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A differential evolutionary algorithm has been executed to optimize the 

hypersonic aerodynamic and stagnation-point heat transfer performance of Earth 

entry heat shields for Lunar and Mars return manned missions with entry velocities of 

11 and 12.5 km/s respectively. The aerothermodynamic performance of heat shield 

geometries with lift-to-drag ratios up to 1.0 is studied. Each considered heat shield 

geometry is composed of an axial profile tailored to fit a base cross section. Axial 

profiles consist of spherical segments, spherically blunted cones, and power laws. 

Heat shield cross sections include oblate and prolate ellipses, rounded-edge 

parallelograms, and blendings of the two. Aerothermodynamic models are based on 

modified Newtonian impact theory with semi-empirical correlations for convection 

and radiation. Multi-objective function optimization is performed to determine 



  

optimal trade-offs between performance parameters. Objective functions consist of 

minimizing heat load and heat flux and maximizing down range and cross range.  

Results indicate that skipping trajectories allow for vehicles with L/D = 0.3, 

0.5, and 1.0 at lunar return flight conditions to produce maximum cross ranges of 950, 

1500, and 3000 km respectively before Qs,tot increases dramatically. Maximum cross 

range increases by ~20% with an increase in entry velocity from 11 to 12.5 km/s. 

Optimal configurations for all three lift-to-drag ratios produce down ranges up to 

approximately 26,000 km for both lunar and Mars return. Assuming a 10,000 kg mass 

and L/D = 0.27, the current Orion configuration is projected to experience a heat load 

of approximately 68 kJ/cm
2
 for Mars return flight conditions. For both L/D = 0.3 and 

0.5, a 30% increase in entry vehicle mass from 10,000 kg produces a 20-30% increase 

in Qs,tot. For a given L/D, highly-eccentric heat shields do not produce greater cross 

range or down range. With a 5 g deceleration limit and L/D = 0.3, a highly oblate 

cross section with an eccentricity of 0.968 produces a 35% reduction in heat load over 

designs with zero eccentricity due to the eccentric heat shield’s greater drag area that 

allows the vehicle to decelerate higher in the atmosphere. In this case, the heat 

shield’s drag area is traded off with volumetric efficiency while fulfilling the given 

set of mission requirements. Additionally, the high radius-of-curvature of the 

spherical segment axial profile provides the best combination of heat transfer and 

aerodynamic performance for both entry velocities and a 5 g deceleration limit.   
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Chapter 1.  Introduction 

1.1. Motivation 

  Returning to Earth from other planetary bodies entails surviving an extreme 

hypersonic environment during atmospheric entry. This involves entering Earth’s 

atmosphere at high velocities ranging from 10 km/s to 15 km/s with corresponding 

Mach numbers from thirty to fifty,
1
 while withstanding 3000+ K temperatures at and 

near the stagnation points. The heat shield, which faces the freestream flow and 

protects the entry vehicle (EV), is the primary source of the vehicle’s hypersonic 

aerothermodynamic performance, i.e., the aerodynamic forces, moments, and heat 

transfer.
2
 The rest of the vehicle is secondary since it is covered with regions of 

extremely low pressure, due to flow separation, and since it experiences significantly 

lower heat fluxes.  

  Optimizing aerodynamic and heat transfer performance are conflicting 

objectives. To reduce surface heating and maximize thermal energy transferred to the 

surrounding environment, entry vehicle heat shields have typically been blunt-body 

designs, limiting entry aerodynamic performance.
3 

Consequently, an 

aerothermodynamic balance must be achieved to satisfy mission requirements 

without exceeding material technology constraints.  

  This work questions the assumption that the classic spherical segment
4
 and 

spherically blunted cone
5,6

 geometries with circular base cross sections provide 

optimal aerothermodynamic performance. Although they have been utilized over the 

past forty years, it is unknown whether either provides optimal aerothermodynamic 
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performance for lunar and Mars return missions. In this work, aerothermodynamic 

performance translates into cross range and down range capabilities and stagnation-

point heat transfer. Cross range capability enables missions that require inclination 

changes from the initial plane of entry. Both cross range and down range allow an 

entry vehicle to execute course corrections to counter off-nominal atmospheric 

conditions and switch landing sites.
7
 Stagnation-point heat transfer, though it may not 

be the point of maximum heating, is an accurate measure of the expected high heating 

generated along the heat shield. From an overall perspective, cross range, down 

range, and heat transfer performance are directly associated with mission 

requirements and material constraints; this work seeks to find optimal blunt-body heat 

shield designs from these standpoints. Properly broadening the design space would 

allow the optimizer to determine which geometric features improve performance. 

With the greater computational power available today, it is possible to perform multi-

objective optimization on a wide range of entry heat shield designs with entry 

trajectory analysis. 

1.2. Previous Work 

1.2.1. Heat Shield Geometries 

The two primary classes of shapes that have been developed by NASA are the 

spherical-segment and the spherically-blunted cone, shown in Figure 1.1(a) and (b) 

respectively. Extensive research on spherical-segments led to its use as the heat shield 

for human reentry space capsules including the NASA Gemini and Apollo missions.
 

The spherical-segment is described by a spherical radius rs and maximum spherical-
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segment angle θs measured from the central axis. The Project Gemini Reentry 

Module
8,9

 included a 38
o
 spherical-segment heat shield (θs = 19

o
) with rs = 3.712 m, 

and a base diameter of 2.32 m. The Project Apollo Command Module (CM) had a 50
o
 

spherical-segment (θs = 25
o
) with rs = 4.694 m, and a base diameter of 3.912 m.  

 

            a) Spherical-segment heat shield, θθθθs = 60
o
.      b) Spherically-blunted cone heat shield,  

       rn/d = 0.25,  θθθθc = 60
o
.    

Figure 1.1. The two most familiar heat shield geometries. 

Specific Apollo mission aerodynamic flight data is provided for Apollo 

mission AS-202 and Apollo 4 in Ref. [10] and Ref. [11] respectively. The Command 

Module (CM) in AS-202 reentered Earth’s atmosphere at 8.23 km/s (27,000 ft/s) to 

produce planetary entry conditions that occur when entering from satellite orbit. The 

unmanned Apollo 4 (AS-501) was the first mission to use the Saturn V launch 

vehicle. It was an unmanned mission with an instrumented Command Module. The 

main objective of Apollo 4 was to show the structural and thermal integrity of the 

Apollo CM at lunar return flight conditions. Apollo 4 utilized CM-017; it was 

instrumented with calorimeters and radiometers to measure the performance of the 
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TPS. At the apogee of CM-017’s orbit, the service propulsion system (SPS) engines 

were fired to produce lunar return flight conditions, The Apollo 4 (AS-501) followed 

an elliptical orbit around Earth that produced the expected re-entry velocity from 

lunar return of 10.7 km/s (35,100 ft/s). Rather than passing by the Moon, Apollo 4 

had a second Service Module Propulsion System (SPS) burn at the apogee of CM-

017’s orbit, shown as trajectory location 13 in Figure 1.2, to produce lunar return 

flight conditions. The total mission time was 8.5 hours rather than six days required to 

go to the Moon and back. Hillje
11

 provided Apollo flight data which was used for 

code validation in Chapter 7. Note that most of the aerodynamic data from the Apollo 

flights can be reproduced accurately by this work, except for the normal coefficient 

CN which can have up to 40% difference compared to the available flight-derived 

data.     

 

Figure 1.2. Apollo 4 Trajectory from Ref. [11]. 

Moseley analyzed the aerodynamic stability characteristics of the Apollo 

Command Module in Refs. [12] and [13]. Both of these NASA Technical Notes 

provide aerodynamic, static and dynamic stability wind tunnel data on several 

Command Module configurations with their schematics and relative dimensions. 

From this set, only two figures are dedicated to rolling moment stability in Ref. [12], 
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and so a discussion of the Command Module’s roll static stability is provided in 

Chapter 3. DeRose
14

 provides an analysis of the center-of-gravity offset from the 

central axis of the vehicle and also discusses the proper way to compare wind tunnel 

measurements of a non-ablative model to a flight vehicle with an ablative heat shield. 

Horstman
15

 compares the Apollo and Gemini wind tunnel models with center-of-

gravity offsets.  

The spherically-blunted cone is another commonly-used blunt-body space 

capsule configuration, as shown in Figure 1.1(b). It is defined by half-cone angle θc, 

the nose radius rn, and base diameter d. It is common to see the ratio rn/d as a listed 

characteristic. Because convective heat transfer increases while radiative heat transfer 

decreases with a reduction in radius for a blunt-body, there is an optimum rn that 

minimizes the heat transfer to the vehicle. The advantage of this configuration is that 

it can offer designs with the same base radius as a spherical segment without 

constraining the nose radius. If the optimal heat shield design for a given set of 

mission requirements has a smaller nose radius than can be offered by a spherical-

segment with base radius r, then that nose radius could be generated with a 

spherically-blunted cone configuration. Also, the equations that render the 

spherically-blunted cone can be setup to account for the entire spherical-segment 

regime. 

Chrusciel
6
 provides a method for calculating the aerodynamic characteristics 

of spherically-blunted cones. Chrusciel provides the change in the center-of-pressure 

location with an increase in nose radius and was used in this work to determine a 

reasonable range of center-of-pressure locations. A discussion on the 
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misunderstanding present in several sources concerning the calculation of the center-

of-pressure location is included in Chapter 3 and those sources are mentioned later in 

this section.  

Jones
16

 has completed a wind tunnel investigation on model comparison of the 

pressure distributions on sharp-nosed and spherically-blunted cones with large cone 

angles θc at hypersonic speeds in air (M∞ = 7.9), helium (M∞ = 20.3), and 

tetrafluoromethane CF4 (M∞ = 6.2). The pressure distributions from the three different 

gases for the tested configurations almost always overlap each other at α = 0
o
. These 

results are also compared to theoretical methods including Newtonian theory and 

concluded that the Newtonian theory does not predict the surface pressure distribution 

properly near the edges of the configuration. It also shows that there are significant 

differences in the actual distribution and the one rendered by Newtonian theory. It is 

shown in this work that although this may be true, Newtonian theory can predict the 

aerodynamic forces and moments of the Apollo Command Module (spherical-

segment) within 15% and the trim angle-of-attack within 1.2
o
. Additional work on 

spherically blunted cones has been completed by Tauber
17

 and Bernot.
18

  

The spherically-blunted cone configuration was used on the Viking
5,19

 and 

Pathfinder
20,21,22

 missions to Mars. Two Viking missions consisted of an orbiter and a 

lander. The orbiter mapped the surface of Mars, and the landers of the Viking I and II 

missions had the first successful Mars landings in 1976. The Viking space capsule,
23

 

shown in Figure 1.3, housed the lander and had a superlight ablative (SLA) heat 

shield of dimensions θc = 70
o
, rn/d = 0.25, and d = 3.505 m.  
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Figure 1.3. Viking Landing Capsule System from Ref. [23]. 

In 1997, the Mars Pathfinder mission had a Mars rover that was thermally protected 

during planetary entry by an aeroshell thermal protection system (TPS). Once on the 

surface, the Pathfinder rover would photograph the immediate vicinity and acquire 

data that would be sent back to Earth for analysis. Although higher heat fluxes were 

expected during planetary entry, the Pathfinder mission had a heat shield with the 

same θc and rn/d as the Viking capsules. 

 More recent heat shield designs include the raked cone, the biconic and bent 

biconic cones, the parashield, and the flare-skirt aft-body. The raked cone 

geometry
24,25

 is a spherically-blunted cone raked at an angle as shown in Figure 1.4.  



 

 8 

 

 

Figure 1.4. Raked cone from Ref. [25]. 

This geometry offers a way to produce positive lift at zero angle-of-attack. Since the 

bottom surface of the heat shield has greater surface area than the upper half by 

design, the flow accelerates more over the bottom surface. This produces positive lift 

because a larger portion of the surface pressure contributes to lift from the bottom 

surface than the top surface. The raked cone geometry can be designed to render 

higher L/D at negative angles-of attack than its axisymmetric analogue.  

 An example of the raked cone geometry is the Aeroassist Flight Experiment 

(AFE) that NASA worked on and cancelled in the early 1990s. It had a 14 ft diameter 

and was planned to participate in ten Shuttle-launched experiments. Figure 1.4 shows 

a few of the dimensions of the AFE’s heat shield geometry. It has a 60
o
 half-cone 

angle and a 73
o
 cone rake angle. One additional feature of the AFE’s rendition of the 

raked cone is its ellipsoid nose with an ellipticity equal to 2.  The AFE geometry is 

shown in Figure 1.5.  
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Figure 1.5. AFE flight vehicle configuration from Ref. [25]. 

At zero angle-of-attack, the L/D is approximately 0.30 while it is approximately 0.43 

at α = –10
o
.
26

 Wells presents the aerodynamic performance and shock shapes of the 

AFE from wind tunnel results in Ref. [26]. Micol gives the wind tunnel results for its 

hypersonic lateral and directional stability in Ref. [25] and discusses a simulation of 

real gas effects on the AFE in Ref. [27].   

 The biconic and bent biconic bodies have been looked at for an aero-assisted 

orbital-transfer vehicle application, but it can be argued that they can be used for 

planetary entry vehicle applications as well. The biconic heat shield is a spherically-

blunted cone with an additional conical frustum that has a smaller half-cone angle. 

The bent biconic heat shield
28,29

 has this conical frustum tilted at an angle with the 

spherically-blunted cone as shown in Figure 1.6(a). Davies and Park
28

 present the 

aerodynamics characteristics of a bent biconic with a fore half-cone angle of 12.84
o
 

and an aft half-cone angle of 7
o
 tilted at 7

o
. This configuration enables a blunt-nosed 

body to have L/D > 1 at positive angle-of-attack as shown in Figure 1.6(b). Because 
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of its slenderness due to its low half-cone angle, it can be argued that this is an 

atypical example of a blunt-body.  

 

a)  Bent biconic geometry 

 

b) Aerodynamic characteristics 

Figure 1.6. Bent biconic configuration from Ref. [28]. 

The common blunt-body produces positive L/D at negative angle-of-attack. 

Davies and Park acknowledge that a half-cone angle larger than 45
o
 is required to 

produces positive lift values at negative angle-of-attack for an axisymmetric 

spherically-blunted cone. The reason for this is that at negative angle-of-attack, the 

axial force has a larger contribution to lift than the normal force. The axial force’s 

contribution is positive while the normal force’s is negative, thereby rendering 
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positive lift. Slender designs are usually not considered for planetary entry because 

they produce higher heat transfer rates at the leading edges than blunter designs. 

Although the presented bent biconic configuration is slender, it will become a feasible 

design when more advanced high temperature materials are available. In fact, one 

could argue that this configuration could be feasible today if an ablative material is 

applied and if the nose radius-of-curvature is larger than that of the edge of the 

Apollo CM’s heat shield, which was the location of highest heat transfer (not the 

stagnation point). Either way, its fore body half-cone angle can be easily modified for 

planetary entry applications. 

Other more recent vehicle geometries are the parashield and the Slotted 

Compression RAMP probe. The parashield is a flexible, umbrella-like planetary 

entry, aerobrake, or aeroassist vehicle.
30

 Magazu, Lewis, and Akin completed an 

analysis of a parashield with a ballistic coefficient of 181 Pa composed of twelve 

radial spars for LEO re-entry. This configuration has a mass of 150 kg and could be 

scaled by at least a factor of ten if desired. They determined that this parashield has a 

hypersonic L/D of 0.18 at α = 15
o
 and that there is increased pressure at each spar 

whether or not concavity exists.
30

 The portability of this geometry in closed 

configuration is a feature unique to parashield and inflatable ballute geometries.  

Murbach
31

 has examined the Slotted Compression RAMP (SCRAMP) probe, 

which has undergone several sub-orbital test flights under his supervision. This 

geometry has a long cylindrical fore body with a hemispherical nose and an aft flare 

of high half-cone angle (≈70
o
) attached to the rear of the vehicle. The aft flare creates 

most of the drag on the vehicle but also produces a compression ramp leading to flow 
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recirculation. As a result, several slots are placed where the aft flare meets the 

cylindrical fore body to minimize the flow recirculation and thereby increase vehicle 

drag.  

The payload in the SCRAMP probe is located inside the front of the 

cylindrical fore body in order to place the center of gravity far forward. Since the aft 

flare produces most of the drag on the vehicle, the location of the center of pressure is 

far behind this center of gravity, rendering a negative Cm,cg,α. Murbach observed that 

by increasing the slot size, the maximum pressure on the aft shield is increased. This 

configuration has a negative Cm,cg,α which is considerably better than the Apollo 

CM’s value of -0.143/rad,
13

 rendering an outstanding, longitudinally stable entry 

vehicle. Note that the described configuration does not produce significant lift but 

may be designed to in future flight tests. 

Several of the classic and more recent design configurations were analyzed as 

lunar-return planetary entry applications in the work of Whitmore.
32

 Whitmore’s 

computational results for aerodynamics and stability are consistent with the results 

presented in this thesis. Bertin
2
 provides a thorough overview and several correlations 

concerning hypersonic aerothermodynamics, and Rasmussen
33

 provides an in-depth 

look at hypersonic aerodynamics.  

1.2.2. Heat Transfer  

Extremely high heat transfer rates may be experienced during planetary entry. 

Since the EV undergoes high heat transfer rates for several minutes, the heat transfer 

load is equally important.  
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In this section general references for planetary entry heat transfer are first 

mentioned. Since the heat transfer results of this work consist of stagnation-point heat 

fluxes, the corresponding references are mentioned and referred to throughout the 

text. For calculating the heat flux, there are more sources and emphasis in this work 

given to radiation than convection because radiation is an ongoing research topic. The 

drawback of this work is that the heat load is not determined, but it is mentioned as an 

important topic for future work.  

In recent analyses, Park
34

 and Rochelle
35

 discuss the aerothermodynamic 

environments for Mars entry and return, as well as lunar return. Park presents an 

analysis of two human missions (one is 330 days and the other is 436 days) to Mars 

and notes that the existence of an optimum nose radius for the tradeoff between 

convective and radiative heat transfer. Rochelle analyzes several capsule geometries 

including the biconic and modified AFE aeroshell capsules for Mars entry and notes 

that with an increase in entry velocity from 10 km/s to 12 km/s, the radiative heat flux 

goes from 13% to 42% of the total heat flux.   

Two classic references from Rose
36

 and Kemp
37

 at the Avco-Everett Research 

Laboratory give a general overview of stagnation-point and laminar heat transfer in 

dissociate air. Kemp notes that the maximum heat transfer flux can be larger than the 

stagnation-point heat flux, as is the case for a flat-nosed body in which the convective 

heat transfer flux is approximately 30% larger at the corner than that at the 

stagnation-point. This is noticed in the wind tunnel results for the Apollo CM 

presented by Lee,
38

 in which the corner has a heat flux that is 80% larger than at the 

stagnation-point at α = 33
o
 at M∞ = 9.07. The main Apollo missions that included the 
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astronauts did not re-enter at 33
o
, and so the maximum heating rate was lower. This 

wind tunnel test was completed to find out the worst-case scenario with the crew 

compartment (aft body) being tangent with the freestream flow. Lee also offers a 

thorough explanation of the convection and radiative heat transfer and gives the heat 

flux and pressure distributions about the heat shield. Note that the radiative heat flux 

correlation is analyzed in Chapter 7, but is not recommended for use since there are 

simpler correlations that follow the Apollo flight data better.  

Two Apollo CMs were instrumented for aerothermodynamic analysis. Lee
39

 

compares the flight results from superorbital entry, as is the case in lunar return, with 

predictions (note that Ref. [38] was written before the Apollo missions were 

completed). Lee also gives an aerothermodynamic evaluation in Ref. [40] that 

presents the highlights of the re-entry aerodynamics and heat transfer for the Apollo 

missions.  

The heat shield of the Apollo CM is the main part of the Apollo’s Thermal 

Protection System (TPS). Pavlosky
41

 details the history of designing the Apollo TPS 

and the manufacturing process. Also, he includes a summary of the predicted 

maximum heat transfer rates and loads for Apollo missions 8 and 10-16. Park and 

Tauber
42

 provide a current review of heat shielding problems experienced by the 

Apollo 4, 6, Pioneer-Venus, and Galileo Probe missions. Also, Scotti
43

 presents a 

compilation of TPS technologies that were current in 1992 including the shuttle tiles, 

a TPS design for the cancelled NASA Aeroassist Flight Experiment (AFE), and 

proposed future materials.  
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The amount of stagnation-point heat transfer is one of the main 

aerothermodynamic benchmarks for comparing the capability of one entry vehicle to 

another. The stagnation-point heat transfer is not necessarily analogous with the point 

of maximum heat transfer, as was the case for the Apollo CM and the flat-nosed 

body. As a result, a more appropriate benchmark would be to compare the point of 

maximum heat transfer. Because this requires a more computationally expensive 

process that is beyond the focus of this thesis, previous work concerning the 

convective and radiative heat transfer at the stagnation-point has been acquired. 

Lovelace
44

 provides correlations for both convective and radiative heat 

transfer at the stagnation point; it will be shown in Chapter 7 that the radiative heat 

transfer correlation is one of two that matches the Apollo flight data the closest.  

For convective heat transfer, Tauber
45

 provides the stagnation-point, laminar 

and turbulent flat plate correlations that he validates against the US Space Shuttle 

heating rates. Tauber applies the well-known Fay and Riddell
46

 relation that assumes 

that convection is inversely proportional to the square root of the nose radius. This 

would suggest that the convective heat transfer approaches zero as the nose radius is 

increased, but Zoby
47

 notices that blunt bodies have more enthalpy than expected by 

this theory. Zoby shows that an adjustment that is based on the change in the velocity 

gradient from that of a hemisphere can produce an effective radius that can be applied 

to improve the theory’s accuracy. 

For radiative heat transfer, Tauber
48

 also provides the stagnation-point 

correlations for Earth and Mars entries. This is one of the two correlations that match 

the Apollo flight data the closest. Originally, Tauber’s correlations were not meant to 
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be applied to the entire altitude regime on Earth, but this thesis will show that there is 

not much difference from Lovelace’s correlation
44

 when following the Apollo 4 

trajectory. A review of the stagnation-point radiation from the Apollo 4 is available 

by Park.
49

 

Cauchon
50

 provides the radiative heating results from the Second Flight 

Investigation of the Reentry Environment (FIRE II) experiment at the superorbital 

entry velocity of 11.4 km/s (37,400 ft/s), which is slightly larger than the fastest 

Apollo entry at 10.7 km/s (35,000 ft/s) for Apollo 4.
11

 Cauchon compares the theory 

to the few flight test data points. The FIRE II had three spherical-segment heat shields 

layered over each other. After initiating planetary entry, heat transfer data is obtained 

for the first heat shield. Then it is jettisoned from the entry vehicle at a chosen point 

in the trajectory, leaving the second heat shield surface to face the freestream flow. 

Data is obtained for the second heat shield, and then it is jettisoned, leaving the third 

heat shield surface to protect the vehicle for the remainder of the trajectory. The three 

heat shields had different nose radii: 0.935 m, 0.805 m, and 0.702 m for the first 

through third heat shields respectively. Cauchon shows that the theory is closer to the 

FIRE II calorimeter data by accounting for radiation cooling and coupling; otherwise, 

the theory overshoots the calorimeter data by 30%.  

Ried
51

 compares the flight measurements and engineering predictions on the 

Apollo CM for mission four. Ried also provides a computational approximation of 

the total radiative heating rate near the stagnation point including ultraviolet lines and 

continuum, which were not measured by the radiometers on the heat shield of Apollo 

4. The shock-standoff distance over the time of maximum radiative heat transfer is 



 

 17 

 

also provided. A correlation that closely matches the behavior of how the stagnation-

point shock standoff distance varies with normal-shock density ratio is included and 

could be used along with Lovelace’s
44

 or Tauber’s
48

 correlations to calculate 

stagnation-point heat transfer fluxes. For planetary entry at velocities larger than that 

of the Apollo missions, curve fits of inviscid heating rates and cooling factors have 

been produced by Suttles.
52

 It is recommended that these curve fits be validated 

before use in future work. 

 Determining how the stagnation-point radiative heat transfer rate varies as a 

function of angle of attack for the Apollo CM is investigated by Walters.
53

 By 

accounting for the stagnation-point shock-standoff distance, Walters is able to 

approximate this behavior, although the wind tunnel data is noticeably scattered. 

Additionally, he applies Kaattari’s correlation
54

 to produce an outstanding match of 

the Apollo CM’s experimental shadowgraph of the shockwave shape at Mach 19.5 

and 31.5
o
 angle of attack.   

The Kaattari method approximates the shock-standoff distance of a blunt-

body at zero angle of attack
55

 and the shock envelope of spherical-segment blunt-

bodies at large angles of attack.
54

 This highly empirical method uses the normal shock 

density ratio to approximate the location of the sonic line on the body as well as the 

shock and body surface inclinations at the sonic point along with theory to determine 

the ratio of the shock-standoff distance to the nose radius. Since a planetary entry 

vehicle enters the atmosphere at high velocities, high temperatures are produced in 

front of the heat shield, and so high temperature gas correlations from Srinivasan
56

 

(an updated version of the Tannehill
57

 correlations) can be used to determine the 
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effective specific heat ratio to determine the normal-shock density ratio. This thesis 

work applies the Kaattari method, with its implementation described in Chapter 3, to 

apply Lovelace’s
44

 and Tauber’s
48

 radiative heat flux correlations to blunt-bodies at 

any angle of attack.  

1.2.3. Entry Trajectory 

The entry phase of the trajectory begins as the entry vehicle crosses the 

Earth’s entry interface (EI), commonly assumed at an altitude of 122 km. The entry 

trajectory ends when the descent phase is initiated. Figure 1.7 provides the entry 

trajectory for the Apollo 4 (AS-501) mission.
11

 At the beginning of the entry 

trajectory at ht = 122 km ≈ 400,000 ft, the altitude map in Figure 1.7(a) shows a 

relatively steady drop until ground time 30,030 s. The CM reaches a trough in the 

trajectory at ht = 55 km and slowly increases in altitude up to 73 km and descends. 

The velocity distribution is given in Figure 1.7(b). The reaction control system (RCS) 

is the only way to control the capsule during the entry phase. Each Apollo CM had a 

fixed, trim α, usually between -17
o
 and -25

o
, and so bank angle modulation was the 

primary means of controlling the vehicle’s flight path during entry. The RCS includes 

roll thrusters that could bank the lift vector a full 360
o
. The Command Module’s 

computer had a predictor-corrector algorithm to provide adequate guidance, 

navigation, and control (GNC) during entry. Figure 1.7(c) shows the resulting bank 

angle history generated by use of the RCS controlled by the GNC subsystem. It 

indicates that a full 180
o
, which corresponds to the lift down position, was required 

for 25 s of the trajectory, suggesting that the vehicle would have bounced out of the 
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atmosphere without bank angle modulation. Figure 1.7(d) shows that a maximum 

deceleration of 7.25 g occurs right before the CM completes the dip at 55 km.   

 

a) Altitude profile 

 

b) Velocity profile 
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c) Bank angle profile 

 

d) Deceleration load profile 

Figure 1.7. Apollo 4 CM reentry trajectory from Ref. [11]. 
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NASA has several computer-based simulated trajectory software packages 

that solve the equations of motion and account for the high detail needed to properly 

model ascent, interplanetary, and planetary entry trajectories for actual missions. The 

Program to Optimize Simulated Trajectories (POST) is one such benchmark 

trajectory software package.
58,59

 POST includes highly-detailed models for in-

atmosphere trajectory modeling. Initially written for the US Space Shuttle program, it 

utilizes a projected gradient method that allows for complex vehicle ascents and entry 

trajectory optimization. Another benchmark program Optimal Trajectories by Implicit 

Simulation (OTIS) provides similar functionality but allows also the ability to solve 

the equations of motion implicitly.
60

 Both provide 3DOF and 6DOF simulation 

modes. 

Much trajectory simulation research has been completed for both Earth entry 

and Mars entry. Braun
61,62

 has completed trajectory optimization utilizing bank angle 

control for both manned Mars aerobraking and for Mars return. He has shown that 

performing bank angle modulation with guidance allows for a reduction in 

deceleration loads by 40%, as shown in Figure 1.8. Using bank angle modulation also 

increases the entry corridor width, which is the difference between the greatest and 

smallest flight-path-angles at the EI. A large enough corridor width is necessary to 

account for flight and instrument uncertainties in order to maintain mission 

requirements. A comparison between the constant bank angle flyable corridor and the 

bank angle modulation entry corridor is given in Figure 1.9.  
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Figure 1.8. Comparison of Mars aerobraking with and without guidance from Ref. [61]. 

 

Figure 1.9. Comparison of Mars entry corridors for L/D = 0.5 based on atmospheric exit into a 1 

Sol parking orbit from Ref. [61]. 

Since trajectory optimization and guidance law implementation were the 

primary foci, a given mass and ballistic coefficient would be assumed, along with a 

set of lift-to-drag ratios to complete the analysis. For human return from Moon and 
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Mars, Putnam and Braun
63

 have studied direct entry trajectories (no entry skips) with 

linear feedback control. Figure 1.10(a) shows the required L/D for direct entry with a 

given g-limit. Putnam suggests a 0.4-deg or greater entry corridor width. With a 5 g 

deceleration limit, the direct entry corridor widths for different combinations L/D and 

BC are provided in Figure 1.10(b). In all of this entry trajectory work, the focus was 

not on the effects of different heat shield geometries at desired values of L/D.      

 

a) Required L/D for direct Earth entry for a given maximum g limit 

 

b) Direct-entry corridor width for several vehicles 

Figure 1.10. Direct Earth entry results from Ref. [63]. 
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1.2.4. Misconceptions 

Misunderstandings and discrepancies in publications have been noticed 

throughout the literature survey. The most common misunderstanding is the theory 

behind calculating the x-location of the center of pressure of a blunt body. This 

location is dependent on both the axial force and normal force’s contributions to the 

pitching moment; neither can be ignored. However, several references calculate the x-

location by assuming the axial force’s contribution to the pitching moment is 

negligible. This thesis explains in Chapter 3 that the axial force’s contribution to the 

pitching moment is at least the same order of magnitude as the normal force’s 

contribution and thereby must be accounted for in the case of a blunt body. From 

here, it is possible to match the Apollo CM’s pitching moment wind tunnel data as 

will be shown in Chapter 3.  

Bertin,
2
 Rasmussen,

33
 and Regan

64
 have textbooks that assume the axial 

force’s contribution to the pitching moment is negligible in sections concerning blunt 

bodies. However, Bertin’s textbook
2
 also has the correct derivation, and the example 

in which the assumption is made in the first edition of Regan’s textbook
64

 has been 

removed from Regan’s second edition. 

Figure 9 in the work of Levine
65

 provided the x-location of the center of 

pressure of several spherical and blunt cone geometries. However, they are different 

from the values of this thesis by one order of magnitude except for one case. Because 

the work of this thesis was able to match the aerodynamic and stability results of the 

Apollo wind tunnel and flight test data and basic conical shapes, the use of Levine’s 

values of the x-location is not recommended.     
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Arora
66

 maximizes the center of pressure’s x-location for a spherically-blunted 

cone-flare configuration. However, Arora’s work assumes that the axial force’s 

contribution to the pitching moment is negligible. As a result, the optimized x-

location value is infeasible. Because the x-location is incorrect, it is not possible to 

find the correct pitching moment value about the blunt-body’s center of gravity. An 

active researcher concerned with the aerodynamic performance and the stability of 

blunt-body planetary entry geometries should be attentive to this issue.   

Papadopoulos
67,68

 has figures that are mislabeled as trajectories for Apollo 

missions AS-201, 4, and 6. The only relations between the figures and the Apollo 

missions are the mentioned missions’ entry flight-path angles. The plots are meant to 

show code output according to a particular Apollo mission’s entry flight-path angle. 

Because several plots on a single page have legends with Apollo mission numbers, it 

is easy for one to assume that these must be the flight velocities, decelerations, and 

Reynolds numbers experienced by the Apollo missions listed. This is a simple 

miscommunication and not suggesting that Papadopoulos’s results are not accurate; 

he has validated his results with POST.  

Several sources that are not suggested for estimating the radiative heat transfer 

at the stagnation-point for an Apollo-like capsule include Barter
69

 and Gupta.
70

 It is 

possible that both sources have typographical errors in the equations, but this is not 

certain. However, it is shown in Chapter 7 that the implementations of these 

equations do not match the behavior of flight test data from Apollo 4. There are other 

correlations that were found to match the flight test data closely.  
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1.3. Research Objectives 

Several entry trajectory optimizations with bank angle modulation have been 

completed without considering the effects of different geometric features of the heat 

shield, the primary reason being that those studies focused on trajectory optimization 

with guidance. They would assume effective radii for convection and radiation based 

on previous work. The primary objective of this research is to determine which 

geometric features of an Earth entry vehicle heat shield advance the state-of-the-art in 

hypersonic aerothermodynamic performance.  

Since cross range, down range, and heat transfer performance are directly 

associated with mission requirements and material constraints; this work seeks to find 

optimal blunt-body heat shield designs from these standpoints. A high-order 

trajectory model in conjunction with low-order aerothermodynamic models is applied 

to balance the need for fidelity with the desire to have practical computational times, 

allowing the optimizer to consider a wide range of heat shield geometries. 

Contributions of viscous shear forces and turbulence are not considered.    

As this is also a systems study, a secondary objective is to produce optimal 

tradeoff relationships between performance parameters. This work utilizes a 

population-based, multi-objective optimization scheme, in which a differential 

evolutionary algorithm is employed to optimize two objectives simultaneously. Focus 

is centered on maximizing down range or cross range while simultaneously 

minimizing stagnation-point heat load or heat flux. Although guidance is not 

incorporated into the trajectory analysis, bank angle modulation is applied and 

sufficient for determining which geometric features are advantageous and which are 
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unfavorable. Another secondary objective is to utilize trajectories that indicate the 

aerothermodynamic performance that would be expected for an actual mission. This 

is accomplished by utilizing bank angle modulation similar to that applied in the 

Apollo missions
11

 to rotate the lift vector, and by incorporating an entry corridor 

methodology to focus on that specific part of the trajectory design space that would 

be similar to the expected design space for an actual mission.  

This work fulfills these objectives for both lunar and Mars return flight 

conditions and decelerations requirements. Although the Apollo heat shield design 

was successful for returning astronauts back to Earth, it is not necessarily the optimal 

design from an aerothermodynamic standpoint. The final secondary objective is to 

compare the optimal heat shield geometries for these two cases. For lunar return at 11 

km/s, the convective heat load is usually greater than the radiative heat load while the 

radiative heat load is greater for Mars return, assuming 12.5+ km/s. As a result, it is 

unknown a priori whether a heat shield optimal for lunar return is optimal for Mars 

return.  

1.4. Thesis Overview 

This thesis is organized into fifteen chapters. The investigated blunt-body 

geometries are introduced in Chapter 2. Then Chapter 3 provides the Newtonian 

aerodynamic theory and a method for approximating the shock-standoff distance from 

the stagnation point of a blunt-body. It also includes the equations for determining the 

static stability of a given heat shield geometry and provides explanations for a couple 

misinterpretations of basic theory. Chapter 4 includes the main assumptions and 
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correlations for convective and radiative heat transfer at the stagnation point. Chapter 

5 provides the method for scaling the heat shield based on the mission profile, making 

it possible to do a mass estimate of the corresponding entry vehicle. The 

fundamentals of planetary entry trajectories and the entry corridor methodology are 

included in Chapter 6. A description of the aerothermodynamic low order code is 

provided in Chapter 7. Note that the geometric design space and aerothermodynamics 

code setup is based on the author’s M.S. research in Ref [71]. The high-order 

trajectory code is described and validated in Chapter 8. Chapter 9 provides a general 

overview of the optimization theory and parametric study of the optimization 

parameters. Chapter 10 includes the initial results for lunar and Mars return 

optimization before the entry corridor analysis is applied and with more relaxed 

maximum deceleration limits. Chapter 11 provides a detailed optimization setup for 

the finalized lunar and Mars return results, including the application of the entry 

corridor analysis. Chapter 12 includes the lunar return results while the Mars return 

results are provided in Chapter 13. The final results from lunar and Mars are 

compared in Chapter 14, and the final conclusions of this dissertation along with 

suggested future work are detailed in Chapter 15.  
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Chapter 2. Blunt-Body Heat Shield Geometries 
 

Each heat shield in this work is defined by two geometries: the base cross-

section of the heat shield and the axial shape that is swept about the central axis and 

modified to match the base cross-section. The coordinate system for this work is 

included in Figure 2.1 with the sweep angle ω and conventional directions for 

positive moments. One change from convention that is not shown occurs when the 

vertical lift coefficient CL,V < 0, in which the direction of the positive rolling moment 

switches in order for a negative Cl,β to still indicate a statically roll stable shape. An 

explanation of the sign reversal is included in the stability section of Chapter 3. 

Figure 2.1. Fixed-body coordinate system, spherical-segment, ωωωω = 30
o
, θθθθs = 60

o
, n2 = n3 = 2. 

2.1. Axial Shapes 

The shape of the heat shield that protrudes from the base is called the axial 

shape in order to easily differentiate the protruded shape from the cross-section. The 

axial shape of the heat shield by itself represents the shield’s profile if its base cross-
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section were to be circular. If the base cross-section is not circular, then the axial 

shape is at least the top half of the shields profile at sweep angle φ = 0
o
. Then the 

axial shape is modified to follow the outline of the base cross-section. Three axial 

shapes: the spherical-segment, the spherically-blunted cone, and the power law are 

applied in this work and described in the following sections along with how they are 

generated. 

Raked-off geometries including the raked cone Figure 1.5 are not considered 

in the present work for two reasons. First, the combinations of axial profiles and base 

cross sections in the present work already provide a wide range of lift-to-drag ratios 

up to 2.14 with power law axial profiles.
105

 There is no evidence that a raked-off 

geometry would provide significantly greater L/D. Additionally, in maximizing 

overall aerothermodynamic performance, L/D will be traded off with Qs,tot; and L/D is 

commonly below 1.0. Second, this work is investigating the performance of new 

designs, and this new design space is sufficiently large without the raked-off 

geometries.  

2.1.1. Spherical-segment 

A general spherical-segment is a region of a sphere that is left after the sphere 

is cut by two parallel planes. A closed spherical-segment is a region of a sphere 

encompassed by spherical-segment angle θs, in which ω = 90
o 

- θs, in which only one 

plane, parallel to the yz-plane divides the sphere. A closed spherical-segment, one 

shown in Figure 2.1, is also known as a spherical cap and is the type that is applied to 

previous and present heat shield design.  
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For this work, only the profile of the spherical-segment is utilized by using the 

following equations for the xy-plane at zero sweep angle: 

rmax = xmax/(1-cos(θs)),                                (2.1) 

xk = rmax(1-cos(θk )),                  (2.2) 

yk = rmaxsin(θk),      (2.3)     

in which xmax = 1 in order to normalize the geometry to the length of the heat shield    

l = xmax.  This set of equations produces the axial shapes shown in Figure 2.2 (a) for 

the Apollo CM (θs = 25
o
) and a hemisphere (θs = 90

o
). The corresponding spherical 

heat shields, which have circular cross-sections, are shown in Figure 2.2 (b) and (c). 

 

 
a) Spherical-segment axial profiles at φφφφ = 0

o
.   

 

θs = 25
o
 

        θs = 90
o
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                   (b) Spherical heat shield, θθθθs = 25

o
.        (c) Spherical heat shield, θθθθs = 90

o
. 

Figure 2.2. Spherical axial profiles and heat shields. 

 

 

 

2.1.2. Spherically-blunted Cone 

The spherically-blunted cone’s geometric parameters have been introduced in 

the previous work section of Chapter 1. Figure 1.1(b) is an example of the 

spherically-blunted cone heat shield. Its axial profile has two parts, a spherical nose 

and the conical body. The spherical nose is generated by producing a spherical-

segment with θs = π/2-θc to provide slope continuity from the spherical nose to the 

conical body. If the conical base is divided into N vertical sections that are equally 

spaced along the x-direction, then the spherically-blunted cone profile in the xy-plane 

is generated with the system of equations 
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Also, the spherical-segment can be produced using only the first equation for both x 

and y over the range 0 ≤ ω ≤ θs.  

