experiment Station (CH3D-WES) model (Johnson et al., 1993), referred 

to as the CBP hydrodynamic model in this study. Sea level is among the best calibrated 

outputs of the hydrodynamic models in CB (Johnson et al., 1993; Cerco and Noel, 2004) 

SWAN is shown to be valid for wave simulations in CB (Lin et al., 2002). Wave climate 

from CBP wave model were reasonable estimates of observations and were used for 
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calculation of bed shear stress in the CBP Water Quality and Sediment Transport Model 

(Harris et al., 2012).   

In order to be able to incorporate wave climate with sea level data, SWAN and 

CBP wave models were built with the same wind field, model grids, and bathymetry as 

the CBP hydrodynamic model, and were run over the same 21-year calibration period as 

that model. Input and output data are both hourly. The Bay model grid is curvilinear (178 

× 282), with approximately 1-km resolution in the axial direction and 400-m resolution in 

the lateral direction throughout CB and its tributaries (Figure 2.1). The bathymetry and 

grids used in this study is from the current version of the CBP model (Harris et al., 2012), 

with 1.5 m as the shallowest shoreline model grid depth (Figure 2.2).  

Wind input is interpolated from five wind stations to the Bay model grid: Thomas 

Point, Patuxent Air Base, Norfolk International Airport, Washington National Airport, 

and Richmond International Airport. Wind inputs of the latter four over-land stations are 

corrected by multiplying by 1.5 prior to interpolation to better match data at the over-

water Thomas Point station (Johnson et al., 1993; Harris et al. 2012).  This procedure 

approximately compensates for greater attenuation of overland wind velocity in the 

terrestrial atmospheric boundary layer, as compared to the marine atmospheric boundary 

layer (Goodrich, 1985; Xu, 2002).  

2.2.4 Model validation  

The SWAN Model was tested with 3 min, 10min, and 1 hour computational time-

step simulation scenarios. From 1hr to 10 min, there is a significant improvement in 

model outputs, while from 10min to 3min the improvement is not obvious (Figure 2.3). 
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Time varying sea level was also tested as an input variable to the models, but the outputs 

of both SWAN and CBP wave models were almost the same with or without time 

varying sea level. For purposes of simplicity and to keep computational costs down, a 

computational time step of 10 minutes was used and time varying sea level was not 

included in the wave model runs. 

We have observational data (Lin et al., 2002) from wave gauges that were 

deployed during 10-23 October 1995 at Calvert Cliffs and from 26 October 26 to 9 

November 1995 at Poplar Island.  The comparisons (Figure 2.4) show that both SWAN 

and the CBP wave model work reasonably well.  Predictions at Poplar Island show a 

better match than at Calvert Cliffs in terms of both significant wave height (Hsig) and 

peak period. At Calvert Cliffs, predictions of Hsig match better with observational data 

than those of peak period from either model. Shown visually in Figure 2.4, SWAN is 

slightly better than the CBP wave model for both Hsig and peak period. Also, SWAN is 

able to provide direct estimates of quantities other than Hsig and peak period, such as 

maximum bottom orbital velocity, transport of wave energy, and steepness of waves. 

These variables are all known as important factors for shoreline erosion. Thus, we have 

chosen to use the SWAN output for all model data except for fetch, which is only 

calculated by the CBP wave model.  

2.3 Results and discussion   

In this section, using outputs from the wave and hydrodynamic models, we study 

the distribution of significant wave height and sea level statistically along the entire 

shoreline of CB, including the major tributaries. We quantify the joint probability 

between sea level and significant wave height (Hsig) using an empirical function (Section 
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2.3.1). We also discuss the spatial distribution of instantaneous sea level corresponding 

with high wave events in a statistical sense when dominated by different forcing 

(Section2.3.2).  Finally, we examine time series of wave heights and sea level from three 

pairs of sites (lower, middle and upper Bay) during high-wave events (Section 2.3.3). 

2.3.1 Joint probability distribution between sea level and wave height 

The range of average Hisg from 1985 to 2005 varies between 0-0.3 m around CB 

(Figure 2.6). The smallest waves occur in tributaries, especially towards the head of 

tributaries, as would be expected due to limited fetch. Larger waves are concentrated in 

the mainstem regions, with highest wave heights located near the mouth of the Bay on 

both its western shore (Cape Henry) and eastern shore (Cape Charles) (Figure 2.6).  

In order to study the joint probability of distribution between sea level and wave 

height, we explored the distribution of each variable separately first. A histogram of 

significant wave heights from the hourly SWAN output for the entire shoreline (2217 

grids) of CB from 1985 to 2005 (Figure 2.5a) shows that 91% of all wave heights are 

located in the lowest bin of 0-0.27 m and that the amount of data falling into each bin 

decreases exponentially as Hsig increases. The dominance of Hsig within this low range 

may be partially due to the fact that we are only considering wind seas in this analysis. 

The probability of observing a particular Hsig (P(Hsig)) can be quantitatively modeled by 

an exponential function (Equation 2.3), with �� ≈ 0.99 and SSE=1.6×10
-3

.  

 ( ) 9.6P Hsig 0.25 Hsig
e

−=   (2.3) 

A histogram of detrended sea level from hourly outputs of the CBP hydrodynamic model 

for the entire shoreline of CB from 1985 to 2005 (Figure 2.5b) shows that sea level is 
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close to normally distributed.  Note that all sea-level data were locally detrended before 

calculation of this distribution. The probability distribution of sea level can be 

quantitatively described by a Gaussian function (Equation 2.4) with �� = 0.99 and 

SSE=1.9× 10��, where w is detrended sea level. The red line in Figure 2.5b describes the 

best fitted normal distribution for the corresponding data presented by the histogram.  

 ( )
4

22.9 10
( )

2 0.43P w 6.8 10
w

e

−− ×
−

−= ×   (2.4) 

Relationships between sea level and significant wave height can be further 

explored by examining the distribution of sea-level data within each bin of Hsig from Fig. 

2.5a. Because most Hsig data fell into the first bin, bin sizes were expanded thereafter 

(0.27m-1.06m, 1.06m-1.86m, 1.86m-2.65m) to reduce the number of plots in Fig. 2.7. In 

Figure 2.7 a and b, all waves are relatively small, and sea level follows a normal 

distribution centered at zero (mean sea level). In Figure 2.7 c, the histogram of sea level 

still approximates a normal distribution but it is skewed to the right indicating a 

prevalence of high sea levels with high waves. There are not enough data points in the 

last plot (Hsig 1.86-2.65 m) to fit a normal distribution, but the center of the sea-level 

distribution is even more strongly skewed to the right. In other words, sea level during 

the highest wave events tends to be significantly elevated. These patterns are also evident 

in Figure 2.8a, which shows that most data are concentrated at low Hsig and centered at 

zero sea level; the joint probability (see below) decreases exponentially as Hsig increases 

and the most probably sea level increases as Hsig increases.   

If Hsig and sea level are independent of each other, the joint probability should be 

exactly the product of P(w) (eq. 2.4) and P(Hsig) (eq. 2.3). However, if there are 
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correlations between Hsig and sea level, then a more complex joint probability 

distribution is expected.  Assuming that this joint probability function would still have the 

form of the product of an exponential and a Gaussian function, and utilizing the Curve 

Fitting Tool in Matlab yields 

 ( ) ( )
2

7.04 5.87 0.005
P w, Hsig 0.014

Hsig w
e

− − × −
=   (2.5) 

Where Hsig is the significant wave height and w is the detrended sea level. Fitting a line 

between joint probability and the results from curve fitting shows that these two values 

match well when the joint probability is high (>0.005), which corresponds to low Hsig 

around mean sea level (Figure 2.8b). However, curve fit estimate of the joint probability 

deviates significantly from the 1:1 ratio line, with a higher probability of overestimation 

(Figure 2.8d) when the joint probability is low (<5×10
-4

), which corresponds to high Hsig 

and extreme sea levels. Fitting the joint probability against P(w)×P(Hsig) tells a similar 

story except at high probability range, P(w)×P(Hsig) tends to underestimate ( Figure 2.8c) 

and at low probability range, P(w)×P(Hsig) shows some scatter about the 1:1 line.  Thus, 

the assumption of independence between the probabilities of sea level and Hsig is not as 

good for the most probable low waves, but is actually reasonable for less probable high 

waves. 

Next, the spatial distributions of Hsig and sea level within different ranges of Hsig, 

especially in the high range, are discussed. Figure 2.9 shows that small waves occur 

nearly everywhere along the CB shoreline (Figure 2.9a), which also means that sea levels 

corresponding to low Hsig (see Figure 2.7a) are mostly evenly distributed along the 

whole CB shoreline. Most waves in the moderate Hsig range of 0.26 m-1.06 m are 
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located in the mainstem of the Bay and decrease toward the head of tributaries, where 

waves of these heights rarely occur. This indicates that most waves in the tributaries are 

smaller than 0.26 m high. Sea levels associated with medium high (1.06m-1.86m) waves 

are mostly located in the main stem of the Bay or near the mouth of tributaries. The 

highest values of Hsig (1.86m-2.65m) also occur near the mouth of the Bay and between 

the mouths of the major western shore tributaries, with the very highest waves occurring 

around Cape Henry (south side of the mouth; Figures 2.9c and d). It thus appears that the 

highest sea levels corresponding with highest Hsig occur primarily at the mouth of the 

Bay near Cape Henry. 

Figure 2.10 demonstrates the count of occurrence of Hsig corresponding to the 

median of detrended sea levels in the ranges of Hsig: (a) 0-1.06 m and (b) 1.06-2.66 m. 

Medians of sea level are close to zero at all shoreline grids when Hsig is low to moderate 

(0-1.06 m). This means that during relatively low-wave events, the chances of having 

positive or negative sea level along the whole shoreline are statistically even. This 

phenomenon also agrees with Figure 2.9a and b and Figure 2.7a and b.  Medians of sea 

level in the high range of Hsig (1.06-2.66 m) are mostly positive along the west side of 

the Bay with most of the negative points on the east side of the Bay. Interestingly, 

medians around Cape Charles are mostly negative, which means the positive sea levels in 

Figure 2.7c and d are mostly contributed by grid points around Cape Henry.  

2.3.2 Spatial distribution of sea level during high wave events  

The barotropically induced sea-level variability in a partially mixed estuary like 

CB can be influenced by tides, wind forcing, river runoff and forced damped seiche 

responses (Chuang and Boicourt, 1989).  Tides in CB are forced by ocean tides at the 
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mouth, which usually have a semi-diurnal period that drives instantaneous sea level 

above/below the mean. Wang et. al (1978, 1979) studied sub-tidal sea-level variability 

and its relation to wind forcing. They found that the dominant sub-tidal sea-level 

fluctuation happened at a period >10 days induced by coastal sea-level fluctuations, 

which are driven by along-coast persistent winds. Water is driven out of the Bay by 

coastal set-down during northeastward winds and into the Bay by coastal set-up during 

southwestward winds, due to the coastal Ekman transport. The amplitude of this sub-tidal 

mode decreases from the mouth to the head of CB.  For periods of fluctuation between 4 

and 10 days, the fluctuation is dominated by eastward winds pumping water out of the 

Bay, while westward winds induce an inflow into the Bay. This east-west mechanism is 

more obvious in summer and fall than in winter and spring. For periods of fluctuation <4 

days, local northward wind forcing induces an inflow, while local southward wind 

forcing drives water out of the Bay. Also, Chuang and Boicourt (1989) found that a 

lateral wind (east-west) can generate responses near the resonant frequency of CB.  

However, the local north-south wind can more easily induce a 2~3 day period seiche, 

which is characterized by a node at the mouth and an antinode at the head of CB. Thus, 

the fluctuations in sea level in the Bay we observe, if we only consider barotropic factors, 

are a combined action of astronomical tides, local longitudinal (north-south) and lateral 

(east-west) wind, remote coastal sea level, and a seiche response. 

