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The cache interference is found to play a critical role in optimizing cache allo-

cation among concurrent threads for shared cache. Conventional LRU policy usu-

ally works well for low interference workloads, while high cache interference among

threads demands explicit allocation regulation, such as cache partitioning. Cache

interference is shown to be tied to inter-thread memory reference interleaving gran-

ularity: high interference is caused by fine-grain interleaving while low interference

is caused coarse-grain interleaving. Profiling of real multi-program workloads shows

that cache set mapping and temporal phase result in the variation of interleaving

granularity. When memory references from different threads map to disjoint cache

sets, or they occur in distinct time windows, they tend to cause little interference

due to coarse-grain interleaving. The interleaving granularity measured by run-

length in workloads is found to correlate with the preference of cache management

policy: fine-grain interleaving workloads perform better with cache partitioning, and

coarse-grain interleaving workloads perform better with LRU.

Most existing shared cache management techniques are based on working set



locality analysis. This dissertation studies the shared cache performance by tak-

ing both locality and interleaving information into consideration. Oracle algorithm

which provides theoretical best performance is investigated to provide insight into

how to design a better practical policy. Profiling and analysis of Oracle algorithm

lead to the proposal of probabilistic replacement (PR), a novel cache allocation pol-

icy. With aggressor threads information learned on-line, PR evicts the bad locality

blocks of aggressor threads probabilistically while preserving good locality blocks of

non-aggressor threads. PR is shown to be able to adapt to the different interleaving

granularities in different sets over time. Its flexibility in tuning eviction probability

also improves fairness among thread performance. Evaluation indicates that PR

outperforms LRU, UCP, and ideal cache partitioning at moderate hardware cost.

For single program cache management, this dissertation also proposes a novel

technique: reuse distance last touch predictor (RD-LTP). RD-LTP is able to capture

reuse distance information, which represents the intrinsic memory reference pattern.

Based on this improved LT predictor, an MRU LT eviction policy is developed to

select the right victim at the presence of incorrect LT prediction. In addition to LT

predictor, another predictor: reuse distance predictors (RDPs) is proposed, which

is able to predict actual reuse distance values. Compared to various existing cache

management techniques, these two novel predictors deliver higher cache performance

with higher prediction coverage and accuracy at moderate hardware cost.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Chip Multi-Processor

While the industry continues to improve the performance of both processor

and memory systems, the processor-memory gap, a disparity between processor and

memory speed, keeps increasing, and is now one of the main obstacles to high

performance. Hennessy and Patterson [1] predict the gap will grow wider in the

future, which is also shown by the state-of-the-art industry products.

Recent commercial architectures rely on a memory hierarchy to alleviate the

memory bottleneck. A modern memory system consists of register files, multiple

levels of cache, main memory and disk. The first level L1 cache is usually built

on chip, in the closest location to the processor pipeline among all levels of cache.

Since the access time for L1 cache is only a couple of CPU cycles, this latency can

be effectively hidden through out-of-order execution and lock-up free caches. The

second level L2 cache has larger capacity but longer latency than L1 cache. More

recent processors choose to build the L2 cache on chip to minimize access time, and

have an off-chip L3 cache to buffer data between the on-chip processor and main

memory. Since the behavior of the memory hierarchy below L1 cache is less affected
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by pipeline design, the DRAM latency in the range of hundreds of cycles cannot be

totally tolerated. Previous research shows that a significant amount of CPU stall

time is spent on L2 cache misses [2].

On the other hand, Moore’s law remains valid as industry projects to inte-

grate 10Billion transistors by 20101. Both industry (DEC Piranha, Sun Niagara,

IBM Cell, Intel 80-core processor) and academia (MIT Raw, Univ. of Texas Trips,

Univ. of Washington WaveScalar) are actively looking for solutions for translating

higher integration density to higher microprocessor performance. In addition to

traditional superscalar architecture, two alternatives have been proposed: simulta-

neous multithreading (SMT) [3] and chip multiprocessor (CMP) [4]. Single thread

in superscalar architecture can only offer diminishing returns due to limited par-

allelism which can only be extracted with prohibitive complexity and power cost.

Unlike the superscalar architecture which only exploits instruction-level parallelism,

SMT and CMP can also take advantage of thread-level parallelism and process-level

parallelism, which are exposed by compiler and OS scheduler.

1.1.2 CMP Resource Sharing

Multithreaded architectures, such SMT and CMP, permit sharing of hardware

resources, including the memory hierarchy. In particular, how threads share the

memory system affects the processor-memory gap. The SMT architecture permits

the greatest degree of sharing by allowing all threads to have access to the processor

pipeline, and memory hierarchy. This design usually results in more efficient utiliza-

1http://www.intel.com/technology /mooreslaw
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Figure 1.1: Resource sharing in multi-threaded architectures.

tion of processor resources when single thread can be allocated most of the shared

resources while the remaining concurrent threads demand little shared resources [5].

However, due to layout and implementation complexity suffered by the wide-issue

SMT processor, CMPs are expected to deliver higher throughput with better scal-

ability [6]. Therefore, this dissertation will focus on CMP architectures although

some of the techniques presented may also be applicable for SMT architectures.

In CMPs, individual cores usually share some portion of the memory system

which are often lower levels of the memory hierarchy (there exists some exceptional

design, such as the MIT Raw architecture [7] which provides register-level communi-

cation channels between cores). Figure 1.1 shows three sharing strategies for CMP

architectures.

The first sharing architecture allows individual cores to have their own private

L1 caches which are located close to the cores and provide fast access. These private

L1 caches are connected to a globally shared L2 cache (or L3 cache which is the last

level of on-chip cache) through a fast on-chip interconnect. The private L1 caches

also share the underlying I/O interface. Many commercially available products, for

example the Intel Duo Core, are built around such a design.
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In the second sharing architecture, individual cores have both private L1 and

private L2 caches. Such processors as the AMD Athlon Dual-Core takes advantage

of fast on-chip inter-core communication and relies on shared high-speed I/O band-

width to provide memory access to the threads. Compared to the previous shared

cache architecture, the private L1 and L2 cache architecture provides less flexibility

in sharing the important on-chip cache capacity among cores.

The third sharing architecture is adopted in traditional SMP’s (symmetric

multiprocessing) which rely on off-chip network and memory to connect individual

single-cores with private L1 and L2 caches. The communication in such processors

occurs completely off-chip and therefore suffers from high communication latency.

This architecture also suffers from the zero-cache-sharing problem since the L1 and

L2 caches are private.

Among the three types of sharing architectures, the first and second designs are

more popular since they provide faster on-chip inter-core communication which is

the key to better performance for multi-threaded applications. The shared L2 cache

design is more appealing than the private L2 cache design due to more flexibility in

sharing the highly critical L2 cache capacity. This dissertation will study the shared

on-chip L2 cache for CMP architectures.

1.1.3 CMP Shared Resource Management

Although sharing cache capacity among cores enables higher utilization of re-

sources, multiple threads sharing the memory system may sometimes have negative
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consequences for the following reasons. First, parallel architectures implementing

high performance through multiple levels of parallelism also put more pressure on

memory latency and capacity. The total working set of multiple threads scales up

with the number of threads. This requires larger caches, wider buses and higher

bandwidth of both on-chip and off-chip communication, and results in high miss

rate, long average access time, high hardware complexity and power consumption.

Second, stretched memory systems limit the ability of multithreaded architectures to

maximize the total overall IPC because more cycles will be wasted waiting for cache

misses. Third, multiple concurrent threads compete for the limited shared cache

capacity, and when the total available resources cannot satisfy all the competing

threads, there will be winners and losers, which suffer differently from unfair allo-

cation. Therefore, in multithreaded execution, more parallelism is exposed but may

not be exploited effectively due to the memory system, and sensible management

schemes are necessary to improve both utilization and fairness of cache sharing.

Several policies to manage the shared cache among threads have been studied.

The simplest policy is LRU sharing, allowing all threads to compete for shared cache

freely. Many policies directly manage the number of cache blocks to be allocated to

individual threads by partitioning the whole cache along different dimensions [8].

Most of these techniques try to allocate cache capacity to individual threads

based on their working set sizes by assigning ways or sets to a particular thread.

While these techniques have had success in managing shared cache, one common

problem is that the allocation decision is mostly based on the measurement of indi-

vidual thread’s locality without taking into consideration the fine grain interaction

5



among references from all threads. As shown by the analysis of interaction among

threads, various interleaving granularities across sets often lead to non-uniform opti-

mal capacity allocation in different sets. Therefore locality information of individual

threads alone results in conservative cache management policies because the inter-

leaving information is not considered in the cache management.

1.2 Improving Shared Cache Policy

1.2.1 Optimal Shared Cache Management

Researchers have been successful in analyzing reference trace to study cache

management policies for one thread. A particularly insightful exercise is to study op-

timally managing cache resources with oracle information [9]. Other realistic online

policies can also be evaluated using traces since the intra-thread reference sequence

is maintained under various policies. However, it is more complicated to study cache

shared by multiple threads than single thread cache, because the inter-thread order

of references is subject to the cache management policy applied. Different policies

have varied impacts on single thread performance, hence the relative progress vari-

ation of individual threads will change the hashing of references from those threads.

Nevertheless, a trace analysis with oracle information is still desired to provide

insight into how a better online management policy should behave and how much

improvement is possible to achieve over existing policies. To enable such analysis,

an important assumption is proposed in this dissertation that the inter-thread ref-

erence order is maintained under any management policy in question. With this

6



assumption, various shared cache management ideas can be tested and compared

with one another based on common traces.

The first policy studied with this assumption is called Optimal Management

Policy for Multi-threading (OPTm). Since the goal of this research is to propose a

realistic policy, the OPTm algorithm tries to manage the inter-thread conflict with

future information while maintaining realistic policy (basic policy) for managing

intra-thread references. The basic policy is LRU in this research, since it is a popular

policy selection in both academic and industry communities. OPTm policy looks at

all the victim candidates of the lists of cache blocks from all the threads in the cache,

and uses future information to select the victim candidate with the furthest reuse for

replacement. The critical part of OPTm algorithm is to compare the future reuse

distances of victim candidates from different threads. The future reuse distance of

a reference in a multi-threaded trace is determined by two factors: its intra-thread

reuse distance, and interleaved references from other threads. The evaluation of

OPTm algorithm shows that there is still room for improvement, which provides

motivation for this research.

The success of OPTm algorithm results from two major reasons. One apparent

reason is the knowledge of future information. The second one is the consideration

of both locality and interleaving. This reason is rather important because it sheds

light on the key to further improvement. Existing cache allocation policies base their

management decisions on locality information for individual threads. Interleaving

information is ignored in such policies. Although some policies [10, 8] try to provide

more flexibility into rigid cache capacity allocation, the full potential for improve-
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ment cannot be fulfilled without explicitly taking thread interleaving into account.

In this dissertation, a new technique called Probability Replacement (PR) is pro-

posed to take advantage of some key observations made in analyzing the behavior

of OPTm algorithm,

1.2.2 Probability Replacement Policy

The analysis of OPTm algorithm reveals that it is possible to improve shared

cache management by taking thread interleaving into consideration. To take ad-

vantage of the potential made possible by considering thread interleaving, some key

observations from OPTm algorithm must be understood. The first observation is

that in OPTm algorithm, for each set, the boundaries between threads are fluid.

In other words, the allocation-based policies enforce unnecessary rigid boundary,

which prevents threads from benefiting from transient locality variation. The sec-

ond observation is that OPTm algorithm looks at victim candidates from all the

sharing threads, and selects the one with furthest reuse. Profiling the behavior of the

OPTm algorithm indicates that in many cases OPTm has strong bias in selecting

optimal candidate based on thread ID of missing thread and the primary candidate

(the block at global LRU position). The third observation is that OPTm algorithm

often behaves like LRU when the interleaving is coarse-grained.

Based on these observations, a new shared cache management technique, Prob-

ability Replacement(PR), is proposed in this dissertation. PR is an LRU-style pol-

icy, with additional rate control knobs to manage the rate of replacements in shared
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cache. The rate control knob is a probability by which the policy determines which

victim block to evict based on the ID’s of missing thread and victim candidate

blocks. The values of the knob probability are learned from sampling epochs and

applied till different phase is detected. This online learning algorithm enables the

hardware to adapt to the phase variation of multi-threaded workload. The eval-

uation of this technique shows that it is capable of managing shared cache more

efficiently than previously proposed techniques.

1.3 Contributions

This dissertation makes the following contributions.

Studying Shared Cache Management Problem as a Locality-Interleaving Prob-

lem

The reference trace in multi-threaded workload is the aftermath of interleaved

traces from individual threads. Due to the chaotic nature of program behavior,

the interleaving is highly irregular and random, hence hard to study. Previous

research try to eliminate the effect of interleaving by focusing on locality per-thread.

However, this approach cannot achieve high utilization of shared resources. This

dissertation suggests that the interleaving factor is equally important and provides

opportunities for further improvement.

Development of Trace Analysis Tool to Study both Thread Locality and Thread

Interleaving

The high irregularity and randomness of thread interleaving prevents researchers
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from thoroughly studying the multi-threaded workload. The conventional approach

is to separate interleaving from locality information, and use locality per-thread only

to manage shared resources. This dissertation proposes to analyze interleaved traces

with the awareness that locality interacts with interleaving. Instead of isolating lo-

cality from interleaving, new analysis methodology treats interleaved trace in its

entirety, which minimizes loss of valuable information as for how multiple threads

interact with one another.

Qualitative and Quantitative Analysis of OPTm Algorithm Behavior to Explore

Design and Performance Space for Multi-threaded Cache

The assumption that the interleaved trace remains the same under different

management policies enables feasible analysis framework to evaluate different poli-

cies on the same trace. Although accuracy is sacrificed, the benefit of ease and

key observations makes it a desirable approach to study multi-threaded workloads.

Experiments based on this assumption shows its effectiveness and validity in reveal-

ing insights into how multiple threads interact with one another and directing the

design of realistic online management techniques.

Design of Probabilistic Replacement Policy

Based on the knowledge acquired through multi-thread trace, a novel shared

cache management policy is proposed. This policy is able to adapt to the dynamic

interleaving of threads with different locality. An important portion of the PR policy

is the epoch-based online learning of best control ratios, which tracks the phase

variation of program behavior and feeds back to control logic. The implementation

uses global control ratios to manage threads in all sets, minimizing hardware cost.
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Evaluation of Probabilistic Replacement Policy and Comparison with Other

Techniques

A faithful evaluation of the performance of probabilistic replacement policy is

conducted across a large number of two-program workloads and a number of four-

program workloads as well. A group of other allocation based techniques are also

evaluated and compared against PR policy qualitatively and quantitatively. The

experiment results show that PR policy outperforms LRU and UCP, a recent cache

partitioning technique, by about 5% and 3%, respectively.

Design and Evaluation of Reuse Distance based Last Touch Predictor

In addition to the topic on the shared cache for multi-program workloads, the

cache management for single-program is also studied. A reuse-distance based last

touch predictor is proposed to improve cache performance for single programs. The

reuse-distance information is employed to increase both prediction coverage and

accuracy, resulting in lower miss rate at cheaper hardware cost, compared to other

existing last touch predictors.

1.4 Road Map

The remainder of this proposal is organized as follows. Chapter 2 discusses

related work, followed by background and methodology in Chapter 3. Chapter 4

profiles and analyzes the run-time behavior of multi-threaded cache with various

management techniques, particularly the Oracle management algorithm. Based on

this analysis, Chapter 5 proposes new cache management algorithm: victim eviction.
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Probabilistic replacement, a practical online management technique is developed

based on victim eviction in Chapter 6, and it is evaluated and compared to other

existing techniques. Chapter 7 reports reuse distance information based last touch

predictor for single program cache management. Finally, Chapter 8 concludes the

dissertation and suggests future directions.
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Chapter 2

Related Work

This chapter surveys background material and related work on memory sys-

tems. First, it introduces some historical work on the general locality and cache

study. It then focuses on some research work on cache management policies and

their application in multithreaded execution. Much attention is paid to recent de-

velopments in multithreaded cache, such as cache partitioning, locality optimization,

capacity allocation, etc.

2.1 Memory Locality Characterization and Application

Characterizing Locality

As the speed gap between the processor and memory system widens, caches

became an important component of computing system in mid 60’s, 20th century [11].

The cache organization parameters: capacity, associativity and block size, and their

impact on cache performance are studied by Smith [12]. Three cache miss cate-

gories are defined by Hill [13] as compulsory misses, capacity misses, and conflict

misses. Puzak [14] conducted analysis on cache replacement policies to improve

cache utilization with shadow tags.

Another aspect of memory study has been driven by workload characteriza-

tion, such as control flow, instruction level parallelism, memory locality, and ba-
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sic block behavior. Characterizing the intrinsic quality of application motivates

new architectural features and provides insight for explaining performance mea-

surement/simulations. As one important form of program characterization, locality

analysis has been the focus of memory research. Early efforts sought to manage page

storage and transfer to improve virtual memory system performance [15]. In [9], the

theoretical optimum OPT algorithm was proposed to set up the upper bound limit

for replacement policy, and concluded LRU (least recently used) replacement is

practically a good choice. Denning [16] proposed working set model and defined

working set as the set of pages used during a fixed-length sampling window in the

past, and suggested working set be measured by monitoring page footprint. Later

Denning [17] defined locality using virtual time distance, and suggested three mean-

ings of distance: temporal, spatial and cost.

Some researchers [18] proposed representations of locality in terms of proba-

bility density, which can be used to predict and tune cache performance. Instead

of using probabilistic model, other researchers [19, 20, 21] used analytical cache

modeling to capture locality based on cache models specified with parameters.

Improve Memory Performance with Locality

The principle of locality has wide application in virtual memory, cache, I/O

buffer, network interface, video processing, web caching, and search engine. The

scope of this literature survey will be focused on cache management. To solve the

widening processor-memory gap, many researchers work to improve cache perfor-

mance through hardware, software, or hybrid solutions.