2.1.3. Power Law 

 The power law offers axial shapes with a wide range of bluntness controlled 

by coefficient A and exponent b with the equation  

y = Ax
b
.          (2.6)  

The effects of varying these two parameters are shown in Figure 2.3. For a fixed 

value of b, increasing the slenderness ratio A increases the bluntness of the shape. As 

a result, the effects of increasing the slenderness ratio should be similar to those of 

decreasing the spherical-segment angle θs or increasing the spherically-blunted cone 

angle θc.  

     

(a) Axial profile varying A, b = 0.75.                       
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 (b) Axial profile varying b, A = 1.  

Figure 2.3. Power law axial shape. 

For a fixed value of A, increasing the value of exponent b from 0.01 to 1.0 

transforms the axial shape from a flat nosed body to a sharp cone respectively. As a 

result, a power law with b = 1.0 is equal to a sharp cone with a corresponding angle 

θc. The power law can also nearly match the spherical segment for a given set of A 

and b or it could produce profiles that are different from these two classic shapes.  

Rasmussen
33

 mentions that two minimum drag power-law bodies have 

exponent values of two-thirds and three-fourths based on Newton-Busemann and 

Newtonian surface pressure models. 

When calculating the shock-standoff distance, special cases account for this 

heat shield shape having a discontinuity at the tip (x = 0) and are discussed in Chapter 

3. Varying the power law’s slenderness ratio and exponent should render a wide 

range of aerodynamic performance and stability characteristics. 
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2.2. Cross-section Shapes 

 The cross-section shape is the geometry of the heat shield’s base. The base 

cross-section is usually chosen to be circular although there have been a couple cases 

of slightly elliptic cross-section including the AFE.
26

 For optimization, it would be 

ideal to have a base cross-section equation that can generate a wide-range of shapes. 

In order to produce eccentric base cross-sections, the equation of the ellipse can be 

applied. To produce shapes that range from a parallelogram to an ellipse, Sabean
72

 

uses the following Cartesian equation for a typical superellipse curve: 

1
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By varying v from 1 to 2, the superellipse can transform from a parallelogram to an 

ellipse.  

  In 2003, Gielis
73

 published a more generalized superellipse equation called the 

superformula; it can transform a polygon into an ellipse and then into a rounded-edge 

concave polygon. It defines the cross-section radius for 0 ≤ φ ≤ 2π: 
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in which m1 corresponds to the number of sides of a polygon, n1 and n2 are modifiers, 

and n3 is set equal to n2 to produce sharp or rounded-edge polygons. In the present 

work, n2 was set to 1, and then values of n1 that produced sharp-edged, non-concave 

polygons were determined. Corresponding values of n2 for rounded-edge polygons 

were then determined. Because of the increased heat transfer that would be produced 

on sharp edges, zero radius-of-curvature polygons were not considered. Setting n2 = 2 
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produces an ellipse; increasing n2 beyond 2 will produce concavity in the shape. Table 

2.1 presents the values for m1, n1, n2, and n3 to produce rounded-edge polygons, both 

straight and concave.  

Table 2.1. Superformula parameters for rounded-edge polygons (n3 = n2). 

m1 n1 n2 

4 1.00 1.50 — 4.0 

5 1.75 1.50 — 4.0 

6 2.30 1.50 — 4.0 

7 3.20 1.50 — 5.0 

8 4.00 1.40 — 6.0 

9 5.50 1.40 — 6.0 

10 7.00 1.40 — 7.0 

 

  The cross-sections in this analysis include polygons ranging from four to ten 

sides. Once m1 and n1 are set, n2 can be varied to transform a polygon into an ellipse 

and then into a concave polygons, in which n3 = n2. With the parameters in Table 2.1, 

the cross-sections in Figure 2.4 can be constructed. If a rounded-edge pentagon is 

constructed, as shown in Figure 2.4(d), then n2 can be increased to 2 in order to 

produce the corresponding ellipse in Figure 2.4(b), and then n2 can be increased to 4 

to produce the rounded-edge concave pentagon in Figure 2.4(e).  

 

     

 

     

 

 
               a) m1 = 4, n2 = 1.5.                 b) n2 = 2.0.                 c) m1 = 4, n2 = 4.0. 
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                       d) m1 = 5, n2 = 1.5.                  e) m1 = 5, n2 = 4.0.             f) m1 = 6, n2 = 1.5. 

Figure 2.4. Cross-section shapes produced using parameters from Table 2.1. 

  If a1 = b1 = 1, the cross-section will have no eccentricity, and so n2 = 2 will 

produce a circular cross-section. Because a1 and b1 in Eqn. (2.8) relate differently to 

eccentricity than they do in Eqn. (2.7) for v = 1, it was concluded that it is easier to 

produce an eccentric heat shield by multiplying either a1 or b1 by the cross-section 

radius r when generating the blunt body as described in the next section.  

2.3. Generating Blunt-Bodies 

 Once the axial shape at φ = 0
o
 is rendered, it is swept about the central body 

axis (the x-axis) according to the chosen base cross-section with Eqn. (2.8) according 

to the following three-dimensional equation set 
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in which j and k are indices, r is the radius at a given j,k location, and a2 and b2 are the 

lengths of the semimajor and semiminor axes of the generated blunt body. In this 

work, eccentricity e has a range in-between –1 and 1, in which e < 0 corresponds to 

oblate geometries and e > 0 corresponds to prolate geometries. The semimajor and 

semiminor axes are determined from the following equation sets 
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The superformula cross-section equation reflects the shapes made by n2 > 2 about the 

horizontal axis. As a result, to keep consistency when varying n2, the reflection was 

removed by setting yj,k = - yj,k and zj,k = -zj,k.  

 Examples of generated blunt bodies are included to show the variety of shapes 

that can be created from this set of axial and cross-section shapes. Figure 2.5 shows a 

prolate (approximately 4:1 axes length ratio) spherically-blunted cone blunt body. 

Figure 2.6 shows an oblate (approximately 3:1 axes length ratio) 12-sided polygon 

blunt body with a spherical-segment axial profile. Figure 2.7 shows a slightly prolate, 

concave rounded-edge pentagon with a power law axial profile. Note that the angled 

views do not correspond to any specific orientation. 

   
a) Front view. b) Side view.      c) Angled view. 

Figure 2.5. Spherically-blunted cone, rn/d = 0.25, θθθθc = 70
o
, e = 0.95, m1 = 5, n1 = 1.75, n2 = 2. 
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      a) Front view.  b) Side view.      c) Angled view. 

Figure 2.6. Spherical-segment, θθθθs = 40
o
, e = -0.85, m1 = 12, n1 = 10.75, n2 = 1. 

  
                        a) Front view.  b) Side view.      c) Angled view. 

Figure 2.7. Power law, A = 3, b = 0.75, e = 0.5, m1 = 5, n1 = 1.75, n2 =  5. 

2.4. Geometric Properties 

The main geometric properties calculated in this work are the surface and 

planform areas, the volume, the volumetric efficiency of the heat shield, and the 

location of the center of gravity. The following is a description of how the areas and 

volume are determined. Each point (j,k) is a part of a quadrilateral with four points 

(j,k), (j-1,k), (j,k-1), and (j-1,k-1). The distance between points (j,k) and (j-1,k) is 

indicated by d1,a,  
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,1,,1 kjkjkjkjkjkja zzyyxxd −−− −+−+−=                  (2.12) 

and the distance between points (j,k-1) and (j-1,k-1) is d1,b. These two distances are 

then averaged to produce d1. The distance between points (j,k), and (j,k-1) is d2,a, and 

the distance between points (j-1,k) and (j-1,k-1) is d2,b. Likewise, they are averaged to 

produce d2.  

The product of d1 and d2 is the differential surface area dA. All the differential 

surface area components are summed to produce surface area Shs, which is a term in 

determining the volumetric efficiency described later in this section. The differential 

planform area dAp is the product of w1 and w2, which are the distances from and to the 

same point-locations as d1 and d2 if they were assumed to have equal x-components. 

In other words, the planform area dAp, which is equal to part of the heat shield’s base 

area, depends only on the area projected onto the yz-plane, in which   
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and likewise for w1,b, w2,a, and w2,b. Then the sum of the differential planform areas is 

equal to the heat shield’s base area. The planform area is used in part to non-

dimensionalize the aerodynamic forces and moments. 

 The differential volume is the product of the differential planform area and the 

distance from the differential surface to the shields base written as lb 
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Then a summation of all the differential volumes produces the volume of the heat 

shield Vhs.  
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 The volumetric efficiency is one way to benchmark how much volume is 

available for a given amount of surface area. In the case of a heat shield shape, which 

is not a closed-shape, the volumetric efficiency is normalized to a hemisphere 

( )
.

18 3
2

3
1

,

hs

hs

HSv
S

Vπ
η =     (2.15) 

As a result, the most volumetrically efficient shape is the hemisphere, which is 

defined by the terms of this work as a non-eccentric spherical-segment with θs = 90
o
.  

 In comparing an entire entry vehicle to another, the volumetric efficiency is 

normalized to a sphere 
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S
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This allows the sphere, which is the most volumetrically efficient shape for a given 

amount of surface area, to have ηv = 100%.    

 The following equations calculate the location of the center of gravity of a 

uniform density body 
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This equation is applied to a 3D mesh through numerical integration. One numerical 

integration method is Simpson’s rule,
74
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which is third-order accurate in h. For this work, h is a space step size. Additionally, 

this method requires an odd number of points to be integrated, and so the final point 

in the mesh is represented by the index 2n+1. Because the space step h may not 

necessarily be the same for each pair of points, this work applies a modified version 

of Simpson’s Rule that uses individual step sizes.  
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It is likely that more than one integration is required to determine each term of the 

center-of-gravity location since the triple integrals indicate a three-dimensional shape 

that requires integration in three directions. It is easier to use the polar coordinate 

system in Figure 1.1(a). This allows one to conduct two integrations instead of three.  

 The method applied in this work for determining the center of gravity’s 

location with numerical integration is detailed in this section. In the applied form, the 

general equation that is equal to Eqn. (2.17) is  
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The term NVol is a volume-related term, but it is not necessarily equal to the volume 

of the heat shield. For the spherical-segment axial shape, NVol is equal to Vhs, but for 

the spherically-blunted cone and power law axial shapes, NVol is equal to the terms 
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that are not cancelled out from being common to the numerator and denominator of 

Eqn. (2.17). NVol is defined as 
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in which dNVolj,k is the differential volume-related term defined as  
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in which spherical-segment angle θk only varies with x-location, dφj,k is the 

differential sweep angle in the yz-plane. This differential angle is determined from the 

law of cosines  
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and drj,k is the average of the distances between the points (j+1,k) and (j+1,k-1) and 

the points (j,k) and (j,k-1), which is the numerical analogue to a differential length, 

( ).
2

1
)1,(),,()1,1(),,1(, −−++ += kjkjkjkjkj dddr        (2.24) 

Since there are two differentials in dNVol, it is noted that it will be integrated twice to 

produce the denominators of Eqn. (2.20). With these equations, the denominator is 

fully defined. For the numerator, the subscript letter on the function f corresponds to 
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the x, y, and z-components, and the subscript number 3 corresponds to the result after 

the two integrations. The subscript number 2 corresponds to the result after one 

integration, and the subscript number 1 corresponds to the initial case before 

integration. The initial variables fx,y,z,1 that are integrated twice to produce fx,y,z,3 are 

defined as 

{ } { }.,,,, ,,,,,,1,1,1, kjkjkjkjkjkjzyx dNVolzdNVolydNVolxfff =                    (2.25) 

These are integrated first with respect to φ, and there are a kmax-number of values for 

fx,y,z,2 
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and likewise for fy,2 and fz,2. Note that the fx,1 includes the differentials dφ and dr, and 

thus they are not written in Eqn. (2.26) and (2.27). The fx,y,z,2 are integrated with 

respect to r, and so there is one value for each component of f3 
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and likewise for fy,3 and fz,3. With these definitions, the location of the center of 

gravity of a given three-dimensional shape can be determined. 



 

 45 

 

Chapter 3. Aerodynamics and Static Stability 

The theory behind the aerodynamics and the static stability is presented in this 

section. The aerodynamic characteristics are then transformed into the quantities that 

are applied in the code of this work. The method for determining the shock-standoff 

distance to the stagnation point is introduced also, and modifications to the method to 

account for angle of attack are stated. Then this chapter finishes with a couple 

corrected misinterpretations of general aerodynamic theory.  

Two coordinate systems applied in this work are the freestream coordinate 

system shown in Figure 3.1(a) with the positive angle of attack and sideslip angle 

conventions, and the fixed coordinate system shown in Figure 3.1(b), which is 

slightly different from Figure 2.1.  

a) Freestream coordinate system with αααα and ββββ.   b) Fixed coordinate system with aerodynamic  

  moment conventions. 

Figure 3.1. Coordinate systems with positive αααα and ββββ and moment conventions. 
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3.1. Modified Newtonian Impact Theory 

 After the heat shield geometry is generated, its aerodynamic characteristics 

are calculated based on a modified Newtonian surface pressure distribution. Simple 

Newtonian theory is equivalent to the limit of exact oblique shock theory as M∞ 

approaches infinity and γ approaches one.
3
 This work is currently being applied to 

Earth atmospheric entry by assuming γ = 1.4, and a similar analysis can be applied to 

a Martian atmosphere of CO2 by assuming γ = 1.3. However, when calculating the 

shock-standoff distance, the effective specific heat ratio after the blunt-body shock is 

determined using the empirical correlations of high temperature air from Tannehill,
57

 

as explained in Section 3.2 on shock-standoff distance.  

Because Newtonian theory allows aerodynamic performance to be determined 

within a fraction of a second of computation time, it has been chosen over more 

complicated, time-intensive methods for optimization reasons. Results from the code 

that apply modified Newtonian theory are compared to wind tunnel and flight test
 

data from Apollo Command Module (CM) in Chapter 7.  

The pressure coefficient, which is the pressure difference normalized by the 

dynamic pressure, is given by the equation 
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Newtonian theory assumes that the component of a particle’s momentum that is 

normal to the surface is destroyed when impinging on the face of the blunt body 

while its tangential momentum is conserved.
2,33,64

 The Newtonian model is 
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for .0ˆ <⋅∞ nV
r

 The surface is in the aerodynamic shadow region when ,0ˆ ≥⋅∞ nV
r

 

resulting in Cp = 0.  

 For simple Newtonian, the maximum value of the pressure coefficient is 

assumed equal to two. Modified Newtonian theory accounts for the maximum value 

Cp,max, according to the Rayleigh Pitot tube formula
75

 that gives the ratio of the 

stagnation pressure after the shock to the freestream pressure  
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This produces the following relation for Cp,max 
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The velocity is modeled as a function of the angles of attack and sideslip 
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and the local normal vector is approximated by setting it equal to the cross product of 

two local vectors on the differential surface dA. Two local vectors are formed by 

subtracting the values of the x, y, and z-locations at point (j-1,k) from those at point 

(j,k) and likewise for points (j,k-1) and (j,k). The cross product of the two newly-

formed vectors in terms of the x, y, and z values at points (j,k), (j-1,k), and (j,k-1) is 

the numerator of local normal vector and written as 
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This formulation will work for points with j≠1 and k≠1 and at the base of the heat 

shield geometry for k = kmax also. For points with j = 1, the vector formed by points 

(j,k) and (j-1,k) is replaced by (j+1,k) and (j,k), and then the numerator of the local 

normal vector is formed. For points with k = 1, which is at the tip of the nose of the 

vehicle, it is assumed that nx = -1, and the other components are zero. The magnitude 

of vector nv is then calculated to produce the normal vector 

( ) ( ) ( )

{ } ,
ˆ

,
ˆ

,
ˆ

,,ˆ

ˆ

,,,

2

,

2

,

2

,













==

++=

v

zv

v

yv

v

xv

zyx

zvyvxvv

n

n

n

n

n

n
nnnn

nnnn

       (3.7) 

and Eqn. (3.2) becomes  
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These equations calculate the pressure coefficient for a general blunt-body geometry 

given in the form of a three-dimensional structured mesh, with each x, y, and z surface 

location determined by sweep angle location j and x-section location k.  

 All the aerodynamic forces and moments are calculated as non-dimensional 

terms. The forces looked at in this analysis are the normal, axial, and side forces with 

coefficients CN, CA, and CY respectively. The coefficients are defined as 
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in which dAj,k is the differential surface area defined as 

kjkjkjkj ddrwdA ,,,, φ= ,        (3.12) 

Using the written equations for fx,1 that correspond to each of the force coefficients, 

numerical integration is completed using Simpson’s rule with the process detailed in 

Chapter 2. Then the force coefficients become 
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The lift and drag coefficients can be determined after the normal, axial, and side force 

coefficients are calculated. For the Apollo CM, Hillje
10,11

 divides the lift coefficient 

into a vertical lift coefficient CL,V and a horizontal lift coefficient CL,H. This work uses 

the following definitions for the lift and drag coefficients  
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in which wV is the wind angle, or the magnitude of the angle from the velocity vector 

to the central-body axis,  
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The resulting lift-to-drag ratio equations are 
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The aerodynamic moments about the nose that are considered in this analysis 

are the pitching, yawing, and rolling moments with coefficients Cm,0, Cn,0, and Cl,0. 

The equation for the coefficient of the pitching moment about the nose is 
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Cm,N,0 is the normal force’s contribution to the pitching moment, and Cm,A,0 is the axial 

force’s contribution. Similar to integrating fx,1  to determine the force coefficients, the 

fx,1 and fy,1 of each moment coefficient can be integrated separately in order to find fx,3 
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and fy,3. Those are used to determine the location of the center of pressure after are 

calculated. The equation for the coefficient of the yawing moment about the nose is 
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Cn,A,0 is the axial force’s contribution to the yawing moment, and Cn,Y,0 is the side 

force’s contribution. The equation for the coefficient of the rolling moment about the 

nose is 
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Cl,Y,0 is the side force’s contribution to the rolling moment, and Cl,N,0 is the normal 

force’s contribution. After fx,3 and fy,3 are determined for each coefficient, the moment 

coefficients become 
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Note that all moment coefficients are defined as the ratio of the moment to 

q∞SlM, in which lM is defined as the length of the semimajor axis. This definition of lM 

makes it possible for the yawing moment coefficient Cn,0 at a given sideslip angle (the 

condition β1 ≠ 0, α1 = 0) for a prolate shape e1 > 0 to be equivalent to the pitching 

moment coefficient Cm,0 for an oblate shape at a given angle-of-attack (the condition 

α2 = β1, β2 = 0, e2 = -e1). This definition was chosen over defining lM as the span of 

the heat shield. 

In validation, it is shown that the rolling moment calculations rendered a z-

location of the center of pressure, Zcp, that is inconsistent with the calculations of the 

other two moments, and so the yawing moment coefficient was used to calculate Zcp. 

One observation is that the components of Cl,0 are of such small magnitude that the 

values may have numerical error on the same order, thereby producing inconsistent 

values for Zcp. One reason for this may be that Simpson’s rule has difficulty 

integrating numbers that have values near zero. Since the value of Cl,0 is orders of 

magnitude lower than the pitching and yawing moment coefficients, it is possible that 

Simpson’s rule reached its limit around the value of Cl,0 without affecting Cm,0 and 

Cn,0. 

3.2. Shock-standoff Distance: Kaattari’s method 

Kaattari’s method for calculating the shock-standoff distance to the stagnation 

point is semi-empirical.
54,55

 Kaattari’s method assumes that the shock shape is 
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spherical with radius rsh. There are several curves that relate the normal shock density 

ratio ρ2/ρ1 to characteristics empirically derived, including the shock-standoff 

distance at the sonic point for several shapes such as a cone, paraboloid, and sphere. 

Then there are several aerodynamic and geometric theory-based equations applied in 

determining the shock-standoff distance from the chosen geometry. Kaattari’s method 

is not completely explained in this work because it is well detailed for the general 

blunt-body case at zero angle of attack in Ref. (55) and for a spherical-segment blunt-

body at large angles of attack in Ref. (54). To introduce the method, this section does 

include the main equations. Then a description of how this method is implemented on 

the computer is included since it was originally an iterative process completed by 

hand. Afterwards, modifications to the method accounting for angle of attack in Ref. 

(54) are included to estimate the shock-standoff distance for the general blunt-body 

case.  

3.2.1. Method Implementation 

Kaattari gives two similar methods for determining the shock-standoff 

distance, one for conic-section bodies and the other for non-conic-section bodies. 

Kaattari recommends using the conic-section shock equations with ellipsoids and the 

non-conic-section shock equations with the spherically-blunted cone. For this work, 

the non-conic-section shock equations were chosen to be used for all three axial 

shapes because they account for edge bluntness while the conic-section equations do 

not. Also, for the spherical-segment blunt-bodies, it was noticed that the conic section 

equations and non-conic section equations produced similar results for a spherical 
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body. Additionally, ellipsoid relations assume a complete ellipsoid is present rather 

than a segment of an ellipsoid, and this may become problematic at angles of attack. 

Kaattari originally calculated the shock characteristics of axisymmetric shapes 

by hand using plots of several geometric and aerodynamic characteristics that varied 

with the normal-shock density ratio. He needed to iterate his solution until the method 

found a converged value of the shock-standoff distance. This work uses the computer 

to automate Kaattari’s process. Part of this is accomplished by curve-fitting the 

necessary semi-empirical plots. This section supplies the curve-fit equations that were 

generated for this work. Note that all the given digits are required in order for the 

curve-fits to register the corresponding norm of the residuals or R
2
 values (which is 

given for most of the curve-fit equations). Also, even though all these digits are 

required to have an accurate curve-fit, this does not mean that the resulting value has 

a correspondingly large number of significant digits. It is suggested that the 

calculated results of the given curve-fits do not have more than three significant 

digits. As noted previously, this section does not detail the entire Kaattari method; it 

only includes the main modifications and additions to the method including curve-fit 

equations.  

This section also refers to figures that are not included in this work, but the 

reference numbers are given. The G function relates the ratio of the shock-standoff 

distance to the shock radius, ∆o/rsh, to the blunt-body’s radius of curvature at the nose  
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which can be manipulated to become 
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These relations
55

 are based on a given normal-shock density ratio. Figure 1 from Ref. 

[55] provides a relation for the G function to the normal-shock density ratio for γ-

values of 1.0 and 1.4 
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If ρ1/ρ2 < 0.15, then the two curves converge and the curve-fit equation for γ = 1.0 

must be used. Otherwise, interpolation between the two curves can be completed for 

0.15 < ρ1/ρ2 < 0.45.  The shock-standoff distance at the sonic point ∆* is non-

dimensionalized by y*, which is the normal distance from the axis of symmetry to the 

sonic point on the body. Figure 2 of Ref. [55] relates the ∆*/y* to the ρ1/ρ2 for two 

specific heat ratio values for 0.01 < ρ1/ρ2 < 0.45, 
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Kaattari validates these curve-fits with experimental data for spherical, disk, and cone 

shapes, as well as with theoretical results for spherical and parabolic shapes for zero 

angle of attack. From these two equations, the shock surface inclination at a point 

opposite the sonic point on a flat disk θ*o can be determined 
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The sonic angle for a sphere Φ*1 is defined as the body surface inclination of a 

sphere at the sonic point, with respect to a plane normal to the freestream direction. 

The variation of the sonic angle for a sphere Φ*1 with ρ1/ρ2 is given in Figure 4 from 

Ref. [55] for 0.025 < ρ1/ρ2 < 0.45, 
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If ρ1/ρ2 < 0.15, then the curve-fit equation for γ = 1.0 must be used. Otherwise, 

interpolation between the two curves can be completed for 0.15 < ρ1/ρ2 < 0.45. The 

sonic angle for a rounded-corner blunt-body Φ* varies with rc/r 
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For each axial shape, ε, which is the inclination on the forward body surface at the 

point tangent with the corner radius, is given by the following set of equations. From 

these, the sonic angle Φ* can be determined. For the spherical-segment and power law 

axial shapes, 
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For the power law axial shape, the term subtracted from 
π
/2 can be defined as an 

effective local half-cone angle. There are two cases for the spherically-blunted cone: 

one in which the spherical-segment is the dominant shape, in which the rn/d is large, 

and the other in which the cone shape dominates. This is described by the following 

equation set for the spherically-blunted cone 
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Note that if ε > 37
o
, then ε is set equal to 37

o
 since that is the limit of Kaattari’s 

dataset. The spherically-blunted cone does not approach this limit since it would 

require a half-cone angle θc < 53
o
, and the limit for the half-cone angle in the 

optimizer is set at 55
o
. Kaattari’s method also notes that if the sonic angle Φ* < ε, then 

the sonic point is assumed to be taken at the tangency angle ε, and so Φ* is set equal 

to ε for this case. To determine θ*, Kaattari supplies Figure 6(b) from Ref. [55] that 

relates the difference θ* – θ*o as a function of Φ*. This relation varies with the 

normal-shock density ratio, and their corresponding curve-fit equations with Φ* limits 

are included in Appendix A.1. 
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 The main non-conic-section body shock equation relates the shock radius rsh 

to the stagnation shock-standoff distance, the corner radius, sonic shock-standoff 

distance and the tangency angle 
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in which xs is the streamwise distance from the apex of the shock to the point on the 

shock at distance y* from the central axis. This relation along with the shock solution 

nomograph equation, 
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and the initial value of ∆o/rsh set equal to G, determine the values of Bs, y*/r, rsh/r, and 

∆o/r, 

( )*

2

2

* tan

1

θ
−








=

y

r
B sh

s ,        (3.41) 

( )( ),sin11 *
* Φ−−=

r

r

r

y c       (3.42) 

,*

* r

y

y

r

r

r shsh =            (3.43) 

,*

* n

sh

n

sh

r

r

r

y

y

r

r

r
=            (3.44) 

r

r

rr

sh

sh

oo ∆
=

∆
.           (3.45) 



 

 60 

 

From here, the value of ∆o/rsh based on Eqn. (3.31) is calculated and the process is 

repeated. Once the value of ∆o/rsh converges within 0.001, the iterative process has 

been completed, and the shock properties of the blunt-body have been determined for 

zero angle of attack. The main output variable is ∆o/rn. The complete process with 

referenced figures and examples is included in Ref. (55). 

3.2.2. Accounting for Nonaxisymmetric Shapes & Angle of Attack  

Kaattari
54

 offers a way to account for angle of attack for spherical-segment 

axisymmetric blunt bodies. In this section, a basic method is described for 

determining how ∆o/rn changes both for a nonaxisymmetric blunt body and with angle 

of attack based on Kaattari’s method. It also has been modified to account for the 

spherically-blunted cone and power law axial shapes. These modifications are meant 

to produce results that follow expected trends only. Although there is confidence in 

the expected trends, the results should not be accepted as unequivocal since several of 

the more exotic shapes have not been studied before from a re-entry heat transfer 

standpoint. The expectation is that these modifications produce shock-standoff 

distances for nonaxisymmetric geometries within the proper order of magnitude. The 

reason for using this method is to approximate the stagnation-point radiative heat 

flux, and Chapter 4 explains how it can be approximated for a blunt body using the 

shock-standoff distance.   

 For an axisymmetric spherical-segment geometry, Kaattari provides the 

process for estimating the shock-standoff distance in Ref. (54), and the equation  



 

 61 

 

( ) ( )αφα sincos

3

max

3

max

1 




















+−

∆
=

∆

r

r
c

r

r
c

dd

ststo
            (3.46) 

relates the shock-standoff distance at angle of attack to that at zero angle of attack. 

Note that for this work, the angle of the azimuth φ is assumed equal to zero. To 

determine how the value of ∆o/rn varies with angle of attack, semi-empirical data of 

shock correlation functions from Kaattari in Ref. (54) have been curve-fit. Applying 

these curve-fits is described in the next section, including the modifications required 

to use Kaattari’s method to approximate how the shock-standoff distance changes 

with angle of attack. Figure 9(a) from Ref. [54] shows how the shock correlation 

coefficient c1 varies with the normal-shock density ratio and the tangency angle ε. It is 

curve-fitted (input ε in degrees) with limits of applicability in Appendix A.2. 

Interpolation for cases with normal-shock density ratios in-between the given curve 

fits has been tested and is completely feasible. The correlation constant c3 is also 

supplied in Figure 9(b) from Ref. [54], and the curve-fit equations (input ε in degrees) 

are listed in Appendix A.3. With all of these equations, it is possible to approximate 

the shock-standoff distance. This is the full extent of Kaattari’s method.  

 To account for nonaxisymmetric geometries, it is assumed that the change in 

the shock-standoff distance for shape variance and an angle of attack is dependent on 

eccentricity and the axial shape of the upper half at φ = 0
o 

(j = 1) and the lower half at 

φ = 180
o 

(j = (jmax-1)/2). An example geometry is shown in Figure 3.2 to show how 

Kaattari’s method is applied.  
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Figure 3.2. Spherically-blunted cone profile shock-standoff distance variance. 

Kaattari’s method is applied to determine the radii of the shock for the upper 

profile rsh,upper = 4.827 and the lower profile rsh,lower = 11.30 separately. This is 

accomplished by accounting for the different half-cone angles for the upper and lower 

surfaces, θc,upper = 70
o
 and θc,lower = 76

o 
respectively. Also the different upper and 

lower base radii, rupper = 1.958 m, and rlower = 2.864 m respectively are accounted for 

and added together to produce the base diameter. The shock-standoff distances for 

each case is calculated ∆o,upper = 0.4175 m and ∆o,lower = 0.9215 m. After the shock-

standoff distances are determined this work assumes that this cone shape must have a 

zero angle of attack shock-standoff distance ∆o that is in-between the two calculated 

shock-standoff values. It is assumed that each has equal effect on ∆o, and so it is set 

equal to the average of the two and produces the open circle in Figure 3.2 

corresponding to ∆o = 0.6695 m.  
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Originally, to account for angle of attack, Kaattari’s Eqn. (3.47) was applied, 

but for the case of Figure 3.2, ∆α<0 > ∆α>0, which does not follow the most probable 

trend. At α<0, the upper profile faced the freestream more than the lower profile, and 

so it should have more effect on ∆α than the lower profile. Because rsh,lower > rsh,upper, it 

is expected that ∆α=-(90-θ) < ∆α=90-θ, which is the opposite of the trend produced by 

Eqn. (3.47). As a result, the following basic method is applied to guarantee that this 

trend is held.  

This work assumes that the shock-standoff distance at α = 90
o
 - θc,lower, which 

is α>0
o
, can be approximated by the distance from the lower shock with radius rsh,lower 

that is perpendicular to the lower face. This distance is the length between the two 

inverted triangles shown in Figure 3.2. For α < 0, the shock-standoff distance at α = -

(90
o
 - θc,upper), can be approximate by the distance from the upper shock with rsh,upper 

that is perpendicular to the upper face. This distance is the length between the two 

triangles shown in Figure 3.2. As a result, this also means that if rsh,lower < rsh,upper, 

then ∆α=-(90-θ) > ∆α=90-θ, thus this method accounts for either case. Linear interpolation 

between ∆o and ∆α is applied once the endpoints ∆α=-(90-θ.upper) and ∆α=90-θ,lower are 

determined. This simple method is implemented only so that the shock-standoff 

distance is varied and follows an expected trend.        

 To account for eccentricity, the average base radius is determined; then it is 

divided by the maximum base radius to produce the non-dimensional average base 

radius ravg,nd. This term is then used to calculate the upper and lower shock radii 
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and 










<

≥
=

.0,

,0.

,

,

,

,

,

e
r

r

r

r

r

r

err
r

r

r

r

r

ndavg

lower

lower

n

n

lowersh

ndavglower

lower

n

n

lowersh

lowersh               (3.48) 

Eccentricity is accounted for through this approach so that the calculated shock radii 

of a prolate shape with eccentricity e at α and those of an oblate shape with the same 

eccentricity are affected equally. This is one way of producing consistency 

throughout the results. Note that this addition does not provide true consistency when 

calculating the radiative heat transfer, as the value of qrad varies up to 33% at 

eccentricity |e| > +/- 0.9 and up to 20% at |e| > +/- 0.8. As a result, any calculations 

for highly eccentric shapes should be seen only as approximate solutions.  

 For rounded-edge concave shapes such as that shown in Figure 2.7, the profile 

could look similar to an inverted Figure 3.2. In this case, it is assumed that only the 

surface with the larger r (in the case of Figure 2.7 it would be rupper) is applied rather 

than using the average of shock-standoff distances because the surface with the larger 

r represents the primary radius of the shock-shape. This is assumed for the rounded-

edge concave shapes since they have not been investigated experimentally or through 

computational fluid dynamics (CFD). It should be noted that the shock shape about 

rounded-edge concave shapes may have a radius that varies with sweep angle, and so 

only basic assumptions can be made at the level of this work’s analysis.  
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3.3. Static Stability 

The stability of a planetary entry vehicle is one of the main factors that 

determines whether a particular design is feasible. If the EV requires quasi-steady 

flow in order for it to follow the designed trajectory, then the vehicle must be able to 

remain or return to the designed trim angle of attack αtrim after encountering flow 

disturbances. This can be determined by looking at the static and dynamic stability of 

the vehicle. This work analyzes the heat shields’ static stability only for a first-look 

analysis. An in-depth, full vehicle analysis would require the study of both the static 

and dynamic stability since it is possible for a statically stable vehicle to be 

dynamically unstable. If a vehicle is statically stable, then it possesses the 

aerodynamic moments required to restore the vehicle to an equilibrium state after 

encountering a flow disturbance.
76

  

One way to measure a vehicle’s static stability is to analyze its aerodynamic 

moments about the vehicle’s center of gravity. In this work, the aerodynamic moment 

coefficients Cm,0, Cn,0, and Cl,0 about the nose of the vehicle and the force coefficients 

CN, CA, and CY are calculated using modified Newtonian Impact Theory. Then the 

center of pressure location is determined from this information as previously 

explained. The center of pressure is the location at which the aerodynamic forces are 

applied. As a result, the aerodynamic moments, which are produced by the 

aerodynamic forces, are zero about the center of pressure.  Once a center of gravity 

location is either chosen or calculated, moments produced by the aerodynamic forces 

about the center of gravity are calculated.  
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For a fixed body-axis moment with conventions for positive moments given in 

Figure 3.1(b), there are twelve possible center of pressure positions, with respect to 

the vehicle’s center of gravity and the central axis. For example, in longitudinal 

stability, the contributions of the normal and axial forces to the pitching moment 

about the center of gravity are determined. If the center of gravity is below the central 

axis, then the center of pressure can be below the center of gravity, above the center 

of gravity in the same quadrant (below the central axis), or above the center of gravity 

in a different quadrant (above the central axis). In each of these cases, the center of 

pressure could be in front of, aligned with, or behind the center of gravity. If the 

aligned case is grouped with either the in front or behind cases, then there are six 

different geometric cases. The other six cases correspond to the inverted case in 

which the center of gravity is above the central axis, thereby producing a total of 

twelve cases.  

After deriving each of the twelve cases for the pitching, yawing, and rolling 

moments about the center of gravity, it was observed that all twelve cases for each 

moment could be reduced into one equation, producing the following three equations 
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In order for the definition of rolling moment static stability to remain constant, the 

rolling moment Cl,cg equation accounts for the change in positive moment convention 

that occurs when the vertical component of the lift coefficient becomes negative. The 

explanation for this is included in the next section, which comments on two 

misinterpretations of basic aerodynamic and stability theory.  

With the moments about the vehicle’s center of gravity determined, its static 

stability can be determined through an analysis of its moment derivatives with respect 

to angle of attack and sideslip angle. These derivatives Cm,cgα, Cn,cgβ, and Cl,cgβ are 

known as the static stability derivatives. For longitudinal stability, the derivative of 

the pitching moment with respect to angle of attack must be negative. For yaw 

stability, the derivative of the yawing moment with respect to sideslip angle must be 

positive. For roll stability, the derivative of the rolling moment with respect to 

sideslip angle must be negative. If the positive moment convention for Cl,cg were kept  

constant for positive and negative lift, then roll stability requires the rolling moment 

derivative to be positive for negative lift.  

To calculate the stability derivatives numerically, the code determines the 

Cm,cg, Cn,cg, and Cl,cg at α - 0.25
o
, α + 0.25

o
, β - 0.5

o
, β + 0.5

o
 in order to use the 

following finite-differencing approximate of the first derivative 
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These numerical approximations are second-order accurate in space. With the static 

stability derivatives calculated, an analysis of the vehicle’s static stability can be 

completed. 

3.4. Modified Uniform Density Assumption 

This work uses a modified center of gravity location based on uniform 

density. The uniform density’s center of gravity location is calculated according to 

section 2.4. While Ycg and Zcg are equal to their uniform density values, the prescribed 

Xcgis modified to equal 75% of the uniform density value. Bringing the Xcg forward 

increases the feasible design space by allowing more slender blunt-bodies with higher 

L/D to be longitudinally statically stable. For example, with the high eccentricity of 

e=−0.95, shown in Figure 3.3, comes the unstable pitching moment derivative Cm,cg,α 

=0.0566/rad if a uniform density heat shield is assumed.  

 

 

       
      Xcg/l = 0.400  0.637 

a) Front view                   b)    Side view 

Figure 3.3. Spherical segment θs = 90
o
 and e = -0.95. 

However, if the uniform density value Xcg/l =0.635 is switched to Xcg/l =0.400, then 

the pitching moment becomes stable with Cm,cg,α =−0.099/rad. Note that the center of 

gravity location required for αtrim and the feasibility of that location is not determined 

in this work. Heat shields that required αtrim > ~20
o
 may require a center of gravity 

location that a more detailed analysis could determine is infeasible. 
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3.5. Correcting Misinterpretations  

Two common misconceptions are detailed in this section to emphasize the 

importance of understanding these basic aerodynamic concepts. The first concerns the 

static roll stability requirement on a given aerodynamic vehicle. The second involves 

calculating the location of the center of pressure on a passive aerodynamic vehicle.  

3.5.1. Static Roll Stability Requirement 

When either a disturbance in the flow or a control input generates a rolling 

moment about the center of gravity of a lift-generating vehicle, the direction of the lift 

vector relative to the horizon is no longer perpendicular, causing the vehicle to 

sideslip. In general, a lift-generating vehicle sideslips as it rolls, and general stability 

theory concludes that there is a coupled effect that can be related to the vehicle’s roll 

angle and the freestream sideslip angle. To make a lift-generating vehicle statically 

stable when it encounters a flow disturbance that brings the vehicle away from its 

desired orientation and path, the vehicle must be able to produce a counter-moment to 

bring it to its initial orientation (usually zero-roll angle or the designed trim position).    

Aircraft stability assumes that the lift vector is always positive for an aircraft 

in wings-level attitude; this leads to the standard convention that a positive rolling 

moment renders a positive change in sideslip. As a result, the rolling stability 

derivative Cl,β is required to be negative for static stability to counter flow 

disturbances.
76

  

Spacecraft stability must also account for the possibility that the vehicle may 

be designed to produce negative lift during a portion of its trajectory. If the lift vector 
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is negative, then a positive rolling moment renders a negative change in sideslip, 

producing the reverse relationship between roll angle and sideslip angle, in which a 

positive roll angle produces a negative sideslip angle. In this case, the rolling stability 

derivative Cl,β is required to be positive for static roll stability. Since a negative Cl,β is 

commonly associated with a statically roll stable vehicle, this convention is 

maintained in this work by reversing the direction of the positive rolling moment 

convention when the vehicle produces negative lift as shown in Figure 3.1(b). The 

sign reversal of the positive rolling moment produces the discontinuity shown in 

Figure 3.4 in order for all roll stable configurations to have Cl,β < 0.  

 

Figure 3.4. Cl,cg,ββββ distribution for spherical-segment, elliptical base (n2 = 2), varying e and θθθθs, αααα = 

20
o
, ββββ = 5

o
. 

