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Functional, “small” molecule anion transporters have been identified and 

developed from natural products and synthetic organic compounds. The major 

discoveries include the design of a transmembrane Cl- transporter whose activity is pH-

tunable, a NO3
- transporter that displays unique selectivity for NO3

- over Cl- anions, and a 

series of small molecules that efficiently transport HCO3
- across liposomal membranes 

via a HCO3
-/Cl- exchange mechanism. An assay for detecting transmembrane HCO3

- 

transport using paramagnetic Mn2+ and 13C NMR is also described. 

 Modulated Cl- transport was achieved by lipophilic calix[4]arene amides 2.2–2.4, 

all in the cone conformation.  Modulation was achieved through functional group 

modification to one of the four side-chains. The cone conformation was confirmed by 

both 1H NMR and X-ray crystallography. Significantly, Cl- transport was gated by pH in 

the presence of triamido calixarene TAC-OH 2.3, which possesses a phenolic hydroxyl 

group. Using fluorescence assays, the rate of Cl- transport by TAC-OH 2.3 across 



  

liposomal membranes decreased with increasing pH, while transport rate by cone-H 2.2a, 

lacking an OH group, was not affected by pH.  

 Nitrate was selectively transported over Cl- in the presence of nitro tripod 3.1, a 

small molecule receptor for both anions.  The selective transport of NO3
- by 3.1 is a 

significant discovery as most known synthetic Cl- transporters also transport NO3
- ions 

and vice versa. Nitrate transport across liposomal membranes was confirmed by enzyme-

coupled and fluorescence assays. Tripod 3.1 induced an increase in the intravesicular pH 

of liposomes that were not experiencing a pH gradient, while no pH changes occurred in 

the presence of calixarene 2.1 a known Cl- and NO3
- transporter.  This result suggests that 

3.1 is an H+/NO3
- symporter. 

 Transmembrane HCO3
- transport was achieved using the natural product, 

prodigiosin, 4.1, and synthetic isophthalamides 4.2–4.4. The Cl-/HCO3
- exchange 

mechanism by which compounds 4.1–4.4 transport HCO3
- was elucidated by ISE and 

NMR assays. The 13C NMR assay provided direct evidence for HCO3
- transport in the 

presence of paramagnetic Mn2+ ions, and was adaptable to various assay conditions. 
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Chapter 1: Transmembrane Anion Transport 

1.1 Introduction. 

 The exchange of materials between a cell and its environments – a crucial process 

for survival and well-being – is achieved through the transport of solutes across the 

plasma membrane.  The plasma membrane serves as an external boundary for the cell, as 

well as a selective barrier for the passage of solutes in and out of the cell. Sub-cellular 

components such as the nucleus, mitochondria, Golgi complex, lysosomes, and the 

endoplasmic reticulum, are also bound by membranes, which also function as effective 

and highly selective barriers.1  The structure of the membrane, which is the basis for its 

selectivity, is that of a bilayer that is assembled from amphiphilic phospholipids that have 

polar headgroups and hydrophobic tails.  Thus, in the aqueous environment of the cell, 

the hydrophobic tails align to form a compact but fluid core, while the polar headgroups 

point away from this core into the aqueous environment in the interior and exterior of the 

cell (Figure 1.1).  Due to the flexibility and semi-permeability of biological membranes, 

some small uncharged molecules such as water or carbon dioxide can diffuse across the 

membrane unaided.  However, for polar solutes such as anions, passage through the 

membrane must be assisted.  This assisted process is facilitated by proteins which 

function as carriers or membrane-bound channels (Figure 1.1).  The transmembrane 

transport of anions is of great biological importance since defective anion transport has 

been linked to the patho-physiology of numerous diseases.2-4  Synthetic compounds that 

mimic natural anion receptors and transporters will therefore aid in understanding natural 

ion transport processes, and could be potential therapeutics in diseases associated with 
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ion transport.  This thesis, “Using Small Molecules as Transmembrane Anion 

Transporters” describes the design and identification of various small organic molecules 

for the transmembrane transport of the biologically relevant chloride (Cl-), nitrate (NO3
-), 

and bicarbonate (HCO3
-) anions.   

 

Carrier Mechanism Channel Mechanism

Bilayer membrane

Hydrophobic
interior

Polar
headgroups

Out

In

 

Figure 1.1. Structure of the phospholipid bilayer showing the component parts: the polar 

headgroups and hydrophobic interior.  The mechanisms of transmembrane transport – 

carriers and channels – are also depicted.  Carriers are mobile and diffuse through the 

membrane, while channels are ‘stationary’ and span the membrane.  Anions are depicted 

as red spheres, while the transport pathway is outlined by blue arrows. 

 

1.2 Thesis Organization. 

 This thesis is organized into six chapters.  The initial goal of this research was to 

identify and develop small organic molecules capable of the transmembrane transport of 

the biologically relevant Cl- and HCO3
- anions, by mimicking natural anion receptors and 

transporters (Figure 1.1).  This goal was accomplished as will be discussed in the 

following chapters. Additionally, the efforts also led to the serendipitous discovery of a 

synthetic transporter that selectively transports NO3
- ions over Cl-.   
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 The discussion in Chapter 1 focuses on the general concepts of facilitated 

transmembrane anion transport, such as types of transporters, and classes (stoichiometry) 

of transport.  A detailed discussion on the types of interactions between transporter and 

anion is presented with examples of crystal structures of natural proteins bound to the 

anionic substrate.  Liposome-based techniques for detecting anion transport across 

bilayer membranes are presented, followed by selected representative examples of 

synthetic anion transporters that have been reported in the literature.  Chapter 2 focuses 

on the transmembrane transport of chloride by some lipophilic calix[4]arene amides.  The 

influence of calixarene conformation and substitution on Cl- transport, especially by 

triamido calixarene TAC-OH 2.3 (Chart 1.1), is discussed.  Previous studies in the Davis 

group had suggested that arene scaffolds substituted with three amide side chains gave 

highly efficient transmembrane Cl- transporters.5, 6  The phenolic hydroxyl group of 

calixarene 2.3 afforded a robust Cl- transporter whose transporting activity can be ‘gated’ 

by pH.  Examples of synthetic Cl- transporters with gated activities are, therefore, 

presented at the beginning of Chapter 2.  In Chapter 3, I discuss the studies on nitro 

tripod 3.1 (Chart 1.1), which was designed as a rigid analog of TAC-OH 2.3.  The 

success of triamido calixarene 2.3, along with incentive from previous group data,5, 6 led 

us to investigate the influence of a more rigid tripodal scaffold on transmembrane Cl- 

transport.  The studies revealed that tripod 3.1, rather than function as a Cl- transporter, 

turned out instead to be selective for the transmembrane transport of NO3
- anion.  Thus 

anion transport selectivity was changed due to modification of the transporter scaffold.  

Tripod 3.1 turns out to be the only nitrate transporter reported to date, to the best of the 

author’s knowledge that displays a marked selectivity for NO3
- over Cl- anions.  Chapter 
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4 focuses on the identification of small molecule transmembrane transporters of 

bicarbonate anion.  Despite the importance of transmembrane bicarbonate transport, no 

published studies have examined the use of ‘small’ molecules to promote the efficient 

transport of bicarbonate anions across lipid membranes.7  The studies described in 

Chapter 4 show that the natural product, prodigiosin 4.1 and synthetic isophthalamides 

4.2-4.4 (Chart 1.1) transported HCO3
- via an anion exchange mechanism, with Cl- as the 

exchange anion.  Chapter 5 describes future directions, especially as applied to the 

transmembrane bicarbonate transport, while the experimental protocols used for the 

research described in Chapters 2-4 are outlined in Chapter 6.  
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1.3 Anions in Nature and Human Health.  

 Anions abound in Nature and play important roles in chemical and biological 

processes.  Environmentally, the presence of anions such as nitrate and phosphate in 

bodies of water leads to eutrophication, while radioactive anions such as pertechnetate 

are known to be anthropogenic.  In biological systems, anions are critical to the 

maintenance of life, as they are involved in fundamental cellular functions such as 
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regulating pH, maintaining cell volume and osmotic balance, and serve as cellular 

signals.  Anions also carry genetic information (DNA and RNA are polyanions), and act 

as substrates and cofactors for a number of enzymes.1  As previously stated, the 

misregulation of function in natural anion transporters have been associated with certain 

diseases in humans.2, 8, 9  For example, misregulation of function in Cl– ion channels has 

been associated with the pathology of diseases such as Bartter’s syndrome, Dent’s 

disease, osteopetrosis (bone disease), and cystic fibrosis (CF).10, 11  Similarly, with HCO3
- 

which is involved in the most basic of cellular processes – respiration, defects in 

bicarbonate transport proteins has been linked to diseases of most organ systems 

including the brain, heart and bones, as well as CF.12-16  The metabolites of NO3
- ions 

have also been implicated in carcinogenesis.17 

 

1.4 Transport of Anions across Biological Membranes.  

 This section provides a short introduction to the biochemistry of membrane 

transport, with specific focus on anion transport; the reader is referred to any standard 

biochemistry text for an in-depth discussion of the subject.  The general concepts 

described in the section apply to all membrane transport processes, irrespective of 

whether the transported entity is a charged or non-polar species.   

 The transport of anions across biological membranes is an assisted process 

facilitated by proteins that act either as carriers or channels (Figure 1.1).  Channels are 

usually membrane-bound proteins, while carriers may or may not be membrane-

associated.  The fact that carriers shuttle their guests from one side of the membrane to 

the other implies that they are lipophilic enough to diffuse through the hydrophobic 
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portion of the membrane.  Channels, on the other hand, are embedded within and 

transverse the membrane.  Channels, therefore, have to induce a ‘defect’ in the membrane 

to effect transmembrane transport.  This ‘defect’ is usually in the form of a pore through 

which their substrate can pass.  A list of some of the fundamental differences between 

carriers and channels are shown in Table 1.1.  A very unique property of channel-type 

transporters is that their transport activity is often gated or regulated in response to certain 

cellular events, such as ligand binding, changes in cellular volume or membrane potential 

(i.e., voltage gating).  The carrier/channel classification is very broad-based and further 

subdivisions exist within each category based on protein primary sequence and/or 

secondary structure.  Transmembrane anion transport, as with transmembrane transport in 

general, can either be a passive or active process.  Passive transport involves the simple 

diffusion of anions down an electrochemical gradient.  On the other hand, active transport 

involves anion transport against an electrochemical gradient, therefore requiring energy, 

usually derived from adenosine triphosphate (ATP) hydrolysis. 

  

Table 1.1 Some differences between carrier- and channel-type transport proteins. 

Carriers Channels 
Binds substrate with high 
stereoselectivity 
 

Usually less stereoselective in substrate 
binding 
 

Transport rate below limits of free 
diffusion 
 

Transport rate approaches limit of 
unhindered diffusion (107–108 ion/s) 
 

Usually composed of monomeric proteins 
 
 

Usually oligomeric complexes of 
multiple identical subunits 
 

Transport activity not gated 
 

Transport activity is gated in response to 
certain cellular events 
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 Transport proteins are also classified based on the stoichiometry (i.e., the number 

of solutes being transported) and direction of transport as uniport, symport or antiport 

transport systems (Figure 1.2).  Uniport occurs when a transporter carries only one 

substrate at a time, for example, members of the ClC chloride channels family, which are 

specific to small monovalent anions, such as Cl-, Br-, I-, NO3
- and SCN-, of which Cl- is 

the most biologically abundant.18, 19  Transporters that carry two different types of solutes 

across the membrane are known as co-transporters.  Co-transporters achieve solute 

transport by simultaneously moving the two solutes either in the same direction – 

symport, or in opposite directions – antiport.  The term ‘co-transport’ is also often used to 

refer to symport, even though both symport and antiport involve the co-transport of 

solutes.  Similar to the carrier/channel classification of transport proteins, the uniport/co-

transport classification is also generic, and does not indicate whether transport is an 

energy-independent (passive) or energy-driven (active) process.  A biological example of 

an anion antiporter is the chloride/bicarbonate exchanger, also known as the anion 

exchange (AE) protein.4  The AE protein is very crucial to the process of respiration in 

cells as it allows the transport of CO2, in the form of HCO3
-, from respiring tissues to the 

lungs (see details in Chapter 4). The synthetic transporters studied in this thesis also fall 

into the symporter/antiporter categories: nitro tripod 3.1 is a H+/NO3
- symporter (see 

discussion in Chapter 3), while prodigiosin 4.1 and isophthalamides 4.2-4.4 function as 

Cl-/HCO3
- exchangers (discussion in Chapter 4). 

 Finally, another phenomenon to be considered in the transport of charged species 

across biological membrane is the separation of charges such that transport is either 

electrogenic or electroneutral.  Electrogenic transport results in the build-up of charges 
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because negative or positive charges are transported with symport of an uneven number 

of counter ions or antiport of an uneven number of like charges.  On the other hand, in 

electroneutral transport there is no net charge transfer due to the symport/antiport of an 

even amount of appropriate negative and/or positive charges. 

 

Uniport

Co-transport

Symport Antiport

 

Figure 1.2 Classification of transport systems based on the stoichiometry and direction of 

transport. In uniport, one solute only is transported. Co-transport systems can either be 

classified as symport – the transport of two different solutes in the same direction, or as 

antiport – transport of two different solutes in opposite directions.  

 

1.4.1 Receptor-Anion Interactions.  

 Since anion transport proteins are not enzymes, anionic substrates are not 

chemically altered during the transport process.  However, most of these proteins are 

highly selective, and like enzymes, they often bind their anionic substrates with 

geometrical specificity.  The specific binding is usually achieved through the use of 

multiple, weak non-covalent interactions such as hydrogen bonding, and electrostatic 
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interactions which include charge-charge, charge-dipole, and dipole-dipole interactions.  

Chemists seeking to develop synthetic anion transporters also employ these types of 

interactions in their synthetic designs.  Following is a short description of electrostatic 

and hydrogen bond interactions, followed by examples of these interactions as shown in 

the crystal structures of proteins that bind Cl-, NO3
-, and HCO3

- anions. 

 

1.4.1.1 Electrostatic Interactions.  The term “electrostatic interactions” is often used to 

refer to charge-charge (A−•••D+), charge-dipole (A−•••Dδ+), and dipole-dipole (Aδ-•••Dδ+) 

(Figure 1.3) interactions in proteins.20  The strengths of these interactions vary depending 

on the environment in which they exist; with stronger interactions in non-polar 

environments and weaker ones in polar environments due to competition from the 

environment.  However, notwithstanding the environment, dipole-dipole interactions are 

usually the weakest (0–50 kJ mol-1), charge-charge interactions the strongest (100–350 kJ 

mol-1), and charge-dipole interactions intermediate (50–200 kJ mol-1) in strength.21  

These interactions are ubiquitous in protein structures, and influence a lot of important 

processes such as selective ion transport in anion channel proteins.22, 23  Examples of 

electrostatic interactions in NO3
- and HCO3

- binding proteins are given in Section 1.4.1.3. 
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Figure 1.3. Examples of electrostatic interactions: a) charge-charge, b) charge-dipole, 

and c) dipole-dipole interactions. 

 

1.4.1.2 Hydrogen Bond Interactions.  These are a type of electrostatic interactions that 

occur between a weak acid donor group (Dδ-–Hδ+; D is an electronegative atom, usually 

O or N), and the negative dipole of an acceptor atom (Aδ-/A-) possessing at least one lone 

pair of electron.  Typical functional groups employed as hydrogen bond donors in 

proteins are amide, hydroxyl, amino, and guanidinium.  Hydrogen bonds are highly 

directional with the D–H bond preferably pointing along the lone pair axis of the 

acceptor.24  They can either be intramolecular (occurring between different parts of a 

single molecule) or intermolecular (occurring between two or more different molecules).  

Although they are generally weaker than covalent or ionic bonds, hydrogen bonds can 

vary in length and strength from strong, mainly covalent to weak, electrostatic 

interactions (Table 1.2).25  Hydrogen bonds also take on different geometries in which 

bifurcated (or “three-centered”) connections are made between one donor and two 

acceptors (a bifurcated donor), or between one acceptor and two donors (bifurcated 

acceptor; Figure 1.4).  The secondary structures of proteins (α-helices and β-sheets), the 

double helix structure of DNA, and the high substrate recognition property of enzymes 

are all due to, and stabilized by hydrogen bonds.  In particular, high substrate specificity 
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by enzymes (or molecular recognition) is usually achieved through cooperativity among 

multiple, weak hydrogen bond interactions.  Hydrogen bonds have also been extensively 

utilized in the design of synthetic anion receptors and transporters.12, 26-29  The small 

molecules described in this thesis also employ hydrogen bond interactions for binding 

and transporting the Cl-, NO3
- and HCO3

- anions. 

 

D H

A1

A2

A

H

H

D1

D2

Bifurcated donor Bifurcated acceptor

b)a)

 

Figure 1.4.  Geometries of hydrogen bonds: a) a bifurcated donor, and b) a bifurcated 

acceptor.  

 

Table 1.2. Properties of hydrogen bond interactions.†  

 Strong Moderate Weak 
D–H•••A interaction Mainly covalent Mainly 

electrostatic 
Electrostatic 

Bond energy 
(kcal/mol) 

 
14.3–28.7 

 
3.82–14.3 

 
< 2.87 

Bond lengths (Å)    
H•••A 1.2–1.5 1.5–2.2 2.2–3.2 
D•••A 2.2–2.5 2.5–3.2 3.2–4.0 
Bond angles (º) 175 – 180 130 – 180 90 – 150 
Examples Gas phase dimers with 

strong acids/bases 
Alcohols C–H hydrogen 

bonds 
 HF complexes Biological 

molecules 
O–H•••π hydrogen 
bonds 

† Adapted from reference 21. 
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1.4.1.3 Examples of Non-covalent Interactions in Anion Transport Proteins.   

NO3
- and HCO3

- Transport Proteins. Smith and coworkers recently resolved the crystal 

structures of the anion binding component of ATP-binding cassette (ABC)-type nitrate 

(NrtABCD) and bicarbonate (CmpABCD) transporters of cyanobacteria.22, 23  The crystal 

structures of the anion binding sites of the nitrate-binding NrtA, and bicarbonate-binding 

CmpA proteins are shown in Figure 1.5.  The two proteins are highly homologous, being 

48% identical and 61% similar in amino acid sequence; however, each is highly selective 

for its specific substrate.  The anion selectivity has been attributed to the substitution of a 

single amino acid from a hydrogen bond donor in NrtA to a hydrogen bond acceptor in 

CmpA.22, 23  As shown in Figure 1.5a, NO3
- is bound using both electrostatic and 

hydrogen bonds within the cleft.  One of nitrate’s oxygen atoms (O1) is involved in three 

non-covalent interactions: two electrostatic interactions with charged lysine (K269) and 

histidine (H196) residues (2.8 and 3.0 Å, respectively), and one hydrogen bond 

interaction with a neutral glutamine (Q155; 2.9 Å) residue.  The other two oxygen atoms 

(O2 and O3) are each involved in only one type of interaction: O2 in an electrostatic 

interaction with H196 (3.0 Å), and O3 in a hydrogen bond interaction with a tryptophan 

(W102; 2.8 Å) residue.  Similarly, bicarbonate ion is bound in CmpA by electrostatic and 

hydrogen bond interactions (Figure 1.5b), albeit the electrostatic interaction in CmpA is 

provided by a bound Ca2+ ion and not positively charged binding site residues.    
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Figure 1.5. Depiction of the anion binding sites of: a) nitrate-binding protein NrtA, and 

b) bicarbonate-binding protein CmpA showing the electrostatic interactions between 

protein amino acid residues and anionic substrates NO3
- and HCO3

- respectively. In the 

case of CmpA, a Ca2+ ion is also present in the binding site.  Potential hydrogen bonds 

and electrostatic interactions are depicted as dashed lines. Copyright © 2007, by the 

American Society for Biochemistry and Molecular Biology.22, 23  

 

 Bicarbonate is involved in three hydrogen bonding, and one electrostatic 

interactions.  The O3 atom of bicarbonate is within hydrogen bonding distances of the 

NH group of W99 (O3•••H−N = 2.8 Å) and the carboxyl oxygen of a glutamate (E271; 

O3•••O- = 2.5 Å) residue, suggesting that O3 is protonated.  The carbonyl oxygen of 

bicarbonate was assigned as O2, which is in hydrogen bond contact (2.7 Å) with the 

hydroxyl group of a threonine (T192) residue.  Lastly, O1 was labeled the carboxyl 

oxygen atom of bicarbonate, since it is involved in the strongest type of interaction – 

electrostatic interaction with the Ca2+ ion, and Smith’s calculations showed that it is the 

most polarized of the bicarbonate anion’s oxygen atoms.  The Ca2+ ion adopts a six-

coordinate geometry through strong electrostatic interactions with the carbonyl oxygen 

b) a) 

H196
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atoms of five amino acid residues (E70, E270, E271, Q198, and asparagine, N152) and 

bicarbonate’s carboxyl oxygen atom (O1; Figure 1.5b).  

 The similarities between the binding sites of NrtA and CmpA are striking and one 

can envisage the Ca2+ ion in CmpA partially occupying the volume/space occupied by the 

O1 oxygen atom of NO3
- in NrtA.  The most significant difference between NrtA and 

CmpA is the substitution of K269 in NrtA with E271 in CmpA.  The K269 residue in 

NrtA complements nitrate’s negative charge (Figure 1.5a).  Substitution to glutamate 

would nullify anion binding due to charge repulsion between nitrate and the carboxylate 

group.  Conversely, the E271 residue provides a hydrogen bond acceptor for the hydroxyl 

hydrogen of HCO3
- in CmpA.  Smith proposed that the determining factor for anion 

selectivity is the charge at residue 269/271. 

 

Cl- Transport Protein.  The crystal structure of a ClC chloride channel from Salmonella 

enterica serovar typhimurium (StClC) recently resolved by McKinnon and workers 

reveals that Cl- ion is bound within the selectivity filter of the protein with only hydrogen 

bond interactions.30, 31  The crystal structure of the StClC is shown in Figure 1.6.  The 

channel is a dimer made up of two identical subunits (Figure 1.6a) each of which 

contains a selectivity filter.  The amide (NH) and hydroxyl (OH) protons of serine 

(S107), tyrosine (Y445), and isoleucine (I356) residues participate in hydrogen bonding 

with Cl– ions in the selectivity filter.  The ‘opening’ of the selectivity filter on the 

extracellular side is lined by residues with positive dipoles, but not full positive charges.  

A glutamate (E148) residue occupies this opening and blocks the selectivity filter in the 

resting state of the channel.  A conformational change arising from the protonation or 
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deprotonation of this E148 residue results in the opening and closing, and subsequent 

conduction of Cl– ions through the channel (Figure 1.6b).31  The ClC family of Cl- 

transporters are anion selective and completely exclude cations.19  This anion selectivity 

is achieved through partial positive charges (as observed in the selectivity filter), and not 

through full positive charges.  Rather than answer all the questions about how Cl- ions are 

conducted through the pore of the ClC protein, the resolved crystal structure has 

uncovered more questions about the gating mechanism.  For example, there is evidence 

that the gating mechanism is closely associated with Cl- concentration in the protein 

surrounding.32, 33  Thus the question remains: Is Cl- serving as a signal for its own 

transport through the channel pore?  Diligent efforts are being made by biologists and 

chemists alike to answer this question. 
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 a) b) 

 

Figure 1.6.  a) Ribbon representation of a StClC chloride channel dimer.  The two 

subunits are red and blue ribbons while the Cl- ion is a green sphere. Reprinted by 

permission from Macmillan Publishers Ltd: Nature 2002, 415, 287-294, copyright 

2002.30  b) Depiction of the selectivity filter of the Cl- channel showing the closed and 

opened conformations. Cl- ions are shown as red spheres, the Glu148 side chain is 

colored red, and hydrogen bonds are drawn as dashed lines. Reprinted from Science 

2003, 300, 108-112 with permission from AAAS.31 

 

1.5 Techniques for Detecting and Quantifying Anion Transport. 

 Since ion transporters (both natural and synthetic) change the concentration of 

solutes, and oftentimes the potential across a membrane, it is therefore crucial to 

accurately detect and quantify their activity. Numerous analytical and biophysical 

techniques have been developed for detecting and quantifying transmembrane anion 

transport across cellular and synthetic membranes.  The two most prominent techniques 

include patch-clamp studies in planar bilayer membranes and liposome-based assays.  

Patch-clamp assays measure voltage directly and distinguish ion channel mechanism 

from carrier mechanism. Interested readers are directed to the book by Hille: “Ionic 



 17 
 

Channels of Excitable Membranes” for a more detailed description of patch-clamp 

techniques.34  Chemists often use synthetic vesicles (or liposomes) to mimic the cell.  The 

synthetic vesicles are prepared from the same types of phospholipid molecules that make 

up cellular membranes.  The transport studies described in this thesis (Chapters 2-4) are 

all liposome-based and were carried out in liposomes made from egg-yolk derived 

phosphatidylcholine (EYPC) lipids.   

 

Me3N
O P

O

O
O O

O
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O

Egg Yolk Phosphatidylcholine (EYPC)  

 

 Liposomes are spherical vesicles with membranes that can consist of one 

(unilamellar) or more (multilamellar) bilayer of phospholipids encapsulating an internal 

aqueous compartment (Figure 1.7).35, 36  Unilamellar liposomes are classified as small (< 

50 nm), large (50-1000 nm), or giant (> 1000 nm) unilamellar vesicles (SUVs, LUVs, or 

GUVs).  The terms ‘liposome’ and ‘vesicle’ are often used interchangeably in the 

literature, however, in this thesis, ‘liposome’ will be the preferred term.  Numerous 

techniques have been described for the preparation of liposomes of specific sizes.36  The 

liposomes used for the studies described in this thesis are predominantly LUVs (unless 

stated otherwise) prepared using high pressure extrusion through a polycarbonate 

membrane of defined pore size; a detailed description of the preparation is given in 

Chapter 6.  The aqueous interior of liposomes makes the encapsulation of water-soluble 

components, such as ions and fluorescent dyes possible.  The components encapsulated in 
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the liposomes can be varied and tailored to specific experiments.  Similarly, the content 

of the external solution in which the liposomes are suspended can be varied.  The 

variability of the contents of both the liposome’s interior and exterior environments 

makes it possible to generate gradients (concentration and/or pH) across the membrane.  

The gradients can then be discharged in the presence of active synthetic transporters.   

 

Unilamellar Multilamellar

a) b)

 

Figure 1.7. a) Depiction of unilamellar and multilamellar liposomes. Blue spheres 

represent water molecules filling the aqueous interior of the unilamellar liposome, and 

separating the individual layers in the multilamellar vesicles.  b) A two-dimensional 

rendition of liposomes that will be used throughout this thesis. 

 

1.5.1 Fluorescence Detection of Anion Transport. 

 This is the most common method used for detecting transmembrane ion transport. 

It involves the use of fluorescent dyes whose fluorescence is sensitive to a change in the 

concentration of specific anions.  For example, in the ‘base-pulse’ assay, the pH-sensitive 

fluorescent dye 8-hydroxy-1,3,6-pyrene-trisulfonate (HPTS) is quenched in response to a 

change in pH.37  HPTS, also known as pyranine, exists as an acid/conjugate base pair 
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(Figure 1.8a).  The excitation wavelengths for the acid and base forms are 403 and 460 

nm respectively, while emission wavelength is 510 nm for both.  As the ratio of the 

acid/base pair changes, the fluorescence ratio also changes.  The magnitude of the change 

in pH can then be correlated to the change in fluorescence ratio.  In a typical assay, HPTS 

is encapsulated in liposomes in a dilute buffer, and excess external dye is removed by gel 

filtration (size-exclusion chromatography).  A solution of the transporter is added to the 

liposome suspension after which a pH gradient is induced by the addition of base to the 

external solution.  An active transporter would relieve the pH gradient by transporting 

ions, which in turn leads to a change in the fluorescence of HPTS due to a change in the 

ratio of its acid and conjugate base forms.  Maximal possible changes in dye emission are 

then obtained at the end of the experiment by liposomal lysis with a detergent.  The 

limitation of the base pulse assay is that it does not differentiate between anion and cation 

transport as change in pH can either be due to an anion exchange (OH-/X-) or a cation 

symport (H+/X-) (Figure 1.8b).  Some of the transport experiments described in Chapter 

2 and the majority of those in Chapter 3 use the base-pulse assay to monitor 

transmembrane Cl- and NO3
- transport. 
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Figure 1.8. a) The acid and conjugate base forms of HPTS along with the excitation and 

emission maxima for each state. b) A depiction of transport events occurring in the 

liposome in a base pulse assay. The pH gradient generated at the addition of base is 

relieved either as an OH-/X- exchange (curved arrows pointing in opposite directions) or 

an H+/X- symport (arrows pointing in the same direction). The transporter is depicted as a 

cylinder.  

 

 Ion-selective dyes are often used to differentiate between a cation and an anion 

transport process.  The most widely used anion-selective dye for this purpose is lucigenin 

(Figure 1.9), a fluorescent dye whose fluorescence is quenched by polarizable anions 

such as the halides (Cl-, Br-, or I-), through the formation of a charge-transfer complex 

between excited singlet-state lucigenin and anion.38, 39  The fluorescence of lucigenin is 

unaffected by oxoanions such as NO3
-, SO4

2-, phosphates, and HCO3
-, thus it is suitable 

for monitoring the exchange of Cl- with such anions. A typical experiment is similar to 

that described for the base-pulse assay, except that the liposome-encapsulated dye is 

lucigenin instead of HTPS, and a concentration gradient is generated.  One of the 

challenges of studying transmembrane anion transport by fluorescence techniques is that 
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the majority of known ion-selective dyes are sensitive for Cl- (or the halides) and not 

other anions (especially the oxoanions).  Therefore, transport assays have to be designed 

to incorporate Cl- or the other halides, in order to obtain indirect evidence for the 

transport of anions other than halides.  However, compared to assays based on the ion-

selective electrode technique discussed below, one of the advantages fluorescence-based 

assays is that the transporter can be pre-incorporated into the liposomes if necessary.  

Fluorescence experiments are also suitable for the measurement of kinetic parameters 

such as rate constants.  The Cl- transport experiments described in Chapter 2 are 

predominantly based on the lucigenin assay.  

 

N
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Figure 1.9. a) The Cl--sensitive dye, lucigenin and its excitation and emission maxima. 

b) A depiction of transport events occurring in the liposome in a lucigenin assay. The 

concentration gradient generated at the addition of external anion is relieved either as an 

X-/Y- exchange (curved arrows pointing in opposite directions) or an M+/Y- symport 

(arrows pointing in the same direction).  X- is usually an oxoanion, particularly NO3
-, 

while Y- is a halide anion. The transporter is depicted as a cylinder. 
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1.5.2 Ion-Selective Electrodes. 

