
  

 

 

ABSTRACT 

 

 

 

 

A two-part experimental study was conducted to address the issues of supersonic fuel 

mixing enhancement and efficient combustor development.  The first part of the study 

involved quantitative characterization of fuel-air mixing in a non-reacting supersonic 

flowfield.  Two flow configurations were compared:  i.) a baseline case with normal 

fuel injection and ii.) a case with an acoustically open cavity placed downstream of 

the injection in order to excite mixing.  Direct measurements of local atomic fuel-air 

ratio were acquired using Laser Induced Breakdown Spectroscopy (LIBS), which was 

applied for the first time in a supersonic flowfield.  Indirect measurements of fuel 
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spreading rate were inferred from intensity gradients in time-averaged Schlieren 

images.  The quantitative results were compared to show conclusive gains in fuel-air 

mixing rate for the cavity configuration.  LIBS was proven as an effective diagnostic 

for quantifying supersonic mixing.  In the second part of the study, a baseline 

supersonic combustor was designed, built, and tested for future comparative studies 

of combustion performance.   The combustor featured a square cross-section and a 

three-dimensional expanding section, with optical access on one side.  Combustor 

wall pressure was measured at various fuel injection conditions.  Supersonic 

combustion was evident for some conditions, but results indicated poor combustion 

efficiency for all cases.   This shows the need for either mixing enhancement or a 

redesign of the baseline conditions. 
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1 Introduction 

1.1 Background and Motivation 

 For over 50 years the development and importance of ramjet and scramjet 

engines has been prevalent in pursuing high speed air breathing flight applications.  

From hypersonic missile systems to access to space concepts the advantages of an air 

breathing propulsion system have long been desired.  The principal advantage of 

utilizing the atmosphere as a combustion oxidizer is paramount in the study of such 

vehicles.  However achieving sustainable stable combustion is an event that “is like 

lighting a match in a hurricane” according to NASA officials.  This engineering 

problem is one which has been extensively studied, and is also the impetus for both 

sets of experiments investigated within this thesis.   

1.1.1 Scramjet Development 

 Beginning as early as 1946 the concept of possibly adding heat directly to a 

supersonic stream by the means of a standing wave was proposed 1.  Although the 

concept of supersonic combustion was realized the complications involved with 

supersonic combustion were only beginning to be explored.  Early work by Ferri 2, 3 

explored these complications and for this work he is widely credited as the major 

leader in exploring scramjet technology in the United States in the 1960s 4.  Weber 

and McKay 5 followed up Ferri’s early work and anticipated some major technical 
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hurdles facing scramjet development including fuel injection and mixing without 

severe shock losses, wall cooling and frictional losses, nozzle performance, as well as 

the need for a diverging combustor to avoid thermal choking 4.  Clearly scramjet 

issues, in particular combustor issues, were defined very early on in the history of 

scramjets.   

The combustor is of particular interest because of the need to have the fuel 

and air mix and combust efficiently on both the micro (or molecular) and macro (or 

large) scale at supersonic speeds.  As the Mach number is increased the molecular 

level mixing of fuel and air becomes retarded due to the stabilizing influence of 

compressibility on the turbulent mixing layer 6.  These issues are even more dramatic 

when a small vehicle is examined as the skin friction drag becomes a more significant 

part of the overall drag.  Therefore a means of increasing turbulent mixing and thus 

reducing mixing length and in turn combustor length would be of great benefit 7.   

One means of increasing this turbulent mixing is the placement of a cavity 

adjacent to the flow in the combustor, which produces large coherent structures.  The 

structures shed by these cavities have been shown to be very important for air 

entrainment and thus mixing 8.  Cavities have also been tested experimentally to act as 

flame holding devices in scramjet systems.  Their relatively low pressure drop, as 

compared to strut and other forms of injection, make them a more attractive flame 

holding device 7, 9.  Previous work performed at the University of Maryland by 

Nenmeni et al. 10 investigated the application of these cavities over a wide range of 

flow conditions and cavity geometries.  This work also briefly investigated a 
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simulated fuel injection of helium coupled with the cavity system to identify the fuel-

air mixing qualities.   

One focus of the present study is to enhance the characterization of one such 

coupled cavity and simulated fuel injection system over a wide range of flow 

conditions with new and enhanced diagnostic techniques.  The utilization of Laser 

Induced Breakdown Spectroscopy (LIBS), which has never been previously applied 

to supersonic flow, will demonstrate both the robustness of the diagnostic technique 

and provide quantitative flow mixing information.  Schlieren imagery is also used in a 

novel approach to provide ‘frozen’ images of the coherent structures as well as 

provide a basis with which to qualify the LIBS measurements.  Thorough discussions 

of these techniques and their results can be found in the following chapters of this 

thesis. 

1.1.2 Vehicle Design and Combustor Considerations 

Another area of great development and investigation over the last 50 years is 

that of hypersonic vehicle shape and inlet configuration.  With advances in 

computational design and computing power, new and interesting designs have been 

proposed for hypersonic air-breathing missions ranging from cruise missile 

applications to single-stage-to-orbit (SSTO) flight.  The design envelope for such 

vehicles is relatively small, requiring the vehicles to maintain a high capture area 

ratio, compress the captured airflow to pre-combustion conditions, act as an 

integrated airframe-engine system, handle the high heating loads present, and 
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accommodate internally the payload, structure, and fuel for the given mission 11.  A 

main area of concern for all hypersonic vehicles is heating, most specifically in the 

combustor area where heat release from combustion adds to the already high heating 

loads associated with supersonic flight.   

 Traditional wedge derived wave riding designs for hypersonic vehicles utilize 

two dimensional flow paths to take advantage of theoretical two dimensional uniform 

flows through the inlet.  These designs reduce the complexity of computing 

hypersonic flow fields and have good on-design characteristics.  However, their two 

dimensional nature create large aspect ratio inlets which result in large aspect ratio 

combustors.  These combustion chambers thus have large surface areas for thermal 

conduction and need a larger mass of thermal protection.  New vehicle design 

techniques were developed to address these problems. 

 The inverse design procedure of carving out an airframe using the 

streamsurfaces of a known field is one such approach to improve hypersonic vehicle 

design 12.  Examples of these types of designs have been proposed for conical flow 

derived vehicles by Takashima and Lewis 13 and for inward turning axisymmetric 

vehicles by Billig 14.  Further study into these types of vehicles by Kothari 15, 16 and 

Billig 12 developed another methodology of vehicle design that utilizes a modified 

method of characteristics.  This design approach established the role of a Radial 

Deviation Parameter (RDP) in generating a range of vehicle profiles.  The RDP is 

defined as the degree to which a generating method of characteristics is deviating 

from two-dimensional flow.  For example, RDP = 1 corresponds to a completely 
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inward turning, isentropic, conical compression whereas RDP = 0 corresponds to an 

isentropic but entirely two-dimensional inlet flow.  Examples of various vehicle 

designs as a function of the RDP for a range of RDP’s are presented in Figure  1.1.   

 

Figure  1.1: Conceptual Vehicle Designs for Various RDP Values 

In Kothari’s studies it was shown that, when compared to equivalent two-dimensional 

vehicles, an axisymmetric compression configuration may produce an improvement 

in EISP of 200-400 seconds over equivalent 2-D configurations in the hypersonic 

Mach number regime 15.  With predicted performance improvements of this nature 

possible,  the motivation to experimentally investigate these designs is paramount. 

 Many assumptions are made when developing computational models of 

hypersonic vehicles, particularly within the combustor.  Often quasi-one-dimensional 

and simplified chemical kinetics are required to reduce the computational demands 

associated with reaction chemistry.  CFD models based on the Reynolds averaged 

Navier-Stokes equations use models for turbulent fluxes that employ many ad hock 

assumptions and empirically determined coefficients 17.  Although required to make 

the computational problem tractable, these simplifications often reduce the accuracy 
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of the model.  Furthermore the large number of adjustable parameters typically leads 

to a low confidence in the models prediction when they are applied to classes of flows 

for which they have not been experimentally validated.   An example of these issues 

is documented by Cutler 17 18 where computational models fail to fully correspond to 

measurements of the combustion of hydrogen fuel made under flight enthalpy 

conditions in NASA Langley’s Direct-Connect Supersonic Combustion Facility.  

Their calculation underestimated the length of the ignition region and indicated that 

there were problems with uncertainty in their kinetics model and/or a need to account 

for turbulence-chemistry interactions.  These errors are a major motivator in acquiring 

empirical data, both for CFD validation and general characterization of supersonic 

combustion systems. 

 For these reasons the other focus of this study was to generate a baseline 

characterization of the combustion in a supersonic duct with an aspect ratio of one.  

This characterization would serve as the benchmark against which the testing of 

combustion configurations developed by novel vehicle designs, specifically those 

produced by the inward turning designs, could be compared.  These comparisons may 

be able to quantify effects of geometry such as corner effects and non-traditional 

cross-sections on combustion efficiencies and qualities.  A thorough explanation of 

the geometry tested as well as the testing conditions and results can be found in 

chapters 3-5 of this thesis.  The following sections will develop the theoretical and 

experimental background of both aims of this study in more detail. 
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1.2 Scramjet Combustion Issues 

 In a typical scramjet powered vehicle design the flow path reduces the flight 

Mach number to approximately one-third once the flow has reached the combustor 

entrance 19.  Based on their simplistic analysis, Mach numbers at the combustor 

entrance would be approximately 2-3 for a flight Mach number of 6 20.  Their analysis 

establishes the interest area of combustion Mach numbers for the low end of the 

hypersonic spectrum.  Within this spectrum a general consensus is that storable JP-

type hydrocarbon fuels can be used 21.    Hydrocarbon fuels provide benefits in terms 

of energy density and handling issues in comparison to hydrogen fuels 22.  For these 

reasons a combination of gaseous hydrogen and hydrocarbon fuels were utilized in 

these investigations. It should be noted, however, that higher flight Mach numbers 

will most likely require the use of gaseous or liquid hydrogen due to its higher 

heating value as well as the possibility of using it for active cooling. 

1.2.1 Mixing 

 At the combustor Mach numbers described in the previous subsection a key 

issue is the residence time of the fuel and air mixture within the combustor, which is 

often shorter than the ignition delay time of hydrocarbon fuels.  In order for a reaction 

to occur, the fuel and air first must mix on a macroscopic scale then molecular 

collisions must occur which lead to the overall heat release and combustion 23.  

Therefore the overall combustion time is simply the sum of the times of chemical 
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reaction (including the ignition delay) and the mixing time: 

mixingchemcombustion ttt +=         [1] 

The chemical reaction can be viewed as occurring in two phases.  The first is an 

induction phase where intermediate radicals are produced and then an exothermic 

reaction in which the products are produced 24.  The first stage incorporates the 

ignition delay time and is a function of the fuel and the fuel to air ratio.  This is 

typically defined by the fuel to air equivalence ratio: φ (which is the ratio of 

fuel/oxidizer divided by the stoichiometric fuel /oxidizer ratio), and the kinetics of the 

fuel itself.  This induction phase makes up the majority of the chemical reaction time, 

and is considered to be long for hydrocarbon fuels. However, ignition delay times are 

much shorter than the mixing time.  Therefore, the combustion time and mechanism 

is dominated by the time taken by the macroscopic fuel-air mixing.  

 Typically, in flight conditions create high static temperatures in the combustor 

which can lead to auto-ignition or very low energy addition needed to initiate the 

chemical reactions.  In a report by Cain 25, studies were reviewed that demonstrated 

the flame speeds produced by these reactions are very slow in comparison to the flow 

velocity in the combustor, often an order of magnitude smaller.  For this reason 

flameholding in the traditional sense appears impossible and combustion induced 

turbulence or subsonic pilots (or pockets) are necessary for maintaining combustion.   
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1.2.2 Heating 

 A major area of concern when a hypersonic vehicle design is being considered 

is that of thermal management.  As flight mach numbers increase past Mach 4 the 

ambient air temperature relative to the aircraft is too hot to utilize ram air as an 

effective cooling mechanism 26 .  Even when designs are considered for the lower end 

of the hypersonic realm, in the range of Mach 6-8, these material limits and thermal 

protection are major concerns.  One specific location of concern is the isolator and 

combustor as airflow with already high static temperatures, above approximately 

900K, is reacting exothermically with fuel being injected.  The need to cool the 

surface walls of the combustor can become a very demanding requirement as flight 

Mach numbers increase.  Conservative estimates have predicted that the fuel cooling 

requirements (for a fuel cooled system) will exceed the combustion requirements of 

the system by as much as 4 times for a Mach 20 flight system, meaning that 4 times 

as much fuel is required for cooling as is required to power the vehicle 26.  Naturally 

this increase of needed fuel flow along with the associated plumbing and systems will 

dramatically affect the flight weight of such a system.  For these reasons an area of 

interest is reducing the overall Thermal Protection System (TPS) weight.   

 A direct method of reducing this weight would be by reducing the effective 

area needing to be cooled by the TPS.  When a comparison of isolator/combustor 

cross sections is made between planar and inward turning inlets, the advantages of 

these novel geometries are clear. 
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Figure  1.2 Comparison of Isolator/Combustor Cross Sections of Planar and Inward Turning 

Inlets from Billig 27. 

In Figure  1.2, from Billig 27, the cross sections of planar and inward turning designs 

are compared.  The diagram shows designs for two Contraction Ratios (CR) and 

various Aspect Ratios (ARv) where the Aspect Ratio is the width divided by the 

height of the projected area of the maximum air capture streamtube.  The comparison 

demonstrates that the planar designs would have larger wetted areas and lead to 

heavier designs. 

 By reducing the wetted area the need for TPS would also be reduced, further 

amplifying the weight advantage of the inward turning designs.  One last 

consideration is the drag and heat transfer on the cowl.  Both of these parameters vary 

with cosNν where N is 1.5-2 and ν is the sweep angle 27.  Thus the more deeply 

vented, streamline traced, or inward turning designs are more favorable under this 

analysis when it comes to the drag and heating on the cowl.  Therefore, when the 
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heating loads on a hypersonic vehicle design are considered these designs are of 

interest and more experimental testing to explore their specific attributes would be 

advantageous. 

1.3 Objectives 

 The motivation for this study is established in the previous sections by 

outlining the current issues apparent in developing hypersonic vehicles, and 

specifically in the design and performance of their propulsion systems.  There are two 

areas of interest in this investigation: the quantification of fuel-air mixing 

enhancement utilizing acoustically open cavity resonance, and the characterization of 

supersonic combustion in a diverging section with an aspect ratio of one.   

 The objectives of the mixing enhancement experiments are to obtain 

qualitative and quantitative measurements of the phenomena utilizing novel 

diagnostic techniques.  To do so both high-speed and time averaged Schlieren 

imagery was utilized with the objective of obtaining instantaneous images of the 

vortical structures and averaged fuel injection trajectories, respectively.  Dynamic 

pressure measurements were acquired to confirm the systems agreement with 

previous studies and the Rossiter model, which will be explained in later sections.  

Also, the LIBS technique was applied with the goal of obtaining a quantitative fuel-

air ratio measurement at various locations in the flow.  The final goal was the 

demonstration of the LIBS system in a real-world application. 

 The objective of the combustion characterization study was to establish a 
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baseline set of data points for the behavior of the specific combustor configuration.  

This included static pressure measurements as well as visual imagery and OH* 

chemiluminescence.  This baseline is necessary to enable further experimental study 

of non-traditional geometries as applied to novel hypersonic vehicle designs such as 

the inward turning inlet.  The baseline may also serve in the future as a validation for 

a computational fluid dynamics code as applied to this system. 

 The significant contributions of these experimental studies are: 

• High speed Schlieren images were obtained for the cavity mixing 

enhancement studies which conclusively show coherent structures 

convecting downstream from the cavity.  Pervious phase-locked Schlieren 

images inferred this convection of structures; however these high speed 

images capture multiple structures at various downstream locations at one 

instant in time. 

• Laser Induced Breakdown Spectroscopy was applied for the first known 

instance to supersonic flow conditions for the cavity mixing enhancement 

studies.  This diagnostic quantified the He/O ratio within the flow at 

multiple inspection points and revealed trends in the flow previously un-

detectable by simple optical methods. 

• Time averaged Schlieren images were analyzed utilizing image processing 

software to plot the average fuel injection for the cavity mixing 

enhancement studies.  This tool is developed and shows promise in 



 

 

13 

 

analyzing qualitative Schlieren images to produce quantitative 

comparisons of average properties. 

