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A differential evolutionary algorithm has been executed to optimize the
hypersonic aerodynamic and stagnation-point heat transfer performance of Earth
entry heat shields for Lunar and Mars return manned missions with entry velocities of
11 and 12.5 km/s respectively. The aerothermodynamic performance of heat shield
geometries with lift-to-drag ratios up to 1.0 is studied. Each considered heat shield
geometry is composed of an axial profile tailored to fit a base cross section. Axial
profiles consist of spherical segments, spherically blunted cones, and power laws.
Heat shield cross sections include oblate and prolate ellipses, rounded-edge
parallelograms, and blendings of the two. Aerothermodynamic models are based on
modified Newtonian impact theory with semi-empirical correlations for convection

and radiation. Multi-objective function optimization is performed to determine



optimal trade-offs between performance parameters. Objective functions consist of
minimizing heat load and heat flux and maximizing down range and cross range.
Results indicate that skipping trajectories allow for vehicles with L/D = 0.3,
0.5, and 1.0 at lunar return flight conditions to produce maximum cross ranges of 950,
1500, and 3000 km respectively before O, increases dramatically. Maximum cross
range increases by ~20% with an increase in entry velocity from 11 to 12.5 km/s.
Optimal configurations for all three lift-to-drag ratios produce down ranges up to
approximately 26,000 km for both lunar and Mars return. Assuming a 10,000 kg mass
and L/D = 0.27, the current Orion configuration is projected to experience a heat load
of approximately 68 kJ/cm” for Mars return flight conditions. For both L/D = 0.3 and
0.5, a 30% increase in entry vehicle mass from 10,000 kg produces a 20-30% increase
in Qs For a given L/D, highly-eccentric heat shields do not produce greater cross
range or down range. With a 5 g deceleration limit and L/D = 0.3, a highly oblate
cross section with an eccentricity of 0.968 produces a 35% reduction in heat load over
designs with zero eccentricity due to the eccentric heat shield’s greater drag area that
allows the vehicle to decelerate higher in the atmosphere. In this case, the heat
shield’s drag area is traded off with volumetric efficiency while fulfilling the given
set of mission requirements. Additionally, the high radius-of-curvature of the
spherical segment axial profile provides the best combination of heat transfer and

aerodynamic performance for both entry velocities and a 5 g deceleration limit.
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Chapter 1. Introduction

1.1. Motivation

Returning to Earth from other planetary bodies entails surviving an extreme
hypersonic environment during atmospheric entry. This involves entering Earth’s
atmosphere at high velocities ranging from 10 km/s to 15 km/s with corresponding
Mach numbers from thirty to fifty,' while withstanding 3000+ K temperatures at and
near the stagnation points. The heat shield, which faces the freestream flow and
protects the entry vehicle (EV), is the primary source of the vehicle’s hypersonic
aerothermodynamic performance, i.e., the aerodynamic forces, moments, and heat
transfer.” The rest of the vehicle is secondary since it is covered with regions of
extremely low pressure, due to flow separation, and since it experiences significantly
lower heat fluxes.

Optimizing aerodynamic and heat transfer performance are conflicting
objectives. To reduce surface heating and maximize thermal energy transferred to the
surrounding environment, entry vehicle heat shields have typically been blunt-body
designs, limiting entry aerodynamic performance.” Consequently, an
aerothermodynamic balance must be achieved to satisfy mission requirements
without exceeding material technology constraints.

This work questions the assumption that the classic spherical segment’ and
spherically blunted cone™® geometries with circular base cross sections provide
optimal aerothermodynamic performance. Although they have been utilized over the

past forty years, it is unknown whether either provides optimal aerothermodynamic



performance for lunar and Mars return missions. In this work, aerothermodynamic
performance translates into cross range and down range capabilities and stagnation-
point heat transfer. Cross range capability enables missions that require inclination
changes from the initial plane of entry. Both cross range and down range allow an
entry vehicle to execute course corrections to counter off-nominal atmospheric
conditions and switch landing sites.” Stagnation-point heat transfer, though it may not
be the point of maximum heating, is an accurate measure of the expected high heating
generated along the heat shield. From an overall perspective, cross range, down
range, and heat transfer performance are directly associated with mission
requirements and material constraints; this work seeks to find optimal blunt-body heat
shield designs from these standpoints. Properly broadening the design space would
allow the optimizer to determine which geometric features improve performance.
With the greater computational power available today, it is possible to perform multi-
objective optimization on a wide range of entry heat shield designs with entry

trajectory analysis.

1.2. Previous Work

1.2.1. Heat Shield Geometries

The two primary classes of shapes that have been developed by NASA are the
spherical-segment and the spherically-blunted cone, shown in Figure 1.1(a) and (b)
respectively. Extensive research on spherical-segments led to its use as the heat shield
for human reentry space capsules including the NASA Gemini and Apollo missions.

The spherical-segment is described by a spherical radius 7, and maximum spherical-



segment angle 6, measured from the central axis. The Project Gemini Reentry
Module®’ included a 38° spherical-segment heat shield (6, = 19°) with r, = 3.712 m,
and a base diameter of 2.32 m. The Project Apollo Command Module (CM) had a 50°

spherical-segment (& = 25°) with 7, = 4.694 m, and a base diameter of 3.912 m.
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a) Spherical-segment heat shield, 4, = 60°.  b) Spherically-blunted cone heat shield,
r/d=0.25, 6.=60°.
Figure 1.1. The two most familiar heat shield geometries.

Specific Apollo mission aerodynamic flight data is provided for Apollo
mission AS-202 and Apollo 4 in Ref. [10] and Ref. [11] respectively. The Command
Module (CM) in AS-202 reentered Earth’s atmosphere at 8.23 km/s (27,000 ft/s) to
produce planetary entry conditions that occur when entering from satellite orbit. The
unmanned Apollo 4 (AS-501) was the first mission to use the Saturn V launch
vehicle. It was an unmanned mission with an instrumented Command Module. The
main objective of Apollo 4 was to show the structural and thermal integrity of the
Apollo CM at lunar return flight conditions. Apollo 4 utilized CM-017; it was

instrumented with calorimeters and radiometers to measure the performance of the



TPS. At the apogee of CM-017’s orbit, the service propulsion system (SPS) engines
were fired to produce lunar return flight conditions, The Apollo 4 (AS-501) followed
an elliptical orbit around Earth that produced the expected re-entry velocity from
lunar return of 10.7 km/s (35,100 ft/s). Rather than passing by the Moon, Apollo 4
had a second Service Module Propulsion System (SPS) burn at the apogee of CM-
017’s orbit, shown as trajectory location 13 in Figure 1.2, to produce lunar return
flight conditions. The total mission time was 8.5 hours rather than six days required to
go to the Moon and back. Hillje'" provided Apollo flight data which was used for
code validation in Chapter 7. Note that most of the aerodynamic data from the Apollo
flights can be reproduced accurately by this work, except for the normal coefficient
Cy which can have up to 40% difference compared to the available flight-derived

data.
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Figure 1.2. Apollo 4 Trajectory from Ref. [11].

Moseley analyzed the aerodynamic stability characteristics of the Apollo
Command Module in Refs. [12] and [13]. Both of these NASA Technical Notes
provide aerodynamic, static and dynamic stability wind tunnel data on several
Command Module configurations with their schematics and relative dimensions.

From this set, only two figures are dedicated to rolling moment stability in Ref. [12],



and so a discussion of the Command Module’s roll static stability is provided in
Chapter 3. DeRose'* provides an analysis of the center-of-gravity offset from the
central axis of the vehicle and also discusses the proper way to compare wind tunnel
measurements of a non-ablative model to a flight vehicle with an ablative heat shield.
Horstman ' compares the Apollo and Gemini wind tunnel models with center-of-
gravity offsets.

The spherically-blunted cone is another commonly-used blunt-body space
capsule configuration, as shown in Figure 1.1(b). It is defined by half-cone angle 4,
the nose radius r,, and base diameter d. It is common to see the ratio r,/d as a listed
characteristic. Because convective heat transfer increases while radiative heat transfer
decreases with a reduction in radius for a blunt-body, there is an optimum 7, that
minimizes the heat transfer to the vehicle. The advantage of this configuration is that
it can offer designs with the same base radius as a spherical segment without
constraining the nose radius. If the optimal heat shield design for a given set of
mission requirements has a smaller nose radius than can be offered by a spherical-
segment with base radius r, then that nose radius could be generated with a
spherically-blunted cone configuration. Also, the equations that render the
spherically-blunted cone can be setup to account for the entire spherical-segment
regime.

Chrusciel® provides a method for calculating the acrodynamic characteristics
of spherically-blunted cones. Chrusciel provides the change in the center-of-pressure
location with an increase in nose radius and was used in this work to determine a

reasonable range of center-of-pressure locations. A discussion on the



misunderstanding present in several sources concerning the calculation of the center-
of-pressure location is included in Chapter 3 and those sources are mentioned later in
this section.

Jones'® has completed a wind tunnel investigation on model comparison of the
pressure distributions on sharp-nosed and spherically-blunted cones with large cone
angles 6. at hypersonic speeds in air (M, = 7.9), helium (M., = 20.3), and
tetrafluoromethane CF4 (M., = 6.2). The pressure distributions from the three different
gases for the tested configurations almost always overlap each other at a = 0°. These
results are also compared to theoretical methods including Newtonian theory and
concluded that the Newtonian theory does not predict the surface pressure distribution
properly near the edges of the configuration. It also shows that there are significant
differences in the actual distribution and the one rendered by Newtonian theory. It is
shown in this work that although this may be true, Newtonian theory can predict the
aerodynamic forces and moments of the Apollo Command Module (spherical-
segment) within 15% and the trim angle-of-attack within 1.2°. Additional work on
spherically blunted cones has been completed by Tauber'’ and Bernot.'®

The spherically-blunted cone configuration was used on the Viking”™'’ and
Pathfinder®**"*** missions to Mars. Two Viking missions consisted of an orbiter and a
lander. The orbiter mapped the surface of Mars, and the landers of the Viking I and II
missions had the first successful Mars landings in 1976. The Viking space capsule,”
shown in Figure 1.3, housed the lander and had a superlight ablative (SLA) heat

shield of dimensions 8,= 70°, r,/d = 0.25, and d = 3.505 m.
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Figure 1.3. Viking Landing Capsule System from Ref. [23].

In 1997, the Mars Pathfinder mission had a Mars rover that was thermally protected
during planetary entry by an aeroshell thermal protection system (TPS). Once on the
surface, the Pathfinder rover would photograph the immediate vicinity and acquire
data that would be sent back to Earth for analysis. Although higher heat fluxes were
expected during planetary entry, the Pathfinder mission had a heat shield with the
same 6. and r,/d as the Viking capsules.

More recent heat shield designs include the raked cone, the biconic and bent
biconic cones, the parashield, and the flare-skirt aft-body. The raked cone

geometry**? is a spherically-blunted cone raked at an angle as shown in Figure 1.4.
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Figure 1.4. Raked cone from Ref. [25].

This geometry offers a way to produce positive lift at zero angle-of-attack. Since the
bottom surface of the heat shield has greater surface area than the upper half by
design, the flow accelerates more over the bottom surface. This produces positive lift
because a larger portion of the surface pressure contributes to lift from the bottom
surface than the top surface. The raked cone geometry can be designed to render
higher L/D at negative angles-of attack than its axisymmetric analogue.

An example of the raked cone geometry is the Aeroassist Flight Experiment
(AFE) that NASA worked on and cancelled in the early 1990s. It had a 14 ft diameter
and was planned to participate in ten Shuttle-launched experiments. Figure 1.4 shows
a few of the dimensions of the AFE’s heat shield geometry. It has a 60° half-cone
angle and a 73° cone rake angle. One additional feature of the AFE’s rendition of the
raked cone is its ellipsoid nose with an ellipticity equal to 2. The AFE geometry is

shown in Figure 1.5.
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Figure 1.5. AFE flight vehicle configuration from Ref. [25].

At zero angle-of-attack, the L/D is approximately 0.30 while it is approximately 0.43
at o = —10°.?° Wells presents the aerodynamic performance and shock shapes of the
AFE from wind tunnel results in Ref. [26]. Micol gives the wind tunnel results for its
hypersonic lateral and directional stability in Ref. [25] and discusses a simulation of
real gas effects on the AFE in Ref. [27].

The biconic and bent biconic bodies have been looked at for an aero-assisted
orbital-transfer vehicle application, but it can be argued that they can be used for
planetary entry vehicle applications as well. The biconic heat shield is a spherically-
blunted cone with an additional conical frustum that has a smaller half-cone angle.
The bent biconic heat shield®*’ has this conical frustum tilted at an angle with the
spherically-blunted cone as shown in Figure 1.6(a). Davies and Park”® present the
aerodynamics characteristics of a bent biconic with a fore half-cone angle of 12.84°

and an aft half-cone angle of 7° tilted at 7°. This configuration enables a blunt-nosed

body to have L/D > 1 at positive angle-of-attack as shown in Figure 1.6(b). Because



of its slenderness due to its low half-cone angle, it can be argued that this is an

atypical example of a blunt-body.
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Figure 1.6. Bent biconic configuration from Ref. [28].

The common blunt-body produces positive L/D at negative angle-of-attack.
Davies and Park acknowledge that a half-cone angle larger than 45° is required to
produces positive lift values at negative angle-of-attack for an axisymmetric
spherically-blunted cone. The reason for this is that at negative angle-of-attack, the
axial force has a larger contribution to lift than the normal force. The axial force’s

contribution is positive while the normal force’s is negative, thereby rendering
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positive lift. Slender designs are usually not considered for planetary entry because
they produce higher heat transfer rates at the leading edges than blunter designs.
Although the presented bent biconic configuration is slender, it will become a feasible
design when more advanced high temperature materials are available. In fact, one
could argue that this configuration could be feasible today if an ablative material is
applied and if the nose radius-of-curvature is larger than that of the edge of the
Apollo CM’s heat shield, which was the location of highest heat transfer (not the
stagnation point). Either way, its fore body half-cone angle can be easily modified for
planetary entry applications.

Other more recent vehicle geometries are the parashield and the Slotted
Compression RAMP probe. The parashield is a flexible, umbrella-like planetary
entry, aerobrake, or aeroassist vehicle.”® Magazu, Lewis, and Akin completed an
analysis of a parashield with a ballistic coefficient of 181 Pa composed of twelve
radial spars for LEO re-entry. This configuration has a mass of 150 kg and could be
scaled by at least a factor of ten if desired. They determined that this parashield has a
hypersonic L/D of 0.18 at « = 15° and that there is increased pressure at each spar
whether or not concavity exists.”” The portability of this geometry in closed
configuration is a feature unique to parashield and inflatable ballute geometries.

Murbach®! has examined the Slotted Compression RAMP (SCRAMP) probe,
which has undergone several sub-orbital test flights under his supervision. This
geometry has a long cylindrical fore body with a hemispherical nose and an aft flare
of high half-cone angle (~70°) attached to the rear of the vehicle. The aft flare creates

most of the drag on the vehicle but also produces a compression ramp leading to flow
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recirculation. As a result, several slots are placed where the aft flare meets the
cylindrical fore body to minimize the flow recirculation and thereby increase vehicle
drag.

The payload in the SCRAMP probe is located inside the front of the
cylindrical fore body in order to place the center of gravity far forward. Since the aft
flare produces most of the drag on the vehicle, the location of the center of pressure is
far behind this center of gravity, rendering a negative C,, . .. Murbach observed that
by increasing the slot size, the maximum pressure on the aft shield is increased. This
configuration has a negative C,, ., Which is considerably better than the Apollo
CM’s value of -0.143/rad,” rendering an outstanding, longitudinally stable entry
vehicle. Note that the described configuration does not produce significant lift but
may be designed to in future flight tests.

Several of the classic and more recent design configurations were analyzed as
lunar-return planetary entry applications in the work of Whitmore.”> Whitmore’s
computational results for aerodynamics and stability are consistent with the results
presented in this thesis. Bertin® provides a thorough overview and several correlations
concerning hypersonic aerothermodynamics, and Rasmussen™ provides an in-depth

look at hypersonic aerodynamics.

1.2.2. Heat Transfer

Extremely high heat transfer rates may be experienced during planetary entry.
Since the EV undergoes high heat transfer rates for several minutes, the heat transfer

load is equally important.
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In this section general references for planetary entry heat transfer are first
mentioned. Since the heat transfer results of this work consist of stagnation-point heat
fluxes, the corresponding references are mentioned and referred to throughout the
text. For calculating the heat flux, there are more sources and emphasis in this work
given to radiation than convection because radiation is an ongoing research topic. The
drawback of this work is that the heat load is not determined, but it is mentioned as an
important topic for future work.

In recent analyses, Park®® and Rochelle™ discuss the aerothermodynamic
environments for Mars entry and return, as well as lunar return. Park presents an
analysis of two human missions (one is 330 days and the other is 436 days) to Mars
and notes that the existence of an optimum nose radius for the tradeoff between
convective and radiative heat transfer. Rochelle analyzes several capsule geometries
including the biconic and modified AFE aeroshell capsules for Mars entry and notes
that with an increase in entry velocity from 10 km/s to 12 km/s, the radiative heat flux
goes from 13% to 42% of the total heat flux.

Two classic references from Rose’® and Kemp® at the Avco-Everett Research
Laboratory give a general overview of stagnation-point and laminar heat transfer in
dissociate air. Kemp notes that the maximum heat transfer flux can be larger than the
stagnation-point heat flux, as is the case for a flat-nosed body in which the convective
heat transfer flux is approximately 30% larger at the corner than that at the
stagnation-point. This is noticed in the wind tunnel results for the Apollo CM
presented by Lee,*® in which the corner has a heat flux that is 80% larger than at the

stagnation-point at & = 33° at M., = 9.07. The main Apollo missions that included the

13



astronauts did not re-enter at 33°, and so the maximum heating rate was lower. This
wind tunnel test was completed to find out the worst-case scenario with the crew
compartment (aft body) being tangent with the freestream flow. Lee also offers a
thorough explanation of the convection and radiative heat transfer and gives the heat
flux and pressure distributions about the heat shield. Note that the radiative heat flux
correlation is analyzed in Chapter 7, but is not recommended for use since there are
simpler correlations that follow the Apollo flight data better.

Two Apollo CMs were instrumented for aerothermodynamic analysis. Lee®
compares the flight results from superorbital entry, as is the case in lunar return, with
predictions (note that Ref. [38] was written before the Apollo missions were
completed). Lee also gives an aerothermodynamic evaluation in Ref. [40] that
presents the highlights of the re-entry aerodynamics and heat transfer for the Apollo
missions.

The heat shield of the Apollo CM is the main part of the Apollo’s Thermal
Protection System (TPS). Pavlosky41 details the history of designing the Apollo TPS
and the manufacturing process. Also, he includes a summary of the predicted
maximum heat transfer rates and loads for Apollo missions 8 and 10-16. Park and
Tauber™ provide a current review of heat shielding problems experienced by the
Apollo 4, 6, Pioneer-Venus, and Galileo Probe missions. Also, Scotti* presents a
compilation of TPS technologies that were current in 1992 including the shuttle tiles,
a TPS design for the cancelled NASA Aeroassist Flight Experiment (AFE), and

proposed future materials.
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The amount of stagnation-point heat transfer is one of the main
aerothermodynamic benchmarks for comparing the capability of one entry vehicle to
another. The stagnation-point heat transfer is not necessarily analogous with the point
of maximum heat transfer, as was the case for the Apollo CM and the flat-nosed
body. As a result, a more appropriate benchmark would be to compare the point of
maximum heat transfer. Because this requires a more computationally expensive
process that is beyond the focus of this thesis, previous work concerning the
convective and radiative heat transfer at the stagnation-point has been acquired.

Lovelace™ provides correlations for both convective and radiative heat
transfer at the stagnation point; it will be shown in Chapter 7 that the radiative heat
transfer correlation is one of two that matches the Apollo flight data the closest.

For convective heat transfer, Tauber® provides the stagnation-point, laminar
and turbulent flat plate correlations that he validates against the US Space Shuttle

1*® relation that assumes

heating rates. Tauber applies the well-known Fay and Riddel
that convection is inversely proportional to the square root of the nose radius. This
would suggest that the convective heat transfer approaches zero as the nose radius is
increased, but Zoby"' notices that blunt bodies have more enthalpy than expected by
this theory. Zoby shows that an adjustment that is based on the change in the velocity
gradient from that of a hemisphere can produce an effective radius that can be applied
to improve the theory’s accuracy.

For radiative heat transfer, Tauber”® also provides the stagnation-point

correlations for Earth and Mars entries. This is one of the two correlations that match

the Apollo flight data the closest. Originally, Tauber’s correlations were not meant to
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be applied to the entire altitude regime on Earth, but this thesis will show that there is
not much difference from Lovelace’s correlation* when following the Apollo 4
trajectory. A review of the stagnation-point radiation from the Apollo 4 is available
by Park.*

Cauchon®® provides the radiative heating results from the Second Flight
Investigation of the Reentry Environment (FIRE II) experiment at the superorbital
entry velocity of 11.4 km/s (37,400 ft/s), which is slightly larger than the fastest
Apollo entry at 10.7 km/s (35,000 ft/s) for Apollo 4."' Cauchon compares the theory
to the few flight test data points. The FIRE II had three spherical-segment heat shields
layered over each other. After initiating planetary entry, heat transfer data is obtained
for the first heat shield. Then it is jettisoned from the entry vehicle at a chosen point
in the trajectory, leaving the second heat shield surface to face the freestream flow.
Data is obtained for the second heat shield, and then it is jettisoned, leaving the third
heat shield surface to protect the vehicle for the remainder of the trajectory. The three
heat shields had different nose radii: 0.935 m, 0.805 m, and 0.702 m for the first
through third heat shields respectively. Cauchon shows that the theory is closer to the
FIRE II calorimeter data by accounting for radiation cooling and coupling; otherwise,
the theory overshoots the calorimeter data by 30%.

Ried’' compares the flight measurements and engineering predictions on the
Apollo CM for mission four. Ried also provides a computational approximation of
the total radiative heating rate near the stagnation point including ultraviolet lines and
continuum, which were not measured by the radiometers on the heat shield of Apollo

4. The shock-standoff distance over the time of maximum radiative heat transfer is
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also provided. A correlation that closely matches the behavior of how the stagnation-
point shock standoff distance varies with normal-shock density ratio is included and
could be used along with Lovelace’s* or Tauber’s” correlations to calculate
stagnation-point heat transfer fluxes. For planetary entry at velocities larger than that
of the Apollo missions, curve fits of inviscid heating rates and cooling factors have
been produced by Suttles.’? It is recommended that these curve fits be validated
before use in future work.

Determining how the stagnation-point radiative heat transfer rate varies as a
function of angle of attack for the Apollo CM is investigated by Walters.”> By
accounting for the stagnation-point shock-standoff distance, Walters is able to
approximate this behavior, although the wind tunnel data is noticeably scattered.
Additionally, he applies Kaattari’s correlation®® to produce an outstanding match of
the Apollo CM’s experimental shadowgraph of the shockwave shape at Mach 19.5
and 31.5° angle of attack.

The Kaattari method approximates the shock-standoff distance of a blunt-
body at zero angle of attack™ and the shock envelope of spherical-segment blunt-
bodies at large angles of attack.’® This highly empirical method uses the normal shock
density ratio to approximate the location of the sonic line on the body as well as the
shock and body surface inclinations at the sonic point along with theory to determine
the ratio of the shock-standoff distance to the nose radius. Since a planetary entry
vehicle enters the atmosphere at high velocities, high temperatures are produced in
front of the heat shield, and so high temperature gas correlations from Srinivasan®®

(an updated version of the Tannehill’’ correlations) can be used to determine the
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effective specific heat ratio to determine the normal-shock density ratio. This thesis
work applies the Kaattari method, with its implementation described in Chapter 3, to
apply Lovelace’s™ and Tauber’s™ radiative heat flux correlations to blunt-bodies at

any angle of attack.

1.2.3. Entry Trajectory

The entry phase of the trajectory begins as the entry vehicle crosses the
Earth’s entry interface (EI), commonly assumed at an altitude of 122 km. The entry
trajectory ends when the descent phase is initiated. Figure 1.7 provides the entry
trajectory for the Apollo 4 (AS-501) mission.'' At the beginning of the entry
trajectory at i, = 122 km = 400,000 ft, the altitude map in Figure 1.7(a) shows a
relatively steady drop until ground time 30,030 s. The CM reaches a trough in the
trajectory at 4, = 55 km and slowly increases in altitude up to 73 km and descends.
The velocity distribution is given in Figure 1.7(b). The reaction control system (RCS)
is the only way to control the capsule during the entry phase. Each Apollo CM had a
fixed, trim «, usually between -17° and -25°, and so bank angle modulation was the
primary means of controlling the vehicle’s flight path during entry. The RCS includes
roll thrusters that could bank the lift vector a full 360°. The Command Module’s
computer had a predictor-corrector algorithm to provide adequate guidance,
navigation, and control (GNC) during entry. Figure 1.7(c) shows the resulting bank
angle history generated by use of the RCS controlled by the GNC subsystem. It
indicates that a full 180°, which corresponds to the lift down position, was required

for 25 s of the trajectory, suggesting that the vehicle would have bounced out of the
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atmosphere without bank angle modulation. Figure 1.7(d) shows that a maximum

deceleration of 7.25 g occurs right before the CM completes the dip at 55 km.
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Figure 1.7. Apollo 4 CM reentry trajectory from Ref. [11].
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NASA has several computer-based simulated trajectory software packages
that solve the equations of motion and account for the high detail needed to properly
model ascent, interplanetary, and planetary entry trajectories for actual missions. The
Program to Optimize Simulated Trajectories (POST) is one such benchmark
trajectory software package.58’59 POST includes highly-detailed models for in-
atmosphere trajectory modeling. Initially written for the US Space Shuttle program, it
utilizes a projected gradient method that allows for complex vehicle ascents and entry
trajectory optimization. Another benchmark program Optimal Trajectories by Implicit
Simulation (OTIS) provides similar functionality but allows also the ability to solve
the equations of motion implicitly.60 Both provide 3DOF and 6DOF simulation
modes.

Much trajectory simulation research has been completed for both Earth entry
and Mars entry. Braun®"®> has completed trajectory optimization utilizing bank angle
control for both manned Mars aerobraking and for Mars return. He has shown that
performing bank angle modulation with guidance allows for a reduction in
deceleration loads by 40%, as shown in Figure 1.8. Using bank angle modulation also
increases the entry corridor width, which is the difference between the greatest and
smallest flight-path-angles at the EI. A large enough corridor width is necessary to
account for flight and instrument uncertainties in order to maintain mission
requirements. A comparison between the constant bank angle flyable corridor and the

bank angle modulation entry corridor is given in Figure 1.9.
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Since trajectory optimization and guidance law implementation were the
primary foci, a given mass and ballistic coefficient would be assumed, along with a

set of lift-to-drag ratios to complete the analysis. For human return from Moon and
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Mars, Putnam and Braun® have studied direct entry trajectories (no entry skips) with
linear feedback control. Figure 1.10(a) shows the required L/D for direct entry with a
given g-limit. Putnam suggests a 0.4-deg or greater entry corridor width. With a 5 g
deceleration limit, the direct entry corridor widths for different combinations L/D and
BC are provided in Figure 1.10(b). In all of this entry trajectory work, the focus was

not on the effects of different heat shield geometries at desired values of L/D.
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1.2.4. Misconceptions

Misunderstandings and discrepancies in publications have been noticed
throughout the literature survey. The most common misunderstanding is the theory
behind calculating the x-location of the center of pressure of a blunt body. This
location is dependent on both the axial force and normal force’s contributions to the
pitching moment; neither can be ignored. However, several references calculate the x-
location by assuming the axial force’s contribution to the pitching moment is
negligible. This thesis explains in Chapter 3 that the axial force’s contribution to the
pitching moment is at least the same order of magnitude as the normal force’s
contribution and thereby must be accounted for in the case of a blunt body. From
here, it is possible to match the Apollo CM’s pitching moment wind tunnel data as
will be shown in Chapter 3.

Bertin,2 Rasmussen,33 and Regan64 have textbooks that assume the axial
force’s contribution to the pitching moment is negligible in sections concerning blunt
bodies. However, Bertin’s textbook” also has the correct derivation, and the example
in which the assumption is made in the first edition of Regan’s textbook® has been
removed from Regan’s second edition.

Figure 9 in the work of Levine® provided the x-location of the center of
pressure of several spherical and blunt cone geometries. However, they are different
from the values of this thesis by one order of magnitude except for one case. Because
the work of this thesis was able to match the aerodynamic and stability results of the
Apollo wind tunnel and flight test data and basic conical shapes, the use of Levine’s

values of the x-location is not recommended.
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Arora® maximizes the center of pressure’s x-location for a spherically-blunted
cone-flare configuration. However, Arora’s work assumes that the axial force’s
contribution to the pitching moment is negligible. As a result, the optimized x-
location value is infeasible. Because the x-location is incorrect, it is not possible to
find the correct pitching moment value about the blunt-body’s center of gravity. An
active researcher concerned with the aerodynamic performance and the stability of
blunt-body planetary entry geometries should be attentive to this issue.

Papadopoulos®”®® has figures that are mislabeled as trajectories for Apollo
missions AS-201, 4, and 6. The only relations between the figures and the Apollo
missions are the mentioned missions’ entry flight-path angles. The plots are meant to
show code output according to a particular Apollo mission’s entry flight-path angle.
Because several plots on a single page have legends with Apollo mission numbers, it
is easy for one to assume that these must be the flight velocities, decelerations, and
Reynolds numbers experienced by the Apollo missions listed. This is a simple
miscommunication and not suggesting that Papadopoulos’s results are not accurate;
he has validated his results with POST.

Several sources that are not suggested for estimating the radiative heat transfer
at the stagnation-point for an Apollo-like capsule include Barter® and Gupta.” It is
possible that both sources have typographical errors in the equations, but this is not
certain. However, it is shown in Chapter 7 that the implementations of these
equations do not match the behavior of flight test data from Apollo 4. There are other

correlations that were found to match the flight test data closely.
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1.3. Research Objectives

Several entry trajectory optimizations with bank angle modulation have been
completed without considering the effects of different geometric features of the heat
shield, the primary reason being that those studies focused on trajectory optimization
with guidance. They would assume effective radii for convection and radiation based
on previous work. The primary objective of this research is to determine which
geometric features of an Earth entry vehicle heat shield advance the state-of-the-art in
hypersonic aerothermodynamic performance.

Since cross range, down range, and heat transfer performance are directly
associated with mission requirements and material constraints; this work seeks to find
optimal blunt-body heat shield designs from these standpoints. A high-order
trajectory model in conjunction with low-order aerothermodynamic models is applied
to balance the need for fidelity with the desire to have practical computational times,
allowing the optimizer to consider a wide range of heat shield geometries.
Contributions of viscous shear forces and turbulence are not considered.

As this is also a systems study, a secondary objective is to produce optimal
tradeoff relationships between performance parameters. This work utilizes a
population-based, multi-objective optimization scheme, in which a differential
evolutionary algorithm is employed to optimize two objectives simultaneously. Focus
is centered on maximizing down range or cross range while simultaneously
minimizing stagnation-point heat load or heat flux. Although guidance is not
incorporated into the trajectory analysis, bank angle modulation is applied and

sufficient for determining which geometric features are advantageous and which are
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unfavorable. Another secondary objective is to utilize trajectories that indicate the
aerothermodynamic performance that would be expected for an actual mission. This
is accomplished by utilizing bank angle modulation similar to that applied in the
Apollo missions'' to rotate the lift vector, and by incorporating an entry corridor
methodology to focus on that specific part of the trajectory design space that would
be similar to the expected design space for an actual mission.

This work fulfills these objectives for both lunar and Mars return flight
conditions and decelerations requirements. Although the Apollo heat shield design
was successful for returning astronauts back to Earth, it is not necessarily the optimal
design from an aerothermodynamic standpoint. The final secondary objective is to
compare the optimal heat shield geometries for these two cases. For lunar return at 11
km/s, the convective heat load is usually greater than the radiative heat load while the
radiative heat load is greater for Mars return, assuming 12.5+ km/s. As a result, it is
unknown a priori whether a heat shield optimal for lunar return is optimal for Mars

return.

1.4. Thesis Overview

This thesis is organized into fifteen chapters. The investigated blunt-body
geometries are introduced in Chapter 2. Then Chapter 3 provides the Newtonian
aerodynamic theory and a method for approximating the shock-standoff distance from
the stagnation point of a blunt-body. It also includes the equations for determining the
static stability of a given heat shield geometry and provides explanations for a couple

misinterpretations of basic theory. Chapter 4 includes the main assumptions and
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correlations for convective and radiative heat transfer at the stagnation point. Chapter
5 provides the method for scaling the heat shield based on the mission profile, making
it possible to do a mass estimate of the corresponding entry vehicle. The
fundamentals of planetary entry trajectories and the entry corridor methodology are
included in Chapter 6. A description of the aerothermodynamic low order code is
provided in Chapter 7. Note that the geometric design space and aerothermodynamics
code setup is based on the author’s M.S. research in Ref [71]. The high-order
trajectory code is described and validated in Chapter 8. Chapter 9 provides a general
overview of the optimization theory and parametric study of the optimization
parameters. Chapter 10 includes the initial results for lunar and Mars return
optimization before the entry corridor analysis is applied and with more relaxed
maximum deceleration limits. Chapter 11 provides a detailed optimization setup for
the finalized lunar and Mars return results, including the application of the entry
corridor analysis. Chapter 12 includes the lunar return results while the Mars return
results are provided in Chapter 13. The final results from lunar and Mars are
compared in Chapter 14, and the final conclusions of this dissertation along with

suggested future work are detailed in Chapter 15.
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Chapter 2. Blunt-Body Heat Shield Geometries

Each heat shield in this work is defined by two geometries: the base cross-
section of the heat shield and the axial shape that is swept about the central axis and
modified to match the base cross-section. The coordinate system for this work is
included in Figure 2.1 with the sweep angle ® and conventional directions for
positive moments. One change from convention that is not shown occurs when the
vertical lift coefficient C; < 0, in which the direction of the positive rolling moment
switches in order for a negative C;gto still indicate a statically roll stable shape. An

explanation of the sign reversal is included in the stability section of Chapter 3.
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Figure 2.1. Fixed-body coordinate system, spherical-segment, @= 30°, 6, = 60° n, = n;=2.

2.1. Axial Shapes

The shape of the heat shield that protrudes from the base is called the axial
shape in order to easily differentiate the protruded shape from the cross-section. The

axial shape of the heat shield by itself represents the shield’s profile if its base cross-
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section were to be circular. If the base cross-section is not circular, then the axial
shape is at least the top half of the shields profile at sweep angle ¢ = 0°. Then the
axial shape is modified to follow the outline of the base cross-section. Three axial
shapes: the spherical-segment, the spherically-blunted cone, and the power law are
applied in this work and described in the following sections along with how they are
generated.

Raked-off geometries including the raked cone Figure 1.5 are not considered
in the present work for two reasons. First, the combinations of axial profiles and base
cross sections in the present work already provide a wide range of lift-to-drag ratios
up to 2.14 with power law axial profiles.'” There is no evidence that a raked-off
geometry would provide significantly greater L/D. Additionally, in maximizing
overall aerothermodynamic performance, L/D will be traded off with Oy ;.; and L/D is
commonly below 1.0. Second, this work is investigating the performance of new
designs, and this new design space is sufficiently large without the raked-off

geometries.

2.1.1. Spherical-segment

A general spherical-segment is a region of a sphere that is left after the sphere
is cut by two parallel planes. A closed spherical-segment is a region of a sphere
encompassed by spherical-segment angle 6, in which @ = 90° - 6, in which only one
plane, parallel to the yz-plane divides the sphere. A closed spherical-segment, one
shown in Figure 2.1, is also known as a spherical cap and is the type that is applied to

previous and present heat shield design.
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For this work, only the profile of the spherical-segment is utilized by using the

following equations for the xy-plane at zero sweep angle:

Vmax = xmax/(l'cos( 05)), (2 1)
Xk = Fmax(1-cos( 6 )), (2.2)
Y= rmaxSin( gk)a (23)

in which x,,,, = 1 in order to normalize the geometry to the length of the heat shield
| = xmax- This set of equations produces the axial shapes shown in Figure 2.2 (a) for
the Apollo CM (6, = 25°) and a hemisphere (&, = 90°). The corresponding spherical

heat shields, which have circular cross-sections, are shown in Figure 2.2 (b) and (c¢).
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a) Spherical-segment axial profiles at ¢= 0°.
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(b) Spherical heat shield, 6, = 25°. (c) Spherical heat shield, 6, = 90°.
Figure 2.2. Spherical axial profiles and heat shields.