Another view of the spatial distribution of median sea level during high-wave 

events (defined here as wave heights above the 60% of maximal Hsig) is shown in Figure 

2.11. For positive medians of sea level, a value of 1 is assigned; -1 is assigned for 

negative medians of sea level. If counts of positive and negative sea level are 
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approximately the same (the difference in counts is smaller than 1% of the total number 

of data), 0 is assigned. On this map, positive medians of sea level are mostly located on 

the western shore in the mainstem Bay, the southern side of tributaries in the lower Bay, 

and the northern side of tributaries in the upper Bay, while negative medians have 

generally the opposite pattern.  

Elliott (1978) and Wang et al. (1978) noted that half of the sea-level fluctuations 

in the Potomac River originate from the sea-level changes in the Bay; the other half is 

generated by local wind. In smaller tributaries, local forcing within tributaries should be 

less effective than in bigger tributaries like the Potomac River. Thus, it is assumed that 

sea level in small tributaries is mostly influenced by sea level in the Bay in our discussion. 

We also assume that when strong wind events occur, most areas in the Bay share a 

similar wind pattern. 

When north winds prevail, especially northeast winds, sea level in the Bay may 

rise due to coastal sea-level setup (remote forcing) through Ekman transport. However, 

the local effect, which directly blows water out of the Bay, causes a sea-level set-down. 

In contrast, south winds can lower sea level from the influence of remote forcing, but can 

also generate sea level set-up through local effects (Wang, 1979).  

During high-wave events (wave heights above the 60% of maximal Hsig at each 

grid point), medians of sea level on the western shore of the main stem, the eastern side 

of islands, and the southern side of tributaries in the lower Bay are positive (Figure 2.11). 

This means that northeasters cause these high wave events and the effects of remote 

forcing on sea-level fluctuations dominate over local forcing in the lower CB. During 
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high wave events in upper CB, positive medians of sea level occur on the western shore, 

at the head of CB, and on the north sides of tributaries; negative medians occur on the 

south sides of tributaries. Negative medians on southern sides of tributaries show that 

north winds lower sea level in the upper Bay instead of causing sea-level increase. This 

indicates that local effects overcome remote forcing in the upper Bay. Moreover, the 

positive medians on northern side of tributaries and at the head of CB indicate that strong 

south winds cause a rise in sea level in the upper Bay. So we can speculate that positive 

high wave sea levels in the upper mainstem western shore are caused by south winds 

instead of northeasters. Thus, the effects of local forcing on sea-level fluctuations 

dominate over remote forcing in upper CB.  

Even though most shoreline points agree with the former statements, there are 

exceptions at complicated curved shorelines, and in tributaries, especially the heads of 

tributaries. Note that defining the geographic boundaries for different dominance of 

remote forcing and local forcing is beyond the scope of this study. Due to complicated 

shoreline orientations, freshwater input from land, and other site-specific factors, detailed 

small-scale, site-specific analysis requires finer resolution and a more comprehensive 

local datasets.  

2.3.3 Specific examples of paired sites  

In this section, sites on both eastern and western Shore in the lower, middle, and 

upper Bay are examined during high-wind events. These sites are all located in regions 

that are only weakly influenced by local river runoff. Two points at roughly the same 

latitude should have a similar wind field due to our method of interpolation. So, only one 

wind vector time series for each pair of sites is shown in the plots. 
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Grid 14 and 2074 are on opposite sides of the mouth of the Bay (see Figure 2.11 

for locations). Wind coming from the north gives grid 14 a longer fetch, while wind 

coming from the south yields a longer fetch for grid 2074.  Thus, Figure 2.12 shows that 

north winds increase Hsig dramatically at grid 14 but not grid 2074, while south winds 

result in higher Hsig at grid 2074 than at grid 14.  Correspondingly, north winds result in 

sea levels above the mean, while south winds result in sea levels below the mean. These 

patterns result from coastal Ekman transport, as discussed previously. Figure 2.12 shows 

the dominance of Ekman transport driven by north-south winds along the coast (i.e., 

remote forcing) on sea level fluctuation over local forcing at the mouth of CB. Thus, 

north wind causes high (and mostly positive) sea level and high Hsig at grid 14, while 

south wind causes low (and mostly negative) sea level and high Hsig at grid 2074. Grid 

points on the lower western shore should follow a similar pattern as grid 14, while those 

on lower eastern shore should be similar to grid 2074.  

At the head of CB, the responses of Hsig for grid 1353 and grid 1222 are very 

similar to each other except during strong northwest winds, due to differences in the fetch 

for each grid. Grid 1222 is sheltered when wind comes from the northwest, which leads 

to a small fetch. Regardless of the strength of northwest wind, waves cannot grow due to 

the lack of fetch. Both grids have high Hsig when strong south winds blow, since they 

have a similar fetch length in this direction. Thus, both strong northwest wind and wind 

with south component lead to a high Hsig at grid 1353, while only the latter result in a 

high Hsig at grid 1222 (Figure 2.13).  

 Increasing sea level corresponds to winds with a strong south component, while 

decreasing sea level corresponds to winds with a north component in Figure 2.13. This is 
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exactly the opposite pattern compared to two grids (14 and 2074) at the mouth of the Bay, 

where the effects of remote forcing on sea level fluctuation dominates.  The response 

here follows the local forcing mechanism: north winds should result in a volume flux 

toward the mouth of CB, while south winds result in surface-water transport toward the 

head of the Bay. Figure 2.13 shows that during significant local wind event, sea level 

setup/setdown induced by local north-south wind can dominate over remote forcing at the 

head of CB.  Thus, strong northwest winds might cause a decrease in sea level and high 

Hsig at grid 1353, while winds with a strong south component cause an increase in sea 

level and high Hsig at both grids. 

At grid 1222, high Hsig corresponds to increased (mostly positive) sea level due 

to strong local south winds, and so the median of sea level at high Hsig should be positive 

(see Figure 2.11 for locations). On the contrary, high Hsig can correspond to both an 

increase (mostly positive) and decrease in sea level (more negative) at grid 1353. High 

Hsig corresponding to sea level increase happens when local winds with a strong south 

component occur; the high Hsig corresponding to sea level decrease happens with strong 

local northwest winds. Figure 2.11 shows that the median of sea level at high Hsig is 

negative at this grid, which means a low sea level with northwest wind has a higher 

frequency of occurrence during high-wave events. Grid points on the upper western shore 

should follow a similar pattern as grid 1222, while those on the upper eastern shore 

should be similar to grid 1353 in Figure 2.11.  

In Mid-Bay, grid 1015 (Calvert Cliffs) and 1708 are located on the west and east 

sides of the Bay respectively, where the local Bay axis is oriented northwest-southeast 

(see Figure 2.11 for locations). Because of this change in orientation, strong wind coming 
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from south only generate high Hsig at grid 1708, but there is not sufficient fetch for high 

waves at Calvert Cliffs. Meanwhile, northwest winds can result in high Hsig at both grids, 

but northeast wind creates larger Hsig at Calvert Cliffs (Figure 2.14). South winds cause 

an increase in sea level while north winds cause a decrease, indicating that sea-level 

fluctuations caused by local longitudinal winds can still overcome the remote forcing 

generated from the mouth of the Bay at this latitude (Figure 2.14. High Hsig corresponds 

to low (mostly negative) sea level at Calvert Cliffs due to strong northeast and northwest 

winds, resulting in a negative median of sea level at high Hsig. However, at grid 1708, 

high Hsig corresponds to both positive and negative sea level is due to south or northwest 

winds, respectively. The negative median of sea level at high wave height means that 

there is a higher frequency of northwest winds than south winds during high-wave events 

at grid 1708. Grid points on the mid-eastern shore should be similar to grid 1708. 

However, only grids close to or north of Calvert Cliff (grid 1015) on the mid-western 

shore should follow a similar pattern. Most grids points south of Calvert Cliff should 

follow the pattern of grid 1222 due to the change of shoreline orientation from northeast-

southwest to northwest-southeast. 

During high-wave events, even though the local forcing dominates over remote 

forcing in the upper Bay and remote forcing dominates over local forcing in lower Bay, 

the behavior during any single event is not predictable due to the combined action of 

local and remote forcing and dynamic seiche response. 
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2.4 Conclusions 

Considering only locally generated wind waves along the shorelines of CB (no 

ocean swell), the frequency of occurrence of Hsig decreases exponentially with 

increasing Hsig. The frequency of occurrence of sea level follows a normal distribution.  

Along the entire CB shoreline, only considering wind seas, relatively large waves 

(Hsig>0.27 m) are mostly found along the mainstem and lower reaches of tributaries. 

Higher waves (Hsig>1.06 m) occur more frequently at the mouth of the Bay, especially 

on the western shore, due to the long open fetch to the north.   

At lower wave heights (Hsig<1.06 m), the frequency of occurrences of positive or 

negative sea level at each shoreline grid point are approximately the same. However, at 

high wave heights (Hsig>1.06m), the difference between the frequency of occurrence of 

positive and negative sea level at each shoreline grid point differs spatially.  

During high-wave events the effects of local forcing on sea-level fluctuations 

dominate over remote forcing (coastal sea level) in the upper Bay; the effects of remote 

forcing on sea level fluctuations dominate over local forcing in the lower Bay. Whether 

high-wave events more likely correspond to high (positive) or low (negative) sea level 

depends on the geographic location in CB. The general patterns are that high-wave events 

more likely correspond to high sea level on the western shore of the mainstem Bay, on 

the southern side of tributaries in the lower Bay and on the northern side of tributaries in 

the upper Bay.   High-wave events are more likely to correspond to low sea level on the 

eastern shore of the mainstem Bay, the northern side of tributaries in the lower Bay and 

the southern side of tributaries in the upper Bay. 
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Figure 2.1. Model grid locations, wind stations, landmarks and two sites with 

observational data for model validation (Calvert Cliffs and Poplar Island)   
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Figure 2.2. Bathymetry of Chesapeake Bay used in model (m). 
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Figure 2.3. Comparison of different computational time step (3min, 10min, 1h) in SWAN 
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Figure 2.4. Comparisons of time series between model outputs and observations at (a) 

Poplar Island and (b) Calvert Cliff. For each location, panels show (upper to lower) 

significant wave height (Hsig), peak period, and wind interpolated from 5 stations (wind 

direction is shown by the direction of lines) from the two wave models. 
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Figure 2.5. Histograms of (a) Hsig (y-axis is natural log) and (b) detrended sea level from 

the hourly output of SWAN and CBP hydrodynamic models for the entire Chesapeake 

Bay shoreline from 1985-2005. 
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Figure 2.6. Averaged Hsig along the CB shoreline, clockwise from Cape Henry to Cape 

Charles; the red line is a smooth function of averaged Hsig. Red stars along x-axis are 

head of tributaries and landmarks, details in Table 2.1.  
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Figure 2.7. Histogram of sea level corresponding to 4 different ranges of Hsig: (a) 0-0.27 

m (b) 0.27-1.06 m (c)1.06-1.86 m (d) 1.86-2.65 m. Sea level data are detrended and from 

the hourly output of the CBP hydrodynamic model for the entire Chesapeake Bay 

shoreline from 1985-2005, a scaled normal distribution for reference only in each subplot. 