• A supersonic combustor was designed, fabricated, and installed on the 

reacting flow stand in Maryland’s Advanced Propulsion Research 

Laboratory.  No known supersonic combustion test bed has been 

previously developed at the University of Maryland 

• Experiments show that for the given low enthalpy apparatus the prescribed 

staged fuel injection system is insufficient to promote reasonable 

supersonic combustion characteristics to represent a baseline for future 

experimental comparisons.  A redesign of the fuel injection system and 

increases in the system enthalpy is recommended for future studies. 

 

 

 

 



 

 

14 

 

2 Theoretical Background 

2.1 Compressible Mixing 

2.1.1 Mixing Physics 

 In order for gas-phase chemical reactions to occur, the fuel and air must be 

mixed at the molecular level.  To enable this process to occur the fuel and air must 

first undergo macromixing or so called near-field mixing, and then subsequently 

undergo micromixing (or far-field mixing).  A thorough discussion of basic fuel-air 

mixing is presented by Heiser & Pratt 28 in their well-known textbook.  Here the 

mixing of parallel streams is examined and classified into three separate regimes:  

Zero-shear mixing layer, Laminar shear/mixing layer, and Turbulent shear/mixing 

layer.  The regimes are defined based on the difference between the two streams 

velocities or ∆u, as ∆u increases from zero the regimes progress as listed.  A diagram 

of the parallel stream flows is presented in Figure 2.1 for reference.  The “shear 

layer” is defined by the shear stress created between the two streams and the “mixing 

layer” is defined by the change in mole fraction of air or fuel by one percent from 

their respective values in the freestream.  
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Figure  2.1:  Parallel Stream Mixing/Shear Layer from Heiser & Pratt 28 

 Corresponding equations for the mixing layer thickness can be found for the first two 

regimes in the aforementioned text.  The third regime, turbulent shear/mixing layer, 

occurs at high values of ∆u and becomes an unsteady process as the flow goes from 

laminar to turbulent.  This results in the shedding of large vortex structures, 

sometimes referred to as “roller bearings”, which occur periodically.  Gutmark, et 

al. 29 points out that the formation of these structures is initiated by the Kelvin-

Helmholtz instability, governed by Rayleigh’s equation for inviscid flows.  The 

exponential growth of the velocity and vorticity perturbations leads to a nonlinear 

process that eventually causes the roll-up of the shear layer into vortices, which are 

then shed.  These structures are utilized in numerous mixing enhancement techniques. 

 Further studies of turbulent mixing, specifically focused on the turbulent shear 

layer, were conducted by a number of authors 30- 34.  One of the earliest and most 



 

 

16 

 

prominent studies was conducted by Brown and Roshko investigating the density 

effects and role of large structures in turbulent mixing layers 30.  This investigation 

established compressibility as the main factor controlling supersonic turbulent mixing 

layers.  The authors also determined this effect was uncoupled from density ratio and 

velocity ratio, which have significant effects on the growth of incompressible shear 

layers.  In fact, for the same velocity and density ratios it was shown that the 

compressible case deviated  ten times the amount the incompressible case as 

compared to a baseline uniform density incompressible case.  Clearly compressibility 

effects are extremely important in the development of mixing in supersonic flows.  

 Brown and Roshko also developed an important parameter which is utilized 

by practically all subsequent studies in this area.  This parameter is the convective 

velocity, Uc, which is defined as the speed of a point traveling with the large 

structures formed in the shear layer.  Further study into the compressible turbulent 

shear layer was conducted by Papamoschou 33 and Papamoschou and Roshko 34 in 

which this parameter was revisited and a series of convective terms were defined.  

First let us consider a stagnation point on an infinitely thin shear layer structure 

between the two parallel flows.  This point moves downstream with a velocity, 

defined hereafter as the convective velocity Uc.  This definition is explained 

graphically in Figure  2.2 (a) in the stationary frame of reference and in (b) the 

convective frame of reference.  
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Figure  2.2:  Turbulent Shear Layer in a.) Stationary frame of reference b.) Convective Frame of 

Reference with Streamlines 

 From this definition the convective Mach number is defined: 
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Which can be simplified by the assumptions that Mc1 and Mc2 are not very large, and 

that γ1 and γ2 are not greatly different to yield: 
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By utilizing the definition of Mc from  equation [2] an equation for Uc can be related: 
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Lastly for the case of equal γ (γ1 = γ2), 
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It is this convective velocity and Mach number which are used as a reference 

parameter in practically all the investigations into mixing enhancement, and turbulent 

mixing in scramjet engine applications.  Seiner, et al. 6 summarizes Papamoschou and 

Roshko 34 results by explicitly relating the reduced shear layer growth at compressible 

speed to incompressible shear layer growth as: 
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where Cδ is the change in shear layer growth over distance and (Cδ)o is the 

incompressible growth rate.  The constant is a function of their measurement 

technique and was found to be 0.14 for Pitot tube measurements and 0.17 for 

shadowgraph visualization measurements. 

 Thus compressibility effects were quantified and the problems related to 
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mixing of supersonic compressible turbulent streams outlined.  Through these studies 

the need to increase the shear layer growth in turbulent compressible flows was made 

clear if supersonic combustion was to be enabled.  For this reason a variety of 

techniques to either excite or manipulate the properties of the compressible turbulent 

mixing layer have been explored and proposed. 

2.1.2 Techniques of Mixing Enhancement 

 Two primary categories can be defined in reference to the techniques of 

controlling the turbulent compressible shear layer and thus controlling supersonic 

mixing.  The first is active control in which mechanical or physical means of 

controlling the flow is actively controlled.  A major issue with active control 

techniques is understanding the time-dependent behavior of the supersonic flow as 

well as the added weight and complexity of actuators or systems.  The second is 

passive mixing enhancement in which a geometrical device is placed in or adjacent to 

the flow in order to tailor the flow to produce the desired results.  The second strategy 

seems to offer more robust operation due to its lack of moving parts and relatively 

low weight penalties. 

 A number of authors 6, 29 have compiled overviews of numerous techniques, 

both active and passive, to enhance mixing for scramjet application.  These 

techniques all attempt to excite the turbulent shear layer to increase its growth 35.   

Some examples of active techniques include vibrating splitters/wires, pulsed jets, 

Helmholtz resonators, piezoelectric actuators, and direct acoustic excitation 6, 8.  
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Although these devices offer, in theory, better control of the mixing layer over a 

variety of conditions their penalties are also great in terms of weight addition and 

complexity.  Furthermore, most of the actuation systems do not have significant 

enough forcing authority to achieve favorable results over a wide range of 

conditions 35.  For this reason passive techniques have often been viewed as the more 

favorable method.  These techniques include ramp fuel injectors, tabs, lobe mixers, 

chevrons, swirlers, counterflow, rectangular injectors, steps and cavities 6, 8.  Of these 

techniques the use of cavities has been extensively investigated and shown to have 

promising effects 36. 

 Another concern which is directly linked to mixing enhancement is the fuel 

injector geometry.  Although various injector designs have been considered a bulk of 

the current work has been performed on wall injectors because of their low pressure 

losses and drag, as compared to intrusive injectors like strut injectors.  In 

consideration of a single wall injector port there are two extremes of orientation:  

normal (or transverse) and parallel injection.  Parallel injection follows the theory 

presented in previous sections, however a major issue with parallel injection is that it 

is essentially impossible to achieve near-stoichiometric mixtures in the near-field 28.  

For this reason transverse injections were studied.  A simplified model of the flow 

characteristics can be envisioned as a cylindrical rod being inserted into the 

supersonic flow.   
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Figure  2.3: Transverse Fuel Injection into Supersonic Flow, adapted from Heiser, et al. 30, and 

Ben-Yakar, et al. 37  

A diagram of typical normal fuel injection flow fields is presented in Figure  2.3.  

Here it can be seen that the upstream boundary layer separates, and a detached bow 

shock is created upstream of the injector.  A small recirculation zone forms upstream 

of the injected fuel stream, which can act as a flame holding region 37.  A bluff-body 

wake region is formed immediately downstream of the jet core, which can also be 

utilized for flameholding 28.  The overall effect is to reduce the mixing transition 

distance by anchoring the mixing layer firmly to the jet core.  This reduction actually 

drives the distance past zero to a slightly negative mixing distance (in the near-field) 

due to the separation region upstream of the injector, as fuel diffuses upstream 28.  

These mixing advantages are accompanied by significant stagnation pressure losses 
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due to the strong three-dimensional bow shock formed in front of the fuel injection.  

These losses increase with flight velocity, which is also very undesirable.  Thus 

experiments have been performed utilizing angled injectors between these 

extremes 7, 38- 40.  These studies have sustained combustion and investigated various 

aspects of supersonic combustion control at high enthalpy conditions.  Ben-Yakar, et 

al. 37 points out, however, that numerous studies have shown that at lower enthalpy 

conditions ignition occurs much farther downstream with angled injection as 

compared to the transverse case.  Therefore, with the primary goal being to shorten 

the combustor length and increase near-field mixing transverse injection may be the 

preferred injection configuration.   

 Further mixing, however, is still required and excitation of the shear layer by 

cavities has been shown to be a promising technique.  For those reasons a 

combination of normal injection and cavity excitation may produce significant 

reductions in mixing length.   

2.1.3 Cavity Mixing Properties 

 Cavity flow fields have been a subject of great interest in aerodynamic 

research.  Traditionally this research was focused on subsonic flows associated with 

store separation, wheel well acoustics, and pitching motions due to surface pressure 

variations 41.  The observed generation of coherent structures, however, brought 

interest into the supersonic regime in the form of passive mixing enhancement.  There 

have been many studies to date which have investigated the flow field acoustics of 
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cavities at supersonic speeds  37, 41- 43.  These studies have the goal of exciting the 

resonance of the cavities whereas the previous subsonic work aimed to suppress the 

oscillations. 

 Cavities have shown promise in these experiments, as compared to other 

enhancement techniques.  When the compressible shear layer growth rate is 

considered, as defined earlier by Papamoschou and Roshko 34, a method of comparing 

the effectiveness of excitation is developed.  Figure  2.4, from Yu et al. 38, shows the 

comparison of results from a variety of authors for planar shear layers, natural 

axisymmetric shear layers, and the cavity excited shear layers.  Here it can be seen 

that as convective Mach number increases past 1 the shear layer growth rate reduces 

asymptotically to 20% of its incompressible value.  It can also be seen that increases 

of up to 3 fold in the growth rate can be achieved by cavity resonance. 
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Figure  2.4:  Normalized Growth Rate of Natural and Excited Shear Layers from Yu et al. 38 

 For these potential benefits cavities have become one of the leading 

supersonic mixing enhancement techniques for scramjet applications. 

2.1.3.1 Cavity Physics 

 Cavities are defined by a few geometrical parameters:  length (L), depth (D), 

inlet height (H), and width (W).  These parameters are usually expressed in the form 

of ratios such as the length-to-depth L/D (or aspect ratio), width-to-depth W/D, etc.  

Cavities are usually divided into two categories based on their aspect ratios and 

resulting flow characteristics.  Open cavities are defined as having small enough 

aspect ratios as not to allow the shear layer to reattach to the cavity floor 37, 38.  
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Typically L/D ratios less than 7-10 are considered open cavities.  Cavities with aspect 

ratios larger than 10 are considered closed cavities because of the reattachment of the 

shear layer to the cavity floor.  The mechanisms governing the flow oscillation 

change from transverse to longitudinal as the L/D ratio goes from less than 2 to more 

than 3.  This mechanism, as well as the definition of open and closed cavities is 

illustrated in Figure  2.5. 

 

Figure  2.5:  Flowfield Schematics of Different L/D Cavities in Supersonic Flow from Ben-Yakar, 

et al. 37 

It has been shown that cavity drag is proportional to L/D, in that as L/D increases so 

does the associated cavity drag.  Furthermore, it has been observed that smaller aspect 

ratio cavities have better flame-holding characteristics than those with larger aspect 

ratios.  It is for these reasons that acoustically open cavities which are driven by the 

longitudinal mode are becoming the preferred configuration for supersonic flow 

tailoring.   
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 The mechanism of cavity induced resonance was first examined by Rossiter 44 

who proposed that shear layer impingement on the trailing edge of the cavity would 

cause a pressure wave to travel upstream at the local speed of sound within the cavity.  

This wave would then travel to the leading wall of the cavity, upon which it would 

interact and cause another shear layer structure to roll off from the leading edge.  

Their structure would then convect downstream at Uc and impinge upon the trailing 

edge once again, closing the oscillation loop.  A diagram of the flowfield over an 

open cavity is presented in Figure  2.6, and a diagram of the pressure wave oscillation 

and associated shocks is presented in Figure  2.7. 

 

Figure  2.6:  Schematic of a Compressible Two-Dimensional, Acoustically Open, Cavity Flowfield 

from Murry, et al. 42 
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Figure  2.7:  Longitudinal Cavity Oscillations Caused by Shear Layer Impingement from Ben-

Yakar, et al. 37 

2.1.3.2 Rossiter Model 

 Rossiter developed a semi-empirical model to represent the resonant 

frequencies associated with the cavity oscillations 44.  His model was later modified by 

Heller and Bliss 45 to account for temperature differences inside and outside the 

cavity.  Rossiter’s model has three main terms, the downstream propagating wave 

frequency, fn, the convection velocity κU (equal to Uc), and the acoustic propagation 

speed within the cavity called the phase speed cp.  To account for the temperature 

difference effects, the phase speed is replaced by the freestream speed of sound at the 

stagnation temperature 45: 
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2
11 ∞∞

−
+= Mccp

γ                     [8] 

The equations associated with this model are derived and discussed in many 

sources 35- 39, 42.  First let the fundamental period be taken to be the sum of the 
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disturbance convection time and the feedback time within the cavity and a possible 

phase delay term: 
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where L is the characteristic length of the cavity and α is the phase delay.  Typically 

the frequency is expressed in terms of the Strouhal number based on the cavity 

length 37.  This leads to:  
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where κ is the ratio of convective velocity to freestream velocity defined as: 

∞
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and n is the wave number excited analogous to the excited mode, represented by an 

integer greater than unity.  Equation [10] represents the original Rossiter model for 

cavity induced oscillations.  Rearranged to solve for the frequency, which is 

predominantly the parameter of interest: 
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Heller et. al.’s 45 revision of the phase speed results in a slightly expanded form: 



 

 

29 

 

L
U

M

M

nfn
∞

∞
∞

∞

⋅

























+







 −

+

−
=

κγ

α

1

2
11 2

                           [13] 

where γ∞ is the ratio of specific heats.  Values of α and κ have been determined 

experimentally and from curve fit 42, but are still debated; the values are 0.25 and 0.57, 

respectively.  Previous experiments in very similar laboratory settings 10 compared 

these values to those of experiment for flow conditions to be described in Chapter 3 

of this thesis.  The findings showed relative agreement with these empirical values 

within ± 3.5%.  For the analysis to be presented in latter sections of this thesis the 

values of α and κ will be assumed as constants and the values presented here will be 

utilized.   

 

2.2 Supersonic Combustion Characteristics 

 The main requirement in supersonic combustion is that the reaction rates 

which control the chemical reactions be very fast, so that the mixing of fuel and 

oxidizer can be a much slower process and therefore, be the controlling factor of the 

combustion 46.  To do so the induction time, or ignition delay time (tind), must be 

minimized.  Supersonic combustion systems can be categorized by the flight mach 

number into two regimes:  high flight Mach numbers and low flight Mach numbers.  

At high Mach number flight conditions, static temperatures and pressures are 
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typically high enough to auto ignite fuels like hydrogen.  However at lower flight 

Mach numbers the static temperature and pressure are lower and combustion must be 

controlled by the transport of heat an radicals, as well as mixing.  Often some kind of 

pilot flame is required 46.  The Mach number which divides these regimes is dependent 

on many factors including, but not limited to, fuel selection, geometry, flight altitude, 

etc.  Traditionally a Mach number of approximately 6 or 7 is the dividing line 

between auto ignition systems and piloted systems.  These considerations become 

especially important when low enthalpy ground testing is considered. 