 Ion-selective electrodes for specific ions such as Cl- offer the advantage of 

sensitivity and specificity, so that direct measurement of concentration can be achieved.  

Again, the most widely used ion-selective electrode is the chloride selective electrode.  In 

a typical experiment, Cl- ions are encapsulated in liposomes, and excess Cl- ions on the 

exterior of the liposomes are replaced with another anion by dialysis.  The liposome-

encapsulated Cl- ions are then invisible to the chloride-selective electrode until an active 

Cl- transporter is added to the extravesicular solution (Figure 1.10).  The amount of Cl- 

released from the liposome can then be determined from the measured potential 

difference between the reference and sensing electrode (Figure 1.10).  Another 

advantage of this technique is that it is direct and easy to perform.  However, it is limited 

in terms of kinetic measurements due to the slow response time of the electrode.  As 

stated above, the limitation of this technique is that transporters cannot be pre-

incorporated, as the pre-incorporation of transporter will lead to Cl- leakage during 

liposome preparation thereby compromising the integrity of the data collected.  This 

technique is used in Chapter 4 to obtain initial evidence that transmembrane bicarbonate 

transport proceeded via a Cl-/HCO3
- exchange mechanism. 
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Figure 1.10. A cartoon depiction of the chloride ion-selective electrode assay.  Chloride 

ions encapsulated inside liposomes (open purple spheres) are invisible to the sensing 

electrode, and both the reference and sensing electrodes are at a resting potential (left 

panel).  A detectable current can be measured upon the addition of an active Cl- 

transporter indicative of Cl- efflux from the liposomes (right panel).  An influx of the 

exchange anion A-, to which the electrode is insensitive, allows electroneutrality for the 

overall process.   

 

1.5.3 NMR Spectroscopy. 

 Finally, NMR spectroscopy can also be used to monitor the translocation of 

anions across membranes.40 Anions inside and outside liposomes can be differentiated 

based on different chemical environments that leads to a difference in chemical shift for 

the internal and external anion populations.  In the event that the chemical shift difference 

is too small to be detected, a suitable paramagnetic shift or relaxation agent may be 

encapsulated in the liposome, or added to the external solution.  The method is used 

widely for cation transport, particularly sodium-23 (23Na+) NMR.41-43  NMR detection for 

anion transport holds promise for a host of anions and can be the method of choice when 



 24 
 

ion-selective fluorescent dyes or electrodes are not available.  As such NMR detection 

would be suitable for monitoring the transport of anions such as NO3
- (by 15N NMR) or 

HCO3
- (by 13C NMR).  Cobalt II (Co2+) and manganese II (Mn2+) are two paramagnetic 

metals that have been used extensively for monitoring anion transport in liposomal 

membranes.44, 45  Paramagnetic Co2+ shifts the 35Cl resonance, while Mn2+ relaxes the 

signal to the baseline.46  Lanthanide metals such as samarium III (Sm3+) may also hold 

promise as it has been used to resolve chiral amino acid mixtures.47  A limitation of the 

NMR technique is its low sensitivity, which becomes magnified when the nuclei under 

study has a low natural abundance.  The low abundance problem can however be 

overcome by the use of enriched nuclei samples.  Also, lengthy acquisition times are 

required to observe the inherently weak signal, and the technique becomes unsuitable for 

rate constant calculations when a very fast transport process is under study.  The method 

however provides direct evidence for transport and can be useful for differentiating 

between a symport and antiport mechanism as will be described in Chapter 4.  The use 

of 13C NMR provided direct evidence for bicarbonate transport across the membrane and 

established the mechanism of transport as a HCO3
-/Cl- exchange mechanism. 

 

1.6 Selected Examples of Synthetic Anion Carriers and Channels.  

 There are not as many known synthetic transmembrane anion transporters as there 

are anion receptors.12, 26, 27, 48-52  However, the field is continually expanding with new 

examples steadily appearing in the literature.  Synthetic transporters that function as 

carriers as well as channels have been described.  A number of reviews have recently 

been written by Gale,26 Smith,53 Matile,49 and Gokel50 on the topic of synthetic anion 
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transporters.  The synthetic transporters described incorporate the same anion recognition 

motifs and non-covalent interactions used by proteins.  Some effective synthetic 

transporters have also been reported that make use of non-natural recognition motifs and 

electrostatic interactions such as urea and anion-π interactions.49, 54  A majority of the 

compounds that have been reported in the literature are Cl- transporters, probably due to 

the implication of a myriad of natural Cl- transport proteins in diseases.3  Also, according 

to the Hofmeister series, Cl- is the most hydrophobic physiological anion.12, 27  Thus, 

most simple, synthetic organic anion transporters tend to be Cl- transporters.26, 53  A few 

selected examples of these synthetic anion (Cl-) transporters that have been reported from 

2008 to date are presented in the following sections.  The examples are separated into the 

broad carrier and channel categories, and were selected for a number of reasons, such as 

detailed characterization, and unique transport properties and mechanisms.   

 

1.6.1 Transporters that Function as Anion Carriers. 

1.6.1.1 Steroidal Anion Shuttles.  One of the definitions of the word ‘shuttle’ is “a going 

back and forth regularly over an often short route by a vehicle.”55  A synthetic transporter 

that functions as a shuttle can therefore be envisaged as a discrete entity that diffuses 

back and forth within the membrane without having a localized position.  Shuttles also 

operate as unimolecular entities, that is, one carrier per anion.  Anion carriers are required 

to bind their substrate with very high affinity, that is, to essentially extract the anion from 

its aqueous environment, separate it from its counter ion, and form a stable, but reversible 

complex.  The carrier must, therefore, be amphiphilic in nature to facilitate both 

membrane passage and anion complexation.  A.P. Davis and coworkers have described a 
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class of such amphiphilic, steroid-based anion carriers with exceptionally high anion 

binding affinity and Cl- transport activity.54  Davis and coworkers used urea-

functionalized cholic acid derivatives (also known as ‘cholapods’) as the anion carriers. 

Cholic acid confers lipophilicity, for partition into membranes, to the receptor, while the 

urea groups serve as hydrogen bond donors for anion binding.   The di-ureido cholapods 

1.1 and 1.2 (Chart 1.2), containing four and five hydrogen bond donors respectively, 

were identified as the first set of potent Cl- receptors (Ka for 1.1 and 1.2 in water-

saturated chloroform is 5.2 x 108, and 1.1 x 1011 M-1 respectively), and transporters, with 

1.2 being the most active transporter as well.7, 56  Subsequently, cholapods 1.1 and 1.2 

and various derivatives were evaluated for the binding of other anions such as bromide 

(Br-), iodide (I-), NO3
-, acetate (AcO-), perchlorate (ClO4

-), and ethyl sulfite (EtSO3
-), and 

Cl- transport activity.  Binding constants in the range 103 to 1011 M-1 were reported, 57, 58  

and cholapod 1.3 (Ka (Et4N+Cl-) = 2.0 x 109 M-1) emerged as the new most effective Cl- 

transporter (kobs for 1.1, 1.2, and 1.3 is 0.039, 0.012, and 0.0030 s-1 respectively at 0.004 

mol% cholapod-to-lipid).59  It is interesting to note that cholapod 1.3, with four hydrogen 

bond donors compared to 1.2’s five donors, binds Cl- less tightly but transports the anion 

more effectively.  These results suggest that 1.2 might be approaching the optimum 

design for a Cl- receptor/transporter based on the steroidal scaffold.  This hypothesis is 

supported by results that showed that Cl- binding affinity decreased or remained 

unchanged in cholapods with six hydrogen bond donor groups, such as eicosyl (C20) 

ester cholapod, 1.4 (Ka (Et4N+Cl-) = 1.8 x 1011 M-1).58  Cholapod 1.4 is an analog of 1.2, 

and other results showed that the ester chain has no effect on transport activity.59  Thus 

the inference would be that a saturation limit is possible in the cholapod design such that 
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increasing anion binding affinity eventually leads to a decrease in anion transport 

activity, due to inhibition of anion release.   
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 Although the cholapods are not anion-specific (as depicted by the high binding 

affinities for the anions listed above), they are powerful anion-selective transporters (i.e., 

they do not transport cations), rapidly transporting Cl- across lipid membranes via a Cl-

/NO3
- anion exchange mechanism.59  Both lucigenin and chloride ion-selective assays 

were used to study the transport activities of the cholapods in liposomal bilayers. 

Cholapod 1.3 exchanges Cl- for NO3
- with a half-life of 26 seconds at a 1:25 000 ratio of 

cholapod to lipid.59  Finally, the carrier mechanism was confirmed for the cholapods in 

two separate assays: one in which transport rates were measured in gel phase liposomes, 

and another in which membrane thickness was varied.  In gel phase liposomes, the rate of 

transport by an anion carrier decreases compared to rates in fluid phase liposomes.  

Similarly, increasing membrane thickness leads to a decrease in transport rate.  Under 

these two conditions, the rate of Cl- transport by the cholapods decreased, suggesting a 

mobile carrier mechanism. Overall, the cholapods represent the best characterized class 
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of anion transporters that act as carriers, and future structure-activity studies focusing on 

optimization for biological activity are planned by Davis and co-workers.  

 

1.6.1.2 Anion Transport by a Relay Mechanism.  A relay mechanism differs from a 

shuttle mechanism in that rather than a non-stop fluid movement of anions across the 

membrane, the anions are transported in stages across the membrane, just like in a relay 

race where the baton is passed along in stages from player to player.  Smith and 

coworkers recently reported a new Cl- transporter that does not function by the generic 

carrier/channel mechanism, but functions as a hybrid of both systems in what they called 

a relay transport mechanism.  The transporter was designed as a phospholipid derivative 

with an anion recognition unit (urea) attached at the end of one of the phospholipid acyl 

chains to give compound 1.5.60   
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Compound 1.5 functions as a Cl-/NO3
- anion exchanger, as determined in a standard 

lucigenin assay. Basically, Cl- influx was observed in liposomes encapsulating the 

fluorescent dye lucigenin, and into which compound 1.5 had been pre-incorporated, when 

the intravesicular solution contained NaNO3.  However, in the presence of intravesicular 

Na2SO4, the rate of Cl- influx was reduced significantly.  This is consistent with an anion 
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exchange process; that is, Cl- influx can only occur with a corresponding counteranion 

efflux.  Sulfate anion is more hydrophilic and therefore not easily transported as Cl- or 

NO3
- anions, hence the diminished influx of Cl- ions.  The relay mechanism was proven 

by a series of experiments: 1) When 1.5 was not pre-incorporated into the liposomal 

membrane, no Cl- transport activity was observed.  For Cl- transport to occur, molecules 

of 1.5 must reside in both layers of the membrane, since one molecule is too short to span 

the whole membrane.  Thus, without pre-incorporation, and within the experimental time-

frame, molecules of 1.5 could not equilibrate into both layers of the liposomal bilayer 

membrane.  This result provided initial evidence for a relay mechanism such as depicted 

in Figure 1.11, which requires that 1.5 reside in both layers of the bilayer membrane.  2) 

Correlation of Cl- transport rate (kobs; s-1) to the concentration of 1.5 ([1.5]n) gave n values 

of 2 and 4 suggesting that 1.5 forms aggregates of 2 or 4 in the membrane to achieve Cl- 

transport. The proposed relay mechanism for n = 2 is shown in Figure 1.11a, while for n 

= 4 is shown in Figure 1.11b. 3) Chloride transport activity by 1.5 decreased with bilayer 

thickness as observed for the steroidal carriers discussed above.  Chloride transport 

activity decreased when acyl carbon chain of bilayer phospholipids was increased from 

14 to 18, and no transport activity was observed when the carbon chain is above 18.  

Since compound 1.5 has an acyl chain length of 15, it can be inferred that it is long 

enough to span each leaflet of the bilayer according to the proposed relay mechanism in 

Figure 1.11. However, as chain length increased for the bilayer phospholipids, 1.5 is no 

longer long enough to span the bilayer creating a gap between the urea recognition motifs 

within each bilayer leaflet. The Cl- anion would have to ‘jump’ across this gap in order to 
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be transported to the other side of the membrane.  The energetic cost for crossing the gap 

is probably too high, thus shutting down Cl- relay across the membrane.   

 

a) b) 

 

Figure 1.11. Relay mechanism for: a) dimeric (n = 2), and b) tetrameric (n = 4) 

aggregates of transporter 1.5. Adapted from reference 60. 

 

1.6.2 Transporters that Function as Anion Channels. 

 There are more literature examples of synthetic anion (Cl-) transporters that 

function as channels than as carriers.53  Just as natural transport proteins occur as 

monomolecular or oligomeric structures (Figure 1.12),23, 30, 61 synthetic compounds that 

function as unimolecular or oligomeric anion channels have also been reported in the 

literature. The following discussion highlights an example each of a unimolecular or 

oligomeric synthetic transporter that has been successfully developed for anion transport.  
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Unimolecular
Channel Oligomeric Channels

Unimolecular
Channel Oligomeric Channels  

Figure 1.12. A depiction of ion channel motifs inserted into the bilayer membrane.  The 

unimolecular and possible oligomeric structures are shown.  The channels are depicted as 

blue cylinders, while the anion as a red sphere. 

 

1.6.2.1 A Synthetic Oligosaccharide-Based Unimolecular Anion Channel.  Tecilla 

and coworkers, very recently reported a new family of synthetic anion transporters called 

cyclic phosphate-linked oligosaccharides (CyPLOS).62, 63  CyPLOS was designed to 

incorporate the properties of small cyclodextrins and crown ethers. The Cyclic 

phosphate-linked disaccharides 1.6-1.8 (Chart 1.3) appended with tetraethylene glycol 

(TEG) chains were among the several analogs of CyPLOS studied for transmembrane ion 

transport. Compound 1.6 is anionic and cyclic, 1.7 is anionic and acyclic, while 1.8 is 

cyclic and neutral.  Initial membrane transport assays revealed that 1.6 was the most 

active followed by 1.7, then 1.8. The inference from this result is that the anionic nature 

of the ionophore is more important than its cyclic nature. Surprisingly, despite the 

presence of negative charges on the ionophore and its TEG tails, compound 1.6 displays 

anion rather than cation selectivity. The rate of anion transport by 1.6 is comparable to 

that of other cyclodextrin ionophores. In addition, correlation of transport rates to the 
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concentration of 1.6 suggests that it functions as a unimolecular channel. While the 

length of the TEG chains in CyPLOS 1.6 is too short to span the whole length of the 

bilayer, it is longer than one leaflet of the bilayer membranes used in the studies. This 

arrangement probably caused small defects in the membrane sufficient for ion transport, 

but not large enough for the release of a small molecule such as calcein.  Calcein is a 

fluorescent dye that self-quenches at concentrations greater than 50 mM in LUVs (or 100 

mM in SUVs), and is often used to detect membrane defects.36, 64  Calcein release assays 

were used to eliminate the possibility that 1.6 and analogs caused membrane defect. The 

proposed orientation of 1.6 and analogs in the membrane shown in Figure 1.13, is 

analogous to that proposed for another class of synthetic anion transporters (SATs) 

described by Gokel and coworkers.65  However, Gokel’s SATs form pores in the 

membranes through which anions flow, and have been well characterized.  Obviously, 

detailed studies are necessary to fully characterize CyPLOS 1.6, and elucidate its 

mechanism of ion transport.   
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Figure 1.13.  Proposed orientation of CyPLOS 1.6 and analogs in the bilayer membrane. 

One molecule of 1.6 does not span the whole membrane, but extends into the second 

layer of the bilayer, causing a defect that allows the transport of ions but, but not small 

molecules. [Org. Biomol. Chem. 2009, 7, 1060-1063] – Reproduced by permission of The 

Royal Society of Chemistry.62 

 

1.6.2.2 Synthetic Oligomeric Anion-π Slides.  Matile and co-workers have reported a 

class of synthetic anion channels based on the π-acidic, shape-persistent oligo-(p-

phenylene)-N,N-naphthalenediimide (O-NDI) scaffold.  These O-NDI channels function 

as anion-π slides (Figure 1.14), and transport anions across the bilayer using anion-π 

interactions.66, 67  Anion-π interactions are defined as favorable, non-covalent interactions 

between an anion and a π-acidic (or electron deficient) aromatic ring.  Anion-π 

interactions are not known in biological systems, and have only started gaining attention 

in supramolecular chemistry, because they are counterintuitive in nature – anions and π-

systems are expected to repel each other.  However, the incidence of anion-π interactions 

has been growing,68, 69 and Matile has successfully incorporated them into the design of 

his anion-π slides, O-NDI rods 1.9-1.12 (Chart 1.4).49   
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Figure 1.14.  Depiction of an O-NDI anion-π slide.  The anion interacts with the 

transporter through dipole interactions between the anion’s negative π-electron cloud 

(pink spheres) and the positive, π-acidic dipole of the electron deficient aromatic ring 

(blue squares). Reprinted with permission from J. Am. Chem. Soc. 2006, 128, 14788-

14789.  Copyright 2006 American Chemical Society.66 
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The concept of anion-π slides. The O-NDI anion-π slides developed by Matile offer an 

appealing, way to generate functional synthetic anion transporters that mimic the multi-

ion hopping mechanism by which channel proteins conduct ions through their pores.70, 71 

This multi-ion hopping mechanism involves the binding of multiple ions along multiple 

binding sites within the pore of the channel allowing ions to be pulled through the pore, 

such that as one ion exits into the cell interior, another anion in the binding site above it 

hops in to replace the discharged ion.  The process is repeated by the ions above until an 

anion from the extracellular milieu is pulled into the pore creating a cascading pumping 

effect. This multi-ion hopping technique ensures the release of bound anion on one side 

of the membrane in response to anion binding on the other side, and the process should 

be reversible under equilibrium conditions.  The concept of ion hopping in O-NDI anion-

π slides is depicted in Figure 1.15.   

 The existence of multi-ion hopping was proven by observation of anomalous 

mole fraction effects (AMFE).  AMFE refers to lower than expected activity found with a 

mixture of ions compared to pure ions.  The occurrence of AMFE indicates that the 

occupation of multiple sites in a channel is required to efficiently transport any selected 

ion.  Using the base-pulse assay with the pH-sensitive fluorescent dye HPTS, it was 

found that the O-NDI anion–π slides are excellent chloride transporters.67  AMFE studies 

of Cl-/I- mixtures demonstrated that the transport of chloride and iodide by O-NDI slides 

is competitive and that binding of more than one chloride is required to observe fast 

transport.  That is, AMFE for Cl-/I- mixtures provided experimental evidence for the 

occurrence of multi-ion hopping from anion–π binding site to anion–π binding site along 
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rigid O-NDI rods (see above; Figure 1.15). The existence of anion–π interactions was 

confirmed by high-level ab initio and DFT calculations.  AMFE studies also suggest that 

the O-NDI anion–π slides form at least dimeric structures in the membrane, since a 

minimum of two O-NDI molecules have to be in close proximity for AMFE to be 

observed.  Ab initio calculations supported this hypothesis that O-NDI rods exist as 

oligomeric structures in the bilayer membrane.67 

 

                   

Figure 1.15. The concept of anion-π slides. The electrostatic potential surface of an O-

NDI rod supports the possibility of multi-ion hopping along the anion-π sites S1-S6 (blue 

surfaces) as indicated in the qualitative energy diagram. S1-S6 represent potential anion 

binding sites that coincide with the O-NDI rod’s π-acidic, electron deficient sites. 

Binding of Cl- at site one (S1) results in electrostatic repulsion with the Cl- ion in binding 

site S2, leading to the hopping of S2 Cl- to binding site S3, and onward until the Cl- in S6 

is ejected on the other side of the membrane. [Chem. Eur. J. 2009, 15, 28-37] – Copyright 

Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.49 
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 Finally, anion-π slides with photosynthetic activities have been developed from 

the analogous oligo-perylenediimide (O-PDI) scaffold. The O-PDI anion-π slides 

transport chloride anions across the bilayer via a chloride/electron antiport (exchange) 

mechanism.72  Systems such as O-NDI and O-DPI anion-π slides exemplify elegant 

applications of synthetic anion transporters to understanding protein function and 

presenting potential for future application in diagnostics and optoelectronic materials.  

 

1.7 Summary of Transmembrane Anion Transport. 

 Membrane transport is important and fundamental to life, and when it is impaired, 

growth, reproduction and general well-being are in jeopardy.  Anions in particular are 

crucially involved in membrane transport processes, and so, natural anion transport 

proteins have been implicated in a myriad of human maladies.  The development of 

synthetic anion transporters that mimic natural proteins is of premium importance, as 

these synthetic compounds may; 1) provide us with a better understanding of ion 

transport processes, 2) lead to the discovery of potential therapeutics for ion channel 

diseases, and 3) generate materials for sensing and diagnostics. This chapter has 

described the concepts involved in transmembrane ion transport with specific focus on 

anion transport.  Examples of the types of interactions used by natural proteins to bind 

and transport their anionic substrates were presented with particular focus on electrostatic 

and hydrogen bonding interactions, the two most abundant types of interactions observed 

in these natural as well as synthetic systems.  Liposome-based techniques for detecting 

anion transport were discussed, as well as examples of synthetic anion transporters that 

act as carriers and channels.  The synthetic examples presented represent only a 
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conservative selection of systems that have been reported in the literature.  These 

examples showcase the commendable efforts that have been applied by scientists to the 

development of synthetic transporters.  These efforts however, often involve tedious and 

long synthetic steps to arrive at natural protein mimics.  The synthetic anion transporters 

described in Chapters 2-4 of this thesis are simple small molecules obtained in only a 

few synthetic steps (all ≤ 3), that mimic the gating (Chapter 2) and anion exchange 

properties (Chapter 4) of natural proteins. 
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Chapter 2: Membrane-Active Calixarenes for ‘Gated’ Transmembrane 

Chloride Transport 

The majority of this chapter has been published in reference 118: 

• Okunola, O. A.; Seganish, J. L.; Salimian, K. J.; Zavalij, P. Y.; Davis, J. T. 

“Membrane-active calixarenes: toward ‘gating’ transmembrane anion transport.” 

Tetrahedron 2007, 63, 10743-10750. Copyright 2007, with permission from 

Elsevier. 

Syntheses of compounds 2.1, 2.2a and 2.2b described in this chapter were performed by 

Ms. Jennifer L. Seganish and Mr. Kevan J. Salimian, former graduate and undergraduate 

students respectively, in the Davis group, while Dr. Peter Y. Zavalij resolved the crystal 

structures described.  

2.1 Introduction. 

 The goals of the research in this chapter are two-fold: 1) to investigate the 

chloride (Cl-) transport activities of some lipophilic calixarene amides, all fixed in the 

cone conformation; and 2) to develop calixarene-based Cl- transporters with tunable 

properties through sidechain modification.  These studies build on previous work in the 

group that showed that partial cone calix[4]arene tetrabutylamide paco-H 2.1 mediated 

transmembrane Cl- transport (Figure 2.1).6  One of the major findings in this chapter is 

the identification of the cone calixarene analog TAC-OH 2.3 which allows the tuning of 

Cl- transport by pH.  Before describing the new studies on the calixarene cone 

conformers (Chart 2.1 and Sections 2.5–2.8), I first provide a brief background about 

why we study Cl- transport, and some literature examples of synthetic Cl- transporters 
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whose activities are gated by external stimuli such as voltage, pH or light (Sections 2.2 

and 2.3).  I also present a discussion on the use of calixarenes as membrane-active ion 

transporters (Section 2.4).   
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Figure 2.1. Transmembrane anion transport as mediated by the calixarene paco-H 2.1. 
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2.2 Why Study Transmembrane Cl- Transport? 

 Chloride is a simple, inorganic anion that is spherical in shape and has a 

thermochemical radius r, of 1.72 Å.12  Chloride, as the conjugate base of a very strong 

acid (HCl; pKa = –8.0), is completely dissociated and highly solvated (hydration energy, 

∆Gh = 80.8 ± 1.4 kcal/mol) in solution.12  Along with bicarbonate (HCO3
-) and 

phosphate, Cl- is one of the most abundant anions found in physiological environments.  

The transport of Cl- in biological systems is crucial to myriad biological processes such 

as signal transduction, regulation of cell volume, stabilization of resting membrane 

potential, fluid transport in the epithelia, to name a few.73  Chloride is transported across 

cellular membranes by a wide variety of natural anion transport proteins classified as 

anion exchangers (AE) or cation-dependent Cl- co-transporters.  Most chloride channels 

are also “gated” structures that function through recognition of stimuli such as voltage, 

volume, ligand, Ca2+-activation or cAMP-activation.73  Understanding relationships 

between the structure and function of channel proteins is crucial since maintaining the 

proper ion balance across cell membranes is essential to life.  Knowledge of channel 

structure is also important because impaired ion transport can cause disease.2, 3, 74, 75  For 

example, Best disease, a form of macular degeneration leading eventually to blindness, is 

caused by a malfunction of the Ca2+-activated Cl- channel bestrophin in the retinal 

pigment epithelium.76  Similarly cystic fibrosis, the life-shortening genetic disease, is 

caused by a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) 

protein that facilitates transmembrane Cl- transport.77  Malfunction of the CFTR disrupts 

salt and water transport across epithelia, leading to the varied symptoms of the disease, 

such as salty sweat, severe lung disease, exocrine pancreatic failure, male infertility, and 
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intestinal blockage.78  The two-fold goals of understanding natural ion transport processes 

and discovering new therapeutics have driven the development of synthetic 

transmembrane ion transporters.29, 48, 79   

 

2.3 Synthetic Cl- Transporters. 

 Historically, most studies have focused on cation transporters.  However, there 

has been continuing progress in identifying “small molecules” that can transport Cl- 

anions across lipid membranes.  Recent, independent reviews by A.P. Davis, Sheppard 

and Smith,53 Gale,26 and Gokel50 provide excellent discussions of the emerging field of 

transmembrane Cl- transport.  Synthetic Cl- transporters include compounds that function 

as self-assembled channels80, 81 or as monomolecular carriers (Section 1.6).7   These 

compounds, which can alter transmembrane ion and pH gradients, may have potential 

applications as biochemical reagents and/or chemotherapeutic agents.82, 83  As such, 

efforts at developing synthetic Cl- transporters with tunable properties have also 

increased in recent times. Following is a discussion on some examples of such tunable Cl- 

transporters, whose structures are shown in Chart 2.2.  
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2.3.1 Selected Examples of Synthetic Cl- Transporters with Tunable Properties. 

2.3.1.1 Voltage-Dependent Channels.  

Gokel.  Gokel and colleagues have reported studies on lipophilic peptides, generically 

called synthetic anion transporters (SATs), which aggregate to form Cl--conducting 

channels.  The original peptide, 2.5 (Chart 2.2), consists of four parts: 1) a lipophilic tail 

consisting of two octadecyl (C18H37) chains attached at the N-terminus, 2) a heptapeptide 

sequence (GGGPGGG) inspired by a conserved motif in the putative ion pathway of the 

ClC family of Cl- transporters, 3) a benzyl group at the C-terminus, and 4) a diglycolic 

acid linker connecting the heptapeptide and hydrocarbon tails.84, 85  In liposomal 

membranes, SAT 2.5 displayed an ion permeability order of Cl- ≈ NO3
- > SO4

2- >> K+, 
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with a Cl- vs. K+ selectivity of > 10,16a and is proposed to form dimeric structures that 

insert into one leaflet of the bilayer membrane to achieve Cl- transport (Figure 2.2a).65, 86, 

87  SAT 2.5 exhibited voltage-dependent Cl- transport between –3 and +10 mV.  A 

correlation of channel open time to membrane potential (in mV) showed that open time is 

strongly dependent on transmembrane voltage (Figure 2.2b).  The average conductance 

measured for SAT 2.5 was 1.3 nS (S = Siemens) which corresponds to an estimated 6–7 

Å pore size.88-90  SAT 2.5 promoted Cl- transport in mouse trachea epithelial cells 

providing promise for future application in correcting deficiencies in Cl- transport, such 

as observed in cystic fibrosis.91  

 

 

Figure 2.2. a) Proposed dimeric assembly of synthetic anion transporter 2.5 for forming a 

Cl- channel in one leaflet of the phospholipid bilayer. [New J. Chem. 2005, 29, 291-305] 

– Reproduced by permission of The Royal Society of Chemistry (RSC) for the Centre 

National de la Recherche Scientifique (CNRS) and the RSC.65 b) Single-channel 

characteristics of SAT 2.5 in planar phospholipid bilayer a strong dependence of channel 

open times on membrane potential (mV), fraction of open channels increasing with 

increase in potential. Reprinted with permission from J. Am. Chem. Soc. 2002, 124, 1848-

1849.  Copyright 2002 American Chemical Society.84  

a) b
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Matile.  Another class of self-assembled Cl- channels based on rigid, peptide-substituted 

p-octiphenyl rods have been reported by Matile and coworkers.  The peptide sidechains 

of rigid rods 2.692 and 2.793 (Chart 2.2) are composed of sequences of alternating polar 

and non-polar amino acid residues.  This ensures that upon self-assembly, the channel 

formed has a polar interior for ion conduction, and a non-polar exterior to aid membrane 

insertion.  That is, the interior of the channel formed by rod 2.6 is lined by lysine (Lys) 

residues, while that of 2.7 is lined by arginine (Arg) and histidine (His) residues.  The 

leucine (Leu) residues line the exterior of both channels.  The channels thus formed are 

stabilized by intermolecular hydrogen bond interactions between the β-sheets formed by 

the short peptide sidechains of 2.6 and 2.7 (Figure 2.3a).  The incorporation of Lys into 

the structure of rigid rod 2.6 afforded selectivity for Cl- over K+ (permeability ratios PCl
-

/PK
+ ~ 3).92  Rod 2.6 was designated a push-pull rod due to the asymmetric substitution 

with at its terminals: the methoxy electron-donating (push) group at one end, and the 

electron-withdrawing sulfonyl (pull) group at the other.  Such an asymmetric design 

resulted in the Cl- transport activity of rigid rod 2.6 being voltage-dependent.  In contrast 

to the gradual increase in Cl- transport activity observed for Gokel’s SAT 2.5, activity 

with rigid rod 2.6 increased exponentially with increase in membrane potential (Figure 

2.3b), and it was suggested that 2.6 forms both α- and β-barrel-type channels.  The α-

barrel channels were short-lived and were thus proposed to form at low potentials.  The 

β-barrel channels on the other hand were more stable and long-lived, and thus proposed 

to be the structures formed at high membrane potentials.   
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Figure 2.3. a) Representation of the putative β-barrel structure formed by Matile’s rigid 

rods 2.6 and 2.7 in the membrane. The arrows extending from the octiphenyl backbone 

represent β-sheets formed by interdigitating peptide sequences. [Org. Biomol. Chem. 

