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This  article  presents  the  results  of  performing  the  linear  and  nonlinear
regressions used as benchmarks by the National Institute of Standards and
Technology  (NIST)  with  Mathematica  5.0.  The  performance  is  nearly
flawless.

“Here is the guess of their true strength and forces
By diligent discovery;… ”

King Lear, V. i. 52

‡ 1. Introduction
There  is  a  small  but  growing  literature  on  the  numerical  accuracy  of  various
computer  programming  packages.  A  major  contributor  to  the  assessment  of  the
accuracy  of  econometric  software,  as  well  as  statistical  add-ons  to  third-level
programming  languages  widely  used  by  econometricians,  such  as  GAUSS,
MATLAB, Maple, and Mathematica, has been Bruce D. McCullough ([1] and the
references cited therein). 

McCullough  and  Wilson  [2,  27]  assessed  the  reliability  of  the  statistical  proce-
dures in Excel 97 for estimation of both linear and nonlinear regression, random
number  generation,  and  the  calculation  of  cumulative  distributions  and  con-
cluded  that  “Excel’s  performance  in  all  three  areas  is  found  to  be  inadequate.
Persons  desiring  to  conduct  analyses  of  statistical  data  are  advised  not  to  use
Excel.” McCullough made a complete assessment of all of Mathematica 4.0’s then
extant  statistical  functions  [3].  In 2000,  I made a  similar assessment  for ordinary
least squares (OLS)  linear regression  analysis using Excel 2000 and the Numeri-
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cal  Algorithms  Group’s  (NAG’s)  Statistical  Add-Ins  for  Excel  software  (1).  I
found that the “NAG-enhanced”  version of Excel did not do significantly better
than the  non-enhanced  version.  In  the  same paper,  I  also  compared  the perfor-
mance of Mathematica 4.1.

The basis  for  McCullough’s  assessments  as  well  as  mine  were comparisons  with
the  benchmark  results  for  the  Statistical  Reference  Datasets  (StRD)  that  are
available from the NIST (2).

My  comparison  of  Excel  2000  with  the  benchmark  linear  regression  analyses
produced  results  that  did  not  differ  significantly  from  those  McCullough
obtained  for  Excel  97.  Notwithstanding  the  excellent  reputation  of  NAG’s
software, the performance of the Excel add-on is not superior to Excel. For cases
in  which  Excel  performs  well,  the  NAG add-on  also  does  well,  but  when  Excel
performs  unsatisfactorily,  the  NAG add-on does  poorly  as  well.  However,  often
the  results  differ  from  the  certified  results  in  a  different  direction  from  those
obtained  directly  in  Excel.  In  the  case  of  linear  regression,  on  the  other  hand,
Excel on its own does not do much worse than many other packages analyzed by
McCullough  and  others.  My  comparisons  at  the  time  suggested  that
McCullough’s judgment, at least with respect to linear regression, may have been
unduly  critical;  however,  I  do agree that  the statistical  functions  in Excel  should
not be used with or without NAG enhancement.

Vinod [4, 211] undertook a careful analysis of the statistical functions in GAUSS
for  Windows  Version  3.2.27,  also  using  comparisons  with  the  StRD.  He  found
“… that  the  algorithms  used  by  GAUSS sometimes  fail  rather  badly  to  provide
accurate  results.  We  blame  both  the  algorithms  used and  the  language  itself.”  I
have not yet  undertaken a similar  reassessment of the more recent and allegedly
significantly improved versions of GAUSS.

McCullough  [5,  152]  applied  similar  methodology  to  SAS,  SPSS,  and  S-Plus,
which  I  call  fourth-level  programming  languages  or  statistical  packages.  With
respect  to  univariate  statistics,  analysis  of  variance,  and  linear  regression,
McCullough  reported  that  “All  [SAS]  results  are  quite  accurate,”  in terms of  six
digits of accuracy or better, although SAS failed to deliver any solution in one of
the  worst cases.  Even though SAS failed  to achieve  convergence in a number  of
cases,  the  results  for  nonlinear  regression  were  similar.  The  performance  of  all
three packages with respect to random number generation and the calculation of
probabilities  for  statistical  distributions  was  notably  poorer  than  for  OLS  linear
regression. 

McCullough  [3]  analyzed  the  accuracy  of  Mathematica  4.0’s  statistics  add-on
package (3). Mathematica is not restricted as to precision; however, precision may
be specified. The default is to use machine arithmetic, which is typically 16 digits
of  precision  in  internal  calculations  (a  typical  value  of  $MachinePrecision  is
53 log10  2  or  approximately  16).  Of  course  this  does  not  guarantee  16  digits  of
precision in the final result. Note that accuracy and precision are not the same as
defined  in  Mathematica.  A  higher  level  of  precision  may  be  attained  by  setting
$MinPrecision  above  16  or  by  setting  WorkingPrecisionØn,  where  n  is  a
number  greater  than  MachinePrecision.  Only  a  small  number  of  Mathematica
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functions  support  the  WorkingPrecision  option.  Moreover,  when  software
other than Mathematica  is used, increasing  the level of precision in this way may
not  be  possible.  This  is  because  within  the  code  the  computation  has  been
carried out in floating-point notation.  No matter how many degrees of arbitrary
precision  are  requested,  the  result  is  still  contaminated  with  the  errors  from
floating-point arithmetic. Arbitrary precision only works well when the computa-
tion has been carried out uncontaminated with floating-point error. In Mathemat-
ica it is possible to carry out the computation with numbers expressed in rational
form,  which  yields  exact  results,  but  this  still  will  not  avoid  the  problem  of
inverting an ill-conditioned matrix.

At  default  precision,  Mathematica  is  quite  accurate  although  McCullough
obtained  no solution  in  one  StRD case  of  OLS  linear  regression  and  one  in  an
StRD case of  nonlinear regression.  When $MinPrecision  is  raised  to 20 digits,
McCullough reports that astonishing, almost perfect, accuracy, as compared with
the  NIST  benchmark  results,  is  obtained  in  all  cases  considered.  Actually,
Mathematica’s  default  level  of  precision  gives  exact  matches  to  the  benchmark
results  in  most  cases,  but  the  results  Mathematica  displays  are  rounded  to  six
places  and  thus  may  not  look  quite  the  same.  To  display  the  results  to  more
places, use NumberForm. The increase in computational time using a higher level
of precision than default  in direct, and therefore symbolically pure,  computation
of  the  OLS  estimates  appears  to  be  negligible  no  matter  how  high  the  level  of
precision  is  specified.  Although  it  is  certainly  true  that  increased  accuracy  may
not matter for the conclusions to be drawn from a statistical analysis, it may also
happen  that  rounding  errors  in  the  course  of  an  otherwise  straightforward
calculation  may  result  in  wildly  different  results  or  that  no solution  is  found.  If
the cost  of obtaining accurate results  even in problematic  cases is  not great,  it is
certainly prudent to obtain what increased accuracy may be possible. If a prepro-
grammed package is used, as it is in this article, it may not be possible to control
for rounding error because of the original coding.

In  this  article,  I  discuss  the details  of  my own comparisons  of Mathematica  5.0’s
standard  statistical  add-on  package.  McCullough  employs  summary  measures,
which  must  of  necessity  leave  out  a  lot  of  relevant  detail  in  the  case  of  many
parameters, but I present a full range of results. A separate section deals with the
more computationally difficult benchmark cases for nonlinear regression.

In  the  next  section,  I  describe  the  NIST StRD  benchmarks,  particularly  the  11
designed  for  benchmarking  OLS linear  regression  (i.e.,  linear  in the  parameters
to be estimated,  so  polynomial  regression  is  not  excluded)  and the  27 nonlinear
benchmark  datasets.  I  also  discuss  the  way  in  which  the  NIST  certified  results
have been obtained for the linear regression StRD set. In Section 3, I discuss the
general  problems  of  nonlinear  regression  analysis  and  the  difficulty  obtaining
appropriate  significance  tests  short  of  computing  the  parameter  estimates  by
maximum  likelihood  (ML).  In  Section  4,  I  summarize  the  results  of  using  Ver-
sion  5.0  of  Mathematica’s  Statistics‘LinearRegression‘standard  add-on
package  and  compare  these  with  the  StRD  benchmark  results.  Essentially  the
same  results  may  be  obtained  directly  by  writing  out  the  standard  textbook
formulae  in Mathematica,  although these formulae are not the best way of carry-
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ing  out  the  requisite  numerical  calculations.  Details  of  the numerical  results  are
presented in Appendices  A and B,  in which tabular comparisons  are made of the
NIST  StRD  benchmark  results  with  those  obtained  using  Mathematica’s
Statistics‘LinearRegression‘  standard add-on  package  and those  using  the
NonlinearRegress  option in the Statistics‘NonlinearFit‘  standard add-on
package. The appendices are part of the electronic version of this article, but are
not included in the printed version.