2.1.2. Spherically-blunted Cone

The spherically-blunted cone’s geometric parameters have been introduced in
the previous work section of Chapter 1. Figure 1.1(b) is an example of the
spherically-blunted cone heat shield. Its axial profile has two parts, a spherical nose
and the conical body. The spherical nose is generated by producing a spherical-
segment with 6, = m/2-6, to provide slope continuity from the spherical nose to the
conical body. If the conical base is divided into N vertical sections that are equally
spaced along the x-direction, then the spherically-blunted cone profile in the xy-plane

is generated with the system of equations

r,(1-cosw), 0<w<d

v rn(l—cosa)—sina))+%m9 w=0,,

(2.4)
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r, sin @ 0<w<0,

1d—r,sinw (2.5)

I n o=60,0<n<N.

v, sinw +

Also, the spherical-segment can be produced using only the first equation for both x

and y over the range 0 < w < 6.

2.1.3. Power Law

The power law offers axial shapes with a wide range of bluntness controlled
by coefficient 4 and exponent b with the equation
_ b
y =Ax". (2.6)
The effects of varying these two parameters are shown in Figure 2.3. For a fixed
value of b, increasing the slenderness ratio 4 increases the bluntness of the shape. As

a result, the effects of increasing the slenderness ratio should be similar to those of

decreasing the spherical-segment angle 6, or increasing the spherically-blunted cone
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(a) Axial profile varying 4, b = 0.75.
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Figure 2.3. Power law axial shape.

For a fixed value of A4, increasing the value of exponent 4 from 0.01 to 1.0
transforms the axial shape from a flat nosed body to a sharp cone respectively. As a
result, a power law with » = 1.0 is equal to a sharp cone with a corresponding angle
0.. The power law can also nearly match the spherical segment for a given set of 4
and b or it could produce profiles that are different from these two classic shapes.

Rasmussen® mentions that two minimum drag power-law bodies have
exponent values of two-thirds and three-fourths based on Newton-Busemann and
Newtonian surface pressure models.

When calculating the shock-standoff distance, special cases account for this
heat shield shape having a discontinuity at the tip (x = 0) and are discussed in Chapter
3. Varying the power law’s slenderness ratio and exponent should render a wide

range of aerodynamic performance and stability characteristics.
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2.2. Cross-section Shapes

The cross-section shape is the geometry of the heat shield’s base. The base
cross-section is usually chosen to be circular although there have been a couple cases
of slightly elliptic cross-section including the AFE.*® For optimization, it would be
ideal to have a base cross-section equation that can generate a wide-range of shapes.
In order to produce eccentric base cross-sections, the equation of the ellipse can be
applied. To produce shapes that range from a parallelogram to an ellipse, Sabean’>

uses the following Cartesian equation for a typical superellipse curve:

=1, (2.7)

a,

By varying v from 1 to 2, the superellipse can transform from a parallelogram to an
ellipse.

In 2003, Gielis” published a more generalized superellipse equation called the
superformula; it can transform a polygon into an ellipse and then into a rounded-edge
concave polygon. It defines the cross-section radius for 0 < ¢ < 27

3 %1
| ; (2.8)

ny

)= %cos(iml¢)‘ +%sin(iml¢)

in which m; corresponds to the number of sides of a polygon, n; and n, are modifiers,
and n; is set equal to n, to produce sharp or rounded-edge polygons. In the present
work, n, was set to 1, and then values of n; that produced sharp-edged, non-concave
polygons were determined. Corresponding values of n, for rounded-edge polygons
were then determined. Because of the increased heat transfer that would be produced

on sharp edges, zero radius-of-curvature polygons were not considered. Setting n,= 2
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produces an ellipse; increasing n, beyond 2 will produce concavity in the shape. Table
2.1 presents the values for m;, n;, n,, and n; to produce rounded-edge polygons, both

straight and concave.

Table 2.1. Superformula parameters for rounded-edge polygons (n; = n;).

my nj n;
4 1.00 1.50 — 4.0

5 1.75 1.50 —4.0

6 2.30 1.50 — 4.0

7 3.20 1.50 — 5.0

8 4.00 1.40 — 6.0

9 5.50 1.40 — 6.0
10 7.00 1.40 — 7.0

The cross-sections in this analysis include polygons ranging from four to ten
sides. Once m; and n; are set, n, can be varied to transform a polygon into an ellipse
and then into a concave polygons, in which n; = n,. With the parameters in Table 2.1,
the cross-sections in Figure 2.4 can be constructed. If a rounded-edge pentagon is
constructed, as shown in Figure 2.4(d), then n, can be increased to 2 in order to
produce the corresponding ellipse in Figure 2.4(b), and then n, can be increased to 4

to produce the rounded-edge concave pentagon in Figure 2.4(e).

aym;=4,n,=1.5. b) n, =2.0. c)ym;=4,n,=4.0.
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d)m;=5,n,=1.5. eymy=5,n,=4.0. f)m;=6,n,=1.5.
Figure 2.4. Cross-section shapes produced using parameters from Table 2.1.

If a; = b; = 1, the cross-section will have no eccentricity, and so n; = 2 will
produce a circular cross-section. Because a; and b; in Eqn. (2.8) relate differently to
eccentricity than they do in Eqn. (2.7) for v = 1, it was concluded that it is easier to
produce an eccentric heat shield by multiplying either a; or b; by the cross-section

radius » when generating the blunt body as described in the next section.

2.3. Generating Blunt-Bodies

Once the axial shape at ¢ = 0° is rendered, it is swept about the central body
axis (the x-axis) according to the chosen base cross-section with Eqn. (2.8) according
to the following three-dimensional equation set

Yok =X

YVik =y, cos(¢j) (2.9)

Z, = bzrj’k sin ¢j),

in which ;j and k are indices, 7 is the radius at a given j,k location, and a, and b, are the
lengths of the semimajor and semiminor axes of the generated blunt body. In this
work, eccentricity e has a range in-between —1 and 1, in which e < 0 corresponds to
oblate geometries and e > 0 corresponds to prolate geometries. The semimajor and

semiminor axes are determined from the following equation sets
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1
a, = b2(1—€2)2 —1<€<O, (210)

1 0<e<],
; 1 —l<e<, @.11)
= 1 .
’ az(l—ez)E 0<e<l.

The superformula cross-section equation reflects the shapes made by n, > 2 about the
horizontal axis. As a result, to keep consistency when varying n,, the reflection was
removed by setting y;x = - y;r and z; x = -z; .

Examples of generated blunt bodies are included to show the variety of shapes
that can be created from this set of axial and cross-section shapes. Figure 2.5 shows a
prolate (approximately 4:1 axes length ratio) spherically-blunted cone blunt body.
Figure 2.6 shows an oblate (approximately 3:1 axes length ratio) 12-sided polygon
blunt body with a spherical-segment axial profile. Figure 2.7 shows a slightly prolate,
concave rounded-edge pentagon with a power law axial profile. Note that the angled

views do not correspond to any specific orientation.
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Figure 2.5. Spherically-blunted cone, r,/d = 0.25, §,=70°, ¢ = 0.95, m; =5, n; = 1.75, n, = 2.
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Figure 2.6. Spherical-segment, 6, = 40°, ¢ = -0.85, m; =12, n; =10.75, n, = 1.
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Figure 2.7. Power law, 4 =3,5=0.75,e=0.5,m; =5, n;=1.75, n, =
2.4. Geometric Properties

The main geometric properties calculated in this work are the surface and
planform areas, the volume, the volumetric efficiency of the heat shield, and the
location of the center of gravity. The following is a description of how the areas and
volume are determined. Each point (j,k) is a part of a quadrilateral with four points

(7.k), (j-1,k), (j.k-1), and (j-1,k-1). The distance between points (j,k) and (j-1,k) is

indicated by d; ,,
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d, = \/(xj,k Xk )2 + (yj,k — Vi )2 + (Zj,k ~Zi 0k )2 ) (2.12)

and the distance between points (j,k-1) and (j-1,k-1) is d; . These two distances are
then averaged to produce d;. The distance between points (j,k), and (j,k-1) is d> ., and
the distance between points (j-1,k) and (j-1,k-1) is d> ;. Likewise, they are averaged to
produce d,.

The product of d; and d, is the differential surface area dA4. All the differential
surface area components are summed to produce surface area Sj;, which is a term in
determining the volumetric efficiency described later in this section. The differential
planform area dA,, is the product of w; and w, which are the distances from and to the
same point-locations as d; and d, if they were assumed to have equal x-components.
In other words, the planform area d4,, which is equal to part of the heat shield’s base

area, depends only on the area projected onto the yz-plane, in which

Wy, = \/(J/_/,k — Vi )2 + (Zj,k T Zx )2 > (2.13)

and likewise for w; », w2, and w,,. Then the sum of the differential planform areas is
equal to the heat shield’s base area. The planform area is used in part to non-
dimensionalize the aerodynamic forces and moments.

The differential volume is the product of the differential planform area and the

distance from the differential surface to the shields base written as /,,

Xk TX e T X T X
lb = xmax _( - - 4J : _— M (2-14)

Then a summation of all the differential volumes produces the volume of the heat

shield V.
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The volumetric efficiency is one way to benchmark how much volume is
available for a given amount of surface area. In the case of a heat shield shape, which

is not a closed-shape, the volumetric efficiency is normalized to a hemisphere

(187)5 73

hs

77v,HS -

(2.15)

As a result, the most volumetrically efficient shape is the hemisphere, which is
defined by the terms of this work as a non-eccentric spherical-segment with &, = 90°.
In comparing an entire entry vehicle to another, the volumetric efficiency is

normalized to a sphere

7, =(367;)ﬂ. (2.16)

veh

This allows the sphere, which is the most volumetrically efficient shape for a given
amount of surface area, to have 7, = 100%.
The following equations calculate the location of the center of gravity of a

uniform density body

oy oz o P plllsar pffzar o

el [[Jav " [[Jav = [[far |

This equation is applied to a 3D mesh through numerical integration. One numerical

integration method is Simpson’s rule,”*
X2n+1

F(x)= [ f(x)dx 2.18)

X1
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LA+ fobt L) 22 fo ot fard)* o).

which is third-order accurate in 4. For this work, % is a space step size. Additionally,
this method requires an odd number of points to be integrated, and so the final point
in the mesh is represented by the index 2n+1. Because the space step # may not
necessarily be the same for each pair of points, this work applies a modified version

of Simpson’s Rule that uses individual step sizes.

X241

F(x)= [ f(x)dx (2.19)

X1

1
~ §(h1f1 +4(h2f2 +h,f, +-~-+h2nf2n)+2(h3f3 +hs fs +"'+h2n—1f2n—l)+ h2n+1fzn+1)'

It is likely that more than one integration is required to determine each term of the
center-of-gravity location since the triple integrals indicate a three-dimensional shape
that requires integration in three directions. It is easier to use the polar coordinate
system in Figure 1.1(a). This allows one to conduct two integrations instead of three.
The method applied in this work for determining the center of gravity’s
location with numerical integration is detailed in this section. In the applied form, the

general equation that is equal to Eqn. (2.17) is

{Xcg»ch»chF{ S Ju T } (220

NVol NVol NVol

The term NVol is a volume-related term, but it is not necessarily equal to the volume
of the heat shield. For the spherical-segment axial shape, NVol is equal to V};, but for

the spherically-blunted cone and power law axial shapes, NVol is equal to the terms
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that are not cancelled out from being common to the numerator and denominator of

Eqn. (2.17). NVol is defined as

k max jmax

NVol = > dNVol,,, (2.21)

=1 j=1
in which dNVol;is the differential volume-related term defined as
2
Yik g d o Spherical
- @, ,dr, , cos 27%) pherical - segment
2

w-.
dNVol ,, = %d(/jj’kdrj’k, Spherically - blunted cone (2.22)

2
Jok
de,,dr,,, Power law,

in which spherical-segment angle & only varies with x-location, dd; is the
differential sweep angle in the yz-plane. This differential angle is determined from the

law of cosines

2 2 2
Wit Wi —dianox
d¢jk = acos J> J+l, (j+1,k),(j.k) , (223)
2w Wi

and drj is the average of the distances between the points (j+/,k) and (j+1,k-1) and

the points (j,k) and (j,k-1), which is the numerical analogue to a differential length,

1
drj,k = E(d(ﬁl,k),(jﬂ,kl) + d(j,k),(j,kfl)) (2.24)

Since there are two differentials in dNVol, it is noted that it will be integrated twice to
produce the denominators of Eqn. (2.20). With these equations, the denominator is

fully defined. For the numerator, the subscript letter on the function f corresponds to
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the x, y, and z-components, and the subscript number 3 corresponds to the result after
the two integrations. The subscript number 2 corresponds to the result after one
integration, and the subscript number 1 corresponds to the initial case before
integration. The initial variables f,, - ; that are integrated twice to produce f; )3 are

defined as
Vi foisf o1 j=1x,,dNVol v, . dNVol .z, (dNVol , | (2.25)

These are integrated first with respect to ¢, and there are a k,,,,-number of values for

f;c,y,Z,Z
(s ki ( Jf] (2.26)

1

~ (g (fv,l,l + 4(fv,l,2 + x,1,4 +...t x,1,2n )+ 2(fx,1,3 + x,1,5 +...t x,1,2n-1 )+ x,1,2n+1 )j >
k

and likewise for £, » and f. ,. Note that the f, ; includes the differentials d¢ and dr, and
thus they are not written in Eqn. (2.26) and (2.27). The f, . are integrated with

respect to 7, and so there is one value for each component of f;

X2nt1

foa= |1 (227)

X1

~
~

(fv,Z,l + 4(fv,2,2 + x,2,4 t...t x,2,2n )+ 2([{,2,3 + x,2,5 +...t x,2,2n71)+ x,2,2n+1)’

W | —

and likewise for f,3 and f ;. With these definitions, the location of the center of

gravity of a given three-dimensional shape can be determined.
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Chapter 3. Aerodynamics and Static Stability

The theory behind the aerodynamics and the static stability is presented in this
section. The aerodynamic characteristics are then transformed into the quantities that
are applied in the code of this work. The method for determining the shock-standoff
distance to the stagnation point is introduced also, and modifications to the method to
account for angle of attack are stated. Then this chapter finishes with a couple
corrected misinterpretations of general aerodynamic theory.

Two coordinate systems applied in this work are the freestream coordinate
system shown in Figure 3.1(a) with the positive angle of attack and sideslip angle
conventions, and the fixed coordinate system shown in Figure 3.1(b), which is

slightly different from Figure 2.1.

i
st e
i ‘\.\n‘iiif’f-ﬂ%ﬁéfz'; e
LR iy
S e

e
5
,

Pitching
Cv>0

Rolling

a) Freestream coordinate system with @ and . b) Fixed coordinate system with aerodynamic
moment conventions.

Figure 3.1. Coordinate systems with positive & and £ and moment conventions.
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3.1. Modified Newtonian Impact Theory

After the heat shield geometry is generated, its aerodynamic characteristics
are calculated based on a modified Newtonian surface pressure distribution. Simple
Newtonian theory is equivalent to the limit of exact oblique shock theory as M.,
approaches infinity and y approaches one.’> This work is currently being applied to
Earth atmospheric entry by assuming = 1.4, and a similar analysis can be applied to
a Martian atmosphere of CO, by assuming y = 1.3. However, when calculating the
shock-standoff distance, the effective specific heat ratio after the blunt-body shock is
determined using the empirical correlations of high temperature air from Tannehill,”’
as explained in Section 3.2 on shock-standoff distance.

Because Newtonian theory allows aerodynamic performance to be determined
within a fraction of a second of computation time, it has been chosen over more
complicated, time-intensive methods for optimization reasons. Results from the code
that apply modified Newtonian theory are compared to wind tunnel and flight test
data from Apollo Command Module (CM) in Chapter 7.

The pressure coefficient, which is the pressure difference normalized by the

dynamic pressure, is given by the equation

Cc _P=Pe_P-Ps _ 2 (L_j'

= (.1)
. ;pooVof M2\ P,

Newtonian theory assumes that the component of a particle’s momentum that is

normal to the surface is destroyed when impinging on the face of the blunt body

2,33,64
d.>°>

while its tangential momentum is conserve The Newtonian model is
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for V,, -n<0. The surface is in the aerodynamic shadow region when

resulting in C, = 0.

For simple Newtonian, the maximum value of the pressure coefficient is
assumed equal to two. Modified Newtonian theory accounts for the maximum value

Cpmax, according to the Rayleigh Pitot tube formula” that gives the ratio of the
(3.3)

stagnation pressure after the shock to the freestream pressure
by Y
)

1—y+2yM:
49M2 -2y -

Poo
Do y+1
This produces the following relation for C,, yax
C) o :Lz(p 0.2 -1j. (3.4)
M\ P,
(3.5)

The velocity is modeled as a function of the angles of attack and sideslip
= {Vx,Vy,Vz }: {cos(a)cos([)’),sin(a)cos(ﬁ),sin([)’)},

o0

8V|V1

and the local normal vector is approximated by setting it equal to the cross product of

two local vectors on the differential surface d4. Two local vectors are formed by
subtracting the values of the x, y, and z-locations at point (j-/,k) from those at point
(7,k) and likewise for points (j,k-1) and (j,k). The cross product of the two newly-

formed vectors in terms of the x, y, and z values at points (j,k), (j-1,k), and (j,k-1) is

the numerator of local normal vector and written as
47



(yj,k —Viak xzj,k ~Zjka )_ (yj,k —Vika ij,k “Ziak )
n,y (Zj,k T2k Xxj,k X k1 )_ (xj,k Xk ij,k T2k ) (3.6)

n,. (xj,k — Xk ij,k —Vika )_ (xj,k =Xk ij,k —Viak )

nv,x

This formulation will work for points with j#1 and k#1 and at the base of the heat
shield geometry for k& = k,,, also. For points with j = 1, the vector formed by points
(7,k) and (j-1,k) is replaced by (j+1,k) and (j,k), and then the numerator of the local
normal vector is formed. For points with £ = 1, which is at the tip of the nose of the
vehicle, it is assumed that n, = -1, and the other components are zero. The magnitude

of vector n, is then calculated to produce the normal vector

i =y, S+, F o+

il = {2 e .
and Eqn. (3.2) becomes

C,=C, V. +V,n +Vn ). (3.8)

These equations calculate the pressure coefficient for a general blunt-body geometry
given in the form of a three-dimensional structured mesh, with each x, y, and z surface
location determined by sweep angle location j and x-section location .

All the aerodynamic forces and moments are calculated as non-dimensional
terms. The forces looked at in this analysis are the normal, axial, and side forces with

coefficients Cy, Cy4, and Cy respectively. The coefficients are defined as

-1
CN = A—IjnyCPdA, fx,l = ny,(j,k)Cp,(j,k)dA(j,k) , (39)
p S
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-1

Ca= A_ I nxdeA, ! »l = nx,u,k)cp,(j,k)dA( Jik) s (3.10)
p S
1

CY = A— J.nzCPdA’ fz,l = nZ,(j,k)Cp,(j,k)dA(j,k) , (31 1)
p S

in which d4; is the differential surface area defined as
dA;, =w;dr;, d¢,,, (3.12)

Using the written equations for f; ; that correspond to each of the force coefficients,
numerical integration is completed using Simpson’s rule with the process detailed in
Chapter 2. Then the force coefficients become
-1 -1 -1
{CN’CA9CY}:{_fx,39_fy,39_fz,3}' (3.13)

A A A

p p p

The lift and drag coefficients can be determined after the normal, axial, and side force
coefficients are calculated. For the Apollo CM, Hillje'™'" divides the lift coefficient
into a vertical lift coefficient C;,  and a horizontal lift coefficient C; . This work uses

the following definitions for the lift and drag coefficients

c,,=Cy cos(a)—CA sin(a), (3.14)
C,u=C cos(8)-C, cos(a)sin(f3), (3.15)
C, :\/(CL,V )2 +(CL,H )2 ) (3.16)

C, =C,sin(a)+C, sin(B8)+C, cos(w, ), (3.17)
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in which wy is the wind angle, or the magnitude of the angle from the velocity vector

to the central-body axis,

wy,, = atan i
y = V . (3.18)

The resulting lift-to-drag ratio equations are

@)
~
<
t~
@)
~
T

:i &z > ZH _ J (319)
C, D " D C,° '

Wl

The aerodynamic moments about the nose that are considered in this analysis
are the pitching, yawing, and rolling moments with coefficients C,, g, C, 9, and Cjy.

The equation for the coefficient of the pitching moment about the nose is

ch chp
Cog = =C 14 C, =2 (3.20)
X,
inwhich C, , =—C, —% -1 [[xn,C a4,
. d 24, (3.21)

S =X, G0Cp a4 iy

Yo 1 e
i ‘mf! (= m.C, i, (3.22)

S o1 ==Y 550 C o A -

and Cm’A’0 =C,

Cinn0 1s the normal force’s contribution to the pitching moment, and C,, 4 is the axial
force’s contribution. Similar to integrating f, ; to determine the force coefficients, the

Jv1and £, ; of each moment coefficient can be integrated separately in order to find f; 3
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and f,,3. Those are used to determine the location of the center of pressure after are

calculated. The equation for the coefficient of the yawing moment about the nose is

Z. X,
Cn,OZ—CA7p+CY7pa (323)
inwhich C, ,,=- = zn C dA,
A0 4 d ? (3.24)
Jaa =2 0Cp a0 Gy
X
and C ,,=C,—Z xn.C, JA,
meTY g 2A r'” ( )d (3.25)

Soa = =% 0Co @A iy -

Cy.40 1s the axial force’s contribution to the yawing moment, and C,, y is the side
force’s contribution. The equation for the coefficient of the rolling moment about the

nose is

Y, Z,
C,o=-Cy dp +C, 7P , (3.26)

inwhich C,,,=-C,—%£=
o d (3.27)
Ja1 = Y50 Co i @A iy o
and C =C = —zn C A,
WO TN T T 0 ISI o, (328)

S =721y 0Cp @A 1y

Ciyy 1s the side force’s contribution to the rolling moment, and C;y is the normal
force’s contribution. After f; 3 and f, ; are determined for each coefficient, the moment

coefficients become
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s+ f0s) s+ 105),

”ZAZ

CooCrorCro}= { —(f+ %3)1} (3.29)

24,1, ’”ZAZ

Note that all moment coefficients are defined as the ratio of the moment to
q Sy, in which [y, is defined as the length of the semimajor axis. This definition of /),
makes it possible for the yawing moment coefficient C,  at a given sideslip angle (the
condition f; # 0, a; = 0) for a prolate shape e¢; > 0 to be equivalent to the pitching
moment coefficient C,,y for an oblate shape at a given angle-of-attack (the condition
o = B, > =0, e; = -¢;). This definition was chosen over defining /), as the span of

the heat shield.

In validation, it is shown that the rolling moment calculations rendered a z-
location of the center of pressure, Z,, that is inconsistent with the calculations of the
other two moments, and so the yawing moment coefficient was used to calculate Z,,.
One observation is that the components of C;, are of such small magnitude that the
values may have numerical error on the same order, thereby producing inconsistent
values for Z,. One reason for this may be that Simpson’s rule has difficulty
integrating numbers that have values near zero. Since the value of C;y is orders of
magnitude lower than the pitching and yawing moment coefficients, it is possible that
Simpson’s rule reached its limit around the value of C;, without affecting C,, o and

Cn, 0-

3.2. Shock-standoff Distance: Kaattari’s method

Kaattari’s method for calculating the shock-standoff distance to the stagnation

point is semi-empirical.’**> Kaattari’s method assumes that the shock shape is
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spherical with radius ry,. There are several curves that relate the normal shock density
ratio p»/p; to characteristics empirically derived, including the shock-standoff
distance at the sonic point for several shapes such as a cone, paraboloid, and sphere.
Then there are several aerodynamic and geometric theory-based equations applied in
determining the shock-standoff distance from the chosen geometry. Kaattari’s method
is not completely explained in this work because it is well detailed for the general
blunt-body case at zero angle of attack in Ref. (55) and for a spherical-segment blunt-
body at large angles of attack in Ref. (54). To introduce the method, this section does
include the main equations. Then a description of how this method is implemented on
the computer is included since it was originally an iterative process completed by
hand. Afterwards, modifications to the method accounting for angle of attack in Ref.
(54) are included to estimate the shock-standoff distance for the general blunt-body

casc.

3.2.1. Method Implementation

Kaattari gives two similar methods for determining the shock-standoff
distance, one for conic-section bodies and the other for non-conic-section bodies.
Kaattari recommends using the conic-section shock equations with ellipsoids and the
non-conic-section shock equations with the spherically-blunted cone. For this work,
the non-conic-section shock equations were chosen to be used for all three axial
shapes because they account for edge bluntness while the conic-section equations do
not. Also, for the spherical-segment blunt-bodies, it was noticed that the conic section

equations and non-conic section equations produced similar results for a spherical
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body. Additionally, ellipsoid relations assume a complete ellipsoid is present rather
than a segment of an ellipsoid, and this may become problematic at angles of attack.

Kaattari originally calculated the shock characteristics of axisymmetric shapes
by hand using plots of several geometric and aerodynamic characteristics that varied
with the normal-shock density ratio. He needed to iterate his solution until the method
found a converged value of the shock-standoff distance. This work uses the computer
to automate Kaattari’s process. Part of this is accomplished by curve-fitting the
necessary semi-empirical plots. This section supplies the curve-fit equations that were
generated for this work. Note that all the given digits are required in order for the
curve-fits to register the corresponding norm of the residuals or R? values (which is
given for most of the curve-fit equations). Also, even though all these digits are
required to have an accurate curve-fit, this does not mean that the resulting value has
a correspondingly large number of significant digits. It is suggested that the
calculated results of the given curve-fits do not have more than three significant
digits. As noted previously, this section does not detail the entire Kaattari method; it
only includes the main modifications and additions to the method including curve-fit
equations.

This section also refers to figures that are not included in this work, but the
reference numbers are given. The G function relates the ratio of the shock-standoff

distance to the shock radius, Ay/¥y, to the blunt-body’s radius of curvature at the nose

A A A A
G :(1+ j g =(1+—0”‘hj—", (3.30)
rn rsh rnrsh rsh

which can be manipulated to become
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1+4G[rshj -1
A, r,
0 . (3.31)

These relations™ are based on a given normal-shock density ratio. Figure 1 from Ref.

[55] provides a relation for the G function to the normal-shock density ratio for j-

values of 1.0 and 1.4

4 3 2
-2.2378[ﬂj +2.9402£ﬂj -1.4354£ﬂj 4
P2 P2 %)

+ 0.81267(ﬂJ -0.00024476,

P2

Norm of residuals: 0.0033845, y=1,
G =
4 3 2 (3.32)
2.424z(ﬂJ -1.4794[ﬂ] -0.047552(ﬂJ
P2 P2 P2
+ 0.69906(ﬂ] +0.00062937, y =14
P2

Norm of residuals: 00025566,

If pi/p> < 0.15, then the two curves converge and the curve-fit equation for y = 1.0
must be used. Otherwise, interpolation between the two curves can be completed for
0.15 < pi/p> < 0.45. The shock-standoff distance at the sonic point A« is non-
dimensionalized by y«, which is the normal distance from the axis of symmetry to the
sonic point on the body. Figure 2 of Ref. [55] relates the A+/y« to the p;/p, for two

specific heat ratio values for 0.01 <p;/p, <0.45,
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3 2
6.418(&J _ 4.3473(ﬂ]
P2 V%)

+ 2.7174(ﬂj +0.0018741,
/%)

Norm of residuals: 0.0087586,  y=1,

3 2 (3.33)
1.4064(ﬂJ _ 0.80536(ﬂJ
V%) 12)

+1.9834(ﬂj +0.00052448, y=1.4.
P2

Norm of residuals: 0.0076548,

Kaattari validates these curve-fits with experimental data for spherical, disk, and cone
shapes, as well as with theoretical results for spherical and parabolic shapes for zero
angle of attack. From these two equations, the shock surface inclination at a point

opposite the sonic point on a flat disk &%, can be determined

0., = atan (3.34)

G
A/ '
Vs

The sonic angle for a sphere @+, is defined as the body surface inclination of a
sphere at the sonic point, with respect to a plane normal to the freestream direction.

The variation of the sonic angle for a sphere ®+«; with p;/p; is given in Figure 4 from

Ref. [55] for 0.025 < p;/p> < 0.45,
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@, (deg) =

4 3 2
-797.1(ﬂj +908.77EﬂJ -380.2(ﬂj
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104.8£&J _ 7.2046(&j -99.371(ﬂj
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+61 .984£&J +32.589,

y=14.

P2

(3.35)

If pi/p, < 0.15, then the curve-fit equation for ¥ = 1.0 must be used. Otherwise,

interpolation between the two curves can be completed for 0.15 < p;/p, < 0.45. The

sonic angle for a rounded-corner blunt-body @« varies with r./r

-18.35253948[

sinl®.
sin D,

+0.15140845,

0.21591n[”—6j+1.01,

v,
2 _c
0= 0.00 < <0.01,
r

2
”_cj +5.31156637(r—cj
r r

0.01<<<0.10,
r

0.10 << <1.00.

r r

(3.36)

For each axial shape, & which is the inclination on the forward body surface at the

point tangent with the corner radius, is given by the following set of equations. From

these, the sonic angle @+ can be determined. For the spherical-segment and power law

axial shapes,
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r. Spherical - segment,

(3.37)

, Power law.

yl,kmax 'yl,k max -1
atan
X1k max~ *1k_max-1

For the power law axial shape, the term subtracted from "/, can be defined as an
effective local half-cone angle. There are two cases for the spherically-blunted cone:
one in which the spherical-segment is the dominant shape, in which the »,/d is large,
and the other in which the cone shape dominates. This is described by the following

equation set for the spherically-blunted cone

——0
2 e 0<2<—sin| Z-9, |,
d 2
&€= (3.38)
T Y1, kmax ~ Y1 kmax-1 l . (7[ j "
— —|atan , —sin|—-0, |<—.
2 Xl,k_max - Xl,k_max—l 2 2 d

Note that if &£ > 37° then ¢ is set equal to 37° since that is the limit of Kaattari’s
dataset. The spherically-blunted cone does not approach this limit since it would
require a half-cone angle 6. < 53° and the limit for the half-cone angle in the
optimizer is set at 55°. Kaattari’s method also notes that if the sonic angle @+ < g, then
the sonic point is assumed to be taken at the tangency angle ¢ and so @« is set equal
to ¢ for this case. To determine &, Kaattari supplies Figure 6(b) from Ref. [55] that
relates the difference & — &, as a function of @« This relation varies with the

normal-shock density ratio, and their corresponding curve-fit equations with @« limits

are included in Appendix A.1.
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The main non-conic-section body shock equation relates the shock radius ry,

to the stagnation shock-standoff distance, the corner radius, sonic shock-standoff

distance and the tangency angle

~—

. (A—j s tan(g)+2((:(l§j()gl)+2(1;i?£)g)—cos(®*)j

(1—sin(®.))

,(3.39)
1_

~ ‘nﬁ

in which x; is the streamwise distance from the apex of the shock to the point on the

shock at distance y« from the central axis. This relation along with the shock solution

nomograph equation,

X 7, 1
SRR T . 3.40
"y [y* tan(6. )J (40

and the initial value of A,/ry, set equal to G, determine the values of B, y«7, rg/r, and
A7,

2
r 1
B =|2h| — , 3.41
: (y} tan*(6,) G40

P _1-Le(1-sin(@.)), (3.42)
r r

T _ T Vs (3.43)

r y* r ’

rsh — rsh &L

: (3.44)
7"” y* r l"n

8 BTy (3.45)
roor,
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From here, the value of A,/ry, based on Eqn. (3.31) is calculated and the process is
repeated. Once the value of Ay/ry converges within 0.001, the iterative process has
been completed, and the shock properties of the blunt-body have been determined for
zero angle of attack. The main output variable is A,/7,. The complete process with

referenced figures and examples is included in Ref. (55).

3.2.2. Accounting for Nonaxisymmetric Shapes & Angle of Attack

Kaattari™* offers a way to account for angle of attack for spherical-segment
axisymmetric blunt bodies. In this section, a basic method is described for
determining how A,/r, changes both for a nonaxisymmetric blunt body and with angle
of attack based on Kaattari’s method. It also has been modified to account for the
spherically-blunted cone and power law axial shapes. These modifications are meant
to produce results that follow expected trends only. Although there is confidence in
the expected trends, the results should not be accepted as unequivocal since several of
the more exotic shapes have not been studied before from a re-entry heat transfer
standpoint. The expectation is that these modifications produce shock-standoff
distances for nonaxisymmetric geometries within the proper order of magnitude. The
reason for using this method is to approximate the stagnation-point radiative heat
flux, and Chapter 4 explains how it can be approximated for a blunt body using the
shock-standoff distance.

For an axisymmetric spherical-segment geometry, Kaattari provides the

process for estimating the shock-standoff distance in Ref. (54), and the equation
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max

A _4, —(cl L 03[ £ J Jcos(¢)sin(a) (3.46)

relates the shock-standoff distance at angle of attack to that at zero angle of attack.
Note that for this work, the angle of the azimuth ¢ is assumed equal to zero. To
determine how the value of Ay/r, varies with angle of attack, semi-empirical data of
shock correlation functions from Kaattari in Ref. (54) have been curve-fit. Applying
these curve-fits is described in the next section, including the modifications required
to use Kaattari’s method to approximate how the shock-standoff distance changes
with angle of attack. Figure 9(a) from Ref. [54] shows how the shock correlation
coefficient ¢; varies with the normal-shock density ratio and the tangency angle & It is
curve-fitted (input ¢ in degrees) with limits of applicability in Appendix A.2.
Interpolation for cases with normal-shock density ratios in-between the given curve
fits has been tested and is completely feasible. The correlation constant c¢; is also
supplied in Figure 9(b) from Ref. [54], and the curve-fit equations (input £ in degrees)
are listed in Appendix A.3. With all of these equations, it is possible to approximate
the shock-standoff distance. This is the full extent of Kaattari’s method.

To account for nonaxisymmetric geometries, it is assumed that the change in
the shock-standoff distance for shape variance and an angle of attack is dependent on
eccentricity and the axial shape of the upper half at ¢=0°(j = 1) and the lower half at
¢ =180° (j = (jmax-1)/2). An example geometry is shown in Figure 3.2 to show how

Kaattari’s method is applied.
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oL Shock shape frome = 70°
------ Shock shape from 6 = 76°
¢ lower
— Top half of cone r =1.958
upper
11| — Lower half of cone Mower = 2.864
A Assumed stag. pt. loc. at o = -(90°-0 c upper)
& Shock location at a = -(90°-0 )
ok ¢ upper
v Assumed stag. pt. loc. at o = 907-6 c lower
> - Shock location at o = 90°-6 '
c lower
~4L| © Shock location at a = 0°
21
3k
-7 -6 -5 -4 -3 -2

Figure 3.2. Spherically-blunted cone profile shock-standoff distance variance.

Kaattari’s method is applied to determine the radii of the shock for the upper
profile 7 upper = 4.827 and the lower profile 7y, ower = 11.30 separately. This is
accomplished by accounting for the different half-cone angles for the upper and lower
surfaces, @, upper = 70° and @, o = 76° respectively. Also the different upper and
lower base radii, 7,ppe- = 1.958 m, and ;o = 2.864 m respectively are accounted for
and added together to produce the base diameter. The shock-standoff distances for
each case is calculated A, ,per = 0.4175 m and A, joyer = 0.9215 m. After the shock-
standoff distances are determined this work assumes that this cone shape must have a
zero angle of attack shock-standoff distance A, that is in-between the two calculated
shock-standoff values. It is assumed that each has equal effect on A,, and so it is set
equal to the average of the two and produces the open circle in Figure 3.2

corresponding to A, = 0.6695 m.
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Originally, to account for angle of attack, Kaattari’s Eqn. (3.47) was applied,
but for the case of Figure 3.2, A,<o > Ay, which does not follow the most probable
trend. At a<0, the upper profile faced the freestream more than the lower profile, and
so it should have more effect on A, than the lower profile. Because 7 iower > Fshupper» it
is expected that A,—_99-9 < Ay=90-9, Which is the opposite of the trend produced by
Eqn. (3.47). As a result, the following basic method is applied to guarantee that this
trend is held.