Hardware solutions have the advantage of exploiting runtime information to
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improve hit rate and save power consumption.

Column-associative caches [22] improve direct-mapped cache performance by

placing conflicting cache blocks through rehashing. Hardware called locality pre-

diction table is proposed in [23] to detect different types of locality. The victim

cache [24] stores replaced data in a small fully-associative buffer to convert some

references with reuse distances slightly larger than what the main cache can allow

into additional cache hits. A small fully associative cache is proposed in [25] to

bypass references with bad temporal locality and prevent them from polluting cache.

Johnson, Merten, and Hwu [26] use Spatial Locality Detection Table to capture the

spatial locality variation and dynamically adjust cache block sizes to reduce both

capacity and conflict misses. This proposal is particularly indebted to the work

of run-time cache bypassing [27] for motivation of using bypassing techniques to

optimize locality quality. Line distillation [28] also detects low spatial locality of

the less recent part of the LRU stack and retains the used words while evicting the

unused words. Hardware history tables for last touch prediction are employed by Lai

and Falsafi [29, 30] for self-invalidating dead block in advance for distributed shared

memory coherence protocol, as well as for improving cache prefetching. Locality in

the form of generational behavior can help to reduce cache leakage power by turning

off dead cache lines [31].

Cache replacement policy is a heavily investigated topic. Some researchers try

to bring access frequency into replacement policies [32, 33, 34]. Guo and Solihin [35]

use an analytical model to explain the performance variation of different replacement

policies. In [36], locality is approximated by the combination of access frequency and
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block age to choose victim to evict. Wong and Baer [37] propose both profile-based

scheme and on-line locality table to detect temporal locality and direct replacement

policy to retain those cache lines exhibiting strong temporal locality. The v-way

cache [38] observes the non-uniform distribution of access frequencies across cache

sets and vary associativity on a per-set basis to match the different locality levels in

different sets. With replacement policy divided into victim selection and insertion

policy, adaptive insertion policies [39] places the incoming line in the LRU position

to avoid thrashing in cyclic reference pattern. Cache replacement policies based on

last touch prediction [40, 41, 42] provide hardware tables to track reference behavior

and predict last touches to enable early eviction replacement.

Since memory locality is an intrinsic property of programs, compiler and op-

erating system can be particularly helpful in detecting locality at source code level

and managing cache organization in more flexible way at small or little hardware

overhead. Hallnor and Reinhardt [43] use software to manage a fully associative

L2 cache, which is called indirect index cache (IIC) with generational replacement

policy. This software replacement policy outperforms a set-associative cache using

LRU policy by exploiting the ability of fully associative cache to take advantage of

temporal locality. Compiler [44] can also play an important role in locality analysis

at source code level providing victim selection hints to hardware replacement.

Pretching has been proven to be an effective technique to reduce cache misses.

Special hardwares are proposed to facilitate cache prefetching [45, 46, 47, 48, 49].

Compiler can also analyze the program access pattern and predict the block ad-

dresses before their real references. As a result, prefetching instructions can be
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inserted into program by compiler [50, 51]. A similar technique taking advantage

of memory level parallelism to improve cache efficience is runahead execution [52],

which can be supported in both hardware [53] and compiler [54].

More detail about related work on locality optimization can be found in Sec-

tion 7.2.

2.2 Shared Cache in Multithreaded Workloads

Multithreaded Workloads

When SMT and CMP became the focus of architectural research, people

started to study memory behavior in parallel execution by characterizing access

pattern [55, 56, 57] and developing analytic model [58]. The benchmarks under

study include SPEC2000 suite [59], server workloads [60], bioinformatics bench-

marks [61], SPEC OMP suite [62], and SPECjbb [10]. Single-threaded benchmarks

are usually grouped together to compose multi-program workload, in which there

is zero overlap among the working sets of individual programs. Parallel programs,

on the other hand, represent more complicated situations because different thread

working sets have both private portion and shared portion. This dissertation is

focused on the multi-program workloads.

Evaluation Metric, Performance Target and Management Policy

In [60], shared cache management is described in some important aspects:

evaluation metrics, performance targets and management policies. Evaluation ma-

trix are some measurement methods to quantify the performance of multiple threads
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based on IPC or miss rate. Compared to measuring performance based on miss rate,

IPC based evaluation is more frequently adopted in research because it is closely

connected with execution time. Three IPC-based metrics are proposed: average

IPC, average weighted IPC [63], and harmonic mean of weighted IPC [64]. IPCi

is the IPC of single thread when N threads are executed simultaneously, while

SingleIPCi is the IPC of that thread when it is executed without sharing the cache

capacity with other threads.

AverageIPC =

∑N
1

IPCi

N
(2.1)

AverageWeightedIPC =

∑N
1

IPCi

SingleIPCi

N
(2.2)

HarmonicMeanWeightedIPC =
N

∑N
1

SingleIPCi

IPCi

(2.3)

Among the three metrics, average weighted IPC and harmonic mean of weighted

IPC reveal more about system-level performance by considering relative performance

variation due to sharing resources. This relative effect on individual thread perfor-

mance is quantified as fairness [64, 65], and employed as an important target for

optimization of overall throughput. With equal priority set for each individual

thread, average weighted IPC has been a popular metric used by many researchers.

In this dissertation, the optimization target is to maximize average weighted IPC

for multi-program workloads.

The specific technique to reach the optimization target is called the man-
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agement policy. A simple solution is to inherit cache policies from conventional

single-threaded cache, such as LRU. This policy treats all references as if they are

from the same program. Unfortunately, this simplest approach does not work well,

and researchers found that some regulation is necessary when competition happens

and results in unfair allocation among threads. To better manage the competition

for shared resources, a number of management techniques are developed.

Static and Dynamic Cache Partitioning Policies

In an early study [66], an optimal static partitioning algorithm of shared

memory for multiple programs with miss rate variation outperforms LRU policy.

Profiling information determines the static splitting of L2 cache in [62], which

outperforms both private L2 and address-interleaved shared L2 caches.

Since programs exhibit phase behavior during their execution, static parti-

tioning cannot adjust to the variation of multiple competing programs. Suh et al.

[59, 67] employ on-line miss rate characterization and dynamic variation of parti-

tion size to improve overall hit-rate of L2 cache. Chiou et al. [68] use software

to dynamically partition cache with the awareness of constructive and destructive

interference, which lead to better overall performance. Qureshi et al. [69] define the

utility function of program and optimize global miss rate with online utility moni-

toring technique, and they use this UMON mechanism to implement utility-based

cache partitioning (UCP). This technique is selected as a typical practical cache par-

titioning technique to compare in this dissertation. Improving overall performance

alone does not completely solve the problem of fairness, which is addressed by [70]

with the notion of fair cache sharing and partitioning. Jaleel et al. [71] change the
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insertion policy to adaptively control the portions of individual thread working sets

to be resident in cache.

Conventional cache partitioning algorithms assign allocations in sets, while

Srikantaiah et al. [8] propose partitioning among sets for parallel programs. For

parallel programs with inter-thread data reuse, compiler [72] can reorganize the loop

iterations of each processor to maximize inter-thread locality. Operating system can

also manage shared cache through architectural features [10] to optimize fairness of

miss-rate or performance.

Hybrid of Private and Shared Caches

Compared with private cache, shared cache has disadvantage of slow access

time and small capacity due to higher complexity. Hybrid of private and shared

architectures [73] can provide high global capacity and fast local access through

non-uniform accesses and sharing private cache among processors to allow expanding

private data. Victim replication [74] replicates local primary cache victims within

local L2 cache to minimize local L2 cache hit latency and maximize utilization of

effective shared capacity. Cooperative caching [75] uses private caches and aggregate

cache to exploit local and global levels of locality. Hardware-managed coherent

caches and software-managed streaming memory are compared in [76] to evaluate

these two basic models for CMP memory systems. In [77], the separation of L1

and L2 caches are overcome by allowing direct access to remote L1 cache to provide

immediate access to data once produced.

Service Quality Management

Shared cache also challenges the Quality of Service (QoS) in CMP systems due
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to less effective share of resources allocated to a particular application. CQoS [78]

is a priority-based QoS scheme for shared cache, in which the priority is enforced

by selective cache allocation, set partitioning, and heterogeneous cache regions. In

Virtual Private Machines (VPM), Virtual Private Caches (VPCs) [79] provide min-

imum guarantees of bandwidth and capacity for cache QoS through arbiter and

capacity manager.
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Chapter 3

Background and Methodology

As discussed in Chapter 1, the memory behavior of shared cache in CMP is

an outcome resulting from locality and interleaving. This chapter describes the

definitions for locality and interleaving, and how they interact with each other. The

experiment setup and methodology are also described in this chapter.

3.1 Locality

To use locality to characterize multithreaded working sets, some quantitative

representation methods have been developed. One commonly-used definition of

locality of a reference at time T is as follows [80]:

Locality =
1

(Tnext − T )
(3.1)

where Tnext is the time of the next access to the same address.

Since we assume the data unit for communication in the memory system is

a block, temporal locality is a special case of spatial locality. According to this

definition, we can say a memory reference has high locality if the time of the next

access to the same block is far in the future, and low locality if the next access time

is near in the future.

In practice, T is expensive to measure and susceptible to program volatility.
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Time Index 0 1 2 3 4 5 6 7

Block Address X Y Z Y X Z Z Y

Complete FRD 2 1 2 2 * 0 * *

Complete FRL 3 1 2 3 * 0 * *

Complete BRD * * * 1 2 2 0 2

Residual FRD(X) 2 2 1 0 * 0 * *

Residual FRD(Y) 0 1 0 3 1 1 0 *

Residual FRD(Z) 1 0 2 1 0 0 * *

Table 3.1: Illustration of the reuse distance concept. (*: the values cannot be

computed without the information beyond the trace shown in the table)

The concept of stack distance [81] and reuse distance [82] are introduced to describe

locality using abstract time (the number of accesses) instead of real time. For the

convenience of discussion, the most commonly used definition is adopted as follows:

• reuse distance (stack distance) RD(Am ≺ An) = the number of unique memory

accesses between two consecutive accesses (Am preceding An) to the same cache

block A.

Some researchers [83] chose to use reuse distance to count all intermediate

memory accesses. Since the total number of all intermediate memory accesses is

also a very important concept in the following discussion, reuse length(stack length)

is proposed to define it.
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Table 3.1 illustrates the concepts defined above, where processor accesses block

address X at abstract time 0, then accesses two other cache blocks (Y and Z in the

figure) before accessing X again at time 4. Thus, the reuse distance for the first

reference to X at time 0 is 2, while its reuse length is 3 because Y is accessed twice

between the references to X.

In the following discussion it is sometimes necessary to distinguish between

the distances from a cache block reference (Y at time 3) to its immediately previous

reference (Y at time 1) and to its immediately next reference (Y at time 7). RD(Y3 ≺

Y7) is called forward reuse distance of Y3, and RD(Y1 ≺ Y3) is called backward reuse

distance of Y3.

Reuse distance can sometimes be a runtime measurement of how far in the

future a block is reused at the reference time of another block. For this purpose,

RD(Em ≺ Fn) is called residual reuse distance of block Fn at reference time of block

Em, ie, the number of unique memory accesses between reference Em and reference

Fn (including other possible references to block address E between Em and Fn). On

the contrary, RD(Am ≺ An) is called complete reuse distance of block A.

Before studying multithreaded locality, let us first look at singlethreaded pro-

gram behavior since it provides a basis for discussing the multithreaded cases. A

common way to profile singlethreaded program locality is to look at how miss rate

varies over various cache configurations with different levels of capacity, associativity,

and replacement policy. Instead of treating every cache miss equally in computing

overall miss rate, some studies [84] also try to identify each cache miss as either

a conflict miss or a capacity miss. Since LRU is a widely used cache replacement
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Figure 3.1: Singlethreaded stack distance distribution, and cache hit rate as a func-

tion of cache associativity

policy, stack distance (reuse distance) profile [85] has been proposed to reveal more

detail in characterizing locality under LRU policy.

Figure 3.1 presents the cache profile of two SPEC2000 benchmarks: art and

gzip, under a set-associative LRU L2 cache. Since the stack distance distribution

varies with the number of sets in the cache, the number of sets is set up as 2048 in

the experiment. The points labeled “art-ssd” stand for the percentage of references

exhibiting a particular stack distance value (X-axis label) among all references in

the art benchmark trace. Under LRU replacement policy, all references with future

reuse distance smaller than the associativity will cause the next reference to the

same block to hit in cache, otherwise a miss will occur. Thus the miss rate for a

particular associativity AS is equal to the sum of the percentages of all references

with stack distances smaller than AS, ie, Hitrate(AS) =
∑AS−1

d=0
ssd(d). Assuming

64-byte cache block size, the cache capacity can be computed as 2048∗64∗AS bytes.

From the stack distance distribution in Figure 3.1, it is evident that different

benchmarks have various locality characteristics. Benchmark gzip has high locality
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since most of its stack distances are concentrated in the range from 0 to 2, thus high

associativity (high capacity) has very limited benefit when associativity increases

beyond 2. In contrast, benchmark art shows low locality, with its stack distances

widely spread from 0 to 16. Hence it takes a cache larger than 1.4MB to reach 90%

hit rate.

3.2 Interleaving

When multiple threads are sharing memory system, interference is inevitable

due to interleaving. Concurrent threads compete for the limited shared resources.

However, depending on the programs, different workloads react differently to inter-

ference. Therefore, it is important to study how their references are interleaved in

the shared resource, in terms of how frequently each thread is accessing memory

and how they are ordered in time.

3.2.1 Interleaving Granularity

Interleaving is interesting yet important to study because it is the cause of

memory interference, and as shown in later chapters, it also provides some possi-

bilities to improve memory system performance. One important question is how

interleaving happens, and one answer could be Interleaving Granularity. Figure

3.2 shows two cases for different interleaving granularities. In fine-grain interleav-

ing, references from different threads are shuffled with each at small distance, while

coarse-grain interleaving tends to have references from the same thread cluster to-
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thread 1:  X  Y Z   X Y   Z 

Fine-grain interleaving 
 
 

thread 0: A B C  A B  C     
thread 1:    X   Y  Z X Y Z 

Coarse-grain interleaving 
 

Figure 3.2: Fine-grain and Coarse-grain interleaving

gether. Run Length is defined as the number of the references from the same thread

without any reference from other thread, and average runlength is the average of

all the runlength from the same thread in the multi-threaded trace. For example,

thread 0 of fine-grain interleaving in Figure 3.2 has different runlengthes, namely

1, 1, 2, and 2. The runlengthes for thread 0 in coarse-grain interleaving are 3, 2

and 1. Thus, thread 0 has different average runlengthes in these two cases, 1.5 for

fine-grain interleaving and 2 for coarse-grain interleaving.

The interleaving granularity is workload dependent. Fine-grain interleaving

happens to workloads whose concurrent programs access to the same set very close

in time, as illustrated by the example workload swim-twolf in Figure 3.3. In this

Figure, program swim (light dots) is sweeping through all the sets shown, while

program twolf (heavy dots) is also accessing almost all the sets in a less regular
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Figure 3.3: Fine-grain interleaving

pattern for the swim-twolf workload
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Figure 3.4: Coarse-grain interleav-

ing pattern for the apsi-gcc work-

load

pattern. Nevertheless, in many sets, there are a few references from twolf between

two consecutive references from swim. There is not much clustering occurring for

either program. Hence this workload exhibits small runlengthes and small average

runlength for both programs. For most workloads to have fine-grain interleaving,

concurrent programs usually have a considerable working set spanning most sets

and both access cache very frequently.

Figure 3.4 shows a coarse-grain interleaving workload: apsi-gcc. Program gcc

(heavy dots) still spans most sets, showing the same access pattern of program twolf.

Program apsi (light dots) shows a very different access pattern: its references hit a

small number of sets with heavy accessing, while avoiding accessing many other sets.

In the time window shown in this figure, the access patterns of apsi and gcc show

spatial isolation. It is possible that in the later profiling windows program apsi will

come back to access the sets it does not in the currently shown time window. When

that happens, the later references from apsi are said to have temporal isolation with
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App applu mgrid apsi sixtrack bzip2 swim art wupwise perlbmk crafty mesa

Skip 1.5B 3.4B 3.3B 8.5B 2.3B 5.7B 18.3B 3.4B 1.7B 5.2B 2.1B

Table 3.2: Different simulation start points for interleaving sensitivity study (B =

Billion)

the references from gcc in the time window shown in the figure. It is worthwhile to

note that normally in a particular workload, the interleaving granularity varies across

sets over time, therefore there is a distribution of different runlengthes, and the shape

of the distribution will have important impact on the shared cache performance.

3.2.2 Sensitivity of Interleaving Granularity

In individual programs there are multiple phases with different memory access-

ing frequencies, working sets, and set mappings. If a program is executed concur-

rently with different program phases of other program, the interleaving will change

because of varied accessing frequency and set mapping. To study the sensitivity

of interleaving granularity to program phases, some traces are created by running

programs from different starting points. Then the average runlength is measured in

these new traces, and compared with the original traces.

Start points for the original traces are shown in Table 3.5. Out of 26 SPEC

CPU2000 benchmarks, 11 benchmarks are selected to start from different start

points as shown in Table 3.2. 100 new traces are created by simulating work-

loads which are made of one program with original start point and another program

with new start point. The average runlength of the new trace of a particular work-

load is compared with that of the original trace of the same workload with programs
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starting from the original start points. Then the percentage of average runlength

variation is computed for each workload, and the average variation over the 100 new

traces compared to the original traces is within 3%. Although some programs start

from very different code regions due to different start points, interleaving granu-

larity remains stable for most workloads. Different execution regions of the same

program may have impact on memory access behavior, however, the variation is not

significant enough to change the relative interleaving of the memory references from

different threads.

