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State Constraints for the Multiple-Access
Arbitrarily Varying Channel

JOHN A. GUBNER

Abstract — m that if a multiple-access arbitrarily varying channel is sym-
metrizable, then the capacity region has an empty interior. In this paper, we show that if a
suitable constraint is placed on the channel state sequences, then the capacity region can contain
certain open rectangles and thereby possess a nonempty interior. We also prove a new weak con-
verse under a state constraint. We use our results to establish the capacity region of the two-user

adder channel under state constraint -;—

I. INTRODUCTION

This paper is a continuation of our work in [15]. We assume that the reader is somewhat
familiar with the notation and the results found there. To understand the results of this
paper it is not necessary to be familar with the proofs found in (15].

Recall that a two-user multiple-access arbitrarily varying channel (or AVC for brevity)
is a transition probability W from X X Y x § into Z, where X, )V, &, and Z are finite
sets, each containing at least two elements. We interpret W(z|z,y,s) as the conditional
probability that the channel output is 2 € Z given that the channel input symbol from
user 1is z € X, the channel input symbol from user 2 is y € ), and that the channel state
is s € S. The channel operation on n-tuples x = (zy,...,z,) € A", y € Y*, s € S*, and
z € Z" is given by

W™ (z|x,y,s) 2 HW(zklxkvykaSk)'
k=1
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II. STATE CONSTRAINTS

Fix any function £:S — [0, 00) such that Inelélf(s) = 0. Set liay 2 mgsxé(s). Next, for
any s = (85,...,8,) € S™, let
1 n
€als) = -3 Lsk).
" =1
Ezample: f S = {0,1} and £(s) = s, then £,(s) is the normalized Hamming weight of s,

i.e., the fraction of 1’s in s.
Definition 2.1: For any state constraint, L > 0, let
S™(L) & {se€8":4.(s) < L}.
Of course, if L > £,.y, then S*(L) = S™.
Consider the following modification of [15, Definition 2.2].

Definition 2.2: A pair of nonnegative real numbers, (R;, R,), is said to be achievable

under state constraint L for the AVC W if:

For every 0 < A < 1, and every AR > 0, there exists a positive integer ng such that
for all n > ng, there exist positive integers N and M such that

log N log M

> Ry - AR and

> R, - AR,

and such that there exists a code (f,g,y) with

1 LM .
———Z W™({z € 2" : ¢o(z) # (3,7) }x:i,¥j,8) < A, Vs € S*(L).
NM =1 j=1
Definition 2.8: The capacity region under state constraint L, denoted C(W, L), is defined
by
C(W,L) 2 {(Ry, R,) : (R1, R2) is achievable under state constraint L}.

If a pair (R, R;) is achievable in the sense of [15, Definition 2.2}, it is achievable in the

sense Definition 2.2. Thus, we always have

C(W) C C(W,L).



Proof: First, we clearly have N RL~5(W) D RE(W). It remains to prove the
o<é<L

reverse inclusion. Lemmas A.1 and A.2 in Appendix A will establish that for every ¢ > 0,

there exists a § > 0 such that for all p and ¢,

RL—J(p’ q, W) - {(RI,RZ) . 0 S RI < I,If/\zly(pa Q7W) + &,
0 < Ry < I§nz2(p, 0, W) +e,
0 < R1 + R2 < I{I{,y,\z(p,q, W) + 6}. (32)

Let RE(p,q, W) denote the set on the right-hand side of (3.2). Let RE(W) denote the

closed convex hull of

U  R¥p,ge,W).
pED(X),q€D(Y)

Clearly, for every € > 0, there exists a 0 < § < L with RE-$(W) c RE(W). It follows that

N RE°(W) < [ RIW).

0<8<L >0
Now, it is easy to see that every point in RL(W) is within distance & of RF(W). Since
RE(W) is closed set, 1 RE(W) c RY(W), and so
>0

N REYW) ¢ REW) c RYW).

0<s<L £>0

Having established (3.1), we can now prove the following result.
Theorem 8.2 (Weak Converse Under State Constraint L):
C(W,L) c RYW).
Proof: It suffices to prove that for every 0 < § < L,
C(W,L) c RL-5(W).