‡ 2. The NIST StRD Datasets and Certified Results for 
Linear and Nonlinear Regression
The  NIST  describes  the  statistical  benchmark  program  on  their  website  as
follows.

“Currently  datasets and certified values are provided for assessing the
accuracy of software for univariate statistics, linear regression, nonlin-
ear regression,  and analysis  of  variance.  The collection includes  both
generated  and ‘real-world’  data of  varying levels  of difficulty.  Gener-
ated  datasets  are  designed  to  challenge  specific  computations.  These
include  the  classic  Wampler  datasets  for  testing  linear  regression
algorithms  and  the  Simon  &  Lesage  datasets  for  testing  analysis  of
variance  algorithms.  Real-world  data  include  challenging  datasets
such  as  the  Longley  data  for  linear  regression,  and  more  benign
datasets  such  as  the  Daniel  &  Wood  data  for  nonlinear  regression.
Certified  values  are  ‘best-available’  solutions.  The  certification
procedure is described in the web pages for each statistical method. 

“Datasets  are  ordered  by  level  of  difficulty  (lower,  average,  and
higher).  Strictly  speaking  the  level  of  difficulty  of  a  dataset  depends
on the algorithm. These levels are merely provided as rough guidance
for  the  user.  Producing  correct  results  on  all  datasets  of  higher
difficulty  does  not  imply  that  your  software  will  pass  all  datasets  of
average  or  even  lower  difficulty.  Similarly,  producing  correct  results
for  all  datasets  in  this  collection  does  not  imply  that  your  software
will  do the same for your particular  dataset.  It will,  however,  provide
some  degree  of  assurance,  in  the  sense  that  your  package  provides
correct  results  for  datasets  known  to  yield  incorrect  results  for  some
software” (2).

· (a) The NIST StRD Datasets for Linear Regression
The particular sets for linear regression analysis are summarized in Table 1. The
problem of linear regression and the methods employed by the NIST, as well as
Mathematica, are discussed in Section 3 (a).
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Dataset Level of Model Number of Number of
Name Difficulty Class Parameters Observations Source

Norris @6D Lower Linear 2 36 Observed

Pontius @7D Lower Quadratic 3 40 Observed
NoInt1 @8D Average Linear 1 11 Generated

NoInt2 @8D Average Linear 1 3 Generated
Filip @9D Higher Polynomial 11 82 Observed

Longley @10D Higher Multilinear 7 16 Observed
Wampler1 @11D Higher Polynomial 6 21 Generated

Wampler2 @11D Higher Polynomial 6 21 Generated
Wampler3 @11D Higher Polynomial 6 21 Generated

Wampler4 @11D Higher Polynomial 6 21 Generated
Wampler5 @11D Higher Polynomial 6 21 Generated

Source: www.itl.nist.gov/div898/strd/ils/ils.shtml

Table 1. StRD benchmark datasets for linear regression.

The  following  edited  comments  from  the NIST  website  describe  these  datasets
in more detail.

“Both  generated  and  ‘real-world’  data  are  included.  Generated
datasets  challenge  specific  computations  and  include  the  Wampler
data  developed  at  NIST  (formerly  NBS)  in  the  early  1970s.  Real-
world  data  include  the  challenging  Longley  data,  as  well  as  more
benign datasets from our statistical consulting work at NIST. 

“…  Two  datasets  are  included  for  fitting  a  line  through  the  origin.
We  have  encountered  codes  that  produce  negative  R-squared  and
incorrect F-statistics for these datasets.  Therefore, we assign them an
‘average’  level  of  difficulty.  Finally,  several  datasets  of higher level of
difficulty  are  provided.  These  datasets  are  multicollinear.  They
include  the  Longley  data  and  several  NIST  datasets  developed  by
Wampler. 

“…  Certified  values  are  provided  for  the  parameter  estimates,  their
standard  deviations,  the  residual  standard  deviation,  R-squared,  and
the standard ANOVA table for linear  regression.  Certified  values are
quoted  to  16  significant  digits  and  are  accurate  up  to  the  last  digit,
due to possible truncation errors. 

“… If your code fails to produce correct results for a dataset of higher
level of difficulty, one possible remedy is to center the data and rerun
the  code.  Centering  the  data,  that  is,  subtracting  the  mean  for  each
predictor  variable,  reduces  the  degree  of  multicollinearity.  The  code
may produce correct results for the centered data.  You can judge this
by  comparing  predicted  values  from  the  fit  of  centered  data  with
those from the certified fit.”
(www.itl.nist.gov/div898/strd/ils/ils_info.shtml).
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· (b) The NIST StRD Datasets for Nonlinear Regression
The particular  sets for  nonlinear regression  analysis  are  summarized in Table 2.
The  problem  of  nonlinear  regression  and  the  methods  employed  by  the  NIST,
as well as Mathematica, are discussed in Section 3 (b).

Dataset Level of Model Number of Number of
Name Difficulty Classification Parameters Observations Source

Misra1a @12D Lower Exponential 2 14 Observed
Chwirut2 @13D Lower Exponential 3 54 Observed

Chwirut1 @13D Lower Exponential 3 214 Observed
Lanczos3 @14D Lower Exponential 6 24 Generated

Gauss1 @15D Lower Exponential 8 250 Generated
Gauss2 @15D Lower Exponential 8 250 Generated

DanWood @16D Lower Miscellaneous 2 6 Observed
Misra1b @12D Lower Miscellaneous 2 14 Observed

Kirby2 @17D Average Rational 5 151 Observed
Hahn1 @18D Average Rational 7 236 Observed

Nelson @19D Average Exponential 3 128 Observed
MGH17 @20D Average Exponential 5 33 Generated

Lanczos1 @14D Average Exponential 6 24 Generated
Lanczos2 @14D Average Exponential 6 24 Generated

Gauss3 @15D Average Exponential 8 250 Generated
Misra1c @12D Average Miscellaneous 2 14 Observed

Misra1d @12D Average Miscellaneous 2 14 Observed
Roszman1 @21D Average Miscellaneous 4 25 Observed

ENSO @22D Average Miscellaneous 9 168 Observed
MGH09 @23D Higher Rational 4 11 Generated

Thurber @24D Higher Rational 7 37 Observed
BoxBOD @25D Higher Exponential 2 6 Observed

Rat42 @26D Higher Exponential 3 9 Observed
MGH10 @27D Higher Exponential 3 16 Generated

Eckerle4 @28D Higher Exponential 3 35 Observed
Rat43 @26D Higher Exponential 4 15 Observed

Bennett5 @29D Higher Miscellaneous 3 154 Observed

Source: www.itl.nist.gov/div898/strd/nls/nls_main.shtml

Table 2. StRD benchmark datasets for nonlinear regression.

The  following  edited  comments  from  the NIST  website  describe  these  datasets
in more detail.
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“… Hiebert  [30] notes that  ‘testing to find a “best” code is an all but
impossible  task  and  very  dependent  on  the  definition  of  “best.”’
Whatever  other  criteria  are  used,  the test  procedure  should certainly
attempt  to  measure  the  ability  of  the  code  to  find  solutions.  But
nonlinear least squares regression problems are intrinsically hard, and
it is generally possible  to find a dataset that will  defeat even the most robust
codes.  So  most  evaluations  of  nonlinear  least  squares  software  should  also
include  a  measure  of  the  reliability  of  the  code,  that  is,  whether  the  code
correctly recognizes when it has (or has not) found a solution.  The datasets
provided  here  are  particularly  well  suited  for  such  testing  of  robust-
ness and reliability. [Emphasis added.]

“… both  generated and ‘real-world’  nonlinear  least  squares problems
of  varying  levels  of  difficulty  [are  included].  The  generated  datasets
are  designed  to  challenge  specific  computations.  Real-world  data
include challenging  datasets  such  as  the Thurber  problem, and more
benign  datasets  such  as  Misra1a.  The  certified  values  are  ‘best-
available’  solutions,  obtained  using  128-bit  precision  and  confirmed
by  at  least  two  different  algorithms  and  software  packages  using
analytic derivatives.

