
U.S. DEPARTMENT OF ENERGY SOLAR DECATHLON 2017

Primary Student Contact
Ana Vlajnic
A James Clark School of Engineering
University of Maryland
1131 Glenn Martin Hall, College Park, MD 20742
avlajnic@terpmail.umd.edu
U.S. DEPARTMENT OF ENERGY SOLAR DECATHLON 2017

STRUCTURAL DESIGN CALCULATIONS
February 23, 2017

Design Load Assumptions:

(from Solar Decathlon Building Code)
Design Wind Speed: 115 mph
Wind Exposure: C
Site Soil Class: D
Seismic Site Class: B
Interior Floor Live Load: 50 psf
Exterior Deck Live Load: 100 psf
Roof Live Load: 30 psf
Ground Snow Load: 35 psf

Dead Loads Calculation:

(calculated for roof panel thickness of 12")
SIP Panel $=9$ psf
PV Panels $=5 \mathrm{psf}$
Misc $=1 \mathrm{psf}$
Total Dead Load = 15 psf

Snow Load Calculation

Live Loads:

$P_{\text {interior }}=50 \mathrm{lb} / \mathrm{ft}^{2}$
$P_{\text {exterior }}=100 \mathrm{lb} / \mathrm{ft}^{2}$
$P_{\text {roof }}=\mathbf{3 0} \mathrm{lb} / \mathrm{ft}^{2}$

Snow Loads:

Risk Category: 1
$I_{s}=0.8$
$\mathrm{C}_{\mathrm{e}}=0.9$
$\mathrm{C}_{\mathrm{t}}=1.0$
$\mathrm{p}_{\mathrm{g}}=35 \mathrm{lb} / \mathrm{ft}^{2}$
Balanced Snow Load:
$p_{f}=0.7 \times C_{e} \times C_{t} \times I_{s} \times p_{g}=17.64 \mathrm{lb} / \mathrm{ft}^{2}$
Unbalanced Snow Load (valleys):
$p_{\text {u-valley }}=\left(2 \times p_{f}\right) / C_{e}=39.20 \mathrm{lb} / \mathrm{ft}^{2}$

Unbalanced Snow Load (top ridge):
$p_{\text {u-top }}=p_{\mathrm{f}} / 2=8.82 \mathrm{lb} / \mathrm{ft}^{2}$

BALANCED SNOW LOAD

EAST WING

UNBALANCED SNOW LOAD

EAST WING

Wind Loads Calculation:
$P_{\text {net }}=0.00256$ * V^{2} * $\mathrm{C}_{\text {net }} * \mathrm{~K}_{\mathrm{z}} * \mathrm{~K}_{\mathrm{zt}}$
Wind Pressure (walls):
-assume positive inside pressure
$\mathrm{V}=115 \mathrm{mph}$
$\mathrm{K}_{\mathrm{z}}=0.9 \quad$ (from ASCE 7-10 Table 27.3-1)
$\mathrm{K}_{\mathrm{zt}}=1 \quad$ (from ASCE 7-10 Table 26.8-1)
$\mathrm{C}_{\text {net }}$ winward $=0.43 \quad$ (from IBC 2015 Table 1609.6.2)
$\mathrm{C}_{\text {net }}$ leeward $=-0.51$ (from IBC 2015 Table 1609.6.2)
$C_{\text {net }}$ side $=-0.66 \quad$ (from IBC 2015 Table 1609.6.2)
Wind Pressure - $\mathrm{P}_{\text {net }}$ on walls:
Windward $P_{\text {net }}=13.10 \mathrm{lb} / \mathrm{ft}^{2}$
Leeward $P_{\text {net }}=-15.54 \mathrm{lb} / \mathrm{ft}^{2}$
Side $P_{\text {net }}=\mathbf{- 2 0 . 1 1} \mathrm{lb} / \mathrm{ft}^{2}$

Wind Pressure - $\mathrm{P}_{\text {net }}$ on roof:
-sloped roof <10 degrees
-used highest $\mathrm{C}_{\text {net }}$ for calculations
$V=115 \mathrm{mph}$
$\mathrm{K}_{\mathrm{z}}=0.9 \quad$ (from ASCE 7-10 Table 27.3-1)
$\mathrm{K}_{\mathrm{zt}}=1 \quad$ (from ASCE 7-10 Table 26.8-1)
$\mathrm{C}_{\text {net }}$ windward $=-1.09 \quad$ (from IBC 2015 Table 1609.6.2)
$\mathrm{C}_{\text {net }}$ leeward $=-0.66 \quad$ (from IBC 2015 Table 1609.6.2)
$C_{\text {net }}$ parallel $=-1.09 \quad$ (from IBC 2015 Table 1609.6.2)
Windward $P_{\text {net }}=-\mathbf{3 3 . 2 1} \mathrm{lb} / \mathrm{ft}^{2}$
Leeward $P_{\text {net }}=-20.11 \mathrm{lb} / \mathrm{ft}^{2}$
Side $P_{\text {net }}=\mathbf{- 3 3 . 2 1 ~ l b / f t}{ }^{2}$
Our supposition is that because the exposed area of each wing of the house is greatest on the East and West faces, and because the shear walls that must resist those forces are shortest in this same direction, that the wind forces in the East-West direction will control.

Wind force on East Wing Module (wind from East):
East wall of East module consists of walls W4E1-7. West wall of East module consists of walls W4W1-2.
$\mathrm{H}_{\mathrm{E}_{-} \text {East }}=10 \mathrm{ft} \quad$ (Height of East wall of East module, W4E1-7)
$L_{E_{-} \text {East }}=29.75 \mathrm{ft}$
(Length of East wall of East module)
$A_{E_{-} \text {East }}=10 * 29.75=297.5 \mathrm{ft}^{2} \quad$ (Area of East wall of East module)
$\mathrm{F}_{\mathrm{E}_{-} \text {win }}=\mathrm{A}_{\mathrm{E}_{-} \text {East }}{ }^{*} \mathrm{P}_{\text {net_win }}=297.5^{*} 13.10=3897 \mathrm{lb} \quad$ (Winward force on East module)
$H_{E _ \text {west }}=7.583 \mathrm{ft}$
$L_{\text {e_West }}=13.54 \mathrm{ft}$
$A_{E_{_} \text {West }}=13.542^{*} 7.583=102.7 \mathrm{ft}^{2}$
$F_{E_{_} \text {lee }}=A_{E_{_} \text {West }}{ }^{*} P_{\text {net_lee }}=102.7^{*}(-15.54)=-1596 \mathrm{lb} \quad$ (Leeward force on East module)
$F_{E_{\text {ast }}}=F_{E_{-} \text {win }}-F_{E_{-} \text {lee }}=5493 \mathrm{lb}$ (Total wind force from Eastern direction)
$\mathrm{F}_{\mathrm{E}_{\text {_bot }}}=\mathrm{F}_{\mathrm{E}_{-} \text {top }}=\mathrm{F}_{\text {East }} / \mathbf{2} \mathbf{= 2 7 4 6 . 5 \mathrm { lb }} \quad$ (Force into bottom and top of E module from E wind)

Wind force on West Wing Module (wind from West):
West wall consists of walls W1W1-7. East wall consists of walls W1E2, W1E3, W1E5.
The West (winward) wall is the same height and length of the East module's East wall. The East (leeward) wall is the same height and length of the East module's West wall.
Therefore $F_{\text {west }}=F_{\text {East }}$
$\mathrm{F}_{\mathrm{w}_{-} \text {top }}=\mathrm{F}_{\mathrm{w}_{-} \text {bot }}=\mathrm{F}_{\mathrm{E}_{-} \text {bot }}=\mathbf{2 7 4 6 . 5} \mathbf{~ I b}$

Seismic Loads:

Total mass of the top half of structure (transferring seismic load to the roof diaphragm) $\mathrm{W}=\mathbf{6 1 0 4} \mathrm{lb}$ calculated for top half of West module

