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Microbial communities play a fundamental role in environmental and human

health. Targeted sequencing of the 16S rRNA gene, 16S rRNA marker-gene surveys,

is used to measure and thus characterize these communities. The 16S rRNA marker-

gene survey measurement process includes a number of molecular laboratory and

computational steps. A rigorous measurement assessment framework can evaluate

measurement method performance, in turn improving the validity of marker-gene

survey study conclusions. In this dissertation, I present a novel framework and

mixture dataset for assessing 16S rRNA marker-gene survey bioinformatic methods.

Additionally, I developed software to facilitate working with 16S rRNA reference se-

quence databases and 16S rRNA marker-gene survey feature data. Computational

steps, collectively referred to as bioinformatic pipelines, combine multiple algorithms

to convert raw sequence data into a count table, which is subsequently used to test

biological hypotheses. Algorithm choice and parameters can significantly impact

pipeline results. The assessment framework and software developed for this dis-



sertation improve upon existing assessment methods and can be used to evaluate

new computational methods and optimize existing pipelines. Furthermore, the as-

sessment framework presented here can be applied to other microbial community

measurement methods such as shotgun metagenomics.
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CHAPTER 1

Introduction

Microorganisms, the unseen majority, play an important role in environmental

and human health. Globally there are an estimated 4 to 6×1030 prokaryotic cells on

earth driving processes such as the carbon and nitrogen cycle [104, 46, 104]. In the

human body, bacterial cells are as abundant as human cells [90] and aid in funda-

mental processes such as digestion [23, 111]. The human gut microbiome has been

linked to numerous diseases ranging from inflammatory bowel disease to autism [23,

94]. Biotherapeutics, probiotics developed to treat disease, have the potential to rev-

olutionize medicine and treat microbiome-linked diseases [111]. For example, fecal

microbiome transplants have been successfully used to treat recalcitrant Clostridium

dificile infections [81]. Accurately characterizating microbial communities is critical

to successful biotherapeutics development.

Recent advances in deoxyribonucleic acid (DNA) sequencing technology has

changed how we measure and thus study, microbiomes. The two most commonly

used methods to characterize microbial communities are shotgun metagenomics and

16S ribosomal ribonucleic acid (rRNA) marker-gene surveys [52]. Shotgun metage-

nomics is the random sequencing of all genomic material in a sample. 16S rRNA
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marker-gene surveys use targeted sequencing to characterize community taxonomic

composition. There are benefits and disadvantage to both methods [25]. Shotgun

sequencing is useful for functional information and strain-level analysis, whereas

marker-gene sequencing provides a more complete view of the community composi-

tion. Additionally, shotgun sequencing is significantly more expensive than marker-

gene surveys and is, therefore, cost prohibitive for large cohort and global studies,

such as the human microbiome project [99] and earth microbiome project [98]. The

focus of this dissertation is assessing 16S rRNA marker-gene survey methods. How-

ever, the approaches presented apply to shotgun metagenomic method assessment

as well.

1.1 16S rRNA Marker-Gene Surveys

Marker-gene survey data is used to characterize both organismal and commu-

nity level differences [34]. Differential abundance testing is a type of organismal

level analysis used to identify organisms associated with specific treatment condi-

tions, for example, a pathogen associated with a disease state. Ecological diversity

metrics are used to characterize microbial community richness and evenness within

individual samples (alpha-diversity) and sample pairwise similarity (beta-diversity).

Marker-gene survey data is collected through a complex multi-step measure-

ment process [34]. The measurement process consists of numerous laboratory and

computational steps. Laboratory steps include DNA extraction, polymerase chain

reaction (PCR), library preparation, and sequencing. Computational steps include

3



pre-processing, feature inference, feature annotation, and normalization. See Sec-

tions 2.1 and 2.2 for a detailed description of the measurement processes. Limita-

tions in our understanding of the measurement process impede microbiome research.

1.2 Measurement Assessment

Measurement assessment is used to characterize and validate the measurement

process and as a result, advance microbiome research. Results from marker-gene

surveys indicate a potential connection between obesity and the gut microbiome

[54]. However, a meta-analysis combining data from multiple studies only found

a weak association between obesity and the gut microbiome [95]. With a well-

characterized measurement process, we can better evaluate study conclusions. In

turn, reducing the identification of spurious associations, such as the ones identified

by the obesity studies analyzed in the Sze and Schloss [95] meta-analysis.

A key component of measurement assessment is data with an expected value.

Common sources of data used to assess marker-gene surveys include computer sim-

ulated data (in silco), mixtures of DNA or cells from individual organisms (mock

communities), and technical replicates of environmental samples. In silico data and

mock communities provide expected values for use in assessment but do not recapit-

ulate the complexity of environmental samples or the error profile of real sequencing

data. Without an expected value, technical replicates are only suitable for method

comparison. Another data type, mixtures of environmental samples, provide the

complexity of real data and an expected value for assessment.

4



1.3 Dissertation Summary

In this dissertation, I will present a framework for 16S rRNA marker-gene

survey measurement assessment using a novel mixture dataset along with software

to facilitate working with 16S rRNA marker-gene survey data. Chapter 2 provides

an overview of the 16S rRNA sequencing measurement process and assessment. In

Chapter 3, I describe the development and application of an assessment framework

for evaluate the relative and differential abundance values for count tables gener-

ated using different bioinformatic pipelines. For Chapter 4, I developed methods

to assess beta-diversity. I then used the methods to evaluate the impact of se-

quencing artifacts on bioinformatic pipelines and normalization methods. Chapters

3 and 4 utilize a two-sample titration assessment dataset generated are part of this

disseration (Fig. 1.1). Finally, Chapter 5 describes the Bioconductor R package,

metagenomeFeatures, I developed for working with 16S rRNA marker-gene survey

data and 16S rRNA databases. The assessment framework and software along with

the assessment study results presented here will facilitate the development of im-

proved computational methods and advance our understanding of the marker-gene

survey measurement process. The last three sections of this chapter provide a brief

overview of the three main disseration chapters.

1.3.1 Abundance Assessment

The proper measurement method evaluation characterizes the impact of indi-

vidual steps on the measurement process. Furthermore, it also helps identify where
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Figure 1.1: Assessment dataset experimental design flowchart. Two-sample titra-
tion series were generated using DNA from stool samples collected as part of
an Enterotoxigenic Escherichia coli (ETEC) vaccine trial. The titration end
point samples were selected as the initial sampling timepoint in the vaccine trial
and timepoint after exposure with the highest measured concentration of ETEC.
The assessment dataset includes multiple biological factors and technical repli-
cates enabling the charaterization of multiple sources of bias and dispersion in the
measurement process.The assessment dataset includes samples from five subjects,
vaccine trial participants, with a two-sample titration series for each subject. Four
16S rRNA PCR replicates per titration series sample. The PCR assays were split
into technical replicates and sent to two laboratories for library preparation and
sequencing. Libraries were sequenced twice as each laboratory for a total of four
sequence datasets.
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to focus efforts for improving the measurement process. Appropriate datasets and

methods are needed to evaluate the 16S rRNA marker-gene-survey measurement

process. Numerous studies have qualitatively and quantitatively assessed the 16S

rRNA measurement process using mock communities, simulated data, and environ-

mental samples.

Qualitative characterisitcs are commonly assessed using mock communities

[10]. As the number of organisms in the mock community is known, the total number

of features can be compared to the expected value. The number of observed features

in a mock community is often significantly higher than the expected number of

organisms [50]. Although, when mock community data are processed using sequence

inference methods the count tables, the observed and expected number of features

is consistent [19]. The higher than expected number of features is often attributed

to sequencing and PCR artifacts as well as reagent contaminants [14, 42]. However,

benchmarking studies evaluating sequence inference methods, such as DADA2, aim

to reduce the number of features due to sequence artifacts. While mock communities

have a known value, they lack the feature diversity and relative abundance dynamic

range of real samples [10].

The quantitative characteristics of 16S rRNA sequence data are normally as-

sessed using mock communities and simulated data. To assess the quantitative accu-

racy of relative abundance estimates, mock communities of equimolar and staggered

concentration are commonly used [50]. Results from relative abundance estimates

using mock communities generated from mixtures of DNA have shown taxonomic

specific effects where individual taxa are under or over represented in a sample.
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These taxonomic specific effects have been attributed to primer mismatches and

DNA extraction biases [14]. Simulated count tables have been used to assess dif-

ferential abundance methods, where specific taxa are artificially overrepresented in

one set of samples compared to another [62]. Only computational steps of the mea-

surement process can be assessed using simulated data.

Quantitative and qualitative assessment can also be performed using sequence

data generated from mixtures of environmental samples. Using simulated data and

mock communities, evaluating and benchmarking new methods can result in over

training the bioinformatic pipelines to data that do not recapitulate the sequencing

error profile and feature diversity of real samples. Data from environmental samples,

which are real samples, are often used to benchmark new molecular laboratory

and computational methods. However, without an expected value with which to

compare, only measurement precision can be evaluated. By mixing environmental

samples, an expected value can be calculated using information from the unmixed

samples and the mixture design. Mixtures of environmental samples have previously

been used to evaluate gene expression measurements, e.g. microarrays and RNAseq

data [71, 76, 97].

In Chapter 3, we describe the mixture dataset of extracted DNA from hu-

man stool samples we generated for assessing 16S rRNA sequencing. The mix-

ture datasets were processed using three bioinformatic pipelines. Using the mix-

ture dataset, we developed novel methods to assess the qualitative and quantitative

characteristics of the pipeline results. The quantitative results were similar across

pipelines but the qualitative results varied by pipelines.
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1.3.2 Diversity Assessment

Biases introduced during the marker-gene survey measurement process can

impact downstream analyses such as beta-diversity. Bioinformatic pipelines and

normalization methods are often used to reduce biases introduced during the marker-

gene survey measurement process [34, 49].

Bioinformatic pipelines reduce bias by removing sequencing artifacts, such

as single and multi-base pair variants, and chimeric sequences, from microbiome

datasets. If not accounted for, these artifacts may incorrectly be attributed to novel

diversity in a sample. Bioinformatic pipelines use clustering or sequence inference

techniques to group reads into biologically informative units. Standard clustering

methods include de novo clustering of sequences based on pairwise sequence sim-

ilarities [88] and closed-reference clustering of reads against a reference database

[29]. Open-reference clustering is a combination of the two, first applying a closed-

reference approach, followed by de novo clustering of reads that did not map to a

reference [82]. Sequence inference methods use statistical models and algorithms to

group sequences independent of similarity, but based on the probability that a lower

abundant sequence is an artifact originating from a more highly abundant sequence

[19, 1]. The resulting features, operational taxonomic units (OTUs) for clustering

methods, and sequence variants (SVs) for sequence inference methods, have different

characteristics because the methods vary in their ability to detect and remove errors

while retaining true biological sequences.

Rarefaction and numeric normalization methods account for differences in sam-
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ple total abundance caused by uneven sample pooling prior to sequencing and dif-

ferences in sequencing run throughput. Rarifying abundance data traces its origins

to macroecology, where counts for a unit (sample) are randomly subsampled to

a user-defined constant level [35]. Although there are concerns about its statis-

tical validity [62], rarefaction is currently the only normalization method for un-

weighted, presence-absence based, beta-diversity metrics [102]. For weighted, abun-

dance based, beta-diversity analyses, we can apply numeric normalization methods,

such as total and cumulative sum scaling (TSS and CSS), where counts are di-

vided by sample total abundance (TSS) or by the cumulative abundance (CSS) for

a defined percentile [72]. CSS is one of the few normalization methods developed

specifically for 16S rRNA marker-gene survey data. Other normalization methods,

including upper quartile (UQ), trimmed mean of M values (TMM) and relative log

expression [84, 58], were initially developed for normalizing RNAseq and microarray

data. Many studies have found these methods useful in normalizing marker-gene

survey data for differential abundance analysis, though it is unclear whether these

techniques are also suitable for beta-diversity analysis.

Beta-diversity is calculated using a variety of metrics that can be grouped

based on whether they account for phylogenetic distance or not and feature relative

abundance or presence/absence. The UniFrac metric was developed for marker-gene

survey data and incorporates phylogenetic relatedness by comparing the branch

lengths of features that are unique to two communities [37]. Unweighted UniFrac

uses presence-absence information, whereas weighted UniFrac incorporates feature

relative abundance. Taxonomic metrics do not consider the relationship between fea-
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tures. The Bray-Curtis and Jaccard dissimilarity indices are examples of weighted

and unweighted taxonomic metrics respectively, as they do not consider the phylo-

genetic relationship between features [13, 44]. These four groups of beta-diversity

metrics measure different community characteristics. The metrics should therefore

be evaluated in a complementary manner to gain maximal insight into community-

level sample differences [2].

Previous studies have evaluated different bioinformatics pipelines [92] and nor-

malization methods [62, 102] using beta-diversity metrics. Yet, how well pipelines

account for low sequence quality and total abundance differences remains unknown.

The mixture dataset includes multiple levels of technical replication, allowing us to

evaluate (1) beta-diversity repeatability, (2) ability to distinguish between groups

of samples with varying similarity, and (3) identify differences in beta-diversity be-

tween biological and technical factors. Furthermore, the dataset includes data from

four sequencing runs with different sequencing error rates and library sizes, enabling

assessment of how each pipeline and method performs on varying quality datasets.

1.3.3 metagenomeFeatures

A key step in 16S rRNA marker-gene survey measurement process is compar-

ing representative sequences to a reference database for taxonomic classification or

phylogenetic placement [65]. There are numerous 16S rRNA reference databases,

of which Greengenes, Ribosomal Database Project (RDP), and SILVA are arguably

the most commonly used [28, 26, 79, 59]. Additionally, there are smaller system-
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specific databases such as the Human Oral Microbiome Database (HOMD) for the

human oral microbiome [22, http://www.homd.org/] and soil reference database

[24]. System-specific databases can improve taxonomic assignments for microbial

communities not well represented in the major databases [85].

16S rRNA databases differ in sequence number and diversity, the taxonomic

classification system, and the inclusion of intermediate ranks [5]. Databases for-

mat their data differently and use sequence identification systems unique to their

database, challenging membership and composition comparisons. For example,

Yang, Wang, and Qian [110] used the SILVA database to evaluate impact of different

16S rRNA variable regions on phylogenetic analysis. Similarly, Martinez-Porchas et

al. [57] evaluated sequence similarity between 16S rRNA gene conserved regions also

using the SILVA database. Differences in database formatting present a significant

barrier to performing the same analysis using multiple databases. Additionally,

taxonomic assignments can be database-dependent, providing further justification

for database comparisons [75]. To facilitate database comparisons RNACentral a

resource combining non-coding RNA databases provides a set of cross database se-

quence identifiers [96, http://rnacentral.org/].

We developed the Bioconductor R package metagenomeFeatures for work-

ing with both 16S rRNA gene databases and marker-gene survey feature data.

metagenomeFeatures provides a common data structure for working with 16S rRNA

databases and marker-gene survey feature data. Additionally, this package is the

first step towards the development of a common data structure for use in analyzing

metagenomic and marker-gene survey data using R Bioconductor packages such as

12
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phyloseq [60] and metagenomeSeq [73].
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CHAPTER 2

Measurement Process and Assessment.

Metrology, measurement science, provides a well established framework for

validating, characterizing and evaluating measurements [55, 33]. This framework

was established for routine single measurand assays with well defined applications.

Measurement validation is used to determine if a measurement process meets a set

of specific requirement. The measurement process requirements can include mea-

surement bias and precision are within a defined range or a minimum detectable

analyte concentration. For example, measurement validation is used to determine

if an assay is able to detect a specific pathogen in a stool sample at a minimum

concentration. Measurement validation also requires that the sample used to vali-

date the measurement is representative of the sample type the measurement process

will encounter. The samples used for validation must also have known charateristics

for use in evaluating measurement results. As part of the measurement validation

process measurement expanded uncertainty is quantified determined. Measurement

expanded uncertainty is obtained by first defining the measurand, decomposing the

measurement process, and identifying sources of uncertainty [33]. Each source of

uncertainty is quantified by experimental estimation, modelling from theoretical
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principles, or estimation using expert judgement. The expanded uncertainty is cal-

culated by combining uncertainty estimates for individual sources. The observed

measurement value and its expanded uncertainty along with the measurement re-

quirements are used to validate the measurement process.

With 16S rRNA sequencing measurements are made for hundereds to thou-

sands of organisms simultaneously. Furthermore, there is no clear single application

as the same data are used to test multiple hypothesis. The traditional framework for

characterizing and evaluating a measurement process is not easily applied. There-

fore, I present a more general characterization of the measurement method perfor-

mance as measurement assessment, which borrows from the measurement validation

process. Where a measurement process is assessed relative to the measurand, the

entity quantified by the measurement process [9]. Measurement process assessment

consists of three steps; decomposing the measurement process, designing experi-

ments to isolate measurement process elements, and evaluating bias and dispersion

at each element. In this chapter I will describe and decompose the 16S rRNA

sequencing measurement process. After decomposing the measurement process I

will describe common 16S rRNA measurands including feature abundance, relative

abundance, as well as alpha- and beta-diversity. Next, I will describe steps for con-

ducting an assessment experment to characterize measurement process elements.

Finally, I will place the assessment work presented in this dissertation within the

larger context of 16S rRNA measurement process assessment.
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Figure 2.1: Cause-effect diagram for the 16S rRNA sequencing measurement pro-
cess. Causes of bias and variability are indicated as branches, e.g., cell type, and
different sources of error are indicated by branch labels, e.g., storage conditions.