2.2.1 Staged Fuel Injection 

 Researchers conducting subscale tests of scramjet engines have encountered 

both ignition and flameholding problems due to the small scale of the models, the 

relatively low static temperatures and pressures, and the details of the combustion 

configurations themselves 47.  For these reasons, means of increasing the reactivity of 

the fuel and air are necessary.  Creating high enthalpy conditions is possible via the 

use of preheated air generated by systems like vitiated heaters, pebble bed heaters, 

etc.  However systems such as these require extensive hardware to compensate for the 

high temperature and pressure loadings.  Additionally these systems are expensive 

and cumbersome, and often outside the realm of university level research.  An 

alternate means to increase reactivity locally is to heat the air/fuel via means of a pilot 

flame.  Encouraging results have been seen in the use of staged (multiple) 

perpendicular fuel injectors 47.  A diagram of  a staged fuel injection system is 
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presented in Figure  2.8: 

 

Figure  2.8:  Schematic of Staged Injection Flowfield Adapted from Weidner 47 

Thus a flameholding device, such as this staged fuel injection, is necessary in 

completing supersonic combustion experiments at low enthalpy conditions.  Due to 

the nature of novel geometries a flame holding device which does not affect the 

flowpath geometry would be preferred.  For this reason a staged fuel injection scheme 

will be employed in the combustion experiments.  This scheme will effectively 

shorten the ignition delay time which is discussed in the next section. 

2.2.2 Chemistry 

 Ignition delay time is a direct result of chemical kinetics related to the given 

hydrogen or hydrocarbon – air reactions.  These times can be determined by 

evaluating the chemical reaction rates for given conditions.  This process is not trivial 

by any means and the validity of the calculations is wholly dependent upon the 

accuracy of the chemical mechanism selected, i.e. the elementary reactions which are 

considered as intermediate steps in the global reaction process.  Numerical methods 

have been developed and software produced to model combustion reactions based on 
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inputs of reaction mechanisms, activation energies, and forward chemical reaction 

rates.  Turns et. al. 48 presents a thorough investigation of the basic concepts and 

applications of chemical kinetics in combustion, including empirically determined 

parameters for many reaction  mechanisms.  A full investigation of chemical kinetics 

is beyond the scope of this thesis and the author refers readers to Turns’ text for 

further investigation. 

 Studies have shown that the hydrogen-air induction time can be represented 

by empirical formulas as functions of pressure and temperature, from Heiser et. al. 28: 
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where tind is in seconds, temperature in degree Kelvin, and pressure in atmospheres.  

This gives a good first approximation for the delay time and provides insight into the 

combustion characteristics.  To enable combustion, this time must be shorter than the 

mixing time.  This is accomplished by increasing the mixing time by using subsonic 

recirculation regions or by decreasing the induction time by raising the temperature.  

Both of these are accomplished, in theory, by the staged fuel injection approach 

described in the previous section.   

 It should be noted that the CHEMKIN software package, or a similar 

combustion program, can be utilized to estimate induction and reaction times using 

chemical mechanisms based on elementary reactions.  Inherent assumptions in the 

mechanisms and coefficient values will generate some uncertainty or inconsistency in 

the model; however approximate characteristics for temperature and reaction rates are 
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very useful in combustor design.  Typically, the parameters calculated by such 

programs are almost impossible to measure directly within a supersonic flow field 

because of the hostile flowfield environment.  Traditionally non-intrusive 

measurements are necessary to avoid shocks and pressure changes associated with 

intrusive probes.  For these reasons static pressure ports along the combustor are the 

only direct measurement technique and predicted parameters are equated from these 

measurements. 

2.2.3 Interpretation of Experimental Data 

 This subsection explains the use of static pressure port data, along with known 

combustor entrance conditions and geometries, to evaluate parameters along the 

combustor length including Mach number, temperature, and combustion efficiency.  

The method outlined here is presented in Heiser et al. 28 , and derived from papers by 

Billig 50, 51, and Waltrup and Billig 49 .  First consider a diagram of a generic combustor 

flowpath and the corresponding pressure gradient plot seen in Figure  2.9. 
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Figure  2.9:  Designation of a.) Axial Locations for Combustion System and b.) Typical Static 

Pressure Distribution, from Heiser et al. 28 

The pressure distribution in this plot is idealized and realistic raw data would not 

present such a smooth curve.  The initial step is to inspect the pressure distribution 

and determine the axial locations at which favorable or adverse pressure gradients 

occur. They are designated as xu, xd, and xs, respectively.  Next the data should be 

smoothed by curve fitting, as proposed by Waltrup and Billig 49.  Between stations u 



 

 

35 

 

and d the curve can be represented using a cubic polynomial; 
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In the interval from station d to station s pressure is constant so p(x) = ps = pd , 

ideally.  Any smoothing function can be used to fit from station s to station 4, Billig 

recommends: 
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Equation [16] has been determined empirically and values of p(xs) and p(x4) may 

have to be adjusted to obtain a best least square fit for all the intermediate p(x) data.  

Since the assumption was made that only pressure forces are acting on the external 

walls an evaluation of the stream thrust function can be used to find the Mach number 

as a function of axial location.  The stream thrust function is defined: 

pdAdI =                    [18] 

For the change between two axial locations, xi and xe this equation can be written as: 
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This expression is based on the pressure at the walls and is valid whether or not the 

flow is separated or attached.  Since the author is only considering a linear A(x) 

distribution equation [19] is evaluated and results in a quartic expression with respect 
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to pressure since p(x) is modeled by [15], for the expanding section of the duct.  In 

the constant area section the stream thrust function is constant, i.e. since Ae = Ai then 

Ie = Ii.  For the range from xs to x4 equation [16] was utilized and the integrand in [19] 

reduces to: 
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Once I(x) is determined M(x) is found from the definition of the impulse function: 

)1( 2MpAI bγ+≡                   [21] 

thus 

                [22] 

 

In this equation Ac represents the core flow area, which is not equal to the duct area 

for the case of a shock train existing in the isolator. This creates adiabatic separated 

flow (from station u to station d).  In this area the total temperature, Tt, is constant 

and known, Tt =Tr2, so that the core Area Ac(x) is evaluated by equation [22] along 

with: 
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In the diabatic, attached region these two equations are used to evaluate T(x) directly 

)(
)(1

)()(
)(1)(

xA
xA

xAxp
xIxM

cb








−=

γ



 

 

37 

 

since A(x) is known.  Thus in the diabatic, attached region and the adiabatic, detached 

region the properties are known based on the pressure distribution and the known 

state of the air at station 2.  For the region from xd to xs where the flow is separated 

and diabatic any simple smooth function could be used to intersect Tt(xd)=Tt2 to Tt(xs) 

and approximately determine the properties within that section.  To do so the 

differential forms of the conservation equations and [16] are combined: 
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Combined with: 
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the values of these properties can be determined along the length of the combustor.  

One more parameter of interest, the combustion efficiency ηb(x), may be determined 

if the adiabatic flame temperature is calculated for a given equivalence ratio: 
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where Tσ is the mass-averaged static temperature of both fuel and air streams at 

burner entry, and TAFT is the adiabatic flame temperature. 
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 Thus a fairly straightforward analysis can be performed to analyze the static 

pressure data for a given combustor and infer the temperature, Mach, velocity, and 

combustion efficiency profiles.  These parameters are key in characterizing a 

combustor flow, however additional information by means of visual measurements 

provide insight into the flowfield characteristics. 

2.3 Diagnostics 

2.3.1 Schlieren 

 Light propagating through a vacuum travels along straight lines or rays.  

These rays are deflected when light passes through a medium which does not have 

optical homogeneity, i.e. a medium where the refractive index is not the same 

everywhere.  Many optical visualization techniques are based on this phenomenon, 

including that of Schlieren visualization.   

 The idea of utilizing ray deflection has been around for many years.  Toepler 

is given credit as being the first scientist to develop the technique for observation of 

liquid or gaseous flow, in around 1860 52.  Since that time, these techniques have been 

utilized extensively and evolved.  Typically Schlieren techniques are utilized to 

produce qualitative imagery, however recent investigations have begun to modify 

classical Schlieren techniques to obtain quantitative flow characteristics 53- 55.  The 

current study utilizes classical Schlieren techniques with sophisticated optical 

collection technology to observe both qualitative as well as some quantitative 
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measures. 

 A typical Schlieren system consists of a light source, a collimating lens (or 

mirror), a collecting lens (or mirror), a diaphragm (or knife-edge), and the collection 

optics.  Figure  2.10 shows a diagram of a typical setup.  Light passes through the 

collimating lens to create parallel rays through the test section,  and the collecting 

lens focuses the light on the detector which is usually some type of camera.  The 

diaphragm is positioned at the focal point of the collecting lens to block any refracted 

light.  In gaseous flows light is deflected by density gradients which have non-

homogeneous indexes of refraction.  These gradients occur across gas-gas interfaces, 

shocks in supersonic flow, and along boundary layers for example. 

 

Figure  2.10:  Diagram of Typical Schlieren Optics 

The choice of diaphragm should be made with great care as it directly affects which 

direction of refraction is blocked and therefore which direction density gradients are 

detected in.  Typically a knife edge is placed as the diaphragm so that light refracted 

in one direction is blocked while light refracted in the opposing direction passes.  

Blocked light appears as dark or bright areas on the Schlieren images dependent on 

diaphragm orientation.  This method produces reliable results and provides qualitative 
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insight to the flowfield studied. 

2.3.2 OH* Chemiluminescence 

 A wide range of sources for optical radiation from a flame or combustion 

system are available to use as analysis tools for combustion characteristics.  The 

source most directly connected to the combustion reactions, however, is 

chemiluminescence 56.  Chemiluminescence appears when a certain chemical reaction 

in a chain of reactions mainly produces some molecules in an electronically excited 

level 57.  These molecules undergo transitions from higher to lower energy states that 

result in fluorescent emissions at specific frequencies depending on the molecule that 

has been excited.  Such excited molecules or atoms have radiative lives on the order 

from 10-8 to 10-6 seconds 60.  The intensity of the resulting emissions is proportional to 

the production rate of the excited state species.  In hydrogen-air reactions excited 

state OH (OH*) is produced by collisions with CH radicals and can be used to mark 

the location of the reaction zone.  For this reason chemiluminescence has been used 

as a rough measure of reaction time and heat release rate previously 56. 

 OH* and CH* chemiluminescence has been utilized to study flame front 

structure 58, local equivalence ratio 59, and to monitor flame stability 56.  OH* 

chemiluminescence is of interest in the present studies due to its appearance in both 

hydrogen and hydrocarbon flames.  Gaydon 60 discusses the sources of 

chemiluminescent OH* and sights four means of excited OH emission: i.) weak 

thermal radiation, ii.) weak anomalous excitation to higher vibrational levels (mainly 
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in hydrogen flames), iii.) strong excitation in reaction zones of hydrocarbon flames 

which lead to higher effective rotational temperatures and iv.) strong excitation in 

other flames not leading to high rotational temperatures (i.e. methyl alcohol, 

formaldehyde, etc.).  In the present investigation the second and third mechanisms are 

those responsible for OH* generation.  The reactions producing these OH* radicals 

are as follows: 

*2 OHCOOCH +=+                   [29] 

in the hydrocarbon flame, and 

*222 OHOHHOH +=+                   [30] 

for the hydrogen flame.  These chemical reactions occur near the areas of highest heat 

release and near the flame front in both types of reactions. Therefore obtaining OH* 

chemiluminescence images under combustion conditions would broaden the 

characterization of the reacting flowfield.   

 Chemiluminescent images can be obtained at visual wavelengths using 

appropriate narrow band interference filters to isolate the wavelength of interest.  It 

should be noted, however, that at low wavelengths outside the visible spectrum 

intensified CCD cameras and special optical lenses may be required to obtain reliable 

signals. 

2.3.3 Laser-Induced Breakdown Spectroscopy 

Laser-Induced Breakdown Spectroscopy (LIBS) is an innovative method of 
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quantitatively measuring gas composition which can be used to measure local fuel to 

air ratios 61.  LIBS is an optical technique requiring no sampling from the flow. In 

LIBS a pulsed laser beam is focused onto a small point via a converging lens, creating 

a spark in the medium to be examined.  The deposition of energy is enough to create a 

microplasma of roughly 0.1-1 mm3 in volume 62, hot enough to dissociate molecules 

into their constituent atoms and excite the electrons in the neutral atoms and ions into 

higher electronic states 63.  The resulting temperature at short times (<10µs) is in the 

range of 10,000-25,000K.  As the plasma cools, the excited electrons relax emitting 

light at characteristic atomic emission frequencies.  That light is collected and 

recorded as a function of wavelength by a spectrometer.  The total time for plasma 

formation and decay is on the order of microseconds, therefore providing rapid, in-

situ analysis.  Data obtained can be used to determine the elemental concentrations 

and ratios present in the measurement volume, which is defined by the volume of the 

plasma.  Typical applications for the LIBS technique have been in the evaluation of 

waste emission analysis 63, environmental monitoring 61, and material processing.  

Characterization of supersonic turbulent flows has been previously been performed 

using hot wire or film anemometry (HWA) and laser Doppler velocimetry (LDV) 64.  

However these techniques are invasive and have their individual shortcomings.  The 

application of the LIBS technique to supersonic flow is novel, and could have a wide 

range of potential benefits. 
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3 Experimental Apparatus & Approach 

3.1 Flow Facilities 

 Airflow for both the cavity induced resonance and supersonic combustion 

characterization were provided by an Atlas Copco Compressor.  This compressor can 

achieve a maximum flow rate at its outlet of 358 cubic feet per minute at a pressure of 

150 psi.  It is a stationary screw type compressor which is oil injected and single 

stage.  An electric motor provides power to the compressor.  The compressor line is 

fed through a settling tank to remove sediment and/or oil deposited in the compressor 

air.  It is then passed through a dryer which removes condensate by lowering the air 

temperature to near freezing.  Finally the air is passed through a gas/air filter before 

being routed to the laboratory supply lines.  These supply lines are mated to the 

individual rigs described in the subsequent sections. 

3.2 Cavity Induced Resonance  

 The experimental apparatus to study the cavity induced resonance was set up 

on the non-reacting test bed in the Advance Propulsion Research Laboratory.   A brief 

description of the overall setup is provided here to aid the reader in understanding the 

subsequent, more detailed, descriptions.  Air flow is provided through a supply line, 

which undergoes a conical reduction and is then passed through a converging 

diverging nozzle.  Flow velocity at this nozzle exit is approximately Mach 2.0.  The 
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test section with optical access is placed directly after this nozzle and then the air is 

exhausted from an open end at atmospheric conditions.  A rough diagram of this 

system is presented in Figure  3.1. 

 

Figure  3.1:  Basic Diagram of Cavity Mixing Test Apparatus 

3.2.1 Hardware  

 The supply line described in section 3.1 from the gas/air filter is mated to a 2 

inch diameter steel pipe and redirected into the laboratory.  A ball valve is placed on 

this line, followed by a Wilkerson screw type regulator valve with an operating range 

of 0-180 psi.  Mass flow and stagnation pressure upstream of the test section is 

controlled by this choked regulator.  Pressure is measured directly after the regulator 

with a Setra Model 206 static pressure transducer with a range of 0-250 psi and 

monitored on a Datum 2000 dual channel display which was calibrated according to 

factory specifications.  The test section is mated to the circular pipe approximately 7 

feet downstream of this regulator by a 4.75 inch bolt circle adapter and two 

subsequent aluminum custom milled blocks.  These blocks reduce the flow area from 

the circular supply line to a one inch square cross section.  The first block (referred to 

as the transition block) serves as a conical reduction and the second block (referred to 
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as the front block) establishes a straight, square cross section and couples to the test 

section.  Three-view CAD models of these two blocks is presented in Figure  3.2 and 

Figure  3.3.   

 

Figure  3.2:  Transition Block Schematic for Cavity Mixing Rig 
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Figure  3.3:  Front Block Schematic for Cavity Mixing Rig 

 The test section consists of two aluminum blocks, which make up the top and 

bottom test section surfaces, and two quartz windows held within stainless steel 

frames, which make up the sides of the test section.  The frames, or window-holders, 

are directly connected to the front block and sandwich the top and bottom plate.  

These frames are milled from 316 stainless steel and allow an optical, line of sight, 

access 1.2 inches high and 11.8 inches long to the test section.  They hold in place the 

quartz windows which measure 2 inches high and 12 inches long.  The quartz 

windows can be replaced with aluminum plates with ports for dynamic pressure 

measurement.  A schematic of one of the window holders is presented in Figure  3.4.  

Bolts are used to secure the window holders together with the top and bottom plate 
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held in-between the two window holders. 