2003, 1, 1226-1231] – Reproduced by permission of The Royal Society of Chemistry.93  

b) Single-channel characteristics of push-pull rod 2.6 in EYPC planar bilayer membranes 

showing representative traces between 50-150 mV. c) A plot of Po (open probability) vs. 

V (membrane potential) with an exponential fit. [Chem. Eur. J. 2003, 9, 223-232] – 

Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.92  

 

2.3.1.2 pH-Dependent Transporters. 

Matile.  The ion selectivity of octiphenyl rod 2.7 (Chart 2.2) was pH-sensitive due to the 

presence of the Arg and His residues.  At pH = 6, the pores formed by 2.7 were slightly 

cation-selective (PCl
-/PK

+ ~ 0.5), while at pH = 4, (presumably after the histidines are 

protonated), the pores became anion-selective (PCl
-/PK

+ ~ 3.8).93  Additionally, the 

addition of an anionic guest such as HPTS resulted in partial blockage of the anion-

selective (KD ≈ 30 µM) channel formed by rigid rod 2.7.   

 

a) b) c) 
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Gin.  A unimolecular amino-cyclodextrin (ACD) ion channel (2.8; Chart 2.2) that is 

selective for anions over cations at neutral pH has been described by Gin.  Channel 2.8 

discriminates among halide anions according to the order I- > Br- > Cl-.94  The lipophilic 

pentabutylene glygol chains allow the channel to span the length of the phospholipid 

bilayer.  ACD 2.8 was confirmed to function as a unimolecular channel through a linear 

correlation between the rates of ion transport and the concentration of the channel.  The 

anion selectivity of 2.8 was attributed to the portal amino groups.  Likewise the tuning of 

anion transport rates by pH.  Anion transport rate increased with increasing pH.  The 

rationale for this behavior of 2.8 is that at low pH (< 6.0), the amino groups are 

protonated, electrostatic (charge-charge) attraction with the anion is therefore very strong, 

leading to reduced anion transport rate.  On the other hand, at high pH (> 7.0), the portal 

amines are neutral leading to weaker charge-dipole interactions that favor anion 

translocation (Figure 2.4).95   
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Figure 2.4. A balance of Coulombic interactions between the ions and the ammonium 

groups lining the channel opening direct the increase in anion transport with rising pH 

values by ACD 2.8. The cyclodextrin cavity is depicted as a concave cylinder, while 

ammonium groups and anions as blue and red spheres respectively. [ChemBioChem 

2007, 8, 1834-1840] – Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced 

with permission.95 

 

Davis.  J.T. Davis, Gale, and Quesada have reported simple isophthalamides of the 

generic structure 2.9 (Chart 2.2), which function as efficient transmembrane transporters 

of Cl- when R is a hydroxyl (OH) group.96  Particularly, Cl- transport rates decreased with 

increasing pH when R is a hydroxyl group.  Analogs of 2.9 have also been studied for 

bicarbonate transport and those studies will be described in detail in Chapter 4. 

 

2.3.1.3 A Light-Gated Unimolecular Channel.  Gin further modified ACD 2.8 with a 

photoswitchable azobenzene group to afford CD 2.10 (Chart 2.2), whose anion transport 

activity is light-gated.97  In the “closed” (trans) form of CD channel 2.10, anion transport 

rate is reduced, whereas transport rates increased in the “open” (cis) form (Figure 2.5).  
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Modulation of transport was attributed to the binding of the azobenzene moiety within 

the cyclodextrin cavity in the trans form, blocking the channel entrance from anion 

passage.  On the other hand, the cis azobenzene affords an open pore to allow anion 

translocation (Figure 2.5).  The order of anion selectivity observed with cyclodextrin 2.8 

(see above) was retained in the cis form of 2.10.  However, Cl- transport was slightly 

more efficient when the rates of anion transport by the two isomers were compared 

(Table 2.1).  Gin did observe some cation transport in the trans isomer, presumably due 

to additional favorable cation-π interactions. 
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Figure 2.5. Depiction of the ion-transport gating mechanism in azobenzene ACD 2.10.  

The trans azobenzene isomer binds within the cavity of the cyclodextrin blocking 

passage of anions. Exposure of the system to light results in isomerization to the cis 

isomer, which affords an open channel for the passage of anions. Adapted with 

permission from Org. Lett. 2008, 10, 3693-3696.  Copyright 2008 American Chemical 

Society.97 
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Table 2.1. Comparison of anion transport rates by light-gated cyclodextrin 2.10.† 

Rate of anion transport, kobs (s-1) 
Anion ktrans kcis kcis/ktrans 
Cl- 0.0073 0.018 2.5 
Br- 0.032 0.052 1.6 
I- 0.044 0.055 1.2 
† Adapted with permission from Org. Lett. 2008, 10, 3693-3696.  Copyright 2008 American Chemical 
Society.97 
 

 The examples presented illustrate how simple modifications can lead to 

transporters with tunable properties. The ligand, pH and voltage-gated examples are 

particularly attractive as these are some of the same stimuli by which anion transport is 

gated in natural transport proteins.  The lipophilic calixarenes discussed later in this 

chapter also use simple structural modifications and changes in pH to gate Cl- transport.  

 

2.3.2 Calixarene-Based Synthetic Cl- Transporters. 

 Some of our group’s contributions in the anion transport field have used the 

calix[4]arene scaffold.5, 6, 98, 99 Calixarenes are macrocycles with a broad range of 

applications in supramolecular chemistry.100, 101  They are available in a variety of sizes, 

readily synthesized, and functionalized both on the phenolic OH groups (lower rim) and 

on the aromatic nuclei (para position/upper rim).  Calixarenes are easily pre-organized 

into a variety of conformations.  Their pre-organized structure has made them attractive 

building blocks and molecular scaffolds in the development of receptors for anions, 

especially the calix[4]arene framework.102, 103  Calix[4]arenes functionalized at the lower 

rims can exist in one of four different conformations viz: cone, partial cone (paco), 1,3-

alternate and 1,2-alternate (Figure 2.6). The conformational flexibility of functionalized 
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calix[4]arenes provides a means to spatially arrange functional groups so as to achieve 

the best interaction mode for recognition purposes.103  
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Figure 2.6. The four different conformations of calix[4]arenes: a) cone, b) partial cone, 

c) 1,3-alternate, d) 1,2-alternate. 

 

 A review by Cragg and Iqbal nicely describes previous studies that have used 

calixarene-type macrocycle as transmembrane cation transporters, as channels or as 

mobile carriers. 104  Kobuke and colleagues,105-107 and Gokel, de Mendoza and co-

workers,108 have described formation of synthetic cation channels using lipophilic 

calixarenes.  

 Recently, Carreira and coworkers discovered a calixarene-amphotericin conjugate 

that forms K+ selective channels.109  Various calixarenes also function as mobile cation 

carriers.  Thus, Beer and colleagues have described resorcin[4]arene-crown analogs that 

are efficient transmembrane carriers of K+.110  Jin has also shown that a calix[4]arene-

crown-5 analog selectively transports K+ across planar bilayers.111  Izzo and colleagues 

have recently described calix[4]arene-cholic acid conjugates that can move both H+ and 

K+ cations across synthetic liposomes.112, 113 
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 While calixarenes are known to bind anions in solution,102, 103 their use as 

membrane-active anion transporters is relatively new.5, 6, 98, 99  Izzo, Tecilla, de Riccardis 

and coworkers recently reported cationic calix[4]arenes in the 1,3-alternate conformation 

that function as anion selective ionophores.113  In the J.T. Davis group, studies by Kotch 

on calixarene-nucleoside conjugates,114, 115 designed as ion pair transporters, led to the 

discovery that a tetrabutylamide calix[4]arene fixed in the 1,3-alt conformation (2.11) 

forms ion channels that move Cl- across phospholipid membranes.98  Presumably, the NH 

protons on the calixarene’s secondary amides hydrogen bond to Cl- and help its 

translocation across the membrane.116, 117  X-ray structures confirmed that this 1,3-alt 

calixarene self-assembled into channel-like motifs held together by hydrogen bonds to 

bridging Cl- anions.98  Voltage clamp experiments in planar lipid bilayers confirmed that 

this 1,3-alt calixarene tetra-amide formed discrete ion channels.  Subsequently, Seganish 

investigated the structure and Cl- ion transport activity of a related isomer, the partial 

cone calix[4]arene tetrabutylamide paco-H 2.1 (Figure 2.1).6  The studies led to the 

proposal that Cl- transport mediated by paco-H 2.1 was controlled by both ligand self-

association and side-chain conformation.   Both solution and solid state (Figure 2.7) 

studies revealed that the amide sidechain of the inverted arene group of paco-H 2.1 does 

not participate in anion coordination, and presumably anion transport.  I therefore set out 

to investigate how changing the orientation of this inverted side chain (that is, having it 

point in the same direction as the other three sidechains), or removing it would influence 

the Cl- transport activity of these calixarene analogs.  
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Figure 2.7. Solid-state structure of paco-H 2.1 showing: a) the single molecule view, and 

b,c) the packing side and top views respectively.  The NH proton of the inverted side 

chain is buried in a pocket formed by the neighboring arenes.  In the crystal packing of 

paco-H 2.1, individual calixarene units are connected by intermolecular hydrogen bonds 

involving only the three downward-pointing n-butylamide chains. The inverted arene NH 

proton is not involved in the hydrogen-bond array.  Arrows point to the NH amide 

protons on the inverted arene of paco-H 2.1. [Angew. Chem., Int. Ed. 2006, 45, 3334-

3338] – Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with 

permission.6 
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 In the following discussion, I report the comparative Cl- transport activity for four 

calixarene amides all fixed in the cone conformation.  I present significant findings 

regarding the use of these calixarenes as transmembrane Cl- transporters: 1) the cone 

conformer cone-H 2.2a (R = H), like its 1,3-alt and paco isomers, transports Cl- across 

liposomal membranes; 2) the conformation of the calixarene scaffold (paco-H 2.1 vs. 

cone-H 2.2a) is important for modulating Cl- transport rates; 3) the substitution pattern on 

the calixarene’s upper rim is crucial for Cl- transport function; and 4) at least one of the 

four arms of the calixarene can be left unmodified without loss of function, enabling the 

development of a pH-sensitive anion transporter (TAC-OH 2.3).118  This last finding is 

timely given the interest in gating the activity of synthetic ion transporters by using 

external stimuli.119-122  There is also an interesting parallel between this “small molecule” 

and the ClC chloride transporter protein, as it has been proposed that anion transport by 

ClC is gated by charge-charge repulsions between Cl- and negatively-charged glutamate 

residues within the anion channel.31 

 

2.4 Rationale for studying calixarenes 2.1-2.4. 

 The compounds that we studied are shown in Scheme 2.1.  We previously 

reported that paco-H 2.1 transports Cl- across liposomal membranes.6  Herein, we use 

paco-H 2.1 as a standard for comparing the Cl- transport activity of the cone calixarenes 

2.2-2.4. Compounds 2.2a (cone-H) and 2.2b (cone-tBu) are fixed in the cone 

conformation and feature four n-butyl secondary amides on their lower rim.  They differ 

in the substitution pattern on their upper rims.  In the previous work with paco-H 2.1 we 
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found that substitution of the calixarene’s upper rim with t-butyl groups led to loss of Cl- 

transport activity.6  In this study we set out to determine if this same phenomenon held 

true for the cone conformers 2.2a (R = H) and 2.2b (R = tBu).  The other two analogs, 

phenol 2.3 (TAC-OH) and ester 2.4 (TAC-OEster), were made so that we could determine 

the functional effect of either removing or replacing a single n-butyl amide on the 

macrocycle’s lower rim.  Replacement of a secondary amide with another functional 

group (as in 2.4) without complete loss of activity might provide the opportunity for 

appending other anion-sensitive groups to the calixarene.  This might allow development 

of new Cl- sensors and transporters.  We also reasoned that deprotonation of the phenolic 

proton on TAC-OH 2.3 might enable formation of a pH-sensitive switch for gating Cl- 

transport across lipid membranes.   
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Scheme 2.1. Compounds studied for their transmembrane Cl- transport activity. 
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2.5 Synthesis and Characterization of Calixarenes 2.2-2.4.  

 The synthesis of compounds 2.1-2.4 was straightforward. Compounds 2.1, 2.2a 

and 2.2b were synthesized by Ms. Seganish and Mr. Salimian, while the tri-amido 

calixarenes (TAC) 2.3 and 2.4, their precursor and alkylating agents were synthesized by 

the author.  Calixarenes 2.1 and 2.2b (R = tBu) were prepared using published methods.6, 

123, 124  As shown in Scheme 2.2, cone-H 2.2a was synthesized from the corresponding 

tetra-ester 2.12125 via i) hydrolysis to the tetra-acid 2.13; ii) acid chloride activation; and 

iii) amide bond formation.  The tris-N-butylamido phenol analog TAC-OH 2.3 was 

prepared from calix[4]arene 2.14,126, 127 by direct alkylation with 2-bromo-N-

butylacetamide 2.15 (Scheme 2.3).  The desired trisubstituted derivative TAC-OH 2.3 

was separated from other alkylation products by chromatography.  Further alkylation of 

TAC-OH 2.3 with n-butyl-2-bromoacetate 2.16 gave the ester analog 2.4.  
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Scheme 2.2. Synthesis of cone-H 2.2a. a) KOH aq., MeOH, THF, rt; b) 1. SOCl2, 

benzene, reflux; 2. BuNH2, Et3N, CH2Cl2, rt. 
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Scheme 2.3. Synthesis of calixarenes 2.3 and 2.4. a) AlCl3, PhOH, PhCH3, rt; b) 

BrCH2CONHBu 2.15, Ba(OH)2, BaO, DMF, 40 oC; c) BrCH2CO2Bu 2.16, Cs2CO3, 

DMF, 70 oC. 

 

 All characterization of compounds 2.2a, 2.2b, 2.3 and 2.4 by 1H- and 13C-NMR 

spectroscopy and by electrospray ionization – mass spectrometric (ESI-MS) analysis 

were carried out by the author.  The 1H NMR spectra of the new compounds 2.2a, 2.3 

and 2.4 indicated that each calixarene analog existed as a cone conformer in solution, as 

shown by their characteristic AB coupling patterns for the bridging –CH2– groups.  For 

example, calixarenes that are tetra-substituted at their lower rim and fixed in the cone 

conformation usually display one pair of doublets between δ 3.2 and 4.5 ppm for the 

diasterotopic ArCH2Ar protons.128, 129  This was the case for both 2.2a and 2.2b. The cone 

conformation for the trisubstituted TAC-OH 2.3 was also consistent with the 1H NMR 

data, which showed two sets of doublets with identical integration corresponding to two 

different AB systems (Figure 2.8).  One AB system for four ArCH2Ar protons consists of 

doublets at δ 4.27 and 3.35 ppm with coupling constant J = 13.5 Hz.  The second AB 

system for the other four ArCH2Ar protons in TAC-OH 2.3 consists of doublets at δ 4.19 

and 3.43 ppm with J = 14.4 Hz. TAC-OH 2.3 displays two pairs of doublets because of 

the asymmetry arising from tri-substitution at its lower rim.130  The cone conformation 
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for TAC-OEster 2.4 was confirmed by the presence of a pair of doublets corresponding to 

a single AB system.  The AB system for the ArCH2Ar protons in 2.4 consists of the 

doublets at δ 4.44 and 3.26 ppm with J = 14.0 Hz.  The asymmetry of calixarenes 2.3 and 

2.4 in contrast to the symmetry of 2.2a and 2.2b was further established by the amide NH 

proton resonances.  The tetra-amides 2.2a and 2.2b have only one signal for their amide 

NH protons, while tri-amides 2.3 and 2.4 displayed two separate signals for the central 

and terminal amide NH protons. 

 

 

Figure 2.8. A portion of the 1H NMR of TAC-OH 2.3 showing the two different AB 

systems. Two sets of doublets (a and b) corresponding to the two AB systems for the 

ArCH2Ar proton signal of TAC-OH 2.3. Another set of doublet (c) corresponds to the AB 

system for the ArOCH2 signal of the two outer amide side chains and a singlet (d) 

corresponding to the central ArOCH2 signal.  
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 In addition to spectroscopic analysis, cone-H 2.2a, TAC-OH 2.3, and TAC-OEster 

2.4 were characterized as cone conformers by single-crystal X-ray crystallography.  

Crystals for cone-H 2.2a were obtained by Ms. Seganish, while those for tri-amides 2.3 

and 2.4 were obtained by the author.  Figure 2.9 shows the X-ray crystal structures for 

the tetra-amide cone-H 2.2a and the tri-amide TAC-OEster 2.4. In the solid-state, both 

compounds adopt the well-known “pinched-cone” conformation with C2V symmetry.131  

Both compounds also feature two intramolecular hydrogen bonds between two amide NH 

groups and neighboring carbonyl oxygens.  This conformation, if maintained in solution, 

would leave the additional amide NH protons in cone-H 2.2a (two free NH groups) and 

TAC-OEster 2.4 (one free NH group) available for hydrogen bonding to Cl- anion. 

 

 

cone-H 2.2a TAC-OEster 2.4  

Figure 2.9. X–ray crystal structures of cone-H 2.2a (left) and TAC-OEster 2.4 (right) 

showing the “pinched-cone” conformations for both compounds. Intramolecular H-bonds 

between secondary amide NH protons and neighboring carbonyls are indicated by the 

dotted lines. The butyl side-chains are removed for clarity. Arrows point to the “free” 

amide NH groups. 
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 The crystal structure of TAC-OH 2.3 also showed the compound as adopting the 

cone conformation (Figure 2.10).  Here the intramolecular hydrogen bond pattern is 

different from those observed in the structures of 2.2a and 2.4 where, at least two of the 

amide NH protons in each compound are involved in hydrogen bonding interactions, and 

each hydrogen-bonded NH proton is involved in one hydrogen bonding interaction only.  

With TAC-OH 2.3, the NH proton of the “central” amide side chain is involved in two 

intramolecular hydrogen bonding interactions: one with the ether oxygen of an adjacent 

arene ring; and the second hydrogen bonding interaction with the phenolic oxygen of the 

opposite arene ring (Figure 2.10a).  A view of the structure from another direction shows 

that the “central” amide side chain points toward the center of the cavity of the calixarene 

with the NH proton tilted towards the ether oxygen of the adjacent arene ring (Figure 

2.10b).  Thus, the hydrogen bond between the NH proton and the ether oxygen is slightly 

stronger (2.28 Å) than the bond with the phenolic oxygen (2.36 Å).  The NH protons of 

the two “terminal” amide side chains do not participate in any hydrogen bonding 

interactions, leaving two “free” NH protons for complexation with Cl- ions, provided the 

observed conformation is maintained in solution (Figure 2.10).      
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 a) b) 

 

Figure 2.10. a) Crystal structure of TAC-OH 2.3 showing the two intramolecular 

hydrogen bonds between the “central” amide NH proton and the ether and phenolic 

oxygens of the neighboring arene rings.  b) Top view of the structure of TAC-OH 2.3 

showing the “central” amide side chain pointing into the cavity of the calixarene.  The 

arrows show the amide NH protons for the “central” (blue arrow) and the two “terminal” 

(black arrows) amide side chains. 

 

2.6 NMR Titration Study Shows Cl- Binding to TAC-OH 2.3. 

 Compounds 2.2-2.4, which contain either three or four secondary amide NH 

groups on their lower rim, all bind Cl- weakly in non-polar organic solvents. Thus, 

titration of solutions of these calixarenes with tetrabutylammonium chloride (TBACl) in 

CD2Cl2 typically showed a downfield shift of the secondary amide NH protons and, 

assuming a 1:1 binding stoichiometry, gave binding constants on the order of Ka = 10-30 

M-1. For example, representative NMR titration data for the interaction of Cl- with TAC-

OH 2.3 is shown in Figure 2.11. Upon addition of TBACl to a solution of TAC-OH 2.3 

in CD2Cl2 we observed downfield shifts for the two “terminal” amide NH protons (∆δ = 

0.40 ppm, labeled in blue), and for the “central” amide NH proton (∆δ = 0.14 ppm, 
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labeled in red). The association constant for binding TBACl by TAC-OH 2.3 was 

determined to be Ka = 24 ± 5.1 M-1 (based on changes in the chemical shift of the 

“terminal” NH protons) in CD2Cl2,† which is similar to the value that we previously 

obtained for binding of Cl- by the secondary amide NH groups in paco-H 2.1 (Ka = 28.7 ± 

17 M-1).6  Changes were also observed in the chemical shift of the phenolic OH protons 

suggesting that the complexation of Cl- in solution involves all four hydrogen bond donor 

groups of TAC-OH 2.3.‡  

 

 

Figure 2.11. 1H NMR stack plot showing titration of TAC-OH 2.3 with TBACl. Blue 

lines (–) mark the changes in chemical shift for the two “terminal” NH protons, while the 

red lines (–) mark the changes in chemical shift for the “central” NH proton. 

 

2.7 Transmembrane Cl- Transport by Calixarenes 2.2-2.4. 

 The liposomal assays described herein were performed by the author.  

Compounds 2.1–2.4 were tested for Cl- transport activity using liposome assays similar to 

                                                 
† The NMR association constant for TAC-OH 2.3 was determined assuming a 1:1 binding stoichiometry using the 
program ‘Associate 1.6’ from the F.N. Diederich group at ETH, Zurich. 
‡ Identical Ka values were determined for all four hydrogen bond donor groups of TAC-OH 2.3: Ka (2 “terminal” NH) = 
24 ± 5.1 M-1; Ka (1 “central” NH) = 22 ± 2.3 M-1; Ka (1 phenolic OH) = 26 ± 6.0 M-1. 
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those previously reported by our group.5, 99  Liposomes loaded with the Cl- sensitive dye, 

lucigenin, were subjected to a Cl- gradient in the extravesicular solution.  Lucigenin’s 

fluorescence is specifically quenched upon binding Cl- ions.38, 56  In a typical experiment 

(in 100 mM NaNO3/10 mM sodium phosphate buffer (pH 6.4)) I incubated calixarenes 

2.1-2.4 (2 mol% ligand-to-lipid) with egg-yolk phosphatidylcholine (EYPC) liposomes 

containing lucigenin and 100 mM NaNO3/10 mM sodium phosphate buffer (pH 6.4).  I 

then introduced Cl- to the extravesicular buffer by adding an aliquot of a NaCl solution in 

10 mM sodium phosphate (pH 6.4).  The resulting Cl- concentration gradient across the 

lipid membrane was relieved by ligand-mediated transmembrane transport of Cl- into the 

liposomes, resulting in the quenching of lucigenin’s fluorescence. A cartoon 

representation of the liposome assay sequence is shown in Figure 2.12.  The 

intravesicular Cl- ([Cl-]i) anion concentration was calculated from the dye’s measured 

fluorescence using the Stern–Volmer constant (Ksv) determined under the assay 

conditions according to Equation 2.1 where fo is the normalized fluorescence in the 

absence of Cl-, and f is the normalized fluorescence in the presence of Cl-.  Ksv is itself 

calculated from the slope of a calibration curve plotting fo/f versus added chloride 

concentration [Cl-] (Equation 2.2 and Section 6.2.2). 
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Figure 2.12.  Cartoon representation of liposome assays.  Lucigenin-encapsulated EYPC 

liposomes are subjected to a Cl- gradient, which is relieved in the presence of active 

calixarene-based Cl- transporters. The quenching of lucigenin’s (a Cl--sensitive dye) 

fluorescence indicates the presence of intravesicular Cl- ions. Electroneutrality is 

maintained by efflux of NO3
- anions (or symport of Na+ cations with Cl-).  

 

2.7.1 Calixarene Conformation Attenuates Cl- Transport Rate. 

 The data in Figure 2.13 clearly shows that both paco-H 2.1 and cone-H 2.2a 

isomers transport Cl- across the EYPC liposomes.  It appears that the paco-H 2.1 

conformer is about twice as efficient as the cone isomer 2.2a when administered at the 

same concentration (2 mol% ligand-to-lipid ratio).  Despite its lower activity relative to 

paco-H 2.1 the calixarene cone-H 2.2a is still an active transmembrane Cl- transporter.  

This result encouraged us to continue our studies on the related cone analogs cone-tBu 

2.2b, TAC-OH 2.3 and TAC-OEster 2.4, as described below. 
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Figure 2.13. Influence of calixarene conformation on Cl- transport. Chloride transport 

across EYPC liposomes containing lucigenin in a 100 mM NaNO3/10 mM sodium 

phosphate buffer (pH 6.4) solution. The Cl- concentration was determined from 

lucigenin’s fluorescence. Compounds 2.1 and 2.2a were added to give a 2 mol% ligand-

to-lipid ratio. At t = 15 s, NaCl was added to give an external Cl- concentration of 24 

mM. Lucigenin fluorescence was converted to Cl- concentration using the Stern–Volmer 

constant determined under the assay conditions. Each trace is an average of three trials. 

 

2.7.2 Upper-Rim Substitution Pattern is Crucial for Cl- Transport. 

 To investigate the influence of upper-rim substitution on Cl- transport activity, the 

t-butyl substituted analog cone-tBu 2.2b was also tested in this lucigenin assay.  As 

shown in Figure 2.14, cone-tBu 2.2b, unlike its analog cone-H 2.2a, was essentially 

inactive towards transmembrane Cl- transport under these standard liposomal assay 

conditions.  This result is consistent with our previous studies wherein we found that 

substitution of a paco calixarene with t-Bu groups resulted in complete loss of anion 
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transport function.6, 99  A possible explanation for the complete loss of transport function 

is that the bulky tert-butyl group induces ligand conformations that do not allow 

favorable interactions with the anionic guest.6, 99  Thus, it is clear again from these assays 

that the substitution pattern on the upper rim of the calixarene tetra-amide is absolutely 

critical for transmembrane Cl- transport.  
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Figure 2.14. Influence of upper rim substitution on Cl- transport. Chloride transport 

across EYPC liposomes containing lucigenin in a 100 mM NaNO3/10 mM sodium 

phosphate buffer (pH 6.4). The Cl- concentration was determined from lucigenin’s 

fluorescence. Compounds 2.2a and 2.2b were added to give a 2 mol% ligand-to-lipid 

ratio. At t = 15 s, NaCl was added to give an external Cl- concentration of 24 mM. 

Lucigenin fluorescence was converted to Cl- concentration using the Stern–Volmer 

constant determined under the assay conditions. Each trace is an average of three trials. 
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2.7.3 Influence of Lower-Rim Modification on Transport: Chloride Transport by 

Phenol 2.3 and Ester 2.4. 

 The transmembrane Cl- transport activity by trisubstituted amide calixarenes, 

phenol 2.3 and ester 2.4, was also assessed using the standard lucigenin assay.  As shown 

in Figure 2.15, the tris-N-butylamido phenol TAC-OH 2.3 transports Cl- ions across 

EYPC liposomal membranes at pH 6.4 even more efficiently than does the tetra-amide 

cone-H 2.2a.  This result, indicating that replacement of one of the secondary amide side-

chains with an acidic OH group could be tolerated, prompted us to study TAC-OH 2.3 as 

a pH sensitive transporter (see the following section).  The data in Figure 2.15 also 

shows that the ester 2.4 is clearly less efficient as a Cl- transporter than the tetra-amide 

cone-H 2.2a.  However, while substitution of one amide side-chain with an ester resulted 

in pronounced reduction in Cl- flux across the membrane, there was still some transport 

activity remaining for TAC-OEster 2.4 above the background.  Similar results were 

obtained with an ether analog in which the ester side-chain was replaced with an n-butyl 

chain (2.19).  The butyl ether analog displayed slightly more efficient Cl- transport 

activity than TAC-OEster 2.4 (see Section 6.2.2).  Thus, substitution on the calixarene 

cone’s lower rim with an ester or ether side-chain may eventually be useful for the 

development of Cl- anion sensors through the attachment of anion-sensitive reporter 

groups.  Since the active phenol analog TAC-OH 2.3 displayed good Cl- transport 

activity, we decided to look at its transport properties as a means for developing a 

compound whose transmembrane transport activity can be switched on and off by 

changing the pH. 
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Figure 2.15. Influence of lower rim functionalization on Cl- transport. Chloride transport 

across EYPC liposomes containing lucigenin in a 100 mM NaNO3/10 mM sodium 

phosphate buffer (pH 6.4). The Cl- concentration was determined from lucigenin’s 

fluorescence. Compounds 2.2a, 2.3 and 2.4 were added to give a 2 mol % ligand-to-lipid 

ratio. At t = 15 s, NaCl was added to give an external Cl- concentration of 24 mM. 

Lucigenin fluorescence was converted to Cl- concentration using the Stern–Volmer 

constant determined under the assay conditions. The traces shown are the average of 

three trials.  

 

2.7.4 Modulation of Transmembrane Cl- Transport by Changing pH. 

 We reasoned that the phenolic OH on the unsubstituted arene of TAC-OH 2.3 

afforded the potential to develop a pH-tunable Cl- transporter.  For example, a tri-

methylated calix[4]arene with a single free phenol has a pKa = 12.5.132  Deprotonation of 

the OH group on TAC-OH 2.3 should introduce unfavorable electrostatic interactions 

between the calixarene and any bound Cl- ions.  Such electrostatic repulsions should 
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inhibit anion binding and consequently influence the efficacy of TAC-OH 2.3 as an anion 

transporter.  On the other hand, transmembrane Cl- transport by cone-H 2.2a should not 

be as sensitive to pH since 2.2a does not have sufficiently acidic protons to be 

significantly deprotonated in the pH 7–10 range.  The transport function of TAC-OH 2.3 

and cone-H 2.2a were, therefore, monitored as a function of extravesicular pH using 

EYPC liposomes loaded with the Cl- dye, lucigenin (Figure 2.16).  

 As shown in Figure 2.16a, the rate of Cl- transport mediated by TAC-OH 2.3 

clearly decreased as the extravesicular solution became more basic.  In sharp contrast, the 

Cl- transport rate by cone-H 2.2a stayed constant over the same pH range between 6.4 

and 9 (Figure 2.16b).  The data are consistent with a negative charge in TAC-OH 2.3 

acting to inhibit transmembrane transport of the Cl- anion, by limiting anion binding and 

or partitioning of the calixarene into the liposomal membrane.  Control experiments with 

cone-H 2.2a support this conclusion.  



