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In this thesis I describe the development of a low temperature scanning tunnel-

ing microscope system (LTSTM) and its application to the study of charge density

waves and vortex dynamics. All the measurements are taken on different 2H-NbSe2

samples with or without impurities to examine the interesting coexistence of the

charge density wave (CDW) phase and superconductive phase in the sample at 4.2

K. After creating a structural defect using a voltage pulse, we observed a new type

of CDW in the vicinity of the defect. With a
√

13 ×
√

13 reconstruction , the new

CDW differs in many ways from the naturally occurring 3 × 3 CDW in 2H-NbSe2.

This suggests a possible local phase transition induced by the tip-sample interaction.

As a low-Tc type II superconductor, 2H-NbSe2 is also well-known for the formation

of a vortex phase in magnetic fields. Although it was intensely studied for decades,

many questions concerning the vortex system still remain unanswered. One of the

most important and intriguing questions is the response of the system to a driving

force well below the critical value fc. Due to an unexpected defect in our magnet, we



are able to utilize a slowly decaying magnetic field with a rate at ∼ nT/s to observe

the dynamic creep motion of the vortex system which can be described as a Bragg

glass. I will also present a study of the statics of this glass phase and demonstrate

the use of LTSTM as a powerful imaging technique in the area of vortex physics.
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Chapter 1

Introduction

All the results presented in this thesis were obtained on 2H-NbSe2 single crys-

tals which were cleaved in high vacuum (∼ 10−8 mbar) and subsequently studied in

cryogenic ultrahigh vacuum (UHV) at 4.2 K using a scanning tunneling microscope

(STM). Our home built STM system operates, with high spatial and energy resolu-

tion, at low temperatures (≤ 4.2 K) and in magnetic fields up to 9.1 T. The system

consists of a compact and rigid STM head, mounted directly to a 4 K probe and a

UHV preparation chamber. The probe was designed with minimum thermal mass

so we are able to run the system continuously for 7 days without interruption by

liquid helium (LHe) transfer. The system is equipped with a sample transport ma-

nipulator from room temperature and sample storage space in the preparation UHV

chamber. This enables us to exchange samples between the room temperature UHV

and the cryogenic UHV inside the probe and re-sharpen our tip when it’s necessary.

A superconducting magnet provides a field of up to 9.1 T at the sample along the

STM tip direction. All the experiments described in this thesis used magnetic fields

up to 1 T.

The thesis is organized as follows: In Chapter 2, I will present an introduction

to the theoretical and experimental aspects of STM in general and the design and

development of our ultra-high vacuum, low temperature STM system. In Chapter 3,

1



I will discuss the properties of the material we mainly used in this thesis, 2H-NbSe2,

along with the studies on it by our STM. This chapter serves as an example of

the operating modes of our STM introduced in Chapter 2 as well as a preparation

for the more specific topics in Chapter 4 and Chapter 5. Chapter 4 is a report on

our observation of a new type of charge density waves in the vicinity of structural

defects created by sending voltage pulses or jumps to the tip during scanning. The

interesting features of the new CDW are compared with the natural, pre-existing one

in the material and possible explanations are discussed. Instead of imaging atoms on

the sample surface as in Chapter 4, Chapter 5 deals with a different kind of lattice

structure, the vortex lattice. A unique property of the vortex lattice is that the

lattice constant can change under the influence of external forces. Thus one would

expect different physics in the vortex matter. Indeed, even after decades of study,

there are still many open questions about the static and dynamic properties of it

due to the complex nature of the interaction between the system and disorder [1, 2].

After introducing the background and the theoretical description of vortex matter,

I will demonstrate the use of our STM as a powerful tool to investigate the statics

and dynamics of the system. Advantages and limitations of this technique will be

discussed. Due to an unexpected defect in our magnet, we were able to directly

observe the dynamic creep motion of the system. To the best of my knowledge, the

motion is the slowest ever detected and our observation is the longest. It is the first

time the detailed nature of this motion has been directly revealed. Discussions of

the results and comparison with theory will be presented.

2



Chapter 2

A Low Temperature Scanning Tunneling Microscope: Its Principles,

Design and Operation

2.1 Background

STM has been one of the revolutionary innovations in the past century that

left a profound impact on condensed matter physics especially in the area of surface

science [3]. Since its the invention in 1981 by Binnig and Rohrer [4], several genera-

tions of STMs have been developed. In the last two decades, STM has become one

of the most powerful and indispensable tools in the study of physics at nano-scale

through constant improvement and sophistication of the technology. Many commer-

cial products are available, but the best instruments are often built in house for the

specific applications and performance requirements.

Our group is particularly interested in developing a microscope that can oper-

ate at low temperatures with high spatial resolution and high energy resolution as

well as versatile sample preparation capabilities. Our purpose is to study nano-scale

physics of semiconductors and superconductors on a variety of samples. At low

temperatures, we gain automatically the benefits of low thermal noise, low thermal

drift and cryogenic UHV conditions which are three crucial conditions for superb

STM operations. Two additional important conditions are the quality of the sample

3



surface and the quality of tip. In practice, we spend a lot of time to achieve these

two stringent requirements. Our system was designed to meet the challenge of high

resolution for the study of microscopic structures of complex electronic systems.

The purpose of this chapter is to provide an introduction of the theoretical

and experimental aspects of STM. After an overview of the whole system, I will

present a full treatment of the theory of an equilibrium model which proved to

be very effective in describing the tunneling physics in STM. The result will help

understand the description of the operational modes of STM, the interpretation of

the measurements we can make with it, and also the challenges we face in design

and operation of the system. Later in this chapter, I will give a thorough description

of our design and how we developed our system to meet these technical challenges.

2.2 Basic Principles of STM

The physical phenomenon behind scanning tunneling microscopy is quantum

tunneling of electrons between two electrodes through a thin potential barrier. This

phenomenon has been known since the early days of quantum mechanics and it

was the topic of many textbooks of quantum mechanics to introduce the physics

dictated by the Schödinger equations with simple boundary conditions. Many ex-

periments were carried out with planar junctions that can be described by a simple

one-dimensional (1D) model [5]. Apparently, no spatially resolved tunneling was

possible in these rigid electrode configurations. In 1981, Binnig and Rohrer devel-

oped the scanning tunneling microscope. Their revolutionary idea was to have one

4



side of the electrodes movable and the gap between the two controllable so it’s thin

enough to allow measurable current to flow. Secondly, they used a sharp metallic

tip as the movable electrode mounted on a three dimensional piezoelectric drive.

By combining the effects of the atomically sharp tip and the picometer accuracy of

the piezoelectric actuators, the spatial resolution was increased to the atomic level.

This remarkable achievement won them the Nobel prize in 1986 [6].

5
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Figure 2.1: Tunneling Physics in STM. (a) A schematic model of STM. A bias voltage V on the sample results in a
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Sec. 2.3.
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Figure 2.1(a) shows a schematic model of a STM. The tip is scanned in the x-y

plane above the sample using the X and Y actuators, while its height is controlled

using the Z actuator. Applying a bias voltage, V , between the metallic tip and

conducting sample and approaching the tip within a few angstroms of the sample

surface results in a measurable tunneling current, I. An electronic feedback loop is

used to maintain this current by continuously adjusting the tip height. The most

striking feature of this instrument is the remarkable spatial resolution it can achieve.

The key for reaching a vertical resolution of a few hundredths of an angstrom is the

exponential dependence of the tunneling current I on the tip-to-sample distance d

(in Å):

I ∝ e−2κd, κ =

√
2mφ

h̄
≈ 0.513

√

φ. (2.1)

Here κ is the decay constant of the tunneling electrons in the barrier region and φ

(in eV) is the work function of the sample. For a typical metal, φ ≈ 5 eV. From

Eq. 2.1, the current I will decrease e2.292 ≈ 9.9 times, i.e. an order of magnitude,

for every increase of d by 1 Å. This high sensitivity of I vs. d enables a STM to

resolve the atomic corrugation of the sample surface. The lateral resolution mainly

depends on the apex geometry and electronic orbit of the scanning tip, which confine

the tunneling electrons into a narrow channel, offering the unique opportunity to

perform real-space imaging down to atomic length scales. Section 2.3 provides a

more detailed discussion of the theoretical aspects of the tunneling physics in this

model.

In practice, typical settings of tunneling parameters are: tunneling current

7



I ∼ 0.01−10 nA, bias voltage V ∼ 0.001−10 V. The tunneling resistance Rt = V/I

is usually set to be ∼ GΩ. The tip-to-sample spacing d is typically 5 − 10 Å. The

tunneling current is actually the convolution of the electron density of states of

both the tip and the sample. This enables the use of STM to study the electronic

properties of the sample. It’s preferable to use tips with a featureless density of

states (ideally constant) and a well-defined Fermi surface (ideally spherical). The

metals most commonly used for the tip are Au, W, Ir and PtIr. In our lab, we

used mechanically cut W tips, PtIr tips and chemically etched W tips. The tip

preparation method will be discussed in Chapter 3.

2.3 Theory of STM

In this section, I provide a full treatment of the theory regarding the electron

tunneling in the STM system. We are mainly interested in the connection between

the measurable parameters and the meaningful physical properties of the sample.

2.3.1 Tunneling Theory of an Equilibrium Model

The tunneling Hamiltonian formalism was proposed by Bardeen [5]. It pro-

vides a framework to understand both single-particle and pair tunneling phenomena

[7]. In this formalism, we consider a physical system consisting of two independent

parts and a potential barrier in between as illustrated in Fig. 2.1. The electron

tunnels from the tip to the sample under the influence of the bias voltage V across

the gap. The state of the electron on the left is denoted as ϕµ and on the right

8



ϕν . They are assumed to be the eigenstates of the Hamiltonian Hs and Ht for the

sample and the tip, respectively. The real space states of the two sides are denoted

as ψS and ψt in Fig. 2.1 (also see Eq. 2.5). The basic assumptions of this formalism

are: 1) the tunneling process is an equilibrium process, 2) the correlation between

the two parts can be neglected, 3) the elementary process involved is only single

electron tunneling, 4) the tip and the sample have the same work function.

The assumptions 1)-3) can be justified in STM case because the magnitude of

the current is so low that the time between two tunneling events (∼ 10−10 s) is much

longer than the relaxation time of the typical quasi-particles (∼ 10−13 s) in both

systems. 4) is assumed for the convenience of calculation. The phenomenological

tunneling hamiltonian HT can be written as:

HT =
∑

µν

Tµνa
†
νbµ + c.c.. (2.2)

Here a†ν is the operator of creating one particle in the sample and bµ is that for

destroying one electron in the tip. From the assumptions of this model all the

operators on the sample side commute with the ones on the tip side. Tµν is the

tunneling matrix for one electron from the tip to the sample. In our case, it’s

more convenient to work in real space. The full Hamiltonian of the system in the

Schödinger picture:

H = Hs +Ht +HT = H0 +HT . (2.3)

Here Hs and Ht are the Hamiltonians of the sample and tip, respectively. In real

9



space, HT can be rewritten as:

HT = χ+ χ†, χ =
∫

dr1dr2T (r2, r1)ψ
†
s(r1)ψt(r2). (2.4)

ψ†
s(r1) create an electron in the sample at r1 and ψt(r2) destroys one electron in

the tip at r2. T (r2, r1) is the real space tunneling matrix element for an electron

in the tip at r2 to tunnel to the sample at r1. They are related to the state space

representation by:

ψs(r1) =
∑

ν

ϕν(r1)aν , ψt(r2) =
∑

µ

ϕµ(r2)bµ, T (r2, r1) =
∑

µν

ϕ∗
µ(r2)Tµνϕν(r1).

(2.5)

Following Mahan [8], in the Heisenberg picture the tunneling current is given by the

rate of change of number of electrons:

I = Tr[ρj] = 〈j〉 = e
〈

Ṅs

〉

. (2.6)

ρ is the full density matrix of the interacting system, e is the magnitude of the

electron charge, Ns is the number operator of electrons. j = eṄs is the current

operator. The current I is by convention positive when the electrons flow from

the tip to the sample. By the assumption of the conservation of total number

of particles in the sample system and the commutation rules, iṄs = [Ns, H] =

[Ns, HT ] = [Ns, χ] + [Ns, χ
†], where:

[Ns, χ] = [
∫

drψ†
s(r)ψs(r),

∫

dr1dr2T (r2, r1)ψ
†
s(r1)ψt(r2)]

=
∫

dr1dr2drT (r2, r1)ψ
†
s(r)[ψs(r), ψ

†
s(r1)]+ψt(r2)

=
∫

dr1dr2drT (r2, r1)ψ
†
s(r)δ

(3)(r − r1)ψt(r2) = χ, (2.7)

10



and similarly [Ns, χ
†] = −χ† (in units h̄ = 1, [, ]+ denotes the Fermi commutator).

Thus iṄs = χ − χ†. Now let’s switch to the interaction picture to find out the

thermal average of the current at time t. Following Mahan [8] (p214), considering

only the linear response term:

I(t) = 〈j(t)〉 = −iTr
{
∫

t

−∞
dt′ρ0[j(t), HT (t′)]

}

(2.8)

= −i
∫ t

−∞
dt′ 〈[j(t), HT (t′)]〉0 . (2.9)

Here ρ0 = eβ(Ω−H0+µN) = eβ(Ω−Hs−Ht+µsNs+µtNt) is the density matrix of the non-

interacting system, j(t) = eiH0t(eṄs)e
−iH0t, HT (t′) = eiH0t′HT e

−iH0t′ , β = 1/kBT .

Using Eq. 2.4, 2.6 and 2.7, it follows that:

I(t) = −i
∫ t

−∞
dt′e

〈

[Ṅs(t), HT (t′)]
〉

0
= −ie

∫ +∞

−∞
dt′θ(t− t′)

〈

[Ṅs(t), HT (t′)]
〉

0

= −e
∫ +∞

−∞
dt′θ(t− t′)

〈

[χ(t) − χ†(t), χ(t′) + χ†(t′)]
〉

0

= −e
∫ +∞

−∞
dt′θ(t− t′)2iIm

〈

[χ(t), χ†(t′)]
〉

0

−e
∫ +∞

−∞
dt′θ(t− t′)2iIm 〈[χ(t), χ(t′)]〉0

= Is(t) + IJ(t), (2.10)

with Is(t) being the single particle current and IJ(t) the pair (Josephson) current.

Here χ(t) = eiH0tχe−iH0t. In calculating the correlation functions it is convenient to

introduce the operator K = H0 − µN = Hs + Ht − µsNs − µtNt and the retarded

Green’s functions. Recalling [Ns, χ] = χ, [Ns, χ
†] = −χ† and similarly [Nt, χ] = −χ,

[Nt, χ
†] = +χ†, also noticing [K,Ns] = [K,Nt] = 0, we can write:

χ(t) = eiH0tχe−iH0t = ei(K+µN)tχe−i(K+µN)t = eiKt(eiµNtχe−iµNt)e−iKt

= eiKt[eiµsNst(eiµtNttχe−iµtNtt)e−iµsNst]e−iKt
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= eiKt[eiµsNst(χ+ iµtt[Nt, χ] +
(iµtt)

2

2
[Nt, [Nt, χ]] + ...)e−iµsNst]e−iKt

= eiKt[eiµsNst(e−iµttχ)e−iµsNst]e−iKt = eiKt[eiµst(e−iµttχ)]e−iKt

= e−ieV t(eiKtχe−iKt) = e−ieV tχt. (2.11)

Here eV = µt − µs, and V is the bias voltage. The retarded Green’s function [8] for

operator χ and its Fourier transform are defined as:

χret(t− t′) = −iθ(t− t′)
〈

[χt, χ
†
t′ ]
〉

0

χret(ω) =
∫ +∞

−∞
dteiωtχret(t). (2.12)

The current Is(t) can now be represented as:

Is(t) = 2eIm
∫ +∞

−∞
dt′(−i)θ(t − t′)e−ieV(t−t′)

〈

[χt, χ
†
t′ ]
〉

0

= 2eIm
∫ +∞

−∞
dt′e−ieV(t−t′)χret(t − t′)

= 2eImχret(−eV). (2.13)

The Matsubara functions for χ are:

χM(τ) = −
〈

Tτχτχ
†
0

〉

0
,

χM(iΩn) =
∫ β

0
dτeiΩnτχM(τ). (2.14)

χτ here is defined as eKτχe−Kτ , and χ†
τ = eKτχ†

τe
−Kτ . Tτ is the ordering operator.

