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Abstract

The analysis of quadratic stability and strongly H, performance of Model Predictive Con-
trol (MPC) with hard constraints ( or called Constrained Model Predictive Control (CMPC))
can be accomplished by reformulating the hard constraints of CMPC. From the CMPC algo-
rithm, each term of the closed-form of CMPC control law corresponding to an active constraint
situation can be decomposed to have an uncertainty block, which is time varying over the con-
trol period. The control law also contains a bias from the bounds of the constraints which cause
difficulty in stability and performance analysis. An alternative way to avoid this difficulty is to
reformulate the hard constraints to adjustable constraints with time varying adjustable weights
on the adjustable variables added to the on-line objective function. The time varying weights
in the adjustable constraint control law make the control action just the same as the hard
constrained control. Theoretical derivatives and examples are given. The same reformulation
is applied to the softened constraint cases.

On the analysis of the quadratic stability and strongly H,, performance, the control system
for hard constraint control law without bias satisfies the stability and performance criteria if and
only if the control system for adjustable constraint control law with time varying adjustable
weights satisfies the same criteria. The details will be shown in the technical reports on
quadratic stability and strongly H, performance analysis, which are in preparation.

1 Introduction

The effects of using an on-line optimization formulation in the feedback loop of a control system
were analyzed and the on-line optimization techniques were applied to the control system to obtain
a suboptimal control [Sznaier, 1989]. The objective function of this suboptimal control was subject
to the constraints of the control variables and the system states. In addition, a norm bounded system
state was set as an extra constraint of the objective function proved to guarantee the asymptotical
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stability of the control system. Under the assumptions of the objective function bounded by certain
defined functions, asymptotical stability of the optimal infinite-horizon and moving-horizon control
of a general class of constrained discrete-time systems was discussed [Keerthi and Gilbert, 1988].

A framework on the receding horizon control has been developed by Rawlings and Muske
(1993) . The end constraint used in the moving horizon on-line optimization was proposed by
Genceli and Nikolaou (1992) . A method to soften the hard constraint by adding a linear weighting
function to the on-line objective function was given by de Oliveira and Biegler (1992) .

Contrasting with the above research work, Constrained Model Predictive Control (CMPC) has
tunable prediction horizon and control horizon in the quadratic objective function and no extra
norm bounded state or end constraint. Its control law, similar to the variable structure control law,
is a piecewise linear function which contains a sequence of linear control laws to handle different
active constraint situations at the optimal condition.

In this paper, based on the state space model, the control law of CMPC is formulated. The
closed-form control law of CMPC with uncertainty blocks which are time varying corresponding
to active constraint situation at the optimum can be represented by the adjustable constraint control
law with the uncertainty blocks containing adjustable weights. Applying the adjustable constraint
control law shows the feasibility on analyzing the quadratic stability and strongly H,, performance
of CMPC.

2 Hard Constrained MPC

The on-line objective function is:

u(k), u(k+M—1)Z[eT(k +DPe(k+ 1) +u"(k+1- DB u(k +1-1)

+ Au(k + 1= DD*Autk +1- 1)] (1)
subject to
Autk +1) < Au(k+i) < Ak +i), i=0---M-1
and/or
uk+) <uk+id)<uk+id, i=0---M-1
and/or

Yk+j) < §k+)) S yk+j), wp <j < We

where M : control horizon; P : prediction horizon; e : the predicted error (the difference
between predicted output and reference input); # : manipulated variable; Au : the change rate
of manipulated variable (Au(k + 1) = u(k + i) —u(k +i-1)); T" : the diagonal weighting matrix
of predicted error; B : the diagonal weighting matrix of manipulated variable; D : the diagonal
weighting matrix of Au; ¥ : the predicted output; u, & are the lower and upper bounds of u
respectively; Au, Al are the lower and upper bounds of Au respectively; y, y are the lower and
upper bounds of ¥ respectively; ws, w, are the beginning and ending points of predicted output
constraint window respectively; k :is the time index.



The process model is described as:

x(k+1) = ¢x(k) + Ou(k)
yk) = Cx(k) +d(k) ()

where x(k) : the state variable; d(k) : the disturbance; y(k) : the output measurement; ¢, ©, C :
the coefficients of the state space model. Based on the model to predict the future output (predicted
output), the quadratic optimization problem (1) can be written as a standard Quadratic Programming
problem:

1
min g(v) = EvTGv +gTv 3)
subject to
ATv> b
where
v=[ulk) ... W"k+M-1)1" )

the matrices G, A, and vectors g, b are functions of the tuning parameters (weights, horizons P, M),
and some bounds of constraints. The vectors g, b are also linear functions of state, disturbance,
and/or u(k - 1).

For the optimal solution v* we have [Fletcher, 1981]:

EiIieH <5>

where AT, b consist of the rows of AT, b that correspond to the constraints that are active at the
optimum and A* is the vector of the Lagrange multipliers corresponding to the constraints. The
optimal u(k) corresponds to the first m elements of the v* that solves (5), where m is the dimension
of u.