 70 
 

TAC-OH 2.3

O
O

NH
HN

O

HN

OO

O

HO

-1

0

1

2

3

4

5

6

7

0 50 100 150 200 250 300

time, s 

[C
l- ] m

M
 

Blank

7.4

9.0 

pH 

8.0

6.4

a) 

cone-H 2.2a

O
O

NH
HN

O

HN

OO

O

O

NH

O

-1

0

1

2

3

4

5

6

7

0 50 100 150 200 250 300

time, s 

6.4, 7.4, 
8.0, 9.0 

pH 

Blank [C
l- ] m

M
 

b) 

 

Figure 2.16. Transmembrane Cl- transport as a function of pH: a) with TAC-OH 2.3; and 

b) with cone-H 2.2a. Experiments were done using EYPC liposomes with lucigenin (1 

mM) in a 100 mM NaNO3/10 mM sodium phosphate buffer at various pH (6.4, 7.4, 8.0, 

9.0). Compounds 2.2a and 2.3 were added to give a 2 mol % ligand-to-lipid ratio. At t = 

15 s, NaCl solution was added to give an external Cl- concentration of 24 mM. Lucigenin 

fluorescence was converted to Cl- concentration using the Stern–Volmer constant 

determined under the assay conditions. The traces shown are the average of three trials. 
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2.8 Summary. 

 The primary aim for designing and studying synthetic anion transporters is to 

develop systems that mimic natural protein properties and activities.  Efforts to achieve 

this aim have been the main focus of synthetic transporters recently described in the 

literature, and the results presented in this chapter.  Some of our efforts to achieve this 

goal of mimicking the function of Cl- transport proteins have involved the use of 

lipophilic calixarene derivatives.  In a recent review on the use of calixarenes to effect 

transmembrane ion transport, Cragg and Iqbal suggested that charge-charge interactions 

might be used as a strategy for gating transport.104  The studies reported in this chapter, 

and in other related research from our group,96 clearly demonstrate that electrostatic 

repulsion can be used to turn on and off transmembrane transport of Cl- anion.  This 

regulatory mechanism, observed with “small molecule” transporters such as TAC-OH 

2.3, is also related to the proposal that the self-assembled ClC protein channel makes use 

of negatively charged Glu residues to gate Cl- transport.30, 31  The ease of synthesis (≤ 3 

steps), and the low concentration range (µM) at which the lipophilic calixarenes 

discussed transport Cl- make them attractive candidates for developing therapies for Cl--

transport-related deficiencies such as cystic fibrosis.   
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Chapter 3: A Nitrate–Selective Transmembrane Transporter 

 

Some of this chapter has been published in references 175 and 183: 

• Okunola, O.A.; Santacroce, P.V.; Davis, J.T. “Natural and synthetic receptors for 

nitrate anion.” Supramolecular Chem. 2008, 20, 169-190.  

• Santacroce, P. V.; Okunola, O. A.; Zavalij, P. Y.; Davis, J. T. “A transmembrane 

anion transporter selective for nitrate over chloride.” Chem. Commun. 2006, 

3246-3248 (DOI: 10.1039/b607221f). Reproduced by permission of The Royal 

Society of Chemistry. 

Some of the experimental work described in this chapter was performed by Dr. Paul V. 

Santacroce, a former post-doctoral associate in the Davis group. 

3.1 Introduction. 

 The goal of the research in this chapter was to carry out structure-function studies 

on the influence of a rigid scaffold (in comparison to the calixarene scaffold – Chapter 

2) on transmembrane Cl- transport.  Calixarene 2.1 self-assembled into transport-active 

aggregates through the formation of hydrogen-bonded networks (Figure 2.8).  These 

hydrogen-bonded networks were proposed to contribute to a channel-like transport 

activity.  However, both solution and solid state studies revealed that paco-H 2.1 

transported anions using three of its four amide sidechains.6  Other studies in the Davis 

group,5 as well as those described in Chapter 2118 confirmed that efficient Cl- transport 

could be achieved with aromatic scaffolds substituted with only three amide sidechains.  

Thus, triphenoxymethane (TPM) tripods 3.1 and 3.2 (Chart 3.1) were designed to be 
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rigid analogs of the calixarene transporters that might transport anions by a carrier 

mechanism.  During our studies on the TPM tripods, we discovered that tris (5-nitro-2-

butylamidomethoxyphenyl) methane (nitro tripod) 3.1 selectively transports nitrate anion 

(NO3
-), rather than Cl-, across phospholipid vesicles. While many neutral receptors 

bind133-136 and transport59, 137 nitrate anion, nitro tripod 3.1 is, to the best of our 

knowledge, the only compound reported in literature that shows such selectivity for the 

transmembrane transport of NO3
- over Cl-.133, 138  Nitrate is an environmentally important 

anion for plants and animals,139, 140 but it has not been targeted as a guest for synthetic 

receptors and transmembrane anion transporters as much as other oxyanions and halides.  

Therefore, compounds that selectively transport NO3
- across membranes may find some 

key applications.  As an introduction to the chemistry of nitrate I discuss the role of NO3
- 

in human health, its physical properties, and theoretical binding motifs for NO3
- (Section 

3.2).  Theoretical studies suggested that the careful arrangement of urea (a non-natural 

anion recognition motif) groups around NO3
- anion may be the most effective way to 

design NO3
--selective receptors.  Thus, I present two independent examples in which the 

use of urea receptors for binding NO3
- yielded desired and unexpected results in Section 

3.3.  Lastly, I discuss our contribution to the development of NO3
- receptors and 

transporters using amide-functionalized calixarene and triphenoxymethane scaffolds 

(Chart 3.1) in Section 3.4.   
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3.2 The Chemistry and Biochemistry of the Nitrate Anion. 

3.2.1 Nitrate and Human Health. 

 Although nitrate is probably benign, it can be reduced to nitrite (NO2
-), which is 

then converted to nitric oxides (NOx).140-142  Nitric oxide species react with thiols, amines 

and amides to form carcinogenic N-nitroso compounds (NOC) (Scheme 3.1).140-142  

Nitric oxide (NO) and NO2
- also react with hemoglobin to form methemoglobin (Scheme 

3.1).  Methemoglobin impairs blood’s oxygen-carrying capacity and causes 

methemoglobinemia.141  Other health concerns associated with NO3
- metabolism include 

diabetes, thyroid disorders, respiratory infections and congenital malformations.140-142  

The formation of NOx may sometimes be beneficial.142  Potential health benefits from 

endogenous NO3
-/NO2

- include: 1) gastric protection, 2) oral/dental protection, 3) blood 

pressure regulation, and 4) prevention of urinary tract infections. 
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Nitrate Reduction:

    NO3
-         +           2e-          +        2H+                            NO2

-          +         H2O
  Nitrate                                                                             Nitrite

Nitrite Acidification:

    NO2
-         +          H+                             HNO2 (pKa = 3.2)

  Nitrite                                                   Nitrous acid

    2HNO2                                     N2O3              +              H2O
Nitrous acid                       Dinitrogen trioxide 

    N2O3                                        NO                  +             NO2
Dinitrogen trioxide                Nitric oxide                   Nitrogen dioxide

Formation of N-nitroso compounds (Nitrosation):

    N2O3                                        NO+                  +           NO2
-

Dinitrogen trioxide             Nitrosonium ion                    Nitrite

    NO+             +               RSH                             RSNO               +                H+ 
Nitrosonium ion         Reduced thiol                 Nitroso thiol  

    NO+             +               RR'NH                         RR'NNO           +                H+

Nitosonium ion           Secondary amin(d)e        N-nitrosamin(d)e         

Formation of Methemoglobin:

    NO/NO2
-           +              Hb2+O2                       NO3

-              +                Hb3+

Nitric oxide/Nitrite          Oxyhemoglobin             Nitrate                      Methemoglobin

 

Scheme 3.1 Reactive NOx intermediates obtained from nitrate metabolism.140-142 

 

3.2.2 Physical Properties of Nitrate. 

 Nitrate has D3h symmetry with equivalent N─O bonds (Scheme 3.2).143, 144  A 

survey of NO3
- in the Cambridge Structural Database (CSD) conducted by Velders and 
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Feil revealed 338 discrete structures.145  From the 338 structures, the average N─O bond 

length was 1.231 ± 0.025 Å and mean ONO angle was 119.98 ± 2.15º.  The N─O bond 

lengthened as NO3
- interacted with Lewis acids or H-bond donors.  Hase reported the 

average bond order for nitrate as 1.278.146  This value varies, however, depending on the 

method used to determine the bond order.147  Charge density on individual atoms also 

varies depending on environment and the method used to calculate the charge density.148 

 

N+

O-O

O-

N+
-O

O

O-
N+

O-

O-O  

Scheme 3.2. Equivalent distribution of charges on nitrate’s oxygen atoms.  

 

 Nitrate is the conjugate base of nitric acid (pKa ≈ –1.3).  Aside from being a 

strong acid, nitric acid is also a strong oxidant that can oxidize relatively inactive metals 

like copper and silver, metals not oxidized by stronger acids like HCl (pKa ≈ –8.0).  

Nitric acid is mostly dissociated in water to give NO3
- and hydronium ions.  Nitrate ions 

have an extensive hydration shell in aqueous solutions and form water-soluble salts with 

most cations.149  Because of its heavy solvation and weak basicity, NO3
- is weakly 

coordinative and it is difficult to form robust hydrogen bonds with ligands.12, 27, 116, 117, 150-

152  Thus, developing NO3
-–selective receptors that use hydrogen bonds is a challenge.  

Synthetic receptors that use amines,153 amides,135 pyrroles,154, 155 ureas,156-158 and 

guanidinium cations,152 have been tested for NO3
- binding.  In addition to traditional 

hydrogen bond donors, receptors employing aryl C-H groups and anion─π interactions 
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have been described.159-162  The unifying trait among these receptors is that they usually 

show little selectivity for NO3
-.  

 

3.2.3 Theoretical Binding Motifs for Nitrate. 

 Arranging hydrogen bond donors (D─H) on organic scaffolds is one method to 

make anion receptors.135, 152-158  Successful anion coordination by such receptors is due to 

the directionality of hydrogen bonds.  One can exploit directionality by designing 

receptors with cavities that differentiate between anions with different shapes.161, 163, 164  

Certain features are necessary for optimal hydrogen bonds between donors and acceptor 

atom.25, 164, 165  These features, using NO3
- as the acceptor of interest, include: 1) an 

optimal distance, d, between donor, D─H, and acceptor that gives the strongest H•••O 

interaction; 2) a linear D─H•••O bond, with D─H dipole pointing at the acceptor; and 3) 

optimal arrangement of donors around nitrate oxygens.25, 163, 164 The optimal distance, d, 

depends on the type of hydrogen bond donor, the oxyanion, anion coordination, and 

solvent.161, 163, 164  

 In a survey of NO3
- complexes, Hay and coworkers reached conclusions 

concerning the design of NO3
-–selective receptors using hydrogen bonds.163, 164, 166  

Hydrogen bonds were classified as: strong when 1.2 ≤ d ≥ 1.5 Å; moderate when 1.5 ≤ d 

≥ 2.2 Å; and weak when 2.2 ≤ d ≥ 3.2 Å.  A bimodal distribution of H•••O distances was 

observed, with maxima at 1.9 and 2.7 Å (Figure 3.1).  Most hydrogen bonds were weak, 

with d ≥ 2.2 Å.  For moderate strength bonds (d < 2.2 Å), most contacts involved donors 

(D─H) where D = O or N, whereas above 2.3 Å (weak hydrogen bonds) most contacts 

were with C─H donors.164   
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Figure 3.1.  Distribution of H•••O distances found in the CSD for H atoms within 3 Å of 

a NO3
- oxygen atom. Reprinted with permission from J. Am. Chem. Soc. 2004, 126, 

7925-7934.  Copyright 2004 American Chemical Society.164 

 

Hay also provided evidence for hydrogen bond directionality.163, 164  Calculations 

revealed donor hydrogens point toward oxygens of NO3
- with a near linear D─H•••O 

angle (Figure 3.2a).  Also, oxygen acceptors prefer that donor hydrogens lie in the plane 

to form bent H•••O─N angle (~120º; Figure 3.2b).  Finally, a planar H•••O─N─O 

dihedral angle at 0º and/or 180º is preferred (Figure 3.2c).163, 164  Electrostatic potential 

surfaces showed energy minima for placement of hydrogen bonds in six equivalent 

positions around NO3
-.  This motif corresponded to the expected locations of oxygen’s 

lone pairs of electrons (Figure 3.3).  The inference is that an ideal NO3
- receptor should 

have six donor D─H groups that converge at the anion’s binding site.164  In this motif, 

two protons share an edge of a triangle defined by NO3
- oxygens (Figure 3.3b).  Hay’s 

analysis of the CSD revealed, however, that only half of the six binding sites are 

occupied and these enable two binding modes; one motif where each of three oxygen 
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atoms are coordinated to one H (Figure 3.4a), and another where two nitrate oxygens 

coordinate to three H atoms (Figure 3.4b) [30].  Examination of the CSD showed that 

both motifs were common in solid-state structures.164, 167-172  The explanation for use of 

only three out of the six possible sites is attributed to sterics.  In a fully hydrogen bonded 

complex, two protons bound to adjacent oxygens would be just ~1.86 Å apart.  Such 

close contact would cause repulsive Coulombic and van der Waals interactions,164, 173 

calculated to be 16.8 kcal/mol.164 

 

b) 

H•••O─N angle, ºD─H•••O angle, º H•••O─N─O 
dihedral angle, º 

c) a) 

 

Figure 3.2.  Comparison of experimental distributions of geometric parameters with 

potential energy surfaces calculations, using a MeOH–NO3
- complex as an example: a) 

linear D─H•••O angle, b) bent H•••O─N angle, and c) planar H•••O─N─O dihedral 

angle. Reprinted with permission from J. Am. Chem. Soc. 2004, 126, 7925-7934.  

Copyright 2004 American Chemical Society.164 
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a) b) 

 

Figure 3.3.  a) Contour map of the electrostatic potential surface of NO3
- showing the 

location of the six energy minima (arrows) around NO3
-.  The minima also correspond to 

the location of the oxygen atom lone pairs.  b) Potential binding motif for the formation 

of six hydrogen bonds with NO3
-. O, red; N, blue; H, light grey. Reprinted with 

permission from J. Am. Chem. Soc. 2004, 126, 7925-7934.  Copyright 2004 American 

Chemical Society.164 

 

b) a) 
  

 

Figure 3.4.  a) The symmetric binding motif for placing three H atoms about NO3
- using 

all three oxygen atoms.  b) The asymmetric motif using only two oxygen atoms with one 

of the oxygen atoms involved in a bifurcated hydrogen bond to two H atoms. Reprinted 

with permission from J. Am. Chem. Soc. 2004, 126, 7925-7934.  Copyright 2004 

American Chemical Society.164  
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 Although C─H donors interact weakly with NO3
-, these contacts help stabilize 

anion-receptor complexes.160, 161  Nitrate forms two hydrogen-bond motifs with aryl 

C─H.  Nitrate can coordinate to one C─H with two oxygens or two oxygens can bind 

adjacent C─H groups (Figure 3.5).  Hay compared binding energies of NO3
-–water and 

NO3
-–benzene complexes.  The NO3

-•••H─Ar interaction is indeed significant, as ∆E for 

NO3
-•••H─Ar motifs were -7.50 and -9.26 kcal/mol compared to the -16.03 kcal/mol for 

the NO3
-•••H─OH motif (Figure 3.5).  

 Hay’s recommendation for overcoming crowding in nitrate receptors is to 

incorporate diprotic donors into the scaffold.  Urea and guanidinium groups can contact 

two adjacent binding sites on the anion simultaneously.161, 164, 174  He also recommended 

that acidic/aromatic C─H donors be considered as additional binding sites within a 

receptor.160, 161 
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H2O─NO3
- Complex 

∆E = -16.03 kcal/mol 
C6H6─NO3

- Complex 1 
∆E = -7.50 kcal/mol 

C6H6─NO3
- Complex 2 

∆E = -9.26 kcal/mol 

a) 

b) c) 

 

Figure 3.5.  Structures and ∆E values obtained after geometry optimization for NO3
- 

complexes with water (a) and benzene (b and c).  The binding motif of NO3
- with Ar─H 

groups, where two of its oxygen atoms are coordinated to one Ar─H is represented in b; 

c represents the binding motif where two oxygen atoms bind adjacent Ar─H groups. 

Reprinted with permission from J. Am. Chem. Soc. 2005, 127, 8282-8283.  Copyright 

2005 American Chemical Society.161 

 

3.3 Synthetic Receptors for Nitrate. 

 Synthetic receptors incorporating neutral and/or charged groups have been 

designed for nitrate.  A detailed discussion of such receptors, especially those for which 

crystal structures are available, has been presented in a recent review written by the 

author.175   

 In summarizing his theoretical data on the design of selective receptors for 

oxoanions such as NO3
-, Hay recommended employing receptors that incorporate diprotic 

donors, such as urea and guanidinium, into the scaffold.  This is because urea and 
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guanidinium can contact two adjacent binding sites on the anion and thus overcome 

unfavorable steric crowding as observed with monoprotic donors.164, 174  While urea is a 

non-natural anion recognition motif, the guanidinium moiety is frequently used in Nature 

to coordinate anions because it can form strong ion-pairs with (oxy)anions, as well as 

provide directional hydrogen bonding interactions.  In biological systems, the 

guanidinium moiety is present as the side chain of the amino acid arginine and has a high 

pKa value (~12–13).176, 177  This high pKa allows the guanidinium cation to remain 

protonated over a wide pH range.  In synthetic systems, use of the guanidinium moiety 

for nitrate recognition has been limited, even though it is widely used for the recognition 

of carboxylate and phosphate oxyanions.178  Similarly, crystal structures of urea-based 

receptors bound to NO3
- are scarce.   

 The following is a discussion of the independent attempts by de Mendoza152 and 

Böhmer179 to develop NO3
--binding macrocycles by incorporating urea and guanidinium 

motifs into their design.  The efforts led to mixed results suggesting that rational design 

alone is not enough for obtaining functional anion-specific receptors as we also 

experienced in our studies with nitro tripod 3.1. 

 

3.3.1 Urea-Based Receptors. 

De Mendoza. Following Hay’s recommendations that incorporating guanidinium and 

urea functions into the same receptor should provide ideal complementarity to an 

oxyanion,164 de Mendoza and coworkers developed macrocycles 3.3-3.5 as a new class of 

guanidine-urea receptors for NO3
- (Figure 3.6 and Table 3.1).152  The nitrate binding 

ability of receptors 3.3-3.5 was assessed by 1H NMR and isothermal titration calorimetry 
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(ITC) titrations in CD3CN.  ITC titration allows the determination of binding constants 

and thermodynamic parameters at concentrations lower than those used for NMR 

titration, thereby avoiding the problem of receptor precipitation encountered with NMR 

titrations.  ITC binding isotherms suggested formation of 1:1 host-guest complexes and 

the Ka values were in good agreement with 1H NMR data (Table 3.1). Binding isotherms 

also revealed that NO3
- binding by receptor 3.3 was mainly governed by entropic factors, 

whereas for receptors 3.4 and 3.5, both enthalpic and entropic factors play a significant 

role in NO3
- binding.  The explanation for these differences is that the cavity of 

macrocycle 3.3 is too small for optimal anion inclusion, such that hydrogen bonding 

interactions between the receptor and NO3
- are weaker.   

 De Mendoza’s hypothesis was supported by solid-state evidence, as can be seen 

in the crystal structures of the nitrate complexes of macrocycles 3.3-3.5 (Figure 3.6).  

The structure of the [3.3+•NO3
-] complex is distorted, with one urea twisted away from 

the cavity, thus reducing the number of hydrogen bond contacts with NO3
- to only three.  

In contrast, the crystal structures of hosts 3.4 and 3.5 show that: 1) NO3
- fits into the 

cavities of receptors 3.4 ([3.4+•NO3
-] in Figure 3.6) and 3.5 ([3.5+•NO3

-] in Figure 3.6) 

and makes contact with all six NH donor groups from the urea and guanidinium moieties, 

and 2) each oxygen atom of NO3
- forms two hydrogen bonds with the host, such that its 

lone pairs are shared with single NH donors from different functions (ureas and 

guanidinium) in the preferred motif shown in Figure 3.7a.152  The nitrate complexes of 

macrocycles 3.4 and 3.5 are rare examples of six-coordinate NO3
- complexes 117 and 

represent the ideal for NO3
- coordination as revealed by Hay’s theoretical studies.164  

Figure 3.7b shows another possible, but less preferred six-coordinate binding of NO3
-, in 
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which each of the oxygen atoms of nitrate ion forms bifurcated hydrogen bonds with the 

NH donor groups.  

 

 

3.4+•NO3
- 

3.3+•NO3
-

3.5+•NO3
- 

N

N

N

S S

N

NO
H

H

H H

N
H

N O
H

(CH2)n

3.3 n = 4
3.4 n = 5
3.5 n = 6

 

Figure 3.6.  Macrocycles 3.3-3.5 and the crystal structures of their NO3
- complexes: 

[3.3+•NO3
-], [3.4+•NO3

-], and [3.5+•NO3
-]. [New J. Chem. 2007, 31, 736-740] – 

Reproduced by permission of The Royal Society of Chemistry (RSC) for the Centre 

National de la Recherche Scientifique (CNRS) and the RSC.152 
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Table 3.1.  Association constants (Ka; in M-1) and thermodynamic parameters for the 

binding of hosts 3.3-3.5 with tetrabutylammonium nitrate.† 

 3.3 3.4 3.5 
Ka(x103)a 9.94 - -c - -c 
Ka(x103)b 7.26 15.2 73.7 
∆Hd -1.07 -3.02 -3.48 
∆Sd 14.2 9.16 10.8 
∆Gd -5.37 -5.79 -6.75 
a Determined by 1H NMR titrations in CD3CN at 298 K.  b Determined by ITC titrations in CH3CN at 303 
K.  c Not determined because of in situ-crystallization.  d ∆H and ∆G in kcal mol-1, ∆S in cal mol-1 K-1. 
†[New J. Chem. 2007, 31, 736-740] – Adapted by permission of The Royal Society of Chemistry (RSC) for 
the Centre National de la Recherche Scientifique (CNRS) and the RSC.152 
 

 

 

N

N

N

H H
+

N
O

O

O

NO

N

H

H
N

ON

H

H

N

N

N

H H
+

N
OO

O

NO

N

H

H
N

ON

H

H

a) b) 

 

Figure 3.7.  a) The preferred six-coordinate binding motif for NO3
- inclusion in 

macrocycles 3.3-3.5.  Each oxygen atom of NO3
- hydrogen bonds to one NH donor each 

from the urea and guanidinium functions.  b) The other possible binding motif for NO3
- 

inclusion.  This motif in which each oxygen atom’s lone pair is hydrogen bonded to NH 

donors of the same function is not preferred. [New J. Chem. 2007, 31, 736-740] – 

Reproduced by permission of The Royal Society of Chemistry (RSC) for the Centre 

National de la Recherche Scientifique (CNRS) and the RSC.152 
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 The success of receptors such as 3.3-3.5 poses the temptation to assume that the 

suitable cyclic arrangement of three urea groups would, without question, lead to anion 

receptors for the planar NO3
- anion.  However, this is not always the case as the linker 

holding the urea groups together plays an important role in the spatial orientation of the 

recognition motifs, even as observed with macrocycle 3.3 as compared to 3.4 and 3.5.  

Therefore, the problem of identifying the appropriate spacer to hold the three urea groups 

in the optimum position for nitrate coordination still needs to be addressed.  

 

Böhmer. A recent report by Böhmer and coworkers provides further evidence that design 

does not always translate to function.179  In a bid to address the “appropriate spacer” 

question, Böhmer and coworkers selected the 4,5-substituted xanthene skeleton (based on 

molecular modeling studies) as a spacer between the urea functions (Scheme 3.3).  The 

reasoning is that the repulsion between the xanthene and urea oxygens should favor the 

orientation of the urea NH protons toward the center of the macrocycle.  They also 

considered the more flexible diphenyl ether derivative (D unit) for contrast with the 

“rigidity” afforded by the xanthene (X unit) moiety (Scheme 3.6).  Synthesis of the tri-

urea macrocycles based on X and D units yielded four compounds: 3.6 (XXX), 3.7 

(XXD), 3.8 (XDD), and 3.9 (DDD) (Scheme 3.4).  Crystal structures were obtained for 

macrocycles 3.7, 3.8, and the Cl- complex of 3.9 (Figure 3.8).  Interestingly, the spherical 

Cl- anion in the 3.9•Cl- complex is bound in the manner projected for the trigonal planar 

NO3
-.  Attempts to co-crystallize 3.9 with NO3

- failed.   

 Anion complexation studies on tri-ureas 3.6-3.9 by UV and NMR spectroscopy in 

acetonitrile revealed that the originally proposed 3.6 showed the weakest affinity for 
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spherical anions such as chloride, and even weaker affinity for the target NO3
- anion.  

Analysis of crystallographic data, along with molecular dynamics (MD) calculations 

revealed that the macrocycles formed strong intramolecular hydrogen bonds even with 

the rigid xanthene linker.  MD simulations in chloroform and the more polar acetonitrile 

showed that stronger solvation in acetonitrile pre-organized the macrocyles better for 

anion complexation, through the disruption of intramolecular hydrogen bonds.  However, 

to bind to the anion, desolvation to obtain free macrocyclic host has to occur first.  Thus, 

the weak affinity of hosts 3.6-3.9 for NO3
- was ascribed to the rate-limiting nature of the 

desolvation step.  While it is difficult in this case to fully rationalize why the receptor 

design for NO3
- failed, it might be important to note that the design template for tri-ureas 

3.6-3.9 is based on the rare and less favored six-coordinate geometry for NO3
- described 

in Figure 3.7b.   
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Figure 3.8. Crystal structure of the Cl- complex of tri-urea 3.9 (3.9•Cl-) showing the Cl- 

anion and urea groups of the macrocycle in space filling representation. [Org. Biomol. 

Chem. 2008, 6, 1004-1014] – Reproduced by permission of The Royal Society of 

Chemistry.179 

  

 While rational design plays a crucial role in the identification of functional anion 

receptors,180 studies such as described above illustrate the fact that rational design alone 

does not always suffice.  The good news is that even when rational design does not lead 
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to expected results, it can serve as a reservoir for the serendipitous discovery of 

scientifically significant information.  Whereas the design of macrocyle 3.6 as a NO3
- 

receptor did not generate the expected result, Böhmer and coworkers discovered a cyclic 

hexa-urea (XXDXXD), with high affinity for Cl- anions.181  They found that the hexa-

urea was formed preferentially over 3.7 when at least two equivalents of Cl- ions were 

present in the reaction mixture.  At the time of their discovery, such templating effect, by 

two spherical anions, in the synthesis of large flexible macrocycles was unprecedented. 

The discussion in the following section outlines our own serendipitous identification of 

nitro tripod 3.1 as a transmembrane anion transporter that is selective for NO3
- over Cl- 

anion.  The original intent for 3.1 was to study it as a rigidified tripodal analog of paco-H 

2.1 for transmembrane Cl- transport. 

 

3.4 Synthetic Transporters for Nitrate Anion. 

 The ultimate goal in the design of synthetic anion receptors is function and 

application, such as transmembrane transport.  To act as a transmembrane transporter, a 

ligand must bind the anion and move it across a phospholipid membrane.  However, 

binding should be such that after moving the ligand across the barrier the receptor 

releases the ligand under appropriate conditions.  In this case, the ideal is to identify a 

NO3
- receptor that is capable of binding and selectively transporting this anion across 

bilayer membranes.  Designing anion transporters that show selectivity for NO3
- over Cl- 

remains a challenging endeavor, as even natural Cl- channel proteins conduct NO3
- as 

well as other anions.73, 182  Similarly, synthetic transmembrane transporters that are 

selective for nitrate anion only are rare as most synthetic transmembrane Cl- transporters 
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also transport NO3
- anions.7, 60, 72, 137  For example, Berezin and J.T. Davis recently 

reported a series of catechol-based anion transporters, bis-catechol 3.10-3.13, which 

transported NO3
- and other anions across liposomal membrane.  Bis-catechol 3.11 was 

the most active analog with a Hofmeister ion permeability sequence of ClO4
- > I- > NO3

- 

> Br- > Cl-.27  While compound 3.11 conducted NO3
- ions faster than Cl- and Br- ions, 

and displayed an anion selectivity trend similar to that of the CFTR Cl- channel182 (Table 

3.2), it is not selective for NO3
- anion only.  The need to identify selective transmembrane 

nitrate transporters is therefore great considering the anions significant role in human 

health (Section 3.2.1).  As at the time of writing, only one selective transmembrane NO3
- 

transporter has been reported in the literature (Scifinder survey): nitro tripod 3.1, a NO3
- 

transporter developed in our lab.183  In the following section, I describe our design and 

analysis of nitro tripod 3.1 as both a receptor and transporter for NO3
- anion. 
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Table 3.2.  Anion transport rates (kAnion), turnover numbers (n), and differences in 

activation energy (∆∆G‡) for transmembrane anion transport by bis-catechol 3.11 with 

respect to Cl-.†  

 
Anion 

kAnion 
s-1 x 103 

n 
s-1 

∆∆G‡ 
kcal • mol-1 

∆∆G‡
CFTR

* 
kcal • mol-1 

Cl- 1.29 ± 0.01 44 0 0 
Br- 4.40 ± 0.07 150 0.69 0.12 
NO3

- 11.3 ± 0.10 384 1.27 0.21 
I- 36.2 ± 0.80 1230 1.94 0.41 
ClO4

- 69.5 ± 1.9 2400 2.32 N/A 
*The last column lists differences in activation energy for anion permeation relative to Cl- in the CFTR 
channel (∆∆G‡

CFTR values from reference 182). †Adapted with permission from J. Am. Chem. Soc. 2009, 
131, 2458-2459.  Copyright 2009 American Chemical Society.137 
 

3.4.1 Rationale for Anion Receptor 3.1. 

 The studies described here are part of a publication reporting the identification of 

the NO3
--selective transmembrane transporter based on the triphenoxymethane (TPM) 

moiety. 183  I performed the synthesis of the TPM derivatives 3.1 and 3.2, and the NMR 

binding studies on 3.1 and 3.2, whereas membrane transport assays were performed by 

Dr. Paul Santacroce, a former post-doctoral associate in the Davis group.  