Ωn = 2nπ
β

since χ is a bosonic operator. The idea here is that it’s much easier to

calculate χM(iΩn) and then take an analytic continuation:

χM(iΩn → ω + iδ) = χret(ω) (2.15)
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than to directly calculate χret(ω). χM(iΩn) can be related to the temperature

Green’s functions of the electrons from the sample and the tip:

GM
s,t(r1, r2, τ) = −

〈

Tτψs,t(r1, τ)ψ
†
s,t(r2, 0)]

〉

0
,

GM
s,t(r1, r2, iωn) =

∫ β

0
dτeiωnτGM

s,t(r1, r2, τ),

GM
s,t(r1, r2, τ) =

1

β

∑

n

e−iωnτGM
s,t(r1, r2, iωn) (2.16)

and their Lehmann representations by the spectral functions (see [9] p297):

GM
s,t(r1, r2, iωn) =

∫ +∞

−∞
dω
As,t(r1, r2, ω)

iωn − ω
. (2.17)

ωn = (2n+1)π
β

since electrons are fermions. In the definition operators ψs,t(r, τ) =

eKτψs,t(r)e
−Kτ , ψ†

s,t(r, τ) = eKτψ†
s,t(r)e

−Kτ . Noticing:

〈

Tτψ
†
s(r1, τ)ψt(r2, τ)ψ

†
t (r

′
2, 0)ψs(r

′
1, 0)]

〉

0

= Tr{eβ(Ω−Hs−Ht+µsNs+µtNt)Tτψ
†
s(r1, τ)ψt(r2, τ)ψ

†
t (r

′
2, 0)ψs(r

′
1, 0)}

= Tr{eβ(Ω−Hs−Ht+µsNs+µtNt)Tτψt(r2, τ)ψ
†
t (r

′
2, 0)ψ†

s(r1, τ)ψs(r
′
1, 0)}

= Tr{eβ(Ωt−Ht+µtNt)Tτψt(r2, τ)ψ
†
t (r

′
2, 0)}(−1)Tr{eβ(Ωs−Hs+µsNs)Tτψs(r

′
1, 0)ψ†

s(r1, τ)}

= −
〈

Tτψt(r2, τ)ψ
†
t (r

′
2, 0)

〉

0

〈

Tτψs(r
′
1, 0)ψ†

s(r1, τ)
〉

0

= −GM
t (r2, r

′
2, τ)G

M
s (r′1, r1,−τ) (2.18)

where eβΩs,t = eβ(Hs,t−µs,tNs,t), it is straightforward to write:

χM(iΩn) = −
∫ β

0
dτeiΩnτ

〈

Tτχτχ
†
0

〉

0

= −
∫ β

0
dτeiΩnτ

〈

Tτ

∫

dr1dr2T (r2, r1)ψ
†
s(r1, τ)ψt(r2, τ)×

∫

dr′1dr
′
2T

∗(r′2, r
′
1)ψ

†
t (r

′
2, 0)ψs(r

′
1, 0)]0

〉

13



=
∫

dr1dr2dr
′
1dr

′
2T (r2, r1)T

∗(r′2, r
′
1) ×

∫ β

0
dτeiΩnτGM

t (r2, r
′
2, τ)G

M
s (r′1, r1,−τ)

=
∫

dr1dr2dr
′
1dr

′
2T (r2, r1)T

∗(r′2, r
′
1) ×

∫ β

0
dτeiΩnτ 1

β

∑

l

e−iωlτGM
t (r2, r

′
2, iωl)

1

β

∑

k

eiωkτGM
s (r′1, r1, iωk)

=
∫

dr1dr2dr
′
1dr

′
2T (r2, r1)T

∗(r′2, r
′
1) ×

1

β

∑

l

GM
t (r2, r

′
2, iωl)G

M
s (r′1, r1, iωl − iΩn)

=
∫

dr1dr2dr
′
1dr

′
2T (r2, r1)T

∗(r′2, r
′
1) ×

1

β

∑

l

∫ +∞

−∞
dω2

At(r2, r
′
2, ω2)

iωl − ω2

∫ +∞

−∞
dω1

As(r
′
1, r1, ω1)

iωl − iΩn − ω1

=
∫

dr1dr2dr
′
1dr

′
2T (r2, r1)T

∗(r′2, r
′
1) ×

∫

dω1dω2
As(r

′
1, r1, ω1)At(r2, r

′
2, ω2)

ω2 − ω1 − iΩn

(f(ω2) − f(ω1)). (2.19)

We used identity:

1

β

+∞
∑

l=−∞

1

(iωl − ω2)(iωl − iΩn − ω1)
=

f(ω2)

ω2 − iΩn − ω1

+
f(ω1 + iΩn)

ω1 + iΩn − ω2

. (2.20)

f(ω) = 1
eβω+1

is the Fermi function and f(ω1+iΩn) = f(ω1) for Ωn = 2nπ
β

. Following

Eq. 2.13, 2.15 and 2.19, the single particle current:

Is = 2eImχM(iΩn → −eV + iδ)

= 2eIm
∫

dr1dr2dr
′
1dr

′
2T(r2, r1)T

∗(r′2, r
′
1) ×

∫

dω1dω2
As(r

′
1, r1, ω1)At(r2, r

′
2, ω2)

ω2 − ω1 + eV − iδ
(f(ω2) − f(ω1))

= 2e
∫

dr1dr2dr
′
1dr

′
2T (r2, r1)T

∗(r′2, r
′
1) ×

∫

dω1dω2As(r
′
1, r1, ω1)At(r2, r

′
2, ω2)(f(ω2) − f(ω1))πδ(ω2 − ω1 + eV )

= 2πe
∫

dω1(f(ω1 − eV ) − f(ω1)) ×

14



∫

dr1dr2dr
′
1dr

′
2T (r2, r1)T

∗(r′2, r
′
1)As(r

′
1, r1, ω1)At(r2, r

′
2, ω1 − eV ). (2.21)

Now we can choose the representation of the tunneling matrix 2.5 so that the spectral

functions are diagonalized:

∫

dr1dr
′
1ϕ

∗
ν′(r′1)ϕν(r1)As(r

′
1, r1, ω) = δνν′As,ν(ω),

∫

dr2dr
′
2ϕ

∗
µ(r2)ϕµ′(r′2)At(r2, r

′
2, ω) = δµµ′At,µ(ω).

After inserting back the h̄−1 dimensional factor, the current can be written as:

Is =
2πe

h̄

∫

dω(f(ω − eV ) − f(ω))
∑

µν

|Tµν |2As,ν(ω)At,µ(ω − eV ). (2.22)

This result can be applied to any tunneling experiment. In the STM case we are

more interested in the real space result.

2.3.2 Tersoff-Hamann Model

The essential problem is now to calculate the tunneling matrix element Tµν .

In Bardeen theory [5] the tunneling matrix element is the expectation value of the

single particle current in the direction z normal to the plane of the junction, through

a surface S lying entirely in the barrier region:

Tµν = − h̄2

2m

∫

s
dS

(

ϕ∗
ν

∂ϕµ

∂z
− ϕµ

∂ϕ∗
ν

∂z

)

. (2.23)

Tersoff and Hamann [10, 11] were the first to treat the STM tunneling case. In

their model the tip was represented as a locally spherical potential well. The tip

wave functions in the region of interest were taken to have the asymptotic spherical

(s-wave) form. This approximation enabled them to calculate the tunneling matrix
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element:

Tµν ∝ ϕ∗
ν(r0).

ϕν(r0) is the wave function of the sample at r0, the center of curvature of the tip

[11]. Using Eq. 2.5 and the completion properties of ϕν , we have:

T (r2, r1) =
∑

µν

ϕ∗
µ(r2)Tµνϕν(r1) ∝

∑

µν

ϕ∗
µ(r2)ϕ

∗
ν(r0)ϕν(r1)

∝ δ(r1 − r0)
∑

µ

ϕ∗
µ(r2).

Another important assumption here is that the tip is made of simple metal. The

spectral function of the tip then can be written as [12]:

At(r, r
′, ω) =

∑

µ

ϕµ(r)ϕ∗
µ(r′)δ(ω − εµ).

The single particle current in Eq. 2.21 is now:

Is ∝ 2πe

h̄

∫

dω1(f(ω1 − eV ) − f(ω1)) ×
∫

dr1dr2dr
′
1dr

′
2δ(r1 − r0)

∑

µ

ϕ∗
µ(r2)δ(r

′
1 − r0)

∑

µ′

ϕµ′(r′2)As(r
′
1, r1, ω1) ×

∑

µ”

ϕµ”(r2)ϕ
∗
µ”(r

′
2)δ(ω1 − eV − εµ”)

=
2πe

h̄

∫

dω(f(ω − eV ) − f(ω))As(r0, r0, ω) ×
∑

µµ′µ”

∫

dr2ϕ
∗
µ(r2)ϕµ”(r2)

∫

dr′2ϕ
∗
µ”(r

′
2)ϕµ′(r′2)δ(ω − eV − εµ”)

=
2πe

h̄

∫

dω(f(ω − eV ) − f(ω))As(r0, r0, ω)
∑

µµ′µ”

δµµ”δµ′µ”δ(ω − eV − εµ”)

=
2πe

h̄

∫

dω(f(ω − eV ) − f(ω))As(r0, r0, ω)
∑

µ”

δ(ω − eV − εµ”).

The local density of states (LDOS) of the sample can be related to the spectral

function [12] through Ns(r, ω) = As(r, r, ω). Since the tip material is a simple
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metal, the density of states of the tip, Nt(ω) =
∑

µ δ(ω − εµ). Finally we have the

relation between the single particle tunneling current and the LDOS of the sample:

Is ∝
∫

dω(f(ω − eV ) − f(ω))Ns(r0, ω)Nt(ω − eV ) (2.24)

The second term of the current in Eq. 2.10, IJ(t), describes the pair tunneling

current or Josephson current. It was discussed by Josephson thoroughly [13]. In

our work we didn’t use superconducting tips. Therefore, the contribution from this

term to our results can be neglected.

2.3.3 Tunneling Conductance and Density of States

In tunneling experiments, the connection between the measurable value, the

tunneling conductance, and the density of states of the sample can be derived from

the general tunneling result Eq. 2.22. For simplicity we set temperature to zero

and assume here a constant tunneling matrix Tµν = T . Thus from Eq. 2.22 now the

tunneling conductance can be written as:

σ(V ) =
dIs
dV

=
2πe2

h̄
|T |2Nt(0)Ns(eV ). (2.25)

Here the energy is measured from the Fermi energy. This general relation reveals

the essence of tunneling spectroscopy: we can directly probe the DOS of the system

versus the energy by measuring the differential conductance versus the bias voltage.

Also here |T |2 ∝ e−2κd as can be seen from Eq. 2.23 and the exponential decaying

property of the wave functions in the barrier. This relation accounts for the current-

distance relationship as described in Sec. 2.2.
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From Eq. 2.24, assuming a structureless tip DOS (Nt(ω − eV ) = const.), we

have:

σ(r0, V ) =
dIs
dV

∝
∫

dω(−f ′(ω − eV ))Ns(r0, ω). (2.26)

The derivative of the Fermi function f ′(ω − eV ) in the equation can be viewed as

a thermally broadened δ(ω − eV ) function. Thus the STM tunneling spectroscopy

(or scanning tunneling spectroscopy, in short STS) at finite temperatures measures

the thermally smeared LDOS of the sample at the position of tunneling.

These remarkably simple and direct relations between the measurable conduc-

tance and the LDOS of the sample is the reason why STM and STS are so powerful

tools to study complex electronic systems. In the next section I will review four fre-

quently used operation modes of STM and how the actual measurements are carried

out in our experiments.

2.4 Operation Modes of STM

In experiments, generally two types of data are acquired by a STM system:

topography and spectroscopy. In the topography mode, current data is correlated

with the height information at the tip position. The bias voltage is usually set to be

constant. In the spectroscopy mode, the conductance versus bias voltage relation is

measured to reveal the LDOS at the position of tunneling. Combining them with

atomic resolution, our STM can perform different tasks with respect to different

physical parameters of the system under study. Here we introduce some of the

operation modes that can be realized and are useful in our research.
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2.4.1 Constant Current Topography Mode

This is the most commonly used mode of our system. In this mode the tun-

neling current I is set to a constant (typically 0.1 nA) as well as the bias voltage

(typical value 0.1 V). In our system the bias voltage is applied on the sample and the

tip is virtually grounded. With the feedback on (typical PID value of the feedback

for our system: P = 0, I = 0.5, D = 0), we set the raster motion of the tip at a cer-

tain speed (typical value 5 to 100 nm/s). When the tip moves from one pixel to the

next in the image (an image is typically 256 × 256 pixels), the feedback loop keeps

the current constant by moving the tip toward or away from the surface depending

on the measured value. This motion of the tip in the z direction was realized by

applying different Vz voltages on the scanner which is recorded as a measurement

of relative height difference of the tip at positions of the two pixels. At the same

time the (x, y) position of the tip is given by the voltages Vx, Vy on the scanner. In

essence, we measure z(x, y) of the tip while keeping I(x, y) and Vbias constant. If the

LDOS of the sample is homogeneous in the field of view, according to the discussion

in Sec. 2.2, a constant tunneling current will imply a constant distance between the

tip and sample. The moving tip during scanning is following the height profile of

the sample surface. The recorded height information z(x, y) of the tip at each point

reproduces the topographic profile of the sample in the field of view.

In reality, the feedback loop is not perfect and the output I(x, y) is not con-

stant everywhere. We record both z(x, y) and I(x, y) and refer to them as the

topographic image and the current image respectively. When inhomogeneities are
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present, i.e., the LDOS varies in a certain area due to impurity, surface state or

other reasons, it will be recorded as surface corrugations in the topographic image

because the feedback mechanism will balance the current loss or gain due to Eq.

2.24 by decreasing or increasing the distance between the tip and sample.

2.4.2 Current vs. Distance Mode

While in the constant current mode, we use the feedback to keep the distance

between the tip and sample constant, in the current vs. distance mode we turn off

the feedback at the position of study and vary the distance as we record the current.

Following the relations between the current and the tunneling distance (Eq. 2.1),

we can derive the work function by:

φ =
h̄2

8m

(

∂ ln I

∂d

∣

∣

∣

∣

∣

V

)2

≈ 0.95

(

∂ ln I

∂d

∣

∣

∣

∣

∣

V

)2

where φ is in eV, I in A, and d in Å. In the experiment, after establishing feedback

at the position of study with a tunneling distance d0, we withdraw the tip by ∆d

from the surface each step for N steps (N ∼ 10 − 30, total distance ∼ several Å).

The slope of the log-linear plot of I(d0 − n∆d) against d0 − n∆d with 0 ≤ n ≤ N

gives the convoluted work function of the tip-sample system [14, 15]. We always use

this process to check the tip status after tip cleaning and before scanning to make

sure the metallic tip end is exposed by the cleaning or there is no dangling oxide

material in between the tip and sample. The typical value of measured φ in our

system for a W tip against Au crystal is about 1.5 to 3 V.
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2.4.3 Differential Conductance Spectroscopy Mode

Similar to the current vs. distance mode, the differential conductance spec-

troscopy mode is also a local or point mode. As discussed in Sec. 2.3, the local

tunneling conductance σ(r0, V ) = dIs

dV
measures directly the LDOS of the sample

through Eq. 2.26. In the experiment we use a lock-in amplifier to add a small ac

signal (dV ) sin(ωt) to the bias voltage V , and measure the corresponding modulation

in the tunneling current. Taylor expansion of the total current gives:

I(V + dV sin(ωt)) = I(V ) +
dI

dV

∣

∣

∣

∣

∣

V

dV sin(ωt) +O((dV )2). (2.27)

The lock-in amplifier is able to select a signal component at a given sampling fre-

quency and phase. In this case the amplitude equals dI
dV

∣

∣

∣

V
dV = σ(r0, V )dV . Divid-

ing that by the sampling amplitude dV , we extract the local differential conductance

σ(r0, V ) which is proportional to the LDOS of the sample at energy eV measured

from the Fermi energy EF . To obtain the spectrum at the point of study, the

feedback is turned off once the tunneling distance d is established as we did in the

previous mode, then the bias voltage is swept from Va to Vb with an even interval of

∆V = Vb−Va

N
and the corresponding differential conductances σ(r0, Vn) are recorded.

Here 0 ≤ n ≤ N , Vn = Va + n∆V . Thus the spectrum we obtained is the LDOS

Ns(r0, [eVa, eVb]) at N + 1 energies. Note in this mode we fix the distance d and

change the bias voltages while in the previous one we did the opposite. The criteria

on choosing ∆V (or N) and dV to optimize the energy resolution of the spectroscopy

with respect to thermal broadening is that kBT ≤ dV ≤ ∆V . Typical values of dV

are in the range of 0.1 mV to 10 mV. The advantage of using a lock-in amplifier is
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that by choosing the sampling frequency fmod = ω
2π

outside the typical frequency do-

main of mechanical vibrations or electronic noise the sensitivity of measurement can

be remarkably enhanced. Typical sampling frequencies can be from several hundred

hertz to several thousand hertz. The averaging time of acquisition at each voltage is

usually set to be more than 3 times the lock-in averaging time (the time constant).

Since this experiment is very sensitive to the environment, the best settings have to

be determined by trial and error to maximize the signal to noise ratio every time

we run a new spectrum.

2.4.4 Differential Conductance Mapping Mode

The differential conductance mapping mode is a natural extension of the tech-

nique described in the previous section. At the end of the process described above, if

we turn on the feedback and move the tip to the next position to repeat it with the

same settings, we will have another series of σ(r′0, Vn) and so forth another spectrum

of Ns(r
′
0, [eVa, eVb]) at the new position r′0. Continuing this until the spectra at all

the positions of pixels of an image in the field of view are obtained, and putting

them together we acquire the differential conductance map σ(rij, Vn) = σ(xi, yj, Vn).

The map is then organized in a series of layers of conductance images σ(rij, Vn) with

each layer corresponding to one voltage value Vn. In this way, the spatial variation

of LDOS at a certain energy as well as the evolution of it with energy can be easily

visualized. This direct manifestation of the LDOS features of complex electronic

systems is the main power of the LTSTM system.
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2.4.5 Single Conductance Imaging Mode

This is a simplified version of the differential conductance map method. In this

mode we are only interested in the imaging of one particular layer of the map with

a fixed energy eV . One way of doing it is using the mapping method, turning the

feedback off while at the position and recording the conductance and then moving

the tip with the feedback turned back on. It is very time-consuming to turn the

feedback and the lock-in signal on and off at each pixel point of the image. When we

are especially concerned with the speed of the imaging we choose another method:

we leave the feedback and the lock-in amplifier on and record the differential con-

ductance σ(xi, yj, V ) and z(xi, yj) at the same time through different channels. We

choose a short time constant of the lock-in amplifier so the averaging can be done

in the time of acquiring the topographic data. The sampling frequency is set high

enough so the feedback loop can not keep up with the oscillation of the current.