 

As a result, if the positive rolling moment direction were kept constant, then 

there would be stable configurations with Cl,β > 0, and there would not be a 

discontinuity. With the sign reversal, Figure 3.4 clearly divides the stable and 
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unstable oblate geometries. Phillips
77

 includes a good discussion on roll stability in 

his flight mechanics textbook. 

3.5.2. Determining the Location of the Center of Pressure 

  One of the assumptions of aircraft stability, CL >> CD, cannot be followed in a 

blunt-body analysis since blunt bodies usually have an L/D < 1. The assumption of CL 

>> CD leads to the conclusion that the center of gravity must lie in front of the 

aircraft’s neutral point (or the vehicle’s center of pressure) to satisfy the requirement 

of Cm,cg,α < 0 for longitudinal static stability.
31

 Since this assumption does not apply 

to blunt-bodies, it may be possible to produce longitudinal static stability with the 

center of pressure in front of the center of gravity. From modified Newtonian results 

for Cm,cg shown in Figure 3.5 for -30
o ≤ α ≤ 0

o
, it is determined that the Xcp/l = 0.6556 

and Ycp/l varied from 0.0000 to 0.5530 for a spherical-segment of θs = 25
o
 with a non-

eccentric base. As a result, the code suggests that the Apollo CM with a Xcg/l = 2.171 

is one successful example of maintaining longitudinal static stability with the center 

of pressure in front of the center of gravity.  

  Similar to Xcp/l being constant over a range of α for a spherical-segment e = 0, 

θs = 25
o
, it has been proven that Xcp/l = 0.6667 for a sharp cone in a Newtonian 

surface pressure field, suggesting that Xcp/l is independent of half-cone angle θc.
2
 

Note that not all spherical-segments have Xcp/l = 0.6556, but at least one does with θs 

= 25
o
, e = 0 including the Apollo CM. The general pitching moment equations that 

relate Xcp and Ycp to Cm,0 are given as Eqns. (3.20-3.22). These equations follow the 

coordinate system shown in Figure 3.1(b) that has a positive Cm corresponding to a 
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nose-up moment. Bertin
2
 notes that the axial force’s contribution to the pitching 

moment is commonly neglected in the definition of the center of pressure location at 

and near zero angle-of-attack. However, this assumption does not apply to blunt-body 

aerodynamics because Cm,A,0 is commonly the dominant term for a blunt-body.  
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Figure 3.5. Variation in Cm,cg with angle of attack. 

  Cm,N,0 is not usually the dominating term for slender bodies, in which case the 

resulting formula
2,33,64

 for a circular cone at zero angle-of-attack Xcp/l = 2/(3cos
2θc) 

can be used, but this equation complicates the analysis since Xcp/l is constant at 

0.6667 without the assumption. When this assumption is applied to a blunt circular 

cone with θc = 70
o
, then Xcp/l = 5.7, which is not close to the actual Xcp/l = 0.6667. 

This assumption is only close to the exact solution for small θc, but a blunt-body cone 

does not have a small θc. For a general blunt-body shape, the following relation does 

not determine the x-location of the center of pressure  

.
0,

N

mcp

C

C

d

X
−≠            (3.55)  
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Instead, Xcp/l for a given blunt-body shape can be determined from the normal force’s 

contribution to the pitching moment Cm,N,0 as shown in Eqn. (3.21).  

  Arora’s 2003 aerodynamic shape optimization work
66

 maximizes Xcp. 

Unfortunately, he equates Xcp to Cm,0/CN, which contradicts Eqn. (3.60). Since he does 

not account for the axial force’s contribution to the pitching moment, his work is an 

example of recent research that has made this incorrect assumption on basic blunt-

body aerodynamics, rendering the published optimization results unusable. His 

conclusion is that the optimized Xcp value is 1.213 m, but a quick analysis of the 

geometry he chose accounting for the axial force’s contribution to the pitching 

moment suggests that the actual Xcp is less than approximately 1.1 m, suggesting that 

his optimization results are within an infeasible region of x-locations due to the 

incorrect definition of Xcp. Additionally, his optimization results could be 

significantly different when accounting for the general relation of Xcp and Cm,0 given 

by Eqn. (3.20). Note that the incorrect definition of Xcp for a blunt body is included in 

Regan’s first edition
64

 and Rasmussen.
33

 These are all examples of published work 

that show what Bertin
2
 mentions is the conventional definition of Xcp, not the true 

definition of Xcp that is required to complete an aerodynamic analysis of blunt-bodies.  
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Chapter 4. Heat Transfer  

 The primary physical mechanisms that contribute to the hypersonic 

aerothermodynamics, i.e., the aerodynamic forces, moments, and heat transfer,
2
 in 

this work consist of (1) the surface pressure distribution, (2) the velocity gradient 

along the heat shield, and (3) the radiating shock layer. The local bow shock strength, 

imposed on the vehicle by freestream conditions, strongly affects both the surface 

pressure distribution and the resulting heat transfer along the heat shield. The surface 

pressure distribution has been approximated with modified Newtonian theory, as 

described in the previous chapter. This chapter describes how the latter two are taken 

into account. Conduction through the shock layer is negligible; thus, two heat transfer 

modes convection and radiation are considered in this work. Convective heat transfer 

occurs at the surface based on the surface pressure distribution that imposes a velocity 

gradient along the heat shield, which sets the velocity at the edge of the boundary 

layer. The thickness of the high temperature shock layer influences the thermal 

radiative heat flux.  

The two arguably most important heat transfer characteristics are the heat flux 

and the heat load. The heat flux is power density in the form of heat per unit area. The 

heat load is equal to the heat flux integrated over the trajectory in time. It is common 

in the first analysis of a vehicle to look at the heat fluxes and heat loads at the 

stagnation point because they have been shown to correlate with TPS mass.
1
  

The Apollo CM reentered at an angle of attack that brought the stagnation 

point near the corner radius. In such cases, as noticed in Ref. (38), the heat transfer is 
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higher at the edge of the heat shield than at the stagnation point. In fact, the Apollo 

Command Module at α = ±33
o
 had a heat transfer flux at the edge that is 92% larger 

than that at the stagnation point corresponding to α = 0
o
, according to wind tunnel 

results,
38

 but the actual CMs did not necessarily travel trajectories that required this 

high an angle of attack. The most likely reason that this was one of the highest angles 

of attack tested is because the conical shaped crew compartment that connected to the 

heat shield was at a 33
o
 angle with the horizontal. As a result, the flow would pass by 

the crew compartment flush at α = ±33
o
.  The Apollo 4 CM traveled with a maximum 

angle of attack of ±25
o
, in which the heat transfer at the edge is around 60% higher 

than at the stagnation point corresponding to α = 0
o
, according to other wind tunnel 

results.
39

 In both the cases of α = ±25 and ±33
o
, the stagnation-point heat flux is 

approximately 15% larger than it would be at α = 0
o
.
38,39

 As a result, the heat flux is 

higher at the edge of the heat shield than that at the stagnation-point of the Apollo 

CM.  

Both the heat flux and heat load are equally important. This chapter explains 

the correlations applied in this work and their assumptions. The correlations were 

originally designed to calculate the stagnation-point heat flux on a sphere. Applying 

these correlations allows for the heat flux to vary with the radius of curvature of a 

given blunt body. Explanations on how these correlations are applied to blunt-bodies 

are included in the following sections. These correlations also vary with altitude 

through a freestream density factor and with speed through a freestream velocity 

factor. For this work the ARDC 1959 Model
78

 and US Standard Atmosphere of 

1976
79

 have been applied. The 1976 standard atmosphere is applied for results, but 
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the 1959 model atmosphere is used as noted throughout the text for the application of 

older correlations and code validation of results that used standard atmospheres 

before 1976. 

4.1. Convection 

  The properties of the high temperature shock layer affect both convection and 

radiation due to the presence of dissociated and partially-ionized air. Additionally, the 

heat shield geometry directly affects the surface pressure distribution, and thus, the 

velocity gradient along the heat shield, at the edge of the boundary layer. A smaller 

local radius-of-curvature increases the velocity gradient, thereby increasing the local 

convective heat flux.
3
 Low-order correlations based on empirical data account for 

these upstream effects with a local radius-of-curvature term. The stagnation-point 

convective heat transfer correlation of Tauber
45

 is applied in this work. Tauber 

assumes equilibrium flow conditions and a flight regime where boundary-layer theory 

is valid. Tauber produces a specific equation for planetary entry from satellite speed, 

but it is the objective of this work to approximate the heat transfer flux for planetary 

entry from both satellite and superorbital entry speeds. To account for this, the 

general form of his correlations, which is given as Eqn. (4) of his article
45

, is applied 

to produce the following correlation for the stagnation-point convective heat flux  

( ) 35.05.08

, )1(1083.1 ∞∞
−− −×= Vgr q wnconvs ρ ,               (4.1) 

in which gw is the ratio of wall enthalpy to total enthalpy. It is assumed that gw << 1, 

and so gw is zero in this work. This correlation assumes a fully catalytic surface, 

which makes Eq. (4.1) a conservative estimate since this makes the convective heat 
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flux independent of material choice as the recombination rate is infinitely large. 

Bertin
2
 indicates that the fully catalytic wall boundary condition produces results that 

approach the equilibrium flow solution (Figure 5.12 of Ref. [2]). This correlation also 

holds true to the Fay and Riddell
46

 derivation that states the  q convs , is inversely 

proportional to the square root of the nose radius. Zoby
47

 presents evidence that this 

relation breaks down for blunt bodies with ratio values of base radius r to nose radius 

rn less than 0.6, in which rn > r. He suggests that this is due to the velocity gradient 

being higher than would be otherwise expected by the deriving ∝ q convs, rn
-0.5

. If 

possible, this would be a good addition for future work. This is only one example that 

these heat transfer derivations are not accepted as fact in their application to blunt 

bodies, but they generate trends that are accepted as generally true for stagnation-

point heat transfer.  

 The form of the correlation shown in Eqn. (4.1) was originally designed for 

calculating stagnation-point heat flux on a sphere. Since the stagnation-point 

convective heat flux relies mainly on the geometry nearby the stagnation-point, as 

opposed to the full body shape and size, it can be approximated by setting the radius 

of curvature equal to the nose radius. The nose radius is the term that relates the heat 

flux to the geometry in Eqn. (4.1). For the spherical-segment and spherically-blunted 

cone axial shapes, determining rn is a trivial calculation. For the power law axial 

shape, the slope of the shape at the tip of the nose may not necessarily be continuous, 

as in the case of setting b = 1, in which a sharp cone axial shape is generated.  

As a result, the blunt-bodies with a power law axial shape must have an 

equivalent nose radius term produced. This equivalent nose radius is only an 
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approximation and should not be accepted as a complete model for power law shapes. 

First, it is assumed that the power law shape’s nose tip is blunted if its slope is 

discontinuous. Then the profile of the power law shape is examined; for this analysis, 

a line that is normal to the power law profile and that produces a 15
o
 angle with the 

horizontal is generated. A segment of that line that begins at the line’s intersection 

with the power law profile and ends at its intersection with the horizontal central axis 

is produced. The effective radius is assumed to be equal to the average of the length 

of that line segment and the distance to the nose from the end point of that line 

segment on the horizontal axis. If the normal line intersects the power law curve 

beyond the base of the geometry (the intersection occurs outside of the heat shield 

shape), then the geometry’s curvature is assumed sharp and given an effective radius 

value of 0.001 m. To produce a true method for determining the effective radius of 

the general power law shape for convective heat transfer is a research topic in itself. 

4.2. Radiation 

 Since radiation over a blunt-body can be primarily modeled as an elliptic 

problem, the radiation at the stagnation point depends on the body of the vehicle in 

addition to the nose radius. For a given set of freestream conditions and a shock layer 

with emitted power density E, qs,rad  will be greater for the heat shield with the larger 

∆so.
3
 Also, the radiative heat flux is significantly more sensitive to the angle-of-attack 

of the blunt body than the convective heat flux. In this work, all these effects are 

incorporated into the term called the effective radius. In order to 

apply  q rads , correlations for spheres to non-spherical blunt-bodies, the effective 
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radius in this work is directly related to the spherical radius for a given set of 

freestream conditions. This is accomplished by estimating the shock-standoff distance 

∆so across from the stagnation point at a given normal shock density ratio ρ2/ρ1 of the 

blunt body.  

 To calculate the normal shock density ratio ρ2/ρ1, high temperature properties 

of air must be determined in order to calculate an effective specific heat ratio after the 

normal shock γeff,2. Tannehill
57

 supplies high temperature air correlations for this 

work, and they are also located in Chapter 11 of Anderson.
3
 The effective specific 

heat ratio after the normal shock is determined through an iterative process. First, a 

test variable for γeff,2 is called γtest,2 and set equal to 1.4 as an initial condition. Then the 

corresponding pressure p2 and density ρ2 after the normal shock are calculated based 

on γtest,2 
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and these two variables are entered into Tannehill’s Fortran code that returns the 

corresponding enthalpy h2 and γeff,2 
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and coefficients c1 through c11
 
are curve-fit values tabulated in Tannehill.

57
 For this 

work, only the γeff,2 is used. The value of γeff,2 is compared to γtest,2; then γtest,2 is set 

equal to the calculated γeff,2, and the process is iterated until the absolute value |γeff,2 – 

γtest,2| is less than 0.01. Once a converged value of γeff,2 is determined, then the 

corresponding normal shock density ratio ρ2/ρ1 has been calculated and could be used 

in Kaattari’s method described in Chapter 3 to approximate the shock-standoff 

distance.   

 It is assumed that the effective nose radius for stagnation-point radiative heat 

transfer, reff, for a given blunt body is equal to the radius of a particular sphere that 

maintains an equal shock-standoff distance. After calculating the normal shock-

standoff distance, the corresponding spherical radius still would have to be 

determined.  

 According to wind tunnel results shown in Figure 4.1, the ratio of the normal 

shock-standoff distance to a sphere of radius reff is constant for a given normal-shock 

density ratio.  
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Figure 4.1. Stagnation-point ∆∆∆∆so wind tunnel data with empirical curve-fit, Ref. [51]. 

Ried
51

 offers an empirical curve-fit that renders an acceptable approximation, also 

shown in Figure 4.1:  
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Then the reff from this equation replaces the sphere’s radius in the stagnation-point 

radiative heat flux correlations. Two qs,rad correlations are applied over a range of 

freestream velocities. For V∞ < 9000 m/s, the correlation applies the following form   
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−

ρ
ρ ,         (4.8) 

in which g1 = 372.6, g2 = 8.5, and g3 = 1.6 from Ref. [2] for V∞ < 7620 m/s, and g1 = 

25.34, g2 = 12.5, g3 = 1.78 from Ref. [44] for velocities 7620 to 9000 m/s. For 

velocities above 9000 m/s, Tauber and Sutton
48

 apply  
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Thermochemical equilibrium is assumed. The curve-fit equation for f(V∞) has a high 

number of significant figures in order to have < 2% error with the published tabulated 

values.48 It is suggested that all of these digits are maintained; if they are not, the values 

of f(V) may go below zero for low V∞ or produce extremely large values for high V∞, 

either case producing erroneous results. The high number of digits does not correspond to 

the number of significant figures from this correlation. It is suggested that no more than 

three digits should be specified as significant for all three radiation correlations.  
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Chapter 5. Mission Profile & Entry Vehicle 

Scaling  

The mission profiles and entry vehicle scaling evolved throughout this work. 

The results in Chapter 10 apply the first set. The second set applies to Chapter 11– 

Chapter 14; it is based on the first set with some modifications to produce more 

practical design conditions. The first set of mission profiles and entry vehicle scaling 

is first detailed and then the modifications made for the second set are then provided.  

5.1. Initial mission profile and entry vehicle scaling set 

5.1.1. Mission profile 

To simulate Earth entry for lunar return, an initial entry velocity of 11 km/s is 

applied.
32

 For Mars return, a fast 180-day return renders entry velocities up to 14.7 

km/s,
80

 and an initial entry velocity of 15 km/s is applied. Although the hypersonic 

aerodynamics at these two velocities are similar for a given heat shield design, their 

heat transfer environments are greatly different. While convection typically 

dominates for a vehicle entering at 11 km/s, radiation is projected to be the primary 

heat transfer mode for 15 km/s.  

The mission profile for the Orion Crew Exploration Vehicle (CEV) with an 

overall duration of 18 days, a crew of four, and a pressurized volume of 5 m
3
/person 

is applied.
81

 The Earth entry simulation begins at the atmospheric interface, at an 

altitude of 122 km, and terminates after the freestream Mach number becomes less 

than five, account for the hypersonic aerodynamics only. For blunt-bodied capsules 
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(low L/D), whether the trajectory ends at M∞ < 5 does not strongly affect the values of 

the three optimization parameters in this analysis: cross range pxrs, peak stagnation-

point heat flux qs,max, and total stagnation-point heat load Qs,tot. This profile is utilized 

for both lunar and Mars return. 

5.1.2. Entry vehicle mass estimation and scaling 

  Mass estimation and scaling of the entry vehicle is based on the mission 

profile, heat shield geometry, and dimension requirements for incorporating the crew 

or payload. The scaled vehicle must satisfy required crew seating dimensions. These 

sizing constraints may require the vehicle to be increased in size, in which case the 

crew number may be increased. The assumed seat dimensions required for suited 

astronauts include an upright front-to-back depth lp1 = 1.1 m, an upright width wp1 = 

0.7 m, an upright top-to-bottom height hp1 = 1.4 m, a reclined depth lp2 = hp1, and a 

reclined height hp2 = lp1. In this analysis, upright corresponds to a seat back 

positioned parallel the z-axis while reclined refers to a seat back positioned parallel to 

the x-axis. This allows the seat to be positioned against the base of the heat shield for 

(1) highly blunt configurations (Apollo CM) in which the vehicle’s base is parallel to 

the z-axis and (2) for slender configurations (low θc) in which the base is more 

aligned with the x-axis.   

 Vehicle scaling is necessary due to the wide range of heat shields in the design 

space. High θs, for example, can allow the heat shield to encompass part of or the 

entire pressurized volume. If the entry vehicle geometry is assumed to have the same 

top–to-bottom base height of 5 m as Orion, then heat shields with high eccentricity 

would have over 15 times Orion’s volume. Other designs may have smaller volumes 
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than the Orion’s. To scale the entry vehicle, a heat shield is categorized into one of 

four cases based on lHS. This differentiates the procedures applied for estimating the 

pressurized volume based on the heat shield’s geometry. As a result, each heat shield 

is categorized into one of four cases to size the vehicle:  

(1) lHS ≤ lOrion, lOrion = 0.55 m 

(2) lOrion < lHS ≤ lR1, in which lR1 = btlp1 + lOrion = 2.2 m, 

(3) lR1 < lHS ≤ lR2, in which lR2 = btlp2 + lOrion = 2.65 m, 

(4) lR2 < lHS.  

The value for factor bt is 1.5 to account for the surrounding structure, in order for the 

seat dimensions to fit within the heat shield’s dimensions for all cases. For case 1, the 

heat shield has a shorter length lHS than the Orion’s. For this case, a volume equal to 

¼πab(lOrion – lHS) is added to the calculated heat shield volume as a conservative 

estimate for the required thickness of the heat shield for storage of non-pressurized 

vehicle systems. The ratio fHS of the heat shield volume to the entry vehicle volume is 

utilized to determine the resulting volume of the entry vehicle VEV. For cases 1, fHS = 

fHS,Orion ≈ 17.7%. For all cases, it is assumed that the ratio fPR of the pressurized 

volume VPR to the entry vehicle volume VEV is equal to that of Orion, fPR = fPR,Orion ≈ 

63%. The crew number ncrew is determined based on VPR and the pressurized volume 

requirement.  

 Once the pressurized volume is closely matched and seat dimensions are 

satisfied, the entry vehicle mass is estimated based on the following empirical 

correlation
82 

( ) .592
346.0

PRdcrewEV Vtnm =                                          (5.1) 
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Based on the mission profile, Orion’s estimated mass of 7340 kg is precisely the 

reported landing mass of Orion.
81

 The entry vehicle masses for this analysis are 

nearly constant since heat shield scaling is designed to render a pressurized volume 

that meets the mission requirements as closely as possible. For the Apollo mission 

profile
82

 of ncrew = 3 crew, tf = 10 days, VPR ≈ 9.2m
3
, d = 3.9 m the calculated mEV is 

within 30% of 5800 kg, and so it is suggested to adjust Eq (5.1) by a factor of 1.3 

accordingly when applying the Apollo mission profile.  For case 2, a portion of the 

heat shield’s volume can be utilized for seat locations. When lHS = lR1, the heat shield 

has sufficient dimensions to fit the entire crew. To approximate the amount of heat 

shield volume that is allocated as pressurized volume, a linear curve is designed to 

join the two end-states of this range, lHS = lOrion and lHS = lR1, resulting in this function 

of entry vehicle volume  

,
,OrionHSEV

HS

EV
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V
V =                     (5.2) 
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EV ll
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S            (5.3) 

and SEV = 1 for case 1. For cases 3 and 4, the entire pressurized volume fits inside the 

heat shield geometry. Case 3 represents highly blunt configurations, and thus, the 

seats are placed in an upright position. Case 4 represents slender configurations. Since 

the seats are placed in a reclined or horizontal position, the height requirement for 

case 4 is reduced to bthp2 = 1.6 m. Once the available pressurized volume is 

determined, the crew number is calculated based on pressurized volume requirements. 
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If the crew number is greater than four, then an iterative process proceeds to scale 

down the vehicle until either ncrew = 4 or the seat dimensions limit is met. Then Eq. 

(5.1) is applied to determine the final mass of the entry vehicle. For this analysis, the 

aim is to bring the entry vehicle’s mass towards the projected mass of Orion.  

  This mass estimate is independent of heat load, which determines the heat 

shield material’s thickness in a detailed design analysis. Several new heat shield 

designs are considered, and thus, the heat load for a given vehicle and flight path is 

unknown a priori. The required iterative process, which would increase the 

computation time by a few factors, has not been integrated into the optimization 

setup. Uniform density is assumed to calculate the center of gravity location of the 

heat shield, and the prescribed Xcg is modified to equal 75% of the uniform density 

value. Bringing the Xcg forward increases the feasible design space by allowing more 

slender blunt-bodies with higher L/D to be longitudinally statically stable. 

5.2. Modifications to initial set 

5.2.1.  Mission profile  

 The mission profile for lunar return mostly remains the same. To simulate 

Earth entry for Mars return, an initial entry velocity has been changed from 15 km/s 

to 12.5 km/s. The required inertial Mars return velocity is a function of the year of 

transit and the return transit time. A fast 180-day transit
80

 to Earth produces entry 

velocities up to 14.7 km/s. Braun
83

 indicates that a 14 km/s entry may produce heat 

loads as high as 95 kJ/cm
2
 for a vehicle with a 3-m nose radius and ballistic 

coefficient of 310 kg/m
2
. This heat load is nearly halved at 50 kJ/cm

2
 by reducing VE 
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to 12.5 km/s. Recent work
1
 indicates heat loads near 120 kJ/cm

2
 and 65 kJ/cm

2
 are 

produced at 14 and 12.5 km/s respectively for BC = 350 kg/m
2
. The entry velocity 

12.5 km/s covers ~40% of the years of transit for a 180-day return to Earth.
1
 It 

accommodates ~80% of the years of transit for 230 to 270-day returns, and ~100% 

thereafter. The manned Apollo missions experienced heat loads
41

 of ~31 kJ/cm
2
 with 

VE = 11 km/s. As a result, the expectation on TPS design to accommodate a ~100 

kJ/cm
2
 heat load with VE = 14 km/s, which will greatly challenge the current 

capabilities of several other subsystems, may be unnecessary and impractical for the 

first manned Mars return missions. The Earth entry simulation terminates at M∞ = 2, 

at which drogue parachutes would be deployed. This is different from the initial setup 

and allows for more realistic end constraints on the entry trajectory.  

5.2.2. Entry vehicle mass estimation and scaling 

  The projected mass of Orion is currently ~10,000 kg. The initial mass 

estimation method was based on Orion’s projected mass of 7340 kg. As a result the 

empirical correlation in Eq. (5.1) underestimates the Orion mass by 30-40%, as it 

does for the Apollo Command Module. This method is extended in the current work 

by modifying the heat shield mass based on surface area and heat load comparisons 

with Orion. Since the Apollo heat shield comprised of 13% of the Command 

Module’s mass,
21

 it is assumed that the heat shield mass is 15% of Orion’s total mass, 

assumed to be 10000 kg, and that the remaining 8500 kg is fixed. After surface area is 

accounted for in the heat shield mass, two mass estimations are produced based on 

heat load. The first mass estimation assumes that the additional heat load does not 

augment the mass of the heat shield. Evidence of this being possible for vehicles with 
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L/D ≤ 0.5 is given in Fig. 11 of Ref. [1], in which TPS thickness only slightly 

increases with VE increasing from 11 to 14 km/s, although the heat load significantly 

increases. The second mass estimation provides an upper-end conservative value that 

assumes that the mass of the heat shield is increased by a factor of three. Preliminary 

results indicated that a heat load three times the Qs,tot at lunar return conditions (~20 

kJ/cm
2
) is produced at Mars return conditions. The factor of three assumes that if the 

heat load is three times the heat load at lunar return conditions, then the heat shield 

has three times the thickness. Ultimately, the heat shield thickness will be trajectory 

dependent. By incorporating both upper and lower mass estimations, a sensitivity of 

mass on Qs,tot is conducted concurrently with the results, and a range of heat loads for 

optimal geometries for both mass estimates are given. Uniform density is assumed to 

calculate the center of gravity location of the heat shield, and the prescribed Xcg is 

modified to equal 75% of the uniform density value. Bringing the Xcg forward 

increases the feasible design space by allowing more slender blunt-bodies with higher 

L/D to be longitudinally statically stable. 

5.3. Mass and geometric trends of entry vehicles  

Manned space capsule geometries have been approximated using a generic 

space capsule model, shown in Figure 5.1, to determine any trends between the 

masses and the geometries of previous work as well as the current estimates for the 

Orion CEV. The generic space capsule model is composed three sections: the 

spherical-segment heat shield, the conical frustum crew compartment, and an end 

cylinder. 
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Figure 5.1. Generic space capsule model. 

Note that y is related to rb and Rs as 
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such that [ ] .11
2
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 −−= sbs RrRy  

The surface area is the sum of the three section areas, in which the heat shield area is  

[ ]{ },112
22

1 sbs RrRA −−= π
                

(5.5)
 

the conical frustum area is 

( ) [ ] ,
22

2 tbtb rrhrrA −++= π
     

(5.6) 

and the end cylindrical area is  

( ).22
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The total surface area of the generic space capsule model is  
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The volume is the sum of the three section volumes, in which the heat shield volume is 
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the conical frustum volume is 

( ),
3

1 22

2 bttb rrrrhV ++= π
           

(5.10)
 

and the end cylindrical volume is  

.2

3 nrV tπ=               (5.11)
 

The total volume of the generic space capsule model is  
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This model has been applied to the Mercury, Gemini, Apollo, and Orion atmospheric 

entry spacecrafts. Dimensions and masses of the spacecraft, listed in Table 5.1, have 

been gathered from Refs. [84], [85], [86], [87], and [88].  

Table 5.1. Mass and dimensions of manned spacecraft. 

Spacecraft 

Shield 

radius 

Rs (m) 

Base 

radius rb 

(m) 

Top 

radius rt 

(m) 

Shield 

height y 

(m) 

Cone 

height h 

(m) 

Nose 

height n 

(m) 

Overall 

height 

(m) 

Total 

mass mEV 

(kg) 

Mercury 3.2 0.95 0.41 0.14 0.91 1.15 2.21 1360 

Gemini 3.7 1.14 0.49 0.18 1.61 1.52 3.32 3190 

Apollo 4.6 1.96 0.64 0.44 2.45 0.00 2.89 5800 

Orion CEV 

(projected) 
6.0 2.52 0.76 0.55 2.75 0.00 3.30 9700 
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The calculated volumes and areas are provided in Table 5.2.  

Table 5.2. Area and volume characteristics of manned spacecraft. 

Spacecraft 

Shield 

area 

A1 (m
2
) 

Cone 

area 

A2 (m
2
) 

Nose 

area 

A3 (m
2
) 

Base cross 

sectional  

area 

Axrs (m
2) 

Total 

surface 

area 

Atot (m
2) 

Shield 

volume 

V1 (m
3
) 

Cone 

volume 

V2 (m
3
) 

Nose 

volume 

V3 (m
3
) 

Total 

volume 

Vtot (m
3
) 

Volumetric 

efficiency, 

ηv Eq. (2.16) 

Mercury 2.88 4.49 3.46 2.81 10.83 0.21 1.37 0.60 2.18 74.9% 

Gemini 4.21 8.91 5.46 4.10 18.58 0.38 3.55 1.15 5.08 76.9% 

Apollo 12.62 22.68 1.30 12.02 36.60 2.67 14.09 0.00 16.76 86.5% 

Orion CEV 20.83 33.58 1.83 19.87 56.24 5.58 25.42 0.00 31.00 84.8% 
 

 

In addition to manned spacecraft, the X-20 Dyna-Soar (Dynamic Soarer)
89,90

 

and ASV-3 ASSET (Aerothermodynamic Elastic Structural Systems Environmental 

Tests)
91,92

 have been incorporated into this analysis although they do not follow the 

generic capsule model. The X-20, shown in Figure 5.2, as a lifting body with a high 

L/D ≈ 1.4, was a United States Air Force entry vehicle project that was cancelled in 

1963 near the beginning of its construction. This high L/D allows a vehicle to have 

greater cross range capability and maneuverability than typical space capsule designs. 

The ASV-3 ASSET program was part of the Dyna-Soar project; shown in Figure 5.3, 

it also was a lifting body with L/D ≈ 1.1. The ASV-3 was tested unmanned and 

successfully to acquire aerothermodynamics data.  

For this analysis, previous manned spacecraft provide entry vehicle 

characteristics for L/D < 0.4, and the X-20 and ASV-3 provide entry vehicle 

characteristics for L/D = 1.0 – 1.5.  Their surface areas and volumes were deduced 

from Figure 5.2 and Figure 5.3, and their characteristics are listed in Table 5.3. Note 

that the base radius is derived from the planform area and corresponds to the radius 

for a circular cross section that has an area equal to the listed planform area. The 

planform area will be utilized in the base cross sectional area comparison.  
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a) Top and side view from Ref. [90] 

 
b) Front view from Ref. [89] 

Figure 5.2. X-20 Dyna-Soar. 

 

Figure 5.3. ASV-3 ASSET drawing from Ref. [92]. 
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Table 5.3. Characteristics of Dyna-Soar and ASSET. 

Spacecraft 
Base radius 

rb (m) 

Base area Atot 

(m
2
) 

Planform area 

(m
2
) 

Total surface 

area Atot (m
2
) 

Total volume 

Vtot (m
3
) 

Volumetric 

efficiency, ηv 

Eq. (2.16) 

Total mass 

mEV (kg) 

Dyna-Soar 1.21 4.57 32.00 89.77 38.01 60.9% 5160 

ASSET 0.41 0.53 1.32 4.02 0.56 81.9% 540 

 

Trends in surface area, base cross sectional area, and volumetric with respect 

to entry vehicle mass are given in Figure 5.4, Figure 5.5, and Figure 5.6. 

 
Figure 5.4. Surface area effects on vehicle mass. 

 

Figure 5.5. Base cross sectional area effects on vehicle mass. 
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Figure 5.6. Volume effects on vehicle mass. 
 

 

Linear regression curves have been supplied to illustrate the trends for both L/D < 0.4 

and also a first idea of how higher L/D geometries compare to L/D < 0.4 

configurations for this vehicle mass range. These trends indicate that the masses of 

previous spacecraft scale best with base cross sectional area, though there are so few 

data points that no concrete trends for entry vehicles in general could be concluded. 

More specifically, the L/D < 0.4 spacecraft scale precisely with rb
2.04

  

1470.64 rb
2.04

 + 41.42,          (5.13) 

in which R
2
 = 1.00.

 

The regression curves for L/D < 0.4 come near ASSET with its mEV = 540 kg in 

Figure 5.5 and Figure 5.6, indicating that at similarly small volumes and base cross 

sectional area, these two cases have similar mEV. The characteristics for Mercury and 

Gemini are similar since Gemini was primarily a scaled-up geometry of Mercury, 

accommodating two astronauts instead of one. The Orion CEV is currently expected 

to have a 67.2% greater mass than the Apollo CM with similar outer mold lines to the 
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Apollo’s and a 53.7% increase in surface area. Applying the relation in the following 

form, 

refEV

newEV

x

ref

new

m

m

d

d

,

,=









,               (5.14) 

it has been determined that x = 2.045 with Apollo as the reference case and Orion as 

the new case. Thus, the Apollo spacecraft shape scales closely with base cross 

sectional area. This result is consistent with the L/D < 0.4 linear regression curve in 

Eq. (5.13). Assuming that the purpose for the entry vehicle is reasonably constant 

between missions and that the shape is held constant, this result indicates that scaling 

the Apollo entry vehicle will not produce any significant advantage with respect to 

ballistic coefficient. No decrease would be expected since Orion’s greater mass 

cancels out the advantage of its greater drag area.  

 ASSET has a volumetric efficiency of 81% in-between the values for Gemini 

and Apollo; it is an example of a L/D = 1 class vehicle that has a volumetric 

efficiency similar to the space capsules’ value. With a 22.6% greater volume than 

Orion and a 46.8% lower mass, the Dyna-Soar has a 108% increase in surface area 

and thus, ~26% lower volumetric efficiency than the space capsules. With its L/D = 1, 

it exemplifies the trade-off between volumetric efficiency and greater aerodynamic 

performance at mEV that are representative of manned spacecraft. Note that Orion and 

Dyna-Soar were designed for greatly different missions; thus, any overall, concrete 

conclusions regarding different L/D class vehicles and mass are not made.   
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Chapter 6. Planetary Entry Trajectory 

Fundamentals 
Several fundamental concepts regarding entry trajectory formulation have 

been applied, and a brief summary of them is provided in this chapter including 

descriptions of the equations of motion, the ballistic coefficient, and entry corridor.  

6.1. Equations of motion 

  A three degrees-of-freedom set of the equations of motion is applied for this 

work. This analysis assumes that the vehicles designs are dynamically stable, and to 

determine whether they actually are dynamically stable would require a six degrees-

of-freedom set of the equations of motion to be applied in future work. The point-

mass equations of motion for rigid-body flight in a vertical plane given by
93,94,95

  

 ,V
dt
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,gF
m

B

dt

Vd
b

rr
r

+=                      (6.2) 

( ) ,11

bbb
b TJJJ

dt

d rr
r

−− +Ω−= ω
ω                          (6.3) 

 ,
fldt

dm

dt

dm







−=                 (6.4) 

,
2

1
tq

t q
dt

qd r
r

Ω−=                    (6.5) 

in which p, V, and g are specified in an inertial reference frame while the vehicle 

rotation rates ω are defined in the local vehicle coordinate system. 
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6.2. Ballistic coefficient BC and drag area D/q∞ 

  The ballistic coefficient is commonly described as the ratio of the entry 

vehicle mass to the product of the drag coefficient and reference area, usually the 

base cross section. The produce of the drag coefficient and reference area is called the 

drag area = CDS. The main advantage to this form is that it allows for the designer to 

analyze the effect of scaling a given vehicle design on the ballistic coefficient by 

varying the reference area. In this optimization work, the optimizer may choose from 

a wide range of vehicle designs. As a result, neither the drag coefficient nor the 

reference area is assumed constant. This work applies the ballistic coefficient 

equation in the form 

.

∞

=

q
D

m
BC EV           (6.6) 

With this form of the equation, one vehicle’s D/q∞ can be compared to another’s D/q∞ 

rather than drag coefficient or reference area. The drag area is D/q∞ = CDS. From a 

physical standpoint, the drag area is the amount of resistant aerodynamic force 

produced along the direction of the velocity vector for a given amount freestream 

dynamic pressure. As a result, a higher drag area allows an entry vehicle to decelerate 

higher in the atmosphere. For a given mass mEV, this allows the peak deceleration 

loads and heat fluxes to be experienced higher in the atmosphere and thus, allows the 

peak heat fluxes to be lower than they would be with a lower drag area. As a result, it 

is advantageous to reducing the ballistic coefficient to reduce both the peak heat flux 

and total heat load. For lifting entry, the flight path is a strong function of L/D and 
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BC. They are incorporated into a single metric called the lift parameter. The lift 

parameter is equal to the ballistic coefficient divided by L/D.
3
 The lift area would be 

CLS = L/q∞. The BC and L/D have traditionally been looked at separated rather than 

as a single metric, and they are likewise treated in this work.   

  The ballistic coefficient is assumed to be an independent variable to the extent 

that mEV is a function of mission profile variables (mission duration and pressurized 

volume requirement) and D/q∞ is a function of geometry and α. The ballistic 

coefficient is indirectly restricted based on vehicle sizing requirements detailed in 

sections 5.1.2 and 5.2.2. Part of the geometric sizing is based on volume and 

dimension requirements for the seated astronauts. As a result, it is not possible for all 

of the required pressurized volume to be distributed through a thin heat shield 

volume, as such heat shields would fit under categories 1 or 2 in section 5.1.2 which 

assume a complete crew compartment is added after the heat shield.  

6.3. Entry corridor 

The entry corridor is the allowable region of γE that is deemed flyable based 

on the mission requirements. It is a function of entry velocity, lift-to-drag ratio, and 

ballistic coefficient. It is a stronger function of the two former. For a given entry 

velocity, the entry corridor width will vary with mEV, D/q∞ , and L/q∞. Note that L/q∞ 

= CLS for a given entry vehicle.  

The entry corridor width defines the flyable space. It must be sufficiently 

large such that all possible uncertainties that may occur during a given trajectory do 

not lead to a loss in control of the vehicle. These primarily include uncertainties in 
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atmospheric conditions, and the guidance, navigation, and control subsystems. 

Putnam and Braun
1
 suggest that a corridor width of 0.4-deg is sufficient, stating that 

this is much larger than the entry corridor widths of 0.16-deg the successful re-entries 

from the Stardust and Genesis missions.
1
 Human missions may need larger corridor 

widths than these two missions’ since there will be stricter g-load requirements and 

longer duration trajectories, giving more time for both expected and unexpected 

events to affect the vehicle. Uncertainties become more prevalent as entry velocity 

increases and L/D decreases, which corresponds to a reduction in control authority 

and thus, a smaller entry corridor width. This work assumes that an entry corridor of 

0.4-deg is sufficient.   

The boundaries of the entry corridor are known as the overshoot (upper 

boundary, shallowest γE) and undershoot (lower boundary, steepest γE) trajectories. 

These boundaries represent the limits to the vehicle’s control capability. The 

overshoot experiences the largest heat load and lowest heat flux and is achieved by 

flying a lift-down orientation. The undershoot experiences the smallest heat load and 

greatest heat flux by flying a lift-up orientation and a -90
o
 flight path angle, 

representing a vertical dive. The operational entry corridor includes a modified 

undershoot trajectory that has a greatly reduced γE that satisfies the required peak 

deceleration limit. The operational entry corridor is also based on the set of flight 

controls available for a given vehicle configuration. This work assumes a reaction 

control system (RCS) provides control authority over banking the vehicle. This 

allows the vehicle to rotate to a desired bank angle φb to rotate the lift vector.  
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Chapter 7. Aerothermodynamics Code 

All of the presented theory in Chapters 2 – 5 has been implemented into a 

low-order aerothermodynamics code written in FORTRAN 95 for this work. This 

chapter presents the layout of the code and validation of the low-order methods.  

7.1. Code Description 

  The aerothermodynamics code determines the aerothermodynamic 

characteristics of a chosen blunt-body shape at given freestream conditions. A single 

call of the aerothermodynamics code for a given α and β results in running through 

the code at five different conditions in order to calculate Cm,cg,α, Cl,cg,β, and Cn,cg,β, 

which require the values of Cm,cg, Cl,cg, and Cn,cg at four neighboring conditions 

(α+0.5
o
, β), (α-0.5

o
, β), (α, β+0.5

o
), and (α, β-0.5

o
) for the second-order accurate 

finite-difference scheme mentioned in Chapter 3.    