Coefficients:
Risk Category: II
$C_{v x}=0.946$
$\mathrm{R}=6.5$
$\mathrm{I}_{\mathrm{e}}=1.00$
$S_{s}=17.5 \%=0.175$
$\mathrm{F}_{\mathrm{a}}=1.00$
$\mathrm{S}_{\mathrm{MS}}=\mathrm{F}_{\mathrm{a}} \mathrm{S}_{\mathrm{s}}=0.175$
$S_{D S}=(2 / 3) S_{M S}=0.117$
$C_{s}=S_{D S} /\left(R / I_{e}\right)=0.018$
$\mathrm{V}=\mathrm{C}_{\mathrm{s}} \mathrm{W} / 2=\mathbf{5 4 . 9 4} \mathrm{lb}$ transferred to each shear wall

Shear wall 3

WEST WING
$F_{x}=C_{v x} V=(0.946)(54.63)=51.68 \mathrm{lb}$
(this is significantly less than the shear forces calculated for wind, so wind loads will govern in the following calculations)

Overturning

East Wing

Weight $=10349.3 \mathrm{lb} \quad$ (Total combined weight of roof, wall, and floor panels of E module)
$\mathrm{L}_{\mathrm{c}}=6.25 \mathrm{ft}$
(Distance from E or W wall to center of module)
$\mathrm{H}_{\mathrm{j}}=1.5 \mathrm{ft}$
(Height from bottom of jacks to bottom of the floor)

$\alpha=$ (Ratio of weight to wind force. Essentially the safety factor)
Since $1.81 \gg 1$, there will not be overturning from wind from East direction.
West Wing
Weight $=10136.6 \mathrm{lb} \quad$ (Total combined weight of roof, wall, and floor panels of W module)
$\mathrm{L}_{\mathrm{c}}=6 \mathrm{ft}$
$\mathrm{H}_{\mathrm{j}}=1.5 \mathrm{ft}$
$\beta=10136.6^{*} 6 /\left(2746.5^{*} 1.5+2746.5^{*} 11.5\right)=1.70$
(Weight/wind force ratio.)
Since 1.7>>1, there will not be overturning from wind from West direction.

Wind from North and South directions not considered because the wind force on each module from those directions is substantially less than those from the East and West.

WESTWING

EAST WING

Gravity Loads on Panels

I. Allowable Loads for SIP Panels, beams, columns, and posts

Combined (factored) Load (LRFD):
$W_{u}=1.2 \mathrm{DL}+1.6\left(S L\right.$ or $\left.\mathrm{L}_{\text {roof }}\right)$
Roof Panels: INSULSPAN $12 \frac{1}{4}$ " thick (L/360); 12 ft span (for inner East wing, panel R4A7) Combined Load (LRFD), (using unbalanced snow load for valleys to be conservative):
$\mathrm{W}_{\mathrm{u}}=1.2 \mathrm{DL}+1.6\left(\mathrm{SL}\right.$ or $\left.\mathrm{L}_{\text {roof }}\right)=1.2(15)+1.6(39.2)=\mathbf{8 0 . 7 2} \mathrm{psf}$
$W_{\text {allow }}=142 \mathrm{psf} \quad$ (according to Insulspan Out of Plane Load Tables below)
$\mathrm{W}_{\text {allow }}>\mathrm{W}_{\mathrm{u}} \rightarrow 142>80.72$
$S F=W_{\text {allow }} / W_{u}=142 / 80.72=1.76$
Therefore, span appears feasible for general loading.
(This is conservative for West wing - 11 ft span)

Table R-3-DL ROOF AND FLOOR TRANSVERSE DESIGN LOAD (psf)

DOUBLE $2 \times$ LUMBER SPLINES @ 4'-0" On Center																			
Thickness		Allowable Deflection	PANEL SPAN (feet)																
SIP	EPS		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
4 1/2"	3 5/8"	L/360	162	115	68	54	40	33	26	22	18	15	13	-	-	-	-	-	-
		L/240	195	147	100	79	59	49	39	33	27	23	20	-	-	-	-	-	-
		L/180	195	162	129	103	78	65	52	44	36	31	26	-	-	-	-	-	-
6 1/2"	5 5/8"	L/360	246	200	155	119	84	69	55	46	38	32	27	24	21	18	16	14	13
		L/240	248	210	173	148	124	103	82	69	57	49	41	36	31	27	24	21	19
		L/180	248	210	173	148	124	111	99	87	74	63	52	47	41	36	32	29	26
$81 / 4 "$	7 3/8"	L/360	267	228	190	166	142	115	89	75	62	53	45	39	34	30	26	23	21
		L/240	267	228	190	169	148	129	111	100	90	78	66	57	49	44	39	35	31
		L/180	267	228	190	169	148	129	111	100	90	82	75	69	63	57	51	46	41
10 1/4"	$93 / 8 "$	L/360	295	245	196	190	185	160	136	116	97	83	70	61	53	47	41	37	33
		L/240	295	245	196	190	185	160	136	120	105	96	88	81	75	69	64	56	48
		L/180	295	245	196	190	185	160	136	120	105	96	88	81	75	69	64	59	55
12 1/4"	$113 / 8 "$	L/360	322	268	215	202	190	175	161	142	123	111	99	88	78	69	61	54	48
		L/240	322	268	215	202	190	175	161	142	123	111	99	91	84	78	72	67	63
		L/180	322	268	215	202	190	175	161	142	123	111	99	91	84	78	72	67	63

Revision : January 20, 2014

Wall Panels: INSULSPAN $81 / 4$ " thick; height of 10 ft (for inner East wing, panel W4W2, supporting roof panel R4A7)
$\mathrm{W}_{\mathrm{u}}=\mathrm{W}_{\mathrm{u}} \times($ panel length / 2) $=80.72 \times(15.04 / 2)=607 \mathrm{lb} / \mathrm{ft}$
$\mathrm{W}_{\text {allow }}=2720 \mathrm{lb} / \mathrm{ft} \quad$ (from Insulspan axial load table below)
$\mathrm{W}_{\text {allow }}>\mathrm{W}_{\mathrm{u}} \rightarrow 2672>607$
$\mathrm{SF}=\mathrm{W}_{\text {allow }} / \mathrm{W}_{\mathrm{u}}=2720 / 607=4.48$
Therefore, wall appears feasible for general loading.
(This is conservative for outer wall panels, which will support smaller snow load)
Table W-2-DLVL WALL PANEL DESIGN LOAD

DOUBLE LVL LUMBER SPLINE @ 4'-0" On Center															
Thickness		Allowable Deflection	PANEL SPAN (feet)												
SIP	EPS		8	9	10	11	12	13	14	15	16	17	18	19	20
ALLOWABLE WIND LOAD (psf) - END SUPPORT															
4 1/2"	3 5/8"	L/360	45	36	28	23	19	16	14	-	-	-	-	-	-
		L/240	46	41	37	33	29	25	21	-	-	-	-	-	-
		L/180	46	41	37	33	31	28	26	-	-	-	-	-	-
6 1/2"	5 5/8"	L/360	47	42	38	34	31	29	27	25	23	20	18	16	14
		L/240	47	42	38	34	31	29	27	25	24	22	21	20	19
		L/180	47	42	38	34	31	29	27	25	24	22	21	20	19
$81 / 4$ "	7 3/8"	L/360	48	43	38	35	32	30	27	26	24	23	21	20	19
		L/240	48	43	38	35	32	30	27	26	24	23	21	20	19
		L/180	48	43	38	35	32	30	27	26	24	23	21	20	19
10 1/4"	$93 / 8 "$	L/360	49	44	39	36	33	30	28	26	25	23	22	21	20
		L/240	49	44	39	36	33	30	28	26	25	23	22	21	20
		L/180	49	44	39	36	33	30	28	26	25	23	22	21	20
ALLOWABLE WIND LOAD (psf) - FACE SUPPORT OR MODIFIED END SUPPORT															
$41 / 2^{\prime \prime}$	3 5/8"	L/360	45	36	28	23	19	16	14	-	-	-	-	-	-
		L/240	67	54	42	35	29	25	21	-	-	-	-	-	-
		L/180	88	72	56	47	39	33	28	-	-	-	-	-	-
$61 / 2^{\prime \prime}$	5 5/8"	L/360	104	84	65	54	43	37	31	27	23	20	18	16	14
		L/240	150	122	95	79	63	54	45	39	33	29	26	23	21
		L/180	156	140	124	103	82	70	58	51	44	39	34	30	27
$81 / 4 "$	$73 / 8$ "	L/360	179	144	110	92	75	64	53	46	39	34	30	26	23
		L/240	179	165	152	130	109	93	77	66	56	49	43	38	34
		L/180	179	165	152	143	135	117	100	86	73	64	56	50	44
10 1/4"	$93 / 8$ "	L/360	185	179	174	148	122	104	87	75	64	56	49	43	38
		L/240	185	179	174	164	154	140	126	110	94	82	71	63	55
		L/180	185	179	174	164	154	147	140	131	122	107	92	82	72
ALLOWABLE AXIAL LOAD (plf)															
4 1/2" ${ }^{\prime \prime}$	$35 / 8$ "		2865	2728	2592	2455	2318	2138	1957						
$61 / 2^{\prime \prime}$	5 5/8"		2762	2799	2835	2872	2908	2945	2982	3018	3055	3091	3128	3164	3201
$81 / 4{ }^{\prime \prime}$	$73 / 8{ }^{\prime \prime}$		2672	2696	2720	2745	2769	2793	2817	2841	2865	2890	2914	2938	2962
10 1/4"	$93 / 8{ }^{\prime \prime}$		2672	2696	2720	2745	2769	2793	2817	2841	2865	2890	2914	2938	2866

