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We study the asymptotic properties of the logrank and stratified logrank tests

under different types of assumptions regarding the dependence of the censoring and

the survival times.

When the treatment group and the covariates are conditionally independent

given that the subject is still at risk, the logrank statistic is asymptotically stan-

dard normally distributed under the null hypothesis of no treatment effect. Under

this assumption, the stratified logrank statistic has asymptotic properties similar to

logrank statistic.

However, if the assumption of conditional independence of the treatment and

covariates given the at risk indicator fails, then the logrank test statistic is generally

biased and the bias generally increases in proportional to the square root of the

sample size. We provide general formulas for the asymptotic bias and variance.

We also establish a contiguous alternative theory regarding small violations of the

assumption as well as of the usually considered small differences between treatment



and control group survival hazards.

We discuss and extend an available bias-correction method of DiRienzo and

Lagakos (2001a), especially with respect to the practical use of this method with

unknown and estimated distribution function for censoring given treatment group

and covariates. We obtain the correct asymptotic distribution of the bias-corrected

test statistic when stratumwise Kaplan-Meier estimators of the conditional censoring

distribution are substituted into it. Within this framework, we prove the asymptotic

unbiasedness of the corrected test and find a consistent variance estimator.

Major theoretical results and motivations of future studies are confirmed by a

series of simulation studies.
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Chapter 1

Background and Preliminaries

1.1 Background

Randomized clinical trials generally use hypothesis testing to compare the

survival experience of two groups of individuals. The logrank statistic is the most

popular statistic used in these tests. A great deal of work has been done on the

properties of the log rank test of no treatment effect for two sample right-censored

survival data (Mantel, 1966; Cox, 1972; Peto and Peto, 1972; Green and Byar, 1978;

Schoenfeld, 1981; Morgan, 1986; Schoenfeld and Tsiatis, 1987).

The logrank test statistic, as defined in Section 1.3, compares the Nelson-Aalen

estimator (Nelson, 1972; Aalen, 1978) of hazard functions from two groups at each

observed event time. The statistic combines the observed minus expected numbers

of events in the treatment group at each observed event time, across all event time

points for an overall comparison. Generally there is no need for parametric model

assumptions because the log rank test is a nonparametric test procedure. But un-

der some special model assumptions, the log rank test may have particularly good

properties. For example, the logrank test, with independent death and censoring, is

locally most powerful among the family of rank tests under the proportional hazard

model (Peto and Peto, 1972).

The logrank test has very different properties under various types of censoring
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assumptions regarding the dependence of the censoring, covariates and the survival

times. First and foremost, to use the classsical logrank test one must assume non-

informative censoring because informative censoring may result in a non-identifiable

distribution of the time to event (Tsiatis 1975, Slud and Rubinstein 1983). Though

the non-informative censoring assumption (See 3.1 of Chapter 1 in Fleming and

Harrington, 1991) is slightly weaker, that is, less restrictive, than the assumption

of statistical independence of the survival and censoring, the independent censoring

assumption is often imposed. Censoring may depend on survival through some

covariates or the treatment group. It is not rare that one group in a clinical trial

may have higher dropout rate than the other, or that patients with some specified

covariate patterns are more likely to drop out than others. In this thesis, we make the

assumption of conditional independence given the treatment group, or the covariates,

or both. With this assumption the logrank test may still have good properties. For

example, if the censoring time is conditionally independent of the survival time

given the treatment group, the logrank test statistic is asymptotically normal with

mean zero under the null hypothesis and is consistent against the stochastic ordering

alternative (Gill, 1980).

If the distribution of the censoring time depends on both the treatment group

and the covariates, then according to Dirienzo and Lagakos (2001a), the null asymp-

totic distribution of the score test is generally not centered at zero when the model is

misspecified. As they concluded, the logrank test is generally biased under this kind

of dependent censoring. However, the null asymptotic distribution of the logrank

test will still be a standard normal as long as the following dependent censoring
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assumption holds: “Under the null hypothesis, the treatment group is conditionally

independent of the covariates given that the subject is still at risk.” This assumption

was first introduced in Kong and Slud (1997) for the purpose of finding a robust

variance estimator. We refer to it as the Kong-Slud Assumption in this thesis.

Though the Kong-Slud Assumption is not fully general, it is reasonable in

many situations. For example, it holds when the censoring depends on both the

treatment group and the covariates as long as there is no treatment-by-covariates

interaction in the conditional distribution function of the censoring time. Kong

and Slud (1997) proposed a general scenario in which their Assumption holds, in

which a clinical study has purely administrative censoring that occurs at a fixed

calendar time, but patients enter the study at earlier staggered random times that

may depend upon their covariates. Suppose further that patients may decide to

withdraw from the study for reasons not depending on medical covariates, which

may be related to side effects of the therapy. Withdrawals due to side effects are

dependent on treatment-group, but as long as the side-effects are not materially

dependent upon the covariates, the Kong-Slud Assumption holds approximately.

When the Kong-Slud Assumption does not hold, the log rank test is generally

biased and the size of the test will be inflated regardless of whether the bias is

positive or negative. Moreover, simply increasing the sample size would not reduce

the bias. On the contrary, it would generally increase in the proportional to the

square root of the sample size. Hence ignoring the potential bias may have serious

consequences for the validity of clinical trials.

The main purpose of this thesis is to study the asymptotic validity of the
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logrank test when Kong-Slud Assumption holds and the bias corrections for the

logrank test when this Assumption does not hold.

1.2 Overview of thesis

In Chapter 2, we study the properties of the logrank test under various as-

sumptions about dependent censoring. The chapter starts with a short review of the

large sample null distribution and consistency under the assumption that the cen-

soring is conditionally independent of the survival given the treatment group. Our

contributions in this chapter are: (1) identifying the potential bias and providing

general formulas for the bias and variance of the logrank statistic under the assump-

tion that the censoring depends on both the treatment group and the covariates; (2)

proving that under the Kong-Slud assumption, the large sample null distribution of

the logrank statistic is standard normal, asymptotically.

In Chapter 3, we study the properties of the stratified logrank test under var-

ious assumptions of dependent censoring. The contributions are, primarily, show-

ing that the class of W -stratified logrank statistics (defined in Section 1.3.6) have

asymptotic standard normal distributions under the Kong-Slud Assumption and are

generally biased when the assumption does not hold. We also show that under the

Kong-Slud Assumption, the variance estimators for the logrank statistic and the

W -stratified logrank statistic are asymptotically equivalent.

In Chapter 4, we establish a contiguous alternative theory regarding small

violations of the Kong-Slud Assumption as well as of the usually considered small
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differences between treatment and control group survival hazards. This theory en-

ables us to calculate the asymptotic distribution, with small violations of the Kong-

Slud Assumption, of the logrank statistic under contiguous alternatives to models

satisfying to the Kong-Slud Assumption.

In Chapter 5, we discuss and extend a bias correction method proposed by

DiRienzo and Lagakos (2001a), especially with respect to the practical use of this

method with unknown and estimated distribution function for censoring given treat-

ment group and covariates. We contribute by obtaining the correct asymptotic

distribution of the corrected test statistic when stratumwise Kaplan-Meier estima-

tors of conditional censoring distribution are substituted. Within this framework,

we prove the asymptotic unbiasedness of the corrected test and find a consistent

variance estimator.

In Chapter 6, we provide simulation studies confirming and illustrating the

theoretical results of the previous chapters.

In Chapter 7, we summarize our results with a comprehensive discussion on

bias corrections and future research problems.

Appendix A contains many lemmas and proofs cited earlier in this thesis.

1.3 Definitions and Assumptions

1.3.1 General Setting

Assume n patients are randomly assigned to two different treatment groups.

The ith patient has latent survival time Ti and censoring time Ci.
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Define

Xi ≡ Ti ∧ Ci ; δi ≡ I[Ti≤Ci],

the counting process

Ni(t) ≡ δiI[Xi≤t]

and the at risk indicator

Yi(t) ≡ I[Xi≥t].

Assume (Xi, δi, Zi, Vi), for i = 1, 2, . . . , n, are iid realizations of (X, δ, Z, V ), where

Z is the treatment group indicator that only takes values of 0 and 1 and V is a

q-dimensional vector of covariates.

The conditional hazard function of survival time T of a patient given treatment

group Z and covariate V is generally denoted as

λ(t | z, v) = λ(t, θz, v) (1.1)

where θ is an unknown scalar parameter and the null hypothesis of no treatment

effect will be H0 : θ = 0. At many places in this thesis we use the notation λ(t, 0, v)

or λ(t, v) for the conditional hazard function of T given V = v and use Λ(t, 0, v) or

Λ(t, v) for the conditional cumulative hazard function for the survival time under

H0. Further regularity assumptions on λ(·) will be imposed later.

Denote the conditional survival function for a patient, given treatment Z and

covariate V , as

S(t, Z, V ) = Pr{T ≥ t | Z, V }
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and the conditional survival function based on censoring for this patient as

SC(t, Z, V ) = Pr{C ≥ t | Z, V }.

The survival function of T under the null hypothesis H0 : θ = 0 is S(t, 0, V )

and in some places of this thesis, S(t, V ).

Define the history Ft generated by the observable data as

Ft = σ(Ni(s), Yi(s), Zi, Vi; 0 ≤ s ≤ t, i = 1, 2, . . . ) (1.2)

By the Doob-Meyer decomposition theorem (Section II.3 of Anderson et. al. 1992),

for each i,

Mi(t) = Ni(t)−
∫ t

0

Yi(s)λ(s, 0, Vi)ds

is an Ft martingale under H0. From Section II.3.2 and II.4.1 of Andersen et al

(1992), the predictable variation process 〈Mi〉 of Mi satisfies:

1. M2
i − 〈Mi〉 is an Ft martingale equals zero at time zero;

2. 〈Mi〉(t) =
∫ t

0
Yi(s)λ(s, 0, Vi)ds.

1.3.2 Assumptions

In this section we list all assumptions that will be used in later chapters. Note

that these assumptions are used in different combinations in different places.

Assumption 1.1 The treatment group indicator Z and the prognostic covariates V

are independent: Z ⊥⊥ V .
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The unconditional independence of treatment and covariates in Assumption 1.1 is

assumed throughout this thesis.

Assumption 1.2 (Noninformative Censoring I) The survival time T is condition-

ally independent of the censoring time C given the treatment group indicator Z only,

that is: T ⊥⊥ C
∣∣ Z.

Assumption 1.3 (Noninformative Censoring II) The survival time T is condi-

tionally independent of the censoring time C given the treatment group indicator Z

and the covariates V , that is: T ⊥⊥ C
∣∣ (Z, V ).

Assumption 1.3 is the same dependence assumption used in the Cox model.

At various places in this thesis, we may assume either Assumption 1.2 or Assump-

tion 1.3 but not both of them at the same time.

Assumption 1.4 (Kong-Slud I) Under the null hypothesis H0 : λ(t | 1, v) =

λ(t | 0, v), the treatment group indicator Z is conditionally independent of the co-

variates V given that the subject is still at risk:

E0[Z | Y (t) = 1, V ] = E0{Z | Y (t) = 1} ≡ µ(t).

Assumption 1.4 was first introduced by Kong and Slud (1997) and is an important

assumption in this thesis.
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Assumption 1.5 (Kong-Slud II) The survival function of the censoring time C

satisfies

− log SC(t, Z, V ) = a(t, Z) + b(t, V )

for some positive functions a(·) and b(·).

Assumption 1.5 says that there is no interaction between treatment and covariates

in the conditional cumulative hazard function for censoring given Z and V . It is easy

to show that Assumption 1.5 implies Assumption 1.4 (See Lemma A.2.). Though

a little more restrictive than Assumption 1.4, Assumption 1.5 is employed as the

“Kong-Slud Assumption” in many examples and simulations throughout this paper

due to its easy form in calculation.

Assumption 1.6 (DiRienzo-Lagakos) The censoring time C is either conditionally

independent of the treatment group Z given the covariates V or is conditionally

independent of the covariates V given the treatment group Z:

C ⊥⊥ V | Z or C ⊥⊥ Z | V.

Assumption 1.6 was first introduced by DiRienzo and Lagakos (2001b) and is more

restrictive than the Kong-Slud Assumption. As shown in Lemma A.2, Assumptions

1.4 and 1.5 hold whenever Assumption 1.6 holds.

1.3.3 Tests for Treatment Effectiveness

The null hypothesis of the test for treatment effectiveness is that there is no

effect of the treatment, that is, that there is no difference between the conditional
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survival or hazard functions of the two groups. We define the null hypothesis as

H0 : S(t, 1, V ) = S(t, 0, V )

which is equivalent to the hypothesis that λ(t, 1, V ) = λ(t | 0, V ) for all t. If the

hazard function is parameterized as in (1.1), the null hypothesis can also be written

as

H0 : θ = 0

In this thesis we study properties of the tests for treatment effectiveness under

various choices of alternative hypothesis.

Definition 1.1 The alternative H1 : λ(t, 0, V ) ≥ λ(t, 1, V ) for all t and V is called

the ordered hazards alternative.

Definition 1.2 The alternative H2 : S(t, 1, V ) ≥ S(t, 0, V ) for all t and V is

called the alternative of stochastic ordering.

It is clear that H1 implies H2, since S(t, z, v) = exp{−Λ(t, z, v)} with Λ(t, z, v) ≡
∫ t

0
λ(s, z, v)ds.

Another type of alternative that is of interest in this thesis is related to con-

tiguous sequences of probabilities:

Definition 1.3 Let sequences Pn and Qn be the probability measures under the null

hypothesis H0 and the alternative Hn, respectively. If Pn(An) → 0 implies Qn(An) →

0 for every sequence of measurable sets An, we say that Qn is contiguous with respect

to Pn (Section 6.1, van der Vaart, 1998) and Hn is a contiguous alternative to H0.
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As in Section VIII.1.2 of Anderson et. al. (1992), it is well known that under

suitable regularity conditions, the alternatives

Hn : θ = b/
√

n

are contiguous to H0 : θ = 0. A more general result is proved in Theorem 4.1 of this

thesis.

Finally we define consistency of a test:

Definition 1.4 Let X be a random population, Tn, n = 1, 2, . . . , be a sequence of

test statistics used to test a hypothesis H, and Rn = {X : Tn(X) ≥ cn}, n = 1, 2, . . . ,

be an associated set of level α rejection regions. The sequence Tn is said to be

consistent against a family of alternative hypotheses HA if

lim
n→∞

P (Tn(X) ∈ Rn) = 1

whenever the probability P governing X lies in HA.

1.3.4 Logrank Test Statistic

Define

N̄1(t) =
n∑

i=1

ZiNi(t); N̄(t) =
n∑

i=1

Ni(t); N̄0(t) = N̄(t)− N̄1(t);

Ȳ1(t) =
n∑

i=1

ZiYi(t); Ȳ (t) =
n∑

i=1

Yi(t); Ȳ0(t) = Ȳ (t)− Ȳ1(t).

Then the numerator of the logrank test statistic is defined as

n−
1
2 ÛL ≡ n−

1
2

∫ {
dN̄1(t)− Ȳ1(t)

Ȳ (t)
dN̄(t)

}
(1.3)
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Note that (1.3) can also be written as

n−
1
2

n∑
i=1

ÛL ≡ n−
1
2

∫ {
Zi −

∑n
i=1 ZiYi(t)∑n

i=1 Yi(t)

}
dNi(t). (1.4)

The square of the denominator of the logrank statistic is defined as

V̂L ≡
∫

1

n
· Ȳ1(t)Ȳ0(t)

Ȳ (t)2
dN̄(t). (1.5)

1.3.5 Stratified Logrank Test Statistic

The term “stratified logrank test” will be used to refer to a stratified logrank

test based on only on the complete covariates V , and even then, only when V is

discrete. Here we assume V is discrete with finite values and let V be the set of all

discrete values of V . For any v ∈ V , define

ξv
i ≡ I[Vi=v];

N̄1v(t) =
n∑

i=1

ξv
i ZiNi(t); N̄v(t) =

n∑
i=1

ξv
i Ni(t); N̄0v = N̄v − N̄1v;

Ȳ1v(t) =
n∑

i=1

ξv
i ZiYi(t); Ȳv(t) =

n∑
i=1

ξv
i Yi(t); Ȳ0v = Ȳv − Ȳ1v.

Then the numerator of the stratified logrank test statistic is defined as

n−
1
2 ÛS ≡ n−

1
2

∑
v

∫ {
dN̄1v(t)− Ȳ1v(t)

Ȳv(t)
dN̄v(t)

}
. (1.6)

Note that (1.6) can also be written as

n−
1
2 ÛS ≡ n−

1
2

∑
v

∫ {
Zi −

∑n
i=1 ξv

i ZiYi(t)∑n
i=1 ξv

i Yi(t)

}
· ξv

i dNi(t). (1.7)

The square of the denominator of the stratified logrank statistic is defined as

V̂S ≡
∑

v

∫
1

n
· Ȳ1v(t)Ȳ0v(t)

Ȳv(t)2
dN̄(t). (1.8)

12



1.3.6 W -Stratified Logrank Test Statistic

In this section we define a so-called W -stratified logrank test statistic within

which stratification is on a smaller set of covariates than the full set of covariates

V appearing in Assumptions 1.3 and 1.4. Now let V remain the same as previously

defined: a q-dimensional vector of covariates that may be discrete or continuous.

Let a p-dimensional vector W = h(V ) be discrete with p ≤ q and n(W ) ≤ n(V ),

where n(V ) is defined as the maximum number of levels of V and n(V ) = ∞ if the

support of V is infinite. Let (Vi,Wi), for i = 1, 2, . . . , be iid realizations of (V, W ).

Similar to the definition of the stratified log rank statistics, here we define

ξw
i ≡ I[Wi=w];

N̄1w(t) =
n∑

i=1

ξw
i ZiNi(t); N̄w(t) =

n∑
i=1

ξw
i Ni(t); N̄0w(t) = N̄w(t)− N̄1w(t);

Ȳ1w(t) =
n∑

i=1

ξw
i ZiYi(t); Ȳw(t) =

n∑
i=1

ξw
i Yi(t); Ȳ0w(t) = Ȳw(t)− Ȳ1w(t).

Then the numerator of the W -stratified logrank test statistic is defined as

n−
1
2 ÛW ≡ n−

1
2

∑
w

∫ {
dN̄1w(t)− Ȳ1w(t)

Ȳw(t)
dN̄w(t)

}
. (1.9)

where (1.9) can also be written as

n−
1
2 ÛW ≡ n−

1
2

∑
w

n∑
i=1

∫ {
Zi −

∑n
i=1 ξw

i ZiYi(t)∑n
i=1 ξw

i Yi(t)

}
· ξw

i dNi(t). (1.10)

The square of the denominator of the W -stratified logrank statistic is defined as

V̂W ≡
∑

w

∫
1

n
· Ȳ1w(t)Ȳ0w(t)

Ȳw(t)2
dN̄w(t). (1.11)

13



Chapter 2

Logrank Rank Test with Covariate-mediated Dependent Censoring

In this chapter we study properties of the logrank test under various assump-

tions about dependent censoring. In Section 2.1 we review the classical result that

under Assumptions 1.1 and 1.2, the logrank test with the test statistic defined at

Section 1.3.4 asymptotically achieves the nominal significance level and is consistent

against stochastically ordered alternatives. In Section 2.2 we identify the potential

bias and provide general formulas for the bias and variance of the logrank statistic

under the assumption that the censoring depends on both the treatment group and

the covariates. In Section 2.3, we prove that under the Kong-Slud Assumption,

the large sample null distribution of the logrank statistic is asymptotically standard

normal.

2.1 Large Sample Null Distribution and Consistency

In this section we study the performance of the logrank statistic ÛL/V̂
1
2

L de-

fined in Section 1.3.4 under Assumption 1.1 and 1.2.

Note that when Assumptions 1.2 holds, that is, when the survival time T

is conditionally independent of the censoring C given the treatment group Z, the

14



conditional hazard function of T becomes

λ(t, z, v) = λ(t | z).

Then from Theorems 1.3.1 and 1.3.2 in Fleming and Harrington (1991),

M̄1(t) ≡ N̄1(t)−
∫ t

0

Ȳ1(s)dΛ(s | 1)

and

M̄0(t) ≡ N0(t)−
∫ t

0

Ȳ0(s)dΛ(s | 0)

are both martingales with respect to Ft, where Λ(t | z) ≡ ∫ t

0
λ(s | z)ds.

Hence the numerator n−
1
2 ÛL of the logrank statistic can be written as

∫
n−

1
2
Ȳ0(t)

Ȳ (t)
dM̄1(t)−

∫
n−

1
2
Ȳ1(t)

Ȳ (t)
dM̄0(t) +

∫
n−

1
2
Ȳ1(t)Ȳ0(t)

Ȳ (t)
{dΛ(t|1)− dΛ(t|0)}.

According to Gill (1980), A statistic WK of the “class K” is defined as

WK =

∫ ∞

0

K(s){dΛ̂1(s)− dΛ̂0(s)}

with Λ̂1(t) =
∫ t

0
dN̄1(s)/Ȳ1(s), Λ̂0(t) =

∫ t

0
dN̄0(s)/Ȳ0(s) and a Fs predictable K(s).

Then by Section 3.3 of Fleming and Harrington (1991), the statistic n−
1
2 ÛL is a

statistic of the “class K”. Hence from Section 7.2 of Fleming and Harrington (1991)

and as a result of the Martingale Central Limit Theorem, the logrank statistic

ÛL/V̂
1
2

L , as a statistic of ”class K”, is asymptotically normal with mean 0 and vari-

ance 1 as n →∞.

Furthermore, from Theorems 7.3.1 and 7.3.2 of Fleming and Harrington (1991),

the logrank test based on ÛL/V̂
1
2

L is consistent against the alternative of stochastic

15



ordering HA : ST (t | 1) ≥ ST (t | 0) for all t and with strict inequality for some t,

where ST (t | z) = e−Λ(t | z).

The main result of this section is summarized in the following proposition:

Proposition 2.1 Under Assumptions 1.1 and 1.2, that is, when Z ⊥⊥ V , T ⊥⊥

V and T ⊥⊥ C | Z, the logrank test statistic ÛL/V̂
1
2

L defined in Section 1.3.4 is

asymptotically normal with mean 0 and variance 1 under H0 : λ(t | 1) = λ(t | 2)

for all t and is consistent under the stochastic ordering alternative HA : ST (t | 1) ≥

ST (t | 0) for all t and with strict inequality for some t.