This fast imaging technique proved very useful when we imaged moving vortices, to

be described in Chapter 5.

2.5 Experimental Setup

Our STM project started in 2002 led by Dr. Barry Barker in association with

the Quantum Computing group here at LPS (Laboratory for Physical Sciences).

The purpose of the low temperature STM (LTSTM) is to investigate fine electronic

structures on the surfaces of a variety of samples at low temperatures and in high

magnetic fields. The quality of the STM operation depends on three conditions. The
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first one is a flat sample surface with no unnecessary contamination. The second

one is a stable sharp tip that can both give us atomic resolution and survive long

spectroscopic measurements. The third one is the stable environment with minimum

amount of thermal and vibrational noise. To meet all the challenges, we chose to

focus on the following 4 aspects of the system in our design: 1) a UHV stage to take

care of the sample surface preparation, 2) a compact STM design, which will allow

it to be used in a bore of a superconducting magnet despite the limited space, 3)

a 4 K environment with the thermal mass minimized, and 4) an optimal vibration

isolation system.

In what follows, I will describe the system by dividing it to two stages: the

room temperature (RT) stage and the low temperature (LT) stage. Figure 2.2 shows

the 3D schematic of the design of the whole system. The real system constructed

as of today is illustrated in Fig. 2.3. The RT stage is above the optical table (7)

which consists of the UHV system (2, 5, 6), the sample transfer system (3, 4) and

the vibration isolation system (7). Below the table is the LT stage. A 4 K probe

(8) is attached to the RT stage through a gate valve that separates the two vacua.

The STM (10) is rigidly attached to the 4 K probe at the bottom with the 4 K

probe vacuum chamber immersed in liquid Helium contained in a superconducting

magnet dewar (9). The electronics include the magnet and UHV control units (13)

and the STM electronic control unit (14).
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Figure 2.2: 3D System Design Schematic. 1) The major pumping port. 2) The
sample transfer chamber. 3) The compressible bellow. 4) The magnetic transfer rod
in z direction. 5) The analysis chamber. 6) The preparation chamber. 7) The
vibration isolation system. 8) The 4 K probe. 9) The superconducting magnet
dewar. 10) The STM.
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Figure 2.3: Real System as of August 28, 2008. The part numbers are shared
with Fig. 2.2 2) Transfer chamber. 3) UHV compressible bellow. 4) Magnetic
transfer rod in Z direction. 6) The preparation chamber. 7) The optical table.
9)The superconducting magnet dewar. 11) Magnetic transfer rod in Y direction.
12) Magnetic transfer rod in X direction. 13) Magnet control unit and UHV control
unit. 14) Data acquisition and STM electronic control unit.
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Figure 2.4: The Ultra-high Vacuum System. The front (a) and back side (b).
2) Transfer chamber. 6) The preparation chamber. 11) Magnetic transfer rod in
Y direction. 12) Magnetic transfer rod in X direction. 16) 17) XYZ stage. 18)
19) Residual gas analyzer 20) Ar+ sputter gun. 21) 24) Evaporator. 22) Ion getter
pump. 23) Titanium sublimation pump. 25) Fast entry lock. 26) 27) Table turbo
pump system.
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2.5.1 RT stage

As shown in Fig. 2.3 the RT stage above the table (7) is kept at room tem-

perature during STM operation. It contains two UHV chambers: the preparation

chamber (6) and the transfer chamber (2). Both are equipped with an ion getter

pump (IGP) and a titanium sublimation pump (TSP). The UHV condition in each

chamber is obtained through the following process: first it was pumped from at-

mospheric pressure to about 10−5 mbar by a turbo-molecular pump with a rotary

forepump through a gate valve. At the same time we heat the chamber to above

100◦C to outgas. When the outgassing decreases we stop the heating and turn on

the TSP. This will bring the pressure down to about 10−8 mbar, and finally the

vacuum will reach 10−11 mbar by turning on the IGP. Usually the vacuum is kept

at 10−11 mbar by regularly firing the TSP. When our STM is operating, the TSP

has to be turned off but the vacuum can still be kept at ≤ 5 × 10−10 mbar.

Fig. 2.4 shows the front and back sides of the chambers. In the preparation

chamber (6), we installed an Ar+ sputter gun (20), an ion gauge, a quadrupole

residual gas analyzer (19), two thermal evaporators (21, 24), 5 viewports and many

other ports for further development. As illustrated in Fig. 2.4(b), a fast entry

lock subchamber (25) is connected to the preparation chamber (6) through a 2.75”

gate valve. The subchamber is connected to a turbo-molecular pump (Mini-task

600i from Varian Inc.) (26) at the bottom with a prepump (27). It can pump the

subchamber from atmospheric pressure down to ∼ 1 × 10−8 mbar in ∼ 20 minutes.

The transfer chamber (2) is equipped with a quadrupole residual gas analyzer, an
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ion gauge and 5 view ports. Another analysis chamber (5 in Fig. 2.2) will be added

to the left of the preparation chamber in the near future.

In experiment, the sample is carried on a sample stud (1 in Fig. 2.6), a metal

piece with a fixed shape to fit the STM. The freshly prepared sample is loaded into

the fast entry lock with the sample stud locked in a sample transfer plate. The

subchamber is then pumped down to ∼ 1× 10−8 mbar. A cleaving device is housed

in the subchamber for cleaving layered samples such as 2H-NbSe2 or graphite. The

gate valve is opened and the sample is then transferred to the preparation chamber

by the X direction sample manipulator (12). The sample holder can be taken out

from the head of manipulator (12) by the Y direction sample manipulator (11). Then

the X manipulator (12) is retracted and the gate valve closed. In the preparation

chamber, the sample can be directly transferred to the transfer chamber by the Y

manipulator (11). It can also be stored in a storage place built into the sample stage

that is housed in the preparation chamber and can be manipulated by the XYZ stage

(17) outside the chamber. Or it can be treated by seating it on the sample holder

at the stage center which is the focal point of all the preparation apparatus (an Ar+

sputter gun (20), evaporators (21), (24) and a heater built underneath the sample

holder). The finished sample is then transferred through a 2.75” gate valve to the

sample stage housed in the transfer chamber (2) which is also equipped with a XYZ

stage (16). In the transfer chamber, the sample manipulator can take the sample

stud directly out of the sample holder which is locked in the XYZ stage (16). The

XYZ stage (16) is then retracted to ensure clearance for the Z manipulator (4 in Fig.

2.3) to transfer the sample stud to the LT stage and eventually lock it into the STM.
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This long translational motion is made possible by incorporating a UHV-compatible

compressible bellow (3 in Fig. 2.3) and a motorized-screw system and a magnetic

transfer rod. The viewports in both chambers help monitor the manipulation and

the preparation process. A camera connected to a monitor is set up outside the

transfer chamber to assist us in the Z translation by showing the sample stud in the

stage to us while we move the magnetic transfer rod.
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Figure 2.5: The Low Temperature Stage. 1) 7) Heat sinks. 2) Heat shield. 3)
Precooling stage. 4) Gold Plated OFHC copper rod. 5) STM. 6) Thermometer at
the bottom of STM. 8) Thermometer. 9) Gate valve to RT stage. 10) Optical table.
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2.5.2 LT stage

The LT stage below the table is connected to the RT stage through a 2.75”

gate valve (9) as illustrated in Fig. 2.5. It consists of a 4 K probe, a STM and a

superconducting magnet dewar.

The 4 K probe was manufactured here at LPS. The neck plate of the probe is

bolted to the table top (10). The basic structure of the probe consists of a 1” center

tube as the path for sample transferring which is surrounded by five 0.25” thin wall

tubes housing the wiring. On top of the neck plate the center tube is connected to

the gate valve with 5 feed-through ports for the wiring and one venting port pointing

outward. The venting port enables low temperature vacuum space to be vented and

pumped without affecting the UHV in the RT stage. The feed-through ports carry

connectors to the control electronics. The portion of the probe below the neck plate

is enclosed in the superconducting magnet dewar 1 when the LTSTM is working.

Wires run within the 5 thin walled tubes continued from the top feed-throughs down

to the top of the vacuum can. Those wires are then thermally anchored (1 in Fig.

2.5) to the top of the vacuum can which will contact directly with the LHe. 2 stages

of gold plated oxygen free high conductivity (OFHC) copper rods (3 rods per stage,

4 in Fig. 2.5) serve as support structure and heat sinking for the wires and the STM

connected at the bottom. Before going to the STM, the wires are heat sunk again

at (7). Heat sinking at (1, 7) is achieved by wrapping wires around the short OFHC

copper posts (6 heat sinks for each stage) tightly and then fastening the wires with

1Manufactured by the Kadel Engineering Co. (Danville, Indiana, USA). The superconducting

magnet was built by the American Magnetics Inc. (Oak Ridge, Tennessee,USA).
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copper spring clips. The details of the wiring process can be found in my colleague

Jonghee Lee’s thesis [16]. This procedure maximized the heat removal, thereby

minimizing the heat load on the STM stage. A precooling stage (3) made of OFHC

copper joining the 2 stages of OFHC copper rods is used to cool the sample stud

coming from room temperature before it is inserted to the STM. The stud can sit

in the keyhole through the stage and the metal-metal contact between the stud and

stage can cool it down very quickly since the stage is at 4.2 K. Another heat source

is the thermal radiation from the center tube directed at the center of the STM.

We installed a heat shield (2) to block it that automatically closes the shield after

the transfer is finished. The shield is made of stainless steel shims. Three pieces

are hinged at the end of the center tube. When the Z transfer rod brings down the

sample, an aluminum cylinder slides down the rod and presses on the ends of the 3

leaves in the tube and force the shield to open and the transfer can proceed. Once

the transfer rod is brought back the slider will move off the shield, and the spring

force at the hinge will bring the leaves together to form a closed shield. This shield

proved to be very effective in our system. Two thermometers (6, 8) 2 are installed

to monitor the temperatures at the precooling stage and the STM.

The 4He dewar can be raised from the pit below the floor to enclose the 4 K

probe and then be bolted to the optical table. A winch-pulley system is installed

on the table to assist the lifting. A 2-axis magnet is installed in the bottom of the

dewar. The bore size of superconducting solenoid with a maximum field of 9.1 T

in Z direction is 2.5” at 4.2 K. The vacuum can of the probe surrounded by the

2Cernox HD, Lakeshore Cryogenics.
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solenoid has a diameter of 2.35”. The maximum field in the horizontal direction is

2 T at 4.2 K. The current leads can be detached from the magnet to reduce the

4He boil-off after the magnetic field is stabilized at the desired field strength and

set in persistent mode. The static loss rate of LHe of the dewar is 0.27 L/Hr. With

the probe inside the dewar, the holding time of LHe is ∼ 7 days (∼ 3 days with

the current leads attached). Pumping the LHe bath in the dewar can lower the

temperature of the STM to ∼ 2.1 K, but the holding time is reduced to ∼ 2 days.

To prepare the LT stage, when we are changing tips, for example, we first

lower the dewar to the pit below the floor. The 4 K probe is warmed up to room

temperature with the gate valve to UHV closed. We then open the vacuum can and

work on the STM. After we finish any modifications, we close the vacuum can and

pump the probe through the venting port to ∼ 5 × 10−6 mbar. Then we cool the

probe down to 77 K with liquid nitrogen and to 4.2 K by raising the dewar from the

pit with a winching system. The whole turnaround process takes about 20 hours 3

and the system is back to 4.2 K immersed in the LHe bath. The STM will then

work in a cryogenic UHV which is estimated to be ∼ 1 × 10−15 mbar.

The vibration isolation is all external in our system. Our STM is firmly bolted

to the probe. The probe and the dewar are then firmly bolted to the optical table

during the operation of the system. The table carrying both the LT stage and the

RT stage is floated by air springs installed in the four legs. The weight of the whole

system to be floated is about 1500 lbs. The natural frequencies are measured to be

312 hours to pump the vacuum can, 6 hours to cool down to 77 K and 2 hours again to cool

down to 4 K.
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0.8−1.7 Hz for the vertical vibration and 1−1.9 Hz for the horizontal vibration [16].

2.5.3 STM design

The assembled STM with the cross section view is illustrated in Fig. 2.6.

Fig. 2.7 shows the schematic of our Pan-style [17] STM and the real manufactured

components. The size of the STM is 1.5” in diameter and 2” in height. Such a

compact design is necessary for the system to work inside the small bore of the

magnet. Non-magnetic materials are chosen for all the components to allow the

STM to be used in high magnetic fields. For example, Macor (machinable ceramic)

was used for the main body, gold-coated naval brass was used for the screws, and

gold-plated copper was used for the capacitor plates.

As illustrated in Fig. 2.7, this STM employs a two-stage tip approach and a

top sample loading design. A coarse approach system and a scanner system are

integrated in the main body (13). The coarse approach system includes six shear-

piezo stacks with Al2O3 ceramic contact pads glued on top (7), a sapphire prism

(6) with a hole in the center, and a spring press-plate (8) with a ruby ball (16) as

the contact. The scanner system consists of a piezo-tube scanner (5) with a tip

receptacle (4) glued on the top, a scanner holder (9) with the inner capacitor plate

(10) glued at the bottom and a tip cup (3) gripping the metalic tip tightly held in

the receptacle by friction. The sample stud (1) can be loaded from the top with the

sample glued or clamped onto it facing down.

With both the tip cup and sample stud loaded, the coarse approach starts
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first to move the tip toward the sample from the bottom up. The scanner system

is bolted to the sapphire shaft and they move as a unit by the “walker”, i.e., the

six shear-piezo stacks. The major force involved in the motion is the friction force

between the contact pads on the stacks and the sapphire prism.
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Figure 2.6: STM Assembled. The dissembled parts are shown in Fig. 2.7. 1)
Sample stud. 2) BeCu spring plate. 3) Tip. 4) Tip holder. 5) Tube scanner. 6)
Sapphire prism. 7) Walker. 8) Front spring plate. 9) Scanner holder. 10) Inner
capacitance plate. 11) Outer capacitance plate.
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Figure 2.7: STM Parts. Part numbers are shared with Fig. 2.6. Additional parts
(not visible in Fig. 2.6) include: 12). Macor base. 13) Macor body piece. 14) Spring
plate holder. 15) Macor top piece. 16) Ruby ball.
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This coarse approach motor using the walker was described in detail by Pan

[17]. The coarse approach mechanism is briefly illustrated in Fig. 2.8. The prism is

held in position by the static friction between the contact pads of the stacks and the

prism surfaces. To “walk” a step, first a voltage is applied to one stack, causing it

to deflect and slide downward along the surface of the shaft but the prism stays still

because the static friction provided the other five stacks is larger than the kinetic

friction provided by the motion. After an appropriate delay, the same voltage is

applied to another stack, causing it to deflect and slide down while the other five

stacks including the one just deflected keep the shaft in position. After all the

stacks have been sequentially and independently deflected and slid downwards, the

voltages on all stacks are ramped down simultaneously, as shown in the drawing.

As a result, all the stacks relax to their normal shape together, thereby lifting the

prism one step upward. Typical peak voltages and step sizes of our STM at 4.2 K

are ∼ 350 V and ∼ 80 nm, respectively.

For each step, the sapphire prism will carry the scanner system with the tip

at the top a step closer to the sample. At the same time, the capacitance of the

capacitor will change since the inner capacitor plate (10) at the bottom of the

scanner system will displace a step upward while the outer plate (11) bolted to the

Macor base (12) remains still. By measuring the capacitance change, we are able to

monitor the tip approach while the system is at 4.2 K enclosed in the dewar. See

[16] for detailed calibration of the walker with capacitance.
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Figure 2.8: The Walking Mechanism. Six walkers are applied high voltages at
different times by the designed voltage sequence. Each walker will side down the
surface of the sapphire prism one by one. In the end all the voltages are ramped
down to zero simultaneously causing the walks to push up the prism one step. The
whole process is then repeated to move the tip which is attached to the prism toward
the sample surface.
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During the approach, the voltage on the piezo-tube scanner is set to retract

it to the shortest position. Before each step is taken by the walker, the tunneling

current is measured to check the distance between the tip end and the sample to

make sure an additional step is safe. A voltage is applied to the scanner to elongate

it and to extend the tip toward the sample by a distance that is larger than one step

size. Meanwhile, the tunneling current is monitored with the bias voltage on. If

the set point current (usually 0.1 nA) is reached during the elongation, the walking

will be stopped, the scanner withdrawn and we have finished the coarse approach

to the surface. Otherwise, another step would be taken. After the tip approaches,

the capacitance is recorded as the capacitance at approach for reference. To start

tunneling measurements we only need to approach with the scanner and render the

control of the scanner voltage to the feedback loop.

The principle and calibration of the piezo-tube scanner used in our STM are

well documented in [16]. It has a Z range at 4.2 K of 270 nm (much larger than the

step size) with an applied Vz from -220 to 220 V. The scan range is ∼ 1.0× 1.0 µm2

in XY plane at 4.2 K.
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Chapter 3

General properties of 2H-NbSe2: a LTSTM study

In this chapter I will give an introduction to the material I used in this thesis

work. The work in this chapter will provide examples of the operation modes of our

STM.

3.1 Introduction

2H-NbSe2 is a well-studied sample in STM experiments [18]. It is a layered

material with rich physics. By simply cleaving off the top layers using, for example,

a piece of scotch tape an atomically flat surface is immediately exposed and ready

to be studied. This makes it an ideal sample for the testing and calibration of STM.