Gravity Loads on Beams

From the framing sketches shown above, it is evident that the greatest load experienced by beams is at the opening between kitchen and dining room in the East Wing (supporting roof panels R4A1-R4A4)

In accordance with the ANSI/AF\&PA NDS-2015 using the LRFD method
Combined Load (LRFD), (using unbalanced snow load for valleys): 80.72 psf
$\mathrm{W}_{\mathrm{u}}=\mathrm{W}_{\mathrm{u}} \times($ panel length $/ 2)=80.72 \times(15.04 / 2)=607 \mathrm{lb} / \mathrm{ft}$
Beam length $=16.875 \mathrm{ft} \rightarrow$ assume 17 ft
Maximum bending moment:
$M_{\text {max }}=\left(W_{u} \times L^{2}\right) / 8=\left(607 \times 17^{2}\right) / 8=21,928 \mathrm{lb}-\mathrm{ft}=\mathbf{2 6 3 , 1 3 6} \mathrm{lb}-\mathrm{in}$
Beam Type (selected using LP SolidStart LVL Technical Guide 2900F F_{b} - 2.0E):
Allowable Stress Design Values:
$\mathrm{F}_{\mathrm{b}}=2900 \mathrm{psi}$
$\mathrm{F}_{\mathrm{v}}=285 \mathrm{psi}$
$\mathrm{F}_{\mathrm{c}}=3200 \mathrm{psi}$
$\mathrm{F}_{\mathrm{c} \text {-perp }}=750 \mathrm{psi}$
$\mathrm{E}=2.0 \times 10^{6} \mathrm{psi}$
Member Details:
b $=51 / 4{ }^{\text {" }}$
d=14"
$\mathrm{L}=17 \mathrm{ft}$
$\mathrm{A}=14 \times 5.25=73.5 \mathrm{in}^{2}$
$\mathrm{I}=(\mathrm{b})\left(\mathrm{d}^{3}\right) / 12=(5.25)\left(14^{3}\right) / 12=1200.5 \mathrm{in}^{4}$
Stress: $f_{b}=(y)\left(M_{\max }\right) / I=(7)(263,136) / 1200.5=1535 \mathrm{psi}$
Adjustment Factors:
$\Phi_{\mathrm{b}}=0.85$
$\mathrm{K}_{\mathrm{Fb}}=2.54$
$\lambda=1.00$
$C_{t}=1.00$
$\mathrm{C}_{\mathrm{Fb}}=1.00$
$\mathrm{C}_{\mathrm{i}}=1.00$
$C_{L}=0.968$
Design (allowed) Bending Stress:
$F_{b}{ }^{\prime}=F_{b} \times K_{F b} \times \Phi_{b} \times \lambda \times C_{t} \times C_{F b} \times C_{i} \times C_{L}=6061 \mathrm{psi}$
Applied Bending Stress:
$\mathrm{f}_{\mathrm{b}}=1535 \mathrm{psi}$
$\mathrm{f}_{\mathrm{b}} / \mathrm{F}_{\mathrm{b}}{ }^{\prime}=0.253$
Therefore, beam appears feasible for general loading.

Header Beam Design

(above door on East wing; supporting roof panel R4A4)
(In accordance with the ANSI/AF\&PA NDS-2015 using the LRFD method)
Combined Load (LRFD), (using balanced snow load for top ridge of roof):
$W_{u}=1.2 \mathrm{DL}+1.6\left(\mathrm{SL}\right.$ or $\left.\mathrm{L}_{\text {roof }}\right)=1.2(15)+1.6(17.64)=46.25 \mathrm{psf}$
$\mathrm{W}_{\mathrm{u}}=\mathrm{W}_{\mathrm{u}} \times($ panel length $/ 2)=46.25 \times(15.04 / 2)=347.8 \mathrm{lb} / \mathrm{ft}$
Header length $=4.83 \mathrm{ft} \rightarrow$ assume 5 ft
$M_{\max }=\left(W_{u} \times L^{2}\right) / 8=\left(348 \times 5^{2}\right) / 8=1088 \mathrm{lb}-\mathrm{ft}=13,056 \mathrm{lb}-\mathrm{in}$
Beam Type (selected using NDS 2015 Supplement):
Allowable Stress Design Values:
$\mathrm{F}_{\mathrm{b}}=2050 \mathrm{psi}$
$\mathrm{F}_{\mathrm{v}}=175 \mathrm{psi}$
$\mathrm{F}_{\mathrm{c}}=1800 \mathrm{psi}$
$\mathrm{F}_{\mathrm{c} \text {-perp }}=480 \mathrm{psi}$
$\mathrm{E}=1.6 \times 10^{6} \mathrm{psi}$
Member Details:
Southern Pine, non-dense select structural, 2"-4" wide (other types of wood or lower grades may not be sufficient for the stresses calculated on this member - check before using something else)
$b_{\text {nom }}=2$ "
b $=1 \frac{1}{2}{ }^{\prime \prime}$
$d_{\text {nom }}=8$ "
$d=71 /{ }^{\prime \prime}$ "
$\mathrm{L}=5.7 \mathrm{ft}$
$\mathrm{A}=1.5 \times 7.25=10.875 \mathrm{in}^{2}$
$\mathrm{I}=(\mathrm{b})\left(\mathrm{d}^{3}\right) / 12=(1.5)\left(7.25^{3}\right) / 12=47.63 \mathrm{in}^{4}$
Stress: $\mathrm{f}_{\mathrm{b}}=(\mathrm{y})\left(\mathrm{M}_{\max }\right) / \mathrm{I}=(3.625)(13,056) / 47.63=994 \mathrm{psi}$
Adjustment Factors:
$\Phi_{\mathrm{b}}=0.85$
$\mathrm{K}_{\mathrm{Fb}}=2.54$
$\lambda=1.00$
$C_{t}=1.00$
$\mathrm{C}_{\mathrm{Fb}}=1.2$
$\mathrm{C}_{\mathrm{i}}=1.00$
$C_{L}=1.00$
Design Bending Stress:
$F_{b}{ }^{\prime}=F_{b} \times K_{F b} \times \Phi_{b} \times \lambda \times C_{t} \times C_{F b} \times C_{i} \times C_{L}=5311.14 \mathrm{psi}$
Applied Bending Stress:
$\mathrm{f}_{\mathrm{b}}=994 \mathrm{psi}$
$\mathrm{f}_{\mathrm{b}} / \mathrm{F}_{\mathrm{b}}{ }^{\prime}=0.187$
Therefore, header appears feasible for general loading.