“…  For  some  of  these  test  problems,  however,  it  is  unreasonable  to
expect  the  correct  solution  from  a  nonlinear  least  squares  procedure
when  finite  difference  derivatives  are  used….  These  difficult  prob-
lems  are  impossible  to  solve  correctly  when  the  matrix  of  predictor
variables  is  only  approximate  because  the user  did not  supply  analytic
derivatives.

“…  the  datasets  have  been  ordered  by  level  of  difficulty  (lower,
average,  and  higher).  This  ordering  is  meant  to  provide  rough guid-
ance  for  the  user.  Producing  correct  results  on all  datasets  of  higher
difficulty  does  not  imply  that  your  software  will  correctly  solve  all
datasets  of  average  or  even  lower  difficulty.  Similarly,  producing
correct  results  for  all  datasets  in  this  collection  does  not  imply  that
your software will do the same for your own particular dataset. It will,
however,  provide  some  degree  of  assurance,  in  the  sense  that  your
package  provides correct results  for datasets known to yield incorrect
results for some software. 

“The  robustness  and  reliability  of  nonlinear  least  squares  software
depends on the algorithm used and how it is implemented,  as well as
on  the  characteristics  of  the  actual  problem  being  solved.  Nonlinear
least  squares  solvers  are  particularly  sensitive  to  the  starting  values
provided  for  a  given  problem.  For  this  reason,  we provide  three  sets
of starting values for each problem: the first is  relatively far from the
final  solution;  the  second  relatively  close;  and  the  third  is  the  actual
certified solution.

“…  sometimes  good  starting  values  are  not  available.  For  testing
purposes,  therefore,  it  is  of  interest  to  see  how  a  code  will  perform
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when  the  starting  values  are  not  close  to  the  solution,  even  though
such starting values  might be  ridiculously bad from a practical  stand-
point.  In  general,  it  can  be  expected  that  a  particular  code  will  fail
more  often  from  the  starting  values  far  from  the  solution  than  from
the  starting  values  that  are  relatively  close.  How  serious  it  is  that  a
code fails when using starting values far from the solution will depend
on  the  types  of  problems  for  which  the  code  will  be  employed.”
(www.itl.nist.gov/div898/strd/nls/nls_info,shtml).

In my assessment of Mathematica 5.0, I use only the NIST starting values, which
are  different  from  the  certified  results,  except  in  one  instance.  This  is  the
MGH10  dataset,  for  which  Mathematica  gives  no  results  for  both  the  first  and
second starting  values.  When  the  certified  results  are  used  as  the  starting value,
Mathematica  crashes.  The problem of choosing good starting values is  central  to
nonlinear  regression.  As  discussed  later,  I  believe  that  such  a  choice  should  not
be made automatically, but rather involve some prior investigation.

‡ 3. Methods for Linear and Nonlinear Regression
· (a) Linear Regression

The  general  statistical  model  assumed  for  the  linear  least-squares  regression
problems is

y = X b + e,

where  y  denotes  the  response  (dependent)  variable,  b  denotes  the  vector  of  p
unknown  parameters  to  be  estimated,  n  is  the  number  of  observations,  and  X
denotes  the  n  by  p  matrix  of  predictor  (independent)  variables.  The  specific
functional form for each dataset is different from set to set and is specified in the
certified  results  for  that  set,  summarized  in  Appendix  A.  Unless  the  constant
term in the regression  is  suppressed,  X  is  assumed to contain a  column of ones,
the  coefficient  of  which is  the  nonzero  intercept.  If  we want  to make inferences
about b or how well the relationship fits the data, we have to make some assump-
tions about the joint distribution of X  and e. The usual minimal assumptions are
that  e  has  a  distribution  with  variance-covariance  matrix  s2  I  independently
of X . In this case, the least-squares estimates of b,

b = HX ' X L-1  X ' y,

have certain optimal properties, and the estimated standard errors of b are

se =
"########################s2 HX ' X L-1 ,

where

s2 =
e ' e

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n - k
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is an estimate of s2  and

e = y - X b

are the calculated residuals from the regression. The measure R2  of goodness-of-
fit is defined as

R2 = 1 -
e ' e

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
y ' y - n yêê

when an intercept  (frequently  represented  by including  a  column of  ones  in the
matrix X ) is included and defined as

R2 = 1 -
e ' e

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
y ' y

when  no  intercept  is  included  (e.g.,  NoInt1  and  NoInt2  [8]).  Here  is  what  the
NIST says about the method employed for linear regression.

“For  all  datasets,  multiple  precision  calculations  (accurate  to  500
digits) were made using the preprocessor and FORTRAN subroutine
package  of  Bailey  (1995).  Data  were  read  in  exactly  as  multiple
precision numbers  and all calculations  were made with this very high
precision.  The  results  were  output  in  multiple  precision,  and  only
then  rounded  to  fifteen  significant  digits.  These  multiple  precision
results  are  an idealization.  They  represent  what would be achieved  if
calculations  were  made without  roundoff or other errors.  Any typical
numerical algorithm (i.e., not implemented in multiple precision) will
introduce  computational  inaccuracies,  and will  produce  results  which
differ  slightly  from  these  certified  values.”  (See  the  certification
methodology description for each dataset at
www.itl.nist.gov/div898/strd/lls/lls.shtml, accessed 07/12/03.)

Although not generally advisable, it is perfectly possible to simply write out these
equations in Mathematica and solve a particular problem, since standard methods
for  solving  for  inverses  of  well-conditioned  matrices  may  not  give  accurate
answers  for  ill-conditioned  matrices.  This  was  what,  in  fact,  went  wrong  with
most of the extant computer packages for doing ordinary least-squares regression
when Longley [10] did his  famous study.  Mathematica,  however,  is very sophisti-
cated about the way it inverts matrices and, indeed, gets this problem right, albeit
with a warning message in the program exhibited for the computation of invX1.

Daniel  Lichtblau  comments  on  the  difference  between  these  two  methods  of
doing  OLS  linear  regression  as  follows:  “What  we  [Mathematica]  actually  work
with  [in  the  add-on  package,  Statistics‘LinearRegression‘]  are  singular
values. In effect,  this is a method to compute a pseudo-inverse (which we do not
actually do, unless necessitated by the various report option settings). In contrast,
matrix  inversion  will  be  done  using  Gaussian  elimination,  with  appropriate
warnings if the matrix is found to be ill conditioned.”

Here is my “direct” program.
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longley � Import�"Longley.txt", "Table"�;
data � Rest�longley�;
�n, k� � Dimensions�data�;
y � Map�First, data�;
X � Map�Rest, data�;
X1 � Map�Prepend�#, 1� &, X�;
invX1 � Inverse�Transpose�X1�.X1�;
b � invX1.�y.X1�;
res � y � b.Transpose�X1�;
s2 � res.res��n � k�;
se � Sqrt�s2�Tr�invX1, List��;
y� � Apply�Plus, y�� n;
R2 � 1 � �res.res����y � y��.�y � y���;

The  reader,  of  course,  will  have  to  fill  in  the  exact  location  of  the  Longley.txt
file, which is copied as a .txt file in Appendix C.

The  Mathematica  parameter  estimates  and  standard  errors  compared  with  the
benchmark results are:

Mathematica Benchmark Mathematica Benchmark 

Parameters Estimate Estimate SE SE

b0 -3.48226 µ 106 -3.48226 µ 106 890420. 890420.
b1 15.0619 15.0619 84.9149 84.9149
b2 -0.0358192 -0.0358192 0.033491 0.033491
b3 -2.02023 -2.02023 0.4884 0.4884
b4 -1.03323 -1.03323 0.214274 0.214274
b5 -0.0511041 -0.0511041 0.226073 0.226073
b6 1829.15 1829.15 455.478 455.478

And of R2 and s2 : 

Parameters Mathematica Values Benchmark Values

s2 92936. 92936.

R2 0.995479 0.995479

If  I  were  to  exhibit  the  results  to  15  digits,  the  Mathematica  and  benchmark
results  would  also  coincide  exactly.  Section  3.1.4  of  The  Mathematica  Book  [31]
gives a good discussion of the way in which Mathematica handles the problem of
numerical  precision  in  general  and  floating-point  arithmetic  in  particular.  So
when doing linear least-squares regression it does not appear to matter whether I
use my own code or Mathematica’s Regress function.