2.2 Biased Logrank Test

Regarding the dependence of the censoring and the survival times, the logrank

test has very different properties under different types of censoring assumptions. If

Assumption 1.2 in Section 2.1 is replaced by Assumption 1.3, that is, T ⊥⊥ C | (Z, V ),

the survival time T is generally dependent on censoring C given Z, and the hazard

function of T depends on the covariate V . It is easy to show that the logrank

statistic is no longer a “class K” test statistic. Hence the logrank statistic may no

longer have the good properties introduced in Section 2.1 such as the asymptotic

standard normal null distribution and consistency with respect to stochastic ordering

alternatives. Actually we find that the logrank statistic is generally biased under

Assumptions 1.1 and 1.3.
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2.2.1 The Bias of the Logrank Statistic

The following lemma gives us the general formula for the bias of n−
1
2 ÛL, the

numerator of the logrank statistic.

Lemma 2.1 Under Assumptions 1.1 and 1.3, that is, Z ⊥⊥ V and T ⊥⊥ C | (Z, V ),

the asymptotic distribution of the numerator of the logrank statistic is no longer

centered at 0 under H0 : θ = 0 and the bias of the statistic n−
1
2 ÛL is

E0{n− 1
2 ÛL} =

√
n

∫
E0{[Z − µ(t)]Y (t)λ(t, 0, V )}dt + o(

√
n),

where µ(t) = E0{Z | Y (t) = 1}.

Proof:

The logrank statistic n−
1
2 ÛL defined in Section 1.3.4 is

1√
n

ÛL =
1√
n

n∑
i=1

∫ [
Zi −

∑
j Yj(t)Zj∑

j Yj(t)

]
dNi(t).

Writing

dNi(t) = {dNi(t)− Yi(t)λ(t, 0, Vi)dt} + Yi(t)λ(t, 0, Vi)dt

in n−
1
2 ÛL we obtain

1√
n

n∑
i=1

∫ [
Zi −

∑
j Yj(t)Zj∑

j Yj(t)

]
dMi(t) +

1√
n

n∑
i=1

∫ [
Zi −

∑
j Yj(t)Zj∑

j Yj(t)

]
Yi(t)λ(t, 0, Vi)dt

where Mi(t) = Ni(t) −
∫ t

0
Yi(s)λ(s, 0, Vi)ds is an Ft martingale. Since each Zi −

∑
j{Yj(t)Zj}/

∑
j Yj(t) is Ft predictable,

∫ [
Zi −

∑
j Yj(t)Zj∑

j Yj(t)

]
dMi(t)
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is also an Ft martingale with mean 0 (Section II.3.3, Andersen et al 1992). Therefore,

E(n−1/2ÛL) =
1√
n

E
n∑

i=1

∫ {
[Zi − µ(t)]−

∑
j[Zj − µ(t)]Yj(t)∑

j Yj(t)

}
λ(t, 0, Vi)Yi(t)dt

(2.1)

By the definition of µ(t) and independence of the data vectors with different indices,

for all j 6= i,

E{Zj − µ(t) | Vi, {Yk(t)}n
k=1} = 0.

Hence

E

{∑
j[Zj − µ(t)]Yj(t)∑

j Yj(t)
λ(t, 0, Vi)Yi(t)

}
= E

{
[Zi − µ(t)]

Yi(t)∑
j Yj(t)

λ(t, 0, Vi)

}
.

Therefore

E(n−1/2ÛL) =
1√
n

E
n∑

i=1

∫
[Zi − µ(t)]

[
1− Yi(t)∑

j Yj(t)

]
λ(t, 0, Vi)Yi(t)dt. (2.2)

Furthermore,

1√
n

E
n∑

i=1

∫
[Zi − µ(t)]

Yi(t)∑
j Yj(t)

λ(t, 0, Vi)Yi(t)dt

=
1√
n

E
n∑

i=1

∫
[Zi − µ(t)]

Yi(t)

1 +
∑

j:j 6=i Yj(t)
λ(t, 0, Vi)Yi(t)dt

=
√

nE

∫
[Z1 − µ(t)]Y1(t)λ(t, 0, V1)E{1/(1 +

n∑
j=2

Yj(t))}dt,

whence

E(n−1/2ÛL) =
√

nE

{∫
[Z − µ(t)]Y (t)λ(t, 0, V )dt

}
+ o(

√
n)

as n →∞. 2
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Define

B ≡ E

{∫
[Z − µ(t)]Y (t)λ(t, 0, V )dt

}
. (2.3)

Lemma 2.1 says that the asymptotic bias of the logrank statistic n−
1
2 ÛL has top-

order term O(
√

nB) when B 6= 0. From the definition of µ(t), B can be written

as

B =

∫
E{ZY (t)λ(t, 0, V )} − E{Z | Y (t)}E{Y (t)λ(t, 0, V )}dt

=

∫
E{Y (t)} ·

[
E

{
Zλ(t, 0, V ) | Y (t) = 1

}

−E{Z | Y (t) = 1}E{λ(t, 0, V ) | Y (t) = 1}
]
dt

=

∫
E{Y (t)} · Cov

{
Z, λ(t, 0, V ) | Y (t) = 1

}
dt. (2.4)

Since (2.4) is generally not 0, unless Z and λ(t, 0, V ) are conditionally uncor-

related given Y (t) = 1 and not dependent on n, the bias of the numerator of the

logrank test statistic is of the order of
√

nB. Hence for a clinical study with the

biased logrank test, simply increasing the sample size will not correct the bias and

may only make the problem worse.

2.2.2 The Variance

In this section we derive a formula for the variance of

n−
1
2 ŨL = n−

1
2

n∑
i

∫
{[Zi − µ(t)]dNi(t)− η(t)dt}

under Assumptions 1.1 and 1.3, where µ(t) = E{ZY (t)}/E{Y (t)} and η(t) =

E{λ(t, 0, V )Y (t)}/E{Y (t)}. As will be shown in Section 2.3.1, if Assumption 1.4
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holds, n−
1
2 ÛL−n−

1
2 ŨL

p→ 0 and n−
1
2 ŨL is an iid sum with mean 0 under H0. Along

with the contiguous alternative theory we prove in Chapter 4, the variance formulae

we provide here can be used to study the asymptotic variance of n−
1
2 ÛL under small

violations of Assumption 1.4.

Define

VL ≡ E0

{∫
[Z − µ(t)]2Y (t)λ(t, 0, V )dt

}
; (2.5)

VC ≡ E0

{∫ ∞

0

∫ t

0

[Z − µ(t)][Z − µ(s)][λ(t, 0, V )− η(t)]Y (t)η(s)dsdt

}
(2.6)

Then the following results holds.

Lemma 2.2 Under Assumptions 1.1 and 1.3, the asymptotic variance VN of n−
1
2 ŨL

under H0 is

VN = VL − 2VC −B2

where VL, VC and B are defined in (2.5),(2.6) and (2.3), respectively.

Proof:

Define

VB = E

{[∫
[Z − µ(t)][dN1(t)− Y1(t)η(t)dt]

]2
}

.

The asymptotic variance of n−
1
2 ÛL is

VN = VB −B2.

In general, for a bounded integrating (signed) measure dσ with atoms and a
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bounded symmetric function g(·, ·),
∫ ∫

g(s, t)dσ(s)dσ(t)

=

∫
g(t, t)σ({t})dσ(t) + 2

∫ ∫ t−
g(s, t)dσ(s)dσ(t)

=
∑

t:σ({t})>0

g(t, t) σ({t})2 + 2

∫ ∫ t−
g(s, t)dσ(s)dσ(t). (2.7)

In calculating the variance VN we define g(s, t) = [Z − µ(t)][Z − µ(s)] and

σ(t) = N(t) − ∫ t

0
Y (s)η(s)ds. The only case where σ({t}) > 0 is σ({t}) = 1, when

T = t and C ≥ t, that is, ∆N(t) = 1.

From (2.7) we can rewrite variance VB as:

VB = E





∑

t:σ({t})>0

g(t, t) σ({t})2 + 2

∫ ∫ t−
g(s, t)dσ(s)dσ(t)





≡ V1 + V2 (2.8)

where

V1 = E

{∫
(Z − µ(t))2dN(t)

}

= E

{∫
[Z − µ(t)]2Y (t)λ(t, 0, V )dt

}

= VL. (2.9)

The second term in VB is

V2 = 2E{
∫ ∫ t−

0

[Z − µ(t)][Z − µ(s)][dN(t)− Y (t)η(t)dt][dN(s)− Y (s)η(s)ds]}

= 2E{
∫ ∫ t−

0

[Z − µ(t)][Z − µ(s)]×
[
dM(t) + Y (t)(λ(t, 0, V )− η(t))dt

]

×[dN(s)− Y (s)η(s)ds]} (2.10)

where M(t) = N(t)− ∫ t

0
Y (s)λ(s, 0, V )ds is an Ft martingale. Since

∫ t−

0

[Z − µ(t)][Z − µ(s)][dN(s)− Y (s)η(s)ds]
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is an Ft predictable process when s < t, we have

E
{∫ ∫ t−

0

[Z − µ(t)][Z − µ(s)][dN(s)− Y (s)η(s)ds]dM(t)
}

= 0.

Hence, from (2.10),

V2 = 2E
{∫ ∫ t−

0

[Z − µ(t)][Z − µ(s)][λ(t, 0, V )− η(t)][dN(s)− Y (s)η(s)ds]Y (t)dt
}

= 2E

{∫
[Z − µ(t)][λ(t, 0, V )− η(t)]E{Y (t)

∫ t−

0

[Z − µ(s)]dN(s) | Z, V }dt

}

−2

∫ ∫ t

0

E
{

[Z − µ(t)][Z − µ(s)][λ(t, 0, V )− η(t)]η(s)Y (t)Y (s)
}

dsdt. (2.11)

By definition, Y (t)
∫ t−

0
[Z − µ(s)]dN(s) = 0 with probability 1; thus the first term

of V2 in (2.11) is 0. When s < t, Y (s)Y (t) = Y (t), so that

V2 = −2

∫ ∫ t

0

E{[Z − µ(t)][Z − µ(s)][λ(t, 0, V )− η(t)]η(s)Y (t)dsdt

= −2VC (2.12)

Thus from (2.8)-(2.12) , we conclude

VN = VL − 2VC −B2

where VL is as in (2.14) and B in (2.3). 2

2.3 Logrank Test under the Kong-Slud Assumption

In this section we study the large sample null distribution of the logrank rank

test under the Kong-Slud Assumption defined in Assumption 1.4.
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2.3.1 Kong-Slud Assumption

The Kong-Slud Assumption, defined in Assumption 1.4, assumes the condi-

tional independence of the treatment group indicator and the covariates under H0

given that the subject is still at risk. As shown in Lemma A.2, Assumption 1.6

implies Assumption 1.5 which implies Assumption 1.4.

From Lemma A.1, under Assumptions 1.1 and 1.3,

E0{Z |V, Y (t) = 1} = E{Z | V, C ≥ t}

and the Kong-Slud Assumption (Assumption 1.4) implies

µ(t) ≡ E0{Z | Y (t) = 1} = E{Z | V, C ≥ t}. (2.13)

Since the law L(Z, V, C) does not change under H0 and HA (for all null and alter-

native hypotheses defined in Section 1.3.3), the conditional expectation on the right

hand side of (2.13) remains the same under both H0 and HA. Hence the Kong-

Slud assumption can also be stated as saying that the conditional expectation of

the treatment group indicator given the covariates and the censoring indicator at t

equals the non-random function µ(t), the conditional expectation of the treatment

group indicator under H0 given that the subject is still at risk.

2.3.2 Large Sample Null Distribution

We derive the asymptotic distribution of the numerator of the logrank statistic

under the null hypothesis.
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Lemma 2.3 When Assumptions 1.1, 1.3 and 1.4 hold, the numerator n−
1
2 ÛL of the

logrank statistic is asymptotically normal distributed with mean 0 and variance VL

under the null hypothesis H0 : θ = 0, where n−
1
2 ÛL and VL are defined in (1.3) and

(2.5), respectively.

Proof.

As a special case of formula (2.6) in Kong and Slud (1997), when Assumptions 1.1,

1.2 and 1.4 hold, the numerator n−
1
2 ÛL of the logrank statistic is asymptotically

equal to an iid sum under H0 : θ = 0,

n−
1
2 ÛL(t) = n−

1
2

n∑
i=1

∫
{Zi − µ(t)}{dNi(t)− Yi(t)E0[λ(t, 0, V ) | Y (t)]

}

+ op(1) (2.14)

The independence of the terms within the sum on the right hand side of (2.14) is

immediate.

Define the filtration

Gt ≡ σ{Ni(s), Yi(s), Zi; 0 ≤ s ≤ t, i = 1, 2, . . . }.

Without covariates Vi being observed, Yi(t)E0{λ(t, 0, Vi) | Yi(t)} is the intensity of

Ni(t) under H0 with respect to the filtration σ{Ni(s), Yi(s); 0 ≤ s ≤ t, i = 1, 2, . . . },

which is a subset of Gt.

When Assumptions 1.1, 1.3 and 1.4 hold, also

E0{λ(t, 0, Vi) | Yi(t)} = E0{λ(t, 0, Vi) | Yi(t), Zi}.

Therefore these expressions are equal to the Gt intensity for Ni(t). Thus the process

Ni(t)−
∫ s

0

Yi(s)E0{λ(s, Vi) | Yi(s)}ds
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is also a Gt martingale.

Since Zi − µ(t) is a Gt predicable process, from Section II.3.3 of Anderson et

al (1992) the process

∫ t

0

[Zi − µ(s)]{dNi(s)− Yi(s)E0[λ(s, 0, Vi) | Yi(s)]ds}

is also a Gt martingale. We denote this martingale as M̃i(t). Thus the numerator

n−
1
2 ÛL is asymptotically an iid sum of martingales with mean 0, from which we can

write the asymptotic variance of n−
1
2 ÛL as

VL = E

{∫
[Z1 − µ(t)][dN1(t)− Y1(t)E0(λ(t, 0, V1) | Y1(t))]

}2

. (2.15)

From Section II.3.2 of Anderson et al (1992), process {M̃2
i − 〈M̃i, M̃i〉}(t) is also a

Gt martingale, where

〈M̃i, M̃i〉(t) =

∫ t

0

[Zi − µ(s)]2Yi(s)E0[λ(s, 0, Vi) | Yi(t)]dt

is the optional variation process of M̃ . By Theorem II.3.1 of Anderson et al (1992),

the asymptotic variance VL in (2.15) can finally be simplified to

VL = E0{
∫

[Z − µ(t)]2Y (t)E0[λ(t, V ) | Y (t), Z]dt}

= E0{
∫

[Z − µ(t)]2Y (t)λ(t, 0, V )dt} (2.16)

which is the same as (2.5).

Finally we know that n−
1
2 ÛL is asymptotically an iid sum with mean 0 and

finite variance VL. By the Central Limit Theorem, the asymptotic distribution of

n−
1
2 ÛL is N(0, VL). 2
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Next we will show that V̂L, the square of the denominator of the logrank statis-

tic, is a consistent estimator of VL.

Lemma 2.4 If Assumptions 1.1, 1.3 and 1.4 hold, then V̂L
p→ VL as n →∞, where

V̂L is defined in (1.5).

Proof. From Section 1.3.1 and (1.2), we know that for each i, the process

Mi(t) = Ni(t)−
∫ t

0

Y (s)λ(s, 0, Vi)dt

is an Ft martingale under H0. Recall that

V̂L ≡
∫

1

n
· Ȳ1(t)Ȳ0(t)

Ȳ (t)2
dN̄(t)

Based on the definition of V̂L we can further define

V̂
[0,K]
L =

∫

[0,K]

1

n
· Ȳ1(t)Ȳ0(t)

Ȳ (t)2
dN̄(t)

and

V̂
(K,∞)
L =

∫

(K,∞)

1

n
· Ȳ1(t)Ȳ0(t)

Ȳ (t)2
dN̄(t).

Evidently V̂L = V̂
[0,K]
L + V̂

(K,∞)
L . On the other hand,

VL =

∫
E0{[Z − µ(t)]2Y (t)λ(t, 0, V )}dt

=

∫
E0{E0{[Z − µ(t)]2 | Y (t) = 1, V }Y (t)λ(t, 0, V )}dt

=

∫
E0{E0{[Z − µ(t)]2 | Y (t) = 1}Y (t)λ(t, 0, V )}dt (by Assumption 1.4)

=

∫
E0{E0{Z2 − 2Zµ(t) + µ2(t) | Y (t) = 1}Y (t)λ(t, 0, V )}dt

=

∫
E0{µ(t)[1− µ(t)]Y (t)λ(t, 0, V )}dt.
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Similarly we can further define

V
[0,K]
L =

∫

[0,K]

E0{µ(t)[1− µ(t)]Y (t)λ(t, 0, V )}dt

and

V
(K,∞)
L =

∫

(K,∞)

E0{µ(t)[1− µ(t)]Y (t)λ(t, 0, V )}dt

with VL = V
[0,K]
L + V

(K,∞)
L .

Since V̂
(K,∞)
L > 0 and sup0≤t<∞

∣∣∣Ȳ1(t)Ȳ0(t)/Ȳ (t)2
∣∣∣ ≤ 1 with probability one ,

we have

E|V̂ (K,∞)
L | ≤ 1

n
E

[
n∑

i=1

∫

(K,∞)

dNi(t)

]

= E

[∫

(K,∞)

dN1(t)

]
.

From (i) of Lemma A.6,

E|V̂ (K,∞)
L | → 0 as K ↑ ∞. (2.17)

Since µ(t)[1− µ(t)] < 1 we can similarly get from (ii) of Lemma A.6 that

E|V (K,∞)
L | → 0 as K ↑ ∞. (2.18)

From Lemma A.3 and the Uniform Law of Large Numbers over a compact set

[0, K],

sup
0≤t<∞

∣∣∣ 1
n

N̄(t)− E{N(t)}
∣∣∣ L2→ 0,

and

sup
0≤t<K

∣∣∣ Ȳ1(t)Ȳ0(t)

Ȳ (t)2
− E{ZY (t)}E{(1− Z)Y (t)}

[E{Y (t)}]2
∣∣∣ L2→ 0.
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Since

E0{N(t)} = E0{
∫ t

0

Y (s)λ(s, 0, V )}

and

E0{ZY (t)}E0{(1− Z)Y (t)}
[E0{Y (t)}]2 = µ(t)[1− µ(t)],

we have

V̂
[0,K]
L

p→ V
[0,K]
L as n →∞. (2.19)

From (2.17), (2.18) and (2.19) we know that for any ε > 0, there exist a real

number K > 0 such that P{|V̂ (K,∞)
L | > ε/3 < ε/3 and P{|V (K,∞)

L | > ε/3} < ε/3; for

each K, there exist an integer N > 0 such that for any n > N , P{|V̂ [0,K]
L −V

[0,K]
L | >

ε/3} < ε/3. Therefore

P{|V̂L − VL| > ε} ≤ P{|V̂ [0,K]
L − V

[0,K]
L |+ |V̂ (0,∞)

L |+ |V (0,∞)
L | > ε}

≤ P{|V̂ [0,K]
L − V

[0,K]
L | > ε

3
}+ P{|V̂ (K,∞)

L | > ε

3
}

+ P{|V (K,∞)
L | > ε

3
}

<
ε

3
+

ε

3
+

ε

3

= ε.

Thus V̂L
p→ VL as n →∞. 2

From Lemmas 2.3 and 2.4 we justify the large sample distribution of the lo-

grank test statistic n−
1
2 ÛL under the null hypotheses of no treatment effect.
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Theorem 2.1 When Assumptions 1.1, 1.2 and the Kong-Slud Assumption I (As-

sumption 1.4) hold, the logrank test statistic n−
1
2 ÛL/V̂

1
2

L is asymptotically distributed

as standard normal under H0 : θ = 0.

Proof. This theorem is a direct result of Lemma 2.3 and 2.4. 2

Although we have shown in previous sections that the logrank test with test

statistic n−
1
2 ÛL/V̂

1
2

L is generally biased under the more general Assumption 1.3 in-

stead of 1.2, the above theorem guarantees a bias-free test once all assumptions,

especially the important Kong-Slud Assumption (Assumption 1.4), can be verified.

The problem of how to verify this assumption is also what we will study in future

research. Since the statistic is asymptotically distributed as standard normal under

H0, the test with rejection region {|n− 1
2 ÛL/V̂

1
2

L | > zα} is an asymptotically correct

size α test, where zα is the standard normal cutoff.

Remark 1

The bias correction “effect” of the Kong-Slud Assumption I (Assumption 1.4)

on the logrank test with statistic n−
1
2 ÛL/V̂

1
2

L can easily be verified here. From

Lemma 2.1 we know that the bias of n−
1
2 ÛL under H0 is:

E0{n− 1
2 ÛL} =

√
nB + o(

√
n)

with

B =

∫
E0{[Z − µ(t)]Y (t)λ(t, 0, V )}dt.
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and from (2.4),
∫

E{Y (t)} · Cov{Z, λ(t, 0, V )}dt.

The Kong-Slud Assumption assumes the conditional independence of Z and V given

Y (t) = 1, hence

Cov{Z, λ(t, 0, V )} = 0.

Thus there is no bias. Hence there is no bias for n−
1
2 ÛL under Assumption 1.4.

Remark 2

DiRienzo and Lagakos (2001b) claim that the logrank test is “asymptotically

valid” when the more restrictive Assumption 1.6 holds. From their context, the term

“asymptotically valid” means that the test with rejection region {|n− 1
2 ÛL/V̂

1
2

L | >

Zα} can achieve the nominal significance level α. The support they give for this

claim is incorrect.

In their Section 3, they claimed that T and C will be unconditionally indepen-

dent under H0 : T ⊥⊥ Z|V when Assumptions 1.3 and 1.6 hold. This claim is wrong

because in this setting only the conditional independence T ⊥⊥ C|V holds, not that

T ⊥⊥ C when C ⊥⊥ Z|V , one of the two possibilities in Assumption 1.6. A quick

counter example is as follows. Let the conditional survival function for T given V

be S(t, v) = e−αvt. Under H0 of no treatment effect, let the survival function for C

be SC(t, v) = e−γvt so C is independent of Z given V . Then Assumption 1.6 holds.

According to the authors’ claim, T and C should be unconditionally independent.

But from this example, They are not. Therefore the claim of the authors that the
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“validity” of the logrank test under condition Assumption 1.6 follows from the un-

conditional independence of T and C is not sufficient. Their assertion about the

“validity” is correct since Assumption 1.6 is more restrictive and naturally implies

Assumption 1.4, under which we proved the the correct asymptotic standard normal

distribution of the logrank statistic.