Header Design

(above window on East wing; roof panel R4A7)
Combined Load (LRFD):
(using balanced snow load for top ridge of roof)
$W_{u}=1.2 \mathrm{DL}+1.6\left(S L\right.$ or $\left.\mathrm{L}_{\text {roof }}\right)=1.2(15)+1.6(17.64)=46.25 \mathrm{psf}$
$W_{u}=W_{u} \times($ panel length $/ 2)=46.25 \times(15.04 / 2)=347.8 \mathrm{lb} / \mathrm{ft}$
Header length $=5.625 \mathrm{ft} \rightarrow$ assume 5.7 ft
$M_{\text {max }}=\left(W_{u} \times L^{2}\right) / 8=\left(348 \times 5.7^{2}\right) / 8=1413.32 \mathrm{lb}-\mathrm{ft}=17,000 \mathrm{lb}-\mathrm{in}$

Beam Type (selected using NDS 2015 Supplement):
Allowable Stress Design Values:
$\mathrm{F}_{\mathrm{b}}=2050 \mathrm{psi}$
$\mathrm{F}_{\mathrm{v}}=175 \mathrm{psi}$
$\mathrm{F}_{\mathrm{c}}=1800 \mathrm{psi}$
$\mathrm{F}_{\mathrm{c} \text {-perp }}=480 \mathrm{psi}$
$\mathrm{E}=1.6 \times 10^{6} \mathrm{psi}$
Member Details:
Southern Pine, non-dense select structural, 2"-4" wide (other types of wood or lower grades may not be sufficient for the stresses calculated on this member - check before using something else)
$b_{\text {nom }}=2$ "
b $=1 \frac{1}{2}{ }^{\prime \prime}$
$\mathrm{d}_{\text {nom }}=8$ "
$d=71 /{ }^{\prime \prime}$ "
$\mathrm{L}=5.7 \mathrm{ft}$
$A=1.5 \times 7.25=10.875 \mathrm{in}^{2}$
$\mathrm{I}=(\mathrm{b})\left(\mathrm{d}^{3}\right) / 12=(1.5)\left(7.25^{3}\right) / 12=47.63 \mathrm{in}^{4}$
Stress: $\mathrm{f}_{\mathrm{b}}=(\mathrm{y})\left(\mathrm{M}_{\max }\right) / \mathrm{I}=(3.625)(17,000) / 47.63=1293.83 \mathrm{psi}$
Adjustment Factors:
$\Phi_{\mathrm{b}}=0.85$
$\mathrm{K}_{\mathrm{Fb}}=2.54$
$\lambda=1.00$
$C_{t}=1.00$
$\mathrm{C}_{\mathrm{Fb}}=1.2$
$C_{i}=1.00$
$C_{L}=0.7$

Design Bending Stress:
$\mathrm{F}_{\mathrm{b}}{ }^{\prime}=\mathrm{F}_{\mathrm{b}} \times \mathrm{K}_{\mathrm{Fb}} \times \Phi_{\mathrm{b}} \times \lambda \times \mathrm{C}_{\mathrm{t}} \times \mathrm{C}_{\mathrm{Fb}} \times \mathrm{C}_{\mathrm{i}} \times \mathrm{C}_{\mathrm{L}}=3717.8 \mathrm{psi}$

Applied Bending Stress:
$\mathrm{f}_{\mathrm{b}}=1293.83 \mathrm{psi}$
$\mathrm{f}_{\mathrm{b}} / \mathrm{F}_{\mathrm{b}}{ }^{\prime}=0.348$
Therefore, header appears feasible for general loading.

Header Design:

(above door on East side of courtyard, wall panel W4W1; roof panels R4A5, R4A6) Combined Load (LRFD):
(using unbalanced snow load for valleys)
$W_{u}=1.2 \mathrm{DL}+1.6\left(\mathrm{SL}\right.$ or $\left.\mathrm{L}_{\text {roof }}\right)=1.2(15)+1.6(39.2)=\mathbf{8 0 . 7 2} \mathrm{psf}$
$\mathrm{W}_{\mathrm{u}}=\mathrm{W}_{\mathrm{u}} \times($ panel length $/ 2)=80.72 \times(15.04 / 2)=607 \mathrm{lb} / \mathrm{ft}$
Header length $=8 \mathrm{ft}$
$M_{\max }=\left(W_{u} \times L^{2}\right) / 8=\left(607 \times 8^{2}\right) / 8=4856 \mathrm{lb}-\mathrm{ft}=\mathbf{5 8 , 2 7 2} \mathrm{lb}-\mathrm{in}$
Beam Type (selected using LP SolidStart LVL Technical Guide 2900F F_{b} - 2.0E):
Allowable Stress Design Values:
$\mathrm{F}_{\mathrm{b}}=2900 \mathrm{psi}$
$\mathrm{F}_{\mathrm{v}}=285 \mathrm{psi}$
$\mathrm{F}_{\mathrm{c}}=3200 \mathrm{psi}$
$\mathrm{F}_{\mathrm{c} \text {-perp }}=750 \mathrm{psi}$
$\mathrm{E}=2.0 \times 10^{6} \mathrm{psi}$
Member Details:
$b=31 / 2^{\prime \prime}$
$d=71 / 4$ "
$\mathrm{L}=8 \mathrm{ft}$
A $=7.25 \times 3.5=25.38 \mathrm{in}^{2}$
$\mathrm{I}=(\mathrm{b})\left(\mathrm{d}^{3}\right) / 12=(3.5)\left(7.25^{3}\right) / 12=111.15 \mathrm{in}^{4}$
Stress: $\mathrm{f}_{\mathrm{b}}=(\mathrm{y})\left(\mathrm{M}_{\max }\right) / \mathrm{I}=(3.625)(58,272) / 111.15=1900.46 \mathrm{psi}$
Adjustment Factors:
$\Phi_{\mathrm{b}}=0.85$
$\mathrm{K}_{\mathrm{Fb}}=2.54$
$\lambda=1.00$
$C_{t}=1.00$
$\mathrm{C}_{\mathrm{Fb}}=1.2$
$C_{i}=1.00$
$\mathrm{C}_{\mathrm{L}}=0.98$

Design Bending Stress:
$F_{b}^{\prime}=F_{b} \times K_{F b} \times \Phi_{b} \times \lambda \times C_{t} \times C_{F b} \times C_{i} \times C_{L}=7363.05 \mathrm{psi}$

Applied Bending Stress:
$\mathrm{f}_{\mathrm{b}}=1900.46 \mathrm{psi}$
$\mathrm{f}_{\mathrm{b}} / \mathrm{F}_{\mathrm{b}}{ }^{\prime}=0.258$
Therefore, header appears feasible for general loading.

Gravity Loads on Columns

Based on the sketches of tributary are above, it is evident that the heaviest loaded column will be that supporting the beam over the kitchen-dining room opening located at bottom left corner of dining area, supporting 16 ft beam)
Load on column (calculated by halving total load on beam):
$P=(607 \mathrm{lb} / \mathrm{ft}) \times(17 \mathrm{ft} / 2)=5160 \mathrm{lb}$

Column Type:
Allowable Stress Design Values:
$\mathrm{F}_{\mathrm{b}}=1752 \mathrm{psi}$
$\mathrm{F}_{\mathrm{v}}=160 \mathrm{psi}$
$\mathrm{F}_{\mathrm{c}}=1750 \mathrm{psi}$
$\mathrm{F}_{\mathrm{c} \text {-perp }}=215 \mathrm{psi}$
$\mathrm{E}=1.494 \times 10^{6} \mathrm{psi}$
$\mathrm{E}_{\text {min }}=759,350 \mathrm{psi}$
Member Details:
b $=31 / 2^{\prime \prime}$
$d=71 / 4$ "
$\mathrm{h}=8 \mathrm{ft}$
$\mathrm{A}=7.25 \times 3.5=25.38 \mathrm{in}^{2}$
$\mathrm{I}_{\mathrm{x}}=(\mathrm{b})\left(\mathrm{d}^{3}\right) / 12=(3.5)\left(7.25^{3}\right) / 12=111.15 \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{y}}=(\mathrm{d})\left(\mathrm{b}^{3}\right) / 12=(7.25)\left(3.5^{3}\right) / 12=25.9 \mathrm{in}^{4}$
Compressive Stress: $f_{c}=P / A=203.31$ psi
Adjustment Factors:
$\mathrm{C}_{\mathrm{Mc}}=0.80$
$\mathrm{C}_{\mathrm{t}}=1.00$
$C_{F C}=1.05$
$\mathrm{C}_{\mathrm{Fb}}=1.3$
$\mathrm{C}_{\mathrm{i}}=0.80$
$\mathrm{C}_{\mathrm{P}}=0.94$
$\mathrm{K}_{\mathrm{Fc}}=2.40$
$\Phi_{\mathrm{c}}=0.9$
$\Lambda=1.00$

Strength in compression parallel to grain:
Design compressive stress:
$\mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathrm{F}_{\mathrm{c}} \times \mathrm{C}_{\mathrm{t}} \times \mathrm{C}_{\mathrm{Fc}} \times \mathrm{C}_{\mathrm{i}} \times \mathrm{C}_{\mathrm{p}}=\mathbf{1 3 8 2} \mathrm{psi}$
Applied compressive stress:
$\mathrm{f}_{\mathrm{c}}=203.31 \mathrm{psi}$
$\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{c}}{ }^{\prime}=0.147$
Therefore, column appears feasible for general loading.