Figure 3.1 shows a schematic diagram of the unit cell of 2H-NbSe2. The exposed

triangular lattice of the Se layer can be measured using a STM.

Other than the convenience, this material is also well-known for the coexistence

of two interesting phases at low temperatures: charge density waves (CDW) and

superconductivity. The transition temperature for the CDW, TCDW
c = 32 K, is

higher than the transition temperature of superconductivity, T SC
c = 7.2 K. Since

our LTSTM system usually operates at 4.2 K we are able to study both of them.
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Figure 3.1: Unit Cell of 2H-NbSe2. a=3.45 Å, c=12.54 Å, u=1.68 Å. The ma-
terial easily cleaves between the two Se layers as indicated in the diagram, exposing
an atomically flat surface. The triangular lattice of Se atoms on the surface can be
detected by STM.
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In the constant current topography mode, STM can clearly show the surface

corrugation due to the CDW. As a type II superconductor, 2H-NbSe2 in a magnetic

field will manifest its superconducting vortex state in spectroscopic images. I will

discuss all these observations made in our system in the following sections.

3.2 Topography Mode and Charge Density Waves

Figure 3.2 shows a 5 nm × 5 nm image on the cleaved surface of 2H-NbSe2

as measured by STM in the constant current topography mode. Along the line

cut, the height information is displayed in the panel below it. Clearly our STM has

resolved the atomic corrugation on the surface. The lattice constant agrees well with

the theoretical value. A charge density modulation is superimposed on the atomic

profile. In the image, every third atom is brighter than the rest. This is usually

explained as the evidence of the CDW present in this material.

Despite the 2D nature of the CDW as imaged, for simplicity here I will use a

1D model by Peierls [19] to explain the formation of the CDW. Details about the

general theory and experimental evidence can be found in [20]. A periodic 1D atomic

chain with its dispersion relation is schematically depicted in Fig. 3.3 (a). Assuming

a linear dispersion around the Fermi energy EF , in 1D electron gas theory it can be

shown that the Lindhard response function [19], which controls the rearrangement

of the electron charge density, will be divergent at 2kF :

χ(q) ∝ ln

∣

∣

∣

∣

∣

q + 2kF

q − 2kF

∣

∣

∣

∣

∣

. (3.1)

This divergence suggests the ground state of the electron gas is unstable at low
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temperatures. It is important to notice that this so-called Peierls instability is re-

lated to the particular topology of the Fermi surface since the pairs of states in the

electron-hole channel with the same energy and momenta differing by q = 2kF con-

tribute most to the divergence. The existence of this topology is called Fermi surface

(FS) nesting. Interestingly, another instability in the electron-electron channel with

q = 0, i.e., the famous Cooper instability would lead to a superconducting (SC)

ground state at low temperatures. An energy gap is then opened up in the single

particle excitation spectrum close to the Fermi level. By the very same argument,

as shown in Fig. 3.3 (b) this gap-opening also applies to the CDW state due to the

Peierls instability at low temperatures. Both novel ground states are consequences

of the electron-phonon interactions between the electrons and the underlying atomic

lattice. In the SC state, Cooper pairs are formed. In the CDW state, a spatial mod-

ulation of the charge density with a wavelength of λCDW = π/kF would occur. Also

the reduction of the renormalized phonon frequency at q = 2kF to zero indicates a

“frozen-in” periodical distortion in the underlying atomic lattice occurs below the

transition temperature [20] as illustrated in Fig. 3.3(b).
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Figure 3.2: STM Image of 2H-NbSe2 in the Topography Mode. (I = 0.1
nA, V = 50 mV, scan range 5 nm). Taken at 4.2 K, the image shows the profile
of the atomic lattice with a clear 3 × 3 CDW signature. The panel below shows
a height profile on a line cut in the image which quantitatively demonstrates the
atomic corrugation and the CDW modulation.
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Figure 3.3: Peierls Model of 1D CDW. (a) is a 1D chain of metal atoms with
uniformly distributed charge density in which the ground state of the electron gas
is not stable at T = 0. A phase transition occurs at low temperature as shown in
(b). An energy gap opens up in the excitation spectrum to lower the total energy of
the ground state.The new ground state has a periodically modulated charge density
and a distorted atomic lattice.
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In real materials, the details of the electron-phonon and electron-electron inter-

actions determine the specific thermal stability of the various phases in the system.

Interestingly, in 2H-NbSe2 the two phases coexist at our operating temperature,

4.2 K. The charge density waves are detected in the topography mode shown in

Fig. 3.2. In general the CDW wavelength λCDW = π/kF will be incommensurate

with the atomic lattice constant a. However, for 2H-NbSe2 λCDW ≈ 3.03 a and this

is why we see a 3 × 3 pattern in the image. For weak CDW states like this one in

2H-NbSe2, the underlying lattice distortion is too small for STM to detect. We will

revisit this issue in Chapter 4.

3.3 Spectroscopy Mode and the Coexisting States

Another signature of the CDW and SC states is the energy gap in the excitation

spectrum which is well manifested in the DOS measured by STM in the differential

conductance spectroscopy mode. Shown in Fig. 3.4 is an averaged spectra over all

the points in one image, enveloped by lower and upper bounds calculated from the

standard deviation. The two gaps are marked and compared with theoretical values.

For transition temperatures TCDW
c = 32 K and T SC

c = 7.2 K, the BCS relation [20]

which is applicable to both cases leads to zero temperature gap values: ∆CDW = 35

mV and ∆SC = 1.2 mV. Within thermal broadening, our result agrees well with the

theory. It’s worth mentioning here that the peaks at the edges of the SC energy

gap are well manifested in the spectrum and are a signature of the superconducting

state.
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Although the experimental results [21] agreed well with the theoretical picture

of the CDW phenomenon in quasi-2D materials like 2H-NbSe2, there are heated

debates about the source of this novel collective state [22]. Since the possible nesting

area of the FS in 2H-NbSe2 is very small, the FS nesting being the major reason

behind this phenomenon becomes disputable. On the other hand, the SC state is

well studied for low-Tc, type II superconductors. The most striking feature of this

state is the vortex phase which, very fortunately, can also be measured by a STM

when the sample is in a moderate magnetic field.
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Figure 3.4: Differential Conductance Tunneling Spectroscopy on 2H-
NbSe2. A tunneling spectroscopy measured at 4.2 K shows the SC and CDW
gaps near the Fermi energy. The result is averaged over an image. The center blue
curve shows the averaged result and the two gray guiding curves shows the stan-
dard deviation. The modulation amplitude used by the lock-in amplifier is 2 mV.
Tunneling condition I = 0.4 nA and V = 35 mV.
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3.4 STS imaging and the Vortex State

I will introduce later in Chapter 5 the details of the vortex states in type II

superconductors. In this section I will focus on the techniques we used to image the

vortices. A type II superconductor, when subjected to a magnetic field H with a

value between its lower critical field Hc1 and its upper critical field Hc2 , will allow

the magnetic induction to penetrate in forms of flux lines each carrying a magnetic

flux quantum Φ0 = 2.07× 10−15 Wb as depicted in Fig. 3.5(a). These flux lines will

modify the order parameter in the superconductor. The typical shape of the order

parameter across the center of the flux line |Ψ(r)| is shown in Fig. 3.5 (b). Also

shown is the magnetic profile B(r) which indicates that supercurrent circulates the

center of the line. Due to this, these flux lines are also referred to as vortices. Note

that at the core |Ψ(r)| → 0, the superconductivity is destroyed and the material

turns normal. As a result, the local density of states (LDOS) loses the signature

of the superconducting state: the superconducting peaks at the edge of the energy

gap. This enables the STM to detect the vortex state.
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Figure 3.5: Schematics of Vortex Lattice and Vortex Structure. (a)
Magnetic inductance penetrates into the superconductor in the form of flux lines
each carrying a flux quantum Φ0 = 2.07 × 10−15 Wb . They organize as a flux
line lattice at certain fields. The lattice constant is a function of the induction

a =
(

2/
√

3
)1/2

(Φ0/B)1/2. (b) characterizes the structure of a single vortex. The

superconducting order parameter Ψ(r) is compared to the magnetic profile B(r). It
changes over a length scale of the coherence length ξ. Thus the diameter of the vor-
tex core is defined as ξ. STM images the vortex core since it detects the variations
of the DOS across the surface. In comparison, all other vortex imaging techniques
measure B(r) which has a length scale of the penetration depth λ.
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Figure 3.6: Imaging Vortices by STM. The STS imaging technique applied to
the vortex system. STM detects different differential conductance spectra in the
vortex area than in the superconducting area in the sample. In the plot on the left,
the red (blue) curve is from the vortex area (superconducting area) as marked by
a red (blue) cross on the image on the right. In STS imaging, the bias voltage is
fixed at a value where the difference can be reflected in the contrast of the gray scale
image on the left. The dark round-shaped disks are thus the cores of vortices in the
sample. V = 3 mV and I = 0.1 nA for the image on the right. All data taken at
4.2 K.
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On the left of Fig. 3.6 I show the two spectra taken by STM at different

locations in the spectroscopy mode. The LDOS at the core of the vortex (red) is

compared to the LDOS in the superconducting area (blue). It’s obvious that the

gap disappeared in the normal core area and the spectra differ very much across

the gap. By fixing the bias voltage at 2 mV, the spatial variation of the LDOS

at E = EF + 2 meV can be mapped out using the single conductance imaging (or

the STS imaging) mode. The gray scale image of vortices is shown on the right of

Fig. 3.6. The contrast indicates the normal region has lower density of states than

the SC region at this particular energy which is consistent with the values shown

on the left. The profile of each imaged vortex portrays the distribution of the order

parameter |Ψ(r)| since the change of the |Ψ(r)| at any location leads to the change of

the DOS at the energies near the gap. Away from the center where it is destructed,

|Ψ(r)| recovers over a length scale ξ, the coherence length of the superconductor.

Thus the vortex core is defined by the region around the center with a diameter

2ξ. For 2H-NbSe2, ξ ≈ 12 nm [23]. The vortex core profile is shown in the section

A to B of the line cut in Fig. 3.7. The capability of imaging the vortex core gives

the STM the advantage of higher resolution and higher applicable field over other

imaging techniques such as bitter decoration [24], Lorentz microscopy [25], mageto-

optical imaging [26] that all measure the magnetic field profile B(r) with a length

scale λ [27], the penetration depth which is usually � ξ (for 2H-NbSe2, λ ≈ 200

nm [23]).
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Figure 3.7: Vortex Image Example. Vortices imaged at B = 0.5 T. Image size
400 nm × 400 nm. Tunneling condition I = 0.1 nA, V = 3 mV, lock-in modulation
amplitude Vmod = 1 mV, T = 4.2 K. The line cut below shows the DOS differences
along the black line marked in the image along one lattice axis. A and B cut the
core of a vortex. The measured core diameter 24.1 nm, is very close to 2ξ = 24 nm.
The lattice constant a0 is measured to be ∼ 68 nm comparing to the theoretical

value
(

2/
√

3
)1/2

(Φ0/B)1/2 = 69.3 nm.
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Chapter 4

Observing a New CDW Around Defects Induced by Voltage Pulses

and Steps

In this chapter I report the observation of a new CDW superstructure with

√
13×

√
13 reconstruction as compared to the well-known 3×3 CDW superstructure

in 2H-NbSe2 which I described in Chapter 3. The observation was made around

structural defects on the surface introduced by applying bias voltage jumps and

pulses at 4.2 K. Multiple atomic layers inside the defects were also exposed and

showed the new modulation of the CDW. This indicates a 2H to 1T phase transi-

tion locally for the NbSe2 crystal structure. Two other interesting observations are

also included: the disordered phase of this structure near the atomic steps and an

anomalous distortion in the underlying atomic lattice revealed by STM images.

4.1 Introduction

Charge density wave (CDW) states in quasi-2D system such as transition-metal

dichalcogenides continue to attract great interest [21, 28] especially with scanning

tunneling microscopy (STM) techniques [3, 29]. 2H-NbSe2 is a well studied example

of this class of materials. As I reported in Chapter 3, clear 3× 3 atomic modulation

on the surface revealed by STM in the topography image and the energy gap in the

differential conductance spectroscopy agree well with theories of CDW in quasi-2D
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systems. This type of CDW is what is generally observed on the surface of the

2H (trigonal prismatic coordination) phase of dichalcogenides [29]. It was reported

that there exists another type of surface modulation in Ag-doped 2H-NbSe2 at room

temperature [30]. A localized version of this modulation also exists in pure samples

at room temperature [31] and 4 K [32]. This new CDW modulation exhibits a
√

13×
√

13 structure which is instead only natural to the 1T (octahedral coordination)

phase of dichalcogenides [33]. The mechanism of the formation of this new CDW

in 2H material remains unresolved. Since there is no detailed data available for

accurate characterization, a better understanding of this transition calls for a closer

look at the modulation.

In this chapter I will show that we can create this new type of modulation by

a controlled tip-sample interaction at 4.2 K and examine the atomic structure of the

modulation in detail by STM. By applying a sudden change in the bias voltage, or

using a short period voltage pulse superimposed on the bias voltage, we can create

a “pit”, a local structural defect, on the atomically flat surface of 2H-NbSe2. The

size of the defect is on the order of 100 nm in diameter and 10 nm in depth. A clean

√
13 ×

√
13 superstructure is found around the edge and inside of the defect. This

method is reproducible and the new structure is stable during scanning at 4.2 K in

our system. We are able to characterize it both on large and atomic scales. The

voltage jump method was used to generate similar surface modulation in 2H-TaSe2

[34] and it was proposed that only the top Se layer had shifted. Here by exposing the

layers lower than the top one, we clearly observed a 3D structural transformation

instead of only a top layer shift.
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Other than those that are common to the CDW state in 1T systems, we

observed two novel features that are unique to this local modulation. The first one

is the order/disorder phase separation of the new modulation. This disordered phase

was first seen in the silver doped case [30]. But it hasn’t been reported in the local

case as well as in the 1T system. This new phase suggests a localized CDW state.

The second feature is the anomalously large atomic lattice distortion revealed by

examining the atomically resolved images in the ordered region. The distortion in

the unit cell of the
√

13 ×
√

13 superstructure found is much larger than in the 1T

case. This is the first time, to the best of my knowledge, that the detailed periodic

structural displacement (PSD) of the CDW created locally is revealed by STM. We

propose that local heating generates this new modulation. It is a similar process to

spot welding [35] where the probe is brought close to the metal so the resistance is

small and the heating is localized. We argue that a short pulse can generate enough

heat locally to raise the temperature to induce a phase transition. In Sec. 4.2, I will

describe the experimental method and the general results. The two observations

mentioned above will be discussed in Sec. 4.3 and Sec. 4.4. I will summarize in

Sec. 4.5.

4.2 Defect Structure and the New Modulation

A pristine single crystal of 2H-NbSe2 was cleaved at room temperature in

a high vacuum of about 10−7 mbar. Then it was transferred to the STM in the

LT chamber at 4.2 K within a few minutes. We prepared the chemically etched
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tungsten tip in the STM before transferring the sample by field emission against a

single crystal of gold. The 2H phase of the crystal was confirmed by the observation

of the 3 × 3 modulation on the atomically resolved surface. We used two different

methods to generate the structural defect on the surface. In the first method, with

the feedback on, we generated a short bias voltage pulse with a duration of 100 µs

and an amplitude of 3-5 V. The bias voltage was set to 50 to 100 mV with a

tunneling current of 0.1 nA before the pulsing. We also used another method in

which we simply stepped the bias voltage from 3-10 mV to 5-10 V while scanning

with the feedback on. This sudden change of bias voltage proved to be a more

reliable method. We find that the critical voltage depends on the initial tunneling

voltage. For an initial voltage of 3 mV, the critical voltage is ∼ 5 V. We also tried

the method of mechanical contact. We turned off the feedback after scanning and

pushed the tip into the surface by increasing the voltage on the piezo-tube scanner.

No
√

13×
√

13 modulation was found in the vicinity of the the defect created by this

method. This excludes mechanical contact as a reason for the formation of the new

CDW. All the images shown in this chapter were taken with a tunneling current of

0.1 nA and with bias voltages in the range of 100 mV to 300 mV.

Figure 4.1(a) shows the image of a defect with a diameter of 120± 10 nm and

a depth of ∼ 13 nm which was observed after a voltage jump. This is a typical

example of the defects made by either method. In the figure we can see that the

layered structure is exposed. In contrast to the flat region on the left, the new

modulation appears corrugated around the edge and the inside of the defect. Figure

4.1(b) shows the side of another defect. The new modulation with lattice constant
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and corrugation larger than the usual 3 × 3 modulation is clearly present in this

image. It appears on all the atomic steps which were exposed by the the tip-sample

interaction. In Fig. 4.1(c), taken at the center of a defect, the modulation is also

exhibited at the bottom layer. Plotted in (d) is the value of heights along a line cut

in (c) marked by the black line. The heights of layers are measured to be 0.65±0.05

nm. This indicates that they are all Se layers, for the distance between the two Se

layers in the 2H-NbSe2 crystal where it can be easily cleaved, is 1
2
× c = 0.636 nm.