 

 

 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sea level(meter)

c
o
u

n
t 

o
f 

o
c
c
u
ra

n
ce

(a) Histogram of Detrended Sea Level

 

 

Hsig0~0.27

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sea level(meter)

c
o
u

n
t 

o
f 

o
c
c
u
ra

n
ce

(b) Histogram of Detrended Sea Level

 

 

Hsig0.27~1.06

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sea level(meter)

c
o
u

n
t 

o
f 

o
c
c
u
ra

n
ce

(c) Histogram of Detrended Sea Level

 

 

Hsig1.06~1.86

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sea level(meter)
c
o
u

n
t 

o
f 

o
c
c
u
ra

n
ce

(d) Histogram of Detrended Sea Level

 

 

Hsig1.86~2.65



29 

 

 

Figure 2.8. (a) Natural log of the joint probability calculated from wave and 

hydrodynamic model outputs; (b) joint probability vs. joint probability from curve fitting; 

(c) joint probability vs. the product of the individual probability of sea level and Hsig 

(P(w)×P(Hsig)). (d) and (e)give an expanded view of the data near low joint probability. 
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Figure 2.9. Distribution of Hsig within its 4 ranges: (a) 0-0.27 m, (b) 0.27-1.06 m,   

(c)1.06-1.86 m, (d) 1.86-2.65 m. X-axis: grid point along CB shoreline from Cape Henry 

to Cape Charles (clockwise) and around large islands for grid points > 2095 (see also  

Table2.1), with the heads of major tributaries indicated by the red stars (Table 2.1); Y-

axis: number of occurrences of Hsig in each range at each grid. 
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Figure 2.10. Count of occurrence of Hsig corresponding to the median of detrended sea 

levels in the ranges of Hsig: (a) 0-1.06m and (b) 1.06-2.65 m. Green markers represent 

the median of detrended sea level in each range; blue line shows the count of occurrence 

at each grid point from Cape Henry to Cape Charles (clockwise) and around large islands 

for grid points > 2095. 
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Figure 2.11. Medians of detrended sea levels that correspond with the top 60% of 

maximal Hsig at each grid point in Chesapeake Bay. Red represents positive medians, 

blue represents negative medians, and green represents zero median. 
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Figure 2.12. Time series of two sites (grid 14 and grid 2074) at mouth of the Bay. Upper 

panel: wind interpolated from 5 stations, the wind direction is shown by the directions of 

the lines; Middle panel: Hsig from the SWAN model; Lower panel: sea level from CBP 

hydrodynamic model. 
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Figure 2.13. Time series of two sites (grid 1222 and grid 1353) at the mouth of the Bay. 

Upper panel: wind interpolated from 5 stations, the wind direction is shown by the 

directions of the lines; Middle panel: Hsig from the SWAN model; Lower panel: sea 

level from the CBP hydrodynamic model. 
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Figure 2.14. Time series of two sites (grid 1708 and grid 1015) at the mouth of the Bay. 

Upper panel: wind interpolated from 5 stations, the wind direction is shown by the 

direction of the lines; Middle panel: Hsig from the SWAN model; Lower panel: sea level 

from the CBP hydrodynamic model. 
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Name Abbreviation Index 

of 

Model 

Grid  

Name Abbreviation Index of 

Model 

Grid 

Cape Henry  Henry 1 Elk River       Elk        1321 

James River     James    134 Eastern Neck     EasternN 1416 

York River      York      275 Choptank 

River        

Choptank        1631 

Rappahannock 

River    

Rap 459 Nanticoke 

River  

Nan      1829 

Potomac River   Potomac   727 Pocomoke 

sound  

Poc 1953 

Patuxent River  Patuxent  960 Cape Charles    Charles 2095 

Baltimore       Bal 1136 Islands(Pooles, 

Blood Worth, 

Smith, and 

Tangier)
a 

Islands 2096-2217 

Susquehanna 

River    

Sus 1258    

a: Other islands (Kent Island, Poplar Island, Hoopers Island, Barren Island, Taylor Island, 

etc.) are counted as part of the major shoreline due to the limited resolution of shoreline 

grids.  

Table 2.1. Land marks  

 

 

 

 

 

 

 



37 

 

Chapter 3 Shoreline erosion rates in Maryland CB 

3.1 Introduction 

In the Maryland portion of Chesapeake Bay (CB), shorelines consist of banks, 

with heights ranging from 1 meter to over 30 m (at Calvert Cliffs), and marshes that are 

mostly found along the lower eastern shore (Somerset, Wicomico, and Dorchester 

Counties). Year-round beaches only exist on about 24 km of the entire CB shoreline (U.S. 

Army Corps of Engineers, 1971). Some regions, points and islands are experiencing 

severe erosion (>2.4 meter/year) on the western shore (Pt. Lookout to St. Jerome, 

Holland Pt. and Thomas Pt.) and eastern shore (Kent Island, Lowes Pt. to Knapps, Mills 

Pt. to Hills Pt., James Island, Oyster Cove to Punch Island Creek and  Barren 

Island)(Wang et al., 1982). There were 1.9×10
8
 m

2
 of land loss during 1850-1950 along 

Chesapeake shorelines (Slaughter, 1967a). Erosion can lead to nutrient pollution, 

ecosystem degradation and huge economic loss (USACE and MDNR, 2010; Leatherman 

et al., 1995). Erosion process has been intensified by sea-level rise, land subsidence and 

increasing rates of shoreline development (Halka et al., 2005). 

Erosion is a highly complicated process to study not only because it involves 

various interacting factors but factors that can behave very differently in different 

geographic locations. The relationship between sea level and erosion on sandy shorelines 

has been described as a response of the equilibrium shoreline profile, with wave activity 

as the hidden cause (Bruun, 1962; Schwartz, 1967; Dean, 1991), which forms the basis 

for several erosion models for sandy beaches, such as the Stormed-Induced Beach 

Erosion (SEARCH) and Generalized Model for Simulating Shoreline Change (GENESIS) 

models. The role of wave activity (parametrized as wave power) is less clear for sea cliffs. 
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For example, Benumof et al. (2000) found that material strength appears to largely 

determine sea-cliff-retreat rates, with wave power as a secondary effect, but experimental 

results of soft cliffs found that erosion was correlated with oblique wave power 

(Damgaard and Dong 2004). Wave power was also found to correlate with erosion rates 

for glacial till bluff in Lake Erie (Kamphuis, 1987), marsh shorelines in Rehoboth Bay 

(Schwimmer 2001), and uniform cohesive bluffs in Lake Ontario (Amin, 1997). A recent 

study in Hog Island Bay (in Virginia) reinforces the important role of waves in driving 

erosion along marsh edges (Mcloughlin et al., 2015). Thus, wave power is likely one of 

the most important factors in predicting erosion rates.  

Chesapeake Bay shorelines are mostly marshes and banks. Previous studies in CB 

have considered the ratio of silt to sand, bluff height, and cohesive soil strength as 

predictive variables for erosion rates (Dalrymple, 1986; Wilcock et al., 1998), with less 

attention to the effect of wave actions. Meanwhile, other studies have found waves as the 

primary factor for erosion process in CB (Wang et al., 1982; Spoeri, 1985; Skunda, 2000; 

Perry, 2008). Skunda (2000) modeled shoreline instability along the western shore of CB 

in Virginia and found wave power as a significant factor for erosion. Spoeri et al. (1985) 

and Wang et al. (1982) used data of 107 reaches (2-5km in length) in Maryland CB to 

analyze relationships between variables, including wave power sediment types, tidal 

range, rainfall, and 100-year storm surge, and erosion rates. Using traditional regression 

and discriminant analysis, Spoeri et al. (1985) were not able to provide an adequate 

erosion rate prediction model, but they concluded that wave energy still seems to be 

primarily responsible for the changes in shoreline erosion. Perry (2008) applied 

discriminant analysis (CART) and linear models to Maryland CB and found that fetch 
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seems to be the most important factor affecting shoreline erosion, again highlighting the 

role of waves, while geography is the second-most important predictor, complicating 

efforts to develop a single model for state-wide predictions. 

In this study, we compared the predictions of the wave and sea level climatology 

developed in the previous chapter to a dataset that includes historical shoreline erosion 

rates, shoreline structure information, bank/marsh ratio, and mean bank height in 207 

reaches for the Maryland part of CB, which has been assembled by Maryland Geological 

Survey (MGS) (Hennessee et al., 2006). Our study focuses on the Maryland portion of 

CB because an equivalent detailed shoreline inventory (combining erosion rates with 

shoreline characteristics) is not available for the Virginia portion of CB. First, we 

combine the climatological forcing and shoreline characteristics datasets to create a 

comprehensive and high-resolution dataset for analyzing relationships between erosion 

rates and wave climate, sea level, along with other shoreline characteristics, in  Maryland 

CB. Next, we implement linear analysis, curve fitting, Generalized Additive Model 

(GAM), and Neural Network (NN) analyses on these datasets.  Comparisons of erosion 

rates and wave characteristics are made between relatively large (reach and grid cell) and 

local scales. 

  Previous attempts to develop straightforward relationships between physical 

forcing and shoreline characteristics in CB have met with limited success. The work 

presented here utilizes a more comprehensive and accurate dataset to attempt to improve 

on those previous attempts. The datasets built in this study are so far the most 

comprehensive dataset available for studying shoreline erosion in the Maryland CB. They 

cover longer shorelines (e.g., major tributaries) and the climatological forcing is from 
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more advanced numerical models that allow more various and accurate environmental 

variables, such as bottom orbital velocity and wave power calculated from a full spectral 

wave model.  With the information on marsh/bank ratio, erosion of marsh and bank 

shorelines can be analyzed separately. Data at different scales allows us to compare 

results and seek improvements for future data collections. Considering physical dynamics 

when selecting environmental variables and exploring innovative non-linear statistical 

methods for erosion predictions is also a step forward from previous studies. This study 

aims to gain a better understanding of the different contributions of a variety of 

controlling variables to shoreline erosion rates and attempts to establish relatively simple 

semi-empirical and statistical relationships between erosion rates and controlling 

variables, which could potentially improve estimates of erosion rates in the CBP 

sediment transport model and be helpful for coastal managers.  

3.2 Methods 

3.2.1 Data 

The study area includes the Maryland portion of CB, including its major 

tributaries and islands. Some interior ponds, creeks and heads of tributaries are not 

included due to limited spatial resolution. The Maryland Geological Survey assembled 

data on shoreline erosion, shoreline structure percentage, bank percentage and mean bank 

height into one dataset at the resolution of ‘reach’ (Hennessee et al., 2006) (Figure 3.1). 

First, a reach was defined from one point of land to another. Then the reach was further 

subdivided if the rates of shoreline change shown on the regional map varied widely 

within the reach. The mouths of tributaries, county boundaries and marked changes in 

shoreline orientations all influence reach scopes (Hennessee et al., 2006).  MGS 
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demarcated Maryland CB shorelines into 207 reaches, which were divided almost equally 

between the eastern shore (100 reaches) and the western shore (107 reaches).  

The Virginia Institute of Marine Sciences (VIMS) identified man-made structures 

along the tidal shorelines of navigable waterways in Maryland. Appearances of structures 

were observed from a slow-moving boat traveling parallel to the shorelines and organized 

into a geographically referenced set of shoreline data (Hennessee et al., 2006). For each 

reach, there is a value for the corresponding percentage of protected shoreline length. Of 

the 207 reaches in Maryland, marshes (19 reaches) are mostly unprotected. Fifteen of 

them are entirely unprotected and 4 reaches have 3% or less protection along their length. 

The Maryland Geological Survey cooperated with the U.S. Geological Survey 

(USGS) and Towson University’s Center for Geographic Information Sciences (CGIS) to 

determine erosion rates for the coastal and estuarine shorelines in Maryland. They used 

digital shorelines dating from 1841-1995 as inputs into a computer program, the Digital 

Shoreline Analysis System (DSAS; Danforth and Thieler, 1992). In DSAS, a 50-m inland 

baseline was constructed, which was parallel to shorelines, as well as transects that were 

20 m apart and perpendicular to the baseline. Then, rates of change were determined 

along each transect. DSAS produced nearly 250,000 transects with associated rates of 

change, including the Atlantic coast, the coastal bays, and the CB and its tributaries 

(Hennessee et al., 2002; 2003a,b). This database is available as a product called Coastal 

Atlas on Maryland Department of Natural Resources (DNR) website 

(http://gisapps.dnr.state.md.us/coastalatlas/iMap-master/basicviewer/index.html). In order 

to acquire shoreline erosion rates for each reach, MGS averaged the rates of change at all 

transects that were located in each shoreline reach. Erosion rates of transects that 
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intersected protected shorelines were excluded from the calculations, such that the reach 

averaged erosion rates only include unprotected shoreline. In the Coastal Atlas 

convention, negative erosion rates represent shoreline erosion, while positive erosion 

rates indicate accretion. 

Maryland Geological Survey used the 7.5-minute USGS topographic quadrangles 

to identify two features: marshes and topographic contours along the shoreline (at contour 

intervals of 3 or 6 m). These two features are used to estimate the ratio of bank versus 

marsh (bank percentage), which differ in their physical characteristics, and the average 

bank height of a reach (Hennessee et al., 2006). 