The special form of the LHS matrix in (5) allows the numerically efficient computation of its
inverse in a partitioned form [Fletcher, 1981]:

BRI ET

-AT 0 -7 U,
Then A
V' =-Hg+Th (7
X =TTg-Ub (®)

The general control law for the optimization problem (1) or (3) is:

[10...0)(-Hg +Tbh)
~[10...0][G" -G 'AATG'A)'ATG ST T (x(k) + ad(k) — R(k + 1))

u(k)



[ Al(k) + u(k—1)
Aik+1)

14 /2T 191 _T Al"t(k+M—1)
+ [10...0]JGCAA'G Ay w a(k)
i't(k+M——l)

| x(k) + ad(0) +7 |
utk—1)

R A 0
+ [10...0][G'-G'AATG'A)'AT¢ ' D'D . 9)

0
where R(k + 1) is the reference input; ! is a extraction matrix, and it extracts elements from
its right hand side matrix corresponding to an active constraint situation at the optimum; y =
[ 57k +wp) -+ 37k +w,.) 1%, 7, & are the matrices consisting of the rows from the 7, o that
correspond to the predicted output constraint window; ¥(k + j),Aiu(k + i),i(k + i) are the upper or

lower bounds of the y(k +j), Au(k + i), u(k + i) respectively; 5 = [ (C)T (C*)T --- (CoP)T } and
a=[1 --- Ip]F (I; :is an identity matrix);

1 0 ... 0
g1 0 0
“lo . .0
0 ... -1 I

When the control system gets into the unconstraint control region, the term A(ATG'A)'A” = 0in
(9), then the control law becomes unconstraint control law.

3 Adjustable Constrained MPC

The on-line objective function is:

P
D leftk+ DT Pe(k+ D +u"(k+ - DB u(k +1- 1)

min
u(k), -, u(k+M-1),€ =1

+Au"(k+1- DD Aulk + 1= 1)] + & W?e (10)
subject to
—pnk+0D) < Aulk+0) < épk+1), i=0---M-1
and/or
-k +i) Sutk+i) < &k+i), i=0---M-1
and/or

—Ek+)) S Jk+)) < Ek+)), wp <j<w.
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and

e=[eql) - ek +M-1)EK) -+ Ek+M-1)Ek+ws) -+ lk+w) ] >0

where
[ Wauk) - 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 Wauk+M-1) 0 0 0 0 0 0
0 0 0 W) 0 0 0 0 0
We= 0 0 0 0o - 0 0 0 0
0 0 0 0 0 Wuk+M-1) 0 0 0
0 0 0 0 0 0 Wylk+wp) 0 0
0 0 0 0 0 0 . 0
|0 0 0 0 0 0 0 0 Wyk+w,) |

€ is the adjustable variable and the W, is the adjustable weight; €,(k + i), éa.(k + i), €(k + ) are the
adjustable variables for u(k +1), Au(k +1), y(k +j) respectively. Wy, (k+1), Wip, (k+1), Wy(k+j) are
the adjustable diagonal weighting matrices for €,(k + i), €a(k+1i), €(k +) respectively. Based on
the model (2) to predict the future output (predicted output), the quadratic optimization problem
(10) can be written as a standard Quadratic Programming problem:

rrvufn q(v) = —21—vTGv +glv+ %ETW,ZG‘
_ %vT[g ng]mgf o (11)
subject to
ATy > b
where b is the b with zero bounds of constraints (Ai(k+i) = 0 and/or it(k+i) = 0 and/or j(k+j) = 0).
AT=[AT I, v=[d"() -~ WTk+M-1) & ]

where [ is an identity matrix.
For the optimal solution v* we have [Fletcher, 1981]:

G 0 -A v g
0 W2 -I||le|=-|0 (12)
AT T 0 A* b
where 171 = I. Then
& =W, I\
and o
G -A v* g
n . =—] a 13
e L] =[] a3

where W, % = "W, 1.



Following the similar method in section 2 to solve (13), we have the hard constraint control

law:
w(k) = [10...0](-Hg+Tbh)
= _[10...01[G'-GAATG'A+ W, TATG ST T (yx(k) + ad(k) — R(k + 1))
[ uk-1) ]
0
+ [10...0]G ARG A+W, )y 'w" g
0
| fix(k) + ad(k) |
utk—1)
. g 0
+ [10...0][G'-G'AATG'A+W, HATGITTD'D : (14)
0
Remark I
1. When W, — oo, the control law (14) is the same as the hard constraint control law (9)

with zero bounds of constraints (Afi(k + i) = 0 and/or i(k + i) = 0 and/or J(k + ) =0).

When W, — 0, the control law (14) with A(GATG1A+W;?)'A” = 0 becomes unconstraint
control law which is the same as the control law (9) with the term AATGAY AT = 0.

. The control laws (9) and (14) are the same to work on controlling the process with

constraints. The adjustable time varying W; can make the adjustable constraint control
system work the same as the hard constraint control.

The adjustable constraint control law can represent the hard constraint control law with
nonzero bounds of constraints (Aii(k + i) # 0 and/or @(k + i) # 0 and/or y(k +j) #0).

. If the adjustable constraint control law can make the control system satisfy the quadratic

stability and/or strongly H., performance criteria, then the corresponding hard con-
straint control law also can make the control system satisfy the same stability and/or
performance criteria.

The advantage to take the adjustable constraint control law for the stability and per-
formance analysis is that there are no any bias terms from bounds of constraints
(Afi(k + i) # 0 and/or @k + i) # 0 and/or y(k + j) # 0). Because of this advantage,
it makes the stability and performance analysis of CMPC be feasible.