The aerothermodynamics code has five objectives: to generate the blunt-body 

geometry, to scale it to fulfill the necessary pressurized volume mission requirements, 

estimate the resulting entry vehicle mass, determine the heat shield’s geometric 

properties, and to calculate the aerodynamics, static stability, and the stagnation-point 

heat transfer. A diagram of the analysis code is given in Figure 7.1. Given the 

geometric parameters of a chosen base and axial shape, the shape generator produces 

a 3D mesh of the heat shield geometry. Then the entry vehicle sizing and mass 

estimation is executed. The aerodynamics calculator determines the aerodynamic 

characteristics of a given shape based on modified Newtonian surface pressure 
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distribution at a given angle-of-attack, sideslip angle, and Mach number. The primary 

variables that are calculated in the aerodynamics code are M∞, α, CL, CD, L/D, CN, CA, 

Cm,0, Cl,0, Cn,0, Xcp/L, Ycp/L, Zcp/L.  

 

Figure 7.1. Diagram of Analysis Code. 

The aerodynamics calculator is acceptable for determining blunt-body shape 

hypersonic aerodynamics at fine mesh sizes with extremely low run times (usually a 

fraction of a second for a jmax = 121, kmax = 203 mesh). Additionally, the 

aerodynamics code uses Tannehill’s code
57

 to determine γeff,2 and ρ2/ρ1, and it uses 

Kaattari’s method
54,55

 to determine the shock-standoff distance ∆so to the stagnation-

point that are used in the heat transfer portion of the code. The primary output of the 

heat transfer portion of the code are reff,   ,,convsq& and  .,radsq&  

  The analysis code applies a third-order accurate Simpson’s Rule integration 

method to determine the aerodynamic characteristics and center of gravity location. 

The center of pressure location is then determined. Geometric properties such as the 

Aerodynamics  Geometric Properties 

Aerodynamic Stability  

Design Results  

Heat Transfer  

Cross-section Shape 

Shape Generator θs, rn,/D, θc, A, b m, n1, n2, n3, e 

Axial Shape 

M∞, ρ∞, α, β 

  

Freestream conditions 

Entry Vehicle Sizing & Mass Estimation 
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volume, surface area, and planform area are calculated in the analysis code. 

Additionally, a center of gravity can be either chosen or calculated assuming a 

uniform density volume. The static stability calculator uses the aerodynamics in 

conjunction with the location of the center of gravity to determine the moment 

coefficients about the center of gravity and the pitch, yaw, and roll stability 

derivatives. Note that the analysis code requires two atmospheric models and 

Tannehill’s high temperature air code. Two atmospheric models, the ARDC 1959 

Model Atmosphere
96,97

 and the US 1976 Standard Atmosphere,
98

 are integrated in 

order to use the older atmospheric model for part of the validation process of the heat 

transfer correlations and use the newer for the optimization.   

7.2. Code Validation 

To validate the design code, and the corresponding implemented theories, 

results of the design code are compared to data from the Apollo and FIRE II missions. 

The results are divided into two areas: (1) aerodynamic performance and static 

stability and (2) stagnation-point heat transfer. The first section notes that the 

aerodynamic coefficients and stability derivatives match the Apollo data within 15%. 

The second section observes that the maximum heat transfer heat flux and heat load is 

within 15% of actual predictions after the stagnation-point heat transfer heat flux is 

related to the maximum heat flux according to wind tunnel data. 

7.2.1. Aerodynamics and Static Stability 

The aerodynamic performance and static stability are compared to both 

Apollo wind tunnel data and Apollo flight test data. There is more certainty in the 
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Apollo wind tunnel data than in the Apollo flight test data, and most of the wind 

tunnel data is for M∞ = 6 while the flight test data is for M∞ = 36. To convert from the 

listed angle of attack value of the NASA Apollo reports to the angle of attack value 

used in this work, defined in Figure 3.1(a), subtract 180
o
 from the NASA reported 

value. This should usually convert the NASA reported value to a negative angle of 

attack. Note that there is not any truly acceptable experimental data on the rolling 

moment stability coefficient, but predictions are compared to Whitmore’s recent 

computational work.
32

  

7.2.1.1. Comparison with Apollo Wind Tunnel Data  

 Results from the code based on modified Newtonian theory, have been 

compared to wind tunnel
12,13

 data of the Apollo Command Module (CM). The center 

of gravity is offset from the central body axis in order to trim the Apollo CM at a 

specific angle-of-attack during re-entry.
14

 Different center of gravity locations were 

considered in the wind tunnel models during the design of the CM.
12,13,15

 In Figure 

7.2, the center of gravity location is Xcg/l = 2.171, Ycg/l = 0.3158, and Zcg/l = 0.0 

according to the body-fixed coordinate system in Figure 3.1(b).  
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Figure 7.2. Cm,cg comparison between modified Newtonian and wind tunnel data, Ref. [12]. 

Additionally, because Xcg/l > 1, the center of gravity location of the CM is past the 

heat shield. The Newtonian results for the pitching moment Cm,cg at M∞ = 6 in Fig. 5 

produce Cm,cg,α = -0.16/rad; the modified Newtonian results follow the behavior and 

closely agree with the values of the Apollo wind tunnel (WT) data.
12

 As a result, this 

is evidence that the modified Newtonian results can match the pitching moment 

closely and thus predict αtrim, and it is well-known to match the lift-to-drag ratio for a 

blunt body better than the lift or drag coefficients.  

 The wind tunnel data for the rolling moment Cl was scattered near zero and 

has values that are two orders of magnitude smaller than those measured for Cm. 

Although the data accuracy of Cl and Cm is not reported for this wind tunnel data, the 

scattering and smaller values of the Cl data points in Fig. 6 suggest that the 

measurement instruments did not have the precision required to obtain a clear data set 

of the CM’s rolling moment behavior.  
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Figure 7.3. Cl,0 comparison between modified Newtonian and wind tunnel data, Ref. [12]. 

The wind tunnel data suggest a neutrally stable spherical-segment at -20
o
 angle-of-

attack, and the modified Newtonian results agree. A mesh with jmax = 203 and kmax = 

121 has been chosen based on a grid convergence study. Since the Apollo CM is 

axisymmetric, the yawing moment coefficient Cn,0 at a given sideslip angle (the 

condition β1 ≠ 0, α1 = 0) would be equivalent to the pitching moment coefficient Cm,0 

at a given angle-of-attack (the condition α2 = β1, β2 = 0). This is one reason that no 

specific Cn,0 data exists in the references.  
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a) Validation of CL results. 
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b) Validation of CD results. 
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c) Validation of L/D results. 

Figure 7.4. Aerodynamic force comparisons between modified Newtonian and wind tunnel data, 

Ref. [12]. 

  The modified Newtonian results in Figure 7.4 were calculated at M∞ = 18.73, 

but the difference between these results and those at M∞ = 15.8 is negligible (0.05% 

difference at α = -20
o
). Modified Newtonian results for the lift and drag coefficients 

are larger than values from both datasets shown in Figure 7.4(a) and (b). However, 

the increase in lift and drag with an increase in Mach number in the wind tunnel data 

is more significant than expected; this may suggest the presence of significant wind 

tunnel effects. At M∞=18.73, CL and CD from Newtonian theory are at most 9.6% and 



 

 108 

 

7.2% larger than the wind tunnel data respectively, and they are within the 

uncertainty of the wind tunnel data of ±0.114 for CL and ± 0.10 for CD.
12

 L/D 

Newtonian results shown in Figure 7.4(c) agree very well with the wind tunnel data 

(better than for the individual CL and CD as expected).  

  At lower freestream Mach numbers, such as M∞=9, the errors are larger than 

10% for the lift coefficient as shown in Table 7.1. While the data presented for 

M∞=15.8 and 18.73 are based on Apollo CM models with rc/d of approximately 0.1, 

the data in Table 7.1 corresponds to rc/d = 0.0. Moseley conducted a survey of the 

effect of increasing rc/d, and his wind tunnel results for M∞=9 at  rc/d = 0.1 would 

increase the errors from those values in Table 7.1, for CL to approximately 22% and 

CD to approximately 13% while the error in L/D was constant at 8% at α = -15
o
.  

Table 7.1. Percentage error of Newtonian computations compared to wind tunnel data in Ref. 

[13], M∞∞∞∞ = 9, αααα = -25
o
. 

 Wind Tunnel Value
 Modified Newtonian 

Value 
Percentage Error 

CL 0.45 0.534 18.6% 

CD 1.25 1.296 3.70% 

L/D 0.37 0.412 11.3% 

 

As the code used in this work does not account for corner radius in determining the 

surface pressure distribution, this is one reason for the increase in error. The 

Newtonian surface pressure distribution is known to become more accurate with an 

increase in Mach number, and the validation results are consistent with this 

understanding. However, it is shown in the next section that comparisons with the 

flight test data from Apollo AS-202 result in an amount of error similar to that for 

M∞=9. Overall, the modified Newtonian results are within 10% of the wind tunnel 

data with corner radius for M∞ ≥ 18.73, within 15% of the wind tunnel data without 
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corner radius for M∞ ≥ 9, and within 25% of wind tunnel data with corner radius for 

M∞  ≤ 18.73. 

7.2.1.2. Comparison with Apollo Flight Test Data 

 Results from the code have been compared to flight test
10,11 

data for the 

Apollo Command Module (CM) for mission AS-202 and Apollo 4 (also known as 

AS-501). The CM in AS-202 re-entered Earth’s atmosphere at satellite orbit speed 

8.23 km/s (27,000 ft/s) while the Apollo 4 CM produced the expected re-entry 

velocity from lunar return of 10.7 km/s (35,000 ft/s).  

 The uncertainty in the flight data varies throughout the trajectory, and so the 

more steady aerodynamic data was identified and utilized. Of the two datasets, the 

flight data from AS-202 had the smaller uncertainty in the flight coefficient data of 

±9% at 4900 s into the mission. The coefficients of the normal force, lift, and lift-to-

drag ratio have percentage errors around this error. However, the coefficients of the 

axial force and drag have higher errors around 17%. The Newtonian results are 

compared to the AS-202 flight data in Table 7.2.  

Table 7.2. Comparison of Apollo AS-201 Data and Computations, M∞∞∞∞ = 14, αααα = -16.5
o
 at 4900 s. 

 
AS-201 

[ref. 10]
 Mod. Newtonian % Error 

CN -0.05 -0.0454 -9.2% 

CA 1.34 1.56 16.2% 

CL 0.37 0.399 7.8% 

CD 1.28 1.51 17.6% 

L/D 0.289 0.265 -8.4% 

 

The trend in the percentage error being higher for CL than CD seen in the wind tunnel 

data comparison is the opposite for AS-201. Because the corner radius is not 

accounted for, it is expected that the error in L/D to stay constant at 8%, for CL, 
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according to wind tunnel results, to have approximately 22% error instead of 7.8% 

and CD to have approximately 13% instead of 17.6%. Note that these percentage 

errors are nearly constant, at least over the range of angle of attack values from –30
o
 

to 0
o
. It is completely feasible for CD to have a difference in error of 4.6% since the 

uncertainty is a higher percentage, and so the only surprising trend is that the lift 

coefficient has 14% less error than expected.  

  From the wind tunnel data, it is suggested that the corner radius affects the lift 

and drag coefficients less at higher freestream Mach numbers, but this is countered 

with the higher errors present in the AS-201 flight test data. In fact, wind tunnel 

effects could be changing the trends also, and so it is apparent that there is not 

consistency throughout this wind tunnel and flight test data to the resolution required 

to reason for the different percentage errors. Therefore, no conclusions could be made 

concerning whether the modified Newtonian results are less than 18±9% accurate.  

 Compared to flight data for Apollo 4 at M∞ = 30, Newtonian theory produces 

a CD that is 3.7% larger and a CL that is 18.6% larger as shown in Table 2.
11

 

According to Hillje, the best flight-derived data for CN (near maximum freestream 

dynamic pressure) has an uncertainty of ±0.048.
11

 Because the normal force 

coefficient has a small magnitude, small precision errors in CN strongly affect the 

calculation of CL. The contribution of CN to CL is one order of magnitude less than the 

contribution of CA to CL. However, the contribution of CN to CD is two orders of 

magnitude less than the contribution of CA to CD, and so an error in CN will not affect 

CD as much as CL. This produces significant increase in accuracy of the Newtonian 

results for CD at 3.7% compared to CL at 18.6%. 
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Table 7.3. Comparison of Apollo 4 Data and Computations, M∞∞∞∞ = 30, αααα = -25
o
 at 30040 s.  

 
Apollo 4 

[ref. 11]
 Mod. Newtonian % Error 

CN -0.11 -0.06387 -41.9% 

CA 1.32 1.400 6.1% 

CL 0.45 0.5337 18.6% 

CD 1.25 1.296 3.7% 

L/D 0.37 0.4119 11.3% 

 

 Additionally, Newtonian theory produces results that trim the CM within 1.2
o
 

for both Apollo missions AS-202 (α = 17.5
o ± 0.5

o
)
10

 and Apollo 4 (α = 25.5
o ± 3

o
).

11
 

For all these reasons, it is concluded that the CN flight data is probably inaccurate, 

rendering the higher percentage errors in CL and L/D. Since the percentage 

differences between Newtonian theory and the acceptable CM experimental wind 

tunnel and flight data is less than 15%, and since the theory follows the behavior of 

the wind tunnel data, modified Newtonian flow is considered acceptable for 

comparing the basic hypersonic aerodynamic characteristics of the investigated blunt-

body heat shield shapes with low computational time. Only the rolling moment values 

and stability derivatives have not been completely validated since a lack of this data 

exists, but it is partly validated in the next section. 

7.2.1.3. Comparison with Additional Sources 

Whitmore
32

 offers a recent analysis of the Apollo capsule as well as other 

human-rated lunar return vehicles such as a flattened bi-conic with trim flaps and an 

HL-20-derived lifting body configuration. His numerical results on the stability 

characteristics of the Apollo capsule closely match the results of this work’s code. 

Whitmore also uses a modified Newtonian surface pressure distribution to determine 

the aerodynamics of each vehicle.  
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 Both the results of this work and of Whitmore suggest that the Apollo capsule 

is slightly statically unstable in the roll direction. In this case, to be statically roll 

stable, the vehicle would have a negative value of Cl,cg,β since vertical lift is positive 

at negative angles of attack for the Apollo CM. Both works indicate that the Apollo 

capsule would have slightly positive values for the Cl,cg,β, if the center of gravity is 

above the central axis during planetary entry.  

Since the Apollo CM had a Reaction Control System (RCS) that could control 

the Command Module’s roll angle, one guess is that the RCS may have been used 

once in a while to fix the CM’s roll alignment. Another guess is that the Cl,cg,β had a 

negligible value for the CM. Whitmore reports a value of Cl,cg,β = 0.0065/rad while 

this work produces a value of Cl,cg,β = 0.00541/rad at α = -16
o
 to produce L/D = 0.25. 

Since both of our works concur and Whitmore’s work is the only source in the 

literature search that offered a value to compare, this is the extent that the Cl,cg,β is 

validated in this work.  

Magazu
30

 investigated the feasibility and aerothermodynamic performance of 

a 12-sided parashield re-entry vehicle that has a shape similar to a 12-sided umbrella 

with no more than 7% concavity. The reproduction of this heat shield shape is defined 

as having a spherical-segment axial shape with θs ≈ 45
o
 and a dodecagon cross-

section without any concavity. The superformula of the superellipse Eqn. (2.8) can 

approximate a sharp dodecagon with the following parameters m = 12, n1 = 10.75, n2 

= n3 = 1.  With these parameters, this work’s code produced a lift-to-drag ratio of 0.19 

compared to the reported 0.18 in Ref. [30] at α = -15
o
. 
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7.2.2. Stagnation-Point Heat Transfer  

Validating the results of this work’s stagnation-point heat transfer methods 

against Apollo and FIRE II experimental and flight data is completed in this section. 

It is shown that the methods produce results with < 15% error. Note that it is not the 

purpose of this work to imply from these low errors that heat transfer during planetary 

entry is well understood. CFD would also produce results with errors of 

approximately 10-15% also. Additionally, although the percentage error is low for the 

stagnation-point heat transfer methods of this work, the error would probably increase 

dramatically for entry velocities greater than 12 km/s, in which it is expected that 

radiation cooling and convection coupling would lower the radiative heat flux. 

However, it is unknown precisely how much reduction there would be since no 

instrumented flight tests have been completed on flights with entry speeds greater 

than 11.4 km/s from the FIRE II. Several questions still exist on laminar, transitional, 

and turbulent boundary layer heat transfer during planetary entry. As a result, 

experimental research in this area would be especially worthwhile as future work.    

7.2.2.1. Apollo 4  

The peak radiative heat flux for the Apollo 4 mission occurred at an altitude of 

approximately 200000 ft around 30030 s into the mission at which point the 

Command Module was moving at a speed of 34000 ft/s. For the portion of the 

trajectory with high radiative heat flux, Figure 7.5 shows the calculated normal-shock 

density ratio and corresponding specific heat ratio using Tannehill’s correlation set.
57
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Figure 7.5. Normal-shock density and specific heat ratios for the high radiative heat flux portion 

of the Apollo 4 trajectory, h and V from Ref. [11]. 

The altitudes and velocities during this portion of the Apollo 4 trajectory are also 

shown in Figure 7.5. The stagnation point on a blunt-body is usually across from the 

part of the bow shock that is normal to the freestream. As a result, the normal-shock 

density ratio ρ2/ρ1 and corresponding effective specific heat ratio after the shock can 

be used to approximate the effective radius-of-curvature at the stagnation point. 

Kaattari’s method requires ρ2/ρ1 and γeff,2 to determine reff. To validate the 

implementation of Kaattari’s method in this work, in Figure 7.6 it is compared to 

other methods of determining the shock-standoff distance for the case of a sphere. 

This figure is partially a reproduction of Figure 4.1 in which the empirical curve-fit 

Eqn. (4.8) is compared to wind tunnel data. As a result, it can be observed that 

Kaattari’s method in Figure 7.6 follows the experimental data closer than the 

empirical curve-fit at the lower values of ρ2/ρ1. Rasmussen
33

 provided the solutions to 

the vorticity method and parabolic thin shock layer approximation in his textbook. 

The solution from the vorticity method follows the behavior of Eqn. (4.8) almost 
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perfectly while the parabolic thin shock layer approximation produces shock-standoff 

distances that are at least 25% larger than wind tunnel results.  

 

Figure 7.6. Shock-standoff distance method comparison. 

It is noticed that Kaattari’s method and Eqn. (4.8) bracket most of the wind tunnel 

results shown in Figure 4.1. After Kaattari’s method determines the shock-standoff 

distance at zero angle of attack, the modified method for finding the shock-standoff 

distance at the prescribed angle of attack is accounted for through the effective radius 

term. For the Apollo 4, Ried
51

 generated predictions with early 1970 computer 

technology using CFD. Ried produced an effective radius at the stagnation point that 

would apply for radiative heat transfer, and it is compared to the results of Kaattari’s 

modified method in Figure 7.7. 
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Figure 7.7. Apollo 4 reff for stagnation-point radiative heat transfer. 

 

Kaattari’s modified method varies no more than 10% from Ried’s predictions. Then 

the reff is applied in the radiative heat flux correlation set. To determine which 

correlations would be best to apply for this work, a plot of the Apollo 4 mission’s 

radiative heat flux shown in Figure 7.8 is used to compare correlations. Figure 7.8 

shows these results for the portion of the Apollo 4 trajectory with radiative heat flux 

values greater than 50 W/cm
2
. Both radiometer and calorimeter measurements were 

made on the Apollo 4 at the point of maximum heating and the stagnation point, 

although measurement uncertainties were not recorded. Ried shows that his 

calculations match the radiometer results that measured only the visible and infrared 

radiation. Ried also calculated the UV continuum and UV line radiation. It made the 

most sense to compare the values of the correlations to the total radiative heat flux. 

As a result, the total radiative heat transfer that includes the visible, infrared, UV 

continuum, and UV lines is shown in Figure 7.8 as the Apollo 4 predictions.  
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Figure 7.8. Validation of radiative heat flux correlations for Apollo 4 from Ref. [105]. 

The most recent correlation from Tauber and Sutton
48

 matched the Apollo 4 results 

for most of the region. However, the results of this correlation do not match the 

predictions for speeds less than 9000 m/s.  

In fact, both Lovelace
44

 and Bertin
2
 provide correlations that produce 

conservative results that are not far from the results for speeds less than 9000 m/s. 

Since the correlation from Bertin was originally designed for speeds less than 7620 

m/s (25,000 ft/s), Lovelace’s correlation is applied for speeds less than 9000 m/s. 

Along with a method to transition between the two correlations, Lovelace and 

Tauber’s correlations are used in this code and produce the results shown in Figure 

7.9. Together, these correlations produce results that are conservative but close 

enough for first-order optimization results. 
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Figure 7.9. Apollo 4 radiative heat transfer code validation, predictions from Ref. [51]. 

 

Figure 7.10. Apollo 4 Trajectory from Ref. [39]. 

To validate the convective heat flux, radiative heat flux, and the 

corresponding heat load values, results have been generated using the Apollo 4 

trajectory shown in Figure 7.10. Apollo 4’s maximum Mach number
11

 during Earth 

entry was Mach 40, and because it had the highest entry velocity of all the Apollo 
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missions, it also had the largest heat load. The total heat flux and heat loads are 

calculated using both Lovelace’s Eqn. (4.9) and Tauber’s Eqn. (4.10), and so Table 

7.4 includes two columns of results. The equations used to produce each results are 

listed in the title of each column. These results are within 15% of the reported values. 

Table 7.4. Apollo 4 Comparison of Total Heat Transfer. 

Parameter Apollo 4, 

Ref. [41] 

Results from 

[1.6*1.06*Eqn. 

(4.1)+Eqn. (4.9)] 

Results from 

[1.6*1.06*Eqn. 

(4.1)+Eqn. (4.10)] 

qmax,tot  (W/cm
2
) 483 542 (+12%) 469 (-2.9%) 

Qmax,tot  (J/cm
2
) 42600 46200 (+8.5%) 38700 (-9.2%) 

 

NASA reported the values of the heat flux and heat load at the point of maximum 

heating, which in the case of the Apollo CM was not at the stagnation point. Although 

this work calculates the stagnation-point heating only as explained in Chapter 4, these 

reported values can still be used for validation. As shown in Figure 7.11, the 

maximum convective heating for the Apollo CM at α = -25
o
 was 60% larger than the 

stagnation-point convective heat flux at zero angle of attack.  

Maximum heating is located at S/R = 0.9 while the stagnation point at α = -

25
o
 is located at S/R = 0.74. Since the stagnation point at α = -25

o
 has a 10% higher 

heat flux than that at zero angle of attack, the maximum heat flux is 45% larger than 

the stagnation-point heat flux at α = -25
o
. Although angle of attack has been 

accounted for by this work’s radiative heat flux calculations, it has been assumed that 

the convective heat flux would be kept constant at the nose.  

Due to the Apollo CM’s low spherical-segment angle of 25
o
 and corner 

geometry, the stagnation-point does not have the highest convective heat flux at α = 

25
o
. Bertin

2
 notes that a correction factor of 1.06 to the correlation for a sphere can be 
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used to account for the change in the sonic line location from 45
o
 to approximately 

25
o
 for the CM. As a result, after multiplying the convective heat flux by 1.06 and 

then 1.60 to account for the corner radius’ effect that produces maximum heating, the 

convective heat flux can be added to the radiative heat flux to produce maximum heat 

flux and heat load results within 12% of the reported values. 

 

Figure 7.11. Convective heat flux distribution of Apollo Command Module at α = 25
o
 from Ref. 

[39]. 
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7.2.2.2. FIRE II 

In the case of the FIRE II flight, the entry vehicle’s stagnation point was equal 

to the point of maximum heating, and it traveled mainly at zero angle of attack. As a 

result, it would be expected that this work would match the FIRE II data more closely 

than the Apollo 4 data. However, the FIRE II had an entry velocity of 11.4 km/s 

(37400 ft/s), which is slightly faster than the entry velocity of Apollo 4 at 10.7 km/s. 

Because FIRE II had an entry Mach number greater than forty, it is possible for there 

to be coupled effects between convection and radiation that would reduce the total 

heat flux. The FIRE II had three heat shields of different radii placed on top of each 

other. One heat shield would be jettisoned at a time to acquire heat transfer data for 

each heat shield. Since the heat shields have different radii, discontinuities in the 

flight data are expected. As shown in Figure 7.12, flight data from the calorimeter 

produced a noticeably smaller heat flux value than the theory that does not assume 

coupling.  

 

Figure 7.12. FIRE II Total heat flux comparison with flight data from Ref. [50]. 
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The correlations of this work, which are labeled as code results, also do not assume 

coupling. The maximum total heat calculated by this work is 9% larger than the flight 

data. The interesting part is that the convective theory curve that assumes coupling 

and the code results nearly match perfectly for the first shield and do not vary greatly 

for the other two. However, it is apparent that the correlations fall approximately 

halfway in-between the theory that assumes no coupling and the calorimeter data. It is 

believed that the FIRE II had some coupling, and that this is the reason why the total 

heat flux theory without coupling and the code results produce a peak at a different 

time than the FIRE II calorimeter data. As a result, it would be expected that this 

work’s accuracy would begin to disappear at slightly higher velocities.  

 One additional comparison has been completed to determine the accuracy of 

the convective heat transfer correlation Eq. (4.1). The stagnation-point convective 

heat flux for the first heat shield has been estimated in Ref. [99] by subtracting the 

approximated radiative heat flux from total heat flux calorimeter data. It utilizes the 

beginning of the Fire II entry from 1630 to 1635 s, and it has been determined that 

qs,conv is ± 20 W/cm
2
 for altitudes between 71 and 85 km. From Figure 7.12, it is 

determined that the peak qs,conv is 16 W/cm
2
 greater than the value from the theory. 

The worst point of accuracy is at an altitude of 46 km and a velocity of 9.4 km/s, at 

which qs,conv is 44 W/cm
2
 greater than the value from theory.  The worst under 

prediction for qs,conv is 38 W/cm
2
 less than the value from theory at an altitude of 55 

km and a velocity of 10.7 km/s. Since the reported maximum heat fluxes are normally 

between 60 and 75 km, and the worst qs,conv in this altitude range is at 71 km, it is 

assumed that the reported qs,conv is ± 20 W/cm
2
. 
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7.2.2.3. Additional radiative heat flux validation  

Using the multiband radiation model of Nicolet, Tauber and Sutton
48

 

completed validation of Eq. (4.9) against high-order models with an radiative 

effective radius reff = 3.0 m at altitudes of 60, 66, and 72 km and velocities of 10, 11, 

12, and 14 km/s. The provided percentage difference between the high-order results 

and Eq. (4.9) is utilized to approximate the absolute error in the reported peak qs,rad. 

In order to generate reff = 3.0 m, a spherical segment heat shield with θs = 89
o
, e = -

0.001, n2 = 2.00, and d = 8.3 m without vehicle scaling and α = -5
o
 is applied. This 

geometry/α combination is the most straight forward to implement.  

Table 7.5 Radiative heat flux validation against high-order modeling. 

Altitude, 

ρ (kg/m
3
) 

V∞ = 10 km/s 
Form of results: 

qs,rad (W/cm2) 

% error from Ref. 

[48], Absolute error 

(W/cm2) 

V∞ = 11 km/s 

 

V∞ = 12 km/s 

 

V∞ = 14 km/s 

 

72 km, 

6.659 x 10
-5 

28 

0%, 0 
 

107 

+11%, +12  

228 

+18%, +41 

581 

+9%, +52 

66 km, 

1.471 x 10
-4

 

64 

+2%,  +1 
 

250 

+6%, + 15 

546 

+8%, +44 

1442 

+4%, +58 

60 km, 

3.059 x 10
-4
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-7%, -10  

570 

-1%, -6 

1271 

+3%, +38 

3441 

+5%, +172 

 

Most of the designs for 11 km/s entry experience the maximum heat flux at V∞ 

≈ 10.5 ± 0.5 km/s. Most for 12.5 km/s entry experience the maximum heat flux at V∞ ≈ 

11.5 ± 0.5 km/s. Most for 15 km/s entry experience the maximum heat flux at V∞ ≈ 

13.5 ± 0.5 km/s. Thus, the reported qs,rad is assumed to have an absolute error of ± 20, 

35, and 60 W/cm
2
 for 11, 12.5, and 15 km/s respectively. Together with qs,conv being ± 

20 W/cm
2
, the reported qs,max is ± 40 W/cm

2
 for 11 km/s and ± 80 W/cm

2
 for 15 km/s. 
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Chapter 8. University of Maryland Parallel 

Trajectory Optimization Code 
 

  The University of Maryland Parallel Trajectory Optimization Program 

(UPTOP) is applied to conduct a three-degrees-of-freedom entry trajectory 

analysis.
93,94

 It utilizes a 4
th

-order Runge-Kutta routine to propagate the point-mass 

equations of motion for rigid-body flight in a vertical plane, given in Chapter 6,
93,94,95

 

to determine the flight path of a vehicle. Its capability is not restricted to planetary 

entry applications. The time step is normally set to 1 s. A rotating, ellipsoidal Earth 

model is applied with a second harmonic gravity model based on the WGS-84 

Geocentric Equipotential Ellipsoid model.
100

 The US 1976 Standard Atmosphere
79

 is 

applied for ht < 85 km, and the NRLMSISEE-00 Atmosphere
101

 is applied for ht ≥ 85 

km.     

  Both trajectory and vehicle optimization can be performed using either single 

or multiple objective functions. For single objective function optimization, several 

optimization techniques are available: an evolutionary, population-based algorithm, a 

gradient-based scheme using Design Optimization Tools (DOT),
102

 and also a hybrid 

evolutionary/gradient-based scheme that attempts to provide the best of both worlds. 

After a user-specified number of generations, the gradient-based optimizer Design 

Optimization Tools (DOT) can be executed on the current optimal solution. In this 

way, the hybrid method accounts for gradient information and increases the chances 

of obtaining a global optimum. For optimizing multiple objective functions, the 

evolutionary algorithm is available. UPTOP utilizes the Message Passage Interface 
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(MPI) to process an optimization case using multiple processors. Descriptions of the 

optimization methods applied in this work are provided in Chapter 10.    

 Trajectories generated with UPTOP are compared to those of the benchmark 

Program to Optimize Simulated Trajectories (POST)
103

 in Figure 8.1. UPTOP is 

capable of optimizing multi-stage trajectories where the vehicle may have multiple 

engines and fuel tanks. The benchmark case
104

 for the optimal Space Shuttle transport 

ascent trajectory through Space Shuttle Main Engine (SSME) cutoff is provided in 

Figure 8.1(a) to demonstrate UPTOP’s comparable optimization capability. The 

optimal pitch and altitude profiles generated by UPTOP closely match POST’s 

optimal profiles. Additionally, the results from POST as calculated by UPTOP match 

the POST profiles. The reentry altitude and velocity profiles of an oscillating 

trajectory generated in UPTOP and POST are shown in Figure 8.1(b) to match for the 

given entry conditions. Validation for Earth entry from lunar return at VE = 11 km/s is 

given in Figure 8.1(c). For the given bank angle profile, which rotates the lift vector, 

the skipping trajectory generated in UPTOP matched POST’s and illustrates 

UPTOP’s suitability for high-velocity entry applications.  

 UPTOP’s flexible framework allows for an external code to provide the 

aerothermodynamics for a heat shield design throughout the trajectory calculation. A 

diagram of the overall optimization code setup is provided in Figure 8.2. In UPTOP, 

the optimization scheme provides different combinations design variable values to the 

trajectory code. The trajectory code then calls the low-order aerothermodynamic code 

at each calculated step in the trajectory. 
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(a) Space Shuttle Transport Ascent through SSME cutoff, optimized trajectory 

 
(b) Reentry body trajectory, VE = 4267 m/s,  γE = -30

o
, φφφφb = -20

o
, 

BCi = 11200 kg/m
2
, 1.5 < L/D < 2.2 

 
(c) Earth entry vehicle trajectory, VE = 11 km/s, γE = -5.89

o
, BC = 218 kg/m

2
, 

L/D = 0.33, CD = 1.4286, S = 25.113 m
2
 

Figure 8.1. Trajectory validation of UPTOP results with POST. 
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Figure 8.2. Diagram of Optimization Code Setup. 

Integrating the aerothermodynamic models into the UPTOP setup to perform heat 

shield optimization allows for a higher fidelity model of radiative heat transfer to 

account for angle of attack in calculating the shock-standoff distance at each point in 

the trajectory to gain more accurate radiative heat flux values. With the Newtonian 

flow solver integrating over the surface pressure distribution for each point in the 

trajectory, a duration of 20 minutes on an AMD 2.2GHz Opteron 248 processor was 

required to complete a single run of a 2000 s trajectory. Modified Newtonian flow 

uses the Rayleigh Pitot tube formula
33

 to account for different specific heat ratios in 

determining the maximum pressure coefficient. For γ = 1.4, the Rayleigh Pitot tube 

formula varies Cp,max by 1.7% between freestream Mach numbers of five and fifty. 

The University of Maryland Parallel Trajectory Optimization Program 

(UPTOP)  

 
Optimization Scheme 

• Differential Evolutionary 
Scheme 

• Gradient-based Design 
Optimization Tools (DOT) 

• Hybrid scheme 

Trajectory Code 

• 3-DOF 
• ∆t = 1 s 

Wrapper Interface 

Called at each step of the trajectory 
 

Design Variable 

Objective Function 
Values 

Aerothermodynamics Code 
Required subroutines: 

 US 1976 Standard Atmosphere  

Tannehill’s High Temperature 

Equilibrium Air Correlations 
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This results in nearly constant hypersonic aerodynamic coefficients for modified 

Newtonian flow in air and is, thus, an example of Mach number independence. To 

reduce the computation time, α-profiles of aerodynamic coefficients are stored in 

interpolation tables prior to trajectory calculation. With a range of α equal to ±30
o
 and 

a data point in the interpolation table for every degree of α, the runtime for a single 

trajectory case of 2000 s takes approximately 10 s although both convective and 

radiative heat fluxes are calculated at each point. Additional runtime improvement is 

gained by increasing the interval to generating a data point every 3-degrees of α.  

 A mesh convergence study has been conducted to reduce the number of mesh 

points used to form the heat shield geometry. For optimization the mesh was reduced 

to jmax = 45, kmax = 101 while the detailed analysis uses a finer mesh of jmax = 301, kmax 

= 401. Figure 8.3(a) and (b) provide the aerodynamic coefficient profiles for the 

optimal L/D heat shield in Ref. [105]. This heat shield, shown in Figure 8.3(c) and 

(d), is located in one of the extremes of the design space and exhibits nonlinear 

aerodynamic behavior, thus, providing a good test case. There is considerable 

agreement in the aerodynamic coefficient values between the two meshes except for 

Cm,cg,α. For the optimizer, only the sign of the static stability derivatives is accounted 

for. As a result, differences in values are acceptable for optimization as long as the 

stability derivatives are not part of the objective function. For other geometries, this 

may change the angle of attack at which the vehicle becomes unstable, but for the 

worst case this occurs at 2
o
 difference, which is not significant. The aerodynamic 

characteristics of the optimal designs are reported based on the refined mesh. Note 

that changes in heat transfer values between the two meshes are minimal. 
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(a) Aerodynamic coefficient profiles                         (b) Static stability derivative profiles 

 

           
(c) Parallelogram cross section        (d) Power law axial profile 

      

Figure 8.3. Comparison of results from fine and coarse meshes for power law axial profile A = 

0.900, b = 0.663, e = -0.968, parallelogram cross section, m1 = 4, n2 = 1.3. 
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Chapter 9. Optimization Theory 

  Both evolutionary, population-based optimization and gradient-based 

optimization algorithms are applied in this work. This chapter presents introductions 

to these methods, background on multi-objective function optimization, and a 

parametric analysis of the effect of the evolutionary optimization parameters on the 

results.  

9.1. Gradient-based optimization algorithm 

  UPTOP utilizes Vanderplaats Research & Development, Inc.’s Design 

Optimization Tools (DOT)
102

 for gradient-based optimization. DOT is professional 

software program that varies design variables based on a gradient-based minimization 

method to determine an optimum value of an objective function. DOT offers both 

unconstrained and constrained minimization methods. Broydon-Fletcher-Goldfarb-

Shanno (BFGS) and Fletcher-Reeves (F.R.) are the two unconstrained minimization 

methods available in DOT. When DOT refers to unconstrained methods, it means that 

there are no constraints present except those on the design variables that DOT varies. 

The constrained methods offer the ability to restrict values on non-design variables or 

a combination of variables based on theory limits or other reasons. The constrained 

minimization methods available in DOT include the Modified Method of Feasible 

Directions (MMFD), Sequential Linear Programming (SLP), and Sequential 

Quadratic Programming (SQP).  
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  The following optimization problem is solved by DOT: find the values of 

NDV design variables contained in X
r

 that will minimize or maximize )(OBJ XO
r

= , 

in which the OBJ is the objective function, subject to constraints Gq( X
r

) ≤ 0 for q = 1 

to NCON, in which NCON is the number of constraints, and design variables Xp have 

side constraints U

pp

L

p XXX ≤≤ for p = 1 to NDV, in which NDV is the number of 

design variables.
102

  

  For this work, DOT has been setup to use SQP to vary the design variables to 

find an optimum value of an objective function, in this case, an aerothermodynamic 

parameter or combination of parameters. SQP uses the following overall process. 

First, DOT creates a quadratic Taylor series approximation of the objective function 

and linearized Taylor series approximations of the constraints. Then a direction 

finding problem is formed to find a search direction E: 

Minimize ,
2

1
)(

0
BEEEOOEQ

TT +∇+=          (9.1) 

Subject to ,00 ≤+∇ j

T

j EEg  j = 1, M,       (9.2) 

In which O is the original objective function and Q is the quadratic Taylor series 

approximation. This is solved using the Modified Method of Feasible Directions 

(MMFD). For MMFD, the objective function and constraints are first evaluated at the 

user inputted initial values of the design variables. Then the gradient of the objective 

function and constraints are calculated, and a search direction E is created. Then a 

one-dimensional search is completed to find the scalar parameter α* that minimizes 
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)(XQ
r

. Scalar parameter α* is used to find a new X
r

 that is set equal to the sum of the 

initial X
r

 and the product of α* and the search direction,  

,*1 uuu EXX α+= −
rr

         (9.3) 

in which u is the iteration number. If convergence is not satisfied, then iterations of 

the following process are completed until convergence requirements including the 

Kuhn-Tucker conditions are satisfied.
102

  

  The three Kuhn-Tucker conditions
102

 must be satisfied for obtaining 

convergence. The first is that optimum design *X
r

 must be feasible, or produce 

constraint values gq( *X
r

) ≤ 0 for q = 1 to NCON. The second condition is that the 

product of the Lagrange multiplier λq and gq( *X
r

) must be zero. The third condition 

is that the gradient of the Lagrangian becomes zero, in which the gradient of the 

Lagrangian is 

.0*)(*)( =∇+∇ ∑ XgXQ
NCON

q

qq

rr
λ               (9.4) 

Detailed descriptions of SQP and the Kuhn-Tucker conditions are included in 

Appendix E of Ref. [102].  

9.2. Evolutionary, population-based optimization algorithm. 

  Previous work
105

 by the authors applied the Modified Method of Feasible 

Directions (MMFD) gradient-based method to optimize over the geometric design 

space (without trajectory analysis) for a single objective. There were numerous local 

optima; over 200 runs were required to locate the global optima for four objective 
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functions. For the present work, a more robust and global search algorithm is required 

to account for both the additional complexity of multi-objective optimization and the 

broader design space with trajectory analysis. UPTOP includes a differential 

evolutionary scheme (DES).
93,106

 As an evolutionary algorithm, DES bases its search 

for an optimum on nature’s evolutionary principles.
107

 Each heat shield design, 

known as an individual in a population of designs, is evolved throughout each 

iteration with other individuals based on mutation intensity and crossover parameters. 