 It was previously demonstrated, by the Davis group, that amide functionalized 

calix[4]arenes and acyclic oligophenoxyacetamides transport Cl- across phospholipid 

membranes.5, 6, 98  The most effective of these Cl- transporters was the partial cone 

calix[4]arene (paco-H 2.1),6 and an acyclic trimer of phenoxyacetamide.5  To explore 

how the geometry of ligands with three hydrogen-bond amide NH donors influence anion 

binding and transport, we turned to C3-symmetric receptors based on the 

triphenoxymethane (TPM) core.  TPM derivatives have been reported by Scott to bind 

metal cations.184-186  In addition, Böhmer’s group recently showed that TPM analogs 
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outfitted with urea groups form hydrogen-bonded dimers in solution.187  The promising 

molecular recognition properties of these TPM compounds led us to prepare nitro tripod 

3.1 and tris (3,5-di-tert-buty-2-butylamidomethoxyphenyl) methane 3.2. We reasoned 

that TPM derivatives 3.1 and 3.2, like calixarene 2.1, might transport anions across 

phospholipid membranes.  The para-alkoxy substitution patterns of the TPM derivatives 

3.1 and 3.2 confer different electronic properties to each compound. The effect of such 

substitution should be apparent in their anion binding and transport properties. As shown 

below, the nitro tripod 3.1 binds both NO3
– and Cl– ions but selectively transports NO3

-. 

On the other hand, the t-butyl tripod 3.2 neither binds nor transports any of the anions 

studied. 

 

3.4.2 Synthesis and Characterization of Triphenoxymethane Derivatives. 

 Amide functionalized phenols and alcohols are usually synthesized via the four 

step route of alkylation, ester hydrolysis, acid chloride formation, and amidation. To 

avoid such tedious synthetic manipulations, TPMs 3.1 and 3.2 were synthesized from the 

known triphenols in a one-step alkylation reaction. Acid-catalyzed condensation of 5-

nitrosalicylaldehyde and p-nitrophenol gave the known triphenol 3.14,187 which was 

alkylated with 2-bromo-N-butylacetamide, 2.15, to give nitro tripod 3.1 in 36% yield 

(Scheme 3.5). Similarly, acid-catalyzed condensation of 3,5-di-tert-butyl-2-

hydroxybenzaldehyde and 2,4-di-tert-butylphenol gave the known tris-tBu-phenol 

3.15.184, 185 tBu-phenol 3.15 was alkylated with 2.15 to give t-butyl tripod 3.2 in 21% 

yield (Scheme 3.6).  The identity of both 3.1 and 3.2 was confirmed by ESI-MS and 

NMR (1H and 13C) spectroscopy.  Due to the symmetry of both compounds, only one 
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signal that integrated to three protons was observed for the NH protons at δ 5.86 and 6.82 

ppm for tripods 3.1 and 3.2, respectively (Figure 3.9).  The chemical shifts of the amide 

protons of these two compounds already suggest that they probably adopt different 

conformations in solution. The NH protons of 3.1 appear upfield compared to those of t-

butyl tripod 3.2, suggesting that the NH protons of nitro tripod 3.1 are probably in a 

shielded conformation, while those of 3.2 are more solvent-exposed, hence the larger 

chemical shift value for the NH proton of 3.2. 

 X-ray crystal analysis of nitro tripod 3.1 (Dr. Santacroce and Dr. Peter Zavalij) 

revealed a structure in which the three amide chains point in the same direction, creating 

a potential anion binding pocket (Figure 3.10). The pocket is created via an arrangement 

in which the NH protons of two side chains are hydrogen bonded to the C=O group of the 

third chain. 

 

H

NO2

O

O

NO2

O

O2N

Br
N
H

O

Cs2CO3; Et2O
3.13.14

 R = BuNHCOCH2

36%

2.15; 3.1 eq

HH
H H

NO2

O

O

NO2

O

O2N

RR
R

 

Scheme 3.5. Synthesis of nitro tripod 3.1. 
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Scheme 3.6. Synthesis of t-butyl tripod 3.2. 
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Figure 3.9. Portions of the 1H NMR spectra (in CD2Cl2) of: a) nitro tripod 3.1, and b) t-

butyl tripod 3.2 showing the NH (*) proton.   

 

 

Figure 3.10. Depiction of the X-ray crystal structure of nitro tripod 3.1. The n-butyl side 

chains have been removed for clarity.  All three amide side chains point in the same 

direction, providing a potential anion binding pocket. Two of the NH groups are 

hydrogen bonded to the amide C=O group of the third chain.  
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3.4.3 Anion Binding Properties of Triphenoxymethane Derivatives. 

 Exploration of the anion binding properties of nitro tripod 3.1 and t-butyl tripod 

3.2 by 1H NMR titration with tetrabutylammonium chloride (TBACl) and TBANO3 in 

CD2Cl2 solutions revealed differences between TPM 3.1 and 3.2.  Upon the addition of 

the TBACl and TBANO3 salts, no changes were observed in the chemical shift of the NH 

protons of t-butyl tripod 3.2, indicating that the interactions of 3.2 with Cl– and NO3
– are 

weak.  On the other hand, nitro tripod 3.1 coordinated to Cl– and NO3
– ions in CD2Cl2 as 

evidenced by significant downfield shifts for the NH protons (∆δ = 2.32 ppm for Cl– and 

1.37 ppm for NO3
–; Figure 3.11).  The bridgehead CH protons near the anion binding site 

also experienced a significant downfield shift in the presence of the anions.  The 

chemical shift changes for the NH and CH protons of nitro tripod 3.1 imply that the Cl– 

and NO3
– anions are preferentially coordinated within the binding pocket formed by the 

amide side chains.  The association constants (Ka) for the binding of nitro tripod 3.1 with 

Cl– and NO3
– in CD2Cl2 reveal that 3.1 binds Cl– more strongly than NO3

– (Table 3.3).   
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Figure 3.11. Summary of binding data for nitro tripod 3.1 with TBA salts. (a) 1H NMR 

titration stack plot of nitro tripod 3.1 vs. TBANO3. (* – NH protons) (b) 1H NMR 

titration curves for nitro tripod 3.1 binding to NO3
- and Cl- showing change in chemical 

shift (∆δ) of amide (NH) protons of 3.1 vs. equivalents of anions added. (Gold trace – 

NH/Cl-; blue trace – NH/NO3
-) 

 

Table 3.3. Chemical shift changes and binding constants (Ka) for the association of nitro 

tripod 3.1 with Cl- and NO3
- ions in CD2Cl2.  

Anion ∆δ ppm Kassoc (M–1) 
Cl- 
 
 

NH = 2.32 
CH = 0.52 

 

NH = 816 ± 108 
CH = 828 ± 158 

 
NO3

- NH = 1.37 
CH = 0.21 

NH = 325 ± 113 
CH = 328 ± 95 

 

 

 Together, the X-ray and NMR data for nitro tripod 3.1 confirmed our proposal 

that the TPM scaffold can be used as an anion receptor.  Compared to other simple 

amide-based anion receptors such as the bis-benzamide 3.16 (Ka < 10 M-1 in CDCl3) or 

the tren-based tris-acetamide 3.17 (Ka = 307 M-1 in CDCl3),188. nitro tripod 3.1 binds Cl– 

at least 2.5 times stronger, probably due to the pre-organized amide side chains.  The Ka 
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values for 3.1 are also larger than those for the related calixarene systems previously 

developed in the Davis group as Cl– transporters (Ka = 20-30 M-1 in CDCl3).6  Thus, pre-

organization of the three amide side chains does enhance the binding interaction between 

the receptor and the anions.  We, therefore, decided to investigate the membrane transport 

properties of tripods 3.1 and 3.2. 
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3.4.4 Chloride Transport Activity of Triphenoxymethane Derivatives. 

 Since the tripods were originally designed as Cl- transporters, the anion 

transporting properties of nitro tripod 3.1 and t-butyl tripod 3.2 (in comparison with those 

of paco-H 2.1, a known Cl- transporter)6 were examined in egg yolk phosphatidylcholine 

(EYPC) large unilamelar vesicles (LUVs), using the base pulse, and lucigenin (Cl-

sensitive dye) assays.189  The data from the different liposome assays revealed that t-butyl 

tripod 3.2 was inactive towards the transmembrane transport of Cl- and NO3
- ions.  Nitro 

tripod 3.1, on the other hand, was selective for the transmembrane transport of NO3
- over 

Cl-.  

 Tripods 3.1 and 3.2 were tested for Cl- or NO3
- transport across EYPC vesicles.  

In these experiments we compared the transport properties of 3.1 and 3.2 with those for 

paco-H 2.1, a known Cl- transporter.6  We first used the classical “base pulse” assay to 

compare transmembrane transport properties for tripods 3.1 and 3.2, and paco-H 2.1.37, 98  
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In this assay, activity is measured by monitoring pH changes inside a liposome 

containing HPTS, a pH-sensitive dye (Section 1.5.1).  Addition of NaOH creates a pH 

gradient across the membrane. If a compound mediates transmembrane ion transport (via 

either cation influx or anion efflux), then the intravesicular pH increases as monitored by 

HPTS fluorescence.  If the compound cannot transport ions there is no change in HPTS 

fluorescence (Figure 1.8).  The standard, paco-H 2.1,6 changed HPTS fluorescence in 

solutions containing either NaCl or NaNO3 as expected.  However, tripods 3.1 and 3.2 (at 

2 mol% ligand-to-lipid ratio) had little ability to transport Cl- (Figure 3.12).  This finding 

was confirmed in experiments that used a chloride dye, lucigenin,38, 56 to monitor 

intravesicular Cl- concentration (Figure 3.13).  The ability of nitro tripod 3.1 to bind but 

not transport Cl- ions indicates that having at least three amide side chains on the scaffold 

is essential but not sufficient for Cl- transport. 
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Figure 3.12. Base-pulse experiments. Chloride containing EYPC liposomes (pH 6.4) in 

Cl- solution (pH 7.4).  At t = 0 s, a DMSO solution of 3.1, 3.2 or paco-H 2.1 was added 

and the intravesicular pH was determined by monitoring changes in HPTS fluorescence 

ratios. At t = 470 s, Triton-X detergent was added to lyse the liposomes to obtain 

maximum change in HPTS fluorescence ratio. Intravesicular pH increased in the presence 

of paco-H 2.1 only.   
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Figure 3.13. Cl- transport assay utilizing encapsulated lucigenin to monitor chloride 

transport by compounds 3.1, 3.2 and paco-H 2.1.  At t = 0 s, a DMSO solution of 3.1, 3.2 

or paco-H 2.1 was added, while a NaCl pulse was added at t = 15 s and quenching of 

lucigenin fluorescence monitored. Triton-X detergent was added to lyse the liposomes to 

obtain maximum lucigenin fluorescence quenching at t = 450, 470, 510 and 530 s for 2.1, 

3.1, DMSO blank, and 3.2 respectively.  Cl- influx is observed only in the presence of 

paco-H 2.1 (red trace).   

 

3.4.5 NO3
- Transport Activity of Triphenoxymethane Derivatives. 

 We decided to explore the ability of the tripods to transport other anions, 

especially NO3
-, since we had evidence for NO3

- coordination by nitro tripod 3.1 in 

solution (Figure 3.11 and Table 3.3).  We reasoned that nitro tripod 3.1 might be binding 

the hydrophilic Cl- ion (∆Gh = −80.78 ± 1.43 kcal/mol)12 too tightly such that anion 

release becomes the rate-limiting step for the transport process.  However, the more 

lipophilic nitrate (∆Gh = −75.05 ± 1.43 kcal/mol)12 binds less tightly to tripod 3.1 (Figure 

3.11 and Table 3.3), we, therefore, reasoned that the release of NO3
- may not be rate-

limiting as hypothesized for Cl-.  Thus, we proposed that nitro tripod 3.1 may function as 



 102 
 

a NO3
- transporter.  The data confirmed our reasoning as paco-H 2.1 and nitro tripod 3.1 

both transported NO3
- ions in the base-pulse assay, while t-butyl tripod 3.2 did not 

(Figure 3.14).  For t-butyl tripod 3.2, we concluded that the t-butyl substituent probably 

generate unfavorable steric interactions that hindered or prevented anion binding and 

transport.6, 99  Figure 3.14 shows that nitro tripod 3.1 transports NO3
- anions across 

EYPC membranes, as effectively as paco-H 2.1. The t-butyl tripod 3.2, on the other hand, 

is not a NO3
- transporter, as there was little change in intravesicular pH upon addition of 

3.2. These base pulse experiments provided the first indication that nitro tripod 3.1 might 

be a transmembrane NO3
- anion transporter. 
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Figure 3.14. Base-pulse experiments. Nitrate containing EYPC liposomes (pH 6.4) in 

NO3
–

 solution (pH 7.4).  At t = 0 s, a DMSO solution of 3.1, 3.2 or paco-H 2.1 was added 

and the intravesicular pH was determined by monitoring changes in HPTS fluorescence 

ratios. At t = 470 s, Triton-X detergent was added to lyse the liposomes to obtain 

maximum change in HPTS fluorescence ratio. Intravesicular pH increased in the presence 

of nitro tripod 3.1 and paco-H 2.1.   
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3.4.5.1 Nitrate Reductase Assay Confirms NO3
- Transport by Tripod 3.1.  We 

confirmed that nitro tripod 3.1 transports NO3
- across phospholipid membranes through 

an assay that uses nitrate reductase to monitor the release of NO3
- from EYPC vesicles.190  

Nitrate reductase uses the NADPH cofactor to reduce nitrate to nitrite.  NADPH has a 

characteristic absorbance band at 340 nm, whereas the oxidized cofactor NADP+ does not 

absorb in this region.  Release of NO3
- from vesicles was followed by changes in the 

NADPH absorbance at 340 nm.  Furthermore, the enzymatically generated nitrite anion, 

NO2
-, was trapped to give diazo dye 3.18 in the Griess reaction (Figure 3.15a).190 This 

dye absorbs at 543 nm.  Thus, a decrease in NADPH absorbance at 340 nm and a 

concomitant increase in the 543 nm absorbance for 3.18 allowed us to monitor NO3
– 

release from phospholipid vesicles. 

 EYPC liposomes (100 nm) filled with 100 mM NaNO3 – 10 mM Na phosphate 

(pH 7.2) were eluted from a Sephadex G-10 column using a solution of 100 mM NaCl – 

10 mM sodium phosphate (pH 7.2). Gel filtration was done to replace the bulk of the 

extravesicular NO3
- with Cl-.  The resulting EYPC liposome suspension (100 µL) was 

diluted into 1.9 mL of a 100 mM NaCl – 10 mM sodium phosphate (pH 7.2) solution 

containing 0.3 units of nitrate reductase and 5 mM NADPH.  Solutions of either tripod 

3.1 or 3.2 in DMSO (2 mol% ligand-to-lipid ratio) were added to the EYPC suspensions 

and the resulting mixture was incubated for 3 hours to ensure complete reduction of 

nitrate to nitrite. Subsequently, Griess reaction of the enzymatically generated NO2
- was 

done by addition of the appropriate anilines.190  
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Figure 3.15.  Enzyme-coupled assay confirms transmembrane NO3
- transport by nitro 

tripod 3.1.  a) Tripod 3.1 transports NO3
- out of EYPC vesicles suspended in NaCl 

solution. Nitrate reductase reduces extravesicular NO3
-to NO2

-. The resulting NO2
- is then 

trapped to give diazo dye 3.18. b) UV spectrum of EYPC LUV suspension after addition 

of 3.1, 3.2 or DMSO blank. The arrow indicates a decrease in NADPH absorbance at 340 

nm in presence of 3.1. c) UV spectrum of 3.18 after Griess reaction of enzymatically 

produced NO2
-.  Arrow indicates increase in absorbance for diazo dye 3.18 in the 

presence of nitro tripod 3.1.  

 

 The UV spectra in Figure 3.15b show significant consumption of NADPH in the 

presence of the NO3
--loaded liposomes and nitro tripod 3.1.  In contrast, when t-butyl 

tripod 3.2 was added to the same NO3
--loaded liposomes there was little change in 

NADPH absorbance. As shown in Figure 3.15c, the 543 nm absorbance for diazo 3.18 
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formed in the Griess reaction confirmed that significantly more nitrate was released from 

EYPC liposomes in the presence of nitro tripod 3.1, as compared to t-butyl tripod 3.2. 

These two assays, based on nitrate reduction and subsequent trapping of the 

extravesicular nitrite, confirm that nitro tripod 3.2 transports NO3
- across EYPC vesicles. 

 There are no clear-cut explanations for the inconsistencies in the anion binding 

and transporting properties of tripod 3.1.  Our hypothesis is that anion release is the rate 

limiting step for Cl- transport, since it is the same receptor, nitro tripod 3.1 that 

preferentially transports NO3
- ions, which it binds less efficiently than Cl-.  Other factors 

that could be affecting the Cl- transport ability of 3.1 are: 1) variations in the kinetics of 

anion binding at the membrane/aqueous interfaces; or 2) variations in mobility of the 

tripod-anion complex within the membrane.59  The former factor appears to be dominant, 

since some Cl- transport activity would have been observed for nitro tripod 3.1 if mobility 

of the tripod-anion complex within the membrane were the dominant effect.  In addition, 

the association events observed in the binding studies do not accurately reflect the 

scenario in the membrane transport studies as the chemical environments are different.  

The former events occurred in non-polar environments, while the latter in polar 

environments.     

 

3.4.6 Selective NO3
- Transport by Nitro Tripod 3.1. 

 The data in Figures 3.12-3.15 suggested that nitro tripod 3.1 might control 

selective release of nitrate from phospholipid vesicles.  As such, we utilized the 

significant NO3
-/Cl- transmembrane transport selectivity shown by nitro tripod 3.1 to alter 

the pH within phospholipid vesicles experiencing a NO3
-/Cl- gradient.  Thus, EYPC 
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liposomes containing the pH sensitive HPTS dye in 100 mM NaNO3, 10 mM sodium 

phosphate buffer (pH 6.4) were suspended in a solution of 100 mM NaCl, 10 mM sodium 

phosphate buffer (pH 6.4).  Then, DMSO solutions of either tripod 3.1 or 3.2, or paco-H 

2.1 were added to the EYPC suspension.  As shown in Figure 3.16 addition of nitro 

tripod 3.1 resulted in a rapid increase in the intravesicular pH (∆pH = 0.7), whereas 

addition of t-butyl tripod 3.2 or paco-H 2.1 caused little change in internal pH. The 

constant pH in a system experiencing a significant transmembrane NO3
-/Cl- gradient 

indicates that paco-H 2.1, which can transport Cl- and NO3
- (Figures 3.12-3.14 and 

reference 6), operates via a NO3
-/Cl- anion exchange process. The nitro tripod 3.1, on the 

other hand, readily moves NO3
- out of the liposome along the NO3

-/Cl- gradient, but is 

unable to compensate by transporting Cl- from the extravesicular buffer into the 

liposome.  To maintain electroneutrality nitro tripod 3.1 facilitates H+/NO3
- co-transport 

(or the equivalent OH-/NO3
- counter-transport) across the vesicular membrane. 
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Figure 3.16. Change in intravesicular pH through selective NO3
- transport. a) A plot of 

intravesicular pH vs. time in experiments where NO3
--loaded EYPC liposomes (pH 6.4) 

suspended in a NaCl solution (pH 6.4) were treated with compounds 3.1, 3.2 and paco-H 

2.1. At t = 30 s, a DMSO solution of 3.1, 3.2 or paco-H 2.1 was added and the 

intravesicular pH was determined by monitoring changes in HPTS fluorescence ratios. At 

t = 470 s, Triton-X detergent was added to lyse the liposomes to obtain maximum change 

in HPTS fluorescence ratio. Intravesicular pH increased in the presence of nitro tripod 3.1 

only. b) Cartoon depiction of the mechanism of ion transport by 2.1 and 3.1. Paco-H 2.1 

functions as a NO3
-/Cl- anion exchanger (top) whereas nitro tripod 3.1 functions as a 

H+/NO3
- co-transporter (bottom).   
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3.5 Conclusion 

 Nitro tripod 3.1 selectively transports NO3
- across liposomal membranes in what 

is effectively an H+/NO3
- co-transport process.  This is, to our knowledge, the first report 

of a synthetic compound with such a marked selectivity for transport of NO3
– over Cl–.138  

While NO3
– uptake and metabolism is of high agricultural, environmental and medical 

importance,140 the mechanism of transport by certain members of the nitrate permease 

enzyme family is still uncertain.139  Synthetic transmembrane NO3
– transporters such as 

nitro tripod 3.1 could be potential enzyme mimics for studying and understanding such 

mechanisms.  Indeed nitro tripod 3.1 might serve as a good model for mimicking the 

natural H+/NO3
– co-transporters, the NNP protein family, for which no crystal structures 

yet exist.  Nitro tripod 3.1 could also be used to induce pH changes in cells that are 

experiencing a NO3
–/Cl– gradient or for the selective release of NO3

– from vesicles.191   

The structural requirements that transform an anion receptor into an anion transporter are 

still not well understood.  Whereas nitro tripod 3.1 is a receptor for both NO3
– and Cl– 

ions, it selectively transports NO3
– ions across liposomal membranes.  The nitro tripod 

3.1 results indicate that pre-organizing the molecular scaffold to generate a better defined 

anion binding pocket enhances the activity of the scaffold as an anion receptor.  

However, the results also indicate that the presence of three amide side chains pointing in 

the same direction is essential but not sufficient for Cl– transport.  Thus, while 

calculations are useful for predicting putative binding motifs and receptor designs, the 

value of serendipitous discoveries such as with nitro tripod 3.1, should not be discounted.  
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Chapter 4: Small Molecules That Facilitate the Transmembrane 

Exchange of Bicarbonate and Chloride Anions 

The majority of this chapter has been published in reference 192: 

• Davis, J. T.; Gale, P. A.; Okunola, O. A.; Prados, P.; Iglesias-Sánchez, J. C.; 

Torroba, T.; Quesada, R. “Using "small" molecules to facilitate exchange of 

bicarbonate and chloride anions across liposomal membranes.” Nature Chem. 

2009, 1, 138-144.  

Some of the experimental work described in this chapter was performed by Dr. Roberto 

Quesada, a collaborator from the University of Burgos, Spain. 

4.1 Introduction. 

 The goals of the research in this chapter are two-fold: 1) identification of discrete 

organic compounds that transport bicarbonate (HCO3
-) anion across bilayer membranes; 

and 2) development of a technique to assay for the transmembrane transport of HCO3
-.  

These goals were achieved as will be described in this chapter.  Before describing the 

results for this chapter (Sections 4.6-4.8), I first present a discussion on the chemistry and 

biochemistry of HCO3
-, highlighting its importance to human health, and the challenges 

associated with its complexation and transmembrane transport by non-protein systems 

(Sections 4.2 and 4.3).  We elucidated the HCO3
- transporters described in this chapter 

(Chart 4.1) to be Cl-/HCO3
- exchangers, I therefore present a brief discussion on the 

natural Cl-/HCO3
- exchanger (AE) proteins  (Section 4.4).  Detection of HCO3

- transport 

across bilayer membranes is a challenging process mainly due to the labile nature of the 

anion.  Identification of bicarbonate-specific indicators is therefore important.  I 
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summarize briefly, a few selected literature examples of synthetic receptors with 

fluorescent properties that have been identified as receptors for bicarbonate in Section 

4.5.  The studies I present in Sections 4.6-4.8, describe the first focused study on the 

transmembrane transport of HCO3
- ions across phospholipid membranes by small 

molecule, non-protein receptors.  Transmembrane HCO3
- transport was monitored 

qualitatively using ion-selective electrode, and 13C NMR spectroscopic techniques, as 

described in Section 4.8.192  These studies also describe initial efforts by the J.T. Davis 

group (in collaboration with the Gale group at the University of Southampton, United 

Kingdom) toward a well developed program on the transmembrane transport of HCO3
- 

anion by synthetic receptors that are both efficient and selective for the anion.  
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4.2 The Chemistry and Biochemistry of Bicarbonate Anion. 

 Bicarbonate is a simple, organic anion with a trigonal planar geometry (Figure 

4.1).  It is smaller (thermochemical radius, r = 1.56 Å), more hydrophilic (Gibbs 

hydration energy, ∆Gh = −92.73 ± 1.43 kcal/mol), and more basic (pKa [conjugate acid] = 

6.4) compared to Cl- (r =1.72 Å; ∆Gh = −80.78 ± 1.43 kcal/mol; pKa = −8.0) or NO3
- (r = 

1.96 Å; ∆Gh = −75.05 ± 1.43 kcal/mol; pKa = −1.3) anions.12, 193  

 

 

Figure 4.1. The trigonal planar bicarbonate (HCO3
-) anion. 

 

 One of the most important chemical and biochemical properties of HCO3
- anion is 

that it is the conjugate base of carbonic acid (H2CO3) as well as the conjugate acid of 

carbonate (CO3
2-) anion. Thus, conditions for studies on the complexation of HCO3

- with 

receptors need to be regulated carefully to ascertain that binding and not deprotonation 

(acid-base reaction) is what is being observed.  The amphoteric nature of HCO3
- makes it 

a candidate for a buffer.  Bicarbonate is central to the carbon dioxide (CO2)/HCO3
- buffer 

system – the most important physiological pH buffering system that helps maintain 

cellular and whole-body pH.194  The pKa of the conversion of HCO3
- to CO2 is 6.4 

(Scheme 4.1), which is close to physiological pH (~ 7.2-7.4).  Thus, under physiological 

conditions, both HCO3
- and CO2 are present in significant amounts (approximately 95:5 

HCO3
-/CO2 ratio), making HCO3

- a labile substrate.195  Whereas dissolved gaseous CO2 

is generally thought to diffuse relatively easily across cell membranes, the charged HCO3
- 
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anion is basically membrane impermeable.194  Transport proteins are therefore required to 

facilitate the movement of HCO3
- anion across membranes.   

 

CO2 (gas) (Membrane Permeant)

                                         
CO2 (dissolved) + H2O(l)                 H2CO3(aq)                HCO3

-
(aq) + H+

(aq)               CO3
2-

(aq) + 2H+
(aq)

                                                                                      
*CA = carbonic anhydrases

*CA

pKa        6.4                                            10.3
 

Scheme 4.1. The equilibrium reactions of HCO3
- showing the pKa values of bicarbonate’s 

conversion to CO2 or carbonate (CO3
2-) anion. Carbonic anhydrases (CA) enhance the 

rates of the CO2 hydration and HCO3
- dehydration reactions by catalyzing the 

conversions.  Adapted from reference 4.  

 

4.3 Why Study Bicarbonate Transport? 

 Bicarbonate plays important roles in the regulation of physiological pH, as well as 

the respiratory mechanism of living organisms – two fundamental processes that are 

crucial to human existence and well-being.  Bicarbonate is also implicated in a substantial 

number of other biological processes, a few of which are listed in Table 4.1.  Defective 

transmembrane transport of HCO3
- can lead to conditions such as cystic fibrosis, heart 

disease and infertility.4, 13, 196-198  The lack of structural data for bicarbonate transport 

proteins means that little is known regarding the anion binding sites that modulate their 

affinity and selectivity.4, 23, 196  In addition to its many crucial biological roles, 

understanding the fundamental chemistry of HCO3
- is also important given the concerns 

about global warming and increased CO2 levels in the earth’s atmosphere.  A better 
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understanding of the molecular recognition and transmembrane transport of HCO3
- is 

needed. Despite its importance, and that of its transmembrane transport, there is 

surprisingly little known about the selective coordination of bicarbonate by organic 

receptors.  Likewise, there have been no studies that focus attention on the use of "small" 

molecules to promote the efficient transport of bicarbonate anion across lipid 

membranes,7 in contradistinction to the growing body of work on transmembrane 

chloride transport.53, 113, 118, 199-201  The challenge of achieving bicarbonate transport was 

eloquently expressed by A. P. Davis, Sheppard and Smith in 2007: “Finally, there is the 

topic of transporters for anions other than Cl-. For example, an interesting target with 

potential utility is a synthetic transport system for bicarbonate.  A specific goal would be 

a mimic of chloride/bicarbonate exchangers that play important roles in red blood cells 

and epithelial tissues.  The design challenge here is to produce a transporter that can 

extract the very hydrophilic bicarbonate anion into the lipophilic interior of a bilayer 

membrane.”53   

 Another challenge in the transmembrane transport of bicarbonate is the lack of 

efficient assays that monitor the transport process directly.  There are no known ion-

sensitive dyes or ion-selective electrodes that are specific to bicarbonate.202  This is 

probably largely due to the labile nature of bicarbonate as a substrate.  Two methods, one 

using the chloride-selective electrode (indirect method) and the other using 13C NMR 

techniques (direct method), were used to monitor transmembrane bicarbonate transport in 

this work and are described in details in Section 4.8.  
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Table 4.1. Examples of bicarbonate’s importance to key biological processes. 

Major Role Target Function Ref. 
Enzyme Substrate Rubisco Photosynthesis 203 
 Carbonic Anhydrase 

Carbonic Anhydrase 
Biotin Carboxylase 

Cellular Respiration 
Metabolism 
Metabolism/ Biosynthesis 

4, 204 
205 
206 

 Acetyl-CoA Carboxylase Fatty Acid Biosynthesis 207 
    
Enzyme Co-factor Leucine Aminopeptidase Protein Metabolism 208 
 Plant Cyclopropane Oxidase Ethylene Biosynthesis 209 
    
Cellular Signal cAMP Synthase Sperm Activation 198, 210 

    
Homeostasis Anion Exchange Proteins HCO3

- Transport 4, 211 

 Na+/HCO3
- Co-transporters Pancreas and Kidney 212 

    
Health/Disease CFTR Cl-/HCO3

- Channel Cystic Fibrosis 13 

 DNA Cis-Platin Complex Cancer Chemotherapy 4, 213 

 Carbonic Anhydrase Memory/Alzheimer’s Disease 214 
 Bone Markers Osteoporosis/Bone Resorption  215 

 Anion Exchange Proteins Epilepsy 4, 216 

 Anion Exchange Proteins Cardiovascular Health 4, 217 

 

4.4 Bicarbonate Transport Proteins – The Chloride/Bicarbonate Exchanger.  

 In humans and other higher animals, carbon dioxide (CO2) is produced as a 

metabolic waste product in all cellular function.  For continued viability, the cell needs to 

get rid of the CO2 load.  While CO2 can diffuse across membranes, it is poorly soluble in 

the aqueous medium of the blood.  To resolve this dilemma, CO2 released from respiring 

tissues diffuses through blood plasma into the red blood cell (erythrocyte), where it is 

converted into the soluble HCO3
- through the activity of carbonic anhydrases (CAs).  