. The W,? can be solved by the following equation for a specified € :

w2e = IATG A [(AG g + b) - TTe (15)



Closed-Form Control Law with Uncertainty Blocks

The control law (9), (14) can be reformulated as closed-form control law with uncertainty blocks.

To do so, let

AT = "5

where § is a full rank submatrix of A”. Then, several facts should be followed:

1. GG > w@ATG'AY ' 'w” > w@TG A + W, ) '@ (Proof is in Appendix A),
2. G'57) 1 = E'ET, where E is a nonsingular matrix,

3. w@ATGAY'w! = EUTAULET and w(ATG1A+W, )y '@” = E\UTAUET, where
A., A, are diagonal matrices with value of each entry element between 0 and 1,

4. The unitary matrices U, U are variably dependent of the active constraint situation.

The control law (14) can be rewritten as:

uk) = —[10---01[G™ = GTAQATGA + W, 2 'ATGMSTTTT(nx(k) + ad(k) — R(k + 1))

+[10---

+I0---

= -[I0---

+10--

+[10---

01G'AATG'A + W, ' wT

u(k—1)
0

0

| fix(k) + ad(k) |

01[G™ - GTAATGA + W AT’ D™D

utk—1)

0

01[G™ - G'S"EUT AL UE TG IS T T (yx(k) + ad(k) ~ R(k + 1))

01GSTEUTA,UET

-

utk-1)

| iix(k) + ad(k) |

0

0

uk-1)

011G -G STEUTAUE TG ITT DD

(16)



Based on the closed-form control law with uncertainty blocks, the quadratic stability and
strongly H,, performance of hard constrained MPC can be analyzed. A lemma in the following
would be useful to simplify part of the closed-form control law to make the stability and performance
analysis less conservative.

Lemma 1 If the active constraint set includes some inputs reaching their active constraints of
Au(k), then the term u(k — 1) arising from the bound ( b) in the hard constraint control law (9) does
not affect the equivalent control law for quadratic stability and strongly H.,, performance analysis.
Proof: see appendix A.

4 Softening the hard constraints

The on-line objective function is:

u(k), - (k+M e Z[eT(k+l)F2e(k+l)+uT(k+l DBulk+1-1)

+ Aul(k + 1 - DD*Aulk + 1 - D] + FWe (17)
subject to

—epulk + 1)+ Aulk +10) < Autk +1) < Atk + i) + epy(k+0), i=0--- M-1

and/or
- k+D)+uk+d) <uk+id)<ak+i)+e,k+i), i=0.-.-M-1
and/or
—eg(k +j) +y(k +j) <k +)) Sk +)) +eglk+), wp <j < we
and

e=leadk) - enk+M-1D e (k) - efk+M-1D) & k+wp) - ¢T(k+w,) 1" >0

where

[ Wp(0) 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 WaM-1) 0 0 0 0 0 0

0 0 0 W.(0) O 0 0 0 0

W= 0 0 0 0o 0 0 0 0

0 0 0 0O 0 wWM-1) 0 0 0

0 0 0 0 0 0 Wy(wp) O 0

0 0 0 0 0 0 ) 0
0 0 0 0 0 0 0 0 Wyw.) |

€ is the softening variable, and W is the softening weight. €,(k + i) eau(k + i) €y(k + j) are the
softening variables for u(k + i), Au(k +1i), $(k + j) respectively. W, (i), Wa, (i), Ws(j) are the time
invariant softening diagonal weighting matrices for €,(k + 1), eau(k + i), €5(k + j) respectively.
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Follow the same method in transforming the hard constrained MPC to adjustable constrained
MPC in section 2, 3. The above optimization problem with time invariant W can be replaced by
the following adjustable softened constraint optimization problem with time invariant W and time
varying W,:

Z[eT(k + Dk + 1) +ul (k+1- 1)B*u(k +1-1)

Sy

+AuT(k + 1= DD*Audk + 1- 1)] + €EW?e + €W, %€ (18)

u(k), ,u(k+M—l),

subject to

—eay(k+10) — Epu(k +1) < Aulk+10) < epulk+i)+Epuk+i), i=0--- M-1

and/or
—,k+D)-Ek+)) <uk+i)<ek+i)+ek+i), i=0---M-1
and/or
—eg(k+j) — &k +)) < Pk+)) < ek +)) + &k +)), wp <j<w,
and

e=[end € c;T]T>O
e=[e, & §1°>0

Based on the model (2) to predict the future output (predicted output), the quadratic optimization
problem (18) can be written as a standard Quadratic Programming problem:

. 1 1 1 4 o
ming(v) = -2—vTGv+g v se We+—2—eTW,26
1, G 0 0
= 5 0 W2 0 |v+[g" 00 (19)
0 0 WwW?
subject to
ATy > b (20)
where
AT = AT o 1t
AT L LT
v={uTtk) - wWhk+M-1) &

where A;7, A,T consist of the rows of AT that correspond to the hard constraints without and with
softening respectively; I, [ I; I; 17 = I are identity matrices and their dimension correspond to
the row dimension of A,”, AT respectively. For the optimal solution v* we have [Fletcher, 1981]:

G 0 0 -A -A7[ v [ g
0 W 0 0 -l ¢ 0
0 0 W -I -l € |=-]0 (2D
AT 0 T o0 0 A b,
AT T T 00 A" by




N Apa a aT AT N . £ A A A
where Bl =5 I'li=1, Bli =1L, [ M7 N1 =X, b=[b, b, 15 AT, A, by, I, T}, I}
consist of the rows of A;7, A7, bT, I, I/, I,;7 that correspond to the active constraints at the

optimum. Let
- G 0
o= 3w ]
and AT 0
AT — 13
-3 ]
The equation (21) can be rewritten as:
G 0 -A v g
0 w2 - e |=-{0 (22)
AT T 0 A b

where I=[T, I;1; ve*=[v'T ¢T17; g=[g" 01". Then
& =W, 2N
and )
: ] (23)
where W;2 = "W, 1.