2.1 Measurement Process

The 16S rRNA marker-gene survey measurement process includes a number

of laboratory and computational steps (Fig. 2.2 and 2.3). In this section, I will

provide an overview of the measurement process, and highlight significant known

sources of error and dispersion (Fig. 2.1). See Goodrich et al. [34] for a review of

16S rRNA marker-gene survey measurement process and general recommendations

for conducting microbiome experiments.

The 16S rRNA gene is used for marker-gene surveys as it is found in all

prokaryotic organisms, including both bacteria and archaea and contains hyper-
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variable and conserved regions. The conserved regions allow for the use of PCR

primers which can amplify the 16S rRNA gene from diverse taxonomic groups [57,

48]. Whereas hypervariable regions, allow genus and sometime species-level taxo-

nomic classification. Additionally, as the 16S rRNA gene is well studied there are

several extensive well-curated databases, e.g. SILVA, RDP, and Greengenes [79, 59,

26]. There are drawbacks to using the 16S rRNA gene as well. Due to the conserved

nature of the gene, sequences cannot be used for the strain-level taxonomic classifi-

cation required for some applications, such as pathogen detection and identification

[45]. Additionally, 16S rRNA is a multicopy gene that is known to be horizontally

transferred between organisms, as a result, the within-genome 16S rRNA gene copy

diversity can be greater than the between-genome diversity for some genera [74].

For the measurement process, laboratory component raw sequence data are

generated from environmental samples (Fig. 2.2). Samples are initially collected

and stored to minimize changes to the community composition prior to sample

processing. Next, DNA is extracted from the sample, and the 16S rRNA is am-

plified using PCR. Then PCR products concentrations are normalized, diluted to

a standard concentration, to minimize between sample variability in the number

of reads obtained per sample. Finally, the normalized PCR products are pooled

and sequenced. Preferential DNA extraction and PCR amplification are two of the

largest sources of bias in the measurement process (Fig. 2.1). Other sources of error

introduced at this point include PCR artifacts such as amplification errors (point

mutations) and chimeras, sequence contaminants, and sequencing errors. Compu-

tational methods correct for PCR artifacts, contaminant removal, and sequencing
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Figure 2.2: Diagram of the 16S rRNA marker gene survey measurement process
for a simplified example study comparing case and control treatment groups.
Samples are first collected from study participants. Colored boxes contains the
true microbial community composition indicated by cartoon cells. The different
cell walls and 16S rRNA sequence (grey oval with colored bar) indicate distinct
biologically relevant units. Next, DNA is isolated from the other cellular material.
Extraction efficiency differences are indicated by differences in the number of red,
yellow, and blue bars relative to the sample numbers. PCR is used to target
the 16S rRNA gene. Amplification efficiency biases shown as differences in the
proportion of red, yellow, and blue PCR products from the DNA extract. Unique
sample barcodes added during PCR are indicated as teal and orange bars on PCR
amplicons. Chimeras, a PCR artifact, are shown as half blue and yellow PCR
products. Sequencing libraries are produced by Pooling PCR products from
the two samples. Uneven pooling can result in the under-representation of a
sample (teal in this example) in the sequence dataset. The resulting libraries are
sequenced, sequencing artifacts are indicated as grey reads, for failed sequences,
and grey vertical lines for single base sequencing errors.
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Figure 2.3: Diagram of the 16S rRNA marker gene survey measurement process
computational steps. Pre-processing assigns sequencing reads to samples using
the unique barcodes and removes low-quality reads as well as filters chimeras.
Feature inference is used to group the pre-processed reads into biologically rel-
evant units. Sequencing errors can result in spurious features if not assigned to
the source feature. The yellow and blue sequences with a grey vertical line are
spurious features. Finally, taxonomic assignment is performed as part of feature
annotation. Spurious features can be assigned to the wrong organism, yellow bar
with grey line, or be unassigned, blue bar with grey line.
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error correction. Currently, there are no computational or laboratory methods to

correct for preferential extraction or amplification.

Computational methods, collectively referred to as the bioinformatic pipeline,

convert raw sequence data into an annotated count table for use in downstream

analysis (Fig. 2.2). Bioinformatic pipelines use the same general approach, though

the methods and order of individual steps vary by pipeline. The first step is

pre-processing the raw reads. Pre-processing includes initial quality control steps,

preparing reads for feature inference. Next, feature inference is performed, grouping

pre-processed into biologically relevant units. Finally, feature annotation is used to

obtain information about feature taxonomy and phylogenetic relatedness. Biases

introduced by the computational methods are either due to failure to correct for

biases from the laboratory component or errors in feature annotation.

The annotated count table is then used in feature-level and community-level

downstream analysis (Fig. 2.4). Differential abundance is the most commonly

used feature-level analysis. Differential abundance is used to estimate feature rel-

ative abundance between treatments [72]. Alpha- and beta-diversity analyses are

the most commonly used type of community analyses. Alpha-diversity metrics are

numeric summaries of individual samples, including richness, evenness, and phylo-

genetic diversity metrics. Beta-diversity is a measure of sample similarity and is

used to compare feature presence-absence or incorporate relative abundance and

phylogenetic relatedness.
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Figure 2.4: Diagram of 16S rRNA marker gene survey differential abundance and
biological diversity downstream analysis methods. Differential abundance is a
row-wise operation comparing feature abundance between treatment conditions
with log fold-change (logFC) estimates calculated for each feature. Alpha (α)
diversity is a column-wise operation where a single value is calculated per sam-
ple. Beta (β) diversity is a row- and column-wise operation, with a single value
calculated for each sample pair, using paired feature information.
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2.2 Feature Inference and Normalization

The following section provides additional details about the feature inference

and computational normalization methods that are the focus of the assessment

framework presented in this disseration. Feature inference is used to group sequences

into features that are representative of biologically relevant units. Computational

normalization is used to reduce biases in downstream analysis due to differences in

total abundance between samples. The feature inference process should maximize

the number of features representing true sequences while minimizing the number of

features representing sequence artifacts. The two primary feature inference method

types are distance-based clustering and sequence inference.

Distance-based feature inference methods cluster sequences based on defined

similarity thresholds. These clustering thresholds are based on taxonomic group

sequence diversity and sequencing error (e.g., 99% species level, 97% genus level,

1% error rate). Though studies characterizing within species and genera 16S rRNA

sequence diversity [74], and sequencing error rates [42, 86, 27] challenge the validity

of these values [31].

There are three approaches to distance-based clustering, de novo, closed-

reference, and open-reference. For de novo clustering, the pre-processed sequences

are clustered based on the desired threshold. For closed-reference clustering, the se-

quences are assigned to reference sequences based on the defined similarity thresh-

old. The reference sequences are sequences from a reference database previously

clustered at the desired threshold. Open-reference clustering combines de novo and
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closed-reference clustering. Reads are first clustered using closed-reference cluster-

ing then reads not assigned to reference clusters are clustered de novo. A limitation

of distance-based feature inference methods is the use of a defined similarity thresh-

old. Sequence inference methods were developed to avoid having to define such

thresholds.

Sequence inference methods, another type of features inference, use statistical

models or heuristic algorithms to infer the true biological sequence from which a

read was generated. By inferring the true biological sequence, this method avoids

having to define an arbitrary threshold for grouping sequences. DADA2, a sequence

inference method, uses a probabilistic model and an expectation-maximization al-

gorithm to test whether less abundant sequences are derived from higher abundance

sequences [19]. DADA2 is the only sequence inference method to consider base

quality scores. DADA2 is computationally expensive on a per sample basis, though

scalable as individual samples can be run in parallel. Other sequence inference meth-

ods use heuristics, reducing the method the computational cost. Similar to DADA2,

UNOISE2 uses a model to assign lower abundance sequences to higher abundance

sequences [30]. However, UNOISE2 uses a single function with parameter values

set using training data. UNOISE2 significantly reduces the computational cost by

using model parameters defined a priori, eliminating the need for the expectation-

maximization step. Deblur proportionally assigns lower abundance sequences to

higher abundance sequences using estimates for the number of lower abundance

sequences that are error derived sequences [1].

After feature inference, the resulting count tables are normalized prior to use
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in downstream analysis. Count table mormalization methods minimize biases due

to differences in the total feature abundance between samples. Variability in to-

tal feature abundance is due to differences in the number of reads generated per

sample, and the proportion of sequences passing quality filtering. There are two

types of normalization methods rarefaction and scaling. Rarefaction has its roots

in ecology, where it is used to normalize sampling intensity per survey area [35, 40].

To rarify counts, individual sample counts are randomly subsampled, without re-

placement, to a user-defined level and samples with total abundance values less than

the rarefaction level are dropped. Scaling methods normalize count table values by

sample-specific normalization factors. For total sum scaling (TSS), and cumulative

sum scaling (CSS), sample counts are divided by the sum of feature counts to a de-

fined abundance percentile, 0.75 for CSS, and total abundance for TSS (proportions)

[72]. Other commonly used normalization methods include relative log expression

(RLE), trimmed mean of M values (TMM), and upper quartile normalization [84,

58]. These methods were developed for normalizing microarray and RNAseq data

but have been successfully used to normalize 16S rRNA marker-gene survey data

[62].

2.3 Conducting an Assessment Experiment

Measurement assessment experiment are used to characterize the bias and dis-

persion for elements of a measurement process. There are four steps to designing a

measurement assessment experiment; (1) define the measurand, (2) identify appro-
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priate data and metrics for the assessment, (3) design an experiment to isolating

element(s) of a measurement process for assessment.

First define the measurand when developing an assessment method. The mea-

surand is the observed value being quantified [9]. For marker-gene survey analysis,

there are multiple measurand definitions. The measurand can be defined based on

the downstream analysis, e.g., log fold-change for differential abundance analysis or

diversity metric for alpha- and beta-diversity analysis. The measurands can also be

more general, such as count table abundance values or feature DNA sequence.

After defining the measurand appropriate data and metrics are identified. The

primary data types used in marker-gene survey measurement assessment include

in-silico data, mock communities, and technical replicates. Different parts of the

measurement process and measurands can be assessed with different data types.

in-silico data, either simulated sequence data or count tables, can be used to as-

sess computational methods and downstream analysis. Mock communities, either

mixtures of DNA or cells, can be used to assess laboratory procedures, as well as

computational methods. Technical replicates are used to assess laboratory and com-

putational method repeatability. Once the measurand is defined, and appropriate

data for assessment is identified, assessment is performed by comparing expected

values to observed values.

Metrics used for assessment are dependent on the statistical properties of the

measurand. For quantitative measurands, such as count table values, relative er-

ror (the difference between the expected and observed values, normalized by the

expected value) is commonly used. For evaluating the linear relationship between
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observed and expected values a linear model can be used to estimate the overall

agreement, R2, and whether the relationship is 1-to-1, model slope. Another metric

for quantitative measurands, is signal-to-noise ratio, for example, with beta-diversity

metrics, the ratio of beta-diversity between and within treatments or conditions. For

qualitative measures, such as feature presence-absence, standard truth table met-

rics, such as sensitivity and specificity can be used. Similarly, area under the curve

(AUC) and receiver operating characteristics (ROC) curves can be used to evaluate

qualitative performance for a set of observed values.

The next step is to determine measurement process steps or element one is in-

terested in evaluating and design an experiment isolating the element. Assessments

can compare the performance of different methods used in individual steps of the

measurement process, for example, DNA extraction or PCR. Assessment methods

can also evalute part of the measurement process, such as the computational or

laboratory components. Alternatively, one can assess the measurement process as

a whole. The part of the measurement process being evaluated defines the experi-

mental design used to generate the assessment dataset.

2.3.1 Assessment using Mixtures of Environmental Samples

Limitations to using environmental samples and mock communities for mea-

surement assessment can be addressed using mixtures of environmental samples.

Mixtures of environmental samples provide the complexity of real data regarding

feature diversity and dynamic range with expected values for comparison. Mix-
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tures of environmental samples have previously been used to evaluate microarray

and RNAseq methods [43, 97, 76, 71]. When used to assess marker-gene surveys,

mixtures of environmental samples can be used to assess count table accuracy, differ-

ential abundance, and beta-diversity. Simulated mixtures of environmental samples

(simulated count tables) have previously been used to evaluate deferentially abun-

dant features and beta diversity [62].

A limitation to using mixtures of environmental samples is the uncertainty

in the expected values. Expected value estimates are based on information from

the unmixed samples and the mixture design. Measurement values obtained for the

unmixed samples are generally obtained using the same measurement process be-

ing assessed, and therefore, measurement uncertainty may not be well understood.

Using the same measurement process and technical replicates allows for the quantifi-

cation of the measurement uncertainty, but provides no information about potential

measurement biases. In addition to uncertainty in the unmixed sample values,

there may be uncertainty in the mixture design, both of which can be estimated.

For RNAseq studies, since the sequencing assay targets mRNA, the proportion of

mRNA in the RNA extract needs to be accounted for in the mixture equation [71].

Similarly for 16S rRNA marker-gene surveys, as the PCR assay targets prokaryotic

DNA, the proportion of prokaryotic DNA in the sample should be characterized and

taken into consideration.
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CHAPTER 3

Abundance Assessment

Assessing 16S marker-gene survey data analysis methods
using mixtures of human stool sample DNA extracts.

3.1 Abstract

16S rRNA marker-gene surveys use targeted sequencing to characterize prokary-

otic microbial communities. Analysis of these studies is confronted with numerous

bioinformatic pipelines and downstream analysis methods, with limited guidance

on how to decide between appropriate methods from simulation studies or limited

complexity benchmark studies. Appropriate data sets and statistics for assessing

these methods are needed. A mixture of environmental samples is one approach

for generating assessment data sets with the real data complexity while providing

an expected value. We developed a mixture dataset for assessing 16S rRNA bioin-

formatic pipelines and downstream analysis methods using samples collected from

participants in a Enterotoxigenic Escherichia coli (ETEC) vaccine trial participants.

A two-sample titration mixture design was used where DNA from stool samples prior
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to ETEC exposure was titrated into stools samples collected after exposure, in effect

diluting the amount of ETEC in the mixed sample. The sequencing data were pro-

cessed using multiple bioinformatic pipelines, DADA2 a sequence inference method,

Mothur a de novo clustering method, and QIIME with open-reference clustering.

The pipelines varied in the number of features and proportion of reads passing qual-

ity control but had similar sparsity. The mixture dataset was used to qualitatively

and quantitatively assess the count tables generated using the pipelines. Statisti-

cal tests were used to determine if features only present in unmixed samples and

titrations, unmixed- and titration-specific features, were had abundance value that

could be explained by sampling alone. For Mothur and QIIME less than 5% of

unmixed- and titration-specific feature abundance could not be explained by sam-

pling alone where as for DADA2 greater than 50% of unmixed-specific features and

10% of titration- specific features could not be explained by sampling alone. The

quantitative assessment evaluated pipeline performance by comparing observed to

expected relative and differential abundance values. Expected relative abundance

and differential abundance values were calculated using information from the un-

mixed samples and mixture design. Overall the observed relative abundance and

differential abundance values were consistent with the expected values. We devel-

oped feature-level bias and variance metric to further characterize relative abudance

and differential abundance quantitative performance. Relative abundance feature-

level bias metric was significantly different across the three platforms with DADA2

having the lowest bias, followed by Mothur, and QIIME. The relative abundance

feature-level variance metric and both the differential abundance feature-level bias
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and variance metrics did not differ significantly across the three pipelines. The

dataset and methods developed for this study will serve as a valuable community

resource for assessing 16S rRNA marker-gene survey bioinformatic methods.

3.2 Introduction

Targeted sequencing of the 16S rRNA gene, 16S rRNA marker-gene-surveys,

is a commonly used method for characterizing microbial communities, microbiomes.

The 16S rRNA marker-gene-survey measurement process includes molecular (e.g. PCR

and sequencing) and computational steps (e.g., sequence clustering) [34]. Molecular

steps are used to selectively target and sequence the 16S rRNA gene from prokaryotic

organisms within a sample. The computational steps convert the raw sequence data

into a matrix with feature (e.g., operational taxonomic units) relative abundance

values for each sample [34]. Both molecular and computational measurement process

steps contribute to the overall measurement bias and dispersion [27, 34, 15]. Proper

measurement method evaluation allows for the characterization of how individual

steps impact the measurement processes as a whole and determine where to focus ef-

forts for improving the measurement process. Appropriate datasets and methods are

needed to evaluate the 16S rRNA marker-gene-survey measurement process. A sam-

ple or dataset with “ground truth” is needed to characterize measurement process

accuracy. Numerous studies have evaluated quantitative and qualitative character-

istics of the 16S rRNA measurement process using mock communities, simulated

data, and environmental samples.

30



To assess the 16S rRNA sequencing measurement process qualitative charac-

teristics of a mock communities are commonly used [10]. As the number of organisms

in the mock community is known, the total number of features can be compared

to the expected value. The number of observed features in a mock community is

often significantly higher than the expected number of organism [50]. The higher

than expected number of features is often attributed to sequencing and PCR arti-

facts as well as reagent contaminants [14, 42]. A notable exception to this is mock

community benchmarking studies evaluating sequencing inference method, such as

DADA2 [19]. Sequence inference methods aim to reduce the number of sequence ar-

tifacts features. While mock communities have a known value, they lack the feature

diversity and relative abundance dynamic range of real samples [10].