It begins by randomly-selecting an initial population of designs, and hundreds of 

iterations are required to settle on an optimal solution.  

  A brief description of the method is given, based on Ref. [108]. Consider the 

set of design variable vectors Xj,n at generation n 

Xj,n = [x1,j,n, x2,j,n, x3,j,n,…, xD,j,n,],     (9.5) 

in which xi,j,n corresponds to the design variable in dimension i in a D-dimensional 

optimization problem. The initial population is randomly chosen within the side 

constraints of the design variables. The mutation, recombination, cross over, and 

selection operators are applied to the population each generation until the 

optimization method is stopped. To evolve the design variable vector Xj,n, three 

different design variable vectors are randomly chosen, Xa,n, Xb,n, Xc,n. A trial design 

variable vector Y is then defined as  

Y = Xa,n + R(Xb,n + Xc,n),         (9.6) 

in which R is a user specified constant, 0 < R < 1. A candidate vector for improving 

the current value for minimizing objective function O is defined as Z = [z1, z2, ze, 

…,zD]: 
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          (9.7) 

in which ri is a uniformly distributed random variable, 0 < ri < 1, and C is a user 

specified constant 0 < C < 1. The final step in the evolution of Xj,n involves the 

selection process and minimization of the objective function O(X), given by     





>

≤
=+ ).(

)(

,,

,

1,

njnj

nj

nj XOO(Z) ifX

XOO(Z) ifZ
X              (9.8) 

  The concepts of mutation intensity and crossover are also applied. Each 

design variable is given a binary string representation, called the chromosome of the 

design variable. Mutation intensity refers to the probability of one digit in the 

chromosome switching from a 0 to a 1 or vise-versa. Crossover refers to breaking 

strings into substrings and then interchanging some of the substrings at random. For 

example, two designs will randomly be chosen for crossover; they are known as 

parents for the crossover operation. They are the parent strings or chromosomes; they 

are broken into three substrings with the cross sites chosen randomly, and the middle 

portion is switched. The resulting designs are known as the offspring, the new designs 

in the current generation. Based on the design space, different values for the mutation 

intensity and crossover probability would produce more optimal results. Details on 

DES and its parameters are provided in Refs. [106], [107], [108], and [109]. 

9.3. Multi-objective function optimization 

  In single-objective optimization, the one optimal or non-dominated solution is 

better than all other solutions. In multi-objective optimization, two or more objective 
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functions are optimized simultaneously to produce a set of optimal or non-dominated 

solutions known as the Pareto frontier. When two objective functions are optimized 

simultaneously, a Pareto frontier has the form of a curve that represents the optimal 

trade-off between the two objectives. Shown in Figure 9.1, the results of minimizing 

Qs,tot and maximizing pdwn simultaneously are given. This Pareto frontier is composed 

of those solutions in the feasible population that are not dominated with respect to 

both objective functions; each point on the frontier represents an optimal solution.  In 

general, the Pareto frontier is a set of non-dominated solutions, in which one solution 

is better than another with respect to at least one objective, but not all objectives.
107

  

 

Figure 9.1. Multi-objective function population with Pareto frontier, spherical segment, L/D = 

0.5, VE = 12.5 km/s. 

  A Pareto frontier can also be generated using single-objective optimization. A 

single objective function can be generated using a combination of performance 

parameters with the weight variable W  

 ( ) ( ) ( ),)1( 21 XoWXWoXO
rrr

−+=                (9.9) 
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in which 0 ≤ W ≤ 1. By incrementing the weighting variable and applying several 

initial conditions, a set of non-dominated solutions are obtained to produce a Pareto 

frontier. This objective function form is designed to provide a compromise between 

two performance parameters. One drawback to the single objective function approach 

is that there is only one solution generated on the Pareto frontier for each optimization 

run, totaling to an overall large computational time on the order of a week per Pareto 

frontier using the differential evolutionary scheme. Another drawback is that finding 

the specific sub-range(s) of W (within the overall range from zero to one) at which the 

optimization is sensitive requires several test runs. Furthermore, this method does not 

necessarily produce a full Pareto frontier.  

Performing the optimization with a multi-objective function methodology 

allows for more of the Pareto frontier to be generated within a given amount of time 

when using the evolutionary scheme. Instead of locating a single solution that 

dominates the remaining 10,000+ designs, a multi-objective function optimization 

results in a few hundred or thousand non-dominated solutions. This allows a much 

greater portion of the Pareto frontier to be generated within a single run. The time 

required is on the order of 10 hours while using a similar population size. In this way, 

it is also more efficient for a given population size. 

  Multi-objective optimization is utilized to optimize conflicting objectives. 

Since an increase in cross range produces a larger heat load, maximizing cross range 

and minimizing heat load are conflicting objectives. Non-optimal results may produce 

higher heat loads than necessary for a desired cross range. Minimizing heat load and 

minimizing peak heat flux are also conflicting objectives. For this work, optimal 
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solutions are provided in the form of Pareto frontiers between two objectives to 

highlight performance trade-offs and provide comparisons between axial profiles. 

9.4. Applying optimization methods  

  Primarily, the differential evolutionary scheme is applied for this work since 

the main results are from multi-objective optimization, in which UPTOP uses the 

DES. A hybrid method utilizing both SQP and DES is utilized in calculating the entry 

corridor boundaries and the initial feasible design within the boundary that is placed 

along with the initial population for the multi-objective optimization. In this case, 

DES is primarily utilized for finding the overshoot and undershoot, in which targeting 

a feasible design at a given γE is employed by using the single-objective optimization 

setup. In this part of the analysis, optimization is not focus although the objective 

function is heat load Qs,tot; instead, the hybrid method is conducting a global search to 

locate a feasible design at a given γE. In this case, the DES allows the hybrid method 

to perform the global search, and then the gradient-based SQP method is applied to 

the best design after 21 iterations to determine a feasible design. Additional detail into 

how the entry corridor is found using UPTOP is included in Chapter 11.  

9.5. DES Parameter and Population Size Analysis 

  A parametric study of the effects of population size, crossover probability, and 

mutation intensity on the Pareto frontier for maximizing pxrs and minimizing Qs,tot is 

provided in this section. The ideal Pareto frontier provides a full and comprehensive 

profile of non-dominated solutions for a given set of performance metrics. Previous 



 

 138 

 

work by the authors
110,111

 used an initial population size of 130 with random values 

chosen for crossover probability and mutation intensity for each generation. To 

determine if a better Pareto frontier could be generated, an analysis on the effects of 

population size and DES parameters on the Pareto frontiers has been completed. The 

DES parameters crossover probability and mutation intensity have been applied with 

values of 0.2, 0.5, 0.8, and with a random value between zero and one chosen for each 

generation. These DES parameters were tested with initial population sizes of 130, 

260, and 390. When studying the effects of crossover probability, the mutation 

intensity is varied randomly each generation, and vice-versa for studying the effects 

of mutation intensity. Each optimization runs until approximately 18,000 feasible 

solutions were created that improve in one objective function value over previously 

generated solutions. As expected, the larger population size causes an increase the 

runtime.   

Figure 9.2 indicates that increasing the population size not only produces a 

fuller Pareto frontier but also improves the performance metrics. Doubling the initial 

population to 260 produced significant reductions in heat load for cross ranges near 

1000 km. Slight improvements are noticed when increasing the population to 390, but 

it also produces a wider range of results with a cross range up to 2100 km.  

  A crossover probability of 0.2 with an initial population of 130 produced a 

continuous and almost linear relation between cross range and heat load, as shown in 

Figure 9.3. Increasing the population size to 390 greatly improves the performance 

metrics, though low values of crossover probability still produced sparser Pareto 

frontiers. A high crossover probability with a population of 130 produces step 
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increases in heat load at cross ranges of 1000 km and 1800 km. Increasing the 

population size to 390 removed them. A high crossover probability of 0.8 with a 

population size of 390 produced more dominant results than the random value case 

(R).  

A low mutation intensity value of 0.2 produced a sparse Pareto frontier for 

cross ranges greater than 800 km, shown in Figure 9.4. Increasing the population size 

to 390 allowed the optimizer to widen the band of the Pareto frontier and locate 

designs for cross ranges less than 1000 km with a 33% decrease in heat load. 

Increasing mutation intensity to 0.5 and 0.8 produced smaller improvements. The 

random value case with a population size of 390 produced the fullest Pareto frontier.  

In summary, the most comprehensive Pareto frontier for this design space is 

produced by a population size of 390, a crossover probability of 0.8, and a mutation 

intensity that is randomly varied for each generation between 0 and 1. An initial 

population of 390 individuals is applied since diminishing returns were observed 

from increasing it. These settings provide a significant gain in the optimizer’s ability 

to locate better solutions and produce fuller Pareto frontiers. Fourteen AMD 2.2 GHz 

Opteron 248 processors were utilized in this analysis, and the time required per run 

was 8-16 hr, depending on the duration of the trajectories analyzed; optimizations that 

found primarily 400 s duration trajectories that satisfied the constraints and were 

optimal would take less time to run that optimizations that found longer 3000 s 

duration trajectories were necessary.   
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Figure 9.2.  Effect of population size on the Pareto frontier. 

 

Figure 9.3  Effect of crossover probability on the Pareto frontier. 

 

Figure 9.4 Effect of mutation intensity on the Pareto frontier. 
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Chapter 10. Initial Lunar and Mars Return 

Optimization Results 

Several full sets of optimization cases had to be completed in order (1) to 

understand the results from the Pareto frontiers, (2) to become familiar with the 

design space, and (3) to understand how the optimization worked and if it is working 

properly. In this dissertation, two full sets of optimization cases are completed. The 

first set assumes relaxed constraints that were required to produce a successful 

optimization. These relaxed constraints would produce some heat shield/trajectory 

configurations that would not be survivable by astronauts. Note that several sets of 

optimization cases were completed before this set, and those are listed in Refs. [105], 

[110], [111], and [112]. This chapter provides the optimization setup description and 

the results for lunar and Mars return with these relaxed constraints. Once the 

limitations of the optimization setup and the drawbacks of the trajectory results were 

understood, an entry corridor methodology was implemented to produce more 

practical trajectories for both astronaut survivability and more realistic trajectory 

constraints. This second set of lunar and Mars return results is provided in Chapter 

11– Chapter 14; and represents the final results of this work. The set of results in this 

chapter provided important groundwork for understanding the heat shield geometry 

and entry trajectory design space that led to producing practical final results.  

10.1. Optimization Setup 

UPTOP applies a differential evolutionary scheme (DES)
93,106

 for this 

optimization. To simulate Earth entry for lunar return, an initial entry velocity of 11 
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km/s is applied.
32

 For Mars return, a fast 180-day return renders entry velocities up to 

14.7 km/s,
80

 and an initial entry velocity of 15 km/s is applied. A separate 

optimization is performed for each axial profile: spherical segment (SS), spherically 

blunted cone (SC), and power law (PL). 

10.1.1. Objective functions 

 Three objective functions are applied in the initial work: minimizing 

stagnation-point heat load Qs,tot, minimizing peak stagnation-point heat flux qs,max, and 

maximizing cross range pxrs. These objective functions have been selected on the 

basis of (1) relevance to mission requirements, (2) connection to low-performing or 

restrictive capabilities of existing blunt-body designs, and (3) the availability of 

accurate physical models suitable for optimization purposes.  

 The peak heat flux of the trajectory determines which materials are capable of 

surviving the selected entry conditions. Minimizing heat load reduces the heat 

shield’s thickness and mass indirectly. Minimizing both requires the capability to 

change the flight path and heat flux calculations throughout hundreds of entry 

trajectories. As a result, low-order computational models of the aerothermodynamics 

are implemented to balance the need for fidelity with the desire to have practical 

computational times. Heat transfer is tracked at the stagnation point. There is more 

confidence in well-validated stagnation-point correlations than in low-order estimates 

of the maximum heat flux, especially when applied to a wide range of geometries in 

extreme hypersonic conditions. They also cost less computational time.   

 Cross range capability enables missions that require immediate inclination 

changes, and likewise, enable more abort scenarios. Existing designs have low cross 
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range performance due to trajectory design and low L/D. For a vehicle flying a direct 

entry trajectory from lunar return with a hypersonic L/D = 0.30, the maximum cross 

range is limited to ≈ 200 km with a 5 g-limit.
1
 To increase cross range capability, both 

skipping trajectories, which have been shown to increase cross range significantly,
7
 

and higher L/D designs are considered feasible. 

10.1.2. Design variables 

For each axial profile, the design variables along with their side constraints 

are listed in Table 10.1. For θs, the lower limit of 5
o
 provides a blunt-body that has a 

large but finite radius-of-curvature. For both θs and θc, the upper limit 89
o
 removes 

numerical issues present if the upper limit is set to 90
o
. Additionally, zero radius-of-

curvature designs are not considered since they produce high heat concentrations. The 

maximum eccentricity of ±0.968 was chosen to limit the axes ratio j/k to less than or 

equal to four. The angle of attack is limited to ±30
o
 since manned space capsules 

usually enter at or below |α| = 25
o
 and also due to the fact that the heat shield may not 

be even half of the vehicle’s shape.  

Table 10.1. Design variables with side constraints for initial optimization. 

Axial profile 
Profile specific  

design variables 
Common design variables 

Spherical 

segment 
5.0

o
 ≤ θs ≤ 89.0

o 

-30
o
 ≤ α ≤ 30

o 

-0.968 ≤ e ≤ 0.968 

1.30 ≤ n2 ≤ 2.00 

t0 + 5 s ≤ t1 ≤ 7190 s  
t1 + 5 s ≤ t2 ≤ 7190 s 

t2 + 5 s ≤ t3 ≤ 7190 s
 

-15.5
o
 ≤ γE ≤ -0.05

o
 

0
o
 ≤ φb,0 ≤ 180

o
 

0
o
 ≤ φb,1 ≤ 180

o 

0
o
 ≤ φb,2 ≤ 180

o 

0
o
 ≤ φb,3 ≤ 180

o 

0
o
 ≤ φb,4 ≤ 180

o
 

Spherically-

blunted cone
 

55.0
o
 ≤ θc ≤ 89.0

o 

0.15 ≤ rn/d ≤ 2.00 

Power law 
0.900 ≤ A ≤ 10.000 

0.200 ≤ b ≤ 0.650 
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If θs is large, then it is possible that the entire space capsule could fit within a 

hard or soft shell re-entry system including inflatable aeroshell devices. A non-

eccentric heat shield with θc ≈ 45
o
 is the interface at which the spherically-blunted 

cone begins to produce positive lift at negative α.
28

 If θc ≤ 45
o
, then negative lift is 

generated at negative α. The term blunt body for re-entry commonly refers to a 

vehicle that produces a bow shock with a substantial standoff distance. Since Ried
51

 

approximated that the shock-standoff distance of the Apollo 4 was 14 cm and this 

work predicts 12.4 cm (M∞ = 32.8, α = 25
o
 at h = 61 km, at 30030 s into the mission), 

it was decided that the order of accuracy of Kaattari’s method is approximately 2.54 

cm. As a result, the characteristics of the spherically-blunted cone that has a shock-

standoff distance of 2.54 cm would represent the lower limit for θc and rn/d. For a 

non-eccentric heat shield, this work predicts a 2.54 cm shock-standoff distance for a 

spherically blunted cone with θc = 55
o
 and rn/d = 0.25. If the shock-standoff distance 

at angle of attack decreases by more than 50% from the value at α = 0
o
, then the 

shock-standoff distance at α = 0
o
 is applied. At α = -25

o
, the Apollo CM shock-

standoff distance decreases by approximately 40%, and thus, in this work, the 

assumed feasible limit is 50%. The lower limit on the nose radius-to-diameter ratio is 

not greater than 0.25 since previous work such as the Mars Viking missions included 

heat shields with rn/d = 0.25. The chosen lower limit of 0.15 on rn/d widens the 

design space. For the blunted cone, the upper limit of rn/d of 2.0 is chosen to provide 

overlap and continuity between the blunted cone and spherical segment design 

spaces. This allows the optimizer to choose a spherical-segment over a spherically-

blunted cone in the same optimization if necessary.  



 

 145 

 

For the power law, Newtonian impact theory may have an accuracy issue 

given the quick slope changes shown in Figure 2.3(b) for b = 0.1 or smaller; a lower 

limit value of 0.2 for b has been chosen arbitrarily. Sharper-nosed power law profiles 

with exponent b > 0.65 have been removed from the design space since these shapes 

cannot be optimal from a convective heat transfer standpoint. In addition, the current 

low-order method of determining an effective nose radius for the power law profile is 

not accurate enough for the optimizer to remove them from the design space. The 

upper limit on b produces a nearly linear profile, but the code requires the slope of the 

power law profile to vary at least slightly to prevent derivative calculation dilemmas. 

Since blunt-bodies in previous work usually have l < d (i.e., Apollo CM l/d ≈ 1/9), it 

was decided in this work to widen the design space by including A = (l/d)
-1

 = (10/9)
-1

. 

Then the upper limit A = 10, at which the power law becomes similar to the spherical-

segment axial profile, was chosen since the power law profile is no longer unique. In 

generating the base cross section, the lower limit of n2 produces slightly rounded-

edge polygons. As n2 is increased, the polygon’s edges become more rounded, and the 

polygon is completely transformed into an ellipse at n2 = 2.0.  

A wide range of γE including the Apollo
41

 missions’ γE ≈ -6.5
o
 is allowed. To 

modify the vehicle’s flight path through rotation of the lift vector, a bank angle 

profile with five control points is available. The first and last control points t0 = 0 s 

and t4 = 7300 s are fixed, and the optimizer can modify the five bank angles φb,0 

through φb,4, as well as the three intermediate times at which the bank angles are 

initiated. Connecting the control points (t,φb) produces the φb-profile. A limit of 0
o
 to 

180
o
 lowers the size of the design space; angles 181

o
 through 359

o
 are not necessary 
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since longitude and latitude constraints are not considered. A mesh convergence 

study, provided in Chapter 8, was implemented to reduce computational time; for 

optimization the geometry’s mesh is jmax = 45, kmax = 101. 

10.1.3. Design constraints 

Boundaries for the feasible design space are provided in Table 10.2. These 

constraints account for trajectory design limits, theory limitations, and static 

longitudinal, directional, and roll stability. For blunt-bodied capsules (low L/D), 

whether the trajectory ends at M∞ < 5 does not strongly affect the values of the three 

optimization parameters in this analysis. Since the heat shield shape is not necessarily 

or usually the entire vehicle shape, a limit on the angle of attack at which a given heat 

shield can be analyzed, must be chosen in order to maintain the assumption that the 

flow generally separates before passing over the aft body (crew compartment). 

Otherwise, the entire vehicle must be examined initially to determine the hypersonic 

aerodynamics since the Newtonian flow assumption Cp = 0 for 0ˆ ≥⋅∞ nV
r

would not 

apply. This is completed with the edge tangency constraint |α| ≤ |ε + 1
o
|. The edge 

tangency constraint requires that a given heat shield must not be placed at an angle of 

attack more than one degree larger than the heat shield’s tangency angle ε, which is 

Table 10.2. Trajectory and aerodynamic constraints 

for initial optimization. 

Optimization constraints 

Trajectory  Aerodynamic/Geometric 

tf ≤ 7200 s 

ht ≤ 3000 km 

ht,f  ≤ 75 km 

nmax ≤ 6 g, VE = 11 km/s 

nmax ≤ 12 g, VE = 15 km/s  

 

M∞,f ≤ 5 

Cm,cg,α ≤ –0.001 

Cn,cg,β ≥ 0.001 

sign(CL,V) Cl,cg,β ≤ 0.01 

|α| ≤ |ε + 1
o
| 
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the angle produced between the heat shield’s edge surface and the vertical axis. In 

this way, at the limit the heat shield’s edge is normal to the freestream flow when α = 

ε, and the one-degree above ε was chosen as a small relief factor. When maximizing 

LV/D, the optimizer sometimes increases α beyond ε, which leads the optimizer into a 

region of design space where the Newtonian flow assumption does not necessarily 

apply. Note that for heat shields with ε < 15
o
, an aft-body with an angle greater than 

15
o
 is assumed to allow heat shields with low θs, for example θs = 10

o
, to be feasible 

for |α| ≤ 15
o
. 

Longitudinal and yaw static stability requirements are also included; because 

this is a numerical analysis, the magnitude value of 0.001 is deemed significant rather 

than 0.000. The roll static stability requirement, but it is different from the 

longitudinal and yaw requirements in that it allows for slight instabilities with 

unstable values up to 0.01/rad in order to produce heat shields such as the Apollo 

CM, which is believed to have been slightly statically roll unstable with Cl,cg,β ≈ 

0.005/rad. This keeps the design space open to successful previous work. The 

requirement for roll static stability changes sign when the CL,V changes sign as 

explained in Ref. [112], thus requiring a change in the constraint. 

Since guidance laws are not considered in the trajectory analysis, optimal 

trajectories with similar entry interface characteristics but with less complex φb-

profiles tend to generate longer duration trajectories. A compromise was chosen to be 

two hours, tf ≤ 7200 s, which is greater than twice the upper-limit to the estimated tf 

for the Orion CEV. An arbitrary maximum altitude for skipping trajectories has been 

set to 3000 km. A final altitude ht,f no greater than 75 km has been chosen to ensure 
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that the vehicle’s trajectory ends within the atmosphere. This allows for higher L/D 

vehicle designs to be feasible since their optimal trajectories may result in 

deceleration at higher altitudes in the atmosphere. For VE = 11 km/s, a peak g-load of 

6 g was chosen since it is the maximum allowable acceleration level for a 

deconditioned astronaut in a reclined position.
32

 It is also lower than the 7 g that 

Apollo 10 experienced.
113,114

 Preliminary analysis indicated that for a 15 km/s entry, 

this optimization setup would be over-constrained with a 6 g upper limit. This limit 

was increased to 12 g based on previous work that indicates a pilot can sustain 12 g 

for up to 60 s and still continue to perform the assigned tasks.
114

 Though this is not 

expected to conform to future standards for manned Mars return, the results provide a 

sense of the heating environment when entering at high hyperbolic velocities. Results 

for VE = 15 km/s can be applied at least towards most unmanned missions.  

10.1.4. Choosing the base cross section 

For the spherical-segment axial profile, it is shown in Table 10.3 that the 

vertical lift-to-drag ratio L/D is largest for the parallelogram and pentagonal cross-

sections. The parallelogram cross-section (m1 = 4) has the minimum number of sides 

examined and offers the maximum lift-to-drag configuration in this analysis. The 

optimal m1 = 4, 5, and 6 designs are shown in Figure 10.1. 
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Table 10.3 Optimal designs for maximizing LV/D with different m1. 

Spherical-segment axial profile 

Initial Design  θs = 85.0
o
, n2 = 1.40, e = -0.900, α = 

25
o 

Optimal Design  θs = 89.0
o
, e = 

-0.968 
 

Objective 

Function 

m n2 α  L/D 

4 1.30 18
o  

1.10 

5 1.30 24
o  

0.88 

6 2.60 22
o  

0.75 

7 1.30 20
o  

0.76 

8 1.30 21
o  

0.82 

 

 

a) Hexagonal cross-section, L/D = 0.75.      b) Pentagonal cross-section, L/D = 0.88.         

                            

c) Parallelogram cross-section, L/D = 1.10.   d) Spherical-segment axial profile, θs = 89.0
o
. 

Figure 10.1. Optimal geometries from Table 10.3, e = -0.968. 

The hexagonal geometry is the only design with a rounded-edge concave base 

contour. In Figure 10.2 the behavior of the hexagonal cross-section with a 

spherically-blunted cone axial profile is compared to the parallelogram cross-section. 

The hexagonal design’s L/D has a maximum magnitude of 0.61, 19% less than its 

spherical-segment analogue, with an oblate, rounded-edge concave cross-section. The 

parallelogram design’s L/D continues to increase in magnitude at it approaches the 

lower endpoint, which is located in the non-concave region. As a result, varying the 

hexagonal design produces a different trend than one generated by varying the 

parallelogram design. It is only a coincidence that the n2 value of 2.6 for the 
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hexagonal design in Table 10.3 is twice that of the other designs with the n2 lower 

side constraint active.  

 

a) Hexagonal base (m = 6).                                        b) Parallelogram base (m = 4). 

Figure 10.2. LV/D distribution for m = 4 and 6, spherically-blunted cone axial profile, θθθθc = 55
o
, rn/d 

=0.05, varying e and n2 = 1.3 to 4.0, M∞∞∞∞ = 32.8, αααα = -20
o
. 

The spherical-segment angle constraint is active for the optimal designs with 

θs = 89
o
.
 
This high spherical-segment angle θs creates geometries that produce 

positive lift at positive angles of attack because each has a normal force that 

contributes more to the lift force than the axial force. For the classic blunt-body 

Apollo Command Module (θs = 25
o
), the axial force contributes more to the lift force, 

thereby requiring a negative angle of attack for positive lift.  

Since a high L/D is desired for several reasons, such as increasing the range of 

available landing sites and reducing g-loads for manned missions, it is one of the 

most important aerodynamic characteristics of a lifting re-entry vehicle. From this 

point, the optimization analysis is completed with the parallelogram cross-section (m1 

= 4) in order to have the largest range of L/D values available for optimization. 
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10.2. Optimal configurations for VE = 11 km/s 

10.2.1. Minimizing Qs,tot and maximizing pxrs 

Specific designs are labeled on the Pareto frontiers and listed in Table 10.4. 

The lowest possible heat load is expected to increase with cross range pxrs provided 

that down range is relatively constant or increasing. A Pareto frontier is given for 

each type of axial profile in Figure 10.3(a), for cross ranges up to 1500 km and heat 

loads from 11 to 33 kJ/cm
2
. The optimizer produced similar Pareto frontiers for all 

three axial profiles. The power law’s is expected to be the least accurate since an 

artificial effective nose radius is applied. All three frontiers closely match for pxrs > 

750 km; close inspection indicates that for this region, the spherically blunted cone 

and power law profiles are disguised spherical segments, including designs B and C 

shown in Figure 10.4 with elliptical base cross sections from Figure 10.5. Geometries 

with pxrs < 250 km have down ranges of at least 2000 km while designs with higher 

pxrs, including A, B, and C, have relatively constant down ranges of 10900 ± 200 km. 

 The design variable distribution for the spherical segment’s Pareto frontier is 

provided in Figure 10.6. The transformation variable n2 is nearly constant at 2.0, 

indicating an elliptical cross section rather than a parallelogram-form is optimal for 

this set of pxrs. The parallelogram form would be applied to increase L/D beyond the 

capability possible with an elliptical cross section. Since the maximum L/D for these 

Pareto frontiers is 0.50, provided by design C, the parallelogram form is unnecessary. 

These results indicate that for low L/D designs, an elliptical cross section is better due 

to its larger drag area (CDS = D/q∞), rendering a lower BC for a given mEV.  
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(a) Minimizing Qs,tot and maximizing pxrs      

                    

 
                  (b) Minimizing Qs,tot and qs,max 

Figure 10.3. Pareto frontiers for Earth entry, VE = 11 km/s. 
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Table 10.4. Optimal configurations for two multi-objective function sets, m1 = 4.
a,b 

 

Minimizing Qs,tot & Maximizing pxrs  Minimizing Qs,tot & qs,max  

VE = 11 km/s (Fig. 9a)  
VE = 15 km/s 

(Fig. 14a) 
 

VE = 11 km/s 

(Fig. 9b)  VE = 15 km/s (Fig. 14b) 

A B C  E F  D  G H 

Design 

Variables 

SS 

θs = 6.80o 

n2 =  1.99 

e = -0.968 

α = -13.7o 

SC 

θc = 60.4o 

rn/d =1.26 

n2 = 2.00 

e =-0.682 

α =-23.8o 

PL 

b = 0.34 

A = 5.25 

n2 = 1.96 

e = -0.003 

α = 30.0o   

 SS 

θs = 8.1o 

n2 =  1.98 

e = -0.968 

α = 14.8o 

SC 

θc = 84.3o 

rn/d =1.29 

n2 = 2.00 

e = -0.968 

α = -15.9o 

 SC 

θc = 84.4o 

rn/d = 2.00 

n2 = 2.00 

e = -0.968 

α = -15.8o 

 SC 

θc = 84.3o 

rn/d =1.30 

n2 = 2.00 

e = -0.968 

α = -15.9o 

SS 

θs = 10.2o 

n2 =  2.00 

e = -0.968 

α = 9.00o 

γE 

(t0, φb,0) 

… 

(tf, φb,f) 

-6.01o 

(0 s, 59.0o) 

(1440, 76.0o) 

-6.14o 

(0 s, 75.9o) 

(1530, 55.1o) 

-6.29o 

(0 s, 97.9o) 

(1540, 135.7o) 

 -6.60o 

(0 s, 43.7o) 

(248.4, 161.5o) 

(1450, 137.4o) 

-6.44o 

(0 s, 143.5o) 

(190, 40.7o) 

(870, 84.5o) 

(1214, 85.8o) 

 -5.37o 

(0 s, 144.0o) 

(267, 66.1o) 

 -6.18o 

(0 s, 177.0o) 

(197, 84.0o) 

-6.41o 

(0 s, 1.93o) 

(219, 6.14o) 

Parameters            

nmax, g 6.0 5.9 6.0  12.0 11.8  5.9  11.7 11.9 

Qs,tot,, kJ/cm2 

(Qs,conv, Qs,rad) 

14.7 

(7.1, 7.6) 

22.6 

(14.9, 7.7) 

29.4 

(19.8, 9.6) 
 

82.4 

(13.6, 68.8) 

65.2 

(18.5, 46.7) 
 

12.4 

(7.4, 5.0) 
 

63.6 

(16.3, 47.3) 

76.7 

(12.9, 63.8) 

qs,max, W/cm2 

(qs,conv, qs,rad) 

250 

(50, 200) 

300 

(100, 200) 

380 

(130, 250) 
 

1930 

(150, 1780) 

1400 

(200, 1200) 
 

160 

(60, 100) 
 

1100 

(180, 920) 

1500 

(140, 1360) 

pxrs, km 520 1010 1500  990 1000  120  100 10 

CD 1.62 1.32 1.17  1.57 1.56  1.57  1.56 1.60 

L/D 0.22 0.36 0.50c  0.22c 0.24  0.24  0.24 0.12c 

Cm,cg,α, /rad -0.18 -0.15 -0.10  -0.20 -0.19  -0.19  -0.20 -0.27 

BC, kg/m2 130 220 350  130 100  110  100 120 

hb,HS, m 3.4 5.0 5.0  3.5 4.0  3.8  4.0 3.6 

S, m2  36.9 27.1 19.0  38.1 49.0  45.8  49.0 41.0 

ηv,HS 38.8% 60.6% 58.5%  43.0% 41.2%  40.5%  41.3% 49.1% 
aAxial profiles SS: spherical segment, SC: spherically-blunted cone, PL: power law 
bmEV = 7800 kg  
cThe lift-to-drag ratio has a negative value for the reported α 

 

 
  (a) Designs A, D - H, e = -0.968, n2 ≈ 2 

 

  (b) Design B, e = -0.682, n2 = 2 

Figure 10.5. Specific base cross sections from Table 

10.4. 

                  
         A     B     C   D       E    F       G      H 

           Figure 10.4. Axial profile designs from Table 10.4. 
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(a) Geometric variables                            

 
                            (b) Trajectory variables 

Figure 10.6. Design variable distribution for spherical segment designs from Figure 10.3(a). 

For pxrs ≤ 700 km, optimal designs have highly oblate e = -0.968, which is the 

lowest allowed value. With an increased heat shield radius of curvature, this design 

allows for less convective heat transfer. Higher e also increase the drag area, thus 

decreasing BC. The heat shield geometry is held constant until pxrs = 700 km, at 

which point there is a strong jump in θs from 6.8
o
 to 18

o
. In general, |α| is increasing 

throughout this portion of the Pareto frontier, indicating higher |L/D| is required to 

produce additional cross range. At pxrs = 700 km, |α| = 16
o
, and the geometric 

constraint |α| ≤ |ε + 1
o
| is active. A parametric analysis completed in Ref. [112] 



 

 155 

 

indicates that for specific ranges of θs, an increase in θs decreases |L/D| for fixed α and 

e, as shown in Figure 10.7.  

 

Figure 10.7. LV/D distribution for spherical-segment: elliptical base (n2 = 2), varying e and θθθθs, αααα = 

20
o
, ββββ = 5

o
. 

This trend applies to this case. The |α| is fixed at 16
o
 until θs > 15

o
, and the optimizer 

determines that a decrease in e along with an increase θs that allows for |α| > 16
o
, 

would render  a sufficient and incremental increase in |L/D|. The increase in θs to 18
o
 

limits the reduction in radius-of-curvature, thus concurrently minimizing Qs,tot. These 

necessary adjustments to θs, e, and α produce the sudden rise in Qs,tot  on the Pareto 

frontier at pxrs = 700 km. Consequently, drag area is traded-off with |L/D| as pxrs 

increases. A similar explanation applies to the other axial profiles. 

For pxrs ≤ 250 km, optimal solutions use direct entry trajectories. To increase 

pxrs, the banked lift vector must turn the vehicle further. This is achieved by 

steepening γE to travel deeper in the atmosphere for a given V∞, increasing q∞ and 

thus, the lift dedicated for turning. As shown in Figure 10.6(b), φb.0 is adjusted, 

pointing the lift vector slightly upwards, to keep the vehicle slightly higher in the 
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atmosphere for minimizing Qs,tot. The change in behavior of γE and φb at pxrs ≈ 250 km 

indicates a switch from direct entry trajectories to skipping trajectories. This cross 

range limit for direct entry trajectories is consistent with the work of Putnam and 

Braun.
1
 For a skipping trajectory, a steeper γE is utilized to dissipate sufficient energy 

to avoid violating trajectory constraints. Minimizing heat load restricts low |γE| and 

trajectory duration while maximizing pxrs and the deceleration limit restricts high |γE|. 

For skipping trajectories, larger pxrs requires φb to approach 90
o
. Since there is a 

smaller proportion of lift dedicated to producing the skip as φb approaches 90
o
, the 

vehicle requires a steeper γE, as indicated by Figure 10.6(b).  

Designs A, B, and C are optimal for pxrs = 520, 1010, and 1500 km, 

respectively. Design A represents the spherical segment geometry applied for pxrs ≤ 

700 km. Its heat shield axial profile is provided in Figure 10.4, and its base cross 

section is provided in Figure 10.5(a). By utilizing design B, a 54% increase in Qs,tot is 

required to double Design A’s cross range. Not only does qs,max affect Qs,tot but also 

does the change in individual contributions from conduction and radiation. By 

halving the radius-of-curvature of design B from 6.3 m, using θc = 60.4
o
, e = -0.682, 

rn/d = 0.615, the qs,max is approximately unaffected, with qs,conv = 140 W/cm
2
 and qs,rad 

= 160 W/cm
2
. However, Qs,conv increases by 40% while Qs,rad decreases by 20%. As a 

result, Qs,tot increases by 20%. For a design similar to the Viking’s spherically blunted 

cone, θc = 70
o
, e = -0.682, rn/d = 0.25, qs,max is approximately 380 W/cm

2
 and 

provides a 68% increase in Qs,tot over design B’s heat shield geometry. The results in 

Figure 10.3 indicate that the optimal heat shield geometry for skipping trajectories at 

VE = 11 km/s is the spherical segment, with non-zero eccentricity. The oblate cross 
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section of Design B, shown in Figure 10.5(b), illustrates the significant reduction in 

eccentricity that was required to increase L/D. By utilizing design C, Qs,tot is doubled 

to triple the pxrs of Design A. Shown in Table 10.4, BC increases with pxrs, and both 

qs,max and Qs,tot increase as expected. 

When the peak qs,conv is less than the peak qs,rad, it is possible for Qs,conv > 

Qs,rad. This occurs for designs B and C when minimizing Qs,tot. Significant convective 

heat transfer occurs throughout the entire hypersonic trajectory while radiative heat 

transfer contributes significantly only at the highest velocities, for V∞  ≥ 7600 m/s. 

For designs B and C, qs,rad < 5 W/cm
2
 for V∞  < 7600 m/s. 

10.2.2. Minimizing Qs,tot and qs,max 

Pareto frontiers are provided in Figure 10.3(b) for qs,max ranging from 130 to 

210 W/cm
2
, producing heat loads ranging from 11.8 to 19.3 kJ/cm

2
. The results for 

the power law form were inconclusive. The minimum Qs,tot decreases with increasing 

qs,max. The trajectory design variable distribution for the spherically blunted cone, 

given in Figure 10.8, demonstrates that a shallower γE renders a smaller qs,max and 

larger Qs,tot. The optimal geometric configurations are similar to those with low Qs,tot 

in Figure 10.3(a). They fly direct entry trajectories, as suggested by the shallower γE 

and higher φb than those reported in Figure 10.3(b). 

Both the SS and SC geometries are relatively constant throughout the Pareto 

frontiers. The spherical segment geometry is θs = 6.83
o
, n2 = 2.00, e = -0.968, hb,HS = 

3.2 m, and the blunted cone geometry is listed in Table 10.4 as Design D. The two 

Pareto frontiers are within correlation error, within 35 W/cm
2
 of each other.  
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Figure 10.8. Trajectory design variable distribution for spherically blunted cone designs from 

Figure 10.3(b). 

Both configurations are equally optimal. Comparing the two geometries at the 

freestream conditions of qs,max for design D, at ht = 73.1 km, V∞ = 10.5 km/s, the 

spherical segment would produce a different combination of heat fluxes, qs,conv = 40 

W/cm
2
 and qs,rad = 140 W/cm

2
, but result in nearly the same Qs,tot. The radius-of-

curvature is 14.3 m for the SS and 7.5 m for SC. Rather than reducing curvature to 

reduce Qs,conv, the main advantage to the highly eccentric base is the increase in drag 

area that reduces BC. This indirectly reduces qs,max and Qs,tot since larger drag area 

provides deceleration at higher altitudes for a given mEV. For this range of curvatures, 

heat transfer is significantly interchanged between convection and radiation, 

rendering Qs,tot relatively constant for these short duration trajectories. The skipping 

entry of design B has a 132% increase in duration with qs ≥ 5 W/cm
2
 over the direct 

entry of design D. With this and a 0.77
o
 steeper γE, radius-of-curvature becomes of 

greater importance.  
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10.3. Optimal configurations for VE = 15 km/s 

10.3.1. Minimizing Qs,tot and maximizing pxrs 

Entry at VE = 15 km/s renders at least a factor of three increase in Qs,tot above 

that experienced at VE = 11 km/s, caused by the conversion of 85% more kinetic 

energy into thermal energy during deceleration. Radiative heat transfer produces a 

majority of Qs,tot and can be minimized by decreasing the radius-of-curvature to 

reduce ∆so, which is smaller for a SC than a SS for a given L/Dmax design. The 

different thermal environment may render different optimal configurations at 15 

km/s. Pareto frontiers are provided in Figure 10.9(a) for pxrs ≤ 2200 km with Qs,tot 

ranging 60 – 160 kJ/cm
2
 compared to 11 – 33 kJ/cm

2
 for VE = 11 km/s. The Pareto 

frontier of the power law is composed of effective spherical segment forms.  

The significant difference in Qs,tot between the SS and SC Pareto frontiers is 

caused primarily by differences in drag area. Spherical segment design E has a 27.8% 

lower drag area than blunted cone design F since the vehicle sizing routine 

determined that the spherical segment can maintain requirements with a smaller 

vehicle. This is indicated in Table 10.4 by design E having a 12.5% lower hb,HS  than 

design F. Design E experiences qs,max at an altitude of 66.1 km, 2 km deeper than 

design F, and acquires a 26% larger Qs,tot than design F. Both designs follow similar 

skipping trajectories and experience qs,max at V∞ = 13.5 km/s.  
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(a) Minimizing Qs,tot and maximizing pxrs                            

 

                    (b) Minimizing Qs,tot and qs,max 

Figure 10.9. Pareto frontiers for Earth entry, VE = 15 km/s. 