Following the similar method in section 2 to solve (23), we have the adjustable softened
constraint control law:

uk) = [10...0)(-Hg+Tb)
= [10...0][G" -G AATG A+ W, L ATG] [ ST (k) + ad() - Rk + 1))
.. 0
u(k—1)
0
+ [10...01GAATG' A+ W, ) e’ 8
0
i) + Gd(k) |
[ utk—=1)7 |
. TNT
+ [10...01[C" -G AATG' A+ W, )y 1ATG oD : (24)
0
- O .

10



Remark 11

L.

When W, — oo, the control law (24) is the same as the softened constraint control law
of the optimization problem (17) with zero bounds of constraints (Ai(k + i) = 0 and/or
a(k + i) = 0 and/or y(k +j) = 0).

When W, — 0, the control law (24) with the term A(ATG ! A AT =0 becomes uncon-
strained control law, which is the same as the control law (9) with A(ATG'A)"'AT = 0.

. The control laws of the optimization problem (17) and (18) are the same to work

on controlling the process with softened constraints. The adjustable time varying W,
can make the adjustable softened constraint control system (18) work the same as the
softened constraint control (17).

The adjustable softened constraint control law (24) can represent the softened constraint
control law with nonzero bounds of constraints (Aii(k + i) # 0 and/or @#(k + i) # 0 and/or
yk +j) #0).

If the adjustable softened constraint control law (24) can make the control system satisfy
the quadratic stability and/or Strongly H,,, performance criteria, then the corresponding
softened constraint control law from the optimization problem (17) should be able to
make the control system satisfy the same stability and/or performance criteria.

. The advantage to take the adjustable softened constraint control law for the stability

and performance analysis is that there are no any bias terms from bounds of constraints
(Au(k + i) # 0 and/or @i(k + i) # 0 and/or y(k +j) # 0). Because of this advantage, it
makes the stability and performance analysis of CMPC be feasible.

. The W, can be solved by the following equation for a specified & :

S

w2 = IATG A [(AG g + b) - 1Te") (25)

Closed-Form Control Law with Uncertainty Blocks

The control law (24) can be reformulated as closed-form control law with uncertainty blocks. To

do so, let

AT = =Tz

where Z is a full rank submatrix of A7 with row dimension not great than M times the number of
manipulated variable. Then, several facts should be followed:

1.
2.

3.

GG > GG > w(ATG A o > w(ATG A+ W, ) 1w,
(zG'Z0)! = E'ET, where E is a nonsingular matrix,

w(ATG 1Ay o = EUTAUGET and w(ATG'A + W,*y'wT = EUTA, UET,
where A., A, are diagonal matrices with value of each entry element between 0 and 1,

The unitary matrices Ug,, U are variably dependent of the active constraint situation.

11



The control law (24) can be rewritten as:

uk) = -[10---0][G-GLAUTGI A+ W,y ATGH

+[10--

+10--

= [I0---

+HI0---

+[10---

01[G -G 'ZEUTALUETZG )

0
uk-1)
0
01G'ZEUTALUET™ 8
0
| ix(k) + Gd(k) |
uk—1)
. -~ DD 0
01[G - G'FEUTALUETZG™] :
0
i 0

0
u(k—1)
0
0]1GTAATG A + W, T 0
0
0
| 7x(k) + ad(k) ]
[ utk—1)
~ Ao R n ~ TnNT
ONG -GLAATG A+ W HTATG rD'p :
0
0

STrTi“(nx(k) + ad(k) — Rk +-1) )

-

J

STTTT (px(k) + ad(k) — R(k + 1))

(26)

Based on the closed-form control law with uncertainty blocks, the quadratic stability and
strongly H,, performance of softened constraint MPC can be analyzed. A lemma in the following
would be useful to simplify part of the closed-form control law to make the stability and performance
analysis less conservative.

Lemma 2 If the active constraint set includes some inputs reaching their active constraints of
Au(k), then the term u(k—1) arising from the bound (b), which can be obtained by reformulating the
constraints of optimization problem (17) to the constraint of a standard Quadratic Programming

12



problem (please see the section 2) does not affect the equivalent control law for quadratic stability
and strongly H,, performance analysis.
The approach followed in the proof is similar to that in lemma 1.

5 Illustrations

Example 1

A SISO multieffect evaporator process is given [Ricker et al., 1989] :

2.69(—6s + 1)e 15
100s2 +25s + 1

(I) Set constraints on Au, u over the control horizon (M):

pls) =

01 < Auk+i) <01, 0S5<utk+i) <05, i=|,M
Select tuning parameters:
P=10,M=2,B=0,D=5T=1,T;=3

where T is the sampling time. Set the disturbance d(s) = 1.2/s and apply hard constrained MPC
to simulate controlling this process. From the control simulation, we obtain a sequence of active
constraint sets over control period (in Table 1), and we can off-line find the W,2 (in Table 1) by
using equation (15). Applying adjustable constrained MPC with W,? to do the control simulation
again, we see that these two simulations are exactly same shown on Figure 1. The result shows
that the adjustable constraint control law (14) work just exactly same as the hard constraint control
law (9).