The quantitative characteristics of 16S rRNA sequence data are normally as-

sessed using mock communities and simulated data. Mock communities of equimolar

and staggered concentration are used to assess relative abundance estimate quan-

titative accuracy [50]. Results from relative abundance estimates using mock com-

munities generated from mixtures of DNA have shown taxonomic specific effects

where individual taxa are under or over represented in a sample. These taxonomic

specific effects have been attributed to primer mismatches and DNA extraction bi-

ases [14]. Simulated count tables have been used to assess differential abundance

method, where specific taxa are artificially overrepresented in one set of samples

compared to another [62]. Using simulated data to assess log fold-change estimates

only evaluates computational steps of the measurement process.

Quantitative and qualitative assessment can also be performed using sequence
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data generated from mixtures of environmental samples. While simulated data and

mock communities are useful in evaluating and benchmarking new methods one

needs to consider that methods optimized for mock communities and simulated data

are not necessarily optimized for the sequencing error profile and feature diversity

of real samples. Data from environmental samples, which are real samples, are

often used to benchmark new molecular laboratory and computational methods.

However, without an expected value to compare to, only measurement precision can

be evaluated. By mixing environmental samples, an expected value can be calculated

using information from the unmixed samples and how they were mixed. Mixtures

of environmental samples have previously been used to evaluate gene expression

measurements microarrays and RNAseq data[71, 76, 97].

In the present study, we developed a mixture dataset of extracted DNA from

human stool samples for assessing 16S rRNA sequencing. The mixture datasets were

processed using three bioinformatic pipelines. We developed metrics for qualitative

and quantitative assessment of the bioinformatic pipeline results. The quantita-

tive results were similar across pipelines but the qualitative results varied across

pipelines. We have made both the dataset and metrics developed in this study

publically available for evaluating new bioinformatic pipelines.
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3.3 Methods

3.3.1 Two-Sample Titration Design

Samples collected at multiple timepoints during a Enterotoxigenic E. coli

(ETEC) vaccine trial [38] were used to generate a two-sample titration dataset for

assessing the 16S rRNA marker-gene survey measurement process. Samples from

five trial participants were selected for our two-sample titration dataset. Trial partic-

ipants (subjects) and sampling timepoints were selected based on E. coli abundance

data collected using qPCR and 16S rRNA sequencing from Pop et al. [77]. Only

individuals with no E. coli detected in samples collected from trial participants prior

to ETEC exposure twere used for our two-samples titrations. Post ETEC exposure

(POST) samples were identified as the timepoint after exposure to ETEC with the

highest E. coli concentration for each subject (Fig. 3.1A). Due to limited sample

availability, the timepoint with the second highest concentrations for E01JH0016

was used as the POST sample. Independent titration series were generated for each

subject, where POST samples were titrated into PRE samples with POST propor-

tions of 1/2, 1/4, 1/8, 1/16, 1/32, 1/1,024, and 1/32,768 (Fig. 3.1B). Unmixed

(PRE and POST) sample DNA concentration was measured using NanoDrop ND-

1000 (Thermo Fisher Scientific Inc. Waltham, MA USA). Unmixed samples were

diluted to 12.5 ng/µL in tris-EDTA buffer before making the two-sample titrations.

For our two-sample titration mixture design, the expected feature relative

abundance can be calculated using equation (3.1), where θi, is the proportion of
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POST DNA in titration i, qij is the relative abundance of feature j in titration i,

and the relative abundance of feature j in the unmixed PRE and POST samples is

qpre,j and qpost,j.

qij = θiqpost,j + (1 − θi)qpre,j (3.1)

3.3.2 Titration Validation

qPCR was used to validate volumetric mixing and check for differences in the

proportion of prokaryotic DNA across titrations. To ensure that the two-sample

titrations were volumetrically mixed according to the mixture design, independent

ERCC plasmids were spiked into the unmixed PRE and POST samples [4] (NIST

SRM SRM 2374) (Table 3.2). The ERCC plasmids were resuspended in 100 ng/µL

tris-EDTA buffer and 2 ng/µL was spiked into the appropriate unmixed sample.

Plasmids were spiked into unmixed samples after unmixed sample concentration

was normalized to 12.5 ng/µL. POST sample ERCC plasmid abundance was quan-

tified using TaqMan gene expression assays (FAM-MGB) (Catalog # 4448892, Ther-

moFisher) specific to each ERCC plasmid using the TaqMan Universal MasterMix II

(Catalog # 4440040, ThermoFisher Waltham, MA USA). To check for differences in

the proportion of bacterial DNA in the PRE and POST samples, titration bacterial

DNA concentration was quantified using the Femto Bacterial DNA quantification

kit (Zymo Research, Irvine CA). All samples were run in triplicate along with an

in-house E. coli DNA log10 dilution standard curve. qPCR assays were performed
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Figure 3.1: Sample selection and experimental design for the two-sample titration
16S rRNA marker-gene-survey assessment dataset. A) Pre- and post-exposure
(PRE and POST) samples from five vaccine trial participants were selected based
on Escherichia coli abundance measured using qPCR and 454 16S rRNA se-
quencing (454-NGS), data from Pop et al. [77]. PRE and POST samples are
indicated with orange and green data points, respectively. Grey points are other
samples from the vaccine trial time series. B) Proportion of DNA from PRE and
POST samples in titration series samples. PRE samples were titrated into POST
samples following a log2 dilution series. The NA titration factor represents the
unmixed PRE sample. C) PRE and POST samples from the five vaccine trial
participants, subjects, were used to generate independent two-sample titration
series. The result was a total of 45 samples, 7 titrations + 2 unmixed samples
times 5 subjects. Four replicate PCRs were performed for each of the 45 samples
resulting in 190 PCRs.
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using the QuantStudio Real-Time qPCR (ThermoFisher). Amplification data and

Ct values were exported as tsv files using QuantStudio Design and Analysis Soft-

ware v1.4.1. Statistical analysis was performed on the exported data using custom

scripts in R [80, https://github.com/nate-d-olson/mgtst_pub].

3.3.3 Sequencing

The 45 samples (seven titrations and two unmixed samples for each of five

subjects) were processed using the Illumina 16S library protocol (16S Metagenomic

Sequencing Library Preparation, posted date 11/27/2013, downloaded from http

s://support.illumina.com). This protocol specifies an initial 16S rRNA PCR

followed by a sample indexing PCR, followed by normalization and sequencing.

A total of 192 16S rRNA PCR assays were run including four replicates per

sample and 12 no-template controls, using Kapa HiFi HotStart ReadyMix reagents

(KAPA Biosystems, Inc. Wilmington, MA). The initial PCR assay targeted the V3-

V5 region of the 16S rRNA gene, Bakt 341F and Bakt 806R [48]. The V3-V5 region

is 464 base pairs (bp) long, with forward and reverse reads overlapping by 136 bp,

using 2 X 300 bp paired-end sequencing [110] ( http://probebase.csb.univie.a

c.at). Primer sequences include overhang adapter sequences for library prepara-

tion (forward primer 5’- TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGC-

CTACGGGNGGCWGCAG - 3’ and reverse primer 5’- GTCTCGTGGGCTCGGA-

GATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC - 3’). For quality

control, the PCR product was verified using agarose gel electrophoresis to check for
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appropriate size bands, and concentration measurements were made after the initial

16S rRNA PCR, the indexing PCR, and normalization steps. DNA concentration

was measured using SpextraMax Accuclear Nano dsDNA Assay Bulk Kit (Part#

R8357#, Lot 215737, Molecular Devices LLC. Sunnyvale CA, USA) and fluorescent

measurements were made with a Molecular Devices SpectraMax M2 spectraflourom-

eter (Molecular Devices LLC. Sunnyvale CA, USA).

Initial PCR products were purified using AMPure XP beads (Beckman Coulter

Genomics, Danvers, MA) following the manufacturer’s protocol. After purification,

the 192 samples were indexed using the Illumina Nextera XT index kits A and D

(Illumina Inc., San Diego CA). Prior to pooling purified sample concentration was

normalized using SequalPrep Normalization Plate Kit (Catalog n. A10510-01, In-

vitrogen Corp., Carlsbad, CA), according to the manufacturer’s protocol. Pooled

library concentration was checked using the Qubit dsDNA HS Assay Kit (Part#

Q32851, Lot# 1735902, ThermoFisher, Waltham, MA USA). Due to the low pooled

amplicon library DNA concentration, a modified protocol for low concentration li-

braries was used. The library was run on an Illumina MiSeq, and base calls were

made using Illumina Real Time Analysis Software version 1.18.54. Sequencing data

quality control metrics for the 384 fastq sequence files (192 samples with forward

and reverse reads) were computed using the Bioconductor Rqc package [93, 39].
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3.3.4 Sequence Processing

Sequence data were processed using four bioinformatic pipelines: a de-novo

clustering method - Mothur [89], an open-reference clustering method - QIIME [21],

and a sequence inference methods - DADA2 [19], and unclustered sequences as a

control. The code used to run the bioinformatic pipelines is available at https:

//github.com/nate-d-olson/mgtst_pipelines.

The Mothur pipeline follows the developers MiSeq SOP [89, 51]. The pipeline

was run using Mothur version 1.37 (http://www.mothur.org/) As we sequenced a

larger 16S rRNA region, with smaller overlap between the forward and reverse reads,

than the 16S rRNA region the SOP was designed. Pipeline parameters were modified

to account for the difference in overlap are noted for individual steps below. The

Makefile and scripts used to run the mothur pipeline are available https://github

.com/nate-d-olson/mgtst_pipelines/blob/master/code/mothur. The Mothur

pipeline included an initial preprocessing step where the forward and reverse reads

are trimmed and filtered using base quality scores merged into contigs. The following

parameters were used for the initial contig filtering, no ambiguous bases, max contig

length of 500 bp, and max homopolymer length of 8 bases. For the initial read

filtering and merging step, low-quality reads were identified and filtered from the

dataset based on the presence of ambiguous bases, failure to align to the SILVA

reference database (V119, https://www.arb-silva.de/) [79], and identification as

chimeras. Prior to alignment, the SILVA reference multiple sequence alignment was

trimmed to the V3-V5 region, positions 6,388 and 25,316. Chimera filtering was
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performed using UChime (version v4.2.40) without a reference database [32]. OTU

clustering was performed using the OptiClust algorithm with a clustering threshold

of 0.97 [103]. The RDP classifier implemented in mothur was used for taxonomic

classification against the mothur provided version of the RDP v9 training set [101].

The QIIME open-reference clustering pipeline for paired-end Illumina data was

performed according to the online tutorial (http://nbviewer.jupyter.org/githu

b/biocore/qiime/blob/1.9.1/examples/ipynb/illumina_overview_tutorial.i

pynb) using QIIME version 1.9.1 [21]. Briefly, the QIIME pipeline uses fastq-join

(version 1.3.1) to merge paired-end reads [3] and the Usearch algorithm [29] with

Greengenes database version 13.8 with a 97% similarity threshold [28] was used for

open-reference clustering.

DADA2, an R native pipeline was also used to process the sequencing data

[19]. The pipeline includes a sequence inference step and taxonomic classification

using the DADA2 implementation of the RDP naïve Bayesian classifier [101] and the

SILVA database V123 provided by the DADA2 developers [79, https://benjjneb.

github.io/dada2/training.html].

The unclustered pipeline was based on the mothur de-novo clustering pipeline,

where the paired-end reads were merged, filtered, and then dereplicated. Reads were

aligned to the reference Silva alignment (V119, https://www.arb-silva.de/), and

reads failing alignment were excluded from the dataset. Taxonomic classification of

the unclustered sequences was performed using the same RDP classifier implemented

in mothur used for the de-novo pipeline. To limit the size of the dataset the most

abundant 40,000 OTUs (comparable to the mothur dataset), across all samples,
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were used as the unclustered dataset.

3.3.5 Titration Proportion Estimates

The following linear model (3.2) was used to infer the proportion of prokary-

otic DNA in each titration, θ. Where Qi is a vector of titration i feature relative

abundance estimates and Qpre and Qpost are vectors of feature relative abundance

estimates for the unmixed PRE and POST samples. Average PCR replicate relative

abundance values were calculated using a negative binomial model.

Qi = θi(Qpost − Qpre) + Qpre (3.2)

To fit the model to prevent uninformative and low abundance features from

biasing θ estimates only informative features meeting the following criteria were

used Features included in the model were observed in at least 14 of the 28 total

titration PCR replicates (4 replicates per 7 titrations), demonstrated greater than

2-fold difference in relative abundance between the PRE and POST samples, and

were present in either all four or none of the PRE and POST PCR replicates.

16S rRNA sequencing count data is known to have a non-normal mean-variance

relationship resulting in poor model fit for standard linear regression [62]. General-

ized linear models provide an alternative to standard least-squares regression. The

above model is additive and therefore unable to directly infer θi in log-space. To

address this issue, we fit the model using a standard least-squares regression then

obtained non-parametric 95 % confidence intervals for the θ estimates by bootstrap-
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ping with 1000 replicates.

3.3.6 Qualitative Assessment

Our qualitative measurement assessment evaluated features only observed in

unmixed samples (PRE or POST), unmixed-specific, or titrations,titration-specific.

Unmixed- or titration-specific features are due to differences in sampling depth (num-

ber of sequences) between the unmixed samples and titrations, artifacts of the fea-

ture inference process, or PCR/sequencing artifacts. Measurement process artifacts

should be considered false positives or negatives. Hypothesis tests were used to

determine if differences in sampling depth could account for unmixed-specific and

titration-specific features. p-values were adjusted for multiple comparisons using the

Benjamini & Hochberg method [8]. For unmixed-specific features, the binomial test

was used to evaluate if true feature relative abundance is less than the expected

relative abundance. A binomial test could not be used to evaluate titration-specific

features, as the hypothesis would be formulated as such. Given observed counts and

the titration total feature abundance, the true feature relative abundance is equal

to 0. As non-zero counts were observed the true feature proportion is non-zero,

and the test always fails. Therefore, we formulated a Bayesian hypothesis test for

titration-specific features.

A Bayesian hypothesis test was used to evaluate if the true feature proportion

is less than the minimum detected proportion. The Bayesian hypothesis test was

formulated using equation (3.3). Which when assuming equal priors, P (π < πmin) =
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P (π ≥ πmin), reduces to (3.4). For equations (3.3) and (3.4) π is the true feature

proportion, πmin is the minimum detected proportion, C is the expected feature

counts, and Cobs is the observed feature counts. Simulation was used to generate

possible values of C, assuming C has a binomial distribution given the observed

sample total feature abundance, and a uniform probability distribution for π between

0 and 1. πmin was calculated using the mixture equation (3.1) where qpre,j and qpost,j

are min(Qpre) and min(Qpost) across all features for a subject and pipeline. Our

assumption is that π is less than πmin for features not observed in unmixed samples

due to random sampling.

p = P (π < πmin|C ≥ Cobs)

= P (C ≥ Cobs|π < πmin)P (π < πmin)
P (C ≥ Cobs|π < πexp)P (π < πmin) + P (C ≥ Cobs|π ≥ πmin)P (π ≥ πmin)

(3.3)

p = P (C ≥ Cobs|π < πmin)
P (C ≥ Cobs)

(3.4)

3.3.7 Quantitative Assessment

Quantitative assessment compared observed relative abundance and log fold-

changes to expected values derived from the titration experimental design. Feature

average relative abundance across PCR replicates was calculated using a negative

binomial model, and used as observed relative abundance values (obs) for the relative
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abundance assessment. Average relative abundance values were used to reduce PCR

replicate outliers from biasing the assessment results. Equation (3.1) and inferred θ

values were used to calculate the expected relative abundance values (exp). Relative

abundance error rate is defined as |exp − obs|/exp.

We developed bias and variance metrics to assess feature performance. The

feature-level bias and variance metrics were defined as the median error rate and

robust coefficient of variation (RCOV = IQR/median) respectively. Mixed-effects

models were used to compare feature-level error rate bias and variance metrics across

pipelines with subject as a random effect. Extreme feature-level error rate bias

and variance metric outliers were observed, these outliers were excluded from the

mixed effects model to minimize biases due to poor model fit and were characterized

independently.

Log fold-change between samples in the titration series including PRE and

POST were compared to the expected log fold-change values to assess differential

abundance log fold-change estimates. Log fold-change estimates were calculated

using EdgeR [84, 58]. Expected log fold-change for feature j between titrations l

and m is calculated using equation (3.5), where θ is the proportion of POST bacterial

DNA in a titration, and q is feature relative abundance. For features only present

in PRE samples the expected log fold-change is independent of the observed counts

for the unmixed samples and is calculated using (3.6). Due to a limited number

of PRE-specific features, both PRE-specific and PRE-dominant features were used

in the differential abundance assessment. PRE-specific features were defined as

features observed in all four PRE PCR replicates and not observed in any of the
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Table 3.1: Summary statistics for the different bioinformatic pipelines. DADA2 is a
denoising sequence inference pipeline, QIIME is an open-reference clustering pipeline,
and mothur is a de-novo clustering pipeline. No template controls were excluded from
summary statistics. Sparsity is the proportion of 0’s in the count table. Features is the
total number of OTUs (QIIME and mothur) or SVs (DADA2) in the count. Sample
coverage is the median and range (minimum-maximum) per sample total abundance.
Drop-out rate is the proportion of reads removed while processing the sequencing data
for each bioinformatic pipeline.