 

The trajectory of design F is provided in Figure 10.10. At 66.1 km, air density is 40% 

thicker. Since the normal-shock density ratio is relatively constant between the two 
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altitudes with the same V∞, the ∆so does not change significantly. This results in a 

40% increase in E and thus, a 31% increase in qs,rad. This demonstrates the higher 

sensitivity of heat transfer with altitude when traveling at hyperbolic speeds through 

the atmosphere.  

 

Figure 10.10. Heat shield skip trajectory of design F from Table 10.4. 

A proper balance of radiative and convective heat loads is important for 

minimizing total heat load, but the optimal SS and SC geometries produce nearly the 

same minimum Qs,tot. At the freestream conditions of design E, design F would 

generate qs,rad = 1560 W/cm
2
 and qs,conv = 230 W/cm

2
. With this 7% lower qs,max, the 

resulting Qs,tot is still relatively the same as for design E. If design E were required to 

have the same hb,HS  as design F, then Design E would have drag area similar to 

design F’s since they have nearly the same CD, resulting in an equivalent BC. They 

would then fly nearly the same trajectories. At the freestream conditions of design F 

and with hb,HS = 4.0 m, design E would generate qs,rad = 1460 W/cm
2
 and qs,conv = 120 

W/cm
2
, producing an 8.2% larger qs,max than design F. The resulting Qs,tot would be 



 

 162 

 

approximately 4% greater, suggesting that the blunted cone has a slight advantage 

only. At the freestream conditions of design F, a geometry similar to Viking except e 

= -0.968, would produce qs,rad = 1100 W/cm
2
 and qs,conv = 470 W/cm

2
, rendering a 

32% increase in Qs,tot. This indicates that Qs,tot is sensitive to different combinations 

of radius-of-curvature and ∆so.  

The design variable distributions for the blunted cone Pareto frontier are 

provided Figure 10.11; the trends in these distributions are consistent with those 

discussed for VE = 11 km/s in Figure 10.6. Only   skipping    trajectories    were 

captured for the spherically-blunted cone as its Pareto frontier begins at pxrs = 200 

km. The   spherical segment switches from direct entry trajectories to skipping 

trajectories at pxrs = 170 km. As cross range is increased, the sudden changes in 

geometry are produced to incrementally increase L/D.  

 

 

 

 

    a) Geometric variables                            
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                             b) Trajectory variables 

Figure 10.11. Design variable distribution for spherically blunted cone designs from Figure 

10.9(a). 

10.3.2. Minimizing Qs,tot and qs,max 

Pareto frontiers are provided in Figure 10.9(b) for the spherical segment and 

spherically blunted cone. The results for the power law form were inconclusive. For 

the two Pareto frontiers, the geometries are relatively constant, listed as designs G 

and H in Table 10.4. Both the spherical segment and blunted cone geometries are 

very similar to designs E and F respectively. Similarly, the spherical segment has a 

smaller hb,HS than the blunted cone, thus having a smaller drag area and rendering 

higher Qs,tot and qs,max.  

To isolate the effects of trajectory design and geometry, the heat fluxes for 

both designs are compared at each other’s qs,max freestream conditions. Design G 

experiences qs,max at ht = 70.4 km, V∞ = 13.6 km/s while design H experiences qs,max at 

ht = 68.7 km, V∞ = 13.7 km/s. At the freestream conditions of design H, design G 

would generate qs,rad = 1180 W/cm
2
 and qs,conv = 210 W/cm

2
, a 26% increase in qs,max; 

this blunted cone design produces an 8% lower qs,max than the spherical segment. At 

the freestream conditions of design G, design H would generate qs,rad = 1060 W/cm
2
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and qs,conv = 130 W/cm
2
, a 21% decrease in qs,max; this spherical segment design 

produces an 8% higher qs,max than design G. As a result, the spherically blunted cone 

generates a lower qs,max for both cases. Differences in Qs,tot for both cases are 

negligible. Thus, the qs,rad is more sensitive than Qs,tot for these optimal designs. Since 

these geometries are similar to E and F, the importance of balancing radiative and 

convective heat transfer also holds.  

The trajectory design variable distributions are given in Figure 10.12 for the 

blunted cone. For this objective function set, the aim of both α and φb is the same 

since pxrs is not being optimized. For the blunted cone case, α is constant, and the 

optimizer varies φb to control how much lift is applied to counteract gravity. For the 

spherical segment case (not shown), φb,0 is relatively constant at 0
o
, and α decreases 

with increasing qs,max in order to lower the flight duration and thus, minimize Qs,tot.   

 

Figure 10.12. Trajectory design variable distribution for spherically blunted cone designs from 

Figure 10.9(b). 
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Chapter 11. Detailed Optimization Setup for 

Lunar and Mars Return 

 This chapter provides the detailed optimization setup for the final set of results 

for this work. A complete chapter is dedicated in order to detail the different 

optimization setup, including changes in side constraints for design variables, the 

choice of axial profiles, changes in trajectory and aerodynamic constraints, and the 

methodology for generating the entry corridors.  

11.1. Mission profile modifications summary 

 The mission profile for lunar return mostly remains the same. To simulate 

Earth entry for Mars return, an initial entry velocity has been changed from 15 km/s 

to 12.5 km/s. a result, the expectation on TPS design to accommodate a 100+ kJ/cm
2
 

heat load with VE = 15 km/s, which will greatly challenge the current capabilities of 

several other subsystems, may be unnecessary and impractical for the first manned 

Mars return missions. With the current projected mass of Orion at ~10,000 kg, the 

mass estimation process has been updated, along with the addition of lower and upper 

mass estimations that are a function of surface area and heat load. The lower mass 

estimation assumes that the additional heat load does not augment the mass of the 

heat shield.  The second mass estimation provides an upper-end conservative value 

that assumes that the mass of the heat shield is increased by a factor of three. Details 

of the modifications to the mission profile for this optimization are provided in 

Chapter 5. 
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11.2. Modifications to objective functions  

 Three objective functions are applied in the final work: minimizing 

stagnation-point heat load Qs,tot, maximizing cross range pxrs, and maximizing down 

range pdwn. The peak heat flux objective function has been replaced with down range. 

A greater down range enables more abort scenarios. Generating a comparison 

between maximizing down range and maximum cross range capabilities while 

minimizing heat load has been chosen to be more important than analyzing the peak 

heat flux for this work. The peak heat fluxes will be shown to be feasible for these 

entry velocities are all within the feasible bounds while depending on the cross range, 

down range, entry vehicle mass, and lift-to-drag, the heat load may not be feasible. 

Thus, heat load is more sensitive than heat flux for this analysis. Optimization is 

performed using two objective function sets: (1) maximizing pxrs and minimizing 

Qs,tot and (2) maximizing pdwn and minimizing Qs,tot.   

11.3. Design variable modifications 

 Several modifications have been made to the design variable set in Table 10.1 

for the final set of optimization cases. First, since the spherically-blunted cone and 

power law optimizations generated optimal profiles similar to the spherical segment 

for lunar return, only the spherical segment axial profile is analyzed in the final 

analysis at VE = 11 km/s. For Mars return, the Pareto frontier of the power law was 

composed of effective spherical segment forms. Also, the low-order method’s 

accuracy in predicting the power law’s stagnation-point heat transfer may not be 

sufficient for a comparison between the spherical segment and power law. For 
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primarily the first reason, the power law axial profile is not included in the final 

optimization. Since the spherically-blunted cone optimization generated different 

optimal profiles from the spherical segment optimization for Mars return, both the 

spherical segment and spherically-blunted cone axial profiles are applied in the final 

analysis at VE = 12.5 km/s. The new set of design variables is listed in Table 11.1. 

The γE is no longer a design variable in order to implement the entry corridor 

methodology, which determines the γE at which the optimization is performed. Since 

the entry corridor is also a function of L/D, the optimization for each axial profile is 

performed at specific values of lift-to-drag: 0.3, 0.5, and 1.0. Since the results in 

Chapter 10 were primarily composed of L/D < 0.4, this methodology is also 

employed to facilitate in generating optimal results at higher L/D values.       

The bank angle profile is composed differently from the initial optimization 

setup, in which connecting the control points (t,φb) produces the profile. A different 

approach has been used for the final optimization that mimics the bank angle 

adjustments completed for the Apollo missions. Instead of connecting the control 

points, the control points represent a step change in the bank angle. The bank angle 

Table 11.1. Design variables with side constraints for final optimization. 

L/D  

VE = 11 km/s, 

 L/D specific  

design variables 

VE = 12.5 km/s, 

L/D specific  

design variables 

Common design variables 

0.3, 0.5 

5.0
o
 ≤ θs ≤ 89.0

o 

-0.968 ≤ e ≤ 0.968 

-30
o
 ≤ α ≤ 30

o 

5.0
o
 ≤ θs ≤ 89.0

o
, L/D = 0.3

 

20.0
o
 ≤ θs ≤ 89.0

o
, L/D = 0.5 

55.0
o
 ≤ θc ≤ 89.0

o 

0.15 ≤ rn/d ≤ 2.00
 

-0.968 ≤ e ≤ 0.968 

-30
o
 ≤ α ≤ 30

o 

    1.30 ≤ n2 ≤ 2.00 

 

      5 s ≤ t1 ≤ 55 s  
t1 + 10 s ≤ t2 ≤ t1 + 55 s 

t2 + 10 s ≤ t3 ≤ t2 + 55 s 

t3 + 10 s ≤ t4 ≤ t3 + 55 s  

t4 + 10 s ≤ t5 ≤ t4 + 3605 s 

t5 + 10 s ≤ t6 ≤ t5 + 3605 s
 

0.27 ≤ L/D ≤ 0.33 

0.47 ≤ L/D ≤ 0.53 

0.95 ≤ L/D ≤ 1.05 

 

0
o
 ≤ φb,all ≤ 180

o
 

For L/D = 0.3 & 0.5,  

all = 0, 1, 2, … , 5, 6 

For L/D = 1.0, 

all = 0, 1, 2, … , 10, 11 
1.0

 
50.0

o
 ≤ θs ≤ 89.0

o
  

-0.968 ≤ e ≤ -0.95 

0
o
 ≤ α ≤ 30

o
 

50.0
o
 ≤ θs ≤ 89.0

o
  

-0.968 ≤ e ≤ -0.95 

0
o
 ≤ α ≤ 30

o
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profile is comprised of up to six step changes for L/D = 0.3 and 0.5 and up to eleven 

step changes for L/D = 1.0. An example of this type of bank angle profile is shown 

for a L/D = 0.33 trajectory in Figure 8.1(c); this bank angle profile has three step 

changes. The Orion CEV is currently being designed to handle bank angle 

adjustments through approximate step changes also. The optimizer can modify the 

seven bank angles φb,0 through φb,6, as well as the six intermediate times t1 through t6, 

at which the bank angles are stepped. A limit of 0
o
 to 180

o
 lowers the size of the 

design space; angles 181
o
 through 359

o
 are not necessary since longitudinal and 

latitudinal-related constraints are not employed. The bank angle is assumed to rotate 

in 5 s rather than instantaneously to render a more realistic simulation. A 5-s rotation 

was chosen based on the Apollo 4 rotating through 180
o
 in approximately 10 – 14 s 

and thus, serves as an approximate average of the required rotation time for the bank 

angles experienced during entry. A more accurate simulation would assume a nearly 

constant rotation rate.    

11.4.  Design constraint modifications 

 A modified set of design constraints has been applied for the final 

optimization setup and is provided in Table 11.2. The final trajectory duration has 

been reduced to 3600 s since the current upper-limit of the Orion’s entry duration is 

approximately 2700 s (45 min). The entry corridor methodology assists in 

constraining the trajectory design space to the extent that it is possible to reduce the 

deceleration load limits. Instead of nmax ≤ 6 g for VE = 11 km/s and nmax ≤ 12 g for VE 

= 15 km/s, an overall peak deceleration limit of 5 g = 49.05 m/s
2
 has been chosen in 
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order to be consistent with recent literature on manned lunar and Mars return 

missions.
1,62 

This is lower than the 7 g that Apollo 10 experienced.
113,114

 The 

maximum height of the skipping trajectory has been reduced arbitrarily from 3000 km 

to 1220 km to allow the entry vehicle to skip up to 10 times the height of the entry 

interface (122 km). The end conditions of the trajectory have been constrained to 

experience Mach 2 at a range of altitudes from 10 to 45 km, at which drogue 

parachutes would be deployed. Hypersonic aerodynamic characteristics are applied 

throughout the entire trajectory and thus, may be a source for uncertainty for the end 

of the trajectory where lower supersonic Mach numbers are experienced. This region 

from Mach 5 to Mach 2 does not affect the objective functions dramatically; ending 

the trajectory simulation at Mach 2 has been chosen in order to utilize more practical 

end conditions for the entry trajectory.    

11.5. Lunar return operational entry corridor 

Skipping trajectories, illustrated in Figure 11.1(a), are considered feasible for 

this work since the Apollo Command Module (CM) was capable of performing such 

for an off-nominal entry. Skipping also was initially selected as its nominal entry 

mode.
113

 Previous work
110,111

 by the authors would produce trajectories located on the 

Table 11.2. Trajectory and aerodynamic constraints 

for final optimization. 

Optimization constraints 

Trajectory  Aerodynamic/Geometric 

tf ≤ 3600 s 

nmax ≤ 5 g  

ht ≤ 1220 km 

10 km ≤ ht,f  ≤ 45 km 

 

M∞,f = 2 

Cm,cg,α ≤ –0.001 

Cn,cg,β ≥ 0.001 

sign(CL,V) Cl,cg,β ≤ 0.01 

|α| ≤ |ε + 1
o
| 
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bounds of the feasible design space that were extremely sensitive to small deviations 

in bank angle. This would lead to the vehicle either bouncing out of the atmosphere or 

crashing into the surface, as shown in Figure 11.2. These small deviations in bank 

angle (less than 1-deg change) also would produce extreme g-loads that are not 

survivable. It is possible to design away from these cliffs in the trajectory design 

space, by locating a range of entry flight path angles, known as an entry corridor, 

within which the vehicle can fly to satisfy design requirements such as maximum g-

load, maximum heat load, and landing coordinates. The entry corridor is a function of 

entry velocity, lift-to-drag ratio, and ballistic coefficient. For a given entry velocity, 

the entry corridor width will vary with mEV, D/q∞ , and L/q∞. Note that D/q∞ = CDS, 

known as the drag area, and L/q∞ = CLS.  

 
a) Altitude Profiles                                                           
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b) Bank angle Profiles 

Figure 11.1. Skipping trajectories for overshoot, undershoot, and chosen initial for L/D = 0.6, Ref 

[115]. 

 

 

Figure 11.2. Trajectory sensitivity to ∆φφφφb,2 < 1
o
, generated with initial optimization setup. 

 

The operational entry corridor width defines the flyable space within the 

trajectory constraints of the mission, which are included in Table 11.2 for this work. 

It must be sufficiently large such that all possible uncertainties that may occur during 
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a given trajectory do not lead to a loss in vehicle control authority. These primarily 

consist of variations in atmospheric conditions and uncertainties related to the 

guidance, navigation, and control systems. Putnam and Braun
1
 suggest that a corridor 

width of 0.4
o
 is sufficient, stating that this is much larger than the entry corridor width 

of 0.16
o
 for the successful Earth entries during the Stardust and Genesis missions. 

Manned missions may require larger corridor widths than these two missions’ since 

there will be stricter g-load requirements and longer duration trajectories, giving more 

time for both expected and unexpected events to affect the vehicle. Uncertainties 

grow as entry velocity increases and L/D decreases, which corresponds to a reduction 

in control authority and thus, a smaller entry corridor width. This work assumes that 

an entry corridor of 0.4-deg is sufficient.  

Each configuration in this work flies at a fixed-α, in which L/D is constant. 

The banking of the vehicle that is generated by the reaction control system throughout 

the trajectory is represented by the bank angle profile. The control inputs for the 

trajectory are given in a bank angle profile. For this setup, the RCS can rotate the 

vehicle to an initial bank angle φb,0 for entry and change the bank angle six additional 

times, assuming a five second rotation time. Additional control authority was required 

for L/D = 1.0 case, and so the RCS can rotate the vehicle a total of twelve times 

instead of seven for L/D = 1.0 only. 

Examples of overshoot, undershoot, and initial trajectories are given in Figure 

11.1 for L/D = 0.6. In this case, the entry corridor was determined to be at least 1.61
o
. 

The range of bank angle adjustments possible with the current optimization setup is 

exemplified in Figure 11.1(b); this also shows that small ∆φb will not lead to an 
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immediate crash on the surface or bounce out of the atmosphere. The initial trajectory 

in Figure 11.1 is an example of a trajectory chosen as an design to be placed in the 

initial population for the optimization in order to give the optimizer a feasible design 

to utilize. It is located purposefully in the middle of the entry corridor at γE = -6.06
o
. 

The overshoot boundary is determined by executing UPTOP for a given configuration 

with the entire φb-profile set to 180
o
, reducing |γE| until the vehicle bounces out of the 

atmosphere. The undershoot boundary is determined by utilizing UPTOP’s search 

capabilities to locate feasible trajectories at a chosen γE, increasing |γE| until the 

trajectory constraints can no longer be maintained. The entry corridors may be larger 

than reported since it was only necessary to find an entry corridor width of 0.4
o
 for 

this analysis. Entry corridors have been determined for both lower and upper 

estimates of mEV , described in Chapter 5. Table 11.3 provides the entry corridor 

widths for L/D = 0.3, 0.5, and 1.0, along with the corresponding heat shield 

configurations. All the entry corridors have a width greater than 1
o
. To provide a good 

comparison of the aerothermodynamic performance, optimization is performed at a 

single γE = -6.0
o
 for all cases, which is close to γE ≈ -5.8

o
 expected for the Orion CEV 

at lunar return conditions.
116

 All trajectories start with a 90
o
 initial azimuth angle of 

the relative velocity vector. The initial design conditions of the trajectory and 

characteristics of the heat shield are also included in Table 11.3. This analysis focuses 

optimization on base cross sections of parallelogram and elliptical forms, and 

blendings of the two. 
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11.6. Mars return operational entry corridor 

Developing the Mars return operational entry corridor was completed 

accordingly. However, once the operational entry corridor was determined to be 

greater than the required width of 0.4
o
, the search for the true undershoot boundary 

was ended, as determining the true undershoot boundary is not necessary for this 

analysis. As a result, it is likely that the entry corridors are larger than reported. Table 

Table 11.3. Operational Entry Corridors and Initial Heat Shield Designs for Optimization, 

VE = 11 km/s, m1 = 4. 

 

L/D  ≈ 0.3 L/D  ≈ 0.5 L/D  ≈ 1.0 

Lower mEV Upper mEV Lower mEV Upper mEV Lower mEV Upper mEV 

 

Heat Shield 

Configurations 

 

 

θs = 25.0o 

n2 = 2.00  

e = 0.0 

α = -17.0o 

 

θs = 25.0o 

n2 = 2.00  

e = 0.0 

α = -17.0o 

 

θs = 25.0o 

n2 = 2.00  

e = 0.0 

α = -28.8o 

 

θs = 25.0o 

n2 = 2.00  

e = 0.0 

α = -28.8o 

 

θs = 66.1o 

n2 = 1.30  

e = -0.968 

α = 20.0o 

 

θs = 66.1o 

n2 = 1.30  

e = -0.968 

α = 21.5o 

Entry Corridor a  -5.47o to -6.50o -5.58o to -6.60o -5.38o to –6.65o -5.48o to –6.75o -5.47o to –6.70o -5.66o to -6.90o 

Corridor Width a 1.03o 1.02o 1.27o 1.27o 1.23o 1.24o 

 

Trajectory 

Design Controls 

γE 

(t0, φb,0) 

(t1, φb,1) 

(t2, φb,2) 

(t3, φb,3) 

(t4, φb,4) 

… 

 

 

 

-6.00o 

(0 s, 27.2o) 

(28.6 s, 98.2o) 

(56.1 s, 84.4o)  

(94.7 s, 112.8o) 

(149.0 s, 78.0o) 

 

 

 

 

-6.00o 

(0 s, 120.0o) 

(51.5 s, 97.5o) 

(105.1 s, 121.4o) 

(136.2 s, 97.9o) 

(179.4 s, 73.1o) 

 

 

 

 

 

-6.00o 

(0 s, 60.1o) 

(32.8 s, 14.5o) 

(73.0 s, 121.2o)  

(125.3 s, 94.6o) 

(169.4 s, 75.9o) 

 

 

 

 

-6.00o 

(0 s, 73.0o) 

(25.6 s, 70.0o) 

(54.4 s, 23.9o)  

(76.3 s, 140.5o) 

(115.0 s, 96.2o) 

(208.9 s, 74.6o) 

 

 

       -6.00o 

(0 s, 156.6o) 

(68.6 s, 98.1o) 

(172.1 s, 59.0o)  

(189.4 s, 64.1o) 

(292.5 s, 79.5o) 

(356.0 s, 148.1o) 

(488.9 s, 125.9o) 

(617.8 s, 36.3o) 

(634.7 s, 101.3o) 

(819.2 s, 89.1o) 

(1698.0 s, 106.0o)

(2053.1 s, 72.6o) 

 

-6.00o 

(0 s, 175.3o) 

(24.4 s, 162.9o) 

(93.5 s, 97.5o)  

(221.1 s, 81.5o) 

(310.2 s, 70.5o) 

(396.7 s, 54.8o)  

(576.7 s, 48.7o) 

 

Parameters       

mEV, kg 10,000 13,100 10,000 13,100 12,700 21,100 

Qs,tot,, kJ/cm2 27.1 33.1 31.3 37.2 95.5 127.0 

pxrs, km 200 190 440 360 1690 1090 

pdwn, km 2380 2410 2820 2610 18,390 3080 

BC, kg/m2 350 450 430 560 1040 1600 

L/q∞, m2 8.7 8.7 11.3 11.3 11.9 12.5 

D/q∞, m2 28.8 28.8 23.5 23.5 12.3 13.2 

S, m2 19.9 19.9 19.9 19.9 16.3 16.3 

tf, s 340 340 420 380 2550 600 

    a
 Undershoot and corridor widths may be of larger magnitude.  
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11.4 provides the entry corridor widths for L/D = 0.3, 0.5, and 1.0, along with the 

corresponding heat shield configurations. Five of the six cases have corridor widths 

of at least 0.65
o
, while the upper mEV, L/D = 1.0 case has a corridor width of at least 

0.51
o
. In comparison to the entry corridor values for lunar return, these ranges of γE 

are steeper. To provide a good comparison of the aerothermodynamic performance, 

optimization is performed at a single γE = -6.4
o
 for all cases, which is very close to γE 

≈ -6.5
o
 for Project Apollo.

41
 All trajectories for Mars return also start with a 90

o
 initial 

azimuth angle of the relative velocity vector. The initial design conditions of the 

trajectory and characteristics of the vehicle are also included in Table 11.4. Figure 

11.3 shows the lifting body geometry of the L/D = 1.0 design that is used to develop 

the entry corridor for both lunar and Mars return. From lunar return to Mars return, 

the Qs,tot increased by 100% and 124% using the lower and upper mass estimates 

respectively. The extremely high Qs,tot for both L/D = 1.0 cases indicates that these 

L/D = 1.0 geometries are currently impractical for Mars return with this trajectory 

setup. The increase in TPS mass for such high heat loads would increase the overall 

mass, thus increasing Qs,tot; and this cycle would close on a vehicle mass much 

greater than that required for L/D = 0.3 or 0.5.  
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    a)  Front view, parallelogram cross section m1 = 4       b) Side view, spherical segment θθθθs = 66.1

o
 

Figure 11.3. L/D = 1.0 design from Table 11.4, e = -0.968, n2 = 1.30. 

 

Table 11.4. Operational Entry Corridors and Initial Heat Shield Designs for Optimization, 

VE = 12.5 km/s, m1 = 4. 

 

L/D  ≈ 0.3 L/D  ≈ 0.5 L/D  ≈ 1.0 

Lower mEV Upper mEV Lower mEV Upper mEV Lower mEV Upper mEV 

 

Heat Shield 

Configurations 

 

 

θs = 25o 

n2 = 2.00  

e = 0.0 

α = -18.7o 

 

θs = 25o 

n2 = 2.00  

e = 0.0 

α = -18.7o 

 

θs = 25o 

n2 = 2.00  

e = 0.0 

α = -28.8o 

 

θs = 25o 

n2 = 2.00  

e = 0.0 

α = -28.8o 

 

θs = 66.1o 

n2 = 1.30  

e = -0.968 

α = 20.0o 

 

θs = 66.1o 

n2 = 1.30  

e = -0.968 

α = 21.5o 

Entry Corridor  -6.00o to -6.70o -6.15o to -6.80o -5.91o to –6.70o -6.02o to -6.70o -6.01o to –6.70o -6.19o to -6.70o 

Corridor Width 0.70o 0.65o 0.79o 0.68o 0.69o 0.51o 

 

Trajectory 

Design Controls 

γE 

(t0, φb,0) 

(t1, φb,1) 

(t2, φb,2) 

(t3, φb,3) 

(t4, φb,4) 

… 

 

 

 

-6.40o 

(0 s, 102.8o) 

(34.3 s, 83.4o) 

(73.0 s, 126.4o)  

(127.5 s, 110.6o) 

(171.5 s, 78.8o) 

 

 

 

 

-6.40o 

(0 s, 96.8o) 

(29.7 s, 101.2o) 

(74.3 s, 131.7o)  

(117.7 s, 116.4o) 

(169.9 s, 78.8o) 

 

 

 

 

-6.40o 

(0 s, 113.5o) 

(40.4 s, 81.1o) 

(63.8 s, 110.4o)  

(112.5 s, 121.3o) 

(143.1 s, 67.0o) 

(187.8 s, 32.6o)  

(707.6 s, 70.0o) 

 

 

 

-6.40o 

(0 s, 127.3o) 

(16.2 s, 112.5o) 

(66.4 s, 108.1o)  

(118.8 s, 136.3o) 

(154.8 s, 44.8o) 

(2285.6 s, 67.2o) 

 

 

       -6.40o 

(0 s, 69.7o) 

(22.9 s, 0.0o) 

(60.6 s, 160.4o)  

(104.2 s, 102.6o) 

(248.2 s, 49.0o) 

(400.6 s, 18.9o)  

(521.7 s, 93.6o) 

(549.9 s, 50.7o) 

(705.8 s, 70.5o) 

(757.8 s, 79.6o) 

 

-6.40o 

(0 s, 102.8o) 

(20.4 s, 0.0o) 

(46.5 s, 138.3o)  

(134.7 s, 99.8o) 

(256.7 s, 45.9o) 

(352.8 s, 143.9o)  

(479.7 s, 45.5o) 

(582.6 s, 39.8o) 

(697.7 s, 85.5o) 

(799.5 s, 2.8o) 

Parameters       

mEV, kg 10,000 13,100 10,000 13,100 12,700 21,100 

Qs,tot,, kJ/cm2 64.1 80.8 74.2 93.4 191.6 284.8 

pxrs, km 250 260 860 280 2230 2990 

pdwn, km 2630 2740 18,290 20,030 5920 9230 

BC, kg/m2 350 450 430 560 1040 1600 

L/q∞, m2 8.7 8.7 11.3 11.3 11.9 12.5 

D/q∞, m2 28.8 28.8 23.5 23.5 12.3 13.2 

S, m2 19.9 19.9 19.9 19.9 16.3 16.3 

tf, s 350 360 2480 2910 910 1560 
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Chapter 12. Lunar Return Results 

Optimization has been performed using only the spherical segment (SS) heat 

shield axial profiles since, as indicated in Chapter 10, it is the optimal axial profile for 

lunar return for this analysis. For VE = 11 km/s and γE = -6.0
o
, Pareto frontiers are 

provided for two multi-objective function sets: (1) minimizing heat load Qs,tot and 

maximizing cross range pxrs in Figure 12.1, and (2) minimizing heat load Qs,tot and 

maximizing down range pdwn in Figure 12.2. Results based on lower and upper mass 

estimates are given. The aerothermodynamic characteristics of lettered designs in 

Figure 12.1and Figure 12.2 are listed in Table 12.1. These lettered designs represent 

one point on the Pareto frontier. Both the geometric and trajectory design variables 

may vary along the Pareto frontier. Design variable distributions for selected Pareto 

frontiers are provide in Appendix B in Figure B.0.1 – Figure B.0.7. These design 

variable distributions provide the values of the design variables throughout the Pareto 

frontier.   

12.1. Maximizing pxrs and minimizing Qs,tot 

Figure 12.1(a) shows how cross range pxrs increases with L/D. Designs A – D 

are based on lower mass estimates, and their design characteristics are listed in Table 

12.1. A L/D = 0.3 produces a maximum pxrs ≈ 950 km while an L/D of 0.5 and 1.0 

produce maximum cross ranges of 1500 km and 3000 km respectively before Qs,tot 

strongly increases. Increasing mass by 30% does not strongly affect the maximum 

possible cross range, but it increases Qs,tot by at least 23%, 30.3%, and 44% for L/D = 

0.3, 0.5, and 1.0 respectively. There is a 76% increase in Qs,tot from design D at L/D = 
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0.32 to design B at L/D = 0.49 for a 67% increase in pxrs. There is a 380% increase in 

Qs,tot from design D at L/D = 0.32 to design A at L/D = 0.95 for a 240% increase in 

pxrs.  

 

 
a) L/D = 0.3, 0.5, and 1.0 Pareto frontiers 

 

 
b) Close-up of L/D = 0.3 and 0.5 Pareto frontiers 

Figure 12.1. Pareto frontiers for maximizing cross range and minimizing stagnation-point heat 

load, VE = 11 km/s. 
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a) L/D = 0.3, 0.5, and 1.0 Pareto frontiers 

 
b) Close-up of L/D = 0.3 and 0.5 Pareto frontiers 

Figure 12.2. Pareto frontiers for maximizing down range and minimizing stagnation-point heat 

load, VE = 11 km/s. 

 
Figure 12.3. Pareto frontiers for L/D = 0.3 lower mass cases, maximizing cross range and 

minimizing stagnation-point heat load, VE = 11 km/s. 
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Table 12.1. Optimal configurations for two multi-objective function sets for SS, VE = 11 km/s, m1 = 4.
a
 

 

Minimizing Qs,tot & Maximizing pxrs (Fig. 9)  Minimizing Qs,tot & Maximizing pdwn (Fig. 10) 

Lower mass estimation  Upper mass estimation 

A B C (Orion) D  E F G (Orion) H 

Design 

Variables 

SS 

θs = 75.7o 

n2 = 1.31 

e = -0.967 

α = 26.3o 

SS 

θs = 24.0o 

n2 = 1.74 

e = 0.665 

α = -29.6o 

SS 

θs = 25.0o 

n2 =  2.00 

e = 0.0 

α = -17.0o 

SS 

θs = 5.0o 

n2 = 1.98 

e = -0.968 

α = -19.2o 

 SS 

θs = 66.0o 

n2 = 1.31 

e = -0.968 

α = 21.1o 

SS 

θs = 23.8o 

n2 = 1.56 

e = 0.654 

α = -28.8o 

SS 

θs = 25.0o 

n2 = 2.00 

e = 0.000 

α = -17.0o 

SS 

θs = 5.0o 

n2 = 2.00 

e = -0.964 

α = -18.7o 

γE 

(t0, φb,0) 

(t1, φb,1) 

(t2, φb,2) 

… 

(tf, φb,f) 

-6.0o 

(0 s, 87.1o) 

(35.6, 143.4o) 

(67.7, 97.0o) 

(182.6, 36.6o) 

(213.4, 42.2o) 

(287.7, 85.6o) 

(332.7, 144.9o) 

(392.6, 155.1o) 

(563.0, 114.5o) 

(655.7, 59.7o) 

(1388.9, 30.4o) 

(1752.3, 30.4o) 

 

-6.0o 

(0 s, 88.6o) 

(27.1, 108.4o) 

(67.8, 95.8o) 

(102.0, 91.1o) 

(132.3, 72.2o) 

(1284.6, 48.9o) 

(1600.3, 48.9o) 

-6.0o 

(0 s, 44.1o) 

(30.1, 126.3o) 

(66.9, 83.2o) 

(89.5, 88.8o) 

(127.5, 52.2o) 

(1071.4, 65.0o)

(1489.7, 65.0o)

 

-6.0o 

(0 s, 146.9o) 

(28.4, 59.0o) 

(52.0, 83.1o) 

(93.2, 89.4o) 

(120.7, 64.4o) 

(1582.5, 64.4o)

 

 -6.0o 

(0 s, 173.8o) 

(44.5, 168.5o) 

(91.3, 96.9o) 

(175.1, 71.7o) 

(299.2, 94.0o) 

(414.7, 54.7o) 

(613.4, 118.3o) 

(744.5, 114.7o) 

(846.0, 91.7o) 

(958.7, 77.0o) 

(3479.8, 113.3o) 

(3483.8, 113.3o) 

-6.0o 

(0 s, 146.7o) 

(38.6, 138.9o) 

(61.8, 108.7o) 

(98.1, 91.1o) 

(137.0, 48.8o) 

(1746.3, 68.2o) 

(3538.3, 68.2o) 

-6.0o 

(0 s, 39.5o) 

(21.3, 118.3o) 

(73.1, 82.2o) 

(103.0, 104.8o) 

(119.3, 17.8o) 

(2764.9, 59.0o) 

(3514.5, 59.0o) 

-6.0o 

(0 s, 153.7o) 

(45.0, 91.6o) 

(68.0, 86.2o) 

(98.4, 112.5o) 

(123.7, 6.9o) 

(1653.1, 59.0o) 

(3396.8, 58.1o) 

(3526.8, 58.1o) 

Parameters          

Qs,tot,, kJ/cm2 

(Qs,conv, Qs,rad) 

88.0 

(69.3, 18.7) 

32.6 

(20.8, 11.8) 

30.3 

(18.9, 11.4) 

18.5 

(9.6, 8.9) 
 

131.1 

(92.6, 38.5) 

36.9 

(21.0, 15.9) 

29.4 

(18.0, 11.4) 

23.0 

(10.7, 12.3) 

qs,max, W/cm2 

(qs,conv, qs,rad) 

700 

(370, 330) 

370 

(120, 250) 

380 

(120, 260) 

270 

(60, 210) 
 

1100 

(450, 650) 

440 

(130, 310) 

380 

(120, 260) 

330 

(70, 260) 

pxrs, km 3060 1500 710 900  600 370 160 140 

pdwn, km 10,790 11,200 10,920 10,580  25,070 25280 25260 25170 

CD 1.04 1.12 1.49 1.52  0.79 1.14 1.49 1.54 

L/D 0.95 0.49 0.27 0.32  0.95 0.47 0.27 0.32 

BC, kg/m2 900 450 340 250  1620 570 340 350 

D/q∞,, m2 16.8 22.6 29.7 42.7  13.0 23.0 29.7 41.7 

mEV, kg 15,100 10,100 10,000 10,500  21,100 13,200 10,000 14,500 

hb,HS, m 2.65 6.17 5.03 3.01  2.65 6.37 5.03 3.02 

S, m2  16.2 20.2 19.9 28.1  16.4 20.2 19.9 27.1 

ηv,HS 65.3% 63.2% 58.3% 32.0%  67.5% 64.0% 58.3% 31.5% 
aAxial profile SS: spherical segment 
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Design A, shown in Figure 12.4, is a more slender heat shield with θs = 75.7
o
 and a 

rounded-edge parallelogram base cross section. It is flown at α = 26.3
o
 to produce 

L/D = 0.95 throughout its trajectory, illustrated in Figure 12.5. The high L/D requires 

six bank angle modifications to maintain the trajectory constraints, as shown in 

Figure 12.5(b). The maximum deceleration limit of 5 g is not met but is shown to 

hover around 4.7 g for 100 s. With a trajectory duration of 1752 s, this trajectory 

design allows the vehicle to generate a cross range of 3000 km. Design B, shown in 

Figure 12.6, provides L/D = 0.49 at α = -29.6
o
. Its trajectory and bank angle profile is 

given in Figure 12.7. A close-up of the first 300 s of the trajectory in Figure 12.7(b) 

indicates that only four bank angle modifications were required to satisfy trajectory 

constraints, and the peak deceleration load is above 4.7 g for less than 40 s. The lower 

the L/D requires fewer bank angle adjustments. This trajectory produces a cross range 

of 1500 km.    

 

                          
       

                        
           a)  Front & top view, parallelogram cross section m1 = 4     b) Side view, spherical  

                                              segment θθθθs = 75.7
o
 

Figure 12.4. Design A from Table 12.1, e = -0.967, n2 = 1.31. 
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                       a) Trajectory profiles                             b) Close-up of first 500 s of trajectory 

Figure 12.5. Trajectory of Design A from Table 12.1.  

 

            

                                
a) Design B, n2 = 1.74      b) Design F base cross section, n2 = 1.56 

Figure 12.6. Designs B & F from Table 12.1.  

   
                 a) Trajectory profiles            b) Close-up of first 300 s of trajectory 

Figure 12.7. Trajectory of Design B from Table 12.1.  
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The Pareto frontier with design C in Figure 12.1(b) represents the projected 

performance of the Orion CEV with L/D = 0.27. The Orion CEV is shown in Figure 

12.8. Design D dominates design C since it has both a 27% higher cross range and a 

39% lower heat load. Figure 12.3 shows that the Orion CEV can produce a higher 

cross range when α is not assumed fixed at -17
o
 to produce L/D = 0.27. Several Pareto 

frontiers are shown for different cases and initial conditions for L/D ≈ 0.3. The α – ε 

constraint in Table 11.2 has been relaxed to |α| ≤ 1.2 |ε + 1
o
| in order to allow the 

optimizer to choose among geometries with higher eccentricity as feasible for L/D = 

0.3. The L/D = 0.3, SS lower mass, Orion IC, tight constraint case in Figure 12.3 has 

the original α – ε constraint. This resulted in a ~10% reduction in Qs,tot. The relaxed 

case with the Orion CEV as the initial condition (IC) is shown in case L/D = 0.3, SS 

lower mass, Orion IC. Since the two Pareto frontiers are almost completely 

coincident, this shows the optimizers inability to find more optimal 

geometric/trajectory designs starting from a random population with a feasible Orion 

CEV initial condition. Starting the optimization with a feasible geometric/trajectory 

design with e = -0.968 IC, the heat load of the optimal SS dropped from 27 kJ/cm
2
 to 

18 kJ/cm
2
, 33% reduction, or a 39% reduction from design C to D. The higher e 

generates Design D, shown in Figure 12.9, produces a base cross section area S 

increase of 41% and a drag area increase of 43.7%. As a result, the vehicle 

decelerates higher in the atmosphere. Since the resulting ballistic coefficient is 

reduced by 36%, the heat load is expected to be reduced significantly. The trajectory 

and bank angle profile corresponding to design D is given in Figure 12.10. All the 

bank angle adjustments are produced before the first skip, and the maximum 
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deceleration load constraint is active only once. Except for the first 28 s, the lift 

vector for design D is pointing away from the atmosphere for almost the entire 

trajectory, indicating that the vehicle requires mostly positive lift to produce 

maximum cross range, rather than the combination as was the case for design A.  

 

Figure 12.8.  Orion CEV Heat Shield, Design C & G without rounded shoulder, θθθθs = 25
o
, e = 0,   

n2 = 2. 

                           

     
Figure 12.9.  Highly oblate and blunt heat shield, approximate Designs D & H, θθθθs = 5

o
, e = -0.968, 

n2 = 2. 

    
                       a) Trajectory profiles                          b) Close-up of first 300 s of trajectory 

Figure 12.10. Trajectory of Design D from Table 12.1.  

