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Autocorrelation within surface soil moisture (SSM) data may be used to 

produce high-resolution spatial maps of SSM from point samples.   The objective of 

this study was to characterize the temporal and spatial properties of SSM (0-5 cm) in 

a Beltsville, MD cornfield using a capacitance probe.  The range of spatial 

autocorrelation was approximately 10 m and the highest sill values were found at 

water contents (θ) between 20-27%.  Nugget values represented a significant portion 

of the total variance (up to 50% for θ >20% and 73% for θ <12%).  The patterns of 

SSM under wet conditions exhibited large, continuous polygons while drier 

conditions resulted in smaller, discreet regions.  Early season (< 60 days) Auto-

Regressive Moving-Average (ARMA) forecasts of SSM plotted against observed data 

resulted in R2 values from 0.15-0.26, while late season (> 80 days) forecasts 

improved to 0.46-0.65.  Forecasts were improved by autoregressive coefficients and 

additional SSM datasets. 
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INTRODUCTION 

A primary goal of a precision agriculture system is to effectively manage crop 

variability.  Within a field, there tend to be certain components and processes that will 

significantly impact the variability of crop production.   Runge and Hons (1998) 

discussed the hierarchical structure of the different variables affecting crop yield and 

found that water, in the form of rainfall and plant available stored soil moisture, 

caused most of the temporal and spatial differences in yield. 

Unfortunately, spatial measurements of soil moisture at within-field scales are 

rarely available.  Typically, soil moisture measurements are conducted as point 

measurements or as large area (>1000 m2) measurements (Grayson et al; 1998).   

Characterizing soil moisture in a small area or field requires high-resolution remote 

sensing technology and/or significant amounts of point measurements.  In both cases, 

the costs associated with acquiring the data are very high; and thus, it makes this level 

of sampling impractical in most situations. 

Compounding the problem is the fact that measurements of soil moisture will 

also vary throughout the season.  Rainfall, evaporation, and plant transpiration are all 

examples of processes that impact the levels of soil moisture over time.  Although 

monitoring systems can be set up to record seasonal information on soil moisture, the 

densities of these measurements tend to be low.  Characterizing soil moisture in 

spatial areas over time can be a significant problem for precision agriculture.   

 Due to the impact that soil moisture has on the yield of a crop, a greater 

understanding and ability to determine the small scale, spatial distributions of soil 

moisture throughout the growing season would greatly assist in the management of a 
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precision agriculture system.  Therefore, the focus of the following discussion will be 

on improving the small scale surface moisture data available for precision agriculture 

management by understanding and characterizing the spatial soil moisture processes 

that occur within small areas of a cornfield during the growing season. 

LITERATURE REVIEW 

AUTOCORRELATION 

 Managing variability in agricultural field studies is challenging because of the 

relationships that exist between variables.  Soil properties, water distribution, crop 

attributes, and location are all examples of variables found within an agricultural 

management system. When studying the response of the system to environmental or 

managerial changes, the impact of any one of these variables can become quite 

difficult to separate.  In most agricultural studies, observed variables in field studies 

are collected using sampling schemes that try to account for correlations that exist 

within or between variables (Fagroud and Meirvenne, 2002; Van Es and Van Es, 

1993).  In general, closer observations tend to be more related than observations 

separated by great distances.  For temporal measurements, observations repeated in a 

short time interval tend to be more related than observations separated by long 

periods of time.  Blocking, repetitive sampling, and multi-variate observations are all 

methods used to determine and account for relationships that occur within sets of 

sampled variables.  Relationships that exist within and between sampled variables can 

significantly impact the statistical analysis of a study and, therefore, should be 

quantified to ensure that accurate information is used when the study’s conclusions 

are determined. 
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Autocorrelation is a specific type of correlation that exists between 

neighboring observations of a single variable.  Spatial and temporal spacing is a 

significant factor contributing to the amount of autocorrelation found within a 

variable.  Precision agriculture systems, which are made up of layers of spatial 

information that are combined to make management decisions, typically have 

repetitive samples over short periods of time or distance, These systems often 

produce datasets that contain significant autocorrelations.  The level of 

autocorrelation found in a variable is characterized by the autocorrelation coefficient. 

The autocorrelation coefficient is defined as the amount by which an 

observation is linearly related to another neighboring observation.  The 

autocorrelation coefficient is a combination of a covariance function and a variance 

function.  The autocorrelation coefficient, r(h), is calculated in the following way: 
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      (Nielsen and Wendroth; 2003) 

 

  As the autocorrelation coefficient approaches zero, the observed variable is 

considered to be unrelated to previous or neighboring observations. By plotting the 

changes in the autocorrelation coefficient over time or against the distance between 
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observations, an autocorrelation function or correlogram can be derived.  An 

autocorrelation function can be used to describe the change in dependence between 

individual samples within a set of observations.  By studying the spatial and temporal 

autocorrelations in different variables of the system, a better understanding of the 

dynamics of the system can be achieved.  

The autocorrelation present in an observed variable is related to the 

underlying processes of the variable (Nielsen and Wendroth; 2003).   In agricultural 

field studies, there are a wide range of variables that cover all aspects of the crop, 

soil, and weather.  Numerous studies have been conducted to investigate the 

autocorrelation that are characteristically associated with different soil variables (Li et 

al, 2002; Cassel et al, 2000; Greminger and Nielsen, 1985).  Soil texture, organic 

material, nutrient concentrations, and soil moisture levels are examples of some of the 

soil-based properties that have been studied.  Field studies involving autocorrelated 

variables have focused on spatial changes that occur between different areas of the 

field as well as temporal changes that occur between seasons or sampling intervals.  

The variability of soil properties and the impact that these properties have on crop 

production and sampling strategies are reasons to study how the autocorrelation 

coefficients and functions could be used to explain a portion of the variability in the 

field. 

SEMI-VARIOGRAMS 

The semi-variogram is a basic geostatistical tool used to describe the changes 

in the variance at different distances between observations (Isaaks and Srivastava, 

1989).  
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The equation for semi-variance (γ(h)) is: 
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where Ai(xi) and Ai (xi + h) are experimental measures of any two points separated by 

the vector h (lag distance),  N equals the number of pairs of points, and x is a location 

vector. 

The semi-variogram can vary depending on the sampling interval defined by 

vector h, also known as the lag distance.  The lag distance defines the number of pairs 

of points that are present in each sampling interval.  In general, closely spaced 

samples use smaller lag distances, while widely spaced samples use longer lags.  Lag 

distance, however, is determined not only by sample spacing but also by the number 

of pairs of points in each lag interval.  A balanced distribution of point pairs across 

the sampling range is ideal for semi-variogram calculations.  A basic non-directional 

or omni-directional semi-variogram uses a 360-degree sampling region to find points 

within a lag distance.  Depending on the type of data or orientation of the sampling, a 

directional search area can be defined using a directional vector and a search angle.  

In these cases, only the points falling within the search area are used to calculate the 

semi-variogram.  Semi-variograms are a common method used to characterize spatial 

autocorrelation within agricultural studies. 

 Several sampling strategies have been used to characterize the sample semi-

variogram.  Equal spaced measurements on a regular grid are one of the most 

common strategies used in field studies that investigate spatial patterns (Solie et al., 

1999; Hupet and Vanclooster 2002; Ferreyra et al, 2002).  This method is quite 
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effective but can be considered an inefficient use of resources.  The regular grid 

sampling scheme will result in a skewed number of observation pairs at short lag 

distances compared to the numbers of pairs at longer sampling lags.  A nested set of 

samples is one way to produce a more even distribution of samples (Cahn et al 1994; 

Fagroud et al 2002; Tomer et al, 1995).  In this method, the sample locations are not 

consistently spaced.  Some of the nested methods use a combination of multiple grid 

patterns at different scales while others use a combination of a regular grid pattern 

with additional randomly selected locations.  In either case, the nested sampling 

method produces a more balanced number of pairs at short and long lag lengths.  

With limited resources, this method is a more efficient way to acquire the sample 

semi-variogram (Russo, 1984).  The regular grid and the nested sampling pattern are 

both considered acceptable methods to acquire the sample semi-variogram.   

 Once the sample semi-variogram has been calculated, the next step is to 

model how the variance of the sample semi-variogram changes over time using a  

theoretical semi-variogram model.  The theoretical semi-variogram model is defined 

by three main components:  the nugget, sill, and range (Figure 1).    The nugget value 

is defined by the y-intercept of the semi-variogram.  The magnitude of the nugget is 

associated with the random or non-structured variability of the observed process.  

Observations that are highly repeatable (low random variation) will have lower 

nugget values.  Rapidly changing conditions or instrument variation could cause 

higher random errors and a higher nugget value.  Nugget values may increase because 

of structured variations that occur at distances smaller that the sample spacing.  By 

decreasing the sample spacing, these variations may be removed from the nugget.  
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 The sill is the maximum variance determined by the semi-variogram and 

represents the total amount of variance present in the system.  The distance at which 

the semi-variogram reaches the sill is defined as the range.  The range is the 

maximum distance that the observations display correlation.  At distances greater than 

the range, observations are considered to be independent and random.  The theoretical 

models are classified into broad categories based on the rate of change of the nugget, 

sill, and range.    

 

 

 7 
 



 

The most commonly used theoretical semi-variogram model in agricultural 

field studies is the spherical model.  Mathematically, the standardized spherical 

model is defined as: 

γ(h) =   {   1.5 (h/a) – 0.5(h/a)3 }  if h ≤a 

 {    1                             }    h > a   

      (Isaaks and Srivastava, 1989) 

The spherical model is considered a bounded or transitional model because it is 

characterized by an increasing level of variance, which will eventually reach a 

maximum value or sill.  The rate at which the maximum variance is achieved 

distinguishes the spherical model from other categories of theoretical models. 

Spherical models have been used to describe the spatial relationships present 

in a variety of soil and plant characteristics.  Soil test results are commonly modeled 

using spherical semi-variograms (Soile et al 1999; Rover and Kaiser; 1999).  In these 

studies, nitrogen, organic matter, and phosphorus were modeled using spherical  

 models.  Distributions of surface and sub-surface soil water contents have also been 

modeled extensively using spherical semi-variogram models (Western et al; 1999, 

Cahn et al. 1994, Wendroth et al. 1999).  The range of spherical models used to fit the 

surface and sub-surface soil water data is quite large and is based primarily on the 

sampling density of the data.  Spherical models have also been used to model the 

relationships found in yield data (Bhatti et al. 1991).  There are numerous examples 

of studies that have used spherical models to describe the spatial distribution of field 

properties.    
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KRIGING 

 Once a spatial model is fit to the sample data, estimates of unsampled data can 

be determined using the kriging function. The kriging function uses the semi-

variogram to weigh the impact of nearby sampled locations in the prediction of 

unsampled values.  Field studies typically involve continuously changing variables 

that are sampled at discrete locations.  Using kriging, unsampled locations can be 

interpolated and used to derive a spatial map of a particular variable.   Kriging is a 

common process that is used to produce maps of variables such as yield data, nutrient 

concentrations, and soil moisture.  These maps are useful for analyzing patterns and 

tendencies in a precision agriculture system. 

Precision agriculture uses spatial information to classify management areas 

within a production field.  One of the primary methods used to identify the different 

management areas of the field is the temporal persistence of patterns in a field (Sadler 

et al., 1998, Van Alphen and Stoorvogel, 2000).  Typically, the most useful variables 

for identifying management zones are directly related to the crop yield.  Soil test 

results, water distribution, and yield data are examples of datasets that can be used to 

determine the different management zones within a field.  Yield datasets have been 

useful studied several times as a classifying variable (Lamb et al. 1997; Stevenson et 

al, 2001).  Often, the variability of the yield between years is too high to make it an 

effective means of classification.   Chemical and physical properties of the soil have 

also been used to define management zones.  Unfortunately, the changes in the 

physical and chemical properties of the soil can occur in very short distances and 

have varying impacts on the production of a crop (Soile et al, 1999).  Patterns used to 
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determine management zones at the field level need to account for small scale 

variations that will impact yield. 

 One potential way to explain the variability in yield data is to conduct 

controlled studies to investigate how the growing conditions around small areas of the 

plants affect the yield.  The information gathered in these small areas could be used to 

explain variations that occur within larger areas of the field (Grayson et al. 1997).  

Soil moisture and nitrogen have been found to be two of the most important factors in 

determining the yields of corn.  Soil moisture can vary dramatically within a field 

(Greminger et al, 1985; Famiglietti et al. 1998; Hupet and Vanclooster; 2002).  A 

detailed study on soil moisture patterns could provide information to explain 

variability within yield data.  

 Scale, variability, and pattern persistence are elements that can affect the 

ability to recognize relationships that occur within datasets.  Proper identification and 

evaluation is a key part in using this information to enhance understanding of the 

system.  There are several mathematical tools available to analyze and evaluate the 

relationships that are present within datasets that include highly variable observations.  

Autoregressive Moving Average (ARMA) models are one of the tools used to study 

relationships among variables within complex and interdependent systems.   

ARMA MODELS 

 ARMA models are common tools used to evaluate and forecast time/space 

series datasets.  Time series datasets are observations of a single variable that are 

collected on a regular time interval such as daily, monthly, or yearly.  ARMA models 

can also be used with one-dimensional, equally spaced spatial data such as transects.  
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For simplicity, the discussion of ARMA models will focus on analyzing time-based 

series; however, the assumption will be that a one-dimensional, space-based series 

could be substituted instead.  An ARMA model is a two-part model consisting of an 

autoregressive model and a moving average model.  An autoregressive model divides 

observations into a mean component, an autoregressive component, and an error 

value.  The following equation is an example of an autoregressive model: 

Ai= φ1 Ai-1+φ2 Ai-2+…φp Ai-p +ωI         (Nielsen and Wendroth; 2003) 

 

where φ and ω are the autoregressive parameters that are determined using linear 

regression when the mean value equals 0. 