 

Figure  3.4:  Window Holder Schematic for Cavity Mixing Rig 

 The top and bottom plate are milled from Aluminum Stock and measure one 

inch wide by sixteen inches long.  The top plate has a constant angle converging 

section which terminates in a flat section 0.1 inches long, after which is the sharp-

corner nozzle profile.  This profile was developed by employing a simple two 

dimensional method of characteristics 65  written in the MATLAB software.  A three 

degree expansion angle was placed downstream of the injection point (on the bottom 

plate to be described) to compensate for boundary layer growth in the duct.  This 

expansion is based on previous experimental results and design 10.  The top plate is 

presented in Figure  3.5. 
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Figure  3.5:  Top Plate Schematic for Cavity Mixing Rig 

 The bottom plate also has a constant angle converging section which 

terminates at the throat location corresponding to the short flat section preceding the 

nozzle curve on the top plate.  From the throat to the exhaust the bottom plate has a 

flat profile for the baseline configuration.  This plate was simply replaced to switch 

between the baseline configuration and the cavity configuration.  An injection point is 

placed nine inches from the throat in both configurations, and measures 0.100 inches 

in diameter.  The cavity bottom plate has a cavity recess cut from the aluminum at a 

location starting one inch upstream of the fuel injection.  The cavity measures 0.5 

inches long by 0.125 inches deep, giving the cavity an aspect ratio of 4.  This aspect 

ratio was selected based on prior investigations into various cavity configurations and 
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their characteristics 10.  CAD drawings of these two bottom plates is presented in 

Figure  3.6 and Figure  3.7. 

 

Figure  3.6:  Baseline Configuration Bottom Plate Schematic for Cavity Mixing Rig 
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Figure  3.7:  Cavity Configuration Bottom Plate Schematic for Cavity Mixing Rig 

 This hardware was utilized for all of the mixing enhancement experiments, 

with the only variation being the bottom plate for the corresponding baseline and 

cavity cases.  An adhesive gasket material was used to seal the glass-metal interfaces 

as well as the connection of the front block and test section.  O-ring seals were 

utilized between the supply line and transition block as well as between the transition 

block and the front block.  A complete schematic of the assembled components is 

presented in Figure  3.8   for a more comprehensive understanding of the experimental 

apparatus.  Additionally, a picture of the test section is shown in Figure  3.9. 
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Figure  3.8:  Cavity Mixing Test Section Schematic, Baseline Configuration 

 

Figure  3.9:  Close-up Picture of Cavity Mixing Test Section, Cavity Configuration 
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3.2.2 Diagnostics 

3.2.2.1 LIBS 

 The LIBS system used in the cavity mixing experiments utilized the 1064 nm 

fundamental of a Nd:YAG laser to create the plasma spark.  This laser was operated 

with an energy of approximately 400 mJ / pulse and monitored periodically 

throughout testing to detect any power drift.  As shown in Figure  3.10, the laser beam 

is expanded from 5 mm to 22 mm, after which the beam is passed through the center 

hole of a pierced mirror and then focused into the test section via a 10 cm focal length 

fused silica lens.  Light emitted from the plasma is collected back along the same 

optical path via the pierced mirror by achromatic collection system, which transmits 

the light via a UV-compatible optical fiber to an intensified CCD camera mated to a 

0.3 meter spectrometer.  Spectra are output to a desktop computer for analysis.  For 

the application in the supersonic wind tunnel this apparatus was mounted on a 

movable cart and placed adjacent to the continuous flow facility.  A picture of the 

LIBS system in place can also be seen in Figure  3.11.   
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Figure  3.10:  LIBS Diagnostics Schematic 

 

Figure  3.11:  Picture of LIBS Apparatus placed perpendicular to test section 
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3.2.2.2 Schlieren 

 The Schlieren system used was a high speed Schlieren configuration 

consisting of a 10W continuous light source reflected by a six inch diameter concave 

mirror through the test section.  The light was collected by an identical mirror 

perpendicular to the test section and passed through a radial Schlieren stop aperture.  

The mirrors have focal lengths of 60 inches and were placed as seen in Figure  3.12.   

 

Figure  3.12:  Specific Schlieren configuration for cavity mixing enhancement studies 

A Photron Ultima 1024 CMOS camera was used to collect the filtered light from the 

Schlieren stop. A desktop computer and the Photron Fastcam software were used to 

capture and store the images.  The camera has an acquisition rate of 60-16000 frames 

per second and shutter speeds from 0.016 to 7.8E-6 s.  For the purposes of the current 

investigation the camera was operated over a range of 1-8000 fps and the full range of 

shutter speeds to produce both quasi-instantaneous and time averaged Schlieren 

images.  These images were also analyzed using the image processing toolbox of 

MATLAB to plot the intensity maps as a measure of fuel injection and fuel spreading. 
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3.2.2.3 Dynamic Pressure 

 To investigate the oscillating pressure waves in the cavity, the quartz window 

was replaced with the instrumented aluminum plate discussed in  3.2.1.  This plate 

was fitted with a flush mount dynamic pressure transducer located at the trailing edge 

of the cavity.  The transducer was a Kistler 211B5 voltage mode dynamic pressure 

transducer with a measuring range of 0 to 100 psi and with a maximum pressure 

capability of 500 psi.  This was mated to a Kistler 5010B dual mode charge amplifier 

and then fed into a National Instruments Digital Acquisition Center which interfaced 

with a LabView monitoring program.  This program also saved the signal in data files 

which were subsequently loaded and analyzed in MATLAB.  The signal was sampled 

at 1 Mega samples / second.  Signals from 0 to 50 kHz were detectable based on this 

sampling rate and the Nyquist Criterion.  A Fast Fourier Transform (FFT) was 

conducted on the data sets in MATLAB to identify the dominant frequency at the 

given flow conditions. 

3.2.3 Experimental Procedure 

 Flow conditions were established by setting the upstream stagnation pressure 

for all of the cavity induced mixing experiments.  This was done using the Wilkerson 

regulator and the pressure was recorded using the Setra Datum 2000 display.  Once 

the air flow was established a helium injection was set to a specific pressure and 

controlled via an electronically actuated solenoid valve.  This helium line was passed 
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through a 0.052 inch orifice to create a choked condition and to allow for mass flow 

calculations based on stagnation pressure.  With both the fuel and air on 

measurements were then taken for the given diagnostics. 

3.2.3.1 Schlieren and Dynamic Pressure Testing 

 Schlieren measurements were also performed once the air flow and helium 

pressures were established as outlined in Table  3-2.  Both the cavity and non-cavity 

configurations were investigated at three optical conditions for the Schlieren testing.  

The optical conditions selected were: 

Table  3-1:  Optical Configurations for Schlieren Testing 

Optical 

Configuration 

Frame Rate 

(fps) 

Shutter 

speed 

Resolution Lens 

1 2000 1/64000 s 512 x 256 Zoom 

2 8000 1/128000 s 512 x 64 Standard 

3 60 1/60s 1024 x 1024 Zoom 

 

The configuration corresponding to high framing rates and shutter speeds were 

assumed to produce ‘instantaneous’ images and are used to make qualitative 

observations of the cavity resonance phenomena.  The low framing rate configuration 

produces time averaged images that were loaded into MATLAB as grey scale images 

with the intensity corresponding to a value from 0 (black) to 255 (white).  These 
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images were then mapped for their intensity to infer quantitative information about 

the fuel injection trajectory.  The image files were acquired as movie files and then 

split into individual images.  The number of images and resolution were a function of 

the camera’s available memory. 

 Dynamic pressure measurements were acquired for the same apparatus but 

were taken over a wider range of flow conditions.  Air flow conditions from 20 to 100 

psig were investigated with a tighter test matrix centered around the conditions where 

mode ‘hopping’ occurred.  As mentioned previously these signal were also analyzed 

in MATLAB and compared to the theoretical predictions of Rossiter 44. 

3.2.3.2 LIBS Testing 

 Preliminary testing encompassed a test matrix from 20-80 psig for Air and 20-

60 psig for Helium.  These tests were utilized to narrow the experimental test matrix 

to include three separate conditions for the two configurations, which were optimal 

for the LIBS testing.  This produced a test matrix as follows: 
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Table  3-2:  LIBS Testing Conditions 

   Air Stag. Press Air Mass Flow 

Rate 

He Stag. Press He Mass Flow 

Rate 

1 20 psig 

(2.4x105 Pa) 

0.051 kg/s 

(0.11 lb/s) 

40 psig 

( 3.7x105 Pa) 

4.8x10-4 kg/s 

(1.1x10-3 lb/s) 

2 20 psig 

(2.4x105 Pa) 

0.051 kg/s 

(0.11 lb/s) 

60 psig 

(5.2x105 Pa) 

6.5x10-4 kg/s 

(1.4x10-3 lb/s) 

3 40 psig 

(3.7x105 Pa) 

0.081 kg/s 

(0.18 lb/s) 

60 psig 

(5.2x105 Pa) 

6.5x10-4 kg/s 

(1.4x10-3 lb/s) 

  

At each test condition a set of 9 measurement locations were investigated using the 

LIBS diagnostics creating a total of 27 test locations in the matrix.  As illustrated in 

Figure  3.13 , the nine test locations were at three streamwise (or x-direction) locations 

from the injection point:  6.3 mm, 31.7 mm, and 57.1 mm and at three spanwise (or y-

direction) locations:  0 mm (centerline), +5 mm, +10 mm in this symmetric flow.  

Due to experimental constraints, the test location height (in the z-direction) was kept 

constant for all cases at 3.2 mm or approximately 3 injector diameters.  The test 

matrix was then collected for both the cavity and non-cavity (or baseline) conditions. 
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Figure  3.13:  LIBS Investigation Points 

 LIBS data was collected for 100 single shot spectra and then averaged to 

produce a single measure of the He/O ratio.  This parameter is the ratio of the 

integrated atomic emission peak of He at 588 nm to the integrated peak of O at 777 

nm.  Since the peak area is proportional to the number of atoms of a particular 

element present and the plasma volume is constant for each shot, this ratio represents 

the molecular concentration of helium, relative to air, within the test volume. The 

constant laser power allows the assumption of a constant plasma volume, as these are 

directly proportional.  Laboratory experiments which were not conducted as a part of 

this thesis have proven the usefulness of the He/O atomic peak ratio for quantification 

of helium concentration 66. 

3.3 Supersonic Combustion Characterization 

 Air was supplied via the same process as describe in section 3.1 via a 2 inch 
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diameter steel pipe for the combustion characterization experiments.  This rig, 

however, was built on the reacting flow stand in the Advance Propulsion Research 

Laboratory.  A general overview of the supersonic combustion apparatus is presented 

in Figure  3.14.  Supply air is brought through a converging-diverging nozzle which 

accelerates the flow to Mach 2.  A short straight section of duct follows this nozzle 

and then the duct is expanded in all three dimensions with a constant angle expansion.  

The fuel injection and pilot flame are placed just downstream of this expansion and 

optical access is provided by a quartz window on one side.  The combustor is 

exhausted into the atmosphere and an active water cooling system is placed in front of 

the exhaust duct to protect the laboratory HVAC system.  A detailed description of 

the components and diagnostic systems can be found in the subsequent sections. 

 

Figure  3.14:  Basic Diagram of Supersonic Combustion Test Apparatus 

3.3.1 Hardware 

 Similar to the configuration described in section 3.2.1, the 2 inch supply line 

is mated to a Wilkerson regulator which controls the upstream stagnation pressure 

and mass flow rate accordingly.  Pressure is measured directly after the regulator with 

a Setra Model 206 static pressure transducer with a range of 0-250 psi and monitored 
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on a Datum 2000 dual channel display which was calibrated according to factory 

specifications.  The test section is again mated to the circular supply line by a 4.75 

inch bolt circle connected to two custom milled aluminum blocks.  These blocks will 

also be referred to as the transition block and front block as described for the cavity 

mixing enhancement hardware.  Although serving the same purpose the dimensions 

of these blocks are different than those of the cavity mixing rig.  The transition block 

serves as a conical reduction of the flow from the circular pipe to a 0.5 inch square 

cross section.  This is accomplished over a distance of 2 inches which is longer than 

the cavity mixing transition block length.  A schematic diagram of the transition 

block is presented in Figure  3.15. 

 

Figure  3.15:  Transition Block Schematic for Supersonic Combustion Rig 



 

 

62 

 

 The front block for the combustion characterization experiments mated the 

transition block to the combustor test section itself.  This block had a square cross 

section flowpath with dimensions of 0.7 inches by 0.7 inches.  The flowpath area is 

expanded to allow for the placement of a flow straightener in this front block section.  

The flow straightener is a stainless steel honeycomb material with length equal to 2 

inches and hexagonal cells with cell sizes of approximately 0.005 square inches.  The 

flow leaving the transition block, therefore, undergoes negligible expansion due to the 

flow straightener and enters the test section at the same area as the exit of the 

transition block.  The intersection between transition block, supply pipe, and front 

block are all sealed via o-ring connections.  A schematic of the front block is 

presented in Figure  3.16. 
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Figure  3.16:  Front Block Schematic for Supersonic Combustion Rig 

 The combustion characterization test section consists of three components, a 

solid combustion block, a nozzle plate, and a quartz window held in place by a 

window holder.  All of these parts are milled from 306 stainless steel so they are able 

to withstand the heat loads during testing.  The combustion block is connected to the 

front block using four bolts and has a corresponding 0.5 inch square flow path aligned 

with that of the transition block upstream.  The combustion block itself makes up 

three walls of this flow path with nozzle plate making up the fourth, or front wall.  In 

this section the walls are referred to by their orientation on the test stand with the 

observer looking at the flowpath. The square flow path extends for 7 inches after 

which a three dimensional expansion with an angle of 3.6° occurs.  The expansion 
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runs the rest of the length of the combustor which is 12 inches.  Again the combustor 

block makes up three of the walls of the test section in the expanding flowpath and 

the quartz window makes up the fourth.   

 Injection ports are located 0.75 inches and 1.75 inches downstream of the 

expansion point on both the back and top wall of the test section.  These ports are 

perpendicular to the expanding walls and measure 0.1 inch in diameter at the test 

section.  The ports extend 0.25 inch into the block after which they expand to accept a 

standard 1/8 inch normal pipe thread (NPT) fitting.  Also located along the length of 

the combustor block are pressure ports.  These ports are 0.04 inch at the test section 

wall and expand to 0.063 inch at a depth of 0.1 inch to accept the pressure 

measurement tubules.  Four ports are located in the straight section, on both the top 

and back walls, beginning 2.0 inches upstream of the expansion with a  spacing of 0.5 

inches between each port.  Twenty-two ports are located in the expanding section, on 

both the top and back walls, beginning 0.25 inches downstream of the expansion with 

a spacing of 0.5 inches between each port.  Naturally some ports are omitted due to 

the injection ports and connecting bolt clearance constraints.  It should be noted that 

the injection ports occur along the pressure port spacing, that is to say the pressure 

ports directly upstream and downstream of the injection ports are at a distance of 0.5 

inches.  A schematic of the combustion block and associated ports is presented in 

Figure  3.17.  



 

 

65 

 

 

Figure  3.17:  Combustion Block Schematic for Supersonic Combustion Rig 

 The fourth test section wall in the constant area section is established by the 

nozzle plate.  This plate fits flush to the combustion block and has a 0.5 inch wide 

converging-diverging nozzle profile protruding into the flowpath.  The nozzle profile 

is developed by using the same methodology described for the cavity mixing nozzle 

profile.  A sonic throat is established at the end of the converging section and occurs 

4.0 inches upstream of the expansion in the combustor block.  The interface between 

the nozzle plate and combustor block is secured by eight bolts and sealed with a 

liquid copper gasket.  The interface between the nozzle plate and the front block is 

also sealed with the same gasket and secured by two bolts.  A schematic of the nozzle 

plate is presented in Figure  3.18 . 
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Figure  3.18:  Nozzle Plate Schematic for Supersonic Combustion Rig 

 The final wall of the test section is established by the quartz window held in 

place by the stainless steel window holder.  The window holder allows optical access 

from the expansion to 11.65 inches downstream with a width of 1.4 inches.  The 

quartz-metal interfaces are sealed with 1/32 inch high temperature silicon gaskets.  A 

schematic of the window holder is presented in Figure  3.19. 
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Figure  3.19:  Window Holder Schematic for Supersonic Combustion Rig 

 The exhaust from the combustion block flows into the laboratory exhaust 

system via an eight-inch water cooled duct.  This is placed downstream of the 

combustion block exit and has no notable effects on the flow field in the combustor. 