Remark 3

Though not shown here, the asymptotic null distribution and consistency prop-

erty of the logrank statistic can be extended to weighted logrank tests with nonran-

dom or predictable weights. Although usually not a fully efficient test, the logrank

test will always be a safe choice, regarding the potential bias, as long as Assumption

1.4 holds.
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Chapter 3

Stratified Logrank Tests under Two Types of Stratifications

We will study two types of stratified logrank tests in this chapter. The two

tests differ in the degree of stratification. The first test is the one we defined in (1.6)

and (1.8), where all components of V are discrete with finitely many values and we

stratify on all levels of V . The second test is one applied in cases where not all values

of V can can determine strata, such as (i) only part of V is discrete, (ii) to avoid the

sample size problem in single stratum, extremely fine stratification is not allowed,

(iii) covariate V is completely continuous. As defined in Section 1.3.6, we can stratify

W , a function of V with discrete levels, and denote the stratified logrank test based

on this stratification as the “W-stratified logrank test”. In most of this chapter

we assume only the general Assumptions 1.1 and 1.3. The Kong-Slud Assumption

is used in studying the large sample null distribution of the W -stratified logrank test.

3.1 Stratified Logrank Test with Completely Discrete Covariate

In this section, we study the asymptotic distribution and consistency of the

stratified logrank test defined in (1.6) and (1.8), where V is completely discrete with

finitely many values. Note that the numerator ÛS in (1.6) can be written as a sum
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of martingales:

ÛS(t) =
∑

v

[∫
Ȳ0v(t)

Ȳ·v(t)
dM̄1v(t)−

∫
Ȳ1v(t)

Ȳ·v(t)
dM̄0v(t)

]

=
∑

v

[
n∑

i=1

Ȳ0v(t)

Ȳ·v(t)
· ξv

i dM1i(t)−
n∑

i=1

Ȳ0v(t)

Ȳ·v(t)
· ξv

i dM0i(t)

]

where

M̄kv(t) = N̄kv(t)−
∫ t

0

Ȳkv(s)λT (s, 0, v)ds,

M1i(t) = Ni(t)−
∫ t

0

ZiYi(t)λ(s, 0, Vi)dt,

M0i(t) = Ni(t)−
∫ t

0

(1− Zi)Yi(t)λ(s, 0, Vi)dt,

for k = 1, 2; i = 1, 2, . . . are all locally square integrable martingales under As-

sumptions 1.1 and 1.3. By the martingale central limit theorem, the numerator ÛS

is asymptotically normal with mean 0 under H0.

Since subjects in different strata are independent, the variance of n−
1
2 ÛS can

be calculated as:

VS ≡ 1

n

∑
v

E

{[∫
Ȳ0v(t)

Ȳ·v(t)
dM̄1v(t)−

∫
Ȳ1v(t)

Ȳ·v(t)
dM̄0v(t)

]2
}

=
1

n

{∑
v

E
[ ∫

[
Ȳ0v(t)

Ȳ·v(t)
]2d〈M̄1v, M̄1v〉(t) +

∫
[
Ȳ1v(t)

Ȳ·v(t)
]2d〈M̄0v, M̄0v〉(t)

− 2

∫
Ȳ0v(t)

Ȳ·v(t)
· Ȳ1v(t)

Ȳ·v(t)
d〈M̄1v, M̄0v〉(t)

]}
,

where 〈M̄lv, M̄mv〉 is the compensator of process M̄lvM̄mv for l, m ∈ {0, 1}.

For each V = v, M1v(·) is independent of M0v(·), so d〈M1v,M0v〉(t) = 0 for all

t. Under H0,

d〈M̄1v, M̄1v〉(t) = Ȳ1v(t)λ(t, 0, V )dt,
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d〈M̄0v, M̄0v〉(t) = Ȳ0v(t)λ(t, 0, V )dt.

Then

VS =
1

n

∑
v

E

{∫
Ȳ0v(t)Ȳ1v(t)

Ȳ 2
v (t)

· Ȳv(t)λ(t, 0, v)dt

}
. (3.1)

Hence a consistent estimator for VS will be

V̂S =
1

n

∑
v

∫
Ȳ0v(t)Ȳ1v(t)

Ȳ 2
v (t)

dN̄v(t) (3.2)

which is the squared denominator of the stratified logrank test as defined in (1.8).

Thus the stratified logrank statistic n−
1
2 ÛS/(V̂S)

1
2 is asymptotically standard nor-

mally distributed for large n under H0.

Note that in each stratum V = v, the v terms of the stratified logrank statistic

ÛS can be considered as the logrank statistic discussed in Section 2.1. Thus we know

that the logrank test with statistic n−
1
2 ÛS is consistent against the alternative of

stochastic ordering HA : S(t|1, v) ≤ S(t|1, v), for all t and v.

We summarize in the following proposition to conclude this section:

Proposition 3.1 Assume V is completely discrete and finite valued. If Assumption

1.1 and 1.3 hold, then the stratified logrank test with statistic n−
1
2 ÛS/(V̂S)

1
2 is (i)

asymptotically standard normally distributed under the null hypothesis H0 of no

treatment effect and (ii) consistent against the alternative of stochastic ordering

HA : S(t|1, v) ≤ S(t|1, v) for all t and v. 2
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3.2 The W -Stratified Logrank with the Kong-Slud Assumption

Though the difference in definitions between the W -stratified logrank (see Sec-

tion 1.3.6) and stratified logrank statistic(see Section 1.3.5) is only at the subscript

or superscript of v or w, for patients in a stratum with W = w, the hazard function

becomes E{λ(t, 0, Vi)|Wi = w}, which is not homogeneous across this stratum. Note

in this section, Vi need not be assumed discrete.

Next we derive the large sample null distribution of the W -stratified logrank

test. Define

λ′(t, 0, v) =
∂

∂θ
λ(t, θz, v)

∣∣∣
θ=0,Z=1

and

Λ′(t, 0, V ) =

∫ t

0

λ′(s, 0, V )ds =
∂

∂θ
λ(t, θz, V )

∣∣∣
θ=0,z=1

.

Lemma 3.1 When Assumptions 1.1, 1.3 and 1.4 hold, the numerator of the W -

stratified logrank test with test statistic n−
1
2 ÛW defined in Section 1.3.6 is asymp-

totically normal distributed with mean 0 and variance VW under the null hypothesis

of no treatment effect, where VW = VL and VL is the asymptotic variance of the

numerator n−
1
2 ÛL of the logrank statistic.

Proof.

(i) In the first part of the proof, we derive the null distribution of the numerator of

the logrank statistic under H0.

Under the contiguous alternative Hn : θn = b/
√

n,

Mi(t) = N(t)−
∫ t

0

Yi(s)λ(s,
b√
n

Zi, Vi)ds
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is a locally square integrable martingale, for i = 1, 2, . . . , n. Therefore, for a fixed

stratum W = w, one has

n−
1
2 Û

w,[0,K]
W = n−

1
2 b

∫

[0,K]

ξw
i

{
Zi −

∑n
i=1 ξw

i ZiYi(t)λ(t, n−
1
2 bZi, Vi)∑n

i=1 ξw
i Yi(t)λ(t, n−

1
2 bZi, Vi)

}
dMi(t)

+n−
1
2

∫

[0,K]

{∑n
i=1 ξw

i Yi(t)Ziλ(t, n−
1
2 bZi, Vi)∑n

i=1 ξw
i Yi(t)λ(t, n−

1
2 bZi, Vi)

−
∑n

i=1 ξw
i Yi(t)Zi∑n

i=1 ξw
i Yi(t)

}
dN̄w(t)

≡ A1 + A2 (3.3)

where N̄w(t) ≡ ∑n
i=1 ξw

i ·Ni(t).

Under Assumption 1.4, Z and V are conditionally independent given Y (t) = 1

under H0 : θ = 0. One shows by Law of Large Numbers that for each t

∑n
i=1 ξw

i Yi(t)Zi∑n
i=1 ξw

i Yi(t)

p→ µ(t)

and

∑n
i=1 ξw

i Yi(t)Ziλ(t, 0, Vi)∑n
i=1 ξw

i Yi(t)λ(t, 0, Vi)

p→ µ(t) (3.4)

under H0. As a consequence, under contiguous alternatives we can also show that

(3.4) holds when we replace 0 by n−
1
2 bZi.

From Lemmas A.3 and A.12, for K > 0,

sup
0≤t≤K

∣∣∣∣∣
∑n

i=1 ξw
i Yi(t)Ziλ(t, n−

1
2 bZi, Vi)∑n

i=1 ξw
i Yi(t)λ(t, n−

1
2 bZi, Vi)

− µ(t)

∣∣∣∣∣
p→ 0,

Therefore by Lemma A.13, we have

n−
1
2

n∑
i=1

∫ K

0

ξw
i

{∑n
i=1 ξw

i Yi(t)Ziλ(t, n−
1
2 bZi, Vi)∑n

i=1 ξw
i Yi(t)λ(t, n−

1
2 bZi, Vi)

− µ(t)

}
dMi(t)

p→ 0.

Thus, A1 can be rewritten as

A1 = n−
1
2

n∑
i=1

∫

[0,K]

ξw
i {Zi − µ(t)}dMi(t) + op(1) (3.5)
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To consider A2, note that

λ(t, n−
1
2 bZi, Vi) = λ(t, 0, Vi) + n−

1
2 bZiλ

′(t, 0, Vi) + R
(n)
1i (t)

with

R
(n)
1i (t) =

b2

2
n−

1
2 Zi[λ

′(t, εiZi, Vi)− λ′(t, 0, Vi)],

where εi = ε
(n)
i is such that ε

(n)
i b > 0 and 0 < |ε(n)

i | < n−
1
2 |b|. By the continuity of

and uniform integrability of function λ′(t, ·, V ), we have

E{ sup
0≤t<K

|λ′(t, ε(n)
i Zi, Vi)− λ′(t, 0, Vi)|} → 0.

Hence we have

R
(n)
1i (t) = op,L1(n

− 1
2 ), uniformly over t ∈ [0, K].

With this expansion, we have

∑n
i=1 ξw

i ZiYi(t)λ(t, b√
n
Zi, Vi)

∑n
i=1 ξw

i Yi(t)λ(t, n−
1
2 bZi, Vi)

=

∑n
i=1 ξw

i Yi(t)λ(t, 0, Vi)∑n
i=1 ξw

i ZiYi(t)λ(t, 0, Vi)
+ bn−

1
2

[∑n
i=1 ξw

i Z2
i Yi(t)λ

′(t, 0, Vi)∑n
i=1 ξw

i Yi(t)λ(t, 0, Vi)

− {∑n
i=1 ξw

i Yi(t)Ziλ(t, 0, Vi)}{
∑n

i=1 ξw
i Yi(t)Ziλ

′(t, 0, Vi)}
{∑n

i=1 ξw
i Yi(t)λ(t, 0, Vi)}2

]
+ op(n

− 1
2 )

= B21 + B22 + op(n
− 1

2 ) (3.6)

where the op(n
− 1

2 ) in (3.6) is uniform over the compact set [0, K].

From Lemma A.3, we have that under H0

sup
0≤t<∞

| 1
n

N̄w(t)− E0{ξw
i N1(t)}| p0→ 0

where E0{ξw
i N1(t)} =

∫ t

0
E0[ξ

w
1 Y (s)λ(s, 0, V )]ds.

Since the probability sequence Pθn under Hn is contiguous with respect to P0, we
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also have

sup
0≤t<∞

∣∣∣∣
1

n
N̄w(t)−

∫ t

0

E0[ξ
w
1 Y (s)λ(s, 0, V )]ds

∣∣∣∣
pθn→ 0

That is, over t ∈ [0, K],

1

n
N̄w(t) =

∫ t

0

E0[ξ
w
1 Y (s)λ(s, 0, V )]ds + op(1). (3.7)

By the Law of Large Numbers, the first term in B22

∑n
i=1 ξw

i Z2
i Yi(t)λ

′(t, 0, Vi)∑n
i=1 ξw

i Yi(t)λ(t, 0, Vi)

P0,Pθn−→ E0[ξ
wZ2Y (t)λ′(t, 0, V )]

E0[ξwY (t)λ(t, 0, V )]
. (3.8)

Similarly, for the second term in B22, we have

{∑n
i=1 ξw

i Yi(t)Ziλ(t, 0, Vi)}{
∑n

i=1 ξw
i Yi(t)Ziλ

′(t, 0, Vi)}
{∑n

i=1 ξwYi(t)λ(t, 0, Vi)}2

P0,Pθn−→ E0[ξ
wY (t)Zλ(t, 0, V )]E0[ξ

wY (t)Zλ′(t, 0, V )]

E0[ξwY (t)λ(t, 0, V )]2
(3.9)

Thus, from (3.7), (3.8) and (3.9), we have

n−
1
2

∫ K

0

B22dN̄w(t)

= b

∫ K

0

[E0[ξ
wZ2Y (t)λ′(t, 0, V )]

E0[ξwY (t)λ(t, 0, V )]
− E0[ξ

wY (t)Zλ(t, 0, V )]E0[ξ
wY (t)Zλ′(t, 0, V )]

E0[ξwY (t)λ(t, 0, V )]2

]

×E0[ξ
wY (t)λ(t, 0, V )]dt + op(1)

= b

∫ K

0

E0[ξ
wY (t)λ′(t, 0, V )]

[E0[ξ
wZ2Y (t)λ′(t, 0, V )]

E0[ξwY (t)λ′(t, 0, V )]
− E0[ξ

wZY (t)λ(t, 0, V )]

E0[ξwY (t)λ(t, 0, V )]

×E0[ξ
wZY (t)λ′(t, 0, V )]

E0[ξwY (t)λ′(t, 0, V )]

]
dt + op(1)

= b

∫ K

0

µ(t)[1− µ(t)]E0[ξ
wY (t)λ′(t, 0, V )]dt + op(1). (3.10)
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For the rest of A2, we have

n−
1
2

∫ K

0

[∑n
i=1 ξw

i Yi(t)Ziλ(t, 0, Vi)∑n
i=1 ξw

i Yi(t)λ(t, 0, Vi)
−

∑n
i=1 ξw

i Yi(t)Zi∑n
i=1 ξw

i Yi(t)

]
dN̄w(t)

= n−
1
2

∫ K

0

ξw
i

[∑n
i=1 ξw

i Yi(t)Ziλ(t, 0, Vi)∑n
i=1 ξw

i Yi(t)λ(t, 0, Vi)
− µ(t)

]
dMi(t)

− n−
1
2

∫ K

0

ξw
i

[∑n
i=1 ξw

i Yi(t)Zi∑n
i=1 ξw

i Yi(t)
− µ(t)

]
dMi(t)

+ n−
1
2

∫ K

0

ξw
i

[∑n
i=1 ξw

i Yi(t)Ziλ(t, 0, Vi)∑n
i=1 ξw

i Yi(t)λ(t, 0, Vi)
− µ(t)

]
Yi(t)λ(t, 0, Vi)dt

− n−
1
2

∫ K

0

ξw
i

[∑n
i=1 ξw

i Yi(t)Zi∑n
i=1 ξw

i Yi(t)
− µ(t)

]
Yi(t)λ(t, 0, Vi)dt

= n−
1
2

n∑
i=1

∫ K

0

ξw
i

[
Zi − µ(t)

][
λ(t, 0, Vi)− E[ξwY (t)λ(t, 0, V )]

E[ξwY (t)]

]
dt

+ op(1) (3.11)

Thus, from (3.3) to (3.11),

n−
1
2 Û

w,[0,K]
W = n−

1
2

n∑
i

∫ K

0

ξw
i (Zi − µ(t))

[
dNi(t)− Yi(t)

E[ξwY (t)λ(t, 0, V )]

E[ξwY (t)]
dt

]

+ b

∫ K

0

σ2
Z(t)E0

[
ξwY (t)λ′(t, 0, V )

]
dt + op(1)

Since
∑

w ξw
i = 1 by its definition, for each i, the numerator of the W -stratified

logrank statistic under Hn becomes

n−
1
2 Û

[0,K]
W = n−

1
2

∑
w

Û
w,[0,K]
W

=
∑

w

n−
1
2

n∑
i

∫ K

0

ξw
i (Zi − µ(t))

[
dNi(t)− Yi(t)

E[ξwY (t)λ(t, 0, V )]

E[ξwY (t)]
dt

]

+ b

∫ K

0

σ2
Z(t)E0[Y (t)λ′(t, 0, V )]dt + op(1) (3.12)
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Hence the numerator of the logrank statistic under H0 is

n−
1
2 Û

[0,K]
W =

∑
w

n−
1
2

n∑
i

∫ K

0

ξw
i [Zi − µ(t)]

[
dNi(t)− Yi(t)

E[ξwY (t)λ(t, 0, V )]

E[ξwY (t)]
dt

]

+ op(1)

≡ n−
1
2 U

[0,K]
W + op(1) (3.13)

From Lemma A.8 we know that

n−
1
2 Û

(K,∞)
W

p,L1→ 0 as K ↑ ∞

n−
1
2 U

(K,∞)
W

p,L1→ 0 as K ↑ ∞.

Thus for any ε > 0, there exist a large number K > 0 such that

P{
∣∣∣n− 1

2 Û
(K,∞)
W

∣∣∣ >
ε

3
} <

ε

3
,

P{
∣∣∣n− 1

2 U
(K,∞)
W

∣∣∣ >
ε

3
} <

ε

3

uniformly over all n. Then from (3.13) we also know that for each such K, there

exist an integer N > 0 such that for all n ≥ N we have

P
{∣∣∣n− 1

2 Û
[0,K]
W − n−

1
2 U

[0,K]
W

∣∣∣ >
ε

3

}
<

ε

3
.

Therefore

P
{∣∣∣n− 1

2 ÛW − n−
1
2 UW

∣∣∣ > ε
}

≤ P
{∣∣∣n− 1

2 Û
[0,K]
W − n−

1
2 U

[0,K]
W

∣∣∣ +
∣∣∣n− 1

2 Û
(K,∞)
W

∣∣∣ +
∣∣∣n− 1

2 U
(K,∞)
W

∣∣∣ > ε
}

≤ P
{∣∣∣n− 1

2 Û
[0,K]
W − n−

1
2 U

[0,K]
W

∣∣∣ >
ε

3

}
+ P

{∣∣∣n− 1
2 Û

(K,∞)
W

∣∣∣ >
ε

3

}
+ P

{∣∣∣n− 1
2 U

(K,∞)
W

∣∣∣ >
ε

3

}

<
ε

3
+

ε

3
+

ε

3
.

= ε
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Hence we have

n−
1
2 ÛW − n−

1
2 UW

p→ 0. (3.14)

Under the Kong-Slud Assumption 1.4,

E0

{∫
ξw
i (Zi − µ(t))[dNi(t)− Yi(t)

E[ξwY (t)λ(t, 0, V )]

E[ξwY (t)]
dt]

}
= 0.

Hence under H0, Ûw
W is asymptotically the sum of iid distributed random variables

with mean 0, provided the asymptotic variance of n−
1
2 Ûw

W is finite. Then by the

Central Limit Theorem, n−
1
2 Ûw

W is asymptotically normally distributed with mean

0 under H0.

Since n−
1
2 ÛW is the finite sum of n−

1
2 Ûw

W , we also have that the numerator

of the logrank statistic is asymptotically normally distributed with mean 0 and

variance VW under H0.

(ii) In the second part of the proof, we show VW = VL.

A formula for the asymptotic variance of n−
1
2 ÛW based on the sum of iid terms

with mean 0 in n−
1
2 UW is:

E0

{[ ∫
ξw
i [Z − µ(t)]{dN(t)− Y (t)E[λ(t, 0, V )|Y (t),W = w]dt}

]2
}

. (3.15)

From Assumption 1.4 and the uniqueness of the Doob-Meyer decomposition,

we know that Y (t)E[λ(t, 0, V )|Y (t),W = w] is the intensity of N(t) under the

filtration

Gw
t ≡ σ{Ni(s), Yi(s),Wi, Zi; 0 ≤ s ≤ t, i = 1, 2, . . . }.

Thus the process

∫ t

0

ξw[Z − µ(s)]{dN(s)− Y (t)E[λ(t, 0, V )|Y (t),W = w]dt}

41



is a Gw
t martingale. So the asymptotic variance (3.15) can be simplified to

E0

{∫
ξw[Z − µ(t)]2Y (t)E0[λ(t, 0, V )|Y (t), Z,W = w]

}

=

∫
E0{ξw[Z − µ(t)]2Y (t)λ(t, 0, V )}dt (3.16)

Now VW is the asymptotic variance of n−
1
2 ÛW , and by the independence over

strata, VW is the sum of (3.16) over different strata W = w. Recalling that ξw
i =

I[Wi=w] and
∑

w ξw
i = 1, we have

VW =

∫ ∑
w

E{ξw
i · [Z − µ(t)]2Y (t)λ(t, 0, V )}dt

=

∫
E{[Z − µ(t)]2Y (t)λ(t, 0, V )}dt

= VL. (3.17)

Hence the second part of this lemma is also proved. 2

Equation (3.17) shows that numerators of the logrank n−
1
2 ÛL and of the W -

stratified logrank n−
1
2 ÛW have the same asymptotic variance under the Kong-Slud

Assumption. Thus to show the W -stratified logrank test is asymptotically valid in

this case, it is sufficient to know that square of the denominator of the W -stratified

logrank

V̂W =
1

n

∑
w

Ȳ0w(t)Ȳ1w(t)

Ȳw(t)2
dN̄w(t)

is asymptotically equivalent to that of the logrank statistic. We will prove this in

the following lemma.

Lemma 3.2 If Assumptions 1.1, 1.3 and 1.4 all hold, then V̂L− V̂W = op(1) under

H0 : θ = 0.
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Proof.

By the Uniform Law of Large Numbers over a compact set , for each stratum W = w

and K > 0, under Assumption 1.4 and H0,

sup
0≤t<K

∣∣∣ Ȳ0w(t)Ȳ1w(t)

Ȳw(t)2
− µ(t)[1− µ(t)]

∣∣∣ p,L2→ 0.

Define

σ2
Z(t) = µ(t)[1− µ(t)].

Thus

V̂
[0,K]
W =

∫ K

0

∑
w

1

n
σ2

Z(t)dN̄w(t) +

∫ K

0

1

n

∑
w

∑

j∈I(w)

[
Ȳ1w(t)Ȳ0w(t)

Ȳw(t)2
− σ2

Z(t)

]
dNj(t)

=

∫ K

0

σ2
Z(t)

dN̄(t)

n
+ op(1).

Since sup0<t<∞{Ȳ1w(t)Ȳ0w(t)/Ȳw(t)2} < 1 with probability one and sup0<t<∞ σ2
Z(t) <

1, from Lemma A.6 it follows that

V̂
(K,∞)
W

p,L1→ 0 as K ↑ ∞

and
∫ ∞

K

σ2
Z(t)

dN̄(t)

n

p,L1→ 0 as K ↑ ∞.