 

 The moving average model differs from the autoregressive model in that the 

observation Ai is considered a linear combination of weighted random processes.  In 

the following equation, a model of order q is used to describe observation Ai using 

weighted combinations of the random process ωi, ωi-1,

 Ai= ωi- β1ωi-1 -β2ωi-2 -… -βqωi-q  (Nielsen and Wendroth; 2003)  

where  β1,β2,…, βq are the moving average coefficients. 

A combined ARMA model can be written as: 

 Ai= φ1 Ai-1+φ2 Ai-2+…φp Ai-p +ωI- β1ωi-1 -β2ωi-2 -… -βqωi-q  

(Nielsen and Wendroth; 2003)  

 where p + q + 2 are unknown parameters 
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The work by Box and Jenkins (1976) has become the standard methodology 

for using ARMA models.  Box and Jenkins used a three-step process to identify, 

evaluate, and forecast the ARMA model. 

The identification step in ARMA modeling identifies the time series variable 

to be modeled, tests statistical characteristics of the observed variable, and identifies 

potential models to fit the data. The ARMA models have been designed to model 

time series datasets but not to explain the sources of variability (Nielsen and 

Wendroth; 2003).   Most often, these models are used in cases where the sources of 

variability for the observed data have been previously established.   The ARMA’s 

initial tests are performed within the identification stage and are used to check the 

level of autocorrelation within the time series dataset, test the dataset’s compliance 

with the guidelines for the ARMA model, and evaluate potential ARMA models. The 

tests performed within the identification stage are conducted based on the lag interval 

or the time interval between data points.  The lag interval can be days, months, years 

etc; however, one of the requirements of the ARMA model is that knowledge of the 

relationship between the lag intervals and observations must be known.  Another 

requirement of the ARMA model is that the variable to be modeled must exhibit 

stationarity. 

 Stationarity refers to a set of observations that has a constant temporal level 

of variation.  Observations in a stationary time series dataset fluctuate around a mean 

value without the variance changing significantly over time.  Datasets that do not 

exhibit stationarity must be made stationary before an ARMA analysis is performed.  

There are several methods that can be used to correct non-stationarity including 
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differencing of datasets or removing trends.  Within the identification stage, 

stationarity tests are conducted on the time series dataset using the results from 

calculated autocorrelation functions.  

The autocorrelation function, the partial autocorrelation function, and the 

inverse autocorrelation function are used to evaluate the time series dataset in the 

identification stage (SAS Institute Inc.,1993).  These functions are used not only to 

test for stationarity but also to evaluate potential ARMA models.  For each type of 

autocorrelation function, the results are plotted and are compared to theoretical 

correlation functions of different ARMA models.  Using the theoretical ARMA 

models as a guide, the orders of the autoregressive and moving average portions of 

the model are defined. 

  The order of the autoregressive (AR) and moving average (MA) models are 

typically defined separately based on the variability of the time series dataset.  In 

general, time series datasets are composed of combinations of random variations, that 

are considered to be stochastic variables, and repeating measurements, that are to be  

considered deterministic variables (Nielsen and Wendroth, 2003).  The type of 

variation present in the time series dataset is the primary factor determining the order 

of the model.   The order of the autoregressive model is significant in highly variable 

or stochastic datasets.  The AR model is considered the “forward looking” portion of 

the model since it has the ability to forecast random variations in the system.  As the 

order of the AR model increases, the changes in the pattern of the system’s variability 

will tend to increase.  In contrast, the moving average model is known as the 

“backward looking” portion because it forecasts using the trends of past observations 
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(SAS Institute Inc. 1993).  Increasing the order of the MA model will tend to dampen 

the amount of variability found in the system.  The order of the MA and AR models 

are determined using the variability in the system compared to the variability found in 

theoretical ARMA models.  The identification stage of ARMA modeling is used to 

evaluate the observed time series dataset, check for stationarity, and define potential 

ARMA models.  

The second stage of Box and Jenkin’s ARMA modeling is the evaluation 

stage.  In the evaluation stage, the potential ARMA models are tested, the 

autoregressive parameters are calculated, and the model is adjusted (SAS Institute 

Inc. 1993).  During this stage, additional time series datasets can be added and 

removed from the model based on the model fit.  Conditional least squares estimation 

and other statistical procedures are used to test the significance of each component of 

the model.  Non-significant (> 0.05) portions of the model are removed and the 

conditional least squares test is repeated.  Adding and removing AR orders, MA 

orders, and input datasets is normally performed several times to check the impact on 

model performance.  This process continues until the model performs satisfactorily 

and only significant portions of the model remain.     

 The final stage of ARMA modeling is the forecasting stage.  In this stage, the 

ARMA model can be used to predict current or future values of a dataset.  In this 

stage, the estimated model is used to calculate data points and the errors associated 

with those data points.  From the error calculation, a confidence interval can be 

determined for the forecasted data.  The results of the forecasting section can be used 

to compare the impact of different input datasets, the autoregressive model, and the 
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difference between the model’s predictions and observed data.  The forecasting stage 

is the final stage of ARMA modeling that can be applied in many different ways to 

interpret various time series datasets. 

 ARMA models are typically used on time series and one-dimensional spatial 

datasets; however, with minor modifications, a 2-dimensional spatial dataset can be 

analyzed using an ARMA model. (Pegram and Clothier, 2001).  ARMA models need 

to have a vector to define the start and finish of the dataset and the data needs to be 

equally spaced.  A 2-dimensional dataset with x and y locations on a regular grid 

pattern does not have a defined start or finish but it does have points collected at a 

regular interval.  The start/finish vector in a 2-dimensional dataset can be defined 

using a serpentine or circular pattern.  Each xy location is given a unique number 

based on the serpentine/circular pattern; and that id variable is used to define a 

transect through the 2-dimensional spatial dataset.  The resulting dataset with the id 

variable is equally spaced and has a defined start and end point.  Although both of 

these patterns will produce a dataset that can be analyzed using an ARMA model, the 

serpentine pattern will maintain consistent spacing between rows of data points 

throughout the 2-dimensional plot.  Additional testing of autocorrelations between 

rows can be performed with the serpentine pattern.  As a result, the serpentine pattern 

is the preferred method to convert a 2-dimensional spatial dataset into a transect of 

equally spaced observations.  Using a serpentine id variable, a 2-dimensional spatial 

dataset can be analyzed using an ARMA model.  

 For agricultural applications, several variations of autoregressive and moving 

average models have been used to analyze and forecast data.  Single variable 
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AutoRegressive Integrated Moving Average (ARIMA) models, and multivariate State 

Space models are two of the more common types that have been used.  Soil 

properties, such as temperature, texture, and soil moisture, have been modeled using 

the ARIMA and State Space methods.(Morkoc et al.,1985a; Morkoc et al.,1985b; Li 

et al. 2002)  Yield data is another common agricultural variable that has been 

modeled using these time series techniques.(Stevenson et al.,2001; Boken, 2000)  

Several types of the autoregressive–moving average models have been used 

successfully to predict and analyze variables within agricultural studies.  

OBJECTIVES 

The objectives of this study were to investigate the temporal and spatial 

properties of surface soil moisture within small plots in a cornfield.  A two-part study 

was conducted during the 2000 and 2002 growing seasons.  The first part of the study 

focused on the temporal and spatial stability of the surface soil moisture in different 

production areas of the field.  Soil moisture was sampled in high, medium, and low 

production areas to determine the spatial and temporal relationships that were present.  

It is hypothesized that spatial and temporal relationships will exist with different 

characteristics and stability based on the location in the field.      

  Based on the results of the first part, the second part of the study focused on 

autocorrelation relationships in the soil moisture data from each of the plots.  The 

objectives for this part of the study were to evaluate the stability of the 

autocorrelation relationship found in the soil moisture data and how its predictive 

properties could be used to forecast soil moisture throughout the season.  For this part 

of the study, it is hypothesized that the autocorrelation relationship will vary with the 
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sampling period and as a result, the impact on predicting soil moisture will change 

over time.  

MATERIALS AND METHODS - PHASE 1 

  This study was conducted utilizing plots located within a cornfield at the 

Beltsville Agricultural Research Center (BARC) in Beltsville, MD.  The field is part 

of an ongoing precision agriculture study entitled the “Optimization of Product Inputs 

for Economic and Environmental Enhancement” (OPE3).  The site is located on the 

eastern side of the BARC complex at 39°01’N 76°49’W.  The OPE3 field consists of 

four 4-hectacre treatment sections (A,B,C,D) within a 25-hectacre field.  Each section 

is used to study the environmental and economic impacts of different kinds of 

management practices.  The data for this project was collected within Section A. 

The soils in Section A were characterized by complexes of several soil series.  

In 1995, a detailed soil survey (1:12,000) of BARC completed by the USDA-Natural 

Resources Conservation Service (NRCS) identified three mapping units in section A.   

Downer-Muirkirk-Matawan Sandy Loam (DmB),  Bourne Fine Sandy Loam (BuB), 

and Matawan-Hammonton Loamy Sand (MrB) were found in section A.  Figure 2 

illustrates the distribution of these soils within Section A.  The soil report indicated 

that the expected yields of corn grown on the Downer complex (Dmb) and Bourne 

(Bub) soils would be 6.28 MT/ha while the Matawan complex (MrB) soil is slightly 

higher at 7.53 MT/ha.  The NRCS report provided classification and production 

estimates for the soils in Section A. 
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Soil Mapping Units in Section A 

 

Figure 2.  The soil mapping units present in Section A are Downer-Muirkirk-
Matawan Sandy Loam (DmB, 2-5% slope), Matawan-Hammonton Loamy Sand 
(MrB, 5-10% slope), and Bourne Fine Sandy Loam (BuB, 2-5% slope).  The black 
circles represent the centers of the 2000 surface soil moisture plots; the blue circles 
represent the centers of the 2002 plots.  
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A digital elevation map (DEM) of Section A was constructed from aerial 

photography to provide a detailed description of the topographic features.  Within the 

section, there were approximately 1,500 defined elevation points that were 

determined using stereoscopic lenses and ground control points.  Figure 3 illustrates 

the gradual change in elevation from east to west within Section A.  Within Section 

A, the change in elevation is not dramatic and so, factors such as erosion and run off 

would be expected to have neglible impacts on our study.  In addition to the detailed 

soil survey and elevation data, a historical record of the previous management 

activities in Section A was also available. 

 Within Section A, there were some areas identified as being less well suited to 

conduct this study.  The eastern portion of the field was located near a wooded area 

that sheltered a large deer population.  In previous years, significant deer grazing had 

negative impacts on the growth and development of the corn crop in this portion of 

the field.  Without an effective method to control the grazing or to quantify its impact, 

areas in this section of the field were removed as potential study locations. Another 

area of concern was located in the center of Section A.  At this location, a former 

access road had been plowed and turned into a production area.  Although this portion 

of the field had been in production for several years, there were still concerns of 

reduced crop growth because of the previous roadbed in this portion of the field.  For 

this study, the sample plots were positioned to avoid both of these areas.   

 According to the design of the OPE3 project, the management practice to be 

studied in Section A was a single-rate system.  In a single-rate system, management 

decisions for fertilization, seeding, and pesticide application rates are determined and 
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Figure 3.  A representation of the change in elevation found within section A of the 
OPE3 field.  The black squares represent the surface soil moisture plots sampled in 
the 2000 and 2002 growing season. 
 

 

applied evenly to the entire field area.  In mid-May, soil samples (0-30cm) were taken 

from several areas to determine the average nutrient status of the soil.  The samples 

were sent to the University of Maryland Soil Testing Lab where the samples were 

analyzed for pH, magnesium, potassium, phosphorus, calcium, nitrates, and texture.  

In late May of 2000, the soil was prepared using a tandem disk harrow set to 15.24 

cm deep.  On June 2, 2000, a digested liquid dairy manure was applied to Section A 

of the field at a rate of 93,500 L/ha.  The dairy manure was analyzed and found to 

contain 7.60 kg N and 3.375 kg P2O5 per 3,790 liters.  The manure was incorporated 
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into the soil on the same day using the tandem disk harrow.  Eight days after the 

manure application and just before planting, a Krause Landsman soil finisher set at 

15.24 cm was utilized on the field.  Corn (Zea mays L; Pioneer 33A14) was planted in 

76-cm rows on June 10th.  Five days after planting, two herbicides were applied to 

control weed growth using a surface broadcast spray. Bicep II Magnum (atrazine and 

metolachlor) was applied at 3.04 L/ha and Dual II Magnum (metolachlor) was 

applied at 0.701 L/ha.  After emergence, 15 soil samples (0-30cm) were taken from 

Section A on a 50 m grid pattern to determine the Pre-Sidedress Nitrogen Treatment 

(PSNT) values and the soil moisture content.  Based on the average PSNT value, the 

sidedress nitrogen treatment was adjusted.  According to the Maryland Soil Testing 

lab, the desired nitrogen fertilization rate for corn in this area was 112 kg/ha.  The 

side dress application rate was adjusted by the PSNT values to achieve this rate.  On 

July 13, a nitrogen side dressing was injected into the soil at 50.4 kg/ha and additional 

herbicides (Bicep II Magnum and Dual II Magnum) were spot-applied to areas that 

continued to have significant weed problems.  On November 11th, Section A was 

harvested using a combine and the yield was recorded using a yield monitor.  From 

1999 to 2003, the yield data for OPE3 was collected using a combine mounted 

Agleader 2000 yield monitor system, which determined the amount of grain harvested 

as well as the combine’s geographical location within the field.  The yield monitor 

was set to output data on the grain yield and location every second as the combine 

moved through the field.  In 2000, the single rate management of Section A was 

conducted according to the experimental design for the OPE3 project.     
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 Weather conditions in 2000 at OPE3 were monitored and recorded using a 

Campbell weather station (Campbell Scientific, Inc. Logan, UT) that was located at 

the BARC dairy approximately 1 km to the west. The dairy weather station has a 

Campbell CR10x datalogger, which was programmed to continuously monitor the 

weather sensors, average the data every 15 minutes, and output the values to a text 

file.  On the weather station, there were sensors to measure the temperature and 

humidity (12-gill Vaisala HMP35C), wind speed and direction (RM Young 05103 

Wind Monitor), solar radiation (Licor LI200X silicon pyranometer), and rainfall 

(TE525 Tipping Bucket Rain Gage).  Each sensor, except the rainfall gauge, was 

mounted on a 3 m tower; the rainfall gauge was mounted 1 m off the ground on a pole 

3 m from the main tower.  The weather station data monitored continuously for the 

2000 growing season. 