 

The design variable distribution for the L/D ≈ 1.0, SS lower mass case is given 

in Figure B.0.1. It shows that the geometry is held constant throughout the Pareto 
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frontier and the required variances in duration and bank angle variables required to 

produce the set of cross ranges. For the L/D ≈ 0.5, SS lower mass case, more variation 

is shown for the transformation parameter n2 and eccentricity, as well as φb,0, φb,3, φb,4, 

and φb,6. The slight scattering of the time variables along the Pareto frontier indicates 

that the trajectories are not sensitive to small changes in bank angle (< 1
o
). Similar 

trends can be shown in Figure B.0.3 and Figure B.0.4. A more thorough discussion is 

provided in Chapter 13. Figure 12.11 provides a comparison of the trajectory designs 

along the Pareto frontier with design D in Figure 12.1(b) at three cross ranges: 240 

km, 620 km, and 900 km. The 240 km cross range trajectory is a direct entry while 

the other two are shown to be skipping trajectories in Figure 12.11(a). A close-up of 

the first 300 s of the trajectory is given in Figure 12.11(c) and shows the bank angle 

solutions. Though they follow similar trends, the solutions are composed of different 

values. The pxrs and  pdwn profiles are given in Figure 12.11(e) and indicate that higher 

cross range trajectories do not necessarily require longer overall durations.                     

12.2. Maximizing pdwn and minimizing Qs,tot  

For maximizing down range pdwn and minimizing stagnation-point heat load 

Qs,tot, Pareto frontiers in Figure 12.2 show the maximum pdwn ≈ 26,000 km and does 

not increase with L/D for the given set of constraints. Note that the constraint that is 

preventing higher down range is the time constraint. Designs E – H in Table 12.1are 

based on upper mass estimates. The Pareto frontiers in Figure 12.2 are primarily flat 

(positive slope << 1) for 4000 < pdwn < 26,000 km. Design E, shown in Figure 12.12, 

produces pdwn = 25,070 km with a projected mEV that is 210% greater than the Orion 
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CEV mass estimate of 10,000 kg, and a 56% decrease in drag area. This results in an 

increase in BC by a factor of 3.76 and an increase in Qs,tot  by a factor of 3.33.  

             
    a) Altitude profiles                                                 b) φb profiles 

           
         c) φb and ht profiles for first 300 s                          d) φb, pxrs, and pdwn profiles for first 300 s  

 
e) pxrs and pdwn profiles 

Figure 12.11.  Comparisons of trajectories along Pareto frontier with Design D for lunar return, 

for maximizing pxrs and minimizing Qs,tot. 
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               a)  Front & top view, parallelogram cross section m1 = 4     b) Side view, spherical  

        segment θθθθs = 66.0
o
 

Figure 12.12. Design E from Table 12.1, e = -0.968, n2 = 1.31. 

The design variable distributions for the L/D = 1.0 SS upper mass case, given in 

Figure B.0.5, indicates that the geometry does not vary significantly, but that the time 

variables t3 – t9 vary significantly. The φb,4 experiences the greatest variance 

throughout the Pareto frontier. This is the bank angle that is present during the 

beginning of leaving the trough in the altitude profile, which is when the skipping 

initiates. The amount of the lift vector pointing away from the atmosphere has a 

strong effect on how large a skip is generated, though it is a cumulative affect 

resulting from the entire set of bank angles experienced during the first part of the 

trajectory (~ first 300 s) rather than one bank angle.  

Design F, shown in Figure 12.6, has a 10% reduction in n2 that indicates a 

slightly sharper but still rounded-edge parallelogram. This slightly sharper geometry 

requires a slightly larger hb,HS in order to satisfy scaling requirements, slightly 

increasing the drag area by 3%. Such small increases are deemed negligible for this 

analysis. The primary difference in heat load and heat flux compared to design B is 

due to the 31% greater mass. This combination of mass and drag area requires design 

F to decelerate lower in the atmosphere than design B. The optimization resulted in 
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the geometry of design F starting with a random population along with the Orion 

CEV with a feasible trajectory design in order to start the optimization with at least 

one design that is feasible. The optimizer determined only reduced θs by 5%, while 

adding an eccentricity of 0.654 and transforming the base cross section to be a 

rounded edge parallelogram by means of n2. The design variable distributions in 

Figure B.0.6 indicate that the geometry throughout the Pareto frontier with design F is 

relatively constant. As shown in Figure B.0.6(a), α relatively constant in order to keep 

the L/D around 0.50, and thus, the bank angle profile design variables are primarily 

varied to produce the different overall designs along the Pareto frontier. 

Design G, which is located on the Pareto frontier listed as L/D = 0.27, SS 

lower mass, Orion with α = -17
o
, in Figure 12.2(b), provides a good estimate of what 

type of heat load would be expected with increasing the down range. The heat load 

increases by 13% for down ranges between 2000 and 4000 km. For 4000 ≤ pdwn ≤ 

26,000 km, the Pareto frontier also shows that the bank angle profile can be adjusted 

to keep the heat load relatively constant.  Additionally, Table 12.1 indicates that the 

trajectory design can be modified from design C to G to keep Qs,tot relatively constant. 

Figure 12.13 shows the trajectories for designs C and G. The maximum pxrs trajectory 

has 42% of the duration of the maximum pdwn trajectory. Additionally, the Orion CEV 

for this study at L/D = 0.27, has a cross capability that is only 2.8% of its down range 

capability. The bank angle profiles for the first 400 s of their trajectories are given in 

Figure 12.13(b). The bank angles before the trough of the trajectory (the altitude 

profile) for both cases vary slightly, and as expected, the down range trajectory uses a 

lift vector pointing more away from the atmosphere with a 17.8
o
 bank in order to 
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produce a larger skip than the maximum cross range trajectory that utilized a 52.2
o
 

bank. The corresponding deceleration load profiles closely match and as shown in 

Figure 12.13(d). The design variables distributions for this Pareto frontier are 

provided in Figure B.0.7.  

       
              a) Altitude & bank angle profiles      b) Close-up of first 400 s of trajectory 

     
       c) Altitude & deceleration load profiles                 d) Close-up of first 400 s of profiles 

Figure 12.13.  Comparison of optimal trajectories of Designs C & G, Orion CEV, from Table 12.1.  

For the L/D ≈ 0.3, SS upper mass with e = -0.968 initial condition case, design 

H is highlighted in Figure 12.2(b) and nearly identical to design D, shown in Figure 

12.9. Design H with a L/D of 0.32 provides an example of a case that has a 10% 

larger mEV than design F, which has L/D = 0.47, that is countered by the 81% increase 

in the drag area that produces a 39% reduction in ballistic coefficient and thus a 38% 
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decrease in the expected heat load. This demonstrates that, from the standpoint of 

maximizing down range, a lower L/D design could be more massive and still 

experience a lower heat load due to the heat shield’s geometric design that provides a 

larger drag area. Design H is the only design that experiences a larger radiative heat 

load than convective heat load. The trajectory for design H is provided in Figure 

12.14. The design variable distributions for the Pareto frontier with design H are 

provided in Figure B.0.8. The minimum down range capability for L/D = 0.3 is 

approximately 2000 km and corresponds to the minimum values reported by Ref. [1]. 

With an increase in down range to 2700 km, the φb,4 decreases from 80
o
 to values 

between 20
o
 and 0

o
. Figure 12.15 provides trajectories along the Pareto frontier for 

pdwn = 2280, 10120, and 25170 km. The bank angle profile generates an overall cross 

range of 140 km for the pdwn = 25,170 km case, and is shown in Figure 12.15(e) to 

increase to 440 km and decreases to zero, increases, and decreases to 140 km. On this 

scale, the down range for all three cases increases at similar rates.  

 

       
                       a) Trajectory profiles                   b) Close-up of first 300 s of trajectory 

Figure 12.14. Trajectory of Design H from Table 12.1.  
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                a) ht profiles                                                  b) φb profiles 

           
            c) φb and ht profiles for first 340 s                   d) φb, pxrs, and pdwn profiles for first 340 s  

 
e) pxrs and pdwn profiles 

Figure 12.15. Comparisons of trajectories along Pareto frontier with Design H for lunar return, 

for maximizing pdwn and minimizing Qs,tot. 

 

The altitude profiles for the listed designs in Table 12.1are provided in Figure 

12.16. Almost all of the maximum pdwn trajectories nearly meet the 3600 s duration 
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limit while all the maximum pxrs trajectories have durations below 1800 s. Close-ups 

of the first trough of the trajectory are provided in Figure 12.16(b) and (c). Design E 

travels the deepest in the atmosphere with ht ≈ 48 km, as expected since it has the 

largest ballistic coefficient at 1620 kg/m
2
. Design D decelerates the highest in the 

atmosphere with the smallest ballistic coefficient at 250 kg/m
2
, 26.5% lower BC than 

the Orion CEV.      

     
a) Overall duration         b) Close-up of first 400 s of trajectories 

 
    c) Close-up of 50 < t < 200 s 

Figure 12.16. Altitude profile comparison of trajectories of Designs A – H from Table 12.1. 
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Chapter 13. Mars Return Results 

Optimization has been performed using two types of heat shield axial profiles: 

the spherical-segment (SS) and the spherically-blunted cone (SC). For VE = 12.5 km/s 

and γE = -6.4
o
, Pareto frontiers are provided for two multi-objective function sets: (1) 

minimizing heat load Qs,tot and maximizing cross range pxrs in Figure 13.1, and (2) 

minimizing heat load Qs,tot and maximizing down range pdwn in Figure 13.2. Results 

based on lower and upper mass estimates are given. The aerothermodynamic 

characteristics of lettered designs in Figure 13.1and Figure 13.2 are listed in Table 

13.1. These lettered designs represent one point on the Pareto frontier. Both the 

geometric and trajectory design variables may vary along the Pareto frontier. Design 

variable distributions for selected Pareto frontiers are provide in Appendix C in 

Figure C.0.1– Figure C.0.9. These design variable distributions provide the values of 

the design variables throughout the Pareto frontier.   

13.1. Maximizing pxrs and minimizing Qs,tot 

The maximum cross range pxrs is shown in Figure 13.1 to increase with L/D as 

expected. Designs A – D are based on lower mass estimates, and their design 

characteristics are listed in Table 13.1. A L/D = 0.3 produces a maximum pxrs = 1100 

km, and a L/D = 0.5 produces a maximum pxrs = 1600 km before Qs,tot strongly 

increases. While increasing mass by 30% from 10,000 kg does not affect the 

maximum possible cross range, it increases Qs,tot by ~24% for both L/D = 0.3 and 0.5, 

spherical segment cases. Projected performance of the Orion CEV indicates a 150 km 

increase in pxrs capability with the optimal spherical segment case, with a slight 
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decrease in heat load, but for this low-order heat transfer analysis, the differences 

between their Qs,tot values are negligible. Increases in pxrs capability are produced by 

applying slightly eccentric geometries with slightly higher hb,HS to produce a slightly 

lower BC. Design B, shown in Figure 13.3, provides the Orion geometry with pxrs = 

910 km and is compared to optimal SS design C in Table 13.1.  

 

Figure 13.1. Pareto frontiers for maximizing cross range and minimizing stagnation-point heat 

load, VE = 12.5 km/s. 

 

 
Figure 13.2. Pareto frontiers for maximizing down range and minimizing stagnation-point heat 

load, VE = 12.5 km/s. 
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Table 13.1. Optimal configurations for two multi-objective function sets, VE = 12.5 km/s, m1 = 4.
a 

 

Minimizing Qs,tot & Maximizing pxrs (Fig. 9)  Minimizing Qs,tot & Maximizing pdwn (Fig. 10) 

Lower mass estimation  Upper mass estimation 

A B (Orion) C D  E F (Orion) G H 

Design 

Variables 

SS 

θs = 23.7o 

n2 = 1.66 

e = 0.621 

α = -28.5o 

SS 

θs = 25.0o 

n2 =  2.00 

e = 0.0 

α = -17.0o 

SS 

θs = 23.1o 

n2 = 1.82   

e = -0.341 

α = -18.2o 

SC 

θc = 88.4o 

rn/d =3.95 

n2 = 2.00 

e = -0.968 

α = -17.7o 

 SS 

θs = 23.7o 

n2 = 1.73  

e = 0.537 

α = -28.3o 

SS 

θs = 25.0o 

n2 =  2.00 

e = 0.0 

α = -17.0o 

SS 

θs = 22.5o 

n2 =  1.59 

e = 0.408 

α = -17.4o 

SC 

θc = 87.8o 

rn/d =3.96 

n2 = 2.00 

e = -0.968 

α = -17.0o 

γE 

(t0, φb,0) 

(t1, φb,1) 

(t2, φb,2) 

… 

(tf, φb,f) 

-6.4o 

(0 s, 110.0o) 

(46.8, 81.7o) 

(67.2, 113.8o) 

(145.1, 66.7o) 

(752.9, 73.9o) 

(1525, 73.9o) 

-6.4o 

(0 s, 72.9o) 

(51.8, 97.0o) 

(78.2, 124.1o) 

(127.7, 92.9o) 

(165.2, 68.0o) 

(1520, 68.0o) 

-6.4o 

(0 s, 79.9o) 

(34.4, 85.2o) 

(73.9, 125.8o) 

(97.4, 121.7o) 

(143.6, 48.8o) 

(1192.3, 65.0o)

(1557, 65.0o) 

-6.4o 

(0 s, 48.6o) 

(32.0, 50.0o) 

(71.5, 135.8o) 

(108.9, 109.3o)

(135.8, 47.6o) 

(1557.5, 63.4o)

(1788, 63.4o) 

 -6.4o 

(0 s, 52.4o) 

(19.3, 113.7o) 

(52.1, 108.9o) 

(102.7, 124.8o) 

(144.6, 67.8o) 

(3529.1, 44.4o) 

(3596.3, 44.4o) 

-6.4o 

(0 s, 177.5o) 

(40.5, 98.0o) 

(75.5, 140.2o) 

(106.3, 121.9o)

(144.7, 1.0o) 

(2832.6, 57.8o)

(3589.6, 57.8o)

-6.4o 

(0 s, 118.0o) 

(32.6, 103.1o) 

(76.8, 136.2o) 

(121.0, 107.4o) 

(153.0, 153.0o) 

(823.7, 46.8o) 

(2719.3, 59.7o) 

(3597.6, 59.7o) 

-6.4o 

(0 s, 31.8o) 

(36.5, 80.5o) 

(79.9, 132.4o) 

(128.0, 100.8o) 

(148.5, 11.4o) 

(1034.7, 96.9o) 

(1455.5, 63.7o) 

(3598.0, 63.7o) 

Parameters          

Qs,tot,, kJ/cm2 

(Qs,conv, Qs,rad) 

69.8 

(25.3, 44.5) 

68.2 

(26.4, 41.8) 

64.9 

(23.3, 41.6) 

38.3 

(12.2, 26.1) 
 

89.2 

(30.4, 58.8) 

82.6 

(27.9, 54.7) 

81.2 

(25.8, 55.4) 

52.8 

(14.8, 38.1) 

qs,max, W/cm2 

(qs,conv, qs,rad) 

950 

(160, 790) 

980 

(170, 810) 

940 

(160, 780) 

640 

(90, 550) 
 

1200 

(180, 1020) 

1160 

(190, 970) 

1140 

(160, 980) 

860 

(110, 750) 

pxrs, km 1600 910 900 890  640 210 300 320 

pdwn, km 11320 11440 11580 13200  26,150 25,960 26,130 26,080 

CD 1.16 1.49 1.47 1.60  1.17 1.49 1.47 1.61 

L/D 0.47 0.27 0.29 0.31  0.47 0.27 0.28 0.30 

BC, kg/m2 430 340 340 190  560 440 450 280 

D/q∞,, m2 23.4 29.7 29.5 58.7  23.6 29.7 29.0 59.1 

mEV, kg 10,100 10,000 10,000 11,200  13,200 13,100 13,000 16,580 

hb,HS, m 6.14 5.03 5.41 3.43  5.83 5.03 5.69 3.43 

S, m2  20.2 19.9 20.1 36.7  20.2 19.9 19.7 36.7 

ηv,HS 62.7% 58.3% 57.6% 18.6%  61.0% 58.3% 58.7% 22.4% 
aAxial profiles SS: spherical segment, SC: spherically-blunted cone 

 

 

   

Figure 13.4. Design A, θθθθs = 23.7
o
, e = 0.621, n2 = 1.66. 

  

Figure 13.3. Orion CEV, Design B & F without 

rounded shoulder, θθθθs = 25
o
, e = 0, n2 = 2. 



 

 196 

 

For L/D = 0.5, strictly following the α – ε constraint in Table 11.2 limits the 

feasible design space to slender blunt bodies similar to Figure 11.3. For this analysis, 

the L/D = 0.5 cases are run with a relaxed α – ε constraint: |α| ≤ 1.2 |ε + 1
o
| to allow 

the optimizer to choose among geometries similar to the Apollo CM or Orion CEV 

(θs = 25
o
) flying at higher α. This is a practical constraint since both the Apollo CM 

and Orion CEV are designed with aft-body cone angles of ~32.5
o
, in which flying |α| 

a few degrees greater than 25
o
 would still allow the heat shield to be the primary 

surface determining the hypersonic aerodynamics. Results indicate that with both 

types of geometries to choose from, a geometry similar in bluntness to the Orion CEV 

would be more ideal than a slender body. Design A shown in Figure 13.4, consists of 

a slightly prolate base, a slightly parallelogram base cross section, and a θs near 

Orion’s. The main drawback to the slender body geometry is its higher BC, 

exemplified by the design in Figure 11.3, due to (1) the increased heat shield surface 

area and mass, and (2) its slenderness that reduces its drag area. Additionally, running 

the spherically-blunted cone case rendered disguised spherical-segment geometries. 

Flying these blunter heat shields with α slightly greater than ε allows L/D = 0.5 to be 

conceivable, though a thorough analysis of the required center-of-gravity to trim at 

the required α would need to be conducted with a packaged system analysis. As a 

result, the spherically blunted cone does not produce significantly better results at L/D 

= 0.5. The trajectory for Design A is given in Figure 13.5.  

 Optimization of the spherically-blunted cone at L/D = 0.3 was performed with 

the same relaxed α – ε constraint, and produced highly oblate elliptical heat shield 

configurations similar to Figure 13.6(a). With the relaxed constraint, the oblate heat  
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                       a) Trajectory profiles    b) Close-up of first 340 s of trajectory 

Figure 13.5. Trajectory of design A from Table 13.1.  

shields with maximum eccentricity corresponding to j/k = 4.0 could be placed at the 

necessary α to produce L/D = 0.3, i.e, design D requires α = -17.7
o
. The scaled down 

heat shield with hb,HS = 3.43 m has nearly 2S of Orion with nearly the same perimeter. 

As a result, the drag area is nearly doubled, allowing the vehicle to decelerate higher 

in the atmosphere, reducing both qs,max and Qs,tot. The SC upper mass Pareto frontier 

in Figure 13.1 indicates a 20% reduction in Qs,tot from the SS upper mass case. For 

the applied vehicle scaling method, the optimizer determined that hb,HS = 3.43 m is 

optimal for a base eccentricity of –0.968, and thus, SC optimization was performed 

for upper and lower mass estimations with fixed hb,HS with results shown in Figure 

13.1. An increase of the upper side constraint from rn/d ≤ 2 to 4 produced the 6 

kJ/cm
2
 decrease in heat load from the SC upper mass case.  

Design D with the lower mass estimate represents the optimal blunted cone 

heat shield at pxrs = 890 km. Although Design D, displayed in Figure 13.6(a) and (b), 

has rn/d = 4, it is still a spherically blunted cone due to its high eccentricity. For this 

case, d = hb,HS. The trajectory of design D is shown with its bank angle and 
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deceleration load profiles in Figure 13.7. The effects of rn/d on Qs,conv and Qs,rad 

generated along design D’s trajectory are provided in Figure 13.8. 

 
a) Front view, n2 = 2.0 

                                         
b) Side view, Design D   c) SS with similar performance 

to design D, θθθθs = 5
o
 

Figure 13.6. Highly oblate heat shield designs, e = -0.968. 

    
                      a) Trajectory profiles                      b) Close-up of first 340 s of trajectory 

Figure 13.7. Trajectory of design D from Table 13.1.  

While Qs,rad slowly increases with rn/d, Qs,cond strongly decreases, and Qs,tot levels off 

at rn/d ≈ 4.0 for this trajectory. Thus, a spherical segment with an elliptical base and 

θs = 5
o
, shown in Figure 13.6(c), produces nearly optimal results in Figure 13.1. 

Using a spherical segment geometry may alleviate any static longitudinal instabilities 

produced by sonic line movement on some blunted cone designs. Design D’s 97% 
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increase in drag area over Orion’s reduces Qs,tot  to 38 kJ/cm
2
, which is near Apollo 

4’s maximum heating listed in Table 7.4. While e = -0.968 for a heat shield may not 

be presently realistic for first manned Mars return missions, this result indicates the 

eccentricity of the heat shield for a given mission profile has a strong effect on Qs,tot. 

Eccentricity increases the surface area, and thus, indirectly increases drag area at a 

higher rate than increasing the heat shield mass, thus reducing BC. Conclusions have 

not being made concerning whether adding e or increasing the d of a circular base 

cross section is a better means to increase drag area. Similar effects would be 

expected by increasing d to produce a larger drag area. 

 
Figure 13.8. Comparison of nose radius on Qs,tot and qs,max generated along the trajectory of 

design D.  

The design variable distributions for the Pareto frontiers that include Designs 

A – D are given in Figure C.0.1 – Figure C.0.4. For the L/D = 0.5, SS lower mass 

case, Fig. Figure C.0.1(a) indicates that both θs and α are relatively constant. The 

eccentricity varies between 0.52 and 0.72 and increases with pxrs. The transformation 

parameter n2 varies between 1.49 and 1.73 until the Pareto frontier’s heat load spikes 

around pxrs = 1750 km, at which point n2 increases to 2.0. The time variables in 

Figure C.0.1(b) and (c) slightly vary in order to increase cross range, but a few of the 
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bank angles vary dramatically. Figure C.0.1(d) indicates the bank angles that vary the 

most are φb,0, φb,1, φb,5, and φb,6. For this case, the trajectory variables were changed 

more by the optimizer than the geometric variables in order to produce the high cross 

range. For the L/D ≈ 0.3, Orion CEV, projection at 10,000 kg case, Figure C.0.2 

shows that the time and banks angle design variables vary more dramatically than for 

the previous case. The L/D = 0.3, SS lower mass case varied both more dramatically, 

as shown in Figure C.0.3. The θs ≈ 23
o
; the other geometric variables are shown to 

vary, but not to vary the aerothermodynamics dramatically. This explains why the 

Pareto frontier’s heat load Qs,tot does not more than 10% for pxrs from 200 to 1100 km. 

Figure C.0.4 shows similar for the L/D = 0.3, SC with fixed hb,HS = 3.43 m, lower 

mass case. It would make sense for the design variable distributions to the higher 

mass Pareto frontiers to have similar behavior. As a result, it can be concluded that 

the flatness of the Pareto frontiers to generated due to the optimizer not changing the 

geometric features dramatically once it finds a combination of geometry and 

trajectory that minimize heat load and maximizes cross range. It concurrently varies 

the geometry slightly while making greater adjustments to α and the trajectory 

variables.   

13.2. Maximizing pdwn and minimizing Qs,tot 

Pareto frontiers in Figure 13.2 indicate that the maximum down range pdwn is 

constant at ~26,000 km and does not increase with L/D for the given set of 

constraints. The main constraint on the down range has been shown to be the time 

constraint. As a result, Figure 13.2 indicates that there is no advantage to having a 
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higher L/D if only high down range is required. A discussion on the effects of 

relaxing the α – ε constraint would be similar to the one above. Designs E – H are 

based on upper mass estimates and listed in Table 13.1. Each of the Pareto frontiers 

has nearly constant Qs,tot for 5000 km ≤ pdwn ≤ 26,000 km. The relatively leveled 

portion of these Pareto frontiers have Qs,tot that closely match the relatively leveled 

portions of the Pareto frontiers in Figure 13.1. Since all the optimizations occur at the 

same VE and γE and the Pareto frontiers’ Qs,tot closely match, the contributions of Qs 

and qs,max would likely be similar between the two sets of Pareto frontiers. Figure 13.9 

shows the base cross sections of designs E and G, and that the higher L/D produced a 

31.6% more eccentric heat shield.   

                 
a) Design E, n2 = 1.73, e = 0.537     b) Design G, n2 = 1.59, e = 0.408 

Figure 13.9. Base cross sections for Designs E & G. 

Shown in Figure 13.10, the optimal down range trajectories have longer 

durations than optimal cross range designs. The higher mass Orion CEV case design 

F is shown in Figure 13.11 to decelerate the deepest in the atmosphere before 

skipping. The effects of the ballistic coefficient on the minimum altitude of this part 

of the trajectory for the designs shown in Figure 13.10 and Figure 13.11 can be 

compared using Table 13.1, and it does follow the established understanding that a 

lower ballistic coefficient, for a given L/D, allows a vehicle to decelerate higher in the 
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atmosphere. The Orion CEV with a mass of 13,100 kg is listed as Design F and is 

projected to have nearly the same trajectory as the optimal spherical segment Design 

G. Prior to the first deceleration peak, each design experiences its peak heat flux. For 

these cases, td ≈ 75-85 s. The designs with larger mass experience peak heating at 1.2 

km deeper in the atmosphere. This corresponds to an 18% increase in air density and 

results in a 12% increase in peak qs,conv and a 25% increase in peak qs,rad.  

 
a) Altitude profiles 

 
b) Close-up of first 320 s of trajectories 

Figure 13.10. Comparison of trajectories of optimal cross range designs B & C 

and optimal down range designs F & G. 
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Figure 13.11. Comparison of trajectories of Designs B, D, F, and H for first 320 s. 

 

     
a) Trajectory profiles   

 
          b) Close-up of first 340 s of trajectory 

Figure 13.12. Trajectory of design F from Table 13.1, Orion CEV projection at 13100 kg.  
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Trajectory profiles for design F are provided in Figure 13.12 to give one way to use 

bank angle control to produce a 25,960 km down range. Six bank angles with 

different durations were required to produce this trajectory. The deceleration load is 

shown to meet the 5-g upper limit also during the second entry.  

The design variable distributions for Pareto frontiers with designs E – H and 

the L/D = 0.3, 5-deg SS with fixed hb,HS = 3.43 m, upper mass case are provided in 

Figure C.0.5 – Figure C.0.9. For the L/D = 0.5, SS upper mass case, the geometric 

variables are relatively constant until the increase in Qs,tot around pdwn > 26,000 km 

when the designs have either approached or reaching the 1 hr duration constraint. For 

this Pareto frontier, the time variables are varied more than the bank angles. For 2000 

< pdwn < 6000 km, t4 decreases with increasing down range in order to decelerate the 

vehicle less by allowing the vehicle to skip sooner. The φb,4 is shown to have a value 

near 90
o
 for this set of down ranges, and the value of φb,3 is relatively constant at 

109
o
. As a result, having φb,4 ≈ 90

o
 rotates the lift vector from pointing significantly 

into the atmosphere to nearly horizontal. The scatter in values for t1 – t4 is due to the 

high scatter in values for φb,0, and thus the optimizer slightly shifted the time variables 

and kept the bank angles nearly constant. This shows that the trajectory is not 

sensitive to φb,0 for trajectories with down ranges less than 5400 km. For the higher 

down ranges near 25,000 km, the values of φb,0 have become stable.  

The scatter of a design variable can be derived from at least two possible 

reasons. The first is that some of the time and bank angles are not within the 

trajectory. In this case, the variables are randomly varied by the optimizer and don’t 

affect the trajectory, thus showing up as a scatter on the distribution plot. This can be 
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seen in Figure C.0.5(c) for variable t6 for 2000 < pdwn < 6000 km in which it varies by 

> 1000 s. Note that φb,6 is initiated at t6 and the amount that φb,6 varies Figure C.0.5(f) 

compared to the other bank angles. The final bank angles and times become important 

for the longer duration trajectories, but are shown to be unnecessary for the lower 

values of down range. The second cause for scatter is the insensitivity of a 

vehicle/trajectory design to a given design variable. This is exemplified in the 

behavior of φb,0 discussed above.  

For the L/D = 0.27, Orion CEV, projection at 13000 kg case, Figure C.0.6(a) 

shows that t2 – t4 vary by more than 20 s in varying down range from 2400 km to 

4800. The corresponding bank angles are shown in Figure C.0.6(c). For this set of 

down ranges, some of the designs points t5 and t6 are not within the trajectory designs, 

but they are used in the trajectories with high durations to modify the bank angles for 

the second entry, allowing the optimizer to produce trajectory designs within g-load 

limits. For the L/D ≈ 0.3, SS upper mass case, the design variable distributions show 

that the combination of bank angles employed for the initial entry period use full lift 

up with φb,4 = 0
o
 for 3400 km < pdwn < 26,000 km. Figure C.0.7(d) shows the 

transition of φb,4 as down range is increased from 2600 to 3400 km. The L/D = 0.3, 

SC with fixed hb,HS = 3.43 m, upper mass case is a good example of a case where 

geometric variables and α are held constant by the optimizer, as shown in Figure 

C.0.8(a). As a result, this Pareto frontier that includes design H is produced solely by 

varying the bank angle profile. Note that not all the trajectory variables vary greatly 

for 8000 km < pdwn < 24,000 km, but they vary at least slightly. The time t4 decreases 

the most dramatically out of all the time variables for this set of down ranges. This 



 

 206 

 

may represent a more sensitive region of the trajectory design space, in which more 

time and bank angle design variables may be needed. Of the bank angles, φb,5 varies 

the most for this set of down ranges, as shown in Figure C.0.8(e). The design variable 

distributions for the L/D = 0.3, 5-deg SS with fixed hb,HS = 3.43 m, upper mass case 

are provided in Figure C.0.9. It shows that the time and bank angles vary and have a 

coherent behavior. Among some of these solutions, the conditions at which φb,4 is 

initiated to release the vehicle from the atmosphere (in order to produce a skip) is 

shown to be directly related to the total down range.    

Surface area and volumetric comparisons of the Orion CEV to the Apollo CM 

indicates scaling is proportional to roughly to surface area. If the Apollo CM’s total 

surface area is approximately 31 m
2
 and the Orion CEV’s is approximately 51 m

2
, 

then assuming a 5800 kg mass and a surface area ratio of 1.645 renders a projected 

Orion CEV mass of 9500 kg. The current mass estimated for Orion is assumed to be 

approximately 10,000 kg, and current unpublished estimates indicate that it’s 

currently between 9000 and 10,000 kg. As a result, this entry vehicle geometry 

roughly scales with surface area. This means that the ballistic coefficient stays 

approximately constant at a values of approximately 340 kg/m
2
 for α = -17.0

o
. A 

surface area comparison volumetric efficiency for the Orion CEV, using Eq. (2.16), is 

~85%, assuming a total volume of 31 m
3
 and total surface area of 56 m

3
.   

As a result, to match the drag area of optimal design D in Table 13.1 with the 

Orion geometry, the mass would be ~20,300 kg. However, now it has a total volume 

of 63 m
3
, which is 203% larger than the current Orion CEV, having much more 

volume than required. The resulting benefit gained from having a larger drag area is 
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completely lost by the higher mass, assuming that scaling the Orion geometry further 

would exhibit the same behavior as scaling up Apollo.  

The optimizer determined that a lower volumetrically efficient geometry 

design D would be capable of reducing the heat load, indicated by a lower BC. Since 

one of the mission requirements for this research is to match the required pressurized 

volume for the Orion CEV as much as possible while maintaining the specified 

minimum size requirements, listed in Chapter 5, the decrease in volumetric efficiency 

in Eq. (2.16) is accomplished by increasing surface area. If a 57.5
o
 (arbitrarily 

chosen) elliptical conical frustum is chosen to connect with design D in Figure 

12.9(a) and (b) with a length of 1.986 m, then volumetric efficiency is 64%, assuming 

a total surface area of 100.4 m
2
 and a total volume of 48.0 m

3
. This tradeoff in 

geometric features renders a 44% drop in Qs,tot from design B (Orion) to design D for 

the desired pressurized volume.  Additional affects such as the required structure and 

a chosen crew compartment geometry are not integrated into this analysis and will 

probably reduce this benefit in heat load, though a high order study would be 

necessary to determine the reduction. Correlating the mass and shape of one entry 

vehicle with another of completely different shape probably does not create a direct, 

linear relationship. 
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Chapter 14. Comparison of Lunar Return and 

Mars Return 

Comparisons are provided in this chapter regarding the lunar and Mars return 

results including (1) a discussion of how the results for lunar and Mars return 

compare, (2) the effects of changing entry velocity and the time constraint on 

maximizing down range, (3) the effect of a 31% mass increase on trajectory design, 

and (4) trends showing the effects of ballistic coefficient and drag area on stagnation-

point heat load. 

 For ease of viewing and comparison, the Pareto frontiers for both lunar and 

Mars return are provided together in Figure 14.1 and Figure 14.2 respectively for 

maximizing cross range and Figure 14.3 and Figure 14.4 respectively for maximizing 

down range. First, the L/D = 1 cases are not provided for Mars return, VE = 12.5 km/s, 

since the initial designs for the optimization had impractical Qs,tot greater than 190 

kJ/cm
2
. Even the L/D = 1 cases for lunar return, VE = 11 km/s, provide heat loads that 

are so extravagant for lunar return that there may be no advantage from an overall 

systems perspective to utilize this case in comparison to L/D = 0.3 and 0.5 cases. 

With its heat loads ranging from 88 to 131 kJ/cm
2
, the 40% increase in mass from 

design A to design E produces an increase in heat load of 43.1 kJ/cm
2
 that is greater 

than the 30 kJ/cm
2
 experienced by the manned Apollo CM missions.

41
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                         a) L/D = 0.3, 0.5, and 1.0 Pareto frontiers 

 
b) Close-up of L/D = 0.3 and 0.5 Pareto frontiers 

Figure 14.1. Pareto frontiers for maximizing cross range and minimizing stagnation-point heat 

load, VE = 11 km/s. 

 
Figure 14.2. Pareto frontiers for maximizing cross range and minimizing stagnation-point heat 

load, VE = 12.5 km/s. 
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a) L/D = 0.3, 0.5, and 1.0 Pareto frontiers 

 
b) Close-up of L/D = 0.3 and 0.5 Pareto frontiers 

Figure 14.3. Pareto frontiers for maximizing down range and minimizing stagnation-point heat 

load, VE = 11 km/s. 

 
Figure 14.4. Pareto frontiers for maximizing down range and minimizing stagnation-point heat 

load, VE = 12.5 km/s. 
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The maximum cross range for a given case is larger for Mars return than for 

lunar return. For L/D = 0.5, the Pareto frontier becomes vertical for lunar return at 

~1550 km and for Mars return at 1850 km, a 19.4% increase. For L/D = 0.3, there is a 

21.0% increase. For the L/D = 0.27 Orion CEV cases, there is a 12.5% increase. The 

lower percentage increase is probably due to fixing α and thus restricting the 

optimizer from increasing L/D in order to maximize cross range.  

The resulting increase in maximizing down range is subtle when increasing 

from lunar return to Mars return. As a result, a brief investigation of the effects of 

changing entry velocity and the time constraint on maximizing down range was 

conducted. Figure 14.5(a) indicates that for VE ≥ 9 km/s, the Pareto frontiers becomes 

vertical at down ranges of approximately 26,000 km. The VE = 8.5 and 7.7 km/s cases 

provided maximum down ranges of 4000 and 2300 km respectively as shown in 

Figure 14.5(b), for the given set of bank angle controls. Since the Pareto frontiers for 

VE ≥ 9 km/s have relatively identical maximum down ranges and designs E – H for 

lunar and Mars return all have tf approaching the limit of 1 hr, the effects of adjusting 

the time constraint on the optimization has been completed. With the adjustment of 

the time constraint, the down ranges for both cases are shown in Figure 14.6 to 

increase and decrease relatively to the same extent. The maximum down range is 

12,000 km for tf < 1600 s, 44,000 km for tf < 7200 s, and 50,000 km for tf < 10900 s. 

While the percentage increase from tf < 1600 s to tf < 3600 s is 117%, it is 69.2% for 

the increase from tf < 3600 s to tf < 7200 s, and it is 13.6% tf < 7200 s to tf < 10900 s. 

A final duration tf constraint between 1600 s and 7200 s provides the greatest 

variation in down range.  
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                       a) Pareto frontiers             b) Close-up of solutions for  

    VE = 7.7, 8.5, 8, & 9.5 km/s 

Figure 14.5. Comparison of optimal solution sets for VE from 7.7 to 12.5 km/s for L/D ≈ 0.3, SS 

lower mass, e = -0.968 IC case.  

 
Figure 14.6. Comparison of optimal solution sets with maximum durations from 1600 to 10,900 s 

for lunar and Mars return for L/D ≈ 0.3, SS lower mass, e = -0.968 IC case. 

A comparison of maximum down range trajectories for the Orion CEV at 

10,000 kg is provided in Figure 14.7 for design G from lunar return and trajectory for 

Mars return that is within 800 km of the down range of design G. The elegance of the 

bank angle profile solution can be seen in the deceleration of the Mars return case 

during the initial 200 s to a velocity very similar to the lunar return case, as shown in 

Figure 14.7(c) using the bank angle controls shown in Figure 14.7(d). As expected, 
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from that point on in the trajectory, the rates of increase in down range for both cases 

are relatively the same, as shown in Figure 14.7(a) and (d). 

         
  a) ht, V∞,  and pdwn profiles                                     b)  φφφφb, V∞,  and pdwn profiles 

          
          c) ht, V∞,  and pdwn profiles for first 400 s              d) φφφφb, V∞,  and pdwn profiles for first 400 s  

 
e) ht, φφφφb,  and pdwn profiles for first 400 s      

              
Figure 14.7. Comparisons of lunar and Mars return trajectories for the Orion CEV at 10,000 kg, 

for pdwn ≈ 25,500 km with lunar Design G and Mars Orion lower mass cases. 
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 Note the variation in bank angle profiles between the two cases in Figure 14.7(d) and 

that after the initial deceleration, the bank angle profiles almost match in Figure 

14.7(b) and (d). The difference in execution time of the final bank in the trajectory, 

shown in Figure 14.7(b) is irrelevant since both are executed above the sensible 

atmosphere with altitudes above 250 km. The bank angle profiles are shown in Figure 

14.7(e) against the altitude profiles to determine where in the trajectory with respect 

to the first trough are the primary changes in bank angle produced. For both cases, all 

bank angles adjustments are completed within the first 150 s and before the end of the 

first trough. Design G’s bank angle profile is listed in Table 12.1, and the last bank 

angle adjustment from 104.8
o
 to 17.8

o
 represents a rotation of the lift vector to nearly 

full up, thus allowing the entry vehicle to skip out of the sensible atmosphere.           

The effect of a 31% increase in mass of the Orion CEV from 10,000 kg to 

13,100 kg for Mars return is provided in Figure 14.8 assuming nearly identical down 

ranges of ~26,000 km and cross ranges with 100 km of each other. Mars return design 

F, listed in Table 13.1, is shown to nearly match the 10,000 kg Orion CEV case for 

velocity and down range profiles in Figure 14.8(a) and (d). The more massive Orion 

CEV is shown in Figure 14.8(c) to have a minimum altitude of 56.25 km, which is a 

3.18% decrease in minimum altitude below the 10,000 kg Orion CEV that has a 

minimum altitude of 58.10 km. This 1.85 km deeper trajectory produces a 30.9% 

increase in the radiative heat load and a 15.3% increase in convective heat load, 

resulting a total increase in heat of 25.2%, with Qs,tot = 66 kJ/cm
2
 for the 10,000 kg 

Orion CEV and Qs,tot = 82.6 kJ/cm
2
 for the more massive design F. The effect of the 

higher density on heat loads for entry at hyperbolic velocities is explained in detail 
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  a) ht, V∞,  and pdwn profiles                                            b)  φb, V∞,  and pdwn profiles 

               
          c) ht, V∞,  and pdwn profiles for first 400 s              d) φb, V∞,  and pdwn profiles for first 400 s  

 
e) ht, φb,  and pdwn profiles for first 400 s               

     
Figure 14.8. Comparisons of optimal Mars return trajectories for the Orion CEV at 10,000 kg 

and 13,100 kg, for pdwn ≈ 26,000 km. 
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 in Chapter 10. The greatest change between the two trajectory designs, assuming a 

31% increase in mass for the production of 26,000 km down range and cross ranges 

within 100km of each other (pxrs ≈ 540 km +/- 50 km) is the bank angle profile. 