I  have  not  been  able  to  find  documentation  as  to  exactly  how  Mathematica
performs  a  linear  least-squares  regression  with  its  Regress  function,  other than
the  full  code  for  LinearRegression  in  AddOns/StandardPackages/
Statistics‘LinearRegression‘.  (See  Daniel  Lichtblau’s  earlier  comments.)
Needless  to  say,  it  is  not  so  easy  for  a  nonprogrammer  to  read  this  code.  It
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appears  that  Mathematica  uses  the  same  computationally  efficient  and  accurate
methods to solve the usual least-squares normal equations as it does to solve any
system of linear equations or to invert a numerically  specified square matrix. See
Section A.9.4 of The Mathematica Book [31].

Comparisons of the results from Regress with the NIST benchmarks for each of
the 11 NIST SdRD linear regression examples are presented in summary form in
Appendix A. The results presented for Mathematica are simply those Mathematica
prints  out.  The  reader,  however,  should  be  aware  that  these  are  not  the  actual
results  of  Mathematica’s  computation,  which  are  all  carried  out  to  16  digits  of
precision,  but rather  a rounded form for ease of visual  presentation.  The full  16
digits  can easily  be  obtained by  using  NumberForm[expr,  {n, f}],  which  prints
approximate real numbers having n digits, with f digits to the right of the decimal
point.

· (b) Nonlinear Regression
Following  the  NIST  description,  the  statistical  model  assumed  for  nonlinear
regression in the benchmark calculations is the so-called generic univariate case:

y = f  Hx; bL + e,

where  y  denotes  the  response  (dependent)  variable,  x  denotes  the  predictor
(independent)  variables,  and b  (unsubscripted)  the  p  unknown  parameters  to  be
estimated.  The  specific  functional  forms  assumed  differ  from  one  benchmark
case  to  the  next.  They  are  reported  in  Appendix  B,  in  which  comparisons
between the results obtained by Mathematica and those obtained by the NIST are
presented. The NIST methodology is described as follows.

“The  certified  values  for  the  nonlinear  least-squares  regression
problems  were  obtained  using  128-bit  precision  with  the  reported
results  confirmed  by  at  least  two  different  algorithms  and  software
packages using analytic derivatives.

“The certified values  for the estimates, b = Hb1 , b2 , … , bp L of the true
model  parameters  b  are  those  produced  by  the  smallest  sum  of
squares, i.e.,

b = argmin
b

 
loomnoo‚i=1

n @ yi - f Hxi ; bLD2|oo}~oo,

where  n  denotes  the  number  of  observations.  Under  the  assumption
that

ei ª @ yi - f Hxi ; bLD ~ N H0, s2 L,
it follows that these are the maximum-likelihood estimators.
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“The  certified  values  for  the  standard  deviations  of  the  estimates  of
the model parameters are the square roots of the diagonal elements of
the asymptotic covariance matrix,

V = s2 @J ' JD-1 ,

where

s = &''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''minb 9‚
i=1

n @ yi - f Hxi ; bLD2 =
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

n - p
=  &'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''minb 9‚

i=1

n @ yi - f Hxi ; bLD2 =
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

n - p
,

J denotes the Jacobian matrix with ijth element

Ji j =
∑ f Hxi ; bL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑ bi
, i = 1, 2, … , n; j = 1, 2, … , p,

evaluated at the current values of the parameters  b1 , b2 , … , bp , and n
and p denote the number of observations and the number of parame-
ters, respectively.

“The certified value of the residual sum of squares is defined by

SS == min
b

loomnoo‚i=1

n @ yi - f Hxi ; bLD2|oo}~oo = min
b

loomnoo‚i=1

n @ yi - f Hxi ; bLD2|oo}~oo
where n denotes the number of observations.” 

The benchmark estimate of s2  is thus SS ê Hn - pL 
(www.itl.nist.gov/div898/strd/nls/nls_info.shtml).

Under  the  assumption  ei ª @ yi - f Hxi ; bLD ~ N H0, s2 L,  it  is  thus  possible  to
derive  all  of  these  estimates  by  maximum  likelihood.  In  this  case,  the  standard
errors  of  the  estimates  are  obtained  asymptotically  as  the  square  roots  of  the
diagonal  elements  of  the  inverse  of  the  information  matrix  (the  Hessian  of  the
likelihood function evaluated at the maximizing point).  (See the standard econo-
metric  presentations  of  nonlinear  regression  methods in Davidson and MacKin-
non [32] and Greene [33].)  Indeed, it is  in some ways a more general method of
analysis, since ML may be applied in the case of more general models.

Before proceeding, it is worth noting a few limitations of the standard univariate
nonlinear regression model, y = f Hx; b L + e. According to Davidson and MacKin-
non  [32,  42],  “The  feature  that  distinguishes  regression  models  from  all  other
statistical models is that the only way in which randomness affects the dependent
variable is through an additive  error term or disturbance.”  However,  this may be
less of a restriction than you might at first think. For example, suppose a multipli-
cative  disturbance  y = f Hx; bL * e;  then  a  simple  logarithmic  transformation
suffices to return things to additivity:  Log@yD = Log@ f Hx; bLD + Log@eD. Of course
any  distributional  assumptions  we  may  have made  concerning  e  may  have  to  be
modified. Independence of the regressors,  x, and the disturbance,  or at least lack
of correlation, is an assumption common to both linear and nonlinear regression.
A problem arises, however, if the appropriate transformation depends on parame-
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ters  to  be  estimated.  For  example,  a  common  generalization  is  a  transformation
of the dependent variable involving another parameter to be estimated:

g H y; qL = f  Hx; bL + e.

In this case, the distribution of the ys, given the xs, will no longer be the same as
the distribution of the es, and least squares may be problematic and generally will
no longer yield the same estimates as maximum likelihood.  Maximum likelihood
is still an effective method, however, since the distribution of the ys, given the xs,
may still  be found from the distribution of the es by multiplying by the Jacobian
of  the  transformation,  gHy; qL.  A  more  serious  limitation  is  the  necessity  of
specifying the functional  form of f . Whereas, in the case of linear regression we
hardly  ever  think  about  alternative  functional  forms,  except  perhaps  to  worry
about  interactions,  the  very  fact  that  we  are  considering  nonlinear  regression
underscores  a  concern  about  the  appropriate  functional  form.  In  recent  years,
there  has  been  an  efflorescence  of  work  on  nonparametric  methods  explicitly
designed to cope with this problem. (See, especially Haerdle [34], and Pagan and
Ullah [35]).

There is  a  extensive  literature  on nonlinear  regression,  including standard  texts,
such  as  Gallant  [36],  Bates  and Watts  [37],  and  Seber  and Wild  [38],  each  with
somewhat  different  emphasis.  Most  emphasis  falls  on  computational  issues  and
problems  of  parametric  inference.  A  very  good  brief  expository  introduction  is
Gallant [39].

Most  algorithms  for  computing  nonlinear  regression  parameters  are  based  on
Hartley’s [40] modified Gauss–Newton method (Hartley and Booker, [41]) or as
extended  and  modified  by  Marquardt  [42]  following  a  suggestion  by  Levenberg
[43]. There is an important difference between maximizing/minimizing functions
in  general  and  the  problem  of  finding  the  minimum  of  an analytically  specified
sum of squares  (see  the previous  SS).  In general,  we can evaluate only  the func-
tion itself analytically and perhaps its gradient. Using only these two pieces is the
basis  for  the  method  of  steepest  descent,  sometimes  also  known  as  the  Gauss–
Newton method. But, in the case of nonlinear least squares, we know a great deal
more: we know the Hessian matrix. Hartley’s insight was to exploit this informa-
tion  explicitly,  rather  than  build  it  up  piecemeal  during  the  iterative  process  of
descent.  His  modified  Gauss–Newton  method  is  called  the  inverse  Hessian
method.  Levenberg’s  insight  was  to  recognize  that  simple  steepest  descent  is
much  faster  and  more  accurate  when  you  are  close  to  the  minimum  and  to
suggest  separating  the  problem  of  getting  into  the  neighborhood  of  the  mini-
mum  from  “zipping  in.”  Marquardt’s  contribution  was  an  elegant  algorithm
designed to  vary smoothly  between the two methods  as  the minimum point was
approached.  Mathematica’s  NonlinearRegress  uses  the  Levenberg–Marquardt
algorithm  by  default,  but  also  allows  you  to  choose  among  several  other  algo-
rithms for function minimization.