Wood blocking under columns:

$\mathrm{P}=5160 \mathrm{lb}$
(this is from the column load calculated above; the column at the corner of floor panel F4A4 is supporting half the load from the 16 ft beam, so this should be conservative for other wood blocking in the house)

Beam Type (selected using NDS 2015 Supplement):
Allowable Stress Design Values:
$\mathrm{F}_{\mathrm{b}}=2050 \mathrm{psi}$
$\mathrm{F}_{\mathrm{v}}=175 \mathrm{psi}$
$\mathrm{F}_{\mathrm{c}}=1800 \mathrm{psi}$
$\mathrm{F}_{\mathrm{c} \text {-perp }}=480 \mathrm{psi}$
$\mathrm{E}=1.6 \times 10^{6} \mathrm{psi}$
Member Details:
Southern Pine, non-dense select structural, 2"-4" wide (other types of wood or lower grades may not be sufficient for the stresses calculated on this member - check before using something else)
$b_{\text {nom }}=4$ "
b $=31 / 2{ }^{\prime \prime}$
$\mathrm{d}_{\text {nom }}=8$ "
$d=71 / 4{ }^{\prime \prime}$
$\mathrm{A}=3.5 \times 7.25=25.375 \mathrm{in}^{2}$
$\mathrm{I}=(\mathrm{b})\left(\mathrm{d}^{3}\right) / 12=(3.5)\left(7.25^{3}\right) / 12=111.15 \mathrm{in}^{4}$
Stress: $\mathrm{f}_{\mathrm{c}}=\mathrm{P} / \mathrm{A}=5160 / 25.375=203.35 \mathrm{psi}$
Adjustment Factors:
$\mathrm{C}_{\mathrm{Mc}}=0.80$
$\mathrm{C}_{\mathrm{t}}=1.00$
$C_{F C}=1.05$
$\mathrm{C}_{\mathrm{Fb}}=1.3$
$\mathrm{C}_{\mathrm{i}}=0.80$
$\mathrm{C}_{\mathrm{P}}=0.94$
$\mathrm{K}_{\mathrm{Fc}}=2.40$
$\Phi_{\mathrm{c}}=0.9$
$\Lambda=1.00$

Strength in compression parallel to grain:
Design compressive stress:
$\mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathrm{F}_{\mathrm{c}} \times \mathrm{C}_{\mathrm{t}} \times \mathrm{C}_{\mathrm{Fc}} \times \mathrm{C}_{\mathrm{i}} \times \mathrm{C}_{\mathrm{P}}=1618.7 \mathrm{psi}$
Applied compressive stress:
$\mathrm{f}_{\mathrm{c}}=203.35 \mathrm{psi}$
$\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{c}}{ }^{\prime}=0.126$
Therefore, blocking appears feasible for general loading.

Wooden Foundation Posts:

Column: $\mathrm{P}_{\text {column }}=5160 \mathrm{lb}$
Floor Panels: $\mathrm{P}_{\text {floor }}=(1 / 2)\left(1.2 \mathrm{DL}+1.6 \mathrm{~L}_{\text {floor }}\right)=(1 / 2)[1.2(354.862)+1.6(2333.33)]=2079.58 \mathrm{lb}$ (calculated using factored load of floor panels F4A4 and F4A5, post supports half of each panel) Total Load: $\mathrm{P}=\mathrm{P}_{\text {column }}+\mathrm{P}_{\text {floor }}=7239.58 \mathrm{lb}$

Member Details:
Southern Pine, non-dense select structural, 2"-4" wide (other types of wood or lower grades may not be sufficient for the stresses calculated on this member - check before using something else)
$\mathrm{b}_{\text {nom }}=4^{\prime \prime}$
$b=31 / 2^{\prime \prime}$
$d_{\text {nom }}=4$ "
$d=31 / 2^{\prime \prime}$
$\mathrm{A}=3.5 \times 3.5=12.25 \mathrm{in}^{2}$
$\mathrm{I}=(\mathrm{b})\left(\mathrm{d}^{3}\right) / 12=(3.5)\left(3.5^{3}\right) / 12=12.51 \mathrm{in}^{4}$
Stress: $\mathrm{f}_{\mathrm{c}}=\mathrm{P} / \mathrm{A}=7240 / 12.25=591 \mathrm{psi}$
Allowable Stress Design Values:
$\mathrm{F}_{\mathrm{b}}=2050 \mathrm{psi}$
$\mathrm{F}_{\mathrm{v}}=175 \mathrm{psi}$
$\mathrm{F}_{\mathrm{c}}=1800 \mathrm{psi}$
$\mathrm{F}_{\mathrm{c} \text {-perp }}=480 \mathrm{psi}$
$\mathrm{E}=1.6 \times 10^{6} \mathrm{psi}$
Adjustment Factors:
$\mathrm{C}_{\mathrm{Mc}}=0.80$
$\mathrm{C}_{\mathrm{t}}=1.00$
$C_{F C}=1.15$
$C_{F b}=1.3$
$\mathrm{C}_{\mathrm{i}}=0.80$
$\mathrm{C}_{\mathrm{P}}=0.94$
$\mathrm{K}_{\mathrm{Fc}}=2.40$
$\Phi_{\mathrm{c}}=0.9$
$\Lambda=1.00$

Strength in compression parallel to grain:
Design compressive stress:
$\mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathrm{F}_{\mathrm{c}} \times \mathrm{C}_{\mathrm{t}} \times \mathrm{C}_{\mathrm{Fc}} \times \mathrm{C}_{\mathrm{i}} \times \mathrm{C}_{\mathrm{p}}=\mathbf{1 7 7 2 . 8} \mathrm{psi}$
Applied compressive stress:
$\mathrm{f}_{\mathrm{c}}=591 \mathrm{psi}$
$\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{c}}{ }^{\prime}=0.333$
Therefore, post appears feasible for general loading.

Roof Diaphragm Loads

Assumptions

- Pressure forces towards interior of structure are assumed positive.
- Suction forces from pressure are assumed negative.
- Suction forces on roof are perpendicular to slope of roof.
- Lateral forces from suction of roof are $\mathrm{F}^{*} \sin (9$ degrees).
- When wind forces come from North or South directions, roof suction force is out of plane and thus irrelevant.
- Largest shear force (psf) is assumed to be in West module on North and South shear walls (W1N1-3 \& W1S1-3) when wind is blowing from $\mathrm{E} \rightarrow \mathrm{W}$. Explanation: Wind pressure should be the same in all modules and directions, the largest exposed areas are on the E and W walls of the East and West wings, but the shear walls of the West Wing are slightly shorter than those in the East Wing.

Wall to Roof Diaphragm - West Wing

Windward wall = wall G = panels W4E4, W1E5
Windward $p_{\text {net }}=13.10$ psf (see calc above)
Leeward wall = wall $\mathrm{A}=$ panels W1W1-7
Leeward $p_{\text {net }}=-15.54$ psf (see calc above)
Roof $=$ leeward roof $=$ panels R1A1-7
Leeward $p_{\text {net }}=-20.11 \mathrm{psf}$ (see calc above)
$\mathrm{F}_{\mathrm{w}}=\mathrm{A}_{\text {wall }}{ }^{*} \mathrm{p}_{\text {net-wall }}$
(wind load on wall surface)
$F_{R}=\left(F_{w_{-} A} / 2\right)+\left(F_{w_{-} G} / 2\right)-\left(F_{w}{ }^{*} \sin (9 \mathrm{deg})\right)$
(wind load on roof diaphragm)
$F_{F}=\left(F_{W_{-} A} / 2\right)+\left(F_{W_{-} G} / 2\right)$
(wind load on floor diaphragm)

Half the force on the wall area above is assumed to be transferred to the roof diaphragm, and the other half will be transferred to the floor diaphragm.