OUTPUT & INPUT
o o
o =2

o
N

o
—T

0.2F s

-0.4F

-0.6
0

Figure 1. Simulation for example 1 (I); Solid line : output; Dotted line : input

(II) Set constraint on :
05<9k+4)<0.5

13



[ k| Active Constraint Sets | Adjustable Weights ]
Auk) Autk+1) utk) utk+1) | (Wuuk))® Wank+1))°  Wulk))®  (Wulk+ 1)
0 1 1 0 0 3.2904e+01  1.6552e+01 0 0
1 1 1 0 0 2.4086e+01  9.6007e+00 0 0
2 1 1 0 0 1.4231e+01  1.9543e+00 0 0
3 1 0 0 0 4.7794e+00 0 0 0
4 0 0 0 1 0 0 0 1.4085¢+00
5 0 0 0 1 0 0 0 2.3070e+00
6 0 0 1 1 0 0 9.1895¢-01  1.9499e+00
7 0 0 1 1 0 0 8.7099¢-01  1.5026e+00
8 0 0 1 1 0 0 6.8672¢-01  1.1203e+00
9 0 0 1 1 0 0 5.2925e-01  7.9285e-01
10 0 0 1 1 0 0 3.9435¢-01  5.1186e-01
11 0 0 1 1 0 0 2.785%-01  2.7051e-01
12 0 0 1 i 0 0 1.7915¢-01  6.3060e-02
13 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Table 1: The active constraint sets and adjustable weights of example 1 (I); where 1, O in the columns
of u, Au represent the corresponding constraint reaches its lower bound (active constraint), and
stays between bounds (inactive constraint) respectively.

Select tuning parameters:
P=30,M=1,B=0,D=0,T=1,T,=3

Set the disturbance d(s) = 2/s and apply hard constrained MPC to simulate controlling this process.
From the control simulation, we obtain a sequence of active constraint sets over control period (in
Table 2), and we can off-line find the W,? (in Table 2) by using equation (15). Applying adjustable
constrained MPC with W,? to do the control simulation again, we see that these two simulations
are exactly same shown on Figure 2. The result shows that the adjustable constraint control law
(14) work just exactly same as the hard constraint control law (9).

(III) Set constraint on :

03 < Auk) 0.3, 05 uk) <0.5, 0.1<9k+7)<0.1
Select tuning parameters:
P=10,M=2,B=0,D=0,T=1,T,=3

Set the disturbance d(s) = 1/s and apply hard constrained MPC to simulate controlling this process.
From the control simulation, we obtain a sequence of active constraint sets over control period (in
Table 3), and we can off-line find the W,? (in Table 3) by using equation (15). Applying adjustable
constrained MPC with W;? to do the control simulation again, we sce that these two simulations
are exactly same shown on Figure 3. The result shows that the adjustable constraint control law
(14) work just exactly same as the hard constraint control law (9).

14



| k | Active Constraint Sets | Adjustable Weights |

Yk +4) (Wis(k +4))°

0 2 1.0999¢+04

1 1 1.2570e+02

2 1 1.1056e+03
3 0 0
0 0

Table 2: The active constraint sets and adjustable weights of example 1 (II); where 2, 1, 0 in
the columns of  represent the corresponding constraint reaches the upper, lower bound (active
constraint), and stays between bounds (inactive constraint) respectively.

5
Q|

Y T T T T Y

QUTPUT & INPUT

10 2 1 L 1 : L : n "
0 10 20 30 40 50 60 70 80 20 100
TIME

Figure 2: Simulation for example 1 (II); Solid line : output; Dotted line : input

[ k | Active Constraint Sets | Adjustable Weights |
Auk)  utk) 9GK+7) | (Wuu(k)) (W) (Wsk + 7))
0 1 0 2 5.8738¢+00 0 3.7205e+01
1 0 1 2 0 2.3633e+00 2.6568c+01
2 0 1 2 0 2.0248e¢+00  1.9203¢+01
3 0 1 2 0 1.3823e¢+00  1.2526e+01
4 0 1 2 0 8.2551e-01 6.5942¢+00
5 0 1 2 0 3.4428¢-01 1.3871e+00
6 0 1 0 0 8.6829%¢-02 0
7 0 0 0 0 0 0
0 0 0 0 0 0

Table 3: The active constraint sets and adjustable weights of example 1 (I1D; where Z, 1, O in the
columns of y, u, Au represent the corresponding constraint reaches its upper, lower bound (active
constraint), and stays between bounds (inactive constraint) respectively.
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Figure 3: Simulation for example 1 (IIT); Solid line : output; Dotted line : input

Example 2

A1 x 1 process model of a subsystem of the Shell Control Problem is given [Prett and Garcia,
1988]:
5(5) = 4.05¢7%
S0s +1
Set constraints on y(k + 7):
-05<9k+7) <05

Select tuning parameters:
P=60,M=1,B=0,D=0, Wy(7)=290, T =1, T, =4

Set the disturbance d(s) = 1.1/s and apply softened hard constraint MPC to simulate controlling
this process. From the control simulation, we obtain a sequence of active constraint sets over
control period (in Table 4), and we can off-line find the W,? (in Table 4) by using equation (25).
Applying adjustable softened constraint MPC with W;? to do the control simulation again, we see
that these two simulations are exactly same shown on Figure 4. The result shows that the adjustable
softened constraint control law (24) work just exactly same as the softened constraint control law
from the optimization problem (17).