Hence using similar reasoning as in the proof of Lemma 3.1 leading to (3.14), we

have

V̂W =

∫
σ2

Z(t)
dN̄(t)

n
+ op(1),

while from the proof of lemma 2.4, we already know that

V̂
[0,K]
L =

∫ K

0

σ2
Z(t)

dN̄(t)

n
+ op(1).
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Finally, we have the asymptotic equivalence of V̂L and V̂G:

V̂L − V̂W = op(1).

This lemma is proved. 2.

Corollary 3.1 Under Assumptions 1.1, 1.3 and 1.4, V̂W
p→ VW .

Proof.

This corollary is an immediate result of Lemma 2.4, Lemma 3.2 and Equation (3.17).

Hence we can conclude that the square of the denominator of the W -stratified lo-

grank statistic is a consistent estimator of the asymptotic variance for its numerator.

2

Lemma 3.1 and Corollary 3.1 provide the large sample null distribution of the

W -Stratified logrank statistic:

Theorem 3.1 When Assumptions 1.1, 1.3 and 1.4 hold, the W -stratified logrank

statistic n−
1
2 ÛW /V̂

1
2

W is asymptotically standard normally distributed.

Thus the W -Stratified logrank test with rejection region {
∣∣∣n− 1

2 ÛW /V̂
1
2

W

∣∣∣ > Zα/2} can

achieve the nominal significance level α under H0.

3.3 Comparisons

In this section we will compare the three test statistics, logrank n−
1
2 ÛL, strat-

ified logrank n−
1
2 ÛS and W -stratified logrank n−

1
2 ÛW in terms of alternative mean
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and asymptotic relative efficiencies. Unless mentioned separately, all comparisons

are made under Assumptions 1.1, 1.3 and 1.4 and assume covariate V to be discrete

with finitely many values.

First we give two formulas for the asymptotic means of the numerators of the

logrank and stratified logrank statistic under the contiguous alternative Hn : θ =

b/
√

n.

From (3·1) in Kong and Slud (1997), the asymptotic mean of the numerator

of n−
1
2 ÛL the logrank statistic under Hn can be written as:

bEL
alt = b

∫
σ2

Z(t)E0

{
Y (t)λ′(t, 0, V )

}
dt

− b

∫
σ2

Z(t)E0

{
Y (t)Λ′(t, 0, V )

[
λ(t, 0, V )− E0{Y (t)λ(t, 0, V )}

E0{Y (t)}
]}

dt.

(3.18)

From the proof of Lemma 3.1, Equation (3.12) and the result of Lemma A.14

(Lemma A·1 of Kong and Slud, 1997), the asymptotic alternative mean of the nu-

merator n−
1
2 ÛW of the W -stratified logrank statistic is:

bEW
alt = b

∫
σ2

Z(t)E0{Y (t)λ′(t, 0, V )}dt

− b

∫
σ2

Z(t)E0{Y (t)λ(t, 0, V )Λ′(t, 0, V )}dt

+
∑

w

b

∫
σ2

Z(t)E0{ξwY (t)Λ′(t, 0, V )}E0[ξ
wY (t)λ(t, 0, V )]

E0[ξwY (t)]
dt.

(3.19)

As a special case of the W -stratified logrank with W = V , we can derive the

alternative mean of the numerator n−
1
2 ÛW of the stratified logrank statistic from
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(3.19) as:

bES
alt = b ·

∫
σ2

Z(t)E0{Y (t)λ′(t, 0, V )}dt. (3.20)

From (3.18), (3.20) and (3.19) we can find that the difference of alternative

mean for the logrank and stratified logrank is

bES
alt − bEL

alt

= b

∫
σ2

Z(t) · E0{Y (t)} · Cov
{

λ(t, 0, V ), Λ′(t, 0, V )
∣∣∣ Y (t) = 1

}
dt. (3.21)

and the one for W -stratified logrank and stratified logrank is

bES
alt − bEW

alt

=
∑

w

b

∫
σ2

Z(t)E0{ξwY (t)} · Cov
{

λ(t, 0, V ), Λ′(t, 0, V )
∣∣∣ W = w, Y (t) = 1

}
dt

(3.22)

3.3.1 Homogeneous Model

We say a sample is homogeneous if all patients in the study have the same level

of covariates, so the hazard function can be written as λ(t, θz, v0) with a non-random

vector v0 for all patients. If the true model is homogenous and the stratification is

not necessary, and from (3.18),(3.20) and (3.19) we can find that

EL
alt = ES

alt = EW
alt =

∫
σ2

Z(t)λ′(t, 0, v0)E0{Y (t)}dt

Hence these three test statistics have equal alternative means when the true model

is a homogeneous model. From Section (3.2) we also know the three test statistics

have equal asymptotic variances, and hence they are equally efficient.
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3.3.2 Cox Proportional Hazard Model

When the true model is a Cox proportional hazard model,

λ(t, θz, v) = λ0(t)h(β, v)eθz (3.23)

where λ0(t) is a nonrandom nuisance hazard-intensity and β is a q-dimensional

vector. Assume V is discrete with finite values. Then taking z = 1, we have

λ′(t, 0, V ) = λ(t, 0, V ) = λ0(t)h(β, V )

and

Λ′(t, 0, V ) = Λ0(t)h(β, V )

where Λ0(t) =
∫ t

0
λ0(s)ds.

Then the conditional covariance in (3.21),

Cov
{

λ(t, 0, V ), Λ′(t, 0, V )
∣∣∣ Y (t) = 1

}
= λ0(t)Λ0(t)Var

{
h(β, V )

∣∣∣Y (t) = 1
}

,

is nonnegative or strictly positive, if V is nondegenerate. Thus

ES
alt > 0 and ES

alt − EL
alt > 0

and hence

{bES
alt}2 > {bEL

alt}2.

Similarly, we also have

{bES
alt}2 > {bEW

alt}2.

Finally it can be concluded that under the Cox proportional hazard model

(3.23), the stratified logrank is most efficient among the three test statistics.
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3.3.3 Accelerated Failure Model

Suppose the true model is an accelerated life model,

log T = θz + γv + ε,

where both γ and v are q-dimensional vectors and ε is an log-logistic distributed

random variable. The hazard function under this model becomes

λ(t, θz, v) =
exp{θz + γv}

1 + t exp{θz + γv} (3.24)

Note that

λ′(t, 0, v) =
eγv

{1 + t exp{γv
}2},

Λ′(t, 0, v) =
teγv

1 + t exp{γv} = t · λ(t, 0, v)

Thus the conditional covariance

Cov
{

λ(t, 0, V ), Λ′(t, 0, V )
∣∣∣ Y (t) = 1

}
= t · Var

{
λ(t, 0, V )

∣∣∣Y (t) = 1
}

is non negative. If V is nondegerate, again we have

ES
alt > 0 and ES

alt − EL
alt > 0

and hence

{bES
alt}2 > {bEL

alt}2.

Similarly,

{bES
alt}2 > {bEG

alt}2.

Thus we know that under the accelerated failure model (3.24), the stratified logrank

is still the most efficient one among the three tests.
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From the above three examples and formula (3.18)-(3.22), we can find a suffi-

cient condition for the stratified logrank to be more efficient than both the logrank

and W -stratified logrank.

Proposition 3.2 Denote η1 and η2 as the asymptotic relative efficiency of stratified

logrank versus logrank and stratified logrank versus W -stratified logrank, respectively.

Both η1 and η2 are with respect to the contiguous alternative Hn : θ = b/
√

n. Assume

Assumptions 1.1, 1.3 and 1.4 hold and V is discrete with finite values. If λ′(t, 0, V ) ≥

0 and Λ′(t, 0, V ) is positively correlated with λ(t, 0, V ), or if λ′(t, 0, V ) ≤ 0 and

Λ′(t, 0, V ) is negatively correlated to λ(t, 0, V ), for all t conditionally given that

Y (t) = 1, that is, for all t,

λ′(t, 0, V ) · Cov{λ(t, 0, V ), Λ′(t, 0, V )|Y (t) = 1} ≥ 0,

then

η1 ≥ 1 ; η2 ≥ 1

with strict > if V is non-degenerate.

Note that the above theorem is only true under Assumption 1.4 with large

sample size n and fixed number of strata nv. The efficiency of the stratified logrank

will be undermined if nv is very large. We will discuss this topic in Chapter 6.

3.4 Remark

Both the logrank and the stratified or W -stratified logrank test statistics are

asymptotically distributed as standard normal under Assumption 1.4 and H0. We
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found that the denominators of both the logrank and the W-stratified logrank test

statistics are asymptotically equivalent, but the two statistics may not be equivalent

because the difference of numerators may not be neglected:

1√
n

(ÛL − ÛS)

=

∫ ∑
v




{
λ(t, 0, V )− E0{Y (t)λ(t, 0, V )}

E0{Y (t)}
} 1√

n

∑

j∈I(v)

{Zj − µ(t)}Yj(t)


 dt + op(1),

where the integral is a strictly positive random variable , even in the limit as n →∞.

When the true model (with covariate V ) is misspecified as model-free, neither the

plain logrank test nor the stratified logrank test is the optimum test. Thus the

fact that the two numerators have difference Op(1) while the two denominators are

asymptotic equivalent does not violate the Hajek convolution theorem. When the

true model has no covariate V at all, these logrank tests are the optimum tests, then

from the above formula we easily have E{I[V =v] · [Z − µ(t)]2Y (t)λ(t, V )}dt = op(1),

which agrees with the convolution theorem.
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Chapter 4

A New Class of Contiguous Alternatives

In Chapters 2 and 3 we have showed that under Assumptions 1.1, 1.3 and the

Kong-Slud Assumption I (Assumption 1.4), the logrank and W -stratified logrank

statistics are all centered and have the asymptotic standard normal distribution

under the null hypothesis of no treatment effect. However, when Assumption 1.4

does not hold, these two test statistics are biased.

In this chapter, we introduce a new class of alternatives within which Assump-

tion 1.4 is violated and the treatment effect is small, and we prove that they are a

sequence of contiguous alternatives with respect to a fixed “null” probability under

which Assumption 1.4 holds and there is no treatment effect. Here the violation of

Assumption 1.4 is represented by an interaction term in the log conditional survival

function for censoring such that the term has specified rate behavior with respect

to n. It is not difficult to show that if Assumption 1.5 does not hold, that is, if

there is an interaction term of treatment and covariate inside the survival function

for censoring, the Kong-Slud Assumption fails to hold.

Given Z = z and V = v, denote the conditional hazard intensity functions of T

and C as λ(t, θz, v), and λC(t, ψ, z, v), their cumulative conditional hazard functions

as Λ(t, θz, v) and ΛC(t, ψ, z, v) and their conditional density functions as fT (t, θz, v)

and fC(t, ψ, z, v), respectively.

51



Theorem 4.1 Assume

1. The survival function for the censoring time r.v. C satisfies

− log[SC(t|z, v)] = a(t, z) + b(t, v) + ψ · c(t, zh(v))

for some positive functions a(·), b(·) and c(·), where ψ ∈ R is constant in t, z, v.

2. For i = 1, . . . , n and r = 0, 1, 2, the following terms

∂r

∂θr
log fT (t, θZi, Vi),

∂r

∂ψr
log fC(t, ψ, Zi, Vi)

are all continuous and uniformly integrable, with respect to dt, over θ and

ψ in a sufficiently small neighborhood of 0, and under the null hypothesis

H0 : θ = ψ = 0;

3. For i = 1, . . . , n, the density functions satisfy

d

dθ
Eθ

{
∂

∂θ
log fT (Ti, θz, v)

}
=

∫
∂

∂θ

{[
∂

∂θ
log fT (t, θz, v)

]
fT (t, θz, v)

}
dt;

d

dψ
Eψ

{
∂

∂ψ
log fC(Ci, z, v, ψ)

}
=

∫
∂

∂ψ

{[
∂

∂ψ
log fC(t, z, v, ψ)

]
fC(t, z, v, ψ)

}
dt

(4.1)

Then the hypotheses HA : θn = b/
√

n; ψn = c/
√

n and H0 : θ = ψ = 0 are mutually

contiguous.

Proof.

The tool we will use for this proof is part of Le Cam’s first lemma (Van der Vaart,

1998, Lemma 6.4, (i),(ii),(iii)). Let Pn and Qn be sequences of probability measures

on measurable spaces (Ωn,An). In order to show the sequence Qn is contiguous with
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respect to the sequence Pn, we just need to show that dPn/dQn
D(Qn)−→ U such that

P (U > 0) = 1, where D(Qn) means “in distribution under Qn”. If we can further

show that E(U) = 1, then Pn is contiguous with respect to Qn.

Here we can let the sequence Pn be the probability measure of the alternative

hypothesis HA and the sequence Qn be the probability measure of the null hypothesis

H0. Then the sequence dPn/dQn will be the likelihood ratio of the alternative and

null hypothesis. This theorem states that Pn and Qn are mutually contiguous.

The joint density function of (T, C, Z, V ) can be written as

fT,C|Z,V (t, c|z, v) · fZ,V (z, v) = fT (t, zθ, v)fC(t, z, v, ψ)dFzdFv

Since the difference between Pn and Qn relates only to θ and ψ, the factors not

dependent on these two parameters in the likelihood ratio will cancel. The likelihood

ratio is

dPn

dQn

=
dP T

n

dQT
n

· dPC
n

dQC
n

where

dP T
n

dQT
n

=
Πn

i=1fT (Ti, θnZi, Vi)

Πn
i=1fT (Ti, 0, Vi)

and

dPC
n

dQC
n

=
Πn

i=1fC(Ci, Zi, Vi, ψn)

Πn
i=1fC(Ci, Zi, Vi, 0)

Taking logarithms in these expressions, we obtain the log-likelihood ratios:

log
dP T

n

dQT
n

=
n∑

i=1

{log fT (Ti, θnZi, Vi)− log fT (Ti, 0, Vi)}

log
dPC

n

dQC
n

=
n∑

i=1

{log fC(Ci, Zi, Vi, ψn)− log fC(Ci, Zi, Vi, 0)}
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Since θn = b/
√

n and ψn = a/
√

n, for each i, we Taylor expand log fT (Ti, θnZi, Vi)

and log fC(Ci, Zi, Vi, ψn) about θ = 0 and ψ = 0, respectively, leading to

log fT (Ti,
b√
n

Zi, Vi)

= log fT (Ti, 0, Vi) +
b√
n
· logL

(1)
Ti (0) +

1

n

b2

2
· logL

(2)
Ti (0) +

1

n
RT

2i

and

log fC(Ci,
a√
n

, Zi, Vi)

= log fC(Ci, 0, Zi, Vi) +
a√
n
· logL

(1)
Ci (0) +

1

n

a2

2
· logL

(2)
Ci (0) +

1

n
RC

2i.

where

logL
(r)
Ti (x) =

∂r

∂θr
log fT (Ti, θZi, Vi)

∣∣∣
θ=x

,

logL
(r)
Ci (x) =

∂r

∂θr
log fC(Ci, Zi, Vi, ψ)

∣∣∣
ψ=x

, r = 0, 1, 2, (4.2)

RT
2i =

b2

2
· {logL

(2)
Ti (θ

∗
i )− logL

(2)
T (0)},

RC
2i =

a2

2
· {logL

(2)
Ci (ψ

∗
i )− logL

(2)
C (0)};

0 ≤ θ∗i = g1(Ti, Zi, Vi) ≤ b√
n

,

0 ≤ ψ∗i = g2(Ci, Zi, Vi) ≤ a√
n

.

Thus the log-likelihood ratio becomes

log
dPn

dQn

=
1√
n

n∑
i=1

{b · logL
(1)
Ti (0) + a · logL

(1)
Ci (0)}

+
1

n
· 1

2

n∑
i=1

{b2 · logL
(2)
Ti (0) + a2 · logL

(2)
Ci (0)}+

1

n

n∑
i=1

{RT
2i + RC

2i}

≡ A1n + A2n + A3n. (4.3)
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From the definition (4.2) we know that for each i = 1, . . . , n, logL
(1)
Ti (0) are iid

distributed under H0 with mean

µT = E0{ ∂

∂θ
log fT (Ti, θZi, Vi)

∣∣∣
θ=0
} = 0

and variance

σ2
T = E0{[logL

(1)
T1(0)]2};

Similarly, logL
(1)
Ci (0), i = 1, . . . , n are iid with mean µT = 0 and variance

σ2
C = E0{[logL

(1)
C1(0)]2}

Furthermore, since T and C are conditionally independent given Z and V ,

E0{logL
(1)
T1(0) · logL

(1)
C1(0)} = E0{E0[logL

(1)
T1(0)|Z, V ] · E0[logL

(1)
C1(0)]} = 0

Thus

E0{[logL
(1)
T1(0) + logL

(1)
C1(0)]2} = σ2

T + σ2
C (4.4)

From Lemma 7.3.11 in Casella and Berger (2001) and the third assumption in

this theorem,

σ2
T = E0{[logL

(1)
T1(0)]2} = − E0{logL

(2)
T1(0)},

σ2
C = E0{[logL

(1)
C1(0)]2} = − E0{logL

(2)
C1(0)}. (4.5)

Then by the second assumption of this theorem,

σ2
T < ∞ and σ2

C < ∞.

By the Central Limit Theorem, in (4.3)

A1n =
1√
n

n∑
i=1

{b · logL
(1)
Ti (0) + a · logL

(1)
Ci (0)} D(Qn)·H0−→ N(0, b2σ2

T + a2σ2
C). (4.6)
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By the Law of Large Numbers and (4.5),

A2n =
1

n
· 1

2

n∑
i=1

{b2 · logL
(2)
Ti (0) + a2 · logL

(2)
Ci (0)} D(Qn)·H0−→ −1

2
(b2σ2

T + a2σ2
C) (4.7)

By the continuity of logL
(2)
Ti (·) and logL

(2)
Ci (·) around the small neighborhood

of 0,

logL
(2)
Ti (θ

∗
i )− logL

(2)
Ti (0) = op(1), in probability and L2;

logL
(2)
Ci (ψ

∗
i )− logL

(2)
Ci (0) = op(1) in probability and L2.

Thus

A3n =
n∑

i=1

{RT
2i + RC

2i} = op(1) andin L2. (4.8)

Finally, from (4.6) - (4.8) and Slutsky’s Lemma, the asymptotic distribution

of the log-likelihood ratio under the null hypothesis H0 is

log
dPn

dQn

D(Qn)·H0−→ W
d∼ N(µ, σ2) (4.9)

where

µ = −1

2
σ2 and σ2 = b2σ2

T + a2σ2
C

Thus the likelihood ratio converges in distribution to a lognormal distributed

r.v. U = eW :

dPn

dQn

D(Qn)·H0−→ U
d∼ e−N(µ,σ2).

Therefore, since µ = −1
2
σ2,

P (U > 0) = 1 and E(U) = 1.

By Le Cam’s first lemma(Van der Vaart, 1998, Lemma 6.4,(i)(ii)), the sequence Qn

is contiguous with respect to the sequence Pn, and by part (iii) of the same Lemma
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with Pn and Qn reversed, the sequence Pn is also contiguous with respect to the

sequence Qn.

Therefore the sequences Pn and Qn are mutually contiguous. 2

From Theorem 4.1 and its proof, the following corollary is immediate:

Corollary 4.1 Under the same assumptions in Theorem 4.1, the null hypothesis

H0 : θ = 0. and the alternative hypothesis HA : θn = b√
n

are mutually contiguous.

Corollary 4.2 Under the same assumptions in Theorem 4.1, the null hypothesis

H∗
0 : ψ = 0. and the alternative hypothesis H∗

A : ψn = c√
n

are mutually contiguous.

Remark

When the violation of the Kong-Slud Assumption is small, Theorem 4.1 enables

us, under certain regularity conditions, to calculate the asymptotic distribution of

the logrank statistic n−
1
2 ÛL or the stratified logrank statistic n−

1
2 ÛW under the

contiguous alternatives to θ = 0, ψ = 0. Simulation studies on the application of

this theorem will be provided in Chapter 6.
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Chapter 5

A Bias-corrected Logrank Test

In this chapter we study and extend a bias correction method proposed in

Dirienzon and Lagakos (2001a) and apply it to the logrank statistic to get a “bias

corrected” logrank test. In Section 5.1 we describe how this bias-correction method

works and what is its limitation. In Section 5.2, we prove several useful lemmas

first and then prove the theorem that assures the asymptotic normal distribution

of the bias-corrected test with unknown and Kaplan-Meier estimated conditional

distribution function of the censoring. A correct consistent variance estimator is

also found within our asymptotic framework.

5.1 The ϕ(·) Function and the Weighted at Risk Indicator

The bias-correction method proposed in DiRienzo and Lagakos (2001a) uses

information obtained from the censoring distribution to weight each subject at risk.

The binary at risk indicator function Y (t) is replaced by a continuous variable taking

values in a unit interval. In their proposal, the weighted at risk indicator function

is

Y ∗
i (t) ≡ ϕ(t, Zi, Vi) · Yi(t)

with

ϕ(t, Zi, Vi) ≡ SC(t, 1, Vi) ∧ SC(t, 0, Vi)

SC(t, Zi, Vi)
.
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Then the conditional expectation of Y ∗(t) given Z and V is independent of Z under

H0 because by Assumption 1.1 and 1.3, for each i,

E{Y ∗
i (t)|Zi, Vi} = E{ϕ(t, Zi, Vi)Yi(t)|Zi, Vi}

=
SC(t, 0, Vi) ∧ SC(t, 0, Vi)

SC(t, Zi, Vi)
· SC(t, Zi, Vi)S(t, 0, Vi)

= {SC(t, 0, Vi) ∧ SC(t, 0, Vi)} · S(t, 0, Vi)

does not depend upon Zi.

The essential part of the weighting function is placing SC(t, Zi, Vi), the condi-

tional survival function of the censoring time, in the denominator of ϕ(t, Zi, Vi). The

numerator in the definition of ϕ(t, Zi, Vi) must be a function that does not depend

upon Zi. Thus we suggest to define the weighting function in a general way:

ϕ(t, Zi, Vi) =
g(t, Vi)

SC(t, Zi, Vi)
.

Here g would be chosen so that g(t, Vi) ≤ SC(t, Zi, Vi) with probability one. To

comply with the technical requirements of all theorems regarding the choice of ϕ(·),

we further restrict g(·) by assuming the following:

Assumption 5.1 For any z and v,

(i) g(t, v) is a function of SC(t, 1, v) and SC(t, 0, v) and ĝ is the same function

evaluated at the Kaplan-Meier estimators ŜC(t, z, v);

(ii) g(t, v) ≤ SC(t, z, v);

(iii) inf0≤t≤K E{g(t, V )} > 0 for fixed K > 0 so that E{SC(t, Z, V )} > 0.