Surface	Height (ft)	Length (ft)	Area (sf)	$\mathrm{F}_{\mathrm{w}}(\mathrm{lb})$
W wall of W wing	10	29.75	297.5	4623.15
S wall of W wing	7.583	12.875	97.64	1277.25
Roof W wing*	12.33	31.25	385.42	7750.73
Floor W wing*	10.33	29.75		

[^0]$F_{R}=4623.15 / 2+1277.25 / 2-7750 \sin (9)=4202.09 \mathrm{lb}$ (in W direction)
$F_{F}=4623.15 / 2+1277.25 / 2=3588.83 \mathrm{lb}$ (in W direction)
\[

$$
\begin{aligned}
& \boxtimes_{R}=F_{R} / L_{R}=4202.09 / 31.25=134.45 \mathrm{psf} \\
& \boxtimes_{F}=F_{F} / L_{F}=3588.83 / 29.75=122.70 \mathrm{psf}
\end{aligned}
$$
\]

(distributed load on roof diaphragm)
(distributed load on floor diaphragm)

Half of the roof diaphragm is transferred to the North shear wall and half to the South shear wall.

$$
\begin{aligned}
& M_{\max }=\boxtimes_{R}{ }^{*} L_{R}^{2} / 8=134.45^{*} 31.25^{2} / 8=16412.35 \mathrm{lb}-\mathrm{ft} \\
& C_{u}=M_{\max } / d=15311.28 / 10.33=1588.8 \mathrm{lb}
\end{aligned}
$$

(Maximum moment in roof diaphragm)
(Maximum chord force in diaphragm)

FASTENER REQUIREMENTS FOR DIAPHRAGM SHEAR

The length in which the Max Shear Force to the shear walls in the East-West Direction (V_{N} $=2101.045$) can be distributed will be the length of the walls as they will be fully connected to the roof diaphragm.

Therefore: $\omega_{N}=V_{N} / d=2101.05 / 10.33=203.39 \mathrm{lb} / \mathrm{ft}$
(Distributed shear force on N shear wall)

The fastener will be a 3 in . long $1 / 4 \mathrm{in}$. thick A36 steel angle bracket. The bolts are made of galvanized shear. Three aspects of the fastener can fail, the plate, the bolts, and the wood that the plate is fastened into.

The bolts can fail from shear force from suction on the roof and shear force from the roof. The plate can fail in shear and from bending.
The wood can fail from tension, compression, and shear.
There are 4 fasteners on the North and South walls of the West modules (one at each intersection between wall panels).

Assumptions:

- The load is evenly distributed with a distributed shear force of $203.99 \mathrm{lb} / \mathrm{ft}$ or $16.95 \mathrm{lb} / \mathrm{in}$.
- Each fastener is responsible for absorbing half the force between adjacent joints.
- The joint that experiences the largest load is located between walls W1N2 and W1N3
- This joint is responsible for absorbing 48 in . worth of shear force.
$V_{J_{_} \max }=\omega_{N}{ }^{*} 48 \mathrm{in} .{ }^{*}(1 \mathrm{ft} / 12 \mathrm{in})=813.57 \mathrm{lb}$
(Maximum shear force at a joint)

Plate:

Calc 1 - shear at intersection of plates in angle bracket.

Member details of one plate

Thickness
Length
Depth
Area of intersection
Yield strength of A36 steel
Min. ultimate strength of A36 steel
Shear strength A36 steel
Distributed shear force at intersection

$$
\begin{aligned}
& \mathrm{t}=0.25 \mathrm{in} . \\
& \mathrm{L}=8 \mathrm{in} . \\
& \mathrm{d}=3 \mathrm{in} . \\
& \mathrm{A}_{\mathrm{i}}=\mathrm{t} \mathrm{x} \mathrm{~d}=0.75 \mathrm{in}^{2} \\
& \sigma_{\mathrm{y}}=36000 \mathrm{psi} \\
& \sigma_{u}=58000 \mathrm{psi} \\
& \mathrm{~T}=\sigma_{u}^{*} 0.6=\mathbf{3 4 8 0 0} \mathrm{psi} \\
& \mathrm{~T}_{\mathrm{l}}=\mathrm{V}_{\mathrm{J}_{-} \max } / \mathrm{A}=\mathbf{1 0 8 4 . 7 6} \mathrm{psi}
\end{aligned}
$$

$\mathrm{T} \gg \mathrm{T}_{\mathrm{l}} \quad$ therefore the intersection of the angle bracket will not fail from shear

DIAPHRAGM CHORD DESIGN

Panel edge has a 2×8 serving as a diaphragm chord. However, at the top of every panel joint the chord has a cutout. At these joints the chord is essentially a 2×4.

STRUCTURAL WOOD BEAM DESIGN (NDS) - COMPRESSION

In accordance with the ANSI/AF\&PA NDS-2012 using the LRFD method

Analysis results

Design axial compression (2×4)

Sawn lumber section details

Nominal breadth of sections

Nominal breadth of sections
Dressed breadth of sections
Nominal depth of sections
Dressed depth of sections
Number of sections in member
Overall breadth of member
Species, grade and size classification assumption)
Bending parallel to grain
Tension parallel to grain
Compression parallel to grain
Compression perpendicular to grain
Shear parallel to grain
Modulus of elasticity
Modulus of elasticity, stability calculations
Mean shear modulus
$\mathrm{b}_{\text {nom }}=2$ in
$b=1.5$ in
$\mathrm{d}_{\text {nom }}=4$ in
$\mathrm{d}=3.5 \mathrm{in}$
$\mathrm{N}=1$
$\mathrm{b}_{\mathrm{b}}=\mathrm{N} \times \mathrm{b}=1.5 \mathrm{in}$
Hem-Fir, No. 2 grade, 2" \& wider (this is an
$\mathrm{F}_{\mathrm{b}}=850 \mathrm{psi}$
$\mathrm{F}_{\mathrm{t}}=525 \mathrm{psi}$
$\mathrm{F}_{\mathrm{c}}=1300 \mathrm{psi}$
$\mathrm{F}_{\mathrm{c} \text { _perp }}=405 \mathrm{psi}$
$\mathrm{F}_{\mathrm{v}}=150 \mathrm{psi}$
$\mathrm{E}=1.3^{*} 10^{6} \mathrm{psi}$
$\mathrm{E}_{\text {min }}=4.7^{*} 10^{5} \mathrm{psi}$
$\mathrm{G}_{\text {def }}=\mathrm{E} / 16=\mathbf{8 1 2 5 0} \mathrm{psi}$

Member details

Service condition
Unbraced length in y-axis
Effective length factor in y-axis
Effective length in y-axis

Dry

$\mathrm{L}_{\mathrm{y}}=4 \mathrm{ft}$
$\mathrm{K}_{\mathrm{y}}=1$
$\mathrm{L}_{\text {ey }}=\mathrm{L}_{\mathrm{y}} \times \mathrm{K}_{\mathrm{y}}=4 \mathrm{ft}$

Section properties

Cross sectional area of member

$$
A=N \times b \times d=5.25 \mathrm{in}^{2}
$$

Adjustment factors

Resistance factor for compression - Table 2.3.6 $\quad \phi_{c}=\mathbf{0 . 9 0}$
Resistance factor for modulus of elasticity - Table 2.3.6

$$
\phi_{\mathrm{s}}=0.85
$$

Format conversion factor for compression - Table 2.3.5

$$
K_{F c}=2.40
$$

Format conversion factor for modulus of elasticity - Table 2.3.5

$$
K_{F E}=1.76
$$

Time effect factor - Table N. 3
$\lambda=1.00$
Wet service factor for compression - Table 4A
Temperature factor - Table 2.3.3
$\mathrm{C}_{\mathrm{Mc}}=1.00$
$C_{t}=1.00$
Size factor for compression