Here c is the lattice constant of the crystal in the z direction. 2H-NbSe2 crystal is

composed of stacks of sandwich structures with two Se layers on the outside and one

Nb layer on the inside (see Fig. 3.1 for details). The bonding between the Se-Nb

layers within the sandwich is covalent while the bonding between the stacks is of

van de Waals type. The crystal is cleaved between the stacks where the bonding

is weak and the Se layers are exposed as the top surface. Our data show that the

top Se layer of each stack is exposed in the defect. Height measurements in (a)

and (b) also confirm this result. They are integer number times of 1
2
c. A simple

calculation shows the typical depth of these pits is about 20 stacks. I believe this

method is also applicable to other layered materials such as some of the cuprate high

Tc superconductors and graphene samples to create a localized anomaly or expose

the lower layers.
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Figure 4.1: The Defect and Its Vicinity. The defect created by bias voltage
jump. The electrons were moving from the tip to the sample. All images were
acquired in the topographic mode. I = 0.1 nA and V = 100 mV. (a) The topographic
image of the defect. The rough areas in the image are filled with the new CDW
modulations, the flat and smooth area surrounding the defect has the regular 3 CDW
superstructure on it. An interface image of these two areas are shown in Fig. 4.2.
(b) is a current image shows the topographic profile of the side of a defect. CDW
superstructures in form of triangular lattices are observed on each sandwich layer
exposed. (c) The current image shows bottom of a defect with the new modulation.
(d) shows the line cut made in (c). The heights of layers indicate that the new CDW
exists on each Se layer exposed.
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To examine the differences between the two CDWs, in Fig. 4.2(a) we zoom

in to the interface area. On the left we observed the regular triangular lattice of

Se atoms with the signature 3 × 3 CDW. On the right, the new modulation forms

a triangular lattice with a lattice constant of 1.25 nm (=
√

13a, a = 3.46 Å) and

a rotation of 13.9◦ relative to the atomic lattice. As shown in Fig. 4.2(b) the z

deflection from the deep minima to the maxima of the new modulation is much

larger (2.1 ± 0.2 Å) than the regular 3 × 3 structure (0.3 ± 0.1 Å) on the left. This

large deflection is similar to what was observed on 1T-TaSe2 [29]. This indicates a

large charge transfer to the center atoms caused by the new CDW. In contrast to the

small charge transfer and z deflection in the 3 × 3 area, this provides evidence that

this new modulation is generated by a different source. Also similar to 1T-TaSe2

and 1T-TaS2, the underlying atomic corrugation is difficult to image in this area due

to the large
√

13×
√

13 corrugation. The atoms at the interface form a rectangular

structure as indicated by the connected line on atoms in Fig. 4.2(a). As emphasized

by Zhang et al. [34] the rectangular structure is a natural interface between the 2H

and local 1T stack. Note that the interface of the two CDWs is usually straight

and along the atomic lines, but the edges of the defects as illustrated in Fig. 4.1 are

not. This difference indicates that the transformation is 3D. The new modulations

on the lower layers extend to the area underneath the layer on top of it, not just

on the area exposed. The features mentioned above are similar to the observation

made on 2H-TaSe2 [34]. The difference here is that a pure 1T crystal of NbSe2 does

not exist so there is no experimental data on the electronic and lattice structure of

that crystal to compare.
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Figure 4.2: The Interface of the Two CDWs. The interface between the 3× 3
CDW and the

√
13×

√
13 CDW exposed. In (a), on the left shows the typical atomic

lattice of the Se layer and the 3 × 3 CDW signature. On the right the big bubbles
are the new modulation with a

√
13 ×

√
13 construction. The lattice of the new

CDW is rotated at an angle α with respect to the underlying atomic lattice. α was
measured to be 13.9◦. The atomic structure at the interface is illustrated by the
lattice lines drawn upon the bright atom signals. It shows a rectangular interface
lattice. (b) is the height measurement on the line cut across the interface in (a).
Image was captured in the topographic mode at 4.2 K with I = 0.1 nA and V =
100 mV.
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These observations demonstrate that the impact of the voltage jump or pulse

can affect many layers from the surface and probably to the regions even lower

than the bottom layer that is exposed. This new evidence contradicts the top-layer

shifting scheme proposed by Zhang et al. [34]. Also the new CDW appearing on

each Se layer suggests this is a 1T phase of the NbSe2 instead of the 4Hb phase

as proposed by Komori et al. [32]. This is consistent with theoretical calculations

[36]. Here I propose a 3D structural transition from 2H to 1T in the area affected

by the tip-sample interaction. Figure 4.3 shows the structural difference between

these two phases. During the transition, the top and bottom Se layer of the 2H

lattice both shifted as illustrated in the figure. Here I used the common notations

in the description of close packing structures of an atomic lattice [37]. The top layer

shifted from position B to C and bottom from C to B. The interface of the two

lattices with CDWs is visualized in Fig. 4.2(a). In what follows I will refer to the

nano-size affected 3D area as the nanocrystal [34].
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Figure 4.3: The Lattice Transition from 2H Phase to 1T Phase. Section
(1120) of the unit cells of 2H and 1T lattice are shown. The transition happens
when the top and bottom Se layers both shift.
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I speculate that the pulse generated heating locally transformed the nanocrys-

tal to 1T and the size of the crystal is a result of the heat diffusion. It is known

that 2H-NbSe2 transforms to 1T phase at 980 K [38]. Several models have dealt

with the steady state temperature of the local heating problem of STM on metal

surfaces [39, 40]. Following Flores et al. [40], I calculate the steady state tempera-

ture T ∼ We−h

2πrKs
= 750 K when V = 5 V and T ∼ 1555 K (T ∝ V 4 in the model [40])

when V = 6 V with tunneling resistance R = 3 × 107 Ω (Vbias = 3 mV, I = 0.1

nA before voltage jump). Here We−h is the power dissipated through electron-hole

pair generation, Ks is the reduced surface thermal conductivity. While this model

might not be completely accurate for this situation, it shows that the heating is in

the right range. This scheme can also explain the small size effect of the experiment

of Zhang et al. [34] since the temperature is dependent on V 4 and the size definitely

depends on the center temperature of the diffusion process. A more sophisticated

model like that for spot welding [35] and the direct measurement of the junction

temperature are desirable to understand fully the process of heat generation and

clarify the reason behind the creation of the defect. Similar to the spot welding pro-

cess, the nanocrystal was created by the heating and then it was quickly quenched

in the 4.2 K environment so the transition became permanent locally. There are

also several other possible explanations, however. Mechanical contact was ruled

out as I mentioned before. Electron assisted surface atom sublimation [41] is also

not likely because the threshold voltage does depend on the resistance in this case.

Sublimation could be part of the process creating the “pit” structure but not the

nanocrystal.
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4.3 Disordered Phase of the New CDW

One of the observations is the order/disorder phase separation of the mod-

ulation as illustrated in Fig. 4.4(a). It is a 97 nm by 97 nm topographic image

taken in an area surrounded by 3 defects made by voltage pulses. The top defect

is partially shown in the image and the left and right defects are out of the field

of view. Regions of the modulation that show different orderings are marked by

capital letters A to E in Fig. 4.4(a) and also in the Fourier transformed image Fig.

4.4(b). E is the region where the top layer remains intact and has the atomic and

3 × 3 CDW signature. It is very easy to identify the ordered regions A, B and C of

the
√

13 ×
√

13 modulation in (a) where triangular lattices with different rotations

were formed. This is also a well-known feature of the commensurate phase of the

CDW state in 1T systems [33, 42]. The different rotations are clearly shown in

(b). We used select-filtering method to identify the real space counterparts of the

3 groups of 6 symmetric points in (b). B and C correspond to the α-rotated and

β-rotated area where the CDW lattice rotated 13.9◦ counter-clockwise and clockwise

respectively relative to the atomic lattice. The rotation of the A phase is 30◦ more

clockwise. It has never been identified in a 1T system. It is not the satellite spot of

the incommensurate phase of CDW in 1T [33] since it has the same wavelength as

B and C. Further work is needed to understand the formation of A phase.
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Figure 4.4: Ordered and Disordered Phase of the New Modulation. ((a)
shows a 97 nm × 97 nm scan with different regions identified as different phases of
the new modulation. The regions are indicated by A, B, C, D, E respectively (see
text). b1 and b2 are two domain boundaries that can be easily identified by checking
the mismatch of the lattice structures. The image was taken in an area on the surface
surrounded by 3 defects, on the left, right and the top. Only the irregularly shaped
defect on the top is partially shown (dark area). (b) is the Fourier transformed image
of (a) showing peaks (bright spots) for different ordered regions corresponding to
those indicated in (a). (c) is another example of the disordered phase (right) and
the ordered phase (left). (a) and (c) were captured in the topographic mode at 4.2 K
with I = 0.1 nA and V = 100 mV.
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The domain sizes of the three phases are on the order of 50 nm2 which are

much smaller than those observed in 1T systems [42]. Due to their small size, I was

able to image them all and their boundaries as indicated by lines b1 and b2 in Fig.

4.4(b). The defect or missing sites of the CDW are also frequently observed as we

can see from Fig. 4.4(a).

As illustrated in Fig. 4.4(a), a disordered region D lies between the ordered

regions and the defect. In this region, the wave feature of the modulation is de-

stroyed. The corrugation still has the same amplitude as in the ordered regions,

but the “bubbles” are not periodic as in the ordered regions. In some areas the

distribution is rather random. The random feature of area D is also captured in

Fig. 4.4(c) where a 50 nm by 50 nm topographic image of an area close to a pit

shows the order/disorder interface. In (c), the disordered region consists of randomly

distributed locally ordered plaquettes compared to D in (a) which has more single

“bubbles” randomly distributed. I believe this could be additional evidence of local

heating by the voltage pulse. The radial arrangement of the defect, the disordered

phase and ordered phase is an effect of the diffusion of the heating process. The

temperature at the center is the highest and enough to remove the material. The

next is the disordered phase where the temperature is high enough to melt the CDW

phase. The third is the ordered phase where the temperature is above the structural

transition temperature but below the melting temperature of CDW. The last circle

is the normal 2H region where the temperature is below the structural transition

temperature. Since the pulse heating happens very fast and the environment is at

4.2 K, a quenching process similar to the spot welding of metals [35] happened and
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left us the irreversible result of the nanocrystal.

The disorder and the CDW defects suggest the CDW state in this system

can be localized. The localization of the CDW was predicted by McMillan on 2H-

TaSe2 [43]. In his theory the coherence length of the localized CDW could be as

small as the lattice constant so that the unit cells of the CDW superlattice can be

treated as independent local modes with intercell interactions. Long range order

can be broken down at the phase transition. This physical picture at the transition

is similar to what happened in area D in Fig. 4.4(a) and (c). It is unlikely to

be caused by the impurities or vacancies in the layered lattice because they are

expected to be evenly distributed so the separation of the ordered and disorder

region would not be clear. One could argue that the lattice structure near the

defect is completely destroyed, but this fails to explain why there still exists local

CDWs, i.e., the randomly distributed “bubbles”. Apparently, more theory and

further experiments are needed to study this interesting phase.

4.4 Periodic Structural Displacement of the New Modulation Re-

vealed

The second feature in our observation is the atomic structure of this modula-

tion. As in the 1T case, it is also difficult to obtain atomically resolved images of

the new modulation [33]. Figure 4.5 shows one of the best we have acquired. The

tunneling current and bias voltage we used are 0.1 nA and 100 mV, respectively.

The reason we were able to obtain atomic resolution in this image (as compared
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to Fig. 4.2 in which similar parameters were used) is due to the tip state as ex-

plained in [33]. Fig. 4.5(a) is a 20 nm by 20 nm topographic image taken at the

interface which shows the regular 3× 3 part on the left and the atomically resolved

√
13 ×

√
13 part on the right. The insert is the Fourier transformed image to illus-

trate the symmetry of the atomic order (the outside hexagon) and the order of the

new modulation (the inside hexagon). Note that the 3× 3 modulation is very weak

compared to the other two so there is no apparent bright spot for it in the Fourier

transformed image. From the geometry we can confirm that the new modulation

follows the typical symmetry of the CDW in the 1T material [33], a Star-of-David

reconstruction and in this case an α rotated phase. A closer look at the real space

image of the new modulation in Fig. 4.5(b) reveals the actual construction of this

modulation which is quite different from the usual 1T case despite all the similarities

we have discussed.
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Figure 4.5: Atomically Resolved Images. (a) shows the interface of the 3 × 3
CDW and the

√
13×

√
13 CDW. Insert is the Fourier transformed image. (b) zoomed

in on the new modulation part and shows the details of the modulation structure.
(c) shows the underlying atomic lattice by filtering out the CDW ordering in (b). (d)
is the measured distortion in a Star-of-David unit cell. We kept the same orientation
as in (c). i, j, k are directions of the three CDW vectors. (a) and (b) were captured
in the topographic mode at 4.2 K with I = 0.1 nA and V = 100 mV.
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In order to reveal the atomic construction of the new modulation, I zoomed

in to the marked area in (b) where there is no defect and removed the Fourier

component of the
√

13×
√

13 order by Fourier filtering. The real space image after

the process is illustrated in Fig. 4.5(c). One feature we can immediately notice is

the asymmetry of the distortion of the atomic lattice. To measure the distortion I

first processed the image by center of mass method [44] to find the position of each

atom. Then I took the atom with highest corrugation (or “maximum point”) of

the
√

13 ×
√

13 modulation as the center of the modulation and treated the closest

12 atoms to each center as the other members of the unit cell of the Star-of-David

reconstruction. After this I constructed the regular lattice with no distortion of all

the atoms in the image by fixing the positions of the center points. The distortion

is calculated as the difference between the measured position of each atom and the

corresponding one on the regular lattice. So each unit cell has 12 distortion vectors

for the 12 members except the center. I plotted the averaged results in Fig. 4.5(d).

The connected lines show the constructed regular lattice and the round dots are the

average positions of the other 12 atoms in the unit cell. The atoms are numbered

counter-clockwise with the first and last one indicated in the plot. The distortions

are not symmetric around the center of the cell. The atoms near the interface of the

two CDWs are pulled closer, and the atoms near the defect are further apart. This

is different from what was observed for CDWs in 1T systems where the distortions

are usually symmetric [21]. The asymmetry of the distortion is obviously exposed

in the plot.
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1 2 3 4 5 6

di (Å) 0.62 0.14 0.47 0.77 0.50 0.62

dj (Å) 0.03 -0.01 -0.25 -0.50 0.05 -0.10

dk (Å) 0.65 -0.13 -0.22 -0.27 -0.54 -0.51

7 8 9 10 11 12

di (Å) 0.53 0.36 0.66 0.15 0.45 0.05

dj (Å) -0.02 0.21 -0.09 0.14 0 0.28

dk (Å) -0.51 -0.57 -0.57 -0.29 -0.45 -0.34

Table 4.1: The distortion vectors of the unit cell in Fig. 4.5 (d). The error bar is
0.08 angstroms.
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Table 4.1 shows the 12 distortion vectors projected on the three CDW wave

vectors
−→
i ,

−→
j ,

−→
k (di =

−→
d · −→i ). The periodic structure displacement (PSD) of the

CDW unit cell can be constructed from the 12 distortion vectors around the CDW

maxima. Band structure and phase transition calculation could be carried out with

the measured PSD of the CDW [45, 46]. The result could be compared with further

studies of the spectroscopy of the new CDW. From Table 4.1 the largest displacement

is 0.8 ± 0.1 Å (24% of the lattice constant) which is anomalous compared with

the distortion observed in usual 1T systems where the maximum displacement ≤

0.2 Å and in 2H systems (≤ 0.05 Å) [47]. The distorted lattice shows the quasi-

ribbon like structure along direction
−→
j , which is very similar to what happened

in TaTe2 and NbTe2 [21] where large distortions and the ribbon-like structure were

observed. I speculate that a single −→q CDW was truncated by the defect in
−→
i

direction and this caused the asymmetry of the distortion. It also shows that when

there is asymmetry, the distortion tends to be large as observed in the cases of TaTe2

and NbTe2. More data on atomically resolved microscopy on other nanocrystals

and theoretical modeling are needed to explore this interesting correlation between

asymmetry and large distortion of CDW.

4.5 Summary

Our scanning tunneling microscopy work at 4.2 K on 2H-NbSe2 shows two

distinctive features that have never been reported even in similar or related sys-

tems. The first is the disordered phase of the new
√

13 ×
√

13 modulation. It
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shows the CDW can be localized and viewed as individual cells interacting with

each other. The second is the atomic distortion in the new modulation. Rather

large displacements were observed in this case. I believe it is due to the asymmetry

of the nanocrystal. I also proposed that local heating was the source for nanocrystal

creation and the disordered phase was formed by the quenching process. Further

experimental and theoretical studies are necessary to better understand all the phe-

nomena presented in this report.
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Chapter 5

Imaging Vortex Matter by STM: Statics and Dynamics

In this chapter, I introduce the novel role of STM in the study of static and

dynamic properties of vortex matter system in type II superconductors. Extensive

theories and experiments over the last two decades contributed to our understanding

of this complex system. However, many crucial questions remain unanswered, and

the detailed understanding of some of the phase space is still unclear.

After introducing background knowledge of the Bragg glass phase of vortex

matter and experimental methods in Sec. 5.1 and 5.2 and 5.3, I will demonstrate

the use of our LTSTM as a new imaging technique to study the static properties of

the Bragg glass phase of vortex matter in Sec. 5.4.1. In Sec. 5.4.2, I will discuss our

most important result on the dynamic creep motion of the system. The last section

will be devoted to the direct imaging of the interaction between the vortex system

and a variety of impurities followed by a conclusion and subsections for future work.

5.1 Background and Motivation

In this section I will give a brief introduction to the development of the field

of vortex matter. A more extensive review can be found in [2]. In 1957, Abrikosov

presented the vortex solution of the Ginzburg-Landau equations and predicted the

behavior of type II superconductors in his famous paper [48]. The mean-field phase
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diagram of conventional low temperature type II superconductors was constructed

then and proved to be very accurate later [2].