(iv)Let ĝ and ŜC be the Kaplan-Meier estimators of g and SC, then

|ĝ(t, v)− g(t, v)| ≤ c1

∣∣∣ŜC(t, 1, v)− SC(t, 1, v)
∣∣∣ + c0

∣∣∣ŜC(t, 0, v)− SC(t, 0, v)
∣∣∣

59



for some constants c1 and c0.

It is clear that minimum, g(t, v) = SC(t, 1, v)∧SC(t, 0, v) and the product, g(t, v) =

SC(t, 1, v)SC(t, 0, v) are two direct examples that satisfy the assumption above.

A bias-corrected logrank statistic n−
1
2 Ûϕ is obtained by replacing each Yi(t) in

the statistic n−
1
2 ÛL by Y ∗

i (t). Then n−
1
2 Ûϕ can be written as

n−
1
2 Ûϕ ≡ n−

1
2

n∑
i=1

∫ [
Zi −

∑n
j=1 ϕ(t, Zj, Vj)Yj(t)Zj∑n

j=1 ϕ(t, Zj, Vj)Yj(t)

]
ϕ(t, Zi, Vi)dNi(t). (5.1)

As shown in DiRienzo and Lagakos (2001a), n−
1
2 Ûϕ is asymptotically a sum of iid

terms with mean 0 and thus asymptotically bias free under H0. Along with the

consistent sample variance estimator constructed based on this asymptotic sum, a

bias corrected statistic that is asymptotically standard normally distributed under

the null hypothesis can thus be found.

A major limitation of this method is that the weighting function ϕ(·) depends

on the distribution functions of the censoring time. The authors who proposed

this method found from simulations that their bias corrected test with estimated

weighting function is very similar to the one with known weighting function ϕ(·).

We are interested in studying the asymptotic properties of the bias corrected

logrank test when the censoring distribution is unknown and an estimated func-

tion is then substituted. Regarding different types of estimators of the conditional

distribution of the censoring time, we find that using a stratumwise nonparametric

Kaplan-Meier estimate or a proper parametric estimator will result in an asymp-

totically valid bias corrected logrank test. A simulation study also suggests that a

valid bias-corrected test can be obtained with ϕ estimated under a semi-parametric
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model, Aalen’s additive model.

5.2 Bias Correction with Kaplan-Meier Estimation

As one of the major contributions of this thesis, we show in this section that

when the ϕ function is estimated by ϕ̂ using the stratified Kaplan-Meier method,

the corrected test based on ϕ̂ is asymptotically normally distributed with mean

zero under the null hypothesis of no randomized treatment effect. We also derive a

consistent variance estimator for the test statistic.

Define

n−
1
2 Ũϕ ≡ n−

1
2

n∑
i=1

∫
[Zi−π]ϕ(t, Zi, Vi)

{
dNi(t)−Yi(t)

E[Y (t)ϕ(t, Z, V )λ(t, 0, V )]

E[Y (t)ϕ(t, Z, V )]
dt

}
.

Recall that under H0 the corrected test statistic n−
1
2 Ûϕ with known ϕ function

is asymptotically an iid sum with mean 0. This result has been proved by DiRienzo

and Lagakos (2001) and is an important reference for our work here. We provide an

alternative proof for the similar result in the following lemma.

Lemma 5.1 When Assumptions 1.1 and 1.3 hold,

n−
1
2 Ûϕ − n−

1
2 Ũϕ

p→ 0 as n →∞

under H0.

Proof.

For K > 0 fixed in such a way that E{SC(K, Z, V )} > 0 and E{S(K, 0, V )} > 0,

define n−
1
2 Û

[0,K]
ϕ = n−

1
2 Ûϕ − n−

1
2 Û

(K,∞)
ϕ , where n−

1
2 Û

(K,∞)
ϕ is defined as in Lemma
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A.9 by restricting the integral in the definition of n−
1
2 Ûϕ to (K,∞). Adding and

subtracting π = E(Zi) within Û
[0,K]
ϕ we obtain

n−
1
2 Û [0,K]

ϕ = −S1 + S2,

where

S1 ≡ n−
1
2

n∑
i=1

∫ K

0

ϕ(t, Zi, Vi)
(n−1

∑
j(Zj − π)ϕ(t, Zj, Vj)Yj(t))

n−1
∑

j ϕ(t, Zj, Vj)Yj(t)

)
dNi(t)

= n−
1
2

n∑
i=1

∫ K

0

ϕ(t, Zi, Vi)
(n−1

∑
j(Zj − π)ϕ(t, Zj, Vj)Yj(t))

n−1
∑

j ϕ(t, Zj, Vj)Yj(t)

)
dMi(t)

+

∫ K

0

(n−1
∑

i ϕ(s, Zi, Vi)Yi(t)λ(t, 0, Vi)

n−1
∑

j ϕ(t, Zj, Vj)Yj(t)

)

·
(
n−

1
2

∑
j

(Zj − π)ϕ(t, Zj, Vj)Yj(t)
)
dt

≡ S1a + S1b (5.2)

and

S2 ≡ n−
1
2

n∑
i=1

∫ K

0

ϕ(t, Zi, Vi)(Zi − π)dNi(t). (5.3)

By the uniform Law of Large Numbers, which also shows that the denominator

is uniformly bounded away from 0, and Lemma (A.4),

sup
0≤t≤K

∣∣∣ϕ(t, Zi, Vi)
n−1

∑
j(Zj − π)ϕ(t, Zj, Vj)Yj(t)

n−1
∑

j ϕ(t, Zj, Vj)Yj(t)

∣∣∣ p→ 0

Then from Lemma A.13,

S1a
p→ 0, as n →∞.

Also by the uniform Law of Large Numbers and Lemma A.4,

sup
0≤t≤K

∣∣∣n
−1

∑
i ϕ(t, Zi, Vi)Yi(t)λ(t, 0, Vi)

n−1
∑

j ϕ(t, Zj, Vj)Yj(t)
− E{g(t, V )e−Λ(t,0,V )λ(t, 0, V )}

E{g(t, V )e−Λ(t,0,V )}
∣∣∣ p→ 0.
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Note that by independence of Zi and Vi,

E{(Zi − π)ϕ(t, Zi, Vi)Yi(t)} = E{(Zi − π)g(t, Vi)e
−Λ(t,0,Vi)}

= E{Zi − π} · E{g(t, Vi)e
−Λ(t,0,Vi)}

= 0.

Then because

E{g(t, V )e−Λ(t,0,V )λ(t, 0, V )}
E{g(t, V )e−Λ(t,0,V )} =

E[Y (t)ϕ(t, Z, V )λ(t, 0, V )]

E[Y (t)ϕ(t, Z, V )]
, (5.4)

by the Donsker theorem

n−
1
2

∑
i

(Zi − π)ϕ(t, Zi, Vi)Yi(t) = Op(1)

uniformly over t in the compact set [0, K]. Therefore,

S1b = n−
1
2

∫ K

0

∑
i

(Zi − π)ϕ(t, Zi, Vi)Yi(t)
E{g(t, V )e−Λ(t,0,V )λ(t, 0, V )}

E{g(t, V )e−Λ(t,0,V )} dt + op(1).

Thus

n−
1
2 Û [0,K]

ϕ = S1a + S1b + S2

= n−
1
2 Ũ [0,K]

ϕ + op(1). (5.5)

Therefore

n−
1
2 Û [0,K]

ϕ − n−
1
2 Ũ [0,K]

ϕ

p→ 0

as n →∞. From Lemma A.9 we also have

n−
1
2 Û (K,∞)

ϕ

p,L1→ 0 and n−
1
2 Ũ (K,∞)

ϕ

p,L1→ 0 as K ↑ ∞.

Thus by Lemma A.5,

n−
1
2 Ûϕ − n−

1
2 Ũϕ

p→ 0
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as n →∞. 2

Next we study the analogous asymptotic representation of the corrected test

with stratified Kaplan-Meier estimated ϕ function. Define

n−
1
2 Ûϕ̂ ≡ n−

1
2

n∑
i=1

∫
[Zi −

∑n
i=1 ϕ̂(t, Zi, Vi)Yi(t)Zi∑n

i=1 ϕ̂(t, Zi, Vi)Yi(t)
]ϕ̂(t, Zi, Vi)dNi(t)

n−
1
2 Ũϕ̂ ≡ n−

1
2

n∑
i=1

∫
[Zi−π]ϕ̂(t, Zi, Vi)

{
dNi(t)−Yi(t)

E[Y (t)ϕ(t, Z, V )λ(t, 0, V )]

E[Y (t)ϕ(t, Z, V )]
dt

}
.

Lemma 5.2 Let Assumptions 1.1, 1.3 hold and Vi be finite-valued. Let ϕ̂(t, Zi, Vi)

be the stratified Kaplan-Meier estimator for ϕ(t, Zi, Vi). Then under H0,

n−
1
2 Ûϕ̂ − n−

1
2 Ũϕ̂

p→ 0 as n →∞.

Proof.

Similar to the proof of Lemma 5.1, we first consider the convergence of the two

statistics if the integrals are restricted to [0, K]. Define n−
1
2 Û

[0,K]
ϕ̂ = n−

1
2 Ûϕ̂ −

n−
1
2 Û

(K,∞)
ϕ̂ . Adding and subtracting π = E(Zi) within n−

1
2 Û

[0,K]
ϕ̂ we obtain

n−
1
2 Û

[0,K]
ϕ̂ = S∗1 + S∗2 .

where

S∗1 ≡ n−
1
2

n∑
i

∫ K

0

ϕ̂(t, Zi, Vi)
(n−1

∑
j(Zj − π)ϕ̂(t, Zj, Vj)Yj(t))

n−1
∑

j ϕ̂(t, Zj, Vj)Yj(t)

)
dNi(t)

= n−
1
2

n∑
i=1

∫ K

0

ϕ̂(t, Zi, Vi)
(n−1

∑
j(Zj − π)ϕ̂(t, Zj, Vj)Yj(t))

n−1
∑

j ϕ̂(t, Zj, Vj)Yj(t)

)
dMi(t)

+

∫ K

0

(n−1
∑

i ϕ̂(s, Zi, Vi)Yi(t)λ(t, 0, Vi)

n−1
∑

j ϕ̂(t, Zj, Vj)Yj(t)

)

·
(
n−

1
2

∑
j

(Zj − π)ϕ̂(t, Zj, Vj)Yj(t)
)
dt

≡ S∗1a + S∗1b (5.6)
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and

S∗2 ≡ n−
1
2

n∑
i=1

∫ K

0

ϕ̂(t, Zi, Vi)(Zi − π)dNi(t). (5.7)

From Theorem 6.3.1 of Fleming and Harrington (1990) we can derive that the strat-

ified Kaplan-Meyer estimator ϕ̂(t, z, v) satisfies

sup
0≤t≤K

sup
z,v

√
n|ϕ̂(t, z, v)− ϕ(t, z, v)| = Op(1), (5.8)

which then implies

max
i

sup
0≤t≤K

√
n|ϕ̂(t, Zi, Vi)− ϕ(t, Zi, Vi)| = Op(1).

This immediately shows that

sup
0≤t≤K

n−
1
2

∣∣ ∑
i

(Zi − π)[ϕ̂(t, Zi, Vi)− ϕ(t, Zi, Vi)]Yi(t)
∣∣ = Op(1) (5.9)

sup
0≤t≤K

n−1
∣∣ ∑

i

(Zi − π)[ϕ̂(t, Zi, Vi)− ϕ(t, Zi, Vi)]Yi(t)
∣∣ = op(1) (5.10)

and

sup
0≤t≤K

n−1
∣∣ ∑

i

[ϕ̂(t, Zi, Vi)− ϕ(t, Zi, Vi)]Yi(t)
∣∣ = op(1) (5.11)

sup
0≤t≤K

n−1
∣∣ ∑

i

λ(t, 0, Vi)[ϕ̂(t, Zi, Vi)− ϕ(t, Zi, Vi)]Yi(t)
∣∣ = op(1). (5.12)

Therefore by (5.10) and (5.11),

sup
0≤t≤K

∣∣n−1
∑

i

(Zi − π)ϕ̂(t, Zi, Vi)Yi(t)
∣∣ p→ 0

sup
0≤t≤K

∣∣n−1
∑

i

ϕ̂(t, Zi, Vi)Yi(t)− E{Y (t)ϕ(t, Z, V )}
∣∣ p→ 0.
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Then we use Lemma A.4 to get

n−1
∑

i (Zi − π)ϕ̂(s, Zi, Vi)Yi(t)

n−1
∑

j ϕ̂(t, Zj, Vj)Yj(t)

p→ 0

uniformly on the compact set [0, K]. Finally we apply Lemma A.13 and get

S∗1a

p→ 0 as n →∞.

Similarly, from (5.11), (5.12), the uniform law of large numbers and Lemma

A.4 we have

n−1
∑

i ϕ̂(s, Zi, Vi)Yi(t)λ(t, 0, Vi)

n−1
∑

j ϕ̂(t, Zj, Vj)Yj(t)
− E[Y (t)ϕ(t, Z, V )λ(t, 0, V )]

E[Y (t)ϕ(t, Z, V )]

p→ 0

uniformly on the compact set [0, K], and from (5.9),

sup
0≤t≤K

n−
1
2

∣∣ ∑
i

(Zi − π)ϕ̂(t, Zi, Vi)Yi(t)
∣∣ = Op(1).

Therefore,

S∗1b = n−
1
2

∫ K

0

∑
i

(Zi − π)ϕ̂(t, Zi, Vi)Yi(t)
E[Y (t)ϕ(t, Z, V )λ(t, 0, V )]

E[Y (t)ϕ(t, Z, V )]
dt + op(1).

Thus

n−
1
2 Û

[0,K]
ϕ̂ = S∗1a + S∗1b + S∗2

= n−
1
2 Ũ

[0,K]
ϕ̂ + op(1),

Therefore

n−
1
2 Û

[0,K]
ϕ̂ − n−

1
2 Ũ

[0,K]
ϕ̂

p→ 0

as n →∞. From Lemma A.11 we also have

n−
1
2 Û

(K,∞)
ϕ̂

p,L1→ 0 and n−
1
2 Ũ

(K,∞)
ϕ̂

p,L1→ 0 as K ↑ ∞.
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Thus by Lemma A.5,

n−
1
2 Ûϕ̂ − n−

1
2 Ũϕ̂

p→ 0

as n →∞. 2

With the two asymptotic terms n−
1
2 Ũϕ and n−

1
2 Ũϕ̂, we study the asymptotic

property of n−
1
2 Ûϕ̂ − n−

1
2 Ûϕ in Lemma 5.3 and find that it is asymptotically a sum

of iid terms with mean zero.

Define

λ̄(t) ≡ E[Y (t)ϕ(t, Z, V )λ(t, 0, V )]

E[Y (t)ϕ(t, Z, V )]
. (5.13)

NC
i (t) = I[Ci≤T ] · I[Ci≤t]

MC
i (t) = NC

i (t)−
∫ t

0

Yi(t)dΛC(t, Zi, Vi)

Lemma 5.3 When Assumptions 1.1 and 1.3 hold and ϕ̂(t, Zi, Vi) is a stratified

Kaplan-Meier estimator of ϕ(t, Zi, Vi), then

n−
1
2 Ûd − n−

1
2 Ud

p→ 0 as n →∞

with

n−
1
2 Ûd ≡ n−

1
2 Ûϕ̂ − n−

1
2 Ûϕ

and

n−
1
2 Ud ≡ − n−

1
2

∫ n∑
i=1

(Zi − π)g(t, Vi)e
−Λ(t,0,Vi)[λ̄(t)− λ(t, 0, Vi)]

·{
∫ t

0

dMC
i (s)

SC(s, Zi, Vi)e−Λ(s,0,Vi)
}dt.
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Proof.

As in the proof of the previous two lemmas, we will first prove the convergence of

n−
1
2 Û

[0,K]
d − n−

1
2 U

[0,K]
d to 0 for any K > 0. Define

n−
1
2 Ũd ≡ n−

1
2 Ũϕ̂ − n−

1
2 Ũϕ.

Since Vi is finite-valued, n−
1
2 Ũ

[0,K]
ϕ̂ can be written as

n−
1
2 Ũ

[0,K]
ϕ̂ ≡ R1 − R2,

where

R1 =
∑
z,v

∫ K

0

ϕ̂(t, z, v)(z − π)n−
1
2

n∑
i=1

I[Zi=z,Vi=v]dMi(t),

R2 =
∑
z,v

∫ K

0

ϕ(t, z, v)(z − π)[λ̄(t)− λ(t, 0, v)]n−
1
2

n∑
i=1

I[Zi=z,Vi=v]Yi(t)dt

=
∑
z,v

∫ K

0

ĝ(t, v)
SC(t, z, v)

ŜC(t, z, v)
(z − π)[λ̄(t)− λ(t, 0, v)]

·n− 1
2

n∑
i=1

I[Zi=z,Vi=v]{ Yi(t)

SC(t, z, v)
− e−Λ(t,0,v) + e−Λ(t,0,v)}dt

≡ R2a + R2b

with

R2a =
∑
z,v

∫ K

0

ĝ(t, v)e−Λ(t,0,v)SC(t, z, v)

ŜC(t, z, v)
(z − π)[λ̄(t)− λ(t, 0, v)]n−

1
2{

n∑
i=1

I[Zi=z,Vi=v]}dt

and

R2b =
∑
z,v

∫ K

0

ϕ̂(t, z, v)(z − π)[λ̄(t)− λ(t, 0, v)]

· n− 1
2

{ n∑
i=1

I[Zi=z,Vi=v]{Yi(t)− SC(t, z, v)e−Λ(t,0,v)}}dt.

68



By (5.8) and Lemma A.13,

R1 = n−
1
2

n∑
i=1

∫ K

0

(Zi − π)ϕ(t, Zi, Vi)dMi(t) + op(1)

≡ R∗
1 + op(1). (5.14)

Next consider R2a. By Theorem 6.3.1, for each fixed v and z,

sup
0≤t≤K

∣∣∣∣∣
√

n{SC(t, z, v)

ŜC(t, z, v)
− 1}

∣∣∣∣∣ = Op(1).

By Assumption 5.1 we also have

max
v

sup
0≤t≤K

√
n
∣∣ĝ(t, v)− g(t, v)

∣∣ = Op(1),

which implies

max
v

sup
0≤t≤K

∣∣∣∣∣[ĝ(t, v)− g(t, v)]

{
SC(t, z, v)

ŜC(t, z, v)
− 1

}
n−

1
2

{
n∑

i=1

I[Zi=z,Vi=v]

}∣∣∣∣∣ = op(1)

and

max
v

sup
0≤t≤K

∣∣∣∣∣[ĝ(t, v)− g(t, v)]n−
1
2

{
n∑

i=1

I[Zi=z,Vi=v]

}∣∣∣∣∣ = op(1).

Let pz,v ≡ P{Zi = z, Vi = v}. Then by the Law of Large Numbers

n−1

n∑
i=1

I[Zi=z,Vi=v]
p,L1→ pz,v.

Finally R2a becomes

R2a = R
(1)
2a + R

(2)
2a + op(1) (5.15)

with

R
(1)
2a =

∑
z,v

∫ K

0

g(t, v)e−Λ(t,0,v)(z − π)[λ̄(t)− λ(t, 0, v)]
√

n

{
SC(t, z, v)

ŜC(t, z, v)
− 1

}
pz,vdt
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and

R
(2)
2a =

∑
z,v

∫ K

0

g(t, v)e−Λ(t,0,v)(z − π)[λ̄(t)− λ(t, 0, v)]n−
1
2

{
n∑

i=1

I[Zi=z,Vi=v]

}
dt.

Next consider R2b. By Lemma A.3,

max
v

sup
0≤t≤K

∣∣∣n−1

n∑
i=1

I[Zi=z,Vi=v]{Yi(t)− Sc(t, z, v)e−Λ(t,0,v)}
∣∣∣ = op(1).

Then use (5.9) to get

R2b =
∑
z,v

∫ K

0

ϕ(t, z, v)(z − π)[λ̄(t)− λ(t, 0, v)]

· n− 1
2

{ n∑
i=1

I[Zi=z,Vi=v]{Yi(t)− SC(t, z, v)e−Λ(t,0,v)}}dt + op(1).

≡ R∗
2b + op(1). (5.16)

Then adding all the right hand side terms from (5.14) to (5.16) leads to

n−
1
2 Ũ

[0,K]
ϕ̂ = R∗

1 −R
(1)
2a −R

(2)
2a −R∗

2b + op(1)

= n−
1
2 Ũ [0,K]

ϕ − R
(1)
2a + op(1).

By Corollary 3.2.1 and Theorem 6.3.1 in Fleming and Harrington (1990), we derive

that for each fixed z and v and uniformly over the compact set [0, K],

√
n

{
SC(t, z, v)

ŜC(t, z, v)
− 1

}
=

√
n

n∑
i=1

∫ t

0

I[Zi=z,Vi=v]∑n
j Yj(s)I[Zj=z,Vj=v]

dMC
i (s) + op(1)

Note that the right hand said of the above is asymptotically the following,

n−
1
2

n∑
i=1

∫ t

0

I[Zi=z,Vi=v]

n−1
∑n

j Yj(s)I[Zj=z,Vj=v]

dMC
i (s)

= n−
1
2

n∑
i=1

∫ t

0

I[Zi=z,Vi=v]

pz,v · E{Y1(s)|Z1 = z, V1 = v}dMC
i (s) + op(1)

= n−
1
2

n∑
i=1

∫ t

0

I[Zi=z,Vi=v]

pz,v · SC(s, z, v)e−Λ(s,0,v)
dMC

i (s) + op(1).

70



Therefore R
(1)
2a becomes

R
(1)
2a =

∑
z,v

∫ K

0

g(t, v)e−Λ(t,0,v)(z − π)[λ̄(t)− λ(t, 0, v)]

· n− 1
2

∫ t

0

I[Zi=z,Vi=v]

SC(s, z, v)e−Λ(s,0,v)
dMC

i (s)dt + op(1).