This work assumes that the shock-standoff distance at oo = 90° - 6. joer, Which
is 0>0°, can be approximated by the distance from the lower shock with radius 7, joer
that is perpendicular to the lower face. This distance is the length between the two
inverted triangles shown in Figure 3.2. For a < 0, the shock-standoff distance at o = -
(90° - O.,upper), can be approximate by the distance from the upper shock with 7, ,per
that is perpendicular to the upper face. This distance is the length between the two
triangles shown in Figure 3.2. As a result, this also means that if 74 iwer < shuppers
then Ag=(90-9 > Ag=90-6, thus this method accounts for either case. Linear interpolation
between A, and A, is applied once the endpoints A= 9p-gupper) aNd A g=0p-giower are
determined. This simple method is implemented only so that the shock-standoff
distance is varied and follows an expected trend.

To account for eccentricity, the average base radius is determined; then it is
divided by the maximum base radius to produce the non-dimensional average base

radius 74yg xq. This term is then used to calculate the upper and lower shock radii
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Eccentricity is accounted for through this approach so that the calculated shock radii
of a prolate shape with eccentricity e at « and those of an oblate shape with the same
eccentricity are affected equally. This is one way of producing consistency
throughout the results. Note that this addition does not provide true consistency when
calculating the radiative heat transfer, as the value of ¢,.,; varies up to 33% at
eccentricity |e| > +/- 0.9 and up to 20% at |e| > +/- 0.8. As a result, any calculations
for highly eccentric shapes should be seen only as approximate solutions.

For rounded-edge concave shapes such as that shown in Figure 2.7, the profile
could look similar to an inverted Figure 3.2. In this case, it is assumed that only the
surface with the larger 7 (in the case of Figure 2.7 it would be 7,,,.) is applied rather
than using the average of shock-standoff distances because the surface with the larger
r represents the primary radius of the shock-shape. This is assumed for the rounded-
edge concave shapes since they have not been investigated experimentally or through
computational fluid dynamics (CFD). It should be noted that the shock shape about
rounded-edge concave shapes may have a radius that varies with sweep angle, and so

only basic assumptions can be made at the level of this work’s analysis.
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3.3. Static Stability

The stability of a planetary entry vehicle is one of the main factors that
determines whether a particular design is feasible. If the EV requires quasi-steady
flow in order for it to follow the designed trajectory, then the vehicle must be able to
remain or return to the designed trim angle of attack «,;, after encountering flow
disturbances. This can be determined by looking at the static and dynamic stability of
the vehicle. This work analyzes the heat shields’ static stability only for a first-look
analysis. An in-depth, full vehicle analysis would require the study of both the static
and dynamic stability since it is possible for a statically stable vehicle to be
dynamically unstable. If a wvehicle is statically stable, then it possesses the
aerodynamic moments required to restore the vehicle to an equilibrium state after
encountering a flow disturbance.”®

One way to measure a vehicle’s static stability is to analyze its aerodynamic
moments about the vehicle’s center of gravity. In this work, the aerodynamic moment
coefficients C,, 9, C,9, and C;y about the nose of the vehicle and the force coefficients
Cw, Cy4, and Cy are calculated using modified Newtonian Impact Theory. Then the
center of pressure location is determined from this information as previously
explained. The center of pressure is the location at which the aerodynamic forces are
applied. As a result, the aerodynamic moments, which are produced by the
aerodynamic forces, are zero about the center of pressure. Once a center of gravity
location is either chosen or calculated, moments produced by the aerodynamic forces

about the center of gravity are calculated.
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For a fixed body-axis moment with conventions for positive moments given in
Figure 3.1(b), there are twelve possible center of pressure positions, with respect to
the vehicle’s center of gravity and the central axis. For example, in longitudinal
stability, the contributions of the normal and axial forces to the pitching moment
about the center of gravity are determined. If the center of gravity is below the central
axis, then the center of pressure can be below the center of gravity, above the center
of gravity in the same quadrant (below the central axis), or above the center of gravity
in a different quadrant (above the central axis). In each of these cases, the center of
pressure could be in front of, aligned with, or behind the center of gravity. If the
aligned case is grouped with either the in front or behind cases, then there are six
different geometric cases. The other six cases correspond to the inverted case in
which the center of gravity is above the central axis, thereby producing a total of
twelve cases.

After deriving each of the twelve cases for the pitching, yawing, and rolling
moments about the center of gravity, it was observed that all twelve cases for each

moment could be reduced into one equation, producing the following three equations

X, -X Y, -,
ggzq{iifi}c{ﬂj:ﬂ, (3.49)
X, - X Z,-7
qﬂzgﬂij—i}c{J%ri} (3.50)
c, (ﬁj ‘C, (HJ C,, >0,
d d ’
C (3.51)

Leg ~ 7 -7 Y —-Y
_ {CN (%J + CY (%Jj, CL,V <0.
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In order for the definition of rolling moment static stability to remain constant, the
rolling moment C; ., equation accounts for the change in positive moment convention
that occurs when the vertical component of the lift coefficient becomes negative. The
explanation for this is included in the next section, which comments on two
misinterpretations of basic aerodynamic and stability theory.

With the moments about the vehicle’s center of gravity determined, its static
stability can be determined through an analysis of its moment derivatives with respect
to angle of attack and sideslip angle. These derivatives Cy, e Cucgp and Cicep are
known as the static stability derivatives. For longitudinal stability, the derivative of
the pitching moment with respect to angle of attack must be negative. For yaw
stability, the derivative of the yawing moment with respect to sideslip angle must be
positive. For roll stability, the derivative of the rolling moment with respect to
sideslip angle must be negative. If the positive moment convention for C; ., were kept
constant for positive and negative lift, then roll stability requires the rolling moment
derivative to be positive for negative lift.

To calculate the stability derivatives numerically, the code determines the
Cicg Cneg and Cieg at a - 0.25° o + 0.25% - 0.5° S+ 0.5° in order to use the

following finite-differencing approximate of the first derivative

dc C - —C ’
c _ m,cg _ m,cg,a+0.25 m,cg,a—0.25 , 352
m,cg.a da Aa ( )
c _ dC, . _ Cn,cg,ﬂ+0.5” _Cn,Cg,ﬂ—0-5a (3.53)
n.cg.p dp Ap ’
C _ dcl,cg _ C[,cg,ﬂ+0.50 - Cla(’gaﬂ_o'su (3 54)
leg.p — dp B Ap ' .
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These numerical approximations are second-order accurate in space. With the static
stability derivatives calculated, an analysis of the vehicle’s static stability can be

completed.

3.4. Modified Uniform Density Assumption

This work uses a modified center of gravity location based on uniform
density. The uniform density’s center of gravity location is calculated according to
section 2.4. While Y., and Z, are equal to their uniform density values, the prescribed
Xco1s modified to equal 75% of the uniform density value. Bringing the X, forward
increases the feasible design space by allowing more slender blunt-bodies with higher
L/D to be longitudinally statically stable. For example, with the high eccentricity of

e=—0.95, shown in Figure 3.3, comes the unstable pitching moment derivative Cy, cg

=0.0566/rad if a uniform density heat shield is assumed.

X./1=0.400 0.637
a) Front view b) Side view

Figure 3.3. Spherical segment 0, = 90° and e = -0.95.
However, if the uniform density value Xc,// =0.635 is switched to X.o// =0.400, then

the pitching moment becomes stable with C,, ¢z, =0.099/rad. Note that the center of

gravity location required for ., and the feasibility of that location is not determined
in this work. Heat shields that required oy, > ~20° may require a center of gravity

location that a more detailed analysis could determine is infeasible.
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3.5. Correcting Misinterpretations

Two common misconceptions are detailed in this section to emphasize the
importance of understanding these basic aerodynamic concepts. The first concerns the
static roll stability requirement on a given aerodynamic vehicle. The second involves

calculating the location of the center of pressure on a passive aerodynamic vehicle.

3.5.1. Static Roll Stability Requirement

When either a disturbance in the flow or a control input generates a rolling
moment about the center of gravity of a lift-generating vehicle, the direction of the lift
vector relative to the horizon is no longer perpendicular, causing the vehicle to
sideslip. In general, a lift-generating vehicle sideslips as it rolls, and general stability
theory concludes that there is a coupled effect that can be related to the vehicle’s roll
angle and the freestream sideslip angle. To make a lift-generating vehicle statically
stable when it encounters a flow disturbance that brings the vehicle away from its
desired orientation and path, the vehicle must be able to produce a counter-moment to
bring it to its initial orientation (usually zero-roll angle or the designed trim position).

Aircraft stability assumes that the lift vector is always positive for an aircraft
in wings-level attitude; this leads to the standard convention that a positive rolling
moment renders a positive change in sideslip. As a result, the rolling stability
derivative Cjp is required to be negative for static stability to counter flow
disturbances.”

Spacecraft stability must also account for the possibility that the vehicle may

be designed to produce negative lift during a portion of its trajectory. If the lift vector
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is negative, then a positive rolling moment renders a negative change in sideslip,
producing the reverse relationship between roll angle and sideslip angle, in which a
positive roll angle produces a negative sideslip angle. In this case, the rolling stability
derivative C;gis required to be positive for static roll stability. Since a negative C;zis
commonly associated with a statically roll stable vehicle, this convention is
maintained in this work by reversing the direction of the positive rolling moment
convention when the vehicle produces negative lift as shown in Figure 3.1(b). The
sign reversal of the positive rolling moment produces the discontinuity shown in

Figure 3.4 in order for all roll stable configurations to have C;5<0.
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Figure 3.4. C; ., g distribution for spherical-segment, elliptical base (n,= 2), varying ¢ and 6, o=
20° B=5".

As a result, if the positive rolling moment direction were kept constant, then
there would be stable configurations with C;s > 0, and there would not be a

discontinuity. With the sign reversal, Figure 3.4 clearly divides the stable and
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unstable oblate geometries. Phillips’’ includes a good discussion on roll stability in

his flight mechanics textbook.

3.5.2. Determining the Location of the Center of Pressure

One of the assumptions of aircraft stability, C; >> Cp, cannot be followed in a
blunt-body analysis since blunt bodies usually have an L/D < 1. The assumption of C;,
>> (Cp leads to the conclusion that the center of gravity must lie in front of the
aircraft’s neutral point (or the vehicle’s center of pressure) to satisfy the requirement
of Cycqo < 0 for longitudinal static stability.”' Since this assumption does not apply
to blunt-bodies, it may be possible to produce longitudinal static stability with the
center of pressure in front of the center of gravity. From modified Newtonian results
for C,, g shown in Figure 3.5 for -30°< & < 0°, it is determined that the X,// = 0.6556
and Y.,/ varied from 0.0000 to 0.5530 for a spherical-segment of 6, = 25° with a non-
eccentric base. As a result, the code suggests that the Apollo CM with a X,/ = 2.171
is one successful example of maintaining longitudinal static stability with the center
of pressure in front of the center of gravity.

Similar to X,/ being constant over a range of « for a spherical-segment e = 0,
6, = 25°, it has been proven that X,,// = 0.6667 for a sharp cone in a Newtonian
surface pressure field, suggesting that X,/ is independent of half-cone angle 0.2
Note that not all spherical-segments have X.,// = 0.6556, but at least one does with 6,
= 25° e = 0 including the Apollo CM. The general pitching moment equations that
relate X, and Y, to C,, ¢ are given as Eqns. (3.20-3.22). These equations follow the

coordinate system shown in Figure 3.1(b) that has a positive C,, corresponding to a
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nose-up moment. Bertin® notes that the axial force’s contribution to the pitching
moment is commonly neglected in the definition of the center of pressure location at
and near zero angle-of-attack. However, this assumption does not apply to blunt-body
aerodynamics because C,, 4,9 is commonly the dominant term for a blunt-body.

Apollo Wind Tunnel Data, M =6

0.04

0.02 u

0
-0.02 \.\
-0.04

-0.06

Cm,cg

-~

-0.08
-3 -30 -26 -20 -15 -10 -5 0

— Modified Newtonian ~ Angle of Attack (deg)

® Wind Tunnel Data

Figure 3.5. Variation in C,, ., with angle of attack.

Cinn0 1s not usually the dominating term for slender bodies, in which case the
resulting formula®**®* for a circular cone at zero angle-of-attack X,/ = 2/(3005296)
can be used, but this equation complicates the analysis since X,/ is constant at
0.6667 without the assumption. When this assumption is applied to a blunt circular
cone with 6. = 70°, then X./1 = 5.7, which is not close to the actual X,,// = 0.6667.
This assumption is only close to the exact solution for small &, but a blunt-body cone
does not have a small @.. For a general blunt-body shape, the following relation does

not determine the x-location of the center of pressure

X
o, _Cno (3.55)
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Instead, X.,// for a given blunt-body shape can be determined from the normal force’s
contribution to the pitching moment C,, 59 as shown in Eqn. (3.21).

Arora’s 2003 aerodynamic shape optimization work®® maximizes Xep-
Unfortunately, he equates X, to C,, ¢/Cy, which contradicts Eqn. (3.60). Since he does
not account for the axial force’s contribution to the pitching moment, his work is an
example of recent research that has made this incorrect assumption on basic blunt-
body aerodynamics, rendering the published optimization results unusable. His
conclusion is that the optimized X, value is 1.213 m, but a quick analysis of the
geometry he chose accounting for the axial force’s contribution to the pitching
moment suggests that the actual X, is less than approximately 1.1 m, suggesting that
his optimization results are within an infeasible region of x-locations due to the
incorrect definition of X,,. Additionally, his optimization results could be
significantly different when accounting for the general relation of X, and C,,y given
by Eqn. (3.20). Note that the incorrect definition of X, for a blunt body is included in
Regan’s first edition® and Rasmussen.” These are all examples of published work
that show what Bertin®> mentions is the conventional definition of Xp, not the true

definition of X, that is required to complete an aerodynamic analysis of blunt-bodies.
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Chapter 4. Heat Transfer

The primary physical mechanisms that contribute to the hypersonic
aerothermodynamics, i.e., the aerodynamic forces, moments, and heat transfer,” in
this work consist of (1) the surface pressure distribution, (2) the velocity gradient
along the heat shield, and (3) the radiating shock layer. The local bow shock strength,
imposed on the vehicle by freestream conditions, strongly affects both the surface
pressure distribution and the resulting heat transfer along the heat shield. The surface
pressure distribution has been approximated with modified Newtonian theory, as
described in the previous chapter. This chapter describes how the latter two are taken
into account. Conduction through the shock layer is negligible; thus, two heat transfer
modes convection and radiation are considered in this work. Convective heat transfer
occurs at the surface based on the surface pressure distribution that imposes a velocity
gradient along the heat shield, which sets the velocity at the edge of the boundary
layer. The thickness of the high temperature shock layer influences the thermal
radiative heat flux.

The two arguably most important heat transfer characteristics are the heat flux
and the heat load. The heat flux is power density in the form of heat per unit area. The
heat load is equal to the heat flux integrated over the trajectory in time. It is common
in the first analysis of a vehicle to look at the heat fluxes and heat loads at the
stagnation point because they have been shown to correlate with TPS mass.'

The Apollo CM reentered at an angle of attack that brought the stagnation

point near the corner radius. In such cases, as noticed in Ref. (38), the heat transfer is
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higher at the edge of the heat shield than at the stagnation point. In fact, the Apollo
Command Module at & = £+33° had a heat transfer flux at the edge that is 92% larger
than that at the stagnation point corresponding to « = 0°, according to wind tunnel
results,” but the actual CMs did not necessarily travel trajectories that required this
high an angle of attack. The most likely reason that this was one of the highest angles
of attack tested is because the conical shaped crew compartment that connected to the
heat shield was at a 33° angle with the horizontal. As a result, the flow would pass by
the crew compartment flush at &= +33°. The Apollo 4 CM traveled with a maximum
angle of attack of £25°, in which the heat transfer at the edge is around 60% higher
than at the stagnation point corresponding to « = 0°, according to other wind tunnel
results.’” In both the cases of o = +25 and +33°, the stagnation-point heat flux is
approximately 15% larger than it would be at &= 0°.*’ As a result, the heat flux is
higher at the edge of the heat shield than that at the stagnation-point of the Apollo
CM.

Both the heat flux and heat load are equally important. This chapter explains
the correlations applied in this work and their assumptions. The correlations were
originally designed to calculate the stagnation-point heat flux on a sphere. Applying
these correlations allows for the heat flux to vary with the radius of curvature of a
given blunt body. Explanations on how these correlations are applied to blunt-bodies
are included in the following sections. These correlations also vary with altitude
through a freestream density factor and with speed through a freestream velocity
factor. For this work the ARDC 1959 Model”® and US Standard Atmosphere of

1976" have been applied. The 1976 standard atmosphere is applied for results, but
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the 1959 model atmosphere is used as noted throughout the text for the application of
older correlations and code validation of results that used standard atmospheres

before 1976.

4.1. Convection

The properties of the high temperature shock layer affect both convection and
radiation due to the presence of dissociated and partially-ionized air. Additionally, the
heat shield geometry directly affects the surface pressure distribution, and thus, the
velocity gradient along the heat shield, at the edge of the boundary layer. A smaller
local radius-of-curvature increases the velocity gradient, thereby increasing the local
convective heat flux.” Low-order correlations based on empirical data account for
these upstream effects with a local radius-of-curvature term. The stagnation-point
convective heat transfer correlation of Tauber® is applied in this work. Tauber
assumes equilibrium flow conditions and a flight regime where boundary-layer theory
is valid. Tauber produces a specific equation for planetary entry from satellite speed,
but it is the objective of this work to approximate the heat transfer flux for planetary
entry from both satellite and superorbital entry speeds. To account for this, the
general form of his correlations, which is given as Eqn. (4) of his article®, is applied

to produce the following correlation for the stagnation-point convective heat flux

G oom = (1.83x107%) 051 = g, ) o272, @.1)

in which g, is the ratio of wall enthalpy to total enthalpy. It is assumed that g,, <<'1,
and so g, is zero in this work. This correlation assumes a fully catalytic surface,

which makes Eq. (4.1) a conservative estimate since this makes the convective heat
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flux independent of material choice as the recombination rate is infinitely large.
Bertin® indicates that the fully catalytic wall boundary condition produces results that
approach the equilibrium flow solution (Figure 5.12 of Ref. [2]). This correlation also

holds true to the Fay and Riddell*® derivation that states the Gy com 18 Inversely

proportional to the square root of the nose radius. Zoby*’ presents evidence that this
relation breaks down for blunt bodies with ratio values of base radius 7 to nose radius
r, less than 0.6, in which r, > r. He suggests that this is due to the velocity gradient

being higher than would be otherwise expected by the deriving ¢, ocr, . If

possible, this would be a good addition for future work. This is only one example that
these heat transfer derivations are not accepted as fact in their application to blunt
bodies, but they generate trends that are accepted as generally true for stagnation-
point heat transfer.

The form of the correlation shown in Eqn. (4.1) was originally designed for
calculating stagnation-point heat flux on a sphere. Since the stagnation-point
convective heat flux relies mainly on the geometry nearby the stagnation-point, as
opposed to the full body shape and size, it can be approximated by setting the radius
of curvature equal to the nose radius. The nose radius is the term that relates the heat
flux to the geometry in Eqn. (4.1). For the spherical-segment and spherically-blunted
cone axial shapes, determining r, is a trivial calculation. For the power law axial
shape, the slope of the shape at the tip of the nose may not necessarily be continuous,
as in the case of setting b = 1, in which a sharp cone axial shape is generated.

As a result, the blunt-bodies with a power law axial shape must have an

equivalent nose radius term produced. This equivalent nose radius is only an
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approximation and should not be accepted as a complete model for power law shapes.
First, it is assumed that the power law shape’s nose tip is blunted if its slope is
discontinuous. Then the profile of the power law shape is examined; for this analysis,
a line that is normal to the power law profile and that produces a 15° angle with the
horizontal is generated. A segment of that line that begins at the line’s intersection
with the power law profile and ends at its intersection with the horizontal central axis
is produced. The effective radius is assumed to be equal to the average of the length
of that line segment and the distance to the nose from the end point of that line
segment on the horizontal axis. If the normal line intersects the power law curve
beyond the base of the geometry (the intersection occurs outside of the heat shield
shape), then the geometry’s curvature is assumed sharp and given an effective radius
value of 0.001 m. To produce a true method for determining the effective radius of

the general power law shape for convective heat transfer is a research topic in itself.

4.2. Radiation

Since radiation over a blunt-body can be primarily modeled as an elliptic
problem, the radiation at the stagnation point depends on the body of the vehicle in
addition to the nose radius. For a given set of freestream conditions and a shock layer
with emitted power density E, ¢;,.,s Will be greater for the heat shield with the larger
A, Also, the radiative heat flux is significantly more sensitive to the angle-of-attack
of the blunt body than the convective heat flux. In this work, all these effects are

incorporated into the term called the effective radius. In order to

apply g, ,,, correlations for spheres to non-spherical blunt-bodies, the effective
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radius in this work is directly related to the spherical radius for a given set of
freestream conditions. This is accomplished by estimating the shock-standoff distance
Ao across from the stagnation point at a given normal shock density ratio p»/p; of the
blunt body.

To calculate the normal shock density ratio p./p;, high temperature properties
of air must be determined in order to calculate an effective specific heat ratio after the
normal shock ... Tannehill’’ supplies high temperature air correlations for this
work, and they are also located in Chapter 11 of Anderson.” The effective specific
heat ratio after the normal shock is determined through an iterative process. First, a
test variable for ., 1s called y. > and set equal to 1.4 as an initial condition. Then the

corresponding pressure p, and density p, after the normal shock are calculated based

on %est, 2

2 st
P, = pl[l ARV —1)} (4.2)
ytest,Z +1

(i + 1M } 4.3)

P2 e pl((m,z —1)M} +2

and these two variables are entered into Tannehill’s Fortran code that returns the

corresponding enthalpy /4, and y;>

pooPo| T2 (4.4)
2 b
p2 7/617‘,2 -1
+cY+ce,Z+ce YZ+
Yo =Cto, Y +e,Z+c,YZ+ Cs TCl TC74 T Cy 4.5)

1+ exp(c9 (X +c,Y + ¢ ))’

inwhich x =1oe. | 22 | y=loe | P2 | 7_x_y (4.6)
%8| 1202 ) %80\ 1 013x10° ) ’
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and coefficients c; through c;; are curve-fit values tabulated in Tannehill.’” For this
work, only the y.> is used. The value of y;> is compared tO ey 2; then Je > is set
equal to the calculated y.,, and the process is iterated until the absolute value |y,;> —
Yies;2| 18 less than 0.01. Once a converged value of . is determined, then the
corresponding normal shock density ratio p»/p; has been calculated and could be used
in Kaattari’s method described in Chapter 3 to approximate the shock-standoff
distance.

It is assumed that the effective nose radius for stagnation-point radiative heat
transfer, 7.5 for a given blunt body is equal to the radius of a particular sphere that
maintains an equal shock-standoff distance. After calculating the normal shock-
standoff distance, the corresponding spherical radius still would have to be
determined.

According to wind tunnel results shown in Figure 4.1, the ratio of the normal
shock-standoff distance to a sphere of radius 7. is constant for a given normal-shock

density ratio.
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Figure 4.1. Stagnation-point Ag, wind tunnel data with empirical curve-fit, Ref. [51].

Ried’' offers an empirical curve-fit that renders an acceptable approximation, also

shown in Figure 4.1:

P2 ’
—= -1
A% = [’Dlj_l (47)
Ty P :

Then the 7. from this equation replaces the sphere’s radius in the stagnation-point
radiative heat flux correlations. Two ¢;,.s correlations are applied over a range of

freestream velocities. For V,, <9000 m/s, the correlation applies the following form

&3
Gyt =1y 21 (328084 %1077, ) (p*] : (4.8)
psl

in which g; = 372.6, g, = 8.5, and g; = 1.6 from Ref. [2] for V,, <7620 m/s, and g; =

25.34, g, = 12.5, g; = 1.78 from Ref. [44] for velocities 7620 to 9000 m/s. For

velocities above 9000 m/s, Tauber and Sutton® apply
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Goras =4.736%10 1007 f(V,), (4.9)

©

in which # =1.072x10° VOO—LSSp;oszs ’
-3.93206793x 1072V, +1.61370008 x 107V - 2.43598601x 107V

+16.1078691V, -39494.8753
-1.00233100x107°V +4.89774670x 107V - 8.42982517 x107*V]

+6.25525796V, -17168.3333.

9000< V¥, <11500 m/s

and f(V,)=

11500 <V, 16000 m/s

Thermochemical equilibrium is assumed. The curve-fit equation for f(V.,) has a high
number of significant figures in order to have < 2% error with the published tabulated
values.* It is suggested that all of these digits are maintained; if they are not, the values
of f(V) may go below zero for low V,, or produce extremely large values for high V.,
either case producing erroneous results. The high number of digits does not correspond to
the number of significant figures from this correlation. It is suggested that no more than

three digits should be specified as significant for all three radiation correlations.
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Chapter 5. Mission Profile & Entry Vehicle
Scaling

The mission profiles and entry vehicle scaling evolved throughout this work.
The results in Chapter 10 apply the first set. The second set applies to Chapter 11—
Chapter 14; it is based on the first set with some modifications to produce more
practical design conditions. The first set of mission profiles and entry vehicle scaling

is first detailed and then the modifications made for the second set are then provided.

5.1. Initial mission profile and entry vehicle scaling set

5.1.1. Mission profile

To simulate Earth entry for lunar return, an initial entry velocity of 11 km/s is
applied.** For Mars return, a fast 180-day return renders entry velocities up to 14.7
km/s,** and an initial entry velocity of 15 km/s is applied. Although the hypersonic
aerodynamics at these two velocities are similar for a given heat shield design, their
heat transfer environments are greatly different. While convection typically
dominates for a vehicle entering at 11 km/s, radiation is projected to be the primary
heat transfer mode for 15 km/s.

The mission profile for the Orion Crew Exploration Vehicle (CEV) with an
overall duration of 18 days, a crew of four, and a pressurized volume of 5 m*/person
is applied.®’ The Earth entry simulation begins at the atmospheric interface, at an
altitude of 122 km, and terminates after the freestream Mach number becomes less

than five, account for the hypersonic aerodynamics only. For blunt-bodied capsules
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(low L/D), whether the trajectory ends at M, <5 does not strongly affect the values of
the three optimization parameters in this analysis: cross range p,,, peak stagnation-
point heat flux g ...y, and total stagnation-point heat load Q. This profile is utilized

for both lunar and Mars return.

5.1.2. Entry vehicle mass estimation and scaling

Mass estimation and scaling of the entry vehicle is based on the mission
profile, heat shield geometry, and dimension requirements for incorporating the crew
or payload. The scaled vehicle must satisfy required crew seating dimensions. These
sizing constraints may require the vehicle to be increased in size, in which case the
crew number may be increased. The assumed seat dimensions required for suited
astronauts include an upright front-to-back depth /p; = 1.1 m, an upright width wp; =
0.7 m, an upright top-to-bottom height 4p; = 1.4 m, a reclined depth Ip, = hp;, and a
reclined height Ap, = Ip;. In this analysis, upright corresponds to a seat back
positioned parallel the z-axis while reclined refers to a seat back positioned parallel to
the x-axis. This allows the seat to be positioned against the base of the heat shield for
(1) highly blunt configurations (Apollo CM) in which the vehicle’s base is parallel to
the z-axis and (2) for slender configurations (low &.) in which the base is more
aligned with the x-axis.

Vehicle scaling is necessary due to the wide range of heat shields in the design
space. High &, for example, can allow the heat shield to encompass part of or the
entire pressurized volume. If the entry vehicle geometry is assumed to have the same
top—to-bottom base height of 5 m as Orion, then heat shields with high eccentricity

would have over 15 times Orion’s volume. Other designs may have smaller volumes
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than the Orion’s. To scale the entry vehicle, a heat shield is categorized into one of
four cases based on /ys. This differentiates the procedures applied for estimating the
pressurized volume based on the heat shield’s geometry. As a result, each heat shield
is categorized into one of four cases to size the vehicle:

(1) Zus < lovions lorion = 0.55 m

(2) lorion < lus <lg;, in which lg; = by + loyion = 2.2 m,

(3) Ir1 < lus <2, in Which Ig> = biy,> + lorion = 2.65 m,

(4) Ig2 < lus.
The value for factor b, is 1.5 to account for the surrounding structure, in order for the
seat dimensions to fit within the heat shield’s dimensions for all cases. For case 1, the
heat shield has a shorter length /5 than the Orion’s. For this case, a volume equal to
Yamab(lorion — Ins) 1s added to the calculated heat shield volume as a conservative
estimate for the required thickness of the heat shield for storage of non-pressurized
vehicle systems. The ratio fys of the heat shield volume to the entry vehicle volume is
utilized to determine the resulting volume of the entry vehicle Vgy. For cases 1, fys =
fus.orion = 17.7%. For all cases, it is assumed that the ratio fpz of the pressurized
volume Vpi to the entry vehicle volume Vigy is equal to that of Orion, fpr = fpr 0rion =
63%. The crew number 7., is determined based on Vpg and the pressurized volume
requirement.

Once the pressurized volume is closely matched and seat dimensions are

satisfied, the entry vehicle mass is estimated based on the following empirical

correlation®?

mEV = 592(”(’)‘ewtd VPR )0'346 N (5 1)
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Based on the mission profile, Orion’s estimated mass of 7340 kg is precisely the
reported landing mass of Orion.*' The entry vehicle masses for this analysis are
nearly constant since heat shield scaling is designed to render a pressurized volume
that meets the mission requirements as closely as possible. For the Apollo mission
proﬁle82 of nerew = 3 crew, tr= 10 days, Vpg = 9.2m’, d = 3.9 m the calculated mgy is
within 30% of 5800 kg, and so it is suggested to adjust Eq (5.1) by a factor of 1.3
accordingly when applying the Apollo mission profile. For case 2, a portion of the
heat shield’s volume can be utilized for seat locations. When [ys = lz;, the heat shield
has sufficient dimensions to fit the entire crew. To approximate the amount of heat
shield volume that is allocated as pressurized volume, a linear curve is designed to
join the two end-states of this range, /s = lpi0n and Iys = Ig;, resulting in this function

of entry vehicle volume

V
Vip =, (5.2)
SEV fHS,Orion
1- 0 !
in which S, =| —=22% (], —1,)+1, (5.3)
lRl - l()rian

and Sgy =1 for case 1. For cases 3 and 4, the entire pressurized volume fits inside the
heat shield geometry. Case 3 represents highly blunt configurations, and thus, the
seats are placed in an upright position. Case 4 represents slender configurations. Since
the seats are placed in a reclined or horizontal position, the height requirement for
case 4 is reduced to bh,, = 1.6 m. Once the available pressurized volume is

determined, the crew number is calculated based on pressurized volume requirements.
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If the crew number is greater than four, then an iterative process proceeds to scale
down the vehicle until either 7., = 4 or the seat dimensions limit is met. Then Eq.
(5.1) is applied to determine the final mass of the entry vehicle. For this analysis, the
aim is to bring the entry vehicle’s mass towards the projected mass of Orion.

This mass estimate is independent of heat load, which determines the heat
shield material’s thickness in a detailed design analysis. Several new heat shield
designs are considered, and thus, the heat load for a given vehicle and flight path is
unknown a priori. The required iterative process, which would increase the
computation time by a few factors, has not been integrated into the optimization
setup. Uniform density is assumed to calculate the center of gravity location of the
heat shield, and the prescribed X, is modified to equal 75% of the uniform density
value. Bringing the X, forward increases the feasible design space by allowing more

slender blunt-bodies with higher L/D to be longitudinally statically stable.

5.2. Modifications to initial set

5.2.1. Mission profile

The mission profile for lunar return mostly remains the same. To simulate
Earth entry for Mars return, an initial entry velocity has been changed from 15 km/s
to 12.5 km/s. The required inertial Mars return velocity is a function of the year of
transit and the return transit time. A fast 180-day transit"’ to Earth produces entry
velocities up to 14.7 km/s. Braun® indicates that a 14 km/s entry may produce heat
loads as high as 95 kJ/cm® for a vehicle with a 3-m nose radius and ballistic

coefficient of 310 kg/m”. This heat load is nearly halved at 50 kJ/cm® by reducing Vz
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to 12.5 km/s. Recent work' indicates heat loads near 120 kJ/cm” and 65 kJ/cm® are
produced at 14 and 12.5 km/s respectively for BC = 350 kg/m*. The entry velocity
12.5 km/s covers ~40% of the years of transit for a 180-day return to Earth.' It
accommodates ~80% of the years of transit for 230 to 270-day returns, and ~100%
thereafter. The manned Apollo missions experienced heat loads*' of ~31 kJ/cm® with
Ve = 11 km/s. As a result, the expectation on TPS design to accommodate a ~100
kJ/cm® heat load with ¥z = 14 km/s, which will greatly challenge the current
capabilities of several other subsystems, may be unnecessary and impractical for the
first manned Mars return missions. The Earth entry simulation terminates at M, = 2,
at which drogue parachutes would be deployed. This is different from the initial setup

and allows for more realistic end constraints on the entry trajectory.

5.2.2. Entry vehicle mass estimation and scaling

The projected mass of Orion is currently ~10,000 kg. The initial mass
estimation method was based on Orion’s projected mass of 7340 kg. As a result the
empirical correlation in Eq. (5.1) underestimates the Orion mass by 30-40%, as it
does for the Apollo Command Module. This method is extended in the current work
by modifying the heat shield mass based on surface area and heat load comparisons
with Orion. Since the Apollo heat shield comprised of 13% of the Command
Module’s mass,21 it is assumed that the heat shield mass is 15% of Orion’s total mass,
assumed to be 10000 kg, and that the remaining 8500 kg is fixed. After surface area is
accounted for in the heat shield mass, two mass estimations are produced based on
heat load. The first mass estimation assumes that the additional heat load does not

augment the mass of the heat shield. Evidence of this being possible for vehicles with
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L/D < 0.5 is given in Fig. 11 of Ref. [1], in which TPS thickness only slightly
increases with Vg increasing from 11 to 14 km/s, although the heat load significantly
increases. The second mass estimation provides an upper-end conservative value that
assumes that the mass of the heat shield is increased by a factor of three. Preliminary
results indicated that a heat load three times the O, at lunar return conditions (~20
kJ/cm®) is produced at Mars return conditions. The factor of three assumes that if the
heat load is three times the heat load at lunar return conditions, then the heat shield
has three times the thickness. Ultimately, the heat shield thickness will be trajectory
dependent. By incorporating both upper and lower mass estimations, a sensitivity of
mass on O, is conducted concurrently with the results, and a range of heat loads for
optimal geometries for both mass estimates are given. Uniform density is assumed to
calculate the center of gravity location of the heat shield, and the prescribed X, is
modified to equal 75% of the uniform density value. Bringing the X., forward
increases the feasible design space by allowing more slender blunt-bodies with higher

L/D to be longitudinally statically stable.

5.3. Mass and geometric trends of entry vehicles

Manned space capsule geometries have been approximated using a generic
space capsule model, shown in Figure 5.1, to determine any trends between the
masses and the geometries of previous work as well as the current estimates for the
Orion CEV. The generic space capsule model is composed three sections: the
spherical-segment heat shield, the conical frustum crew compartment, and an end

cylinder.
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Figure 5.1. Generic space capsule model.

Note that y is related to 7, and R; as

(5.4)

such that y = R, [1 —J1-[r,/R.T }

The surface area is the sum of the three section areas, in which the heat shield area is

A :27zR3{1—w/1—[rb/RS]2} (5.5)

the conical frustum area is

Azzﬂ(’”b+’”z)vh2+[’”b_’”;]za (5.6)

and the end cylindrical area is

A4, = z{r? +2rn) (5.7)
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The total surface area of the generic space capsule model is

A, = ﬂ{2R3[l—\/1—[rb/RS ]2j+(rb N A A +(r,2 +2r,n)}. (5.8)

The volume is the sum of the three section volumes, in which the heat shield volume is

V=<l +5%)

I = (T = A S
the conical frustum volume is
v, :%ﬂh(r; w12+ ) (5.10)
and the end cylindrical volume is
V,=m’n. (5.11)

The total volume of the generic space capsule model is
2
v, = ﬁ{éRs[l—Jl—[Vb/Rs]z }(3@2 +R3[1—1/1—[rb/Rs]2} ]+;h(,,bz r +r,rb)+rfn}- (5.12)

This model has been applied to the Mercury, Gemini, Apollo, and Orion atmospheric
entry spacecrafts. Dimensions and masses of the spacecraft, listed in Table 5.1, have

been gathered from Refs. [84], [85], [86], [87], and [88].