$$
C_{F C}=1.15
$$

Incising factor for modulus of elasticity - Table 4.3.8

$$
\mathrm{C}_{\mathrm{iE}}=1.00
$$

Incising factor for bending, shear, tension \& compresion - Table 4.3.8

$$
\begin{aligned}
& C_{i}=1.00 \\
& C_{M E}=1.00
\end{aligned}
$$

Adjusted modulus of elasticity for column stability

	$\mathrm{E}_{\text {min }}{ }^{\prime}=\mathrm{E}_{\text {min }} \times \mathrm{K}_{\text {FE }} \times \phi_{\mathrm{s}} \times \mathrm{C}_{\text {ME }} \times \mathrm{C}_{\mathrm{t}} \times \mathrm{C}_{\mathrm{iE}}=703120 \mathrm{psi}$
Reference compression design value	$\mathrm{F}_{\mathrm{c}}{ }^{*}=\mathrm{F}_{\mathrm{c}} \times \mathrm{K}_{\mathrm{Fc}} \times \phi_{\mathrm{c}} \times \lambda \times \mathrm{C}_{\mathrm{Mc}} \times \mathrm{C}_{\mathrm{t}} \times \mathrm{C}_{\mathrm{Fc}} \times \mathrm{C}_{\mathrm{i}}=3229 \mathrm{lb}$
Critical buckling design value or compression	n $\quad \mathrm{F}_{\mathrm{CE}}=0.822 \times \mathrm{E}_{\text {min }}{ }^{\prime} /\left(\mathrm{L}_{\text {ey }} / \mathrm{b}\right)^{2}=564 \mathrm{psi}$
	$\mathrm{c}=0.80 \quad$ (because sawn lumber)
Column stability factor - eq.3.7-1	$\mathrm{C}_{P}=\left(1+\left(\mathrm{F}_{C E} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right)\right) /(2 \times \mathrm{c})-\sqrt{ }\left[\left(\left(1+\left(\mathrm{F}_{C E} / \mathrm{F}_{\mathrm{c}}{ }^{*}\right)\right)\right.\right.$

/ (2

$$
\left.x c))^{2}-\left(F_{c E} / F_{c}^{*}\right) / c\right]=\mathbf{0 . 1 6 8}
$$

Beam stability factor - cl.3.3.3
$C_{L}=1.00$

Strength in compression parallel to grain - cl.3.6.3

Design compressive stress
Applied compressive stress
$F_{c}{ }^{\prime}=F_{c} \times K_{F c} \times \phi_{c} \times \lambda \times C_{t} \times C_{F c} \times C_{i} \times C_{p}=711.5 \mathrm{psi}$
$\mathrm{f}_{\mathrm{c}}=\mathrm{P} / \mathrm{A}=302.5 \mathrm{psi}$
$\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathbf{0 . 4 2 5}$

STRUCTURAL WOOD BEAM DESIGN (NDS) - TENSION

In accordance with the ANSI/AF\&PA NDS-2012 using the LFRD method

Analysis results

Design axial tension

Sawn lumber section details

Nominal breadth of sections
Dressed breadth of sections
Nominal depth of sections
Dressed depth of sections
Number of sections in member
Overall breadth of member
Species, grade and size classification assumption)
Bending parallel to grain
$\mathrm{b}_{\text {nom }}=2$ in
$b=1.5$ in
$\mathrm{d}_{\text {nom }}=4$ in
$\mathrm{d}=3.5 \mathrm{in}$
$\mathrm{N}=1$
$\mathrm{b}_{\mathrm{b}}=\mathrm{N} \times \mathrm{b}=1.5$ in
Hem-Fir, No. 2 grade, 2" \& wider (this is an

Tension parallel to grain
Compression parallel to grain
$\mathrm{F}_{\mathrm{b}}=850 \mathrm{psi}$
$\mathrm{F}_{\mathrm{t}}=525 \mathrm{psi}$
$\mathrm{F}_{\mathrm{c}}=1300 \mathrm{psi}$
Compression perpendicular to grain
$\mathrm{F}_{\mathrm{c} \text { _perp }}=405 \mathrm{psi}$
Shear parallel to grain
$\mathrm{F}_{\mathrm{v}}=150 \mathrm{psi}$
Modulus of elasticity
$\mathrm{E}=1.3^{*} 10^{6} \mathrm{psi}$
Modulus of elasticity, stability calculations
Mean shear modulus
$E_{\text {min }}=4.7^{*} 10^{5} \mathrm{psi}$
$\mathrm{G}_{\text {def }}=\mathrm{E} / 16=\mathbf{8 1 2 5 0} \mathrm{psi}$

Member details

Service condition

> Dry

Section properties

Cross sectional area of member

$$
\mathrm{A}=\mathrm{N} \times \mathrm{b} \times \mathrm{d}=5.25 \mathrm{in}^{2}
$$

Adjustment factors

Resistance factor for tension - Table 2.3.6 $\quad \phi_{\mathrm{t}}=\mathbf{0 . 8 0}$
Resistance factor for modulus of elasticity - Table 2.3.6

$$
\phi_{\mathrm{s}}=0.85
$$

Format conversion factor for tension - Table 2.3.5

$$
\mathrm{K}_{\mathrm{Ft}}=2.70
$$

Format conversion factor for modulus of elasticity - Table 2.3.5
$\mathrm{K}_{\mathrm{FE}}=1.76$
Time effect factor - Table N. 3
$\lambda=1.00$
Temperature factor - Table 2.3.3
$C_{t}=1.00$
Size factor for tension
$\mathrm{C}_{\mathrm{Ft}}=1.5$
Incising factor for modulus of elasticity - Table 4.3.8

$$
C_{\mathrm{iE}}=1.00
$$

Incising factor for bending, shear, tension \& compresion - Table 4.3.8

$$
C_{i}=1.00
$$

Tension parallel to grain - cl.3.8.1

Design tensile stress
Applied tensile stress

$$
\begin{gathered}
\mathrm{F}_{\mathrm{t}}^{\prime}=\mathrm{F}_{\mathrm{t}} \times \mathrm{K}_{\mathrm{Ft}} \times \phi_{\mathrm{t}} \times \lambda \times \mathrm{C}_{\mathrm{t}} \times \mathrm{C}_{\mathrm{Ft}} \times \mathrm{C}_{\mathrm{i}}=1701 \mathrm{psi} \\
\mathrm{f}_{\mathrm{t}}=\mathrm{P} / \mathrm{A}=302.5 \mathrm{psi} \\
\mathrm{f}_{\mathrm{t}} / \mathrm{F}_{\mathrm{t}}^{\prime}=0.178
\end{gathered}
$$

FAILURES IN FLOOR CONNECTIONS

Withdrawal of bolts:

Wind load into the roof can be the cause of withdrawal in bolts connecting the walls to the floor.
West Module:
$\mathrm{W}=7607 \mathrm{lb} \quad$ (Combined weight of roof and wall dead load)
$\mathrm{F}_{\text {top }}=2746.5 \mathrm{lb} \quad$ (Wind force into top of diaphragm system)
$\mathrm{L}_{\mathrm{c}}=6 \mathrm{ft}$
(Distance from wall to center of floor)
$\mathrm{H}=10 \mathrm{ft}$
(Height of W wall of W module)
$\alpha=W^{*} \mathrm{~L}_{\mathrm{c}} /\left(\mathrm{H}^{*} \mathrm{~F}_{\text {top }}\right)=7607^{*} 6 /\left(2746.5^{*} 10\right)=1.66$
$1.66 \gg 1$, therefore floor connection in West module will not fail from bolt withdrawal.
East Module:
$\mathrm{W}=7787 \mathrm{lb}$
(Combined weight of roof and wall dead load)
$\mathrm{F}_{\text {top }}=2746.5$
$\mathrm{L}_{\mathrm{c}}=6.25 \mathrm{ft}$
$\mathrm{H}=10 \mathrm{ft}$
$\beta=7787^{*} 6.25 /\left(2746.5^{*} 10\right)=1.77$
$1.77 \gg 1$, therefore floor connection in East module will not fail from bolt withdrawal.