Hence

n−
1
2 Ũ

[0,K]
ϕ̂ − n−

1
2 Ũ [0,K]

ϕ

= −
∑
z,v

∫ K

0

g(t, v)e−Λ(t,0,v)(z − π)[λ̄(t)− λ(t, 0, v)]

· n− 1
2

∫ t

0

I[Zi=z,Vi=v]

SC(s, z, v)e−Λ(s,0,v)
dMC

i (s)dt + op(1)

= − n−
1
2

∫ K

0

n∑
i=1

(Zi − π)g(t, Vi)e
−Λ(t,0,Vi)[λ̄(t)− λ(t, Vi)]

· {
∫ t

0

dMC
i (s)

SC(s, Zi, Vi)e−Λ(s,0,Vi)
}dt + op(1)

≡ n−
1
2 U

[0,K]
d + op(1)

Thus

n−
1
2 Ũ

[0,K]
d − n−

1
2 Ũ

[0,K]
d

p→ 0.

Furthermore, Lemma A.9 and A.11 show that uniformly for all n,

n−
1
2 Ũ (K,∞)

ϕ

p,L1→ 0 as K ↑ ∞,

n−
1
2 Ũ

(K,∞)
ϕ̂

p,L1→ 0 as K ↑ ∞,

and

n−
1
2 Ũ

(K,∞)
d

p,L1→ 0 as K ↑ ∞.

Then by Lemma A.5,

n−
1
2 Ũd − n−

1
2 Ud

p→ 0 as n →∞. (5.17)
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Since

n−
1
2 Ûd − n−

1
2 Ud = (n−

1
2 Ûϕ̂ − n−

1
2 Ũϕ)− (n−

1
2 Ûϕ − n−

1
2 Ũϕ) + (n−

1
2 Ũd − n−

1
2 Ud),

applying (5.17) and Lemmas 5.1 and 5.2 will lead to

n−
1
2 Ûd − n−

1
2 Ud

p→ 0

as n →∞. 2

Next we prove the asymptotic unbiasedness and normality of the corrected test

statistic n−
1
2 Ûϕ̂. We also find its asymptotic variance Σ and a consistent variance

estimator Σ̂.

Theorem 5.1 When Assumptions 1.1 and 1.3 hold and ϕ̂(t, Zi, Vi) is a stratified

Kaplan-Meyer estimator of ϕ(t, Zi, Vi), the random variable n−
1
2 Ûϕ̂ is asymptotically

normally distributed with mean zero and variance Σ, the latter being consistently

estimated under H0 by Σ̂ = Σ̂1 − Σ̂2, where Σ̂1 and Σ̂2 are defined in (5.22) and

(5.23), respectively.

Proof.

By Lemma 5.1 and 5.2,

n−
1
2 Ûϕ̂ = n−

1
2 Ûϕ + n−

1
2 Ûϕ̂ − n−

1
2 Ûϕ

= n−
1
2 Ũϕ + n−

1
2 Ud + op(1). (5.18)

From DiRienzo and Lagakos (2001), we already know that n−
1
2 Ũϕ is a sum of iid

terms with mean zero and hence is asymptotically normally distributed with mean
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zero and variance Σ1, which is the probability limit of n−1
∑n

i=1 A2
i with

Ai =

∫
ϕ(t, Zi, Vi)(Zi − π){dNi(t)− Yi(t)λ̄(t)dt}.

A consistent estimator of Σ1 is

Σ
(n)
1 ≡ n−1

n∑
i

[A
(n)
i − Ā(n)]2

with

A
(n)
i =

∫
ϕ(t, Zi, Vi)(Zi− Z̄)

{
dNi(t)− Yi(t)∑n

j Yj(t)ϕ(t, Zj, Vj)

n∑
j

ϕ(t, Zj, Vj)dNj(t)

}

and Ā(n) = n−1
∑n

i=1 A
(n)
i .

From Lemma 5.3, n−
1
2 Ud is also an iid sum with mean

E{
∫

(Z1 − π)g(t, V1)e
−Λ(t,0,V1)[ ¯λ(t)− λ(t, 0, V1)]{

∫ t

0

dMC
1 (s)

SC(s, Zi, Vi)e−Λ(s,0,V1)
}dt}

=
∑
z,v

Pz,v(z − π)g(t, v)e−Λ(t,0,v)E{
∫ t

0

dMC
1 (s)

SC(s, z, v)e−Λ(s,0,v)

∣∣ Z1 = z, V1 = v}dt

= 0

because when given z and v
∫ t

0
1/{SC(s, z, v)e−Λ(s,0,v)}dMC

1 (s) is an Ft martingale.

Hence by the Central limit theorem n−
1
2 Ud is also asymptotically normally dis-

tributed with mean zero under H0. Thus from (5.18) we can conclude that n−
1
2 Ûϕ̂

is asymptotically normally distributed with mean zero under H0.

Next we show how to find Σ, the asymptotic variance of n−
1
2 Ûϕ̂. Note that

n−
1
2 Ûϕ̂ = n−

1
2 Ûϕ + n−

1
2 Ûd. Then

V ar(n−
1
2 Ûϕ̂) = V ar(n−

1
2 Ûϕ) + V ar(n−

1
2 Ûd) + 2Cov(n−

1
2 Ûϕ, n−

1
2 Ûd).

73



Let Σ2 be the asymptotic variance of n−
1
2 Ûd, then we have Σ2 = V ar(n−

1
2 Ud).

Denote

h1(s, v) ≡
∫ ∞

s

g(t, v)e−Λ(t,v)[λ̄(t)− λ(t, v)]dt

h2(s, z, v) ≡ 1/{SC(s, z, v)e−Λ(s,0,v)}.

Then by changing the order of s and t integrals within n−
1
2 Ud,

n−
1
2 Ud = −

∑
z,v

(z − π)

∫ ∞

0

∫ ∞

s

g(t, v)e−Λ(t,0,v)[λ̄(t)− λ(t, v)]dt

· n− 1
2

n∑
i=1

I[Zi=z,Vi=v]

SC(s, z, v)e−Λ(s,0,v)
dMC

i (s)

≡ −
∑
z,v

(z − π)

∫ ∞

0

h1(s, v)n−
1
2

n∑
i=1

I[Zi=z,Vi=v]h2(s, z, v)dMC
i (s).

which now is a sum of iid martingales with mean zero. Therefore the variance

Σ2 =
∑
z,v

pz,v(z − π)2

∫ ∞

0

h2
1(s, v)h2

2(s, z, v)SC(s, z, v)e−Λ(s,v)λC(s, z, v)ds

=
∑
z,v

pz,v(z − π)2

∫ ∞

0

h2
1(s, v)h2(s, z, v)λC(s, z, v)ds. (5.19)

Let Σ3 be the asymptotic covariance of n−
1
2 Ûϕ and n−

1
2 Ûd. Then we know

Σ3 = Cov(n−
1
2 Ũϕ, n−

1
2 Ud). It is also true that

Σ3 = E{n− 1
2 Ũϕ × n−

1
2 Ud}

because both n−
1
2 Ũϕ and n−

1
2 Ud have mean zero. Recall that n−

1
2 Ũϕ can be written

as

n−
1
2 Ũϕ =

∑
z,v

(z − π)

∫ ∞

0

ϕ(t, z, v)n−
1
2

n∑
i=1

I[Zi=z,Vi=v]dMi(t)

−
∑
zv

(z − π)

∫ ∞

0

ϕ(t, z, v)[λ̄(t)− λ(t, 0, v)]n−
1
2

n∑
i=1

I[Zi=z,Vi=v]Yi(t)dt

≡ B1 + B2.
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Therefore

Σ3 = E{B1 · n− 1
2 Ud} + E{B2 · n− 1

2 Ud}.

The first of these two expectations is 0 because Ni(t) and NC
i (t) will not jump at

the same time. That is, 〈M1,M
C
1 〉(t) = 0. Hence

E{B1 · n− 1
2 Ud}

=
∑
z,v

pz,v(z − π)2E

{∫
ϕ(t, z, v)dM1(t) ·

∫
h1(s, v)h2(s, z, v)dM1(s)

}

=
∑
z,v

pz,v(z − π)2E

{∫
ϕ(t, z, v)h1(t, v)h2(t, z, v)d〈M1,M

C
1 〉(t)

}

= 0.

Furthermore,

E{B2 · n− 1
2 Ud}

=
∑
z,v

pz,v(z − π)2E{
∫

ϕ(t, z, v)[λ̄(t)− λ(t, v)]Y1(t)dt

×
∫

h1(s, v)h2(s, z, v)dMC
1 (s)}

=
∑
z,v

pz,v

∫ ∫
ϕ(t, z, v)[λ̄(t)− λ(t, v)]h1(s, v)h2(s, z, v)

× E{Y1(t)− Y1(t)λC(s, v)ds}dt (5.20)

Given z and v, the conditional expectation

E{Y1(t)[dNC
1 (s)− Y1(s)λC(s, 0, v)ds]}

= E{Y1(t)dNC
1 (s)} − E{Y1(t)Y1(s)λC(s, z, v)ds}

= I[s≥t]E{Y1(s)Y1(t)λC(s, z, v)}ds− E{Y1(s ∨ t)λC(s, z, v)ds}

= − I[s<t] · E{Y1(t)λC(s, z, v)ds}

= − I[s<t]SC(t, z, v)e−Λ(t,0,v)λC(s, z, v)ds
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Then substitute this expression into the last line of (5.20), finding

E{B2 · n− 1
2 Ud}

= −
∑
z,v

pz,v(z − π)2

∫ ∞

0

∫ t

0

g(t, v)e−Λ(t,0,v)[λ̄(t)− λ(t, v)]

× h1(s, v)h2(s, z, v)λC(s, z, v) · ds · dt

= −
∑
z,v

pz,v(z − π)2

∫ ∞

0

∫ ∞

s

g(t, v)e−Λ(t,v)[λ̄(t)− λ(t, v)]dt

× h1(s, v)h2(s, z, v)λC(s, z, v)ds

= −
∑
z,v

pz,v(z − π)2

∫ ∞

0

h2
1(s, v)h2(s, z, v)λC(s, z, v)ds

= − Σ2.

Therefore,

Σ3 = −Σ2.

Thus the asymptotic variance of n−
1
2 Ûϕ̂ becomes

Σ = Σ1 + Σ2 − 2Σ2 = Σ1 − Σ2. (5.21)

Next we find a consistent estimator Σ̂ for Σ based on (5.21) and without knowing

ϕ(t, z, v). First, define Z̄ = n−1
∑n

i=1 Zi and

Â
(n)
i =

∫
ϕ̂(t, Zi, Vi)(Zi − Z̄)

{
dNi(t)− Yi(t)

∑n
j ϕ̂(t, Zj, Vj)dNj(t)∑n
j Yj(t)ϕ̂(t, Zj, Vj)

}
. (5.22)

Then

Σ̂1 ≡ n−1

n∑
i=1

{Â(n)
i − n−1

∑
j

Â
(n)
j }2

is a consistent estimator of Σ1.

The consistent estimator of Σ2 can be defined from (5.19). Note that the consistent
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estimator of h1(s, v) for fixed v is ĥ1(s, v) =

n−1

n∑
i=1

∫ ∞

s

I[Zi=z,Vi=v]ϕ̂(t, z, v)

{
dNi(t)− Yi(t)

∑
j ϕ̂(t, Zj, Vj)dNj(t)∑
j Yj(t)ϕ̂(t, Zj, Vj)

}
,

and a consistent estimator of h2(s, z, v) for fixed z, v is

ĥ2(s, z, v) =
1∑

i Yi(s)I[Zi=z,Vi=v]

/∑
i I[Zi=z,Vi=v]

.

The natural consistent estimator for
∫

SC(s, z, v)e−Λ(s,0,v)λC(s, z, v)ds is

n−1

n∑
i=1

∫
I[Zi=z,Vi=v]dNC

i (t).

Thus a consistent estimator for Σ2 is

Σ̂2 =
∑
zv

∑n
i=1 I[Zi=z,Vi=v]

n
(z − Z̄)2n−1

∑
i

∫
ĥ2

1(s, v)ĥ2
2(s, z, v)I[Zi=z,Vi=v]dNC

i (s)

(5.23)

Finally, a consistent estimator for Σ is

Σ̂ = Σ̂1 − Σ̂2

and the random variable n−
1
2 Ûϕ̂/

√
Σ̂ is asymptotically distributed as standard nor-

mal. 2

Corollary 5.1 n−
1
2 Ûϕ̂ is asymptotically independent of n−

1
2 Ûϕ − n−

1
2 Ûϕ̂.

Proof.

Denote the asymptotic variances of n−
1
2 Ûϕ̂, n−

1
2 Ûϕ and n−

1
2 Ûϕ − n−

1
2 Ûϕ̂ by Σ, Σ1

and σ2, respectively. In the proof of Theorem 5.1, we found that

Σ1 = Σ + Σ2.
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Since n−
1
2 Ûϕ = n−

1
2 Ûϕ̂+(n−

1
2 Ûϕ−n−

1
2 Ûϕ̂), so n−

1
2 Ûϕ̂ is asymptotically uncorrelated

with n−
1
2 Ûϕ − n−

1
2 Ûϕ̂. Because n−

1
2 Ûϕ̂ and n−

1
2 Ûϕ − n−

1
2 Ûϕ̂ are asymptotically

normally distributed, they are also asymptotically independent. 2

5.3 Aalen’s Additive Model

Aalen’s additive model (Aalen, 1980) may give us a way to extend the bias-

correction method to a statistic with substituted semi-parametric estimates of con-

ditional survival functions for censoring. Assume the conditional hazard function of

the censoring has an additive form:

λC(t, Z, V ) = a(t)Z + b(t, V ) + c(t)ZV.

Denote A(t) =
∫ t

0
a(s)ds, B(t, V ) =

∫ t

0
b(s, V )ds and C(t) =

∫ t

0
c(s)ds. The weight-

ing function ϕ becomes

ϕ(t, Zi, Vi) =
exp{−B(t, Vi)} ∧ exp{−A(t)−B(t, Vi)− C(t)Vi}

exp{−A(t)Zi −B(t, Vi)− C(t)ZiVi} ,

which can be further simplified as

ϕ(t, Zi, Vi) =
1 ∧ exp{−A(t)− C(t)Vi}
exp{−A(t)Zi − C(t)ZiVi} .

Here A(t) and C(t) can all be estimated by the Ordinary Least Square estimators

Â(t) and Ĉ(t)(Aalen, 1980) or by the Weighted Least Square estimators Âw(t) and

Ĉw(t) (McKeague, 1988). Then the estimated ϕ function, as a function of the OLS or

WLS estimators of A(t) and C(t), can be used to construct a bias-corrected logrank

test. Though appeared to be a little more complicated comparing to the stratified
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Kaplan-Meier estimated ϕ(·) function, this Aalen’s Additive Model based approach

does give another form of estimated ϕ(·) function from which a promising statistic

n−
1
2 Ûϕ̂ with tractable asymptotic distribution can be constructed. Especially when

the numbers of levels of V gets large, this Aalen’s additive model based approach

does not seem to suffer from the same degradation of performance as the stratified

Kaplan-Meier estimator based method. Preliminary simulation studies have shown

promising results and we would like to continue studying this approach in future

research.
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Chapter 6

Simulations and Examples

In this chapter we are interested in analyzing and assessing the following

through simulations and numerical calculations:

1. The bias of the logrank test with different types of violations of the Kong-Slud

Assumption.

2. The asymptotic validity of the logrank test under the Kong-Slud Assumption.

3. The asymptotic validity of the stratified logrank test.

4. The asymptotic approximation to the distribution of the bias-corrected logrank

test statistic introduced in Chapter 5.

6.1 The Bias

In this section we use both numerical calculation and simulation to study the

bias of the logrank when Kong-Slud Assumption does not hold.

The example given here is based on an simple setting. Let Z be a binary

random variables with values 0 or 1 and P (Z = 1) = 1
2
. Let V be discrete with

two values 1 and 2 with P (V = 1) = 1
2
. Furether define he hazard function of

T under H0 is a scalar λT (t, 0, j) = λj; j = 1, 2 and the hazard function of C is

λC(t, Z = i, vj) = λC
ij; i = 0, 1 and j = 1, 2. Then the asymptotic mean and
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Table 6.1: The bias of a logrank test in Numerical Calculations and Simulations

Censoring Dependence I: λC
11 6= λC

12 = λC
01 = λC

02

λ1 λ2 λC
11 λC

12 µ0(100) µ̂0(100) µ0(400) µ̂0(400) α∗(400) α̂(400)

1.0 2.5 3.0 1.5 .2976 .2800 .5952 .5790 .092 .092

1.0 2.5 1.0 3.7 -.2977 -.2998 -.5954 -.5960 .092 .091

3.0 0.5 1.0 3.7 .6005 .5349 1.2009 1.1553 .225 .217

1.0 2.5 0.8 3.2 -.3007 -.2958 -.6015 -.6035 .092 .099

Censoring Dependence II: λC
11 = 2λC

01; λC
12 = 2λC

02

λ1 λ2 λC
11 λC

12 µ0(100) µ̂0(100) µ0(400) µ̂0(400) α∗(400) α̂(400)

3.0 0.5 1.0 3.0 .3707 .3433 .7414 .7524 .115 .114

2.5 1.0 1.2 2.8 .1860 .1785 .3720 .3526 .065 .063

2.5 1.0 0.8 3.2 .280 0.2716 .560 0.5597 .081 .081

3.0 0.5 1.0 3.7 .4683 0.4314 .9367 0.9204 .155 .148

variance of the logrank test statistic n−
1
2 ÛL are calculated using the general formula

in Section 2.1 and estimated by simulation with R = 5000 realizations under two

types of dependent censoring. The actual type I errors for the tests using the logrank

statistic under these assumptions are calculated.

In Table 6.1, µ0(100) and µ0(400) are the numerical values of E{n− 1
2 ÛL} based

on Lemma 2.1 with sample sizes 100 and 400; µ̂0(100) and µ̂0(400) are the empirical

estimats of the bias with sample sizes 100 and 400 from a simulation with 10000

realizations ; α∗(400) is the calculated size (type I error) of the test from the nu-

merical results and α̂(400) is the estimated size (type I error) from the simulations.

Here the nominal type I error α is 0.05.
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Table 6.1 confirms several results: (i) The logrank statistic is generally biased

when the distribution of censoring time depends upon both the treatment group

and covariates. The bias, whether positive or negative, does inflate the type I error

of the test. (ii) The bias is proportional to the square root of the sample size. Here

µ̂0(400)/µ̂0(100) ≈ 2. (iii) The result of Lemma 2.1 is also confirmed. There is a

high probability to get µ̂0(·) < µ0(·), which is true in many other simulations.

This is implied by Lemma 2.1. Recall that µ0 is calculated from
√

n · B and µ̂ is

an empirical estimator of E0(n
− 1

2 ÛL). Lemma 2.1 shows the mean of n−
1
2 ÛL has an

o(
√

n) term entering as an additive factor

E{n− 1
2 ÛL} =

√
nB + o(

√
n).

From the proof of Lemma 2.1, we see that this o(
√

n) term generally enters with a

sign opposite to B, which implies
∣∣E{n− 1

2 ÛL}
∣∣ <

∣∣√nB
∣∣.

6.2 Comparisons between the Logrank and Stratified Logrank Test

It would be interesting to compare the classical logrank test with the stratified

logrank test when the Kong-Slud Assumption holds. We can confirm from these ex-

amples that (i) the logrank and stratified logrank statistics are both asymptotically

valid under the Kong-Slud assumption; (ii) the two statistics have the same asymp-

totic variance under the Kong-Slud assumption; (iii) the stratified logrank statistic

is asymptotically valid when Kong-Slud assumption fails and the logrank statistic

is biased; (iv) the power decreases when the number of strata increases within the

same set of data and (v) the contiguous theory we proved in Chapter 4 appears to
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hold approximately in finite samples.

In these examples, denote

µ̂ : empirical means of n−
1
2 ÛL or n−

1
2 ÛS

Ŝ : empirical standard deviation of n−
1
2 ÛL or n−

1
2 ÛS

Ŝµ : the square root of the empirical averages of V̂L and V̂S.

N : number of realizations in simulation

n : sample size, number of subjects in one simulation realization.

Case 1: Under Kong-Slud Assumption and H0

Assume the conditional survival function for T and C are

S(t, z, v) = exp{−eθ1z+β1vt}

and

SC(t, z, v) = exp{−(eθ
2 + eβ

2 )t}

respectively. Let V be discrete with values

(v1, . . . , v10) = (1, 3, 4, 6, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5)

and θ1 = 0; β1 = 0.1; θ2 = −.8; β2 = −1; P (V = vi) = pi = .1; i = 1, . . . , 10,

N = 10000. The result can be found at Table 6.2.

Case 2: Under Kong-Slud Assumption and Hn

Here we keep the same setting as in case 1 except for assigning θ1 = −4/
√

n.

Table 6.3 shows an increase trend of the Asymptotic Relative Efficiency (ARE) of
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Table 6.2: Logrank and Stratified Logrank Under KS and H0, N = 10000

n = 400 µ̂ 95% CI for µ Ŝ Ŝµ 95% CI of Sµ

LG -0.0041 (-0.0118, 0.0036) 0.3937 0.3958 (0.3957, 0.3960)

Str. LG -0.0065 (-0.014, 0.0009) 0.3769 0.3781 (0.3779, 0.3782)

n = 900 µ̂ 95% CI for µ Ŝ Ŝµ 95% CI of Sµ

LG 0.0034 (-0.0044, 0.0112) 0.3984 0.3973 (0.3973, 0.3974)

Str. LG 0.0044 (-0.0032, 0.0121) 0.3879 0.3883 (0.3882, 0.3884)

n = 1600 µ̂ 95% CI for µ Ŝ Ŝµ 95% CI of Sµ

LG 0.0018 (-0.0060, 0.0096) 0.3985 0.3979 (0.3979, 0.3980)

Str. LG 0.0007 (-0.0070, 0.0084) 0.3912 0.3923 (0.3923, 0.3924)

the stratified logrank statistic to the logrank statistic when Kong-Slud Assumption

holds and under Hn : θ1 = b/
√

n.

Case 3: When Kong-Slud Assumption Fails and under H0

Let λC(t, 1, v4) = 1.2 and λC(t, z, v) = 1.6forz 6= 1 and v 6= v4, θ1 = 0; β1 =

0.1 and (v1, . . . , v10) = (c, 3, 4, 6, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5). Table 6.4 shows the rela-

tive unbiasedness of the stratified logrank statistic and an increase proportional to

√
n of bias for the logrank statistic.