Pipelines Features Sparsity Total Abundance Drop-out Rate

DADA2 3144 0.93 68649 (1661-112058) 0.24 (0.18-0.59)
Mothur 38469 0.98 53775 (1265-87806) 0.4 (0.35-0.62)
QIIME 11385 0.94 25254 (517-46897) 0.7 (0.62-0.97)

POST PCR replicates and PRE-dominant features were also observed in all four

PRE PCR replicates and observed in one or more of the POST PCR replicates with

a log fold-change between PRE and POST samples greater than 5.

logFClm,j = log2

(
θlqpost,j + (1 − θl)qpre,i

θmqpost,j + (1 − θm)qpre,j

)
(3.5)

logFClm,i = log2

(
1 − θl

1 − θm

)
(3.6)

3.4 Results

3.4.1 Dataset characteristics

We first characterize the number of reads per sample and base quality score

distribution. The number of reads per sample and distribution of base quality scores

by position was consistent across subjects (Fig. 3.2). Two barcoded experimental
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Figure 3.2: Sequence dataset characteristics. (A) Distribution in the number of
reads per barcoded sample (Library Size) by individual. The dashed horizontal
line indicates overall median library size. Excluding one PCR replicate from
subject E01JH0016 titration 5 that had only 3,195 reads. (B) Smoothing spline
of the base quality score (BQS) across the amplicon by subject. Vertical lines
indicate approximate overlap region between forward and reverse reads. Forward
reads go from position 0 to 300 and reverse reads from 464 to 164.
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Figure 3.3: Relationship between the number of reads and features per sample by
bioinformatic pipeline. (A) Scatter plot of observed features versus the number of
reads per sample. (B) Observed feature distribution by pipeline and individual.
Excluding one PCR replicate from subject E01JH0016 titration 5 with only 3,195
reads, and the Mothur E01JH0017 titration 4 (all four PCR replicates), with 1,777
observed features.
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Figure 3.4: Comparison of dataset taxonomic composition across pipelines. Phy-
lum (A) and Order (B) relative abundance by pipeline. Taxonomic groups with
less than 1% total relative abundance were grouped together and indicated as
other. Pipeline genus-level taxonomic assignment set overlap for the all features
(C) and the upper quartile genera by relative abundance for each pipeline (D).
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samples had less than 35,000 reads. The rest of the samples with less than 35,000

reads were no template PCR controls (NTC). Excluding the one failed reaction with

2,700 reads and NTCs, there were 8.9548 × 104 (3195-152267, median and range)

sequnces per sample. The forward read has consistently higher base quality scores

relative to the reverse read with a narrow overlap region with high base quality

scores for both forward and reverse reads (Fig. 3.2B).

The resulting count tables generated using the four bioinformatic pipelines

were characterized for number of features, sparsity, and filter rate(Table 3.1, Figs.

3.3B). The pipelines evaluated employ different approaches for handling low quality

reads resulting in the large differences in drop-out rate and the fraction of raw

sequences not included in the count table (Table 3.1). QIIME pipeline has the

highest drop-out rate and number of features per sample but fewer total features

than Mothur. The targeted amplicon region has a relatively small overlap region,

136 bp for 300 bp paired-end reads, compared to other commonly used amplicons

[51, 100]. The high drop-off rate is due to low basecall accuracy at the ends of the

reads especially the reverse reads resulting in a high proportion of unsuccessfully

merged reads pairs (Fig. 3.2B). Furthermore increasing the drop-out rate, QIIME

excludes singletons, OTUs only observed once in the dataset, to remove potential

sequencing artifacts from the dataset. QIIME and DADA2 pipelines were similarly

sparse (the fraction of zero values in count tables) despite differences in the number

of features and drop-out rate. The expectation is that this mixture dataset will be

less sparse relative to other datasets due to the redundant nature of the samples

where 35 of the samples are derived directly from the other 10 samples, and four PCR
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replicates for each sample. With sparsity greater than 0.9 for the three pipelines

it is unlikely that any of the pipelines successfully filtered out a majority of the

sequencing artifacts.

The dataset taxonomic assignments also varied by pipeline (Fig. 3.4). Phylum

and order relative abundance is similar across pipelines (Fig. 3.4A & B). Differences

are attributed to different taxonomic classification methods and databases. The

DADA2 and QIIME pipelines differed from Mothur and QIIME for Proteobacteria

and Bacteriodetes. Regardless of threshold, for genus sets most genera were unique

to individual pipelines (Fig. 3.4C & D). Sets with QIIME had the fewest genera,

excluding the DADA2-QIIME set. QIIME pipeline was the only one to use the open-

reference clustering and the Greengenes database. Mothur and DADA2 both used

the SILVA dataset. The Mothur and DADA2 pipeline use different implmentations

of the RDP naïve Bayesian classifier, which may be partially responsible for the

mothur, unclustered, and DADA2 differences.

3.4.2 Titration Series Validation

To validate the two-sample titration dataset for use in abundance assessment

we evaluated two assumptions about the titrations: 1. The samples were mixed

volumetrically in a log2 dilution series according to the mixture design. 2. The

unmixed PRE and POST samples have the same proportion of prokaryotic DNA. To

validate the sample volumetric mixing exogenous DNA was spiked into the unmixed

samples before mixing and quantified using qPCR . To evaluate if the PRE and
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POST samples had the same proportion of prokaryotic DNA total prokaryotic DNA

in the titrations samples was quantified using a qPCR assay targeting the 16S rRNA

gene.

3.4.2.1 Spike-in qPCR results

Titration series volumetric mixing was validated by quantify ERCC plasmids

spiked into the POST samples using qPCR. The qPCR assay standard curves had a

high level of precision with R2 values close to 1 and amplification efficiencies between

0.84 and 0.9 for all standard curves indicating the assays were suitable for validating

the titration series volumetric mixing (Table 3.2). For our log2 two-sample-titration

mixture design the expected slope of the regression line between titration factor and

Ct is 1, corresponding to a doubling in template DNA every PCR cycle. The qPCR

assays targeting the ERCCs spiked into the POST samples had R2 values and slope

estimates close to 1 (Table 3.2). Slope estimates less than one were attributed to

assay standard curve efficiency less than 1 (Table 3.2). ERCCs spiked into PRE

samples were not used to validate volumetric mixing as PRE sample proportion

differences were too small for qPCR quantification. The expected Ct difference for

the entire range of PRE concentrations in only 1. When considering the quantitative

limitations of the qPCR assay these results confirm that the unmixed samples were

volumetrically mixed according to the design.
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Figure 3.5: Prokaryotic DNA concentration (ng/ul) across titrations measured
using a 16S rRNA qPCR assay. Separate linear models, Prokaryotic DNA con-
centration versus θ were fit for each individual, and R2 and p-values were re-
ported. Red lines indicate negative slope estimates and blue lines positive slope
estimates. p-value indicates significant difference from the expected slope of 0.
Multiple test correction was performed using the Benjamini-Hochberg method.
One of the E01JH0004 PCR replicates for titration 3 (θ = 0.125) was identified
as an outlier, with a concentration of 0.003, and was excluded from the linear
model. The linear model slope was still significantly different from 0 when the
outlier was included.

51



Table 3.2: ERCC Spike-in qPCR assay information and summary statistics. ERCC is
the ERCC identifier for the ERCC spike-in, Assay is TaqMan assay, and Length and
GC are the size and GC content of the qPCR amplicon. The Std. R2 and Efficiency
(E) statistics were computed for the standard curves. R2 and slope for titration qPCR
results for the titration series.

Subject ERCC Assay Length Std. R2 E R2 Slope

E01JH0004 012 Ac03459877-a1 77 0.9996 86.19 0.98 0.92
E01JH0011 157 Ac03459958-a1 71 0.9995 87.46 0.95 0.90
E01JH0016 108 Ac03460028-a1 74 0.9991 87.33 0.95 0.84
E01JH0017 002 Ac03459872-a1 69 0.9968 85.80 0.89 0.93
E01JH0038 035 Ac03459892-a1 65 0.9984 86.69 0.95 0.94

3.4.2.2 Bacterial DNA Concentration

The observed changes in prokaryotic DNA concentration across titrations in-

dicate the proportion of bacterial DNA from the unmixed PRE and POST samples

in a titration is inconsistent with the mixture design (Fig. 3.5). A qPCR assay

targeting the 16S rRNA gene was used to quantify the concentration of prokary-

otic DNA in the titrations. An in-house standard curve with concentrations of 20

ng/ul, 2ng/ul, and 0.2 ng/ul was used, with efficiency 91.49, and R2 0.999. If the

proportion of prokaryotic DNA is the same between PRE and POST samples the

slope of the concentration estimates across the two-sample titration would be 0. For

subjects where the proportion of prokaryotic DNA is higher in the PRE samples,

the slope will be negative and positive when the proportion is higher for POST sam-

ples. The slope estimates are significantly different from 0 for all subjects excluding

E01JH0011 (Fig. 3.5). These results indicate that the proportion of prokaryotic

DNA is lower in POST when compared to the PRE samples for E01JH0004 and

E01JH0017 and higher for E01JH0016 and E01JH0038.
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3.4.2.3 Theta Estimates

To account for differences in the proportion of prokaryotic DNA in PRE and

POST samples (Fig. 3.5) we inferred the proportion of POST sample prokaryotic

DNA in a titration, θ, using the 16S rRNA sequencing data (Fig. 3.6). Overall the

relationship between the inferred and mixture design θ values were consistent across

pipelines but not subject whereas the 95% CI varied by both subject and pipeline.

For study subjects E01JH0004, E01JH0011, and E01JH0016 the inferred and mix-

ture design θ values were in agreement, in contrast, to study subjects E01JH0017

and E01JH0038. For E01JH0017 the inferred values were consistently less than

the mixture design values. Whereas for E01JH0038 the inferred values were consis-

tently greater than the mixture design values. These results were consistent with

the qPCR prokaryotic DNA concentration results with significantly positive slopes

for E01JH0004 and E01JH0016 and a significantly negative slope for E01JH0038

(Fig. 3.5).

3.4.3 Measurement Assessment

Next, we assessed the qualitative and quantitative nature of 16S rRNA mea-

surement process using our two-sample titration dataset. For the qualitative assess-

ment, we analyzed the relative abundance of features only observed in the unmixed

samples or titrations which are not expected given the titration experimental design.

The quantitative assessment evaluated relative and differential abundance estimates.
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Figure 3.6: Theta estimates by titration, biological replicate, and bioinformatic
pipeline. The points indicates mean estimate of 1000 bootstrap theta estimates
and errorbars 95% confidence interval. The black bar indicate expected theta
values. Theta estimates below the expected theta indicate that the titrations con-
tain less than expected bacterial DNA from the POST sample. Theta estimates
greater than the expected theta indicate the titration contains more bacterial
DNA from the PRE sample than expected.
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Figure 3.7: Distribution of (A) observed count values for titration-specific fea-
tures and (B) expected count values for unmixed-specific features by pipeline
and individual. The orange horizontal dashed line indicates a count value of 1.
(C) Proportion of unmix-specific features and (D) titration-specific features with
an adjusted p-value < 0.05 for the Bayesian hypothesis test and binomial test
respectively. We failed to accept the null hypothesis when the p-value < 0.05,
indicating that the discrepancy between the feature only being observed in the
titrations or unmixed samples cannot be explained by sampling alone.

3.4.3.1 Qualitative Assessment

Unmixed- and titration-specific features were observed for all pipelines (titration-

specific: Fig. 3.7A, unmixed-specific: Fig. 3.7B). For mixture datasets the low

abundance features present only in the unmixed samples and mixtures are expected

due to random sampling. For our two-sample titration dataset there were unmixed-

specific features with expected counts that could not be explained by sampling alone

for all individuals and bioinformatic pipelines (Fig. 3.7C). However, the proportion
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Table 3.3: Maximum feature-level error rate bias (median error rate) and variance (robust
COV) by pipeline and individual.

Metric Pipeline E01JH0004 E01JH0011 E01JH0016 E01JH0017 E01JH0038

dada2 2.37 2.55 17.03 4.34 0.66
mothur 5.30 6.76 19.24 4.15 1.93
qiime 3.99 6.43 8.83 4.80 1.09Bias

unclustered 6.45 7.24 16.85 4.37 1.91
dada2 4.60 8.96 7.36 5.91 6.71
mothur 4.71 7.35 3.71 5.70 8.01
qiime 4.40 22.57 4.46 17.10 7.91Variance

unclustered 7.06 10.30 16.94 8.07 6.00

of unmixed-specific features that could not be explained by sampling alone varied

by bioinformatic pipeline. DADA2 had the highest rate of unmixed-specific features

not explained by sampling whereas QIIME had the lowest rate. Consistent with the

distribution of observed counts for titration-specific features more of the DADA2

features could not be explained by sampling alone compared to the other pipelines

(Fig. 3.7D). Overall, DADA2 resulted in the largest number of observed features

inconsistent with the titration experiment design, while the same phenomenon is

significantly reduced in the other pipelines.

3.4.3.2 Quantitative Assessment

For the relative abundance assessment, I evaluated the consistency of the ob-

served and expected relative abundance estimates for a feature and titration as well

as feature-level bias and variance. The PRE and POST estimated relative abun-

dance and inferred θ values were used to calculate titration and feature level error

rates. Unclustered pipeline θ estimates were used to calculate the error rates for all
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Figure 3.8: Relative abundance assessment. (A) A linear model of the relationship
between the expected and observed relative abundance. The dashed grey line
indicates expected 1-to-1 relationship. The plot is split by individual and color is
used to indicate the different bioinformatic pipelines. A negative binomial model
was used to calculate an average relative abundance estimate across the four PCR
replicates. Points with observed and expected relative abundance values less than
1/median library size were excluded from the data used to fit the linear model.
(B) Relative abundance error rate distribution by individual and pipeline.
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Figure 3.9: Comparison of pipeline relative abundance assessment feature-level
error metrics. Distribution of feature-level relative abundance (A) bias metric -
median error rate and (B) variance - robust coefficient of variation (RCOV =
(IQR)/|median|) by individual and pipeline. Boxplot outliers, 1.5 × IQR from
the median were excluded from the figure to prevent extreme metric values from
obscuring metric value visual comparisons.
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pipelines to prevent over-fitting. Only features observed in all PRE and POST PCR

replicates and PRE and POST specific features were included in the analysis (Ta-

ble 3.3). PRE and POST specific features were defined as present in all four PCR

replicates of the PRE or POST PCR replicates, respectively, but none of the PCR

replicates for the other unmixed samples. There is lower confidence in PRE or POST

feature relative abundance when the feature is not observed in some of the 4 PCR

replicates, therefore these features were not included in the error analysis. Overall,

agreement between the inferred and observed relative abundance was high for all

individuals and bioinformatic pipelines (Fig. 3.8A). The error rate distribution was

similarly consistent across pipelines, including long tails (Fig. 3.8B)

To assess quantitative accuracy I compared the feature-level relative abun-

dance error rate bias (median error rate, Fig. 3.9A) and variance (RCOV =

(IQR)/|median| Fig. 3.9B) across pipelines and individuals using mixed effects

models. Large bias and variance values were observed for all pipelines (Table 3.3).

Features with large bias and variance metrics (outliers), defined as 1.5 × IQR from

the median. To prevent the outliers from biasing the comparison they were not in-

cluded in the dataset used to fit the mixed effects model. Multiple comparisons test

(Tukey) was used to test for significant differences in feature-level bias and variance

between pipelines. A one-sided alternative hypothesis was used to determine which

pipelines had a smaller, feature-level error rate. The Mothur, DADA2, and QIIME

feature-level bias were all significantly different from each other (p < 1 × 10−8).

DADA2 had the lowest mean feature-level bias (0.2), followed by Mothur (0.28),

with QIIME having the highest bias (0.33) (3.9B). Large variance metric values

59



E01JH0004 E01JH0011 E01JH0016 E01JH0017 E01JH0038

0.000.250.500.751.000.000.250.500.751.000.000.250.500.751.000.000.250.500.751.000.000.250.500.751.00

0

1

2

3

Expected

E
st

im
at

e

A

0.01

0.10

1.00

10.00

E01JH0004 E01JH0011 E01JH0016 E01JH0017 E01JH0038

Subject

|E
rr

or
|

B

Pipeline dada2 mothur qiime unclustered

Figure 3.10: (A) Linear model or the relationship between log fold-change es-
timates and expected values for PRE-specific and PRE-dominant features by
pipeline and individual, line color indicates pipelines. Dashed grey line indicates
expected 1-to-1 relationship between the estimated and expected log fold-change.
(B) Log fold-change error (|exp-est|) distribution by pipeline and individual.

were observed for all individuals and pipelines (Table 3.3). The feature-level vari-

ance was not significantly different between pipelines, Mothur = 0.83, QIIME = 0.71

and DADA2 = 1 (Fig. 3.9B). I evaluated whether poor feature-level relative abun-

dance metrics can be attributed to specific taxonomic groups or phylogenetic clades.

While a significant overall phylogenetic signal was detected for both the bias and

variance metric, I was unable to identify specific taxonomic groups or phylogenetic

clades exceedingly poor performance in our assessment.

The agreement between the log-fold change estimates and expected values were

individual specific and consistent across pipelines (Fig. 3.10A). The individual spe-
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Figure 3.11: Feature-level log-fold change error bias (A) and variance (B) metric
distribution by subject and pipeline. The bias (1 − slope) and variance (R2)
metrics are derived from the linear model fit to the estimated and expected log
fold-change values for individual features. Boxplot outliers, 1.5 × IQR from the
median were excluded from the figure to prevent extreme metric values from
obscuring metric value visual comparisons.
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cific effect was attributed to the fact that unlike the relative abundance assessment

the inferred θ values were not used to calculate the expected values. The inferred θ

values were not used to calculate the expected values as I wanted to include all of

the titrations and the θ estimates for the higher titrations were not monotonically

decreasing and therefore resulted in unrealistic expected log fold-change values, e.g.,

negative log-fold changes for PRE specific features. The log-fold change estimates

and expected values were consistent across pipelines with one notable exception. For

E01JH0011 the Mothur log fold-change estimates were in better agreement with the

expected value compared to the other pipelines. However, as θ was not corrected

for differences in the proportion of prokaryotic DNA between the unmixed PRE and

POST samples I am unable to say whether Mothur’s performance was better than

the other pipelines.