Fix0< 6 < L. Let 0 < A < 1and AR > 0 be arbitrary. Suppose that (R;, R;) € C(W, L).
Then by Definition 2.2, for all n > no, there exist positive integers N and M such that

oeN . R,—AR and 8M
n n

> R, — AR, (33)



P(p(Z) # (4,B)) = 3 P(p(Z) # (i,j),A=1i,B =)

I

5 r(6) (37 o W5 0(a) # (i)} y5,9))

sESn i=1j=1

= E[e(S)]

S max e(s)+P(6u(S) > L)

< MN24+0/2 = A (37

The remainder of the proof is omitted since it is almost identical to Jahn’s proof [16] of
the weak converse (without state constraint L, of course). The complete remainder of this

proof can be found in [14, pp. 79-82). a

IV. THE ApDITIVE AVC

Having established a weak converse in Theorem 3.2, we now compute RE(W) for the
two-user additive AVC. We also consider the special case of the two-user group adder AVC.
We begin with a few preliminaries. Let G denote a finite commutative group under +, and

set ¥ =Y =2Z = (. Let § denote an arbitrary finite set.
Definition 4.1: We say W is an additive AVC if
W(le, y,s) = V(z -z yls) (41)

for some transition probablhty V from § into G. We also write (rW)(z|z,y) = (rV)(z —
z — y), where (rV)(t) 2y, r(s)V(t|s).

To simplify matters, we need the following definiton.

Definition 4.2: For p,q € D(G), the convolution of p and ¢ is given by

(pxq)(t) & 3 p(t - b)q(d).
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for some V, € D(G). For the group adder channel,
(rV)(t) = (r*Vo)(?).
We see immediately that if » or V4 is uniform, r * Vo = u, and H(r x Vp) = log |G|. Thus,
if u € DE(S), or if V, = u, then (4.3) reduces to RE(W) = {(0,0)}. Note that u € DX(S)
if and only if
—l—;_l > 4s) < L. (4.4)

s€g
We can further specialize the group adder AVC to a noiseless group adder channel by

setting Vo(t) = &6(t), where 6(t) = 1 if t = 0, and 6(t) = O otherwise. In this case,
r*Vo=rx§=r,and
REW) = {(R1,R,):0< Ry + R, <log|G| — max_ H(r)}.

reDL(s)

Thus, for the noiseless group adder AVC, RE(W) = {(0,0)} if and only if (4.4) holds.

V. FORWARD THEOREMS

In this section, we prove forward theorems which provide inner bounds on the capacity
region under state constraint L. We first recall from [15) some important definitions and

results.

Definition 5.1: The AVC W is said to be symmetrizable-X’Y if there exists a transition
probability U from X x ) into § such that

S W(zlz,y,s)U(s|z',y") = Y W(z|z',y',s)U(s|z, y), Vz, 2, y, ¥, 2. (5.1)
If no such U exists, we say that W is nonsymmetrizable-X').

Definition 5.2: The AVC W is said to be symmetrizable-X if there exists a transition
probability U from X into § such that

2 Wizle,y,s)U(sle") = 2 W(z|z',y,$)U(slz),  Vz, 2, y, 2. (5.2)
If no such U exists, we say that W is nonsymmetrizable-X.
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Remark: If W is symmetrizable-X') and U satisfies (5.1), and if ¢ is any element of
D(Y), then multiplying both sides by ¢(y)¢(y’) and summing over all y, ¥’ shows that ¢W
is symmetrizable-X. Similarly, if W is symmetrizable-X and U satisfies (5.2), multiplying
both sides by ¢(y) and summing over all y shows that ¢W is symmetrizable-X' for every

g € D(Y).
Definition 5.10: For any p € D(X), set (pW)(z|y, s) 2 Y p(z)W(z|z,y,s). We say that
pW is symmetrizable-) if there exists a transition probability U from ) into S such that

S (epW)(2ly, s)U(sly") = D_(eW)(zly',s)U(sly), Yy, ¥, 2. (5.5)

If no such U exists, we say that pW is nonsymmetrizable-).

A. Nonsymmetrizable Channels

The following theorem is an obvious analog of [15, Theorem 5.1] when the permissible
state sequences are constrained to lie in §*(L). We prove the existence of nonempty, open
rectangles of achievable rate pairs, provided that certain nonsymmetrizability conditions

are satisfied.

Theorem 5.11: Suppose W is nonsymmetrizable-Y. Fix any p € D(X') and ¢ € D()).

Further, suppose ¢W is nonsymmetrizable-X. If
0 < Rl < I/I{’AZ(p’q’ W) a‘nd 0 < R2 < I;{?I/\le(p’ q, W)a (56)
then (R;, R;) is achievable under state constraint L (cf. Definition 2.2).

Remark: It trivially follows from [15, Remark 5.2] that if p € D(X) and ¢ € D()) are
strictly positive, then the mutual information quantities in (5.6) are strictly positive under

the preceding nonsymmetrizability assumptions.