 In order to provide an ignition source for the fuel injected into the combustor 

block a pilot flame is established at the second injection port in the staged fuel 

injection studies.  This is accomplished by the use of a staged igniter system.  The 

igniter burns a fuel-air mixture which is initially reacted by a spark plug.  The air 

supply is brought in perpendicular to the fuel supply and the flow is also 

perpendicular to the spark.  The flame is sustained by a small rearward facing step in 

the igniter itself.  Following the ignition of this hydrogen-air mixture a secondary fuel 
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is brought through an additional injector perpendicular to the core flow.  Overall the 

length of the igniter is 6 inches with the first fuel injection 0.75 inches from the air 

entrance, the second fuel injection 2.75 inches downstream and the spark plug 1.75 

inches downstream.  The total flow (fuel 1, fuel 2, and air) is then passed through a 

choked orifice before expanding into the fuel injection port on the combustor block.  

This acts as a secondary flame holder and is utilized in the pilot flame operation 

described in subsequent sections.   A schematic of the fuel delivery system is shown 

in Figure  3.20.  Additionally, a CAD model of the igniter itself is presented in Figure 

 3.21 . 
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Figure  3.20: Basic Diagram of Igniter 
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Figure  3.21:  Igniter Schematic for Supersonic Combustion Rig 

 Fuel and air supplied to the igniter as well as the combustion block is fed from 

pressurized supply bottles via 0.25 inch supply lines.  Four lines were available for 

use on the combustion rig and all four were utilized with different fuels / air.  These 

lines are passed through direct acting electronically controlled valves.  The valves are 

normally closed stainless steel valves controlled by 10 watt, 24 volt DC solenoid 

coils.  Signals were sent to the solenoid valves via a custom built switch box 

apparatus.  A schematic of the apparatus is presented in Appendix A:  Switch Box 

Control System.  Choked orifices were placed in each line to regulate the mass flow 

of each gas.  The types of gases used and their respective orifice sizes can be found in 
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Table  3-3. 

 

Table  3-3: Gas Grades and Orifice Sizing 

Gas Supply line Airgas® Grade Orifice Size (in) 

Hydrogen 3 Zero Grade 0.012 

Ethylene 2,4 Chemically Pure 

Grade 2.5 

0.010, 0.100 

Air 1 Dry Grade/ 

Compressor Supply

0.033 

 

 Spark to ignite the fuel-air mixture was provided by an automotive type 

Autolite copper core spark plug driven by a Standard Motor Products coil.  The coil 

was powered by a Interstate 60 month Meta-tron battery and spark timing was 

controlled by a solid-state relay.  The relay control signal was provided by a 

Wavetech 40MHz Universal Waveform Generator and consisted of a pulse signal 

with 2 ms duration and 20 ms period. 

 A schematic of the assembled test apparatus is presented in Figure  3.22  with 

the igniter system in place. Additionally a picture of the apparatus is presented in 

Figure  3.23 .  
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Figure  3.22: Supersonic Combustion Rig Schematic with Igniter 

 

Figure  3.23: Picture of Supersonic Combustion Rig on Reacting Flow Stand 
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3.3.2 Diagnostics 

3.3.2.1 Scanivalve Pressure Measurements 

 A Scanivalve Corporation DSA-3217 Digital Sensor Array was used to make 

static pressure measurements at all of the pressure ports along the top and back walls 

of the combustion block.  This Array consists of 16 temperature compensated 

piezoresistive pressure sensors with a pneumatic calibration valve.  The 16 sensors, or 

channels, all have a range of 0-200 psi.  Their associated error is ±0.2% of scale for 

pressures less than 1 psi, ±0.12% of scale for pressures between 1 and 5 psi, and 

±0.05% of scale.  The measured pressures are sent via a TCP/IP connection to a 

desktop computer and into a LabView virtual control panel.  This virtual interface 

(VI) allowed for monitoring of all 16 channels and the DSA’s settings as well as 

writing of the data to a text file to be read by post-processing software.  The default 

settings for the DSA were manually changed to give better temporal resolution and to 

provide data for determination of error.  Settings which were changed were the 

period, or time between scans, which was set to the minimum setting of 250 µs and 

the average which was set to 5 scans.  The DSA has only 16 channels and there are a 

total of over 50 pressure ports on the combustor block.  For that reason multiple runs 

were performed with the pressure lines connected to different port configurations.  

Those ports not being monitored were capped. 
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3.3.2.2 Optical Measurements 

 Optical measurements were taken using a ½ inch Pulnix Interline Transfer 

B/W Charge-Coupled Device (CCD) Camera with SC-745 shutter control to monitor 

the supersonic combustion rig during the experiments.  The shutter speed is 

adjustable from 1/60 to 1/10,000 seconds but was generally time averaged (long 

shutter) for monitoring purposes.  This camera was mated to a 13 inch Sony high-

resolution Trinitron Monitor and recorded to VHS.  Images of interest were then 

digitized using a Data Translation frame grabber using the Global lab software. 

3.3.2.3 OH* Chemiluminescence 

 To further characterize the flame front and combustion characterization OH* 

chemiluminescence was employed.  This was done by utilizing a PCO Dicam Pro 

Intensified CCD camera.  The ICCD has a shutter speed as short as 3 ns and is 

operated at a frame rate of about 5 Hz.  When fitted with an narrow band interference 

filter, centered at 308 nm,  the ICCD will only pick up images of the OH* radical.  

Also fitted to the ICCD is a UV lens which allowed for focusing as well as zooming 

on areas of interest.  The ICCD system is computer controlled and can be adjusted for 

gain, image size, averaging, and imaging time.  A tripod was used to position the 

camera at the same height as the test section and a variety of images were taken from 

time averaged to instantaneous.  These images were exported from the Dicam 

software and saved to a hard disk for analysis. 
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3.3.3 Experimental Procedure 

 The flow was established by using the Wilkerson regulator and the Setra static 

pressure transducer to set the upstream stagnation pressure.  Initial testing 

investigated pressures from 30 to 130 psig, however subsequent testing centered on 

the higher pressure range from 90 to 130psig. 

3.3.3.1 Staged Fuel Injection Studies   

 Once the flow was established, the igniter system was brought on-line 

systematically.  First air flow for the igniter was set, after which the spark plug was 

turned on, then fuel 1 was brought on to produce the igniter flame.  The spark plug 

was turned off and the secondary fuel, fuel 2, was turned on once the igniter flame 

was burning.  After a short time (~5s) the primary igniter fuel, fuel 1, was turned off 

and the flame was re-established at the downstream flame holder between the choked 

orifice and the fuel injection point.  This region is presented at the bottom of Figure 

 3.20.  This flame protruded into the main air flow and established the pilot flame used 

to anchor supersonic combustion.  Occasional flame outs of this pilot flame occurred 

after which the same steps were repeated to re-establish the pilot flame. 

 The main fuel was brought on and injected upstream of the pilot with the pilot 

flame burning.  Pressure measurements were taken for 5 second durations under 

conditions of pilot only, fuel and pilot, and non-burning cases with the pilot and main 

fuel being injected.  Main fuel pressures were varied to produce a range of 
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equivalence ratios in the core flow.  Table  3-4 shows the range of equivalence ratios 

and fuel types investigated.   OH* chemiluminescence monitoring was performed for 

the hydrogen main fuel cases, and some chemiluminescent data was collected. 

Table  3-4:  Staged Fuel Injection Test Matrix 

P0, Air Fuel 1 Fuel 2 Main Fuel Equivalence Ratio(s) 

90 H2 C2H4 C2H4 0.3, 0.4, 0.5 

110 H2 C2H4 C2H4 0.3, 0.4, 0.5 

130 H2 C2H4 C2H4 0.3, 0.4, 0.5 

130 H2 C2H4 H2 0.05, 0.075, 0.1 
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4 Cavity Induced Mixing Quantification 

 Cavity induced mixing enhancement is examined to further explore the 

formation and transport of coherent structures downstream of the fuel injection.  

Quantitative measurements and new techniques were employed to investigate these 

phenomena.  Schlieren images were recorded for the optical conditions described in 

Table  3-1 for the testing conditions described in Table  3-2.  The short shutter speeds 

and high framing rates are examined in section 4.1.  These investigations show 

instantaneous images of the convecting structures.  The longer shutter speeds and 

associated intensity maps are investigated in section 4.2.  These images show time 

averaged information and are utilized to map the average fuel injection pattern. 

Finally the LIBS investigation is discussed in section 4.3.  LIBS provide 

instantaneous as well as averaged elemental concentration and fuel-air ratio 

measurements. 

4.1 High Speed Schlieren Results 

 High speed Schlieren images were recorded for both the baseline and cavity 

configurations for the cavity induced mixing enhancement investigation.  For the first 

set of optical conditions the framing rate was set at 2000fps and the shutter speed was 

1/64000s.  The investigation area comprised the full height of the test section duct 

and extends over a length of 1.5 inches upstream of the injector (0.5 inches upstream 

of the cavity leading edge) and 3.5 inches downstream of the injector.  The second set 
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of optical conditions consisted of an 8000 fps framing rate and shutter speed of 

1/128000s.  In this case the investigation area comprised the full height of the test 

section and extended 2 inches upstream of the injector and 3 and 5/8 inches 

downstream.  A standard, non-zoom, lens was used for this second optical 

configuration.   

4.1.1 Optical Configuration #1 

 Images collected at 2000 fps and 1/64000s shutter speed had some amount of 

time averaging however some important characteristics can be observed in the 

imagery.  Baseline imagery shows stationary shocks and very little dynamic response 

within the flow.  These images can be seen in Figure  4.1.  It should be noted that the 

first image has the calibration grid in place for reference to the image’s physical size.  

The experimental images had a height of 256 pixels, however half of the original 

image height was not of interest therefore the images displayed in this subsection 

have been cropped to a height of 128 pixels with no reduction in resolution. 
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Figure  4.1:  Schlieren Images of Baseline Configuration, Optical Configuration #1 for: a.) 20psig 

Air, 40psig He b.) 20psig Air, 60psig He c.) 40psig Air, 60psig He 

 From these images, for the three flow conditions investigated, it can be seen 

that as the upstream air stagnation pressure is increased the shock angle caused by the 

fuel injection actually becomes more normal.  It is originally expected that increasing 

stagnation pressure will result in higher local Mach number and thus more shallow 

shock angle, however the opposite is observed.  Similar effects have been observed in 

previous experiments of a similar nature 10.  This change in angle can be explained by 

the boundary layer growth and more specifically its transition from laminar to 

turbulent.   
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 When the injection is investigated it can be seen that the normal injection is 

bent over and the density gradient between fuel and air forms almost a straight line 

extending back from the injection point.  This is most easily seen in part c.) of Figure 

 4.1.  In contrast to this compact, and not very well mixed, fuel injection the cavity 

cases can be observed for the same optical conditions in Figure  4.2. 

 

Figure  4.2: Schlieren Images of Cavity Configuration, Optical Configuration #1  for: a.) 20psig 

Air, 40psig He b.) 20psig Air, 60psig He c.) 40psig Air, 60psig He 

 No direct ‘frozen’ imagery of the coherent structures can be seen in the flow 

downstream of the cavity however the injection profile can qualitatively be seen to 

penetrate farther into the freestream as evidenced by the density gradient shown by 
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the dark line extending from the injector.  The nature of the cavity is seen in Figure 

 4.2 as the shear layer can be seen spanning the cavity length.  Also, the shocks at the 

injection point are more normal than those for the non-cavity case.  This is 

representative of the pressure loss associated with the cavity addition.  Pressure loss is 

expected due to the sudden expansion along with the shock and expansion structures 

formed by the cavity dynamics.  This pressure loss is a key issue for future 

comparison of mixing techniques as total pressure losses reduce the efficiency of a 

given propulsion system.  Therefore, minimizing total pressure loss while maximizing 

the combustion benefits is the ultimate goal of a mixing enhancement device.  A 

study of this nature is important to determine optimal mixing configurations but is 

beyond the scope of the current investigation. 

 Although individual structures cannot be identified at this shutter speed the 

qualitative nature of the cavity enhancement can be observed.  The case for air at 

40psig and helium at 60psig is shown in Figure  4.3.  Since the shutter speed is set to 

1/64000s the images here represent approximately a 16µs average and each image is 

spaced 0.5ms apart.  Time histories for the other two cases can be found in Appendix 

B-1:  Optical Configuration #1. 
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Figure  4.3:  Schlieren Images of Cavity Configuration, Optical Configuration #1 for: Air=40psig, 

He=60psig at a.)  0ms b.) 0.5ms c.) 1.0ms d.) 1.5ms 

Here it can be seen that the shear layer periodically oscillates up and down and the 

fuel injection penetration depth changes accordingly.  These results agree with 

previous historical results 10, 36, 37, 42 and verify the open nature of the cavity, since 

images show that the shear layer clearly does not reattach to the bottom floor of the 
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cavity.  These images also demonstrate the qualitative operation of the cavity mixing 

mechanism by visualizing the oscillation of this shear layer. 

4.1.2 Optical Configuration #2 

 Images collected at 8000 fps and 1/128000s shutter speed had very little time 

averaging and display ‘frozen’ coherent structures convecting downstream of the 

cavity.  It should be noted that although the shutter speed is high enough to capture 

structures at the shedding frequency, local velocities may be higher than the shedding 

frequency and therefore some of the structures themselves may be time-averaged.  

For this configuration a standard lens with no optical zoom was employed and the 

images therefore represent a slightly larger area with lower resolution.   

 Again, baseline imagery shows stationary shocks and very little dynamic 

response within the flow.  Images for optical configuration #2 are presented in Figure 

 4.4.  It should be noted that these images were resized to match the physical size of 

those images taken for optical configuration #1, however their resolution was not 

changed. 
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Figure  4.4:Schlieren Images of Baseline Configuration, Optical Configuration #2 for: a.) 20psig 

Air, 40psig He b.) 20psig Air, 60psig He c.) 40psig Air, 60psig He 

Similar to the images presented in the previous section, again an increase in shock 

angle is seen as upstream stagnation pressure is increased.  Taken at a higher shutter 

speed, these images represent a time average over a duration of approx 8 µs, which 

capture ‘frozen’ images with respect to the shedding frequency of the cavity 

oscillations.  this can be seen in Figure  4.4 which shows the turbulent structures 

observed in the fuel injection wake.  Here again it is clear that the fuel injection does 

not penetrate very far into the core flow.  
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Figure  4.5: Schlieren Images of Cavity Configuration, Optical Configuration #2 for: a.) 

Calibration b.) 20psig Air, 40psig He c.) 20psig Air, 60psig He d.) 40psig Air, 60psig He 

 When the cavity configuration is investigated using this high shutter speed 

individual structures are seen as they convect downstream from the fuel injection 

point.  This is particularly evident in the highest pressure cases seen in Figure  4.5 d.).  

It is important to note that multiple structures can be seen both at the injection point 

and farther downstream.  These images conclusively show that the structures are 

periodic and do convect downstream from the cavity.  Again the shocks in front of the 

fuel injection appear to be more normal in the cavity cases, evidence of the cavity 

pressure losses.  Here it can also be seen qualitatively that the fuel penetrates 

significantly farther into the core flow periodically.  Figure  4.5 a.) is included to 
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provide the calibration for the physical size of the images taken for optical 

configuration #2. 

 The images taken for optical configuration #2 represent events spaced 0.125 

ms apart due to a framing rate of 8000fps.  At this framing rate, with an assumed 

freestream Mach number of two, the structures formed at the injection in one frame 

will have convected out of the inspection area by the next frame.  This prevents 

observation of individual structures’ motions downstream.  However, when the time 

histories are observed, the oscillating motion of the shear layer over the cavity can be 

seen.  Individual structures can be identified at multiple points downstream of the 

injection point which is also evidence of their convection.  Furthermore, when 

subsequent frames are viewed these structures have shifted (out of the frame) while 

new structures have appeared to take their place.  Since no phase-locking was 

performed the subsequent frames are not being captured at any multiple of the 

shedding frequency.  This indicates that the positions of structures in subsequent 

frames are not comparable due to aliasing.  The time history of the highest pressure 

case (air = 40psig, He = 60psig) can be seen in Figure  4.6.  Time histories of the other 

conditions can be found in Appendix B-2:  Optical Configuration #2. 
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Figure  4.6:  Schlieren Images of Cavity Configuration, Optical Configuration #2 for: Air=40psig, 

He=60psig at a.)  0ms b.) 0.125ms c.) 0.375ms d.) 0.5ms 

4.2 Time Averaged Schlieren Results 

 Time Averaged Schlieren images were acquired for both the cavity 

configuration and the baseline configuration for all of the testing conditions.  These 

images represent the average flowfield over time, and are useful for quantifying the 

average fuel injection trajectory and average mixing.  Image post-processing in 

Matlab allowed these metrics to be quantified from the imagery. 
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4.2.1 Optical Configuration #3  

 The third optical configuration utilized a shutter speed of 1/60s and a framing 

rate of 60fps.  Since these are time averaged, every image produced is nearly identical 

and no time histories were resolved.  The inspection area was significantly smaller for 

these images and measured only 1 inch of the flowfield downstream of the injector.  