CAs are enzymes that catalyze the reversible interconversion of CO2 and HCO3
- (Scheme 

4.1).218  The soluble HCO3
- enters the blood plasma and is transported to the lungs, where 

it enters the erythrocyte and is converted to CO2, which is then exhaled.  The transport of 

HCO3
- in and out of erythrocytes is facilitated by the chloride/bicarbonate exchanger, 
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also known as the anion exchanger (AE) protein.  In order to avoid charge build-up from 

the transport of HCO3
- in one direction, AE proteins transport Cl- ions in the opposite 

direction (Figure 4.2).  One Cl- ion is exchanged for every one HCO3
- transported, thus 

AE proteins act as electroneutral antiporters.  By facilitating the transport of HCO3
- ions 

in and out of the red blood cell, AE proteins indirectly facilitate CO2 efflux from the 

body.  Considering their crucial role in respiration as described above, it is not surprising 

that AE proteins make up 50% of integral membrane proteins, and represent the most 

studied class of bicarbonate transporters.4  

 

Respiring tissue

Lungs

CO2 + H2O                  H+ + HCO3
-

CO2

HCO3
-

Cl-

Cl-

AE

AE

CA

Erythrocyte

 

Figure 4.2. The role of anion exchange (AE) proteins in facilitating CO2 efflux from the 

body.  CO2 molecules that diffuse into the erythrocyte are hydrolyzed into HCO3
- through 

the action of carbonic anhydrases (CA).  HCO3
- is then transported as the soluble form of 

CO2 via a Cl- exchange transport mechanism by the AE protein. Adapted from Biochem. 

Cell Biol. 2006, 84, 930-939. © 2008 NRC Canada. Reproduced with permission.196 
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4.5 Synthetic Fluorescent Bicarbonate Receptors. 

 In spite of the wealth of information available on the solution properties of 

bicarbonate binding and transporting proteins (Section 4.4),4, 196  surprisingly little work 

has been done on the complexation of HCO3
- by synthetic compounds containing 

hydrogen bond donors.  A search of the Cambridge Crystallographic Database (CCD)† 

for discrete bicarbonate results in only 46 structures with just 2 examples of the anion 

bound by ‘conventional’ acyclic hydrogen bond donating receptors.219, 220  Complexation 

of bicarbonate is a challenging goal, since it is a labile substrate.  Particularly challenging 

is achieving selectivity for HCO3
- over more basic anions such as its conjugate base – 

carbonate, or phosphate.221, 222   

 Some synthetic receptors that have been reported in literature for HCO3
- 

complexation are outlined in Chart 4.2.  The selected examples are particularly 

interesting because they also possess fluorescent properties and are soluble in polar 

media, making them adaptable for liposomal or cellular assays.    

 Hennrich and Resch-Genger have reported iminoylthioureas 4.5-4.8 (Chart 4.2) 

as fluorescent bicarbonate receptors.221  Upon addition of various anions in a 1000-fold 

excess, compounds 4.5-4.8 displayed strong fluorescence enhancements with carbonate 

(53-fold) and bicarbonate (39-fold) ions in methanol solutions.  Fluorescence 

enhancement was most prominent for receptors 4.5 and 4.7 which possess at least six and 

three hydrogen bond donors respectively. The enhancement obtained with receptors 4.6 

and 4.8 in the presence of CO3
2– and HCO3

– was less significant because of the reduced 

number of hydrogen bond donors (four and two respectively).  The reduction in 

                                                 
† Cambridge Crystallographic Database, CCDC, Cambridge, UK; 5.29 ed. 2007. 
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fluorescence enhancement from receptor 4.5 to 4.8 was attributed to an increase in 

receptor rigidity.  The slightly more flexible receptors 4.5 and 4.7 are probably able to 

change conformation to allow favorable receptor-anion interactions, whereas the degree 

of freedom is reduced in the more rigid 4.6 and 4.8.  The greater enhancement observed 

with carbonate over bicarbonate further highlights the difficulty of achieving bicarbonate 

selectivity in the presence of more basic anions.  In addition, compounds 4.5-4.8 are 

significantly weak receptors considering the huge excess (1000-fold) of anion required to 

generate a detectable fluorescent response. 
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 Receptors 4.9-4.11 (Chart 4.2), developed by Gale and coworkers, also function 

as fluorescent HCO3
– receptors with stability constants (Ks) greater than 104 M-1 in 

DMSO/H2O (99.5:0.5 v/v) solutions for all three receptors.223  Similar association 

constants were also obtained for acetate anions.  Chloride anions were however, bound 

less strongly (Ks = 102, 139, and 85 M-1 for 4.9, 4.10 and 4.11 respectively).  The large 

difference in the affinities of receptors 4.9-4.11 for Cl- and HCO3
- anions may make them 

suitable candidates for uncoupled HCO3
- transport across liposomal membranes.   

 Finally, Suzuki and co-workers have reported a γ-cyclodextrin-pyrene derivative 

4.12 (Chart 4.2), as a fluorescent receptor that is highly selective for detecting HCO3
- in 

water.202  Compound 4.12 is the only receptor among those listed in Chart 4.2 to show 

pronounced selectivity for HCO3
- in aqueous media.  Suzuki and co-workers suggested 

that at pH 7–9 an association dimer formed from monocationic γ-CD-pyrene 4.12 

(4.122
2+) was the species that bound HCO3

- in aqueous solution (Figure 4.2).  The 

receptor-anion complex formed between 4.122
2+ and HCO3

- emitted an anomalous pyrene 

fluorescence that was not observed for the other anions tested (NO3
-, Cl-, ClO4

-, AcO-, 

HPO4
2-, SO4

2-).  The anomalous fluorescence induced by HCO3
- was attributed to the two 

pyrene units of the 4.122
2+/HCO3

- adopting a twisted conformation as depicted in Figure 

4.2.  The γ-CD-pyrene derivative is also relatively sensitive, being able to detect HCO3
- 

at 1 mM concentration in water.  Compound 4.12 may therefore serve as a valuable 

candidate for monitoring bicarbonate transport across liposomal membranes.  
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H
N

H
N

H
N HCO3

-

4.12

4.122
2+/HCO3

-  

Figure 4.3. The fluorescent cyclodextrin-pyrene dye 4.12 forms an association dimer that 

selectively binds HCO3
- resulting in fluorescence enhancement.202 

 

4.6 Prodigiosin and Isophthalamides as Receptors for Bicarbonate.  

 Our initial efforts toward achieving transmembrane HCO3
- transport focused on 

identifying simple, “small” molecules that can function both as receptors and transporters 

for HCO3
- ion.  Our search led to the selection of natural product prodigiosin 4.1, and the 

synthetic amides 4.2-4.4 (Chart 4.1).  Prodigiosin 4.1 was selected because it is known 

to transport H+ and Cl- ions into cells.224  Isophthalamide 4.2 had also been shown to 

mediate Cl- transport across liposomal membranes.96  As discussed in the following 

sections, compounds 4.1-4.4 not only transport HCO3
- ion, but also facilitate Cl-/HCO3

- 

exchange across phospholipid membranes, thus mimicking the properties of natural 

proteins that act as Cl-/HCO3
- exchangers.  

 

4.6.1 Prodigiosins. 

Prodigiosins are a family of naturally occurring red pigments produced by 

microorganisms such as Streptomyces and Serratia.225  The prodigiosins are bacterial 
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secondary metabolites that possess a characteristic pyrrolylpyrromethene skeleton with a 

B-ring C-4 methoxy group and different alkyl substituents arranged either in an acyclic or 

cyclic display (Scheme 4.2).  The prodigiosins have been shown to possess potent 

antimicrobial, antimalarial, anticancer, and immunosuppressive activities.226  Prodigiosin 

4.1,227 the parent member of the pigments was first isolated in pure form in the 1920s, but 

its full acyclic tripyrrole structure was only fully elucidated in the 1960s by partial228 and 

complete229 synthesis.  Prodigiosin 4.1 causes selective apoptosis of cancer cells226 and its 

synthetic analogue obatoclax (Scheme 4.2) is in clinical trials for the treatment of 

different types of cancer.230, 231  Prodigiosin 4.1 has also been shown to promote 

transmembrane Cl- transport via H+/Cl- symport,224, 232-234 or anion exchange 

mechanism.235, 236  Indeed, the antibiotic activity of prodigiosin-like compounds has been 

related to their activity as transmembrane Cl- carriers.233  Although the origin of the 

prodigiosins’ cytotoxic activity has yet to be unambiguously established, various 

structure-activity relationship (SAR) studies have established that the pyrrolic A-ring and 

the C-4 methoxy group are important for cytotoxic potency.237-239  Prodigiosins are 

weakly basic (apparent pKa ~ 7-8) due to the presence of the azafulvene moiety 

(highlighted box in Scheme 4.3), and it has been shown that they undergo rotamer 

interconversion to generate two geometrical isomers (α and β forms, Scheme 4.3) with 

widely different apparent pKa values (pKa
α ~ 8.3, pKa

β ~ 5.4, 1:1 acetonitrile 

(CH3CN)/H2O).238, 240   The two rotamers can be distinguished by 1H NMR in 

chloroform-d (CDCl3) containing excess trifluoroacetic acid (CF3CO2H) or 

methanesulfonic acid (CH3SO3H), with the α/β ratio being 1/2 under these conditions.240   
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 Due to the presence of hydrogen bond donors and acceptors in prodigiosin 4.1, we 

reasoned that it might function as a receptor and a membrane transport agent for HCO3
-.  

Indeed the modeling of a prodigiosin-bicarbonate complex suggests a complimentary fit 

between the host (4.1) and the guest (HCO3
-) as depicted in Figure 4.4.  Our reasoning 

about prodigiosin 4.1 proved true as 4.1 turned out to be a good HCO3
- receptor as well 

as an effective Cl-/HCO3
- exchanger. 
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Scheme 4.2. Prodigiosin 4.1 and some of its natural product, red pigment relatives as 

well as the synthetic analog – Obatoclax, which is in clinical trials for the treatment of 

different cancers.  The pyrrolylpyrromethene skeleton is highlighted in a red box, and 

relevant carbon positions labeled 2, 4, and 5 according to Chemical Abstracts (CA) Index 

nomenclature.   
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Scheme 4.3.  Rotamer interconversion of “free base” 4.1 and its protonated version 

4.1•H+ showing the α and β forms.  The azafulvene moiety is highlighted in a blue box. 

 

 

Figure 4.4.  Structure of the putative prodigiosin-bicarbonate complex (left), and a DFT 

calculated structure for the complex (right). 
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4.6.2 Isophthalamides. 

 Isophthalamides, a class of aromatic diamides had predominantly been studied as 

receptors for binding anionic biomolecules such as nucleotide bases, barbiturates, 

dicarboxylic acids, and peptides150 until Crabtree re-introduced them as effective 

receptors for halides in the late 1990s.241  Isophthalamides have convergent amide NH 

groups that can form hydrogen bonds with anions.241, 242  The isophthalamide moiety can 

adopt 3 possible conformations, viz: syn-syn, syn-anti, or anti-anti conformations 

(Scheme 4.4) with the syn-syn conformation being the most efficient for anion binding.241  

Thus, we also investigated the bicarbonate transport ability of N,N`alkyl-4,6-

dihydroxyisophthalamides 4.2-4.4 (Scheme 4.5), especially in comparison to prodigiosin 

4.1.  Compounds 4.2-4.4 were prepared by Dr. Roberto Quesada.  The transmembrane 

chloride transport activity of N,N`butyl-4,6-dihydroxyisophthalamide 4.2 was recently 

reported.96  In the case of 4.2, conformational control of the anion binding cleft by 

intramolecular hydrogen bonds between the 4,6-dihydroxy units and the neighboring 

amide carbonyls locks the compound in the syn-syn conformation, resulting in an 

improved anion affinity and in optimal activity for transmembrane transport of chloride 

anion.  For this study, the related isophthalamides 4.3 and 4.4, functionalized with 

different alkyl substituents were synthesized.  The rationale for 4.3 and 4.4 was that 

membrane activity might be attenuated by the identity of the lipophilic tails attached to 

the isophthalamide.  The studies showed that isophthalamides 4.2-4.4 also facilitate Cl-

/HCO3
- exchange across phospholipid membranes, howbeit with reduced potency 

compared to prodigiosin 4.1. 
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Scheme 4.5. The structures of compounds 4.2 – 4.4. 

 

4.7 Anion Complexation Properties of Receptors 4.1-4.4. 

4.7.1 Bicarbonate Complexation with Prodigiosin 4.1. 

 Prodigiosin and its analogues bind chloride in the solid-state and in solution.233, 238  

Furthermore, the use of chloride-selective dyes and electrodes revealed that prodigiosin 

4.1 transports Cl- anions across lipid membranes.233, 236  It was reported 50 years ago that 

prodigiosin reacts with carbonic acid to give a protonated adduct,243 however, there has 

been no direct evidence presented that prodigiosin 4.1 can bind bicarbonate.  Thus, the 

anion complexation properties of prodigiosin 4.1 with bicarbonate, chloride and nitrate 

anions were studied by 1H NMR titration methods in deuterated methylene chloride 

(CD2Cl2).  Starting with a 2.0 mM solution of prodigiosin, the anion was added as a 

solution of its tetraalkylammonium salt in increasing equivalent amounts.  NMR data was 

then collected immediately and 5 minutes after addition of the anion solution, to ensure 
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equilibration of the binding process before addition of the next anion aliquot.  The NMR 

studies showed that the three anions (HCO3
-, Cl- and NO3

-) binds to 4.1, causing shifts of 

proton resonances in prodigiosin 4.1 upon addition of the tetraalkylammonium salt.  The 

NMR signals in 4.1 that were most affected by anion addition were the H2 proton on the 

A-ring and the methyl group on the C-ring (Figure 4.5).  These are the carbon-bound 

protons that would be expected to be most influenced by anion binding, as they are 

closest to prodigiosin’s putative anion-binding cleft (Figure 4.4).†  The changes in these 

chemical shifts upon addition of tetraethylammonium bicarbonate (TEAHCO3) were 

greater than those for the same protons in 4.1 upon addition of tetrabutylammonium 

chloride or nitrate (Ka = 9.7 ± 1.4 and 8.9 ± 1.9 M-1; Figures 4.6-4.8), presumably 

reflecting the higher basicity of the bicarbonate anion.  A stability constant could not be 

calculated for the prodigiosin-bicarbonate complex because, in addition to changes in 

chemical shifts for 4.1, a second set of NMR peaks emerged during bicarbonate titration.  

This slow exchange process may be due to higher-order complex formation with 

bicarbonate or to an HCO3
- triggered interconversion of rotamers (Scheme 4.3).240  

Experiments were repeated with the protonated form of prodigiosin as the 

methanesulfonate salt (4.1•H+ CH3SO3
-; after addition of methanesulfonic acid).  Under 

the same experimental conditions, addition of bicarbonate resulted in deprotonation of 

4.1•H+ as evidenced by loss of the now visible pyrrole NH resonances in the 1H NMR 

spectrum (Figure 4.9), and a reversal of the solution’s color from the deep pink of 

protonated 4.1•H+ to the orange of free base 4.1 (Figure 4.10).  In contrast, addition of 

chloride causes a downfield shift (and not loss) of the pyrrole NH resonances of 4.1•H+ 

indicating hydrogen bond formation to the halide anion (Figure 4.11).  Additionally, the 
                                                 
† The pyrrole NH protons are not visible in the 1H NMR of prodigiosin in the free base form in CD2Cl2. 
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deep pink color of protonated 4.1•H+ remains unchanged in the presence of 15 

equivalents of both Cl- and NO3
- anions (Figure 4.10).  At pH 7.2 both protonated and 

free base forms of prodigiosin are present and it may be that any putative HCO3
- transport 

process involves both forms.  Whilst a stability constant for bicarbonate complexation 

was not obtained, these NMR titrations demonstrated that the free base form of 

prodigiosin 4.1 binds bicarbonate in solution.  Electrospray mass spectrometry in 

negative mode on a solution mixture of prodigiosin 4.1, NaHCO3 and 

tetrabutylammonium chloride (TBACl) in methylene chloride revealed the presence of a 

bicarbonate adduct (Figure 4.12), providing more evidence for complex formation 

between prodigiosin 4.1 and bicarbonate.     

 

H2 Me 
 

Figure 4.5. 1H NMR titration of prodigiosin 4.1 with tetraethylammonium bicarbonate in 

CD2Cl2. 
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H2 Me 
 

Figure 4.6. 1H NMR titration of prodigiosin 4.1 with tetrabutylammonium chloride in 

CD2Cl2. 

 

H2 Me 
 

Figure 4.7. 1H NMR titration of prodigiosin 4.1 with tetrabutylammonium nitrate in 

CD2Cl2. 



 128 
 

 

 

Figure 4.8. 1H NMR titration curves for the binding of prodigiosin 4.1 with Cl- (left 

panel) and NO3
- (right panel) based on the CH3 group of its C-ring.  The anions are 

present as their tetrabutylammonium salts. 

 

H2 Me 

Pyrrole NH 

 

Figure 4.9. 1H NMR titration of prodigiosin 4.1 + CH3SO3H with tetraethylammonium 

bicarbonate in CD2Cl2. 
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Figure 4.10.  Visual evidence that prodigiosin 4.1 binds HCO3
- as “free base”, while it 

binds Cl- and NO3
- anions as the protonated form 4.1•H+ in CD2Cl2: A = 1.0 mM 4.1 

only; B = 1:1 4.1/CH3SO3H; C = B + 15.0 equivalents of TEAHCO3; D = B + 15.0 

equivalents of TBACl; E = B + 15.0 equivalents of TBANO3. 

 

H2 Me 

Pyrrole NH 

 

Figure 4.11. 1H NMR titration of prodigiosin 4.1 + CH3SO3H with tetrabutylammonium 

chloride in CD2Cl2.  

A B C D EA B C D E
A B C D EA B C D E
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4.1•CH2Cl2•HCO3
- 

468.30 
582.34 

226.99 

 

Figure 4.12. Electrospray ionization mass spectrometry (negative mode; ESI-) of 

prodigiosin 4.1 showing m/z for a bicarbonate complex. Experiments conducted by the 

author. 

 

4.7.2 Anion Binding Properties of the Isophthalamides. 

 The anion binding studies described in this section were carried out by Dr. 

Roberto Quesada.  Understanding the anion binding properties of isophthalamides 4.2-4.4 

is crucial because of the presence of the hydroxyl groups which could easily be 

deprotonated by basic anions such as bicarbonate under the membrane transport assay 

conditions.  The anion binding properties of isophthalamide 4.2 (as a model for the 
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isophthalamides) was therefore investigated using NMR titration techniques.  Receptor 

4.2 shows good selectivity for chloride against nitrate in both acetonitrile-d3 and DMSO 

(Table 4.2).  The binding constants for the 4.2•Cl- complex was even lower in more 

competitive solvents such as in DMSO with increasing amounts of water (Figure 4.13).  

However, the observation of complexation events in such competitive media highlights 

the effectiveness of 4.2 as a chloride receptor.  Under similar conditions, titration of 4.2 

against tetraethylammonium bicarbonate in DMSO showed that deprotonation of the 

hydroxyl groups occurs, as such, no stability constant could be calculated.  Dr. Quesada 

also carried out experiments which demonstrated that the isophthalamides are not 

deprotonated in buffered solutions of bicarbonate under conditions similar to those used 

for the membrane transport experiments (data not shown). 

 

Table 4.2. Anion-binding constants (Ka) for receptor 4.2 determined by 1H NMR 

titrations at 25 ºC.  Anions were added as the tetrabutylammonium salt. 

Anion Cl- 
(CD3CN) 

Cl- 
(d6-DMSO) 

NO3
- 

(CD3CN) 
NO3

- 
(d6-DMSO) 

Ka (M–1) 5231 70.0 94.9 <10 
error 479 3.15 1.73 - 
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Figure 4.13. Chemical shifts induced in the N-H group of receptor 4.2 by the addition of 

increasing amounts of TBACl in d6-DMSO containing increasing amounts of water. ‡ 

Error < 10%. Experiments conducted by Dr. Roberto Quesada. 

 

4.8 Transmembrane Bicarbonate Transport by Compounds 4.1-4.4.  

 The chloride-selective electrode assays described in Sections 4.8.1-4.8.3 were 

carried out by Dr. Roberto Quesada. They served as precedence for the 13C NMR 

experiments carried out by the author and described in Section 4.8.4. 

 

4.8.1 Prodigiosin 4.1 is a More Efficient Anion Transporter. 

Upon establishing bicarbonate binding by compounds 4.1-4.4, the transmembrane 

anion transport activity of the natural product 4.1 vs. the synthetic Cl- transporters 4.2-4.4 

was compared.  The transmembrane anion transport abilities of 4.1-4.4 were evaluated by 

monitoring chloride efflux from unilamellar POPC (1-palmitolyl-2-oleoyl-sn-glycero-3-

phosphocholine) vesicles using a chloride-selective electrode (an example of the ion-

 ∆δNH Ka(M-1)‡ 
d6-DMSO 0.79 70 
d6-DMSO + 2% H2O 0.74 64 
d6-DMSO + 5% H2O 0.66 46 
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selective electrodes described in Section 1.5.2) by Dr. Roberto Quesada.7  These studies 

were conducted using nitrate in the extravesicular solution.  Nitrate is more hydrophobic 

than bicarbonate and is frequently used to assess chloride transport efficiency.  Chloride-

loaded liposomes (in 5 mM sodium phosphate buffer; pH 7.2) were suspended in an 

extravesicular sodium nitrate solution. The transporters 4.1-4.4, dissolved in ~10 µL of 

DMSO, were then added to the extravesicular solution and chloride efflux was monitored 

over 300 s. At the end of the experiment the vesicles were lysed by the addition of 

detergent (polyoxyethylene-8 lauryl ether, C12E8) and the final value was normalized to 

equal complete chloride efflux. Prodigiosin 4.1 proved to be a potent chloride transporter 

using this assay. A 0.005% molar carrier to lipid concentration of prodigiosin 4.1 showed 

similar transport activity to the 0.1% molar carrier to lipid concentration for synthetic 

compounds 4.2-4.4 (Figure 4.14). These carrier loadings were capable of complete 

chloride efflux within 300 s, with the isopentyl-substituted isophthalamide 4.3 being the 

most active synthetic transporter under these conditions.  

 

HO
O

O
7

C12E8  
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NO3
-

Cl-
4.1 - 4.4

 

Figure 4.14.  Chloride efflux promoted upon addition of 4.1 (♦) (0.005 mol% carrier-to-

lipid ratio) and 4.2 (■), 4.3 (▲), 4.4 (●) (0.1 mol% carrier-to-lipid ratio) to unilamellar 

POPC vesicles loaded with 488 mM NaCl, 5 mM phosphate buffer (pH 7.2) dispersed in 

488 mM NaNO3, 5 mM phosphate buffer (pH 7.2).  At t = 300 s the vesicles were lysed 

by addition of detergent and the final reading at t = 375 s was considered to equal 100% 

chloride efflux.  Experiments conducted by Dr. Roberto Quesada. 

 

4.8.2 Transporters Mediate Transport Via and Anion Exchange Mechanism. 

 In the assay depicted in Figure 4.14, the anion transport activity can occur either 

via H+/Cl- or Na+/Cl- co-transport or by Cl-/NO3
- exchange. To distinguish between these 

alternative mechanisms, we carried out the Cl- electrode transport assay while varying the 

anion in the external medium. If transport occurs by an anion exchange mechanism, 

changing the external anion should impact the transport rate, whilst a H+/Cl- or Na+/Cl- 

co-transport mechanism should not be affected by the external anion. As depicted in 

Figure 4.15, the transport assay was repeated by suspending the chloride-loaded vesicles 
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in a sulfate-containing external medium. As the sulfate dianion carries a higher charge 

and is significantly more hydrophilic than nitrate, transport activity by compounds 4.1-

4.4 should be reduced if an anion exchange mechanism is operative. Indeed, with sulfate 

as the external anion, no chloride efflux from the liposomes was detected upon addition 

of 4.1-4.4, supporting a Cl-/NO3
- exchange (antiport) mechanism for mediating anion 

transport across the vesicle bilayer.  

 

SO4
2-

Cl- 4.1 - 4.4

 

Figure 4.15.  Lack of Cl- transport upon the addition of compounds 4.1 (♦) (0.04 mol% 

carrier-to-lipid ratio) and 4.2 (■), 4.3 (▲), 4.4 (●) (0.5 mol% carrier-to-lipid ratio) to 

unilamellar POPC vesicles containing 488 mM NaCl, 5 mM phosphate buffer (pH 7.2) 

and immersed in 166 mM Na2SO4, 5 mM phosphate buffer (pH 7.2) solution.  At 300 s 

the vesicles were lysed to obtain 100% chloride efflux at the final reading of t = 420 s. 

Experiments conducted by Dr. Roberto Quesada. 
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4.8.3 Transporters Facilitate Cl-/HCO3
- Exchange Across Liposomal Membranes. 

 While both nitrate and bicarbonate have similar sizes and shapes, bicarbonate is 

significantly more hydrated than nitrate and, as stressed by A. P. Davis and coworkers,53 

it is more challenging to transport bicarbonate than nitrate across a lipid bilayer.244 

Prompted by the ability of prodigiosin 4.1 to bind bicarbonate and by the Cl-/NO3
- anion 

exchange activity shown by 4.1-4.4, an experiment was designed to determine whether 

these compounds could facilitate transmembrane bicarbonate/chloride exchange. 

Chloride-loaded vesicles were suspended in a sulfate-containing medium. After 2 

minutes, a solution of bicarbonate was added and chloride efflux was monitored over an 

additional 5 minutes. At the end of the experiment the vesicles were lysed to calibrate the 

experimental data to 100% chloride release.  The results shown in Figure 4.16 confirmed 

that negligible chloride efflux was detected in the presence of sulfate as the external 

anion. Addition of bicarbonate to the extravesicular solution switched on chloride efflux 

in the presence of 4.1-4.4, indicating that these compounds enable chloride/bicarbonate 

antiport across liposomal membranes. As was observed for Cl-/NO3
- exchange, 

prodigiosin 4.1 (at 0.04 % molar carrier to lipid) was more efficient than synthetic 

carriers 4.2-4.4 (1 % molar carrier to lipid) in facilitating Cl-/HCO3
- transmembrane 

exchange. 
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a)

b)

4.1 - 4.4

Cl-

SO4
2-

SO4
2-

Cl-

HCO3
-

 

Figure 4.16.  Chloride efflux promoted upon addition of 4.1 (♦) (0.04 mol% carrier-to-

lipid ratio) and 4.2 (■), 4.3 (▲), 4.4 (●) (1 mol% carrier-to-lipid ratio) to unilamellar 

POPC vesicles loaded with 451 mM NaCl, 20 mM phosphate buffer (pH 7.2) dispersed in 

150 mM Na2SO4, 20 mM phosphate buffer (pH 7.2).  At t = 120 s a solution of NaHCO3 

was added to give a 40 mM external concentration.  At t = 420 s the vesicles were lysed 

by addition of detergent and the final reading at t = 540 s was considered to equal 100% 

chloride efflux.  a) In the presence of the carrier compounds 4.1-4.4 chloride was not 

released from the vesicles when suspended in a sulfate solution.  b) Upon introduction of 

bicarbonate to the solution, chloride efflux began as one component of the 

chloride/bicarbonate antiport mechanism.  Experiments conducted by Dr. Roberto 

Quesada. 
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Under the assay conditions described above, addition of bicarbonate induced 

small changes (~0.2 units) in the pH of the external medium.  Control experiments in the 

presence of compounds 4.1-4.4 were therefore carried out to eliminate the possibility that 

chloride efflux was driven by a pH gradient. Addition of NaOH to the external medium 

resulted in no significant chloride efflux.  Furthermore, addition of bicarbonate solutions 

to a suspension of vesicles in the absence of transporters 4.1-4.4 resulted in no chloride 

efflux. 

 

4.8.4 Direct Evidence for Transmembrane HCO3
-/Cl- Exchange from NMR 

Spectroscopy. 

The NMR experiments described in this section were carried out by the author. 

The experiments depicted in Figure 4.16 provided strong, yet indirect, evidence that 

transporters 4.1-4.4 move bicarbonate across lipid membranes.  Thus to obtain direct 

evidence for transmembrane bicarbonate transport, 13C NMR spectroscopy was used to 

verify that transporters 4.1-4.4 facilitate transmembrane HCO3
-/Cl- exchange.  

Experiments that use paramagnetic Mn2+ to bleach the 13C NMR signal for extravesicular 

H13CO3
-, allowing for discrimination of extravesicular and intravesicular H13CO3

- were 

developed.  The rationale for these paramagnetic NMR protocols were based on previous 

experiments that: 1) monitored transmembrane chloride transport in liposomes by 35Cl 

NMR,45, 46 and 2) showed that intracellular and extracellular H13CO3
- could be 

distinguished in plant cells.245, 246  Figure 4.17 shows data from the first set of NMR 

experiments conducted to illustrate transporter-mediated HCO3
-/Cl- exchange.  These 

NMR experiments were done under similar conditions as described for the Cl- electrode 
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experiments in Figure 4.16.  Thus, EYPC liposomes (5 µm) filled with 450 mM NaCl 

were suspended in a 150 mM sulfate solution and 50 mM H13CO3
- was added to the 

NMR sample.  A sharp 13C NMR signal for extravesicular H13CO3
- was observed at δ = 

161 ppm.  Upon addition of 0.5 mM Mn2+, this signal was broadened into the baseline as 

the paramagnetic cation interacted with extravesicular bicarbonate.  After addition of 

transporters (prodigiosin 4.1 in Figure 4.17a and isophthalamide 4.4 in Figure 4.17b), a 

sharp 13C NMR signal for H13CO3
- (δ ~161 ppm) was restored.  This renewed 13C NMR 

signal must be caused by ligand-mediated transport of HCO3
- into the liposome since the 

paramagnetic Mn2+ is impermeable to the phospholipid bilayer.  Importantly, the control 

experiment in which DMSO was added without transporter did not result in any 

restoration of 13C NMR signal (Figure 4.17c).  Compound 4.2 behaved similarly to 4.1 

and 4.4 when tested in this same assay. 

 .  
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Figure 4.17. Representation of titration sequence and 13C NMR data (a-c) for monitoring 

transmembrane transport of HCO3
- into Cl--loaded EYPC liposomes by 4.1 and 4.4: i) a 

NaH13CO3 pulse (50 mM) was added to EYPC vesicles loaded with 450 mM NaCl, 20 

mM HEPES (pH 7.3) and dispersed in 150 mM Na2SO4, 20 mM HEPES (pH 7.3); ii) 

NMR spectra after addition of 0.5 mM Mn2+ (1:100 Mn2+/H13CO3
- ratio); iii) NMR 

spectra after addition of transporter or DMSO (4.1 – 0.1 mol%, 4.4 – 1 mol% relative to 

lipid, or DMSO – 403 mol%).  Experiments conducted by the author. 