3.2.3 Impact of Interleaving on Performance

In order to reveal the impact of interleaving on performance, a large number

of two-program workloads (to be introduced in later chapters) are simulated to gain

some statistical insights. Shared L2 cache traces are collected from these workloads’

dynamic executions and are fed to a set-associative 1MB cache trace simulator with

associativity of 8. This simulator is capable of enforcing a number of management

policies, including oracle policy, LRU, and some other policies to be mentioned later

in this dissertation. Once the simulation completes, the simulator reports miss rate,

runlength, locality and other detailed information both per-set and per-cache.

The results show that different workloads react differently to various cache

policies because of the interaction of program locality and interleaving. If the in-

terleaving granularity is measured using average runlength, the trace miss rate sim-

ulations show that certain interleaving correlates with the r elative performance
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Figure 3.5: Cache performance comparison of LRU and iPART over different inter-

leaving granularities (average runlength)

of cache policies. In Figure 3.5, the cache performance (measured in overall miss

rate) is shown across all the 2-program workloads composed in the experiment. The

points above 0 are workloads with better performance under LRU policy than under

an ideal cache partitioning policy (to be introduced in later chapter), and the points

below 0 are workloads with better performance under this ideal cache partitioning

policy. This figure shows that cache partitioning usually works better in workloads

with finer interleaving, and LRU works better in workloads with coarser interleaving

, as well as some workloads with fine interleaving. Another important observation is

that there are various levels of granularity across all the workloads, and more work-

loads with fine interleaving than coarse interleaving. Although cache partitioning

seems to work better in the majority of the workloads (67.5%), there are still many

workloads preferring the LRU policy.
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3.3 Characterizing Multithreaded Workloads

After analyzing the single thread locality of programs and their interleaving,

let us look at the interaction of multiple working sets. When multiple threads are

running simultaneously, assuming there is no sharing of data among threads (which

is true for multi-program workload), the resulting stack distances are incremented

due to the interleaving references from other threads. Several models are proposed

in [85] to predict inter-thread cache contention, with the conclusion that it is nec-

essary to consider three factors: hit(reuse) frequency, miss frequency, and stack

distance distribution.

Based on the definition of stack distance (reuse distance) under singlethreaded

working set, multithreaded stack distance (reuse distance) with interleaving can be

defined as SDm(s) = s + incr(s), where incr(s) is the incremental part of SDm(s)

caused by interleaving from other threads. Note that s is the same as stack distance

in singlethreaded working set, since interleaving threads has no effect on the internal

order of references within a single thread.

Further analysis of incr(s) helps understand what factors contribute to the

incremental part of multithreaded stack distance. By definition, incr(s) is the num-

ber of unique memory accesses from other threads during the reuse stack of distance

s. Thus incr(s) can be represented as distance(intv(s)), where intv(s) is the to-

tal number of memory accesses during the reuse stack of distance s, and function

distance() counts the number of unique memory accesses. There are 2 factors which

determine intv(s): the stack length sl(s) corresponding to stack distance s, and the
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ratio r(s) of the frequencies of all the other threads over local thread. In summary,

incr(s) = distance(sl(s) ∗ r(s)), and r(s) is a key measurement of the degree of

intervention caused by interleaving.

3.3.1 Case Study

Now let us look at the same workload composed of two SPEC2000 benchmarks

art and gzip. Figure 3.6 shows that cache hit rate variation when art and gzip are

simultaneously running with a shared 1MB L2 cache. Compared with Figure 3.1,

it is evident that the distributions of stack distances of different benchmarks are

expanded towards larger values at different rate. Compared to the singlethreaded

case, the stack distance distribution of art experiences small variation, with stable

high concentrations at stack distance values of 0, 4, 9 and 10 in both figures. At the

same time, gzip expands its stack distance concentration from the range of 0 ∼ 2

in singlethreaded case to 0 ∼ 12 in multithreaded case, and shows poorer locality

than in singlethreaded case (gzip hit rate climbs above 90% only at stack distance

beyond 14). This observation indicates that art loses little locality while gzip loses

much of its locality due to the competition for limited cache capacity.

Table 3.3 compares the miss rates of art and gzip under singlethreaded and

multithreaded executions. The comparison between singlethreaded 0.5MB and dou-

blethreaded 1MB shows how much benefit a benchmark receives by sharing doubled-

capacity cache with another benchmark, while the comparison between singlethreaded

1MB and doublethreaded 1MB shows how much penalty a benchmark suffers by
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Figure 3.6: Multithreaded stack distance distribution, and cache hit rate as a func-

tion of cache associativity

Threads Single Double

Cache Size 0.5MB 1MB 1MB

art missrate 0.822 0.666 0.686

gzip missrate 0.029 0.027 0.286

Table 3.3: Comparison of miss rates of singlethreaded and multithreaded cache miss

rates of art and gzip, with frequency ratio art:gzip = 0.88:0.12

sharing the same cache with another benchmark. Benchmark gzip suffers almost 10X

miss rate increase due to contention from art. On the other hand, art benefits (4.6%

miss rate reduction) from sharing 2X capacity with gzip while suffering only 18%

extra miss rate by sharing 1MB cache. The disparity of miss rate variation of art and

gzip can be explained by their ratio of frequency (art : gzip = 0.88 : 12). Such high

r(s) (artfreq/gzipfreq) for gzip produces high incr(s) and moves the whole stack dis-

tribution towards higher locations. For art, very small r(s) (gzipfreq/artfreq) makes

little difference to its stack distance distribution, hence the locality suffers slightly.
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This analysis of multithreaded cache performance indicates some key factors

in improving performance, which will be discussed in Chapter 4.

3.4 Methodology

M5 [86], a cycle-accurate event-driven simulator, is employed to quantify the

performance of different cache allocation policies. M5 is configured to model both a

dual-core and quad-core system. The cores are single-threaded 4-way out-of-order

issue processors. Each core also employs its own hybrid gshare/bimodal branch

predictor. The on-chip memory hierarchy consists of private L1 caches split between

instructions and data, each 32-Kbyte in size and 2-way set associative; the L1 caches

are connected to a shared L2 cache that is 1-Mbyte (2-Mbytes) in size and 8-way

(16-way) set associative for the dual-core (quad-core) system. The latency to the

L1s, L2, and main memory is 2, 10, and 200 cycles, respectively. Table 3.4 lists the

detailed simulator parameters.

Cache partitioning techniques under study are applied to the shared L2 cache

architectures. To model UCP, M5 is modified to implement the UMON-global pro-

filer for acquiring SDPs, as well as the analysis to determine the partitioning from

the SDPs. In each epoch, all possible allocations of the 8 ways in shared L2 cache

to different threads are simulated. While 2-program workloads only require trying

7 allocations (each program is allocated at least 1 cache way), simulations become

prohibitively time-consuming for larger workloads (there are 455 different alloca-

tions per epoch for 4 threads). Due to the combinatorial number of allocations,
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Processor Parameters

Bandwidth 4-Fetch, 4-Issue, 4-Commit

Queue size 32-IFQ, 80-Int IQ, 80-FP IQ, 256-LSQ

Rename reg / ROB 256-Int, 256-FP / 128 entry

Functional unit 6-Int Add, 3-Int Mul/Div, 4-Mem Port, 3-FP Add, 3-FP Mul/Div

Memory Parameters

IL1 32KB, 64B block, 2 way, 2 cycles

UL2-2core 1MB, 64B block, 8 way, 10 cycles

UL2-4core 2MB, 64B block, 16 way, 10 cycles

Memory 200 cycles (6 cycle bw)

Branch Predictor

Branch predictor Hybrid 8192-entry gshare/2048-entry Bimod

Meta table 8192

BTB/RAS 2048 4-way / 64

Table 3.4: Simulator parameters
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App Type Skip App Type Skip App Type Skip

applu FP 187.3B mgrid FP 135.2B apsi FP 279.2B

sixtrack FP 299.1B bzip2 Int 67.9B swim FP 20.2B

art FP 14B twolf Int 30.8B equake FP 26.3B

wupwise FP 272.1B facerec FP 111.8B vpr Int 60.0B

fma3d FP 40.0B eon Int 7.8B galgel FP 14B

gzip Int 4.2B gap Int 8.3B perlbmk Int 35.2B

gcc Int 2.1B vortex Int 2.5B lucas FP 2.5B

crafty Int 177.3B mcf Int 14.8B mesa FP 49.1B

ammp FP 4.8B parser Int 66.3B

Table 3.5: SPEC CPU2000 benchmarks used to drive our study (B = Billion)

the ideal cache partitioning is simulated only for 2-program workloads. The per-

formance objective is average weighted IPC (WIPC) [63]. This is the optimization

metric when searching for the best partitioning, as well as the metric in other IPC-

based performance results. For both UCP and ideal cache partitioning, the epoch

size is 1 million cycles, which is comparable to what’s used in other dynamic cache

partitioning techniques.

To drive simulations, multiprogrammed workloads are created from the com-

plete set of 26 SPEC CPU2000 benchmarks shown in Table 3.5. Many of the ex-

perimental results are demonstrated on 2-program workloads: all possible pairs of

SPEC benchmarks–in total, 325 workloads, are formed in the experiment. To verify

insights on larger systems, 13 4-program workloads are also composed, which are
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ammp-applu-gcc-wupwise equake-galgel-mcf-sixtrack apsi-gcc-ammp-swim

bzip2-art-lucas-crafty apsi-bzip2-swim-vpr perlbmk-twolf-vortex-wupwise

eon-sixtrack-facerec-mgrid gap-mesa-gzip-lucas art-vortex-facerec-fma3d

eon-mcf-perlbmk-vpr applu-fma3d-galgel-equake gzip-mesa-parser-gap

crafty-parser-mgrid-twolf

Table 3.6: 4-program workloads used in the evaluation

listed in Table 3.6.1 The benchmarks were provided as the pre-compiled Alpha bi-

naries with the SimpleScalar tools [87] which have been built with the highest level

of compiler optimization.2 All the benchmarks use the reference input set. Before

conducting detailed simulation of workloads, each benchmark is fastforwarded to

its representative simulation region; the amount of fast forwarding is reported in

the columns labeled “Skip” of Table 3.5. These were determined by SimPoint [88],

and are posted on the SimPoint website.3 After fast forwarding, detailed simulation

starts, and the workload is simulated for 500 million cycles (for ideal cache parti-

tioning, this does not include the exhaustive partitioning trials). On average, the 2-

and 4-program workloads are simulated for 1 and 2 billion instructions, respectively.

When detailed simulations are executed to measure performance, the cache

reference profiler embedded in the M5 simulator also records the memory reference

traces at shared L2 level. For some experiments, trace-driven simulation is con-

1In the 4-thread workloads, each benchmark appears in 2 workloads.
2The binaries are available at http://www.simplescalar.com/benchmarks.html.
3Simulation regions we use are published at http://www-

cse.ucsd.edu/ calder/simpoint/multiple-standard-simpoints.htm.
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ducted to analyze memory reference interleaving and cache performance in terms

of miss/hit rate. Because the traces collectively consume significant disk storage,

traces are acquired over a smaller simulation window of 100M cycles rather than

the 500M cycles used for performance simulations. After acquiring the traces, we

replay them on a cache simulator that models Oracle, LRU, and other ideal cache

management policies. For ideal cache management policies, the exhaustive search

technique looks for the partitioning that minimizes cache misses rather than WIPC.
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Chapter 4

Shared Cache Performance Analysis

In this chapter, some typical multithreaded workloads for shared memory in

CMP are described in terms of locality and interleaving. An oracle algorithm is

proposed to analyze the optimal management policy with future information. The

analysis also indicates that better solutions are possible by taking advantage of lo-

cality and interleaving characteristics to maximize the utilization of memory system

and improve overall performance.

4.1 Oracle Management Policy

As introduced in Chapter 1, the Oracle management policy is based on the

conventional policy, LRU, for intra-thread management. The assumption which

makes the Oracle algorithm possible is that the interleaved trace remains the same

under any applied policy. It is apparent the interleaving will change with the cache

management policy. However, for the set-associative cache under study in this

dissertation, the variation is small because only the ordering of references in the

per-set trace matters and small variation of ordering in per-cache trace will be

filtered out.

Considering this inaccuracy, the invariant assumption still enables observing

the details about how an oracle algorithm will work. Let us suppose there are N
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Figure 4.1: Oracle management policy for multiple threads

threads sharing a set (there is only one single set in fully-associative cache) with

associativity of A. Each thread has a list of cache blocks in LRU order (assuming

LRU policy for intra-thread management). On a cache miss, the cache management

hardware will look at N (or fewer if some thread has no block in cache) intra-thread

LRU blocks, and pick the one with the furthest reuse (or no reuse in the future).

This decision making process is illustrated in Figure 4.1. Each thread has a list of

cached blocks, and each list has a block on its local LRU position. Suppose there

are two threads Ti and Tj (0 ≤ i, j < N) have LRU candidates A and X for victim

selection, the Oracle algorithm will compare these two blocks’ future reuse in the

trace, and choose the one with further reuse (block A in the figure) as the victim for

eviction. For more than 2 candidates, the one with the furthest will be chosen. The

global LRU block (from thread i) is chosen as victim (thread i) is called aggressor

block, and usually an aggressor block belongs to a thread that cannot efficiently

utilize its cache allocation because of bad locality (furthest reuse). As shown later,

in one workload, usually blocks from one or more threads are selected as aggressor
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Figure 4.2: Average miss rates achieved by the Oracle management policy, PART,

and LRU

block most of time, and such threads are called aggressor thread. Next, let us look

at the performance and the behavior of the Oracle algorithm.

4.1.1 Oracle Management Performance

Now let us look at the difference of cache performance achieved by some policies

in Figure 4.2. This figure uses LRU miss rate averaged across the workload suite as

baseline (100% line), and the rest are normalized to it. Another management policy

shown in this figure is PART algorithm, which is shown in Figure 4.3. PART is

an ideal off-line searching based optimization technique that tries all the possible

cache partitionings and omnisciently picks the best partitioning that reaches the

best cache performance for each epoch. This algorithm has two versions, and the

version shown in Figure 4.2 minimizes the whole cache miss rate as defined as

minMiss in [69], which is also the optimization target for all the algorithms in trace
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Figure 4.3: Cache partitioning with exhaustive searching

study. Another version of PART algorithm is built to optimize average weighted

IPC, which will be presented in later chapter. Compared to LRU policy, the Oracle

algorithm on average reaches about 5% reduction in misses, while PART algorithm

can only reduce about 1%.

4.1.2 Comparing LRU with the Oracle Algorithm

LRU allows all sharing threads to compete for shared cache freely. Upon a

cache miss from a thread, if the block on the global LRU position happens to belong

to that thread too, this thread will evict that block, with every thread’s allocation

remaining unchanged. Otherwise, the thread owner of the global LRU block loses

one block, and the cache missing thread gains one more block allocation. The thread

with high access frequency or high miss rate (bad locality) end up occupying more

cache capacity than it can effectively use, because at any moment, the capacity

owned by a thread results from past access frequency and locality, while whether it

can effectively utilize the current capacity is dependent on the future reuse of all the

cache blocks in cache (including other blocks). Therefore the performance problem

with LRU policy is that the cache capacity one thread gains in the contention usually

cannot be justified because this contention rule favors high access frequency and bad
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locality.

In contrast, the Oracle algorithm’s eviction decision is totally dependent on

future inter-thread reuse. It preserves capacity of a thread with good locality or less

intervention from other threads and reduces allocation of a thread with bad locality

or more intervention. The advantage of the Oracle algorithm over LRU policy is

illustrated in Figure 4.4 and Figure 4.5, in which a typical set behavior is profiled.

This typical set with similar per-thread miss rates and overall miss rate as the whole

cache performance is chosen to represent the whole cache. Figure 4.4 shows how

the whole set (associativity of 8) is allocated to two programs, with the capacity

below the division line allocated to ammp and the capacity above the line allocated

to swim. Because swim has much higher access frequency than ammp (more than

5X ), swim gains more capacity than it can effectively utilize. This can be shown by

comparing the number of hits of swim (triangles) in both figures, and it is evident

although swim uses more capacity under LRU than under the Oracle algorithm, it

does not enjoy many more hits.

Oracle algorithm addresses this problem by evicting more blocks belonging to

swim because of its bad locality. As a result, ammp gains more capacity (the area

under division line) than under LRU policy and generates more hits than ammp

could given the same capacity (more crosses in Figure 4.5 than in Figure 4.4).

In this workload, ammp is more often chosen by the Oracle algorithm as victim,

therefore the aggressor in this workload is ammp, and swim is the non-aggressor.

Comparing the cache division lines in both figures, the Oracle algorithm prevents

ammp from using more capacity than it can utilize effectively. Besides the Oracle
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Figure 4.4: LRU policy behavior in ammp-swim workload: line (cache capacity

division), crosses (hits of ammp), triangles (hits of swim)

algorithm, the cache partitioning techniques can also reach the same effect by setting

up an isolation boundary between two programs to protect each working sets. The

simulation results show that a proper cache partitioning can also improve the overall

cache performance.

4.1.3 Comparing PART with Oracle Algorithm

It has been shown that both the Oracle algorithm and cache partitioning can

help to address the imbalanced allocation problem in LRU policy. Cache partitioning

algorithms consider the intra-thread locality information of all the sharing threads,

which is not considered in the management of LRU policy. The benefit of knowing

the locality of all sharing threads is that the management policy can favor the

allocation to a thread which can utilize the given capacity most effectively (the
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Figure 4.5: The Oracle algorithm behavior in ammp-swim workload: line (cache

capacity division), crosses (hits of ammp), triangles (hits of swim)

marginal cache hit gain is defined as utility in [69]). As a result, cache partitioning is

successful in managing shared cache capacity using intra-thread locality information

to maximize global hit rate.