 For this study, two types of soil moisture data were collected.  The first set 

of data focused on the distribution of the subsurface water contents and was a 

permanent part of the OPE3 study.  A network of probes was located throughout the 

field and was continuously monitored using dataloggers.  This dataset provided 

detailed temporal measurements of the soil profile at single points.  The second 

dataset focused solely on the surface soil moisture.  This dataset was a pattern of 

measurements conducted multiple times during the growing season.  The surface soil 

moisture measurements were designed to provide detailed spatial and temporal 

information over small areas.  The design of the study was to use both types of 

measurements to characterize the distribution of soil moisture.     
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Subsurface water contents in section A were monitored using 12 permanently 

installed Sentek EnviroSCAN soil moisture capacitance probes (Sentek Sensor 

Technologies; www.sentek.com.au) that were part of the long term OPE3 study.  The 

EnviroSCAN probes can be configured to sample soil moisture between 10 cm and 

200 cm at intervals of 10 cm.  In Section A, the EnvironSCAN probes were 

configured to provide 3 sampling densities based on the soil’s infiltration rate.  In 

areas of the field where the infiltration rate was high, the  “L” configuration was used 

to sample soil moisture at depths of 10, 30, 50, 80, 120, 150, and 180 cm.  In areas of 

medium infiltration rates, the “M” configuration was used to sample soil moisture at 

depths of 10, 30, 50, 120, 150, and 180 cm.  In areas with low infiltration, the “H” 

configuration was used to sample soil moisture at depths of 10, 30, and 80 cm.  There 

were 4 probes of each configuration located in Section A.  The probes were 

connected to a Sentek Enviro-Scan system, which was set to collect soil moisture data 

every 10 minutes.  Starr et al (1998) have discussed the use and sensitivity of these 

probes to monitor soil moisture levels under a cornfield.   Due to the frequency and 

profile coverage of these probes, it was considered beneficial to the study to establish 

surface soil moisture sampling plots in close proximity to the Sentek probes. 

Surface soil moisture measurements were acquired using two capacitance 

probes (Delta-T ML1 Theta) and two Campbell CR-10 dataloggers.  The capacitance 

probes provided flexibility and accuracy for the surface soil moisture measurements 

that was not available using other methods such as neutron scattering (Mohamed et al. 

1997).  The measurements were made by inserting the probe into the surface soil and 

using the datalogger to record the data.  The sampling depth of the Theta probe is 0-5 
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cm and the diameter of the sample is approximately 3 cm.   The Campbell dataloggers 

were used to control and store the data from each probe.  Measurements were 

acquired in the early afternoon (12 pm – 2 pm) in order to allow the plant canopy and 

soil surface some time to dry from any dew or condensation from the previous night.  

Plots were setup in the field and marked using PVC flags.  Repetitive sampling of the 

plots was conducted throughout the season and the sampling order varied between 

sampling dates.  In each plot, the total sampling time of the plot was less than one 

hour.  At the completion of each sampling period, the data were downloaded from the 

dataloggers to a PC for editing and analysis. A summary of the surface soil moisture 

sampling dates for each plot in 2000 can be found in Table 1. 

The 1999 corn yields were a factor used to determine the locations for the 

surface soil moisture plots.    Within Section A alone, the yield dataset resulted in 

several hundred measurements each year.  In order to determine differences in yield 

throughout the field, the raw yield data were grouped into areas and the production 

values were compared.  For 1999, 60  25-m by 25-m blocks were used to aggregate 

the observed yield throughout Section A.  The aggregated areas were defined as low, 

medium, and high producing areas based on the following yield ranges: high = 4.707 

– 7.846 MT/ha, medium = 1.569 - 6.277 MT/ha, low = 1.569 - 4.707 MT/ha.   The 

location of the surface soil moisture plots were selected to represent land areas with a 

range of production values.   

Plots for surface soil moisture samples were established at four locations in 

Section A.  Each area contained a Sentek soil moisture probe and represented a 
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Table 1.   Sampling dates of 2000 surface soil moisture sampling with ML1 Theta 

probe. 

Date AL1 AL3 AH3 AL4  
171 X X   
172   X X 
178 X  X  
188  X  X 
192 X X X  
193 X   X 
195  X   
196   X  
197 X  X  
200 X X  X 
203  X  X 
217 X X X X 
222 X X X X 
230 X  X  
235 X    
236   X X 
251 X X X  

Totals = 17 
sampling days 

11 9 10 8 

 

 

different level of yield production.  Each plot was labeled using the block coordinates 

of the Sentek probe that was located closest to the plot. (AL1, AL3, AL4, or AH3) 

Figure 4 is a map illustrating the location of the 4 plots in section A and their 

proximity to the soil moisture probes.  AL4 represented one of the lowest producing 

areas of the field while AL1 represented one of the highest.  AH3 and AL3 

represented yield quantities in the middle. Once the plot locations were identified, a 

procedure was used to systematically determine the locations of the detailed soil 
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Figure 4.  The layout of plots in Section A of OPE3 site.  The red points illustrate the 
areas sampled for soil moisture during the 2000 growing season plots.  The blue 
squares represent the plots sampled for soil moisture in 2002.  The flags represent the 
locations of the permanently installed Sentek soil moisture probes.   
 

 moisture sampling points so that each plot could be sampled in a similar fashion, 

with good spatial coverage, and in a timely manner. 

The method used to determine the surface soil moisture sampling locations 

was a slightly modified version of a sampling design published by Russo (1984) and 

was designed to produce an optimized set of sampling points to calculate the sample 

semi-variogram.  In Russo’s design, the locations of sampling points were determined 

by using a combination of systematic and random spacing.  Based on the number of 

pairs per lag distance, the method adjusted the positioning of some of the locations in 
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order to balance the number of pairs per lag distance. For this study, the surface soil 

moisture sampling points were selected using a systematic and random process.  In 

order to ensure relatively stable soil moisture conditions throughout the sampling 

interval, the sample time was limited to 60 minutes.  From previous experience with 

the soil moisture probes, 120 locations could be sampled within 60 minutes.  Overall, 

the goal of the process was to select 120 surface soil moisture measurement locations 

within the 25 m by 25 m plot. 

The first step in selecting the sampling locations was to construct an offset 2m 

grid arranged in 25 rows and 25 columns over the entire plot (Figure 5).  The offset 

grid established 312 potential sampling locations within each plot.  From these 312 

points, a subset of 120 points would be selected as the soil moisture sampling points.  

Before the points were selected, a blocking procedure was used to break the plot into 

smaller regions. 

  The goal of the blocking procedure was to subdivide the plot so that the 

surface soil moisture measurements would be distributed throughout the area. Each 

plot was broken into twenty-five 5 by 5-m blocks.  Each of the blocks contained 12 or 

13 points from the original 312 points.  Instead of sampling each of the 25 blocks at 

the same rate, a variable rate system was used to produce an even distribution of 

distances between pairs of points.  Three sampling rates, low (2 or 3 points), medium 

(5 or 6 points), or high (12 or 13 points) were applied to the blocks.  Within each 

block, the actual sampling locations were randomly chosen from the 12 or 13 points.  

The result of the blocking procedure was a distributed set of sampling locations that 

had varying measurement densities. 

 27 
 



 

 
Figure 5.  An illustration of the method used to determine the surface soil moisture 
sample locations for the 2000 growing season.   

 

Each plot contained the same distribution of sampling densities, which 

resulted in a total of 120 sampling locations.  The sampling densities in each of the 

plots were 14 blocks of low sampling density, 10 blocks of medium density, and 1 

block of high density.  Once the locations were determined, global positioning system 

coordinates were used to establish the actual locations within the field.  At each 

location, a PVC flag was used to mark the sampling area within the field.  These 

locations were sampled for surface soil moisture throughout the growing season. 

MATERIALS AND METHODS - PHASE 2  

The management practices in Section A for the 2002 growing season were 

identical to the practices used in the 2000 growing season except for slight variations 
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in the timing of the procedures.  The initial tillage on the field was performed in early 

April using the tandem disk harrow set to a depth of 15.24 cm.  On April 12, 2002, 

liquid processed dairy manure was applied at a rate of 93,500 L/ha to section A.  The 

manure had been tested by the University of Maryland and was found to contain 8.01 

kg of N and 3.83 kg of P2O5 per 3,790 gallons.   On the following day, the manure 

was incorporated into the soil using the tandem disk harrow.  Prior to planting, a 

Krause Landsman soil finisher set at 15.24 cm was utilized on the field.  Corn (Zea 

mays L; Pioneer 33A14) was planted in 0.76 m rows on April 19th-20th.  Following 

planting on April 24th, Bicep II Magnum (atrazine and metolachlor) was applied at 

3.04 L/ha and Dual II Magnum (metolachlor) was applied at 0.701 L/ha to control 

weed growth using a surface broadcast spray.  On May 28th and 30th, 15 soil samples 

(0-30 cm) were taken on a 50 m grid to determine the PSNT values.  On June 16th, a 

nitrogen side dressing was applied at 39.2 kg/ha and sporadic application of 

pesticides (Bicep II Magnum and Dual II Magnum) to weeds was performed.  Section 

A was harvested on Oct 2nd, 2002.  The management process in this section of the 

field was consistent with the practices in the 2000 growing season. 

In 2002, a Campbell weather station was erected within Section B of the 

OPE3 field to monitor the growing conditions.  The Section B weather station had an 

output interval and a set of sensors that was similar to the dairy station; however, it 

was located much closer to Section A.  The Section B weather station was equipped 

with a HMP45C temperature and relative humidity probe and a TE525 Tipping 

bucket rain gauge.  There were additional sensors on this weather station to monitor 

wind speed/direction, light levels, and CO2 concentration; however, that information 
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was not used in the scope of this study.  In 2002, the weather data from the Section B 

station was used to monitor the growing conditions near the field. 

The surface soil moisture sampling in 2002 was conducted in two 25 by 25-m 

plots.  The 2002 plots were located in close proximity to the AL1 and AL4 locations 

in 2000.  These plots were designated AL102 and AL402 to differentiate them from 

the 2000 sampling locations. In 2002, several changes were made to the surface soil 

moisture sampling based on concerns from the 2000 dataset and to address the 

specific data needs of the second part of the study.  One concern from the 2000 data 

was the impact of the row/inter-row sampling position since the surface soil moisture 

dataset was collected using samples taken from row locations and interrow locations. 

Van Wesenbeeck et al. (1988) found there to be variations in soil moisture depending 

on the row or interrow sampling position.  In 2002, all of the sampling points were 

positioned within the row to minimize the effect that row position had on the data.  

Another concern from 2000 was the impact that the unbalanced sample strategy had 

on the directional component of the semi-variogram.  In 2002, an even distribution of 

points was arranged into 17 rows and 17 columns with sample points located every 

1.54 m.  There were a total of 289 sample locations per plot.  The final dataset was 

comprised of a complete set of equally spaced measurements that could be used for 

ARMA forecasting.  The overall size of the plots remained about the same (25 by 25-

m) but the number of samples per plot was increased from 120 to 289.   The 

modification to the sampling of the plots for 2002 was expected to have a beneficial 

impact on the goals of this phase of the study. 
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 Another change that was made in 2002 was a reduction in the number of plots.  

A change in the total number of plots was based on the sampling time and the 

presence of a NASA study nearby.  With the increased sampling, the time required to 

sample the plots almost doubled.  In addition to timing concerns, NASA was 

performing a study in the northern section of Section A.    The NASA study involved 

soil surface scans of the field and as a result, pedestrian traffic was discouraged 

within ~100 m of their instrumentation. (Figure 4).  Since the center two plots of the 

2000 study fell within the NASA study and there were concerns involving sampling 

times, a decision was made to remove the two plots from the study. 

 The soil moisture measurements were designed to acquire a detailed spatial 

and temporal description of the surface and sub-surface water contents for the plots 

throughout the growing seasons.  The surface moisture measurements were to have 

provided the bulk of the desired spatial and temporal information.  These 

measurements were designed to provide information similar to data acquired from 

remote sensing applications but with a higher level of spatial resolution than is 

currently available for moisture data.  The sub-surface measurements would have 

been used to supplement the surface data and provide detailed temporal 

measurements of the below ground soil moisture changes at specific points.  

Unfortunately, the sub-surface data from the Sentek probes was mostly unavailable.  

In 2000, a lightning strike damaged the Sentek system in Section A and repairs were 

not completed until after the conclusion of the 2000 growing season.  In 2002, there 

were some significant outages in the Sentek data for the AL4 plot while the AL1 plot 

had an almost complete dataset.  Without complete datasets for the sub-surface water 
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contents, the soil moisture analysis focused primarily on the surface soil moisture 

plots.        

After the 2000 growing season, a new Delta-T ML2 Theta capacitance probe 

and HH2 datalogger (Delta-T Devices Ltd; Cambridge, England; www.delta-t.co.uk) 

were acquired.  The ML2 probe is very similar to the ML1 probe with only minor 

modifications to the sensor.  The ML2 probe was supposed to be less sensitive to the 

salt content of the soil than the ML1 probe (Miller and Gakin).  Since the soils in the 

study did not have a high salt content, the improvements to the ML2 probe should not 

have affected the probe’s response to the soil moisture. A laboratory calibration of 

both probes was conducted to verify this theory. 