In  [30,  44],  Hiebert  did  a  careful  evaluation  of  existing  programs  for  doing
nonlinear  least  squares  and  for  solving  systems  of  nonlinear  equations  (a  harder
problem).  One surprising conclusion he drew [30, 15] was that, “On the basis of
this testing and these specific implementations  of the Levenberg–Marquardt  and
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the  augmented  Gauss–Newton  methods,  one  method  does  not  appear  to  be
superior  to  the  other.”  Perhaps,  for  this  reason,  the  NIST  uses  a  variety  of
methods,  each  considered  appropriate  for  the  problem  at  hand.  However,  the
NIST  is  not  more  explicit  about  the  methods  used  in  specific  cases  than  the
statements quoted earlier.

Standard-error  calculations  and  inference  for  nonlinear  least-squares  estimates
are all based on asymptotic results (Hartley and Booker, [41]; Jennrich, [45]) and
deftly summarized by Gallant [39]. These are the basis for the NIST calculations
detailed  earlier.  Mathematica  does  not say how its  calculations  are  carried out  in
the  description  of  the  NonlinearRegress  function;  however,  the  code  is  avail-
able  in  the  Statistics‘NonlinearRegress‘package,  and  it  appears  that  the
same formulae are used.

Comparisons of the results from NonlinearRegress with the NIST benchmarks
for  each  of  the  27  NIST  StRD  nonlinear  regression  examples  with  their  pub-
lished starting values are presented in summary form in Appendix B. The NIST
actually ran all computations using not only these two starting values but also the
final  benchmark  answers  as  starting  values  because  some  nonlinear  regression
algorithms have a problem if you start from the right answer. However, in a few
cases,  I  also  tried  starting at  the  benchmark  answers:  in the  case  of  MGH10,  as
noted  earlier,  and  for  those  few  starting  values  for  which  Mathematica  did  not
converge:  Lanczos2;  MGH17;  MGH09;  as  well  as  MGH10.  However,  as  noted
by  the  NIST,  MGH10  is  a  particularly  difficult  problem:  “This  problem  was
found to be difficult for some very good algorithms. There is a local minimum at
(+inf,  -14.07  …  ,  -inf,  -inf)  with  final  sum  of  squares  0.00102734.”  [46,  17]
Lanczos3  is  also  a  rather  peculiar  function,  but  Mathematica  generally  performs
quite well for chosen starting values.

The crucial  problem of choosing good starting values is  discussed extensively by
Bates  and  Watts  [37,  72–76],  and,  more  briefly,  by  Seber  and  Wild  [38,
665–666].  Bates  and  Watts  suggest  using  a  linearized  form  of  the  expectation
function,  while  Seber  and  Wild  suggest  grid  search  or  randomized  starting
values.  Ratkowsky  [26]  gives  a  much  more extensive  discussion.  When  only  one
or  two parameters  are  involved,  a  graphical  approach  works wonders.  However,
when three or more parameters are involved, special techniques are required and
the  difficulties  are  formidable.  I  have  been  unable  to  ascertain  how  the  NIST
chose  their  starting  values,  which  are  always  one  quite  close  to  and  another  far
away  from  the  final  answer,  but  Mathematica  does  offer  an  alternative.  Before
invoking  NonlinearRegress,  you  could  use  NMinimize  with  no  starting  values
(or some known to cause problems) assumed to find the minimum of the appro-
priate  sum  of  squares.  This  is  a  very  elaborate  and well-documented  method in
Mathematica  for  finding  global  minima.  Such  more  sophisticated  methods  may
not be very efficient compared to the algorithm Mathematica employs in NonlinÖ
earRegress,  but  may  work  in  such  difficult  cases.  In  computing  the  results
reported  here,  I  avoid  the  problem  of  choosing  starting  values  by  simply  using
those reported by the NIST.
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‡ 4. Discussion of the Results Using Mathematica 5.0
· (a) Linear Regression

There is  really not  much to say about  the performance  of Mathematica  in  doing
linear  regression.  Mathematica  is  remarkably  accurate  with  only  one  negligible
but  puzzling  anomaly:  In  the  cases  of  Wampler1  and  Wampler2,  both  fifth
degree polynomials with artificially constructed data, the true SEs are 0, as is the
correct  estimate of s2 . However, Mathematica  delivers very small numbers  of the
order of 10-10  to 10-28 . While this is not a practical problem of any significance,
some  explanation  is  needed  in  view  of  Mathematica’s  otherwise  stellar  perfor-
mance.  I  would  attribute  it  to  Mathematica’s  use  of  variable-precision  floating-
point arithmetic [47], but the matter clearly requires further looking into.

· (b) Nonlinear Regression
Nonlinear  regressions  present  a  greater  challenge.  In  all  but  five  out  of  27
difficult  nonlinear  regression  problems,  Mathematica  converged  to  the  bench-
mark  values  within  the  default  number  of  iterations,  MaxIter=100  for  both  of
the  two  start  values  given  by  the  NIST.  But  there  were  serious  problems  with
five  of  the problems,  including  one  case  in which  no  convergence  was  obtained
even starting from the final benchmark result. However, in all five cases, informa-
tive  error  messages  were  given  by  Mathematica  and  no  spurious  results  were
presented. Here is a summary.

MGH17
y = b1 + ‰-x b4 b2 + ‰-x b5 b3 + e

As noted earlier,  this is  an exceptionally difficult  problem given the observations
on  y  and  x.  Start  1  produced  an  overflow  in  the  computation.  There  were  no
problems, however, encountered in obtaining the benchmark results from start 2.

Lanczos2
y = ‰-x b2 b1 + ‰-x b4 b3 + ‰-x b6 b5 + e

Note  that  this  is  the same functional  form as MGH17  without a  constant  term.
In both examples the data has been generated by the NIST. No convergence was
obtained for the default  number of iterations from start 1 with an error message
to that  effect.  Convergence  was,  however,  obtained for  MaxIter=200  from  start
1 and from start 2 for MaxIter=100 to the correct benchmark results.

MGH09

y =
b1 Hx2 + x b2 L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x2 + x b3 + b4

+ e

No  convergence  was  obtained  from  start  1  even  by  increasing  the  number  of
iterations  to  500.  The  following  error  message  suggests  that  the  function  is
extremely flat, at least in one direction.
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FindFit::"lstol":"The line search decreased the step size to within tolerance 
specified by AccuracyGoal and PrecisionGoal but was unable to find a sufficient 
decrease in the norm of the residual. You may need more than MachinePrecision 
digits of working precision to meet these tolerances."

Convergence  to  the  benchmark  results  for  MaxIter=100  from  start  2  was
obtained without any problems.

MGH10
y =

b1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + ‰

b2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅx+ b3

+ e

No convergence  was obtained from start 1 or  from start 2 for  10,000 iterations.
Starting from the benchmark results produced an abnormal program termination
with a message that the fitting algorithm failed.

Bennett5
y = b1  Hx + b2 L- 1ÅÅÅÅÅÅÅÅÅb3 + e

For  start  1,  convergence  was  obtained  only  for  10,000  iterations.  Although  the
benchmark  coefficients  and  standard  errors  were  obtained,  the  benchmark
estimate of residual variance was not. For start 2, convergence to the benchmark
results within 100 iterations was obtained.

Note that Mathematica’s NonlinearRegress  is extremely fast. The time to run a
regression  once  the  data  is  set  up  and  the  command  given  is  imperceptible  for
the  default  number  of  100  iterations.  Even  for  10,000  iterations,  the  running
time  is  barely  perceptible  on  a  Dell  Workstation,  PWS  340,  with  an  Intel®

Pentium chip.

Mathematica’s  NonlinearRegress  is  an  extremely  fast  and  accurate  algorithm
when it works. When it does not, it delivers error messages rather than spurious
results. Presently, there is no provision in the NonlinearFit package for obtain-
ing reasonably good start values. 

‡ 5. Discussion of the Results Using Mathematica 5.1

Darren Glosemeyer
Kernel Developer
Kernel Technology Group
Wolfram Research, Inc.
darreng@wolfram.com

The following results  were obtained in Mathematica  5.1 on an Intel®  Pentium 4
Windows  XP  computer.  Version  5.1  does  a  little  better  on  some  examples
than 5.0.