Example 3

A 2 x 2 process model of a subsystem of the Shell Control Problem is given [Prett and Garcia,
1988]:

4.05¢ 2 1,777
PG = Sl 55
50s+1 60s+1
(I) Set constraints on Au, u over the control horizon (M).

03 < Auk+i) <03, 0S5<uk+i) <05, i=1,M

16



| k | Active Constraint Sets | Adjustable Weights |

Pk+7) (Ws(k + 7))

0 2 4.9986e+04
1 0 0
0 0

Table 4: The active constraint sets and adjustable weights of example 2; where 2, 0 in the columns
of § represent the corresponding constraint reaches its upper (active constraint), and stays between
bounds (inactive constraint) respectively.

[=] -

OUTPUT & INPUT

.
nN

0 50 100 150 200 250 300 350 400
TIME

Figure 4: Simulation for example 2; Solid line : output; Dotted line : input
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[ k] Active Constraint Sets ]

Auy(k) Aup(k) w(k) ur(k) wi(k+1) wplk+1) wmk+2) wua(k+2) uy(k+3) w(k+4)

0 1 1 0 0 1 1 1 1 1 0
1 0 0 1 1 1 1 0 0 0 0
2 0 0 1 1 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0
8 0 0 1 0 1 0 0 0 0 0
9 0 -0 1 0 1 0 1 0 0 0
10 0 0 1 0 1 0 1 0 0 0
11 0 0 1 0 1 0 1 0 0 0
12 0 0 1 0 1 0 1 0 0 0
13 0 0 1 0 1 0 1 0 0 0
14 0 0 0 0 1 0 0 0 0 1
15 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Table 5: The active constraint sets of example 3 (I); where 1, 0 in the columns of u, Au represent
the corresponding constraint reaches its lower bound (active constraint), and stays between bounds
(inactive constraint) respectively.

Select tuning parameters:
P=6,M=5 B=0,D=15I,T=I1T;=6

Set the disturbance d(s) = [ 1.5/s 1.7/s ] and apply hard constrained MPC to simulate controlling
this process. From the control simulation, we obtain a sequence of active constraint sets over
control period (in Table 5), and we can off-line find the W,? (in Tables 6 and 7) by using equation
(15). Applying adjustable constrained MPC with W,? to do the control simulation again, we see
that these two simulations are exactly same shown on Figure 5. The result shows that the adjustable
constraint control law (14) work just exactly same as the hard constraint control law (9).

(II) Set constraint on :

0.1 < $H1(k+6) <0.1, -0.1< $(k+4) <0.1
Select tuning parameters:
P=7,M=2,B=0,D=0,T=1,T,=6

Set the disturbance d(s) = [ 5/s 5/s 17 and apply hard constrained MPC to simulate controlling this
process. From the control simulation, we obtain a sequence of active constraint sets over control
period (in Table 8), and we can off-line find the W,? (in Table 8) by using equation (15). Applying
adjustable constrained MPC with W,% to do the control simulation again, we see that these two
simulations are exactly same shown on Figure 6. The result shows that the adjustable constraint
control law (14) work just exactly same as the hard constraint control law (9).
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[ Adjustable Weights

VWO I NDW—=O

WuanR))" Winiy 0) (W K) Wiy ) (Wi (k + 1))” (Wi (k + 1))°
5.93¢+00  5.38¢+00 0 0 6.55¢-01 9.47¢-01

0 0 1.28¢+00 1.11e+00 2.81e-01 4.89¢-01

0 0 6.84¢-01  2.89%-01 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 8.68¢-03 0 4.22¢-02 0

0 0 1.35¢-01 0 5.67¢-02 0

0 0 1.25¢-01 0 5.62e-02 0

0 0 1.01e-01 0 4.58e-02 0

0 0 6.92¢-02 0 3.12¢-02 0

0 0 3.47¢-02 0 1.63¢-02 0

0 0 0 0 7.97e-03 0

0 0 0 0 0 0

0 0 0 0 0 0

Table 6: The adjustable weights of example 3 (I)

| k] Adjustable Weights |
(Wi, (R +2) (Wi (k+2))7 (Wiy(k+3))F (W, (k +4))?