6.3 Simulations on the Bias-corrected Logrank Test

In this section we use simulations to study properties of the bias-corrected test

statistics introduced in Chapter 5.
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Table 6.3: Logrank and Stratified Logrank Under KS and Hn, N = 10000

n = 400 µ̂ 95% CI of µ Ŝ Ŝµ ARE

LG -0.58379 (-0.59119, -0.57638) 0.37779 0.38306

Str. LG -0.54263 (-0.54971, -0.53555) 0.36121 0.36776 0.94511

n = 900 µ̂ 95% CI of µ Ŝ Ŝµ ARE

LG -0.60170 ( -0.60928, -0.59412) 0.38683 0.38886

Str. LG -0.58477 (-0.59219, -0.57736) 0.37844 0.38077 0.98686

n = 1600 µ̂ 95% CI of µ Ŝ Ŝµ ARE

LG -0.60117 (-0.60888, -0.59346) 0.39343 0.39175

Str. LG -0.59550 (-0.60311, -0.58789) 0.38808 0.38666 1.00845

n = 2500 µ̂ 95% CI of µ Ŝ Ŝµ ARE

LG -0.61118 (-0.61875, -0.60361) 0.38637 0.39322

Str. LG -0.61068 (-0.61819, -0.60318) 0.38297 0.38975 1.0162

Table 6.4: Logrank and Stratified Logrank Without KS and under H0, N = 10000

n = 400 µ̂ 95% CI of µ Ŝ Ŝµ 95% CI of Sµ

LG 0.00775 (0.00101, 0.01449) 0.34383 0.34381 (0.34368, 0.34393)

Str. LG 0.00036 (-0.00605, 0.00678) 0.32738 0.32750 (0.32737, 0.32762)

n = 900 µ̂ 95% CI of µ Ŝ Ŝµ 95% CI of Sµ

LG 0.01499 (0.00823, 0.02174) 0.34476 0.34537 (0.34529, 0.34545)

Str. LG 0.00327 (-0.00330, 0.00985) 0.33556 0.33672 (0.33664, 0.33680)

n = 1600 µ̂ 95% CI of µ Ŝ Ŝµ 95% CI of Sµ

LG 0.01727 (0.01043, 0.0241) 0.34878 0.34601 (0.34595, 0.34607)

Str. LG 0.00317 (-0.00355, 0.0099) 0.34304 0.34056 (0.34049, 0.34062)
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6.3.1 Bias-corrected Logrank Test Under H0

Let λ(t, z, v) = exp(θz) exp(βv) and λC(t, z, v) = γ1zv+γ2v+γ3z be the hazard

functions of T and C, respectively. According to Assumption 1.5, the logrank test

statistic n−
1
2 ÛL in this example is biased. Then several bias-corrected test statistic

are considered: n−
1
2 Ûϕ, n−

1
2 Ûϕ̂, and n−

1
2 ÛS, where n−

1
2 Ûϕ is the modified logrank

statistic with known distribution function of censoring and n−
1
2 Ûϕ̂ is the one based

on Kaplan-Meier estimated distribution function of censoring time.

In the first example (Table 6.5), let θ = 0, β = −.4, γ1 = .1, γ2 = .2 and

γ3 = .1. Here P (V = v) = 0.5 with v ∈ {1, 2} and P (Z = 1) = 0.5. The number of

simulations R = 2500. Let V1 = Var(n−
1
2 Ûϕ̂ − n−

1
2 Ûϕ), V2 = Cov(n−

1
2 Ûϕ, n−

1
2 Ûϕ̂ −

n−
1
2 Ûϕ) and V3 = Cov(n−

1
2 Ûϕ̂, n−

1
2 Ûϕ − n−

1
2 Ûϕ̂) are three variance or covariance

quantities that are of interest to us to confirm our findings in Chapter 5. According

to the proof of Theorem 5.1, the covariances V2 = −V1 and V3 = 0. In Table 6.5 -

6.7, V̂1, V̂2 and V̂3 are their empirical estimator and V1 is the numerical calculation

based on Theorem 5.1.

Due to the choice of covariates in the above example, the magnitude of V1

and V2, contrasting to Var{n− 1
2 Ûϕ̂} and Var{n− 1

2 Ûϕ̂}, is very small. In the second

example (Table 6.6), let θ = 0, β = .4, γ1 = −.1, γ2 = .2 and γ3 = .1. Here

P (V = v) = 0.5 with v ∈ {1, 9} and P (Z = 1) = 0.5. The number of simulations is

still R = 2500. Again Table 6.6 confirms Theorem 5.1. In addition, Table 6.6 shows

that the variance of n−
1
2 Ûϕ̂ − n−

1
2 Ûϕ is quite substantial when difference between

levels of covariates is large.
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Table 6.5: Bias-corrected Tests When Kong-Slud Assumption Fails and Under H0,

Example 1

Mean n−
1
2 Ûϕ n−

1
2 Ûϕ̂ n−

1
2 ÛS n−

1
2 ÛL

n=100 0.0010 0.0006 0.0020 0.0126

n=200 -0.0041 -0.0038 -0.0029 0.0132

n=300 -0.0055 -0.0040 -0.0028 0.0163

n=400 0.0028 0.0023 0.0031 0.0283

StDev n−
1
2 Ûϕ n−

1
2 Ûϕ̂ n−

1
2 ÛS n−

1
2 ÛL

n=100 0.3334 0.3310 0.3608 0.3646

n=200 0.3376 0.3370 0.3680 0.3708

n=300 0.3426 0.3423 0.3729 0.3766

n=400 0.3427 0.3425 0.3765 0.3786

V̂1 V̂2 V̂3

n=100 0.00269 -0.00214 -0.00055

n=200 0.00199 -0.00119 -0.00080

n=300 0.00171 -0.00095 -0.00077

n=400 0.00168 -0.00091 -0.00077
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Table 6.6: Bias-corrected Tests When Kong-Slud Assumption Fails and Under H0,

Example 2

Mean n−
1
2 Ûϕ n−

1
2 Ûϕ̂ n−

1
2 ÛS n−

1
2 ÛL

n=100 -.0411 -.0023 -.0005 -.2033

n=400 -.0354 .0015 0 -.4243

StDev n−
1
2 Ûϕ n−

1
2 Ûϕ̂ n−

1
2 ÛS n−

1
2 ÛL

n=100 0.3260 0.2736 0.2992 0.2976

n=400 0.3405 0.2882 0.3111 0.3042

V̂1 V̂2 V̂3 V1

n=100 .0304 -.0309 0 .0310

n=400 .0417 -.0373 0 .0310

6.3.2 Bias-corrected Logrank Test under HA

In this example (Table 6.7), let θ = 2/
√

n, β = .4, γ1 = 2/
√

n, γ2 = .2 and

γ3 = .1. Here P (V = v) = 0.5 with v ∈ {1, 4} and P (Z = 1) = 0.5. Table 6.7 shows

efficacy of these bias-corrected tests under the alternatives Hn : θ = 2/
√

n, γ1 = 2
√

n

that are contiguous to H0 : θ = γ1 = 0 as proved in Theorem 4.1. In this example

it turns out that the stratified logrank test is the most efficient among the three

bias-corrected tests while different result showed in other simulation examples. At

this moment there is no conclusive result that which test is the most powerful. The

result of an ongoing study on power comparisons among these Bias-corrections will

be provided in the near future.
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Table 6.7: Bias-corrected Tests When Kong-Slud Assumption Fails and Under HA

Mean n−
1
2 Ûϕ n−

1
2 Ûϕ̂ n−

1
2 ÛS n−

1
2 ÛL

n=100 -.1271 -.1272 -.1478 -.0857

n=400 -.1482 -.1515 -.1785 -.0815

StDev n−
1
2 Ûϕ n−

1
2 Ûϕ̂ n−

1
2 ÛS n−

1
2 ÛL

n=100 0.2441 0.2421 0.2748 0.2772

n=400 0.2713 0.2680 0.2945 0.2987

Efficacy n−
1
2 Ûϕ n−

1
2 Ûϕ̂ n−

1
2 ÛS n−

1
2 ÛL

n=100 .2713 .2761 .2894 .0955

n=400 .2982 .3196 .3672 .0744
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Chapter 7

Summary of Results and Future Research Problems

In this chapter we give a summary of the results of this thesis and point out

future research problems that have arisen from this thesis.

1. We have proved that the logrank statistic is asymptotically distributed as a

standard normal under the null hypothesis of no treatment effect if the Kong-

Slud Assumption holds. However, if the assumption fails, the logrank rank test

is generally biased and the potential bias can cause serious validity problems in

clinical trials. Therefore how to practically verify the Kong-Slud Assumption

is always an interesting and meaningful future research problem for us.

2. The classical results of the stratified logrank statistic have been reviewed in

this thesis. Under suitable regularity conditionas, a complete stratified logrank

statistic, as defined in 1.3.5, is still valid when Kong-Slud Assumptions fails.

Therefore we would suggest that investigators use the stratified logrank test

because the potential bias is a major concern to the validity of the clinical

trials . At this moment we only make such a suggestion for moderately strat-

ified studies because of the widespread belief that a heavily stratified statistic

may have substantial loss in efficiency (Green and Byar, 1978; Schoenfeld and

Tsiatis, 1987). Hence we are interested in doing a systematic study on the

relation between power and stratification. Properties of a stratified logrank
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test for which the number of strata increases with respect to the sample size

will be of interest to us in the future.

3. We have studied good properties of the partially stratified logrank statistic,

such as n−
1
2 ÛW defined in Section 1.3.6, under the Kong-Slud Assumption

in Chapter 3. We also admit the fact that this test is also generally biased

if the Kong-Slud Assumption fails. Remember that we have the dilemma

of “Bias-free” v.s “Heavily-stratified” above. A possible way to step out of

this dilemma might to use a “hybrid” approach: do a preliminary analysis to

detect covariates which may have interactions with the treatment group on

the conditional distribution of the censoring and then carry out a stratified

logrank test that only stratifies on the “detected” covariates or “suspected”

important covariates. It is very possible to get a moderately stratified test

by using this approach. And in theory, with suitable regularity conditions,

we are able to prove this test is asymptotically valid. The key component of

this approach is the preliminary analysis, in which not only proper statistical

analytical tools are important, but also experience and expert opinions are

crucial. We would like to have some input in this approach.

4. We have established a contiguous alternative theory regarding small viola-

tions of the Kong-Slud Assumption in Chapter 4. We will carry out numerical

large-sample power studies using theoretical formulas to contrast logrank or

stratified-logrank tests, especially W -stratified ones, with tests based on esti-

mated phi-functions.
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5. We have discussed and extended the bias-correction method proposed by Di-

Renzo and Lagakos (2001a) in Chapter 5. Our work solidifies the practical

use of this method when the distribution function for censoring is unknown

and estimated. Due to our work a correct consistent variance estimator has

been found. Furthermore, we find that a parametric model estimation for the

distribution of the censoring will also give a valid bias-corrected logrank test.

We will extend the theorems about Ûϕ̂ to the case where estimation of the

conditional censoring distributions is done by a parametric model. Another

interesting approach is to assume Aalen’s additive model. A kernel smoothed

weighted least square estimator for the distribution of censoring has been

found, partially by simulation, to be good to use. How to fully show the ap-

plicability, either by theory or simulations, of this new direction with Aalen’s

additive model will be an interesting future research problem to work with.
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Chapter A

Appendix: Lemmas and Proofs

Lemma A.1 If Assumption 1.1 and 1.3 hold, we have

(i) E0{Z |V, Y (t) = 1} = E{Z|V, C ≥ t}.

(ii) The Kong-Slud Assumption I (Assumption 1.4) implies E0{Z|Y (t) = 1} =

E{Z|V, C ≥ t}.

Proof:

First we prove (i) without Assumption 1.4. Assumption 1.3 implies that under the

null hypothesis of no treatment effect,

E0{Y (t) = 1|Z, V } = P0{T ≥ t|V }P{C ≥ t|Z, V }.

Then we have

E0{Z |V, Y (t) = 1}

=
P0{Z = 1, Y (t) = 1|V }

P0{Y (t) = 1|V }
=

P0{Y (t) = 1 |Z = 1, V }P{Z = 1 |V }
E0{E0[Y (t)|V ]|Z, V }

=
P0{T ≥ t|V }P{C ≥ t|Z = 1, V }P{Z = 1}

P0{T ≥ t|V }[P{Z = 1}P{C ≥ t|Z = 1, V }+ P{Z = 0}P{C ≥ t|Z = 0, V }]
=

P{Z = 1, C ≥ t|V }
P{C ≥ t|V }

= P{Z = 1|C ≥ t, V }

= E{Z|V, C ≥ t}.

Hence (i) is proved. (ii) is a direct result (i) and Assumption 1.4. 2
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Lemma A.2 If Assumptions 1.1 and 1.3 hold, then

(i) Assumption 1.5 implies Assumption 1.4;

(ii) Assumption 1.6 implies Assumption 1.5.

Proof.

(i) Assumptions 1.1 and 1.5 imply that Z and V are conditionally independent

given C ≥ t, and we also know that Z and V are conditionally independent given

T ≥ t under H0. Conditional independence of Z and V given Y (t) = 1 under H0 in

Assumption 1.4 follows. The following is the proof with details.

Assumption 1.5 expresses the survival function of the censoring is

SC(t|z, v) = e−a(t,z) · e−b(t,v).

Then from Assumptions 1.1 and 1.3,

µ(t) =
E0[ZY (t)]

E0[Y (t)]
=

E[Ze−a(t,Z)]

E[e−a(t,Z)]
.

From Lemma A.1,

E0{Z |V, Y (t) = 1} =
P (Z = 1)P (C ≥ t|Z = 1, V )

P (C ≥ t|V )

=
P (Z = 1)e−a(t,1) · e−b(t,V )

E[e−a(t,Z)|V ] · e−b(t,V )

=
E[Ze−a(t,Z)]

E[e−a(t,Z)]

hence we have

E0{Z |V, Y (t) = 1} = µ(t),

which is Assumption 1.4.

(ii) Assumption 1.6 says that the distribution of censoring depends only on covari-
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ates or only on treatment group. Both of these are special cases of Assumption 1.5.2

Lemma A.3 For i = 1, . . . , n with Ni(t), Yi(t), Zi are defined as in Section 1.1.

sup
0≤t<∞

| 1
n

n∑
i=1

Ni(t)− E[N1(t)]| P,L2(Ω)−→ 0; (A.1)

sup
0≤t<∞

| 1
n

n∑
i=1

Yi(t)− E[Y1(t)]| P,L2(Ω)−→ 0; (A.2)

sup
0≤t<∞

| 1
n

n∑
i=1

ZiYi(t)− E[Z1Y1(t)]| P,L2(Ω)−→ 0; (A.3)

Proof.

1. Since E[N1(t)] = Pr[T1 ≤ t, C1 ≤ T1] is a subdistribution function and Ni(t) =

I[Ti≤t]I[Ti≤Ci] are iid indicator functions that are monotone, nondecreasing and right-

continuous in t, by the Glivenko-Cantelli Theorem (Section 19.1, van der Vaart,

1998),

sup
0≤t<∞

| 1
n

n∑
i=1

Ni(t)− E[N1(t)]| P,L2(Ω)−→ 0

2. For i = 1, . . . , n, Let Xi = min{Ti, Ci}. Then

E[1− Y (t+)] = P [X ≤ t]

is the distribution function of X. By the Glivenko-Cantelli Theorem,

sup
0≤t<∞

| 1
n

[1−
n∑

i=1

Yi(t)]− E[1− Y1(t)]| P,L2(Ω)−→ 0,

proving (A.2).

3. Since

E[Z(1− Y (t))] = P [Z = 1, X ≤ t]
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is a sub-distribution function, by the Glivenko-Cantelli Theorem,

sup
0≤t<∞

| 1
n

[
n∑

i=1

Zi(1− Yi(t))]− E[Z(1− Y1(t))]| P,L2(Ω)−→ 0.

By the Law of Large Numbers,

| 1
n

n∑
i=1

Zi − E(Z)| P,L2(Ω)−→ 0.

Thus, (A.3) is proved through the previous lines and the triangle inequality:

sup
0≤t<∞

| 1
n

n∑
i=1

ZiYi(t)− E[Z1Y1(t)]|

= sup
0≤t<∞

| − 1

n

n∑
i=1

Zi(1− Yi(t)) +
1

n

n∑
i=1

Zi + E[Z(1− Y1(t))]− E[Z1]|

≤ sup
0≤t<∞

| 1
n

[
n∑

i=1

Zi(1− Yi(t))]− E[Z(1− Y1(t))]|+ | 1
n

n∑
i=1

Zi − E(Z)|

P,L2(Ω)−→ 0. (A.4)

2

Lemma A.4 Given K > 0 and 0 < c1 < ∞, let Â(n)(t) and B̂(n)(t) be sequences of

stochastic processes with A(t) = E{Â(n)(t)} and B(t) = E{B̂(n)(t)}. If

sup0≤t≤K |Â(n)(t)/B̂(n)(t)| ≤ c1, sup0≤t≤K |1/B(t)| < ∞ and

sup
0≤t≤K

|Â(n)(t)− A(t)| p,L1→ 0

sup
0≤t≤K

|B̂(n)(t)−B(t)| p,L1→ 0

as n →∞. Then

sup
0≤t≤K

∣∣∣ Â
(n)(t)

B̂(n)(t)
− A(t)

B(t)

∣∣∣ p,L1→ 0

as n →∞.
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Proof.

Since

Â(n)(t)

B̂(n)(t)
− A(t)

B(t)
=

1

B(t)
[Â(n)(t)− A(t)] − Â(n)(t)

B̂(n)(t)
· 1

B(t)
[B̂(n)(t)−B(t)],

it follows that

sup
0≤t≤K

∣∣∣ Â
(n)(t)

B̂(n)(t)
− A(t)

B(t)

∣∣∣

≤ sup
0≤t≤K

∣∣∣ 1

B(t)
[Â(n)(t)− A(t)]

∣∣∣ + sup
0≤t≤K

∣∣∣ Â
(n)(t)

B̂(n)(t)
· 1

B(t)
[B̂(n)(t)−B(t)]

∣∣∣

≤ sup
0≤t≤K

∣∣∣ 1

B(t)

∣∣∣ ·
{

sup
0≤t≤K

∣∣∣Â(n)(t)− A(t)
∣∣∣ + c1 · sup

0≤t≤K

∣∣∣B̂(n)(t)−B(t)
∣∣∣
}

.

(A.5)

From (A.5), the hypotheses of the Lemma immediately imply that as n →∞,

sup
0≤t≤K

∣∣∣ Â
(n)(t)

B̂(n)(t)
− A(t)

B(t)

∣∣∣ p,L1→ 0

2.

Lemma A.5 Let Gn(t) and G̃n(t) be two sequences of stochastic processes such that

∫ K

0

{Gn(t)− G̃n(t)}dt
p→ 0 as n →∞

for any K > 0. If both

∫ ∞

K

Gn(t)dt
p→ 0 and

∫ ∞

K

G̃n(t)dt
p→ 0 as K ↑ ∞

uniformly in n, then

∫ ∞

0

{Gn(t)− G̃n(t)}dt
p→ 0 as n →∞.
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Proof.

For any ε > 0, there exists a real number K > 0 such that, for all n,

P{
∣∣
∫ ∞

K

Gn(t)dt
∣∣ >

ε

3
} <

ε

3
, P{

∣∣
∫ ∞

K

G̃n(t)dt
∣∣ >

ε

3
} <

ε

3
.

Then for fixed K, there exists an integer N > 0 such that for any integer n > N ,

P{
∣∣
∫ K

0

{Gn(t)− G̃n(t)}dt
∣∣ >

ε

3
} <

ε

3
.

Therefore

P{
∣∣
∫ ∞

0

{Gn(t)− G̃n(t)}dt
∣∣ > ε}

≤ P{
∣∣
∫ ∞

K

Gn(t)dt
∣∣ >

ε

3
}+ P{

∣∣
∫ ∞

K

Gn(t)dt
∣∣ >

ε

3
}

+ P{
∣∣
∫ K

0

{Gn(t)− G̃n(t)}dt
∣∣ >

ε

3
}

<
ε

3
+

ε

3
+

ε

3
= ε

Hence
∫ ∞

0

{Gn(t)− G̃n(t)}dt
p→ 0

as n →∞. 2

Lemma A.6 For i = 1, . . . , n, let Ni(t), Yi(t), Zi be defined as in Section 1.1. Then

under Assumptions 1.1 and 1.3,

(i)

∫ ∞

K

dN1(t)
p,L1→ 0 as K ↑ 0;

(ii)

∫ ∞

K

Y1(t)λ(t, 0, V1)dt
p,L1→ 0 as K ↑ 0.
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Proof.

By definition N1(t) = I[T1≤C1] · I[T1≤t], so that N1(∞) = I[T1≤C1]. Thus,

E{|
∫ ∞

K

dN1(t)|} = E{N1(∞)−N1(K)}

= E{I[T1≤C1] · I[T1>K]}

≤ E{I[T1>K]}

= P{T1 > K} → 0 as K ↑ ∞.

Hence (i) is proved.

Since M1(t) = N1(t)−
∫

Y1(t)λ(t, 0, V1)dt is an Ft martingale with mean 0,

E{|
∫ ∞

K

Y1(t)λ(t, 0, V1)dt|}

= −E{
∫ ∞

K

dM1(t)}+ E{
∫ ∞

K

dN1(t)}

→ 0 as K ↑ ∞.

Hence (ii) is proved. 2

Lemma A.7 For K > 0, Define

n−
1
2 Û

(K,∞)
L ≡ n−

1
2

n∑
i=1

∫ ∞

K

[Zi −
∑n

i=1 ZiYi(t)∑n
i=1 Yi(t)

]dNi(t)

and

n−
1
2 U

(K,∞)
L ≡ n−

1
2

n∑
i=1

∫ ∞

K

[Zi − µ(t)][dNi(t)− Yi(t)
E[Y (t)λ(t, 0, V )]

E[Y (t)]
dt].

Then under Assumptions 1.1, 1.3 and 1.4, uniformly over all n,

(i) n−
1
2 Û

(K,∞)
L

p,L1→ 0 as K ↑ ∞
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(ii) n−
1
2 U

(K,∞)
L

p,L1→ 0 as K ↑ ∞.

Proof.

(i) Define

Z̄(t) ≡
∑n

i=1 ZiYi(t)∑n
i=1 Yi(t)

,

then n−
1
2 Û

(K,∞)
L can be rewritten as

n−
1
2 Û

(K,∞)
L = n−

1
2

n∑
i=1

∫ ∞

K

[Zi − µ(t)]dNi(t) + n−
1
2

n∑
i=1

∫ ∞

K

[µ(t)− Z̄(t)]dMi(t)

+ n−
1
2

n∑
i=1

∫ ∞

K

[µ(t)− Z̄(t)]Yi(t)λ(t, 0, Vi)dt

≡ A1 + A2 + A3 (A.6)

Note that A1 is an iid sum with mean 0 and A2 is a sum of martingales. Therefore,

E{A2
1} = E{

∫ ∞

K

[Z1 − µ(t)]dN1(t)}2

= E{
∫ ∞

K

[Z1 − µ(t)]2dN1(t)}

≤ E{
∫ ∞

K

dN1(t)} → 0 as K ↑ ∞.