Multiple images were taken to assemble a full downstream view however they were 

not analyzed because only the initial fuel injection trajectory is clearly defined and 

demonstrates the effective difference with cavity enhancement. 

 The time averaged images for the baseline case reiterate the earlier 

observation that as the stagnation pressure of the air is increased upstream the shock 

angle at the injection point becomes more normal.  Images of the three cases are 

presented in Figure  4.7 for the baseline configuration.  The change in angle is evident 

between cases b.) and c.) as the air stagnation pressure is increased to 40psig.  Here it 

can also be seen that as the fuel injection pressure is increased the average penetration 

depth increases.  Overall, however, the penetration depth is not very great and the 

clarity of the images provides insight into how stationary the structures are with 

respect to time. 
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Figure  4.7:Schlieren Images of Baseline Configuration, Optical Configuration #3 for: a.) 20psig 

Air, 40psig He b.) 20psig Air, 60psig He c.) 40psig Air, 60psig He 
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Figure  4.8: Schlieren Images of Cavity Configuration, Optical Configuration #3 for: a.) 20psig 

Air, 40psig He b.) 20psig Air, 60psig He c.) 40psig Air, 60psig He 
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The cavity configuration for the same conditions is shown in Figure  4.8.  Here it can 

be seen that the shock structures are more normal than the baseline case as observed 

in the previous optical configurations.  Again in these figures the pressure loss due to 

the cavity as compared to the baseline case is evident in the more normal shock 

structures for all the cavity cases.  The fuel penetration is deeper for the cavity cases 

as compared to the baseline cases as seen in Figure  4.9.  This image also shows a 

more disperse density gradient by wider band the fuel injection trajectory follows.  

This can be explained by either a moving density gradient, since the images are time 

averaged, or that the density gradient is not as strong which would imply more 

disperse fuel mixing. 

 

Figure  4.9:  Comparison of Schlieren Images, Optical Configuration #3,  for Air =40psig, 

He=60psig, with a) baseline and b) cavity configurations 

4.2.2 Intensity Maps 

 These images were read by the Matlab software and processed as greyscale 

images.  This processing produced a matrix representing each individual pixel of the 
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image as a value from 0 to 255.  This value represents the relative brightness of the 

image at each pixel, with 0 being ‘true’ black and 255 being ‘true’ white.  This matrix 

can be manipulated to investigate the intensity of the Schlieren images and determine 

qualitative and quantitative characteristics of the flow.  

4.2.2.1 Single Pixel Mapping 

 The simplest manipulation of these matrices is to plot the intensity of the 

image versus one of the physical axes.  This yields the intensity along one pixel width 

along the height (or width) of the image.  The relative intensity in a Schlieren image 

represents the changing density gradient and can either be darker or lighter depending 

on the orientation of the Schlieren aperture.  In the case of the supersonic mixing 

enhancements the dark bands represent the density gradient and can be interpreted as 

the location of fuel-air interface.  It should be noted that although the areas below 

these bands are light it does not mean that there is no fuel, it simply means that there 

is no density gradient.  Thus these regions may be pure fuel or pure air, but gas 

composition cannot be distinguished in this analysis.  An example of the single pixel 

width intensity mapping is presented in Figure  4.10.  The single red line on the 

Schlieren image, approximately 0.6 inches downstream of the injection, corresponds 

to the single width intensity map displayed on the right of the image.  It should be 

noted that the x-scale is intensity, from 0 to 255, and the y-scale is height in reference 

to the overall original image height in this plot.  It can be seen that the fuel injection 

appears as a dark band in the Schlieren and correspondingly a local minima occurs (in 
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reference to the intensity axis) at that same height.   

 

Figure  4.10:  Schlieren Image and Corresponding Intensity Map for the Baseline Configuration 

with Air = 40spig, He = 60psig 

More single line mappings are presented for the other conditions studied in Appendix 

C:  Single Line Intensity Maps. This single width mapping provides insight it is fairly 

rough and only characterizes a small portion of the flow.  Average mappings may be 

of more interest for these reasons. 

4.2.2.2 Average Intensity Mapping 

 An average mapping can be produced by simply averaging the single pixel 

width intensities over a given image area.  In the case of the cavity mixing 

enhancement averaging is done along the streamwise direction from a distance of 

3.75 to 6.25 injection diameters from the injection point.  An image of this average is 

presented in Figure  4.11 where the blue box represents the area being averaged.  
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Figure  4.11: Schlieren Image and Corresponding Average Intensity Map for the Cavity 

Configuration with Air = 40spig, He = 60psig 

This mapping represents a much smother curve and can be seen as both a time-

averaged and space-averaged map of the intensity which is representative of the 

density gradient and therefore the fuel-air interface.  An evaluation of these mappings 

compares the baseline and cavity cases and their associated fuel injection 

characteristics.  In Figure  4.12 it these two curves are plotted; it can be seen that the 

cavity case’s low intensity occurs over a broader height, represented by the nature of 

the curve near the local minima at a height of 0.35 inches.  The baseline case, in 

contrast, has a steeper curve with a darker, or less intense, local minima in 

comparison to the cavity case.  This represents a larger density gradient or a more 

tightly packed fuel layer.  Figure  4.13 zooms in on the region of interest to make 

these differences more apparent.  These curves have been adjusted due to differences 

in overall intensity between the two sets of images.  These differences can be 

attributed to minute changes in the light source, alignment issues, etc.  The curves 

were scaled to an area upstream of the injection, where the intensity of the two 

images is assumed to be identical. 
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Figure  4.12:  Average Intensity Map Comparison for Cavity and Non-Cavity Configurations 

with Air=40psig, He=60psig 
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Figure  4.13:  Average Intensity Map Comparison of Cavity and Non-Cavity Configurations, 

Air=40psig He=60psig, Zoomed on Area of Interest 
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These images show the qualitative time-averaged differences between the fuel 

injection in the cavity and non-cavity case as investigated by intensity mapping.  A 

more insightful picture of the fuel injection trajectory could be obtained by tracking 

the local minima across the area of the average images presented in this section. 

4.2.2.3 Fuel Injection Mapping 

 The local minima, which can be used to represent the fuel injection, can be 

tracked along the length of the inspection area by breaking down the averaged area 

into multiple smaller averages, or discrete cells.  The original averages were 

discritized into 10 cells and then the local minima were identified using the Matlab 

software.  Their associated heights were calculated and then these values were plotted 

for both the configurations and all three conditions.  This plot is representative of the 

fuel injection trajectory beginning at a distance of 3.75 diameters downstream of the 

injector and ending 2.5 injection diameters later.  The plot is presented in Figure  4.14.  

Trend lines fit to the data points are also plotted on this graph.  The cavity 

configuration data points appear as black symbols while the non-cavity 

configuration’s appear as blue symbols.  It can be seen that for all cases the fuel 

injection penetration is greater for the cavity configuration.  At the highest pressure 

case, the slope of the trend line is much steeper for the cavity configuration than for 

the non-cavity configuration.  This indicates that the fuel injection is penetrating 

faster which is indicative of better mixing.  It should be noted that for the trend line 

configuration the outliers (points 7 and 8 for the two higher pressure non-cavity 
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cases) were ignored. 
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Figure  4.14:  Fuel Injection Trajectories for all Configurations and Conditions, Derived from 

Intensity Mapping 

 The plots confirm the increased spreading rate and fuel penetration and 

establish the phenomena qualitatively and quantitatively.  The results from the LIBS 

diagnostics will be compared to these results to evaluate the technique’s effectiveness 

in gaining quantitative fuel-air ratios. 

4.3 Dynamic Pressure Measurements 

 Dynamic pressure measurements were taken to confirm the shedding 

frequency of the cavity system in reference to Rossiter’s model described in Section 
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2.1.3.2.  The pressure port was placed at the trailing edge of the cavity and the output 

was reduced in Matlab utilizing a Fast Fourier Transform.  The output plots from this 

analysis are presented for all three cases in Figure  4.15. 
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Figure  4.15:  Power Spectrum Output from Fast Fourier Transform of Dynamic Pressure Data 

for all three conditions 

In these plots it can be seen that the dominant frequency is centered on 20 KHz which 

is approximately the predicted value from the Rossiter model for the second 

harmonic.  Analysis of the predicted results and the experimental results are presented 

in Table  4-1.  Here duct Temperature is estimated from previous characterizations of 

the flow facility 10, and Mach number is estimated by observation of the mach waves 

present in the Schlieren images.  Predicted values are calculated as described in 

 2.1.3.2.  In this table it can be seen that the frequency of the experimental results is 

within approximately 1 KHz of the predicted value.  This confirms that the 

experimental apparatus tested agrees with previous empirical and analytical results.  

Further characterization of the shedding frequency across a wider range of upstream 

pressures was performed and is presented in Appendix D:  Dynamic Pressure 
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Measurements  

Table  4-1:  Experimental Values and Predicted Rossiter Results for Shedding Frequency and 

Strouhal Number 

P0,Air fexp(kHz) Mexp Texp 

U 

(m/s) 

Lexp 

(m) SrL,exp 

fpredicted 

n=2      SrL 

20 19.8 1.59 196 446 0.0127 0.564 20.2 0.574 

40 20.5 1.48 205 419 0.0127 0.621 19.4 0.588 

 

4.4 LIBS Results 

 Laser Induced Breakdown Spectroscopy was applied to all the flow conditions 

and test locations described in section  3.2.2.1.  These measurements resulted in 100 

single shot data files for each species, He and O, which were loaded into Matlab to be 

analyzed.  The data was manipulated to produce average values at each test point and 

test condition.  Statistical uncertainty was also calculated along with standard 

deviation.  Investigation of these plots reveals the spanwise and streamwise 

distributions of the He/O ratio for both configurations.  These average value plots 

were also compared to show quantitative differences in the flows between the 

baseline and cavity configurations. 

4.4.1 Streamwise & Spanwise Trends 

 He/O ratio is determined by analyzing the spectra emitted from the spark 
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created by the LIBS system.  The output of the LIBS measurement directly is 100 

single plots of the observed spectra which is post processed and can be evaluated to 

produce plots of concentration.  The methodology and calibration of this particular 

system is beyond the scope of the current study, however it was thoroughly 

investigated by Temple 66.  For the purposes of this study the metric of interest is the 

He/O ratio which is analogous to the fuel to air (or fuel to oxidizer) ratio.  It is 

important to note that the local temperature of the LIBS system completely 

dissociates Oxygen, thus the ratio is in reference to atomic Oxygen and not 

molecular.  The reader is also referred to Figure  3.13 for a visual representation of the 

testing locations.  In the following plots the value of Y represents the spanwise 

distance, on one side of the flow, with Y=0 located along centerline.  Also, X 

represents the streamwise distance measured from the injection point.  All tests were 

conducted at a constant height, Z, of 3.2mm. 

 The streamwise and spanwise trends for fuel to air ratio are quantified by 

investigating their values for both cases separately at multiple distances in both 

directions.  Figure  4.16 and Figure  4.17 show an example of these plots for the He/O 

ratio versus y-location for various downstream distances.  These show a distinctly 

higher He/O ratio at the centerline at all downstream locations.  This quantifies the 

three dimensional effects of the single point injection and is an expected result which 

is illuminated by the LIBS technique.   
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Figure  4.16: Spanwise Distribution of He/O Ratio for Various Streamwise Locations Taken by 

the LIBS Diagnostics  for Air = 20psig, He = 60psig, Cavity Configuration 

 

Figure  4.17:  Spanwise Distribution of He/O Ratio for Various Streamwise Locations Taken by 
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the LIBS Diagnostics for Air = 20psig, He = 60psig, Cavity Configuration 

This concentration gradient occurs in the spanwise direction therefore it cannot be 

observed by Schlieren images, because the Schlieren technique integrates across the 

line of sight.  Figure  4.16 shows the values for the non-cavity configuration and 

Figure  4.17 shows the values for the configuration with the cavity.  Both 

configurations display this spanwise concentration distribution, at all the streamwise 

locations. 

 This quantification of He/O ratio proves the applicability of LIBS to a 

supersonic flow field.  With its applicability proven, the LIBS technique could 

quantify the benefit of the cavity configuration on fuel-air mixing. 

4.4.2 Comparison of Baseline and Cavity Configurations 

 To quantify the mixing enhancement the He/O ratio at the same location and 

conditions for the two configurations are directly compared.  The measured ratios are 

taken at a constant height, which was set to be in the area of highest fuel 

concentration for the baseline configuration.  Because of this improved mixing will 

be represented by lower He/O ratios at the given height.  This is due to the simulated 

fuel penetrating deeper into the flow and mixing over a wider volume of the core flow 

air, reducing the amount of fuel at the given height.  He/O ratios are plotted for both 

configurations and all three flow conditions versus the spanwise distance in Figure 

 4.18-Figure  4.20, at the nearest streamwise location. 
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Figure  4.18:  Comparison of He/O Ratio versus y for the Non-cavity and Cavity Configurations 

with Air = 20psig, He = 40psig, at x = 6.3mm 

 

Figure  4.19:  Comparison of He/O Ratio versus y for the Non-cavity and Cavity Configurations 
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with Air = 20psig, He = 60psig, at x = 6.3mm 

 

Figure  4.20:  Comparison of He/O Ratio versus y for the Non-cavity and Cavity Configurations 

with Air = 40psig, He = 60psig, at x = 6.3mm 

 In all three plots the average centerline value is much higher for the non-

cavity configuration as compared to the cavity configuration; only for the second case 

do the uncertainties overlap (however the opposing averages are not within the 

uncertainty limits).  The gain in He/O ratio can be seen to be up to a factor of 5 for 

the lowest pressure case.  If the outer spanwise locations are investigated for the two 

configurations it can be seen that their values are generally lower.  However, some 

averages are close to one another and even lie within each other’s uncertainty.  Based 

on their low ratios it appears that the fuel has not fully convected outward to the walls 

at this nearest downstream location.  Investigation of locations farther downstream 
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may reveal the spanwise effects of the large coherent structures as they are shed from 

the cavity.  Figure  4.21-Figure  4.23 show plots for the He/O ratio for the same 

conditions as Figure  4.18-Figure  4.20 for the farthest downstream location 

investigated. 

 

 

Figure  4.21: Comparison of He/O Ratio versus y for the Non-cavity and Cavity Configurations 

with Air = 20psig, He = 40psig, at x =57.1mm 
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Figure  4.22:  Comparison of He/O Ratio versus y for the Non-cavity and Cavity Configurations 

with Air = 20psig, He = 60psig, at x =57.1mm 

 

Figure  4.23: Comparison of He/O Ratio versus y for the Non-cavity and Cavity Configurations 
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with Air = 40psig, He = 60psig, at x =57.1mm 

 At the streamwise location x = 57.1mm it can be seen that the enhanced 

mixing effects have a more pronounced effect at the walls as compared to the values 

at x = 6.3mm.  The centerline values have much higher uncertainties than the 

upstream values, which is indicative of the turbulent shear layer growth.  For the two 

lower pressure cases it can be seen that the centerline average values are actually 

higher for the non-cavity case, but the two uncertainties overlap and even encompass 

the other configuration’s average value.  The general trend to quantify mixing 

enhancement is seen at the outer values with the cavity case having lower He/O ratios 

than the non-cavity case with a factor of up to 1.5.  When these two sets of Figures 

are considered it can be seen that at the nearest streamwise location mixing effects are 

quantifiable at the centerline, with a single point centerline injector.  The fuel then is 

more well-mixed downstream in regards to the spanwise direction. 