 

 Data from another NMR experiment designed to verify transporter-mediated 

HCO3
-/Cl- exchange is shown in Figure 4.18.  In these experiments bicarbonate efflux 

from vesicles loaded with H13CO3
- upon addition of transporters 4.1 or 4.4 was 

monitored.  Thus, EYPC vesicles filled with H13CO3
- and suspended in Na2SO4 solution 

were aged overnight at 4 ºC.  Two 13C NMR signals separated by 1 ppm (δ ~162 and 
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~161 ppm) were observed, corresponding to separate signals for intravesicular and 

extravesicular H13CO3
- (Figure 4.18a-c).  The observation of two separate signals for 

intravesicular and extravesicular H13CO3
- was attributed to differences in the intra- and 

extravesicular chemical environment.  No leakage of H13CO3
- from these vesicles 

occurred after addition of 50 mM NaCl.  A DMSO solution of the transporters was then 

added to give ligand-to-lipid ratios of 0.1 mol % for 4.1 or 1 mol % for 4.4.  These 

transporters promote Cl-/H13CO3
- exchange, as confirmed by observation of only the 

NMR signal for extravesicular H13CO3
- (Figure 4.18a/b).  After addition of 0.5 mM 

Mn2+ (1:100 Mn2+/ H13CO3
-), this H13CO3

- signal was broadened into the baseline, 

confirming that all of the intravesicular H13CO3
- ions had been exchanged into the 

extravesicular milieu (Figure 4.18a/b).  A control experiment confirmed this 

interpretation (Figure 4.18c).  Thus, after addition of DMSO, the separate signals for 

intravesicular and extravesicular H13CO3
- remained unchanged.  Addition of Mn2+ to this 

control sample erased the extravesicular H13CO3
- signal, whereas the intravesicular 

H13CO3
- signal remained intact since Mn2+ cannot cross the lipid membrane. 

 In order to rule out a Na+/HCO3
- co-transport mechanism, another experiment 

similar to that depicted in Figure 4.18 but in which the order of addition of carrier and 

Cl- pulse were reversed was conducted.  No leakage of H13CO3
- from these vesicles 

occurred after addition of a DMSO solution of the transporters.  Additionally, a shift in 

the bicarbonate signal only occurred after the addition of NaCl, thus establishing that 

these transporters promote Cl-/H13CO3
- exchange and not Na+/H13CO3

- co-transport.   
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Figure 4.18. Representation of the titration sequence and NMR stack plots (a-c) for 

monitoring the transmembrane transport of HCO3
- ions in H13CO3

--loaded EYPC 

liposomes by 4.1 and 4.4. A 50 mM NaCl pulse was added to EYPC vesicles loaded with 

100 mM NaH13CO3, 20 mM HEPES buffer (pH 7.5) and dispersed in 75 mM Na2SO4, 20 

mM HEPES buffer (pH 7.3), and 13C-NMR data was acquired before (i) and after (ii) the 

Cl- pulse. NMR spectra were also collected after the addition of transporter or DMSO 

(4.1 – 0.1 mol%, 4.4 – 1 mol%, or DMSO – 870 mol% (10 µL) relative to lipid; iii), 

followed by addition of 0.5 mM Mn2+ (1:100 Mn2+/Cl- ratio; iv).  Experiments conducted 

by the author. 
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4.9 Conclusion 

 The studies in this chapter have led to the identification of “small” molecules that 

function as transmembrane bicarbonate carriers.  The ion selective electrode assays 

showed that both prodigiosin 4.1 and synthetic isophthalamides 4.2-4.4 facilitate the 

release of encapsulated chloride from POPC phospholipid liposomes in the presence of 

trigonal planar oxoanions such as nitrate and bicarbonate (Figures 4.14 and 4.16).  This 

efflux is produced via an exchange mechanism with external nitrate or bicarbonate 

anions.96, 236  Replacing nitrate with sulfate in the external medium resulted in no anion 

transport activity (Figures 4.15), as an anion exchange mechanism is not possible due to 

sulfate’s hydrophilicity.  An assay in which bicarbonate was added to the external sulfate 

medium showed that chloride transport mediated by 4.1-4.4 was restored, evidence that 

these compounds can extract the hydrophilic bicarbonate from aqueous solution into the 

interior of the phospholipid membrane, thus facilitating transmembrane HCO3
-/Cl- 

exchange.  The 13C NMR assays provided direct evidence for transmembrane bicarbonate 

transport, as the intra- and extra-vesicular 13C-labelled bicarbonate populations could be 

distinguished (Figures 4.17 and 4.18). The NMR data, in combination with results from 

the Cl--selective electrode experiments, firmly establish that compounds 4.1-4.4 enable 

the transmembrane exchange of Cl-/HCO3
- anions. 

 In conclusion, we have demonstrated that “small” molecules, including the natural 

product prodigiosin 4.1 and synthetic transporters 4.2-4.4, facilitate the 

chloride/bicarbonate exchange process that is typically mediated by membrane proteins 

(Section 4.4). This is the first report that prodigiosin 4.1 can catalyze 

chloride/bicarbonate antiport. This discovery may well present an alternative mechanism 
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by which prodigiosin 4.1 can influence biological systems. Furthermore, prodigiosin 4.1 

is more efficient at catalyzing Cl-/HCO3
- exchange than are synthetic isophthalamides 

4.2-4.4, suggesting that the tripyrrole unit with its array of hydrogen bonding donor and 

acceptor groups may be an excellent motif on which to base the synthesis of potent 

bicarbonate receptors and transporters. Such synthetic bicarbonate/chloride antiporters 

may prove to be useful tools for biomembrane research.  
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Chapter 5: Future Directions 

 As discussed in Chapters 1 and 2, the majority of synthetic anion transporter 

examples reported in the literature are Cl- transporters, and the number continues to 

grow.26, 49, 50, 53  The earlier contributions from the Davis group toward anion transport 

chemistry have also been focused on Cl- transport.  In Chapter 2, I discussed our 

contributions to achieving transmembrane Cl- transport using lipophilic calixarenes fixed 

in the cone conformation.  TAC-OH 2.3 was identified as a compound whose Cl- 

transport activity is gated by pH.  The mechanism by which TAC-OH 2.3 gates Cl- 

transport (by electrostatic repulsion – Section 2.7.4) is similar to that described for the 

natural ClC chloride channel.  The natural ClC chloride channel gates the conduction of 

Cl- ions through its pore by the protonation and deprotonation of a glutamic acid residue 

at the entrance of its selectivity filter (Section 1.4.1.3).31  The studies described in 

Chapters 3 and 4 represent our initial efforts at venturing into a broader based study of 

the transmembrane transport of anions other than Cl- by synthetic molecules.   

Highlighted in Chapter 3 are the efforts that led to our discovery of nitro tripod 3.1, a 

receptor with affinity for both Cl- and NO3
- anions, but which only transports NO3

- ions 

by an H+/NO3
- symport (or corresponding OH-/NO3

- antiport) mechanism.  We are 

especially interested in developing synthetic receptors and transporters for the 

biologically important, but under-studied bicarbonate anion.  Despite the important role 

of bicarbonate in numerous biological processes, as well as the implication of its 

dysregulated transport across membranes in various diseases,4 little is known about 

synthetic receptors and transporters for the particular anion.  Thus, in Chapter 4, I 

described our initial efforts at identifying non-protein, small molecule receptors and 



 146 
 

transporters for bicarbonate.  The transport of bicarbonate anion across liposomal 

membranes was achieved using the natural product prodigiosin 4.1 and synthetic 

isophthalamides 4.2-4.4.  Compounds 4.1-4.4 transport HCO3
- via an anion exchange 

mechanism (Cl-/HCO3
- antiport) much like Cl-/HCO3

- anion exchanger proteins.1   

 While prodigiosin 4.1 is known to transport anions via a carrier mechanism,236 the 

mechanism of anion transport (carrier vs. channel mechanism) by synthetic transporters 

2.3, 3.1 and 4.2-4.4 have not been clearly elucidated.  Since these synthetic transporters 

are too small to span the bilayer membrane as unimolecular channels, it is necessary to 

determine whether they function as discrete entities (carriers) or as membrane-spanning 

aggregates (channels).  Elucidation of the anion transport mechanism (carrier vs. channel 

mechanism) may be achieved using various liposomal assays or the voltage clamp 

experiment.   

 As mentioned before, cystic fibrosis (CF) is caused by the dysregulation of both 

chloride and bicarbonate transport.  Since the ultimate goal for the design of synthetic 

anion transporters is their use as potential therapeutic agents, or as building blocks for 

potential therapeutics, transporters 2.3 and 4.1-4.4 may be useful as tools to study disease 

models.  Therefore, evaluation of transport activities in CF epithelial cells would be 

informative as to the therapeutic potential of these compounds.  Transport studies in cells 

would also allow comparison of the efficacy of compounds 2.3 and 4.1-4.4 with other 

small molecules known to restore the expression and function of CF mutants.   

 Compounds 4.1-4.4 are anion-selective, but not bicarbonate-specific, thus the 

need to identify new bicarbonate-specific receptors/transporters remains. The use of 

reversible, covalent binding of bicarbonate may allow such selectivity to be achieved.  
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Reversible, covalent binding of bicarbonate can be achieved by exploiting the reaction of 

trifluoroacetophenone (TFA) with carbonate and bicarbonate.247, 248 Carbonate anions 

react with the TFA moiety to give stable tetrahedral alkoxides.  Ahn and coworkers 

showed that an NH amide group, when located in the neighbouring α-position of a TFA 

unit, stabilizes the alkoxide intermediate via intramolecular H-bonding and shifts the 

equilibrium toward the tetrahedral TFA-anion adduct (Figure 5.1).249  TFA carriers 

should not interact with chloride anion, since Cl- is less basic and less nucleophilic than 

HCO3
- anion.  Hence, TFA-based systems may allow the uncoupling of Cl-/HCO3

- 

antiport processes by using a different carrier for each anion.  Compound 5.1 is proposed 

as a possible design for such TFA-based bicarbonate transporters using Smith’s 

phospholipid design (Chart 5.1).  The phospholipid design is particularly attractive for 

the ease of synthesis (receptor 5.1 can be obtained in 3-4 synthetic steps). 250  Comparison 

of 5.1 to a compound such as 5.2 should provide insight as to whether the phospholipid 

anchor group in 5.1 is necessary.  In addition, comparison of 5.1 to Smith’s original 

design (compound 1.5 in Section 1.6.1.2), which lacks the trifluoroacetophenone moiety 

may provide insight into the efficacy of the TFA unit for HCO3
- recognition and 

transport.  Variations to the design may be further explored for system optimization.   
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Figure 5.1. a) Covalent capture strategy for bicarbonate binding by a TFA-substituted 

phenylacetamide scaffold. b) The [TFA-HCO3]- adduct is stabilized by intramolecular 

hydrogen bond from the amide NH proton. 
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 Steroidal scaffolds may also be explored as organizing elements for the TFA 

anion recognition unit in phospholipid membranes.251  The steroidal design is especially 

attractive as both carrier-type and membrane-spanning transporters may be prepared. 59, 88, 

252  Cholic acid or 7-deoxycholic acid may be used to access carriers such as 5.3 and 5.4 

(Chart 5.2).  Deoxycholic acid may provide access to less sterically-crowded carriers. 

The influence of the anchoring group on membrane insertion and partition may also be 

studied with steroid-TFA adduct 5.5, an amide analog of 5.4.  The transport activities of 

proposed stabilized adducts 5.3-5.5 may be compared to that of known, non-stabilized 

5.6.251  Membrane-spanning steroid-TFA adducts such as 5.7 may also be studied for 
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transmembrane bicarbonate transport.  The steroid-TFA dimer may serve as a shuttle for 

HCO3
- translocation across the membrane as depicted in Figure 5.2.  This dimer design 

may be a versatile way to achieve HCO3
- transport as well as gain access to fluorescent 

sensors for the anion.  Compounds such as 5.7 may also be useful for probing the 

orientation of the steroid dimers in the bilayer membrane, a phenomenon that evades 

definitive characterization in some recently reported steroidal channels.88, 252  Finally, the 

anthracene-TFA adduct 5.8 recently reported by Ahn and coworkers, as a sensor for α-

amino carboxylates, may serve as a standard for quantifying the activity of fluorescent 

TFA-based transporters such as 5.7.253 
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Figure 5.2. Proposed transport of HCO3
- by a cholate-TFA channel across the membrane. 
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Chapter 6: Experimental Procedures and References 

6.1 General Experimental. 

 All 1H NMR spectra were recorded on a Bruker DRX-400, a Bruker Avance 400 

instrument operating at 400.13 MHz, or a Bruker DRX-500 operating at 500.13 MHz, or 

on a Bruker DRX-600 operating at 600.13 MHz.  The 13C NMR spectra were recorded on 

a Bruker DRX-400 instrument operating at 100.52 MHz, or a Bruker DRX-500 

instrument operated at 125.77 MHz.  Chemical shifts are reported in ppm relative to the 

residual protonated solvent peak. Electrospray ionization (ESI) mass spectra were 

recorded on a JEOL AccuTOF-CS es-tof instrument with an Agilent 1100 HPLC 

interface. Deuterated solvents were purchased from Cambridge Isotope laboratories. 

Lucigenin and HTPS dyes were purchased from Molecular Probes. EYPC lipids, 

Nuclepore polycarbonate membranes and membrane supports were purchased from 

Avanti Polar Lipids. All other chemicals and solvents were purchased from Sigma, 

Aldrich, Fisher, Fluka, or Acros and used without further purification. EYPC fluorimetric 

assays were performed using a Hitachi F-4500 spectrophotometer with cuvette 

temperature maintained by a water bath circulator at 25 ºC (+/- 0.2 oC). The pH of 

solutions was monitored with a Fisher Scientific AR25 dual channel pH/ion meter. 

Chromatography was performed using 60-200 mesh silica purchased from Baker, or 

Sephadex G-25 purchased from Aldrich. Thin layer chromatography was performed on 

UniplateTM Silica Gel GF silica-coated glass plates and visualized with a UV lamp, or by 

staining with iodine or an aqueous solution of ceric ammonium molybdate (CAM). All 

solvents were dried and distilled following standard procedures.  Paco-H 2.16 and cone-
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tBu 2.2b123, 124 were prepared as previously reported from the corresponding partial cone 

or cone tetra-esters respectively, by: i) hydrolysis to the tetra-acid; ii) activation to the 

acid chloride; and iii) amide bond formation.  Both compounds were confirmed by 1H 

and 13C NMR.  Calixarene 2.14,126, 127 2-bromo-N-butylacetamide 2.15,254 n-butyl-2-

bromoacetate 2.16,255 tris-p-nitrophenol 3.14,187 and tris-tBu-phenol 3.15184 were 

prepared following published methods. All synthesis were carried out under an inert 

atmosphere (N2 gas).  Prodigiosin 4.1 was a gift from the Developmental Therapeutics 

Program at the National Cancer Institute, US National Institutes of Health, and confirmed 

by 1H and 13C NMR, and ESI-MS. X-ray crystal structures were obtained on a Bruker 

Smart1000 diffractometer with CCD area detector by Dr. Peter Y. Zavalij. 

 

6.2 Experimental Procedures for Chapter 2. 

6.2.1 Synthetic Procedures. 

25,26,27,28-tetrakis(2-butylamidomethoxy)calix[4]arene (cone-H 2.2a).  Cone 

25,26,27,28-tetrakis-(ethylacetylmethoxy)calix[4]arene 2.12 (275 mg, 0.36 mmol), 

prepared according to the literature,125 and 1 mL of 45 % aqueous KOH were stirred in 6 

mL of methanol/THF (1:1) at room temperature (rt) for 14 h. The solvent was evaporated 

under reduced pressure. The resulting solid was dissolved in a minimum amount of 

water, acidified with 6 N HCl and the water removed under reduced pressure. The 

material was dissolved in acetone, solid KCl was removed by filtration and acetone was 

then evaporated to give the tetra-acid as a white solid. The acid chloride was prepared by 

stirring a solution of the calixarene tetraacid 2.13 (565 mg, 0.85 mmol) in 20 mL of 

benzene with 5.1 mL of SOCl2. The reaction mixture was heated at reflux for 2.5 h and 
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then concentrated under reduced pressure. The sticky brown solid was dried in vacuo for 

1 h and then dissolved in 20 mL of CH2Cl2. N-Butylamine (1.32 mL, 16 eq.) was added 

dropwise to the stirring solution at room temperature. Triethylamine (1.2 mL, 10 eq.) was 

then added dropwise and the reaction stirred under N2 for 12 h at rt. The solvent was 

evaporated and the resulting solid partitioned between CHCl3 and H2O. The organic layer 

was dried with sodium sulfate and evaporated. Pure 2.2a (332 mg, 44.5% yield from the 

tetra-ester) was obtained after silica gel chromatography with 3% MeOH–CH2Cl2. 1H 

NMR (400 MHz, CDCl3) δ: 7.34 (broad s, 4H, CONHCH2), 6.62–6.59 (m, 12H, ArH), 

4.50 (d, J = 13.9 Hz, 4H, ArCH2Ar), 4.43 (s, 8H, ArOCH2CO), 3.34 (q, J = 6.6 Hz, 8H, 

CONHCH2), 3.24 (d, J = 14.0 Hz, 4H, ArCH2Ar), 1.59–1.52 (m, 8H, NHCH2CH2), 1.37–

1.29 (m, 8H, NH(CH2)2CH2), 0.91 (t, J = 7.3 Hz, 12H, NH(CH2)3CH3). 13C NMR (100 

MHz, CDCl3) δ: 170.0, 156.3, 134.7, 129.3, 123.7, 74.5, 39.6, 32.0, 31.4, 20.6, 14.2. 

Mass calculated for C52H68N4O8: 876.504. Mass found (+)-ESI-MS: 877.513 (M + H+); 

899.477 (M + Na+).  

 

25,26,27,28-Tetrakis(hydroxy)calix[4]arene (2.14).126 A slurry of p-tert-

butylcalix[4]arene (1.03g, 1.59 mmol) and phenol (0.842 g, 8.94 mmol) in toluene (30 

mL) was stirred under N2 for 0.5 h. Then, AlCl3 (1.29 g, 9.69 mmol) was added and the 

reaction left to stir for 2 d at rt. The reaction was quenched with 0.2 N HCl (35 mL), the 

solvent removed in vacuo and MeOH (7 mL) added at which point a precipitate formed. 

The precipitate was filtered to yield crude 2.14, which crude was then purified by 

recrystallization (2% MeOH–CHCl3) to give pure 2.14 (0.337 g, 50%) as transparent 

crystals. M.p. 297-300 oC.  1H NMR (400 MHz, CDCl3) δ: 10.20 (s, 4H, ArOH), 7.06 (d, 
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J = 7.6 Hz, 8H, ArH), 6.73 (t, J = 7.6 Hz, 4H, ArH), 4.27 (s, 4H, ArCH2Ar), 3.55 (s, 4H, 

ArCH2Ar). 13C NMR (100 MHz, CDCl3) δ: 149.2, 129.3, 128.8, 122.7, 32.2. Mass 

calculated for C28H24O4: 424.167. Mass found (+)-ESI-MS: 425.229 (M + H+); 463.051 

(M + K+). 

 

25-Hydroxy-26,27,28-tris(2-butylamidomethoxy)calix[4]arene (TAC-OH 2.3).256 A 

solution of calixarene 2.14 (0.804 g, 1.89 mmol), Ba(OH)2 (1.79 g, 5.67 mmol) and BaO 

(1.69 g, 11.0 mmol) in DMF (15 mL) was stirred at 40 ºC for 1 h under N2 gas. A 

solution of 2-bromo-N-butylacetamide 2.15 (1.10 g, 5.67 mmol) in DMF (5 mL) was then 

added dropwise and the mixture stirred for 4 h. The mixture was diluted with CH2Cl2 (60 

mL), washed with 0.2 N HCl (3 x 30 mL) and H2O (3 x 30 mL), and dried over MgSO4. 

The solvent was removed in vacuo to give a yellow residue containing TAC-OH 2.3 and 

other impurities. TAC-OH 2.3 (0.376 g, 26%) was separated from the mixture by silica 

gel chromatography (1:1 EtOAc–Hexanes) as translucent colorless flakes. M.p. 121-123 

oC. 1H NMR (400 MHz, CDCl3) δ: 7.98 (t, J = 5.4 Hz, 1H, CONHCH2), 7.27 (d, J = 7.8 

Hz, 2H, ArH), 7.16 (d, J = 7.2 Hz, 2H, ArH), 7.13 (t, J = 7.8 Hz, 1H, ArH), 7.01 (t, J = 

5.8 Hz, 2H, CONHCH2), 6.88 (t, J = 7.5 Hz, 1H, ArH), 6.47 (d, J = 7.4 Hz, 2H, ArH), 

6.44 (td, J = 7.5, 1.8 Hz, 2H ArH), 6.35 (dd, J = 7.3, 1.8 Hz, 2H ArH), 4.39 (s, 2H, 

ArOCH2CO), 4.36 (d, J = 14.9 Hz, 2H, ArOCH2CO), 4.27 (d, J = 13.6 Hz, 2H, 

ArCH2Ar), 4.19 (d, J = 14.5 Hz, 2H, ArCH2Ar), 4.15 (d, J = 14.8 Hz, 2H, ArOCH2CO), 

3.75 (s, 1H, ArOH), 3.43 (d, J = 14.4 Hz, 2H, ArCH2Ar), 3.35 (d, J = 13.5 Hz, 2H, 

ArCH2Ar), 3.28–3.49 (m, 6H, NHCH2CH2), 1.49–1.64 (m, 6H, NHCH2CH2), 1.33–1.43 

(m, 4H, NH(CH2)2CH2), 1.24–1.33 (m, 2H, NH(CH2)2CH2), 0.93 (t, J = 7.3 Hz, 6H, 
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NH(CH2)3CH3), 0.75 (t, J = 7.3 Hz, 3H, NH(CH2)3CH3). 13C NMR (100 MHz, CDCl3) δ: 

169.1, 168.4, 155.1, 153.6, 152.5, 136.5, 132.9, 132.8, 131.4, 130.8, 129.4, 129.3, 128.7, 

125.4, 125.0, 121.2, 75.1, 74.7, 40.2, 39.6, 32.2, 31.6, 31.2, 30.6, 20.8, 20.6, 14.2, 14.0. 

Mass calculated for C46H57N3O7: 763.420. Mass found (+)-ESI-MS: 764.477 (M + H+); 

786.462 (M + Na+). 

 

25-(2-Butoxycarbonylmethoxy)-26,27,28-tris(2-butylamidomethoxy)calix[4]arene 

(TAC-Ester 2.4).257  A solution of TAC-OH 2.3 (0.100 g, 0.13 mmol), Cs2CO3 (0.43 g, 

1.32 mmol) in DMF (6 mL) was stirred at 70 ºC for 10 min under N2 gas. A solution of 

butyl-2-bromoacetate 2.16 (0.255 g, 1.31 mmol) in DMF (4 mL) was then added 

dropwise and the mixture stirred for 24 h. After 24 h, the reaction mixture was cooled to 

room temperature, and then quenched with 1.0 M HCl (10 mL). The aqueous mixture 

was extracted with CH2Cl2 (3 x 10 mL) and the resulting organic layer washed with 

distilled H2O (4 x 15 mL), dried over MgSO4 and the solvent was removed in vacuo. The 

residue was subsequently purified by silica gel chromatography (1:1 EtOAc–Hexanes) to 

give compound 2.4 as a white solid. Yield 45%; 1H NMR (400 MHz, CDCl3) δ: 7.91 (t, 

2H, CONHCH2), 6.88–6.77 (m, 7H, ArH; CONHCH2), 6.74 (t, J = 7.5 Hz, 2H, ArH), 

6.32 (d, J = 7.5 Hz, 4H, ArH), 4.77 (s, 2H, ArOCH2CO2), 4.59 (d, J = 14.0 Hz, 2H, 

ArOCH2CONH), 4.44 (d, J = 14.0 Hz, 4H, ArCH2Ar), 4.44 (s, 2H ArOCH2CONH), 4.31 

(d, J = 14.6 Hz, 2H, ArOCH2CONH), 4.13 (t, J = 6.8 Hz, 2H, CO2CH2), 3.45–3.34 (m, 

6H, NHCH2), 3.26 (dd, J = 14.0, 4.5 Hz, 4H, ArCH2Ar), 1.65–1.57 (m, 6H, NHCH2CH2), 

1.51–1.45 (m, 2H, CO2CH2CH2), 1.42–1.32 (m, 6H, NH(CH2)2CH2), 1.31–1.24 (m, 2H, 

CO2(CH2)2CH2), 0.93 (t, J = 7.4 Hz, 6H, NH(CH2)3CH3), 0.92 (t, J = 7.3 Hz, 3H, 
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NH(CH2)3CH3), 0.90 (t, J = 7.7 Hz, 3H, CO2(CH2)3CH3). 13C NMR (100 MHz, CDCl3) δ: 

171.6, 169.6, 169.5, 155.3, 135.5, 135.3, 133.8, 133.5, 129.9, 129.0, 128.7, 123.9, 123.6, 

123.5, 78.1, 74.6, 71.9, 65.4, 39.7, 39.5, 39.4, 32.3, 32.1, 31.4, 31.3, 31.0, 30.1, 20.7, 

20.5, 19.5, 14.3, 14.2, 14.1. Mass calculated for C52H67N3O9: 877.488. Mass found (+)-

ESI-MS: 878.507 (M + H+); 900.480 (M + Na+); 1014.549 (M + Ba2+). 

 

2-bromo-N-butylacetamide (2.15).254  To a solution of n-butylamine (2.28 g, 31.2 

mmol) in CH2Cl2 (20 mL) at -35 oC, bromoacetyl bromide (3.00g, 14.9 mmol) in CH2Cl2 

(10 mL) was added dropwise. The reaction mixture was allowed to stir for 1 h at -35 oC 

after which the cold-bath was removed and the mixture allowed to warm up to rt. The 

reaction was quenched with 0.2 N HCl (20 mL) and the organic layer washed with brine 

(20 mL) and dried over MgSO4. The solvent was removed in vacuo and the resulting 

crude product purified by column chromatography (2% MeOH–CH2Cl2) to yield 2.15 

(2.28 g, 79%) as white flakes. M.p. 32-34 ºC (lit. 30-33 ºC).258  1H NMR (400 MHz, 

CDCl3) δ: 6.50 (br s, 1H, CONHCH2), 3.92 (s, 2H, BrCH2CO), 3.32 (q, J = 5.9 Hz, 2H, 

NHCH2CH2CH2), 1.56 (m, 2H, CH2CH2CH2CH3), 1.40 (m, 2H, CH2CH2CH3), 0.97 (t, J 

= 7.3 Hz, 3H, CH2CH3). 13C NMR (100 MHz, CDCl3) δ: 165.6, 40.4, 31.7, 29.8, 20.4, 

14.1. Mass calculated for C6H12BrNO: 193.010. Mass found (+)-ESI-MS: 215.235 (M + 

Na+). 

 

Butyl-2-bromoacetate (2.16).255 Compound 2.16 was synthesized according to literature 

procedure with slight modifications.  Briefly, to a stirred solution of triethylamine (4.8 

mL, 3.47 g, 34.3 mmol), n-butanol (2.1 mL, 1.70 g, 22.9 mmol) and dichloromethane (30 
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mL) at -78 °C under a nitrogen atmosphere was added dropwise bromoacetyl bromide 

(2.0 mL, 4.62 g, 22.9 mmol). After stirring at -78 °C for 3 h the reaction mixture was 

allowed to warm up to rt.  A white precipitate that had formed was filtered off.  The 

organic layer was then washed with 0.2 N HCl (2 x 45 mL) and distilled water (2 x 50 

mL), and then dried over magnesium sulfate and filtered.  The excess solvent (CH2Cl2) 

was removed in vacuo to obtain a dark orange liquid.  The crude product (3.43 g, slight 

impurities by 1H NMR) was distilled under pressure to give 2.16 as a clear, colorless 

liquid in 39% yield (1.76 g, 118 mmol).  Distillate was collected under pressure at 61 ºC 

(literature b.p. is 78 ºC at 10 Torr259). 1H NMR (400 MHz, CDCl3) δ: 4.17 (t, J = 6.7 Hz, 

2H, COOCH2CH2), 3.82 (s, 2H, BrCH2CO), 1.64 (m, 2H, OCH2CH2CH2), 1.39 (m, 2H, 

OCH2CH2CH2CH3), 0.93 (t, 3H, J = 7.4 Hz, CH2CH2CH3). 13C NMR (100 MHz, CDCl3) 

δ: 167.3, 66.1, 30.4, 25.9, 18.9, 13.6.  

 

25-Butoxy-26,27,28-tris(2-butylamidomethoxy)calix[4]arene (TAC-OEther 2.17).257  

A solution of TAC-OH 2.3 (0.100 g, 0.131 mmol), and Cs2CO3 (0.43 g, 1.32 mmol) in 

DMF (6 mL) was stirred at 70 ºC for 10 min under N2. A solution of n-butyl bromide 

(141 µL, 0.179 g, 1.31 mmol) in DMF (4 mL) was then added dropwise and the mixture 

stirred for 24 h. After 24 h, the reaction mixture was cooled to room temperature, and 

then quenched with 1.0 M HCl (10 mL). The aqueous mixture was extracted with CH2Cl2 

(3 x 10 mL) and the resulting organic layer washed with distilled H2O (4 x 15 mL), dried 

over MgSO4, and the solvent was removed in vacuo. The residue was subsequently 

purified by silica gel chromatography (1:1 EtOAc–Hexanes) to give compound 2.17 as a 

transparent film in 17% yield . 1H NMR (400 MHz, CDCl3) δ: 7.70 (t, 1H, CONHCH2), 
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6.98 (t, J = 5.8 Hz, 2H, CONHCH2), 6.86 – 6.81 (m, 4H, ArH), 6.79 (t, J = 7.3 Hz, 2H, 

ArH), 6.46 (t, J = 7.7 Hz, 1H, ArH), 6.45 (t, J = 7.8 Hz, 1H, ArH), 6.35 (d, J = 7.5 Hz, 

2H, ArH), 6.30 (d, J = 7.6 Hz, 2H, ArH), 4.62 (d, J = 14.5 Hz, 2H, ArOCH2CO), 4.51 (d, 

J = 13.9 Hz, 2H, ArCH2Ar), 4.43 (d, J = 14.6 Hz, 2H, ArOCH2CO), 4.39 (s, 2H, 

ArOCH2CO), 4.38 (d, J = 13.9 Hz, 2H, ArCH2Ar), 3.88 (t, J = 7.7 Hz, 2H, ArOCH2CH2), 

3.39 (q, J = 7.2 Hz, 2H, CONHCH2), 3.33 (q, J = 7.3 Hz, 4H, CONHCH2), 3.26 (dd, J = 

14.0, 7.5 Hz, 4H, ArCH2Ar), 1.80–1.73 (m, 2H, ArOCH2CH2), 1.64–1.46 (m, 4H, 

NHCH2CH2; 2H, ArO(CH2)2CH2), 1.41–1.28 (m, 8H, NH(CH2)2CH2), 0.95 (t, J = 7.4 

Hz, 3H, ArO(CH2)3CH3), 0.93 (t, J = 7.4 Hz, 3H, NH(CH2)3CH3), 0.92 (t, J = 7.3 Hz, 6H, 

NH(CH2)3CH3). 13C NMR (100 MHz, CDCl3) δ: 169.9, 169.1, 157.1, 155.5, 155.1, 135.2, 

134.1, 133.6, 130.0, 129.6, 129.1, 128.7, 123.8, 123.4, 123.3, 76.0, 74.7, 74.3, 39.6, 32.3, 

32.3, 32.1, 31.8, 31.5, 30.1, 20.7, 20.6, 19.6 14.5, 14.3, 14.2. Mass calculated for 

C50H65N3O7: 819.482. Mass found (+)-ESI-MS: 820.447 (M + H+); 842.426 (M + Na+). 
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6.2.2 Experimental Details. 