Erosion data are available at three resolutions: reach (1.9km to 87km in length), 

grid cells (approximately 1km in length) and transects (20m resolution). We incorporated 

output variables (Table 3.1) from the SWAN model (Booij et al., 1999; Ris et al., 1999), 

fetch data from the CBP wave model (Young and Verhagen, 1996; McLoughlin et al., 

2015) and sea-level data from the CBP hydrodynamic model (Johnson et al., 1993) , all 

available at the grid scale. These models have 1316 shoreline grid cells located in 

Maryland. A map of each reach is overlaid with a map of grid cells and grid cells are 

manually assigned into each corresponding reach (Figure 3.1).  These models have hourly 

outputs from 1985 to 2005. After averaging throughout the 21-year period, each model 

grid has a single average value for each output variable. All the values within each reach 

can then be averaged to obtain the average wave parameters and sea level at each reach.  

Thus, wave parameters and sea levels are derived at the same resolution (at reach 

resolution) as shoreline characteristics assembled by MGS.   
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To obtain erosion rates at the resolution of model grid cells, erosion rates 

calculated in DSAS were averaged over the size of model grid cells.  Each shoreline 

transect was simply assigned to the nearest model grid. If a model grid was not assigned, 

the average of nearest two grid cells was used instead. The resolution of grid cells cannot 

resolve the Bay side (high erosion rates) or the sheltered side (low erosion rates) of a few 

islands. Thus, erosion rates at grid-cell resolution are underestimated at the Bay sides of 

Taylors Island, Hoopers Island, Barren Island, and Bloodworth Island, as well as the 

upper part of the Bay side of Smith Island (including Martin National Wildlife Refuge). 

Grid-scale estimates of erosion rate are biased by non-eroding or accreting hardened 

shoreline segments because the distinction between hardened and naturally eroding 

shoreline was not available at the grid scale. Since marsh grids are mostly unprotected, 

only marshy shorelines were selected for quantitative analysis at the model grid 

resolution in this study. 

We obtained two datasets as a result: one consisting of only marsh dominated 

shorelines at the resolution of model grids, including all wave variables and erosion rates; 

and another at the resolution of reach, including all wave variables, erosion rates, bank 

percentages, bank heights and structure percentages. Wave predictions and sea-level 

simulations from SWAN, the CBP wave model and the CBP hydrodynamic model were 

available at both resolutions.  

We also added some derived variables from model outputs into our data set for 

analysis, such as the onshore wave power and weighted fetch. α is the angle between 

incoming waves direction and the orthogonal line of shoreline orientation (Figure 3.2).  It 

was calculated as 90oα β θ= − + , where β  is the direction of incoming wave-energy 
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propagation calculated from the transports of wave energy along x/y-axis of Cartesian 

coordinate (east as x-axis; transp_x and transp_y), and θ is the shoreline orientation. 

These calculations follow the geometric convention that east is 0 degrees, with angle 

values increasing counterclockwise.  cos 0α > represents offshore directed waves, 

cos 0α < represents onshore directed waves, and cos 0α = represents along-shore 

directed waves. The total wave-energy flux was calculated as

2 2_ _transpall transp x trasnp y= + . The average onshore wave energy flux was 

calculated as 

    cos
_

          

Transport of Wave Energy Onshore transpall
transp onshore

Number of All Wave Energy Estimates Number of All Wave Energy Estimates

α×
= =
∑ ∑ ; any 

calculations of offshore energy flux were excluded. Transp_onshore is all negative due to 

cos 0α < representing the onshore direction, but its absolute value (positive) is used for 

analysis in this study for simplicity. Fetch and weighted fetch were acquired from the 

CBP wave model; the average wind weighted fetch at reach i was calculated by

ij ij

j

i

ij

j

wind fetch

WeightedFetch
wind

×

=

∑

∑
. ‘Tidal Range’ is not the exact tidal range, but rather 

the standard deviation of sea level, which is proportional to tidal range – it is referred to 

as ‘Tidal Range’ in this study for simplicity. Depth is from the model bathymetry, which 

is relative to the Mean Sea Level (MSL) in 1983. Sea levels are outputs from the CBP 

hydrodynamic model, which is relative to 1983 MSL as well.  The choice of 1983 as a 

reference year is to be consistent with the CBP model.  Thus, the steepness can be 

calculated as: 
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 , where the denominator is the distance 

offshore at the center of each shoreline model grid.  Elevation is the height of the cliff 

with respect to the tidal flat bottom, and the Volumetric Erosion Rate (VER) = Erosion 

rate× Elevation.   

3.2.2 Region divisions 

For the dataset at reach resolution, shoreline types can be identified as ‘marsh’, 

‘bank’ or ‘mixed’ type through the variable ‘bank percentage’.  We defined a reach as 

type ‘marsh’ if  ‘bank percentage’ was ≤ 10% and a reach as type ‘bank’ if ‘bank 

percentage’ was ≥ 90%. Because of distinctive erosion processes due to the different 

sediment properties (e.g., particle size, vegetation type, etc.) between marsh and bank 

(shown below), the mixed type adds unnecessary complexity to the issue. Thus, this study 

will only focus on discussing reaches that fall into bank (117 reaches) or marsh 27 

reaches) categories. We further divided each of these types into the sub-regions of 

mainstem, tributary, eastern shore and western shore for our analysis. 

Wave heights are much higher in the mainstem of CB due to much longer fetches 

and stronger fetch-aligned winds than in most tributaries (see previous chapter). Thus we 

divided each type of shoreline into tributary and stem for analysis. Also, because the 

median sea level during high-wave events is the opposite on eastern and western shores, 

each type of shoreline is divided into eastern shore and western shore for exploration as 

well. ‘Bank’ type ends up with 17 reaches in the mainstem, 99 reaches in tributaries, 43 

reaches on the eastern shore, and 73 reaches on the western shore. Ideally, only reaches in 

the mainstem would be included in ‘eastern’ and ‘western’. However, all 117 reaches of 
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bank data are used because further subdivision of 17 reaches in the mainstem would not 

allow statistically meaningful analysis. 

Marsh data at the reach scale also have too few points for further subdivision. To 

solve this issue, we employed the marsh dataset at the resolution of model grids. Utilizing 

the information of category (marsh or bank) from reach dataset, we could assign ‘marsh’ 

or ‘bank’ type to each model grid. Grids located on Taylors Island, Hoopers Island, 

Barren Island and a portion of the Bay side of Smith Island are excluded from the dataset 

due to the incongruous resolution when averaging erosion rates from transects to each 

model grid (Figure 3.3). As a result, 163 grid cells were identified as marsh, and they are 

further divided into ’stem’,  ‘tributary’, ’ stemEastern’ and ‘stemWestern’ for analysis. 

The Coastal Atlas transects of erosion rates include hardened shorelines, but since marsh 

shorelines are mostly unprotected, only marsh data at the resolution of model grid were 

selected for further analysis. In summary, we acquired eleven groups of 

data: ’Bank’, ’Bank Stem’, ’Bank Tributary’, ‘BankEastern’, ’BankWestern’, ’Marsh’, 

‘MarshHD’, ’MarshHDstem’, ’MarshHDtributary’, ’MarshHDstemEastern’, ’MarshHDst

emWestern’. The first six groups are at the resolution of reach, and the latter five groups 

represent marsh data at the resolution of grid cells.  

3.2.3 Quantitative approaches 

3.2.3.1 Statistical methods 

Linear correlation analyses, including Pearson Correlation Coefficient and 

Multiple Linear Regression (MLR), were performed for the purpose of preliminary 

quantitative data screening. However, the effects of predictor variables on erosion rates 
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are clearly not uniform across CB due to geographical variations, which make Bay-wide 

relationships non-linear and/or non-uniform. Non-parametric and non-linear GAM and 

NN analyses were used selectively to characterize statistical relationships when data sets 

were too complex or too non-linear for simple linear techniques. Thus, non-parametric 

and non-linear GAM and NN analysis were also performed tentatively in this study.  

NN (Beale et al., 2014) imitates the mechanics of neural systems, which consist of 

multiple layers and interconnected neurons within each layer. NN has the ability of 

representing both linear and non-linear relationships and learning these relationships 

directly from the data being modeled.  GAM estimates non-parametric functions of 

predictor variables and connects dependent variables with a link function, which is more 

flexible than linear regressions (Hastie and Tibshirani, 1990). We applied GAM using 4, 

6 and 12 as the degrees of freedom for smoothing terms and the identity function as the 

link function for this study. NN analysis was achieved using NN toolbox in Matlab; 

pairwise linear correlation analysis was performed in Matlab; and GAM and MLR were 

done in R. 

‘BankEastern’, ’BankWestern’, ‘MarshHDstemEastern’, and 

‘MarshHDstemWestern’ are excluded from these analyses for simplicity. In NN analysis, 

there are two layers in total, the hidden layer and the output layer, which usually has one 

neuron. The hidden layer is configured with one neuron for data groups ‘bank’, 

‘bankstem’, ‘bankTributary’ and ‘Marsh’, and 3 neurons for data groups ‘MarshHD’, 

‘MarshHDstem’ and ‘MarshHDTributary’, to avoid overfitting due to small sample sizes.  

The Akaike Information Criterion (AIC) is a measure of the relative quality of a 

statistical model for a given set of data, but AIC cannot evaluate the quality of a model in 
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an absolute sense (Bozdogan, 1987).  AICc is AIC with a strict penalty for introducing 

too many variables or a correction for small sample sizes, so using AICc instead of AIC 

can reduce the probability of choosing models with too many parameters. The formula is 

as follows: 

2 ( 1)
2 log( ) and 

1

SSE k k
AIC k n AICc AIC

n n k

+
= + = +

− −
  

where n is the sample size and k is the number of estimated parameters. 

The flow of statistical analysis is as follows. First, all predictor variables (Table 

3.1) were preprocessed by eliminating similar variables and scaling.  For example,  ‘fetch’ 

and ‘weighted_fetch’ represent a very similar physical factor, although their values were 

occasionally quite different. Thus, the ‘fetch’ variable with a lower correlation coefficient 

was eliminated from each group before applying statistical models. All variables were 

then scaled using a ‘z-score’. This process is linear and thus should not influence our 

statistical models. NN analysis used unscaled data because the NN toolbox in Matlab pre-

scales input data automatically. Next, non-metric multidimensional scaling was used to 

map each predictor variable onto a 2-dimensional space (Borg and Groenen, 2005). The 

more similar variables will be closer to each other in the 2-dimensional space. Many 

groups of clustered variables will be detected and only the variable with the highest 

correlation coefficient within each clustered group will be included in statistical analysis. 

Using ‘bank’ data as an example, ‘URMS’, ‘UBOT’and ‘UBOTsq’ were tightly 

clustered; ’Hsig90’ and ’Hsig95’ were tightly clustered; and  

‘Tps’, ’TM01’, ’WLEN’, ’LWAVP’, and ‘transpall’ (see table3.1) were tightly clustered.  

Of these, only ‘UBOTsq’, ‘Hsig95’ and ‘LWAVP’ were chosen from each group, along 
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with all other unclustered variables, for statistical analysis. These selected variables were 

then used in stepwise MLR, GAM and NN analysis. R
2
, adjusted R

2
, P-value, AIC, AICc 

and RMSE (Root Mean Square Error) were employed for the comparison of statistical 

methods. 

3.2.3.2 Curve fitting of erosion rates versus onshore transport of wave energy   

Relationships between erosion rates and onshore wave energy flux were explored 

using the Curve Fitting toolbox in Matlab to compare with the regression equations found 

in Rehoboth Bay and Lake Erie (Gelinas and Qidgley, 1973; Kamphuis, 1987; 

Schwimmer, 2001).   

3.2.4 Comparisons of wave climate and erosion rates among different scales 

(reach, grid cells, transects) 

Wave height and wave period were measured in the Bohemia River (5/20-

27/2014), Broad Creek (9/4-11/2012), Elk River (8/17-22/2011), Honga River (9/2-

5/2010), St Mary River (8/9-15/2012) and Severn River (5/8-13/2014) by E. Koch and D. 