The H − T diagram (Fig. 5.1) consists of three phases, a Meissner phase

(H < Hc1(T )) with complete magnetic expulsion, a novel mixed phase (Hc1(T ) <

H < Hc2(T )) and a normal metal phase (H > Hc2(T )). In the mixed phase the mag-

netic induction B can penetrate the superconductor in the form of vortex lines each

carrying a quantum of magnetic flux Φ0 = hc/2e ≈ 2× 10−15 Wb. As illustrated in

Fig. 3.5, a vortex consists of a region with a radius ξ (the coherence length) away

from the center of each line where the superconducting order parameter Ψ is sup-

pressed and a region with a radius λ (the penetration depth) in which supercurrents

screen the external field.

78



H

HC 1

H C2

Meissner

Mixed

Normal

T

Figure 5.1: Mean Field Phase Diagram of Type II Superconductors. Typ-
ical phase diagram of type II superconductors such as 2H-NbSe2. For 2H-NbSe2 at
4.2 K, µ0Hc2 ∼ 2.1 T, µ0Hc1 ∼ 20 mT [23, 49].
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As a result of minimizing the Ginzburg-Landau free energy, Abrikosov pre-

dicted the vortex lines organize as a perfect lattice structure in the mixed phase,

later observed in [24]. The lattice is triangular for standard systems and it is called

the Abrikosov lattice, vortex lattice (VL) or flux line lattice (FLL) in the litera-

ture. Figure 3.5 and Fig. 3.7 show the diagram and an example image from our

STM measurement of the lattice. The lattice constant a is a function of induc-

tion B, a =
√

2Φ0/
√

3B ≈ 1.075
√

Φ0/B. The vortex lines interact with each

other with an effective potential energy E = 2ε0K0

(

d
λ

)

per unit length along the

line, d is the distance between two vortices, K0 is the zeroth order Hankel func-

tion and ε0 = (Φ0/4πλ)2 is the energy scale per unit length. This repulsive en-

ergy increases with field and rapidly vanishes when temperature T goes to Tc since

λ(T ) ≈ λ(0)/
√

1 − (T/Tc)4 diverges at Tc. Due to this interaction, the lattice can

also be described by an elasticity theory. The temperature and magnetic evolution

of the elastic moduli of the lattice can be derived from this interaction energy [50].

Now let’s shift focus to the interesting dynamic properties of the vortex sys-

tem. In this picture [51], when an external current j is applied, the vortices will

start to move under the influence of the Lorentz force per unit length FL = j×B/c

(for each vortex, the force per unit length is fL = (Φ0/c)j × n, n is the unit vector

along the vortex). If the system is perfectly homogeneous, the only counter balance

to this force is the friction force, Fη = −ηv. Here η is the friction coefficient and v

is the velocity of the vortex. At balance, we have the steady state v = j × B/(cη).

The dissipation comes about because when the vortex system moves, an emf volt-

age drop develops across the system along the same direction of j due to Faraday’s
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Law. The induced electric field can be written as E = B × v/c. The power of dis-

sipation is thus P = (j × B)2/(c2η) where η ≈ BHc2/(c
2ρN) (ρN being the normal

state resistivity) can be calculated by analyzing the dissipation process [51]. As a

result, the material is not a perfect conductor, with ρeff = ρNB/Hc2 for j ⊥ B. In

order to make the material a better conductor, we have to paradoxically drop the

homogeneity assumption and introduce quenched disorder to be sources of another

force to counter balance FL. In real materials, quenched disorder (eg., atomic vacan-

cies, interstitials, impurities, lattice dislocations, twin boundaries, grain boundaries,

second-phase precipitates, etc.) always exists in the underlying atomic crystal and

is crucial for maintaining high conductivity of the material in the presence of a mag-

netic field. The quenched disorder will exert a pinning force with a density Fpin on

the vortex system. It will counter balance FL and hold the vortex lattice still. The

current can then remain dissipation-free until it reaches a critical value jc = Fpinc/B

(for j ⊥ B) and breaks the balance.

The current density jc is the critical depinning current density. Understanding

this limit is necessary for development of various technological applications. Since

type I superconductors all have small Hc’s, the applicable current and sustainable

external field are very limited, as they are in the Meissner phase for type II super-

conductors. The critical current density jc and upper critical field Hc2 of type II

superconductors in the mixed phase are usually very high. Most of the supercon-

ductors used in commercial magnets or other applications are type II and operate

in the mixed phase. It is therefore desirable to optimize the pinning in the system

and maximize jc. Various methods have been used to increase the pinning strength
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of the disorder, including using Fe impurities in NbSe2 samples, which will be our

focus of interest.

The central problem of the statistical mechanics and dynamics of a quantum

disordered system is still incompletely understood. This is because of the extreme

complexity of the problem which involves quenched disorder, thermal fluctuations,

and quantum fluctuations in the system [2]. Even introducing only the quenched

disorder to the elastic vortex system causes a drastic change of the statics and

dynamics of the system and thus the phase diagram [2]. In Sec. 5.2 we will introduce

the efforts from theorists to address this complicated issue.

The interest in this problem was revived since the discovery of high Tc su-

perconductors (HTSC) [52]. Many experiments has been carried out and theories

constructed [53]. Notable experiments include the transport measurements, the Bit-

ter decoration and magneto optical measurements. These probe measurements are

all microscopic measurements that directly image the vortex system. But all of them

can only work at low fields up to 500 G at best. In STM experiments the applicable

magnetic field can be much higher (usually more than 0.1 T). This makes the STM

system an indispensable new technique to image the system in a vast region of the

phase space which is untouchable by other techniques.

5.2 Theoretical Description of Vortex Matter

Since a real vortex system usually consists of hundreds or thousands of vortex

lines, the microscopic description of the vortex system by the Ginzburg-Landau
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theory becomes inappropriate to handle the interactions and dynamics that are

essential to the problem. A better way is to treat the vortex lines as individual

elastic objects. The core of the vortex can be viewed as a string and the elastic forces

are provided by the supercurrent. This simplified description has advantages in

including the effects of weak disorder and dealing with the macroscopic physics such

as phase diagram, imaging results, and transport measurements. It also connects to

other interesting problems in classic and quantum systems: magnetic domain walls,

wetting contact lines, colloids, magnetic bubbles, liquid crystals, charge density

waves, and Wigner crystals [1, 2].

In this description, the perfect lattice points are viewed as the equilibrium

positions, r0
i , of the objects. The elastic Hamiltonian is defined on the displacement,

u(ri, z) = ri − r0
i , with ri the position of the object in 2D:

H =
1

2

∑

α,β

∫

ddquα(q)cαβ(q)uβ(−q) (5.1)

(d = 3 in our system, I keep it here for the convenience of discussion). Here cαβ(q) is

the elastic matrix which can be calculated from the interaction forces, q is the corre-

sponding vector in Fourier space for (r,z). cαβ(q) = cq2 for standard elasticity [50].

A simplified isotropic version in real space is:

H ∼ 1

2

∫

ddr c(∇u)2. (5.2)

In a real vortex lattice, there are three different elastic constants c11, c66, c44, corre-

sponding to the bulk, shear and tilt deformation processes [50]. Although the values

of these material parameters can vary from system to system, this does not change

the quadratic nature of the Hamiltonian.
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To characterize the physics of the elastic system, two important quantities are

usually calculated. The first is the relative displacement correlation function

B(r) =
1

2

〈

[u(r) − u(0)]2
〉

(5.3)

which measures the relative displacements of two points separated by distance r.

Here 〈〉 averages over thermal fluctuation and · · · averages over disorder. The growth

of B(r) along r is a measure of how fast the lattice is distorted. For thermal

fluctuations alone in d > 2, B(r) saturates at finite values, indicating the lattice

order is preserved. In the presence of disorder, the perfect positional order could

be destroyed and B(r) would grow unbounded. B(r) can be measured directly by

imaging techniques [53].

Another important quantity is the structure factor of the lattice. It can be

obtained by computing the Fourier transform of the density of object:

ρ(r) =
∑

i

δ(r − r0
i − ui). (5.4)

The structure factor S(q) = 〈ρ(q)ρ(−q)〉 can be directly measured in diffraction

experiments [53, 54]. For a perfect lattice, the diffraction pattern consists of δ-

function Bragg peaks at the reciprocal vectors of the lattice. If some degree of

short range order exists, the peaks will be broadened. The shape and width of any

individual peak thus will measure the degree of translational order of the lattice.

To measure that quantitatively, for any peak centered around a reciprocal vector

G, a correlation function CG(r) can be obtained by Fourier transforming back to

real space. This correlation function, usually referred to as the translational order
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correlation function, can be written as:

CG(r) = 〈eiG·(u(r)−u(0))〉. (5.5)

It directly measures the degree of the translational order that remains in the system.

For a perfect lattice and δ-function Bragg peak CG(r) = 1. For thermal fluctuations

alone, CG(r → ∞) = constant. The faster CG(r) decreases, the broader the peak,

and the more disordered is the lattice. This quantity can also be extracted from

imaging experiments. For Gaussian fluctuations such as thermal fluctuations,

CG(r) = e−G2B(r)/2. (5.6)

However, this relation is not always true for systems with fluctuations other than

thermal ones. It only holds qualitatively in general.

To incorporate the effects of disorder into the model, a simplification is usually

made by coupling a random potential V (r) directly to the density of vortices ρ(r)

Hdis =
∫

ddrV (r)ρ(r). (5.7)

This model ignores the microscopic properties of the disorder and treat them as

weak point-like pinning centers randomly distributed in the system. In high qual-

ity single crystals, point-like (uncorrelated) disorder dominates. For systems with

extended defects (correlated disorder) such as one-dimensional screw dislocations

or twin boundaries, a strong pinning model has to be employed [2]. In our low-Tc

system with introduced point impurities, this weak-pinning-center approximation is

an appropriate choice. The simplified random potential is V (r) = V
∑

i δ(r − ri)

where ri is the position of the impurities. For weak disorder, it is legitimate to
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replace V (r) by a simple Gaussian potential with a correlator [55]

V (r)V (r′) = ∆(r − r′) (5.8)

where ∆ is a function with range rf . In superconductors, one has rf ∼ ξ, the

coherence length. Even with these simplifications, this is still a highly complicated

problem to solve due to the non-linear nature of the δ-function in ρ(r).

H +Hdis describes the general elastic system coupled to disorder. The under-

lying competition between the elastic force from H (Eq. 5.1) that maintains the

lattice order and the disorder effect from Hdis (Eq. 5.7) that distorts it leads to the

complicated state of the system which shows interesting statics and dynamics.

5.2.1 Collective Pinning Theory

Larkin [56] made a further ground-breaking simplification about the disorder

Hamiltonian: for small displacements, the coupling can be expanded and approxi-

mated as:

HLarkin =
∫

ddr f(r)u(r). (5.9)

Here f(r) is a random force with Gaussian correlations acting on the vortices. This

now exactly solvable linear model yields

B(r) = Bthermal(r) +
∆

c2
r4−d (5.10)

CG(r) = e−G2B(r)/2 ' e−r4−d

(5.11)

if the correlation is local f(r)f(r′) = ∆δ(r − r′). Here c is the elastic constant

in Eq. 5.2. A remarkable conclusion of this theory is that any weak disorder does
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destroy long-range translational order for d < 4. The displacement will grow un-

bounded (B(r) ∼ r for d = 3) and the perfect order of the lattice will be lost at

large scale.

The two important characteristic length scales in this model are: (i) Rc which

is the distance at which the relative displacements of the lattice are of the order

of the correlation length of the random potential rf (ξ at low temperature), i.e.,

B(Rc) ∼ ξ2; and (ii) Ra at which the relative displacement is of the order of the

lattice constant, i.e. B(Ra) ∼ a2
0. The limitation of the Larkin model stems from the

linearity of the approximation in Eq. 5.9. The translational symmetry u→ u+a0 in

Eq. 5.7 does not exist in this linear model. Since physically this global translation

does not change the total energy, the total pinning force in this model is zero.

The nonlinearities of the disorder term are thus necessary to properly describe the

pinning. Also as the expansion depends on u and the result shows B(r) will grow

unbounded, the model can not be used to describe the system at large scales. In

a masterful stroke of physical intuition [57], Larkin and Ovchinikov (LO) realized

this model breaks down exactly at the length scale corresponding to the critical

pinning force Fc. In the presence of an external force, LO argued that bundles of

the vortices will be moved by the force and the larger the force, the smaller the size

of the bundle. The Larkin model works when forces are larger than Fc so the motion

is free and no pinning is involved. But below Fc, anomalous transport appears. The

energy gained by the external force
∫

ddr Fextu(r) equals the elastic energy plus

the disorder energy in the bundle at the breakdown scale of the model. Any force

smaller than Fc will involve a bundle larger than this which the model is not able to
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describe. LO noticed that the expansion in displacements in the model breaks down

when a vortex line moves by more than its width ∼ ξ [57]. Therefore the breakdown

of the model happens at Rc instead of Ra. Using scaling analysis, LO showed that

the balancing of energy gives the critical force density

Fc =
cξ

R2
c

(5.12)

and thus the critical current density Jc. Equation 5.12 is the famous Larkin-

Ovchinikov relation which calculates the critical dynamic quantity directly from

the length scale of the static problem.

5.2.2 Bragg Glass Theory

To better understand the system beyond the Larkin length scale Rc, a quanti-

tative theory which fully solves H +Hdis is needed. The Bragg glass theory [58, 59]

was formulated to address this problem. This model now includes the nonlinearity

of the coupling and periodicity of the lattice system by decomposing the density,

Eq. 5.4, into Fourier components according to the periodic perfect lattice R0
i

ρ(r) = ρ0 − ρ0∇ · u(r) + ρ0

∑

K

eiK(r−u(r)) (5.13)

and thus rewriting the Hdis as

Hdis = ρ0

∑

K

∫

ddr V (r)eiK(r−u(r)) + ρ0

∫

ddr V (r)(1 −∇ · u(r)). (5.14)

This is a very complicated problem. Giamarchi and Le Doussal [58, 59] used the

replica method, the variational method, and the renormalization group method to
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attack the problem. Here I only state the main results of the theory. The rela-

tive displacement correlation function B(r) is found to develop over three different

regimes. As illustrated in Fig. 5.2, the first regime below Rc is the Larkin regime in

which B(r) < ξ2 and it grows as r4−d. The second regime is between Rc and Ra. The

vortex line behaves much like the simplified model of a single line around pinning

centers. This is called the random manifold regime. In this regime, ξ2 < B(r) < a2
0

and the growth is still algebraic but the exponent is different B(r) ∼ r2ν with

ν ∼ 1/6. For r > Ra the solution predicts a logarithmic growth for the correlation

B(r) ∼ Ad log(r) where Ad is a universal amplitude depending only on dimension.

For Gaussian fluctuations, the translational correlation function given by Eq. 5.6 has

a slow algebraic decay for d > 2, CG(r) ∼ (1/r)Ad . This shows the quasi-long-range

order persists. This third regime is the asymptotic regime.

This description of the disordered, periodic, elastic system applies to vortex

matter in both low-Tc and high-Tc superconductors. The striking result is that

instead of the positional order being destroyed by the weak disorder as in the col-

lective pinning theory, a quasi-long range order is preserved in the system due to

the periodicity. In this case, algebraically divergent Bragg peaks should be found in

the structure factor S(q) from diffraction experiments. This phase (which is nearly

as ordered as a perfect solid) is actually a glass when the dynamic properties are

considered. It has many metastable states separated from its ground state by di-

vergent barriers and exhibits pinning and nonlinear dynamics such as creep motion,

etc. Another important feature is that this solution is self-consistently stable with-

out dislocation. This phase is thus called the Bragg glass phase which is a stable
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glass phase with quasi-long range order. More experimental consequences from the

theory can be found in [59, 60]. Experimental results such as [54] provide direct

evidence of this phase in type II superconductors.

Other than the static results mentioned above, the theory also predicts a

different phase diagram and dynamics for the vortex system. In what follows, I will

introduce them without going into the details of the model.
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Figure 5.2: The Relative Displacement Correlation Function in Bragg
Glass Theory. Three regimes with different behaviors are defined by the length-
scales Rc and Ra: the Larkin regime, the random manifold regime, and the asymp-
totic regime.
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5.2.3 Phase Diagram of the Vortex Phase of NbSe2

The existence of the Bragg glass imposes a generic phase diagram for all type II

superconductors as illustrated in Fig. 5.3 (a). The Bragg glass phase covers most of

the mixed-state phase space when compared with Fig. 5.1 from the classical theory.

New experimental evidence [61] confirmed this phase separation. Fig. 5.3 (b) shows

a typical H − T phase diagram of Fe-doped NbSe2 measured by experiment.

The Bragg glass phase and the rest of the mixed state phase in which the

vortex matter forms a disordered solid are separated by the Hp line determined by

the peak effect in the DC critical current measurement. This line marks a first order

“melting” phase transition from the ordered (Bragg) phase to the disordered phase.

Our samples include pristine NbSe2 and Fe-doped NbSe2. Transport measure-

ment shows that the phase diagrams of these two samples are different in that there

is no reentrance of the disordered phase at low fields for the pure NbSe2 sample. All

the imaging measurements using other techniques were carried out at very low field

as marked in Fig. 5.3(b). Our STM experiments are all carried out in the Bragg

glass phase as marked by the red arrow in Fig. 5.3 (b). Our measurements are much

more relevant to the peak effect usually measured at high fields. It is definitely

desirable to image the melting transition from the Bragg glass to disordered phase

or vice versa at high fields by our STM, yet a defect in our setup currently limits

our applicable magnetic field 1.