The PART algorithm introduced in 4.1.1 is an ideal off-line algorithm which

provides the theoretical upper limit of cache partitioning. This algorithm has two

parameters, one is the number of sets that share partitioning control, another one is

the epoch (or time interval) granularity. The first one is called spatial control gran-

ularity and the second is called temporal control granularity. The spatial control

granularity determines how independently each set makes their own partitioning

decisions, and the temporal control granularity controls how fast the algorithm can

react to transient variation in program localities. When these two granularity con-

trols are both extremely fine, the PART algorithm will approach the performance of
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Figure 4.6: Cache division lines for 7 different sets in apsi-gcc workload

the Oracle algorithm because it essentially tests every eviction option and makes the

same decision as the Oracle algorithm, and this decision is completely independent

of other sets.

However, there are some limitations to the granularity control in realistic on-

line cache partitioning techniques. Because the hardware cost grows linearly with

the number of sets to monitor each and every set independently, most proposed cache

partitioning techniques either use global counters [70] or dynamic set sampling [69]

to reduce hardware overhead. Although Qureshi et. al propose UMON-local [69] to

perform partitioning per-set, its expensive overhead makes it unattractive. Thus a

trade-off of implementation cost and performance has to be considered in choosing

uniform or per-set cache partitioning.

To illustrate this limitation, the cache division per-set is profiled for the PART

algorithm introduced in 4.1.1 configured with partitioning per-set. Figure 4.6 shows

cache division lines for 7 different cache sets profiled for apsi-gcc workload out of
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Figure 4.7: Cache performance breakdown between PART and Oracle algorithms

a total of 2048 cache sets. In this figure, different sets make different partitioning

decisions independently. Performance simulation results also shows hit rate of par-

tition per-set is 10.4% higher than uniform partition, demonstrating that optimal

partition for each set is different and performance will suffer from enforcing a single

partitioning cache wide.

To further analyze the impact of spatial granularity and temporal granularity

on cache performance, PART algorithm is configured with different spatial granular-

ity levels. One is uniform partitioning, maintaining a per-cache partitioning during

the epoch, and another is per-set partitioning, allowing different sets to make indi-

vidual partitioning decision. This breakdown is shown in Figure 4.7, in which the

PART with per-cache uniform partitioning and 5 million cycles epoch size achieves

98.7% of the hits of the Oracle algorithm. Spatial granularity and temporal granular-

ity totally contributes 1.3% degradation in cache performance. PART with per-set

partitioning increases another 1.1%, while epoch granularity accounts for the rest

0.2% gap. This shows that on average spatial granularity has more impact on cache
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performance than temporal granularity.

PART is a highly unrealistic algorithm because it tries all the possible parti-

tionings off line. In reality, since any on-line algorithm does not have the luxury

to try every possible partitioning, it is usually simultaneously executing and profil-

ing. In any epoch, cache partitioning control applies a specific partitioning based

on profiling obtained in the previous epoch, and at the same time, the locality mon-

itoring component is profiling the locality information, which drives the partition

decision made at the end of the current epoch, and to be applied in the following

epoch. This process requires that the epoch size be chosen appropriately to provide

some level of predictability of locality information. If the epoch size is smaller than

appropriate length, the profiling is subject to noise such as transient variation of

locality, and also loses accuracy because it takes time for the monitoring counters to

give meaningful reading. When the epoch size is overly large, the locality profiling

tends to average over different phases in the same epoch and also loses accuracy.

Researchers often choose the best performing epoch size based on their simulation

results, for example 5 million cycles in [69], and 10 thousand L2 cache accesses in

[70].

To illustrate the effect of epoch size on a realistic online management, a cache

partitioning technique is simulated with UMON-global management algorithm [69],

which partitions cache uniformly by ways for all the sets, with epoch of 5 million

cycles based on experiments on this workload. Figure 4.8 and Figure 4.9 report

some behavior detail of UMON partitioning and the Oracle algorithm in a typical

set chosen the same way as in 4.1.2.
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Figure 4.8: UMON partitioning behavior in apsi-gcc workload: line (cache capacity

division), crosses (hits of apsi), diamonds (hits of gcc)
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Figure 4.9: The Oracle algorithm behavior in apsi-gcc workload: line (cache capacity

division), crosses (hits of apsi), diamonds (hits of gcc)

50



There are some key observations that can be made from comparing these

two figures. First, the allocation division in the Oracle algorithm is varying faster

than UMON policy due to a prefixed epoch size. As explained above, although

it is possible to capture such high-frequency phase variation with smaller epochs,

more noise will also be introduced, and as a matter of fact, smaller epoch size does

not improve performance in this workload. Second, the transient phases shown in

the Oracle algorithm behavior exhibit various granularity sizes. There is no one

single prefixed partitioning epoch size that can fit all transient phases. This is why

designers need to test many sizes to find the best performing one, and often this

best epoch size is workload dependent. The disadvantages shown here contribute to

about 14% more misses in the UMON policy than the Oracle algorithm.

4.2 Characterizing Oracle Algorithm Behavior

4.2.1 Advantages of Oracle Algorithm Behavior

After discussing the behavior of LRU and cache partitioning policies in differ-

ent types of workloads, let us look at why the Oracle algorithm can perform better.

In order to develop a better realistic shared cache management policy, one possible

approach is to study the behavior of the Oracle algorithm and improve existing

policies by approximating the Oracle behavior.

In short, the Oracle algorithm uses future information to direct current replace-

ment decisions. This future information incorporates both locality and interleaving

information, which is the key to the success of the Oracle algorithm.
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If we look at the Oracle algorithm from the point of view of cache allocation,

it is equivalent to enforcing cache partitioning at both the finest spatial granularity

and the finest temporal granularity because it completely decouples all cache sets

and makes replacement choices solely based on the effect of that eviction decision.

The larger spatial and temporal granularities by realistic cache partitioning policies

for implementation reasons therefore contribute to the performance degradation

compared to the Oracle algorithm.

These two limitations, however, do not exist in the LRU policy. The LRU

policy allocates capacity totally within individual sets, and lets individual references

decide the allocation without relating to other previous references. However, the

LRU policy is dependent on global LRU stack to give hint on victim selection. The

position of an appropriate victim in LRU stack is subject not only to locality, but

also to interleaving. And these two factors are interacting in an unmanaged way.

In summary, the secret to the effectiveness of the Oracle algorithm is the

elimination of spatial and temporal granularities with the assistance of managing

harmful interleaving. It also reveals the possible path to a better realistic shared

cache management by adding these working elements into existing policies.

4.2.2 Quantitative Profiling of Oracle Algorithm Behavior

The key step in the Oracle algorithm is to select the intra-thread LRU block

with the furthest reuse. According to the inter-thread locality discussion in Chapter

3, the multi-threaded reuse distance of any cache block has two components, namely
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intra-thread reuse distance, which is determined by its intra-thread locality, and the

intervention due to interleaving. When a local LRU block is chosen by the Oracle

algorithm as victim, it might be because of its long intra-thread reuse distance, or

because of heavy intervention, or both. To understand how the Oracle algorithm be-

haves in real workloads, a detailed profiling is conducted on all 2-program workload

traces in the experiment.

The first insight obtained from the detailed profiling information is how the

Oracle algorithm selects victims from multiple threads. The process of replacement

in shared cache has two steps. The first step is to choose the right victim among the

blocks from the same thread. Since LRU is used as default intra-thread replacement

policy, this step is to determine the LRU block within the individual threads. The

second step is to choose the final victim from the victim candidates from multiple

threads. Oracle algorithm has the benefit of future knowledge to direct victim

selection, while any realistic policy does not. However, the analysis of profiling

results shows that there is still a hint to direct online algorithm to make a reasonably

good choice to improve the cache performance.

To enable the profiler to track the information of victim selection, each cache

block in the cache is labeled with PID(thread id). During the process of the Oracle

algorithm, upon each cache miss, the profiler records the missing thread ID, the final

victim PID, and all the candidate victims’ PID. From this information, one can gain

insight into the pattern of the Oracle algorithm behavior, specifically, which thread

is missing, which thread’s block is evicted, and frequency of such events. In addition

to the Oracle algorithm profiling, the profiler also keeps information related to LRU
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event missing PID victim PID

E00: 0 0 0

E01: 1 1 1

E10: 2 0 0

E11: 3 1 1

Table 4.1: The event categories of missing PID and victim PID in the Oracle algo-

rithm for 2-program workloads (thread 0 and 1)

and cache partitioning policies. For LRU information, the profiler maintains inter-

thread LRU order of all the blocks in the cache. It enables the comparison of the

Oracle algorithm and LRU policy behavior. There is also block-counting mechanism

embedded in the profiler to provide cache capacity allocation information. This

feature reveals the difference between the Oracle algorithm and cache partitioning

algorithm.

This dissertation is particularly interested in showing the difference between

the Oracle algorithm and LRU policy, because LRU policy provides a good baseline

to develop novel cache policy. Analysis of such profiling information for 2-program

workloads reveals that the Oracle algorithm sometimes evicts the global LRU block,

but not always. It seems to be a random choice if we only look at the LRU stack

position of victims. However, if the PID information of missing thread and the

victim block is taken into consideration, there are some interesting regularities in

the distribution of all 4 possible events (for thread 0 and 1) as shown in Table 4.1.

In this experiment, when a cache miss occurs, the PID of cache missing thread,
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the LRU stack position of each candidate victim, and the PID of the selected victim

block, are captured by profiler. After a simulation of workload, the count of each

category of event is computed and compared with each other. The analysis is focused

on the difference of victim selection in the Oracle algorithm and LRU policy. For

example, the profiler provides N01 as the count of the event E01 that thread 0 incurs

a cache miss and a block of thread 1 is on the global LRU position. M01, counted

by profiler, is the count of the event that when the event E01 occurs, the Oracle

algorithm chooses the block of thread 1 as victim. In one instance of E01, the Oracle

algorithm would choose victim from 2 candidate victims if there are two of them,

while LRU would choose the candidate victim on global LRU position. According

to this description, M01 instances of event E01 are the subset of N01 instances in

which the Oracle algorithm makes the same decision as LRU policy. In other words,

the matching ratio M01/N01 denotes how well LRU victim selection matches the

Oracle algorithm. If the ratio M01/N01 is equal to 100%, LRU always makes the

same victim decision as the Oracle algorithm in every instance of event E01, while

0% indicates that LRU always makes the wrong choice of victim.

Let us look at the comparison of LRU and Oracle policies presented in Fig-

ure 4.10. There are four points for each workload to represent the matching ratio

Mi/Ni in all four event categories. Each point is between 0 and 1 (100%), to rep-

resent LRU is either close to matching the Oracle behavior (close to 1) or close to

the opposite of the Oracle behavior (close to 0). In order to highlight the workloads

when LRU and the Oracle do not agree, we do not show the workloads when LRU

nearly matches the Oracle (all four points for that workload are all close to 1). One
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Figure 4.10: The percentage of LRU victim choice matching the Oracle victim choice

for 4 event categories (0: E00; 1: E01; 2: E10; 3: E11)

interesting observation from this figure is that most unmatching workloads share a

similar pattern (the PID’s of a workload are swapped to fit the pattern if neces-

sary). This shared pattern is that LRU closely matches the Oracle behavior in most

workloads for event categories 0 and 2, while for event categories 1 and 3 LRU and

the Oracle strongly disagree.

The study of this pattern shows some insight into how the Oracle adapts to the

locality and interleaving situations in two-program workloads. From the definition

of the event category, we can see that both event 0 and 2 are evicting the blocks

from thread 0 when they are on global LRU position. For event 1 and 3, in most

workloads, the Oracle does not always evict the global LRU block which belongs to

thread 1 as LRU policy. Instead, the Oracle most likely evicts the victim candidate

of thread 0, which is not on global LRU position. In summary, the Oracle in any

event shows strong bias in selecting the victim candidate of a particular thread,
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which is thread 0 in our experiment, no matter the missing thread is 0 or 1. In

other words, the Oracle attempts to evict the LRU block among thread 0 for most

of the time. This behavior restricts the cache capacity allocated to thread 0 by

evicting thread 0’s LRU block, and protects the cache capacity allocated to thread

1.

4.2.3 Aggressor Eviction Bias in Oracle Algorithm

Why does the Oracle treat these different threads differently? In Figure 4.10,

thread 0 acts as an aggressor in the workload, not because thread 0 obtains more

cache capacity than thread 1, but because thread 0 cannot utilize some of the

obtained cache capacity more efficiently than thread 1. If thread 0 can give up

some of its allocation to thread 1, and this allocation transfer will help to improve

overall cache performance, the Oracle will select the victim candidate of thread 0

most of time. In this situation, we define thread 0 as aggressor, and thread 1 as

non-aggressor. The critical key insight to the success of the Oracle algorithm is that

it most likely selects aggressor’s LRU block to evict upon a miss.

This pattern makes sense by taking both interleaving and locality into consid-

eration. In Table 4.2, there are blocks with either high or low external interleaving,

and either good or bad intrinsic locality. The target of shared cache management

is to keep the blocks with good intrinsic locality in the cache, and evict references

with bad intrinsic locality. In total four categories of blocks are shown in the ta-

ble, and top 2 categories are of good locality and should be retained in the cache.
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High external interleaving Low external interleaving

Good intrinsic locality close to or close to MRU position

on global LRU position

Bad intrinsic locality LRU position close to or

on global LRU position

Table 4.2: The block categories of different intrinsic locality and external interleav-

ing, and their likely positions in LRU stack

The blocks with good intrinsic locality and low external interleaving are likely to

stay close to the bottom of LRU stack (MRU position) because they are frequently

reused and kept from moving up to LRU position with little external interleaving.

Since these blocks usually stay low in LRU stack, most of them are not exposed to

eviction policy. However, a good locality block suffering from high external inter-

leaving will likely to be pushed up to LRU stack because the references from other

threads increase its inter-thread reuse distance. Such blocks should be protected

by cache policy, but LRU policy cannot help here because of its lack of ability to

prevent such blocks from moving up in LRU stack. Usually the blocks falling into

this category belong to non-aggressor, because the aggressor obtains too much allo-

cation and victimizes the good locality blocks of non-aggressors. When the Oracle

sees such blocks on global LRU position, it usually chooses to evict aggressor’s LRU

block instead of global LRU block, as shown by events 1 and 3 in Figure 4.10.

Now let us study how to handle blocks with bad intrinsic locality, which are

the bottom 2 categories in Table 4.2. Blocks with bad intrinsic locality should be
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evicted from cache when threads compete for capacity upon a cache miss. The bad

locality with high external interleaving are easy to detect because they often show

up at global LRU position. They have high reuse distance and the high external

interleaving makes their inter-thread distance even bigger, which increases their

chances to move to global LRU position. LRU matches the behavior of the Oracle

for these blocks because there is a good chance they are pushed to global position.

On the other hand, bad locality blocks with low interleaving from other threads are

likely to be moved to global LRU position or close to it. LRU will take care of such

blocks when they are global LRU blocks, otherwise only the Oracle can detect such

blocks belonging to the aggressor even before they move towards the global LRU

position. For events 1 and 3 in Figure 4.10, the Oracle will frequently evict these

blocks when they are not on global LRU position because the global LRU blocks

usually belong to non-aggressor.

Therefore, the Oracle automatically captures the location of bad locality blocks,

and the profiling of the Oracle for 2-program workloads show that such behavior

is statistically biased towards the aggressor thread. Later in this dissertation, this

pattern is exploited to approximate the behavior of the Oracle algorithm in the

multi-program workloads and achieve considerable improvement over the existing

management policies.

59



Chapter 5

Aggressor Eviction Algorithm

This chapter introduces a new cache management algorithm aggressor-eviction,

which takes advantage of biasing pattern shown by the Oracle algorithm to approxi-

mate the Oracle behavior and achieves much of the potential of the Oracle to improve

cache performance.

5.1 Using Aggressor Information in Victim Selection

In Section 4.2.3, the aggressor thread is identified by checking the difference

between LRU and the Oracle behavior through the trace analysis. Whether a thread

is aggressor or non-aggressor is determined by both interleaving and locality infor-

mation from all the concurrent threads. Therefore, in the trace analysis the identifi-

cation of aggressor can only be accomplished by comparing the relative performance

of the Oracle policies against other policies.

Let us assume the knowledge of aggressor thread is available when we apply

cache management policy on shared cache (the problem of identifying aggressor

thread dynamically will be solved in Chapter 6). With this information, it is possible

to improve performance by approximating the Oracle behavior. The strong bias

shown in Figure 4.10 gives hints on how to take advantage of aggressor information.

In that figure, thread 0 is the aggressor, while thread 1 is the non-aggressor. For
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events 0 and 2, LRU matches most of the Oracle decisions in many cases, therefore,

when these events occur, global LRU blocks belonging to aggressor thread should be

evicted. For events 1 and 3, when the global LRU block belongs to a non-aggressor

thread, the victim candidate from aggressor thread should instead be selected for

eviction.

The Oracle behavior shows a strong bias in Figure 4.10. In many cases (though

not always), the Oracle algorithm selects the aggressor LRU block for eviction. It

is especially the case for some workloads in events 1 and 3, where the matching

percentage varies in a wide range. This is due to the disparity of aggressor thread

across different sets and temporal epochs. Interaction among two programs are

very complicated in two dimensions. First dimension of disparity is across all the

cache sets. Since the behavior of each set is isolated from one another, there could be

different aggressors in different sets simultaneously. Due to temporal phase behavior

of programs, there also could be different aggressors in different time windows. With

the presence of such inconsistency of aggressor thread, the Oracle still applies strong

biasing in evicting aggressor’s blocks in the workloads under study in our experiment.

This pattern is exploited in a new shared cache management algorithm, which is

called Aggressor-Eviction, as described in Table 5.1.