Table 5.1. Mass and dimensions of manned spacecraft.

Shield Base Top Shield Cone Nose Overall Total
Spacecraft radius  radiuss, radiusr, heighty heightZ heightn  height  mass mgy

R, (m) (m) (m) (m) (m) (m) (m) (kg)

Mercury 32 0.95 0.41 0.14 091 1.15 2.21 1360
Gemini 3.7 1.14 0.49 0.18 1.61 1.52 3.32 3190
Apollo 4.6 1.96 0.64 0.44 2.45 0.00 2.89 5800
%;;ng;; 6.0 2.52 0.76 0.55 275 0.00 3.30 9700
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The calculated volumes and areas are provided in Table 5.2.

Table 5.2. Area and volume characteristics of manned spacecraft.

Shield ~ Cone  Nose Dbasecross  Total Shield Cone Nose Total  Volumetric
Spacecraft area area area sectional surface volume volume volume volume  efficiency,
A A ) Asmd) e e Vi) V) V') V() pEq(2.16)
Mercury 2.88 4.49 3.46 2.81 10.83 0.21 1.37 0.60 2.18 74.9%
Gemini 4.21 8.91 5.46 4.10 18.58 0.38 3.55 1.15 5.08 76.9%
Apollo 12.62 22.68 1.30 12.02 36.60 2.67 14.09 0.00 16.76 86.5%
Orion CEV 20.83 33.58 1.83 19.87 56.24 5.58 25.42 0.00 31.00 84.8%

In addition to manned spacecraft, the X-20 Dyna-Soar (Dynamic Soarer)***’

and ASV-3 ASSET (Aerothermodynamic Elastic Structural Systems Environmental
Tests)’*? have been incorporated into this analysis although they do not follow the
generic capsule model. The X-20, shown in Figure 5.2, as a lifting body with a high
L/D = 1.4, was a United States Air Force entry vehicle project that was cancelled in
1963 near the beginning of its construction. This high L/D allows a vehicle to have
greater cross range capability and maneuverability than typical space capsule designs.
The ASV-3 ASSET program was part of the Dyna-Soar project; shown in Figure 5.3,
it also was a lifting body with L/D = 1.1. The ASV-3 was tested unmanned and
successfully to acquire aerothermodynamics data.

For this analysis, previous manned spacecraft provide entry vehicle
characteristics for L/D < 0.4, and the X-20 and ASV-3 provide entry vehicle
characteristics for L/D = 1.0 — 1.5. Their surface areas and volumes were deduced
from Figure 5.2 and Figure 5.3, and their characteristics are listed in Table 5.3. Note
that the base radius is derived from the planform area and corresponds to the radius
for a circular cross section that has an area equal to the listed planform area. The

planform area will be utilized in the base cross sectional area comparison.
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Table 5.3. Characteristics of Dyna-Soar and ASSET.

Base radius  Base area 4,,, Planform area  Total surface  Total volume Vol_umetrlc Total mass
Spacecraft y (m) (m?) (m?) arca A,,, (m?) V, (m) efficiency, 7, mpy (kg)
b tot tot Eq (216) Ev(KZ
Dyna-Soar 1.21 4.57 32.00 89.77 38.01 60.9% 5160
ASSET 0.41 0.53 1.32 4.02 0.56 81.9% 540

Trends in surface area, base cross sectional area, and volumetric with respect

to entry vehicle mass are given in Figure 5.4, Figure 5.5, and Figure 5.6.
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Figure 5.4. Surface area effects on vehicle mass.
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Figure 5.5. Base cross sectional area effects on vehicle mass.
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Figure 5.6. Volume effects on vehicle mass.

Linear regression curves have been supplied to illustrate the trends for both L/D < 0.4
and also a first idea of how higher L/D geometries compare to L/D < 0.4
configurations for this vehicle mass range. These trends indicate that the masses of
previous spacecraft scale best with base cross sectional area, though there are so few
data points that no concrete trends for entry vehicles in general could be concluded.
More specifically, the L/D < 0.4 spacecraft scale precisely with r,”"*

1470.64 1> + 41.42, (5.13)

in which R° = 1.00.

The regression curves for L/D < 0.4 come near ASSET with its mgy = 540 kg in
Figure 5.5 and Figure 5.6, indicating that at similarly small volumes and base cross
sectional area, these two cases have similar mgy. The characteristics for Mercury and
Gemini are similar since Gemini was primarily a scaled-up geometry of Mercury,

accommodating two astronauts instead of one. The Orion CEV is currently expected

to have a 67.2% greater mass than the Apollo CM with similar outer mold lines to the
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Apollo’s and a 53.7% increase in surface area. Applying the relation in the following

form,

d ) m new
[ W] =—= (5.14)

dref Mey er ’

it has been determined that x = 2.045 with Apollo as the reference case and Orion as
the new case. Thus, the Apollo spacecraft shape scales closely with base cross
sectional area. This result is consistent with the L/D < 0.4 linear regression curve in
Eq. (5.13). Assuming that the purpose for the entry vehicle is reasonably constant
between missions and that the shape is held constant, this result indicates that scaling
the Apollo entry vehicle will not produce any significant advantage with respect to
ballistic coefficient. No decrease would be expected since Orion’s greater mass
cancels out the advantage of its greater drag area.

ASSET has a volumetric efficiency of 81% in-between the values for Gemini
and Apollo; it is an example of a L/D = 1 class vehicle that has a volumetric
efficiency similar to the space capsules’ value. With a 22.6% greater volume than
Orion and a 46.8% lower mass, the Dyna-Soar has a 108% increase in surface area
and thus, ~26% lower volumetric efficiency than the space capsules. With its L/D =1,
it exemplifies the trade-off between volumetric efficiency and greater aerodynamic
performance at mgy that are representative of manned spacecraft. Note that Orion and
Dyna-Soar were designed for greatly different missions; thus, any overall, concrete

conclusions regarding different L/D class vehicles and mass are not made.

96



Chapter 6. Planetary Entry Trajectory
Fundamentals

Several fundamental concepts regarding entry trajectory formulation have
been applied, and a brief summary of them is provided in this chapter including

descriptions of the equations of motion, the ballistic coefficient, and entry corridor.

6.1. Equations of motion

A three degrees-of-freedom set of the equations of motion is applied for this
work. This analysis assumes that the vehicles designs are dynamically stable, and to
determine whether they actually are dynamically stable would require a six degrees-

of-freedom set of the equations of motion to be applied in future work. The point-

mass equations of motion for rigid-body flight in a vertical plane given by”>"*"
dp -
Loy, 6.1
" (6.1)
dV B -
@ _CE s 6.2
dt m "’ e (62)
do - e
L= (ur,0)e,+0 7T, (63)
dt
n_ [dm). (6.4)
dt— \di ),
G _ 1o (6.5)
dt 27

in which p, V, and g are specified in an inertial reference frame while the vehicle

rotation rates w are defined in the local vehicle coordinate system.
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6.2. Ballistic coefficient BC and drag area D/q-

The ballistic coefficient is commonly described as the ratio of the entry
vehicle mass to the product of the drag coefficient and reference area, usually the
base cross section. The produce of the drag coefficient and reference area is called the
drag area = CpS. The main advantage to this form is that it allows for the designer to
analyze the effect of scaling a given vehicle design on the ballistic coefficient by
varying the reference area. In this optimization work, the optimizer may choose from
a wide range of vehicle designs. As a result, neither the drag coefficient nor the
reference area is assumed constant. This work applies the ballistic coefficient

equation in the form
Mgy
Y.

With this form of the equation, one vehicle’s D/g., can be compared to another’s D/g..

BC = (6.6)

rather than drag coefficient or reference area. The drag area is D/g,, = CpS. From a
physical standpoint, the drag area is the amount of resistant aerodynamic force
produced along the direction of the velocity vector for a given amount freestream
dynamic pressure. As a result, a higher drag area allows an entry vehicle to decelerate
higher in the atmosphere. For a given mass mgy, this allows the peak deceleration
loads and heat fluxes to be experienced higher in the atmosphere and thus, allows the
peak heat fluxes to be lower than they would be with a lower drag area. As a result, it
is advantageous to reducing the ballistic coefficient to reduce both the peak heat flux

and total heat load. For lifting entry, the flight path is a strong function of L/D and
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BC. They are incorporated into a single metric called the lift parameter. The lift
parameter is equal to the ballistic coefficient divided by L/D.’ The lift area would be
C1S = L/q.. The BC and L/D have traditionally been looked at separated rather than
as a single metric, and they are likewise treated in this work.

The ballistic coefficient is assumed to be an independent variable to the extent
that mgy is a function of mission profile variables (mission duration and pressurized
volume requirement) and D/g. is a function of geometry and a. The ballistic
coefficient is indirectly restricted based on vehicle sizing requirements detailed in
sections 5.1.2 and 5.2.2. Part of the geometric sizing is based on volume and
dimension requirements for the seated astronauts. As a result, it is not possible for all
of the required pressurized volume to be distributed through a thin heat shield
volume, as such heat shields would fit under categories 1 or 2 in section 5.1.2 which

assume a complete crew compartment is added after the heat shield.

6.3. Entry corridor

The entry corridor is the allowable region of yz that is deemed flyable based
on the mission requirements. It is a function of entry velocity, lift-to-drag ratio, and
ballistic coefficient. It is a stronger function of the two former. For a given entry
velocity, the entry corridor width will vary with mgy, D/q. , and L/q... Note that L/g.
= (S for a given entry vehicle.

The entry corridor width defines the flyable space. It must be sufficiently
large such that all possible uncertainties that may occur during a given trajectory do

not lead to a loss in control of the vehicle. These primarily include uncertainties in
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atmospheric conditions, and the guidance, navigation, and control subsystems.
Putnam and Braun' suggest that a corridor width of 0.4-deg is sufficient, stating that
this is much larger than the entry corridor widths of 0.16-deg the successful re-entries
from the Stardust and Genesis missions." Human missions may need larger corridor
widths than these two missions’ since there will be stricter g-load requirements and
longer duration trajectories, giving more time for both expected and unexpected
events to affect the vehicle. Uncertainties become more prevalent as entry velocity
increases and L/D decreases, which corresponds to a reduction in control authority
and thus, a smaller entry corridor width. This work assumes that an entry corridor of
0.4-deg is sufficient.

The boundaries of the entry corridor are known as the overshoot (upper
boundary, shallowest yz) and undershoot (lower boundary, steepest yz) trajectories.
These boundaries represent the limits to the vehicle’s control capability. The
overshoot experiences the largest heat load and lowest heat flux and is achieved by
flying a lift-down orientation. The undershoot experiences the smallest heat load and
greatest heat flux by flying a lift-up orientation and a -90° flight path angle,
representing a vertical dive. The operational entry corridor includes a modified
undershoot trajectory that has a greatly reduced yr that satisfies the required peak
deceleration limit. The operational entry corridor is also based on the set of flight
controls available for a given vehicle configuration. This work assumes a reaction
control system (RCS) provides control authority over banking the vehicle. This

allows the vehicle to rotate to a desired bank angle ¢, to rotate the lift vector.
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Chapter 7. Aerothermodynamics Code

All of the presented theory in Chapters 2 — 5 has been implemented into a
low-order aerothermodynamics code written in FORTRAN 95 for this work. This

chapter presents the layout of the code and validation of the low-order methods.

7.1. Code Description

The aerothermodynamics code determines the aerothermodynamic
characteristics of a chosen blunt-body shape at given freestream conditions. A single
call of the aerothermodynamics code for a given a and f results in running through
the code at five different conditions in order to calculate C,, ., , C,.,p and C, .4
which require the values of Ccq Cicg, and C, ., at four neighboring conditions
(0+0.5°, B), (@-0.5°, B), (@, f+0.5%), and (@, f-0.5%) for the second-order accurate
finite-difference scheme mentioned in Chapter 3.

The aerothermodynamics code has five objectives: to generate the blunt-body
geometry, to scale it to fulfill the necessary pressurized volume mission requirements,
estimate the resulting entry vehicle mass, determine the heat shield’s geometric
properties, and to calculate the aerodynamics, static stability, and the stagnation-point
heat transfer. A diagram of the analysis code is given in Figure 7.1. Given the
geometric parameters of a chosen base and axial shape, the shape generator produces
a 3D mesh of the heat shield geometry. Then the entry vehicle sizing and mass

estimation is executed. The aerodynamics calculator determines the aerodynamic

characteristics of a given shape based on modified Newtonian surface pressure
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distribution at a given angle-of-attack, sideslip angle, and Mach number. The primary
variables that are calculated in the aerodynamics code are M, o, C, C,, L/D, Cy, C,,

Coo Cro Coop XL Y, /L, Z,/L.

Freestream conditions
M, po, o, B

Axial Shape l Cross-section Shape
O, r./D, 0., A, b —»| Shape Generator [—— m, n;, n n3 e

Entry Vehicle Sizing & Mass Estimation

A\ 4 A 4
Aerodynamics Geometric Properties

A 4 A 4
Heat Transfer Aerodynamic Stability

A

Design Results

A

Figure 7.1. Diagram of Analysis Code.

The aerodynamics calculator is acceptable for determining blunt-body shape
hypersonic aerodynamics at fine mesh sizes with extremely low run times (usually a
fraction of a second for a j,, = 121, kyw = 203 mesh). Additionally, the
aerodynamics code uses Tannehill’s code’’ to determine verr2 and po/p;, and it uses

Kaattari’s method>*>>

to determine the shock-standoff distance Ay, to the stagnation-
point that are used in the heat transfer portion of the code. The primary output of the

heat transfer portion of the code are 7., ¢, ,,,, and g,

The analysis code applies a third-order accurate Simpson’s Rule integration
method to determine the aerodynamic characteristics and center of gravity location.

The center of pressure location is then determined. Geometric properties such as the
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volume, surface area, and planform area are calculated in the analysis code.
Additionally, a center of gravity can be either chosen or calculated assuming a
uniform density volume. The static stability calculator uses the aerodynamics in
conjunction with the location of the center of gravity to determine the moment
coefficients about the center of gravity and the pitch, yaw, and roll stability
derivatives. Note that the analysis code requires two atmospheric models and
Tannehill’s high temperature air code. Two atmospheric models, the ARDC 1959
Model Atmosphere’®®” and the US 1976 Standard Atmosphere,” are integrated in
order to use the older atmospheric model for part of the validation process of the heat

transfer correlations and use the newer for the optimization.

7.2. Code Validation

To validate the design code, and the corresponding implemented theories,
results of the design code are compared to data from the Apollo and FIRE II missions.
The results are divided into two areas: (1) aerodynamic performance and static
stability and (2) stagnation-point heat transfer. The first section notes that the
aerodynamic coefficients and stability derivatives match the Apollo data within 15%.
The second section observes that the maximum heat transfer heat flux and heat load is
within 15% of actual predictions after the stagnation-point heat transfer heat flux is

related to the maximum heat flux according to wind tunnel data.

7.2.1. Aerodynamics and Static Stability

The aerodynamic performance and static stability are compared to both

Apollo wind tunnel data and Apollo flight test data. There is more certainty in the
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Apollo wind tunnel data than in the Apollo flight test data, and most of the wind
tunnel data is for M., = 6 while the flight test data is for M, = 36. To convert from the
listed angle of attack value of the NASA Apollo reports to the angle of attack value
used in this work, defined in Figure 3.1(a), subtract 180° from the NASA reported
value. This should usually convert the NASA reported value to a negative angle of
attack. Note that there is not any truly acceptable experimental data on the rolling
moment stability coefficient, but predictions are compared to Whitmore’s recent

computational work. >

7.2.1.1. Comparison with Apollo Wind Tunnel Data

Results from the code based on modified Newtonian theory, have been
compared to wind tunnel'>"* data of the Apollo Command Module (CM). The center
of gravity is offset from the central body axis in order to trim the Apollo CM at a
specific angle-of-attack during re-entry.'* Different center of gravity locations were

considered in the wind tunnel models during the design of the CM.'>'>"°

In Figure
7.2, the center of gravity location is X/l = 2.171, Y./l = 0.3158, and Z.o/[ = 0.0

according to the body-fixed coordinate system in Figure 3.1(b).
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Apollo Wind Tunnel Data, M =6

0.04

0.02 u

0
-0.02 \.\
-0.04

-0.06

Cm,cg

-~

-0.08
-3 30 -25 -20 -15 -10 -5 0
— Modified Newtonian ~ Angle of Attack (deg)
B Wind Tunnel Data

Figure 7.2. C,, ., comparison between modified Newtonian and wind tunnel data, Ref. [12].

Additionally, because X.,// > 1, the center of gravity location of the CM is past the
heat shield. The Newtonian results for the pitching moment C,, ., at M, = 6 in Fig. 5
produce C,,cqq = -0.16/rad; the modified Newtonian results follow the behavior and
closely agree with the values of the Apollo wind tunnel (WT) data.'* As a result, this
is evidence that the modified Newtonian results can match the pitching moment
closely and thus predict oy, and it is well-known to match the lift-to-drag ratio for a
blunt body better than the lift or drag coefficients.

The wind tunnel data for the rolling moment C; was scattered near zero and
has values that are two orders of magnitude smaller than those measured for C,,.
Although the data accuracy of C; and C,, is not reported for this wind tunnel data, the
scattering and smaller values of the C; data points in Fig. 6 suggest that the
measurement instruments did not have the precision required to obtain a clear data set

of the CM’s rolling moment behavior.
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Apollo Wind Tunnel Data, M=6
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Figure 7.3. C;, comparison between modified Newtonian and wind tunnel data, Ref. [12].

The wind tunnel data suggest a neutrally stable spherical-segment at -20° angle-of-
attack, and the modified Newtonian results agree. A mesh with j,,.. = 203 and k., =
121 has been chosen based on a grid convergence study. Since the Apollo CM is
axisymmetric, the yawing moment coefficient C,, at a given sideslip angle (the
condition f; # 0, a; = 0) would be equivalent to the pitching moment coefficient C,, o
at a given angle-of-attack (the condition o, = f;, > = 0). This is one reason that no

specific C, y data exists in the references.
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a) Validation of C; results.
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Figure 7.4. Aerodynamic force comparisons between modified Newtonian and wind tunnel data,
Ref. [12].

The modified Newtonian results in Figure 7.4 were calculated at M., = 18.73,
but the difference between these results and those at M., = 15.8 is negligible (0.05%
difference at @ = -20°). Modified Newtonian results for the lift and drag coefficients
are larger than values from both datasets shown in Figure 7.4(a) and (b). However,
the increase in lift and drag with an increase in Mach number in the wind tunnel data
is more significant than expected; this may suggest the presence of significant wind

tunnel effects. At M,~18.73, C; and Cp from Newtonian theory are at most 9.6% and
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7.2% larger than the wind tunnel data respectively, and they are within the
uncertainty of the wind tunnel data of +0.114 for C; and £+ 0.10 for CD.12 L/D
Newtonian results shown in Figure 7.4(c) agree very well with the wind tunnel data
(better than for the individual C; and Cp as expected).

At lower freestream Mach numbers, such as M.~=9, the errors are larger than
10% for the lift coefficient as shown in Table 7.1. While the data presented for
M_.~=15.8 and 18.73 are based on Apollo CM models with r./d of approximately 0.1,
the data in Table 7.1 corresponds to r./d = 0.0. Moseley conducted a survey of the
effect of increasing r./d, and his wind tunnel results for M.=9 at r./d = 0.1 would
increase the errors from those values in Table 7.1, for C; to approximately 22% and

Cp to approximately 13% while the error in L/D was constant at 8% at o = -15°.

Table 7.1. Percentage error of Newtonian computations compared to wind tunnel data in Ref.

[13], M= 9, o= -25°.

Wind Tunnel Value Modlfie\(llalll:zvtoman Percentage Error
Cy 0.45 0.534 18.6%
Cp 1.25 1.296 3.70%
L/D 0.37 0.412 11.3%

As the code used in this work does not account for corner radius in determining the
surface pressure distribution, this is one reason for the increase in error. The
Newtonian surface pressure distribution is known to become more accurate with an
increase in Mach number, and the validation results are consistent with this
understanding. However, it is shown in the next section that comparisons with the
flight test data from Apollo AS-202 result in an amount of error similar to that for

M.~=9. Overall, the modified Newtonian results are within 10% of the wind tunnel

data with corner radius for M, > 18.73, within 15% of the wind tunnel data without
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corner radius for M, > 9, and within 25% of wind tunnel data with corner radius for

M, <18.73.

7.2.1.2. Comparison with Apollo Flight Test Data

Results from the code have been compared to flight test'®'' data for the
Apollo Command Module (CM) for mission AS-202 and Apollo 4 (also known as
AS-501). The CM in AS-202 re-entered Earth’s atmosphere at satellite orbit speed
8.23 km/s (27,000 ft/s) while the Apollo 4 CM produced the expected re-entry
velocity from lunar return of 10.7 km/s (35,000 ft/s).

The uncertainty in the flight data varies throughout the trajectory, and so the
more steady aerodynamic data was identified and utilized. Of the two datasets, the
flight data from AS-202 had the smaller uncertainty in the flight coefficient data of
9% at 4900 s into the mission. The coefficients of the normal force, lift, and lift-to-
drag ratio have percentage errors around this error. However, the coefficients of the
axial force and drag have higher errors around 17%. The Newtonian results are

compared to the AS-202 flight data in Table 7.2.

Table 7.2. Comparison of Apollo AS-201 Data and Computations, M, = 14, a=-16.5° at 4900 s.

[‘? 512210 01] Mod. Newtonian % Error
Cwy -0.05 -0.0454 -9.2%
Cy 1.34 1.56 16.2%
Cy 0.37 0.399 7.8%
Cp 1.28 1.51 17.6%
L/D 0.289 0.265 -8.4%

The trend in the percentage error being higher for C; than Cp seen in the wind tunnel
data comparison is the opposite for AS-201. Because the corner radius is not

accounted for, it is expected that the error in L/D to stay constant at 8%, for Cj,
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according to wind tunnel results, to have approximately 22% error instead of 7.8%
and Cp to have approximately 13% instead of 17.6%. Note that these percentage
errors are nearly constant, at least over the range of angle of attack values from —30°
to 0°. It is completely feasible for Cp to have a difference in error of 4.6% since the
uncertainty is a higher percentage, and so the only surprising trend is that the lift
coefficient has 14% less error than expected.

From the wind tunnel data, it is suggested that the corner radius affects the lift
and drag coefficients less at higher freestream Mach numbers, but this is countered
with the higher errors present in the AS-201 flight test data. In fact, wind tunnel
effects could be changing the trends also, and so it is apparent that there is not
consistency throughout this wind tunnel and flight test data to the resolution required
to reason for the different percentage errors. Therefore, no conclusions could be made
concerning whether the modified Newtonian results are less than 18+9% accurate.

Compared to flight data for Apollo 4 at M, = 30, Newtonian theory produces
a Cp that is 3.7% larger and a C; that is 18.6% larger as shown in Table 2.1
According to Hillje, the best flight-derived data for Cy (near maximum freestream
dynamic pressure) has an uncertainty of +0.048."' Because the normal force
coefficient has a small magnitude, small precision errors in Cy strongly affect the
calculation of C;. The contribution of Cy to C; is one order of magnitude less than the
contribution of C4 to C;. However, the contribution of Cy to Cp is two orders of
magnitude less than the contribution of C,4 to Cp, and so an error in Cy will not affect
Cp as much as C;. This produces significant increase in accuracy of the Newtonian

results for Cp at 3.7% compared to C; at 18.6%.
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Table 7.3. Comparison of Apollo 4 Data and Computations, M, = 30, oz = -25° at 30040 s.

ﬁg‘;}lf]‘]‘ Mod. Newtonian % Error
Cy -0.11 -0.06387 -41.9%
Cy 1.32 1.400 6.1%
C 0.45 0.5337 18.6%
Cp 1.25 1.296 3.7%
L/D 0.37 0.4119 11.3%

Additionally, Newtonian theory produces results that trim the CM within 1.2°
for both Apollo missions AS-202 (= 17.5°+ 0.5°)'" and Apollo 4 (o= 25.5°+ 3°)."!
For all these reasons, it is concluded that the Cy flight data is probably inaccurate,
rendering the higher percentage errors in C;, and L/D. Since the percentage
differences between Newtonian theory and the acceptable CM experimental wind
tunnel and flight data is less than 15%, and since the theory follows the behavior of
the wind tunnel data, modified Newtonian flow is considered acceptable for
comparing the basic hypersonic aerodynamic characteristics of the investigated blunt-
body heat shield shapes with low computational time. Only the rolling moment values
and stability derivatives have not been completely validated since a lack of this data

exists, but it is partly validated in the next section.

7.2.1.3. Comparison with Additional Sources

Whitmore®” offers a recent analysis of the Apollo capsule as well as other
human-rated lunar return vehicles such as a flattened bi-conic with trim flaps and an
HL-20-derived lifting body configuration. His numerical results on the stability
characteristics of the Apollo capsule closely match the results of this work’s code.
Whitmore also uses a modified Newtonian surface pressure distribution to determine

the aerodynamics of each vehicle.
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Both the results of this work and of Whitmore suggest that the Apollo capsule
is slightly statically unstable in the roll direction. In this case, to be statically roll
stable, the vehicle would have a negative value of C;, s since vertical lift is positive
at negative angles of attack for the Apollo CM. Both works indicate that the Apollo
capsule would have slightly positive values for the C; .4, if the center of gravity is
above the central axis during planetary entry.

Since the Apollo CM had a Reaction Control System (RCS) that could control
the Command Module’s roll angle, one guess is that the RCS may have been used
once in a while to fix the CM’s roll alignment. Another guess is that the C; .44 had a
negligible value for the CM. Whitmore reports a value of C;., 5 = 0.0065/rad while
this work produces a value of Cj 5= 0.00541/rad at a = -16° to produce L/D = 0.25.
Since both of our works concur and Whitmore’s work is the only source in the
literature search that offered a value to compare, this is the extent that the Cj .4 is
validated in this work.

Magazu®’ investigated the feasibility and aerothermodynamic performance of
a 12-sided parashield re-entry vehicle that has a shape similar to a 12-sided umbrella
with no more than 7% concavity. The reproduction of this heat shield shape is defined
as having a spherical-segment axial shape with §; = 45° and a dodecagon cross-
section without any concavity. The superformula of the superellipse Eqn. (2.8) can
approximate a sharp dodecagon with the following parameters m = 12, n; = 10.75, n;
=n3 = 1. With these parameters, this work’s code produced a lift-to-drag ratio of 0.19

compared to the reported 0.18 in Ref. [30] at o = -15°.
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7.2.2. Stagnation-Point Heat Transfer

Validating the results of this work’s stagnation-point heat transfer methods
against Apollo and FIRE II experimental and flight data is completed in this section.
It is shown that the methods produce results with < 15% error. Note that it is not the
purpose of this work to imply from these low errors that heat transfer during planetary
entry is well understood. CFD would also produce results with errors of
approximately 10-15% also. Additionally, although the percentage error is low for the
stagnation-point heat transfer methods of this work, the error would probably increase
dramatically for entry velocities greater than 12 km/s, in which it is expected that
radiation cooling and convection coupling would lower the radiative heat flux.
However, it is unknown precisely how much reduction there would be since no
instrumented flight tests have been completed on flights with entry speeds greater
than 11.4 km/s from the FIRE II. Several questions still exist on laminar, transitional,
and turbulent boundary layer heat transfer during planetary entry. As a result,

experimental research in this area would be especially worthwhile as future work.

7.2.2.1. Apollo 4

The peak radiative heat flux for the Apollo 4 mission occurred at an altitude of
approximately 200000 ft around 30030 s into the mission at which point the
Command Module was moving at a speed of 34000 ft/s. For the portion of the
trajectory with high radiative heat flux, Figure 7.5 shows the calculated normal-shock

density ratio and corresponding specific heat ratio using Tannehill’s correlation set.”’
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Figure 7.5. Normal-shock density and specific heat ratios for the high radiative heat flux portion
of the Apollo 4 trajectory, 2 and V from Ref. [11].

The altitudes and velocities during this portion of the Apollo 4 trajectory are also
shown in Figure 7.5. The stagnation point on a blunt-body is usually across from the
part of the bow shock that is normal to the freestream. As a result, the normal-shock
density ratio p»/p; and corresponding effective specific heat ratio after the shock can
be used to approximate the effective radius-of-curvature at the stagnation point.
Kaattari’s method requires p»/p; and pyp> to determine r.: To validate the
implementation of Kaattari’s method in this work, in Figure 7.6 it is compared to
other methods of determining the shock-standoff distance for the case of a sphere.
This figure is partially a reproduction of Figure 4.1 in which the empirical curve-fit
Eqn. (4.8) is compared to wind tunnel data. As a result, it can be observed that
Kaattari’s method in Figure 7.6 follows the experimental data closer than the
empirical curve-fit at the lower values of p»/p;. Rasmussen™ provided the solutions to
the vorticity method and parabolic thin shock layer approximation in his textbook.

The solution from the vorticity method follows the behavior of Eqn. (4.8) almost
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perfectly while the parabolic thin shock layer approximation produces shock-standoff

distances that are at least 25% larger than wind tunnel results.
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Figure 7.6. Shock-standoff distance method comparison.

It is noticed that Kaattari’s method and Eqn. (4.8) bracket most of the wind tunnel
results shown in Figure 4.1. After Kaattari’s method determines the shock-standoff
distance at zero angle of attack, the modified method for finding the shock-standoff
distance at the prescribed angle of attack is accounted for through the effective radius
term. For the Apollo 4, Ried’' generated predictions with early 1970 computer
technology using CFD. Ried produced an effective radius at the stagnation point that
would apply for radiative heat transfer, and it is compared to the results of Kaattari’s

modified method in Figure 7.7.
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Figure 7.7. Apollo 4 r. for stagnation-point radiative heat transfer.

Kaattari’s modified method varies no more than 10% from Ried’s predictions. Then
the r.y 1s applied in the radiative heat flux correlation set. To determine which
correlations would be best to apply for this work, a plot of the Apollo 4 mission’s
radiative heat flux shown in Figure 7.8 is used to compare correlations. Figure 7.8
shows these results for the portion of the Apollo 4 trajectory with radiative heat flux
values greater than 50 W/cm?. Both radiometer and calorimeter measurements were
made on the Apollo 4 at the point of maximum heating and the stagnation point,
although measurement uncertainties were not recorded. Ried shows that his
calculations match the radiometer results that measured only the visible and infrared
radiation. Ried also calculated the UV continuum and UV line radiation. It made the
most sense to compare the values of the correlations to the total radiative heat flux.
As a result, the total radiative heat transfer that includes the visible, infrared, UV

continuum, and UV lines is shown in Figure 7.8 as the Apollo 4 predictions.
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Figure 7.8. Validation of radiative heat flux correlations for Apollo 4 from Ref. [105].
The most recent correlation from Tauber and Sutton*® matched the Apollo 4 results
for most of the region. However, the results of this correlation do not match the
predictions for speeds less than 9000 m/s.

In fact, both Lovelace® and Bertin® provide correlations that produce
conservative results that are not far from the results for speeds less than 9000 m/s.
Since the correlation from Bertin was originally designed for speeds less than 7620
m/s (25,000 ft/s), Lovelace’s correlation is applied for speeds less than 9000 m/s.
Along with a method to transition between the two correlations, Lovelace and
Tauber’s correlations are used in this code and produce the results shown in Figure
7.9. Together, these correlations produce results that are conservative but close

enough for first-order optimization results.
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Figure 7.9. Apollo 4 radiative heat transfer code validation, predictions from Ref. [51].
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Figure 7.10. Apollo 4 Trajectory from Ref. [39].

To wvalidate the convective heat flux, radiative heat flux, and the
corresponding heat load values, results have been generated using the Apollo 4
trajectory shown in Figure 7.10. Apollo 4’s maximum Mach number'' during Earth

entry was Mach 40, and because it had the highest entry velocity of all the Apollo
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missions, it also had the largest heat load. The total heat flux and heat loads are
calculated using both Lovelace’s Eqn. (4.9) and Tauber’s Eqn. (4.10), and so Table
7.4 includes two columns of results. The equations used to produce each results are

listed in the title of each column. These results are within 15% of the reported values.

Table 7.4. Apollo 4 Comparison of Total Heat Transfer.

Parameter Apollo 4, | Results from Results from
Ref. [41] | [1.6%*1.06*Eqn. [1.6%1.06*Eqn.
(4.1)+Eqn. (4.9)] (4.1)+Eqn. (4.10)]
Gmax.ior (W/em?) 483 542 (+12%) 469 (-2.9%)
Omax.ior (J/cm?) 42600 46200 (+8.5%) 38700 (-9.2%)

NASA reported the values of the heat flux and heat load at the point of maximum
heating, which in the case of the Apollo CM was not at the stagnation point. Although
this work calculates the stagnation-point heating only as explained in Chapter 4, these
reported values can still be used for validation. As shown in Figure 7.11, the
maximum convective heating for the Apollo CM at a = -25° was 60% larger than the
stagnation-point convective heat flux at zero angle of attack.

Maximum heating is located at S/R = 0.9 while the stagnation point at a = -
25° is located at S/R = 0.74. Since the stagnation point at o = -25° has a 10% higher
heat flux than that at zero angle of attack, the maximum heat flux is 45% larger than
the stagnation-point heat flux at o = -25°. Although angle of attack has been
accounted for by this work’s radiative heat flux calculations, it has been assumed that
the convective heat flux would be kept constant at the nose.

Due to the Apollo CM’s low spherical-segment angle of 25° and corner
geometry, the stagnation-point does not have the highest convective heat flux at a =

25°. Bertin” notes that a correction factor of 1.06 to the correlation for a sphere can be
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used to account for the change in the sonic line location from 45° to approximately
25° for the CM. As a result, after multiplying the convective heat flux by 1.06 and
then 1.60 to account for the corner radius’ effect that produces maximum heating, the
convective heat flux can be added to the radiative heat flux to produce maximum heat

flux and heat load results within 12% of the reported values.
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Figure 7.11. Convective heat flux distribution of Apollo Command Module at & = 25° from Ref.
[39].
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7.2.2.2.FIRE I1

In the case of the FIRE II flight, the entry vehicle’s stagnation point was equal
to the point of maximum heating, and it traveled mainly at zero angle of attack. As a
result, it would be expected that this work would match the FIRE II data more closely
than the Apollo 4 data. However, the FIRE II had an entry velocity of 11.4 km/s
(37400 ft/s), which is slightly faster than the entry velocity of Apollo 4 at 10.7 km/s.
Because FIRE II had an entry Mach number greater than forty, it is possible for there
to be coupled effects between convection and radiation that would reduce the total
heat flux. The FIRE II had three heat shields of different radii placed on top of each
other. One heat shield would be jettisoned at a time to acquire heat transfer data for
each heat shield. Since the heat shields have different radii, discontinuities in the
flight data are expected. As shown in Figure 7.12, flight data from the calorimeter
produced a noticeably smaller heat flux value than the theory that does not assume

coupling.
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Figure 7.12. FIRE II Total heat flux comparison with flight data from Ref. [50].
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The correlations of this work, which are labeled as code results, also do not assume
coupling. The maximum total heat calculated by this work is 9% larger than the flight
data. The interesting part is that the convective theory curve that assumes coupling
and the code results nearly match perfectly for the first shield and do not vary greatly
for the other two. However, it is apparent that the correlations fall approximately
halfway in-between the theory that assumes no coupling and the calorimeter data. It is
believed that the FIRE II had some coupling, and that this is the reason why the total
heat flux theory without coupling and the code results produce a peak at a different
time than the FIRE II calorimeter data. As a result, it would be expected that this
work’s accuracy would begin to disappear at slightly higher velocities.

One additional comparison has been completed to determine the accuracy of
the convective heat transfer correlation Eq. (4.1). The stagnation-point convective
heat flux for the first heat shield has been estimated in Ref. [99] by subtracting the
approximated radiative heat flux from total heat flux calorimeter data. It utilizes the
beginning of the Fire II entry from 1630 to 1635 s, and it has been determined that
Gs.conv 18 £ 20 W/cm? for altitudes between 71 and 85 km. From Figure 7.12, it is
determined that the peak ¢ cony 1S 16 W/cm? greater than the value from the theory.
The worst point of accuracy is at an altitude of 46 km and a velocity of 9.4 km/s, at
which ¢ cony 1 44 W/cm? greater than the value from theory. The worst under
prediction for g con 15 38 W/cm? less than the value from theory at an altitude of 55
km and a velocity of 10.7 km/s. Since the reported maximum heat fluxes are normally
between 60 and 75 km, and the worst g .. in this altitude range is at 71 km, it is

assumed that the reported g, cony 18 = 20 W/ecm?.