The log fold-change error distribution was consistent across pipelines (Fig.

3.10B). There was a long tail of high error features in the error distribution for all

pipelines and individuals. The log fold-change estimates responsible for the long tail

could not be attributed to specific titration comparisons. Additionally, I compared

the log-fold change error distribution for log-fold change estimates using different

normalization methods. The error rate distributions, including the long tails, were

consistent across normalization methods. Furthermore, as the long tail was observed

for the unclustered data as well, the log-fold change estimates contributing to the

long tail are likely due to a bias associated with the molecular laboratory portion of

the measurement process and not the bioinformatic pipelines. Based on exploratory

analysis of the relationship between the log fold-change estimates and expected
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values for individual features indicated that the long tails were attributed to feature

specific performance.

Feature-level log fold-change bias and variance metrics were used to compare

pipeline performance (Fig. 3.10). Feature-level bias and variance metrics are de-

fined as the 1 − slope and R2 for linear models of the estimated and expected log

fold-change for individual features and all titration comparisons. For the bias met-

ric, 1 − slope, the desired value is 0 (i.e., log fold-change estimate = log fold-change

expected), with negative values indicating the log-fold change was consistently un-

derestimated and positive values consistently overestimated. The linear model R2

value was used to characterize the feature-level log fold-change variance as it indi-

cates how consistent the relationship between log fold-change estimates and expected

values is across titration comparisons. To compare bias and variance metrics across

pipelines mixed-effects models were used. The log fold-change bias and variance

metrics were not significantly different between pipelines (Bias: F = 0, 2.51, p =

0.99, 0.08, 3.10B, Variance: F = 47.39, 0.23, p = 0, 0.8, Fig. 3.10C). Next, I eval-

uated whether poor feature-level metrics could be attributed to specific clades for

taxonomic groups. Similar to the relative abundance estimate, while a phylogenetic

signal was detected for both the bias and variance metrics, I was unable to iden-

tify specific taxonomic groups or phylogenetic clades that performed poorly in our

assessment.
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3.5 Discussion

We assessed the quantitative and qualitative characteristics of count tables

generated using different bioinformatic pipelines and 16S rRNA marker-gene sur-

vey mixture dataset. The mixture dataset followed a two-sample titration mixture

design, where DNA collected before and after exposure to pathogenic Escherichia

coli from five vaccine trial participants (subjects) were mixed following a log2 di-

lution series (Fig. 3.1). Qualitative count table characteristics were assessed using

relative abundance information for features observed only in titrations and unmixed

samples. We quantitatively assed count tables by comparing feature relative and

differential abundance to expected values.

3.5.1 Count Table Assessment Demonstration

We demonstrated our novel assessment approach by evaluating count tables

generated using different bioinformatic pipelines, QIIME, Mothur, and DADA2. The

Mothur pipeline uses de novo clustering for feature inference [103, 89]. Pairwise dis-

tances used in clustering are calculated using a multiple sequence alignment. The

quality filtered paired-end reads are merged into contigs. The pipeline the aligns

contigs to a reference multiple sequence alignment and removes uninformative posi-

tions in the multiple sequence alignment. The QIIME pipeline uses open-reference

clustering where merged paired-end reads are first assigned to reference cluster cen-

ters [82, 21]. Next QIIME clusters unassigned reads de novo. Unlike Mothur, the

QIIME clustering method uses pairwise sequence distances calculated from pairwise
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sequence alignments. As a result, the QIIME pairwise distances are calculated using

the full ˜436 bp sequences whereas Mothur pairwise distances were calculated us-

ing a 270 bp multiple sequence alignment. The DADA2 pipeline uses a probability

model and maximization expectation algorithm for feature inference [19]. Unlike

distance-based clustering methods employed by the Mothur and QIIME pipelines,

DADA2 parameters determine if low abundance sequences are grouped with a higher

abundance sequence. As a control, we compared our quantitative assessment results

for the three pipelines to a count table of unclustered features. The unclustered

features were generated using the Mothur pipeline preprocessing methods.

3.5.1.1 Quantitative Assesssment

While the relative abundance bias metric was significantly different between

pipelines overall, pipeline choice had minimal impact on the quantitative assess-

ment results when accounting for subject-specific effects. Outlier features, those

with extreme quantitative analysis bias and variance metrics, were observed for all

pipelines and both relative and differential abundance assessments. Outlier features

could not be attributed to bioinformatic pipelines and are likely due to biases in

the molecular biology part of the measurement process. Outlier features are not

likely a pipeline artifact as they were observed in count tables generated using the

unclustered pipeline as well as standard bioinformatic pipelines. We were unable

to attribute outlier features to relative abundance values, log fold-change between

unmixed samples, and sequence GC content. Features with extreme metric values
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were not limited to any specific taxonomic group or phylogenetic clade. PCR am-

plification is a well-known bias molecular biology component of the measurement

process. Mismatches in the primer binding regions impact PCR efficiency and are

a potential cause for poor feature-specific performance [109]. Additional research is

needed before outlier features are attributed to mismatches in the primer binding

regions.

3.5.1.2 Qualitative Assessment

The qualitative assessment evaluated whether features only observed in un-

mixed samples or titrations could be explained by sampling alone. Features present

only in the titrations or unmixed samples not due to random sampling are bioin-

formatic pipeline artifacts. These artifacts can be categorized as false negative or

false positive features. A false negative occurs when a lower abundance sequence

representing an organism within the sample is clustered with a higher abundance

sequence from a different organism. False positives are sequencing or PCR artifacts

not appropriately filtered or assigned to an appropriate feature by the bioinformatic

pipeline.

Count table sparsity, the proportion of zero-valued cells, provides additional

insight into the qualitative assessment results. A high rate of false negative fea-

tures is a potential explanation for the DADA2 count table’s poor performance in

the qualitative assessment and comparable sparsity to the other pipelines despite

having significantly fewer features (Fig. 3.7, 3.1). The DADA2 feature inference al-
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gorithm may be aggressively grouping lower abundance true sequences with higher

abundance sequences. As a result, the low abundance sequences are not present in

samples leading to increased sparsity and higher abundance unmixed- and titration-

specific features. Adjusting the DADA2 parameters, specifically the OMEGA A pa-

rameter in setDadaOpt. Along these lines, the DADA2 documentation states that

the default setting for OMEGA A is conservative to prevent false positives at the cost

of increasing false negatives [19].

False positive features provide an explanation for Mothur and QIIME pipelines

having lower proportion of unmixed- and titration-specific features not explained by

sampling but high sparsity (Fig. 3.7, 3.1). The statistical tests used to determine

if the specific features could be explained by sampling only considers feature abun-

dance. Therefore, the statistical test is not able to distinguish between true low

abundance unmixed- and titration-specific features and low abundance sequence

artifacts. Mothur and QIIME count tables have ten times and three times more

features compared to DADA2, respectively (Table 3.1). While microbial abundance

distributions are known to have long tails, it is likely that the observed sparsity

is an artifact of the 16S rRNA sequencing measurement process. Similarly, signif-

icantly more features than expected are commonly observed for mock community

benchmarking studies evaluating the QIIME and Mothur pipelines [51].

False positive features can be reduced, but not eliminated, using smaller ampli-

con and prevalence filtering. The 16S rRNA region sequenced in the study is larger

than the region the de-novo, and open clustering pipelines were initially developed

for, potentially explaining the higher than expected sparsity [51]. The larger region
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has a smaller overlap between the forward and reverse reads. As a result merging

of the forward and reverse reads did not allow for the sequence error correction

that occurs when a smaller amplicon is used. However, even when targeting smaller

regions of the 16S rRNA gene both the de-novo (Mothur) and open-reference clus-

tering (QIIME) pipelines produced count tables with significantly more features

than expected in evaluation studies using mock communities. Prevalence filtering is

used to exclude low abundance features, likely predominantly measurement artifacts

[20]. For example, a study exploring the microbial ecology of the Red-necked stint

Calidris ruficollis, a migratory shorebird, used a hard filter to validate their study

conclusions are not biases by false positive features. The study authors compared

results with and without prevalence filter ensuring that the study conclusions were

not biased by using the arbitrary filter or including the low abundant features [83].

3.5.2 Using Mixtures to Assess 16S rRNA Sequencing

Mixtures of environmental samples have previously been used to assess RNAseq

and microarray gene expression measurements. However, this is the first time mix-

tures have been used to assess microbiome measurement methods. Our mixture

dataset allowed us to develop novel methods for assessing marker-gene-survey com-

putational methods. Our quantitative assessment allowed for the characterization

of relative abundance values using a dataset with a larger number of features and

dynamic range compared to assessments using mock communities. As a result, we

were able to identify previously unknown feature specific biases. Based on our study
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results additional experiments can be performed to identify the cause of these biases

and develop appropriate methods to account for them. Based on our subject-specific

results observation, we recommend that studies based on stool samples seeking infer-

ences in a longitudinal series of multiple subjects carefully estimate bacterial DNA

proportions and adjust inferences accordingly. Additionally, our qualitative assess-

ment results, when combined with sparsity information provide a new method for

evaluating how well bioinformatic pipelines account for sequencing artifacts without

loss of true biological sequences.

There were also limitations using our mixture dataset. These limitations in-

cluded: Lack of agreement between the proportion of unmixed samples titrations

and the mixture design. The number of features used in the different analysis. These

limitations are described below along with recommendations for addressing them in

future studies.

Differences in the proportion of prokaryotic DNA in the samples used to gen-

erate the two-sample titrations series results in differences between the true mixture

proportions and mixture design. We attempted to account for differences in mixture

proportion from mixture design by estimating mixture proportions using sequence

data. Similar to how the proportion of mRNA in RNA samples used in a previ-

ous mixture study. We were able to use an assay targeting the 16S rRNA gene to

detect changes in the concentration of bacterial DNA across titration, but unable

to quantify the proportion of bacterial DNA in the unmixed samples using qPCR

data. Using the 16S sequencing data we inferred the proportion of bacterial DNA

from the POST sample in each titration. However, the uncertainty and accuracy of
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the inference method are not known resulting in an unaccounted for error source.

A better method for quantifying sample bacterial DNA proportion or using

samples with consistent proportions would increase the expected value and in-turn

error metric accuracy. Limitations in the prokaryotic DNA qPCR concentration

assay precision limit the suitability for use in mixture studies. Digital PCR provides

a more precise alternative to qPCR and is, therefore, a more appropriate method.

Alternatively using samples where the majority of the DNA is prokaryotic would

minimize this issue. Mixtures of environmental samples can also be used to assess

shotgun metagenomic methods as well. As shotgun metagenomics is not a targeted

approach, differences in the proportion of bacterial DNA in a sample would not

impact the assessment results in the same way as 16S rRNA marker-gene-surveys.

Using samples from a vaccine trial allowed for the use of a specific marker

with an expected response, E. coli, during methods development. However, the

high level of similarity between the unmixed samples resulted in a limited number

of features that could be used in the quantitative assessment results. Using more

diverse samples to generate mixtures would address this issue.

3.6 Conclusions

This two-sample-titration dataset can be used to evaluate and characterize

bioinformatic pipelines and clustering methods. The sequence dataset presented in

this study can be processed with any 16S bioinformatic pipeline. Our quantitative

and qualitative assessment can then be performed on the count table and the results
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compared to those obtained using the pipelines included in this study. The threee

pipelines we evaluated produced sets of features varying in total feature abundance,

number of features per samples, and total features. The objective of any pipeline

is to differentiate true biological sequences from artifacts of the measurement pro-

cess. In general based on our evaluation results we recommend using for DADA2 for

feature-level abundance analysis, e.g. differential abundance testing. While DADA2

performed poorly in our qualitative assessment, the pipeline had performed bet-

ter in the quantitative assessment compared to the other pipelines. Additionally,

the DADA2 poor qualitative assessment results due to false-negative features are

unlikely to negatively impact feature-level abundance analysis, though additional

research is needed to validate this claim. When determining which pipeline to

use for a study, users should consider whether minimizing false positives (DADA2)

or false negatives (Mothur) is more appropriate for their study objectives. When

a sequencing dataset is processed using DADA2, the user can be more confident

that an observed feature represents a member of the microbial community and not

a measurement artifact. Pipeline parameter optimization could address DADA2

false-negative issue. For the Mothur and QIIME pipelines, prevalence filtering will

reduce the number of false-positive features. Feature-level results for any 16S rRNA

marker-gene survey should be interpreted with care, as the biases responsible for

poor quantitative assessment are unknown. Addressing both of these issues requires

advances in both the molecular biology and computational components of the mea-
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surement process.
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CHAPTER 4

Diversity Assessment

Assessing the impact of sequencing characteristics on 16S
rRNA marker-gene surveys beta-diversity analysis.

4.1 Abstract

Originally developed for macro-ecology, beta-diversity metrics are commonly

used to assess overall community similarity between microbiome samples. The ef-

fects of sequencing depth and error rates on beta diversity calculations have not

been thoroughly studied. In the following study, we evaluate the impact of sequence

characteristics on beta-diversity analyses, and how well they are handled by different

bioinformatic pipelines and normalization methods. We use a mixture dataset of

stool samples from five vaccine trial participants, collected before and after exposure

to a pathogen and mixed following a two-sample titration. The sequencing data were

processed using six bioinformatics pipelines, including sequence inference, de novo,

and reference based clustering approaches, along with nine normalization methods,

including standard rarefaction approaches and numeric normalization techniques.

73



We assess (1) beta-diversity repeatability for PCR replicates across multiple se-

quencing libraries and runs, (2) the ability to differentiate groups of samples with

varying levels of similarity and (3) differences in beta-diversity between biological

and technical factors. The Mothur and DADA2 pipelines were more robust to se-

quencing errors compared to the other pipelines evaluated in the study. Out of the

normalization methods compared in the study we suggest using total sum scaling for

weighted metrics. Normalizing counts using rarefaction improved assessment results

for unweighted metrics. Furthermore, we found normalization methods developed

for microarray and RNA sequencing data, including trimmed mean of M values

(TMM) and relative log expression (RLE), may not be appropriate for marker-gene

survey beta-diversity analysis.

4.2 Introduction

Microbial communities are frequently characterized by targeting a marker-gene

of interest (e.g., the 16S rRNA gene) for PCR amplification and high-throughput

sequencing [34]. While these approaches have been successfully used to improve

our understanding of microbiota taxonomy and diversity, they are subject to bi-

ases that can significantly affect downstream analysis. Bioinformatic pipelines and

normalization methods reduce these biases, especially for beta-diversity calculations

comparing sample community structure [34, 49].

Bioinformatic pipelines reduce bias by removing sequencing artifacts, such

as single and multi-base pair variants, and chimeric sequences, from microbiome
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datasets. If not accounted for, these artifacts may incorrectly be attributed as

novel diversity in a sample. Bioinformatic pipelines also use clustering or sequence

inference techniques to group reads into biologically informative units. Standard

clustering methods include de novo clustering based on pairwise sequence similar-

ities [88] and closed reference clustering of reads against a reference database [29].

Open reference clustering is a combination of the two, first applying a closed ref-

erence approach, followed by de novo clustering of reads that did not map to a

reference [82]. Sequence inference methods use statistical models and algorithms

to group sequences independent of sequence similarity but based on the probability

that a lower abundant sequence is an artifact originating from more highly abun-

dant sequence, independent of sequence similarity [19, 1]. The resulting features,

operational taxonomic units (OTUs) for clustering methods and sequence variants

(SVs) for sequence inference methods, have different characteristics because the dif-

ferent methods vary in their ability to detect and remove errors while retaining true

biological sequences.

Rarefaction and numeric normalization methods account for differences in sam-

ple total abundances caused by uneven pooling of samples prior to sequencing, and

differences in sequencing run throughput. Rarifying abundance data traces its ori-

gins to macroecology, where counts for a unit (sample) are randomly subsampled to

a user-defined constant level [35]. Although there are concerns about its statistical

validity [62], rarefaction is currently the only normalization method for unweighted,

presence-absence based, beta-diversity metrics [102]. For weighted, abundance based

beta-diversity analyses, we can apply numeric normalization methods, such as total
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and cumulative sum scaling (TSS and CSS), where counts are divided by sample

total abundance (TSS) or by the cumulative abundance (CSS) for a defined per-

centile [72]. CSS is one of the few normalization methods developed specifically for

16S rRNA marker-gene survey data. Other normalization methods, including upper

quartile (UQ), trimmed mean of M values (TMM) and relative log expression [84,

58], were initially developed for normalizing RNAseq and microarray data. Many

studies have found these methods useful in normalizing marker-gene survey data for

differential abundance analysis, though it is unclear whether these techniques are

also suitable for beta-diversity analysis.

Beta-diversity is calculated using a variety of metrics that can be grouped

based on whether they account for phylogenetic distance and feature relative abun-

dance. The UniFrac metric was developed specifically for marker-gene survey data

and incorporates phylogenetic relatedness by comparing the branch lengths of fea-

tures that are unique to two communities [37]. Unweighted UniFrac uses presence-

absence information, whereas weighted UniFrac incorporates feature relative abun-

dance. Taxonomic metrics do not consider the relationship between features. The

Bray-Curtis and Jaccard dissimilarity indices are examples of weighted and un-

weighted taxonomic metrics respectively, as they do not consider the phylogenetic

relationship between features [13, 44]. Because these four groups of beta-diversity

metrics measure different community characteristics, they are not interchangeable

should be evaluated in a complementary manner to gain maximal insight into com-

munity differences [2].