Upon every cache miss, the aggressor-eviction algorithm looks at the PID of

the block at global LRU position. If that block belongs to the aggressor, no matter

which thread is causing the cache miss, the global LRU block will be selected as

victim and evicted from the set. Otherwise, a block belonging to non-aggressor is

at the global LRU position when cache miss happens. Aggressor-eviction algorithm
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missing thread global LRU block eviction victim

aggressor aggressor global LRU block

aggressor non-aggressor LRU aggressor block with probability = 0.99

global LRU block with probability = 0.01

non-aggressor aggressor global LRU block

non-aggressor non-aggressor LRU aggressor block with probability = 0.99

global LRU block with probability = 0.01

Table 5.1: Aggressor-Eviction Algorithm (assuming there are both aggressor blocks

and non-aggressor blocks in the cache set)

will first check if there is any aggressor block in the cache set. If there is none,

normal LRU policy will be activated; otherwise, the LRU aggressor block will be

picked up as victim with some probability. The fraction value 0.99 is adapted in

this algorithm to apply a strong bias towards aggressor eviction. The reason for

using 0.99 is that it is necessary to allow aggressor to gain some capacity even if

it is a small chance; otherwise, the non-aggressor block will never leave the cache

unless evicted by the non-aggressor itself. The experiment results show that 0.99

works well for the cases that a strong bias is needed. Thus, with probability of 0.01,

global LRU block belonging to non-aggressor is evicted. A similar thing happens to

the case when a non-aggressor cache misses and the global LRU block belongs to a

non-aggressor.
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Figure 5.1: Cache performance (hit rate) comparison of global and perset aggressor-

eviction with the Oracle algorithm (normalized to LRU hit rate).

5.2 General Aggressor-Eviction Algorithm

Just as cache partitioning can be applied using different spatial and tem-

poral granularities, so can the aggressor-eviction algorithm. In order to compare

aggressor-eviction algorithm with the Oracle algorithm, we study a more general

form of aggressor-eviction algorithm, which we call per-set aggressor-eviction. The

aggressor-eviction introduced in Section 5.1 is called global aggressor-eviction be-

cause only one aggressor is assumed for the whole cache. But in the per-set aggressor-

eviction algorithm, each set can determine its own aggressor thread for the same

epoch size as the global algorithm, which is small enough to detect temporal varia-

tion. We still keep the probability at 0.99 for eviction bias towards aggressor thread

blocks.
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Figure 5.1 shows the cache performance (hit rate) of both global (per cache)

and perset aggressor-eviction algorithms and compares them to the Oracle algo-

rithm. The Oracle algorithm can increase hit rate more than both aggressor-eviction

algorithms, while there is only about 0.2% difference between the Oracle and global

aggressor-eviction algorithm. The gap between global and perset aggressor-eviction

algorithms is caused by the assumption that there exists a single aggressor thread

across the entire cache, while the gap between the Oracle and perset aggressor-

eviction algorithm is caused by the temporal granularity.

To reveal more detail, some profiling has been conducted to capture the PID

of aggressor thread in each set, and less than 5% of all sets on average have a

different aggressor thread from the global aggressor thread. Although there is about

a 1% gap between global and perset aggressor-eviction algorithms, global aggressor-

eviction algorithm is able to close the gap between LRU and the Oracle by about

70%. One advantage of global aggressor-eviction algorithm is that it only uses one

global aggressor for the whole cache to adapt to most sets’ individual behavior, thus

avoiding the expensive hardware cost to monitor every set.

5.3 Comparing Aggressor-Eviction Algorithm to Cache Partitioning

Since the aggressor-eviction algorithm is motivated by the Oracle algorithm,

it is expected to outperform existing shared cache policies. We compare global

aggressor-eviction algorithm to iPART introduced in Chapter 3. In addition to the

2-program workloads, we also simulate the traces of 13 4-program workloads to check
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Figure 5.2: Cache performance (miss rate) comparison for LRU, iPART and the

Oracle in workloads preferring LRU or partitioning (normalized to LRU miss rate)

the cache performance for workloads with larger thread counts. In this experiment,

we divide the 325 2-program workloads into two groups based on their reaction to

different policies. Each workload trace is simulated with LRU and iPART policies

and cache performance is measured in miss/hit rate. Those workloads experienc-

ing considerable miss rate difference (≥ 1%) are grouped as LRU and partitioning

workloads. LRU policy outperforms iPART in LRU workloads, while iPART is a

higher performer in partitioning workloads. For the 4-program workloads, most

are partitioning workloads except for apsi-gcc-ammp-swim. Figure 5.2 reports the

cache performance measured in the policy-sensitive workloads for both 2-program

and 4-program traces.

First, iPART reduces miss rate in partitioning workloads of 2 programs and

4 programs by 4.0% and 3.1%, respectively. However iPART increases miss rate
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in LRU workloads by 3.6% on average. On the other hand, the Oracle algorithm

reaches the best performance in all the groups. The Oracle is better than the

best performer, either LRU or iPART, by 2.8% and 2.7%, respectively. In the

partitioning workloads of both 2 programs and 4 programs, the Oracle algorithm is

able to utilize shared cache capacity more efficiently by applying adaptive allocation

which fits each set. For LRU workloads, the Oracle algorithm also performs better

than other algorithms (2.9% better than LRU).

It is interesting to see that aggressor-eviction, although it only approximates

the Oracle algorithm, also outperforms both LRU and iPART in all groups. The

aggressor-eviction algorithm is slightly better than LRU in LRU workloads, and

almost 1% better than iPART in 2-program partitioning workloads. Aggressor-

eviction outperforms iPART and LRU even more in the 4-program workloads be-

cause there are more conflicting working sets and more complicated interleaving

with more competing threads. Although a large number of threads make it more

difficult to apply uniform partitioning or no allocation regulation, experiments re-

veal that the aggressor identity is quite stable per workload. With correct aggressor

information, aggressor-eviction is able to adapt to the variation across the cache

sets, thus reaching higher utilization.

5.4 Aggressor-Eviction Algorithm Analysis with Interleaving

As discussed in earlier chapters, cache performance under a certain manage-

ment policy is closely related to the interleaving of the references from concurrent
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Figure 5.3: Cache performance (hit rate) comparison for LRU, iPART and the

Aggressor-Eviction in workloads preferring LRU or partitioning (normalized to Or-

acle hit rate)

threads. To reveal the relation between interleaving granularity and cache perfor-

mance under the aggressor-eviction algorithm, the trace simulator also measures

the average runlength of each set in each epoch. Then we correlate cache perfor-

mance under various policies in a certain set in one epoch with the average runlength

measurement for the same set in the same epoch.

Figure 5.3 shows the performance comparison for LRU, iPART and the Aggressor-

Eviction algorithm, and the distribution of different interleaving granularities. The

performance points are measured in the sets with different average runlength. The

counts of references in the sets with different average runlength are also shown in

three regions: 1-8, 9-16, and beyond 17. The counts are shown in accumulative fash-

ion, so the bar heights at 8, 16, and >23 on X-axis are the total reference counts for
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Coarse-Grain Fine-Grain

LRU (2-program) 78.4% 21.6%

Partitioning (2-program) 28.0% 72.0%

Partitioning (4-program) 9.5% 90.5%

Table 5.2: Percent memory references performed in sets with coarse-grain interleav-

ing and fine-grain interleaving for 2 and 4 program LRU/partitioning workloads.

the three regions. This figure shows that the aggressor-eviction algorithm performs

better than both iPART and LRU except in a few cases. Cache partitioning usually

outperforms LRU in the fine-grain interleaving region (average runlength smaller

than 9), while LRU performs better in the coarse-grain region (average runlength

larger than 16). In the medium grain interleaving region (average runlength from

9 up to 16), partitioning and LRU exhibit about the same performance. This is

because the sets exhibiting medium runlength usually behave as a mixture of fine

grain interleaving and coarse grain interleaving. A single policy, either partitioning

or LRU, is not able to adapt to the mixture of interleaving granularities. Aggressor-

eviction, however, can adapt to different interleaving granularities. As shown in

the very fine grain interleaving region, aggressor-eviction outperforms partitioning

while in very coarse grain interleaving region aggressor-eviction performs better than

LRU.

This profiling matches the cache performance reported in Figure 5.1 because

there are more coarse grain interleaving sets in LRU workloads, while fine grain
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interleaving sets dominate PART workloads. The distribution of memory references

interleaved at different granularities is presented in Table 5.2. For 2-program work-

loads, LRU workloads and partitioning workloads have the opposite distribution

of fine-grain and coarse-grain interleaving references. Fine-grain interleaving ref-

erences dominate in 4-program partitioning workloads because with more threads

accessing the cache, the average runlength remains small. After discussing the inter-

leaving granularities at reference and set level, let us look back at Figure 3.5, which

shows the performance impact at the per-cache level. The correlation between the

per-cache comparison of LRU and partitioning and runlength is supported by the

profiling at set and reference level.

In summary, the aggressor-eviction algorithm is able to adapt to different

interleaving granularities, and achieves most of the cache performance demonstrated

by the Oracle algorithm. However, to be practical, the aggressor-eviction algorithm

requires identifying aggressor threads in runtime. Next chapter will propose an

on-line mechanism to address this issue.
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Chapter 6

Probabilistic Replacement Policy

Chapter 5 introduces the aggressor-eviction algorithm which has the potential

to outperform existing shared cache management policies. However, the aggressor-

eviction algorithm has some issues to solve before it can be employed in real systems.

First, the key information to its effectiveness is the aggressor identity information.

Since the aggressor is neither defined uniquely by locality information nor by in-

terleaving information, it requires both information to accurately determine the

identity of aggressor, which can incur a large hardware cost. Second, aggressor-

eviction algorithm is focused on maximizing overall cache performance (minimizing

total miss rate). However, as pointed out by other researchers [60, 70], to optimize

overall performance in terms of IPC, cache management policy also has to consider

fairness.

This chapter presents a practical online shared cache management policy

based on aggressor-eviction algorithm: Probabilistic Replacement policy (PR), which

achieves performance gain at moderate hardware cost. Detailed performance evalu-

ation is also reported and compared with other policies.
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6.1 Probability Replacement Ratios

In aggressor-eviction, once the identity of aggressor thread is known, a strong

bias, i.e., a probability of 0.99, is applied to evict the least recently used aggressor

block when the global LRU block belongs to a non-aggressor thread. This mech-

anism is effective in improving overall cache hit rate; however, actual performance

gain is determined by factors other than overall cache hit rate. In order to mea-

sure the overall performance by considering every thread, researchers tend to use

weighted IPC to consider not only absolute IPC values but also IPC variation due to

shared resource competition. If the optimization target is to minimize overall miss

rate, the management policy tends to favor the thread which can reduce misses most

given extra capacity. But this strategy can hurt weighted IPC if the favored thread

eliminates a large number of its cache misses without improving its IPC proportion-

ally, especially if other threads suffer significant IPC degradation as a consequence

of.

Researchers have shown [70, 69] that IPC improvements are often not linear

with cache performance improvements. For example, in a 2-program workloads (A,

B), it is often the case that if program A’s performance is more sensitive to miss

rate than program B, then it makes sense to favor program A by allocating more

cache capacity to it and reducing its miss rate. This is true even if doing so hurts

the overall miss rate by increasing the number of cache misses incurred by B. To

improve overall cache miss rate, we would allocate more cache capacity to program

B in this example. Then the allocation decisions are in conflict due to different
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Figure 6.1: Performance (weighted IPC) per epoch comparison of different Prob-

ability Ratios in ammp-twolf workload (normalized to the highest performance for

each epoch)

goals. In other words, the optimal cache allocations are different given different

goals (WIPC vs miss rate). There are also numerous cases in which these two goals

are in line with each other, where the aggressor-eviction algorithm will deliver the

optimal performance in terms of both overall miss rate and weighted IPC, but a

large number of cases also exist in which the two goals are in opposition.

In order to handle these cases, the aggressor-eviction algorithm is extended

with more options than the single 0.99 probability. Instead of relying on the single

probability of 0.99, a new policy is developed that provides more flexibility in bi-

asing towards aggressor thread at different levels. This variable ratio is called the

Probability Ratio, pr. A large value of pr at 0.99 will victimize aggressor threads al-

most all the time, while protecting non-aggressor threads fully. If instead we choose
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Figure 6.2: Performance (WIPC) as function of different pr values for two typical

workloads

a smaller pr value, aggressor threads will be allowed to keep more cache allocation

because aggressor threads’ blocks are less likely to be selected as victims. If a pr

value is set to be 0.0, the cache will follow the LRU decision.

The benefit of probability flexibility is realized in the detailed performance

experiments, as shown in Figure 6.1. Various pr ratios from 0.0 up to 0.99 are

applied in every epoch for the ammp-twolf workload. The weighted IPC results for

each epoch are registered for three pr ratios: 0.0, 0.5, and 0.99, normalized to the

highest WIPC among all the ratios. This workload shows phase behavior across

epochs. The performance achieved by using 0.99 pr is not always the highest, nor

is LRU policy (pr = 0). However, a moderate pr value 0.5 approaches the highest

performance in most epochs. This workload represents a category of workloads that

shows concave relation between performance and pr values.

In order to reveal what this relation looks like for other pr values, the relative

performance of all the pr values is reported in Figure 6.2. All six pr values: 0.0, 0.2,

0.5, 0.7, 0.9, and 0.99, are sampled for two typical workloads: ammp-twolf and gcc-
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mcf, which represent two different categories of workloads. Workload ammp-twolf

represents a category of workloads with concave relation between performance and

pr, whose performance reaches peak at a moderate pr value, 0.5. Such workloads

usually have a program whose cache miss rate will decrease with larger pr value,

but its IPC performance will saturate as miss rate drops below a certain level. With

a program that exhibits such a performance characteristic, it makes sense to bias

towards this program to a certain point but not beyond that point. Statistics show

that a pr value of 0.5 works well with most workloads in this category. Although

for some workloads in this category, an optimal pr value may not occur at exactly

0.5, for the sake of reducing runtime overhead (discussed later in this chapter), we

choose 0.5 as an extra pr level rather than allowing every pr value in Figure 6.2.

Workload gcc-mcf represents another category of workloads in which perfor-

mance increases monotonically as a function of pr with peak performance at the pr

value 0.99. In these workloads whose performance bottleneck is often off-chip band-

width, minimizing overall miss rate usually also maximizes overall performance. For

such workloads, evicting aggressor thread blocks can achieve performance gain by

increasing pr values, as shown by the gcc-mcf example. These two main categories

dominate the workloads in our experiments. This observation can help to reduce

the complexity of designing an online algorithm.
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6.2 Online Sampling and Learning of Aggressor Information

The aggressor-eviction algorithm introduced in Chapter 5 is an idealized pol-

icy because it assumes perfect information about the aggressors’ identity. However,

as discussed in previous chapters, both interleaving and locality information is re-

quired to determine aggressor threads, which can incur a high implementation cost

to acquire. To avoid prohibitive cost, an online sampling technique is proposed to

dynamically obtain aggressor information. Another factor to consider in designing

a real policy to optimize IPC performance is the potentially non-deterministic rela-

tionship between overall miss rate and weighted IPC, as shown in the last section.

Thus, the online policy is targeted at optimizing IPC performance instead of overall

miss rate. The observation from last section that three most likely optimal pr ratios

(0.0, 0.5, and 0.99) can help to avoid testing numerous possible ratios. The aggressor

thread has a positive pr ratio, either 0.5 or 0.99, while a non-aggressor thread uses

-0.5 or -0.99 as its pr. A pr of 0.0 will be applied on a thread which is not sensitive

to the policy, and follow LRU behavior.

There are a number of runtime performance gauging proposals [60] which

involves the measurement of single program performance under both single-threaded

execution and multi-threaded execution. Each sampling technique, including our

technique, has its own overhead in terms of hardware and sampling delay. The

hardware cost of our online technique will be covered later in this chapter, while

this section focuses on performance.

The first step in our technique is to gauge single-threaded performance. Each
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main() {
    while (1) {
        Sample();
        do {
            do_epoch(pr1, pr2, ..., prT);
        } while (!NewPhase());
    }
}

/* T = number of threads */
/* wipci = multithread_IPCi / singlethread_IPCi */
/* WIPC =    wipci */
/* do_epoch(pr1, ..., prT): execute 1 epoch using pri’s */
/* NewPhase(): true if wipci order changes, else false */

Σ

Sample() {
    WIPCLRU = do_epoch(0, ..., 0);
    for (i = 0; i < T; i ++) {
        WIPCi+ = do_epoch(0, ... +0.5 ..., 0);
        if (WIPCi+ > WIPCLRU) {
            pri = +0.5;
            WIPCi++ = do_epoch(0, ... +0.99 ..., 0);
            if (WIPCi++ > WIPCi+) pri = +0.99;
            continue;}
        WIPCi- = do_epoch(0, ... -0.5 ..., 0);
        if (WIPCi- > WIPCLRU) {
            pri = -0.5;
            WIPCi-- = do_epoch(0, ... -0.99 ..., 0);
            if (WIPCi-- > WIPCi-) pri = -0.99;}
    }
}

Figure 6.3: Online sampling algorithm for detecting aggressor threads and testing

pr value for each thread

program of the multi-program workload will be executed for an epoch without ex-

ecuting any other thread. This overhead is linear with the total number of threads

in the workload. We assume that single program IPC is stable through the entire

simulation window, and the performance loss due to this sampling is not significant.

We do not include this sampling overhead in the performance evaluation.

The second step is to identify aggressor threads, which is conducted more often

than single program IPC measurement due to the frequent variation of interaction

among threads. This step is illustrated by the Sample() function in Figure 6.3.