122



7.2.2.3.Additional radiative heat flux validation

Using the multiband radiation model of Nicolet, Tauber and Sutton®
completed validation of Eq. (4.9) against high-order models with an radiative
effective radius 7= 3.0 m at altitudes of 60, 66, and 72 km and velocities of 10, 11,
12, and 14 km/s. The provided percentage difference between the high-order results
and Eq. (4.9) is utilized to approximate the absolute error in the reported peak ¢ 44
In order to generate r.; = 3.0 m, a spherical segment heat shield with 6, = 89°% e =-
0.001, n, = 2.00, and d = 8.3 m without vehicle scaling and a = -5° is applied. This

geometry/o combination is the most straight forward to implement.

Table 7.5 Radiative heat flux validation against high-order modeling.

V,=10 km/s
. Form of results:
Altitude, s raa (W/em?) Veo=11km/s | V,=12km/s | V,=14 km/s
p (kg/m®) % error from Ref.
[48], Absolute error
(W/em?)
72 km, 28 107 228 581
6.659 x 10° 0%, 0 +11%, +12 +18%, +41 +9%, +52
66 km, 64 250 546 1442
1.471x 10™ +2%, +1 +6%, + 15 +8%, +44 +4%, +58
60 km, 143 570 1271 3441
3.059 x 10™ -7%, -10 -1%, -6 +3%, +38 +5%, +172

Most of the designs for 11 km/s entry experience the maximum heat flux at V.,
~10.5 + 0.5 km/s. Most for 12.5 km/s entry experience the maximum heat flux at V,, =
11.5 £ 0.5 km/s. Most for 15 km/s entry experience the maximum heat flux at V,, =
13.5 £ 0.5 km/s. Thus, the reported ¢ 44 1s assumed to have an absolute error of + 20,
35, and 60 W/cm? for 1 1, 12.5, and 15 km/s respectively. Together with g; con, being £+

20 W/cmz, the reported ¢ may 18 £ 40 W/cm? for 11 km/s and + 80 W/cm? for 15 km/s.
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Chapter 8. University of Maryland Parallel
Trajectory Optimization Code

The University of Maryland Parallel Trajectory Optimization Program
(UPTOP) 1is applied to conduct a three-degrees-of-freedom entry trajectory
analysis.”>”* It utilizes a 4™-order Runge-Kutta routine to propagate the point-mass
equations of motion for rigid-body flight in a vertical plane, given in Chapter 6,”>*%
to determine the flight path of a vehicle. Its capability is not restricted to planetary
entry applications. The time step is normally set to 1 s. A rotating, ellipsoidal Earth
model is applied with a second harmonic gravity model based on the WGS-84
Geocentric Equipotential Ellipsoid model.'” The US 1976 Standard Atmosphere” is
applied for 4, < 85 km, and the NRLMSISEE-00 Atmosphere'’ is applied for /, > 85
km.

Both trajectory and vehicle optimization can be performed using either single
or multiple objective functions. For single objective function optimization, several
optimization techniques are available: an evolutionary, population-based algorithm, a

192 and also a hybrid

gradient-based scheme using Design Optimization Tools (DOT),
evolutionary/gradient-based scheme that attempts to provide the best of both worlds.
After a user-specified number of generations, the gradient-based optimizer Design
Optimization Tools (DOT) can be executed on the current optimal solution. In this
way, the hybrid method accounts for gradient information and increases the chances

of obtaining a global optimum. For optimizing multiple objective functions, the

evolutionary algorithm is available. UPTOP utilizes the Message Passage Interface
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(MPI) to process an optimization case using multiple processors. Descriptions of the
optimization methods applied in this work are provided in Chapter 10.

Trajectories generated with UPTOP are compared to those of the benchmark
Program to Optimize Simulated Trajectories (POST)'” in Figure 8.1. UPTOP is
capable of optimizing multi-stage trajectories where the vehicle may have multiple
engines and fuel tanks. The benchmark case'** for the optimal Space Shuttle transport
ascent trajectory through Space Shuttle Main Engine (SSME) cutoff is provided in
Figure 8.1(a) to demonstrate UPTOP’s comparable optimization capability. The
optimal pitch and altitude profiles generated by UPTOP closely match POST’s
optimal profiles. Additionally, the results from POST as calculated by UPTOP match
the POST profiles. The reentry altitude and velocity profiles of an oscillating
trajectory generated in UPTOP and POST are shown in Figure 8.1(b) to match for the
given entry conditions. Validation for Earth entry from lunar return at V= 11 km/s is
given in Figure 8.1(c). For the given bank angle profile, which rotates the lift vector,
the skipping trajectory generated in UPTOP matched POST’s and illustrates
UPTOP’s suitability for high-velocity entry applications.

UPTOP’s flexible framework allows for an external code to provide the
aerothermodynamics for a heat shield design throughout the trajectory calculation. A
diagram of the overall optimization code setup is provided in Figure 8.2. In UPTOP,
the optimization scheme provides different combinations design variable values to the
trajectory code. The trajectory code then calls the low-order aerothermodynamic code

at each calculated step in the trajectory.
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Figure 8.1. Trajectory validation of UPTOP results with POST.
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Figure 8.2. Diagram of Optimization Code Setup.

Integrating the aerothermodynamic models into the UPTOP setup to perform heat

shield optimization allows for a higher fidelity model of radiative heat transfer to

account for angle of attack in calculating the shock-standoff distance at each point in

the trajectory to gain more accurate radiative heat flux values. With the Newtonian

flow solver integrating over the surface pressure distribution for each point in the

trajectory, a duration of 20 minutes on an AMD 2.2GHz Opteron 248 processor was

required to complete a single run of a 2000 s trajectory. Modified Newtonian flow

uses the Rayleigh Pitot tube formula® to account for different specific heat ratios in

determining the maximum pressure coefficient. For y = 1.4, the Rayleigh Pitot tube

formula varies C, . by 1.7% between freestream Mach numbers of five and fifty.
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This results in nearly constant hypersonic aerodynamic coefficients for modified
Newtonian flow in air and is, thus, an example of Mach number independence. To
reduce the computation time, a-profiles of aerodynamic coefficients are stored in
interpolation tables prior to trajectory calculation. With a range of « equal to +30° and
a data point in the interpolation table for every degree of a, the runtime for a single
trajectory case of 2000 s takes approximately 10 s although both convective and
radiative heat fluxes are calculated at each point. Additional runtime improvement is
gained by increasing the interval to generating a data point every 3-degrees of a.

A mesh convergence study has been conducted to reduce the number of mesh
points used to form the heat shield geometry. For optimization the mesh was reduced
t0 Jmax = 45, kmax = 101 while the detailed analysis uses a finer mesh of ., = 301, kjpax
= 401. Figure 8.3(a) and (b) provide the aerodynamic coefficient profiles for the
optimal L/D heat shield in Ref. [105]. This heat shield, shown in Figure 8.3(c) and
(d), is located in one of the extremes of the design space and exhibits nonlinear
aerodynamic behavior, thus, providing a good test case. There is considerable
agreement in the aerodynamic coefficient values between the two meshes except for
Ch,cqq- For the optimizer, only the sign of the static stability derivatives is accounted
for. As a result, differences in values are acceptable for optimization as long as the
stability derivatives are not part of the objective function. For other geometries, this
may change the angle of attack at which the vehicle becomes unstable, but for the
worst case this occurs at 2° difference, which is not significant. The aerodynamic
characteristics of the optimal designs are reported based on the refined mesh. Note

that changes in heat transfer values between the two meshes are minimal.
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Chapter 9. Optimization Theory

Both evolutionary, population-based optimization and gradient-based
optimization algorithms are applied in this work. This chapter presents introductions
to these methods, background on multi-objective function optimization, and a
parametric analysis of the effect of the evolutionary optimization parameters on the

results.

9.1. Gradient-based optimization algorithm

UPTOP utilizes Vanderplaats Research & Development, Inc.’s Design
Optimization Tools (DOT)'?* for gradient-based optimization. DOT is professional
software program that varies design variables based on a gradient-based minimization
method to determine an optimum value of an objective function. DOT offers both
unconstrained and constrained minimization methods. Broydon-Fletcher-Goldfarb-
Shanno (BFGS) and Fletcher-Reeves (F.R.) are the two unconstrained minimization
methods available in DOT. When DOT refers to unconstrained methods, it means that
there are no constraints present except those on the design variables that DOT varies.
The constrained methods offer the ability to restrict values on non-design variables or
a combination of variables based on theory limits or other reasons. The constrained
minimization methods available in DOT include the Modified Method of Feasible
Directions (MMFD), Sequential Linear Programming (SLP), and Sequential

Quadratic Programming (SQP).
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The following optimization problem is solved by DOT: find the values of

NDV design variables contained in X that will minimize or maximize OBJ=O(X),

in which the OBJ is the objective function, subject to constraints Gq(f( )<Oforg=1

to NCON, in which NCON is the number of constraints, and design variables X, have

side constraints X, <X, <X for p = I to NDV, in which NDV is the number of

design variables.'”

For this work, DOT has been setup to use SQP to vary the design variables to
find an optimum value of an objective function, in this case, an aerothermodynamic
parameter or combination of parameters. SQP uses the following overall process.
First, DOT creates a quadratic Taylor series approximation of the objective function
and linearized Taylor series approximations of the constraints. Then a direction

finding problem is formed to find a search direction E:
Minimize Q(E) =0° +V0TE+%ETBE, 9.1

Subjectto Vg E+E} <0, j=1,M, (9.2)

In which O is the original objective function and Q is the quadratic Taylor series
approximation. This is solved using the Modified Method of Feasible Directions
(MMFD). For MMFD, the objective function and constraints are first evaluated at the
user inputted initial values of the design variables. Then the gradient of the objective
function and constraints are calculated, and a search direction E is created. Then a

one-dimensional search is completed to find the scalar parameter o* that minimizes
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Q(f( ). Scalar parameter a* is used to find a new X that is set equal to the sum of the

initial X and the product of a* and the search direction,
X'=X""+a*E", 9.3)

in which u is the iteration number. If convergence is not satisfied, then iterations of
the following process are completed until convergence requirements including the
Kuhn-Tucker conditions are satisfied.'”

The three Kuhn-Tucker conditions'” must be satisfied for obtaining
convergence. The first is that optimum design X * must be feasible, or produce
constraint values gq()? *) <0 for ¢ = 1 to NCON. The second condition is that the

product of the Lagrange multiplier 4, and gq()? *) must be zero. The third condition
is that the gradient of the Lagrangian becomes zero, in which the gradient of the
Lagrangian is

NCON

VO(X*)+ > 4, Vg, (X*)=0. (9.4)

Detailed descriptions of SQP and the Kuhn-Tucker conditions are included in

Appendix E of Ref. [102].

9.2. Evolutionary, population-based optimization algorithm.

Previous work'® by the authors applied the Modified Method of Feasible
Directions (MMFD) gradient-based method to optimize over the geometric design
space (without trajectory analysis) for a single objective. There were numerous local

optima; over 200 runs were required to locate the global optima for four objective
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functions. For the present work, a more robust and global search algorithm is required
to account for both the additional complexity of multi-objective optimization and the
broader design space with trajectory analysis. UPTOP includes a differential
evolutionary scheme (DES).”»'% As an evolutionary algorithm, DES bases its search
for an optimum on nature’s evolutionary principles.'”’ Each heat shield design,
known as an individual in a population of designs, is evolved throughout each
iteration with other individuals based on mutation intensity and crossover parameters.
It begins by randomly-selecting an initial population of designs, and hundreds of
iterations are required to settle on an optimal solution.

A brief description of the method is given, based on Ref. [108]. Consider the

set of design variable vectors Xj, at generation n

)(/‘,n = [xl,j,m X2jns X3,jns eees xD,j,ﬂ:]a (95)

in which x;;, corresponds to the design variable in dimension i in a D-dimensional
optimization problem. The initial population is randomly chosen within the side
constraints of the design variables. The mutation, recombination, cross over, and
selection operators are applied to the population each generation until the
optimization method is stopped. To evolve the design variable vector Xj,, three
different design variable vectors are randomly chosen, X, ,, X5, X., A trial design

variable vector Y is then defined as
Y= Xa,n + R(Xb,n + Xc,n)a (96)

in which R is a user specified constant, 0 < R < 1. A candidate vector for improving
the current value for minimizing objective function O is defined as Z = [z,, z,, z,

‘..,ZD]I
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ifr<C
. :{ v, i 07
X

if r,>C
in which 7; is a uniformly distributed random variable, 0 < r; < 1, and C is a user
specified constant 0 < C < 1. The final step in the evolution of Xj, involves the

selection process and minimization of the objective function O(X), given by

X,

J

[z ifom=<ox,,) (9.8)
Ty if 0(Z) > 0(X, ).

Jsn

The concepts of mutation intensity and crossover are also applied. Each
design variable is given a binary string representation, called the chromosome of the
design variable. Mutation intensity refers to the probability of one digit in the
chromosome switching from a 0 to a 1 or vise-versa. Crossover refers to breaking
strings into substrings and then interchanging some of the substrings at random. For
example, two designs will randomly be chosen for crossover; they are known as
parents for the crossover operation. They are the parent strings or chromosomes; they
are broken into three substrings with the cross sites chosen randomly, and the middle
portion is switched. The resulting designs are known as the offspring, the new designs
in the current generation. Based on the design space, different values for the mutation
intensity and crossover probability would produce more optimal results. Details on

DES and its parameters are provided in Refs. [106], [107], [108], and [109].

9.3. Multi-objective function optimization

In single-objective optimization, the one optimal or non-dominated solution is

better than all other solutions. In multi-objective optimization, two or more objective
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functions are optimized simultaneously to produce a set of optimal or non-dominated
solutions known as the Pareto frontier. When two objective functions are optimized
simultaneously, a Pareto frontier has the form of a curve that represents the optimal
trade-off between the two objectives. Shown in Figure 9.1, the results of minimizing
Qs 1or and maximizing p,, simultaneously are given. This Pareto frontier is composed
of those solutions in the feasible population that are not dominated with respect to
both objective functions; each point on the frontier represents an optimal solution. In
general, the Pareto frontier is a set of non-dominated solutions, in which one solution
is better than another with respect to at least one objective, but not all objectives.'®’

8 0 T T T T T T T T

- o Feasible population 1
- . Pareto frontier .

o

~
(¢}

Q. (kJ/icm?)

~
(@]

65 ! ! 1 ! ! | ! L
500 1000 1500 2000
Cross range (km)

Figure 9.1. Multi-objective function population with Pareto frontier, spherical segment, L/D =
0.5, Vg =12.5 km/s.

A Pareto frontier can also be generated using single-objective optimization. A
single objective function can be generated using a combination of performance

parameters with the weight variable W

o(%)=wo (X )+ (1-w)o,(X) 9.9)
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in which 0 < W < 1. By incrementing the weighting variable and applying several
initial conditions, a set of non-dominated solutions are obtained to produce a Pareto
frontier. This objective function form is designed to provide a compromise between
two performance parameters. One drawback to the single objective function approach
is that there is only one solution generated on the Pareto frontier for each optimization
run, totaling to an overall large computational time on the order of a week per Pareto
frontier using the differential evolutionary scheme. Another drawback is that finding
the specific sub-range(s) of W (within the overall range from zero to one) at which the
optimization is sensitive requires several test runs. Furthermore, this method does not
necessarily produce a full Pareto frontier.

Performing the optimization with a multi-objective function methodology
allows for more of the Pareto frontier to be generated within a given amount of time
when using the evolutionary scheme. Instead of locating a single solution that
dominates the remaining 10,000+ designs, a multi-objective function optimization
results in a few hundred or thousand non-dominated solutions. This allows a much
greater portion of the Pareto frontier to be generated within a single run. The time
required is on the order of 10 hours while using a similar population size. In this way,
it is also more efficient for a given population size.

Multi-objective optimization is utilized to optimize conflicting objectives.
Since an increase in cross range produces a larger heat load, maximizing cross range
and minimizing heat load are conflicting objectives. Non-optimal results may produce
higher heat loads than necessary for a desired cross range. Minimizing heat load and

minimizing peak heat flux are also conflicting objectives. For this work, optimal
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solutions are provided in the form of Pareto frontiers between two objectives to

highlight performance trade-offs and provide comparisons between axial profiles.

9.4. Applying optimization methods

Primarily, the differential evolutionary scheme is applied for this work since
the main results are from multi-objective optimization, in which UPTOP uses the
DES. A hybrid method utilizing both SQP and DES is utilized in calculating the entry
corridor boundaries and the initial feasible design within the boundary that is placed
along with the initial population for the multi-objective optimization. In this case,
DES is primarily utilized for finding the overshoot and undershoot, in which targeting
a feasible design at a given yg is employed by using the single-objective optimization
setup. In this part of the analysis, optimization is not focus although the objective
function is heat load O ,; instead, the hybrid method is conducting a global search to
locate a feasible design at a given yg. In this case, the DES allows the hybrid method
to perform the global search, and then the gradient-based SQP method is applied to
the best design after 21 iterations to determine a feasible design. Additional detail into

how the entry corridor is found using UPTOP is included in Chapter 11.

9.5. DES Parameter and Population Size Analysis

A parametric study of the effects of population size, crossover probability, and
mutation intensity on the Pareto frontier for maximizing p,,, and minimizing Qs is
provided in this section. The ideal Pareto frontier provides a full and comprehensive

profile of non-dominated solutions for a given set of performance metrics. Previous
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work by the authors''*'"!

used an initial population size of 130 with random values
chosen for crossover probability and mutation intensity for each generation. To
determine if a better Pareto frontier could be generated, an analysis on the effects of
population size and DES parameters on the Pareto frontiers has been completed. The
DES parameters crossover probability and mutation intensity have been applied with
values 0of 0.2, 0.5, 0.8, and with a random value between zero and one chosen for each
generation. These DES parameters were tested with initial population sizes of 130,
260, and 390. When studying the effects of crossover probability, the mutation
intensity is varied randomly each generation, and vice-versa for studying the effects
of mutation intensity. Each optimization runs until approximately 18,000 feasible
solutions were created that improve in one objective function value over previously
generated solutions. As expected, the larger population size causes an increase the
runtime.

Figure 9.2 indicates that increasing the population size not only produces a
fuller Pareto frontier but also improves the performance metrics. Doubling the initial
population to 260 produced significant reductions in heat load for cross ranges near
1000 km. Slight improvements are noticed when increasing the population to 390, but
it also produces a wider range of results with a cross range up to 2100 km.

A crossover probability of 0.2 with an initial population of 130 produced a
continuous and almost linear relation between cross range and heat load, as shown in
Figure 9.3. Increasing the population size to 390 greatly improves the performance
metrics, though low values of crossover probability still produced sparser Pareto

frontiers. A high crossover probability with a population of 130 produces step
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increases in heat load at cross ranges of 1000 km and 1800 km. Increasing the
population size to 390 removed them. A high crossover probability of 0.8 with a
population size of 390 produced more dominant results than the random value case
(R).

A low mutation intensity value of 0.2 produced a sparse Pareto frontier for
cross ranges greater than 800 km, shown in Figure 9.4. Increasing the population size
to 390 allowed the optimizer to widen the band of the Pareto frontier and locate
designs for cross ranges less than 1000 km with a 33% decrease in heat load.
Increasing mutation intensity to 0.5 and 0.8 produced smaller improvements. The
random value case with a population size of 390 produced the fullest Pareto frontier.

In summary, the most comprehensive Pareto frontier for this design space is
produced by a population size of 390, a crossover probability of 0.8, and a mutation
intensity that is randomly varied for each generation between 0 and 1. An initial
population of 390 individuals is applied since diminishing returns were observed
from increasing it. These settings provide a significant gain in the optimizer’s ability
to locate better solutions and produce fuller Pareto frontiers. Fourteen AMD 2.2 GHz
Opteron 248 processors were utilized in this analysis, and the time required per run
was 8-16 hr, depending on the duration of the trajectories analyzed; optimizations that
found primarily 400 s duration trajectories that satisfied the constraints and were
optimal would take less time to run that optimizations that found longer 3000 s

duration trajectories were necessary.
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Chapter 10. Initial Lunar and Mars Return
Optimization Results

Several full sets of optimization cases had to be completed in order (1) to
understand the results from the Pareto frontiers, (2) to become familiar with the
design space, and (3) to understand how the optimization worked and if it is working
properly. In this dissertation, two full sets of optimization cases are completed. The
first set assumes relaxed constraints that were required to produce a successful
optimization. These relaxed constraints would produce some heat shield/trajectory
configurations that would not be survivable by astronauts. Note that several sets of
optimization cases were completed before this set, and those are listed in Refs. [105],
[110], [111], and [112]. This chapter provides the optimization setup description and
the results for lunar and Mars return with these relaxed constraints. Once the
limitations of the optimization setup and the drawbacks of the trajectory results were
understood, an entry corridor methodology was implemented to produce more
practical trajectories for both astronaut survivability and more realistic trajectory
constraints. This second set of lunar and Mars return results is provided in Chapter
11— Chapter 14; and represents the final results of this work. The set of results in this
chapter provided important groundwork for understanding the heat shield geometry

and entry trajectory design space that led to producing practical final results.

10.1. Optimization Setup

UPTOP applies a differential evolutionary scheme (DES)’*'% for this

optimization. To simulate Earth entry for lunar return, an initial entry velocity of 11
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km/s is applied.*® For Mars return, a fast 180-day return renders entry velocities up to
14.7 km/s,”° and an initial entry velocity of 15 km/s is applied. A separate
optimization is performed for each axial profile: spherical segment (SS), spherically

blunted cone (SC), and power law (PL).

10.1.1. Objective functions

Three objective functions are applied in the initial work: minimizing
stagnation-point heat load Q; ,r, minimizing peak stagnation-point heat flux ¢ .., and
maximizing cross range p,. Lhese objective functions have been selected on the
basis of (1) relevance to mission requirements, (2) connection to low-performing or
restrictive capabilities of existing blunt-body designs, and (3) the availability of
accurate physical models suitable for optimization purposes.

The peak heat flux of the trajectory determines which materials are capable of
surviving the selected entry conditions. Minimizing heat load reduces the heat
shield’s thickness and mass indirectly. Minimizing both requires the capability to
change the flight path and heat flux calculations throughout hundreds of entry
trajectories. As a result, low-order computational models of the aerothermodynamics
are implemented to balance the need for fidelity with the desire to have practical
computational times. Heat transfer is tracked at the stagnation point. There is more
confidence in well-validated stagnation-point correlations than in low-order estimates
of the maximum heat flux, especially when applied to a wide range of geometries in
extreme hypersonic conditions. They also cost less computational time.

Cross range capability enables missions that require immediate inclination

changes, and likewise, enable more abort scenarios. Existing designs have low cross
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range performance due to trajectory design and low L/D. For a vehicle flying a direct
entry trajectory from lunar return with a hypersonic L/D = 0.30, the maximum cross
range is limited to = 200 km with a 5 g-limit.! To increase cross range capability, both
skipping trajectories, which have been shown to increase cross range significantly,’

and higher L/D designs are considered feasible.

10.1.2. Design variables

For each axial profile, the design variables along with their side constraints
are listed in Table 10.1. For 6, the lower limit of 5° provides a blunt-body that has a
large but finite radius-of-curvature. For both 6, and 6., the upper limit 89° removes
numerical issues present if the upper limit is set to 90°. Additionally, zero radius-of-
curvature designs are not considered since they produce high heat concentrations. The
maximum eccentricity of +£0.968 was chosen to limit the axes ratio j/k to less than or
equal to four. The angle of attack is limited to £30° since manned space capsules
usually enter at or below |a| = 25° and also due to the fact that the heat shield may not

be even half of the vehicle’s shape.

Table 10.1. Design variables with side constraints for initial optimization.

Axial profile Prqﬁle sp §c1ﬁc Common design variables
design variables
Ssghzzﬁl 5.0°<6,<89.0°
g 30°< 0 < 30° 115.5° < 7 <-0.05°
Spherically-  55.0° <6, <89.0° 0.968 < < 0.968 0= dho < 180"
blunted cone 0.15<r,/d<2.00 1.30=1n,=2.00 0"<¢,, <180
ty+5s<t;<7190's 0° < ¢y, < 180°
t;+5s<t,<7190s 0°< ¢,3<180°
0.900 < 4 < 10.000 t+5s5<t;<7190s 0°< b4 < 180°
Power law 0.200 < b < 0.650 |
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If O; is large, then it is possible that the entire space capsule could fit within a
hard or soft shell re-entry system including inflatable aeroshell devices. A non-
eccentric heat shield with 6. = 45° is the interface at which the spherically-blunted
cone begins to produce positive lift at negative a.*® If 6, < 45°, then negative lift is
generated at negative a. The term blunt body for re-entry commonly refers to a
vehicle that produces a bow shock with a substantial standoff distance. Since Ried’'
approximated that the shock-standoff distance of the Apollo 4 was 14 cm and this
work predicts 12.4 cm (M., = 32.8, o = 25° at h = 61 km, at 30030 s into the mission),
it was decided that the order of accuracy of Kaattari’s method is approximately 2.54
cm. As a result, the characteristics of the spherically-blunted cone that has a shock-
standoff distance of 2.54 cm would represent the lower limit for 6. and r,/d. For a
non-eccentric heat shield, this work predicts a 2.54 cm shock-standoff distance for a
spherically blunted cone with 6, = 55° and r,/d = 0.25. If the shock-standoff distance
at angle of attack decreases by more than 50% from the value at a = 0°, then the
shock-standoff distance at o = 0° is applied. At a = -25°, the Apollo CM shock-
standoff distance decreases by approximately 40%, and thus, in this work, the
assumed feasible limit is 50%. The lower limit on the nose radius-to-diameter ratio is
not greater than 0.25 since previous work such as the Mars Viking missions included
heat shields with »,/d = 0.25. The chosen lower limit of 0.15 on r,/d widens the
design space. For the blunted cone, the upper limit of 7,/d of 2.0 is chosen to provide
overlap and continuity between the blunted cone and spherical segment design
spaces. This allows the optimizer to choose a spherical-segment over a spherically-

blunted cone in the same optimization if necessary.
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For the power law, Newtonian impact theory may have an accuracy issue
given the quick slope changes shown in Figure 2.3(b) for » = 0.1 or smaller; a lower
limit value of 0.2 for b has been chosen arbitrarily. Sharper-nosed power law profiles
with exponent b > 0.65 have been removed from the design space since these shapes
cannot be optimal from a convective heat transfer standpoint. In addition, the current
low-order method of determining an effective nose radius for the power law profile is
not accurate enough for the optimizer to remove them from the design space. The
upper limit on b produces a nearly linear profile, but the code requires the slope of the
power law profile to vary at least slightly to prevent derivative calculation dilemmas.
Since blunt-bodies in previous work usually have / < d (i.e., Apollo CM I/d = 1/9), it
was decided in this work to widen the design space by including 4 = (//d)™" = (10/9)™.
Then the upper limit 4 = 10, at which the power law becomes similar to the spherical-
segment axial profile, was chosen since the power law profile is no longer unique. In
generating the base cross section, the lower limit of n, produces slightly rounded-
edge polygons. As n;is increased, the polygon’s edges become more rounded, and the
polygon is completely transformed into an ellipse at n, = 2.0.

A wide range of j including the Apollo*' missions’ jz = -6.5° is allowed. To
modify the vehicle’s flight path through rotation of the lift vector, a bank angle
profile with five control points is available. The first and last control points 7y =0 s
and ¢, = 7300 s are fixed, and the optimizer can modify the five bank angles ¢,
through ¢, 4, as well as the three intermediate times at which the bank angles are
initiated. Connecting the control points (¢, ) produces the @-profile. A limit of 0° to

180° lowers the size of the design space; angles 181° through 359° are not necessary
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since longitude and latitude constraints are not considered. A mesh convergence
study, provided in Chapter 8, was implemented to reduce computational time; for

optimization the geometry’s mesh is j,ux = 45, kypar = 101.

10.1.3. Design constraints

Boundaries for the feasible design space are provided in Table 10.2. These
constraints account for trajectory design limits, theory limitations, and static
longitudinal, directional, and roll stability. For blunt-bodied capsules (low L/D),
whether the trajectory ends at M, < 5 does not strongly affect the values of the three
optimization parameters in this analysis. Since the heat shield shape is not necessarily
or usually the entire vehicle shape, a limit on the angle of attack at which a given heat
shield can be analyzed, must be chosen in order to maintain the assumption that the
flow generally separates before passing over the aft body (crew compartment).

Otherwise, the entire vehicle must be examined initially to determine the hypersonic

aerodynamics since the Newtonian flow assumption C, = 0 for V., -h>0would not

apply. This is completed with the edge tangency constraint |a| < |¢ + 1°|. The edge
tangency constraint requires that a given heat shield must not be placed at an angle of

attack more than one degree larger than the heat shield’s tangency angle &, which is

Table 10.2. Trajectory and aerodynamic constraints
for initial optimization.

Optimization constraints
Trajectory Aerodynamic/Geometric
;<7200 s M,;<5
h, <3000 km Chega<—0.001
ht,f <75km Cn,cg,ﬂ >0.001
e $6 g, V=11 km/s sign(Cpy) Ceep < 0.01
Nmax <12 g, V=15 km/s la <le + 1°
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the angle produced between the heat shield’s edge surface and the vertical axis. In
this way, at the limit the heat shield’s edge is normal to the freestream flow when a =
¢, and the one-degree above ¢ was chosen as a small relief factor. When maximizing
Ly/D, the optimizer sometimes increases a beyond ¢, which leads the optimizer into a
region of design space where the Newtonian flow assumption does not necessarily
apply. Note that for heat shields with ¢ < 15°, an aft-body with an angle greater than
15° is assumed to allow heat shields with low 6y, for example 6, = 10°, to be feasible
for |af < 15°.

Longitudinal and yaw static stability requirements are also included; because
this is a numerical analysis, the magnitude value of 0.001 is deemed significant rather
than 0.000. The roll static stability requirement, but it is different from the
longitudinal and yaw requirements in that it allows for slight instabilities with
unstable values up to 0.01/rad in order to produce heat shields such as the Apollo
CM, which is believed to have been slightly statically roll unstable with Cj.p =
0.005/rad. This keeps the design space open to successful previous work. The
requirement for roll static stability changes sign when the Cj; changes sign as
explained in Ref. [112], thus requiring a change in the constraint.

Since guidance laws are not considered in the trajectory analysis, optimal
trajectories with similar entry interface characteristics but with less complex ¢,-
profiles tend to generate longer duration trajectories. A compromise was chosen to be
two hours, 7, < 7200 s, which is greater than twice the upper-limit to the estimated ¢
for the Orion CEV. An arbitrary maximum altitude for skipping trajectories has been

set to 3000 km. A final altitude %,y no greater than 75 km has been chosen to ensure
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that the vehicle’s trajectory ends within the atmosphere. This allows for higher L/D
vehicle designs to be feasible since their optimal trajectories may result in
deceleration at higher altitudes in the atmosphere. For Vz = 11 km/s, a peak g-load of
6 g was chosen since it is the maximum allowable acceleration level for a
deconditioned astronaut in a reclined position.*® It is also lower than the 7 g that
Apollo 10 experienced.'"''* Preliminary analysis indicated that for a 15 km/s entry,
this optimization setup would be over-constrained with a 6 g upper limit. This limit
was increased to 12 g based on previous work that indicates a pilot can sustain 12 g

for up to 60 s and still continue to perform the assigned tasks.''”

Though this is not
expected to conform to future standards for manned Mars return, the results provide a

sense of the heating environment when entering at high hyperbolic velocities. Results

for ¥y = 15 km/s can be applied at least towards most unmanned missions.

10.1.4. Choosing the base cross section

For the spherical-segment axial profile, it is shown in Table 10.3 that the
vertical lift-to-drag ratio L/D is largest for the parallelogram and pentagonal cross-
sections. The parallelogram cross-section (m; = 4) has the minimum number of sides
examined and offers the maximum lift-to-drag configuration in this analysis. The

optimal m; =4, 5, and 6 designs are shown in Figure 10.1.
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Table 10.3 Optimal designs for maximizing L,/D with different m;.

Spherical-segment axial profile
Initial Design 6, = 85.0°, n; = 1.40, ¢ =-0.900, a =
25°
Optimal Design 6,= 89.0°, e = Objective
-0.968 Function
m n a L/D
4 1.30 18° 1.10
5 1.30 24° 0.88
6 2.60 22° 0.75
7 1.30 20° 0.76
8 1.30 21° 0.82

a) Hexagonal cross-section, L/D = 0.75.  b) Pentagonal cross-section, L/D = 0.88.

¢) Parallelogram cross-section, L/D = 1.10. d) Spherical-segment axial profile, ;= 89.0°.
Figure 10.1. Optimal geometries from Table 10.3, ¢ = -0.968.

The hexagonal geometry is the only design with a rounded-edge concave base
contour. In Figure 10.2 the behavior of the hexagonal cross-section with a
spherically-blunted cone axial profile is compared to the parallelogram cross-section.
The hexagonal design’s L/D has a maximum magnitude of 0.61, 19% less than its
spherical-segment analogue, with an oblate, rounded-edge concave cross-section. The
parallelogram design’s L/D continues to increase in magnitude at it approaches the
lower endpoint, which is located in the non-concave region. As a result, varying the
hexagonal design produces a different trend than one generated by varying the

parallelogram design. It is only a coincidence that the n, value of 2.6 for the
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hexagonal design in Table 10.3 is twice that of the other designs with the n, lower

side constraint active.

a) Hexagonal base (m = 6). b) Parallelogram base (im = 4).
g

Figure 10.2. L,/D distribution for m = 4 and 6, spherically-blunted cone axial profile, 8.= 55° r,/d
=0.05, varying e and n, = 1.3 to 4.0, M, = 32.8, a = -20".

The spherical-segment angle constraint is active for the optimal designs with
O; = 89°. This high spherical-segment angle 6; creates geometries that produce
positive lift at positive angles of attack because each has a normal force that
contributes more to the lift force than the axial force. For the classic blunt-body
Apollo Command Module (6, = 25°), the axial force contributes more to the lift force,
thereby requiring a negative angle of attack for positive lift.

Since a high L/D is desired for several reasons, such as increasing the range of
available landing sites and reducing g-loads for manned missions, it is one of the
most important aerodynamic characteristics of a lifting re-entry vehicle. From this
point, the optimization analysis is completed with the parallelogram cross-section (m;

=4) in order to have the largest range of L/D values available for optimization.
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10.2. Optimal configurations for Ve= 11 km/s

10.2.1. Minimizing Qstot and maximizing pars

Specific designs are labeled on the Pareto frontiers and listed in Table 10.4.
The lowest possible heat load is expected to increase with cross range p,,s provided
that down range is relatively constant or increasing. A Pareto frontier is given for
each type of axial profile in Figure 10.3(a), for cross ranges up to 1500 km and heat
loads from 11 to 33 kJ/cm®. The optimizer produced similar Pareto frontiers for all
three axial profiles. The power law’s is expected to be the least accurate since an
artificial effective nose radius is applied. All three frontiers closely match for p,,, >
750 km; close inspection indicates that for this region, the spherically blunted cone
and power law profiles are disguised spherical segments, including designs B and C
shown in Figure 10.4 with elliptical base cross sections from Figure 10.5. Geometries
with p,, <250 km have down ranges of at least 2000 km while designs with higher
Pxrs, including A, B, and C, have relatively constant down ranges of 10900 + 200 km.