In[1]:= $Version

Out[1]= 5.1 for Microsoft Windows �October 25, 2004�
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The following comments are for the examples for which problems were noted in
5.0.  Results  for  the  other  examples  in  the  NIST  benchmarks  still  give  correct
results  in 5.1. For  most examples,  just the parameter  tables are shown; however,
the s2  values were also checked against the benchmark.

For  three  examples,  differences  between  Mathematica’s  results  and  the  bench-
mark  result  are  attributable  to  numerical  error  in machine-precision  arithmetic,
numerical error in the NIST data, or a combination of those two sources. In the
other  examples,  NonlinearRegress  either  gets  a  correct  result  with  default
settings or obtains a correct result with an additional option in 5.1.

In[2]:= �� Statistics‘

· Wampler1
The  numerical  error  in  this  example  is  a  result  of  numerical  error  in  machine-
precision computation and can be expected.

In[3]:= w1 � ��0, 1�, �1, 6�, �2, 63�, �3, 364�,
�4, 1365�, �5, 3906�, �6, 9331�, �7, 19608�, �8, 37449�,
�9, 66430�, �10, 111111�, �11, 177156�, �12, 271453�,
�13, 402234�, �14, 579195�, �15, 813616�, �16, 1118481�,
�17, 1508598�, �18, 2000719�, �19, 2613660�, �20, 3368421��;

In[4]:= ParameterTable �. Regress�w1, �1, x, x2, x3 , x4, x5�,
x, RegressionReport� �ParameterTable��

Out[4]//TableForm=

Estimate SE TStat PValue

1 1. 4.98764�10�10 2.00496�109 0.

x 1. 5.47711�10�10 1.82578�109 0.

x2 1. 1.80599�10�10 5.53713�109 0.

x3 1. 2.35152�10�11 4.25258�1010 0.

x4 1. 1.30828�10�12 7.64361�1011 0.

x5 1. 2.60293�10�14 3.84182�1013 0.

Significance  arithmetic  (variable-precision  arithmetic)  can  be used  to  get  results
of  a  desired  precision  or  accuracy.  Regress  can  be  forced  to  use  significance
arithmetic  by  applying  SetPrecision  to  the  data.  Here  is  an  example  with
precision 20 data with the result displayed at machine-precision. Because there is
no random error  in the original  data,  division by  0 will  result  in error  messages
when attempting to compute the t statistics and p-values.
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In[5]:= Off�Power::"infy", Less::"nord"�;
N�ParameterTable �. Regress�SetPrecision�w1, 20�,

�1, x, x2 , x3, x4, x5�, x, RegressionReport� �ParameterTable���
Out[6]//TableForm=

Estimate SE TStat PValue

1. 1. 0. ComplexInfinity Indeterminate

x 1. 0. ComplexInfinity Indeterminate

x2 1. 0. ComplexInfinity Indeterminate

x3 1. 0. ComplexInfinity Indeterminate

x4 1. 0. ComplexInfinity Indeterminate

x5 1. 0. ComplexInfinity Indeterminate

· Wampler2
In  this  example,  there  are  two  sources  of  numerical  error:  rounding  in  the
original  data  and  machine-precision  arithmetic.  While  the  NIST  data  was
generated  from  a  polynomial  expression,  the  data  is  only  given  to  five  digits  of
accuracy, resulting in some roundoff or truncation error in the data. 

In[7]:= w2 � ��0, 1.�, �1, 1.11111�, �2, 1.24992�, �3, 1.42753�, �4, 1.65984�,
�5, 1.96875�, �6, 2.38336�, �7, 2.94117�, �8, 3.68928�,
�9, 4.68559�, �10, 6.�, �11, 7.71561�, �12, 9.92992�,
�13, 12.75603�, �14, 16.32384�, �15, 20.78125�, �16, 26.29536�,
�17, 33.05367�, �18, 41.26528�, �19, 51.16209�, �20, 63.��;

In[8]:= ParameterTable �. Regress�w2, �1, x, x2, x3 , x4, x5�,
x, RegressionReport� �ParameterTable��

Out[8]//TableForm=

Estimate SE TStat PValue

1 1. 1.52366�10�14 6.56316�1013 0.

x 0.1 1.67318�10�14 5.97663�1012 0.

x2 0.01 5.51706�10�15 1.81256�1012 0.

x3 0.001 7.18357�10�16 1.39207�1012 0.

x4 0.0001 3.99663�10�17 2.50211�1012 0.

x5 0.00001 7.9516�10�19 1.25761�1013 0.

As in the case of Wampler1, more precise results can be obtained by using higher
precision input for the regression.
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In[9]:= Off�Power::"infy", Less::"nord"�;
N�ParameterTable �. Regress�SetPrecision�w2, 17�,

�1, x, x2 , x3, x4, x5�, x, RegressionReport� �ParameterTable���
Out[10]//TableForm=

Estimate SE TStat PValue

1. 1. 0. ComplexInfinity Indeterminate

x 0.1 0. ComplexInfinity Indeterminate

x2 0.01 0. ComplexInfinity Indeterminate

x3 0.001 0. ComplexInfinity Indeterminate

x4 0.0001 0. ComplexInfinity Indeterminate

x5 0.00001 0. ComplexInfinity Indeterminate

However,  increasing the precision  of the input  cannot make up for  the fact  that
there  is  some  numerical  error  in the original  data.  As the precision is  increased,
the  significance  of  the  roundoff  or  truncation  error  in  the  data  from  the  NIST
will show up as small deviations from the benchmark results.

In[11]:= Off�Power::"infy", Less::"nord"�;
N�ParameterTable �. Regress�SetPrecision�w2, 30�,

�1, x, x2 , x3, x4, x5�, x, RegressionReport� �ParameterTable���
Out[12]//TableForm=

Estimate SE TStat PValue

1. 1. 6.38509�10�16 1.56615�1015 1.60271�10�220

x 0.1 7.01171�10�16 1.42618�1014 6.52694�10�205

x2 0.01 2.312�10�16 4.32526�1013 3.86516�10�197

x3 0.001 3.01037�10�17 3.32185�1013 2.02606�10�195

x4 0.0001 1.67484�10�18 5.97071�1013 3.06874�10�199

x5 0.00001 3.33223�10�20 3.00099�1014 9.2976�10�210

· MGH17
Each  value  in  the  first  set  of  starting  points  is  about  two  orders  of  magnitude
from  the  optimal  value.  Overflows  are  quickly  encountered  using  the  default
Levenberg–Marquardt  method.  Despite  the  tough  starting  values,  good  results
can  be  obtained  using  Newton’s  method  instead  of  the  default  Levenberg–
Marquardt method.

In[13]:= mgh17 � ��0., 0.844�, �10., 0.908�, �20., 0.932�, �30., 0.936�,
�40., 0.925�, �50., 0.908�, �60., 0.881�, �70., 0.85�, �80., 0.818�,
�90., 0.784�, �100., 0.751�, �110., 0.718�, �120., 0.685�,
�130., 0.658�, �140., 0.628�, �150., 0.603�, �160., 0.58�,
�170., 0.558�, �180., 0.538�, �190., 0.522�, �200., 0.506�,
�210., 0.49�, �220., 0.478�, �230., 0.467�, �240., 0.457�,
�250., 0.448�, �260., 0.438�, �270., 0.431�, �280., 0.424�,
�290., 0.42�, �300., 0.414�, �310., 0.411�, �320., 0.406��;
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In[14]:= ParameterCITable �. NonlinearRegress�mgh17, Β1 � Β2 	�Β4 x � Β3 	�Β5 x,
x, ��Β1, 50�, �Β2, 150�, �Β3, �100�, �Β4, 1�, �Β5 , 2��,
RegressionReport� �ParameterCITable�, Method � Newton�

Out[14]//TableForm=

Estimate Asymptotic SE CI

Β1 0.37541 0.00207232 �0.371165, 0.379655�

Β2 1.93585 0.220317 �1.48455, 2.38715�

Β3 �1.46469 0.221757 ��1.91894, �1.01044�

Β4 0.0128675 0.000448614 �0.0119486, 0.0137865�

Β5 0.0221227 0.00089472 �0.0202899, 0.0239555�

As  in  5.0,  this  example  converges  to  the  correct  result  from  the  second  set  of
starting values with default options.