Floor Shear (welds):

Assumptions:

- $1 / 8$ " thick plates made of A36 steel $\rightarrow a_{\max }=6 \mathrm{~mm}=0.236$ in
- Fillet welds (fail in shear)
- 2 " is smallest weld length
- E70 filler material ($\mathrm{F}_{\mathrm{y}}=58 \mathrm{ksi}$)

Used in calculations:

- Eq. J2.4 in AISC
- Max Base Shear is from Eastern wind on Shear Wall 3 (W1S1-W1S3) $=5814.5 \mathrm{lb}$
- Max shear on single floor connection $=5814.5 / 4=1453.6 \mathrm{lb}$

Calc:
$\mathrm{L}_{\mathrm{w}}=2 \mathrm{in}$. (Length of weld)
$\mathrm{F}_{\mathrm{Exx}}=58 \mathrm{ksi}$
$F_{E X X _s}=0.6 * 58=34.8 \mathrm{ksi}$
$\mathrm{a}_{\mathrm{w}}=0.236 \mathrm{in}$.
$\Phi=0.75$
$\mathrm{P}_{\mathrm{u}}=\mathrm{L}_{\mathrm{w}}{ }^{*} \Phi^{*} \mathrm{~F}_{\mathrm{ExX}} \mathrm{s}^{*} \cos 45^{*} \mathrm{a}_{\mathrm{w}}=2^{*} 0.75^{*} 34.8^{*} 0.707^{*} 0.236=8710 \mathrm{lb} \quad$ (Ultimate Weld Strength) $8710 \gg 1453.6$, therefore weld will not fail from base shear.

Bolt Shear:

Max shear is on shear wall 3, walls W1S1-W1S3.
Situation I_{s} is most likely failure scenario.
$\mathrm{N}=4$
$D=3 / 8 \mathrm{in}$.
$\mathrm{L}=2 \mathrm{in}$.
$V_{\text {max }}=1453.6$
V_{b} max $=V_{\text {max }} / \mathrm{N}=1453.6 / 4=363.4 \mathrm{lb}$
$\mathrm{F}_{\mathrm{es}}=2950 \mathrm{psi}$
$\mathrm{R}_{\mathrm{d}}=4 \mathrm{~K}_{\ominus}=4^{*}(1+0.25(\Theta / 90))=4^{*}(1.25)=5$
$\mathrm{f}_{\mathrm{v}}^{\prime}=\mathrm{D}^{*} \mathrm{~L}^{*} \mathrm{~F}_{\text {es }} / \mathrm{R}_{\mathrm{d}}=3 / \mathrm{s}^{*} 2^{*} 2950 / 5=442.5$
SF $=\mathrm{f}_{\mathrm{v}} / / \mathrm{f}_{\mathrm{v}}=442.5 / 363.4=1.22$
(Number of bolts per plate)
(Diameter of bolt)
(Length of bolt)
(Max shear on a connection)
(Max shear on single bolt)
(from Table 12.3.3 of NDS)
(from Table 12.3.1B of NDS)
(Design load)
(Safety factor)
$1.22>1$, therefore bolts will not fail in shear.

ROOF FASTENER FAILURE

Withdrawal:

Assumptions:

- Largest potential for failure is on the roof of the east wing since it has the largest area of any roof.
- Fastener between roof panels $1 \& 2$ and panels $6 \& 7$ have largest tributary areas, meaning they are most likely to fail from withdrawal.
- Largest suction force on roof happens when wind is coming from West direction because it makes the roof winward, giving the roof a higher $P_{\text {net }}$ value ($P_{\text {net_w }}=-33.21$) than the leeward direction ($P_{\text {net } _} \mathrm{L}=-20.11$).
$\mathrm{A}=475.26 \mathrm{ft}^{2}$
(Area of roof)
$\mathrm{L}=31.25 \mathrm{ft}$
$W_{1 / 2}=W_{6 / 7}=0.5^{*} 4+0.5(5+7.5 / 12)=4.8125 \mathrm{ft}$
(Length of roof)
(width of fastener tributary area)
$F_{R}=A^{*} P_{\text {net_w }}=475.26 * 39.24=15784.68$ (perpendicular to roof) (Suction force on roof)
$\omega=F_{R} / L=15784.68 / 31.25=505.11 \mathrm{lb} / \mathrm{ft}$
$\mathrm{F}_{\mathrm{B}}=505.11^{*} 4.8125=2430.84 \mathrm{lb}$
(Upward force on bolts)
Since F_{B} is less than the weight of the roof, the bolts will not fail from withdrawal.

Allowable tensile stress in bolts

$W_{R}=900+5229.33=6129.33$
$\mathrm{S}_{\mathrm{t}}=70 \mathrm{ksi} \quad$ (conservative estimation of strength of bolts)
$D=3 / 8$ in
$\mathrm{A}_{\mathrm{s}}=0.106 \mathrm{in}^{2}$
(diameter of bolts)
(Tensile stress area according to Fastenel)
$P_{\text {allow }}=S_{t}^{*}\left(\mathrm{~A}^{*} 4\right)=29680 \mathrm{lb} \quad$ (Allowable tensile force in bolt according to Fastenel)
$\mathrm{F}_{\mathrm{B} \text { _ }}=15567.2-6129.33=9437.87 \mathrm{lb}$
(Suctional force on bolts from roof)
$9437.89 \ll 29680$, therefore the bolts will not fail due to tension from suctional roof force.

Gravity Loads on Decking

Based on a survey of the decking tributary areas, it was determined that the greatest loads on support beams and columns would occur in the middle of the Rear-East (NE) deck.

Governing loads:

- Column: 5 (between A and B in drawing S-102
- Beam: 5 (facing 4.1, top beam)

DL $=4.625 \mathrm{psf}$
LL = 100 psf
$C L=1.2 \mathrm{DL}+1.6 \mathrm{LL}=165.55$
(Dead load per sq. ft.)
(Live load per sq. ft.)
(Combined load)

Column:

$$
\begin{array}{ll}
\mathrm{A}_{\mathrm{C}}=\left(1 / 8\left(95^{*} 108+108^{*} 77\right)+1 / 4\left(108^{*} 70\right)\right) / 144 \mathrm{in}^{2}=29.25 \mathrm{ft}^{2} & \text { (Tributary area of column 5) } \\
\mathrm{L}_{\mathrm{C}}=\mathrm{A}_{\mathrm{C}^{*} \mathrm{CL}=29.25^{*} 165.55=4842.3 \mathrm{lb}} & \text { (Load on column } 5) \\
\mathrm{A}_{\mathrm{B}}=1 / 2^{*} 108^{* 1} 1^{*}{ }^{*} 95 / 144 \mathrm{in}^{2}=17.82 \mathrm{ft}^{2} & \text { (Tributary area of beam) } \\
\mathrm{L}_{\mathrm{B}}=\mathrm{A}_{\mathrm{B}}{ }^{*} \mathrm{CL}=17.82^{* 165.55=2950.1 \mathrm{lb}} & \text { (Load on beam) } \\
\omega=2950.1 / 4.5=655.6 \mathrm{lb} / \mathrm{ft} & \text { (Load per linear foot on beam) }
\end{array}
$$

Tension on Deck Beams:
$\mathrm{L}=4.5 \mathrm{ft}$.
$\mathrm{M}=\omega \mathrm{L}^{2} / 8=655.6^{*} 4.5^{2} / 8=1659.5 \mathrm{lb}{ }^{*} \mathrm{ft}=19914 \mathrm{lb} * \mathrm{in}$
$\mathrm{I}=1 / 12^{*} \mathrm{~b}^{*} h^{3}=1 / 12^{*}\left(1.5^{\prime \prime}\right)\left(9.25^{\prime \prime}\right)^{3}=98.938$ in 4
$\mathrm{c}=9.25 / 2=4.625 \mathrm{in}$.
$\sigma=\mathrm{Mc} / \mathrm{I}=19914^{*} 4.625 / 98.932=930.96 \mathrm{psi}$
(Length of beam)
(Moment equation)
(Moment of Inertia)
(Centroid)
(Tensile stress equation)

Foundation Footing Design

As described above, the greatest single load on any footing will be $\mathbf{7 2 4 0} \mathbf{l b}$ at the column supporting the S end of the beam spanning the opening between kitchen and dining room.

If the soil bearing capacity is 2500 psf , then the required area of the footing under this column would be
$A=7240 \mathrm{lb} /(2500 \mathrm{lb} / \mathrm{sq} . \mathrm{ft})=.2.896 \mathrm{sq} . \mathrm{ft}$.
In general, therefore, a square footing 20.5 " on a side would be adequate for this purpose. Although the Drawings current reference footings that are 30 " square, a more logical size would be 24 " square. This revision is still being considered, including the effect on the footing thickness if the material is stacked plywood.

[^0]: * Heights of Roof and floor are actually their 'widths' for this calculation