1The probe we first installed proved to be made of SS304 which is ferro-magnetic instead of

non-magnetic SS316 to SS321 as we ordered. The high field operation will increase the chance of

failure of the system due to the possible mechanical stress in the probe.
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Figure 5.3: New Phase Diagram for Type II Superconductors. (a) resembles
the universal phase diagram for type II superconductors in Bragg glass theory. A
new section in the mixed phase is the ordered Bragg glass phase. The Bragg glass
can “melt” to a disordered phase. (b) shows the typical phase diagram of NbSe2

measured in experiments. The black dashed arrow indicates the typical path of a
magnetic decoration experiment. The red arrow shows the path we took in STS
imaging experiments. Data taken from [61]. Figure borrowed from [53] (c) shows
a experimental observation of the peak effect in a Fe doped NbSe2 sample. Figure
borrowed from [62].
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5.2.4 Dynamics of a Moving Bragg Glass

The dynamic properties of the Bragg glass phase are critical to our under-

standing of this system due to their fundamental and technological importance.

The competition between the elasticity and the disorder not only determines the

interesting static properties of the stable state, it also has dramatic consequences

on the dynamics. The main focus of previous theoretical studies is on the average

velocity which is proportional to the voltage in the transport measurement, versus

driving force, usually the current in experiment. The equation of motion of the

vortices with a driving force f and a thermal noise ζ reads

η
dr

dt
= −δH

δr
+ f + ζ. (5.15)

Since the average velocity v ≡ 〈dr0/dt〉 is the parameter of interest, it is advan-

tageous to consider v as prescribed and obtain f = f(v) required to maintain the

given v. The equation of motion of the displacement is usually taken as a basis for

analysis:

η
du

dt
= −δH

δu
+ f−ηv + ζ. (5.16)

This is again a very complicated problem to attack and many questions arises con-

cerning both the static properties in the moving frame and the dynamical properties.

Here I’ll only concentrate on the results that are of interest to our system. More

information can be found in [1, 55] and the references therein.
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Figure 5.4: Typical Velocity-Force Characteristics. The typical response of
velocity v in response to an external force f for a vortex system. At T = 0 the
systems is pinned below the critical force fc. However, at finite temperature, motion
can occur even for f < fc. Especially at f � fc the system’s creep motion is a
signature of a Bragg glass. For large driving forces, the system flows as if there is
no disorder.
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Fig. 5.4 shows the three regions of the v− f characterics from the Bragg glass

theory [63, 64]: the flux creep region with very small driving force, the flux depinning

region around the critical force, and the flux flow region with high moving velocity.

The arrow shows the region of our interest (see Sec. 5.4.2). At T > 0, the motion

of the vortex system occurs at any driving force.

For low temperatures and very small driving force f � fc, the motion is

expected to be very slow. The response was thought to be linear in the Thermally

Assisted Flux Flow (TAFF) [65] model. The idea is depicted in Fig. 5.5(a). The

moving units in the system are flux bundles [65]. The pinned bundle of the system

has to move in an energy landscape with constant barrier heights U . The effect

of the external force f is to tilt the landscape to be washboard-like, allowing the

bundle to move. The bundle can move until it is trapped at one of the local minima

in the energy landscape and it will spend more time in that configuration or meta-

stable state. An Arrhenius law was used to describe the thermal activation process

of the system to overcome the barriers. Assuming a constant U and that all the

minima are separated by the lattice constant a0, in TAFF the velocity is calculated

as v ∝ e−β(U−fa0/2) − e−β(U+fa0/2) ∼ e−βUf with β = 1/kBT .
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Figure 5.5: Energy Landscape. (a). In the TAFF model the energy landscape,
characterized by the barrier U , is tilted by an external force f . (b) shows the energy
landscape in the collective creeping theory where the potential U is different for
different configurations.
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However, this simple picture does not hold for a glass system in which barrier

heights vary and the barrier heights are expected to diverge as one gets closer to

the ground state. There are many metastable states in the elastic description of the

glass system. As depicted in Fig. 5.5(b), the energy will depend on the configuration

of the elastic system and the barrier distribution will be far from constant. The

external force will change the metastable solutions. This makes the barrier height

dependent on the force and the dependence is highly nonlinear for the glass system.

The hopping between the neighboring states separated by the energy barriers when

f � fc determines the characteristics of the creep motion.

To accommodate this complication, a new model called the collective creep

model [66] was proposed by Feigel’man et al. A scaling approach was used based on

two basic assumptions, i) the motion is slow so the static description can be used at

any time; ii) the scaling of barrier height is the same as the scaling of the minimum

energy from static results. As a bundle of size R move to the next metastable state

by distance u ∼ Rν , the energy of the metastable state scales as E ∼ Rd−2+2ν and

the energy gained from the external force EF =
∫

ddxfu(x) ∼ fRd+ν . The moving

condition EF > E gives the minimum size of the bundles that move to the next

state Rmin ∼
(

1
f

)1/(2−ν)
. This indicates the size of the moving bundle increases as

the force decreases. Thus the minimum energy barrier between metastable states

now scales as U(f) ∼ Rd−2+2ν
min ∼

(

1
f

)µ
with µ = d−2+2ν

2−ν
. The average velocity

v ∝ e−β(U(f)) is now nonlinear. U(f) can be written as Uc

(

fc

f

)µ
where Uc is the

barrier of a bundle with scale Rc and fc is the critical force.

Experimentally, transport [67] and magnetic relaxation [68] measurements
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agree well with the scaling argument [69]. Further theoretical works such as [63, 64]

were carried out to obtained more precise characteristic v(f). However, other than

the average velocity, the nature of the creep motion itself is largely unclear. In [70]

Vinokur et al. studied the distribution of the energy barrier for a given f in the

vortex system. Combining extreme statistics and the coarse graining method, they

recovered the collective pinning result from the scaling approach. For a 1D vortex

string with a length L their result shows the distribution density of the potential

wells:

pL(U) ≈ 1

Uc

L

Lc

exp
(

− U

Uc

)

exp
(

− L

Lc

exp
(

− U

Uc

))

(5.17)

where Uc, Lc can be calculated from the static exponents and length scales [69].

Here we make a natural extension of the above result to the velocity distribution of

the motion. Using an Arrhenius law, the waiting time at the minima or lifetime of

the metastable state τ ∝ exp(βU), we write the velocity of the motion as v = v0e
−βU

assuming the displacement of each motion is uniform. Thus the distribution density

of the creep velocity

pL(v) ≈ 1

βUc

L

Lc

1

v0

(

v

v0

)
1

βUc
−1

exp

(

− L

Lc

(

v

v0

)
1

βUc

)

. (5.18)

This distribution when integrated over the length L will result in an exponential

distribution of the barriers globally and lead to the recovery of the collective creep

results [70]. In Sec. 5.4.2 it will be applied to our 2D result and we will discuss the

details therein. Other results about the structure of the energy landscape [71] can

also be compared to our results qualitatively.

Almost all of the previous imaging measurements studying the dynamics fo-
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cused on the large velocity region, i.e. the flux flow regime [72]. One of the inter-

esting observations is the channel effect of the moving glass phase. At sufficiently

large velocity the glass phase will regain its periodic order and move along elastic

channels. The vortices will follow roughly the same trajectory when in motion. Our

results show that this is not the same for the slow motion. The elastic channels

change seemingly randomly when the vortices move from one deep minimum point

to another. Also the trajectory can deviate far from a straight line. Sliding does

happen when the deviation is larger than the vortex lattice constant a0. This is an-

other feature that separates creep from flow. In Sec. 5.4.2 I will discuss the details

of our direct observation.

5.3 Experimental Method

5.3.1 Imaging a Moving Vortex Lattice

In order to directly image the vortices in NbSe2, we set the STM to STS

imaging mode. As I explained in Chapter 3 the vortex cores are imaged as dark

disks with radii of ξ in the STS images. This is a relatively fast imaging mode

(see Sec. 2.4.5). When we set out to image the vortex lattice, we used the STS

mapping mode and the scanning speed was much slower. Due to this slow speed we

accidentally observed the slow moving vortex lattice. Fig. 5.6(a) shows the image we

first acquired. The vortices are the white elliptical disks because, in this mode, the

energy was set at 0 meV (i.e., EF ) where the LDOS of the vortex cores are higher

than the superconducting area as explained in Chapter 3. The stretched vortices
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indicate a slow moving instead of static vortex lattice usually observed by STM [73].

Switching to STS image mode to gain scan speed, we were able to capture images of

the vortex lattice frame by frame. This time each vortex was shown symmetrically

round. Compiling the frames together as a movie, it is obvious that the vortex

lattice is moving. The speed is as slow as ∼ 1 pm/s (see Fig. 5.6 and Sec. 5.4.2).

The driving source of this motion was later found to be the decaying magnetic field

due to a defect of the magnet in our dewar [16].

The data in this section has previously been reported in my colleague Jonghee

Lee’s Ph.D. thesis [16]. Here I want to emphasize the data acquisition is of a

collaborative nature.
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(a) (b)

100 nm 100 nm

Figure 5.6: Initial Evidence of Moving Vortices. In (a) the image of each
vortex is stretched when the scan time is long. This image is one layer with energy
E = -0.5 meV from a differential conductance map which it took about 3 days to
finish. Scan parameters: I = 0.1 nA, V = 5 mV, B = 0.25 T, T = 4.2 K. When
we scan fast, the vortex form becomes normal in (b). This image is taken in the
STS single layer imaging mode. The acquisition time is about 30 minutes. Scan
parameters: I = 0.1 nA, V = 1 mV, B = 0.25 T, T ≈ 2 K. This shows the vortices
are moving.
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Figure 5.7: Field Decay as the Reason of Motion. Schematic diagrams of
our magnet with a defect in (a) and the moving vortices under the influence of a
decaying magnetic field in (b). As described in the text, a vortex at a distance r
from the center moves at an average speed 1

2
r
τ

with τ = L/R.
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Fig. 5.7(a) shows the circuit of the superconducting magnet with a residual

resistance from spot-welded joints of the superconducting wire in the magnet. The

current is then decaying as I(t) = I(0)e−t/τ with the time constant τ = L/R. The

corresponding magnetic field in the magnet core decays as B(t) = B(0)e−t/τ . Using

the model depicted in Fig. 5.7 (b), we can calculate the vortex speed by assuming

our tip or our field of view is at a distance r from the center of the sample. Since the

field is decaying, vortices are slowly leaving the sample. If we assume the motion is

homogeneous and quasi-static, the motion of each vortex can be derived from the

expansion of the lattice constant a =
√

2√
3

√

Φ0

B
. For the vortex at r, we have

dr

r
=

da

a
= d ln a = −1

2
d lnB = −1

2

dB

B

v = vr =
dr

dt
= −1

2
r
d lnB

dt
=

1

2

r

τ
. (5.19)

This model proved reasonable by checking the real values of the parameters.

The field decay is recorded by the magnet control unit2. When set to match the field

stored in the magnet by turning on the persistent switch, the unit can calculate the

targeted field from the matched current value. After a long experiment of 21 days

and 17 hours, we were able to see the drop of the field from 0.500 T to 0.491 T. This

amounts to an average decay rate ∆B
∆t

≈ −4.2 nT/s (≈ 0.36 mT/day). The time

constant τ is then calculated to be 1.02× 108 s (≈ 3.2 years). Given the inductance

of the magnet coil L = 12.4 H, we have the residual resistance R ≈ 0.1 µΩ which is

still reasonable for the multiple joints in the coil. Assuming the tip is at r = 1 mm

away from the center, I estimated the speed of vortex motion v ≈ 5 pm/s by Eq.

2Model 420 and Model 4Q05100PS by American Magnetics, Inc.
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5.19. This speed has the right order of magnitude of the observed value as we will

see in Sec. 5.4.2.

Another piece of evidence to show that the decaying field is source of the

motion is that we were able to stop the motion by holding the current and thereby

the field constant. As illustrated in Fig. 5.8(a), if we continue to supply current

to the coil even after we turn off the heat switch, the field-matching mechanism of

the controller will keep feeding the current and thus the field stays as assigned3. A

2 day observation of the same area with vortices that were moving at ∼ 4 pm/s

showed the vortices became stationary after the current feeding was switched on.

Fig. 5.8(b) shows the stationary vortices and their tracks.

The direct imaging of slowly moving vortex lattice was made possible because

of the fast scan speed and the clean sample surface. The upper bound of our scan

speed is about 0.8 µm/s. It is limited by the feedback loop and the acquisition time

of the lock-in amplifier. The scan time for one 400×400 frame of the STS movie

is ∼ 4 min at this speed. The net displacement of a vortex between two frames

is then ∼ 2 nm. Another feature of our experiment is the long duration time of

continuous recording. The longest record with the magnetic field on is 4 days and

12 hours. This is much longer than any known previous imaging experiments on

the vortex system and one of the longest of the STS measurements to the best of

our knowledge. The stability of the whole system and the low thermal conduction

design both contributed to this long measurement duration without interruptions

from LHe refilling.

3Douglas Osheroff, Private communication, 2006
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Figure 5.8: Method to Halt the Field Decay. (a) shows circuit schematics of
how to stop the field decay. See text for details. (b) is the stationary vortex system
after the field decay is halted. The color-coded tracks of the vortices (see Sec. 5.4.2)
are plotted to show the system is not moving. Time is represented from red to green
in the code: red means earlier time; green later.
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5.3.2 Image Analysis Method

Fig. 5.9 shows the image processing procedure of the STS images using a

center-of-mass method. First the image is processed by background subtraction and

Fourier filtering. The Fourier filtering was usually done by setting a high pass and

a low pass Butterworth filter interactively for a particular image. Then the filter is

applied to the whole series. Afterwards the image is inverted to show the vortices

as bright buttons. Later, a single threshold height is used to create a binary image

in which the vortex areas are coded as 1 (shown white in the image). This image is

used to identify each vortex and its occupied area. The center of the vortex is then

calculated as the weighted sum of the coordinates (i.e. center of mass, mass being

the height) in the inverted image over the vortex area. The recording time of the

vortex can be derived from the position of the center and the scan speed. At last, a

vortex lattice is constructed within frame with coordinates (xi, yi, ti) (every vortex

recorded has its index number i).

Another method to find the center of the imaged vortices is similar to the

one we used in Chapter 4. After appropriate Fourier filtering, we take the highest

point in the vortex disk as the center. The comparison of the data shows the two

methods give almost identical results for the vortices that are normally shaped in

the image. For the vortices that are connected to an impurity or split in the image

because a jump of speed happened during the scan, this new method provides better

information than the previous one.

With the vortex lattice information of each frame, the track of motion of each
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vortex is revealed by identifying the vortex in the current frame closest to the ith

vortex in the previous frame. Each track contains the time series information of

(x(t), y(t)) of a particular vortex from moving into till out of the field of view.

These tracks and lattices are the acquired data for further analysis. The study of

the statics and dynamics of the vortex lattice will be based on the information we

extracted after analyzing them. In Sec. 5.4.1 and Sec. 5.4.2 I will discuss these

studies respectively. In each section, I will include the study on the pure sample

without introduced pinning centers and the study of the vortex matter around the

pinning centers.
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Figure 5.9: Image Analysis Method. STS images are processed through different image processing techniques. The center
positions and capturing time of each vortex on every frame are recorded for final analysis.
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5.4 Results

5.4.1 Statics

To calculate the displacement field within each frame, we first construct a

perfect triangular lattice using the averaged lattice parameters, i.e. the angle and

the lattice constant which can determine a primitive vector. The original lattice

from the raw data contains distortions from two main sources. One is the natural

displacement field caused by pinning centers in the sample and the other is the

hysteresis of the STM scanner. The first distortion is mainly local and the second

one is global. In order to remove the global distortions, we fit the original lattice

to the perfect one by mean-square minimization of a polynomial transformation.

Usually a second order transformation is good enough. The displacement at each

point on the perfect lattice is then calculated by subtracting the perfect coordinates

from the transformed coordinates of the original lattice using the parameters from

the fit. The displacement field is finally resolved as u(r0
i ), r0

i is the position of the

perfect lattice point. There is a third source of distortion that is worth mentioning

here: the distortion result from vortex motion during the scan. We assume in this

case the motion is uniform or at a very low frequency. The distortion is then global

and can be removed by the transformation. After comparing the result with the

data when the field is held constant, we conclude that this type of distortion is

small because the speed is very low and at a low frequency as can be seen from the

dynamic results (see Sec. 5.4.2).

We treat the vortices appearing within one frame of the movie, which actually

110



are acquired at different times, as captured in a snapshot like the images in a Bitter

decoration experiment or a Lorentz imaging experiment [53]. This approximation is

only possible because of the slow motion. Averages over displacement configurations

in different frames are taken as a thermal average in the theory. This way we can

overcome the limited size of the field of view and the number of vortices to take

a statistical average. I also want to mention here that by holding the field and

stopping the motion of vortices, we can acquire a snapshot of the static lattice. But

this has limitations in the vortex number per image or the time of the experiment if

we take multiple snapshots by turning on and off the decaying of the field. Future

STMs with larger field-of-views and higher scan speeds maybe overcome this and

image large number of vortices within one frame.
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(a)

(b)

100 nm

Figure 5.10: Impurity and Vortices. Topography image (a) shows the center
impurity and a flat surface. Tunneling parameters V = 100 mV, I = 0.1 nA, T =
4.2 K. Magnetic field B = 0.75 T. (b) is one of the STS images with vortices to be
processed. The impurity now is shown as a dark disk at the center surrounded by
four vortices. Tunneling parameters V = 3 mV, I = 0.1 nA, T = 4.2 K. Magnetic
field B = 0.75 T.
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The sample we use for this study is a 2H-NbSe2 crystal doped slightly with

Fe (impurity concentration 200 ppm). As shown in Fig. 5.10 the images were taken

around a Fe atom cluster with a diameter ∼ 20 nm (50 nm in the long direction).