4.4.3 Uncertainty Analysis 

 In Figure  4.18-Figure  4.23 the uncertainty bars plotted represent the statistical 

uncertainty of the average measurements.  These bars were determined by 

considering the sample size, Ni, and the standard deviation of the data, σι.  The 

standard error in the mean value is then determined for each atomic element: 

i

i
im N

σ
σ =,                     [31] 

where i indicates the error for the individual atomic emission line measurement.  
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Once the standard error of the mean is evaluated for Oxygen and Helium the standard 

error of the ratio can be evaluated: 

22
HeOm σσσ +=                    [32] 

This uncertainty is multiplied by two to produce the value for each error bar, or 2σm.  

These values of uncertainty are predicated on the assumption of the central limit 

theory which asserts that an infinite number of samples will produce a Gaussian 

distribution of the data around the actual average.  The standard deviation is a good 

measure of the variance of the data, which can be representative of the amount of 

turbulence apparent in the flow.  Duplicate graphs of those shown in  4.4.2 are plotted 

in  7.5: Appendix E:  LIBS Data Plots with the statistical uncertainty replaced by the 

standard deviation. 

 Uncertainty in the LIBS method itself is a function of the concentration of 

fuel, or alternately the He/O ratio.  For the ratios represented here the uncertainty in 

the measurement apparatus is very small in comparison to the statistical uncertainty.  

Discussion of the apparatus uncertainty is again found in Temple 66. 
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5 Supersonic Combustion Characterization 

 A series of experiments were performed for the purposes of characterization 

of supersonic combustion in a three-dimensionally expanding test section with aspect 

ratio of one.  First airflow through the test article was investigated utilizing the 

Scanivalve diagnostics described in section  3.3.2.1 with no fuel addition or 

combustion.  These non-reacting flow cases are presented in section  5.1.  Reacting 

flow experiments were then performed to compare with these non-reacting cases in an 

attempt to identify combustion characteristics.  The resulting pressure trace would 

provide a means for conducting an analytical investigation of the combustion 

characteristics as described in section  2.2.3.  The reacting flow experiments use a 

staged fuel injection system also described in the early sections of this thesis and 

appear in section  5.2.1.  These tests utilized two fuel types, hydrocarbon and 

hydrogen, as well as a variety of equivalence ratios. 

5.1 Non-Reacting Flow Characterization 

 Non-reacting or cold flow, characterization was performed for a wide range of 

stagnation pressures upstream of the supersonic nozzle.  No mass addition in the form 

of fuel injection was performed for these cold flow conditions.  A minimum choking 

pressure was approximated and then experiments were conducted starting from 

20psig and running up to 130psig in steps of 10psig.  For each experiment a 5.0 

second duration measurement was taken by the DSA pressure module which consists 
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of 16 pressure channels.  The combustor block contains 24 ports along the top wall 

and 27 ports along the back wall, so four separate tests were conducted at the same 

stagnation pressures to obtain data for every pressure port.  These files contained 

approximately 240 data points for each of the channels, and were averaged to yield 

the static pressure at each X-location downstream.  These pressures were then 

normalized by the stagnation pressure upstream and plotted to view the trends.   

 Normalized pressure plots were generated and are shown in Figure  5.1 and 

Figure  5.2 over the range of the test conditions for both the top wall pressure ports as 

well as the back wall pressure ports.  In this plot stagnation pressure changes are 

investigated from 30psig to 130psig.  Since there is no vacuum at the exhaust of this 

test apparatus the flow must match atmospheric pressure at some point near the test 

section exit.  Because of this a shock will be established at some location in the flow 

after which the flow velocity will become subsonic.  The supersonic and subsequent 

subsonic regions can be identified by their characteristic pressure traces.  Supersonic 

flow in an expanding duct will have a negative, or favorable, pressure gradient with 

respect to the flow direction.  However, subsonic flow in an expanding duct will have 

a positive, or adverse, pressure gradient with respect to the flow direction.   

 When the pressure plots for the combustor block are investigated it can be 

seen that the lower pressures, below 90psig, follow the subsonic expansion line 

almost immediately.  In Figure  5.1 for the top wall pressure port measurements this is 

presented as each pressure trace follows a different subsonic expansion line.  As 

upstream stagnation pressure is increased supersonic region is longer and the shock is 
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pushed downstream.  This is most evident in the 130psig case where the pressure 

gradient is favorable until approximately 2 inches downstream after which the 

normalized pressure begins increasing.  Figure  5.2 shows the same plot for the back 

wall pressure ports. 

X(in)

P
w
/P

0

-4 -2 0 2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
30 psig
50 psig
70 psig
90 psig
110 psig
130 psig

Expansion
Point

 

Figure  5.1:  Normalized Pressure Profile for Multiple Upstream Stagnation Pressures versus 

Axial Distance, Non-Reacting Cases, Measured by the Top Pressure Ports 
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Figure  5.2: Normalized Pressure Profile for Multiple Upstream Stagnation Pressures versus 

Axial Distance, Non-Reacting Cases, Measured by the Top Pressure Ports 

It is of interest to note that the top wall and back wall traces exhibit a fair amount of 

difference indicating that the flow is not uniform.  This is most likely caused by the 

two dimensional throat and nozzle.  The back wall pressure traces display the same 

trends with the low pressure cases of almost purely subsonic characteristics.  Due to 

these findings the operational limits of the test article will be restricted for reacting 

flow cases from 90-130psig.  Also, this severely restricts the data resolution since 



 

 

114 

 

only a very short distance is supersonic in the test section and the pressure port 

spacing is fixed.  Recommendations for future work and considerations of this 

problem will be discussed in Chapter 6.  A closer view of the pressures of interest, in 

the non-reacting test conditions, is presented in Figure  5.3 and Figure  5.4 for the top 

wall and back wall pressure ports, respectively.   
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Figure  5.3:  Normalized Pressure Profiles for Upstream Stagnation Pressures with Supersonic 

Regimes versus Axial Distance, Non-Reacting Cases, Measured by the Back Pressure Ports 
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Figure  5.4:  Normalized Pressure Profiles for Upstream Stagnation Pressures with Supersonic 

Regimes versus Axial Distance, Non-Reacting Cases, Measured by the Back Pressure Ports 

 With the baseline cold flow pressure characterization performed the reacting 

flow experiments could be conducted and compared to these non-reacting cases.  

These comparisons generate the combustion characteristics of the specific test article. 

5.2 Reacting flow characterization 

 Reacting flow cases were conducted for only the higher pressure conditions 
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due to the operability range of the test article as described in the previous section.  

The igniter system described in  3.3.1 was utilized to produce the pilot flame for the 

staged fuel injection studies.  This pilot flame was established using ethylene fuel, 

which was beneficial for monitoring purposes as the flame can be visualized by 

traditional optics.  Two main fuels, ethylene and hydrogen, were investigated in the 

staged fuel injection configuration. 

5.2.1 Staged Fuel Injection Studies 

 The procedure for the staged fuel injection testing is described in  3.3.3.1, 

however a brief revisit in the geometry is beneficial.  A pilot flame is established at 

the second injection point which was placed approximately 1.75 inches downstream 

of the expansion point.  The pilot flame is injected with a stoichiometric equivalence 

ratio of ethylene and air.  The main fuel is supplied via the first injector point 

approximately 0.75 inches downstream of the expansion point, or 1.0 inches upstream 

of the pilot flame.  The injection point diameter of 0.1 inch acts a choked orifice and 

the pressure of the injected fuel is altered to produce a variety of equivalence ratios.  

Equivalence ratio calculations were performed to give the overall equivalence ratio 

with respect to the core supersonic mass flow.  Once the pilot flame was established 

the main fuel, either ethylene or hydrogen, was brought on and measurements were 

taken.  Visual monitoring was taken via the CCD camera, and OH* 

chemiluminescence monitoring was conducted for the hydrogen fuel tests.  The 

apparatus for these systems is described in Chapter 3.  Pressure measurements were 
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taken as in the cold flow cases and compared. 

5.2.1.1 Ethylene Main Fuel 

 Ethylene main fuel experiments were conducted for equivalence ratios of 0.3, 

0.4 and 0.5 at upstream stagnation pressures of 90, 110, and 130 psig.  Runs were also 

performed with: i.) only the pilot flame burning with no main fuel addition and ii.) 

full fuel mass injected under non-reacting conditions (i.e. pilot flame uninitiated). 

 Very little visible burning was evident in the monitoring of these cases, 

although a noticeable geometry change in the pilot flame was observed.  For all 

equivalence ratios the burning efficiency was determined to be very low as evidenced 

by the lack of flame propagation outside of the pilot flame region.  Pressure traces 

taken reveal that very small amounts of combustion were occurring, however the 

change in pressure is minimal with respect to the equivalence ratio.  For these 

experiments the pressure port configuration was re-oriented to investigate the areas of 

supersonic flow.  The pressure measurements were thus taken on the back wall and 

top wall at the same time, with eight ports on each being monitored for the same test.  

Pilot flame and fuel injection were performed from the top wall, for which reason 

access to the ports nearest the injectors was restricted.  Therefore, the back wall 

pressure traces, which contain the axial port locations directly in front of, in between, 

and behind the injectors, are of the most interest.  

 Figure  5.5 shows the normalized pressure plot versus axial distance with the 

core flow at 110 psig and all of the fuel conditions.  In this plot the difference 
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between the pilot/cold flow cases and all the cases with the main fuel injection are 

evident.  At a location of approximately 1.25 inches a significant difference in 

normalized pressure of about 0.02 is seen between these two flow conditions.  The 

rest of the plot is somewhat cluttered and will be broken down in subsequent plots to 

analyze specific trends.  However, one trend is obvious, that all of the considered 

burning cases, including the pilot only case, shock to subsonic flow conditions farther 

downstream than the cold flow case.  This indicates that some amount, albeit very 

small, of supersonic combustion is occurring in these cases and the additional energy 

deposited in the flow is helping it to remain supersonic for a longer distance.  On the 

plot this is seen where the cold flow case (in red) has an positive pressure gradient 

beginning at approximately 2.25 inches whereas the other cases do not exhibit an 

positive pressure gradient until after approximately 2.75 inches. 
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Figure  5.5: Normalized Pressure Profile for Upstream Stagnation Pressures of 110psig versus 

Axial Distance, Ethylene Main Fuel Cases, Measured by the Back Pressure Ports 

 When the areas directly around the injection points are investigated to 

compare the burning and non burning cases (specifically for the highest equivalence 

ratio) it is obvious that the effects of combustion are very small in this system.  Figure 

 5.6 shows the comparison of burning and non-burning at an equivalence ratio of 0.5 

for the same conditions as Figure  5.5, zoomed in on the area of interest along with the 

cold flow and pilot flame data points. 
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Figure  5.6: Normalized Pressure Profile  near injectors for Upstream Stagnation Pressures of 

110psig versus Axial Distance, Ethylene Main Fuel Cases, Measured by the Back Pressure Ports 

 At the axial location of 2.25 inches the differences between the cases are 

clear, although very small.  The additional pressure rise due to the pilot flame, and 

subsequent main fuel mass flow and main fuel burning can be seen as these values of 

normalized pressure are consecutively higher.  This clearly indicates a pressure 

addition in the burning case and thus supersonic combustion.  Expected pressure 

distributions, however, would be up to an order of magnitude higher which indicates 
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the extremely small amount of fuel being reacted within this system.  A very small 

amount of fuel reaction indicates poor combustion efficiency.  Three main factors of 

this inefficiency are theorized to be: i.) the chemical reactivity of the fuel, ii.) mixing 

inefficiencies, or iii.) the low enthalpy nature of the test facility.  Hydrogen fuel was 

later investigated to evaluate the mixing efficiencies on a qualitative level for these 

reasons. 

 The uncertainty bars shown in these plots are the measurement uncertainty as 

defined by the manufacturer of the DSA module.  Statistical errors in the 

measurements were calculated by the methods outlined in  4.4.3, however were so 

small in magnitude they were omitted.  For reference the largest statistical uncertainty 

was on the order of 1E-8 for the normalized pressure data.  Normalized pressure data 

never went below the order of 1E-2, thus the statistical uncertainty is 6 orders of 

magnitude smaller than the measured values.  The measurement uncertainty was 

found to be a more substantial value, one order of magnitude smaller than that of the 

normalized pressure data minimum. 

 The higher stagnation pressure of 130psig was also evaluated for these testing 

conditions and pressure plots were produced.  These graphs are presented in Figure 

 5.7 and Figure  5.8.  Trends in these graphs mirror those of the 110psig case in that the 

effect of fuel addition is clear but very minute.  Also it should be noted that higher 

equivalence ratios do not seem to have a large effect on the pressure characteristics 

which implies that additional fuel does not react.  These preliminary signs point 

towards mixing issues which were further investigated by first altering the fuel type. 
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Figure  5.7: Normalized Pressure Profile for Upstream Stagnation Pressures of 130psig versus 

Axial Distance, Ethylene Main Fuel Cases, Measured by the Back Pressure Ports 
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Figure  5.8: Normalized Pressure Profile  near injectors for Upstream Stagnation Pressures of 

130psig versus Axial Distance, Ethylene Main Fuel Cases, Measured by the Back Pressure Ports 

5.2.1.2 Hydrogen Main Fuel 

 To provide insight into the reasons behind the low combustion efficiency of 

the hydrocarbon fueled tests a more reactive fuel was investigated.  If hydrogen fuel 

provided considerably better combustion characteristics the problems encountered in 

the previous reacting flow experiments would be evident as chemical reactivity issues 
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associated with the hydrocarbon fuel.  However, if the pressure traces and visual 

monitoring showed little increase in combustion the problems would most likely be 

associated with mixing or enthalpy and thus the experimental apparatus itself.  

Hydrogen fuel was injected through the main fuel orifice at equivalence ratios of 

0.05, 0.075 and 0.10 at only the highest pressure case to investigate the combustion 

qualities.  A plot of the back wall pressure port measurements are presented in Figure 

 5.9 and can be compared with Figure  5.7 for the ethylene testing.   
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Figure  5.9:  Normalized Pressure Profile for Upstream Stagnation Pressures of 130psig versus 
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Axial Distance, Hydrogen Main Fuel Cases, Measured by the Back Pressure Ports 

The hydrogen has a more clear effect than that of the ethylene fuel which is a product 

of its lower activation energy.  However, the affects are still not significant and the 

majority of the pressure rise can be attributed to mass addition.  These results 

correspond to the same trends shown for the ethylene tests.  Again the interest area is 

looked at closer in Figure  5.10 (for ER=0.075) and distinct effects are evident of mass 

addition and burning, but are very minute in comparison to expected results. 
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Figure  5.10:  Normalized Pressure Profile for Upstream Stagnation Pressures of 130psig versus 
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Axial Distance, Ethylene Main Fuel Cases, Measured by the Back Pressure Ports 

OH* chemiluminescence monitoring was taken for the hydrogen cases since the 

primary emission of H2-Air reactions is in the ultra-violet range and cannot be 

visualized with the CCD camera.  OH* chemiluminescence was performed using an 

ICCD camera and a long, time averaged, shutter speed of 0.1s.  Images were averaged 

to produce brighter pictures of the flame front structure.  Since OH* emission 

represents the area of highest reaction it is a good indicator of flame propagation and 

reaction zones.  An image comparing the pilot flame OH* emission and the OH* 

emission with the main fuel on is seen in Figure  5.11.   

 

Figure  5.11:  Chemiluminescent Images of a.) Pilot Flame and b.) Pilot Flame with Main Fuel 

Addition for Hydrogen Staged Fuel Testing 

Here it is obvious that the effect of fuel addition is very minor.  These findings 

confirm that the problem is not one of fuel reactivity and it was theorized that the 

staged fuel injection is not providing areas of favorable temperature and 

concentration for combustion at coincident points.  The main fuel injection may be 

penetrating deeper into the core flow such that the highest fuel concentration is at a 

height above the pilot flame where only a small percentage of the fuel injected is 
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contacting the area of sufficient temperature from the pilot flame to enable reaction.  

A sketch of these trajectories and their associated concentration and temperature 

profiles is shown in Figure  5.12.  Although this is the believed reason for poor 

combustion, providing conclusive proof is difficult due to a lack of line of sight 

visibility which prohibits use of many flow visualization techniques.  In order to fully 

explore the combustion issues, therefore, a number of different methods should be 

investigated.  Other possible problems are:  a lack of flame holding in the staged 

system due to the small size of the injector ports and their relatively large spacing, 

and an overall deficiency in activation energy available due to the low enthalpy 

conditions. 