Previous studies have evaluated different bioinformatics pipelines [92] and nor-

76



malization methods [62, 102] on beta-diversity analysis. Yet, the ability of these

pipelines to account for sequence quality and coverage, and how this affects diver-

sity conclusions, remains unknown. Here, we use a novel dataset of stool samples

from vaccine trial participants, collected before and after exposure to the pathogen,

and mixed following a two-sample titration mixture design. We sequenced multiple

technical PCR replicates, allowing us to evaluate (1) beta-diversity PCR repeata-

bility, and the ability to (2) distinguish between groups of samples with varying

levels of similarity, and (3) identify differences in beta-diversity between individuals

and treatment. Furthermore, the data was reproduced from across four runs with

different sequencing error rates and library sizes, enabling assessment of how each

pipeline and method performs on datasets of varying quality.

4.3 Methods

Our assessment framework utilizes a dataset of DNA mixtures from five vaccine

trial participants described in Section 3.3.1. DNA was extracted from stool collected

from five individuals (subjects) before and after exposure to pathogenic Escherichia

coli (timepoints). The pre- and post-exposure DNA was mixed following a log2 two-

sample titration mixture design, resulting in a set of samples with varying levels of

similarity. The microbial community in the unmixed pre- and post-exposure sam-

ples and titrations were measured using 16S rRNA marker-gene sequencing. Four

technical replicates of each were generated during the 16S rRNA PCR amplification

process. Technical replicates of each PCR were sent to two independent laboratories
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(JHU and NIST) for sequencing (Fig. 4.1).

Sequencing libraries were prepared at the independent laboratories using the

same protocol (16S Metagenomic Sequencing Library Preparation, posted date 11/27/2013,

downloaded from https://support.illumina.com). Resulting libraries were se-

quenced twice at each laboratory, resulting in four sequence datasets with varying

sequence quality and library sizes. The first JHU run PhiX error rate was higher

than expected and the instrument was re-calibrated by the manufacturer, resulting

in improved quality scores for the second run. The first run at NIST generated

lower total throughput than expected, so the pool library for the second run was

re-optimized and generated a dataset with increased throughput and lower sample

to sample read count variability. No template controls were also sequenced for qual-

ity control and did not reveal any significant reagent contamination. Sequence data

characterization was performed using the savR [16] and ShortRead Bioconductor R

packages [63].

4.3.1 Bioinformatic Pipelines

Data from the four sequencing runs were processed using six bioinformatic

pipelines, including the QIIME open reference, closed reference, de novo, and Deblur

pipelines, as well as the Mothur de novo pipeline and DADA2 sequence inference

pipeline. The code used to run the bioinformatic pipelines is available at https:

//github.com/nate-d-olson/mgtst_pipelines/, on the multirun branch. Pre-

processing and feature detection methods vary by pipeline. The Mothur pipeline
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uses the OptiClust algorithm for de novo clustering [103]. Pre-processing includes

merging and quality filtering paired-end reads followed by aligning sequences to the

SILVA reference alignment [89]. Taxonomic classification was performed using the

RDP Bayesian classifier [101] implemented in Mothur. The phylogenetic tree was

constructed in Mothur using the clearcut algorithm [91]. Mothur version 1.39.3

(https://www.mothur.org) and SILVA release version 119 reference alignment and

RDP the mothur formatted version of the RDP 16S rRNA database release version

10 [26].

The DADA2 big data protocol for DADA2 versions 1.4 or later was followed (ht

tps://benjjneb.github.io/dada2/bigdata.html), except for read length trim-

ming parameters and primer trimming. Forward and reverse primers were trimmed

using cutadapt version 1.14 (https://cutadapt.readthedocs.io/en/stable/) [56].

The forward and reverse reads were trimmed to 260 and 200 bp respectively. Read

trimming positions were defined based on read quality score distributions, maximiz-

ing the overlap region between the forward and reverse read while minimizing the

inclusion of low-quality sequence data. The pipeline was run using DADA2 ver-

sion 1.6.0 [19] and formatted SILVA database version 128 trainset provided by the

DADA2 developers [17]. Taxonomic classification was performed using the DADA2

implementation of the RDP Bayesian classifier [101]. The phylogenetic tree was

generated following methods in [20] using the DECIPHER R package for multiple

sequence alignment [108] and the phangorn R package for tree construction [87].

The QIIME pipelines all used the same merged paired-end, quality filtered set

of sequences [21]. UCLUST alogrithm (version v1.2.22q) was used for clustering and
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taxonomic assignment against the Greengenes database version 13.8 97% similarity

OTUs [29, 59]. Phylogenetic trees were constructed using FastTree, and a multiple

sequence alignment generated using pyNAST and the Greengenes reference align-

ment [21, 78]. Both open and closed reference pipelines used the Greengenes 97%

similarity database for reference clustering. Additionally, sequence variants were

inferred from the QIIME merged and quality-filtered sequences using Deblur (ver-

sion 1.0.3) [1]. Phylogenetic tree construction methods used for the other QIIME

pipelines were also used for the Deblur pipeline.

4.3.2 Normalization Methods and Beta-Diversity Metrics

Normalization methods are used to account for between-sample differences in

feature total abundance. Rarefaction, subsampling counts without replacement to

an even abundance, is a commonly used normalization method in macro-ecology and

16S rRNA marker-gene surveys [35, 40]. We rarefied samples to four levels; 2000,

5000, and 10000 total reads per sample, and to the total abundance of the 15th

percentile. Rarefaction levels were selected based on values used in published studies

[98] and other comparison studies [102, 62]. Rarified count data were analyzed

using both weighted and unweighted beta-diversity metrics. Numeric normalization

methods include those previously developed for normalizing microarray and RNAseq

data, such as upper quartile (UQ), trimmed mean of M values (TMM), and relative

log expression [84, 58], and those that are commonly used to normalize 16S rRNA

marker-gene survey, such as cumulative sum scaling (CSS) [72] and total sum scaling
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(proportions, TSS). Numeric normalization methods were used for weighted metrics,

as they do not impact unweighted metric results.

Weighted and unweighted phylogenetic and taxonomic beta-diversity metrics

were compared. Beta-diversity metrics were calculated using phyloseq version 1.22.3

[61]. Weighted and unweighted UniFrac phylogenetic beta-diversity metrics were

calculated using the phyloseq implementation of FastUniFrac [61, 37]. For feature-

level beta-diversity assessment, the Bray-Curtis weighted, and Jaccard unweighted

metrics were used [13, 44].

4.3.3 Beta-Diversity Assessment

Standard linear models were used to test for significance using the R lm

function. Mixed effects models, used to take into account repeated measures,

were fit using the R lmer function in the lme4 package [6]. Model fit was eval-

uated based on model statistics, AIC, BIC, and logLik, as well as diagnostic plots.

Tukey Honest Significant Differences test was used for multiple comparison test-

ing using the TukeyHSD function. The source code for all analysis is available at

https://github.com/nate-d-olson/diversity_assessment.

4.3.3.1 PCR Repeatability

Beta-diversity repeatability was evaluated for the different pipelines across

sequencing runs. Here we define repeatability as the median beta diversity be-

tween PCR replicates. The unnormalized count data was used to characterize the
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baseline beta-diversity repeatability for the different pipeline and sequencing runs.

Linear models were used to quantify differences between pipelines and across the

four sequencing runs for the diversity metrics. Data from the first NIST sequencing

run (NIST1) were used to evaluate normalization method impact on PCR repli-

cate beta-diversity. To quantify normalization method impact, independent linear

models were fit for each pipeline and diversity metric.

4.3.3.2 Signal to Noise Ratio

Next, we evaluated the signal-to-noise ratio for the different pipelines across

sequencing runs by comparing pre-exposure samples to other samples in the titra-

tion series. Signal was measured as the median beta-diversity between samples

were compared (Fig. 4.1). Noise was measured as the median PCR replicate beta-

diversity within the compared samples. A weighted average of the signal-to-noise

ratio was calculated as the area under the curve (using the trapz function) of the

signal-to-noise ratio and the proportion of pre-exposure DNA in the sample being

compared [12]. Independent linear models were fit for each diversity metric to quan-

tify differences in the signal-to-noise ratio between sequencing runs and pipelines. A

mixed-effects linear model was then used to quantify normalization method impact

on the signal-to-noise ratio using data from NIST1 with subject as a random effect.

Independent mixed effects linear models were fit for each pipeline and diversity

metric.

82



4.3.3.3 Biological v. Technical Variation

To quantify the contribution of biological and technical variability to total

variability the distribution of beta diversity metrics were compared between sub-

jects, within subject and between conditions (pre- and post-exposure), and different

types of technical replicates. A linear model was used to quantify differences in

beta diversity between biological and technical sources of variability. We then used

variation partitioning [11] to quantify technical and biological factor’s contribution

to the total observed variation. Variation partition was calculated using the Vegan

R package [66]. Distance-based redundancy analysis (dbRDA) was used to identify

significant sources of variation [66].

4.4 Results

We sequenced the bacterial communities in stool samples collected from five

vaccine trial participants before and after exposure to pathogenic E. coli (Fig. 4.1).

Mixture samples were generated by titrating pre- and post-exposure samples at dif-

ferent concentrations. Each sample was sequenced twice at two different laboratories

(JHU and NIST) for a total of four runs.

4.4.1 Dataset Characteristics

The four replicate sequencing runs were of variable sequence quality and depth

(Fig. 4.2). Sequencing error rates and base quality scores also varied by sequencing

run. JHU1 had higher PhiX error rates compared to all other runs, especially for the

83



Figure 4.1: Two-sample titration dataset experimental design. The dataset con-
tained independent two-sample titration series from 5 vaccine trial participants
(subjects), resulting in 45 samples. PCRs were run on two 96 well plates with
each plate half containing one for each sample and three no template control
reactions. The four replicate PCR assays per sample resulted in 180 PCRs. The
PCR products were split into technical replicates and sequenced twice at two
different laboratories.

Table 4.1: Summary statistics for the different bioinformatic pipelines. No template
controls were excluded from summary statistic calculations. Sparsity is defined as the
proportion of 0’s in the count table. Features is the total number of OTUs (QIIME and
mothur) or SVs (DADA2), rows in the count table. Singletons is the total number of
features only observed once in a single sample. Total Abundance is the median and range
(minimum-maximum) per sample total feature abundance. Pass Rate is the median and
range for the proportion of reads not removed while processing a sample’s sequence data
through a bioinformatic pipeline.

Pipelines Features Singletons Samples Sparsity Total Abundance Pass Rate

dada 25247 99 768 0.991 52356 (141585-181) 0.76 (0.87-0.01)
mothur 38367 24490 765 0.992 13312 (42954-171) 0.2 (0.45-0.02)
q closed 6184 829 754 0.929 24938 (111765-1) 0.36 (0.73-0)
q deblur 3711 0 576 0.940 9135 (30423-4) 0.14 (0.24-0)
q denovo 180834 120599 766 0.994 26250 (118767-4) 0.37 (0.75-0)
q open 45663 39 766 0.981 26373 (118421-3) 0.37 (0.75-0)
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Figure 4.2: Sequencing quality and sample total abundance variation for the four
sequencing runs used in this study. The same set of 192 PCRs were sequenced
in all four runs. Independent sequencing libraries were generated at the two
sequencing laboratories (JHU and NIST). (A) PhiX error rate relative to 16S
rRNA amplicon base position for the four sequencing runs. (B) Distribution of
mode read quality score by sequencing run. (C) Sequencing run total abundance
coefficient of variation estimate and 95% confidence interval calculated using a
mixed effects linear model.
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Figure 4.3: Rarefaction curves for the four sequencing runs (line color) by pipeline
(A-F). Rarefaction curves were calculated using the feature counts summed across
all samples by sequencing run. Rarefaction curves indicate how thoroughly a pop-
ulation is sampled. Curves show the relationship between the number of unique
features (y-axis) and sampling depth. Curves reaching an asymptote indicate the
population has been completely sampled. Shapes indicate the observed feature
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reverse reads (Fig. 4.2A). Read base quality was lower for the reverse read than the

forward reads for all four sequencing runs (Fig. 4.2B). Sequence data from the two

NIST runs had higher quality scores than the data from JHU runs, except for JHU2

forward reads (Fig. 4.2B). Greater variability in sample feature total abundance

was observed on the first run at each laboratory (Fig. 4.2C).

Overall, sequences from JHU1 had lower read quality and higher variability

in total sample abundance. Sequences from NIST1 were of higher quality but also

exhibited greater variability in total sample abundance. Thus, by comparing the

JHU1 results to the higher quality, less variable NIST2 and JHU2 runs, we can

evaluate how well the bioinformatic pipelines handle low quality reads. Similarly,

we can use data from the NIST1 to determine how well normalization methods can

account for differences in total abundance between samples.

Samples from the different sequencing runs were processed using six differ-

ent bioinformatic pipelines. Four of the pipelines, including the QIIME de novo,

QIIME closed-reference, QIIME open-reference, Mothur de novo, utilize OTU clus-

tering methods, while the remaining two, QIIME Deblur and DADA2, use sequence

inference approaches. Aside from the four QIIME pipelines each pipeline employs

its own pre-processing, feature inference, and quality filtering methods. The four

QIIME pipelines used the same pre-processing methods. As a result, the features

and count tables generated by the pipelines exhibit different characteristics in terms

of the number of features, total abundance, number of singletons, the proportion of

sequences passing quality control (Table 4.1).

We generated rarefaction curves to assess feature diversity at multiple sam-
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pling depths for across the four sequencing runs (Fig. 4.3). Sequence inference

methods (DADA2 and Deblur) had lower overall feature diversity estimates and

their rarefaction curves reached an asymptote around the same level (Fig. 4.3A &

B), suggesting that sampling depth was sufficient to capture community diversity.

The JHU1 rarefaction curves at the origin for the QIIME pipelines was due to lim-

ited number of features, none for Deblur, were produced by the pipelines. DADA2

asymptotes, however, were inconsistent across sequencing runs, indicating artificial

plateaus for the lower throughput and lower quality runs (Fig. 4.3A). Rarefaction

curves for de novo, open-reference, and closed-reference methods did not reach an

asymptote (Fig. 4.3). The QIIME de novo pipeline had the greatest slope, suggest-

ing the highest rate of artifacts (Fig. 4.3E). This is most likely due to the fact that

the QIIME de novo pipeline does not filter out singletons (Table 4.1). Furthermore,

the Mothur rarefaction curves were consistent across sequencing runs, but the QI-

IME clustering pipelines rarefaction curves were influenced by both sequence quality

and library size (Fig. 4.3D-F).

4.4.2 PCR Repeatability

Next, we evaluated differences in beta-diversity between un-normalized PCR

replicates across sequencing runs and pipelines. PCR replicate beta-diversity varied

by diversity metric (Fig. 4.2). Beta-diversity was consistently higher for unweighted

compared to weighted metrics, and phylogenetic diversity metrics were lower than

taxonomic metrics. We expected to see higher pairwise distances for the lower
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Figure 4.4: Distribution of mean pairwise PCR replicate beta-diversity by se-
quencing run and pipeline for un-normalized count data.

quality JHU1 run compared to the higher quality JHU2 run. This was true for the

QIIME clustering pipelines. However the Mothur and DADA2 mean PCR replicate

beta-diversity was consistent across the JHU runs, suggesting that these pipelines are

more robust to sequencing errors (Fig. 4.2). Conversely, with the highest number

of failed samples for the first JHU run, the Deblur pipeline was the least robust

to sequencing errors (Table 4.1). As expected JHU2 and NIST2, with high read

quality and lower total abundance variability, had comparable PCR replicates beta-

diversity. Additionlly, NIST1 had higher PCR replicate beta-diversity compared to

JHU2 and NIST2, which is attributed to higher total abundance vairiability.

Data from NIST1 was used to compare normalization methods ability to im-

prove beta-diversity repeatability. When comparing normalized to un-normalized
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Figure 4.5: Impact of normalization method on mean weighted (A) and un-
weighted (B) PCR replicates beta-diversity, for the sequencing run with higher
quality and total abundance variability, NIST1. Data are presented as minimal-
ink boxplots, where points indicate median value, the gap between point and
lines the interquartile range, and lines the boxplot whiskers. Solid black lines
represent median value and dashed lines indicate the first and third quartiles of
the raw (un-normalized) mean pairwise distances between PCR replicates.
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PCR replicate beta-diversity, we observed that most normalization methods reduced

beta-diversity between PCR replicates (Fig. 4.5A). For a number of pipelines, TMM

and RLE normalization methods significantly lowered weighted PCR replicate beta-

diversity (Fig. 4.5A). For unweighted metrics (Fig. 4.5B), rarefying count data to

2000 total feature abundance resulted in the lowest beta-diversity between PCR

replicates. While rarefying counts to the total abundance of the 15th most abun-

dant sample (rareq15) tended to significantly increase PCR replciates beta-diversity.

Rarefaction to this level is also most susceptible to sample loss and should not be

used as it results in unnecessary loss of statistical power.