Before testing each thread, one epoch is simulated with LRU policy, which provides

a baseline performance with each thread at 0.0 pr. For every thread in the workload,

we run one epoch in which a positive pr ratio of 0.5 is applied on that thread while

all the other threads are using 0.0 ratio. If the resulting WIPC is better than the

performance of the baseline LRU WIPC, we decide that this thread is an aggressor,

and another epoch is run with 0.99 applied on this thread while other threads remain

with the 0.0 ratio. This second epoch for this thread is to fine tune performance,
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and if 0.99 pr ratio gives even higher WIPC, we will use 0.99 for this thread until

the next resampling of this thread and move on to test the next thread without

testing negative pr ratios. If 0.5 is shown to deliver the highest performance (higher

than both LRU and 0.99), this ratio will be applied on this thread until the next

resampling. However, if positive 0.5 turns out to be underperforming the LRU

performance, negative 0.5 will be used to test this thread for an epoch without

further testing positive 0.99. If negative 0.5 outperforms LRU performance, a further

test will be conducted with negative 0.99, otherwise we conclude that this thread

reacts best with the LRU policy and will use 0.0 until the next resampling. This

process will be repeated on each thread, so the total cost is linear with the total

number of threads. For each thread, the number of sampling epochs is 2 or 3.

There is little parallelism lost in sampling epochs, and resampling (Sample()) is

not necessary until a new phase is detected (NewPhase()). We monitor the order

of individual weighted IPC wipci during the simulation, and any variation of their

relative order hints at a new phase, and resampling is conducted to retest each

thread for their appropriate pr values.

After this step, each thread is assigned with a pr ratio. An aggressor thread

has a positive ratio, while a non-aggressor thread has a negative ratio. The behavior

upon cache miss is controlled by pr ratio which is illustrated in Table 6.1. This new

policy is based on aggressor-eviction algorithm, but extended with support for more

than 2 threads. When a cache miss occurs, the pr value of the cache missing thread

is checked. If the cache missing thread has pr of 0.0, this cache miss is handled

by the LRU policy, and the global LRU block will be victimized, no matter its
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missing thread pr global LRU block pid eviction victim

positive (r) non-aggressor probability r: the LRU aggressor block

probability 1 − r: global LRU block

negative (−r) non-aggressor probability r: the LRU aggressor block

probability 1 − r: global LRU block

0.0 any global LRU block

Table 6.1: Victim selection for thread with different pr values

PID. The change from LRU behavior occurs for aggressor or non-aggressor cache

missing threads when the global LRU block belongs to a non-aggressor. Under such

a condition, the conventional LRU policy would choose the non-aggressor global

LRU block as victim, whereas our policy will attempt to preserve non-aggressor’s

allocation by instead evicting the least recently used block among all aggressors’

blocks with probability pr.

6.3 Hardware Cost

Our probabilistic replacement policy is based on the LRU policy, which is a

popular implementation choice. On top of the hardware required by basic LRU

policy, each block is labeled with its PID, which is also demanded by other shared

cache management techniques such as cache partitioning. For a CMP with N cores,

it takes log2N bits to encode a PID from 0 to N . For the baseline 1M byte 8-way

set-associative shared L2 cache in our study, 16k bits are added to support 2 threads,
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Figure 6.4: PR central control hardware

and 32k bits for 4 threads (both within 1% overhead).

The conventional LRU policy has a per-set LRU stack to keep track of each

block’s last use. To distinguish aggressor threads from non-aggressors, there is an

extra bit to label aggressor or non-aggressor. The thread with 0.0 pr is labeled with

non-aggressor, and can be identified with this label and pr ratio information. In

addition to the bits and logic to support per-set LRU order, we also add bits and

logic to maintain another LRU stack for aggressor threads because the algorithm

described in Table 6.1 demands the LRU block among all aggressor blocks. We allow

aggressor threads to share the same LRU stack while cache partitioning techniques

demand individual LRU lists per thread for every concurrent thread.

Having described the hardware overhead for blocks and sets, let us examine

the hardware for the centralized control logic, as shown in Figure 6.4. There is a

global “Thread PR Registers” for all the threads, at most 3 bits per thread is needed
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to encode all 5 possible pr ratios. This central control logic uses a random number

generator to drive the probabilistic decision. There are also “Sampling Registers”

in the central control for the resampling process to store the temporary IPC mea-

surement and compute WIPC in evaluating appropriate pr values. The hardware

complexity of the control logic does not grow with cache size, but scales up linearly

with the total number of threads. The probabilistic replacement policy is activated

upon a cache miss, and the victim selection process can completely overlap with

missing block fetch latency, so the hit and miss latencies are not compromised. To

compute performance, the control logic obtains IPC readings from hardware perfor-

mance monitoring infrastructure such as Intel performance counters (I: instruction

count, C: cycle count), which is widely available in modern processors.

Further hardware cost reduction is possible with software assistance. Most

of the centralized control logic can also be implemented in OS handler to execute

resampling process at the beginning of each epoch. Compared with the normal epoch

size (at least 1M cycles), at most hundreds of cycles spent on executing Sample() will

not incur much performance penalty but scale well with larger number of threads.

6.4 Performance Evaluation

On-line probabilistic replacement policy is implemented in M5 simulator to

support multiple program workload simulation. The simulation tools are also able

to simulate other shared cache management policies: LRU, UCP, iPART, and iPR

(per-set aggressor-eviction introduced in Chapter 5). Like other studies, LRU policy
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Figure 6.6: Comparison of PR, UCP and iPART on our 2-program workloads (nor-

malized to LRU performance)

is employed as the performance baseline. UCP is a recent shared cache policy based

on program locality information. Single program reuse distance profiling is captured

by hardware utility monitors to drive optimization logic which chooses a uniform

partitioning for each set to minimize overall cache miss rate. We implement UCP

with utility monitor for all the sets to minimize the performance penalty of incom-

plete profiling, and consider the performance of UCP as a reasonable representation

of conventional practical cache partitioning techniques. These three practical poli-

cies: LRU, UCP, and PR, are simulated in the same 500 million cycle window, with

epoch size of 1M cycles.

As introduced in Chapter 4, iPART is an ideal cache partitioning algorithm

which picks the best performance from all the possible uniform cache partitionings.
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We design iPR (ideal PR) using the same exhaustive searching technique to select

the best performance from all possible pr combinations of all threads. These two

ideal techniques stand for the best possible performance of cache partitioning and

PR with zero online prediction penalty. Due to high simulation cost for exhaustive

searching, these two ideal algorithms are simulated in the same 100 million window

(starting from the same point as the 500 million window for practical policies).

First, let us compare PR and iPART. Each two-program workload has a pair

of results in Figure 6.5. Each workload is composed by two programs on the same

row and the same column. The first value is the performance difference between

PR and LRU, and the second value is the difference between iPART and LRU,

both normalized by LRU WIPC. Out of all 325 workloads, 109 workloads do not

have values because neither difference for these workloads is more than 1%, and we

regard them as insensitive to any policy. When the working sets of two programs

can fit in the cache together, they are compatible under most policies. There are

154 workloads that perform better under cache partitioning as compared to LRU,

while 62 workloads perform better under LRU. We call these partitioning workloads

and LRU workloads, respectively.

For LRU workloads, UCP and iPART underperform the LRU policy by 6%

and 3.5%, while online PR outperforms LRU by 0.9%. This performance difference

matches the trace analysis that most such workloads have coarse grain interleaving,

and the interaction of locality and interleaving demands different cache allocation in

different sets but uniform partitioning can not satisfy this requirement. PR does not

only perform better than cache partitioning, but also has slightly higher performance
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Figure 6.7: Comparison of PR, UCP and iPART on 4-program workloads (normal-

ized to LRU performance)

than LRU. This is because the interleaving granularity is highly uneven across the

sets. Even when the majority of the sets prefer LRU, there are still some sets

preferring allocation regulation (cache partitioning), as shown in Table 5.2. This

slight performance edge of PR over LRU shows the versatility in handling sets with

different interleaving granularities. This advantage of PR is also shown by the trace

analysis in Figure 5.2.

Cache partitioning policies do much better in partitioning workloads, achiev-

ing more than 4% gain over LRU. As discussed in previous chapters, partitioning

workloads usually require explicit allocation regulation which is provided by cache

partitioning techniques. Although PR outperforms UCP by almost 3%, it is still

slightly outperformed by iPART. Note that iPART is an ideal algorithm which suf-

fers zero searching penalty, while PR spends a number of epochs in resampling when
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a new phase arrives. Another price PR has to pay is the limited option in pr ratios.

It is shown to be near-optimal, but in some cases the true optimal pr falls in between

the available pr values in our design. UCP also suffers from searching inaccuracy,

and this penalty plus the mismatch between optimal miss rate and optimal weighted

IPC accounts for over 2% difference between UCP and iPART.

If we look at all the workloads, PR is the best performer, 1% above iPART,

more than 3% above UCP and almost 5% above LRU. We also find a similar relative

performance for 4-program workloads, as shown in Figure 6.7. In the simulation of

4-program workloads, the cache capacity and associativity are scaled up to 2MB

and 16. Because of the high cost of exhaustively simulating all possible cache par-

titionings, we study LRU, UCP and PR for 4-program workloads excluding ideal

policies. In all 13 4-program workloads in our experiment, there is only one LRU

workload apsi-gcc-ammp-swim. All the remaining 12 workloads have fine grain in-

terleaving. This result matches the trace interleaving analysis in Table 5.2, which

shows more than 90% of references are interleaved at fine granularity. Although

most references in most 4-program workloads are overwhelmingly interleaved at fine

granularity, the presence of small number of coarse grain interleaved references still

makes it hard for cache partitioning to reach high performance. PR again shows its

advantage in adapting to different interleaving granularities by outperforming UCP

in 8 workloads, matching it in 3 workloads, and noticeably underperforming in only

2 workloads. On average, with 5.9% performance improvement, PR almost doubles

the performance gain reached by UCP over LRU.

Although PR is better than UCP by only about 3% on average, PR outper-
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Figure 6.8: PR’s performance advantage over UCP on 2-program workloads (with

larger than 10% performance advantage)

forms UCP significantly in a number of benchmarks. Figure 6.8 shows all the

2-program workloads with PR outperforming UCP by at least 10%. The average

performance edge of PR over UCP is 17.5% in the 18 workloads shown in Figure

6.8, with performance gain up to 28%. For these workloads, cache partitioning tech-

niques such as UCP cannot adapt to all the cache sets because there are various

interleaving granularities across most sets. PR can adapt to different interleaving

granularities in these workloads which have stable aggressor thread identity across

various sets and epochs. In contrast, there are only two workloads with UCP out-

performing PR by at least 10%: mgrid-swim (10%), and bzip2-gzip (11.7%). In such

workloads, PR suffers from online algorithm latency, or incorrect aggressor threads

identification. If a workload experiences frequent new phases, PR has to activate

resampling very often. Thus it results in slow reaction to phase changes.
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(normalized to LRU performance)

Finally, we present the performance of PR and ideal PR in both 2-program

and 4-program workloads in Figure 6.9. In both cases, there is a 1.5% performance

gap between online PR and ideal PR, because of searching penalty and inaccurate

aggressor identification in some workloads. Nevertheless, our online PR effectively

achieves over 70% of the performance gain potential of ideal PR.

In summary, the simulation of both 2-program and 4-program workloads in-

dicate that PR is an effective cache management policy which can flexibly adapt to

the different interleaving and locality across the different sets in shared caches. It

can improve both efficiency and performance of multi-program workloads on CMPs.
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Chapter 7

Reuse Distance Based LTP-Driven Cache Management

7.1 Introduction of Last Touch Prediction

In addition to multi-threaded shared cache research, single program cache

management is also one of the research topics in this dissertation. As in shared

caches, for most processors, uniprocessor caches employ the LRU policy to drive

replacement decisions on cache misses. Belady’s study on the MIN algorithm [9]

sets up the theoretical upper limit for single thread cache performance. Recent

works show that there is still a wide gap between practical replacement policies and

the MIN algorithm for modern set-associative caches [40, 37].

Working set studies reveal that the key to the success of the MIN algorithm

is its perfect future knowledge, which is employed to direct its eviction decisions.

The oracle information employed by the MIN algorithm is reuse distance of memory

references. It is impossible for a practical policy to gain perfect oracle information

about the future, but it has been proven that prediction of reference locality is

possible. Researchers proposed numerous techniques to provide such information,

and one of these is last touch prediction [41, 29, 30, 40]. The predicted last touch

(LT ) blocks are labeled so that they can be evicted earlier than by LRU eviction,

and other LT blocks can be retained in the cache longer so that they can cause more

cache hits because they are expected to have nearer future reuse than those evicted
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LT blocks.

This dissertation proposes an LT predictor called the reuse distance last touch

predictor (RD-LTP). RD-LTP is able to capture reuse distance information which

represents the intrinsic memory reference pattern. Based on this improved LT pre-

dictor, an MRU LT eviction policy selects the right victim in the presence of incorrect

LT predictions. In addition to the LT predictor, another predictor, called the reuse

distance predictor (RDP) is able developed to predict actual reuse distance values.

Compared to various existing cache management techniques, these two novel predic-

tors deliver higher cache performance with higher prediction coverage and accuracy

at moderate hardware cost.

7.2 Related Work

There are two typical last touch predictors (LTPs): execution signature history

based predictor [29, 30, 40], and block life time history based predictor [41, 31]. The

execution signature based LT predictors extract information from the execution

context such as instruction trace, while block life time based LT predictors look at

the cache block life time history. Both types of LT predictors combine the collected

information and block address to build an index which accesses the prediction table

to predict and update the block status.

To illustrate how these LTPs work, Figure 7.1 shows a sample memory refer-

ence trace with execution context and memory information: reference block address,

PC, last touch status, and reuse distance. Most LTPs are based on block address,
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as shown in the “Address” row in Figure 7.1. The difference among LTPs is what

other information associated with block address are exploited. For example, ex-

ecution signature based LTP examines the PC values of instructions accessing a

particular block address. Preceding PCs accessing block address A: PC1, PC3 and

PC1 are concatenated and then truncated appropriately to form a signature for the

fourth instance of reference to block address A. This technique is shown to be more

effective for L1 cache than for L2 cache with large capacity and high associativity.

A better association with last touch prediction is proposed based on the last touch

history of a particular block which can be encoded as “1” for a previous last touch

and “0” for a previous reference which is not last touch, as shown in the “Last

Touch” row in Figure 7.1. The prediction signature for block A is then constructed

by concatenating these history bits of A. A deep last touch history is often required

to provide good prediction accuracy [40].

Life time based LTPs look at different history information associated with

a particular block. The cache life time is quantified in different ways: memory

reference count is used in [41], and cycle count is used in [31]. The block life

time quantification is used differently in these techniques. In [41], the number

of references to the target block is defined as life time, while the number of any

references between two neighboring references to the target block is defined as access

time. Expiration of life or access time results in prediction of last touch for the target

block. In Cache Decay [31] and Adaptive Mode Control [89], the expiration of life

times indicates a dead block which can help to reduce power in L2 caches. Cache

block liveness can also be detected in runtime system execution [90] to save power

90



time

PC1 PC3 PC1 PC7

A A A A

0 0 0 1
1 2 2 20

PC2

B

0
4

PC6

C

0
5

PC5

D

0
4

PC4

C

1
2

PC2

B

0
3

First Access Last Touch

Program Counter:
Address:

Last Touch:
Reuse Distance:

access timeaccess timeaccess time

life time

PC5

D

0
4

PC8

E

0
4

Figure 7.1: A memory address trace, and various information associated with the

trace used to predict last touch and/or reuse distance. Information includes mem-

ory addresses, memory reference program counters, last touch history, and reuse

distance. Access and live times are indicated for a sequence of references to the

memory address A.

by turning off the blocks predicted to be dead. In addition to hardware solutions,

compiler techniques [44] are proposed to identify possible last touch references by

examining program memory behavior and providing hints to cache control logic.

The signature in Inter-Reference Gap [91] is based on the reuse history of the

target block. The reuse information is quantified by counting the number of refer-

ences between two neighboring references to the target block which is reuse length.

This information is similar to the reuse information exploited by the technique pro-

posed in this dissertation. In this dissertation, the reuse information is measured as

reuse distance.

Generally speaking, reuse distance based predictors are also signature based.

However, they exhibit some important differences compared to existing techniques.

The first difference is that the novel LTP proposed in this dissertation constructs a
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new kind of signature using reuse distances instead of instruction traces, last touch

history, or reuse lengths. The reuse distance will be shown to be a more effective

way of capturing a program’s memory access patterns. The second difference is

the way the new LTP treats signature components. The reuse distance information

from preceding memory references accessing different memory locations is collected

from the same set, whereas other signatures only contain information from the same

memory location regardless of its memory reference context. The third difference

has to do with additional information provided by the new prediction mechanism. In

addition to a binary last touch outcome, a similar predictor can provide a numeric

prediction of the block’s future reuse distance which is shown to be able to help

differentiate OPT last touches and LNO [40] (i.e., the evictions that are last touches

under LRU but not under OPT). Finally, similar to some existing techniques, the

new LTP uses shadow tags to save history information beyond the cache associativ-

ity. However, shadow tags are used to keep accurate reuse information to form high

quality signatures, while Puzak [14] uses shadow tags to save blocks for potential

near reuse. Therefore, the shadow tags in this technique keep block tag information

only rather than the data blocks themselves.

7.3 Predicting Last Touch References

This section presents new predictors. The reuse distance history is introduced

first, followed by a motivating example to show its effectiveness. Then, this section

describes how RD-LTP constructs signatures and makes predictions. LNO last touch
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is also discussed followed by an introduction to RDPs.

7.3.1 Global Reuse Distance History

Reuse distance based predictors predict reference locality with reuse distance

history, which is a sequence of reuse distances of consecutive memory references

per set. An example of reuse distance history is shown in “Reuse Distance” row of

Figure 7.1. Each reference is labeled with its reuse distance which is defined as the

number of distinct memory blocks referenced from the last reference to this block

and the current reference. Note that this defines previous reuse distance (PRD) of a

memory reference while the predictor tries to predict its future reuse distance (FRD)

which is defined as the number of distinct memory blocks referenced from the current

reference and the next reference to the same block. For example, the reuse distance

history for the last reference to A is composed of the PRDs of A’s preceding memory

references to C and B. These references’ PRD are 2 and 3 respectively, therefore,

A’s reuse distance history is {2, 3} if history of depth 2 is considered.