Booth (unpublished data). Wave gauges were deployed at about 1m depth at each site, 

one in front of the natural shoreline and one in front of a directly adjacent rip-rapped 

shoreline. The data were all collected during the potential growing season for submerged 

aquatic vegetation (SAV) for a study focusing on the effects of shoreline hardening on 

SAV distributions, and were intended to characterize seasonal local waves.  For our 

purposes, the observations of wave height and wave period were averaged over the 

duration of each deployment and then compared with the simulated wave climate 

(averaged from 1985 to 2005) for the corresponding reach or grid cell from SWAN. 

Wave period was compared with predicted bottom wave period (TMBOT), because wave 
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gauges were pressure sensors deployed just above the bottom. Neither the reach dataset 

nor grid-cell dataset can resolve the shoreline morphology at Broad Creek, which is a 

sheltered cove. The Severn River is truncated in our model grid cells but can be resolved 

by the reach dataset. Thus, Broad Creek was excluded for analysis and the output of the 

closest model cell was used for the Severn River (Figure 3.3).  

3.3 Results 

3.3.1 Erosion rates  

Erosion rates at the resolution of model grids include all types of shorelines, so 

the value for each grid cell reveals the actual yearly average erosion rates (blue line in 

Figure 3.4a) instead of only unprotected shorelines. Erosion rates at the reach resolution 

only contain unprotected shorelines (red line in Figure 3.4a). They agree well with 

erosion rates at the resolution of grid cells except the two high peaks of accretion. These 

peaks are located in Baltimore Harbor and Hart-Miller Island (created from dredge 

materials), which are both heavily impacted by humans.  

Erosion rates vary widely. Using grid cell 1273 as a division of the eastern and 

western shore, shorelines on the eastern shore generally have higher erosion rates than on 

the western shore. The Bay side of islands undergoes the most severe erosion. High 

erosion (negative values in Fig. 3.4a) occurs on the Bay sides of Taylor Island, Hoopers 

Island, Barren Island, Pooles Island, Bloodsworth Island, and the upper part of the Bay 

side of Smith Island. Most islands have marshy shorelines, which appear to be more 

vulnerable to erosion than banks in our data, except the Bay side of Hoopers Island and 

Barren Island. The onshore component of wave-energy flux appears minimal in 
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tributaries, especially at the head of tributaries, but significant at islands. Most high 

erosion rates correspond to high wave-energy flux but high wave energy does not 

necessarily lead to high erosion (Figure 3.4a).  

In Figure 3.4b, most of the average bank height at the reach resolution is less than 

5 m, except the banks near Calvert Cliffs, which rise up to 30 m. Banks occupy a much 

larger percentage of shoreline than marshes in CB; marshes are mostly located on the 

lower eastern shore and islands. 

Because the transects of erosion rates in the Coastal Atlas include unidentified 

hardened shorelines, it is inappropriate to apply these erosion rates averaged over grid 

cells for most analyses. However, marshy shorelines are almost all unprotected, so the 

erosion rates for grid cells identified as marsh qualify as unprotected erosion rates. Reach 

erosion rate estimates, on the other hand, excluded hardened shorelines.  Grid cells from 

1741 to 1952 are mostly marsh on the lower eastern shore, allowing the use of their 

erosion rates at both the resolution of grid cells and reaches. Even with scatter, these 

areas exhibit a general trend of high wave-energy flux corresponding with high erosion 

(Figure 3.5a). For the lower western shore (grid cells 797-1054), where banks dominate, 

erosion rates can be compared to the wave-energy flux only at the reach resolution, 

though no obvious trend is detected (Figure 3.5b). 

3.3.2 Statistical analysis  

3.3.2.1 Linear correlation 

Outliers are excluded using quantile ranges. Data outside the range of Q1 – 3*IQ 

and Q3+3*IQ are identified as outliers, where Q1 is the 25th percentile, Q3 is the 75th 
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percentiles and IQ equals Q3-Q1. For bank data, the upper bound is relaxed to -0.96  

instead of Q3+3*IQ, which equals to -0.79, in order to preserve more reasonable data for 

analysis. As a result, one data point of bank (the Bay side of Hoopers Island and Barren 

Island), and one data point of marsh (entire Taylors Island) are detected as outliers. For 

marsh data at the resolution of grid cells, three outliers are detected on the Bay side of 

Smith Island.  

We calculated the Pearson correlation coefficients among all 24 potential 

influential variables (Table 3.1) for ‘marsh’ and ‘bank’ respectively, but only those 

relatively significant (R>0.5, P<0.05 for marsh; R<0.2, P<0.05 for bank) variables are 

listed in Table 3.2 and Table 3.3. The correlation matrix shows most variables correlate 

with each other (Figure 3.6), with stronger correlations generally occurring for marshes 

than for banks. The strongest correlations occur between wave characteristics such as 

significant wave height, wave period, wave length, etc. (Figure 3.6). 

We refer to the data of all reaches as the ‘All Data’ group, which covers all 203 

reaches (with the 4 outliers excluded) along the Maryland shorelines, including marshes, 

banks and a mixture of different percentages of these two types. Correlations between 

wave variables and erosion for ‘All Data’ are not very significant, perhaps because there 

are so many other distinctive geological properties affecting erosion of this 

heterogeneous data set. For example, erosion rates between marshes and low elevation 

banks (0-1.5m) behave differently when compared with increasing onshore wave-energy 

flux (Figure 3.7). Marshes undergo more severe erosion than low banks in general. 

Erosion rates of marsh become much higher as the onshore wave-energy flux increases, 

while erosion rates of low banks remain relatively constant. In the range of low onshore 
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wave-energy flux (<7×10
-4

 kw/m), both low banks and marshes have a background 

erosion rate about -0.2 m/year.  Thus, marshes need to be treated differently than low 

banks. This is also evident by the correspondence of higher bank percentages to lower 

erosion rates (r
2
=0.44; p=5.48×10

-11
; Figure 3.8).The mean of erosion rates decreases as 

bank percentages increase, and the mean of different groups are indeed statistically 

significantly different (ANOVA; 99.9%). The difference of mean erosion rates between 

0-10% and 70-90%/90-100%; and, the counterparts between 90-100% and 10-40%/40-70% 

exceed 95% statistical significance in Tukey’s test. In other words, if a reach has higher 

percentage of bank, it is more resistant to erosion. The category ‘0-10%’ and category 

‘90%-100%’ are defined as marsh and bank, respectively, for most of the analyses 

presented here.  It is shown that banks experience both erosion and accretion, while 

marshy shorelines only undergo erosion; and, banks undergo less severe erosion than 

marshy shorelines. 

In the marsh data, wave power (transpall) is the most linearly correlated variable 

with erosion rate (Table 3.2).  MGS assumed a constant 0.5 m as marsh elevation, thus 

the correlation coefficients of volumetric erosion with all influential variables are exactly 

the same as linear erosion rate.  In the bank data, wind weighted fetch and bottom shear 

stress (UBOTsq) are almost equally important. Volumetric erosion is highly correlated 

with erosion itself, but no significant correlation was found between the volumetric 

erosion and other likely influential variables. In the ‘BankStem’ data group, which only 

includes 16 reaches, many bottom-stress variables, including URMS, UBOT and 

UBOTsq, and the steepness of bathymetry show the highest correlations. In ‘Bank 

Tributaries’ and ‘Bank Eastern’ data groups, ‘fetch’ has the most significant linear 
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correlation, and ‘MedianWater60Hsig’ had the most significant correlation with erosion.  

Only 4 variables are significantly correlated in 4 or more shoreline categories: ‘FSPR’, 

‘UBOTsq’, ‘Transport Onshore’, and ‘Tidal Range’. 

In general, marshy shorelines have much stronger correlations than banks 

between erosion rates and other variables. Wave-power related variables (such as Hsig, 

transp_normal, fetch, weighted_fetch etc.) are most closely correlated with erosion rates. 

Wave-period and wave-length variables are all highly correlated with wave height and 

wave power (see Figure 3.6), thus they are also highly correlated with erosion rates. 

Bottom-stress related variables show high correlation with erosion rates as well, 

especially for ‘Bank’, ’Bank Stem’ and ‘Bank Western’. The correlation between tidal 

range and erosion is a geographical effect - it is higher in tributaries than the mainstem, 

increasing upstream in tributaries, except at the mouth of CB, while wave power has just 

the opposite pattern (Figure 3.9 and Figure 3.4). Thus, reaches with lower tidal ranges 

would likely have high erosion rates due to higher wave power. In ’Marsh’, ‘Bank’ and 

‘Bank Tributary’ group of data, correlations also increase with higher percentiles of wave 

height (Hsig90, Hsig95). 

The correlation of ‘MedianWater60Hsig’ with erosion rate is negative on the 

eastern shore but positive on the western shore (Table 3.2). This statistic is not significant 

on the eastern shore. A positive correlation means that higher medians of sea level 

correspond to less erosion on the western shore; this makes sense recalling that most 

median sea levels are negative on the western shore during high-wave events (top 60
% 

of 

maximum Hsig). Long-shore drift only shows a weak correlation with erosion rate on 

tributary banks. Onshore wave power shows a high correlation with erosion rates in most 
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data groups. Surprisingly, its correlation is lower than the unidirectional total magnitude 

of wave energy flux (‘transpall’) in ‘Marsh’ group (though only slightly so). ‘FSPR’ has 

relative high positive correlations with erosion rate, because younger waves with wider 

frequency spectrum have smaller wave power, which lead to less erosion.    

Bank height is not significantly correlated with erosion rates, and so therefore it is 

not included in Table 3.2. However, mean erosion rates do decrease as bank height 

increases for bank heights between 0-6 m (Figure 3.10). ANOVA analysis shows that 

there is a 92% significance that the mean among the three categories in the 0-6 m range 

are different. Furthermore, Tukey’s test identified a 99% statistical significance of 

difference in the mean erosion rate of bank heights 0-1.5 m and 3-6 m, but the difference 

of the mean erosion rate among the other two combinations of groups (0-1.5 m and 1.5-3 

m; 1.5-3 m and 3-6 m) was not significant.  Two data points of bank height higher than 

10 m show moderate erosion and are treated as outliers in both the ANOVA and Tukey’s 

test, simply because there are far fewer data points than in the other categories.    

On a finer scale, the correlation coefficients decrease, but their significance (P-

value) increases due to an increase of sample size and thus scatter. The correlations in 

marsh data at grid cell resolution (Table 3.3), which is a finer scale, generally agree with 

the marsh data at reach resolution (Table 3.2), except that bottom-stress related variables 

and wave-energy flux show relatively less correlation. 

3.3.2.2  MLR, GAM and Neural Network 

With outliers excluded, the histograms of erosion rates for the three groups of 

bank data (‘Bank’, ‘BankStem’ and ‘BankTributary’) are symmetrical and nearly 
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normally distributed (Figure 3.11). Thus, GAM with an identity link function is applied 

to the bank data. However, the four groups of marsh data (’Marsh’, ’MarshHD’, 

‘MarshHDStem’, and ‘MarshHDtributary’) have skewed distributions and are not 

included in the GAM analysis (Figure 3.11). NN and MLR were applied to both the bank 

and marsh data. Table 3.4 shows the variables that were included or excluded for MLR, 

GAM and NN analysis. Every run of NN analysis is different due to different initial 

weight assignments. Results of NN shown in Table 3.5 are the best results among 10 test 

runs for each group of data.  

In the data group ‘BankStem’, all three multi-variant statistical methods are over-

parametrized and thus over-fitted due to the small sample size. In all three groups of bank 

data, GAM shows higher correlations (R
2
), less residuals (RMSE) and lower AIC, which 

make GAM a better predictable model than MLR and NN within these data groups. MLR 

surprisingly shows a better performance than NN for all three groups of bank data.  For 

all marsh data at reach and grid cell resolutions, there is no evidence that NN simulates 

erosion rates better than linear MLR (Table 3.5). The number of estimated parameters in 

GAM and NN analysis are usually higher than MLR using the same dataset, and adjusted

2R , AIC and AICc all penalize the model performance for having a high number of 

estimated parameters.  Also, no obvious advantages of NN and GAM are shown over 

MLR when comparing simulated erosion rates with measured erosion rates (Figure 3.12).  