4.4.3 Signal to Noise

We further sought to identify which pipelines and normalization methods are

best able to pull out biological signals from background, technical noise. We cal-

culated a signal-to-noise ratio by dividing the beta-diversity between unmixed pre-

exposure samples and other samples in the titration series (signal) by PCR repli-

cate beta-diversity for the samples being compared. The signal-to-noise ratio for

unweighted metrics on un-normalized samples was around 1 for all pipelines and

sequencing runs (Fig. 4.6), indicating that the signal magnitude (biological differ-

ences) was equal to the noise (differences between PCR replicates). Using weighted

metrics, only DADA2 and Mothur ratios were consistently greater than 1, and these

pipelines had higher ratio differences for the JHU runs compared to NIST runs.

The relationship between NIST and JHU runs for the signal to noise relationship is
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consistent with the PCR replicate beta-diversity results.

Normalizing count data should increase the signal-to-noise ratio; however,

most normalization methods did not have a significant for weighted metrics (Fig.

4.7A). One exception was TSS, which significantly increased the Bray-Curtis sig-

nal to noise ratio for the Mothur and DADA2 datasets. Rarefying counts to the

15th quantile resulted in significantly lower the weighted UniFrac and Bray-Curtis

signal-to-noise ratio for QIIME closed-reference and de novo pipelines. While RLE

and TMM improved PCR replicate beta-diversity, these normalization methods also

significantly lowered the weighted UniFrac beta-diversity for DADA2, Mothur, and

QIIME de novo pipelines. Rarefaction often increased the unweighted metric signal-

to-noise ratio (Fig. 4.7B), though the increase was only significant at lower subsam-

pling depths for DADA2 and Mothur pipelines.

4.4.4 Biological v. Technical Variation

Finally, we characterized how different pipelines and normalization methods

capture diversity differences between biological factors and technical replicates. As

expected, the mean diversity observed between biological factors was greater than

between technical replicates (Fig. 4.8). The magnitude of this difference, how-

ever, was greater for weighted than unweighted beta-diversity metrics and varied by

pipeline. Greater differences were observed with the DADA2, Mothur, and Deblur

pipelines, compared to the QIIME clustering approaches.

Variation partitioning was used to identify the amount of variation attributable
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to subject, titration factor (unmixed pre-exposure and unmixed post-exposure), and

sequencing run. When a normalization method increases the variation in the data

(distance matrix) for a biological factor and decreases the variation for a techni-

cal factor, the beta-diversity between biological samples (i.e. different subjects) in-

creases and beta-diversity between technical replicates (i.e. PCR assays) decreases.

When beta-diversity between biological factors is equivalent to or smaller than beta-

diversity between technical factors the method is no longer able to distinguish be-

tween the biological samples. Therefore the expectation is that normalization meth-

ods should decrease variation attributed to technical factors with either no change

or increase the variation due to biological factors. Across all pipelines and diversity

metrics, the greatest amount of variation is often explained by subject, followed by

titration factor (Fig. 4.9). The variation partitioning results are consistent with

our observation of greater biological than technical variability. Sequencing run ac-

counts for a greater proportion of the explained variance in the unnormalized runs,

highlighting the overall importance of normalizing our datasets.

Effective normalization methods decrease technical noise in the data with-

out decreasing biological signal. For both weighted (Fig. 4.9A) and unweighted

(Fig. 4.9B) metrics, rarefaction normalization methods show increased proportion

of variation explained by biological factors and decreased the proportion of varia-

tion explained by technical artifacts. Numeric normalization methods were not as

effective, especially for the QIIME pipelines. RLE and TMM normalization consis-

tently increased technical variability and often decreased biological variability (Fig.

4.9A). Principal coordiante analysis plots for the unmixed pre-exposure samples are
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Table 4.2: Pipeline beta-diversity assessment summary. +/- were used to qualitatively
summarise performance of the six pipelines in for the three assessments.

Pipelines PCR Repeatability Signal-to-Noise Biological v. Technical

dada + + +
mothur + + +
q closed + - -
q deblur + - +
q denovo - - -
q open - - -

consistent with variation partitioning results (Fig. 4.10). For Mothur and DADA2

the technical replicates group more tightly when TSS is used to normalize count

data compared to when TMM.

4.5 Discussion

Sequence error rate and variation in library size are just two sequencing charac-

teristics that can negatively bias beta-diversity analyses [62]. Ideally, bioinformatic

pipelines can help differentiate true biological sequences from artifacts generated by

sequencing errors [19] and normalization methods, such as rarefaction and total sum

scaling, can adjust for differences in library size [72]. However, the efficacy of these

different pipelines and normalization techniques for microbiome datasets, and how

they affect study conclusions, are not well characterized. We compared the perfor-

mance of six bioinformatic pipelines and nine normalization methods on mixture

samples for four beta-diversity metrics, finding that these pipelines and methods

vary significantly in their ability to identify and correct these biases.

We utilized a novel two-sample titration dataset of DNA extracts from five

99



participants in a vaccine trial. Individual titration series were generated for each

participant, where DNA collected before exposure to pathogenic E. coli were titrated

into DNA samples collected after exposure. These samples were processed with

multiple levels of technical replication, including 16S rRNA PCR assays, sequencing

libraries, and sequencing runs that were performed in duplicate at two independent

laboratories. Our framework assessed three components: (1) beta-diversity repeata-

bility of PCR replicates, (2) signal-to-noise analysis of the between to within-sample

beta diversity of titration sets, and (3) contribution of biological (subjects and ex-

posure status) and technical factors (PCR replicates, sequencing labs, and runs) to

beta-diversity. Pipeline performance for the three assessments are summarized in

Table 4.2.

When comparing PCR replicates for all sequencing runs, the QIIME de novo

pipeline had high UniFrac values, but low weighted UniFrac values. This is most

likely due to the high proportion of singletons generated (Table 4.1). A large num-

ber of singletons indicates that a pipeline is unable to group sequencing artifacts

with true biological sequences. Beta-diversity measures the relationship between

single sample diversity (alpha) and system diversity (gamma). Inflated alpha- and

gamma-diversity due to spurious features, as observed with QIIME de novo will

result in inflated beta-diversity, and spurious features have a low probablility of

being observed in both samples. The removal of singletons, a step included in

many workflows such as the QIIME open-reference pipeline, can address this bias.

Deflated alpha- and gamma-diversity, as observed with DADA2, due to grouping

low abundance features with high abundance features, can similarity result in in-
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flated beta-diversity when shared features are incorrectly grouped with non-shared

features. The differences we observed in weighted and unweighted Unifrac values

also emphasize the importance of assessing multiple beta-diversity metrics, as each

metric provides unique insight into community composition shifts. Normalization

methods generally improved beta-diversity repeatability, with the exception of rar-

efying data to 15th quantile, which resulted in higher beta-diversity between PCR

replicates, especially for QIIME pipelines, possibly due to large sample loss. Count

data normalized using TMM and RLE consistently had lower beta-diversity values

between PCR replicates compared to un-normalized count data.

The biological signal magnitude was equal to the technical noise for un-normalized

samples, highlighting the overall importance of normalization. Rarefaction methods

at lower subsampling depths generally increased the signal to noise ratio for un-

weighted metrics, especially for the DADA2 and Mothur pipelines. Unexpectedly,

most numeric normalization methods did not increase the signal-to-noise ratio for

weighted metrics, and TMM and RLE normalization methods, which showed the

greatest similarity between PCR replicates, decreased our ability to tease out the

true biological indicators.

We finally evaluated the impact of different sources of variability on pipeline

and normalization methods by comparing diversity between biological samples and

technical replicates. For most pipelines and beta diversity metrics, normalizing

the count data increased the difference in beta diversity between biological and

technical replicates (Fig. 4.5), indicating a greater ability to detect community

levels differences between treatment conditions. Some metrics, namely rarefying
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to the 15th quantile, RLE, and TMM, frequently reduced the differences in beta-

diversity between the biological to technical factors. Variation partitioning results

were consistent with this conclusion (Fig. 4.9).

This study highlights the importance of rigorous evaluation of computational

tools and datasets. While we utilized six commonly cited bioinformatics pipelines,

there are many different approaches and researchers should think critically about

which is most appropriate for their own dataset. We used default program parame-

ters in our analyses to make our findings generally applicable. However, we strongly

advise researchers to have a good understanding of each step in their chosen pipeline,

including what parameters are required and whether they should be changed to best

fit data of interest.

Furthermore, this study shows the importance of normalizing microbiome

count tables prior to beta-diversity analyses. As the microbiome field is relatively

young, many existing normalization approaches are adopted from methods created

for other applications. For instance, RLE and TMM normalization methods were

initially developed for normalizing microarray and RNAseq data, not marker-gene

sequence data. While these methods improve differential abundance analysis [62],

they may not appropriate for beta-diversity analysis.

4.6 Conclusions

The results presented in this study can be used to help determine appropriate

bioinformatic pipeline and normalization method for a marker-gene survey beta-
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diversity analysis. The six pipelines evaluated in this study varied in their ability to

distinguish sequencing artifacts from true biological sequences and these differences

impacted the PCR replicate beta-diversity repeatability. Based on our study results

we found Mothur and DADA2 to be more robust to lower quality sequence datasets.

Optimizing QIIME preprocessing methods may increase pipeline robustness to lower

quality data. Additionally, the assessment presented here evaluated full bioinfor-

matic pipelines, including both pre-processing and feature inference methods. Us-

ing the same set of pre-processed sequence data would allow for an independent

evaluation of the feature inference methods. Overall, we recommend using Mothur

when processing 16S rRNA sequencing data for beta-diversity analysis. Mothur was

more robust to low-quality sequence data, had consistent rarefaction curves between

sequencing runs, and performed well in our assessment. Additionally, as 24,490 of

the 38,367 Mothur features were singletons, singleton removal will likely improve

the assessment results.

Normalization can improve PCR replicate repeatability, but sometimes at the

cost of decreasing the differences in beta-diversity for biological relative to technical

factors. Our results indicate normalization methods developed for gene expression

data analysis may not be appropriate for marker-gene survey beta-diversity analy-

sis. For weighted metrics, we recommend normalizing counts using TSS and CSS.

These normalization methods improved assessment results or had no effect relative

to unnormalized counts. Rarefying count data improved unweighted metric results

but higher rarefaction levels tended to perform worse than unnormalized data. Rar-

efying counts lowers statistical power and therefore, it is not advisable when other
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normalization methods are available [62]. As numeric normalization methods are

not applicable to unweighted metrics, rarefying counts is the recommended normal-

ization method. To reduce the risk of the random subsampling step biasing beta

diversity results bootstrap replicates can be used to validate results.

Bioinformatic pipelines combine multiple algorithms to convert raw sequence

data into a count table which is subsequently used to test biological hypotheses.

Algorithm choice and parameters can significantly impact pipeline results. The

pipelines compared in this study were optimized using mock communities and bench-

marked against other methods based on similarity in beta-diversity results [10].

The novel assessment framework and dataset presented here provides complemen-

tary methods for use in optimizing existing and benchmarking new pipelines and

normalization methods.
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CHAPTER 5

metagenomeFeatures

An R package for working with 16S rRNA reference
databases and marker-gene survey feature data.

5.1 Abstract

We developed the metagenomeFeatures R Bioconductor package along with

annotation packages for the three primary 16S rRNA databases (Greengenes, RDP,

and SILVA) to facilitate working with 16S rRNA sequence databases and marker-

gene survey feature data. The metagenomeFeatures package defines two classes,

MgDb for working with 16S rRNA sequence databases, and mgFeatures for working

with marker-gene survey feature data. The associated annotation packages pro-

vide a consistent interface to the different 16S rRNA databases facilitating database

comparison and exploration. The mgFeatures represents a crucial step in the devel-

opment of a common data structure for working with 16S marker-gene survey data

in R.

Availability: https://bioconductor.org/packages/release/bioc/html/me
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tagenomeFeatures.html

5.2 Introduction

16S rRNA marker-gene surveys have significantly advanced our understanding

of the diversity and structure of prokaryotic communities present in ecosystems

including the human gut, open ocean, and even the international space station [53,

98, 41]. For a 16S rRNA marker-gene survey, the 16S rRNA gene is sequenced using

a targeted assay. The raw sequence data is processed using a bioinformatic pipeline

where the sequences are grouped into features, e.g., operational taxonomic units

(OTUs) or sequence variants (SVs), yielding a set of representative sequences [18,

7].

A critical step in 16S rRNA marker-gene surveys is comparing representative

sequences to a reference database for taxonomic classification or phylogenetic place-

ment [65]. There are numerous 16S rRNA reference databases of which Greengenes,

RDP, and SILVA are arguably the most commonly used [28, 26, 79, 59]. Addition-

ally, there are smaller system-specific databases such as HOMD for the human oral

microbiome [22, http://www.homd.org/] and soil reference database [24]. System-

specific databases can improve taxonomic assignments for microbial communities

not well represented in the major databases [85].

16S rRNA databases differ in the number and diversity of sequences, the tax-

onomic classification system, and the inclusion of intermediate ranks [5, Table 5.1].

Databases format their data differently and use sequence identification systems
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Table 5.1: 16S rRNA gene sequence databases with Bioconductor annotation packages
we developed.

Database Version Sequences Taxonomic System

Greengenes 13.5 1,262,986 NCBI
RDP 11.5 3,356,809 Bergeys
SILVA 128.1 1,922,213 Bergeys

unique to their database, challenging membership and composition comparisons.

For example, Yang, Wang, and Qian [110] used the SILVA database to evaluate

how different 16S rRNA variable regions impact phylogenetic analysis. Similarly,

Martinez-Porchas et al. [57] also used the SILVA database to evaluate sequence

similarity between 16S rRNA gene conserved regions. Differences in database for-

matting present a significant barrier to performing the same analysis using multiple

databases. Additionally, taxonomic assignments can be database-dependent, pro-

viding further justification for database comparisons [75]. To facilitate database

comparisons RNACentral (http://rnacentral.org/) a resource combining non-

coding RNA databases, provides unique identifiers for the sequences [96].

We developed the R package metagenomeFeatures for working with both 16S

rRNA gene database and marker-gene survey feature data. metagenomeFeatures

provides a common data structure for working with the 16S rRNA databases and

marker-gene survey feature data. Additionally, this package is the first step towards

the development of a common data structure for use in analyzing metagenomic and

marker-gene survey data using R packages such as phyloseq [60] and metagenomeSeq

[73].
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5.3 MgDb and mgFeatures Class Description

The metagenomeFeatures package defines two data structures , MgDb for work-

ing with 16S rRNA databases, and mgFeatures for working with marker-gene sur-

vey feature data. There are three types of relevant information for both MgDb and

mgFeatures class objects, (1) the sequences themselves, (2) sequence taxonomic lin-

eage, and (3) a phylogenetic tree representing the evolutionary relationship between

features. MgDb and mgFeatures data structures are both S4 object-oriented classes

with slots for taxonomic, sequence, phylogenetic, and metadata.

As the 16S rRNA databases contain hundreds of thousands to millions of

sequences, an SQLite database is used to store the taxonomic and sequence data.

Using an SQLite database prevents the user from loading the full database into

memory. The database connection is managed using the RSQLite R package [64]).

The taxonomic data are accessed using the dplyr and dbplyr packages [105, 107].

The DECIPHER package is used to format the sequence data as an SQLite database

[108]. The phylo class, defined in a APE R package, is used to define the tree slot

[70]. We developed Bioconductor annotation packages for commonly used databases,

Greengenes, RDP, and SILVA Table [26, 79, 28, Table 5.1]. Along with database

specific sequence identifiers, RNAcentral identifiers are included in the SQLite table

for inter-database comparisons.

mgFeatures-class is used for storing and working with marker-gene survey

feature data. Similar to the MgDb-class, the mgFeatures-class has four slots, for

taxonomy, sequences, phylogenetic tree, and metadata. As the number of features in
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a marker-gene survey dataset is significantly smaller than the number of sequences

in a reference database, mgFeatures-class uses common Bioconductor data struc-

tures, DataFrames and DNAStringSets to define the taxonomic and sequence slots

[69, 68]. Similar to MgDb-class, a phylo-class object is used to define the tree

slot. For both the MgDb and mgFeatures classes the tree slot is optional, and the

metadata are stored as a list.

5.4 Applications/ Vignettes

The metagenomeFeatures package includes a series of vignettes as example

use cases for the metagenomeFeatures package and associated reference database

annotation packages. (1) Retrieving sequence and phylogenetic data for OTUs from

closed-reference clustering. (2) Exploring the diversity of a taxonomic group of

interest.

The R command browseVignettes(“metagenomeFeatures”) provides a list of

vignettes associated with the package and vignette(“x”) is used to view specific

vignettes, where “x” is the vignette name.

To further demonstrate the utility of the package, the manuscript supplemen-

tal information uses metagenomeFeatures, greengenes13.5MgDb annotation package,

and DECIPHER to evaluate the potential for species-level taxonomic classification

using 16S rRNA V12 and V4 sequence data.
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5.5 Conclusions

The metagenomeFeatures package provides data structures and functions for

working with 16S rRNA databases and marker-gene survey feature data. The data

structure provided by the MgDb-class in conjunction with the shared sequence iden-

tifier system developed by RNACentral facilitates comparisons between 16S rRNA

databases. The mgFeatures-class provides the groundwork for the development of

a common data structure for working with metagenomic and marker-gene sequence

data in R which will increase interoperability between R packages developed for

working with metagenomic sequence data. Additionally, while the data structures

were developed for 16S rRNA gene sequence data they can be used for any marker-

gene sequence data without modification and can be extended to work with shotgun

metagenomic sequence data and databases.

5.6 Supplemental Material

Paenibacillus species resolution for 16S rRNA V12 and V4 regions.