The design variable distribution for the spherical segment’s Pareto frontier is
provided in Figure 10.6. The transformation variable n, is nearly constant at 2.0,
indicating an elliptical cross section rather than a parallelogram-form is optimal for
this set of p,,;. The parallelogram form would be applied to increase L/D beyond the
capability possible with an elliptical cross section. Since the maximum L/D for these
Pareto frontiers is 0.50, provided by design C, the parallelogram form is unnecessary.
These results indicate that for low L/D designs, an elliptical cross section is better due

to its larger drag area (CpS = D/q.,), rendering a lower BC for a given mgy.
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Table 10.4. Optimal configurations for two multi-objective function sets, m, = 4.*"
Minimizing Q; ,,, & Maximizing p,, Minimizing Oy o; & G max
~ . V=15 km/s Ve= 11 km/s _ .
Vi =11 km/s (Fig. 9a) (Fig. 14a) (Fig. 9b) Vi =15 km/s (Fig. 14b)
A B C E F D G H
SS SC PL SS SC SC SC SS
6, = 6.80° 0. =60.4° b=0.34 6,=8.1° 6, =84.3° 0, =84.4° 6, =84.3° 6,=10.2°
Design no= 199  r/d=126  A=525 ny= 198  r/d=129 ri/d=2.00 r/d=130  p,= 2.00
Variables = €¢=-0.968  1n,=2.00  n,=1.96 e=-0.968 n,=2.00 ny=2.00 n;=2.00  ¢=-0.968
a=-137° e=-0682 ¢=-0.003 a=148° e€=-0.968 e=-0.968 e=-0968  4=900°
a=-23.8° a=30.0° a=-15.9° a=-15.8° a=-159°
75 -6.01° -6.14° -6.29° -6.60° -6.44° -5.37° -6.18° -6.41°
(to, ds0) (05,59.0°  (05s,759°)  (0s,97.99 (05,437 (0, 143.5 (0's, 144.0% 0s,177.0° (0, 1.93°)
(1440, 76.0°) (1530, 55.1°) (1540, 135.7°) (248.4,161.5% (190, 40.7°) (267, 66.1°) (197,84.0°9 (219, 6.14°)
(5 ) (1450, 137.4°) (870, 84.5°)
e (1214, 85.8%)
Parameters
s & 6.0 5.9 6.0 12.0 11.8 5.9 11.7 11.9
Os 1015 kJ/cm? 14.7 22.6 29.4 82.4 65.2 12.4 63.6 76.7
(Oscoms Osrag)  (1.1,7.6)  (149,7.7)  (19.8,9.6) (13.6, 68.8) (18.5,46.7) (7.4,5.0) (163,47.3) (12.9,63.8)
s maxs Wiem® 250 300 380 1930 1400 160 1100 1500
(@scom Gsrad) ~ (50,200)  (100,200) (130, 250) (150, 1780) (200, 1200) (60, 100) (180,920) (140, 1360)
Prrs> km 520 1010 1500 990 1000 120 100 10
Cp 1.62 1.32 1.17 1.57 1.56 1.57 1.56 1.60
L/D 0.22 0.36 0.50° 0.22° 0.24 0.24 0.24 0.12°
Coeg.cr /Tad -0.18 -0.15 -0.10 -0.20 -0.19 -0.19 -0.20 -0.27
BC, kg/m2 130 220 350 130 100 110 100 120
Iy s, M 3.4 5.0 5.0 3.5 4.0 3.8 4.0 3.6
S, m 36.9 27.1 19.0 38.1 49.0 45.8 49.0 41.0
Ty, HS 38.8% 60.6% 58.5% 43.0% 41.2% 40.5% 41.3% 49.1%

*Axial profiles SS: spherical segment, SC: spherically-blunted cone, PL: power law

gy = 7800 kg
“The lift-to-drag ratio has a negative value for the reported «
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Figure 10.6. Design variable distribution for spherical segment designs from Figure 10.3(a).

For p.,s <700 km, optimal designs have highly oblate e = -0.968, which is the
lowest allowed value. With an increased heat shield radius of curvature, this design
allows for less convective heat transfer. Higher e also increase the drag area, thus
decreasing BC. The heat shield geometry is held constant until p,,, = 700 km, at
which point there is a strong jump in 6, from 6.8° to 18°. In general, |o| is increasing
throughout this portion of the Pareto frontier, indicating higher |L/D| is required to
produce additional cross range. At p,, = 700 km, |a|] = 16°, and the geometric

constraint |a| < |¢ + 1°| is active. A parametric analysis completed in Ref. [112]

154



indicates that for specific ranges of 6;, an increase in 6§, decreases |L/D| for fixed a and

e, as shown in Figure 10.7.

-05 -04 -03 -02 -01 0 0.1 0.2

Figure 10.7. L,/D distribution for spherical-segment: elliptical base (n,=2), varying ¢ and 6, a=
20°, B=5".

This trend applies to this case. The |a| is fixed at 16° until 6, > 15°, and the optimizer
determines that a decrease in e along with an increase 6, that allows for |a| > 16°,
would render a sufficient and incremental increase in |L/D|. The increase in 6, to 18°
limits the reduction in radius-of-curvature, thus concurrently minimizing Qs . These
necessary adjustments to 6y, e, and a produce the sudden rise in Q;,, on the Pareto
frontier at p,,, = 700 km. Consequently, drag area is traded-off with |L/D| as py
increases. A similar explanation applies to the other axial profiles.

For p,,s < 250 km, optimal solutions use direct entry trajectories. To increase
DPws, the banked lift vector must turn the vehicle further. This is achieved by
steepening yz to travel deeper in the atmosphere for a given V., increasing ¢, and

thus, the lift dedicated for turning. As shown in Figure 10.6(b), ¢ is adjusted,

pointing the lift vector slightly upwards, to keep the vehicle slightly higher in the
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atmosphere for minimizing Qs ,,. The change in behavior of yz and ¢, at p,,, = 250 km
indicates a switch from direct entry trajectories to skipping trajectories. This cross
range limit for direct entry trajectories is consistent with the work of Putnam and
Braun.' For a skipping trajectory, a steeper y is utilized to dissipate sufficient energy
to avoid violating trajectory constraints. Minimizing heat load restricts low |yz| and
trajectory duration while maximizing p,,; and the deceleration limit restricts high |yg|.
For skipping trajectories, larger p,. requires ¢ to approach 90°. Since there is a
smaller proportion of lift dedicated to producing the skip as ¢, approaches 90°, the
vehicle requires a steeper yg, as indicated by Figure 10.6(b).

Designs A, B, and C are optimal for p,, = 520, 1010, and 1500 km,
respectively. Design A represents the spherical segment geometry applied for p,,s <
700 km. Its heat shield axial profile is provided in Figure 10.4, and its base cross
section is provided in Figure 10.5(a). By utilizing design B, a 54% increase in Oy, 18
required to double Design A’s cross range. Not only does g . affect Qs but also
does the change in individual contributions from conduction and radiation. By
halving the radius-of-curvature of design B from 6.3 m, using 6, = 60.4°, ¢ = -0.682,
r/d = 0.615, the ¢ 4 1S approximately unaffected, with g; conm = 140 W/cm? and qs.rad
=160 W/cm®. However, Qs .ony increases by 40% while O ,.s decreases by 20%. As a
result, QO ., increases by 20%. For a design similar to the Viking’s spherically blunted
cone, 6, = 70°, e = -0.682, r,/d = 0.25, ¢sma iS approximately 380 W/ecm® and
provides a 68% increase in Q;,, over design B’s heat shield geometry. The results in
Figure 10.3 indicate that the optimal heat shield geometry for skipping trajectories at

Ve =11 km/s is the spherical segment, with non-zero eccentricity. The oblate cross
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section of Design B, shown in Figure 10.5(b), illustrates the significant reduction in
eccentricity that was required to increase L/D. By utilizing design C, Qs is doubled
to triple the p,,s of Design A. Shown in Table 10.4, BC increases with p,,, and both
qs.max and Qg Increase as expected.

When the peak ¢ conv 1s less than the peak g ,qq, it is possible for Oy com >
Qs raa- This occurs for designs B and C when minimizing Qs . Significant convective
heat transfer occurs throughout the entire hypersonic trajectory while radiative heat

transfer contributes significantly only at the highest velocities, for V., > 7600 m/s.

For designs B and C, ¢;,00 <5 W/em? for V., <7600 m/s.

10.2.2.  Minimizing Qstot and qsmax

Pareto frontiers are provided in Figure 10.3(b) for g . ranging from 130 to
210 W/cm?, producing heat loads ranging from 11.8 to 19.3 kJ/cm®. The results for
the power law form were inconclusive. The minimum Qy,, decreases with increasing
gsmax- The trajectory design variable distribution for the spherically blunted cone,
given in Figure 10.8, demonstrates that a shallower yz renders a smaller ¢ .. and
larger Qs ;. The optimal geometric configurations are similar to those with low Qs
in Figure 10.3(a). They fly direct entry trajectories, as suggested by the shallower yz
and higher ¢, than those reported in Figure 10.3(b).

Both the SS and SC geometries are relatively constant throughout the Pareto
frontiers. The spherical segment geometry is 0; = 6.83°, n, = 2.00, e = -0.968, hy, ys =
3.2 m, and the blunted cone geometry is listed in Table 10.4 as Design D. The two

Pareto frontiers are within correlation error, within 35 W/cm?” of each other.
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Figure 10.8. Trajectory design variable distribution for spherically blunted cone designs from
Figure 10.3(b).

Both configurations are equally optimal. Comparing the two geometries at the
freestream conditions of ¢ ., for design D, at 4, = 73.1 km, V,, = 10.5 km/s, the
spherical segment would produce a different combination of heat fluxes, ¢ con = 40
W/cm? and Gs.raa = 140 W/cmz, but result in nearly the same Q. The radius-of-
curvature is 14.3 m for the SS and 7.5 m for SC. Rather than reducing curvature to
reduce Qs com» the main advantage to the highly eccentric base is the increase in drag
area that reduces BC. This indirectly reduces g .. and Qs since larger drag area
provides deceleration at higher altitudes for a given mgy. For this range of curvatures,
heat transfer is significantly interchanged between convection and radiation,
rendering (s, relatively constant for these short duration trajectories. The skipping
entry of design B has a 132% increase in duration with ¢, > 5 W/cm® over the direct
entry of design D. With this and a 0.77° steeper yg, radius-of-curvature becomes of

greater importance.
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10.3. Optimal configurations for Ve =15 km/s

10.3.1. Minimizing Qstot and maximizing pars

Entry at Vz= 15 km/s renders at least a factor of three increase in O, above
that experienced at Vz = 11 km/s, caused by the conversion of 85% more kinetic
energy into thermal energy during deceleration. Radiative heat transfer produces a
majority of Qs and can be minimized by decreasing the radius-of-curvature to
reduce A, which is smaller for a SC than a SS for a given L/Dy.x design. The
different thermal environment may render different optimal configurations at 15
km/s. Pareto frontiers are provided in Figure 10.9(a) for p,, < 2200 km with Q;
ranging 60 — 160 kJ/cm® compared to 11 — 33 kJ/ecm?® for ¥z = 11 km/s. The Pareto
frontier of the power law is composed of effective spherical segment forms.

The significant difference in Q;,,, between the SS and SC Pareto frontiers is
caused primarily by differences in drag area. Spherical segment design E has a 27.8%
lower drag area than blunted cone design F since the vehicle sizing routine
determined that the spherical segment can maintain requirements with a smaller
vehicle. This is indicated in Table 10.4 by design E having a 12.5% lower &; is than
design F. Design E experiences ¢, .. at an altitude of 66.1 km, 2 km deeper than
design F, and acquires a 26% larger Q. than design F. Both designs follow similar

skipping trajectories and experience ¢ mqy at Vo, = 13.5 km/s.
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Figure 10.9. Pareto frontiers for Earth entry, Vz =15 km/s.

The trajectory of design F is provided in Figure 10.10. At 66.1 km, air density is 40%

thicker. Since the normal-shock density ratio is relatively constant between the two
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altitudes with the same V., the Ay, does not change significantly. This results in a
40% increase in E and thus, a 31% increase in ¢s,,e. This demonstrates the higher
sensitivity of heat transfer with altitude when traveling at hyperbolic speeds through

the atmosphere.
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Figure 10.10. Heat shield skip trajectory of design F from Table 10.4.

A proper balance of radiative and convective heat loads is important for
minimizing total heat load, but the optimal SS and SC geometries produce nearly the
same minimum (s, At the freestream conditions of design E, design F would
generate ¢ ,,q = 1560 W/cm? and qs.com = 230 W/cm?. With this 7% lower qs.max> the
resulting Qs 4, 1s still relatively the same as for design E. If design E were required to
have the same /4, ys as design F, then Design E would have drag area similar to
design F’s since they have nearly the same Cp, resulting in an equivalent BC. They
would then fly nearly the same trajectories. At the freestream conditions of design F
and with /4, s = 4.0 m, design E would generate g ,,0 = 1460 W/cm? and qs.com = 120

W/cmz, producing an 8.2% larger ¢, .. than design F. The resulting Q;,,, would be
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approximately 4% greater, suggesting that the blunted cone has a slight advantage
only. At the freestream conditions of design F, a geometry similar to Viking except e
= -0.968, would produce ¢, ., = 1100 W/ecm? and qs.com = 470 W/cmz, rendering a
32% increase in Q. This indicates that (s, is sensitive to different combinations
of radius-of-curvature and A,.

The design variable distributions for the blunted cone Pareto frontier are
provided Figure 10.11; the trends in these distributions are consistent with those
discussed for Vy = 11 km/s in Figure 10.6. Only skipping trajectories  were
captured for the spherically-blunted cone as its Pareto frontier begins at p,,, = 200
km. The  spherical segment switches from direct entry trajectories to skipping
trajectories at p,, = 170 km. As cross range is increased, the sudden changes in

geometry are produced to incrementally increase L/D.
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Figure 10.11. Design variable distribution for spherically blunted cone designs from Figure
10.9(a).

10.3.2.  Minimizing Qsztot and qsmax

Pareto frontiers are provided in Figure 10.9(b) for the spherical segment and
spherically blunted cone. The results for the power law form were inconclusive. For
the two Pareto frontiers, the geometries are relatively constant, listed as designs G
and H in Table 10.4. Both the spherical segment and blunted cone geometries are
very similar to designs E and F respectively. Similarly, the spherical segment has a
smaller 4, s than the blunted cone, thus having a smaller drag area and rendering
higher Qg 1o; and g max-

To isolate the effects of trajectory design and geometry, the heat fluxes for
both designs are compared at each other’s g ... freestream conditions. Design G
experiences ¢ mqx at i, = 70.4 km, V,, = 13.6 km/s while design H experiences ¢, yqx at
h; = 68.7 km, V,, = 13.7 km/s. At the freestream conditions of design H, design G
would generate ¢ ,.s = 1180 W/cm? and Gs.conv =210 W/cmz, a 26% increase in ¢ max;
this blunted cone design produces an 8% lower g; . than the spherical segment. At

the freestream conditions of design G, design H would generate ¢, = 1060 W/cm?
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and g com = 130 W/cm2, a 21% decrease in g 4y this spherical segment design
produces an 8% higher g; .., than design G. As a result, the spherically blunted cone
generates a lower ¢ .. for both cases. Differences in (s, for both cases are
negligible. Thus, the ¢; .4 is more sensitive than 0, for these optimal designs. Since
these geometries are similar to E and F, the importance of balancing radiative and
convective heat transfer also holds.

The trajectory design variable distributions are given in Figure 10.12 for the
blunted cone. For this objective function set, the aim of both a and ¢, is the same
since p, 1S not being optimized. For the blunted cone case, a is constant, and the
optimizer varies ¢ to control how much lift is applied to counteract gravity. For the
spherical segment case (not shown), ¢, is relatively constant at 0°, and a decreases

with increasing ¢ .., in order to lower the flight duration and thus, minimize Qs ;.
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Figure 10.12. Trajectory design variable distribution for spherically blunted cone designs from
Figure 10.9(b).
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Chapter 11. Detailed Optimization Setup for
Lunar and Mars Return

This chapter provides the detailed optimization setup for the final set of results
for this work. A complete chapter is dedicated in order to detail the different
optimization setup, including changes in side constraints for design variables, the
choice of axial profiles, changes in trajectory and aerodynamic constraints, and the

methodology for generating the entry corridors.

11.1. Mission profile modifications summary

The mission profile for lunar return mostly remains the same. To simulate
Earth entry for Mars return, an initial entry velocity has been changed from 15 km/s
to 12.5 km/s. a result, the expectation on TPS design to accommodate a 100+ kJ/cm®
heat load with Vg = 15 km/s, which will greatly challenge the current capabilities of
several other subsystems, may be unnecessary and impractical for the first manned
Mars return missions. With the current projected mass of Orion at ~10,000 kg, the
mass estimation process has been updated, along with the addition of lower and upper
mass estimations that are a function of surface area and heat load. The lower mass
estimation assumes that the additional heat load does not augment the mass of the
heat shield. The second mass estimation provides an upper-end conservative value
that assumes that the mass of the heat shield is increased by a factor of three. Details
of the modifications to the mission profile for this optimization are provided in

Chapter 5.

165



11.2. Modifications to objective functions

Three objective functions are applied in the final work: minimizing
stagnation-point heat load Q;, maximizing cross range py, and maximizing down
range paw». The peak heat flux objective function has been replaced with down range.
A greater down range enables more abort scenarios. Generating a comparison
between maximizing down range and maximum cross range capabilities while
minimizing heat load has been chosen to be more important than analyzing the peak
heat flux for this work. The peak heat fluxes will be shown to be feasible for these
entry velocities are all within the feasible bounds while depending on the cross range,
down range, entry vehicle mass, and lift-to-drag, the heat load may not be feasible.
Thus, heat load is more sensitive than heat flux for this analysis. Optimization is
performed using two objective function sets: (1) maximizing p,,, and minimizing

Os 1o and (2) maximizing pg,, and minimizing Qs .

11.3. Design variable modifications

Several modifications have been made to the design variable set in Table 10.1
for the final set of optimization cases. First, since the spherically-blunted cone and
power law optimizations generated optimal profiles similar to the spherical segment
for lunar return, only the spherical segment axial profile is analyzed in the final
analysis at Vz = 11 km/s. For Mars return, the Pareto frontier of the power law was
composed of effective spherical segment forms. Also, the low-order method’s
accuracy in predicting the power law’s stagnation-point heat transfer may not be

sufficient for a comparison between the spherical segment and power law. For
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primarily the first reason, the power law axial profile is not included in the final
optimization. Since the spherically-blunted cone optimization generated different
optimal profiles from the spherical segment optimization for Mars return, both the
spherical segment and spherically-blunted cone axial profiles are applied in the final
analysis at Vg = 12.5 km/s. The new set of design variables is listed in Table 11.1.
The y is no longer a design variable in order to implement the entry corridor
methodology, which determines the jz at which the optimization is performed. Since
the entry corridor is also a function of L/D, the optimization for each axial profile is
performed at specific values of lift-to-drag: 0.3, 0.5, and 1.0. Since the results in
Chapter 10 were primarily composed of L/D < 0.4, this methodology is also
employed to facilitate in generating optimal results at higher L/D values.

The bank angle profile is composed differently from the initial optimization
setup, in which connecting the control points (¢ ¢) produces the profile. A different
approach has been used for the final optimization that mimics the bank angle
adjustments completed for the Apollo missions. Instead of connecting the control

points, the control points represent a step change in the bank angle. The bank angle

Table 11.1. Design variables with side constraints for final optimization.

Vp=11knvs, Vp=12.5 km/s,
L/D L/D specific L/D specific Common design variables
design variables design variables
5.0°<6,<89.0°,L/D=0.3
o p J 027 <L/D<0.33
5.0°< 6, <89.0° 20.0 555650§<8996.0<,81§/§0— 0.5 1.30<n,<2.00 047 < L/D < 0.53
03,05 '0'_93%805252'09068 0.15 < r,/d < 2.00 5s<1,<55s 095=LD=1.05
-0 -0.968 <e<0.968 t;+10s<¢t,<t;+55s o o
30°<a<30° H+10s<6,< 1+ 55s 0°< g < 180
H410s<t,<t34+55s For L/D=0.3 & 0.5,
50.0° < 6, <89.0° 50.0° < 6, <89.0° L+10s<ts<t+3605s  A=0.1,2,...56
1.0 -0.968 < e<-0.95 -0.968 < e<-0.95 t5+ 108 < 15< 5+ 3605 s For L/D =10,
0°<a<30° 0°<a<30° all=0,1,2,...,10, 11




profile is comprised of up to six step changes for L/D = 0.3 and 0.5 and up to eleven
step changes for L/D = 1.0. An example of this type of bank angle profile is shown
for a L/D = 0.33 trajectory in Figure 8.1(c); this bank angle profile has three step
changes. The Orion CEV is currently being designed to handle bank angle
adjustments through approximate step changes also. The optimizer can modify the
seven bank angles ¢,y through ¢, 4, as well as the six intermediate times ¢; through 5,
at which the bank angles are stepped. A limit of 0° to 180° lowers the size of the
design space; angles 181° through 359° are not necessary since longitudinal and
latitudinal-related constraints are not employed. The bank angle is assumed to rotate
in 5 s rather than instantaneously to render a more realistic simulation. A 5-s rotation
was chosen based on the Apollo 4 rotating through 180° in approximately 10 — 14 s
and thus, serves as an approximate average of the required rotation time for the bank
angles experienced during entry. A more accurate simulation would assume a nearly

constant rotation rate.

11.4. Design constraint modifications

A modified set of design constraints has been applied for the final
optimization setup and is provided in Table 11.2. The final trajectory duration has
been reduced to 3600 s since the current upper-limit of the Orion’s entry duration is
approximately 2700 s (45 min). The entry corridor methodology assists in
constraining the trajectory design space to the extent that it is possible to reduce the
deceleration load limits. Instead of 7,,,, < 6 g for Vg =11 km/s and n,,,, < 12 g for Vg

= 15 km/s, an overall peak deceleration limit of 5 g = 49.05 m/s* has been chosen in
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Table 11.2. Trajectory and aerodynamic constraints
for final optimization.

Optimization constraints
Trajectory Aerodynamic/Geometric
M, =2
< o,f
=3 gOSO; Conegu < —0.001
7 < 1220 km a0l
" sign(Cy p, Legf <0.
<h, <
10 km <A, , <45 km o <|e + 1°]

order to be consistent with recent literature on manned lunar and Mars return

62 This is lower than the 7 g that Apollo 10 experienced.'''* The

missions.
maximum height of the skipping trajectory has been reduced arbitrarily from 3000 km
to 1220 km to allow the entry vehicle to skip up to 10 times the height of the entry
interface (122 km). The end conditions of the trajectory have been constrained to
experience Mach 2 at a range of altitudes from 10 to 45 km, at which drogue
parachutes would be deployed. Hypersonic aerodynamic characteristics are applied
throughout the entire trajectory and thus, may be a source for uncertainty for the end
of the trajectory where lower supersonic Mach numbers are experienced. This region
from Mach 5 to Mach 2 does not affect the objective functions dramatically; ending

the trajectory simulation at Mach 2 has been chosen in order to utilize more practical

end conditions for the entry trajectory.

11.5. Lunar return operational entry corridor

Skipping trajectories, illustrated in Figure 11.1(a), are considered feasible for
this work since the Apollo Command Module (CM) was capable of performing such
for an off-nominal entry. Skipping also was initially selected as its nominal entry

113

mode.'" Previous work''*'"! by the authors would produce trajectories located on the
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bounds of the feasible design space that were extremely sensitive to small deviations
in bank angle. This would lead to the vehicle either bouncing out of the atmosphere or
crashing into the surface, as shown in Figure 11.2. These small deviations in bank
angle (less than 1-deg change) also would produce extreme g-loads that are not
survivable. It is possible to design away from these cliffs in the trajectory design
space, by locating a range of entry flight path angles, known as an entry corridor,
within which the vehicle can fly to satisfy design requirements such as maximum g-
load, maximum heat load, and landing coordinates. The entry corridor is a function of
entry velocity, lift-to-drag ratio, and ballistic coefficient. For a given entry velocity,
the entry corridor width will vary with mgy, D/q. , and L/q.. Note that D/g., = CpS,

known as the drag area, and L/g.. = C.S.
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Figure 11.1. Skipping trajectories for overshoot, undershoot, and chosen initial for L/D = 0.6, Ref
[115].
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Figure 11.2. Trajectory sensitivity to Ag, , < 1°, generated with initial optimization setup.

The operational entry corridor width defines the flyable space within the
trajectory constraints of the mission, which are included in Table 11.2 for this work.

It must be sufficiently large such that all possible uncertainties that may occur during
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a given trajectory do not lead to a loss in vehicle control authority. These primarily
consist of variations in atmospheric conditions and uncertainties related to the
guidance, navigation, and control systems. Putnam and Braun' suggest that a corridor
width of 0.4° is sufficient, stating that this is much larger than the entry corridor width
of 0.16° for the successful Earth entries during the Stardust and Genesis missions.
Manned missions may require larger corridor widths than these two missions’ since
there will be stricter g-load requirements and longer duration trajectories, giving more
time for both expected and unexpected events to affect the vehicle. Uncertainties
grow as entry velocity increases and L/D decreases, which corresponds to a reduction
in control authority and thus, a smaller entry corridor width. This work assumes that
an entry corridor of 0.4-deg is sufficient.

Each configuration in this work flies at a fixed-a, in which L/D is constant.
The banking of the vehicle that is generated by the reaction control system throughout
the trajectory is represented by the bank angle profile. The control inputs for the
trajectory are given in a bank angle profile. For this setup, the RCS can rotate the
vehicle to an initial bank angle ¢, for entry and change the bank angle six additional
times, assuming a five second rotation time. Additional control authority was required
for L/D = 1.0 case, and so the RCS can rotate the vehicle a total of twelve times
instead of seven for L/D = 1.0 only.

Examples of overshoot, undershoot, and initial trajectories are given in Figure
11.1 for L/D = 0.6. In this case, the entry corridor was determined to be at least 1.61°.
The range of bank angle adjustments possible with the current optimization setup is

exemplified in Figure 11.1(b); this also shows that small Ag will not lead to an
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immediate crash on the surface or bounce out of the atmosphere. The initial trajectory
in Figure 11.1 is an example of a trajectory chosen as an design to be placed in the
initial population for the optimization in order to give the optimizer a feasible design
to utilize. It is located purposefully in the middle of the entry corridor at y; = -6.06°.
The overshoot boundary is determined by executing UPTOP for a given configuration
with the entire ¢-profile set to 180°, reducing |yz| until the vehicle bounces out of the
atmosphere. The undershoot boundary is determined by utilizing UPTOP’s search
capabilities to locate feasible trajectories at a chosen g, increasing |yz| until the
trajectory constraints can no longer be maintained. The entry corridors may be larger
than reported since it was only necessary to find an entry corridor width of 0.4° for
this analysis. Entry corridors have been determined for both lower and upper
estimates of mgy , described in Chapter 5. Table 11.3 provides the entry corridor
widths for L/D = 0.3, 0.5, and 1.0, along with the corresponding heat shield
configurations. All the entry corridors have a width greater than 1°. To provide a good
comparison of the aerothermodynamic performance, optimization is performed at a
single 3z = -6.0° for all cases, which is close to yz = -5.8° expected for the Orion CEV
at lunar return conditions.''® All trajectories start with a 90° initial azimuth angle of
the relative velocity vector. The initial design conditions of the trajectory and
characteristics of the heat shield are also included in Table 11.3. This analysis focuses
optimization on base cross sections of parallelogram and elliptical forms, and

blendings of the two.
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Table 11.3. Operational Entry Corridors and Initial Heat Shield Designs for Optimization,
VE =11 km/S, m;= 4.

L/D =03 L/D =0.5 L/D =1.0
Lower mgy Upper mgy Lower mgy Upper mgy Lower mgy Upper mgy
_ 6,=25.0° 6,=25.0° 6,=25.0° 6,=25.0° 6,= 66.1° 6,= 66.1°
Heat Shield ny,=2.00 ny=2.00 ny,=2.00 ny,=2.00 n,=130 n,=130
Configurations e=0.0 e=0.0 e=0.0 e=0.0 e=-0.968 e=-0.968
a=-17.0° a=-17.0° a=-28.8° a=-28.8° a=20.0° a=21.5°
Entry Corridor*  -5.47° to -6.50° -5.58° to -6.60° -5.38° to —6.65° -5.48° to —6.75° -5.47° to —6.70° -5.66° to -6.90°
Corridor Width*® 1.03° 1.02° 1.27° 1.27° 1.23° 1.24°
Trajectory -6.00° -6.00°
Design Controls (0's, 156.6°%) (0s,175.3°%
VE -6.00° -6.00° -6.00° -6.00° (68.6's,98.1°) (2445, 162.9%
(o, Pro) (0s,272° (0's, 120.0% (0's, 60.1°) (0s5,73.0°  (172.15,59.0°  (93.55s,97.5%)
(t, I (28.65,98.2°  (51.5s,97.5°) (3285, 14.5°)  (25.65,70.0° (189.45s,64.19 (221.1s,81.5%
(ts, o) (56.1s,84.4%  (105.1s,121.4% (73.0s, 121.2°)  (54.45,23.9°) (292.55,79.5°) (3102’5, 70.5%
(ts dho) (94.75,112.8%)  (13625,97.9°) (12535,94.6°) (763, 140.5°) (356.0s, 148.1°) (396.7 s, 54.8°)

(ts dho) (149.0'5,78.0°  (179.45,73.1°) (169.45,75.9° (115.05,962°) (488.9s,125.9°) (576.7s,48.7°)
' (208.9s,74.6°)  (617.8 5,36.3°)
(634.7 5, 101.3°
(819.2 s, 89.1°)
(1698.0 s, 106.0°)
(2053.1's, 72.6°)

Parameters

mey, kg 10,000 13,100 10,000 13,100 12,700 21,100
Oy 101, kl/cm? 27.1 33.1 31.3 372 95.5 127.0
Dars kKM 200 190 440 360 1690 1090
P, kI 2380 2410 2820 2610 18,390 3080
BC, kg/m* 350 450 430 560 1040 1600
L/q.., m’ 8.7 8.7 113 113 119 125
D/g.., m’ 28.8 28.8 23.5 235 12.3 13.2
S, m? 19.9 19.9 19.9 19.9 16.3 16.3
ts 340 340 420 380 2550 600

? Undershoot and corridor widths may be of larger magnitude.

11.6. Mars return operational entry corridor

Developing the Mars return operational entry corridor was completed
accordingly. However, once the operational entry corridor was determined to be
greater than the required width of 0.4°, the search for the true undershoot boundary
was ended, as determining the true undershoot boundary is not necessary for this

analysis. As a result, it is likely that the entry corridors are larger than reported. Table
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11.4 provides the entry corridor widths for L/D = 0.3, 0.5, and 1.0, along with the
corresponding heat shield configurations. Five of the six cases have corridor widths
of at least 0.65°, while the upper mgy, L/D = 1.0 case has a corridor width of at least
0.51°. In comparison to the entry corridor values for lunar return, these ranges of yg
are steeper. To provide a good comparison of the aerothermodynamic performance,
optimization is performed at a single yz = -6.4° for all cases, which is very close to yz
~ -6.5° for Project Apollo.*' All trajectories for Mars return also start with a 90° initial
azimuth angle of the relative velocity vector. The initial design conditions of the
trajectory and characteristics of the vehicle are also included in Table 11.4. Figure
11.3 shows the lifting body geometry of the L/D = 1.0 design that is used to develop
the entry corridor for both lunar and Mars return. From lunar return to Mars return,
the Qs increased by 100% and 124% using the lower and upper mass estimates
respectively. The extremely high Qs for both L/D = 1.0 cases indicates that these
L/D = 1.0 geometries are currently impractical for Mars return with this trajectory
setup. The increase in TPS mass for such high heat loads would increase the overall
mass, thus increasing Q. and this cycle would close on a vehicle mass much

greater than that required for L/D = 0.3 or 0.5.

175



Table 11.4. Operational Entry Corridors and Initial Heat Shield Designs for Optimization,

Ve=12.5 km/s, m; = 4.

L/D =03 L/D =0.5 L/D =1.0
Lower mgy Upper mgy Lower mgy Upper mgy Lower mgy Upper mgy
‘ 6, =25° 6, =25° 6,=25° 6,=25° 6, = 66.1° 6,=66.1°
Heat Shield 1y, =2.00 ny=2.00 ny,=2.00 ny,=2.00 n,=1.30 ny=130
Configurations e=0.0 e=0.0 e=0.0 e=0.0 e=-0.968 e=-0.968
=-18.7° =-18.7° =-28.8° =-28.8° a=20.0° a=21.5°
Entry Corridor ~ -6.00° to -6.70° -6.15° to -6.80° -5.91° to —6.70° -6.02° to -6.70° -6.01° to —6.70° -6.19° to -6.70°
Corridor Width 0.70° 0.65° 0.79° 0.68° 0.69° 0.51°
Trajectory -6.40° -6.40°
Design Controls (0s,69.7° (05, 102.8°%
VE -6.40° -6.40° -6.40° -6.40° (22.95,0.0% (2045, 0.0%
(to, dho) (0's, 102.8°) (0's, 96.8°) (0, 1135 (0s,1273% (6065, 1604° (46,5, 138.3%)
(t1 br1) (3435,83.4%  (29.75,1012°) (4045, 81.1°9 (1625, 112.5°) (10425, 102.6°) (134.7 s, 99.8°)
(ts o) (73.0s,126.4%  (7435,131.7°) (638, 1104%) (664, 108.1°) (248.25,49.0°) (256.7 s, 45.9)
s dhs) (127.55,110.6° (117.75,1164% (11255, 121.3° (1188, 136.3°) (400.6s,18.9°) (352.8's, 143.9°)
s o) (17155,78.8%) (16995, 78.8°) (143.15,67.0°) (15485, 448%) (521.75,93.6°) (479.7 s, 45.5°)
e (187.8'5,32.6°) (2285.6s,67.2°) (549.9s,50.7° (582.6s,39.8°)
(707.6 s, 70.0°) (705.85,70.5°)  (697.7 s, 85.5°)
(757.85,79.6°)  (799.5s,2.8°)
Parameters
mgy, kg 10,000 13,100 10,000 13,100 12,700 21,100
Os o5 kJ/cm? 64.1 80.8 74.2 93.4 191.6 284.8
Prrs> km 250 260 860 280 2230 2990
Dawns KM 2630 2740 18,290 20,030 5920 9230
BC, kg/m® 350 450 430 560 1040 1600
L/q.., m’ 8.7 8.7 113 113 119 12.5
D/q.,, m* 28.8 28.8 23.5 23.5 12.3 13.2
S, m 19.9 19.9 19.9 19.9 16.3 16.3
lps 350 360 2480 2910 910 1560

a) Front view, parallelogram cross section m; =4 b) Side view, spherical segment 8, = 66.1°

Figure 11.3. L/D = 1.0 design from Table 11.4, ¢ =-0.968, n, = 1.30.
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Chapter 12. Lunar Return Results

Optimization has been performed using only the spherical segment (SS) heat
shield axial profiles since, as indicated in Chapter 10, it is the optimal axial profile for
lunar return for this analysis. For ¥z = 11 km/s and yz = -6.0°, Pareto frontiers are
provided for two multi-objective function sets: (1) minimizing heat load Q. and
maximizing cross range py, in Figure 12.1, and (2) minimizing heat load Q;,, and
maximizing down range pa., in Figure 12.2. Results based on lower and upper mass
estimates are given. The aerothermodynamic characteristics of lettered designs in
Figure 12.1and Figure 12.2 are listed in Table 12.1. These lettered designs represent
one point on the Pareto frontier. Both the geometric and trajectory design variables
may vary along the Pareto frontier. Design variable distributions for selected Pareto
frontiers are provide in Appendix B in Figure B.0.1 — Figure B.0.7. These design
variable distributions provide the values of the design variables throughout the Pareto

frontier.

12.1. Maximizing pxrs and minimizing Qs ot

Figure 12.1(a) shows how cross range p,,, increases with L/D. Designs A — D
are based on lower mass estimates, and their design characteristics are listed in Table
12.1. A L/D = 0.3 produces a maximum p,,; = 950 km while an L/D of 0.5 and 1.0
produce maximum cross ranges of 1500 km and 3000 km respectively before Qg o
strongly increases. Increasing mass by 30% does not strongly affect the maximum
possible cross range, but it increases Qs by at least 23%, 30.3%, and 44% for L/D =

0.3, 0.5, and 1.0 respectively. There is a 76% increase in Qs ,, from design D at L/D =
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0.32 to design B at L/D = 0.49 for a 67% increase in p,,. There is a 380% increase in

Os 1o from design D at L/D = 0.32 to design A at L/D = 0.95 for a 240% increase in
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Figure 12.1. Pareto frontiers for maximizing cross range and minimizing stagnation-point heat
load, Vi =11 km/s.
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Table 12.1. Optimal configurations for two multi-objective function sets for SS, V=11 km/s, m; = 4.”