· Lanczos1
With both sets of starting points, this example converges to the expected parame-
ter estimates with default  options  in 5.1. The SEs and s2  values  are on the same
order as  the benchmark  values,  which is  reasonable  given the magnitudes  of the
SEs and s2  and the fact that the benchmark data is given to 13 digits. For the first
starting  points,  the  SEs  agree with  the  benchmark  in at  least  the  first  digit.  For
the second starting points,  the SEs agree with the benchmark in at least the first
two digits.

In[15]:= l1 � ��0., 2.5134�, �0.05, 2.044333373291�,
�0.1, 1.668404436564�, �0.15, 1.366418021208�,
�0.2, 1.123232487372�, �0.25, 0.9268897180037�,
�0.3, 0.7679338563728�, �0.35, 0.6388775523106�,
�0.4, 0.5337835317402�, �0.45, 0.4479363617347�,
�0.5, 0.377584788435�, �0.55, 0.3197393199326�,
�0.6, 0.2720130773746�, �0.65, 0.2324965529032�,
�0.7, 0.1996589546065�, �0.75, 0.1722704126914�,
�0.8, 0.1493405660168�, �0.85, 0.1300700206922�,
�0.9, 0.1138119324644�, �0.95, 0.1000415587559�,
�1., 0.0883320908454�, �1.05, 0.0783354401935�,
�1.1, 0.06976693743449�, �1.15, 0.06239312536719��;
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In[16]:= res � NonlinearRegress�l1, Β1 	�Β2 x � Β3 	�Β4 x � Β5 	�Β6 x, x,
��Β1 , 1.2�, �Β2 , .3�, �Β3 , 5.6�, �Β4 , 5.5�, �Β5, 6.5�, �Β6, 7.6��,
RegressionReport� �ParameterCITable, EstimatedVariance��;

ParameterCITable �. res
EstimatedVariance �. res

Out[17]//TableForm=

Estimate Asymptotic SE CI

Β1 0.0951 5.91894�10�11
�0.0951, 0.0951�

Β2 1. 3.04816�10�10
�1., 1.�

Β3 0.8607 1.50628�10�10
�0.8607, 0.8607�

Β4 3. 3.69559�10�10
�3., 3.�

Β5 1.5576 2.08763�10�10
�1.5576, 1.5576�

Β6 5. 1.22684�10�10
�5., 5.�

Out[18]= 9.78511�10�27

In[19]:= res � NonlinearRegress�l1, Β1 	�Β2 x � Β3 	�Β4 x � Β5 	�Β6 x, x,
��Β1 , .5�, �Β2, .7�, �Β3, 3.6�, �Β4, 4.2�, �Β5 , 4�, �Β6, 6.3��,
RegressionReport� �ParameterCITable, EstimatedVariance��;

ParameterCITable �. res
EstimatedVariance �. res

Out[20]//TableForm=

Estimate Asymptotic SE CI

Β1 0.0951 5.35261�10�11
�0.0951, 0.0951�

Β2 1. 2.75651�10�10
�1., 1.�

Β3 0.8607 1.36216�10�10
�0.8607, 0.8607�

Β4 3. 3.34199�10�10
�3., 3.�

Β5 1.5576 1.88788�10�10
�1.5576, 1.5576�

Β6 5. 1.10946�10�10
�5., 5.�

Out[21]= 8.00218�10�27

With  an  increased  AccuracyGoal,  s2  values  matching  the  benchmark  to  three
digits can be obtained.

In[22]:= EstimatedVariance �. NonlinearRegress�l1, Β1 	�Β2 x � Β3 	�Β4 x � Β5 	�Β6 x, x,
��Β1, 1.2�, �Β2, .3�, �Β3, 5.6�, �Β4, 5.5�, �Β5 , 6.5�, �Β6 , 7.6��,
RegressionReport� �EstimatedVariance�, AccuracyGoal� 15�

Out[22]= 7.94334�10�27

In[23]:= EstimatedVariance �. NonlinearRegress�l1, Β1 	�Β2 x � Β3 	�Β4 x � Β5 	�Β6 x, x,
��Β1, .5�, �Β2, .7�, �Β3, 3.6�, �Β4, 4.2�, �Β5, 4�, �Β6 , 6.3��,
RegressionReport� �EstimatedVariance�, AccuracyGoal� 15�

Out[23]= 7.94795�10�27
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· Lanczos2
With  both  sets  of  starting  points,  this  example  converges  to  the  expected result
with default options in 5.1.

In[24]:= l2 � ��0., 2.5134�, �0.05, 2.04433�, �0.1, 1.6684�, �0.15, 1.36642�,
�0.2, 1.12323�, �0.25, 0.92689�, �0.3, 0.767934�, �0.35, 0.638878�,
�0.4, 0.533784�, �0.45, 0.447936�, �0.5, 0.377585�,
�0.55, 0.319739�, �0.6, 0.272013�, �0.65, 0.232497�,
�0.7, 0.199659�, �0.75, 0.17227�, �0.8, 0.149341�, �0.85, 0.13007�,
�0.9, 0.113812�, �0.95, 0.100042�, �1., 0.0883321�,
�1.05, 0.0783354�, �1.1, 0.0697669�, �1.15, 0.0623931��;

In[25]:= ParameterCITable �. NonlinearRegress�l2, Β1 	�Β2 x � Β3 	�Β4 x � Β5 	�Β6 x, x,
��Β1, 1.2�, �Β2, .3�, �Β3, 5.6�, �Β4, 5.5�, �Β5 , 6.5�, �Β6 , 7.6��,
RegressionReport� �ParameterCITable��

Out[25]//TableForm=

Estimate Asymptotic SE CI

Β1 0.096251 0.000667706 �0.0948482, 0.0976538�

Β2 1.00573 0.00339896 �0.998592, 1.01287�

Β3 0.864247 0.00171858 �0.860636, 0.867858�

Β4 3.00783 0.0041707 �2.99907, 3.01659�

Β5 1.5529 0.00237444 �1.54791, 1.55789�

Β6 5.00288 0.00139588 �4.99995, 5.00581�

In[26]:= ParameterCITable �. NonlinearRegress�l2, Β1 	�Β2 x � Β3 	�Β4 x � Β5 	�Β6 x, x,
��Β1, .5�, �Β2, .7�, �Β3, 3.6�, �Β4, 4.2�, �Β5, 4�, �Β6 , 6.3��,
RegressionReport� �ParameterCITable��

Out[26]//TableForm=

Estimate Asymptotic SE CI

Β1 0.096251 0.000667706 �0.0948482, 0.0976538�

Β2 1.00573 0.00339896 �0.998592, 1.01287�

Β3 0.864247 0.00171858 �0.860636, 0.867858�

Β4 3.00783 0.0041707 �2.99907, 3.01659�

Β5 1.5529 0.00237444 �1.54791, 1.55789�

Β6 5.00288 0.00139588 �4.99995, 5.00581�

· MGH09
This example converges a little faster in 5.1 than in 5.0. Convergence is obtained
for the first starting points with MaxIterationsØ400,  as opposed to MaxIteraÖ
tionsØ600 in 5.0.

In[27]:= mgh09 � ��4., 0.1957�, �2., 0.1947�, �1., 0.1735�, �0.5, 0.16�,
�0.25, 0.0844�, �0.167, 0.0627�, �0.125, 0.0456�, �0.1, 0.0342�,
�0.0833, 0.0323�, �0.0714, 0.0235�, �0.0625, 0.0246��;
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In[28]:= ParameterCITable �. NonlinearRegress�mgh09,
Β1 �x2 � x Β2�

































x2 � x Β3 � Β4

, x, ��Β1, 25�, �Β2, 39�, �Β3, 41.5�, �Β4, 39��,

RegressionReport� �ParameterCITable�, MaxIterations � 400	
Out[28]//TableForm=

Estimate Asymptotic SE CI

Β1 0.192807 0.0114353 �0.165767, 0.219847�

Β2 0.191282 0.196332 ��0.27297, 0.655534�

Β3 0.123057 0.080842 ��0.0681045, 0.314218�

Β4 0.136062 0.0900255 ��0.0768142, 0.348939�

Correct  results  are  obtained  from  the  second  set  of  starting  points  with  the
default option settings, as is the case in 5.0.

· MGH10

Convergence  from  each  set  of  starting  values  was  obtained  with  MaxIteraÖ
tionsØ300  in  5.1.  This  is  an improvement for  the first  set of  points,  for  which
MaxIterationsØ500 was used to obtain the benchmark result in 5.0.