5.6.1 Background

16S rRNA amplicon sequencing is commonly used for microbial community

characterization, including differential abundance analysis. A limitation to 16S

rRNA amplicon sequencing is a lack of taxonomic resolution, where organisms are

only identifiable to the genus or family level. We define taxonomic resolution as the
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ability to differentiate between groups within a taxonomic level, for example dif-

ferentiating between species within a genus. While similar to determining whether

a sequence represents a novel species, here we are only interested in determining

whether the 16S rRNA region of interest contains sufficient information for species-

level taxonomic assignment. Taxonomic resolution varies by clade and amplicon

regions. Though the extent to which taxonomic resolition varies is not well charac-

terized.

Here we demonstrate how metagenomeFeatures and the MgDb annotation pack-

ages can be used to characterize taxonomic resolution for a specific clade and ampli-

con region, specifically for the Paenibacillus genus and V12 and V4 regions. Orig-

inally classified under the Bacillus genus, a novel genus was formed based on the

16S rRNA gene similarity in the 1990s. Paenibacillus spp. are facultative anaerobic

bacteria present in a variety of environments including the soil, water, and can act

as opportunistic pathogens in humans [67]. Paenibacillus spp. will play an impor-

tant role in sustainable agricultural industries [36]. As such, appropriate speciation

is of interest. The V12 and V4 region were used as they represent two commonly

used amplicons for 16S rRNA marker-gene surveys. We will use the Greengenes

13.5 database, accessed using the greengenes13.5MgDb annotation package for our

analysis of the Paenibacillus genus. The Greengenes 13.5 database is used for demon-

stration purposes but the other MgDb annotation packages can also be used; RDP

11.5 - ribosomaldatabaseproject11.5MgDb or SILVA 128.1 - silva128.1MgDb.
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5.6.2 Required Packages

In addition to metagenomeFeatures and greengenes13.5MgDb the DECIPHER,

tidyverse, and ggpubr packages are also used in the following analysis. Our analysis

uses the DECIPHER package to extract the amplicon regions, perform multiple se-

quence alignment, and generate a pairwise sequence distance matrix [Wright2016-mo].

The tidyverse and ggpubr packages will be used to reformat the taxonomic and

distance matrix data and generate summary figures [106, 47].

library(tidyverse); packageVersion("tidyverse")

## [1] ’1.2.1’

library(ggpubr); packageVersion("ggpubr")

## [1] ’0.1.6’

library(DECIPHER); packageVersion("DECIPHER")

## [1] ’2.8.1’

library(metagenomeFeatures); packageVersion("metagenomeFeatures")

## [1] ’2.0.0’

library(greengenes13.5MgDb); packageVersion("greengenes13.5MgDb")

## [1] ’2.0.0’

5.6.3 Paenibacillus Sequence and Taxonomy Data

We first subset the Greeengenes 13.5 database using the mgDb select func-

tion. Then summarize the taxonomy data using functions from tidyverse package,

specifically dplyr, stringr and forcats functions for manipulating data.frames,

strings, and factor vectors respectively.
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paeni_16S <- metagenomeFeatures::mgDb_select(gg13.5MgDb,
type = c("taxa","seq"),
keys = "Paenibacillus",
keytype = "Genus")

## Per genus count data
taxa_df <- paeni_16S$taxa %>%

## cleaning up species names
mutate(Species = if_else(Species == "s__",

"Unassigned", Species),
Species = str_replace(Species, "s__","")) %>%

group_by(Species) %>%
summarise(Count = n()) %>%
ungroup() %>%
mutate(Species = fct_reorder(Species, Count))

## Count info for text
total_otus <- sum(taxa_df$Count)
unassigned_idx <- taxa_df$Species == "Unassigned"
no_species_assignment <- taxa_df$Count[unassigned_idx]

For the Greengenes 13.5 database, there are a total of 2912 sequences classi-

fied as 15 species in the Genus Paenibacillus. The number of sequences assigned to

specific Paenibacillus species range from 199 Paenibacillus amylolyticus to 2 Paeni-

bacillus illinoisensis (Fig. 5.1). Sequences only classified to the genus level, “Unas-

signed”, is the most abundant group, 2308.

5.6.4 Taxonomic resolution

Next, we evaluate the 16S rRNA amplicon sequencing taxonomic resolution for

Paenibacillus species by comparing within and between species amplicon pairwise

distance for the V12 and V4 regions. To differentiate between species the pair-

wise distances for within-species amplicon sequences must be less than the between

species distances. Additionally ,the difference in amplicon sequence pairwise dis-

113



24

199

25

34

92

25

6

2

23

29

70

17

46

12

2308

illinoisensis

edaphicus

stellifer

macerans

larvae

alvei

barengoltzii

curdlanolyticus

lautus

chitinolyticus

mucilaginosus

lentimorbus

chondroitinus

amylolyticus

Unassigned

0 500 1000 1500 2000 2500

Number of OTUs

S
pe

ci
es

Figure 5.1: Number of sequences assigned to species in the genus Paenibacillus.
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tances between and within species must be greater than the sequencing error rate

to detect the difference. For our taxonomic resolution analysis, we used pattern

matching to extract the V12 and V4 regions of the 16S rRNA sequences. We then

generate a pairwise distance matrix for the two regions and compare the within and

between species pairwise distances.

For our in-silico PCR we will use the following PCR primers:

Region Direction Primer

V12 Forward 27F - AGAGTTTGATCATGGCTCAG

Reverse 336R - CACTGCTGCSYCCCGTAGGAGTCT

V4 Forward 515F - GTGCCAGCMGCCGCGGTAA

Reverse 806R - GGACTACHVGGGTWTCTAAT

5.6.4.1 V12

Extracting the V12 region from the database sequences, only sequences with

containing both forward and reverse primers are included in the analysis.

forward_primer <- "AGAGTTTGATCATGGCTCAG"
## reverse complementing reverse primer
reverse_primer <- DNAString("CACTGCTGCSYCCCGTAGGAGTCT") %>%

reverseComplement() %>%
as.character()

## Finding sequeces with forward primer
forward_match <- Biostrings::vmatchPattern(forward_primer,

subject = paeni_16S$seq,
max.mismatch = 2) %>%

as.list() %>% map_dfr(as.data.frame,.id = "seq_id")

## Finding sequences with reverse primer
reverse_match <- Biostrings::vmatchPattern(reverse_primer,
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subject = paeni_16S$seq,
max.mismatch = 2,
fixed = FALSE) %>%

as.list() %>% map_dfr(as.data.frame,.id = "seq_id")

## sequences with both forward and reverse primers
seqs_to_use_ids <- intersect(forward_match$seq_id,

reverse_match$seq_id)
seqs_to_use <- names(paeni_16S$seq) %in% seqs_to_use_ids

## Trimming sequences with both primers
paeni_V12 <- TrimDNA(paeni_16S$seq[seqs_to_use],

leftPatterns = forward_primer,
rightPatterns = reverse_primer,
type = "both")

## Finding left pattern: 100% internal, 0% flanking
##
## Finding right pattern: 100% internal, 0% flanking
##
## Time difference of 0.06 secs

## Excluding seqs with lenght 0
paeni_V12_seqs <- paeni_V12[[2]][width(paeni_V12[[2]]) != 0]

Generating a multiple sequence alignment using the AlignSeqs function in

the DECIPHER package.

v12_align <- AlignSeqs(paeni_V12[[2]], verbose = FALSE)

The resulting alignment can be viewed using the BrowseSeqs function in the

DECIPHER package.

BrowseSeqs(v12_align)

Generating pairwise distance matrix using the DistanceMatrix function in

the DECIPHER package for taxonomic resolution analysis and converting distance

matrix to a data frame for analysis.
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v12_dist <- DistanceMatrix(v12_align,
correction = "none",
verbose = FALSE,
includeTerminalGaps = FALSE)

v12_dist_df <- v12_dist %>%
as.data.frame() %>%
rownames_to_column(var = "Keys") %>%
gather("Keys2","distance", -Keys) %>%
mutate(Keys = as.numeric(Keys),

Keys2 = as.numeric(Keys2)) %>%
filter(Keys < Keys2) %>%
mutate(Keys = as.character(Keys),

Keys2 = as.character(Keys2))

tax_df <- dplyr::select(paeni_16S$taxa, "Keys", "Species")
v12_dist_anno_df <- v12_dist_df %>%

left_join(tax_df) %>%
left_join(tax_df,by = c("Keys2" = "Keys")) %>%
dplyr::rename(Keys_Species = Species.x,

Keys2_Species = Species.y) %>%
mutate(group_comp = if_else(Keys_Species == Keys2_Species,

"within","between")) %>%
filter(Keys_Species != "s__", Keys2_Species != "s__")

5.6.4.2 V4

For the V4 region, we will use the same approach, extract amplicon region, fil-

ter extracted sequences based on amplicon length, generate pairwise distance matrix

using a multiple sequence alignment, and then evaluate pairwise distances.

## Finding sequeces with forward primer
forward_match <- Biostrings::vmatchPattern("GTGCCAGCMGCCGCGGTAA",

subject = paeni_16S$seq,
fixed = FALSE) %>%

as.list() %>% map_dfr(as.data.frame,.id = "seq_id")

## Finding sequences with reverse primer
reverse_match <- Biostrings::vmatchPattern("ATTAGAWACCCBDGTAGTCC",

subject = paeni_16S$seq,
fixed = FALSE) %>%

as.list() %>% map_dfr(as.data.frame,.id = "seq_id")
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## sequences with both forward and reverse primers
seqs_to_use_ids <- intersect(forward_match$seq_id,

reverse_match$seq_id)
seqs_to_use <- names(paeni_16S$seq) %in% seqs_to_use_ids

## Extract amplicon region
paeni_V4 <- TrimDNA(paeni_16S$seq[seqs_to_use],

leftPatterns = "GTGCCAGCMGCCGCGGTAA",
rightPatterns = "ATTAGAWACCCBDGTAGTCC",
type = "both")

## Finding left pattern: 100% internal, 0% flanking
##
## Finding right pattern: 100% internal, 0% flanking
##
## Time difference of 0.81 secs

## Excluding seqs with lenght 0
paeni_V4_seqs <- paeni_V4[[2]][width(paeni_V4[[2]]) != 0]

### Calculate distance matrix from multiple sequence alignment
v4_align <- AlignSeqs(paeni_V4_seqs, verbose = FALSE)
v4_dist <- DistanceMatrix(v4_align,

correction = "none",
verbose = FALSE,
includeTerminalGaps = FALSE)

## Creating a data frame for exploratory analysis
v4_dist_df <- v4_dist %>%

as.data.frame() %>%
rownames_to_column(var = "Keys") %>%
gather("Keys2","distance", -Keys) %>%
mutate(Keys = as.numeric(Keys), Keys2 = as.numeric(Keys2)) %>%
filter(Keys < Keys2) %>%
mutate(Keys = as.character(Keys), Keys2 = as.character(Keys2))

tax_df <- dplyr::select(paeni_16S$taxa, "Keys", "Species")
v4_dist_anno_df <- v4_dist_df %>%

left_join(tax_df) %>%
left_join(tax_df,by = c("Keys2" = "Keys")) %>%
dplyr::rename(Keys_Species = Species.x,

Keys2_Species = Species.y) %>%
mutate(group_comp = if_else(Keys_Species == Keys2_Species,

"within","between")) %>%
filter(Keys_Species != "s__", Keys2_Species != "s__")

## Excluding outlier sequence "329842"

118



length position

V
12

V
4

260 280 300 320 0 200 400 600 800

0

100

200

300

400

500

0

500

1000

1500

2000

2500

value

co
un

t

key

length

start

end

Figure 5.2: Primer trimmed sequence, amplicon, length and start and end posi-
tions relative to full length sequences for the V12 and V4 regions.

## - mean pairwise distance to all other
## sequences is 0.2
v4_dist_anno_filt <- filter(v4_dist_anno_df,

Keys != "329842",
Keys2 != "329842")

5.6.4.3 Amplicon Sequence Lengths

The trimmed sequence length varies for forward and reverse primers resulting

in varying amplicon sizes for both the V12 and V4 amplicons (Fig. 5.2).

Genus Level Comparison Pairwise distance is significantly different for within and

between species comparisons indicating that the V12 and V4 regions are potentially
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Figure 5.3: Distribution of within and between species pairwise distances for the
V4 16S rRNA region. Sequences not classified to the species level were excluded
from the analysis.

suitable forclassifying members of the Paenibacillus genus to the species level (Fig.

5.3). Overall the V12 region had greater pairwise distances than V4 for both within

and between species. It is important also to consider that the majority of sequences

in the database were only classified to the genus level. Species-level information for

these sequences might yield results that are inconsistent with our analysis. Addi-

tionally, our analysis does not identify the pairwise sequence distance required to

classify a sequence as a novel Paenibacillus species.

Species level comparison While the overall pairwise distance is greater between

species than within species for the Paenibacillus genus, it is important to under-
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stand how the within and between species pairwise distances compare for individual

species. The heatmap below shows pairwise distance information for within and be-

tween different Paenibacillus species for the V12 and V4 regions (Fig. 5.4). Whether

the sequences are assigned to more than one OTU depends on the pairwise sequence

distance metric and linkage method employed by the clustering algorithm. In gen-

eral though for species levels classification the maximum within species distance

should be less than the minimum between species distance. For example as the

maximum within species pairwise distance for P. lentimorbus is 0.13 and the mini-

mum between species pairwise distance for P. lentimorbus and P. alvei is 0.08 (Fig.

5.4A), correctly assigning a V12 amplicon sequences to one of these two species is

not possible.

5.6.5 Conclusion

Here we demonstrate how the metagenomeFeatures package in conjunction

with one of the associated 16S rRNA database packages, greengenes13.5MgDb, and

other R packages, can be used to evaluate whether species-level taxonomic clas-

sification is possible for a specific amplicon region. The approach used here can

easily be extended to use different 16S rRNA databases (starting with a different

MgDbclass object), taxonomic groups (changing filtering parameters), or amplicon

regions (changing primer sequences).
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Figure 5.4: Pairwise distances between Paenibacillus species (A) V12 and (B)
V4 amplicon regions. Fill color indicates the mean pairwise sequence distance
within and between species. The text indicates the maximum pairwise distance
for within-species comparisons, values along the diagonal, and maximum pair-
wise distance for between species comparisons. Different number of species are
included in the V12 and V4 plots as there are no full-length P. chondroitinus
sequences with the V12 primer in the database.
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CHAPTER 6

Conclusions

For this dissertation, I developed a framework for assessing the 16S rRNA

marker-gene survey measurement process. The framework utilizes novel statistical

methods in conjunction with an assessment dataset specifically developed for this

dissertation. I created mixtures of human gut microbiome samples and sequenced

them in multiple laboratories and runs. Based on this experimental design I defined

multiple measurement assessment metrics. The statistical methods assess 16S rRNA

marker-gene survey relative abundance, differential abundance, and beta diversity

using information from the unmixed samples and mixture design. The mixture

dataset was a two-sample titration series of vaccine trial DNA extracts. Additionally,

I developed the R Bioconductor package, metagenomeFeatures for working with 16S

rRNA reference databases and marker-gene survey feature data.

The metagenomeFeatures package provides data structures and functions for

working with 16S rRNA gene sequence reference databases and marker-gene survey

feature data. The data structure provided by the MgDb-class in conjunction with

the shared sequence identifier system developed by RNACentral facilitates compar-

isons between 16S rRNA databases. The mgFeatures-class provides the ground-

work for the development of a common data structure for working with metagenomic

and marker-gene sequence data in R which will increase interoperability between R
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packages developed for working with metagenomic sequence data. Additionally,

while the data structures were developed for 16S rRNA gene sequence data they

can be used for any marker-gene sequence data without modification and can be

extended to work with shotgun metagenomic sequence data and databases.

Based on lessons learned from this dissertation, new mixture datasets can be

developed for further microbiome measurement assessment. Additional 16S rRNA

sequencing mixture datasets would serve as a complementary resource for the com-

munity. Using samples with either better characterized prokaryotic DNA propor-

tions, or minimal non-prokaryotic DNA, would reduce the expected value uncer-

tainty observed in this assessment. Also, using samples with larger differences in

microbial composition as titration endpoints to generate the mixtures would provide

a more extensive set of features for assessment. As the mixtures were only processed

using a single laboratory protocol (16S PCR through sequencing), mixture samples

can be used as part of an interlaboratory study to further characterize the mea-

surement process repeatability and reproducibility. Finally, mixtures can be used

to assess other microbiome measurement processes such as shotgun metagenomics,

metatranscriptomics, and even non-nucleic acid measurements such as metapro-

teomics and metametabolomics.

The work presented here has shown how a mixture dataset can be used to as-

sess the marker-gene survey measurement process. Using the assessment framework,

I evaluated 16S rRNA marker-gene survey bioinformatic pipeline and normalization

performance. Bioinformatic pipelines combine multiple algorithms converting raw

sequence data into count tables which are subsequently used to test biological hy-
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potheses. Algorithm choice and parameters can significantly impact pipeline results.

The pipelines compared in this dissertation were optimized using mock communi-

ties and benchmarked against other methods based on similarity in beta-diversity

results [10]. The assessment framework and dataset provide complementary methods

for use in optimizing existing and benchmarking new pipelines and normalization

methods. The mixture dataset can be processed with any bioinformatic pipeline

that converts raw 16S rRNA sequencing data to a count table. The relative and

differential abundance, as well as beta-diversity assessment, can be performed on the

count table and the results compared to those obtained with the pipelines evaluated

in this dissertation. Future work includes the development of an R Bioconductor

package for employing our assessment framework, metagenomeAssessment.
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