X-ray Crystallographical Data for TAC-OH 2.3.  Crystals were obtained by slow 

evaporation of a CD2Cl2 solution of TAC-OH 2.3, and the structure (Figure 6.1) was 

solved by Dr. Peter Y. Zavalij.  Table 6.1 shows crystal data and structure refinement 

parameters for TAC-OH 2.3.  Detailed crystallographic data and the structure report for 

UM1507 (TAC-OH 2.3) can be obtained from the Department of Chemistry and 

Biochemistry, University of Maryland, College Park, MD 20742. 

 

 

Figure 6.1. A view of TAC-OH 2.3 showing the anisotropic atomic displacement 

ellipsoids for non-hydrogen atoms at the 30% probability level. Hydrogen atoms are 

displayed with an arbitrarily small radius.  
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Table 6.1. Crystal data and structure refinement for TAC-OH 2.3.  

  Empirical formula C46H57N3O7 
  Formula weight 763.95 
  Temperature 220(2) K 
  Wavelength 0.71073 Å 
  Crystal size 0.55 × 0.31 × 0.04 mm3 
  Crystal habit colorless plate 
  Crystal system Monoclinic 
  Space group C2/c 
  Unit cell dimensions  a = 42.366(10) Å          α = 90° 
 b = 9.966(2) Å              β = 95.517(5)° 
 c = 18.799(4) Å            γ = 90° 
  Volume 7901(3) Å3 
  Z 8 
  Density, ρcalc 1.284 g/cm3 
  Absorption coefficient, µ 0.086 mm-1 
  F(000) 3280⎯e  
  Radiation source fine-focus sealed tube, MoKα 
  Generator power 50 kV, 40 mA  
  Detector distance 4.950 cm  
  Detector resolution 8.33 pixels/mm  
  Total frames 1012  
  Frame size 512 pixels  
  Frame width 0.3 ° 
  Exposure per frame 38 sec 
  Total measurement time 12.7 hours 
  Data collection method ω scans  
  θ range for data collection 2.30 to 22.50° 
  Index ranges -45 ≤  h ≤  45, -10 ≤  k ≤  10, -20 ≤  l ≤  18  
  Reflections collected 12468 
  Independent reflections 5131 
  Observed reflection, I>2σ(I) 1966 
  Coverage of independent reflections 99.2 % 
  Variation in check reflections 0 % 
  Max. and min. transmission 0.997 and 0.942 
  Function minimized Σw(Fo

2 - Fc
2)2  

  Data / restraints / parameters 5131 / 733 / 590 
  Goodness-of-fit on F2 1.070 
  ∆/σmax 0.000 
  Final R indices: R1,   I>2σ(I) 0.0970 
                             wR2, all data 0.2160 
                             Rint; Rsig 0.0512; 0.0854 
   Weighting scheme w = 1/[σ2(Fo

2) + (0.02P)2 + 31.75P], 
 P = [max(Fo

2 ,0) + 2Fo
2]/3  

  Largest diff. peak and hole  0.270 and -0.254⎯e/Å3    
R1 = Σ||Fo|-|Fc||/Σ|Fo|,    wR2 = [Σw(Fo

2-Fc
2)2/Σw(Fo

2)2]1/2 
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X-ray Crystallographical Data for TAC-OEster 2.4. Crystal data for TAC-OEster 2.4: 

C52H67N3O9, Mr 878.09, crystal dimensions 0.35 x 0.16 x 0.12 mm3, monoclinic, 

space group P21/c, a = 13.6215(18) Å, b = 19.208(2) Å, c = 19.424(3) Å, V= 4984.0(11) 

Å3, Z = 4, ρcalcd = 1.170 g/cm3, MoKα 0.071 mm-1. The structure refined to 

convergence [∆/σ ≤ 0.001] with R(F) = 5.53%, wR(F2) = 12.91%, GOF = 0.814 for all 

5,489 unique reflections. Crystallographic data for the structure of TAC-OEster 2.4 

reported in this thesis have been published,118 and deposited with the Cambridge 

Crystallographic Data Centre as supplementary publication # CCDC-649436. Copies of 

the data can be obtained free of charge on application to CCDC, 12 Union Road, 

Cambridge CB21EZ, UK. E-mail: deposit@ccdc.cam.ac.uk. 

 

1H NMR Titrations for TAC-OH 2.3.  A stock solution of TAC-OH 2.3 (2.0 mM) in 

CD2Cl2 was prepared and divided into nine NMR tubes (300 µL solutions). Stock 

solutions of the anions (tetrabutylammonium chloride (TBACl) or tetrabutylammonium 

nitrate (TBANO3)) in two different concentrations labeled solution A (50 mM) and 

solution B (4 mM) were also prepared. Aliquots of anion stock solution were then added 

to each NMR tube in increasing volumes (in µL) as follows: of solution A – 0, 60, 120, 

and 240; and of solution B – 0, 15, 30, 75, 150, and 300. This provided final anion 

concentrations of: 0, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0 and 20.0 mM, and anion:2.3 ratios 

from 0 to 20 equivalents. The total solution volume was kept constant at 600 µL (pure 

solvent (CD2Cl2) was added to make up this volume where necessary) to afford a 

constant concentration of 1.0 mM for TAC-OH 2.3. Changes in the chemical shifts of the 

amide protons of TAC-OH 2.3 were then monitored by NMR (400 MHz, 25 ºC) and the 
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titration curves fit to the 1:1 binding model using the Associate 1.6 Copy software for 

bimolecular association constant determination by non-linear regression analysis of 

spectroscopic data. 

 

Preparation of EYPC Liposomes for Lucigenin Assays.  Large unilamellar vesicles 

(LUVs) were prepared using egg-yolk phosphatidylcholine (EYPC) lipid.  EYPC lipid 

(60 mg) was dissolved in 5 mL of chloroform/methanol. The resulting solution was 

evaporated under reduced pressure to give a thin film that was dried in vacuo overnight. 

The lipid film was then rehydrated with a phosphate buffer solution containing 1 mM 

lucigenin dye (10 mM sodium phosphate, pH 6.4; 100 mM NaNO3) to give a 60 mg/mL 

solution of lipid.  After 10 freeze/thaw cycles, the liposomes were extruded through a 100 

nm polycarbonate membrane at least 21 times at rt using a high-pressure mini-extruder 

(Avanti Lipids).  The resulting liposome solution was passed through a Sephadex (G-25) 

column to remove excess dye (eluant, sodium phosphate buffer, pH 6.4, 100 mM 

NaNO3). The isolated liposomes were diluted to give a concentration of 25 mM in EYPC, 

assuming 100% retention of lipid during the gel filtration process.  

 

Chloride Transport Assay in Liposomes.  In a typical experiment, 50 µL of the stock 

EYPC liposomes was diluted into 2 mL of 10 mM sodium phosphate (pH 6.4, 100 mM 

NaNO3) to give a solution that is 0.5 mM in lipid. Compounds 2.1–2.4 were added to 

give a 2:100 ligand-to-lipid ratio. To the cuvette containing the EYPC-transporter 

mixture was added 20 µL of 2.425 M NaCl solution through an injection port, after 15 s, 

to give an external Cl- concentration of 24 mM. Intravesicular Cl- concentration was 
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monitored as a function of lucigenin fluorescence. The fluorescence of lucigenin was 

monitored at 372 nm and emission at 503 nm for 300 s. The cuvettes were kept at 25 °C 

during the experiment with a constant water temperature bath. After 270 s, 40 µL of 10 % 

Triton-X detergent was added to lyse the liposomes. Experiments were done in triplicate 

and all traces reported are the average of the three trials. Lucigenin fluorescence was 

converted to chloride concentration using the Stern-Volmer constant determined under 

the assay conditions.189 The Stern-Volmer constant was determined by taking the slope of 

a plot of fo/f vs. chloride concentration, where fo is the normalized lucigenin fluorescence 

in the absence of Cl-, and f the normalized fluorescence in the presence of Cl-. A typical 

Stern-Volmer calibration curve is shown in Figure 6.2.  Figure 6.3 shows the rate of Cl- 

transport by TAC-OBu 2.10 compared to TAC-OAcBu 2.4. 
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Figure 6.2. A standard fo/f vs. [Cl-] calibration curve for calculating Ksv – the Stern-

Volmer constant.  Ksv is taken as the slope of the calibration curve (142 mM-1 in this 

case). Data points represent an average of two runs.  
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Figure 6.3. Comparison of the Cl- transport activity of a butyl ether calixarene analog, 

TAC-OEther 2.17, with that of TAC-OEster 2.4, and TAC-OH 2.3 as a standard.  

 

Chloride Transport Assay in Liposomes experiencing a pH Gradient.  For the 

experiments in which transmembrane Cl- transport was modulated by pH (Figure 2.16), 

the procedure was the same as described above, except that the pH of the extravesicular 

buffer was varied from 6.4-9.0. 

 

6.3 Experimental Procedures for Chapter 3. 

6.3.1 Synthetic Procedures. 

Tris(5-nitro-2-butylamidomethoxyphenyl)methane (3.1).  Nitro tripod 3.1 was 

prepared from the known tris-p-nitrophenol intermediate 3.14 (nitrophenol 3.14 was 

prepared by Dr. Santacroce).187 A solution of 3.14 (0.100 g, 0.23 mmol) and KOH (0.041 

g, 0.73 mmol) in acetone (15 mL) was stirred for 1 h at rt. Then, 2-bromo-N-

butylacetamide (2.15; 0.14 g, 0.73 mmol) dissolved in acetone (5 mL) was added and the 

reaction mixture was allowed to reflux overnight. After cooling to rt, ethyl acetate (15 
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mL) was added to the reaction mixture. This solution was washed with water (15 mL) 

and the organic layer separated. The solvent was removed in vacuo and the resulting 

crude product purified by column chromatography (5% MeOH–CH2Cl2), to yield nitro 

tripod 3.1 (0.064 g, 36%) as a yellow powder. M.p. 190-191 ºC.  1H NMR (400 MHz, 

CDCl3) δ:  8.28 (dd, J = 9.2 Hz, 2.4 Hz, 3H, ArH), 7.66 (sd, J = 2.4 Hz, 3H, ArH), 7.01 

(d, J = 9.2 Hz, 3H, ArH), 6.52 (s, 1H, ArCHAr), 5.86 (t, J = 5.6 Hz, 3H, CONHCH2), 

4.52 (s, 6H, ArOCH2CO), 3.12 (q, J = 6.4 Hz, 6H, NHCH2CH2CH2), 1.30 (m, 6H, 

CH2CH2CH2CH3), 1.21 (m, 6H, CH2CH2CH3), 0.87 (t, J = 7.2 Hz, 9H, CH2CH3). 13C 

NMR (100 MHz, CDCl3) δ: 166.8, 159.7, 141.9, 130.2, 125.2, 124.4, 112.1, 67.5, 38.9, 

38.3, 31.1, 19.7, 13.2. Mass calculated for C37H46N6O12: 766.317. Mass found (+)-ESI-

MS: 767.427 m/z (M + H+). 

 

Tris(3,5-di-tert-butyl-2-hydroxyphenyl)methane (3.15).184 A solution of 2,4-di-tert-

butylphenol (5.34 g, 25.9 mmol) and 3,5-di-tert-butyl-2-hydroxybenzaldehyde (3.03 g, 

12.9 mmol) in methanol (40 mL) was strirred for 0.5 h at 0 ºC.  Then HCl gas was 

bubbled into the mixture for 2 h at 0 ºC to give a red colored solution with concomitant 

precipitate formation. The reaction mixture was then stirred for 2 d at rt.  The precipitate 

generated was filtered and washed with cold methanol to yield 3.15 (7.39 g, 91%) as an 

off-white powder.  M.p. 260 ºC (decomposed without melting). 1H NMR (400 MHz, 

CDCl3) δ: 7.27 (d, J = 2.4 Hz, 3H, ArH), 6.66 (d, J = 2.4 Hz, 3H, ArH), 5.58 (s, 1H, 

ArCHAr), 4.77 (s, 3H, ArOH), 1.36 (s, 27H, ArC(CH3)3), 1.13 (s, 27H, ArC(CH3)3). 13C 

NMR (100 MHz, CDCl3) δ: 151.2, 143.7, 137.6, 125.7, 124.0, 123.9, 43.0, 35.4, 34.7, 
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31.8, 31.6, 30.2. Mass calculated for C43H64O3: 628.485. Mass found (+)-ESI-MS: 

629.549 (M + H+). 

 

Tris(3,5-di-tert-butyl-2-butylamidomethoxyphenyl)methane (3.2). A solution of 3.15 

(0.525 g, 0.83 mmol) and NaH (0.065 g, 2.70 mmol) in THF (15 mL) was stirred for 2 h 

at rt. At this point, 2-bromo-N-butylacetamide (2.15; 0.504 g, 2.60 mmol) dissolved in 

THF (5 mL) was added and the reaction was allowed to reflux for 8 h. The reaction 

mixture was cooled to rt at which point a precipitate formed. The precipitate was filtered 

to yield crude t-butyl tripod 3.2. The resulting crude product was purified by column 

chromatography (3% MeOH–CH2Cl2), to yield 3.2 (0.174 g, 21%) as a white powder. 

M.p. 207-209 ºC. 1H NMR (400 MHz, CDCl3) δ: 7.22 (d, J = 2.4 Hz, 3H, ArH), 7.04 (d, 

J = 2.4 Hz, 3H, ArH), 6.82 (t, J = 5.8 Hz, 3H, CONHCH2), 6.25 (s, 1H, ArCHAr), 4.15 

(s, 6H, ArOCH2CO), 3.36 (q, J = 6.4 Hz, 6H, NHCH2CH2CH2), 1.56 (m, 6H, 

CH2CH2CH2CH3), 1.38 (m, 6H, CH2CH2CH3), 1.33 (s, 27H, ArC(CH3)3), 1.18 (s, 27H, 

ArC(CH3)3), 0.94 (t, J = 7.4 Hz, 9H, CH2CH3). 13C NMR (100 MHz, CDCl3) δ: 169.0, 

151.5, 146.5, 142.3, 137.0, 126.9, 123.6, 71.8, 39.3, 38.0, 35.8, 35.0, 32.1, 31.8, 31.7, 

20.5, 14.2. Mass calculated for C61H97N3O6: 967.738. Mass found (+)-ESI-MS: 968.804 

(M + H+); 990.793 (M + Na+). 

 

6.3.2 Experimental Details. 

1H NMR Titrations for Tripods 3.1 and 3.2.  Stock solutions of the nitro and t-butyl 

tripods, 3.1 and 3.2, (3.0 mM) in CD2Cl2 were prepared and divided into nine NMR tubes 

(300 µL solutions). Stock solutions of the anions (TBACl or TBANO3) in two different 
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concentrations labeled solution A (100 mM) and solution B (4 mM) were also prepared. 

Aliquots of anion stock solution were then added to each NMR tube in increasing 

volumes (in µL) as follows: of solution A – 0, 30, 60, 120; and of solution B – 0, 15, 30, 

75, 150, and 300. This provided final anion concentrations of: 0, 0.1, 0.2, 0.5, 1.0, 2.0, 

5.0, 10.0 and 20.0 mM, and anion:tripod ratios from 0 to 13 equivalents. The total 

solution volume was kept constant at 600 µL (pure solvent (CD2Cl2) was added to make 

up this volume where necessary) to afford a constant concentration of 1.5 mM for the 

tripods. Changes in the chemical shifts of the amide (NH) and bridgehead (CH) 

hydrogens of the tripods were then monitored by NMR (400 MHz) and the titration 

curves fit to the 1:1 binding model using the Associate 1.6 Copy software for bimolecular 

association constant determination by non-linear regression analysis of spectroscopic 

data.  Figure 6.4 shows the titration curves for nitro tripod 3.1 with Cl- and NO3
- anions. 

 

     

Figure 6.4. Titration curves for Cl- (left) and NO3
- (right) binding by nitro tripod 3.1, 

showing the changes in the chemical shifts of the amide (NH, orange traces) and 

bridgehead (CH, blue traces) protons.  
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Preparation of EYPC Liposomes for Base-Pulse Assays.  LUVs were prepared using 

EYPC lipids. EYPC lipid (60 mg) was dissolved in 5 mL of chloroform/methanol. The 

resulting solution was evaporated under reduced pressure to give a thin film that was 

dried in vacuo overnight. The lipid film was then rehydrated with appropriate phosphate 

buffer solution (10 mM sodium phosphate, pH 6.4; 100mM NaX (X = Cl- or NO3
-)) 

containing fluorescent HPTS dye (0.1 mM) to give a 60 mg/mL solution of lipid.  After 

10 freeze/thaw cycles, the liposomes were extruded through a 100 nm polycarbonate 

membrane at least 21 times at rt using a high pressure mini-extruder (Avanti Lipids).  The 

resulting liposome solution was passed through a Sephadex (G-25) column to remove 

excess dye (eluant, sodium phosphate buffer, pH 6.4, 100 mM NaX (X = Cl- or NO3
-)). 

The isolated liposomes were diluted to give a concentration of 25 mM in EYPC, 

assuming 100% retention of lipid during the gel filtration process.  

 

Base-Pulse Liposome Transport Assays (Figures 3.12 and 3.14).  The base pulse 

assays with HPTS were carried out as previously reported.5, 98  In a typical experiment, 50 

µL of the stock EYPC liposomes was diluted into 2 mL of 10 mM sodium phosphate (pH 

6.4, 100 mM NaNO3) to give a solution that is 0.5 mM in lipid. Compounds 2.1, 3.1, and 

3.2 were added to give a 2:100 ligand-to-lipid ratio. To the cuvette containing the EYPC-

transporter mixture was added 20 µL of 0.5 M NaOH solution through an injection port, 

after 20 s, to give an external OH- concentration of 5 mM. Addition of the NaOH resulted 

in a pH increase of approximately 1 pH unit in the extravesicular buffer. The 

fluorescence of the intravesicular pH was monitored at excitation wavelength of 403 nm 

and 460 nm, and emission at 510 nm for 500 s. After 470 s, 40 µL of 10 % Triton-X 
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detergent was added to lyse the liposomes, and obtain maximum dye emission.  

Experiments were carried out in triplicate.  The final transport trace was obtained as a 

ratio of the emission intensities monitored at 460 and 403 nm. The [H+
out] (extravesicular 

proton concentration) was assumed to remain constant over the course of the experiment, 

while [H+
ins] (intravesicular proton concentration) values were calculated for each point 

from the HPTS emission intensities according to the calibration equation pH = 1.2038 x 

log (I0/I1) + 7.3353, where I0 is the emission intensity with excitation at 460 nm and I1 is 

emission intensity with excitation at 403 nm. The calibration was performed by 

measuring the HPTS emission intensities and the pH values of a 470 pM HPTS solution 

in 10 mM phosphate buffer containing 100 mM NaNO3 (Figure 6.5).  
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Figure 6.5. A calibration plot relating the emission intensity of HPTS (470 pM) to pH of 

a buffer solution containing 100 mM NaNO3. 
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Chloride Transport in Lucigenin-Containing EYPC Liposomes (Figure 3.13).  LUVs 

were prepared and assays conducted as described in Section 6.2.2.  

 

Nitrate Reductase assay (Figure 3.15).  LUVs were prepared as described above for 

base-pulse assays, with the exception that the lipid film was rehydrated with 1 mL of a 

solution of 10 mM sodium phosphate (pH = 7.2) containing 100 mM NaNO3 and no dye. 

Also, the liposome solution was passed through a Sephadex (G-25) column (eluant, 10 

mM sodium phosphate, pH 7.2, 100 mM NaCl) to remove the external NaNO3 ions.  In a 

typical experiment, 50 µL of the stock EYPC liposomes was diluted into 2 mL of 10 mM 

sodium phosphate (pH 7.2, 100 mM NaCl, 1.1 mM NADPH, 0.3 units of nitrate 

reductase) to give a solution that is 0.5 mM in lipid.  Tripods 3.1 and 3.2 were added to 

separate cuvettes in addition to a blank cuvette (lacking transporter) and the UV was 

monitored over time.  Once the NADPH UV-Vis spectrum stabilized, 60 µL of 

sulfanilamide (0.29 M in 2 N HCl) and 216 µL of N-(1-naphthyl)ethylenediamine (0.29 

M in 2 N HCl) were added to the cuvette.  The solution turned a red color in the presence 

of nitrite and remained clear in the absence of nitrite. The UV-Vis spectrum of the 

resulting solution was monitored at 543 nm. 

 

HPTS assay for selective NO3
- transport (Figure 3.16).  LUVs were prepared and 

assays conducted as described above for base-pulse assays, with the exception that the 

intravesicular (10 mM sodium phosphate, pH 6.4; 100mM NaNO3) and extravesicular 

(10 mM sodium phosphate, pH 6.4; 100mM NaCl) phosphate buffers were different, and 

no base pulse (0.5 M NaOH) was added in the experiment.  Thus, the pH of the 
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intravesicular and extravesicular compartments is the same, that is, a concentration, and 

not a pH, gradient exists across the bilayer membrane.  Instead of the base pulse, 

compounds 2.1, 3.1 and 3.2 were added to the cuvette containing the anion-asymmetric 

liposome mixture through an injection port at t = 30 s to give a 2:100 ligand-to-lipid ratio.    

 

6.4 Experimental Procedures for Chapter 4. 

6.4.1 Experimental Details. 

1H NMR Titration for Prodigiosin 4.1.  A) Titrations with “free base” prodigiosin 4.1: 

A stock solution of the prodigiosin 4.1 (4.0 mM) was prepared in CD2Cl2 and divided 

into three NMR tubes (300 µL solutions).  Pure solvent (CD2Cl2; 300 µL) was added to 

make up the initial total volume up to 600 µL.   A 100 mM stock solutions of each anion 

(tetraethylammonium bicarbonate (TEAHCO3) or TBACl or TBANO3) was also 

prepared.  The titration was performed by incremental addition of 6.0 µL aliquots of the 

anion stock solution, giving an increment of 0.5 anion equivalents with each addition up 

to a total of 15.0 anion equivalents.  Thus, the total volume in the NMR tube ranged from 

600-780 µL, while the concentrations of prodigiosin and anion ranged from 2.0-1.54 and 

0.0-23.1 mM respectively.  At least two data acquisition sets were obtained for each 

addition of the 6.0 µL anion aliquot: first data set immediately after addition of anion 

aliquot, and another data set at least 5 minutes after the start of the first data acquisition.  

The pyrrole NH protons were not visible in the 1H NMR spectrum of prodigiosin in the 

free-base form in CD2Cl2.  Thus changes in the chemical shifts of the H2 proton on the 

A-ring and the methyl group on the C-ring of prodigiosin 4.1 (Scheme 4.2) were 

monitored by NMR (600 MHz), and the chemical shifts fit to a 1:1 binding model using 
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WinEQNMR (Version 1.20) software by Michael J. Hynes in the laboratory of Professor 

Philip Gale at the University of Southampton, Southampton, UK.  Titration curves for Cl- 

and NO3
- binding based on methyl group on prodigiosin’s C-ring are shown in Figure 

4.7.  (B) Titrations with protonated prodigiosin 4.1:  1H NMR titrations with protonated 

prodigiosin were carried out as described above with the exception that a 1:1 solution of 

4.1-to-methanesulfonic acid in CD2Cl2 was used as the starting solution.  Aliquots of 

anions were then added in 1.0 equivalent increments.  Concentrations and final volumes 

are the same as described above except that the anion solution was added as 12.0 µL 

aliquots.  

 

Preparation of phospholipid vesicles for Cl- ion-selective electrode assays (Figures 

4.14-4.16).  Chloride ion-selective electrode assays were carried out by Dr. Roberto 

Quesada in the laboratory of Professor Philip Gale at the University of Southampton, 

Southampton, UK.  Experimental details for these assays can be found in the Nature 

chemistry publication.192    

 

Liposome preparation for 13C NMR assays.  Giant EYPC liposomes (5 µm) were 

prepared by evaporating a chloroform solution of EYPC (20 mg/mL) under reduced 

pressure, which resulted in a thin film that was dried in vacuo overnight.  The liposomes 

were then formed by rehydrating the lipid film with either 450 mM NaCl in 20 mM 

HEPES buffer, pH 7.3 (for the chloride-loaded liposomes described in Figure 4.17), or 

100 mM NaH13CO3 in 20 mM HEPES buffer, pH 7.5 (for the bicarbonate-loaded 

liposomes described in Figure 4.18).  Buffer solutions were prepared in a 9:1 H2O/D2O 
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mixture.  After five freeze–thaw cycles, the liposomes were extruded through a 5 µm 

Nuclepore polycarbonate membrane 41 times at room temperature using a high-pressure 

mini-extruder (Avanti).  For the chloride-loaded liposomes, the giant liposome 

suspension obtained after extrusion was used in the 13C NMR transport assays without 

further purification.  However, for the bicarbonate-loaded liposomes, the resulting giant 

liposome suspension was separated from extravesicular NaH13CO3 by size-exclusion 

chromatography (stationary phase: Sephadex G-25, mobile phase: 9:1 H2O/D2O, 20 mM 

HEPES, pH 7.3, 75 mM Na2SO4). The 30 mL suspension (NaH13CO3 inside, Na2SO4 

outside) collected was centrifuged (Eppendorf Centrifuge 5804R) at 10,000 revolutions 

per minute for 30 minutes followed by removal of the non-liposome-containing buffer. 

The recovered giant liposome suspension was then diluted with the 75 mM Na2SO4 

mobile phase buffer and used directly in the 13C-NMR transport assays. The stock 

concentrations obtained for the liposomes were 90.3 mM for the chloride-loaded 

liposomes (assuming 100% lipid retention after extrusion) and 66.6 mM for the 

bicarbonate-loaded liposomes (assuming 80% lipid retention after gel filtration), 

respectively. 

 

Bicarbonate transport in chloride-loaded liposomes monitored by 13C NMR (Figure 

4.17).  13C NMR spectra were recorded using a Bruker DRX500 spectrometer with a 5-

µm broad-band probe operating at 125.77 MHz, with chemical shifts reported in ppm.  

The instrument was locked on 9:1 H2O/D2O.  Experimental conditions were: acquisition 

time, 0.93 s; spectrum width, 35,211 Hz; 90º pulse width, 6.70 ms; relaxation delay, 0.2 

s; number of scans, 160; temperature, 27 ºC.  For each experiment, 230 mL of stock (90.3 
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mM) liposome solution was mixed with 340 mL of 150 mM Na2SO4 in 20 mM HEPES 

buffer, pH 7.3, in a 5 mm NMR tube to give a liposome suspension that contained NaCl 

inside and Na2SO4 outside.  A NaH13CO3 pulse was then added to the mixture to give 35 

mM and 50 mM final concentrations of liposome and H13CO3
-, respectively.  The 13C 

NMR of the preceding liposome mixture (NaCl inside, Na2SO4 and NaH13CO3 outside) 

was then taken.  After data acquisition, a solution of MnCl2 was added to give a final 

Mn2+ concentration of 0.5 mM (1:100 Mn2+/H13CO3
- ratio), and immediately followed by 

another set of data acquisition.  A final set of 13C NMR data was collected after the 

addition of a solution of the ligand (4.1, 4.2 or 4.4) or DMSO to the mixture.  

Isophthalamides 4.2 and 4.4 were added in a 1 mol% ligand-to-lipid ratio, and 

prodigiosin 4.1 was added in a 0.1 mol% ligand-to-lipid ratio.  For the DMSO control, 6 

mL of the solvent was added, which corresponded to a 403 mol% DMSO-to-lipid ratio.   

 

Bicarbonate transport in bicarbonate-loaded liposomes monitored by 13C NMR 

(Figure 4.18).  Instrument details are the same as those described above for the chloride-

loaded liposomes.  The instrument was locked on 9:1 H2O/D2O.  Experimental conditions 

were: acquisition time, 0.93 s; spectrum width, 35,211 Hz; 90º pulse width, 6.70 ms; 

relaxation delay, 0.2 s; number of scans, 196; temperature, 27 ºC.  For each experiment, 

an initial 13C NMR spectrum of 520 mL of the giant liposome solution was acquired.  

Then, a NaCl pulse resulting in final extravesicular concentrations of 58 mM and 50 mM 

for the giant liposomes and chloride, respectively, was added to the NMR tube.  The 13C 

NMR of this liposome mixture (NaH13CO3 inside, Na2SO4 and NaCl outside) was taken, 

followed by the addition of a solution of the ligand (4.1, 4.2 or 4.4) or DMSO.  Again, 
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isophthalamides 4.2 and 4.4 were added in a 1 mol% ligand-to-lipid ratio, while 

prodigiosin 4.1 was added in a 0.1 mol% ligand-to-lipid ratio.  For the DMSO control, 10 

mL of the solvent was added, which corresponded to an 870 mol% DMSO-to-lipid ratio. 

A 13C NMR spectrum of the ligand-containing cocktail was then acquired before and 

after the addition of a solution of MnCl2 (0.5 mM final Mn2+ concentration, which 

corresponded to a 1:100 Mn2+/Cl- ratio).  
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