With the definition of reuse distance history, it is easy to compute previous

reuse distance information in hardware. In a cache implementation supporting an

LRU stack, the previous reuse distance is the location of a block in the stack on

a cache hit. For a cache miss, the exact reuse distance is unknown because the

block is evicted from the cache in the past; however, its previous reuse distance is

guaranteed to be at least equal to the associativity. For the purpose of encoding

PRD, all references with reuse distance equal to or larger than the cache associativity

93



 
 
 
 
 
 
 
 
 
 
 
 

 R1 R2 R3 R4…R3 R4 R5 R1 R2 R3 R4… 

 An An B0 C0, n…BN1-1 CN1-1, n An An+1 An+1 B0 C0, n+1… 

FRD 0 2*N1 >2*N1, >N1*N2…>2*N1, >N1*N2 � 0 2*N1 >2*N1, >N1*N2… 
PRD � 0 >2*N1, >N1*N2…>2*N1, >N1*N2 2*N1 � 0 >2*N1, >N1*N2… 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Iteration n Iteration n+1 

Forward RD Backward RD 

for (tj=0; tj<N2; tj++) {        
Y[tj].y = 0; temp = 0;       R1 (PC1, Atj) 
if ( !Y[tj].reset ) {         R2 (PC2, Atj) 

for (ti=0; ti < N1; ti++) {       
       temp0 = f1_layer[ti].P;      R3 (PC3, Bti) 
   temp += temp0 * bus[ti][tj];     R4 (PC4, Cti,tj) 

} 
  Y[tj].y = temp;        R5 (PC5, Atj) 
 } 
}  

Figure 7.2: Memory reference pattern from the ART benchmark.

is encoded as the cache associativity.

7.3.2 Motivating Example

Having defined global reuse distance history, let us study why it can be effective

for reuse distance prediction. A motivating example, a frequently executed loop nest,

is taken from art, a memory-intensive SPEC2000 benchmark. Figure 7.2 shows

the loop nest code. Within the outer loop of the code, there are five memory

references, R1 to R5, performed by five different instructions, PC1 to PC5. The

memory reference trace for two consecutive iterations of the outer loop is shown

under the code, along with each reference’s future reuse distance (FRD) and PRD.

The FRD and PRD values are computed assuming each element of the Y array is

smaller than a cache block so that R1 can access the same cache block as R2 in the
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same iteration of the outer loop, as well as R5 if Y [tj].reset is false.

From the sequence of PRD values in Figure 7.2, a few reuse distance history

patterns can be identified. In particular, assuming a history length of 3, possible

patterns include [∞, 0, > 2∗N1] for R4, [0, > 2∗N1, > N1∗N2] for R3, [> 2∗N1,

> N1 ∗ N2, > 2 ∗ N1] for R4, and [> N1 ∗ N2, 2 ∗ N1, ∞] for R2. As described

in Section 7.3.1, these pattern histories–along with the associated referencing PCs–

can be used to predict memory references’ FRD values. Take R2 for example. The

FRD of the first R2 instance is 2*N1 because the if condition is met for iteration n.

This information can be captured by a predictor and used to predict the following

iteration, where the reuse distance history is the same for the second R2 instance.

Notice, however, reuse distance history alone is not enough to distinguish certain

cases. For example, the reuse distance history for the last instance of R3 is identical

to the reuse distance history for R5. In such cases, we must augment the ambiguous

reuse distance histories with memory references’ PCs to distinguish between them.

At the same time, PC alone (without reuse distance history) clearly cannot provide

good predictability either. For example, the FRD of R2 depends on the outcome

of the if statement. Predicting solely on the PC value, PC2, cannot disambiguate

between the two possible if statement outcomes, whereas the reuse distance history

can provide the context for performing such disambiguation. This is why we combine

reuse distance history with instruction PCs.

Not only does Figure 7.2 show how an RD-based predictor works, it also

illustrates why it can be effective. Despite executing a large number of iterations

(N1 is typically very big), there are a relatively small number of reuse distance
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history patterns that arise in the art code. This is because the code contains only

a few memory references, and exhibits fairly simple control flow. Hence, a small

predictor table can capture all of the important patterns. In contrast, signatures

that track individual cache blocks, like those used in LvP and AIP, can generate

significantly more patterns due to the enormous number of cache blocks referenced

by the code. For per-block signatures, much larger predictor tables are required to

store the prediction state. The compact prediction state associated with RD-based

predictors also facilitate very fast training. For example, after only a single outer-

loop iteration, the reuse distance history for R2 can be captured and used to make

predictions for the second instance of R2 in the following iteration. However, for

per-block predictors, enough accesses to each cache block must occur to generate

sufficient history to train a predictor. For example, in the art code, it is difficult to

predict for cache block An since there are only 3 references (at most) to the block

each outer-loop iteration.

Although our analysis of reuse distance prediction does not take cache or-

ganization into consideration (essentially, we assume a fully associative cache), we

find the same behavior for reuse distance history patterns occurs in individual sets

of set-associative caches as well. Hence, our motivating example also illustrates

why global reuse distance history can be effective for reuse distance prediction in a

set-associative cache.
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Figure 7.3: Reuse distance last touch predictor organization and actions. Steps 1–7

perform a prediction. Steps 8–10 update the predictor.

7.3.3 Predictor Hardware

The reuse distance information used by reuse distance based predictors is

captured by the hardware shown in Figure 7.3. Compared to a conventional cache,

the additional hardware structures are as follows: a global reuse distance history

array (GRDH array) to save global reuse history per set, a last touch (LT) bit per

block to label last touch predictions, a signature field per block to allow the signature

to be computed, a shadow tag array [14] per set to save tag and signature information

for evicted blocks, and finally, a central predictor table to save prediction for each

signature. In particular, combined with the shadow tag array, the normal cache tags

form a unified LRU stack with a depth larger than the cache associativity.

This hardware organization performs two steps: predictor table based predic-

tion and table updating. The prediction process starts from step labeled “1” in

Figure 7.3. Upon a cache access, contents of the GRDH array for that set are read

(RD1 and RD2). GRDH always keeps track of the last two preceding cache accesses’

PRD information (label “2” and label “3”). The reading from GRDH is XORed
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with the PC of the reference instruction incurring this cache access to construct a

signature (label “4”) for the cache block hit by this access (either in tags of normal

tags or the shadow tags). If there is no hit in the cache (either in shadow tags or

normal tags), this signature is discarded. This signature is used as an index to access

the predictor table (label “5”). The corresponding entry in the predictor table is a

saturating counter which gives a prediction based on a threshold (label “6”). The

prediction result is used to label that accessed block’s LT bit (label “7”).

The updating of the predictor table happens upon each cache access. If the

reference hits in the top half of the unified LRU stack, this indicates a reuse distance

smaller than the cache associativity. Otherwise the reuse distance is equal to or

larger than the cache associativity. If the reference hits in either the normal tags

or the shadow tags, this outcome is directed to access the predictor table with the

signature saved in the signature field (label “8”), and to update the predictor entry

counter (label “9”). The saturating counter is incremented if the reuse distance is

equal to or larger than associativity, and decremented otherwise. The blocks evicted

from either normal tags or shadow tags have to update the predictor table before

the eviction finishes because the signature information would be lost after eviction.

Finally, once a new signature is created, it has to be saved in the signature field for

the current referenced block (label “10”).

From the description of how the hardware works, it is critical to keep track

of block location in the unified LRU stack for the sake of true reuse distance. The

combination of normal tags and shadow tags provides a complete LRU ordering for

blocks resident in cache and blocks evicted in near past. For those newly evicted
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blocks, only tag and signature information are valuable in generating signature and

update predictor table. If the set associativity is CA, it requires CA − 1 shadow

tags to maintain the true reuse distance of newly evicted blocks. This also allows

the hardware to identify the mistakenly evicted blocks due to incorrect predictions

and avoid global reuse history corruption.

7.3.4 LNO vs OPT Last Touches

The OPT algorithm sets up a theoretical upper limit for cache performance

which achieves more cache hits than any other policy. The difference between LRU

and OPT is studied in [40] which observes that some LRU last touches are not last

touches under OPT. These LRU last touches are defined as LRU non-OPT (LNO).

LNO last touches usually are the references with reuse distance slightly larger than

the cache associativity. Thus they can be converted into cache hits by OPT because

OPT keeps them in the cache longer than LRU by evicting other LRU last touches

which are less likely to convert to cache hits. These LRU last touches evicted by

OPT are called OPT last touches, and they usually have longer reuse distance than

the LNO last touches when they are present in the same set simultaneously.

Compared to other LTP techniques, this dissertation proposes two different

methods to exploit the distinction between LNO and OPT last touches. In RD-LTP,

a simple rule is employed to decide which last touch block should be evicted early

when there are multiple blocks predicted to be last touches: the most-recently-

used predicted last touch block should be evicted. The performance achieved by
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this rule will be presented later in this chapter. Since OPT last touches usually

have larger reuse distance than LNO last touches, a predictor with reuse distance

prediction can more accurately distinguish between LNO and OPT last touches.

Since both OPT and LNO last touches have reuse distances larger than the cache

associativity, it requires a deeper stack than set associativity to keep track of their

reuse distance information. For this purpose, the shadow tags used in RD-LTPs can

also be employed to track reuse distance beyond associativity but below CA + SA.

This dissertation proposes reuse distance predictors (RDPs) to predict exact

reuse distance values for last touch blocks. The prediction mechanism is similar to

RD-LTPs with a minor difference that the predictor table saves the reuse distance

value information instead of saturating counters for binary output. Since the unified

stack depth is CA + SA, this hardware can only track reuse distance from 0 up to

CA + SA, while larger reuse distance than CA + SA is encoded as CA + SA.

Therefore, this RDP cannot predict reuse distances beyond CA + SA. However, as

shown in the later sections, this limited ability of reuse distance still can provide

further cache performance gain.

7.4 Experimental Methodology

The evaluation in this dissertation considers the 24 SPEC CPU2000 bench-

marks shown in Table 7.1. These benchmarks are simulated with the reference in-

put set by using their pre-compiled Alpha binaries provided with the SimpleScalar
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tools [87] which have been built using the highest level of compiler optimization.1

Each benchmark is first fast-forwarded to its representative region (the columns

labeled “Skip Ins” in Table 7.1 report the number of fast forwarded instructions)

according to SimPoint [88] by consulting the SimPoint website.2. Then, their traces

of L2 references with reference address and accessing instruction PC information

are collected by simulating 2 billion dynamic instructions on the M5 simulator [86].

The architectural parameters in M5 simulator is reported in Table 3.4.

There are two groups of benchmarks in the experiment: “High Potential”

benchmarks and “Low Potential” benchmarks. The simulation on a 1MB L2 cache

shows that high potential benchmarks exhibit more than 10% difference in the miss

rates of LRU and OPT, whereas low potential benchmarks see less than 10% dif-

ference. Since the verification shows that most techniques show little performance

improvement for low potential benchmarks, the rest of this chapter is focused on

high potential benchmarks.

To evaluate the techniques proposed against other techniques, some recent

representative techniques are also simulated, such as the AIP [41], LvP [41], and

DIP [39] techniques described in Section 7.2. AIP and LvP represent the state-

of-the-art for LTP-driven cache management, shown to outperform some earlier

LTPs [41]. DIP is a more recent cache insertion policy which also shows performance

improvement for single program L2 cache. DIP is evaluated with the simulator

1The binaries we used are available at http://www.simplescalar.com/benchmarks.html.
2Simulation regions for the Alpha binaries we use are published at http://www-

cse.ucsd.edu/˜calder/simpoint/multiple-standard-simpoints.htm.
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High Potential Low Potential

App Skip Ins MPKI Type App Skip Ins MPKI Type

ammp 4.75B 3.27 FP perlbmk 1.7B 0.01 Int

art 2.0B 100.70 FP eon 7.8B 0.00 Int

bzip2 1.8B 1.07 Int gzip 4.2B 0.15 Int

facerec 69.3B 3.00 FP gap 8.3B 0.98 Int

galgel 14B 1.41 FP apsi 2.3B 2.15 FP

gcc 2.1B 3.73 Int fma3d 2.6B 0.00 FP

mcf 14.75B 70.04 Int equake 4.8B 13.58 FP

mesa 2.1B 0.08 FP lucas 1.5B 9.84 FP

parser 13.1B 1.26 Int swim 5.7B 17.56 FP

sixtrack 3.8B 0.12 FP applu 1.5B 14.30 FP

twolf 2.0B 3.01 Int

vortex 2.5B 0.49 Int

vpr 7.6B 4.77 Int

wupwise 3.4B 2.05 FP

AVG 13.93 AVG 5.33

Table 7.1: SPEC CPU2000 benchmarks used to drive our cache simulations (B =

Billion).
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Cache Parameters

L1 I-cache 16 Kbyte, 2-way set associative, 64 byte blocks

L1 D-cache 16 Kbyte, 2-way set associative, 64 byte blocks

L2 U-cache 1 Mbyte, 8-way set associative, 64 byte blocks

Predictor Parameters

History Length 2 RD-LTP Shadow Tags 7 per cache set, 7 bits each

Reuse Distance Values 3 bits RDP Shadow Tags 8 per cache set, 7 bits each

Predictor Table 1024 entries RD-LTP Table Entries 2 bits

Signature Size 10 bits RDP Table Entries 4 bits

Table 7.2: Cache and predictor parameter settings.

provided on the authors’ web site.3

The cost of techniques proposed in this dissertation is analyzed in terms of area,

power, and cycle time. Based on the cache and predictor configuration parameters

in Table 7.2, RD-LTP and RDP incur 53.5 and 64 Kbyte of additional storage,

respectively. Table 7.3 shows the cost for each component of the additional storage.

Given the 1 Mbyte L2 cache, the hardware estimation adds at most a 6% area

overhead for both predictors to the conventional cache implementation. As for

power consumption, the additional storage is expected to increase the L2 power

in proportion to its area overhead. Since the policy operation is only active upon

each L2 cache access, and L2 cache access frequency is normally low, the overall

CPU power impact should be below 6%. RD-LTP and RDP have little impact on

3The DIP simulator is available at http://users.ece.utexas.edu/˜qk/dip/.
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GRDH array (2 * 3-bit/set * 2048 sets) 1.5 kB

data blocks signature (10-bit/block * 8-block/set * 2048 sets) 20 kB

RD-LTP LT prediction bit (1-bit/block * 8-block/set * 2048 sets) 2 kB

RD-LTP predictor table (1024 * 2-bit) 0.25 kB

RD-LTP shadow tags ((10 + 7) bit * 7 entry/set * 2048 sets) 29.75 kB

RDP RD prediction (4-bit/block * 8-block/set * 2048 sets) 8 kB

RDP predictor table (1024 * 4-bit) 0.5 kB

RDP shadow tags ((10 + 7) bit * 8 entry/set * 2048 sets) 34 kB

RD-LTP total cost 53.5 kB

RDP total cost 64 kB

Table 7.3: Storage Cost of RD-LTP and RDP for 1MB cache.

L2 cache access time because the latency (which is estimated to be at most 3 or 4

cycles per table access) is off the CPU’s critical path as the predictor operations can

be performed after the cache data is returned to the CPU. There should be ample

time to completely hide the predictor’s latency before the next L2 reference, which

is normally more than 10 cycles away.

In comparison, Kharbutli and Solihin report 61 and 57 Kbyte of additional

storage for AIP and LvP, respectively, assuming a 512 Kbyte L2 cache [41]. For a 1

Mbyte L2 cache, this overhead increases to 82 and 73 Kbytes. Their hardware over-

head is very similar to RD-LTP and RDP. However, the predictor table evaluated

in Kharbutli and Solihin’s previous study achieved poor performance for several of

our benchmarks. Instead, infinite predictor tables are simulated for LvP and AIP
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Figure 7.4: Cache miss rates for the high potential benchmarks achieved by OPT,

RD-LTP, DIP, LvP, AIP, and RD-LTP-Rand. All of the miss rates are normalized

to the LRU miss rate.

(With infinite tables, simulation performance of LvP and AIP is similar to what is

reported in [41]). DIP [39] incurs negligible hardware overhead compared to last

touch predictors.

7.5 Last Touch Prediction Results

RD-LTP is evaluated in this section and compared with other similar tech-

niques: DIP, LvP, AIP, and victim cache. High potential benchmarks are evaluated

for these techniques.

7.5.1 LTP and Insertion Policy Evaluation

Figure 7.4 reports the performance of various LTPs and compares them to

OPT and the DIP insertion policy. The figure reports miss rates, normalized to

LRU policy, and “AVGg” reports the geometric mean average.
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A significant gap of about 50% between OPT and LRU reveals opportunities

for potential improvement over LRU. This gap is closed by RD-LTP by 25.8% on

average, more than other realistic policies. In particular, RD-LTP reaches miss

rate reduction of 12.6% and 15.8% compared to LvP and AIP, respectively. Out

of the 14 benchmarks, RD-LTP outperforms both LvP and AIP in 11 benchmarks,

outperforms AIP alone in 1 benchmark, and matches the performance of LvP and

AIP in 1 benchmark. The miss rate gap between LvP/AIP and OPT is reduced by

30% on average. In addition to performance gains over other LTPs, RD-LTP also

brings miss rate 9.3% below DIP on average, and outperforms DIP in 9 out of 14

benchmarks, while matching DIP in 1 benchmark.