Figure 14.8(d) shows the necessary bank angle controls to keep the velocity profiles 

of the two geometries to be similar. The final bank angle of 58
o
 is common to both 

trajectory designs. The sensitivity of the heat load to the greater mass could be more 

easily noticed by its 31% larger ballistic coefficient with a value of 440 kg/m
2
.  

The effects of ballistic coefficient on heat load, which is one of the most 

sensitive parameters of atmospheric entry, have been correlated in Figure 14.9 for 

both lunar and Mars return. The data in Figure 14.9 includes the optimal designs from 

Table 12.1 and Table 13.1 and the non-optimal initial heat shield and trajectory 

designs from Table 11.3 and Table 11.4. The entire data set is shown in Figure 

14.9(a). Disregarding the L/D = 1.0 results for both lunar and Mars return for ballistic 

coefficient (BC) values greater than 900 kg/m
2
, regression curves have been 

generated, shown in Figure 14.9(b), with R
2
 values of at least 86%. This indicates that 

the heat load increases linearly with ballistic coefficient. Additionally, the rate at 

which heat load increases with ballistic coefficient at an entry velocity of 12.5 km/s is 

a factor of 1.59 greater than the rate at 11 km/s. For lunar return, the correlation is  

Qs,tot = 0.054BC + 7.289,           (14.1) 

with a R
2
 value of 0.860. 

For Mars return, the correlation is  

Qs,tot = 0.140BC + 15.23,            (14.2) 

with a R
2
 value of 0.944. 
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                       a) Complete data set            b) Correlations for 180 < BC < 600 kg/m

2
 

Figure 14.9. Trends for the effects of BC on Qs,tot for lunar and Mars return.  

Similar correlations have been made for this data set for heat load against drag area 

D/q∞ = CDS in Figure 14.10. The entire data set is included in Figure 14.10(a), and 

correlations were generated for D/q∞ ≥ 16 m
2
 for lower and upper mass estimates in 

Figure 14.10(b). These also produced linear relations although it would be more 

logarithmic if the drag areas less than 16 m
2
 were included. As expected, the heat 

load decreases with an increase in drag area since a geometry with a greater drag area 

for a given mass is able to decelerate in the presence of a lower air density. For lunar 

return, the correlation for results with the lower mass estimate is 

Qs,tot = -0.680D/q∞ + 48.01,              (14.3) 

with a R
2
 value of 0.932. 

For lunar return, the correlation for results with the upper mass estimate is 

Qs,tot = -0.761D/q∞ + 54.81,               (14.4) 

with a R
2
 value of 0.997. 

For Mars return, the correlation for results with the lower mass estimate is 

Qs,tot = -0.947D/q∞ + 93.80,             (14.5) 

Design D 

Apollo, Orion 
CEV (Design C) Design F 

Design H, e = -0.968 

Design H 

Design D 

Design E 

Design G 

Orion (Design F) mEV = 13mT 

Orion (Design B) mEV = 10mT 
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with a R
2
 value of 0.970. 

For Mars return, the correlation for results with the upper mass estimate is 

Qs,tot = -1.043D/q∞ + 113.6,             (14.6) 

with a R
2
 value of 0.968. 

 
(a) Complete data set 

 
(b) Correlations based on data with D/q∞ > 16 m

2
 

 

Figure 14.10. Trends for the effects of drag area on Qs,tot for lunar and Mars return. 
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Even though these correlations may have fewer number of points per 

regression curve and thus, may be less accurate than the other correlations, these do 

provide an initial impression to how heat load varies with drag area for the conditions 

of this optimization. Due to the few number of data points, extrapolation in either 

direction is not suggested. The lower and upper mass lunar return cases have a 11.9% 

difference in slope while it is 9.8% for Mars return. The lower mass Mars return case 

has a 39.3% increase in slope magnitude over the lower mass lunar return case. The 

upper mass Mars return case has a 37.1% increase in slope magnitude over the upper 

mass lunar return case. As a result, the rate of decrease of Qs,tot with D/q∞ is increased 

in magnitude by ~11% with the upper mass estimate; and the rate of decrease of Qs,tot 

with D/q∞ is increased in magnitude by ~38% with the Mars return case. The 

correlations in Figure 14.9 and Figure 14.10 can be useful in estimating the expected 

Qs,tot for a particular entry vehicle once detailed mass and drag area estimates are 

completed. For the case of design D, applying different crew compartment geometries 

will produce a range of entry vehicle masses, and thus, the corresponding heat load 

could be estimated.    

14.1. Limitations of the optimization methodology 

 The methodology that generated these results is limited primarily by the 

ability of the optimizer to find the global optimum. Part of the optimizer’s capability 

is dictated by its settings, which is the primary reason why the parametric analysis 

provided in Chapter 9 was conducted: to determine which optimizer settings 

generated the most optimal results. An evolutionary algorithm does not guarantee that 
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the determined solution is the global optimum of the entire design space. However, 

depending on whether the problem is well-posed, the optimizer is capable of finding 

an engineering optimum that can be categorized a good design. With the initial setup 

described in Chapter 10, the optimizer could not locate trajectories with acceptable 

deceleration loads for inhabited Mars return due to at least two reasons: (1) the entry 

velocity of 15 km/s was not realistic and (2) the trajectory design space was too 

massive for the optimizer to effectively search. Once it was determined that the heat 

loads were unrealistic with current and near future material technologies, the entry 

velocity was reduced to 12.5 km/s; all the specific reasons are mentioned in Chapter 

5. Incorporating the entry corridor methodology described in Chapter 11 reduced the 

trajectory design space and allowed for the optimizer to effectively search the portion 

of the design space that would be deemed flyable for a given BC and L/D.  These two 

additions rendered the problem well-posed for the tools available.  

One more observation, which may indicate a limitation in the optimizer’s 

capability by itself, is that that the optimizer tends to settle on a particular geometric 

design for almost an entire Pareto frontier and only modify the trajectory design (φb – 

profile). This may result for several reasons. First, the local geometric design space is 

not significantly sensitive compared to the trajectory design space. Note that the 

optimizer does not distinguish the geometric from the trajectory design variables; 

they are all seen simply as design variables. This would suggest that if the objective 

functions were sensitive with one or two geometric design variables, then the 

optimizer would change them. Second, when the optimizer greatly changes the 

geometric design, the trajectory design variables would need to be greatly modified to 
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produce an overall feasible design. Otherwise, when the optimizer generates a greatly 

different geometric design with similar trajectory design controls, then new overall 

design will be infeasible due to trajectory constraints being violated. This was 

observed to not always occur. There are several cases where the optimizer modified 

the geometric design successfully. Optimal design A for lunar return listed in Table 

12.1 has ~10
o
 increase in θs and a great difference in time and bank angle design 

variables. For Mars return L/D = 0.5 designs, the optimizer modified eccentricity 

from 0 to -0.621 and also modified the transformation parameter n2 from 2.00 to 1.66 

for design A listed in Table 13.1. It also modified the trajectory design variables 

successfully. However, for extremely significant changes in geometric design, the 

optimizer requires assistance with searching other parts of the design space. This is 

the case for both lunar and Mars return for L/D = 0.3 where the geometric design 

space is much greater in size than at L/D = 0.5 or 1.0. Shown in Figure 12.3, the L/D 

= 0.3, SS lower mass, Orion IC case has the Orion geometry with a feasible trajectory 

design placed within the initial population of the optimization. The optimizer found 

an optimum geometric design that does not vary much from the original Orion 

geometry. The L/D = 0.3, SS lower mass, e = -0.968 IC case represents a case starts 

with a highly oblate eccentricity geometry with a feasible trajectory design in the 

initial population. The 39% decrease in heat load Qs,tot performance, shown in Figure 

12.3, is due to the highly eccentric design having a greater drag area and L/D. This 

suggests that the optimization setup currently needs assistance to run the global 

optimization for the case where the performance can be extremely different between 

geometric designs. The optimizer can only change the geometric design variables to a 
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certain extent for a given amount of change in the trajectory design for the resulting 

overall design to be feasible. This makes sense, and intelligently automating the 

optimization process can only be completed to a certain extent. The background 

understanding of the researcher directs the optimizer into specific regions of the 

design space and renders the optimization the most useful. This methodology is 

applied by utilizing different initial designs in a few of the optimizations, as 

exemplified earlier with the Orion CEV and high eccentricity L/D = 0.3 cases.  

With all of this in place, the optimization setup is capable of finding good 

solutions that improve on the state-of-the-art, if they exist. There is probably more 

than one φb – profile that renders a similar heat load and range for a given geometric 

design, that is, a different combination of bank angles and times at which the bank 

angles are initiated. Additionally, there is probably more than one combination of 

geometry and trajectory design that produces the same heat load and range. However, 

applying the global search capability of the optimizer in this way suggests that only 

modest improvements if any would be generated, if the evolutionary algorithm is 

allowed to run the optimization for a longer duration and with a larger population 

size. The more well-posed a problem is, the higher chance that designs with higher 

performance can be determined, if they exist. Either way, the current optimization 

setup is capable of reporting the optimal solutions from all the thousands of feasible 

solutions it discovers, and these have been analyzed in this work.  
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Chapter 15. Conclusions 

15.1. Contributions to the State of the Art 

 This research provides the following contributions to the state of the art: (1) 

broadening the heat shield design space to include new non-spherical, periodic 

designs, (2) a global design optimization methodology that can be applied to any 

atmospheric entry, and (3) optimal performance trade-off relationships for several 

heat shield and trajectory configurations.   

 First, the design space has been broadened to include new non-spherical, 

periodic heat shield designs based on three axial profiles and three main types of base 

cross sections. Axial profiles consist of spherical segments, spherically-blunted cones, 

and power laws. Base cross sections include rounded-edge polygons, ellipses, 

rounded-edge concave polygons, and blendings of these. Base cross sections are 

generated using the superformula of the superellipse, which provides a continuous 

design space between these three types of cross sections for each polygon type. This 

research indicates that a highly-blunt, eccentric heat shield design decreases 

volumetric efficiency but increases drag area to reduce heat loads by more than 35% 

with an oblate eccentricity of 0.968. Since heating is one of the most sensitive 

performance characteristics for atmospheric entry vehicles, eccentricity may be a 

means to enable missions with extremely high heat loads.  

 Second, a design methodology has been implemented in a global optimization 

analysis of Earth entry heat shields. An aerothermodynamic code has been developed 

to quickly estimate the performance of heat shields and filter out impractical designs. 

Since high-order computational fluid dynamics would render the global optimization 
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infeasible from a computational time standpoint, the aerothermodynamics code 

utilizes low-order methods. It is applied with a high-order 3DOF trajectory model to 

balance the need for fidelity with the desire to have practical computational times. 

Techniques have been implemented to reduce the runtime of the two codes from 20 

min for a 2000 s trajectory to 10 s using interpolation tables and other techniques. An 

entry corridor methodology has been utilized to focus the global search on that 

portion of the trajectory design space that would be expected to be applied to an 

actual mission. With this reduced trajectory space, the global search capability is able 

to find feasible initial trajectory designs for a given heat shield design; in other words,  

it is able to find a bank angle profile solution without being given information a 

priori. This is not possible utilizing the search capabilities of POST, which requires 

the user to implement an extensive parametric trade study before locating a feasible 

trajectory design. This work utilizes UPTOP to automate this process with its global 

search capability. Note that POST has advance capabilities of many types that would 

not be used in this fundamental research, and that much of those are not present in 

UPTOP. Additionally, UPTOP is capable of both single and multi-objective function 

optimizations. The design optimization methodology implemented in this work for 

Earth entry can be applied to any atmospheric entry, including Mars, Venus, and 

moons such as Titan.   

 Third, for lunar and Mars return, this work provides optimal trade-off 

relationships between performance parameters including down range, cross range, 

stagnation-point heat flux, and stagnation-point heat load for several heat shield and 

trajectory configurations. The optimal trade-off curves provide both locations in the 
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design space that are ideal to take advantage of and those that should be avoided. It 

also highlights any performance sweet spots and performance walls for the given set 

of conditions. These optimal trade-off relationships are the resulting Pareto frontiers 

from the simultaneous optimization of any two performance parameters. Since a 

Pareto frontier is made up of several heat shield and trajectory designs, this work also 

provides the design variable distributions for several Pareto frontiers. Together, all 

three contributions provide a means to determine the geometric features that advance 

the state of the art in Earth entry heat shield hypersonic aerothermodynamic 

performance.  

15.2. Summary of Results 

15.2.1. Initial Lunar Return and Mars Return Results 

Optimization has produced optimal heat shield configurations for Earth entry 

at VE = 11 and 15 km/s, using two objective function sets: (1) maximizing pxrs and 

minimizing Qs,tot and (2) minimizing Qs,tot and qs,max. For VE = 11 km/s with a 6 g-

limit, the spherical segment is the optimal axial profile for maximizing pxrs and 

minimizing Qs,tot. Direct entry trajectories are best for pxrs ≤ 250 km; then skipping 

trajectories are utilized. For optimal designs, Qs,tot is 14.7, 22.6, and 29.4 kJ/cm
2
 for 

pxrs of 500, 1000, and 1500 km respectively. The spherically blunted cone and power 

law solutions are disguised spherical segments for pxrs > 750 km. Optimal designs for 

minimizing Qs,tot and qs,max have direct entry trajectories, and the selected spherical 

segment and blunted cone geometries are equally optimal.  
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For VE = 15 km/s with a 12 g-limit, neither the optimal blunted cone nor 

spherical segment is significantly better. Radiative heat transfer dominates convection 

in both heat flux and heat load. For the reported designs, the maximum convective 

heat flux was at most 16.4% of the maximum total heat flux, and the convective heat 

load was at most 28.4% of the total heat load. For maximizing pxrs and minimizing 

Qs,tot, the Qs,tot slightly increases for pxrs ≤ 1100 km. For optimal designs, Qs,tot is 64.5, 

65.2 and 98.3 kJ/cm
2
 for pxrs of 500, 1000, and 1500 km respectively. The significant 

difference in the blunted cone and spherical segment Pareto frontiers is not caused by 

differences in axial profile; instead it is caused by the higher sensitivity of radiative 

heat transfer to air density at hyperbolic speeds (V∞ greater than escape velocity). The 

blunted cone’s larger drag area allows the vehicle to decelerate with maximum 

heating at V∞ = 13.5 km/s and 2 km higher altitude with 40% less air density, thus 

reducing qs,max  and ultimately Qs,tot by 21%. The lower drag area is generated by the 

vehicle sizing routine that determined the spherical segment can satisfy the mission 

requirements with a smaller-sized vehicle. If both geometries have the same drag 

area, the blunted cone would provide only a 4% lower Qs,tot at 1000 km cross range. 

For minimizing Qs,tot and qs,max, the blunted cone produces an 8% lower qs,max. 

Although the optimal spherical segment and blunted cone designs produce nearly the 

same optimum Qs,tot with two different sets of curvature and shock layer thickness, a 

proper balance of convective and radiative heat transfer is necessary to minimize 

Qs,tot.  

For both entries, highly oblate eccentricity e = -0.968 maximizes drag area, 

allowing deceleration at higher altitudes, thus lowering both heat flux and heat load. 
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As more pxrs is required, drag area is traded-off with the need for larger L/D, by 

decreasing e. This behavior is consistent with the parametric analysis in Ref. [112]. 

An elliptical cross section rather than a parallelogram-form is optimal for L/D ≤ 0.50, 

corresponding to pxrs ≤ 1500 and 2200 km for VE = 11 and 15 km/s respectively. The 

parallelogram cross section could be applied to increase L/D beyond the capability of 

the elliptical cross section, which is expected for higher pxrs and lower peak g-limits. 

15.2.2. Final Lunar Return and Mars Return Results 

Optimization has produced optimal heat shield configurations for Earth entry 

from Mars return at VE = 12.5 km/s, using two objective function sets: (1) 

maximizing pxrs and minimizing Qs,tot and (2) maximizing pdwn and minimizing Qs,tot. 

Conclusions include the following: A hierarchy of three classes of blunt body 

geometries can be prescribed for reducing stagnation-point heat load: (1) blunt 

designs with axial profiles consisting of low θs or high θc and rn/d, and base cross 

sections with either oblate e or larger d. The resulting higher drag area allows the 

entry vehicle to decelerate higher in the atmosphere, (2) similarly blunt designs with 

circular base cross sections and diameters near the initially prescribed 5 m, and (3) 

slender designs with axial profiles consisting of high θs with highly oblate e base 

cross sections. Based on L/D requirements, a class may not be available; then the next 

class would likely be the best option. 

For Mars return, the Orion performs nearly optimally compared to spherical-

segment geometries with a circular base cross-section. However, an eccentric base 

cross section reduces heat load significantly. An oblate eccentricity of j/k = 4 reduces 
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the heat load from 65 kJ/cm
2
 to 40 kJ/cm

2
 by increasing the surface area, and thus, 

drag area at a higher rate than the increase in heat shield mass, thus allowing the 

vehicle to decelerate higher in the atmosphere. Although the minimum heat load 

geometry is the spherically blunted cone with an elliptical base cross section, a low θs 

spherical segment also provides nearly optimal performance since the heat load is 

nearly constant for rn/d > 4.0. 

This work agrees with current literature
1
 that L/D = 0.3 will produce more than 

the projected entry corridor width requirement of 0.4
o
. L/D = 0.3 produces a 

maximum cross range of 1100 km. L/D = 0.5 produces a maximum cross range of 

1600 km. For the given mission profile, designs with L/D = 1.0 are presently 

infeasible due to extremely high Qs,tot, generated since their ballistic coefficients are 

twice or thrice that of L/D = 0.3 and 0.5 designs.  

For both L/D = 0.3 and 0.5, a 30% increase in entry vehicle mass from 10,000 

kg produces 20-30% increase in Qs,tot. There is a tradeoff between volumetric 

efficiency and drag area that allows for a particular pressurized volume requirement 

to be maintained and thus keeping the mass increase a lower rate than drag area. As a 

result, there is a reduction in the stagnation-point heat load. This is indicated by the 

ballistic coefficient that can be reduced below the expected 340 kg/m
2
 value for the 

Orion CEV for lunar and Mars return.   

For lunar return, L/D = 0.3, 0.5, and 1.0 produce maximum cross ranges of 

950, 1500, and 3000 km respectively before the Pareto frontiers increase in Qs,tot 

dramatically. The L/D = 1.0 designs have highly oblate, rounded edge parallelogram 

base cross sections. A spherical segment of θs = 5
o
 with a highly oblate cross section 
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e = -0.968 produces both a 27% higher cross range and a 39% lower heat load than 

the Orion CEV at L/D = 0.27 due to its 41% greater drag area and 18.5% greater L/D. 

Increasing mass by 30% does not strongly affect the maximum possible cross range 

or down range, but it increases Qs,tot by at least 23%, 30.3%, and 44% for L/D = 0.3, 

0.5, and 1.0 respectively. 

There is not any advantage in maximizing down range and minimizing heat 

load to applying high L/D designs for VE = 11 and 12.5 km/s. The maximum down 

range pdwn is ~26,000 km. For both L/D = 0.3 and 0.5, a 30% increase in entry vehicle 

mass from 10,000 kg produces a 20-30% increase in Qs,tot. Maximum cross range 

increases by ~20% with an increase in entry velocity from 11 to 12.5 km/s. For this 

optimization setup, the heat load has been determined to increase linearly with 

ballistic coefficient. The rate at which heat load increases with ballistic coefficient at 

an entry velocity of 12.5 km/s is a factor of 1.59 greater than the rate at 11 km/s. 

15.3. Suggestions for Future Work 

A substantial amount of future work in atmospheric entry vehicles can be 

completed to improve upon both this work and the general understanding of the field. 

To increase the accuracy of the optimization results, the following additions could be 

made: 

• Account for corner radius. The work of Zoby
47

 may also assist in 

distinguishing heat shields of the same axial shape and cross-section but 

different corner radii. The corner radius geometry can also be added to the 3D 

mesh so that the surface pressure distribution accounts for it.   
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• Improve the method for estimating the shock-standoff distance for angles of 

attack, especially for the power law axial shape and in accounting for base 

eccentricity.  

• Use a more accurate method to determine the surface pressure distribution. 

For this work Newtonian Impact Theory was validated, but if the scope of the 

project were to include analyzing the boundary layer, advanced CFD would 

need to be applied. 

• Utilize a more detailed mass estimation study of manned and unmanned 

atmospheric entry vehicles.  

To increase the scope of the optimization, the following additions could be made: 

• Incorporate more axial shapes: the raked, biconic, and bent-biconic cones.  

• Include thermal material properties and temperature constraints.  

• Include a model for high temperature gas properties at 200000 ft, M∞ > 42. 

The Tannehill correlations are outside their range for these freestream Mach 

numbers.  

• Develop a method of determining the point of maximum heating for a general 

3D body. The velocity gradient could be modeled to determine the point of 

maximum convective heating for a general 3D body. Zoby
47

 provides some 

results based on the change in the velocity gradient in order to calculate the 

convection for values of rn/d > 2 more accurately than using the inverse 

square-root of the nose radius.    

Future work concerning atmospheric entry vehicles outside this optimization that 

would benefit the field: 
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• Conduct a feasibility study of the static stability of this work’s optimal 

geometries with the estimated required center-of-gravity locations, assuming 

different types of crew compartment shapes (conical frustum for Apollo CM 

and Orion CEV). Determine the dynamic stability using a six degree-of-

freedom trajectory analysis.  

• Analyze raked geometries to reduce cg-offset to generate desire L/Dtrim. There 

may be indication that AFE, a raked cone, is dynamically unstable, but this 

may be fixed by modifying the AFE configuration to have a crew 

compartment similar in shape to the conical frustum of the Apollo Command 

Module, which would be a topic for future work. 

• Determine whether sonic line movement is present on optimal geometries 

with higher eccentricity from this work.  

• Mitigating sonic line movement on raked cones and raked oblate spherical-

segments.  Sonic line movement produces static instabilities at geometries at 

specific M∞. Raked oblate spherical segment geometries could be generated 

with similar L/D and CD to AFE and determine how to make the sonic line 

stationary on leeward side’s shoulder.  

• Comparison of L/D = 1 – 2  slender body vehicles with both trajectory 

optimization and aerothermodynamic CFD. A study of their performance at 

lower entry velocities at which the heat load Qs,tot and heat flux qs,max are 

deemed feasible.  

• Analyze the performance of entry with two trim lift-to-drag ratios with a 

slender vehicle design. In this way, at high αtrim, produce low L/D with high 
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drag area and at low αtrim, produce high L/D to provide high cross range. 

Determine best combination of L/D values for minimizing heat load and 

maximizing cross range simultaneously.  

• Determine significance and viability of a two-stage entry vehicle. A blunt heat 

shield would be used to bleed off most thermal energy, and then a sharp 

vehicle with propulsion capability could be utilized to transit worldwide.  

• Determine possible Mars entry blunt-body geometries for manned missions. 

Analyze the Mars trajectory design space and recognize current limitations 

and employ global search capability to assist in locating feasible designs that 

meet mission requirements. 

• Correlating important flow characteristics observed in CFD to low-order 

methods. This could serve to update the low-order methods to improve 

accuracy. Feedback high-order analysis into low-order aerothermodynamic 

models to execute more accurate optimization.   

• Perform improved optimization to mitigate aerothermodynamic and boundary 

layer transition effects.  

• Determine wake effects/vehicle interactions for ballute-type heat shields.  

• Study laminar, transition, and turbulent boundary layer heat transfer on blunt 

bodies for M∞ > 25. Wind tunnel analysis of rounded-edge concave heat 

shields would help in investigating these phenomena. The Apollo Command 

Module’s heat shield experienced laminar heat transfer. Turbulent heat 

transfer is unknown at M∞ > 40, especially the effects of radiation cooling and 

convective-radiative coupling that reduce the total heat transfer flux. For a 
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phenomenon that increases exponentially with Mach number, the radiative 

heat transfer can easily be miscalculated for M∞ > 40.   

• Static and dynamic stability guidelines for inhabited atmospheric entry.  

• Flight tests and wind tunnel experiments for M∞ > 40 ranging up to M∞  = 55. 

This could provide arguably the most useful results concerning planetary entry 

at M∞ > 40. Current aerothermodynamic understanding of this region of 

freestream Mach numbers is modest. Since rolling moment experimental and 

flight data is almost nonexistent, measuring the rolling moment on both 

axisymmetric and non-axisymmetric heat shields would be beneficial. High 

temperature correlations, radiation and general heat transfer models could be 

produced for the first time. Hypersonic aerothermodynamic models can be 

improved. Some models do exist, but they do not apply well to M∞ > 40.  
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 Appendix A: Curve Fits to Kaattari’s Method 

A.1 θθθθ* – θθθθ*o as a function of ΦΦΦΦ* 

To determine θ*, Kaattari supplies Figure 6(b) from Ref. [55] that relates the 

difference θ* – θ*o as a function of Φ*. This relation varies with the normal-shock 

density ratio and their corresponding curve-fit equations with Φ* limits are included  
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For all equations in this set except ρ2/ρ1 = 12, for 0 < Φ* < 1 it is assumed that the 

difference θ* – θ*o is zero. For this region, the equation for ρ2/ρ1 = 12 is applied for 

normal-shock density ratios of twelve and greater. The equation for ρ2/ρ1 = 16 is not 

applied until Φ* > 17.5, and if it is used before this, the results could be erroneous 

since the curve fit was designed only for the noted ranges. Linear interpolation 

between two of the curves within this range of ρ2/ρ1 can be exercised to approximate 

the values of the difference for normal-shock density ratios that are not listed. 

A.2 c1 as a function of ρ2/ρ1 and εεεε  

Figure 9(a) from Ref. [54] shows how the shock correlation coefficient c1 varies with 

the normal-shock density ratio and the tangency angle ε and is curve-fitted (input ε in 

degrees) with indicated limits of applicability  





























≤<=××

××

×+×

≤<=
×

××

≤<=
×

××

=

,450,5

0.9999, = R                        

 20.23026450 +     

102.21715933 -101.15717926 -    

104.78956150 +102.31598093 -    

105.39975415 104.12212802-

,450,4

 

9998, 0.= R                     

 10.22140328 +107.60025063-  

108.78810663 -109.63317384 

,450,3
0.9987, = R                      

 30.21438038 +107.64482284-  

 101.16661976 + 101.93013729-

1

2

2

3-24-

36-47-

59-611-

1

2

2

4-

25-37-

1

2

2

4-

2-53-7

1

o

o

o

c

ε
ρ
ρ

εε

εε

εε

ε
ρ
ρε

εε

ε
ρ
ρε

εε

         (A.2) 

 



 

 236 

 



































































≤<=
×

××

××

≤<=×

××

××

≤<=×

××

××

≤<=
+

××

××

××

≤<=××

××

××

≤<=×

××

××

≤<=×

××

××

=

.400,22

0.9990, = R                        

10.20014809 +109.52531793-     

103.29553862 -102.95290942+    

106.46122093 -104.60808129

,400,20

0.9991, = R                         

 30.21011300 +109.44613956-     

103.50334207 -103.16638882+     

 107.49638803 -106.06112566

,400,16

0.9997, = R                        

 40.22155108 +108.09283123 -    

103.58846154 -102.54224815+    

105.34031912 -104.06700008

,400,12

0.9998,= R                         

 232157648 .0     

109.22392526 -102.01204775 +     

 102.69805855 -101.52078813 +     

103.32278424 -102.56915093

,400,10

0.9999, = R                        

 30.23240649 +   

 108.40015875 -103.31432550 +   

103.65809838 -101.62858238 +   

 102.99995789 -102.00439718

,5.420,8

0.9999, = R                        

 40.23184113 +104.54631057-    

101.56690529 -102.18083922 +    

 106.32411067 +109.07434828-

,5.420,6

0.9999, = R                         

232732751 0.+ 102.50199798-     

 102.09241117 -104.08148122+     

 102.69993388 -102.92464389-

1

2

2

3-

24-35-

47-59-

1

2

2

3-

24-35-

47-59-

1

2

2

3-

24-35-

47-59-

1

2

2

3-24-

35-46-

58-610-

1

2

2

3-24-

35-46-

58-610-

1

2

2

3-

24-36-

48-510-

1

2

2

3-

24-36-

4-95-10

1

o

o

o

o

o

o

o

c

ε
ρ
ρ

ε

εε

εε

ε
ρ
ρ

ε

εε

εε

ε
ρ
ρ

ε

εε

εε

ε
ρ
ρεε

εε

εε

ε
ρ
ρεε

εε

εε

ε
ρ
ρ

ε

εε

εε

ε
ρ
ρ

ε

εε

εε

    (A.2) 



 

 237 

 

Note that all the digits have to be included in order to maintain accuracy. If digits are 

removed, it is strongly recommended that the modified curve-fit be plotted to verify 

that the curve-fit is still valid throughout the entire range and to verify none of the 

curve-fits intersect each other. Interpolation for cases with normal-shock density 

ratios in-between the given curve fits has been tested and is completely feasible.  

A.3 c3 as a function of ρ2/ρ1 and εεεε  

The correlation constant c3 is also supplied in Figure 9(b) from Ref. [54], and the 

curve-fit equations (input ε in degrees) have been generated in this work 
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Because density ratios over sixteen may occur in the regions of maximum heat 

transfer during planetary entry, extrapolation is applied to the curve-fit for ρ2/ρ1 > 16.  
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Appendix B: Design Variable Distributions for 

Lunar Return Results in Chapter 12 

    
    a) Geometric design variables       b) Design variables t1 – t6                                 

 
    c) Design variables t7 – t11                                         d) Design variables φφφφb,0 – φφφφb,5  

  
 e) Design variables φφφφb,6 – φφφφb,8    f) Design variables φφφφb,9 – φφφφb,11 

Figure B.0.1. Design Variable Distributions for Pareto frontier of L/D = 1.0, SS lower mass case 

from Figure 12.1, for maximizing cross range and minimizing stagnation-point heat load, VE = 11 

km/s. 



 

 240 

 

   
    a) Geometric design variables                b) Design variables t1 – t4                                 

  
   c) Design variables t5 and t6                                             d) Design variables φφφφb,0 – φφφφb,4 

 
e) Design variables φφφφb,5 and φφφφb,6 

Figure B.0.2. Design Variable Distributions for Pareto frontier of L/D = 0.5, SS lower mass case 

from Figure 12.1, for maximizing cross range and minimizing stagnation-point heat load, VE = 11 

km/s. 
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    a) Design variables t1 – t4                                       b) Design variables t5 and t6                                                   

   
   c) Design variables φφφφb,0 – φφφφb,4        d) Design variables φφφφb,0 – φφφφb,6 for 400 < pxrs< 800 km 

Figure B.0.3. Design Variable Distributions for Pareto frontier of L/D = 0.27, Orion CEV 

projection at 10,000 kg from Figure 12.1, for maximizing cross range and minimizing stagnation-

point heat load, VE = 11 km/s. 
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    a) Geometric design variables                b) Design variables t1 – t4                                 

 
  c) Design variables t5 and t6                                             d) Design variables φφφφb,0 – φφφφb,4   

                  
 e) Design variables φφφφb,0 – φφφφb,6 for 500 < pxrs< 1000 km 

Figure B.0.4. Design Variable Distributions for Pareto frontier of L/D = 0.3, SS lower mass case 

from Figure 12.1, for maximizing cross range and minimizing stagnation-point heat load, VE = 11 

km/s. 
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    a) Geometric design variables                b) Design variables t1 – t6                                 

        
   c) Design variables t7 – t9                                                   d) Design variables t10 and t11                                                  

             

e) Design variables φφφφb,0 – φφφφb,5 for 2000 < pdwn < 10000 km       f) Design variables φφφφb,6 – φφφφb,8 for  

     2000 < pdwn < 10000 km  

Figure B.0.5. Design Variable Distributions for Pareto frontier of L/D = 1.0, SS upper mass case 

from Figure 12.2, for maximizing down range and minimizing stagnation-point heat load, VE = 

11 km/s. 
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g) Design variables φφφφb,9 – φφφφb,11 for 2000 < pdwn < 10000 km   h) Design variables φφφφb,0 – φφφφb,5  

      for 16
E3

 < pdwn< 30
E3

 km 

 
i) Design variables φφφφb,6 – φφφφb,11 for 15

E3
 < pdwn < 30

E3
 km 

 
Figure B.0.5 (continued)  Design Variable Distributions for Pareto frontier of L/D = 1.0, SS 

upper mass case from Figure 12.2, for maximizing down range and minimizing stagnation-point 

heat load, VE = 11 km/s. 
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    a) Geometric design variables         b) Design variables t1 – t4                                 

      
   c) Design variables t5 and t6                                d) Design variables φφφφb,0 – φφφφb,4 for  

0 < pdwn< 10,000 km        

     

                  e) Design variables φφφφb,0 – φφφφb,4 for                        f) Design variables φφφφb,5 & φφφφb,6  

                     15,000 < pdwn< 30,000 km               

Figure B.0.6. Design Variable Distributions for Pareto frontier of L/D = 0.5, SS upper mass case 

from Figure 12.2, for maximizing down range and minimizing stagnation-point heat load, VE = 

11 km/s. 
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    a) Design variables t1 – t4                                         b) Design variables t5 and t6                                                   

   
c) Design variables φφφφb,0 – φφφφb,4 for 0 < pdwn< 5000 km             d) Design variables φφφφb,0 – φφφφb,3 for  

              15,000 < pdwn< 30,000 km        

 
e) Design variables φφφφb,5 & φφφφb,6 

 

Figure B.0.7. Design Variable Distributions for Pareto frontier of L/D = 0.3, Orion CEV, 

projection at 10000 kg case from Figure 12.2, for maximizing down range and minimizing 

stagnation-point heat load, VE = 11 km/s. 
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    a) Geometric design variables                      b) Design variables t1 – t4                                 

                 
   c) Design variables t5 and t6                                  d) Design variables φφφφb,0 – φφφφb,3 for  

 2000 < pdwn< 10,000 km        

                                      

             e) Design variables φφφφb,0 – φφφφb,3 for                           f) Design variables φφφφb,4 – φφφφb,6 for  

                 10,000 < pdwn< 30,000 km                                      0 < pdwn< 30,000 km        

Figure B.0.8. Design Variable Distributions for Pareto frontier of L/D = 0.3, SS upper mass, e = -

0.968 IC case from Figure 12.2, for maximizing down range and minimizing stagnation-point 

heat load, VE = 11 km/s. 
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Appendix C: Design Variable Distributions for 

Mars Return Results in Chapter 13 
 

  
    a) Geometric design variables           b) Design variables t1 – t4                                 

   
   c) Design variables t5 and t6                                           d) Bank angle design variables  

Figure C.0.1. Design Variable Distributions for Pareto frontier of L/D = 0.5, SS lower mass case 

from Figure 13.1, for maximizing cross range and minimizing stagnation-point heat load, VE = 

12.5 km/s. 

 

 

 

 

 

 

 

 

 

 

 



 

 249 

 

   
    a) Design variables t1 – t4                                 b) Design variables t5 and t6                                                   

   
   c) Design variables φφφφb,0 – φφφφb,4     d) Design variables φφφφb,0 – φφφφb,6 for 550 < pxrs< 1000 km 

 
Figure C.0.2. Design Variable Distributions for Pareto frontier of L/D = 0.3, Orion CEV, 

projection at 10000 kg case from Figure 13.1, for maximizing cross range and minimizing 

stagnation-point heat load, VE = 12.5 km/s. 
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    a) Geometric design variables              b) Design variables t1 – t4                                 

    
   c) Design variables t5 and t6                                              d) Design variables φφφφb,0 – φφφφb,4   

                  
 e) Design variables φφφφb,0 – φφφφb,6 for 550 < pxrs< 1000 km 

Figure C.0.3. Design Variable Distributions for Pareto frontier of L/D = 0.3, SS lower mass case 

from Figure 13.1, for maximizing cross range and minimizing stagnation-point heat load, VE = 

12.5 km/s. 
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    a) Geometric design variables                b) Design variables t1 – t4                                 

   
   c) Design variables t5 and t6                                                d) Design variables φφφφb,0 – φφφφb,6 

                  

Figure C.0.4. Design Variable Distributions for Pareto frontier of L/D = 0.3, SC with fixed hb,HS = 

3.43 m, lower mass case from Figure 13.1, for maximizing cross range and minimizing 

stagnation-point heat load, VE = 12.5 km/s. 

 

 

 

 



 

 252 

 

   
    a) Geometric design variables              b) Design variables t1 – t4                                 

   
   c) Design variables t5 and t6           d) Design variables φφφφb,0 – φφφφb,4 for 2000 < pdwn < 6000 km        

   

 e) Design variables φφφφb,0 – φφφφb,4 for 20,000 < pdwn < 30,000 km            f) Design variables φφφφb,5, φφφφb,6  

 
Figure C.0.5. Design Variable Distributions for Pareto frontier of L/D = 0.5, SS upper mass case 

from Figure 13.2, for maximizing down range and minimizing stagnation-point heat load, VE = 

12.5 km/s. 



 

 253 

 

 

     
    a) Design variables t1 – t4                                         b) Design variables t5 and t6                                                   

      
c) Design variables φφφφb,0 – φφφφb,4 for 2000 < pdwn < 6000 km      d) Design variables φφφφb,0 – φφφφb,4  

for 18,000 < pdwn < 30,000 km 

     
e) Design variables φφφφb,5, φφφφb,6 for 2000 < pdwn < 7000 km      f) Design variables φφφφb,5, φφφφb,6 for  

             0 < pdwn < 30,000 km 

 
Figure C.0.6. Design Variable Distributions for Pareto frontier of L/D = 0.3, Orion CEV, 

projection at 13000 kg case from Figure 13.2, for maximizing down range and minimizing 

stagnation-point heat load, VE = 12.5 km/s. 
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    a) Geometric design variables       b) Design variables t1 – t4                                 

    
   c) Design variables t5 and t6                                    d) Design variables φφφφb,0 – φφφφb,4  

   for 2000 < pdwn < 6000 km 

  

e) Design variables φφφφb,0 – φφφφb,4 for 10,000 < pdwn < 30,000 km     f) Design variables φφφφb,5 and φφφφb,6  

Figure C.0.7. Design Variable Distributions for Pareto frontier of L/D = 0.3, SS upper mass case 

from Figure 13.2, for maximizing down range and minimizing stagnation-point heat load, VE = 

12.5 km/s. 
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    a) Geometric design variables          b) Design variables t1 – t4                                 

  
   c) Design variables t5 and t6                                      d) Design variables φφφφb,0 – φφφφb,3 

 

e) Design variables φφφφb,4 – φφφφb,6 

 
Figure C.0.8. Design Variable Distributions for Pareto frontier of L/D = 0.3, SC with fixed hb,HS = 

3.43 m, upper mass case from Figure 13.2, for maximizing down range and minimizing 

stagnation-point heat load, VE = 12.5 km/s. 
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    a) Geometric design variables                b) Design variables t1 – t4                                 

       
   c) Design variables t5 and t6                                  d) Design variables φφφφb,0 – φφφφb,4  

 for 2000 < pdwn < 6000 km 

    

   (e) Design variables φφφφb,4 – φφφφb,6      f) Design variables φφφφb,5 & φφφφb,6 

       for 20000 < pdwn < 30000 km 
Figure C.0.9. Design Variable Distributions for Pareto frontier of L/D = 0.3, 5-deg SS with fixed 

hb,HS = 3.43 m, upper mass case from Figure 13.2, for maximizing down range and minimizing 

stagnation-point heat load, VE = 12.5 km/s. 
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