0 2.28¢-01 6.74e-01 1.38e-01 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 0 0 0 0
6 0 0 0 0
7 0 0 0 0
8 0 0 0 0
9 1.47¢-02 0 0 0
10 1.74¢-02 0 0 0
11 1.54¢-02 0 0 0
12 1.19e-02 0 0 0
13 8.86¢-03 0 0 0

14 0 0 0 2.18e-03
15 0 0 0 0
0 0 0 0

Table 7: The adjustable weights of example 3 (I)
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Figure 5: Simulation for example 3 (I); Solid line :

X
100

150 200
TIME

s
250 300

output; Dashed line : input

[ k | Active Constraint Sets | Adjustable Weights ]
Nk+4)  NE+6) | (Wy,(k+6))° (Wy,(k+4))°
0 1 2 1.0550e+01 1.4174¢+01
I 1 2 3.9173e+00  2.4911e+00
2 0 0 0 0
0 0 0 0

Table 8: The active constraint sets and adjustable weights of example 3 (II); where 2, 1, 0 in
the columns of ¥ represent the corresponding constraint reaches its upper, lower bound (active
constraint), and stays between bounds (inactive constraint) respectively.
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Figure 6: Simulation for example 3 (II); Solid line : output; Dashed line : input

(II1) Set constraints on
—0.3 < Au(k) £ 0.3, 0.5 < u(k) <0.5,
-0.1 < 91(k+8) <0.1, 0.1 <9k+7)<0.1
Select tuning parameters:
P=10,M=2,B=0,D=0,T=1,T,=6

Set the disturbance d(s) = [ 1.5/s 1.5/s ]¥ and apply hard constrained MPC to simulate controlling
this process. From the control simulation, we obtain a sequence of active constraint sets over
control (in Table 9), and we can off-line find the W, (in Table 10) by using equation (15). Applying
adjustable constrained MPC with W,* to do the control simulation again, we see that these two
simulations are exactly same shown on Figure 7. The result shows that the adjustable constraint
control law (14) work just exactly same as the hard constraint control law (9).

(IV) Set constraint on :

03 <Ak) <03, -1<uk) <1, 0.1 <H(k+5)<0.1
Select tuning parameters:
P=73, M=1,B=0,D=0, W;,(5§) =10.0835, T'=1, T, =6

Set the disturbance d(s) = [ 2/s 1/s ]* and apply softened hard constraint MPC to simulate
controlling this process. From the control simulation, we obtain a sequence of active constraint
sets over control period (in Table 11), and we can off-line find the W;* (in Table 11) by using
equation (25). Applying adjustable softened constraint MPC with W,? to do the control simulation
again, we see that these two simulations are exactly same shown on Figure 8. The result shows that
the adjustable softened constraint control law (24) work just exactly same as the softened constraint
control law from the optimization problem (17).

21



[ k| Active Constraint Sets |

Auy(k) Aup(k) wi(k) uak) Dk+7) Nk+8)

0 1 1 0 0 2 2
1 0 0 1 1 2 2
2 0 0 1 1 0 2
3 0 0 1 1 0 0
4 0 2 0 0 0 0
5 0 2 0 0 0 0
6 0 2 1 0 0 0
7 0 0 1 0 0 0
8 0 0 1 0 0 0
9 0 0 1 0 0 0
10 0 0 1 0 0 0
11 0 0 1 0 0 0
12 0 0 1 0 0 0
13 0 0 1 0 0 0
14 0 0 1 0 0 0
15 0 0 1 0 0 0
16 0 0 0 0 0 0
0 0 0 0 0 0

Table 9: The active constraint sets of example 3 (III); where 1, 2, 0 in the columns Of u, Au,
represent the corresponding constraint reaches its lower, upper bound (active constraint), and stays
between bounds (inactive constraint) respectively.

[ k] Adjustable Weights |

W 0 WayK)Y Wy 0 (Way ) (Wi, (k+8)F (Wi, (k + 7))

0| 9.6648¢+00 7.4413e+00 0 0 1.9646e+01 7.8742e+00

1 0 0 3.8619¢+00 2.9184e+00  1.1657e+01 1.6999¢+00
2 0 0 2.1734¢+00 1.4682e+00 4.7211e+00 0
3 0 0 7.4089%e-01  2.2133e-01 0 0
4 0 7.6351e-01 0 0 0 0
5 0 8.4561e-01 0 0 0 0
6 0 4.7112e-01  1.2524e-01 0 0 0
7 0 0 3.5815¢e-01 0 0 0
8 0 0 2.7604e-01 0 0 0
9 0 0 2.2802e-01 0 0 0
10 0 0 1.8231e-01 0 0 0
11 0 0 1.4216¢-01 0 0 0
12 0 0 1.0651e-01 0 0 0
13 0 0 7.4887¢-02 0 0 0
14 0 0 4.6844¢-02 0 0 0
15 0 0 2.1973¢-02 0 0 0
16 0 0 0 0 0 0
0 0 0 0 0 0

Table 10: The adjustable weights of example 3 (III)
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Figure 7: Simulation for example 3 (III); Solid line : output; Dashed line : input

|k [ Active Constraint Sets | Adjustable Weights |
Auy(k) 91k +5) (Waaw, (K))* (Wi, (k +5))*
0 1 2 5.6633e+02  1.8622¢+03
1 1 2 2.5508¢+02 1.6842¢+03
2 0 2 0 1.4537e+03
3 0 2 0 1.2292¢+03
4 0 2 0 1.0371e+03
b 0 2 0 8.7271e+02
6 0 2 0 7.3206e+02
7 0 2 0 6.1175¢+02
8 0 2 0 5.0885e+02
9 0 2 0 4.2087¢+02
1 0 2 0 3.4565¢+02
11 0 2 0 2.8136e+02
12 0 2 0 2.2642e+02
13 0 2 0 1.7949¢+02
14 0 2 0 1.3941e+02
15 0 2 0 1.0519e+02
16 0 2 0 7.5980e+01
17 0 2 0 5.1055e+01
18 0 2 0 2.9795¢e+01
19 0 2 0 1.1667e+01
20 0 0 0 0
0 0 0 0