3.3.3 Curve fitting of erosion rates versus onshore transport of wave energy  

We applied the Curve Fitting toolbox in Matlab to fit erosion rates to the onshore 

wave-energy flux for marsh data at both resolutions and bank data at the reach resolution. 
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Only marsh data at the reach resolution yield statistically significant empirical functions. 

The nonlinear least-squares method yields a power function (Equation 3.1, r
2
=0.55):    

 0.86y 33.71 x= − ×   (3.1) 

 2y=-54.06 x-7.55 10−× ×   (3.2) 

where x is onshore wave power and y is erosion rate. However, a linear relationship 

(Equation 3.2,
2 50.55, 1.3 10R P

−= = × ) can also describe this quantitative relationship 

with equivalent statistical robustness (Figure 3.13). Nevertheless, the power function is 

preferred, since the linear fit cannot capture the slight deceleration of the increase in 

erosion rate as the wave-energy flux increases.  
 

3.3.4 Comparisons of wave climate and erosion rates among different scales 

(reach, grid cells, transects) 

Using erosion rates averaged over a large scale could under- or overestimate local 

conditions, depending on the details of local variability. This is also why the average 

erosion rate of a reach can differ significantly from the erosion rate of the corresponding 

grid cells. The smallest scale local erosion rates quoted here are from the nearest 

individual transect to a site. Averaged erosion rates at the scale of either a reach or a grid 

cell seem to poorly estimate local erosion rates for the Bohemia River, Elk River and St 

Marys River sites, but are more representative at the Honga River site (Figure 3.14).  For 

the Severn River site, the closest model grid cell was used instead of the actual location, 

so there is little agreement between local and grid cell erosion rates as expected. 
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‘Grid cells’ and ‘reach’ are all spatially and temporally averaged representations 

of the wave climate. Spatially, they are averaged along the length of either a reach or the 

size of a grid cell. Temporally, they are averaged over 1985-2005 from hourly SWAN 

model outputs.  Local ‘natural’ and ‘riprap’ wave measurements were only temporally 

averaged over the duration of deployment (4 to 8 days). Thus, it is somewhat surprising 

that the average wave climate seems to reasonably estimate local wave conditions (Figure 

3.15).  Long-term average significant wave height (Hsig) tends to be a slight 

underestimation of short-term average Hsig, while the long-term top 5% of Hsig tends to 

be higher than its short-term counterparts. This might be due to errors in the SWAN 

estimation under different wind conditions, but it could also be that the short-term local 

observations were mostly collected during summer when strong winter storms were 

absent.  It is not possible to compare modeled waves to observations directly because the 

model period ended before any of the observations were collected.  

3.4 Discussion 

3.4.1 Erosion rates 

There are two components of shoreline erosion: fastland erosion, which happens 

above the waterline, and nearshore erosion, which occurs from the waterline to the base 

of wave action. The term ‘erosion rate’ used in this study refers to the fastland erosion 

rate. Shoreline elevation and orientation, shoreline type (e.g., vegetated, protected, bare), 

sediment type and availability, nearshore morphology, land subsidence, sea-level rise, 

hydrodynamic and wave characteristics, and human activity can all be potential factors 

for shoreline erosion of both types.  
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The actual process of shoreline erosion usually proceeds through a sequence of 

events: waves undercut the cliff/marsh base; the cliff/marsh collapses; waves resuspend 

sediments at the cliff/marsh base; and currents remove these materials. Thus, using 

erosion rates that count volume or mass might be more beneficial than simple lateral 

erosion rates since the former quantifies the erosion process more comprehensively. 

Marani et al. (2011) found that wave power is proportional to volumetric erosion, the 

product of erosion rates and the corresponding height, on marsh edges, instead of simply 

the lateral shoreline erosion rates. In the present study, marsh elevation was not measured 

directly but was assumed to be 0.5 m, while bank height is given for each reach by MGS. 

With an assumed constant marsh elevation, there is no difference between shoreline 

erosion rates compared to volumetric erosion rates. If comparing among locations with 

various bulk densities, the mass erosion rate should be the product of erosion rates, 

elevation, and bulk density. So, variable bulk density along the banks of CB might 

explain the lack of correlation of bank data with volumetric erosion rates. Another reason 

could be that the product of average bank height and average erosion rate is different 

from the average of the product of bank height and erosion rate. We could calculate the 

former, while the latter is what we really expect.   

Sediment type and availability for each reach is unknown, but there are some data 

on sediment characteristics for banks and marshes. Analysis of 76 sediment samples from 

21 bank sites shows 44% sand and gravel, 56% silt and clay, and negligible organic 

matter. 20 sediment samples from 4 marsh sites show 22% sand and gravel, 44% silt and 

clay and 34% organic matter (Hennessee et al., 2006). The largest difference between 

banks and marshes then is that the marsh sediments contain much more organic matter, 
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presumably in the form of roots and decaying above ground biomass.  We hypothesize 

that this large organic matrix makes the marshes more erodible than their bank 

counterparts (Figure 3.7). 

During extreme storms, strong winds can cause sea-level to rise above the marsh 

elevation, dissipating most of the wave energy due to friction instead of eroding the 

marsh base. Excluding sea levels above marsh elevation decrease the scatter in the 

relationship between erosion rates and wave-power density (Marani et al., 2011), but we 

did not exclude events when sea levels exceeded marsh elevation due to lack of local data 

on marsh elevation. Moreover, measurements of relatively permanent submergence due 

to sea-level rise or land subsidence along the entire Maryland part of CB are not available 

and not considered in this study.  

3.4.2 Statistical analysis  

Linear analysis assumes that the effects of each predictor variable on erosion rates 

are similar among different sites. However, in a spatial dataset as large as the one 

examined here, different predictor variables may play different roles in different regions. 

Thus, linear methods are not favorable for quantifying statistical relationships unless the 

studied region is small enough to avoid large-scale variability in erosional processes. In 

this study, data were separated as ‘marsh’ and ‘bank’ and then subdivided into ‘tributary’ 

and ‘stem’. However, this breakdown by region did not show improvements of 

performance on the applied statistical methods, which implies that finer divisions with 

higher resolution data might help reduce the complexity and improve statistical model 

results.  
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NN and GAM are very sensitive to outliers and training data sets. Thus, data 

usually need to be preprocessed (e.g. excluding outliers, scaling) before they are used for 

training in statistical models. When data-adaptive non-linear models are applied to highly 

complex issues, especially with a small sample size, the resulting predictions may have 

reasonable outputs but tend to be overfitted.  Pruning model complexity usually leads to 

poorer model outputs.  With increasing parameters, sample size will become relatively 

smaller. Thus, if redundant variables were included before carrying out GAM or NN in 

this study, our results might be much closer to the target data, but the statistical models 

would be more over-parametrized and thus more overfitted due to our relatively small 

sample size. Because our predictor variables are correlated with each other to different 

extents and our sample size is relatively small, the results of GAM and NN analysis in 

this study tend to be over-parameterized and should be used with great caution for 

prediction. 

Colinearity among variables, relatively small sample size (or over-

parameterization), absence of geological characterization, and poorly estimated outputs 

can all lead to invalidation of the predicting ability of all three applied statistical models. 

Using NN, GAM, or other similar machine-learning techniques, our data might be too 

generic and incomplete to build an accurate, quantitative predictive model for erosion 

rates. However, given a more complete and comprehensive dataset, either temporally 

averaged high-resolution spatial data or time-series data at a local site, Generalized 

Additive Model, Neural Network analysis, or other similar machine-learning techniques 

might be much more powerful for building quantitative predicting models between 

erosion rates and its influential variables.   
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3.4.3 Wave power versus erosion rates 

3.4.3.1 Wave power versus erosion rates 

Wave-energy flux is the most often investigated factor affecting erosion rates and 

found to be significantly related with erosion rate in many cases (Dalrymple, 1986; 

Gelinas and Qidgley, 1973; Kamphuis, 1987;  Marani et al., 2011;  Mariotti et al., 2010; 

Mcloughlin et al., 2015; Ronald and Douglas, 2005; Schwimmer, 2001), although other 

studies have observed a lack of significant relationships between the wave-energy flux 

(or wave power) and shoreline erosion rates at local and low-wave-energy shorelines 

(Cowart et al., 2010; Ravens et al., 2009),  The regression equation that Schwimmer 

(2001) found is 

 1.10.35y x=  , (3.3) 

where y is erosion rate and x is onshore wave power. Equation 3.3 is close to a linear 

relationship using nine marsh shoreline sites in Rehoboth Bay, where the analyzed wave 

power ranged from 0.66 Kw/m to 9.21 Kw/m. It is similar to what Kamphuis (1987) 

found, 

 1.371.06y x=   (3.4) 

for erosion rates of glacial bluffs along the north shoreline of Lake Erie, where wave 

power was observed to be in the same range as Rehoboth Beach. Our relationships 

0.86y 33.71 x= − ×  and 2y=-54.06 x-7.6 10−× ×  reveal that the relationship between wave 

power and erosion rates in CB is also nearly linear but the multiplicative coefficient of 

the wave term is two orders of magnitude higher than Equation 3.3. Note that negative 
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represents erosion in this study, while positive represents erosion in the other studies. In 

other words, if applying the Schwimmer (2001) empirical relationship to our data, the 

highest 0.03 Kw/m wave power would result in 7.4×10
-3

 m/year erosion rate, while the 

observed erosion rate was about 1.53 m/year. Average wave power ranges from 1.6×10
-3

 

Kw/m to 2.4×10
-2

 Kw/m for the marsh shorelines in our study. This order-of-magnitude 

smaller wave-power environment of CB, compared to Rehoboth Beach, leads to the 

orders-of-magnitude difference in the multiplicative coefficients of wave power term.  

A study in Galveston Bay, Texas, where wave climate is also much smaller than 

Rehoboth Beach, found that the Schwimmer (2001) relationship leads to substantial 

underestimation of erosion rates (Ravens, 2009). And, a study in Hog Island Bay, 

Virginia, used linear regression fits to acquire coefficients around 130 (units converted 

from w/s in the original paper to Kw/m) for its slopes between wave power and erosion 

rate (Mcloughlin et al., 2015), which is about two times of 54.06 from this study, 

implying that applying the Schwimmer (2001) equation to Hog Island would end up with 

underestimation as well (figure 3.13). This suggests that it might not be appropriate to 

apply empirical relationships of erosion rates with wave power to coasts/estuaries with 

significantly different wave climates. 

Equation 3.1 reveals that, even using power function, the relationship is quite 

close to linear. Also, the linear regression has a similar 2R  compared to the power-

function curve fitting. Marani et al. (2011) demonstrate a linear relationship for marsh 

edge erosion using dimensional analysis: 

 
Rhc h

f
dP

 
=  

 
 , (3.5) 
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where R is the erosion rate; h is cliff face height with respect to the tidal-flat bottom; c is 

the sediment effective cohesion; P is the average wave power; and d is the tidal-flat 

bottom depth with respect to mean sea level. If 
h

f
d

c

 
 
   doesn’t appreciably depend on h

d
  

in the range of values covered by the data, and the erodibility of soil isn’t dramatically 

different, the volumetric erosion rate (V) is a linear function of the average wave power, 

. 

3.4.3.2 Wave power from SWAN versus from linear wave theory 

In this study, the wave-energy flux is calculated as 

    
_

     

Transport of Wave Energy Onshore
transp onshore

Counts of All Wave Energy Occurances
=
∑  instead of divided only by the counts of 

onshore events. In this way, the potential bias of only including onshore events in the 

wave climate is avoided, as discussed in great detail by Mcloughlin et al. (2015). In 

previous studies (Marani etc., 2011; Schwimmer, 2001; Mcloughlin et al.,  2015), the 

wave-energy flux is mostly calculated using linear wave theory 

 
21

cos
8

s g
P gH Cρ α=   (3.6) 

where ρ is water density; g is gravitational acceleration; 
s

H  is significant wave height; 

gC is group velocity. 