In[29]:= mgh10 � ��50., 34780.�, �55., 28610.�, �60., 23650.�, �65., 19630.�,
�70., 16370.�, �75., 13720.�, �80., 11540.�, �85., 9744.�,
�90., 8261.�, �95., 7030.�, �100., 6005.�, �105., 5147.�,
�110., 4427.�, �115., 3820.�, �120., 3307.�, �125., 2872.��;

In[30]:= ParameterCITable �. NonlinearRegress�

mgh10, Β1 	
Β2














x�Β3 , x, ��Β1, 2�, �Β2, 400000�, �Β3, 25000��,
RegressionReport� �ParameterCITable�, MaxIterations � 300	

Out[30]//TableForm=

Estimate Asymptotic SE CI

Β1 0.00560964 0.000156879 �0.00527072, 0.00594855�

Β2 6181.35 23.309 �6130.99, 6231.7�

Β3 345.224 0.784861 �343.528, 346.919�

In[31]:= ParameterCITable �.
NonlinearRegress�mgh10, Β1 	

Β2













x�Β3 , x, ��Β1 , .02�, �Β2, 4000�, �Β3, 250��,

RegressionReport� �ParameterCITable�, MaxIterations � 300	
Out[31]//TableForm=

Estimate Asymptotic SE CI

Β1 0.00560964 0.000156879 �0.00527072, 0.00594855�

Β2 6181.35 23.309 �6130.99, 6231.7�

Β3 345.224 0.784861 �343.528, 346.919�
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· Bennett5
For  this  example,  convergence  in  5.1  can  be  obtained  with  half  the  iterations
used in 5.0. From the first set of starting values, correct results are obtained with
MaxIterationsØ750. From the second set of starting values, setting MaxIteraÖ
tionsØ200 is sufficient to obtain the benchmark results.

In[32]:= bennett5 � ��7.447168, �34.834702�, �8.102586, �34.3932�,
�8.452547, �34.152901�, �8.711278, �33.979099�,
�8.916774, �33.845901�, �9.087155, �33.732899�, �9.23259, �33.640301�,
�9.359535, �33.5592�, �9.472166, �33.486801�, �9.573384, �33.4231�,
�9.665293, �33.365101�, �9.749461, �33.313�, �9.827092, �33.260899�,
�9.899128, �33.2174�, �9.966321, �33.176899�, �10.02928, �33.139198�,
�10.08851, �33.101601�, �10.14443, �33.066799�, �10.19738, �33.035�,
�10.24767, �33.003101�, �10.29556, �32.971298�, �10.34125, �32.942299�,
�10.38495, �32.916302�, �10.42682, �32.890202�, �10.467, �32.864101�,
�10.50564, �32.841�, �10.54283, �32.817799�, �10.57869, �32.797501�,
�10.61331, �32.7743�, �10.64678, �32.757�, �10.67915, �32.733799�,
�10.71052, �32.7164�, �10.74092, �32.6991�, �10.77044, �32.678799�,
�10.7991, �32.6614�, �10.82697, �32.644001�, �10.85408, �32.626701�,
�10.88047, �32.612202�, �10.90619, �32.597698�, �10.93126, �32.583199�,
�10.95572, �32.568699�, �10.97959, �32.554298�, �11.00291, �32.539799�,
�11.0257, �32.525299�, �11.04798, �32.510799�, �11.06977, �32.499199�,
�11.0911, �32.487598�, �11.11198, �32.473202�, �11.13244, �32.461601�,
�11.15248, �32.435501�, �11.17213, �32.435501�, �11.19141, �32.4268�,
�11.21031, �32.4123�, �11.22887, �32.400799�, �11.24709, �32.392101�,
�11.26498, �32.380501�, �11.28256, �32.366001�, �11.29984, �32.3573�,
�11.31682, �32.348598�, �11.33352, �32.339901�, �11.34994, �32.3284�,
�11.3661, �32.319698�, �11.382, �32.311001�, �11.39766, �32.2994�,
�11.41307, �32.290699�, �11.42824, �32.282001�, �11.4432, �32.2733�,
�11.45793, �32.264599�, �11.47244, �32.256001�, �11.48675, �32.247299�,
�11.50086, �32.238602�, �11.51477, �32.2299�, �11.52849, �32.224098�,
�11.54202, �32.215401�, �11.55538, �32.2038�, �11.56855, �32.198002�,
�11.58156, �32.1894�, �11.59442, �32.183601�, �11.607121, �32.1749�,
�11.61964, �32.169102�, �11.632, �32.1633�, �11.64421, �32.154598�,
�11.65628, �32.145901�, �11.6682, �32.140099�, �11.67998, �32.131401�,
�11.69162, �32.125599�, �11.70313, �32.119801�, �11.71451, �32.111198�,
�11.72576, �32.1054�, �11.73688, �32.096699�, �11.74789, �32.0909�,
�11.75878, �32.088001�, �11.76955, �32.0793�, �11.7802, �32.073502�,
�11.79073, �32.067699�, �11.80116, �32.061901�, �11.81148, �32.056099�,
�11.8217, �32.050301�, �11.83181, �32.044498�, �11.84182, �32.038799�,
�11.85173, �32.033001�, �11.86155, �32.027199�, �11.87127, �32.0243�,
�11.88089, �32.018501�, �11.89042, �32.012699�, �11.89987, �32.004002�,
�11.90922, �32.001099�, �11.91849, �31.9953�, �11.92768, �31.9895�,
�11.93678, �31.9837�, �11.94579, �31.9779�, �11.95473, �31.972099�,
�11.96359, �31.969299�, �11.97237, �31.963501�, �11.98107, �31.957701�,
�11.9897, �31.9519�, �11.99826, �31.9461�, �12.00674, �31.9403�,
�12.01515, �31.937401�, �12.02349, �31.931601�, �12.03176, �31.9258�,
�12.03997, �31.922899�, �12.0481, �31.917101�, �12.05617, �31.911301�,
�12.06418, �31.9084�, �12.07212, �31.902599�, �12.08001, �31.8969�,
�12.08782, �31.893999�, �12.09558, �31.888201�, �12.10328, �31.8853�,
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�12.11092, �31.882401�, �12.1185, �31.8766�, �12.12603, �31.873699�,
�12.1335, �31.867901�, �12.14091, �31.862101�, �12.14827, �31.8592�,
�12.15557, �31.8563�, �12.16283, �31.8505�, �12.17003, �31.8447�,
�12.17717, �31.841801�, �12.18427, �31.8389�, �12.19132, �31.833099�,
�12.19832, �31.8302�, �12.20527, �31.827299�, �12.21217, �31.8216�,
�12.21903, �31.818701�, �12.22584, �31.812901�, �12.2326, �31.809999�,
�12.23932, �31.8071�, �12.24599, �31.8013�, �12.25262, �31.798401�,
�12.2592, �31.7955�, �12.26575, �31.7897�, �12.27224, �31.7868��;

In[33]:= ParameterCITable �. NonlinearRegress�bennett5,

Β1 �x � Β2��
1







Β3 , x, ��Β1, �2000�, �Β2, 50�, �Β3 , .8��,

RegressionReport� �ParameterCITable�, MaxIterations � 750	
Out[33]//TableForm=

Estimate Asymptotic SE CI

Β1 �2523.51 297.152 ��3110.62, �1936.39�

Β2 46.7366 1.24489 �44.2769, 49.1962�

Β3 0.932185 0.0202723 �0.892131, 0.972239�

In[34]:= ParameterCITable �. NonlinearRegress�bennett5,

Β1 �x � Β2��
1







Β3 , x, ��Β1, �1500�, �Β2, 45�, �Β3 , .85��,

RegressionReport� �ParameterCITable�, MaxIterations � 200	
Out[34]//TableForm=

Estimate Asymptotic SE CI

Β1 �2523.51 297.152 ��3110.62, �1936.39�

Β2 46.7366 1.24489 �44.2769, 49.1962�

Β3 0.932185 0.0202723 �0.892131, 0.972239�
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‡ Endnotes
(1) www.nag.co.uk/stats/ae_soft.asp

(2) www.itl.nist.gov/div898/strd

(3)  McCullough  [48]  has  also  looked  at  several  popular  econometrics  packages,
such  as  E-Views,  LIMDEP,  SHAZAM,  and  TSP.  The  results  are  generally
comparable to those obtained for SAS.
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