Minimizing QO ,,, & Maximizing p,,, (Fig. 9)

Minimizing Oy ,,, & Maximizing p,, (Fig. 10)

Lower mass estimation

Upper mass estimation

A B C (Orion) D E F G (Orion) H
SS SS SS SS SS SS SS SS
6,=75.7° 6,=24.0° 6,=25.0° 6,=5.0° 6, = 66.0° 6,=23.8° 6,=25.0° 6,=5.0°
Design ny,=131 n,=1.74 n,= 200 n,=1098 ny=131 ny,=1.56 ny=2.00 n,=2.00
Variables e=-0.967 e=10.665 e=0.0 e=-0.968 e=-0.968 e=0.654 e=10.000 e=-0.964
a=26.3° a=-29.6° a=-17.0° «a=-19.2° a=21.1° a=-28.8° a=-17.0° a=-18.7°
YE -6.0° -6.0° -6.0° -6.0° -6.0° -6.0° -6.0° -6.0°
(ts, $r0) (0s,87.19  (0s,88.6°)  (0s,44.1°9 (0, 146.9% (0s,173.8°)  (0s,146.7° (05,395  (0s, 153.79
(t1 bh1) (35.6,143.4° (27.1,108.4° (30.1,126.3°) (28.4,59.0°) (44.5,168.5°)  (38.6,138.9% (21.3,1183°%  (45.0,91.6°
(12, ) (67.7,97.0°)  (67.8,95.8°) (66.9,83.2°) (52.0,83.1°) (913,96.9°  (61.8,108.7°)  (73.1,822°)  (68.0,862°)
e (182.6,36.6°) (102.0,91.1° (89.5,88.8°) (93.2, 89.4°) (175.1,71.7°  (98.1,91.1°  (103.0, 104.8°) (98.4, 112.5°)
(1 dvy) (213.4,42.2°) (132.3,72.2° (127.5,52.2°) (120.7, 64.4°) (299.2,94.0°  (137.0,48.8°) (119.3,17.8°) (123.7,6.9%)
o (287.7,85.6°) (1284.6,48.9°) (1071.4, 65.0°) (1582.5, 64.4°) (414.7,54.7° (17463, 68.2°) (2764.9,59.0°) (1653.1,59.0°)
(332.7, 144.9% (1600.3, 48.9°) (1489.7, 65.0°) (613.4,118.3°) (3538.3,68.2°) (3514.5,59.0°) (3396.8, 58.1°)
(392.6, 155.1°) (7445, 114.7° (3526.8, 58.1°)
(563.0, 114.5°) (846.0,91.7°)
(655.7,59.7% (958.7, 77.0°
(1388.9, 30.4°) (3479.8, 113.3°)
(1752.3,30.4°) (3483.8, 113.3°)
Parameters
O 101, KI/cm® 88.0 32.6 30.3 18.5 131.1 36.9 29.4 23.0
(Os.com» Osrag) (69.3,18.7)  (20.8,11.8) (18.9,11.4) (9.6,8.9) (92.6,38.5) (21.0,15.9) (18.0,11.4) (10.7,12.3)
Gy maxs Wiem® 700 370 380 270 1100 440 380 330
(Gs.comn Gs.raa) (370, 330) (120,250)  (120,260)  (60,210) (450, 650) (130, 310) (120, 260) (70, 260)
Dirs> km 3060 1500 710 900 600 370 160 140
Py, kM 10,790 11,200 10,920 10,580 25,070 25280 25260 25170
Cp 1.04 1.12 1.49 1.52 0.79 1.14 1.49 1.54
L/D 0.95 0.49 0.27 0.32 0.95 0.47 0.27 0.32
BC, kg/m? 900 450 340 250 1620 570 340 350
D/q.p,, m* 16.8 22.6 29.7 427 13.0 23.0 29.7 41.7
mgy, kg 15,100 10,100 10,000 10,500 21,100 13,200 10,000 14,500
Ny, s, M 2.65 6.17 5.03 3.01 2.65 6.37 5.03 3.02
S, m? 16.2 20.2 19.9 28.1 16.4 20.2 19.9 27.1
v, Hs 65.3% 63.2% 58.3% 32.0% 67.5% 64.0% 58.3% 31.5%

*Axial profile SS: spherical segment
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Design A, shown in Figure 12.4, is a more slender heat shield with 6, = 75.7° and a
rounded-edge parallelogram base cross section. It is flown at a = 26.3° to produce
L/D = 0.95 throughout its trajectory, illustrated in Figure 12.5. The high L/D requires
six bank angle modifications to maintain the trajectory constraints, as shown in
Figure 12.5(b). The maximum deceleration limit of 5 g is not met but is shown to
hover around 4.7 g for 100 s. With a trajectory duration of 1752 s, this trajectory
design allows the vehicle to generate a cross range of 3000 km. Design B, shown in
Figure 12.6, provides L/D = 0.49 at a = -29.6°. Its trajectory and bank angle profile is
given in Figure 12.7. A close-up of the first 300 s of the trajectory in Figure 12.7(b)
indicates that only four bank angle modifications were required to satisfy trajectory
constraints, and the peak deceleration load is above 4.7 g for less than 40 s. The lower

the L/D requires fewer bank angle adjustments. This trajectory produces a cross range

of 1500 km.

a) Front & top view, parallelogram cross section m; =4 b) Side view, spherical
segment 6, = 75.7°
Figure 12.4. Design A from Table 12.1, e =-0.967, n, = 1.31.
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The Pareto frontier with design C in Figure 12.1(b) represents the projected
performance of the Orion CEV with L/D = 0.27. The Orion CEV is shown in Figure
12.8. Design D dominates design C since it has both a 27% higher cross range and a
39% lower heat load. Figure 12.3 shows that the Orion CEV can produce a higher
cross range when « is not assumed fixed at -17° to produce L/D = 0.27. Several Pareto
frontiers are shown for different cases and initial conditions for L/D = 0.3. The o — ¢
constraint in Table 11.2 has been relaxed to |a| < 1.2 |¢ + 1°| in order to allow the
optimizer to choose among geometries with higher eccentricity as feasible for L/D =
0.3. The L/D = 0.3, SS lower mass, Orion IC, tight constraint case in Figure 12.3 has
the original a — ¢ constraint. This resulted in a ~10% reduction in Q;,,. The relaxed
case with the Orion CEV as the initial condition (IC) is shown in case L/D = 0.3, SS
lower mass, Orion IC. Since the two Pareto frontiers are almost completely
coincident, this shows the optimizers inability to find more optimal
geometric/trajectory designs starting from a random population with a feasible Orion
CEV initial condition. Starting the optimization with a feasible geometric/trajectory
design with e = -0.968 IC, the heat load of the optimal SS dropped from 27 kJ/cm® to
18 kJ/em®, 33% reduction, or a 39% reduction from design C to D. The higher e
generates Design D, shown in Figure 12.9, produces a base cross section area S
increase of 41% and a drag area increase of 43.7%. As a result, the vehicle
decelerates higher in the atmosphere. Since the resulting ballistic coefficient is
reduced by 36%, the heat load is expected to be reduced significantly. The trajectory
and bank angle profile corresponding to design D is given in Figure 12.10. All the

bank angle adjustments are produced before the first skip, and the maximum
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deceleration load constraint is active only once. Except for the first 28 s, the lift

vector for design D is pointing away from the atmosphere for almost the entire

trajectory, indicating that the vehicle requires mostly positive lift to produce

maximum cross range, rather than the combination as was the case for design A.
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Figure 12.9. Highly oblate and blunt heat shield, approximate Designs D & H, 6, = 5°, ¢ = -0.968,

n;= 2.
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The design variable distribution for the L/D = 1.0, SS lower mass case is given

in Figure B.0.1. It shows that the geometry is held constant throughout the Pareto

184

¢y, (deg)



frontier and the required variances in duration and bank angle variables required to
produce the set of cross ranges. For the L/D = 0.5, SS lower mass case, more variation
is shown for the transformation parameter 7, and eccentricity, as well as @, o, @3, @4,
and ¢ 6. The slight scattering of the time variables along the Pareto frontier indicates
that the trajectories are not sensitive to small changes in bank angle (< 1°). Similar
trends can be shown in Figure B.0.3 and Figure B.0.4. A more thorough discussion is
provided in Chapter 13. Figure 12.11 provides a comparison of the trajectory designs
along the Pareto frontier with design D in Figure 12.1(b) at three cross ranges: 240
km, 620 km, and 900 km. The 240 km cross range trajectory is a direct entry while
the other two are shown to be skipping trajectories in Figure 12.11(a). A close-up of
the first 300 s of the trajectory is given in Figure 12.11(c) and shows the bank angle
solutions. Though they follow similar trends, the solutions are composed of different
values. The py,s and pa,, profiles are given in Figure 12.11(e) and indicate that higher

cross range trajectories do not necessarily require longer overall durations.

12.2. Maximizing pawn and minimizing Qs ot

For maximizing down range pa,, and minimizing stagnation-point heat load
Os 101, Pareto frontiers in Figure 12.2 show the maximum pg,, = 26,000 km and does
not increase with L/D for the given set of constraints. Note that the constraint that is
preventing higher down range is the time constraint. Designs E — H in Table 12.1are
based on upper mass estimates. The Pareto frontiers in Figure 12.2 are primarily flat
(positive slope << 1) for 4000 < pgy,, < 26,000 km. Design E, shown in Figure 12.12,

produces paw, = 25,070 km with a projected mgy that is 210% greater than the Orion
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CEV mass estimate of 10,000 kg, and a 56% decrease in drag area. This results in an

increase in BC by a factor of 3.76 and

an increase in Q;,, by a factor of 3.33.
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a) Front & top view, parallelogram cross section m; =4 b) Side view, spherical
segment 6, = 66.0°
Figure 12.12. Design E from Table 12.1, e =-0.968, n, = 1.31.

The design variable distributions for the L/D = 1.0 SS upper mass case, given in
Figure B.0.5, indicates that the geometry does not vary significantly, but that the time
variables #; — to vary significantly. The ¢, , experiences the greatest variance
throughout the Pareto frontier. This is the bank angle that is present during the
beginning of leaving the trough in the altitude profile, which is when the skipping
initiates. The amount of the lift vector pointing away from the atmosphere has a
strong effect on how large a skip is generated, though it is a cumulative affect
resulting from the entire set of bank angles experienced during the first part of the
trajectory (~ first 300 s) rather than one bank angle.

Design F, shown in Figure 12.6, has a 10% reduction in n, that indicates a
slightly sharper but still rounded-edge parallelogram. This slightly sharper geometry
requires a slightly larger 4, ps in order to satisfy scaling requirements, slightly
increasing the drag area by 3%. Such small increases are deemed negligible for this
analysis. The primary difference in heat load and heat flux compared to design B is
due to the 31% greater mass. This combination of mass and drag area requires design

F to decelerate lower in the atmosphere than design B. The optimization resulted in
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the geometry of design F starting with a random population along with the Orion
CEV with a feasible trajectory design in order to start the optimization with at least
one design that is feasible. The optimizer determined only reduced 6, by 5%, while
adding an eccentricity of 0.654 and transforming the base cross section to be a
rounded edge parallelogram by means of n,. The design variable distributions in
Figure B.0.6 indicate that the geometry throughout the Pareto frontier with design F is
relatively constant. As shown in Figure B.0.6(a), a relatively constant in order to keep
the L/D around 0.50, and thus, the bank angle profile design variables are primarily
varied to produce the different overall designs along the Pareto frontier.

Design G, which is located on the Pareto frontier listed as L/D = 0.27, SS
lower mass, Orion with a = -17°, in Figure 12.2(b), provides a good estimate of what
type of heat load would be expected with increasing the down range. The heat load
increases by 13% for down ranges between 2000 and 4000 km. For 4000 < pg,, <
26,000 km, the Pareto frontier also shows that the bank angle profile can be adjusted
to keep the heat load relatively constant. Additionally, Table 12.1 indicates that the
trajectory design can be modified from design C to G to keep O . relatively constant.
Figure 12.13 shows the trajectories for designs C and G. The maximum p,,, trajectory
has 42% of the duration of the maximum pg,, trajectory. Additionally, the Orion CEV
for this study at L/D = 0.27, has a cross capability that is only 2.8% of its down range
capability. The bank angle profiles for the first 400 s of their trajectories are given in
Figure 12.13(b). The bank angles before the trough of the trajectory (the altitude
profile) for both cases vary slightly, and as expected, the down range trajectory uses a

lift vector pointing more away from the atmosphere with a 17.8° bank in order to
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produce a larger skip than the maximum cross range trajectory that utilized a 52.2°
bank. The corresponding deceleration load profiles closely match and as shown in
Figure 12.13(d). The design variables distributions for this Pareto frontier are

provided in Figure B.0.7.
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Figure 12.13. Comparison of optimal trajectories of Designs C & G, Orion CEV, from Table 12.1.

For the L/D = 0.3, SS upper mass with e = -0.968 initial condition case, design
H is highlighted in Figure 12.2(b) and nearly identical to design D, shown in Figure
12.9. Design H with a L/D of 0.32 provides an example of a case that has a 10%
larger mgy than design F, which has L/D = 0.47, that is countered by the 81% increase

in the drag area that produces a 39% reduction in ballistic coefficient and thus a 38%
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decrease in the expected heat load. This demonstrates that, from the standpoint of
maximizing down range, a lower L/D design could be more massive and still
experience a lower heat load due to the heat shield’s geometric design that provides a
larger drag area. Design H is the only design that experiences a larger radiative heat
load than convective heat load. The trajectory for design H is provided in Figure
12.14. The design variable distributions for the Pareto frontier with design H are
provided in Figure B.0.8. The minimum down range capability for L/D = 0.3 is
approximately 2000 km and corresponds to the minimum values reported by Ref. [1].
With an increase in down range to 2700 km, the ¢, , decreases from 80° to values
between 20° and 0°. Figure 12.15 provides trajectories along the Pareto frontier for
Pawn = 2280, 10120, and 25170 km. The bank angle profile generates an overall cross
range of 140 km for the pg,, = 25,170 km case, and is shown in Figure 12.15(e) to
increase to 440 km and decreases to zero, increases, and decreases to 140 km. On this

scale, the down range for all three cases increases at similar rates.
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Figure 12.14. Trajectory of Design H from Table 12.1.
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Figure 12.15. Comparisons of trajectories along Pareto frontier with Design H for lunar return,
for maximizing p,, and minimizing 0, ,,.

The altitude profiles for the listed designs in Table 12.1are provided in Figure

12.16. Almost all of the maximum pg,, trajectories nearly meet the 3600 s duration
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limit while all the maximum p,,, trajectories have durations below 1800 s. Close-ups
of the first trough of the trajectory are provided in Figure 12.16(b) and (c). Design E
travels the deepest in the atmosphere with 4, = 48 km, as expected since it has the
largest ballistic coefficient at 1620 kg/m®. Design D decelerates the highest in the

atmosphere with the smallest ballistic coefficient at 250 kg/m?, 26.5% lower BC than

the Orion CEV.
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Chapter 13. Mars Return Results

Optimization has been performed using two types of heat shield axial profiles:
the spherical-segment (SS) and the spherically-blunted cone (SC). For Vy = 12.5 km/s
and yg = -6.4°, Pareto frontiers are provided for two multi-objective function sets: (1)
minimizing heat load Q;,, and maximizing cross range p,, in Figure 13.1, and (2)
minimizing heat load Q;,, and maximizing down range pa,, in Figure 13.2. Results
based on lower and upper mass estimates are given. The aerothermodynamic
characteristics of lettered designs in Figure 13.1and Figure 13.2 are listed in Table
13.1. These lettered designs represent one point on the Pareto frontier. Both the
geometric and trajectory design variables may vary along the Pareto frontier. Design
variable distributions for selected Pareto frontiers are provide in Appendix C in
Figure C.0.1- Figure C.0.9. These design variable distributions provide the values of

the design variables throughout the Pareto frontier.

13.1. Maximizing pxrs and minimizing Qs ot

The maximum cross range p,, is shown in Figure 13.1 to increase with L/D as
expected. Designs A — D are based on lower mass estimates, and their design
characteristics are listed in Table 13.1. A L/D = 0.3 produces a maximum p,,; = 1100
km, and a L/D = 0.5 produces a maximum p,,, = 1600 km before Q,,, strongly
increases. While increasing mass by 30% from 10,000 kg does not affect the
maximum possible cross range, it increases Qs ;,; by ~24% for both L/D = 0.3 and 0.5,
spherical segment cases. Projected performance of the Orion CEV indicates a 150 km

increase in p,, capability with the optimal spherical segment case, with a slight
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decrease in heat load, but for this low-order heat transfer analysis, the differences
between their O, values are negligible. Increases in p,,, capability are produced by
applying slightly eccentric geometries with slightly higher 4, s to produce a slightly
lower BC. Design B, shown in Figure 13.3, provides the Orion geometry with p,,, =

910 km and is compared to optimal SS design C in Table 13.1.

100 T T T
0 e ’ LD = 0.5, SS
L 1 a = 0.5, SS upper mass
g s 1 - L/D =0.5,SS |
3 A 1 o =0.5, ower mass
- 80 ¢ ‘ s L/D = 0.3, SS upper mass
NE 5 B 1 - L/D = 0.3, SS lower mass
C 70 F o 60 o 0o / 4 - L/D = 0.3, Orion CEV, projection at 13000 kg
— - - , - . -
= I -—W_ - 1 ° L/D = 0.3, Orion CEV, projection at 10000 kg
= | ‘//O ‘*"”?7"’ A i L/D = 0.3, SC upper mass
860 I . L/D = 0.3, SC with fixed h, ,, = 3.43 m, upper mass
: r ) o ] L/D = 0.3, SC with fixed h, ,,; = 3.43 m, lower mass
4 5o [ -t 1 L/D = 0.3, 5-deg SS with fixed h, ,, = 3.43 m, upper mass
g D ]
40 \ b
30 L T T N R S T L 1
0 500 1000 1500 2000

Cross range (km)

Figure 13.1. Pareto frontiers for maximizing cross range and minimizing stagnation-point heat
load, Vi =12.5 km/s.
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Table 13.1. Optimal configurations for two multi-objective function sets, V= 12.5 km/s, m; = 4.*

Minimizing Q; ,,, & Maximizing p,,, (Fig. 9)

Minimizing Q; ,,; & Maximizing pg,, (Fig. 10)

Lower mass estimation

Upper mass estimation

A B (Orion) C D E F (Orion) G H
SS SS SS SC SS SS SS SC
6,=23.7° 6,=250° 6,=231° 0,=884° 6,=23.7° 6,=250° 6,=225  0.=878
Design n,=166  n,=200 n,=182  r/d=3.95 n,=173  n;=200 n,= 1.59 r,/d =3.96
Variables e=0.621 e=0.0 e=-0341 n;=2.00 e=0.537 e=0.0 e=0.408 n;=2.00
a=-285"  a=-17.0° a=-182° e=-0.968 a=-283"  a=-17.0° a=-174° e=-0.968
a=-17.7° a=-17.0°
VE -6.4° -6.4° -6.4° -6.4° -6.4° -6.4° -6.4° -6.4°
(to, Pr0) 05,1100 (05,7299  (05,79.9°  (0s,48.6° (05,524  (0s,177.5° (05, 118.0° (0s,31.8%
(t1, b)) (46.8,81.7°)  (51.8,97.0° (34.4,852° (32.0,50.0° (19.3,113.7°)  (40.5,98.0° (32.6,103.1°  (36.5, 80.5°)
(& 2) (67.2,113.8°) (78.2,124.1° (73.9,125.8°) (71.5,135.8°) (52.1,108.9°) (75.5,140.2°) (76.8,136.2°)  (79.9, 132.4°
(145.1,66.7°)  (127.7,92.9°) (97.4,121.7°) (108.9, 109.3°) (102.7, 124.8°) (106.3,121.9°) (121.0, 107.4°) (128.0, 100.8°)
U h) (752.9,73.9°  (165.2,68.0°) (143.6,48.8°) (135.8,47.6° (144.6,67.8°) (144.7,1.0° (153.0,153.0°) (148.5,11.4°
’ (1525,73.9°) (1520, 68.0°) (1192.3, 65.0°) (1557.5, 63.4°) (3529.1, 44.4°) (2832.6,57.8°) (823.7,46.8°) (1034.7, 96.9°)
(1557, 65.0°) (1788, 63.4%) (3596.3, 44.4°) (3589.6, 57.8°) (2719.3,59.7°) (1455.5,63.7°)
(3597.6, 59.7°)  (3598.0, 63.7°)
Parameters
O ror, kI/em® 69.8 68.2 64.9 38.3 89.2 82.6 81.2 52.8
(Oscomn Osraa) (25.3,44.5)  (26.4,41.8) (23.3,41.6) (12.2,26.1) (30.4,58.8) (27.9,54.7) (25.8,55.4) (14.8,38.1)
Gy mar, W/em® 950 980 940 640 1200 1160 1140 860
(Gscomn Gsraa)  (160,790)  (170,810) (160, 780) (90, 550) (180, 1020)  (190,970)  (160,980) (110, 750)
Drrs> km 1600 910 900 890 640 210 300 320
Dans km 11320 11440 11580 13200 26,150 25,960 26,130 26,080
Cp 1.16 1.49 1.47 1.60 1.17 1.49 1.47 1.61
L/D 0.47 0.27 0.29 0.31 0.47 0.27 0.28 0.30
BC, kg/m® 430 340 340 190 560 440 450 280
D/q,,, m* 23.4 29.7 29.5 58.7 23.6 29.7 29.0 59.1
Mgy, kg 10,100 10,000 10,000 11,200 13,200 13,100 13,000 16,580
Ty 115, M 6.14 5.03 5.41 3.43 5.83 5.03 5.69 3.43
S, m 20.2 19.9 20.1 36.7 20.2 19.9 19.7 36.7
Thoiis 62.7% 58.3% 57.6% 18.6% 61.0% 58.3% 58.7% 22.4%

Axial profiles SS: spherical segment, SC: spherically-blunted cone
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Figure 13.3. Orion CEV, Design B & F without
rounded shoulder, 8, =25°% e =0, n,=2.
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For L/D = 0.5, strictly following the a — & constraint in Table 11.2 limits the
feasible design space to slender blunt bodies similar to Figure 11.3. For this analysis,
the L/D = 0.5 cases are run with a relaxed a — ¢ constraint: |a| < 1.2 |¢ + 1°] to allow
the optimizer to choose among geometries similar to the Apollo CM or Orion CEV
(6 = 25°) flying at higher a. This is a practical constraint since both the Apollo CM
and Orion CEV are designed with aft-body cone angles of ~32.5°, in which flying |a|
a few degrees greater than 25° would still allow the heat shield to be the primary
surface determining the hypersonic aerodynamics. Results indicate that with both
types of geometries to choose from, a geometry similar in bluntness to the Orion CEV
would be more ideal than a slender body. Design A shown in Figure 13.4, consists of
a slightly prolate base, a slightly parallelogram base cross section, and a 6 near
Orion’s. The main drawback to the slender body geometry is its higher BC,
exemplified by the design in Figure 11.3, due to (1) the increased heat shield surface
area and mass, and (2) its slenderness that reduces its drag area. Additionally, running
the spherically-blunted cone case rendered disguised spherical-segment geometries.
Flying these blunter heat shields with a slightly greater than ¢ allows L/D = 0.5 to be
conceivable, though a thorough analysis of the required center-of-gravity to trim at
the required a would need to be conducted with a packaged system analysis. As a
result, the spherically blunted cone does not produce significantly better results at L/D
= 0.5. The trajectory for Design A is given in Figure 13.5.

Optimization of the spherically-blunted cone at L/D = 0.3 was performed with
the same relaxed a — ¢ constraint, and produced highly oblate elliptical heat shield

configurations similar to Figure 13.6(a). With the relaxed constraint, the oblate heat
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Figure 13.5. Trajectory of design A from Table 13.1.

shields with maximum eccentricity corresponding to j/k = 4.0 could be placed at the
necessary a to produce L/D = 0.3, i.e, design D requires o = -17.7°. The scaled down
heat shield with 4, s = 3.43 m has nearly 25 of Orion with nearly the same perimeter.
As a result, the drag area is nearly doubled, allowing the vehicle to decelerate higher
in the atmosphere, reducing both ¢, . and Qs . The SC upper mass Pareto frontier
in Figure 13.1 indicates a 20% reduction in Qy,, from the SS upper mass case. For
the applied vehicle scaling method, the optimizer determined that /s = 3.43 m is
optimal for a base eccentricity of —0.968, and thus, SC optimization was performed
for upper and lower mass estimations with fixed /4 ys with results shown in Figure
13.1. An increase of the upper side constraint from 7,/d < 2 to 4 produced the 6
kJ/cm® decrease in heat load from the SC upper mass case.

Design D with the lower mass estimate represents the optimal blunted cone
heat shield at p,,; = 890 km. Although Design D, displayed in Figure 13.6(a) and (b),
has r,/d = 4, it is still a spherically blunted cone due to its high eccentricity. For this

case, d = hpps. The trajectory of design D is shown with its bank angle and

197



deceleration load profiles in Figure 13.7. The effects of r,/d on Qs cony and Qg aa

generated along design D’s trajectory are provided in Figure 13.8.

b) Side view, Design D

a) Front view, n, =2.0
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Figure 13.6. Highly oblate heat shield designs, e =-0.968.
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While Qs 4q slowly increases with 7,/d, O; cona Strongly decreases, and Qs levels off

at r,/d = 4.0 for this trajectory. Thus, a spherical segment with an elliptical base and

6, = 5°, shown in Figure 13.6(c), produces nearly optimal results in Figure 13.1.

Using a spherical segment geometry may alleviate any static longitudinal instabilities

produced by sonic line movement on some blunted cone designs. Design D’s 97%
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increase in drag area over Orion’s reduces Oy, to 38 kJ/cmz, which is near Apollo
4’s maximum heating listed in Table 7.4. While e = -0.968 for a heat shield may not
be presently realistic for first manned Mars return missions, this result indicates the
eccentricity of the heat shield for a given mission profile has a strong effect on Qs .
Eccentricity increases the surface area, and thus, indirectly increases drag area at a
higher rate than increasing the heat shield mass, thus reducing BC. Conclusions have
not being made concerning whether adding e or increasing the d of a circular base
cross section is a better means to increase drag area. Similar effects would be

expected by increasing d to produce a larger drag area.
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Figure 13.8. Comparison of nose radius on Q;,, and g, ... generated along the trajectory of
design D.

The design variable distributions for the Pareto frontiers that include Designs
A — D are given in Figure C.0.1 — Figure C.0.4. For the L/D = 0.5, SS lower mass
case, Fig. Figure C.0.1(a) indicates that both 6, and o are relatively constant. The
eccentricity varies between 0.52 and 0.72 and increases with p,,;. The transformation
parameter n, varies between 1.49 and 1.73 until the Pareto frontier’s heat load spikes
around p,,; = 1750 km, at which point n, increases to 2.0. The time variables in

Figure C.0.1(b) and (c) slightly vary in order to increase cross range, but a few of the
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bank angles vary dramatically. Figure C.0.1(d) indicates the bank angles that vary the
most are @9, &1, .5, and @ 6. For this case, the trajectory variables were changed
more by the optimizer than the geometric variables in order to produce the high cross
range. For the L/D = 0.3, Orion CEV, projection at 10,000 kg case, Figure C.0.2
shows that the time and banks angle design variables vary more dramatically than for
the previous case. The L/D = 0.3, SS lower mass case varied both more dramatically,
as shown in Figure C.0.3. The 6, = 23° the other geometric variables are shown to
vary, but not to vary the aerothermodynamics dramatically. This explains why the
Pareto frontier’s heat load Q;,; does not more than 10% for p,,, from 200 to 1100 km.
Figure C.0.4 shows similar for the L/D = 0.3, SC with fixed 4, zs = 3.43 m, lower
mass case. It would make sense for the design variable distributions to the higher
mass Pareto frontiers to have similar behavior. As a result, it can be concluded that
the flatness of the Pareto frontiers to generated due to the optimizer not changing the
geometric features dramatically once it finds a combination of geometry and
trajectory that minimize heat load and maximizes cross range. It concurrently varies
the geometry slightly while making greater adjustments to a and the trajectory

variables.

13.2. Maximizing pawn and minimizing Qs tot

Pareto frontiers in Figure 13.2 indicate that the maximum down range p., 18
constant at ~26,000 km and does not increase with L/D for the given set of
constraints. The main constraint on the down range has been shown to be the time

constraint. As a result, Figure 13.2 indicates that there is no advantage to having a
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higher L/D if only high down range is required. A discussion on the effects of
relaxing the a — ¢ constraint would be similar to the one above. Designs E — H are
based on upper mass estimates and listed in Table 13.1. Each of the Pareto frontiers
has nearly constant Q;,, for 5000 km < pg,, < 26,000 km. The relatively leveled
portion of these Pareto frontiers have O, that closely match the relatively leveled
portions of the Pareto frontiers in Figure 13.1. Since all the optimizations occur at the
same Vg and yz and the Pareto frontiers’ Oy, closely match, the contributions of QO
and ¢, .. would likely be similar between the two sets of Pareto frontiers. Figure 13.9
shows the base cross sections of designs E and G, and that the higher L/D produced a

31.6% more eccentric heat shield.

a) Design E, n,=1.73, ¢=0.537 b) Design G, n, =1.59, ¢ = 0.408

Figure 13.9. Base cross sections for Designs E & G.

Shown in Figure 13.10, the optimal down range trajectories have longer
durations than optimal cross range designs. The higher mass Orion CEV case design
F is shown in Figure 13.11 to decelerate the deepest in the atmosphere before
skipping. The effects of the ballistic coefficient on the minimum altitude of this part
of the trajectory for the designs shown in Figure 13.10 and Figure 13.11 can be
compared using Table 13.1, and it does follow the established understanding that a

lower ballistic coefficient, for a given L/D, allows a vehicle to decelerate higher in the
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atmosphere. The Orion CEV with a mass of 13,100 kg is listed as Design F and is
projected to have nearly the same trajectory as the optimal spherical segment Design
G. Prior to the first deceleration peak, each design experiences its peak heat flux. For
these cases, #; = 75-85 s. The designs with larger mass experience peak heating at 1.2
km deeper in the atmosphere. This corresponds to an 18% increase in air density and

results in a 12% increase in peak ¢ .on, and a 25% increase in peak ¢; ;4.
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Figure 13.10. Comparison of trajectories of optimal cross range designs B & C
and optimal down range designs F & G.
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Trajectory profiles for design F are provided in Figure 13.12 to give one way to use
bank angle control to produce a 25,960 km down range. Six bank angles with
different durations were required to produce this trajectory. The deceleration load is
shown to meet the 5-g upper limit also during the second entry.

The design variable distributions for Pareto frontiers with designs E — H and
the L/D = 0.3, 5-deg SS with fixed 4 ys = 3.43 m, upper mass case are provided in
Figure C.0.5 — Figure C.0.9. For the L/D = 0.5, SS upper mass case, the geometric
variables are relatively constant until the increase in O, around pg., > 26,000 km
when the designs have either approached or reaching the 1 hr duration constraint. For
this Pareto frontier, the time variables are varied more than the bank angles. For 2000
< Pawn < 6000 km, ¢, decreases with increasing down range in order to decelerate the
vehicle less by allowing the vehicle to skip sooner. The ¢, 4 is shown to have a value
near 90° for this set of down ranges, and the value of ¢,; is relatively constant at
109°. As a result, having ¢, , = 90° rotates the lift vector from pointing significantly
into the atmosphere to nearly horizontal. The scatter in values for ¢; — ¢, is due to the
high scatter in values for ¢, 9, and thus the optimizer slightly shifted the time variables
and kept the bank angles nearly constant. This shows that the trajectory is not
sensitive to ¢, ¢ for trajectories with down ranges less than 5400 km. For the higher
down ranges near 25,000 km, the values of ¢, o have become stable.

The scatter of a design variable can be derived from at least two possible
reasons. The first is that some of the time and bank angles are not within the
trajectory. In this case, the variables are randomly varied by the optimizer and don’t

affect the trajectory, thus showing up as a scatter on the distribution plot. This can be
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seen in Figure C.0.5(c) for variable ¢4 for 2000 < pg,, < 6000 km in which it varies by
> 1000 s. Note that ¢, ¢ is initiated at 75 and the amount that ¢, s varies Figure C.0.5(f)
compared to the other bank angles. The final bank angles and times become important
for the longer duration trajectories, but are shown to be unnecessary for the lower
values of down range. The second cause for scatter is the insensitivity of a
vehicle/trajectory design to a given design variable. This is exemplified in the
behavior of ¢,y discussed above.

For the L/D = 0.27, Orion CEV, projection at 13000 kg case, Figure C.0.6(a)
shows that ¢, — #, vary by more than 20 s in varying down range from 2400 km to
4800. The corresponding bank angles are shown in Figure C.0.6(c). For this set of
down ranges, some of the designs points #5 and #; are not within the trajectory designs,
but they are used in the trajectories with high durations to modify the bank angles for
the second entry, allowing the optimizer to produce trajectory designs within g-load
limits. For the L/D = 0.3, SS upper mass case, the design variable distributions show
that the combination of bank angles employed for the initial entry period use full lift
up with ¢, = 0° for 3400 km < pg,, < 26,000 km. Figure C.0.7(d) shows the
transition of ¢, , as down range is increased from 2600 to 3400 km. The L/D = 0.3,
SC with fixed hp s = 3.43 m, upper mass case is a good example of a case where
geometric variables and o are held constant by the optimizer, as shown in Figure
C.0.8(a). As a result, this Pareto frontier that includes design H is produced solely by
varying the bank angle profile. Note that not all the trajectory variables vary greatly
for 8000 km < pg,, < 24,000 km, but they vary at least slightly. The time ¢, decreases

the most dramatically out of all the time variables for this set of down ranges. This
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may represent a more sensitive region of the trajectory design space, in which more
time and bank angle design variables may be needed. Of the bank angles, ¢, s varies
the most for this set of down ranges, as shown in Figure C.0.8(e). The design variable
distributions for the L/D = 0.3, 5-deg SS with fixed /4 s = 3.43 m, upper mass case
are provided in Figure C.0.9. It shows that the time and bank angles vary and have a
coherent behavior. Among some of these solutions, the conditions at which ¢, is
initiated to release the vehicle from the atmosphere (in order to produce a skip) is
shown to be directly related to the total down range.

Surface area and volumetric comparisons of the Orion CEV to the Apollo CM
indicates scaling is proportional to roughly to surface area. If the Apollo CM’s total
surface area is approximately 31 m® and the Orion CEV’s is approximately 51 m?,
then assuming a 5800 kg mass and a surface area ratio of 1.645 renders a projected
Orion CEV mass of 9500 kg. The current mass estimated for Orion is assumed to be
approximately 10,000 kg, and current unpublished estimates indicate that it’s
currently between 9000 and 10,000 kg. As a result, this entry vehicle geometry
roughly scales with surface area. This means that the ballistic coefficient stays
approximately constant at a values of approximately 340 kg/m® for & = -17.0°. A
surface area comparison volumetric efficiency for the Orion CEV, using Eq. (2.16), is
~85%, assuming a total volume of 31 m’ and total surface area of 56 m’.

As a result, to match the drag area of optimal design D in Table 13.1 with the
Orion geometry, the mass would be ~20,300 kg. However, now it has a total volume
of 63 m’, which is 203% larger than the current Orion CEV, having much more

volume than required. The resulting benefit gained from having a larger drag area is
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completely lost by the higher mass, assuming that scaling the Orion geometry further
would exhibit the same behavior as scaling up Apollo.

The optimizer determined that a lower volumetrically efficient geometry
design D would be capable of reducing the heat load, indicated by a lower BC. Since
one of the mission requirements for this research is to match the required pressurized
volume for the Orion CEV as much as possible while maintaining the specified
minimum size requirements, listed in Chapter 5, the decrease in volumetric efficiency
in Eq. (2.16) is accomplished by increasing surface area. If a 57.5° (arbitrarily
chosen) elliptical conical frustum is chosen to connect with design D in Figure
12.9(a) and (b) with a length of 1.986 m, then volumetric efficiency is 64%, assuming
a total surface area of 100.4 m® and a total volume of 48.0 m’. This tradeoff in
geometric features renders a 44% drop in Q;,, from design B (Orion) to design D for
the desired pressurized volume. Additional affects such as the required structure and
a chosen crew compartment geometry are not integrated into this analysis and will
probably reduce this benefit in heat load, though a high order study would be
necessary to determine the reduction. Correlating the mass and shape of one entry
vehicle with another of completely different shape probably does not create a direct,

linear relationship.
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Chapter 14. Comparison of Lunar Return and
Mars Return

Comparisons are provided in this chapter regarding the lunar and Mars return
results including (1) a discussion of how the results for lunar and Mars return
compare, (2) the effects of changing entry velocity and the time constraint on
maximizing down range, (3) the effect of a 31% mass increase on trajectory design,
and (4) trends showing the effects of ballistic coefficient and drag area on stagnation-
point heat load.