The calibration of the Theta probes was performed utilizing soil columns to 

test the factory calibration curves and the differences between the ML1 and ML2 

probes.  Surface soil (0-5 cm) from 4 locations in each of the 2002 field plots was 

collected on October 18, 2002.  For each plot, the 4 locations were combined in a 

bucket and oven dried at 70 degrees C for 5 days.  Soil columns were constructed by 

mixing 200 grams of the oven dried soil with different volumes of water (25 ,50 ,62 

ml) and packing the soil/water mixture into six 7.5 cm (H) by 5 cm (W) sections of 

PVC pipe.  For each soil/water combination, the cores were sampled three times by 

each probe.  Each core was then dried and weighed again.  A relationship between the 

volumetric water content and the millivolt signal was derived (Figure 6).  The figure 

shows that the sensors have similar responses to changes in water content and the 

factory calibration curves were very close to the observed calibration curves. 
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Calibration Curves For Theta Probes
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Figure 6.  Responses of Theta ML1 and ML2 capacitance probes to different 
combinations of soil/water mixtures prepared in the lab and packed into poly- vinyl 
chloride (PVC) columns.  The solid lines represent linear regression lines for each 
sensor. 

 

Mean relative differences of the surface soil moisture were calculated to 

examine the temporal stability of the measurements.  The mean relative difference of 

the surface soil moisture is defined as (Vachaud et al.,1985): 

δij = (θij - θj)/θ j

where θ j = the mean water of the field at time j and θij is the water content at 

location i at time j. 

The mean relative difference removes the average water content each measurement 

time so that the variations of measurements around the mean can be compared 

throughout the season.  Typically, the mean relative difference values are ordered 

from lowest to highest and presented with error bars to describe the variability found 

at specific sampling locations.  The mean relative differences of the surface soil 
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moisture data is used to evaluate the stability of individual locations as compared to 

the average conditions present within the field. 

GEOSTATISTICAL ANALYSIS    

 Sample semi-variograms were calculated for the surface soil moisture data in 

2000 and 2002.  For the 2000 datasets, the semi-variograms were calculated using 25 

separate lag distances each separated by 0.4 m.  The maximum lag distance for the 

plots was 11 m.  The number of pairs per lag were relatively balanced and averaged 

out to approximately 200 pairs; the minimum number of pairs did not fall below 90 

pairs. For the 2002 surface moisture measurements, the plot size was smaller and the 

measurement rate was higher.  As a result, the semi-variogram was calculated using  

the same number of lags (25) but a smaller lag distance (0.3 m) and a shorter range 

(7.5 m).  The number of pairs in the 2002 measurements averaged out to 

approximately 500 pairs per lag distance.  In both cases, the Surfer software package 

(version 8; Golden Software, Inc) was used to calculate the sample semi-variograms.  

The sample semi-variograms were initially calculated without a directional 

component.   

In a few situations, the results of the semi-variogram calculations did not 

reach a definitive sill value; in these cases, directional variograms were calculated.  

The directional semi-variograms were calculated using a 30 degree search window 

that was oriented at 0, 30,60, and 90 where 0 was east/west and 90 was north/south.  

For both years of soil moisture data, the semi-variograms were calculated separately 

for each sampling date of each plot.  Once the sample semi-variogram had been 
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calculated a theoretical semi-variogram model was fit to each day to see if the spatial 

structure of the soil moisture measurements changed over time. 

Once the sample variogram had been calculated, a theoretical semi-variogram 

model was used to fit the data.  For each day, a spherical model was used to fit the 

data.  Hohn (1988) has documented problems using automated procedures to find the 

best fitting theoretical models for sample semi-variograms in cases where the sample 

semi-variograms have small numbers of points.  As an alternative, he has suggested 

that a visual fit can be justified.  The software system had options to do either an 

automated fit or a visual fit.  The results of the automated procedure did not fit the 

model very well; so visual fitting was performed to model the sample semi-

variogram.  Some general guidelines were followed during the visual fitting process.  

The nugget values were kept as constant as possible.  The random variation contained 

in the nugget throughout the season was thought to have been relatively constant.  

The range and sill settings were varied based on the data for each day.   In the fitting 

process, the preferred theoretical model was a non-directional spherical model; 

however, in cases where the sample semi-variogram did not achieve a definitive sill, 

an anisotropoic model was used to model the variance.  The results of the fittings 

were plotted and the nugget, sill, and range values were recorded.  The Surfer 

software package (version 8; Golden Software, Inc) was used to fit the theoretical 

semi-variogram models to the sample semi-variograms.  The geostatistical analysis 

was performed to determine the spatial relationships present within the surface soil 

moisture measurements and how those relationships changed over time and space. 
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  Sample semi-variograms and theoretical semi-variograms were used to 

determine the spatial relationships for the yield data in Section A for the 2000 and 

2002 growing seasons.  The sample semi-variograms were calculated using all of the 

yield monitor data from Section A.  The sample semi-variograms were calculated 

using the Surfer software package (version 8; Golden Software, Inc).  For the 2000 

yield data, the sample semi-variograms were calculated using 25 lags with a lag 

distance of 3 m for a maximum lag distance of 75 m.  In 2002, the scale of the yield 

sampling changed slightly in response to combine speed so the lag distance was 

increased to 4 m.  The 2002 calculations were conducted for 25 lags and a maximum 

lag distance of 100 m.  For both years, omni-directional semi-variograms were 

calculated. Once the sample semi-variogram was determined, a visual fit of a 

theoretical model was performed.  From the visual fit, the sill, nugget, and range of 

the data were determined.  Of the three characteristics, the range value was 

considered the most important because of its potential impacts on the spatial 

relationships in the surface water content data.   The geostatistical analysis of the 

yield data was used as background information in the spatial analysis of the surface 

soil moisture data.   

FORCASTING ANALYSIS 

 Soil moisture data can be very labor intensive and expensive to acquire; so the 

last part of the study was spent evaluating the forecasting potential of the 2002 

surface soil moisture datasets.  The goal was to forecast the water content 

measurements in the later parts of the season using a combination of an 

autoregressive function and datasets from an earlier sampling date.  The forecasts 
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would be used to test the ability to predict the surface soil moisture within each plot 

under different conditions.  The first step was to add a serpentine variable to surface 

soil moisture measurements to convert the 2-dimensional spatial dataset to an equally 

spaced transect dataset. 

The serpentine pattern was constructed by adding an id variable to the surface 

soil moisture data starting in the southwest corner of each plot.  The pattern had 17 

points in each row and resulted in 289 equally spaced sampling intervals.  Once the id 

variable was created, the first step in the autoregressive modeling was used to identify 

and evaluate the dataset. 

The first step of the autoregressive modeling was to identify the 

autoregressive model.  The modeled data was tested to 34 lags so that measurements 

in the neighboring row would be tested.   The autocorrelations, cross correlations, 

partial autocorrelations, and inverse autocorrelations were calculated to determine 

whether the data exhibited stationary.  In the evaluation stage of the ARMA 

modeling, the autoregressive model was defined, the input variables were defined, 

and each factor was tested for significance. 

The first stage of the evaluation procedure was to define the ARMA 

parameters.  Due to the variability in the data, the moving average (q) parameter was 

set to 0 so that only an autoregressive model would be used.    As a starting point, the 

autoregressive order parameter (p) was set to 34 to evaluate the observations that 

occurred directly before the current observation as well as the observed values that 

had occurred in the adjacent row.  The significance of each order of the 

autoregressive parameter was checked using a conditional least squares estimation 
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procedure.  Each sampling date was tested separately.  Results from the conditional 

least squares estimations found that the autoregressive parameters were significant at 

a level of 3 or less for all of the sampling dates.  Once the autoregressive parameter 

(p) was tested, the input datasets were the next step in the evaluation procedure.   

 Once the autoregressive parameter was defined, additional testing was 

performed to evaluate the information from some of the previously sampled datasets.  

In this test, each of the previous datasets was evaluated using conditional least 

squares estimations to determine whether it was adequately significant to be included 

in the model of the current dataset.  The initial model of the current soil moisture data 

included all of the previously sampled datasets and the autoregressive parameter.  

Using that model, a conditional least squares test was performed and each element of 

the model was tested for significance.  Non-significant (>0.05) portions of the model 

were removed and the conditional least squares test was repeated.  This process 

continued until only significant portions of the model remained.  The final model, 

which included the autoregressive parameters and the significant input dates, was 

used to perform a forecast of the current dataset. 

Once the identification and evaluation stages were completed, forecasts of the 

surface soil moisture data were performed.  The initial forecasts were conducted 

using the complete model, which included all orders of the autoregressive parameters 

and all of the significant input datasets.  For each day, the AR coefficients were 

calculated and recorded for each of the model components.  The results of the 

forecasts were plotted against the observed data and R-squared values were 

calculated.  Once the complete model had been evaluated, each of the input datasets 
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and autoregressive parameters were removed one by one to determine the amount of 

influence each one had on the forecasted data.  The changes to the forecasts were 

used to evaluate the effectiveness of the input datasets and the autoregressive 

parameters in the forecasting of the surface soil moisture. 

RESULTS AND DISCUSSION 

PRECIPITATION - 2000 

The precipitation observed in Beltsville during June, July, and August of 2000 

exceeded the 30-year average rainfall during that time period.  The observed rainfall 

for June, July, and August was 11.8 cm, 14.9 cm, and 10.9 cm, respectively. The 

average Beltsville precipitation from 1971-2000 was 9.11 cm in June, 10.39 cm in 

July, and 9.37 cm in August (Maryland’s State Climatologist’s office).  During the 

2000 growing season, there was a large number and an even distribution of rainfall 

events (Figure 7).  The intensity of the rainstorms was mild to moderate; and so, there 

were not significant problems with flooding, runoff, or erosion.  In the 2000 growing 

season, the amount and distribution of rainfall lead to above average soil moisture 

conditions. 

SURFACE SOIL MOISTURE - 2000 

 The temporal range of the mean surface soil moisture data for the plots during 

the 2000 growing season was 10-30% volumetric water content (Figure 8).  In 

general, slightly higher plot mean soil moisture values (3-6% higher) were found in 

AL1 and AL3 plots compared to the AL4 and AH3 plots.  Over the duration of the 
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Figure 7.  Daily rainfall quantities in millimeters recorded in Beltsville, MD during 
the 2000 growing season.  The 2000 data was collected from the Beltsville 
Agricultural Research Center’s  Dairy weather station. 
 

growing season, the soil moisture levels remained high and there were only four rain-

free intervals that exceeded 4 days.  The intervals without rain were July 3rd – July 

11th (Days 186-194), Aug 6th – Aug 15th (Days 220-229), and Aug 18th – Aug 24th 

(Days 231-238).   All the surface soil moisture sampling dates in the 2000 growing 

season were within 4 days of a rain event, so, the data is representative of the wetter 

portion of the potential range of water contents.  The standard deviations of the 

average plot soil moisture varied only slightly over time during the growing season.  

Rainfall events or dry conditions (ie. extreme values) resulted in relatively uniform 

soil moisture conditions, and hence, smaller standard deviations.  Intermediate 

conditions had large ranges of soil moisture values, which tended to have higher 

standard deviations.  The temporal variations of the spatial plot water contents were 

directly related to the rainfall events during the growing season. 
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Figure 8. The mean and standard deviation of the surface soil moisture in each 
of the 2000 plots throughout the season.  
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Contour plots of the seasonal averages and variances of the observed surface 

soil moisture were constructed from the 2000 datasets (Figure 9).  The nested design 

used for the soil moisture sampling resulted in an uneven distribution of points, which 

potentially contributes to smoothing of the data during the kriging procedure.  The 

sampling locations are illustrated in the first column of Figure 9 to clarify the 

locations of the sampled data.  In general, the distribution of the sampling points does 

not appear to have dramatically influenced the soil moisture contour plots because the 

positions of the contours appears to be mixed between sampled and unsampled areas.   

The contour plots of the seasonal mean of the surface soil moisture 

measurements illustrated the wet and dry areas that were present in each of the plots.  

The AL1 plot had two predominant wet areas (θ > 27%) in the northeast and 

southwest corners and a band of 24-27% volumetric water content measurements 

from the northwest corner to the southeast corner.  In AL3, higher soil moisture 

contents (24-27%) were located on the eastern side of the plot while the center and 

western sides of the plot were slightly drier (21-24%).  The plot AH3 exhibited a wet 

(θ > 27%) to dry (θ < 21%) pattern from the northwest corner to the southeast corner.  

Aside from the northwest corner of AH3, which had a small section of 27-30% soil 

moisture, the AH3 plot had relatively large areas of consistent soil moisture that 

ranged from 18-24% volumetric water content.  Finally, the AL4 plot had the highest 

level of surface soil moisture variability of the plots with the average seasonal surface 

soil moisture measurements ranging from 15-30% volumetric water content.  In each 

of the plots, there were areas that could be defined as wet or dry based on their 

average seasonal soil moisture. 
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Figure 9.  Sampling locations, seasonal means, and seasonal variances of the 
volumetric surface soil moisture measurement for the AH3, AL1, AL3, and AL4 plots 
for the 2000 growing season. 
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  Contour plots of the variance of the seasonal soil moisture data demonstrated 

the spatial stability of the measurements within each plot (Figure 9).  AL1 had the 

lowest levels of seasonal soil moisture variation of all 4 plots.  Within the AL1 plot, 

the areas exhibiting the highest water contents had the most variation.  In the AH3 

and AL3 plots, the standard deviations observed in the AH3 and AL3 plots were 

higher than the AL1 plot.  In AH3, the area of highest water content had the highest 

standard deviation.  In AL3, the wettest area had a very low standard deviation 

indicating that the water contents remained high and varied only slightly throughout 

the season.  The AL4 plot was the most variable of the 4 plots.  The highest standard 

deviations were found in the wettest areas; however, the intermediate soil levels also 

had high standard deviations.  The variance of the seasonal soil moisture values 

illustrated the changes or lack of changes of the soil moisture levels during the 

growing season. 

The spatial distribution and variability of the surface soil moisture found in 

the 2000 plots indicates some of the variations present in the soils from this field.  