 

Figure  5.12:  Theorized fuel and pilot flame trajectories and relative concentration / temperature 

profiles at their intersection 

 Due to the findings of the staged hydrogen fuel experiments it was decided 

that the fuel injection configuration had to be altered to completely identify the 

combustion issue as one of mixing inefficiency.  Suggested reconfigurations include a 
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single-point injection of a fuel-rich plume.  This may allow the fuel to be preheated 

and be more prone to react with the core airflow.  It is suggested that such a system 

utilize a larger injection port to increase penetration and flame length as well as avoid 

chamber pressure issues.  A further investigation into the reconfiguration of the fuel 

delivery system is discussed in section  6.3.   
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6 Summary and Conclusions 

 A set of two separate experimental investigations were performed to explore 

fundamental areas of scramjet development.  The first experiment attempted to 

further the quantification of mixing enhancement by flow-induced cavity resonance.  

In these tests novel diagnostic techniques were implemented and fuel/air ratios were 

quantified at discrete points in the flowfield.  The mixing benefits of a cavity mixing 

system were thus proven.  The second investigation was conducted with the goal of 

characterizing a baseline supersonic combustor with an aspect ratio of one, developed 

for a low-enthalpy ground test facility.  This investigation was predicated on the idea 

that scramjet development inevitably will result in the use or testing of novel 

combustion geometries, many of which utilize low aspect ratio flowpaths.  With this 

in mind experiments were performed to analyze the combustion characteristics of an 

expanding, square combustor from which future investigations of non-traditional 

geometries could be compared.  Many key issues were identified and explored and 

the resulting baseline configuration was determined to be unsatisfactory in 

combustion qualities. 

6.1 Cavity Mixing Enhancement 

 Cavity mixing enhancement studies were conducted in a supersonic duct with 

design Mach number of 2.0 and with a cavity of L/D ratio of 4.  Qualitative 

investigations were performed utilizing Schlieren visualization, at both high and low 
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shutter speeds.  The high-speed imaging resulted in images of clearly defined 

coherent structures, which were shown conclusively to convect downstream from the 

trailing edge of the cavity.  Individual structures were discernible in these images due 

to the shutter speed being substantially higher than the shedding frequency of the 

cavity itself.  Portions of the structures were averaged, though, due to extremely high 

local velocity.  In spite of this averaging the convecting structures are clearly 

identified at multiple locations downstream of the cavity in both individual frames 

and subsequent frames.  The framing rate available was insufficient to allow tracking 

of individual structures; however individual frames are sufficient to demonstrate the 

structures convection.  Conclusive proof of downstream convection provides insight 

to the mixing mechanism of this system and supports previous findings. 

 Time averaged Schlieren images were evaluated using image processing 

software which developed quantitative indications of fuel injection trajectories.  

These images, once analyzed, demonstrated that the cavity case increased the fuel 

injection penetration and mixing by tracking the transverse intensity gradient along 

the streamwise direction.  Since the intensity gradient is related to the density 

gradient, it can be used as a quantitative measure of spreading rate in the flowfield.  

The resulting intensity maps support the observations taken from high-speed 

Schlieren and provide a means of mapping the fuel injection qualitatively.  These 

techniques could be beneficial in quantitatively mapping fuel injection in other 

systems to provide insight into the fuel delivery dynamics.  Furthermore they provide 

a means of deriving quantitative information from typically qualitative Schlieren 
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optical methods.  

 Dynamic pressure measurements were also performed to quantify the 

shedding frequency and confirm the cavity characteristics with the theoretical models.  

These measurements demonstrated that the shedding frequency matched with 

reasonable accuracy those predicted by Rossiter 44.  A shedding frequency of 

approximately 20 kHz was identified for the upstream stagnation pressures of interest.  

Dynamic pressure measurements were conducted across a wider range of upstream 

stagnation pressures, outside the range of interest for the cavity mixing investigations.  

These experiments revealed a mode-hopping phenomenon within the system.  The 

values match with the model at the first harmonic, in contrast to the lower pressure 

investigations.  This mode hopping phenomenon and the criterion for various mode 

selection process are of interest to study in the future.  For the purposes of this 

investigation the second harmonic was dominant and the experimental and theoretical 

observations were in agreement. 

 Laser Induced Breakdown Spectroscopy (LIBS) was the third diagnostic 

technique performed on the test article.  This application of LIBS is the first known 

application to a supersonic flow condition.  LIBS provides discrete, rapid, in-situ 

measurements of elemental concentrations which are of great benefit to the scramjet 

application.  Requiring only single point optical access this diagnostic technique 

allows for the quantitative measure of fuel/air ratio which is the key parameter in 

determining mixing.  As applied to the cavity mixing experiments LIBS revealed the 

significant three-dimensional qualities of the mixing flowfield which could not be 
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realized by previous line of sight diagnostic techniques.  Furthermore the LIBS data 

showed significant reductions in fuel/air ratio at a given height in the test section for 

the cavity configuration as compared to the non-cavity configuration.  With constant 

mass flows of fuel a lower fuel/air concentration at a constant height indicates that 

fuel has penetrated deeper or dispersed across a wider area.  These are quantitative 

indications of enhanced mixing and the differences in fuel/air ratio between 

configurations were seen to be as high as five fold.  This result confirms both the 

benefits of cavity mixing enhancement quantitatively as well as proves LIBS as a 

robust diagnostic technique which could be beneficial in future scramjet testing and 

development. 

6.2 Supersonic Combustion Characterization 

 Supersonic combustion characterization experiments were conducted in an 

expanding area duct with an aspect ratio of unity.  The goal of these experiments was 

to develop baseline data for a square geometry to which future experimental 

geometries’ combustion characteristics could be compared.  Initial testing indicated 

that for hydrocarbon testing some form of secondary fuel injection would be 

necessary to test a wide range of fuel/air ratios.  Both hydrocarbon and hydrogen 

fuels were of interest due to the various applications of scramjet technology.  A 

robust baseline model would include multiple fuels and potentially various flow 

properties.  Both of these aspects were initially investigated by changing fuel type and 

varying upstream stagnation pressures.  Static pressure measurements were taken 
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along the length of the test section for a wide range of upstream stagnation pressures 

to characterize the non-reacting flow.  Pressure profiles along the axial distance of the 

flowpath were produced by these measurements.  These experiments revealed the 

operational limits of the test article to be narrower than expected, only achieving 

supersonic flow for a substantial distance of the expanding section at the higher 

upstream stagnation pressures.   

 With these conditions identified by the cold flow characterization the 

combustion experiments were performed utilizing a staged hydrocarbon fuel delivery 

system.  These experiments resulted in evidence of supersonic combustion; however, 

the effect of changing fuel-air ratio was weak suggesting poor combustion efficiency. 

Furthermore, only a few normalized pressure data points could be obtained for these 

cases, and curve fitting these points for analysis would incur large amounts of 

uncertainty.  Thus, the combustor appeared unsuitable to be used as a baseline 

configuration.  Three possible causes of poor combustion efficiency were discussed.  

They are: a lack of chemical reactivity due to the hydrocarbon fuel, a lack of 

sufficient mixing provided by the staged fuel injection, and an overall lack of 

reactivity due to the low enthalpy conditions.  Studies with hydrogen fuel were then 

performed to investigate these possibilities. 

 Hydrogen fuel experiments provided similar results as the hydrocarbon fuel 

investigations and confirmed that the deficiency might be due to a lack of mixing by 

the staged fuel injection.  The issue is compounded by the low-enthalpy nature of the 

flow facility which requires that the high temperature zone created by the pilot flame 
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must coincide with an area of favorable fuel/air mixture.  These issues need to be 

addressed in order to obtain efficient supersonic combustion, which must precede the 

development of the baseline combustor and its characterization. 

6.3 Contributions 

The significant contributions of these experimental studies are: 

• In cavity-induced mixing enhancement, coherent structures are 

conclusively shown to convect downstream from the trailing edge of the 

cavity.  This finding is consistent with the physical model and mechanism 

suggested previously. 

• Laser Induced Breakdown Spectroscopy was applied to supersonic flow 

conditions for the first time.  This diagnostic was used to quantify the 

dispersion of simulated fuel, He, which was injected into supersonic air 

flow.  The technique is non-intrusive and can quantify the He/O ratio 

within the flow 

• Quantitative comparisons of fuel injection trajectory based on density 

gradient were derived from qualitative, time-averaged Schlieren images.  

This tool shows promise in providing alternative quantitative analysis 

from traditionally qualitative Schlieren images. 

• A supersonic test bed was designed, fabricated, and installed on the 

reacting flow stand in Maryland’s Advanced Propulsion Research 
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Laboratory.  The results expanded the combustion testing capability at the 

University of Maryland. 

• Supersonic combustion was achieved utilizing a staged fuel injection 

strategy.  However the results showed that the prescribed staged fuel 

injection system could be unsuitable for future experimental comparisons.  

A redesign of the fuel injection system and an increase in the system 

enthalpy could be necessary to promote more efficient combustion. 

6.4 Recommendations & Future work  

 Cavity mixing enhancement experiments investigated the benefits of this 

mixing technique by quantifying the fuel/air ratios at specific locations.  These 

experiments also investigated the mechanisms by which the fuel-air mixing 

enhancement was achieved.  Although there is a clear gain in fuel-air mixing, the 

associated losses must also be considered to analyze the potential benefits.  Most 

notably the pressure loss which may result from mixing enhancement should be 

quantified.  This metric will determine whether or not the combustion gains by 

increased fuel mixing, and associated shorter combustor advantages, could outweigh 

the losses incurred by the cavity itself.  Experiments of this nature would be the next 

logical step in the investigation of application of cavity induced resonance to 

scramjets as a mixing enhancement device. 

 The cavity mixing experiments were also conducted in a non-reacting flow 

facility under low enthalpy, off-design conditions.  An interesting point of further 
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investigation may also be that of flight conditions, or increased enthalpy, on the 

cavity performance.  Lastly, a reacting flow experiment to compare cavity and non-

cavity combustion characteristics is of the utmost interest and has the closest link to 

application on a scramjet system. 

 Combustion characterization experiments have revealed the need for redesign 

of the fuel delivery system.  It is believed that areas of favorable fuel concentration 

are not coincident with areas of high temperature in the flowfield.  For this reason it is 

suggested that impinging or single point fuel delivery systems are considered in the 

redesign of this test article.  While these solutions may resolve the mixing issues, the 

low enthalpy characteristics of the system may still prohibit the efficient burning in 

the test section.  For this reason it is also recommended that some form of pre-heater 

is installed on the upstream air supply.  This would raise the stagnation temperature 

of the airflow and increase the enthalpy of the system. 

 The expansion of operational limits may also be of interest to investigate 

multiple design points in reference to core mass flow in the test section which is 

representative of theoretically different flight altitudes.  This can be achieved by 

reducing the overall expansion angle, which would result in a longer supersonic test 

region.  It should also be noted that improved combustion may push this supersonic 

region farther downstream, in turn expanding the operation limits of the test article.  

Another solution is found in tightening the resolution of the static pressure ports.  

Currently 0.5 inch spacing is utilized to allow for more than adequate machining 

tolerances, these clearances can be reduced and a more thorough pressure profile may 
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be the result. 

 Future investigations will be conducted to evaluate novel geometries 

developed by design methods such as streamline tracing.  These geometries will be 

tested utilizing the same fuel injection geometry as the square test section and at the 

same flow conditions to allow comparison.  In this means issues such as corner 

effects and overall combustion characteristics will be analyzed for the novel 

geometries for the first time experimentally.  These initial investigations will provide 

useful insight to direct future, full-scale, high-enthalpy ground testing as well as 

potential flight testing of new scramjet designs.  Fundamental investigations into 

these geometries and their respective combustion qualities will be important to the 

progression of scramjet technology development.  
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7 Appendices 

7.1 Appendix A:  Switch Box Control System 

 Shown below is the wiring diagram for the electronic valve control system 

which was custom fabricated for the laboratory applications presented in this thesis. 

 

 

Figure  7.1:  Wiring Diagram of Switch Box Control System 
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7.2 Appendix B:  Time Histories for High Speed Schlieren 

7.2.1 Appendix B-1:  Optical Configuration #1 

 

Figure  7.2:  Schlieren Images of Cavity Configuration, Optical Configuration #1 for Air=20psig, 

He=40psig at a.)  0ms b.) 0.5ms c.) 1.0ms d.) 1.5ms 
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Figure  7.3: Schlieren Images of Cavity Configuration, Optical Configuration #1 for Air=20psig, 

He=60psig at a.)  0ms b.) 0.5ms c.) 1.0ms d.) 1.5ms 
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7.2.2 Appendix B-2:  Optical Configuration #2 

 

Figure  7.4: Schlieren Images of Cavity Configuration, Optical Configuration #2 for Air=20psig, 

He=40psig at a.)  0ms b.) 0.125ms c.) 0.25ms d.)0.375ms e.)0.5ms 

 

 



 

 

142 

 

 

Figure  7.5: Schlieren Images of Cavity Configuration, Optical Configuration #2 for Air=20psig, 

He=60psig at a.)  0ms b.) 0.125ms c.) 0.25ms d.)0.375ms e.)0.5ms 

 



 

 

 

143 

 

7.3 Appendix C:  Single Line Intensity Maps 

 

Figure  7.6:  Single Pixel Width Intensity Maps for Time Averaged Schlieren Imagery, Baseline 

Configuration, a) Air=20psig, He=20psig b) Air=20psig, He=40psig c) Air=40psig, He=60psig 
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Figure  7.7:  Single Pixel Width Intensity Maps for Time Averaged Schlieren Imagery, Cavity 

Configuration, a) Air=20psig, He=20psig b) Air=20psig, He=40psig c) Air=40psig, He=60psig 
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7.4 Appendix D:  Dynamic Pressure Measurements 

 Flow conditions for a variety of higher stagnation pressures were run to 

examine the ‘mode hopping’ phenomenon which was first exhibited at the Air = 

40psig, He = 60psig case.  The following FFT outputs were produced and then 

tabulated in Table  7-1.  Predicted frequencies were calculated using previous data for 

temperature 10, and estimated Mach number.  The values in the table show good 

agreement between predicted and observed results, for frequency and Strouhal 

number.  Also, it should be noted that after the second case the predicted Strouhal 

number was calculated using the first harmonic predicted frequency (n=1). 
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Figure  7.8:  Fast Fourier Transforms of Dynamic Pressure Data for Various flow conditions 

Table  7-1:  Experimental and Predicted Frequencies and Strouhal Numbers for Various Flow 

Conditions 

P0,Air fexp(kHz) Mexp Texp 

U 

(m/s) 

Lexp 

(m) SrL,exp k 

 

n=1 

fpredicted 

n=2      SrL 

20 19.8 1.59 196 446 0.0127 0.564 0.57 8.64 20.2 0.574 

40 20.5 1.48 205 419 0.0127 0.621 0.57 8.31 19.4 0.588 

45 9.87 1.47 205 421 0.0127 0.297 0.57 8.35 19.5 0.251 

50 10.1 1.49 206 428 0.0127 0.299 0.57 8.45 19.7 0.250 

55 9.69 1.46 205 419 0.0127 0.294 0.57 8.31 19.4 0.252 
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60 9.61 1.45 206 417 0.0127 0.293 0.57 8.29 19.3 0.252 

80 9.74 1.51 202 430 0.0127 0.288 0.57 8.45 19.7 0.250 

100 9.44 1.46 206 420 0.0127 0.285 0.57 8.33 19.4 0.252 
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7.5 Appendix E:  LIBS Data Plots 

 As discussed in section  4.4.3 the standard deviation is a good representative 

measure of the variance in the measurements and thus a good indicator of the 

turbulence in the flow.  Images presented below are the same as those presented 

earlier except with the standard error bars replaced with the standard deviation at each 

point.  This shows that there is a lot of variance in the collected data and implies that 

larger data sets would be required to provide more certainty (this is also demonstrated 

by the uncertainty plots shown in  4.4.2). 
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Figure  7.9: He/O Ratio versus Spanwise Distance at X=6.3, for Both Configurations and all 



 

 

 

149 

 

Three Flow Conditions, shown with Standard Deviations 
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Figure  7.10: He/O Ratio versus Spanwise Distance at X=57.1, for Both Configurations and all 

Three Flow Conditions, shown with Standard Deviations 
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