For ease of viewing and comparison, the Pareto frontiers for both lunar and
Mars return are provided together in Figure 14.1 and Figure 14.2 respectively for
maximizing cross range and Figure 14.3 and Figure 14.4 respectively for maximizing
down range. First, the L/D = 1 cases are not provided for Mars return, Vy = 12.5 km/s,
since the initial designs for the optimization had impractical Qs greater than 190
kJ/cm®. Even the L/D = 1 cases for lunar return, Vg = 11 km/s, provide heat loads that
are so extravagant for lunar return that there may be no advantage from an overall
systems perspective to utilize this case in comparison to L/D = 0.3 and 0.5 cases.
With its heat loads ranging from 88 to 131 kJ/cm?®, the 40% increase in mass from
design A to design E produces an increase in heat load of 43.1 kJ/cm® that is greater

than the 30 kJ/cm” experienced by the manned Apollo CM missions.*!
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Figure 14.4. Pareto frontiers for maximizing down range and minimizing stagnation-point heat
load, V= 12.5 km/s.
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The maximum cross range for a given case is larger for Mars return than for
lunar return. For L/D = 0.5, the Pareto frontier becomes vertical for lunar return at
~1550 km and for Mars return at 1850 km, a 19.4% increase. For L/D = 0.3, there is a
21.0% increase. For the L/D = 0.27 Orion CEV cases, there is a 12.5% increase. The
lower percentage increase is probably due to fixing a and thus restricting the
optimizer from increasing L/D in order to maximize cross range.

The resulting increase in maximizing down range is subtle when increasing
from lunar return to Mars return. As a result, a brief investigation of the effects of
changing entry velocity and the time constraint on maximizing down range was
conducted. Figure 14.5(a) indicates that for Vz > 9 km/s, the Pareto frontiers becomes
vertical at down ranges of approximately 26,000 km. The Vz = 8.5 and 7.7 km/s cases
provided maximum down ranges of 4000 and 2300 km respectively as shown in
Figure 14.5(b), for the given set of bank angle controls. Since the Pareto frontiers for
Ve > 9 km/s have relatively identical maximum down ranges and designs E — H for
lunar and Mars return all have 7 approaching the limit of 1 hr, the effects of adjusting
the time constraint on the optimization has been completed. With the adjustment of
the time constraint, the down ranges for both cases are shown in Figure 14.6 to
increase and decrease relatively to the same extent. The maximum down range is
12,000 km for #< 1600 s, 44,000 km for #r< 7200 s, and 50,000 km for #; < 10900 s.
While the percentage increase from #,< 1600 s to #r< 3600 s is 117%, it is 69.2% for
the increase from #,< 3600 s to #,< 7200 s, and it is 13.6% ¢ < 7200 s to #,< 10900 s.
A final duration f# constraint between 1600 s and 7200 s provides the greatest

variation in down range.
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Figure 14.5. Comparison of optimal solution sets for V' from 7.7 to 12.5 km/s for L/D = 0.3, SS
lower mass, ¢ =-0.968 IC case.

60 ——

55

’)
<
.

Q!
&
LRARE RERRE REREN RERRE

15 -

, > rum -»d'»-—/'

TR R TI I 1 L T - L 1 I
0 10000 20000 30000 40000 50000
Down range (km)

V,=12.5 kmis, t,< 1600 s
V_=11km/s, t,< 1600 s
+  V_=125km/s, t,< 3600 s
= V_=11kmis, t,<3600s
V, =12.5 kmis, t,< 7200 s
v V_=11km/s, t,<7200s
V, =12.5 kmis, t, < 10900 s
> V_=11kmis, t,< 10900 s

Figure 14.6. Comparison of optimal solution sets with maximum durations from 1600 to 10,900 s
for lunar and Mars return for L/D = (.3, SS lower mass, ¢ =-0.968 IC case.

A comparison of maximum down range trajectories for the Orion CEV at

10,000 kg is provided in Figure 14.7 for design G from lunar return and trajectory for

Mars return that is within 800 km of the down range of design G. The elegance of the

bank angle profile solution can be seen in the deceleration of the Mars return case

during the initial 200 s to a velocity very similar to the lunar return case, as shown in

Figure 14.7(c) using the bank angle controls shown in Figure 14.7(d). As expected,
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from that point on in the trajectory, the rates of increase in down range for both cases

are relatively the same, as shown in Figure 14.7(a) and (d).
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Figure 14.7. Comparisons of lunar and Mars return trajectories for the Orion CEV at 10,000 kg,
for p ., = 25,500 km with lunar Design G and Mars Orion lower mass cases.
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Note the variation in bank angle profiles between the two cases in Figure 14.7(d) and
that after the initial deceleration, the bank angle profiles almost match in Figure
14.7(b) and (d). The difference in execution time of the final bank in the trajectory,
shown in Figure 14.7(b) is irrelevant since both are executed above the sensible
atmosphere with altitudes above 250 km. The bank angle profiles are shown in Figure
14.7(e) against the altitude profiles to determine where in the trajectory with respect
to the first trough are the primary changes in bank angle produced. For both cases, all
bank angles adjustments are completed within the first 150 s and before the end of the
first trough. Design G’s bank angle profile is listed in Table 12.1, and the last bank
angle adjustment from 104.8° to 17.8° represents a rotation of the lift vector to nearly
full up, thus allowing the entry vehicle to skip out of the sensible atmosphere.

The effect of a 31% increase in mass of the Orion CEV from 10,000 kg to
13,100 kg for Mars return is provided in Figure 14.8 assuming nearly identical down
ranges of ~26,000 km and cross ranges with 100 km of each other. Mars return design
F, listed in Table 13.1, is shown to nearly match the 10,000 kg Orion CEV case for
velocity and down range profiles in Figure 14.8(a) and (d). The more massive Orion
CEV is shown in Figure 14.8(c) to have a minimum altitude of 56.25 km, which is a
3.18% decrease in minimum altitude below the 10,000 kg Orion CEV that has a
minimum altitude of 58.10 km. This 1.85 km deeper trajectory produces a 30.9%
increase in the radiative heat load and a 15.3% increase in convective heat load,
resulting a total increase in heat of 25.2%, with Qy,, = 66 kJ/cm? for the 10,000 kg
Orion CEV and Q;,, = 82.6 kJ/cm? for the more massive design F. The effect of the

higher density on heat loads for entry at hyperbolic velocities is explained in detail
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in Chapter 10. The greatest change between the two trajectory designs, assuming a
31% increase in mass for the production of 26,000 km down range and cross ranges
within 100km of each other (p,s = 540 km +/- 50 km) is the bank angle profile.
Figure 14.8(d) shows the necessary bank angle controls to keep the velocity profiles
of the two geometries to be similar. The final bank angle of 58° is common to both
trajectory designs. The sensitivity of the heat load to the greater mass could be more
easily noticed by its 31% larger ballistic coefficient with a value of 440 kg/m”.

The effects of ballistic coefficient on heat load, which is one of the most
sensitive parameters of atmospheric entry, have been correlated in Figure 14.9 for
both lunar and Mars return. The data in Figure 14.9 includes the optimal designs from
Table 12.1 and Table 13.1 and the non-optimal initial heat shield and trajectory
designs from Table 11.3 and Table 11.4. The entire data set is shown in Figure
14.9(a). Disregarding the L/D = 1.0 results for both lunar and Mars return for ballistic
coefficient (BC) values greater than 900 kg/m’, regression curves have been
generated, shown in Figure 14.9(b), with R* values of at least 86%. This indicates that
the heat load increases linearly with ballistic coefficient. Additionally, the rate at
which heat load increases with ballistic coefficient at an entry velocity of 12.5 km/s is

a factor of 1.59 greater than the rate at 11 km/s. For lunar return, the correlation is

Os.10: = 0.054BC + 7.289, (14.1)
with a R’ value of 0.860.

For Mars return, the correlation is
Os.0r = 0.140BC + 15.23, (14.2)

with a R’ value of 0.944.
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Figure 14.9. Trends for the effects of BC on O, for lunar and Mars return.

Similar correlations have been made for this data set for heat load against drag area
D/g. = CpS in Figure 14.10. The entire data set is included in Figure 14.10(a), and
correlations were generated for D/g,, > 16 m* for lower and upper mass estimates in
Figure 14.10(b). These also produced linear relations although it would be more
logarithmic if the drag areas less than 16 m” were included. As expected, the heat
load decreases with an increase in drag area since a geometry with a greater drag area
for a given mass is able to decelerate in the presence of a lower air density. For lunar
return, the correlation for results with the lower mass estimate is

Oy.100 = -0.680D/q., + 48.01, (14.3)
with a R’ value of 0.932.
For lunar return, the correlation for results with the upper mass estimate is
Oy.100 = -0.761D/q., + 54.81, (14.4)
with a R’ value of 0.997.
For Mars return, the correlation for results with the lower mass estimate is

Os,100 = -0.947D/q., + 93.80, (14.5)
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with a R value of 0.970.
For Mars return, the correlation for results with the upper mass estimate is
Os.00=-1.043D/g,, + 113.6, (14.6)

with a R value of 0.968.
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Even though these correlations may have fewer number of points per
regression curve and thus, may be less accurate than the other correlations, these do
provide an initial impression to how heat load varies with drag area for the conditions
of this optimization. Due to the few number of data points, extrapolation in either
direction is not suggested. The lower and upper mass lunar return cases have a 11.9%
difference in slope while it is 9.8% for Mars return. The lower mass Mars return case
has a 39.3% increase in slope magnitude over the lower mass lunar return case. The
upper mass Mars return case has a 37.1% increase in slope magnitude over the upper
mass lunar return case. As a result, the rate of decrease of Q; ,,; with D/gq.. is increased
in magnitude by ~11% with the upper mass estimate; and the rate of decrease of Qs o
with D/q.. is increased in magnitude by ~38% with the Mars return case. The
correlations in Figure 14.9 and Figure 14.10 can be useful in estimating the expected
Qs for a particular entry vehicle once detailed mass and drag area estimates are
completed. For the case of design D, applying different crew compartment geometries
will produce a range of entry vehicle masses, and thus, the corresponding heat load

could be estimated.

14.1. Limitations of the optimization methodology

The methodology that generated these results is limited primarily by the
ability of the optimizer to find the global optimum. Part of the optimizer’s capability
is dictated by its settings, which is the primary reason why the parametric analysis
provided in Chapter 9 was conducted: to determine which optimizer settings

generated the most optimal results. An evolutionary algorithm does not guarantee that
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the determined solution is the global optimum of the entire design space. However,
depending on whether the problem is well-posed, the optimizer is capable of finding
an engineering optimum that can be categorized a good design. With the initial setup
described in Chapter 10, the optimizer could not locate trajectories with acceptable
deceleration loads for inhabited Mars return due to at least two reasons: (1) the entry
velocity of 15 km/s was not realistic and (2) the trajectory design space was too
massive for the optimizer to effectively search. Once it was determined that the heat
loads were unrealistic with current and near future material technologies, the entry
velocity was reduced to 12.5 km/s; all the specific reasons are mentioned in Chapter
5. Incorporating the entry corridor methodology described in Chapter 11 reduced the
trajectory design space and allowed for the optimizer to effectively search the portion
of the design space that would be deemed flyable for a given BC and L/D. These two
additions rendered the problem well-posed for the tools available.

One more observation, which may indicate a limitation in the optimizer’s
capability by itself, is that that the optimizer tends to settle on a particular geometric
design for almost an entire Pareto frontier and only modify the trajectory design (¢, —
profile). This may result for several reasons. First, the local geometric design space is
not significantly sensitive compared to the trajectory design space. Note that the
optimizer does not distinguish the geometric from the trajectory design variables;
they are all seen simply as design variables. This would suggest that if the objective
functions were sensitive with one or two geometric design variables, then the
optimizer would change them. Second, when the optimizer greatly changes the

geometric design, the trajectory design variables would need to be greatly modified to
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produce an overall feasible design. Otherwise, when the optimizer generates a greatly
different geometric design with similar trajectory design controls, then new overall
design will be infeasible due to trajectory constraints being violated. This was
observed to not always occur. There are several cases where the optimizer modified
the geometric design successfully. Optimal design A for lunar return listed in Table
12.1 has ~10° increase in 6, and a great difference in time and bank angle design
variables. For Mars return L/D = 0.5 designs, the optimizer modified eccentricity
from 0 to -0.621 and also modified the transformation parameter #, from 2.00 to 1.66
for design A listed in Table 13.1. It also modified the trajectory design variables
successfully. However, for extremely significant changes in geometric design, the
optimizer requires assistance with searching other parts of the design space. This is
the case for both lunar and Mars return for L/D = 0.3 where the geometric design
space is much greater in size than at L/D = 0.5 or 1.0. Shown in Figure 12.3, the L/D
= 0.3, SS lower mass, Orion IC case has the Orion geometry with a feasible trajectory
design placed within the initial population of the optimization. The optimizer found
an optimum geometric design that does not vary much from the original Orion
geometry. The L/D = 0.3, SS lower mass, e = -0.968 IC case represents a case starts
with a highly oblate eccentricity geometry with a feasible trajectory design in the
initial population. The 39% decrease in heat load Q;,, performance, shown in Figure
12.3, is due to the highly eccentric design having a greater drag area and L/D. This
suggests that the optimization setup currently needs assistance to run the global
optimization for the case where the performance can be extremely different between

geometric designs. The optimizer can only change the geometric design variables to a
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certain extent for a given amount of change in the trajectory design for the resulting
overall design to be feasible. This makes sense, and intelligently automating the
optimization process can only be completed to a certain extent. The background
understanding of the researcher directs the optimizer into specific regions of the
design space and renders the optimization the most useful. This methodology is
applied by utilizing different initial designs in a few of the optimizations, as
exemplified earlier with the Orion CEV and high eccentricity L/D = 0.3 cases.

With all of this in place, the optimization setup is capable of finding good
solutions that improve on the state-of-the-art, if they exist. There is probably more
than one ¢, — profile that renders a similar heat load and range for a given geometric
design, that is, a different combination of bank angles and times at which the bank
angles are initiated. Additionally, there is probably more than one combination of
geometry and trajectory design that produces the same heat load and range. However,
applying the global search capability of the optimizer in this way suggests that only
modest improvements if any would be generated, if the evolutionary algorithm is
allowed to run the optimization for a longer duration and with a larger population
size. The more well-posed a problem is, the higher chance that designs with higher
performance can be determined, if they exist. Either way, the current optimization
setup is capable of reporting the optimal solutions from all the thousands of feasible

solutions it discovers, and these have been analyzed in this work.
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Chapter 15. Conclusions

15.1. Contributions to the State of the Art

This research provides the following contributions to the state of the art: (1)
broadening the heat shield design space to include new non-spherical, periodic
designs, (2) a global design optimization methodology that can be applied to any
atmospheric entry, and (3) optimal performance trade-off relationships for several
heat shield and trajectory configurations.

First, the design space has been broadened to include new non-spherical,
periodic heat shield designs based on three axial profiles and three main types of base
cross sections. Axial profiles consist of spherical segments, spherically-blunted cones,
and power laws. Base cross sections include rounded-edge polygons, ellipses,
rounded-edge concave polygons, and blendings of these. Base cross sections are
generated using the superformula of the superellipse, which provides a continuous
design space between these three types of cross sections for each polygon type. This
research indicates that a highly-blunt, eccentric heat shield design decreases
volumetric efficiency but increases drag area to reduce heat loads by more than 35%
with an oblate eccentricity of 0.968. Since heating is one of the most sensitive
performance characteristics for atmospheric entry vehicles, eccentricity may be a
means to enable missions with extremely high heat loads.

Second, a design methodology has been implemented in a global optimization
analysis of Earth entry heat shields. An aerothermodynamic code has been developed
to quickly estimate the performance of heat shields and filter out impractical designs.

Since high-order computational fluid dynamics would render the global optimization
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infeasible from a computational time standpoint, the aerothermodynamics code
utilizes low-order methods. It is applied with a high-order 3DOF trajectory model to
balance the need for fidelity with the desire to have practical computational times.
Techniques have been implemented to reduce the runtime of the two codes from 20
min for a 2000 s trajectory to 10 s using interpolation tables and other techniques. An
entry corridor methodology has been utilized to focus the global search on that
portion of the trajectory design space that would be expected to be applied to an
actual mission. With this reduced trajectory space, the global search capability is able
to find feasible initial trajectory designs for a given heat shield design; in other words,
it is able to find a bank angle profile solution without being given information a
priori. This is not possible utilizing the search capabilities of POST, which requires
the user to implement an extensive parametric trade study before locating a feasible
trajectory design. This work utilizes UPTOP to automate this process with its global
search capability. Note that POST has advance capabilities of many types that would
not be used in this fundamental research, and that much of those are not present in
UPTOP. Additionally, UPTOP is capable of both single and multi-objective function
optimizations. The design optimization methodology implemented in this work for
Earth entry can be applied to any atmospheric entry, including Mars, Venus, and
moons such as Titan.

Third, for lunar and Mars return, this work provides optimal trade-off
relationships between performance parameters including down range, cross range,
stagnation-point heat flux, and stagnation-point heat load for several heat shield and

trajectory configurations. The optimal trade-off curves provide both locations in the
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design space that are ideal to take advantage of and those that should be avoided. It
also highlights any performance sweet spots and performance walls for the given set
of conditions. These optimal trade-off relationships are the resulting Pareto frontiers
from the simultaneous optimization of any two performance parameters. Since a
Pareto frontier is made up of several heat shield and trajectory designs, this work also
provides the design variable distributions for several Pareto frontiers. Together, all
three contributions provide a means to determine the geometric features that advance
the state of the art in Earth entry heat shield hypersonic aerothermodynamic

performance.

15.2. Summary of Results

15.2.1. Initial Lunar Return and Mars Return Results

Optimization has produced optimal heat shield configurations for Earth entry
at Vg = 11 and 15 km/s, using two objective function sets: (1) maximizing p,,, and
minimizing Qs and (2) minimizing Qs and g may. For Vg = 11 km/s with a 6 g-
limit, the spherical segment is the optimal axial profile for maximizing p,, and
minimizing Qs .. Direct entry trajectories are best for p,,s < 250 km; then skipping
trajectories are utilized. For optimal designs, Qs 1s 14.7, 22.6, and 29.4 kJ/cm? for
Pars 0f 500, 1000, and 1500 km respectively. The spherically blunted cone and power
law solutions are disguised spherical segments for p,,; > 750 km. Optimal designs for
minimizing Qs and gsm. have direct entry trajectories, and the selected spherical

segment and blunted cone geometries are equally optimal.
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For Vg = 15 km/s with a 12 g-limit, neither the optimal blunted cone nor
spherical segment is significantly better. Radiative heat transfer dominates convection
in both heat flux and heat load. For the reported designs, the maximum convective
heat flux was at most 16.4% of the maximum total heat flux, and the convective heat
load was at most 28.4% of the total heat load. For maximizing p,,; and minimizing
Os 101, the Oy o slightly increases for py,s < 1100 km. For optimal designs, Qs is 64.5,
65.2 and 98.3 kJ/cm? for Pas of 500, 1000, and 1500 km respectively. The significant
difference in the blunted cone and spherical segment Pareto frontiers is not caused by
differences in axial profile; instead it is caused by the higher sensitivity of radiative
heat transfer to air density at hyperbolic speeds (V. greater than escape velocity). The
blunted cone’s larger drag area allows the vehicle to decelerate with maximum
heating at V', = 13.5 km/s and 2 km higher altitude with 40% less air density, thus
reducing ¢ . and ultimately Qs ., by 21%. The lower drag area is generated by the
vehicle sizing routine that determined the spherical segment can satisfy the mission
requirements with a smaller-sized vehicle. If both geometries have the same drag
area, the blunted cone would provide only a 4% lower Oy, at 1000 km cross range.
For minimizing Oy, and ¢gm., the blunted cone produces an 8% lower gg max-
Although the optimal spherical segment and blunted cone designs produce nearly the
same optimum (., with two different sets of curvature and shock layer thickness, a
proper balance of convective and radiative heat transfer is necessary to minimize
Os tor-

For both entries, highly oblate eccentricity e = -0.968 maximizes drag area,

allowing deceleration at higher altitudes, thus lowering both heat flux and heat load.
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As more p,, is required, drag area is traded-off with the need for larger L/D, by
decreasing e. This behavior is consistent with the parametric analysis in Ref. [112].
An elliptical cross section rather than a parallelogram-form is optimal for L/D < 0.50,
corresponding to p.,s < 1500 and 2200 km for Vz =11 and 15 km/s respectively. The
parallelogram cross section could be applied to increase L/D beyond the capability of

the elliptical cross section, which is expected for higher p,,; and lower peak g-limits.

15.2.2. Final Lunar Return and Mars Return Results

Optimization has produced optimal heat shield configurations for Earth entry
from Mars return at Vy = 12.5 km/s, using two objective function sets: (1)
maximizing p,s and minimizing Q ., and (2) maximizing pa,, and minimizing Qs ;.
Conclusions include the following: A hierarchy of three classes of blunt body
geometries can be prescribed for reducing stagnation-point heat load: (1) blunt
designs with axial profiles consisting of low & or high 6. and r,/d, and base cross
sections with either oblate e or larger d. The resulting higher drag area allows the
entry vehicle to decelerate higher in the atmosphere, (2) similarly blunt designs with
circular base cross sections and diameters near the initially prescribed 5 m, and (3)
slender designs with axial profiles consisting of high &, with highly oblate e base
cross sections. Based on L/D requirements, a class may not be available; then the next
class would likely be the best option.

For Mars return, the Orion performs nearly optimally compared to spherical-
segment geometries with a circular base cross-section. However, an eccentric base

cross section reduces heat load significantly. An oblate eccentricity of j/k = 4 reduces
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the heat load from 65 kJ/cm” to 40 kJ/cm” by increasing the surface area, and thus,
drag area at a higher rate than the increase in heat shield mass, thus allowing the
vehicle to decelerate higher in the atmosphere. Although the minimum heat load
geometry is the spherically blunted cone with an elliptical base cross section, a low 6
spherical segment also provides nearly optimal performance since the heat load is
nearly constant for r,/d > 4.0.

This work agrees with current literature’ that L/D = 0.3 will produce more than
the projected entry corridor width requirement of 0.4°. L/D = 0.3 produces a
maximum cross range of 1100 km. L/D = 0.5 produces a maximum cross range of
1600 km. For the given mission profile, designs with L/D = 1.0 are presently
infeasible due to extremely high Q. generated since their ballistic coefficients are
twice or thrice that of L/D = 0.3 and 0.5 designs.

For both L/D = 0.3 and 0.5, a 30% increase in entry vehicle mass from 10,000
kg produces 20-30% increase in Q.. There is a tradeoff between volumetric
efficiency and drag area that allows for a particular pressurized volume requirement
to be maintained and thus keeping the mass increase a lower rate than drag area. As a
result, there is a reduction in the stagnation-point heat load. This is indicated by the
ballistic coefficient that can be reduced below the expected 340 kg/m?® value for the
Orion CEV for lunar and Mars return.

For lunar return, L/D = 0.3, 0.5, and 1.0 produce maximum cross ranges of
950, 1500, and 3000 km respectively before the Pareto frontiers increase in Qo
dramatically. The L/D = 1.0 designs have highly oblate, rounded edge parallelogram

base cross sections. A spherical segment of &, = 5° with a highly oblate cross section
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e = -0.968 produces both a 27% higher cross range and a 39% lower heat load than
the Orion CEV at L/D = 0.27 due to its 41% greater drag area and 18.5% greater L/D.
Increasing mass by 30% does not strongly affect the maximum possible cross range
or down range, but it increases Oy, by at least 23%, 30.3%, and 44% for L/D = 0.3,
0.5, and 1.0 respectively.

There is not any advantage in maximizing down range and minimizing heat
load to applying high L/D designs for Vy = 11 and 12.5 km/s. The maximum down
range p gy 18 ~26,000 km. For both L/D = 0.3 and 0.5, a 30% increase in entry vehicle
mass from 10,000 kg produces a 20-30% increase in Q;,, Maximum cross range
increases by ~20% with an increase in entry velocity from 11 to 12.5 km/s. For this
optimization setup, the heat load has been determined to increase linearly with
ballistic coefficient. The rate at which heat load increases with ballistic coefficient at

an entry velocity of 12.5 km/s is a factor of 1.59 greater than the rate at 11 km/s.

15.3. Suggestions for Future Work

A substantial amount of future work in atmospheric entry vehicles can be
completed to improve upon both this work and the general understanding of the field.
To increase the accuracy of the optimization results, the following additions could be
made:

e Account for corner radius. The work of Zoby" may also assist in
distinguishing heat shields of the same axial shape and cross-section but
different corner radii. The corner radius geometry can also be added to the 3D

mesh so that the surface pressure distribution accounts for it.
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Improve the method for estimating the shock-standoff distance for angles of
attack, especially for the power law axial shape and in accounting for base
eccentricity.

Use a more accurate method to determine the surface pressure distribution.
For this work Newtonian Impact Theory was validated, but if the scope of the
project were to include analyzing the boundary layer, advanced CFD would
need to be applied.

Utilize a more detailed mass estimation study of manned and unmanned

atmospheric entry vehicles.

To increase the scope of the optimization, the following additions could be made:

Incorporate more axial shapes: the raked, biconic, and bent-biconic cones.
Include thermal material properties and temperature constraints.

Include a model for high temperature gas properties at 200000 ft, M., > 42.
The Tannehill correlations are outside their range for these freestream Mach
numbers.

Develop a method of determining the point of maximum heating for a general
3D body. The velocity gradient could be modeled to determine the point of
maximum convective heating for a general 3D body. Zoby* provides some
results based on the change in the velocity gradient in order to calculate the
convection for values of r,/d > 2 more accurately than using the inverse

square-root of the nose radius.

Future work concerning atmospheric entry vehicles outside this optimization that

would benefit the field:
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Conduct a feasibility study of the static stability of this work’s optimal
geometries with the estimated required center-of-gravity locations, assuming
different types of crew compartment shapes (conical frustum for Apollo CM
and Orion CEV). Determine the dynamic stability using a six degree-of-
freedom trajectory analysis.

Analyze raked geometries to reduce cg-offset to generate desire L/Dy,;,,. There
may be indication that AFE, a raked cone, is dynamically unstable, but this
may be fixed by modifying the AFE configuration to have a crew
compartment similar in shape to the conical frustum of the Apollo Command
Module, which would be a topic for future work.

Determine whether sonic line movement is present on optimal geometries
with higher eccentricity from this work.

Mitigating sonic line movement on raked cones and raked oblate spherical-
segments. Sonic line movement produces static instabilities at geometries at
specific M. Raked oblate spherical segment geometries could be generated
with similar L/D and Cp to AFE and determine how to make the sonic line
stationary on leeward side’s shoulder.

Comparison of L/D = 1 — 2 slender body vehicles with both trajectory
optimization and aerothermodynamic CFD. A study of their performance at
lower entry velocities at which the heat load Q;,, and heat flux ¢ .. are
deemed feasible.

Analyze the performance of entry with two trim lift-to-drag ratios with a

slender vehicle design. In this way, at high ., produce low L/D with high
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drag area and at low ay, produce high L/D to provide high cross range.
Determine best combination of L/D values for minimizing heat load and
maximizing cross range simultaneously.

Determine significance and viability of a two-stage entry vehicle. A blunt heat
shield would be used to bleed off most thermal energy, and then a sharp
vehicle with propulsion capability could be utilized to transit worldwide.
Determine possible Mars entry blunt-body geometries for manned missions.
Analyze the Mars trajectory design space and recognize current limitations
and employ global search capability to assist in locating feasible designs that
meet mission requirements.

Correlating important flow characteristics observed in CFD to low-order
methods. This could serve to update the low-order methods to improve
accuracy. Feedback high-order analysis into low-order aerothermodynamic
models to execute more accurate optimization.

Perform improved optimization to mitigate aerothermodynamic and boundary
layer transition effects.

Determine wake effects/vehicle interactions for ballute-type heat shields.
Study laminar, transition, and turbulent boundary layer heat transfer on blunt
bodies for M, > 25. Wind tunnel analysis of rounded-edge concave heat
shields would help in investigating these phenomena. The Apollo Command
Module’s heat shield experienced laminar heat transfer. Turbulent heat
transfer is unknown at M., > 40, especially the effects of radiation cooling and

convective-radiative coupling that reduce the total heat transfer flux. For a
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phenomenon that increases exponentially with Mach number, the radiative
heat transfer can easily be miscalculated for M., > 40.

Static and dynamic stability guidelines for inhabited atmospheric entry.

Flight tests and wind tunnel experiments for M., > 40 ranging up to M, = 55.
This could provide arguably the most useful results concerning planetary entry
at M, > 40. Current aerothermodynamic understanding of this region of
freestream Mach numbers is modest. Since rolling moment experimental and
flight data is almost nonexistent, measuring the rolling moment on both
axisymmetric and non-axisymmetric heat shields would be beneficial. High
temperature correlations, radiation and general heat transfer models could be
produced for the first time. Hypersonic aerothermodynamic models can be

improved. Some models do exist, but they do not apply well to M., > 40.
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Appendix A: Curve Fits to Kaattari’s Method

Al 6-—

6:, as a function of ®-

To determine &, Kaattari supplies Figure 6(b) from Ref. [55] that relates the

difference & — &, as a function of ®«. This relation varies with the normal-shock

density ratio and their corresponding curve-fit equations with @« limits are included

0.~ 6.,
(deg)

-7.8164x10°®S +1.1554x10°d3
-6.5557x10°®¥ +0.0017384®3

-0.0166902 - 0.036272, +0.026591,
Norm of residuals: 0.10637,

-1.3002x 10 @S +1.7632x10°®3
-9.1189x10°®2 +0.0021927d3

-0.01933®2 +0.01135®, +0.0031709,
Norm of residuals : 0.04381,

-6.2549x10° DS +8.0483x107 D3
-3.7688x 10~ ®2 +0.00087115d3

-0.0054599d2 +0.019362, - 0.0085934,
Norm of residuals: 0.0793,

-6.0809x10° S +6.9855x 107 d3
-2.7801x107° ¥ +0.0005322503

+ 0.00034058D2 -0.0016152®, +0.0038209,
Norm of residuals: 0.0583,

-9.8112x10" @8 +1.4038 x 108 @]
-8.0148x1077 ®S +2.3289x 107 ®3
-0.00035965®% +0.0028275D3

-0.0034554®2 +0.0075298, - 0.00075942,
Norm of residuals: 0.067392,

1.5644x10”7 @S -3.0006 x 10 D3
+ 0.0023397®% - 0.094787®3

+ 2.1177®2 - 24.509P, +115.89,
Norm of residuals : 0.0795,

1.2753x108 08 -1.4433x 1070 ®3
+ 6.7379x10°®4 -0.001413803
+ 0.02061202 - 0.040357d, +0.012458,
Norm of residuals: 0.11582,

234

Py
P
P,
P
P _g
P
P _g
P
LEARs )
P
P2 _y6
P
2290
P

1<®, <40

1<®, <40

4 <. <40

4 <D, <40

0<®d.<40

17.5<®. <40

1< ®. <40.

(A.1)



For all equations in this set except p/p; = 12, for 0 < @« < 1 it is assumed that the
difference 6 — 6, is zero. For this region, the equation for p»/p; = 12 is applied for
normal-shock density ratios of twelve and greater. The equation for p,/p; = 16 is not
applied until @« > 17.5, and if it is used before this, the results could be erroneous
since the curve fit was designed only for the noted ranges. Linear interpolation
between two of the curves within this range of p,/p; can be exercised to approximate

the values of the difference for normal-shock density ratios that are not listed.

A.2 cjas a function of py/p; and &

Figure 9(a) from Ref. [54] shows how the shock correlation coefficient ¢; varies with
the normal-shock density ratio and the tangency angle ¢ and is curve-fitted (input ¢ in

degrees) with indicated limits of applicability

-1.93013729x 1077 &% +1.16661976 x 107 &>
-7.64482284 x107* £ +0.214380383 e
R?=0.9987, P

=3, 0<e<45°,

9.63317384x107 &> -8.78810663 x107 &2
-4
-7.60025063 x 10~ £ +0.221403281 P24 0<p<dse
R?=0.9998, P1

(A.2)
-4.12212802x10M &% +5.39975415x107° &°

2231598093 x 107 £* +4.78956150 x 10 &3

115717926 x 104 6% -2.21715933x103 s £225 0<s<45°,
10.230264502

R?=0.9999,
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-2.92464389x1070£% -2.69993388 x 107 &*
+4.08148122x107% £ -2.09241117x10™ &>

-2.50199798 x 107 & +0.232732751

R?=0.9999,

-9.07434828x101%¢% +6.32411067x 10 ¢*
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R%=0.9991,
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R? =0.9990,
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Note that all the digits have to be included in order to maintain accuracy. If digits are
removed, it is strongly recommended that the modified curve-fit be plotted to verify
that the curve-fit is still valid throughout the entire range and to verify none of the
curve-fits intersect each other. Interpolation for cases with normal-shock density

ratios in-between the given curve fits has been tested and is completely feasible.

A.3  c;sas a function of py/p; and &

The correlation constant c; is also supplied in Figure 9(b) from Ref. [54], and the

curve-fit equations (input ¢ in degrees) have been generated in this work

-3.39744191x108 £3 +3.89964215x10°° &2
-4
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-4.49628934x10% £* +8.56040487x1077 &*
6 .2 4
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+1.77036651x1072 P1
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n sin(s) ’ 10 .5 8 4
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P
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Because density ratios over sixteen may occur in the regions of maximum heat

transfer during planetary entry, extrapolation is applied to the curve-fit for p,/p; > 16.
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Appendix B: Design Variable Distributions for
Lunar Return Results in Chapter 12
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Figure B.0.1. Design Variable Distributions for Pareto frontier of L/D = 1.0, SS lower mass case
from Figure 12.1, for maximizing cross range and minimizing stagnation-point heat load, V; =11

km/s.
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Appendix C: Design Variable Distributions for
Mars Return Results in Chapter 13
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Figure C.0.7. Design Variable Distributions for Pareto frontier of L/D = 0.3, SS upper mass case
from Figure 13.2, for maximizing down range and minimizing stagnation-point heat load, V; =
12.5 km/s.

254



25¢ 5 90— +——7T——0 0 250 : — S— —
i I [ g o o woans ay i | t, |
L 85 ] 1 X - t,
23r 4 -— mmawm-——O.Z’S 200} : L
L | sof ] — “
21F | - 4-10 f ]
I 3?@ 75:_— v W v wewwww 7'0-4 ] a :507— 7
1ol (8 | o458 @ | & . e
L oL TOF loed 3 Tiaal ]
- 2 H --0.6 100 -
1.7F [ I o 15} : —-20 | e - ]
L e5F . e ) | |
o1+ - r/d —4-0.8 | 50 -
50 L eof - n, L et - o
13L O; 5 L= i sl X ;_30 07 1 L L 1 L i
0 10000 20000 30000 0 10000 20000 30000
Down range (km) Down range (km)
a) Geometric design variables b) Design variables #; — ¢,
2500 [ T T ] 160 — T — 1
- t, 1 N ]
o v 140} 1
2000 i t ] E ke maam s o asaws ge g 80n u‘ E
L . 120 - .
1500} . S : 100 W .
N i B A | iy i
L i 3 Qe et 1 8 eor vam 0 0 cempme. e ]
- | ] vv ] ‘; I 1
1000 |- Ywe Yo v o @ ove v < 60 ° dpo ]
- ,v v w - b I o ¢b,1 i
| g ve - R 40 o ¢b,2 o Do ®w N
o Y Y a 49 g 49 «ﬁ‘ I b,3 L N
500 B %q @@ 7 20 oo oy o  OWOWD o -
| 4 | | @ i
L o . oL #® & 4
0 L 1 L L 1 L L L ) ) 1 " " 1 ]
0 10000 20000 30000 0 10000 20000 30000
Down range (km) Down range (km)
¢) Design variables #; and 74 d) Design variables @,y — ¢, ;
200 T -
L boa |
¢b,5
@ ¢b,6
150 .
2 100f }
S i |
<} *
I ° ® OB 00 ° 00 00 KO oo s, 1
50 s .
¢
0 - -
L L 1 L L L L 1 L
0 10000 20000 30000

Down range (km)
e) Design variables @, — ¢4

Figure C.0.8. Design Variable Distributions for Pareto frontier of L/D = 0.3, SC with fixed A, g5 =
3.43 m, upper mass case from Figure 13.2, for maximizing down range and minimizing
stagnation-point heat load, V; = 12.5 km/s.
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