The classification of the soil type for this area was comprised of a mixture of soil 

series.  The complex designation of soils indicates that changes in the physical 

properties of the soil occur over very short distances.  The change in physical 

properties of the soil could be as a result of small scale changes in elevation, erosion, 

different parent material, or movement of material from adjacent areas.  The 

distribution of surface soil moisture in these plots would reflect some of these subtle 

changes in the soil’s properties.  Unlike soil moisture sampled from a consistent soil 

mapping unit, the soils in complex mapping units would tend to have higher variation 
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due to the changes of the physical properties of the soil.  The distribution and 

variation of the surface soil moisture observed in 2000 indicates the variation in the 

soils from this area.  

CONTINUITY OF WATER CONTENTS – 2000 

 A measurement of continuity of the water content measurements observed in 

each plot was determined using an indicator variable based on the difference between 

the observed soil moisture and the mean value of the plot for that sampling period 

(Petrone et al 2003).  The difference of the soil moisture calculations were plotted on 

contour plots with –1 representing a value less than the mean, zero representing the 

mean, and +1 representing a value exceeding the mean.  The plots were constructed 

for each plot on each sampling date.  (Figures 10-13)  The contour plots were 

evaluated for soil moisture patterns that were persistent throughout the growing 

season.  

Patterns of wet and dry areas of soil moisture were present in each of the plots 

during the sampling interval.  The AH3 plot had a wet area (northwest corner) and a 

dry area (southeast corner) that were persistent in the contour plots throughout the 

growing season (Figure 10).  The AL1 plot has consistently wet northeast and 

southwest corners and a drier band that ran across the plot from the northwest corner 

to the southeast corner. (Figure 11)  The patterns of relative soil moisture levels in 

plot AL3 were not as continuous or well defined as in the other plots (Figure 12).  

 45 
 



 

 

 
 
Figure 10.  Spatial patterns of surface soil moisture in the AH3 plot during the 
growing season.  Each measurement location was compared to the plot mean and an 
indicator value of -1 (below mean) or 1 (above mean) was assigned.   
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Figure 11.  Spatial patterns of surface soil moisture in the AL1 plot during the 
growing season.  Each measurement location was compared to the plot mean and an 
indicator value of -1 (below mean) or 1 (above mean) was assigned.   
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Figure 12.  Spatial patterns of surface soil moisture in the AL3 plot during the 
growing season.  Each measurement location was compared to the plot mean and an 
indicator value of -1 (below mean) or 1 (above mean) was assigned.   
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Figure 13 .  Spatial patterns of surface soil moisture in the AL4 plot during the 
growing season.  Each measurement location was compared to the plot mean and an 
indicator value of -1 (below mean) or 1 (above mean) was assigned.   
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 Unlike the other plots, the soil moisture levels in AL3 did not vary 

dramatically and as a result, the observed soil moisture that fell above and below the 

mean was not consistent from sample date to sample date.   Finally, the AL4 plot 

exhibited a moderate level of continuity despite the high variability within the plot. 

(Figure 13)  The relative soil moisture patterns split the AL4 plot down the middle 

with wetter soil moisture on the west side and drier soil moisture on the east side.  

These results support the continuity of the surface soil moisture data within the plots 

and the ability to illustrate the patterns using an indicator variable.    

TEMPORAL STABILITY OF THE INDIVIDUAL LOCATIONS - 2000 

The temporal stability of each surface soil moisture sampling location was 

tested using the mean relative difference of the soil moisture data.  The mean relative 

difference is the average difference between the plot mean and the observed soil 

moisture throughout the sampling interval.  In Figure 14, the calculations of the mean 

relative soil moisture difference for each plot are sorted from the lowest to the highest 

value.  The range of mean relative differences in plot AH3 (-0.44 to 0.73) and AL4   

(-0.42 to 0.57) was higher than the plots AL1 (-0.26 to 0.33) and AL3 (-0.31 to 0.30).   

The range of the mean relative differences indicates some variation between 
plots; however, most of the difference between the ranges is accounted for by the 
extreme values in each plot.  The standard deviation of the mean relative difference, 
however, indicates a clear difference in the variation of the plots.  The average 
standard deviation in plot AL4 (0.18) is significantly higher than AL1 (0.10), AL3 
(0.11) and AH3 (0.13).  The range and standard deviation of the mean relative 
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Figure 14. Rank order of the mean relative difference and standard deviations of the 
surface soil moisture data by location during the 2000 growing season. 
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 difference of the surface soil moisture locations indicate that the temporal stability of 

the soil moisture measurements in the AL4 plot is much lower than the temporal 

stability found in the other three plots.         

SURFACE SOIL WATER  2000– SEMI-VARIOGRAMS 

The spatial relationships present in the surface soil moisture data in 2000 were 

tested using semi-variograms. Sample semi-variograms were calculated and fitted 

using spherical semi-variogram models for each plot on each sampling date (Figures 

15-18).  The omni-directional spherical models estimated the shape of the sample 

semi-variograms in 3 of the 4 plots.  In the AL4 plot, the omni-directional search 

window produced a sample semi-variogram that continued to rise throughout the 

sampling distance and did not exhibit a definitive sill value.  Sample semi-variograms 

that fail to reach a sill value indicate that the variation between samples continues to 

increase beyond the range of sample data.  Factors such as elevation or changing soil 

texture could produce an increasing variogram without a sill at short distances 

(<100m), and as a result, the omni-directional data could not be modeled using a 

spherical model.  For the AL4 plot, an anisotropic sample semi-variogram was 

calculated using a 90-degree search window oriented in a north-south direction.  The 

results of the anisotropic search window produced a directional sample semi-

variogram with a sill that could be fitted using a spherical model.  The spatial 

relationships in each plot were compared using the nugget, sill, and range values of 

each of the fitted models. (Table 2) 
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Figure 15. Semi-variance (cm3/cm3)2 plotted versus lag distance for omni-directional 
sample (black line with dots) and fitted theoretical (blue line) spherical semi-
variogram models for each day that the surface soil moisture data was collected in 
Plot AL3 during the 2000 growing season.
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Figure 16.  Semi-variance (cm3/cm3)2 plotted versus lag distance for omni-directional 
sample (black line with dots) and fitted theoretical (blue line) spherical semi-
variogram models for each day that the surface soil moisture data was collected in 
Plot AL1 during the 2000 growing season.
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Figure 17.  Semi-variance (cm3/cm3)2 plotted versus lag distance for anisotropic 
sample (black line with dots) and fitted theoretical (blue line) spherical semi-
variogram models for each day that the surface soil moisture data was collected in 
Plot AL4 during the 2000 growing season.  The search window was oriented 
North/South and the search window was 90 degrees.
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Figure 18.  Semi-variance (cm3/cm3)2 plotted versus lag distance for omni-directional 
sample (black line with dots) and fitted theoretical (blue line) spherical semi-
variogram models for each day that the surface soil moisture data was collected in 
Plot AH3 during the 2000 growing season. ariograms are spherical models. 
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Table 2.  Parameters of the theoretical spherical semi-variogram models fitted to the 
surface soil moisture data for the 2000 growing season. 

Plot Day Nugget Sill Range (m)
Total 

Variance 
Water 

Content 
Anisotropic 

AL4 172 0.005 0.115 8 0.12 0.233 Yes 

 188 0.005 0.085 8.5 0.09 0.211 
Yes 

 193 0.005 0.1 9 0.105 0.177 Yes 

 200 0.005 0.087 8.5 0.09 0.254 Yes 

 203 0 0.054 10 0.054 0.267 Yes 

 222 0.005 0.08 9 0.085 0.27 Yes 

 236 0.005 0.048 4.8 0.053 0.128 Yes 

AH3  172 0.015 0.074 5 0.089 0.219 No 

 178 0.015 0.105 6 0.12 0.235 No 

 192 0.005 0.045 13 0.05 0.23 No 

 197 0.015 0.035 10 0.05 0.263 No 

 217 0.015 0.063 5 0.078 0.237 No 

 222 0.015 0.05 4.5 0.065 0.224 No 

 230 0.015 0.025 6 0.04 0.177 No 

 236 0.015 0.02 2.7 0.035 0.124 No 

 251 0.015 0.023 6 0.038 0.252 No 

AL3 171 0.007 0.06 6.5 0.067 0.268 No 

 188 0.007 0.048 6 0.055 0.177 No 

 192 0.007 0.045 8 0.052 0.214 No 

 195 0.007 0.029 5 0.036 0.167 No 

 200 0.007 0.014 9 0.021 0.281 No 

 203 0.007 0.04 5.5 0.047 0.228 No 

 217 0.007 0.007 6 0.014 0.306 No 

 222 0.007 0.058 4 0.065 0.231 No 

 251 0.007 0.035 6 0.042 0.266 No 

AL1 171 0.02 0.051 9 0.071 0.274 No 

 178 0.007 0.075 9 0.082 0.269 No 

 192 0.007 0.043 9 0.05 0.291 No 

 197 0.007 0.054 10 0.061 0.309 No 

 217 0.007 0.045 12 0.052 0.314 No 

 222 0.007 0.02 9 0.027 0.3 No 

 230 0.007 0.085 12 0.092 0.23 No 

 235 0.007 0.065 10 0.072 0.195 No 

  251 0.007 0.025 9 0.032 0.304 No 
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The nugget values for the 2000 plots ranged from 0 to 0.02 (cm3/cm3)2.  

Previous studies have found that the estimations of the nugget can be unreliable 

primarily due to a lack of data. (Western et al.; 1999)  For this part of the study, the 

nugget value is small compared to the overall variance observed in the system.    

Since the impact of the nugget value does not significantly change the overall 

variance of the system, discussions on the nugget value will not be separated from 

discussions on the overall variance of the system.  

The average sill values for the fitted semi-variograms were 0.081 (cm3/cm3)2 

for AL4, 0.0489 (cm3/cm3)2  for AH3, 0.0373 (cm3/cm3)2  for AL3, and 0.0514 

(cm3/cm3)2  for AL1. The sill values appear to change in response to the water 

content.  Dry conditions (< 0.15 cm3/cm3) or very wet (> 0.27 cm3/cm3) conditions 

resulted in lower variance levels and smaller sill values. Intermediate water contents 

between 0.20-0.27 cm3/cm3 produced the highest sill values and highest overall 

variance levels for the plots.  

The average range values for the 2000 semi-variogram calculations were less 

than 10 m for all of the observed soil moisture plots and indicates a typical level of 

variability observed within the surface soil moisture data.  Plots AL3 (6.2 m) and 

AH3 (6.4 m) had similar average range values.  Plots AL4 (8.25 m) and AL1 (9.8 m) 

had slightly longer average range distance. The ranges of spatial dependence in the 

surface soil moisture data are consistent with findings by Greminger et al (1985) who 

observed spatial structure in water content values up to 10 m. 

  There were some variations in the ranges between sampling dates; however, 

the cause of the variations appear to be related to the average water contents of the 
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plots and the variability of the soil moisture distribution.  In every plot, the range 

increased between the lowest and highest water content readings.  At intermediate 

soil moisture values, the relationship between range and water content varied and was 

not as well defined.  Redistribution of water after a rainfall, uneven drying conditions, 

and plant uptake contributed to the spatial variability of the surface soil moisture at 

the intermediate soil moisture conditions.  These observations are consistent with 

work by Blackmore et al. (1999) who found that within field variation of soil 

moisture and its association to water holding capacity was a major contributing factor 

to differences in yields.  The high variability at the intermediate soil moisture levels 

was reflected in the semi-variogram calculations.  Some of the variation associated 

with the range estimations could be associated with sill identification.  Of the semi-

variogram components, the range distances appear to have a higher level of temporal 

stability compared to the sill values over the duration of the growing season. 

SOIL TESTING – 2000 PLOTS 

 Soil testing (University of Maryland Cooperative Extension Service Soil 

Testing Lab) in 2001 determined the soil nutrient and physical properties of the soil 

moisture plots (Table 3).  Soil textural analysis indicated the soils within the plot 

areas were either sandy loams (AH3, AL3, AL4) or silt loams (AL1).  Soil pH ranged 

from 6.3 to 7.0 and was within the acceptable range for corn crop growth and nutrient 

availability in all of the plots.  In plots AL4 and AH3, there was a higher organic 

matter concentration than in plots AL1 and AL3.  The results of the other nutrient 

tests were qualitatively evaluated using an interpretive classification table provided 

by the University of Maryland Soil Testing Lab.  
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Table 3.   Nutrient analysis results from University of Maryland Soil Testing Lab for 
soil samples from 0-30 cm taken in 2001 
 
PLOT pH Magnesium 

(kg/ha) 
Mg 

Phosphorus
(kg/ha) 

P205
 

Potassium
(kg/ha) 

K2O 

Calcium
(kg/ha) 

Ca 

Organic 
Matter 

(%) 

Texture

AH3 
 

6.4 128 301 81 133 3.6 SL 

AH3 
 

6.6 129 327 101 141 2.7 SL 

AL1 
 

7.0 129 292 149 196 2.4 SiL 

AL3 
 

6.3 96 130 79 77 2.0 SL 

AL4 
 

6.3 129 371 105 126 3.2 SL 

AL102 
  

6.9 123 345 115 149 2.3 SL 

AL102 
  

7.0 114 279 110 196 2.5 SiL 

AL402 
  

6.6 129 168 85 180 3.3 SiL 

AL402 
 

6.5 116 193 66 125 3.0 SiL 

 
 
 
 

The magnesium, phosphorus, calcium, and potassium levels were analyzed 

and classified according to the recommendations for corn crop growth.  The 

magnesium levels were 96-129 kg/ha Mg, which fell within the medium category, 79-

139 kg/ha, of the classification table.  The phosphorus levels in the plots ranged from 

130-371 kg/ha P2O5 and were considered optimum, 115-230 kg/ha P2O5, to excessive 

>230 kg/ha P2O5.  All of the plots were classified into the low category for calcium 

(0-481 kg/ha Ca); the test results ranged from 77-196 kg/ha Ca.  The potassium levels 
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were split into low (40-94 kg/ha K2O) and medium categories (95-179 kg/ha K2O).  