Proof: The proof of this result is easily obtained by repeating the proof of {15, Theo-
rem 5.1, provided that every occurrence of D(S) is changed to DL(S), and every occurrence
of 8™ is changed to §™(L). a

Analogous modifications can be made to [15, Lemma D.1] and to [15, Theorem 5.5].
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Lemma 5.16: Assume that Ux(g, W) does not depend on ¢. Fix any p € D(X) and

geD). I
L<¥(p,g) and L<Ly(g), (5.7)

and if
0 < Ry < Iznz(pa, W) and 0 < Ry < I§AZ|X(p7an)> (5.8)

then (R, R,) is achievable under state constraint L (cf. Definition 2.2).
Proof: See Appendix B.
Definition 5.17: Let
RE(p,e, W) £ {(Ri,Ra) 0 < Ry < Iinzp(p, 0, W), 0 < Ba < Iinz(pr 0 W)},
and
RY(p,g, W) £ {(Ri,Ra):0 < Ru < Ifnz(p, 0, W), 0 < Ra < Iinzia(p: 0, W}

Observe that if Ux(q, W) = Ux(W), then ¢¥(p, q) = £% (p). Hence, we have the following

theorem.

Theorem 5.18: If for every ¢ € D(Y), Ux(q, W) = Ux(W), and if for every p € D(X),
Uy(p, W) = Uy(W), then C(W, L) contains the closed convex hull of

U [R%(p,q, W)U R3(p,q, W)].
peD(X): LY (p), q€D(Y): L ()

An Ezample: The Adder Channel

To conclude our discussion of state constraints, we return to the adder channel defined
" in Example 5.4. We take £(s) = s so that £,(s) is the average number of 1’s in the sequence

s. We claim that
C(Wod) = {(R1,R) :0<S R <30SR <, 0< R+ Ry <2—log3l. (59)

To establish our claim, we proceed as follows. Let p*(0) = p*(1) = 3 and 7*(0) = ¢*(1) = L.
In Appendix C, we prove that for all p € D(X) and all ¢ € D(Y),

R¥(p,q,Wa) C Ri(p",q% Wa). (5.10)
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The key point is to observe that since

3 3 3 1
2-glog3 = (3-§1083) +5

we can write
]2' LI % LI ] jz' LI ]
IX)’AZ(p »q ,Wa) = IXAZ(p »q ’Wa) +IyAz|x(P 4 3Wa) (514)
and
‘% » Y % ” » % * *
Iynz(p", 0" Wa) = I3az(p" ", Wa) + i az1p(P", 0" Wa). (5.15)

Remark: Equations (5.14) and (5.15) are nontrivial since in general, “the infimum of a

sum is greater than the sum of the infima.”

From (5.14) and (5.15), it now follows that RI(W,), that is, the set on the right in
equation (5.12), is equal to the closed convex hull of the union of the two open rectangles

(cf. Definition 5.17)
Lot W)
= {(R,R): 0< Ry < I,%Azw(l’*vq*’wa)» 0< R, < IgAz(P*, g, Wa)}
= {(R,R2):0< R <3, 0<R; <%—2log3}

and

% CI
Ry(P s q ,Wa)
i L
= {(RlaRZ) : 0 < Rl < I«%AZ(p*’q*aWa% 0 < RZ < I;mzlx(p‘v q:Wa)}
= {(Rl,Rg) :0< Ry < %— %10g3, 0<R;< %}.

By Theorem 5.18, it follows that RY(W,) Cc C(W,, 1). This proves our claim.

VI. CONCLUSIONS

In our prior paper [15], we showed that if an AVC W is symmetrizable-X', symmetrizable-
Y, or symmetrizable-XY, then the capacity region C(W) has an empty interior. In this

paper, we showed that if a suitable constraint is placed on the state sequences, then the
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APPENDIX A

LEMMAS A.1 AND A.2

Lemma A.1: For every n > 0, there exists a §, 0 < § < L, such that for all r € DE(S),

there exists an 7 € DI-4(S) with d(r,#) < 7.

Proof: Recall our assumption that m;inﬂ(s) = 0. Hence, there is some so € § with

£(so) = 0. Let 7 > 0 be given. Choose 0 < § < L such that

L-6
21-=72) < n.

For s # s, set 7(s) = r(s)- (L — 6)/L. Since

S #(s) = (1 = rlso) 2 < 1,

s#sg

we can set 7(so) = 1 — 3,44, 7(s). Observe that since £(so) = 0,
S L(s)(s) = L-¢ Y 4(s)r(s) < L —6.
3 L 8 -
Finally, note that

d(r,#) <23 |r(s) = #(s)| = 2(1 - %—6) > r(s) <.
s#s0 s#£30

a

Lemma A.2: For every € > 0, there exists a 6 > 0 such that for all p € D(X) and all
g € D(Y),

Iy W) < gy, e, W) +e,
I§;g|x(paQaW) < I§AZ|X(P)Q,W)+€,

15420, W) < Iypz(p g, W) +e.