We also calculated the wave-energy flux as above (Equation 3.6) to compare with 

the output wave power from SWAN used in this study, using ρ = 31008 /kg m , g=

29.81 /m s , and
s

H  is Hsig from SWAN. The same α is used as described in the methods 

V Rh aP= =
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section 3.2.  The definition of α can be slightly different, thus cosα >0 might end up as 

onshore or offshore component in different studies, but it makes no change in absolute 

value.  gC  is the group velocity calculated by the minimum value between gd  (shallow-

water) and 
4

gT

π
 (deep-water), d is the water depth, and T is peak period (variable ‘Tps') 

from SWAN.  Applying 
gC gd= on deep-water waves results in overestimating group 

velocity (Koch et al., 2006). Even though CB is a shallow-water environment, wind 

generated waves can still behave as deep-water waves due to their small wavelength.  

Linear wave power calculated this way is approximately 2.3 times the wave-

power output from SWAN, if the minimal intercept in the equation is ignored, expressed 

as: 

 ( ) 4LinearWavePower onshore 2.33 TranspOnshore 5.28 10−= × − ×   (3.7) 

In SWAN, Hsig is calculated as 

 4 ( , )sH E d dσ θ σ θ= ∫∫   (3.8) 

Thus, the wave power calculated using linear wave theory should be calculated as 

 
21

cos 2 ( , ) cos
8

s g g
P gH C gC E d dρ α ρ σ θ σ θ α= = ∫∫   (3.9) 

SWAN calculates wave power using 

( ) ( )
2 2

2 2 ( , ) ( , )
x y gx gy

Transp Transp Transp g C E d d C E d dρ σ θ σ θ σ θ σ θ = + = +
  ∫∫ ∫∫   (3.10) 
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Where ( , )E σ θ  is the variance density spectrum; σ is the absolute radian frequency 

determined by the Doppler shifted dispersion relation; and  is the wave direction.  

If Cg is not a function of σ  or θ ,   Equation 3.10 can be rewritten as  

 ( ) ( )
2 2

( , ) ( , )
gx gy g

Transp g E d d C C gC E d dρ σ θ σ θ ρ σ θ σ θ= + =∫∫ ∫∫   (3.11) 

Thus,  

 ( , )
g

TranspOnshore gC E d d cosρ σ θ σ θ α= ∫∫   (3.12) 

gives us P=2×TranspOnshore. In reality, gC is a function of σ , so the factor between 

Equation 3.9 and Equation 3.12 cannot be exactly 2. This explains the 2.33 slope and 

negligible intercept in the linear relationship between ‘Linear Wave Power Onshore 

Component’ and ‘Transp Onshore’ (Figure 3.16).  The reason why there is a factor of two 

between the wave power from the integration of the wave spectrum and the wave power 

calculated from linear wave theory is not clear to us, but we are more confident in the 

former rather than the latter, because it is the actual spectral definition of wave power 

rather than a linear equation for monochromatic waves applied to random waves. 

3.4.4 Comparisons of wave climate and erosion rates among different scales 

(reach, grid cells, transects) 

We were able to establish the quantitative relationship (Equation 3.1; Equation 

3.2) using averaged marsh data at reach resolution but not with the higher resolution 

marsh data in grid cells. At sites fringing Hog Island Bay, VA, the relationship between 

wave power and erosion rates was significant when variables were averaged over the 

θ
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entire length of a marsh edge, but no significant correlations were found for individual 

segments of the marsh shorelines (Mcloughlin et al., 2015). Higher resolution data 

deliver more information while increasing the scatter and noise, and thus decrease the 

correlation. Averaged data result in higher correlation but resolve less information. In the 

linear analysis of this study, the correlation between potential variables and erosion rates 

of ‘marsh’ (in reach resolution) is higher but generally agrees well with counterparts of 

group ‘marshHD’ (in grid cell resolution). Data at the reach resolution were able to 

reasonably demonstrate the relationship between wave characteristics and erosion rates 

(Table 3.2, Figure 3.13). However, the average of erosion rates along a certain length of 

shoreline can differ significantly from the erosion rates at some of its local sites, 

especially small tributaries and creeks (Figure 3.14). 

As a result, quantitative results of this study are not necessarily applicable to local 

scales.  When comparing sites at highly local scales, data should be acquired in a 

reasonably higher resolution. At each local site, the factors affecting erosion might affect 

the erosion process quite differently. Thus, conclusions and results analyzed from one 

local site need to be verified cautiously before applying to other locations. 

3.4.5 Climate change  

Increase in storm intensity and frequency due to climate change will accelerate 

erosion process (Finkelstein and Hardaway, 1988). If the local wave regime is sensitive 

to water depth, then sea-level rise can potentially lead to higher wave power impinging 

on shorelines due to longer fetches and deeper estuaries/coasts.  

Storms are episodic and can cause cliff failure and severe shoreline retreats 

(Adams et al., 2005; Brain et al., 2014; Earlie et al., 2015).  Extreme wave events (top 5% 
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and top 10% of Hsig) and erosion rates tend to have a higher correlation than average 

wave climate (Table 3.2).  To quantify the influence of storm events on erosion process, 

local measurements of shoreline retreat before and after storms and wave observations 

during storms are required. However, this is beyond the scope of our study. 

3.5 Conclusions 

In Maryland CB, marsh shorelines generally erode faster than bank shorelines, 

and the Bay sides of islands undergo the most severe erosion. Most marsh shorelines are 

unprotected and are located on the lower eastern shore. Most high erosion corresponds to 

high wave power but high wave power does not necessarily lead to high erosion, 

consistent with previous studies (Wang et al., 1982). Marsh shorelines have strong linear 

correlations between erosion rates and wave climate, while bank shorelines show weaker 

correlations. A correlation coefficient of -0.75 between onshore wave-energy flux and 

erosion rates strongly suggests that wave power can be the dominant factor for marsh 

shoreline erosion in CB. We speculate that wave power can be a dominant factor for bank 

shorelines as well, but other confounding factors hindered it from arising in our statistical 

analysis. A nearly linear, statistically significant relationship between wave-energy flux 

and erosion rates was found using marsh data in CB, but its coefficient is orders of 

magnitude different than some of the literature from other locations (Schwimmer, 2001; 

Kamphuis, 1987) due to the significantly smaller wave climate in CB. This suggests that 

it might be inappropriate to apply empirical relationships of erosion rates versus wave 

power to coasts/estuaries with significantly different wave climates. 

Marsh has been assigned high economic and ecological values (Groot et al., 2012) 

for buffering eutrophication and serving ecosystems (Bricker and Stevenson 1996). 
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Knowing marshes are more erodible than banks, which is counter intuitive, and 

experiencing high wave power exposure in Maryland CB, management strategies should 

favor marsh protection over bank protection by building ‘living shorelines’ 

(http://dnr.maryland.gov/ccs/livingshorelines.asp). Meanwhile, evaluation of the 

feasibility of non-structural shoreline protection practices should consider the degree of 

wave power exposure of marsh shorelines.    

The number of influential factors, their interactions, and the spatial and temporal 

variability of their effects on erosion rates ensure that understanding how different 

influential factors impact erosion rate in CB is a complex problem. If carrying out a 

comprehensive study, all potential influential factors should be considered: whether 

inundation due to sea level rise and land subsidence is significant in measured erosion 

rate, shoreline elevation and orientation, sediment type and stability, soil mechanics (e.g., 

yield stress, ground water content), shoreline type (protected vs unprotected), effects of 

different vegetation and frequency of inundation, currents and longshore transport, 

human activity (including boat wakes), and last but not least, wave climate.  

 Neither linear analysis nor non-linear analysis was successful in building a single 

comprehensive empirical model for erosion rate prediction for the Maryland portion of 

CB in this study. A higher resolution and more comprehensive data set, which includes 

more geological and geographical information besides wave characteristics, will be 

needed for building reliable erosion rate prediction models, especially at local scales. 

Starting from building local models for relatively simple environments will be more 

straightforward.  Then developing models for more complicated environments and finally 
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generalizing them into a comprehensive model for a reasonable size of domain seems like 

a good approach.  
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Figure 3.1. Illustration of the length of a transect, model grid and reach. Left: transects 

(brown lines) and model grids (black dots), with shortest/longest reach labeled in red/blue; 

right: enlarged local area from the shortest reach. Irregular rectangles represent the sizes 

of model grids. 
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Figure 3.2. Demonstration of the calculation of α. 
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Figure 3.3. Map of Maryland CB shorelines with landmarks. Red dots label six local sites: 

Bohemia River, Broad Creek, Elk River, Honga River, St Mary River and Seven River, 

where model outputs were obtained. Black dots are where observations of these 6 sites 

were taken.  Magenta star labels landmarks and Islands.   
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Figure 3.4. Distributions of erosion rates, onshore wave power, bank height and bank 

percentage along CB shorelines in Maryland. Black horizontal dash line in both figures 

identifies zero. Landmarks are labelled for the head of tributaries and islands. (a) Erosion 

and onshore wave power: erosion rates (blue line) and wave power (green line) are at 

model grid resolution; the red line shows erosion rates at reach resolution. Grid cells 

numbers in Maryland range from 743 to 1952 and from 2096 to 2201. The absence near 

cell 2000 is the excluded shoreline of Virginia. The erosion rate at grid cell resolution is 

underestimated at the Bay sides of Taylors Island, Hoopers Island, Barren Island, 

Bloodworth Island, and a portion of the Bay side of Smith Island and indicated by the 

black solid line.  (b) Bank height and bank percentage: both are at reach resolution, but 

the value in each reach is assigned to the corresponding grid cells; bank height is 

assigned 0.5m for marsh type.   
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Figure 3.5. Relationship between erosion rates and the onshore wave power on the (a) 

lower eastern shore, mostly composed of marsh, with the grid-cell and reach resolutions 

indicated by black circles and red stars, respectively; (b) lower western shore, mostly 

composed of bank, with only the reach resolution shown. 
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Figure 3.6. Pearson correlation coefficients matrix of erosion rates and all potential 

influential variables; index of variable is the same as the index in Table 3.3 
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Figure 3.7. Comparison of erosion rates between marshy shorelines and low-elevation 

banks (0-1.5m) versus onshore wave power. 
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Figure 3.8. Distribution of erosion rates categorized by bank percentage. Marsh is defined 

as 0~10%, while 90%~100% is defined as bank. The red line connects the mean erosion 

rate of each category; the red bar shows the standard deviation of erosion rates within 

each category. 
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Figure 3.9. Average sea levels and the standard deviation (Std) of sea level from 1985 to 

2005, clockwise along Chesapeake Bay shoreline. 
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Figure 3.10. Erosion rate distributions categorized by bank height. The red line connects 

the mean erosion rate of each category; the red bar shows the standard deviation of 

erosion rates within each category. 
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Figure 3.11. Histograms of erosion rates for different groups of data: bank, marsh, stem 

of banks (bankStem), tributaries of banks (bankTributary) in reach resolution; marsh 

(MarshHD), stem of marsh (MarshHDStem), tributaries of marsh (MarshHDtirbutary) in 

grid cells resolution. 
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Figure 3.12. Plot of observed erosion rates and simulated erosion rates from statistical 

models: Multiple Linear Regression (MLR), Generalized Additive Model (GAM), and 

Neural Network (NN) analysis. 