Plot AL3, 79 kg/ha K2O, was classified as low potassium while AL1, 149 kg/ha K2O 

and AL4, 105 kg/ha K2O, fell into the medium category.  Plot AH3 was split between 

both potassium categories; one sample was considered medium, one was considered 

low.  The soil testing results indicated slight variations between plots that are 

consistent with the mapping units and soil variability within Section A.  

The soil test results are consistent with the management practices of the field.  

The high soil P levels are most likely attributable to the continual use of digested 

dairy manure fertilizer.  Manure fertilizers when applied to supply nitrogen needs for 

corn tends to provide excessive amounts of phosphorus and can lead to high soil 

phosphorus levels in only a few years of use.    The calcium and potassium levels are 

comparable with soils in the Beltsville region that have similar sandy soil textures.  

The magnesium, phosphorus, calcium, and potassium portions of the soil test results 

indicate that the potential for plant growth attributed to soil fertility does not appear to 

be significantly different between the plots.  The potential for plant growth is 

important to the soil moisture measurements because the soil moisture could be 

influenced by canopy size.  For this portion of the soil test, the similar nutrient 

concentrations indicate that the potential plant canopy size would be expected to be 

approximately equal and as a result, the impact on the soil moisture levels from these 

nutrients should not be significant.  

 The nitrogen fertilizer in Section A was applied at a rate that should not have 

limited average corn growth and production.  The soil nitrogen levels were tested 

after planting; and the sidedress application rate for Section A was adjusted based on 
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the soil test results and the production goals of the field.  Under average growing 

conditions, the corn crop will use nitrogen at a rate slightly below the application rate.  

However, under optimum conditions, the corn crop’s nitrogen use could exceed the 

application rate at which point the spatial distribution of soil nitrogen become very 

significant for plant growth and production.  Another concern with optimum growing 

conditions is leaching.  The additional soil moisture could leach the soil N from the 

soil before the corn plants can uptake it for growth.    The spatial distribution of soil 

nitrogen, instead of soil moisture, could become the predominant limiting growth 

factor in corn crop production during optimum growing conditions.  With high 

rainfall amounts during the 2000 growing season, the soil moisture would be 

expected to be less of a growth-limiting factor than during an average rainfall year 

and the nutrient concentration would be expected to be more of a limiting factor.  

 YIELD DATA – 2000 

The observed 2000 corn grain yields in all of the plots exceeded the expected 

production values described in the NRCS Beltsville Agricultural Research Center 

Special Soil Report (1995).  The report’s predictions were 6.27-7.53 MT/ha and were 

based on the predominant soil-mapping units found in each plot.  The observed corn 

grain yields in the plots were 10.73 MT/ha for AH3, 9.98 MT/ha for AL3, 8.85 

MT/ha for AL1, and 8.41 MT/ha for AL4.  The highest yields (AH3 and AL3 plots) 

were located in the center of the field.  The AL1 plot, located slightly to the southeast 

of the center of the field, and the AL4 plot, which was located on the edge of the 

southwestern part of the field, produced approximately 20% less.  The spatial 

distribution of the yields indicates the production variability that occurred in each of 
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the plots. (Figure 19)  The higher yielding plots, AL3 and AH3, had ranges of 3.20-

15.13 MT/ha and 5.77-12.81 MT/ha, respectively.  The AL1 plot had a range of 3.83-

11.86 MT/ha.  The AL4 plot with the lowest average production had the largest range 

with observations between 1.63-16.88 MT/ha.  The average observed yields and 

ranges of corn production for 2000 were much higher than was expected for this field. 

 Sample semi-variograms were calculated and theoretical semi-variogram 

models were fit for the yield data for 2000 in Section A.  The range of the spatial 

dependence was found to be 40 m and the total variance (sill + nugget) in 2000 was 

138 (MT/ha)2 (Figure 20).  The spatial relationships within the yield data are a direct 

result of the growing conditions present within the field during the 2000 growing 

season including the soil moisture levels and the available nutrient levels. 

 The relationship between the surface soil moisture patterns and the 

distribution of yields for the 2000 growing season was not clear due to the high levels 

of variation in both datasets.  In plots AL3, AL4, and AH3, the mean relative 

difference of the surface soil moisture data plotted against the yield data resulted in a 

wide distribution of points that lacked any perceivable relationship.  Previous studies 

have found that direct relationships between yield and surface soil moisture can be 

adversely affected by additional factors including nutrient concentrations and small 

scale variations in elevation (Cavero et al., 2001; Kravchenko and Bullock, 2000).   
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Contour Plots of 2000 Yield Data Within 
Each Soil Moisture Plot. 

 

 
 

Figure 19.  Contour maps of the corn yield data collected from plots AH3, 
AL4, AL1, and AL3 during the 2000 growing season.
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Semi-variogram plots for the Yield Data in 
Section A. 

 

 
 
Figure 20. Omni-directional sample (black line with dots) and fitted theoretical (blue 
line) spherical semi-variogram models for the corn yield data collected in 2000 and 
2002 from Section A of OPE3.
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Areas of high and low production did not coincide consistently with the patterns of 

surface soil moisture.  In the AL1 plot, however, there appeared to be a relationship 

between the yield data and the patterns of soil moisture.  The higher yield values in 

AL1 coincided with the soil moisture values below the mean while the lower yield 

values were associated with the higher soil moisture levels.  The AL1 plot represented 

higher soil moisture levels and lower variation than the other plots which could 

explain the inverse soil moisture to yield relationship; however, the lack of 

relationships in the other plots suggests that the small scale variability in soil moisture 

and yield is too high to determine a definitive small scale relationship between the 

two variables for the 2000 growing season.     

PRECIPITATION - 2002 

The 2002 growing season was much drier than the 2000 growing season.  

Rainfall quantities in 2002 were 5.6 cm in June, 6.1 cm in July, and 6.4 cm in August.  

These values were lower than the average monthly rainfall in Beltsville by 39% in 

June, 41% in July, and 32% in August (Maryland’s State Climatologist’s Office).  

Compared to the observed rainfall during 2000, the 2002 season had 51% less 

precipitation for the combined months of June, July, and August.    The reduced 

amounts of rainfall in 2002 were distributed relatively evenly throughout the season 

(Figure 21).  The precipitation during the 2002 growing season resulted in lower soil 

moisture values than the 2000 growing season. 

During the 2002 sampling period (Day 156-Day 227), there were 7 intervals 

without rain that exceeded 4 days.   Three of the intervals were 4-6 days and started 
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on Days 152, 158, and 209.  Three slightly longer dry periods of 7-10 days were 

observed starting with Days 171, 180, and 196.  The longest dry period was 22 days 

starting on Day 218.  From Day 209-239, only three days (215-217) recorded any 

rainfall. 

 

Rainfall Quantities BARC Summer 2002
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Figure 21.  Daily rainfall quantities in millimeters recorded in Beltsville, MD during 
the 2002 growing season.  The 2002 data was collected from a Campbell weather 
station mounted in Section B of the OPE3 field. 

 

SURFACE SOIL MOISTURE 2002 

 The observed soil moisture measurements during the 2002 growing season 

reflected the lower rainfall quantities and were much lower than in 2000.  The surface 

soil moisture means for the two plots ranged from 4.5% to 19% and remained around 

10% for the majority of the growing season (Figure 22).  The AL102 plot was slightly 

wetter by 3-5% than the AL402 plot throughout the sampling period.  In the final  
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Figure 22. The average surface soil moisture in each of the 2002 plots throughout the 
season with the daily changes in standard deviations. 
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portion of the sampling interval, both plots had significant decreases in soil moisture 

associated with the dry period from July 27 - August 26 (Days 209-239).     

 The 2002 contour plots of the average seasonal surface soil moisture describe 

the lower moisture conditions that were present compared to the 2000 growing 

season.  Although the soil water was reduced, the 2002 contours of similar soil 

moisture appear to be a comparable size to the 2000 data (Figure 23).   Although the 

sizes of the contours were approximately equal, the 2002 data appeared to be more 

diversely distributed and not as continuous as observations in 2000.  The diverse 

structure would not be unexpected since drying of the surface soil would not occur 

consistently and would depend on several factors including vegetation, climate, and 

soil properties.   The diverse structure of the surface soil moisture exists in both the 

mean and variance contour plots for the AL102 and AL402 plots.  The 2002 contour 

plots of the seasonal mean of the surface soil moisture indicate that, compared to the 

2000 data, the soil was drier, with smaller areas of consistent water, and similar 

amounts of variation. 

 The soil properties of the 2002 plots contributed to the distribution of the 

surface soil moisture.  Similar to the 2000 plots, the 2002 plots were located on 

highly variable soils.  Since the overall soil moisture conditions were drier in 2002, 

the variability of the soil properties and its impact on the soil moisture conditions at 

individual locations could only be separated from the overall soil moisture conditions 

present in the system for the extreme cases.  Significant changes in clay content or 

localized depressions are two examples of these extreme cases.  Similar to the 2000 
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growing season, the surface soil moisture data observed in 2002 was impacted by the 

variations present in the soil’s properties.        

CONTINUITY OF WATER CONTENTS – 2002 

 Contour plots of the patterns of the 2002 soil moisture data demonstrate the 

changes to the continuity of the surface soil moisture during dry conditions.  Similar 

to the 2000 data, an indicator variable was used to construct contour plots of the 

difference between the observed soil moisture content at the sampled locations and 

the average soil moisture content for the plot during the sampling interval.  Observed 

soil moisture above the mean was defined as a 1, while soil moisture below the mean 

was designated a –1.  Mean soil moisture values were classified as 0.    For the AL1 

plot, the contour maps of the indicator variable started as large polygons early in the 

season (Figure 24).  As the season progressed, the polygon size was reduced and the 

pattern became oriented with the row direction.  In AL4, the north-south orientation 

of the pattern was also evident but the polygon size remained larger throughout the 

season (Figure 25).  The last three sampling dates for both plots fell within the 22-day  

dry period.  The results from these sampling dates illustrate the drying pattern of the 

surface soil moisture.  The high variability in both plots resulted in an interpolation 

that changed from a gradual pattern of contours during wet soil moisture conditions to 

a set of isolated regions during dry soil moisture conditions. 
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Figure 23.  Contour plots of the seasonal means and variances of the surface soil 
moisture data sampled in the Al102 and AL402 plots for the 2002 growing season. 
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Figure 24.  Spatial patterns of surface soil moisture in the AL102 plot during the 2002 
growing season. 
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Figure 25.  Spatial patterns of surface soil moisture in the AL402 plot during the 2002 
growing season. 
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TEMPORAL STABILITY OF WATER CONTENTS – 2002 

Analysis of the temporal stability of the surface soil moisture locations using 

the mean relative difference exhibited similar characteristics as the 2000 growing 

season. The range of the mean relative difference for AL402 was –0.28 to 0.87 while 

AL102 is -0.40 to 0.87 (Figure 26).  The plot AL4/AL402 mean relative difference 

ranges decreased 15% between 2000 and 2002.  Considering the difference in 

growing conditions between the two seasons, the change in the AL4/AL402 mean 

relative difference is not very high and it indicates that there is stability in the relative 

water contents observed in the AL4/AL402 area of the field over wet and dry 

conditions.  On the other hand, in AL1/AL102, the mean relative difference range 

increased by 55%.  The increase in mean relative difference indicates that the 

variability of the relative water contents has gone up dramatically from the 2000 

growing season.  Da Silva et al (2001) found temporal stability of soil moisture were 

closely related to stable soil properties such as texture and organic matter.  The 

change in surface soil moisture’s mean relative difference range between the two 

years may be as a result of differences in soil properties in the sampling areas.  

Although the change between years of the distribution of the mean relative difference 

was considerably different for the plots, the variability of the mean relative difference 

of the surface soil moisture between plots sampled in the 2002 growing season was 

not very high.   The reduced rainfall quantities resulting in lower soil moisture 

measurements could explain the lack of difference between mean relative difference 

of the surface soil moisture in the plots during the 2002 season.   
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Figure 26. Ranked order of the relative mean difference and standard deviation of the 
surface soil moisture measurements during the 2002 growing season.  
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SURFACE SOIL MOISTURE 2002 - SEMI-VARIOGRAMS 

 The spatial relationships in the 2002 soil moisture data were tested using 

semi-variograms.  The semi-variogram models for plot AL102 had ranges less than 

6m, nuggets of 0.05 (cm3/cm3)2, and sills between 0.071 and 0.153 (cm3/cm3)2 

(Figure 27).  In the final four samples of the year, the magnitude of the nugget was 

more than 50% the magnitude of the sill.  In the AL402 plots, the nugget value ranged 

from 0.008 (cm3/cm3)2 to 0.03 (cm3/cm3)2, the sill value ranged from 0.012 

(cm3/cm3)2  to 0.056 (cm3/cm3)2, and the average range was 5.6 m (Figure 28).   For 

the 2002 surface soil moisture data, the spherical semi-variogram models had shorter 

ranges, larger nuggets, and smaller sills compared to the 2000 semi-variogram models 

(Table 4).  

 The differences between the 2000 and 2002 semi-variogram models illustrates 

the changes in the spatial patterns of the surface soil moisture.  The dry conditions in 

2002 lead to patchy soil moisture that had less spatial dependence and more random 

variation than the 2000 growing season.  In 2000, the highest moisture levels 

exhibited less spatial dependence; however, at the intermediate levels, the overall 

variance level was high and the spatial dependence was high.  

SOIL TESTING - 2002 PLOTS 

The non-nitrogen nutrient concentrations of the 2002 surface soil moisture plots were 

evaluated using relative sampling locations from the 2001 soil fertility sampling.  