Compared to LvP and AIP, RD-LTP reaches higher prediction coverage, which

makes the MRU last touch eviction more effective in selecting the right victim. The

prediction results will be discussed in greater detail later in this section. Compared

to DIP, RD-LTP can address a wide range of memory use patterns while DIP is

effective in handling only certain access pattern such as circular access patter. In-

sertion policies work well for working sets slightly larger than the cache capacity by

avoid thrashing. By locating incoming cache blocks at LRU position rather than

the MRU position, DIP retains a portion of the working set and increases reuse on

that portion. However, LRU insertion adapts poorly for other memory use patterns;

hence, DIP reverts back to MRU insertion. In contrast, RD-LTP can outperform

DIP by identifying dead blocks and performing early eviction. The little hardware

cost required by DIP makes it quite a competitive solution. Nonetheless, RD-LTP

still provides higher performance.
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7.5.2 Cache Organization Evaluation

As discussed previously, RD-LTP and RDP demand hardware cost at about

60 Kbyte storage. This hardware cost can also be invested in building cache with

larger capacity, so it takes a comparison between RD-LTP and other cache larger

organization to justify the investment on RD-LTP. In this evaluation, RD-LTP is

compared with a normal cache with higher associativity and victim caches as follow-

ing: a 9-way set associative LRU cache with 128 Kbyte added to the baseline 1 MB

cache; a 1 Mbyte LRU cache with a 64 Kbyte victim cache [92](1024 cache blocks,

random replacement policy). Figure 7.5 compares the performance of these tech-

niques against RD-LTP and OPT assuming the baseline 1 MB cache. Out of the 14

high potential benchmarks, RD-LTP outperforms the 9-way cache in 8 benchmarks,

and outperforms the victim cache in 7 benchmarks. For the remaining benchmarks,

RD-LTP does not perform as well as the 9-way cache or the victim cache because

the majority of the benchmarks’ working sets can fit in the increased cache capacity.

In particular, the 9-way cache reduces miss rates in galgel and sixtrack even more

than OPT. And for gcc the victim cache reduces miss rate by 97%, while OPT can

only reach an 88% reduction. The victim cache also performs best in ammp and

sixtrack, which helps the victim cache to reach similar cache performance as OPT

on average.

Figure 7.5 shows that the extra cache capacity can give the 9-way cache and

victim cache a considerable performance edge for a few benchmarks whose working

sets are just slightly larger than 1 MB. Without these special cases are eliminated,
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Figure 7.5: Cache miss rates for the high potential benchmarks achieved by OPT,

RD-LTP, 9-way cache, and victim cache. All of the miss rates are normalized to the

LRU miss rate.

RD-LTP becomes a more favorable technique, as shown by another average miss

rate, labeled AVGg2 in Figure 7.5 (excluding gcc and sixtrack). For the remaining

12 benchmarks, RD-LTP outperforms both 9-way and victim cache on average.

Based on these results, we conclude that when benchmarks’ working sets are very

close to the cache size, using the extra hardware to increase cache capacity performs

better than implementing an RD-LTP. However, for the more general case that

benchmarks’ working sets are noticeably larger than the baseline cache capacity, the

investment of additional hardware in an RD-LTP reaches better cache performance.

By increasing baseline cache capacities from 2 MB to 8 MB while keeping the

associativity at 8-way(except for the 9-way cache), Figure 7.6 shows the performance

of LRU, 9-way, victim cache, LvP, AIP, DIP and RD-LTP. RD-LTP outperforms or

matches other techniques up to 8MB as more working sets fit into the larger caches.
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Figure 7.6: Average cache miss rates for different cache sizes achieved by LRU, 9-

way, victim cache, LvP, AIP, DIP, and RD-LTP. All of the miss rates are normalized

to the LRU miss rate for 1 MB cache.

7.5.3 Prediction Rate

As mentioned early in this section, RD-LTP achieves its performance gains

based on better prediction. Figure 7.7 summarizes the prediction quality of RD-

LTP, LvP and AIP. The last touch prediction outcomes in Figure 7.7 has 3 parts:

correct last touch prediction (labeled “Correct Prediction”); last touches not pre-

dicted (labeled “Not Predicted”); and non last touches incorrectly predicted to be

last touch (labeled “Wrong Prediction”). All bars are normalized to the total num-

ber of true LRU last touch references in each benchmark, with the last group of

bars reporting the average across the 14 benchmarks.

As Figure 7.7 shows, RD-LTP is able to correctly predict more last touches

than either LvP or AIP. On average, RD-LTP correctly identifies 71.2% of the LRU

last touches compared to only 19.2% and 15.6% for LvP and AIP, respectively. The

high correct prediction coverage of RD-LTP provides the potential to perform a

larger number of beneficial early evictions. (How RD-LTP can capitalize on this po-
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Figure 7.7: Prediction accuracy of RD-LTP, LvP, and AIP.

tential will be discussed later). Unfortunately, the higher prediction rate is achieved

at the cost of higher percentage of mispredictions, as shown by the “Wrong Pre-

diction” components in Figure 7.7. RD-LTP incurs 8.5% mispredictions whereas

LvP and AIP incur only 5.2% and 3.8%, respectively. Such mispredictions result in

premature evictions, converting some LRU cache hits into cache misses. However,

the benefit of RD-LTP’s higher prediction rate far outweighs the negative impact of

its mispredictions.

With high prediction coverage and accuracy, RD-LTP is a more effective last

touch predictor than LvP and AIP. There are three factors contributing to RD-LTP.

First, last touch events are more predictable when associated with global reuse

distance history. Our reuse distance based signatures help to identify more last

touches. Second, with the assistance of shadow tags, RD-LTP improves predictor

training. As discussed in the last section, without shadow tags, once the cache

management hardware begins acting on predictions and performing early evictions,
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the LRU last touch outcomes of blocks that leave the cache early cannot be captured.

Shadow tags allow us to continue tracking recently evicted blocks, thus permitting

continued observation of LRU last touches even when replacement deviates from the

normal LRU order. Finally, RD-LTP’s higher accuracy makes it possible to apply

more aggressive eviction. RD-LTP provides last touch prediction for every memory

reference, while LvP and AIP avoid predicting those memory references with low

accuracy (both predictors employ confidence mechanisms). The smaller coverage of

predicted memory references in LvP and AIP further weakens their ability to make

correct predictions.

7.5.4 Victim Selection

Next, let us look at how the victim selection among multiple predicted last

touches impacts cache performance. RD-LTP is shown to be able to predict multiple

cache blocks as last touches. Table 7.4 reports how often this multiple prediction

happens. The column labeled “RDMrk” reports the average number of marked

blocks available for an eviction is 4.7, while the column labeled “RD≥2” reports for

77.9% evictions, multiple blocks are predicted as last touches. So, most of the time,

RD-LTP has to choose between multiple blocks predicted as last touch for eviction.

This victim selection problem becomes a design issue only because RD-LTP predicts

a large number of LRU last touches, as discussed in Section 7.5.3. In [41], Victim

selection is not an issue for LvP/AIP. The same statistics for the LvP technique (the

results for AIP are similar) is shown in the columns labeled “LPMrk” and “LP≥2”.
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RDMrk RD≥2 LPMrk LP≥2 CRD

ammp 4.3 89.8 0.6 12.1 12

art 7.6 100.0 0.07 1.6 12

bzip2 3.3 82.0 0.3 3.8 14

facerec 7.4 99.8 1.5 31.8 20

galgel 4.3 83.4 1.6 45.7 9

gcc 5.0 92.1 0.9 1.6 9

mcf 7.3 100.0 0.5 4.4 30

mesa 6.2 86.5 1.1 28.1 44

parser 5.2 91.5 0.07 0.9 14

sixtrack 0.9 21.8 1.1 19.2 9

twolf 0.3 3.7 0.1 0.7 10

vortex 3.4 72.1 0.2 2.4 20

vpr 2.4 68.5 0.09 0.4 16

wupwise 7.6 100.0 0.03 0.6 44

AVG 4.7 77.9 0.6 11.0 18.8

Table 7.4: Number of marked blocks and percentage of evictions with at least 2

marked blocks for RD-LTP and LvP. The last column reports CRD for each bench-

mark.
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Figure 7.8: Last touch reference histograms under LRU and OPT cache management

for the AMMP benchmark. CRD = 12.

LvP marks only 0.6 blocks on average during each eviction, and encounters 2 or

more marked blocks in only 11% of the evictions. Most of the time, there are either

none or one marked block because of LvP’s low prediction rate.

RD-LTP’s identification of LRU last touches can not be very beneficial with-

out an intelligent algorithm to select the appropriate victim, as discussed in Sec-

tion 7.3.4. The reason is that LNO last touches can be converted into cache hits by

retaining them in cache a bit longer. Since OPT evictions are a subset of LRU last

touches, blindly evicting last touch predictions does not guarantee high performance.

To provide insight into which LRU last touches are the best victims, it is neces-

sary to examine the evictions made by LRU and OPT. Figure 7.8 shows a histogram

of last touch references under the LRU and OPT for the AMMP benchmark. The

X-axis plots reuse distance from 0 up to beyond 50. For different reuse distances,

the histogram plots counting of last touch references(Y-axis) exhibiting that reuse

distance. LRU has more last touches than OPT in Figure 7.8, and the area below

LRU and above OPT constitutes the LNO last touches. Most importantly, there
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Figure 7.9: Cache misses under the OPT and Oracle-CRD policies.

are very few LNO last touches beyond some reuse distance, where most OPT last

touches overlap with LRU last touches. For example, in AMMP, beyond a critical

reuse distance (CRD) of 12, more than 90% of LRU last touches are also OPT last

touches. This makes sense: LRU last touches with larger reuse distances are less

likely to become cache hits, and they are also likely to be evicted by OPT. This

implies that beyond CRD, every LRU last touch should be selected as victim as long

as it is predicted. The portion below CRD needs further information to make a

reasonable distinction between OPT and LNO last touches. This distribution is

similar in all benchmarks with different CRD values, as reported in Table 7.4 as the

column labeled “CRD”. The average CRD is 18.8.

The benefit of evicting LRU last touches beyond CRD is shown in Figure 7.9.

Each benchmark is simulated with OPT and an ideal eviction policy, called Oracle-

CRD, which employs a perfect last touch predictor that is able to mark all the LRU

last touches correctly with no wrong predictions–i.e., it has 100% coverage and 0%

wrong predictions. In addition, Oracle-CRD also has the knowledge of each last

touch’s reuse distance and whether it is beyond CRD (i.e., the long-reuse). Based
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on oracle knowledge, Oracle-CRD always evicts the long-reuse blocks upon a miss.

If there are only short-reuse last touch blocks available for eviction, it selects one

of the short-reuse last touch blocks randomly. As Figure 7.9 shows, Oracle-CRD is

worse than OPT by only 3.1%, which demonstrates that the identification of the

long-reuse last touch blocks can lead to the optimal performance.

The CRD information is hard to obtain online, but the likely location of long-

reuse last touch blocks is found to be close to the MRU marked block. Figure 7.10

profiles the evictions performed by RD-LTP. The components labeled “Long” and

“Short” quantify the fraction of evictions involving a long-reuse last touch and short-

reuse last touch block, respectively. And the components labeled “Misprediction”

indicate the fraction of evictions involving an incorrectly predicted block. RD-

LTP always evicts the MRU marked block, while an alternate version, called RD-

LTP-Rand, evicts a randomly selected marked block. On average, the MRU policy

identifies a long-reuse last touch block 52% of the time, while a random policy

identifies a long-reuse block only 48% of the time.

In addition to improved identification of long-reuse blocks, MRU selection can

also avoid evicting mispredicted blocks more effectively. Figure 7.10 shows that the

random policy evicts about twice as many mispredicted LRU last touches compared

to the MRU policy (12.8% versus 6%). With low misprediction rate (see Figure 7.7),

the average interval between two mispredictions is fairly large. As a result, when

a cache miss occurs, it is rare for a mispredicted block to be the MRU marked

block after several other (correctly) predicted LRU last touches have likely occurred

since the last misprediction. Therefore, selecting the MRU block helps to reduce
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Figure 7.10: Breakdown of the evictions performed by the RD-LTP and RD-LTP-

Rand techniques.

the negative consequences of mispredictions.

The advantages of the MRU policy result in performance gains shown in Fig-

ure 7.4. The miss rate achieved by RD-LTP-Rand is shown in bars labeled “RD-

LTP-Rand”, which is outperformed by the MRU policy by 14.5%. These results

validate MRU victim selection as a good policy for our RD-LTP technique.

7.6 Reuse Distance Prediction Results

This section presents the performance evaluation of RDP, as shown in Fig-

ure 7.11. The bars labeled “RDP” report the miss rates achieved when driving

cache management decisions using an RDP across high potential benchmarks. For

comparison, the miss rates achieved by RD-LTP and OPT from Figure 7.4 are also

shown in Figure 7.11. All bars are normalized to the LRU miss rate for each bench-

mark, and the group of bars labeled “AVGg” report the geometric mean across all

the benchmarks. RDP, compared with RD-LTP, provides an additional 2.7% miss
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Figure 7.11: Cache miss rates achieved by OPT, Oracle-RDP, RDP, Oracle-MRU,

and RD-LTP for the high potential benchmarks.

rate reduction on average, and improves over LvP and AIP by 14.9% and 17.8%,

respectively.

The additional benefit achieved by RDPs is due to more information about

reuse distance provided by the predictor than the binary last touch prediction from

RD-LTP. As discussed in Section 7.5.4, while some predictions identify LRU last

touches beyond CRD which are likely to be OPT last touches, many predictions

identify LRU last touches below CRD that may possibly be LNO last touches. In

the latter case, the exact reuse distance prediction from RDP can better identify

good victim block. Hence, when multiple blocks are predicted, the block referenced

farthest in the future can be better identified using reuse distance prediction than

selecting the MRU marked block.

Another two ideal cache management algorithms, Oracle-MRU and Oracle-

RDP are simulated to provide more insight into why reuse distance prediction works

better. Oracle-MRU is MRU selection with perfect last touch block identification. 4

4Although Oracle-MRU has perfect last touch information, the MRU policy may still mistakenly
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Oracle-RDP is longest reuse distance block selection with perfect reuse distance in-

formation. Figure 7.11 shows that Oracle-MRU improves upon RD-LTP by 12.5%.

This represents the performance lost by RD-LTP due to predictor inaccuracy (i.e.,

the “Not Predicted” and “Wrong Prediction” components in Figure 7.7). In ad-

dition, Figure 7.11 also shows Oracle-RDP improves upon Oracle-MRU by 13.8%.

This performance difference reveals actual potential benefit of exact reuse distance

information under perfect condition. Unfortunately, RDP does not fully achieve this

potential, as demonstrated by only 2.7% performance gain over RD-LTP. RDP’s suf-

fers from the wrong victim selection due to its inaccuracies in predicting the exact

reuse distance.

evict LNO last touches over OPT last touches. In fact, Oracle-MRU may suffer if the additional

correct last touch predictions expose more LNO last touches for eviction.
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Chapter 8

Conclusion

8.1 Summary

This dissertation studies cache management techniques for multi-threaded and

single-threaded workloads. For shared cache with multi-threaded workloads, we

study how the individual working sets interact with each other in terms of locality

and interleaving. The interleaving and its impact on locality are simulated and pro-

filed to provide insight. A number of ideal cache management algorithms are also

studied to provide hints on how to improve existing techniques. We propose tech-

niques which approximate the behavior of ideal algorithms while improving cache

performance, overall performance, and thread fairness. For a cache with single-

threaded programs, the reuse distance pattern is studied to provide a better last-

touch prediction solution. Our reuse distance based last-touch predictor improves

both prediction coverage and accuracy and achieves better cache performance com-

pared to existing techniques.

This research help us to draw the following conclusions. First, we found that

the memory behavior in multi-threaded workloads has two important factors: lo-

cality and interleaving. While locality has been studied extensively in the past,

interleaving has not. This dissertation shows that interleaving factor provides fur-

ther opportunity to improve cache performance over existing locality-based tech-
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niques. Second, we study the ideal shared cache management algorithm with oracle

information, and this ideal management algorithm provides an upper limit for cache

performance. The profiling of the Oracle algorithm behavior reveals that it is critical

to identify the aggressor thread from the conflicting threads. A practical eviction

algorithm can approach the performance of the ideal algorithm by approximating

its eviction bias. Third, to optimize overall system performance (weighted IPC),

we need to also improve thread fairness, which can be optimized by fine tuning the

degree of bias (pr ratio) against aggressor threads. Our results show PR policy

outperforms LRU, UCP, and ideal cache partitioning by 4.86%, 3.15%, and 1.09%,

respectively. Fourth, for the last-touch prediction for single program, prediction cov-

erage and accuracy can be significantly improved using reuse distance information.

As a result, the cache performance for single program can be improved at lower

hardware cost. Our results show that for an 8-way 1MB L2 cache, a 54KB RD-LTP

reduces the cache miss rate by 12.6% and 15.8% compared to LvP and AIP, and by

9.3% compared to DIP. An RDP, which can predict exact reuse distances, improves

the miss rate compared to an RD-LTP by an additional 2.7%.

8.2 Future Directions

In this dissertation, we show that probabilistic replacement policy can effec-

tively manage the conflicting working sets and achieve higher utilization of shared

cache compared to other practical techniques. We also show the case for optimizing

working set by evicting the blocks with bad locality. The principles of interleaving-
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aware locality management and working set optimization provide opportunities to

design more efficient shared resource management techniques, and can be extended

to other resources shared by conflicting threads.

For example, the PR policy can be extended to optimize the working sets on

chip. The PR policy described in this dissertation manages multiple working sets

without any working set reduction. As our LTP study shows, the original working

set size can be reduced without suffering more cache misses. For a shared cache

with limited capacity, it is easier to fit multiple reduced working sets into cache.

The reuse distance information can be useful in determining the targets for working

set reduction because it provides information about the distinction between good

locality and bad locality blocks. However, it is not enough to know the static

information of cache blocks. A good management policy also has to know the

interleaving of each reference with other references close in time and their locality

information to make reasonable decisions as for which bad locality block belonging

to which thread is to be evicted, and which good locality block belonging to which

thread is to be kept in cache. There are also fairness issues involved in eviction

decision making for the purpose of overall system throughput.
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