 

 

 

 

0 10 20 30
-2

-1.5

-1

-0.5

0
Marsh

E
ro

s
io

n
 R

a
te

(m
/y

e
a

r)

data point

0 100 200
-2

-1.5

-1

-0.5

0

0.5
MarshHD

data point

0 50 100
-2

-1.5

-1

-0.5

0

0.5
MarshHDstem

data point

0 50 100
-2

-1.5

-1

-0.5

0

0.5
MarshHDtributary

data point 

0 50 100 150
-1

-0.5

0

0.5

1
Bank

E
ro

s
io

n
 R

a
te

(m
/y

e
a

r)

data point

0 10 20
-1

-0.5

0

0.5

1
BankStem

data point

0 50 100
-1

-0.5

0

0.5
BankTributary

data point

 

 

MLR

GAM

NN

Obs



83 

 

 

Figure 3.13. Curve fitting of marsh data for erosion versus the onshore component of the 

wave-energy flux. Blue dots are data at reach resolution; the red line is the best power 

function curve fitting, the dark blue line is the best linear curve fitting, black line is 

Schwimmer’s equation, light blue line is Mcloughlin’s linear relationship, and the black 

dots are data at grid-cell resolution. All fittings and equations are applied on marsh data 

of Maryland CB in reach resolution.  
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Figure 3.14. Erosion rates at three different scales (reach, grid cell and transect).  ‘Reach’ 

and ‘Grid Cell’ are the averaged erosion rates over the length of the corresponding reach 

or grid cell that include the site. ‘Natural’ (unprotected) and ‘Rip Rap’ (protected) is the 

erosion rate from its closest transect. 

 

 

 

-1.5

-1

-0.5

0

0.5

1

1.5

BOHEMIA

RIVER

ELK RIVER HONGA

RIVER

ST MARYS

RIVER

SEVERN

RIVER

E
ro

si
o

n
R

a
te

(m
/y

e
a

r)
Reach

GridCell

Natural

RipRap

-1.5

-1

-0.5

0

0.5

1

1.5

BOHEMIA

RIVER

ELK RIVER HONGA

RIVER

ST MARYS

RIVER

SEVERN

RIVER

E
ro

si
o

n
R

a
te

(m
/y

e
a

r)

Reach

GridCell

Natural

RipRap



85 

 

 

Figure 3.15. Plots of (a) bottom peak period (TMBOT), (b) significant wave height  

(Hsig), and the (c) top 5% of Hsig for three different scales (reach, grid cell and local 

site). ‘Reach’ and ‘Grid Cell’ represent the long term-averaged (1985-2005) value for the 

site. Natural (unprotected) and Rip Rap (protected) represent the measurements from 

local short-term deployments.   
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Figure 3.16. Comparison of onshore transport of wave-energy flux (wave power) 

calculated using linear wave theory with significant wave height and as output by SWAN. 
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Erosion Erosion Rate (in meter/year) 

Bank Height Elevation of Bank (in meter) 

Bank Percentage Percentage of bank (versus Marsh) at each Reach 

(dimensionless) 

Hsig Significant Wave Height (in meter) 

Hsig90 Top 10% of Hsig (in meter) 

Hsig95 Top 5% of Hsig (in meter) 

Tps Smoothed Peak Period (in second) 

TM01 Mean absolute wave period (in second) 

WLEN Average wave length (in meter) 

FSPR The normalized width of the frequency spectrum 

(dimensionless) 

LWAVP Peak wave length (in meter) 

TMBOT The bottom wave period (in second) 

URMS The Root Mean Square of the orbital velocity near the bottom (in 

m/s) 

UBOT The Root Mean Square of the maxima of the orbital velocity 

near the bottom (in m/s) 

UBOTsq
a 

UBOT
2
;proportional to bottom shear stress 

transp_onshore
 

the onshore component of transport of energy (in m
3
/s); equals 

to transpall*cosα 

Fetch
 

Fetch at each reach(in meter) 

Weighted fetch
 

Wind weighted fetch(in meter) 

Tidal Range
 

Tidal range  calculated from sea level (in meter) 

Bath_steepness
 

Steepness of bathymetry at each reach (dimensionless) 

Transpall
 

Transport of all wave energy (scalar, in m
3
/s) 

drift Longshore drift =tranpall*sinα*cosα (in m
3
/s);   

Sea Level Relative sea level to the mean sea level 

MedianWater60H

sig 

The median of sea level, of which corresponding Hsig is greater 

than 60% maximum of Hsig 

Table 3.1. Definition of variables  
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 Type Marsh Bank Bank 

Stem 

Bank 

Tributar

y 

Bank 

Easter

n 

Bank 

Western 

 Correlated 

Variable 

Erosio

n 

VER
a 

Erosio

n 

VER
a 

Erosion 

  R>0.5, 

P<0.05 

R>0.2, P<0.05 

 number of 

data/reach 

26 116 115 17 99 43 73 

1 Erosion 1 1 0.88 1 1 1 1 

2 Hisg -0.66 -0.09
b 

     

3 Hsig90 -0.71 -0.14
b 

  -0.20   

4 Hsig95 -0.72 -0.15
b 

  -0.21   

5 Tps -0.70       

6 TM01 -0.71       

7 WLEN -0.74    -0.21   

8 FSPR 0.67 0.23   0.27 0.34  

9 LWAVP -0.72       

10 TMBOT -0.64       

11 URMS -0.65 -0.23 
 

-0.51    

12 UBOT -0.65 -0.23 
 

-0.51    

13 UBOTsq -0.68 -0.26 
 

-0.52   -0.29 

14 transp_onshore
 

-0.75 -0.21   -0.24  -0.24 

15 fetch     -0.31 -0.46  

16 Weighted fetch  -0.27   -0.28 -0.39  

17 Tidal Range 0.73 0.23   0.27  0.24 

18 Bath_steepness    0.56    

19 transpall -0.77       

20 drift     -0.23   

21 MedianWater6

0Hsig 

     -0.22
b 

(P~0.16) 
0.34 

a: VER(Volumetric Erosion): VER(bank)= ErosionRate*BankHeight; VER(marsh)=ErosionRate*0.5 

b: doesn’t fit in corresponding R and P category but included in table for additional information. 

Table 3.2. Pearson correlation coefficients between erosion rates (or volumetric erosion) 

and selected potential influential variables at reach resolution. 
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Type MarshHD
a 

MarshHD 

Stem 

MarshHD 

Tributary 

MarshHDStem 

Eastern 

MarshHDStem 

Western 

 R>0.35, P<0.01 R>0.35,P<0.05 

number of 

data/reach 

162 80 67 82 13 

Hisg -0.49 -0.43 -0.49  -0.53  

Hsig90 -0.53 -0.49 -0.53 -0.58  

Hsig95 -0.53 -0.49 -0.53 -0.57  

Tps -0.56 -0.51 -0.56 -0.62 -0.55 

TM01 -0.54 -0.51 -0.53 -0.61 -0.56 

TM02 -0.50 -0.48 -0.47 -0.57  

WLEN -0.49  -0.46 -0.46 -0.56  

LWAVP -0.55 -0.50 -0.58 -0.61 -0.57 

TMBOT -0.49 -0.46 -0.48 -0.54  

URMS -0.38   -0.44  

UBOT -0.38   -0.44  

UBOTsq -0.40 -0.37 -0.36 -0.47  

trasnp_along   -0.37   

transp_onshore
 

-0.45 -0.41 -0.46 -0.48  

fetch -0.46 -0.36 -0.61  -0.65  

Weighted fetch -0.45  -0.56 -0.66  

Tidal Range 0.45 0.41 0.45 0.55   

transpall -0.50 -0.45 -0.54 -0.55 -0.58 

 

a: HD is appended as a symbol for data in the resolution of model grid to differentiate from data in Table 2 

Table 3.3. Pearson correlation coefficients between erosion and selected potential 

influential variables for marsh data at the resolution of model grid cells (outliers 

excluded). 
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 MLR (explanatory variables) NN and GAM (excluded variables) 

Bank Erosion ~ UBOTsq + TidalRange + 

MedianWater60Hsig 

"fetch" "URMS" "UBOT" "Hsig90" 

"Tps" "TM01" "WLEN" "transpall" 

Bank stem Erosion ~ Bank.height + Hsig95 + 

FSPR + TMBOT + UBOT + UBOTsq 

+transp_normal + Weighted.fetch + 

transpall + drift +MedianWater60Hsig 

"fetch" "URMS" "Hsig90" "Tps" 

"TM01" "WLEN"  "LWAVP"   

Bank tributary Erosion ~ fetch_coast + Tidal.Range + 

MedianWater60Hsig 

"Weighted_fetch" "URMS" "UBOT" 

"Hsig95” "Hsig90" "Tps" "TM01" 

"WLEN" "LWAVP"   

Marsh Erosion ~ FSPR + TMBOT + UBOTsq + 

fetch_coast + TidalRange 

+Bath_steepnees + transpall + 

sealevel 

"Weighted_fetch" "URMS" "UBOT", 

"Hisg" "Hsig90" "Hsig95"    "Tps" 

"TM01" "WLEN" "LWAVP"      

MarshHD Erosion ~ Tps + transp_onshore + 

fetch_coast + TidalRange + sealevel 

"Weighted_fetch" "URMS" "UBOT" 

"Hsig95" "TM01" "WLEN" "LWAVP" 

"transpall" 

MarshHDstem Erosion ~ Hsig90 + Tps + TMBOT + 

drift + sealevel + MedianWater60Hsig 

"Weighted_fetch" "URMS" "UBOT" 

"Hsig95" "TM01" "WLEN"  "LWAVP" 

"transpall"    

MarshHD 

tributary 

Erosion ~ LWAVP + fetch_coast "Weighted_fetch" "URMS" "UBOT" 

"Hsig90" "Tps" "TM01"  "WLEN"  

"transpall" 

 

Table 3.4. Variables that are included in stepwise Multiple Linear Regression and 

variables that are excluded using non-metric multidimensional scaling before GAM and 

Neural Network Analysis.  
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 Bank (116 samples) BankStem (17 samples) BankTributary (99 samples) 

 GAM NN
c 

MLR GAM
b 

NN
b,c 

MLR
b 

GAM NN
c 

MLR 

Dof
a 

89 N/A 112 -4 N/A 5 84 N/A 95 

AIC -362 -320 -353 N/A N/A -61 -339 -304 -329 

AICc -345 N/A -353 N/A N/A 17 -333 N/A -328 
2R  0.47 0.12 0.12 1 0.31 0.94 0.38 0.13 0.14 

AdjustedR
2 

0.30 N/A 0.10 N/A N/A 0.81 0.28 N/A 0.11 

P-value 2.9× 

10
-17

 

1.3× 

10
-4

 

10
-4

 3× 

10
-101

 

1.9× 

10
-2

 

1.1× 

10
-10

 

8.3× 

10
-12

 

2.2× 

10
-4

 

1.4× 

10
-4

 

RMSE 0.028 0.047 0.045 0 0.098 0.007 0.024 0.034 0.033 

 

 Marsh 

(26 samples) 

MarshHD 

(162 samples) 

MarshHDstem 

(80 samples) 

MarshHDtributary 

(82 sample) 

 NN
c 

MLR NN
c 

MLR NN
c 

MLR NN
c 

MLR 

Dof
a 

N/A 17 N/A 156 N/A 73 N/A 79 

AIC -60 -72 -264 -366 -82 -165 -116 -212 

AICc N/A -61 N/A -366 N/A -164 N/A -211 
2R  0.84 0.82 0.46 0.40 0.37 0.42 0.46 0.44 

AdjustedR
2 

N/A 0.74 N/A 0.38 N/A 0.37 N/A 0.42 

P-value 5.9× 

10
-11

 

1.2× 

10
-10

 

3.7× 

10
-23

 

3.1× 

10
-19

 

2.2× 

10
-9

 

7.1× 

10
-11

 

1.9× 

10
-12

 

1.4× 

10
-11

 

RMSE 0.034 0.031 0.087 0.097 0.123 0.107 0.085 0.070 

 
a: Dof is degree of freedom 

b: overfitted due to relatively small sample size. N/A is used to fill unvailable variables due to this matter.   

c: degree of freedom is unavalible (N/A) for Neural Network analysis. Thus, AICc and Adjusted R
2 
 are 

absent (N/A). 

Table 3.5. Degree of freedom, AIC, AICc, R
2
, adjusted R

2
, P value and Root Mean 

Square Error (RMSE) of statistical models: Multiple Linear Regression (MLR), 

Generalized Additive Model (GAM), and Neural Network (NN) analysis. 
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