Most of the nutrient values (pH, Mg, Ca, OM) were found to be very similar to the 

2000 phase of the study (Table 3).  The potassium levels differed slightly between the 
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Figure 27.  Semi-variance (cm3/cm3)2 plotted versus lag distance for omni-directional 
sample (black line with dots) and fitted theoretical (blue line) spherical semi-
variogram models for each day that the surface soil moisture data was collected in 
Plot AL1 during the 2002 growing season. 
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Figure 28. Semi-variance (cm3/cm3)2 plotted versus lag distance for omni-directional 
sample (black line with dots) and fitted theoretical (blue line) spherical semi-
variogram models for each day that the surface soil moisture data was collected in 
Plot AL4 during the 2002 growing season. 
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Table 4.  Parameters of the theoretical spherical semi-variogram models fitted to the 
surface soil moisture data for the 2002 growing season. 
 

Plot 
 

Day 
 

Nugget 
 

Sill 
 

Range 
(m) 

 Total Variance 
(nugget + sill) 

Water Content 
(%) 

AL1 2002 156 0.05 0.153 6 0.153 10.9 
 177 0.05 0.105 1.5 0.105 12.5 
 192 0.05 0.08 4 0.08 11.8 
 212 0.05 0.098 1.5 0.098 12.4 
 220 0.05 0.08 1.9 0.08 10.5 
 227 0.05 0.071 2.2 0.071 6.3 

AL4 2002 177 0.02 0.052 5 0.052 6 
 192 0.016 0.022 6 0.022 6 
 212 0.03 0.056 5 0.056 18.1 
 220 0.02 0.03 6 0.03 8 
 226 0.008 0.013 6 0.012 4.5 
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two experimental areas.  The soil of AL402 was classified in the low potassium 

category, 40-94 kg/ha K2O, while the soil of AL102 fell into the medium 95-179 

kg/ha K2O category.  Texture analysis indicated a slight change in texture from sandy 

loam to silt loam between locations within the AL102 plot.  The change in texture 

was probably as a result of the variability of the mapping unit in AL102.  The soil test 

results indicated that the nutrient levels in AL102 and AL402 were similar to the soil 

conditions present in the 2000 plots. 

Nitrogen concentrations in 2002 should have been sufficient to supply the 

corn crop.  Similar to the 2000 growing season, pre-sidedress nitrogen sampling was 

used to adjust the application rate of nitrogen at the beginning of the growing season.  

Nitrogen should only have been limiting in cases where the growth and development 

of the corn crop exceeded the average production values.  

YIELD DATA – 2002 

 The observed corn grain yields in 2002 were much lower than in the 2000 

growing season.  Yield data for plot AL402 was the lower than plot AL102 with a 

mean yield value of 3.89 MT/ha and a range of 0.19-5.77 MT/ha.  In the AL102 plot, 

the observed yields had a mean value of 6.53 MT/ha and a range of 3.64-7.78 MT/ha 

(Figure 29).  The 2002 yields were reduced in comparison to the levels observed in 

2000; and in the case of AL402, the yields were less than the expected production 

values of the NRCS Beltsville Agricultural Research Center Special Soil Report 

(1995). 
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The yield semi-variogram for 2002 had an increased range and a lower 

variance than the 2000 yield semi-variogram.  The range of the yield data in Section 

A was found to be 62 m (Figure 19) while the total variance (sill + nugget) observed 

was 69.0 (MT/ha)2.  The increased range and lower variance values of the yield semi-

variogram can be attributed in part to the reduced corn production values.  With 

reduced production, the spatial variability of the yield data is dampened and the 

spatial relationships are significant over greater distances.     

FORECASTING OF SOIL MOISTURE USING ARMA 

The 2002 surface soil moisture data collected during the experiment were 

used to evaluate the effectiveness of high-density soil moisture sampling and patterns 

of soil moisture in forecasting unknown soil moisture locations.  The results of this 

study have indicated that patterns in soil moisture distribution are persistent during 

the growing season and that the spatial correlation of the surface soil moisture is less 

than 10m.  Since high resolution surface soil moisture data can be time consuming 

and costly to acquire, it is not practical to collect these data for more than a few dates 

throughout the season.  Instead of directly measuring locations, forecasts of soil 

moisture data could be performed using a soil moisture sample within 10 m and 

knowledge of historical surface soil moisture patterns.  As a result, a set of high-

density soil moisture measurement estimations could be constructed from a set of 

low-density samples. 
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Contour Plots of 2002 Yield Data for the 
Sampled Soil Moisture Plots 

 

 
 
Figure 29.  Contour maps of the corn yield data from plots AL402 and AL102 during 
the 2002 growing season. 

 82 
 



 

 

Autoregressive-moving average models are capable of forecasting unsampled 

data and utilizing information from current and previously sampled input datasets.  

The ARMA models are used to evaluate and model autoregressive and moving 

average relationships that are contained within datasets such as the surface soil 

moisture.  The patterns in high density surface soil moisture datasets may be 

quantified using an ARMA model.  Combining the patterns of previously sampled 

datasets with a few current soil moisture samples could result in accurate estimates of 

high density soil moisture data. 

Two designs were used to evaluate the ARMA forecasting for the AL102 and 

AL402 plots of the 2002 growing season.  In the first set of estimations, the high-

density soil moisture measurements were predicted using only points from the current 

dataset.  In the second set of estimations, a combination of the current data and 

previously collected datasets were used in the predictions.  In both cases, the 

estimations were performed by stretching out the two dimensional grid into a 

serpentine pattern for each plot on each of the sampling dates.  The points selected as 

input data from the current dataset represented the previously sampled point or 

previously sampled two points from the serpentine pattern.  In the second set of 

estimations, the input datasets included data from all of the previously collected 

datasets.  Each of the previously collected datasets was tested for significance 

(α=0.05) before it was included in the final model; non-significant datasets were 

removed from the model.  The final estimations of the surface soil moisture data for 

the 2002 plots represented combinations of the current and previously sampled data. 
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The results of the ARMA estimations using only the current data found that 

the predictions for the autoregressive (AR) parameters were similar for the AL102 

and AL402 plots (Table 5).  The range of the mean (µ) estimation in AL102 was from 

6.33 to 18.93 cm3/cm3 while in AL402 the range was from 6 to 18.14 cm3/cm3.  In 

both plots, the mean estimations followed trends in the soil moisture values.  The first 

order autoregressive parameters (AR1) ranged from 0.2 to 0.37 cm3/cm3 in the AL102 

plot.  The driest date (Day 227) produced the highest (0.37 cm3/cm3) AR1 value.  In 

AL402, the range of the first order autoregressive parameters was 0.21 to 0.35 

cm3/cm3.  The highest AR1 values in AL402 were associated with higher water 

contents, which indicated that the relationship between points diminished under dry 

conditions. The second order autoregressive parameters (AR2) for the AL102 plot 

decreased with lower water contents.  For the AL402 plot, the AR2 values were not 

consistently statistically significant for inclusion in the ARMA model indicating that 

the AR2 term did not significantly contribute to predictions of the water contents for 

the plot.  The fluctuations associated with the AR2 term in the ARMA model would 

not be considered unusual due to the fact that previous studies have found only the 

AR1 term to be consistently significant in small scale studies involving soil properties 

(Wendroth et al. 1992).  The ARMA estimations for both plots exhibited similar 

patterns in the means and AR1 parameters but differed in the AR2 parameters 

indicating a potential difference in the longer distance AR properties of the plots.  

The results of the second set of estimations provided an assessment of the correlation 

of the previously sampled datasets with the parameters determined by the ARMA 

procedure.  Similar to the AR-only set of estimations, the results of the AL102 soil 
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moisture ARMA forecasts produced parameter estimations for the mean, error, 

autoregressive terms, and input datasets (Table 6).  The parameter estimates for the 

AL102 means ranged from -2.42 to 17.97 cm3/cm3 while the error terms ranged from 

3.13 to 8.88 cm3/cm3.  Statistical tests on the estimations found that the first and 

second order AR parameters were significant for all of the sample dates except for the 

last date (Day 227).  On Day 227, neither AR term was significant to the forecast 

procedure.  The first order AR term parameters ranged from 0.14-0.19 cm3/cm3.  The 

first order AR parameters were very consistent (0.19-0.20) in the early portion of the 

season (Day 172,177,192).  The second order AR parameter ranged from 0.12 to 0.25 

cm3/cm3.  On all of the dates, the predicted means in the combined (AR and input 

datasets) set of estimations were considerably lower when compared to the AR-only 

set of estimations.  The AR1 and AR2 values for the combination model set of 

estimations remained at or below the value found in the AR-only set of estimations.  

In the Day 227 forecast, which occurred on a very dry day, the AR terms were found 

to be insignificant to the model while 3 of the input datasets were found to be 

significant.  The elimination of the AR terms from the model indicates that the 

variability found in the previous dataset was a better representation of the current data 

than a point sampled in a nearby position.  The combined AR and input dataset 

forecasts of AL1 soil moisture values indicated that the AR parameters are reduced 

and potentially eliminated by sets of previously collected data.    
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Table 5.   Autoregressive parameters for soil moisture estimations within the AL102 
and AL402 plots for each of the forecast dates.  Estimations include the mean, error, 
first order autoregressive, and second order autoregressive parameters.  The 
estimations for each date were determined using only the autoregressive portion of 
the model. 
  
   AutoRegressive Parameters 

Plot 
Forecast 

Date µ St Error AR1 St Err AR2 St Err 
AL102 Day 172 18.93 0.25 0.2 0.057 0.26 0.057 
AL102 Day 177 12.48 0.31 0.22 0.058 0.17 0.058 
AL102 Day 192 11.86 0.3 0.27 0.058 0.2 0.058 
AL102 Day 212 12.44 0.33 0.24 0.058 0.24 0.058 
AL102 Day 220 10.53 0.30 0.22 0.058 0.23 0.058 
AL102 Day 227 6.33 0.29 0.37 0.059 0.13 0.059 
AL402 Day 192 6.00 0.13 0.21 0.062 0.14 0.062 
AL402 Day 206 18.14 0.18 0.35 0.059 0.08 0.059 
AL402 Day 212 8.82 0.3 0.31 0.058 0.26 0.059 
AL402 Day 220 8.04 0.19 0.34 0.059 0.17 0.059 
AL402 Day 226 4.54 0.11 0.26 0.059 0.17 0.059 
 

 

The AR model and parameter estimations for the AL402 plot were calculated 

for 5 sampling dates (Table 7).  Of the 5 forecasted dates, the AR model for AL402 

contained 2 days where the 2nd order AR parameter was significant (0.05).  The mean 

parameter estimation ranged from -0.08 to 15.7 cm3/cm3.  Aside from Day 206, all of 

the mean estimations fell below 5.  The error term ranged from 1.43-3.69 cm3/cm3.  

The 1st order AR parameter ranged from 0.12-0.26 cm3/cm3.  The input datasets used 

in the AL402 forecasts included 1 to 4 previous samples.  Similar to the AL102 plot, 

the combined model sets of estimations for the AL402 plot were characterized by 

lower parameter estimations for the AR models.  On each of the sampling dates, the 

mean, AR1, and AR2 estimations were decreased by the presence of a previously 

sampled input dataset.  As with AL102, the AR parameters in the Day 226 forecasting 
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date (i.e. date of driest soil conditions) were found to be insignificant while the input 

dataset remained significant.  The contrast between the AR-only and combination 

model forecasts of the AL402 plot found that most of the variability was explained by 

previous datasets.   

 The combination model (AR and input datasets) set of forecasted data for 

AL102 was compared to the observed data each day to test the model performance in 

estimating soil moisture (Figures 30-32).  Early season predictions for plot AL102 

had very low R-squared values (0.151-0.259) indicating poor model performance.  

The AL102 forecasts for 177 and 192 overpredicted the 5-10% moisture  

measurements and under-predicted the 15-20 % soil moisture contents (Figure 30 and 

31).  In the late season AL102 forecasts, the R-squared improved to 0.483-0.648.  The 

improvements in the R-squared values were attributed to improved predictions for the 

upper 25% and lower 25% of the data.  

The combination model set of estimations for plot AL402 exhibited poor early 

season performance and improvements in the late season predictions (Figures 33-35).  

Similar to the AL102 forecasts, the R-squared values for the AL402 plot were very 

low (0.161, 0.225) for the early season measurements.  The AL402 late season 

predictions improved (0.390-0.543), but the model forecast did not result in R-

squared values at the level that was observed in the AL102 plot predictions.  

Although the average soil moisture conditions in AL402 (8.0%) were drier than 

AL102 (10.5%), the variability of the data appears to impact the model performance.     
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Table 6.   Autoregressive parameters for soil moisture estimations of the AL102 plots 
for each of the forecasted dates.  Estimations include mean, error, first order 
autoregressive, and second order autoregressive parameters.  The estimation for each 
input dataset is also included.  Input datasets that were collected after the date to be 
estimated were not included in the model and are indicated with a dash.  NS indicates 
a non-significant factor in the estimation of soil moistures that was removed from the 
final ARMA model. 

 
 
                    AutoRegressive Parameters       Input Dataset Parameters 
Forecast

Date µ ERROR AR1 AR2 
Day 
156 

Day 
172 

Day 
177 

Day 
192 

Day 
212 

Day 
220

Day 172 17.97 5.07 0.20 0.25 0.09 - - - - - 
Day 177 2.17 8.88 0.20 0.12 ns 0.54 - - - - 
Day 192 7.81 6.64 0.20 0.15 ns ns 0.32 - - - 
Day 212 3.24 5.40 0.14 0.25 ns 0.13 0.54 ns - - 
Day 220 0.96 3.14 0.16 0.16 ns ns 0.22 ns 0.55 - 

Day 227 -2.44 3.39 ns ns ns ns ns 0.10 0.17 0.51
 
 
 
Table 7.   Autoregressive parameters for soil moisture estimations of the AL402 plots 
for each of the forecasted dates.  Estimations include mean, error, first order 
autoregressive, and second order autoregressive parameters.  The estimation for each 
input dataset is also included.  Input datasets that were collected after the date to be 
estimated were not included in the model and are indicated with a dash.  NS indicates 
a non-significant factor in the estimation of soil moistures that was removed from the 
final ARMA model. 
 