Proof: 1t suffices to prove the first inequality. Let € > 0 be given. Choose > 0 such
that d(r,7) < n implies

IIXAZ[)?(p X g X f‘W) - Ix,\z’y(p X g X TW)l < E.
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Choose § > 0 so small that

0 < 26 < min{é(a, W), EW)), (B.1)
0 < R < Iinz(p,g, W) — 26,

0 < Ry < Hnza(pa, W)~ 26.

Choose p € D(X) and § € D(Y), both strictly positive with d(p,p) and d(q, §) both so
small that

¥ (p,a) < €¥(5,9) +a/2,
(g < Y9+ /2,
Ex(g, W) < €3(4, W) +6/2,
Iinz(py g, W) < IRaz(5,4, W) +6/2,

I§AZ|X(p7 q, W) < I§AZ|X(I§’ ‘j, W) + 6/2

(Since we have assumed that Ux(gq, W) does not depend on g, it is easy to see that £% (p, q)
is a continuous function of p, and does not depend on ¢.) The remainder of the proof is
almost identical to the proof of [15, Theorem 5.1} except as detailed below.

The first step is to replace S™ by $"(L) and D(S) by D*(S). In particular, [15, equa-
tion (4.7)] becomes

Gi; & U [KXs)N KL
8’eSn(L)

To show that for each ¢, Gyy,...,G;m are pairwise disjoint, we proceed as in (15, Ap-

pendix B]. Set Pxxiyyrss = Pxi’x‘,,yj,yj,,s'g’. Write

lo(s) = %gﬂ(so
= ;E(S)Ps(s)
= E[4S)]
= E[E[4S)|Y']]
= ;E(S)PSW'(S'U)Q(?J)

= L(QPspy).
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where H(t1,...,tm) 2_ kﬁ tx log tx, and h(r) £ H(r,1—r). We also point out that (C.1)
=1

- (C.3) can be used to simplify
Ivaz(p X g x W) = Iyyaz(p x ¢ x rWo) — Iynzix(p X g X rWa)

and

Ipaz(p X g x TW,) = Iyyaz(px g X rW5) — Iypziy(p % g x TW,)

for use in verifying (5.13). Now, (5.10) will be established if we can show that

3 1
sup Lz Wa) = Linzp(phsa", Wa), (C4
(p,q)€[0,1]x[0,1] XAZIYAD XAZ\Y )
% % » *®
sup Iy/\Zl.X(p’q’ Wa) = I)’I\Z|X(p ,q 7Wa), (05)

(r.9)€[0,1]x[0,1]

and

3 1
sup Iz%’)’AZ(pv q, Wa.) = I,%y,\z(p‘,q*,Wa). (06)
(p.9)€[0,1]x[0,1]

To establish (C.4) — (C.6), we first note that

sup I%.(p,q,Wa) = sup inf I.(pxgqxrW,).
(r.9)€l0,1]x[0,1] (pa)€l0,1)x[0,1] reD3 (s) .

Hence, (C.4) - (C.6) will be established if we can show that ((p*,¢*),r*) is a saddle point
in each case. Recall that if F is a real-valued function of two variables, say u and v, then

(u*,v*) is a saddle point for F if for all u and v,
F(u,v") < F(u*,v*) < F(u"v). (C.7)
If (C.7) holds, it is trivial to show that
sup inf F(u,v) = F(u",v").

To establish (C.7), one shows that v* is a global minimum of F(u*,v) regarded as a function
of v, and that u* is a global maximum of F(u,v*) regarded as a function of u. Now, it is
not too difficult to establish (C.4) and (C.5) since (C.1) implies Iyaz;y(p X g X rW,) does
not depend on ¢, and (C.2) implies Iyazix(p X g X rW,) does not depend on p. To establish

(C.6) is extemely tedious, and we only sketch the derivation:
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Clearly, m(3) = 0. To show that p = 1 is the only possible solution, it is sufficient to show
that m is a strictly increasing function on (0,1). This can be accomplished by showing
that m’ > 0 on (0,1). In fact, we show that m’ has a unique minimum at p = 1, and
that m/(3) > 0. To show that m’ has a unique minimum at p = 3, we show that the only

solution of m"(p) = 0 is p = 1, and that m"(3) > 0. Showing that m”(p) = 0 has the

unique solution p = } is the tedious part of the task. Having done all of the above, it

follows that f has a unique maximum on (0,1) x (0,1). With only a little more work, it is

easy to verify that (3, 2) maximizes f on [0,1] x [0,1]. a
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