Table 11: The active constraint sets and adjustable weights of example 3 (IV); where 2, 1, 0 in the
columns of $;, Au; represent the corresponding constraint reaches its upper, lower bound (active
constraint), and stays between bounds (inactive constraint) respectively.
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0 5‘0 1(I)O 1é0 2(‘)0 2&0 300
Figure 8: Simulation for example 3 (IV); Solid line : output; Dashed line : input

6 Concluding Remarks

This paper shows that the control law of CMPC can be reformulated to closed-form with uncertainty
blocks inside. The control law for a set of specified constraints contains constant bias terms which
cause difficulty in analyzing the quadratic stability and strongly H,, performance of CMPC. To
avoid this difficulty, we can change the hard constraints to adjustable constraints with time varying
weights. The control law of this adjustable constrained system with no constant bias, and the upper
bound of its uncertainty block is found to be adequate to analyze the qualitative (quadratic stability)
and quantitative (strongly H,, performance) propertics of CMPC. The same methods also can be
applied to cases with softened hard constraints.
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Appendix A: The Proof of fact 1 in 3 and Lemma 1

(1) Proof of the fact 1 in section 3
The inequality as following is obviously held:
w@ATG'AY '@’ > wATG'A + W) 1T
We are going to prove:
GG5)! > w(w'56 ' w) e’
and the extraction matrix has the following property

ol =1

From the properties of positive definite matrix [Horn and Johnson, 1990], we know:

'G5 'w > (w'5G 5 w) ! > 0

w! G5 o > wlw(w 56§ w) lwlo > 0
[ G5! - w(@ 56§ w) '’ Jw > 0
GG > w(@T36 5 w) !

Ly

or
GG > 0, (@565 w) >0

the inequality (27) implies
ol 0 GG 157! w oz 0 >0
0 1 wl (@T5G 5 w) 0 1]~

3G 157! w 0
wT (WTS'G“IS'TW) fentl

Hence, GG 157)! > w(w 565 w)  w?

(2) Proof of Lemma 1

It also implies

(27)

O

The control law of hard constrained MPC (9) with zeros bounds of constraints (Aii(k + i) = 0,
i(k+1i) =0, y(k+j) =0) can be reformulated as the following with uncertainty blocks (please see

the “Closed-Form Control Law with Uncertainty Blocks” in section 3):

uk) = -[10---0)[G'-G S EUTAULETSGNSTTIT (x(k) + ad(k) — R(k + 1))

utk—1)
0

o e

+10---01G5'E U A UET

D )

0
| ix(k) + ad(k) |
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u(k—1)
0
+10---0)[G! -G STEU,TA. ULE TG ITTD'D ) (28)

and the control law of adjustable constrained MPC is:

uk) = —[10---0)[G"' =G STEUTA UET5GISTT T (nx(k) + ad(k) — Rk + 1))
uk—1)
0

+HI10---01G's"E'UTA, UET

0
| x(k) + Gd(k) |

u(k —1)
0
+HI10---01[G'-GSTEUTAL UETsGIT'D"D _ (29)

Both of them have the same bound on uncertainty block:
UhTAczUh S 17 UTAsCZU S I

It is obvious that these two control laws (28) and (29) are the same for working on analyzing the
quadratic stability and strongly H,, performance (the details of analyzing quadratic stability and
strongly H,, performance will be shown in the technical reports). Hence, we can conclude that
the control law (28) can make the control system satisfy the the quadratic stability and strongly
H, performance criteria if and only if the control law (29) can make the control system satisfy the
same criteria.

For a system with m inputs system, assume that ¢ constraints of Au are active with ¢ < m.
Without loss of generality assume these are the first £ elements of u. Then, the corresponding
control law from (28) can be written as:

uk) = —[10--- 01[G!-GTAATG'A)TATGMISTT T (yx(k) + d(k) — R(k + 1)) +
(10 --- 01GTAATG'A) "D +
uk-1)

e 0
[10--- 01[G'-G'AATG'A'AT¢"II'D'D | . (30)

because
STEUAULE s =AATG 1A 1AT
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and
[ wk-1) ]

. um(k— 1)
b=w’ 0

i

0
| jx(k) + ad(k) |

By the matrix operation, we have:

I, 0

[I0--- 01G'AATG Ay UKk -1) = [
X5 0

]U(k—l)

and the control law (30) can be rewritten as:

g -1
u(k) = _[1‘_,-(5,,,’4 ?] {H )_f’z]x(kn[)_g )_g}d(k)«{)g )_C?}qR(}"c)_
0 0] o .
[ig jg}q “(k)}
0 0 0 0 0 0 0 0
= ‘[xl fcz]x(k)—{js ’-“‘]d(k)+[i6 27]R(k+1)+[23 xg]u(k—l)

where U(k— 1) = [uy(k—1) -+ u(k—-1)0 --- 017; X% correspond to term which may not be zero
in the matrix operations; ¢ is a time shifting operator. From the above equation, since I, and Xs
have been eliminated from the final expression, the term u(k — 1) arising from b owing to ¢ active
constraints of Au can be eliminated from the control law (28). Therefore, we can conclude that the
control law (28) without or with the term u(k — 1) arising from b is the same as the control law (29)
for working on analyzing the quadratic stability and strongly H, performance. The statement of
lemma follows. a
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