The sample is zero field cooled (ZFC). A 0.75 T magnetic field was initially applied

then allowed to decay. The average number of vortices per frame is ∼ 87. 496 frames

in total are recorded for the analysis. When processing the images, we subtracted

the area close to the impurity with the averaged image to remove the contribution

from the impurity to the DOS difference. After inverting and filtering, the centers

of the vortices on each frame are measured. Fig. 5.11(a) shows the processed image

and the raw data of the lattice structure. Using these data, I then removed the

distortion due to the STM and calculated the perfect lattice and the displacement

field. Part of the final image and lattice structure are shown in Fig. 5.11(b).
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Figure 5.11: Processed Images. Processed image with the centers plotted as a
lattice in (a). (b) shows part of the image with the global distortion removed. The
perfect lattice is plotted with lattice points connected and the real lattice points
are plotted as crosses to show the distortion. Both images are transformed from
gray scale images. Red color means higher values in the inverted STS image; green
means lower.
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Finally the displacement correlator B(r) and translational correlation function

Ck(r) are calculated and plotted in Fig. 5.12. The value B(r) is much smaller than

ξ2 (ξ2/a2
0 ≈ 0.04). According to the theory, this belongs to the Larkin regime. Our

data show an initial increase until r = 2a0 then an almost flat region from 2a0 to

5a0. After r = 5a0 the growth of B(r) becomes linearly increasing which agrees with

the theoretical result of Eq. 5.10. In Fig. 5.12(a) a linear fit (red) from 5a0 to 12a0

shows

B(r)/a2
0 = 0.00024r/a0 + 0.0025. (5.20)

According to Eq. 5.10, Bthermal = 0.0025a2
0 and ∆/c2 = 0.00024a0. Extrap-

olation indicates a Larkin length Rc ≈ 78a0 ≈ 4.7 µm. The critical current can

be estimated as jc = cFc/B ≈ 1.2 × 106 A/m2 [2]. These results are consistent

with the measurements from other experiments [74, 75]. The thermal part can also

be compared with the theoretical estimation ((4.85) in [2] and [76]) which gives

Bthermal = 0.00004a2
0. Our result is much larger, I believe this indicates other types

of uncorrelated noise are included such as the error from detecting the center by

the algorithm. As I mentioned before, the short range correlation with r < 5a0

doesn’t follow this formula in the plot. I believe this is because we are measuring

the function around the impurity. The large distortions from the vortices close to

the impurity contribute more to the short range values compared to a region with

no impurity. Further studies from regions away from impurities would be desirable

to verify this argument. After 12a0 most of the contributions to B(r) comes from

115



the vortices at the edges of the image and the error becomes intolerable. There are

two reasons for the volatile behavior: first vortices at edges may be only partially

recorded by our STM and the center coordinate values can be affected by the Fourier

filtering; second, the number of vortices taking part in the average drops sharply

when r is almost the image size. Thus increasing the size of the field of view is cru-

cial for this technique to observe the growth of B(r) at longer range. Nevertheless,

our data show linear growth at r > 5a0 which is promising for further measurements

using improved setup.

Another interesting result is the translational correlation function Ck(r). As

shown in Fig. 5.12(b) it fits well with the Gaussian approximation but with a new

factor CG(r) ∼ e−G2B(r)/2.5 instead of e−G2B(r)/2. The Gaussian approximation in

theory is a convenient choice for the calculation. There is no theory currently

available to explain this factor. I hope further experiments can give us more insights

in the future.
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Figure 5.12: Static Results. (a) shows the relative displacement correlation func-
tion B(r). The red line shows the fitting of the linear section from 5a0 to 12a0

(Eq. 5.20). (b) shows the positional correlation function CG(r) (Eq. 5.5). The red
line plots the Gaussian approximation result e−G2B(r)/2.5.
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5.4.2 Dynamics

As mentioned in Sec. 5.2, slow dynamic behavior of the vortex lattice is much

less well studied in this slow motion regime. In this section, I will use data from

the pristine sample without introduced impurities. I chose this because we have the

longest observation time on this sample and the motion is extremely slow.

Fig. 5.13 (a) shows the first image of the movie series. The gray scale image

is Fourier filtered. On top of it, the tracks of four vortices (x(t), y(t)) are displayed

as examples with a color code representing time. In this run, the sample is zero

field cooled (ZFC) and the magnetic field was then raised to 0.5 T. The data was

taken 10 days after the initial increase so the magnetic relaxation was complete

(the relaxation time constant was shown to be ∼ 5 min for NbSe2 in [72]). The

total time for this continuous acquisition is 6 days 17 hours 35 minutes and 40

seconds. It contains 2560 frames. This is so far the longest one we have tried. The

average number of vortices per frame is 39. The averaged lattice constance is 68.3

nm while the calculation shows a =
√

2Φ0/
√

3B = 68 nm. After image analysis, the

velocities are extracted from the track information by (vx(t), vy(t)) = (∆x(t)
∆t

, ∆y(t)
∆t

).

The arithmetic average speed of all the vortices at all times is 2.28 pm/s. Thus the

induced electric field E = vB = 1.14 × 10−12 V m−1. This is 8 orders of magnitude

smaller than the commonly used voltage criterion defining the critical current density

jc. I believe this very slow speed obviously puts the motion in the flux creep region.

To the best of our knowledge, this is the slowest motion ever measured or imaged.

The closest previous record was the work by Troyanovski et. al. [49] where the speed
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was ∼ 1 nm/s. However, there was no explanation of the source of motion in their

paper. Since they started imaging only 20 min after the field change, it is highly

possible it was still in the relaxation regime of the field. The total recording time

was only 30 min. It is therefore unlikely to capture the feature of creep motion. Our

data contain much richer information about the creep regime in the moving glass

system.

The data in this section has also been reported by my colleague Jonghee Lee

in his Ph.D. thesis [16]. Here I present my analysis based on Bragg glass theory and

collective creep model.
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Figure 5.13: Tracks of Vortices. (a) shows the tracks of 4 vortices on the back-
ground gray-scaled image of the first frame in the series. (b) complies all the tracks
together with a color code of time. The time begins at red and ends at green from
day 1 to day 7 as indicated by the color bar in (a) and (b).
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Figure 5.14: Tracks Color-coded with Velocity. (a) shows the track of all the
vortices with a color code of velocity. The lower end of the velocity is coded green
and the higher end red. In (b) the positions where vortices spend more time are
circled. (c) shows the distribution of all the velocities. The red curve is the fitting
result f = avc−1e−bvc

with a = 0.165, b = 17.73, c = 1.91. Here f is the probability
density and v is the absolute value of velocity (see Eq. 5.21 and the text below).
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In Fig. 5.14(a) all the tracks of the vortices are compiled together with a color

code of time to illustrate the whole creep process. These tracks provided unique

characteristics of the nature of a creeping Bragg glass phase as we described in

Sec. 5.2. First, we notice that the vortices move collectively and the order is pre-

served. In this case the assumption (I) of the collective pinning theory is confirmed.

Second, the vortices do not always move along one direction as suggested by the

TAFF model. The random meandering along the route is obvious. Third, there

are certain points the vortices are more likely to visit and stay longer, as shown

by the circles in Fig. 5.14(b). Those can be explained as the configuration points

with deeper potential well (or “major minima” versus “minor minima” as in [71])

in the energy landscape. This is consistent with the picture of the creep motion

in which the potential U is not uniform but varies from configuration to configu-

ration. Fourth, unlike the moving glass at high velocity [55], the vortices do not

follow each other exactly along the same channel. Since the average velocity remains

almost constant as shown in the speed vs time plot in Fig. 5.15, and the driving

force should be very small to have such a small response, it is reasonable to assume

that the driving force can be considered constant throughout the process. Thus the

velocity distribution in Eq. 5.18 for a constant force can be applied here.

Fig. 5.14(c) shows the distribution of velocities of all the vortices and the

fitting (red) function f = avc−1
s e−bvc

s with vs = v × 1011 in the plot. I obtained

parameters: a = 0.165, b = 17.73, c = 1.91. If we assume that the displacement of

each motion is constant or the variations are small, by an Arrhenius law we have

v = v0e
−βU . A simple extension of the 1D vortex string result of Eq. 5.18 to our
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case reads,

f(v) =
1

βUc

R

Rc

1

v0

(

v

v0

)
1

βUc
−1

exp

(

− R

Rc

(

v

v0

)
1

βUc

)

. (5.21)

Here R is the bundle size, Rc is the Larkin length which is the size of the smallest

bundle movable by the force. In the theory [70], Uc is the minimum energy barrier

between neighboring metastable positions of a pinned bundle with a Larkin length

Rc. Our fitting of parameter c gives a characteristic energy Uc = 0.52kBT (T =

4.2 K). However, the parameter b/a indicates Uc = 107.5kBT (∼ 430 K). Typical

experimental values for Uc are of the order of 102 to 103 K (p1151 in [2], [77]). In

[49] using the collective creep model, a Uc ∼ 48 K was deduced for NbSe2.

The conflicting results shows the distribution model can not fully explain our

data. Models for 2D bundle motion are required to explicitly examine the slow creep

motion we observed. The extension from the 1D to 2D motion is nontrivial as noted

in [70]. The scaling procedure to reproduce the mean velocity formula of the collec-

tive creep model will be different and hence the interpretation of the characteristic

energy Uc. I hope further theoretical studies can clarify this issue. Nevertheless, I

believe that this result shows that fine structure of the energy landscape does exist

in this system and is inconsistent with the picture of uniform potential wells from

TAFF theory.

On the other hand, our result showed the Weibull-type distribution of the

velocity, if integrated over size R as in [70], will result in an exponential form of the

global distribution density of U . It is this exponential distribution that leads to the

nonlinear characteristics in the collective creep model. To the best of my knowledge
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our experiment is the first microscopic measurement of the distribution of the creep

motion of a single bundle.

Other than the statistical properties, the velocity field also reveals the spatial

distribution of the energy landscape. Although the motion has certain randomness,

the energy landscape itself is rather ordered as can be seen from the track com-

pilation using a color code of speed. Since the speed is monotonically related to

the potential height, this plot actually shows the energy landscape U(r, t) that is

probed by the creep motion process. Note that (r,t) here denote a configuration that

is detected at time t with one vortex at r. U is definitely a function of magnetic

field B and current j as posited in the collective creep model. Time t here can be

viewed as parameterized by these two quantities t(B, j). If we assume that these two

quantities do not vary enough to have an observable consequence on U , then the

plot can be viewed as the spatial distribution of the landscape with an exponential

scale since v ∝ eβU . Certain features are noticeable in this plot. The periodicity of

the distribution coincides with the periodicity of the lattice. This is quite apparent

since the elastic and disorder energy would not change if the vortex bundle move to

a symmetric position. Also, this is assumed in the TAFF and the collective creep

theory. Unlike in the TAFF model, we did not observe the washboard frequency

which is fw = 〈v〉 /a0 as in [49]. The reason is that even the landscape has a spatial

modulation a0, and the transition from one major minimum to another is rather

random in the very slow creep region. Therefore, the time of the transition de-

pends on the random path instead of a constant tw which would contribute to a

peak fw = 1/tw in the Fourier transform of the longitudinal velocity vs. time plot
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in Fig. 5.15. The physical picture of creep is far from the tilted washboard model

in TAFF because the rich 2D energy landscape with many metastable states give

rise to the random hopping through the available states much like a water droplet

moving down a slightly tilted surface. These metastable states and the creep motion

are signatures of the Bragg glass system.
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Figure 5.15: Velocities. Velocities parallel and perpendicular to the moving di-
rection are plotted as a function of time in (a) and frequency in (b). No prominent
peak found in (b) at the washboard frequency fw = 〈v〉 /a0 = 2.28 (pm/s)/68.3
(nm) ∼ 0.03 mHz. The insert in (b) shows the data around 0.03 mHz.
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In conclusion, we directly imaged the creep motion of the Bragg glass by

LTSTM. The results confirmed the collective creep picture with an energy landscape

by direct evidence for the first time. Our data also revealed features of the energy

landscape in detail, providing a new incentive and input for theoretical modeling to

go beyond the v−f characteristics and study the nature of the moving glass system.

5.4.3 Imaging the Interaction with Disorder

In the theoretical modeling, the quenched disorder in the Bragg glass is simpli-

fied as point impurities with Gaussian correlations. This mathematical convenience

does not cost much in determining the general properties of the vortex system as

the models could predict much of the behavior of the statics and dynamics. How-

ever, the disorder and the details of the interaction cannot be ignored. For example,

one has to refer to strong pinning theory to address the problem with extended or

correlated disorder such as twin boundaries [2].

As a powerful microscopic instrument, STM is an undisputable choice to look

into the details of the interaction. This is based on the advantage of the LTSTM sys-

tem which uniquely images the core of the vortex and thus has a much higher spatial

resolution than other probes. Its strength was first demonstrated by Troyanovski

et al. [49] on the plastic motion of the vortex with strong pinning centers. Here I

show some of the work we have carried out on the direct imaging of interaction of

a moving vortex system with a variety of local impurities.

The first impurity is the Fe atom clusters as we discussed in Sec. 5.4.1. Fig. 5.16
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shows 4 of the consecutive frames of the movie. As pointed out by the short arrow,

one of the vortices was as if pulling away from the impurity at the center of the

image while the majority of them remain in position relative to the impurity and

the structural defect indicated by the long arrows. Also noticeable is that the

vortices along the line of the structural defect are distorted toward it.

The second impurity is the pit we created in Ch. 4. The interaction of the

vortex system with this impurity is illustrated in Fig. 5.17. The 4 consecutive images

are Fourier filtered and inverted so the vortices are now displayed as white disks.

The arrow at the top points out the interface of a sliding plane. The slip happened

at (c) along the lattice axes. It is interesting to notice that the bundle at the upper

right corner slid as a whole. This is consistent with the moving glass theory in which

vortex system moves bundle by bundle [55]. To the best of our knowledge this is

the first time the abrupt sliding interface has been directly imaged.

The third type of defect is the extended structural defects such as folding

layers or twin boundaries we found on the surface that can induce more distortion

in the lattice structure than the two weak pinning centers I mentioned above. In

Fig. 5.18 (a) the topographic image shows structural defects all across the field of

view. Fig. 5.18 (b) to (c) are 3 consecutive frames of the movie showing the vortices

moving across the area. The yellow arrow points to an area where the distortion is

developing in frame (c).
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(a) (b)

(c) (d)

Figure 5.16: Interaction With Impurity (I). (a)-(d) are four consecutive frames
from a movie series of vortex motion around an Fe impurity at the center. Arrows
points to a moving vortex close to the impurity and the stationary vortices. Image
size 500 nm × 500 nm.
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(a) (b)

(c) (d)

Figure 5.17: Interaction With Impurity (II). (a)-(d) are four consecutive
frames from a movie series of vortex motion around a structure defect at the center.
Arrows points to a sliding surface. Image size 400 nm × 400 nm.
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(a) (b)

(c) (d)

Figure 5.18: Interaction With Impurity (III). (a) shows the topography image
of the area. (b)-(d) are 3 consecutive frames from a movie series of vortex motion
around extended defects on the surface. Arrows point to an area where the distortion
is developing. Image size 500 nm × 500 nm.
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As illustrated above, the interaction between the vortex system and the dis-

order can be directly imaged in detail with great precision. For studies of the

microscopic theory about vortex interactions with the landscape, including defects,

this technique provides a unique chance to directly visualize the force field and the

potential profile. Also it is useful in checking some of the assumptions in the elastic

model as I discussed in Sec. 5.2. Here I leave the further discussion of this work to

later publications.

5.5 Conclusion and Future Work

In this Chapter I demonstrated the use of LTSTM as a new weapon to attack

the problems in the vortex system. It has many advantages over other probes in

resolution and applicable magnetic field strength. The primary limitation is the

field of view in our current system. The study of the statics and dynamics of the

vortex matter in the low-Tc, type II superconductor NbSe2 provides for the first

time direct evidence of the Bragg glass phase in the creep motion mode. Our most

important result is the revelation of the energy landscape of the dynamic creep phase

of the moving glass. The evidence strongly supports a collective creep picture with

a Weibull-type distribution of the potential heights in the landscape for a single

bundle. Also the spatial distribution of the landscape is directly mapped out in the

field of view. Further application of this technique includes a study of the interaction

microscopically which will benefit more detailed modeling about the interaction and

the macroscopic model.
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There are many extension of the current work possible. One of the most

interesting measurements would be to visualize the melting of the Bragg glass phase

to the disordered solid through the peak effect line Hp(T ) in the phase space. Also

the creep motion in the disordered phase could be compared with the current study.

Both of these require a higher magnetic field than we can currently provide. So

further improvement of the instrument in the applicable field strength is crucial to

advance our studies in these areas. The future design of the STM system should

be geared toward continuously enlarging the field of view and increasing the scan

speed to improve both the static and dynamic measurements.

Another important challenge is to establish controllable driving sources from

magnetic fields or applied currents. A direct measurement of the field profile in

the current setup would make possible the calculation of the current distribution in

the sample. To meet these challenges an extension or partial modification of our

LTSTM system is required. On the other hand, a rather straightforward extension

of our work would be to study the Bragg glass phase in HTSC samples.
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