      AutoRegressive Parameters Input Dataset Parameters 
Forecast

Date Mu ERROR AR1 AR2 
Day 
177 

Day 
192 

Day 
206 

Day 
212 

Day 
220 

Day 192 4.53 2.02 0.13 0.13 0.24 - - - - 
Day 206 15.68 2.81 0.25 ns 0.23 0.18 - - - 
Day 212 -0.09 3.70 0.24 0.22 0.35 ns 0.37 - - 
Day 220 1.96 1.44 0.26 ns 0.08 ns 0.11 0.42 - 
Day 226 0.12   ns ns 0.07 ns 0.07 0.12 0.21 
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 AL1 Forecasts for the 2002 Growing Season 

 

R2 = 0.151 

 

R2 = 0.232 

Figure 30.  ARMA forecasted surface soil moisture versus observed soil moisture for 
the AL102 plot on day 172 and day 177.  The order of the autoregressive function and 
the input datasets are listed above each graph. 
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AL1 Forecasts for the 2002 Growing Season 

 

R2 = 0.259 

 

R2 = 0.483 

Figure 31.  ARMA forecasted surface soil moisture versus observed soil moisture for 
the AL102 plot on day 192 and day 212.  The order of the autoregressive function and 
the input datasets are listed above each graph. 
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AL1 Forecasts for the 2002 Growing Season 

 Figure 
32.  ARMA forecasted surface soil moisture versus observed soil moisture for the AL102 
plot on day 220 and day 227.  The order of the autoregressive function and the input 
datasets are listed above each graph. 

R2 = 0.648 

R2 = 0.569 
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AL4 Forecasts for the 2002 Growing Season 

 Figure 
33.  ARMA forecasted surface soil moisture versus observed soil moisture for the 
AL402 plot on day 192 and day 206.  The order of the autoregressive function and the 
input datasets are listed above each graph.   

R2 = 0.161 

R2 = 0.225 
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AL4 Forecasts for the 2002 Growing Season 

 Figure 
34.  ARMA forecasted surface soil moisture versus observed soil moisture for the 
AL402 plot on day 212 and day 220.  The order of the autoregressive function and the 
input datasets are listed above each graph.  

R2 = 0.390 

R2 = 0.543 
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AL4 Forecasts for the 2002 Growing Season 
 

 

R2 = 0.464 

 
Figure 35.  ARMA forecasted surface soil moisture versus observed soil moisture for 
the AL402 plot on day 226.  The order of the autoregressive function and the input 
datasets are listed above the each graph.   
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 The lower R-squared values indicate that the model did not simulate the variability in 

found in the dry conditions of the late season AL402 measurements as well as the 

observation found in the AL102 plot. 

In Figures 36 and 37, it is evident that the forecasts with higher R-squared 

values were able to account for more of the observed variability within the soil water 

measurements.  The variation of the soil moisture data appears to be accounted for by 

the input dataset portion of the ARMA forecasting procedure.  Specifically, the 

addition of previously sampled soil moisture datasets appear to significantly improve 

the model performance compared to the addition of autoregressive terms for the 

current dataset.  The autoregressive portion of the model does improve the 

estimations of surface soil moisture by 10-15% but the autoregressive parameter 

alone is unable to effectively account for the majority of the variability observed in 

the datasets.   

SUMMARY 

 There were dramatic differences in growing conditions between the 2000 and 

2002 growing seasons that were primarily a result of the difference in rainfall 

quantity and distribution.  The 2000 growing season had 51% more rain during June, 

July, and August than the 2002 growing season.  

 The surface soil moisture levels observed in the plots were expectantly 

different between the 2000 and 2002 growing seasons due to these weather patterns.  

The mean observed surface volumetric soil moisture in 2000 ranged from 13% to 

31%.  The 2000 soil moisture conditions were considered optimal for plant growth, 
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AL102 Surface Soil Moisture Predictions 

 
 

Comparison of Observed and Forecasted 
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Comparison of Observed and Forecasted 
Surface Soil Moisture - Day 220
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Figure 36.  Comparison of early season and late season forecasts in the AL102 plot by 
individual locations.  The observed data, the estimated, and the residuals for each 
location are plotted for each date. 
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AL402 Surface Soil Moisture Predictions 
Comparison of Observed and Forecasted 

Surface Soil Moisture - Day 192
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Figure 37.  Comparison of early season and late season forecasts in the AL402 plot by 
individual locations.  The observed data, the estimated, and the residuals for each 
location are plotted for each date. 
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with the exception of some short term saturated conditions.  During the 2000 growing 

season, the highest mean water contents were observed in the AL1 plot (27.4%), 

followed by the AL3 plot (23.7%); the AL4 plot (21.7%) and AH3 plot (21.5%).  In 

2002, the range of the mean observed surface soil moisture data for the plots was 

4.5% to 12.5% indicating that the soils remained at relatively low soil moisture values 

during much of the 2002 growing season.  The AL102 plot had average plot surface 

soil moisture of 11%, while the AL402 plot had an average of 8.5%.  The surface soil 

moisture values observed in sampling plots for the 2000 and 2002 seasons 

represented optimum and sub-optimum conditions of soil moisture for the growth and 

development of the corn crop.  

 The temporal patterns of soil moisture distribution were analyzed using 

contour plots of the differences between the observed surface soil moisture and the 

average plot surface soil moisture.  The 2000 contour plots exhibited temporal 

patterns of wet and dry conditions that were persistent in plots AH3, AL1, and AL4 

on observation dates throughout the season.  The AL3 plot did not exhibit temporal 

patterns as distinct as the other plots.  The lack of distinct temporal patterns was 

probably a result of the relatively low variances in observed surface soil moisture 

values across the plot.  The patterns of 2002 soil moisture distribution demonstrated 

the temporal stability of surface soil moisture under drying conditions.  The 2002 

patterns of soil moisture distribution in the AL102 and AL402 plots started as a few 

large polygons and were gradually transformed into multiple smaller polygons.  The 

corn rows appear to have impacted the change in the patterns of surface soil moisture 

as the breakup of the large polygons followed the north-south row orientation.  The 
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patterns of relative soil moisture in the plots indicate that the temporal patterns of 

surface soil moisture under wet and dry conditions do not change rapidly over short 

time intervals. 

 The spatial patterns of the surface soil moisture for the 2000 and 2002 seasons 

were analyzed using theoretical semi-variogram models.  Although precipitation was 

dramatically different for the two years; the semi-variogram analysis of the soil 

moisture content exhibited similar nugget, sill and range values for both years.  The 

nugget value of the surface soil moisture semi-variograms decreased under wet 

conditions (θ > 25%) and increased under dry conditions (θ < 15%).  Intermediate 

soil moisture conditions resulted in a gradual decrease in the nugget as the soil moved 

from dry to wet.  Nugget variance in 2000 contributed as much as 50% to the total 

observed variance within a plot while in 2002 the nugget variance exhibited a 

maximum of 73% of the total observed plot variance.  The sill values for the surface 

soil moisture semi-variograms were highest at intermediate soil moisture conditions 

(20-27%) and decreased at soil moisture values less than 15% or greater than 27%.  

The range of spatial dependence in the surface soil moisture semi-variogram was 5-10 

m, depending on the soil properties and soil moisture conditions at the sampling 

location in the field.  The range increased under wet conditions (θ > 27%) and 

decreased under dry conditions (θ < 15%) indicating that the spatial dependence of 

soil moisture decreased with decreasing water content within the field plots.  The 

spatial dependence of the surface soil moisture and the characteristics of the 

theoretical semi-variogram model were found to be related the soil moisture levels 

and the soil properties of the sample location.     
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Soil test results indicated that the concentrations of the macro and micro 

nutrients required for corn crop growth and production in the 2000 and 2002 surface 

soil moisture plots were not significantly different between plots and should have 

provided sufficient plant nutrients to produce 6.28-7.53 MT/ha of corn.  The nitrogen 

concentrations in the plots were tested and the sidedress application rates were 

adjusted to provide optimal available nitrogen for a corn crop goal of 6.28-7.53 

MT/ha.   

 The corn crop yields observed in the 2000 and 2002 growing seasons were 

different for the two years.  Yield production in 2000 exceeded the NRCS’s 6.28-7.53 

MT/ha average estimated production values for the major soil mapping unit within 

each of the 4 plots.  During the 2000 growing season, the patterns of high surface soil 

moisture (i.e. above the mean) corresponded to areas of low corn production (<6.28 

MT/ha) in the AH3, AL1, and AL3 plots.  For 2002, the areas of the plot producing 

below the mean were also the locations where the soil moisture data was consistently 

below the mean.  The differences in corn crop production between the plots and 

between years illustrated the strong effect of water content on yield found in the 

spatial patterns of yield.    

 The spatial variability of the corn yields for both years was evaluated using 

theoretical semi-variogram models.  The semi-variogram for the corn yield data in 

2000 exhibited a shorter range, higher nugget, and higher sill in the wet conditions 

than they did in the drier 2002 growing season.      The higher variability of yield data 

in the wet year indicates that there is a larger range of spatial plant response 

compared to the spatial variability observed in the surface soil moisture.  The shorter 
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range and higher variance observed in the 2000 data indicates that the spatial 

variability of the yield data was much higher than the spatial variability observed in 

2002.  

The estimation procedure for the 2002 surface soil moisture dataset provided 

an assessment of the potential use of high-resolution surface soil moisture datasets to 

estimate soil moisture conditions for future studies.  Using the ARMA procedure, it 

was possible to estimate the variability found in the high-density surface soil moisture 

data by using a combination of nearby measurements of soil moisture combined with 

the spatial and temporal information available from previously acquired datasets.  The 

early season estimations, which included only AR terms and a single, previous 

sampling date, resulted in R-squared values between 0.15-0.26.  Estimations 

performed on dates later in the season, using several previous measurements and an 

AR term, resulted in improved R-squared values between 0.46-0.65.  The majority of 

the improvement in R-squared values appears to be linked to the presence of the 

additional high-resolution datasets in the model.  Adding and removing the AR term 

from the model resulted in a 10-15% change in the R-squared values.  The high-

resolution datasets collected throughout the growing season seems to account for a 

larger portion of the variability in the system than using information for points 

located in close proximity.  Additional testing should be conducted to determine the 

benefits of the high-resolution datasets on soil moisture estimation for periods of time 

longer than this study. 

The results of this study indicate that surface soil moisture exhibits temporal 

and spatial patterns over a range of water contents at short distances within a field.  
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The distribution and patterns of small-scale surface soil moisture is important for 

explaining portions of the spatial variability of crop growth and production as well as 

understanding the subsurface soil moisture properties.  The properties of the spatial 

and temporal patterns of the surface soil moisture could be used to modify sampling 

strategies by focusing more samples into areas of high variability and removing some 

of the samples from the areas of low variability.  Forecasting of soil moisture 

throughout the season could be performed using a combination of high resolution and 

low resolution datasets.  More importantly, the temporal and spatial properties of the 

surface soil moisture might also be used to determine the resolution of future remote 

sensing sensors for accurate measurements of soil moisture over larger scales.  

Scientific examination of the spatial and temporal patterns of the surface soil moisture 

at small scales can help to explain the variability observed at small and possibly 

larger scales within an agricultural field.   

FUTURE RESEARCH 

Using the experiences of this research as a guideline, there are several 

factors/suggestions that could be used to improve future studies on subjects related to 

surface soil moisture.  The suggestions address changes that could be made to the 

protocols for this study, methods to improve the study, and potential directions for 

future studies.    

Several factors should be considered when deciding on the surface soil 

moisture sampling design for future studies.  The layout and spacing of sample 

locations should be determined based on the research goals, the types of analysis, and 

the equipment/time limitations.  The complete grid sampling design results in a set of 
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samples that is equally spaced across the sampling region.  Certain types of analysis 

such as ARMA forecasting require these types of datasets.  One advantage of the 

complete grid is that it is flexible for data analysis and can be sub-sampled to produce 

a nested dataset.  On the other hand, the nested sampling design can be just as 

effective as the complete grid design for determining the spatial characteristics of an 

area.  The advantages of the nested design are less sampling time due to fewer 

samples or more spatial coverage with the same number of samples.  One of the 

drawbacks to this design is that it may need to be interpolated to a complete grid for 

certain types of analysis.  The research goals and anticipated types of data analysis 

are some of the factors to consider when determining the sampling layout.   

The method used for sampling the surface soil moisture would be 

recommended for future studies.  PVC flags, labeled with a permanent marker, were 

used to identify and label the surface soil moisture sampling locations within the 

field.  In this study, the coordinates of the corner flags of the plots were identified 

using a GPS sensor.  The GPS coordinates were extremely helpful when overlaying 

the surface soil moisture data with other datasets such as the yield data or nutrient 

sampling.  One of the concerns with the sampling method was the volume of the soil 

that was sampled.  Longer probe lengths could be used to sample a larger volume of 

soil.  In general, the method used to acquire the surface soil moisture data would be 

recommended for future studies.    

Another suggestion for future work is to collect supplemental datasets with 

detailed information on soil properties and plant growth/development.  Detailed soil 

nutrient maps, soil texture analysis, and sub-surface clay properties would provide 
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some beneficial information for this work.  Ideally, the sampling densities for these 

datasets would be the same as the soil moisture data.  Measurements on plant canopy 

size, plant growth stages, and population sizes would also be beneficial for analyzing 

the changes in the soil moisture contents.  Remote sensing data, such as red, blue, and 

green spectrum data and thermal images, could have resolutions high enough to be 

used in this work.  Below ground soil moisture sensors could be used in conjunction 

with surface data to provide a map of the soil water within the entire soil profile.   

The future direction of this work seems to be closely associated with the 

advances in sensor technology and interpretation of the information.  Advances in 

remote sensing technology should provide an affordable method to easily sample 

high-resolution surface soil moisture.  In the meantime, high-resolution maps of soil 

moisture will be available primarily through point samples and interpolation.  

Research on the properties of small spatial areas within a field, the ability to manage 

different properties within these areas, and the ability to apply these management 

practices to a variety of locations should help evaluate the future application of high 

resolution surface soil moisture data to field sized areas.   
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