Hence A1
L2→ 0 as K ↑ ∞ uniformly for all n. Furthermore, because when i 6= j

E{
∫ ∞

K

[µ(t)− Z̄(t)]dMi(t)

∫ ∞

K

[µ(t)− Z̄(t)]dMj(t)} = 0,

E{A2
2} = E{

∫ ∞

K

[µ(t)− Z̄(t)]dM1(t)}2

= E{
∫ ∞

K

[µ(t)− Z̄(t)]2d〈M1〉(t)}

= E{
∫ ∞

K

[µ(t)− Z̄(t)]2Y1(t)λ(t, 0, V1)dt}

≤ E{
∫ ∞

K

Y1(t)λ(t, 0, V1)dt}

= E{
∫ ∞

K

dN1(t)} → 0 as K ↑ ∞,
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where 〈Mi〉 is the predictable process of Mi as defined in Section 1.3.1. Theorem

II.3.1 of Andersen et al (1992) was applied in above derivations. Hence A2
L2→ 0 as

K ↑ ∞ uniformly for all n.

Next consider A3, which can be rewritten as

A3 = −n−
1
2

∫ ∞

K

∑n
i=1[Zi − µ(t)]Yi(t)

Ȳ (t)

n∑
j=1

Yj(t)λ(t, 0, Vj)dt.

Hence

E{A2
3} = E{ 1

n

∑n
i=1[Zi − µ(t)]Yi(t)

Ȳ (t)

∑n
k=1[Zk − µ(s)]Yk(s)

Ȳ (s)

n∑
j=1

Yj(t)λ(t, 0, Vj)

×
n∑

l=1

Yl(s)λ(s, 0, Vl) (A.7)

Let

Y(t) ≡ {Y1(t), Y2(t), . . . , Yn(t))}

V ≡ {V1, V2, . . . , Vn}.

By Assumption 1.4,

E{Zi | Y(t),V} = E{Zi | Yi(t) = 1} = µ(t).

Hence

E

{∑
i

[Zi − µ(t)Yi(t)]
∣∣∣Y(t),V

}
= 0

and

E

{∑

i6=k

[Zi − µ(t)]Yi(t)[Zk − µ(s)]Yk(s)

}
= 0.

Therefore (A.7) can be further simplified as

E{A2
3} = E

{ 1

n

∫ ∞

K

∫ ∞

K

∑n
i=1[Zi − µ(s)][Zi − µ(t)]Yi(s)Yi(t)

Ȳ (t)Ȳ (s)
∑

j,k

Yj(t)λ(t, 0, Vj)Yk(s)λ(s, 0, Vk)dtds
}

(A.8)
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Recall that by bringing the absolute value into the expectation on the right hand

side of (A.8), we estimated

n∑
i=1

∣∣[Zi − µ(s)][Zi − µ(t)] Yi(s) Yi(t)
∣∣ ≤

n∑
i=1

Yi(max(s, t)) = Ȳ (s ∨ t).

Also, by symmetry in s, t, we write the double integral as twice the integral over

the region with s < t, so from (A.8) we know that for fixed K,

E{A2
3} ≤

2

n
E

n∑

j,k=1

∫ ∞

K

∫ ∞

s

Yj(t) Yk(s)

Ȳ (s)
λ(t, 0, Vj) λ(s, 0, Vk) dt ds. (A.9)

To simplify this expression further , we observe that when s < t and Yj(t) = Yk(s) =

1,

Ȳ (s) ≥ 1 +
∑

i: i6=j,k

Yi(s).

So that using independence of (Yi(·), Vi) for different i, the right hand side of (A.9)

is bounded above by

2

n
E

n∑

j,k=1

∫ ∞

K

∫ ∞

s

Yj(t) Yk(s) E{[1 +
∑

i:i6=j,k

Yi(s)]
−1}λ(t, 0, Vj) λ(s, 0, Vk) dt ds

(A.10)

Next we separate the double sum over j and k of (A.10) into two terms, one

including all the terms with j = k, and the other consisting of all terms with j 6= k.

The first such sum is

2

n
E

n∑
j=1

∫ ∞

K

∫ t

K

Yj(t) E{[1 +
∑

i:i6=j

Yi(s)]
−1}λ(t, 0, Vj) λ(s, 0, Vj) ds dt,
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which is crudely bounded above by the normalized expected iid sum

2

n
E

n∑
j=1

∫ ∞

K

Yj(t) Λ(t, 0, Vj) λ(t, 0, Vj) dt

= 2 E

∫ ∞

K

SC|V (t|V1) e−Λ(t,0,V1) Λ(t, 0, V1) λ(t, 0, V1) dt

≤ 2 E

∫ ∞

K

e−Λ(t,0,V1) Λ(t, 0, V1) λ(t, 0, V1) dt

= 2 E

∫ ∞

Λ(K,0,V1)

xe−x dx → 0 as K ↑ ∞. (A.11)

When j 6= k, the conditional expectation is bounded as follows:

E
{∫ ∞

s

Yj(t) λ(t, 0, Vj) dt
∣∣∣ Vj, Vk, Yi(·)i6=j

}

= E
{∫ ∞

s

e−Λ(t,0,Vj)SC|V (t|Vj)λ(t, 0, Vj)dt
∣∣∣ Vj

}

≤ E
{

SC|V (s|Vj)

∫ ∞

s

e−Λ(t,0,Vj)dΛ(t, 0, Vj)
∣∣∣ Vj

}

= E{SC|V (s|Vj)e
−Λ(s,0,Vj) | Vj} = E{Y1(s) | Vj} (A.12)

Also, observe that for n ≥ 2 and j 6= k, the random variable
∑

i: i6=j,k Yi(s) is

distributed as Binom(n− 2, EY1(s)), and for a Binom(m, a) random variable W ,

E(
1

1 + W
) =

1

(m + 1)a

m∑

k=0

(m + 1)!

(k + 1)! (m− k)!
ak+1 (1− a)m−k ≤ 1

(m + 1)a

Therefore, with m = n− 2 and a = EY1(s),

E{[1 +
∑

i:i6=j,k

Yi(s)]
−1} ≤ 1

(n− 1)EY1(s)
(A.13)

Therefore substituting (A.12) and (A.13) yields an upper bound for the sum of terms

in (A.10) with j 6= k as

2

n(n− 1)
E

∫ ∞

K

1

EY1(s)

[ ∑

j 6=k

E(Yj(s)|Vj) Yk(s) λ(s, 0, Vk)
]
ds

=
2

n(n− 1)
E

[ ∫ ∞

K

∑

j,k: j 6=k

Yk(s) λ(s, 0, Vk) ds
]

= 2 EY1(K) → 0 as K ↑ ∞. (A.14)
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Thus from (A.7) to (A.14),

E{A2
3} → 0 as K ↑ ∞.

Finally, by (A.6) and convergence of A1, A2 and A3, (i) is proved.

(ii) As shown in the proof of Lemma 2.3: when Assumptions 1.1, 1.3 and 1.4

hold, the process

M∗
i (t) ≡ Ni(t)−

∫ s

0

Yi(s)E0{λ(s, 0, Vi) |Yi(s)}

is a σ{Ni(s), Yi(s), Zi; 0 ≤ s ≤ t), i = 1, 2, . . . } adapted martingale. Hence U
(K,∞)
L

is an iid sum of martingales with mean 0. Therefore,

E0{[n− 1
2 U

(K,∞)
L ]2}

= n−1

n∑
i=1

E0

{[∫ ∞

K

[Zi − µ(t)]
[
dNi(t)− Yi(t)E[λ(t, 0, V )|Y (t) = 1]dt

]]2
}

= n−1

n∑
i=1

E0

{[∫ ∞

K

[Zi − µ(t)]dM∗
i (t)

]2
}

= E0

{∫ ∞

K

[Z1 − µ(t)]2 d〈M∗
1 〉(t)

}

= E0

{∫ ∞

K

[Z1 − µ(t)]2Y1(t)E[λ(t, 0, V1)|Y1(t) = 1]dt

}

= E0

{∫ ∞

K

[Z1 − µ(t)]2Y1(t)E[λ(t, 0, V1)|Z1, Y1(t) = 1]dt

}

= E0

{∫ ∞

K

[Z1 − µ(t)]2Y1(t)λ(t, 0, V1)dt

}

≤ E0

{∫ ∞

K

dN1(t)

}
→ 0 as K ↑ ∞.

Hence (ii) is also proved. 2

Lemma A.8 For K > 0, define

n−
1
2 Û

(K,∞)
W ≡ n−

1
2

∑
w

n∑
i=1

∫ ∞

K

{
Zi −

∑n
i=1 ξw

i ZiYi(t)∑n
i=1 ξw

i Yi(t)

}
· ξw

i dNi(t)
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and

n−
1
2 U

(K,∞)
W ≡ n−

1
2

∑
w

n∑
i

∫ ∞

K

ξw
i [Zi − µ(t)][dNi(t)− Yi(t)

E[ξwY (t)λ(t, 0, V )]

E[ξwY (t)]
dt].

Then under Assumptions 1.1, 1.3 and 1.4, we have for W a discrete finite-valued

random variable,

(i) n−
1
2 Û

(K,∞)
W

p,L1→ 0 as K ↑ ∞

(ii) n−
1
2 U

(K,∞)
W

p,L1→ 0 as K ↑ ∞

uniformly over all n.

Proof.

This Lemma is a direct result of applying Lemma A.7 on each stratum with Wi = w.

2

Lemma A.9 For K > 0, Define

n−
1
2 Û (K,∞)

ϕ ≡ n−
1
2

n∑
i=1

∫ ∞

K

[Zi −
∑n

j=1 ϕ(t, Zj, Vj)Yj(t)Zj∑n
j=1 ϕ(t, Zj, Vj)Yj(t)

]ϕ(t, Zi, Vi)dNi(t)

and

n−
1
2 U (K,∞)

ϕ ≡ n−
1
2

n∑
i=1

∫ ∞

K

[Zi−π]ϕ(t, Zi, Vi)
{

dNi(t)−Yi(t)
E[Y (t)ϕ(t, Z, V )λ(t, 0, V )]

E[Y (t)ϕ(t, Z, V )]
dt

}

where V is discrete with finite value. By definition ϕ(t, Z, V ) = g(t, V )/SC(t, Z, V )

with g(·) satisfies Assumption 5.1. Further assume

max
v,w

∫
exp{−Λ(t, 0, w)}λ(t, 0, v)dt < ∞ ,

max
v,w

∫
exp{−Λ(t, 0, w)/2}λ(t, 0, v)dt < ∞
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max
v

∫
exp{−Λ(t, 0, v)}λ2(t, 0, v)dt < ∞.

Then under Assumptions 1.1 and 1.3 ,

(i) n−
1
2 Û (K,∞)

ϕ

p,L1→ 0 as K ↑ ∞

(ii) n−
1
2 Ũ (K,∞)

ϕ

p,L1→ 0 as K ↑ ∞

uniformly over all n.

Proof.

From (5.2) and (5.3) we have

S
(K,∞)
1 ≡ n−

1
2 Ûϕ

(K,∞) − n−
1
2

∫ ∞

K

n∑
i=1

ϕ(t, Zi, Vi)(Zi − π)dNi(t)

= −n−
1
2

∫ ∞

K

n∑
i=1

ϕ(t, Zi, Vi)
(n−1

∑
j(Zj − π)ϕ(t, Zj, Vj)Yj(t))

n−1
∑

j ϕ(t, Zj, Vj)Yj(t)

)
dNi(t).

Hence

E{|S(K,∞)
1 |}

≤ E

{
n−

1
2

∫ ∞

K

ϕ(t, Zi, Vi)Yi(t)
∣∣∣
n−1

∑
j(Zj − π)ϕ(t, Zj, Vj)Yj(t))

n−1
∑

j ϕ(t, Zj, Vj)Yj(t)

∣∣∣λ(t, 0, Vi)dt

}

≤ E

{∑
v

∫ ∞

K

∑
i:Vi=v ϕ(t, Zi, Vi)Yi(t)∑

j ϕ(t, Zj, Vj)Yj(t)

∣∣∣
∑

j

(Zj − π)ϕ(t, Zj, Vj)Yj(t)
∣∣∣λ(t, 0, v)dt

}
.

(A.15)

Let the non random constant C0 be the number of levels of V . Since
∑

j(Zj −

π)ϕ(t, Zj, Vj)Yj(t) is an iid sum, upon applying the Cauchy-Schwartz inequality to
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(A.15) we have

E{|S(K,∞)
1 |}

≤ C0 ·max
v

∫ ∞

K

[
E{(Z1 − π)ϕ(t, Z1, V1)Y1(t)}2

] 1
2 · λ(t, 0, v)dt

≤ C0 ·max
v

∫ ∞

K

[
E{ϕ(t, Z1, V1)Y1(t)}

] 1
2
λ(t, 0, v)dt

≤ C0 ·max
v

∫ ∞

K

E{g(t, V )1/2e−
1
2
Λ(t,0,V )}dΛ(t, 0, v)

≤ C0 ·max
v,w

∫ ∞

K

g(t, w)1/2e−
1
2
Λ(t,w)dΛ(t, 0, v)

≤ C0 ·max
v,w

∫ ∞

K

e−
1
2
Λ(t,0,w)dΛ(t, 0, v)

→ 0 as K ↑ 0. (A.16)

Furthermore, it is easy to check that

S
(K,∞)
2 ≡ n−

1
2

n∑
i=1

∫ ∞

K

ϕ(t, Zi, Vi)(Zi − π)dNi(t)

is a sum of iid random variables with mean 0, so we have

E{|S(K,∞)
2 |2} ≤ E{

∫ ∞

K

(Z1 − π)2ϕ2(t, Z1, V1)Y1(t)λ(t, 0, V1)dt}

≤ E{
∫ ∞

K

g(t, V1)e
−Λ(t,V1)dΛ(t, V1)}

≤ max
v

∫ ∞

K

g(t, v)e−Λ(t,v)dΛ(t, v)

→ 0 as K ↑ ∞. (A.17)

Hence from (A.16) and (A.17) we obtain

E{|n− 1
2 Û (K,∞)

ϕ |} ≤ E{|S(K,∞)
1 |}+ E{|S(K,∞)

2 |} → 0 as K ↑ ∞

uniformly over all n. So (i) is proved.

Note that the second sum on the right hand side of

n−
1
2 Ũ (K,∞)

ϕ ≡ S
(K,∞)
2 −n−

1
2

n∑
i=1

∫ ∞

K

[Zi−π]ϕ(t, Zi, Vi)Yi(t)
E[Y (t)ϕ(t, Z, V )λ(t, 0, V )]

E[Y (t)ϕ(t, Z, V )]
dt
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is also an iid sum with mean 0. By Cauchy-Schwartz inequality, we also have

[
E{Y (t)ϕ(t, Z, V )λ(t, 0, V )}

]2

=
[
E{Y (t)ϕ(t, Z, V )Y (t)λ(t, 0, V )}

]2

≤ E{Y 2(t)ϕ2(t, Z, V )} · E{Y 2(t)λ2(t, 0, V )}

Therefore

E{
[
n−

1
2

∫ ∞

K

n∑
i=1

[Zi − π]ϕ(t, Zi, Vi)Yi(t)
E[Y (t)ϕ(t, Z, V )λ(t, 0, V )]

E[Y (t)ϕ(t, Z, V )]
dt

]2

}

≤ E{
∫ ∞

K

[Z1 − π]2ϕ2(t, Z1, V1)Y
2
1 (t)

(E[Y (t)ϕ(t, Z, V )λ(t, 0, V )]

E[Y (t)ϕ(t, Z, V )]

)2

dt}

≤ E{
∫ ∞

K

ϕ2(t, Z1, V1)Y
2
1 (t)

E{Y 2(t)ϕ2(t, Z, V )} · E{Y 2(t)λ2(t, 0, V )}
[E{Y (t)ϕ(t, Z, V )}]2 dt}

≤
∫ ∞

K

E{ϕ(t, Z, V )Y (t)}E{Y (t)ϕ(t, Z, V )} · E{Y 2(t)λ2(t, 0, V )}
[E{Y (t)ϕ(t, Z, V )}]2 dt

=

∫ ∞

K

E{Y 2(t)λ2(t, 0, V )}dt

≤
∫ ∞

K

E{SC(t, Z, V )e−Λ(t,0,V )λ2(t, 0, V )}dt

≤ max
v

∫ ∞

K

e−Λ(t,0,v)λ2(t, 0, v)dt

→ 0 as K ↑ 0 (A.18)

Hence from (A.17) and (A.18) we have

E{|n− 1
2 Ũ (K,∞)

ϕ |} → 0 as K ↑ ∞.

Thus (ii) is also proved. 2

Lemma A.10 Let iid random variables (Ti, Ci), i = 1, . . . , n be pairs of independent

latent death- and censoring-time random variables.

(i) Let S(t) and SC(t) be survival functions of Ti and Ci and let Ŝ(t) be the Kaplan-

Meier estimator of S(t) based on the right-censored survival data of all subjects,
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then

nE{[Ŝ(t)− S(t)]2I[Ȳ (t)≥1]} ≤ 1

S(t)SC(t)
(A.19)

(ii)Let Ŝ(−j)(t) be the Kaplan-Meier estimator of S(t) based on the data of all except

for the jth subject, then

I[Ȳ (t)≥2]

∣∣Ŝ(t)− Ŝ(−j)(t)
∣∣
/

Ŝ(−j)(t) ≤ 2/Ȳ(−j)(t) (A.20)

with probability one.

Proof. (i) Define a stopping time τ ≡ inf{t : Ȳ (t) = 1}. Then from Section IV.3.1

of Andersen et. al. (1992), we know the process [Ŝ(t) − S(t ∧ τ)]/S(t ∧ τ) is a

martingale with probability 1, then

nE{[Ŝ(t)− S(t)]2I[τ≥t]} ≤ E{[Ŝ(t ∧ τ)− S(t ∧ τ)]2}

≤ S2(t)E

∫ t∧τ

0

Ŝ2(x−)

S2(x)

nλ(x)

Ȳ (x)
dx

≤ S2(t)

∫ t

0

1

S2(x)

nλ(x)

Ȳ (x)
I[Ȳ (x)≥1]dx (A.21)

Next we estimate a bound on E{I[Ȳ (t)≥1]/Ȳ (t)}. Letting M ≡ Ȳ (t) ∼ Binom(n, p)

with p = S(t)SC(t), we have

E{I[M≥1]

M
} =

n∑

k=1

(
n

k

)
1

k
pk(1− p)n−k

≤ 2

(n + 1)p

n∑

k=1

(
n + 1

k + 1

)
pk+1(1− p)n−k

≤ 2

np
(A.22)
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Applying (A.22) into (A.21) we have,

nE{[Ŝ(t)− S(t)]2I[Ȳ (t)≥1]} ≤ nS2(t)

∫ t

0

E{I[Ȳ (x)≥1]/Ȳ (x)} λ(x)

S2(x)
dx

≤ n
2S2(t)

n

∫ t

0

{S3(x)SC(x)}−1λ(x)dx

≤ 2
S2(t)

SC(t)

∫ t

0

λ(x)

S3(x)
dx

≤ 2

3S(t)SC(t)

≤ 1

S(t)SC(t)
.

Hence (i) is proved.

(ii) Let τ0 = inf{t : ∆N̄(t) = 1} and τt = sup{s ≤ t : ∆N̄(s) = 1} and

Xj = Tj ∧ Cj. Under the assumption that Ȳ (t) ≥ 2, we can assert 0 < τ0 < τt < t.

By definition,

Ŝ(t) =
∏
s≤t

{1− ∆N̄(s)

Ȳ (s)
},

Ŝ(−j)(t) =
∏
s≤t

{1− ∆N̄(−j)(s)

Ȳ(−j)(s)
}.

Since Ȳ (s) = Ȳ(−j)(s) + 1 when Xj ≥ s and Ȳ (s) = Ȳ(−j)(s) when Xj < s, then

I[Xj≤t]Ŝ(t) = I[Xj≤t](1− 1

Ȳ (Xj)
)

∏
s<Xj

1−∆N̄(s)/Ȳ (s)

1−∆N̄(s)/[Ȳ (s)− 1]
Ŝ(−j)(t)

≥ I[Xj≤t](1− 1

Ȳ (Xj)
)Ŝ(−j)(t)

≥ I[Xj≤t](1− 1

Ȳ (t)
)Ŝ(−j)(t)

≥ I[Xj≤t](1− 1

Ȳ(−j)(t)
)Ŝ(−j)(t) (A.23)
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and

I[Xj>t]Ŝ(−j)(t) = I[Xj>t]

∏
s≤t

1−∆N̄(s)/[Ȳ (s)− 1]

1−∆N̄(s)/Ȳ (s)
Ŝ(t)

=
I[Xj>t]

1− 1/Ȳ (τ0)
×

∏
s≤t

{
1−∆N̄(s)/[Ȳ (s)− 1]

}
∏

τ0<s≤t

{
1−∆N̄(s)/Ȳ (s)

}× {1− 1/[Ȳ (τt)− 1]}
× {1− 1/[Ȳ (τt)− 1]}Ŝ(t)

≥ I[Xj>t]
1

1− 1/Ȳ (τ0)
{1− 1/[Ȳ (t)− 1]}Ŝ(t)

≥ I[Xj>t]{1− 1/[Ȳ (t)− 1]}Ŝ(t). (A.24)

Furthermore, by reasoning as in (A.24), with jump-times in Ŝ(−j)(t) occurring im-

mediately previous to those in Ŝ(t), and by inspection of the first line of (A.24), we

also derive when Ȳ (t) ≥ 2,

I[Xj≤t]Ŝ(t) ≤ I[Xj≤t]Ŝ(−j)(t) and I[Xj>t]Ŝ(−j)(t) ≤ I[Xj>t]Ŝ(t).

Hence

I[Xj≤t]

∣∣∣Ŝ(t)− Ŝ(−j)(t)
∣∣∣

= I[Xj≤t]

{
Ŝ(−j)(t)− Ŝ(t)

}

≤ I[Xj≤t]

{
1− 1 +

1

Ȳ(−j)(t)

}
Ŝ(−j)(t)

= I[Xj≤t]Ŝ(−j)(t)/Ȳ(−j)(t) (A.25)
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and

I[Xj>t]

∣∣∣Ŝ(t)− Ŝ(−j)(t)
∣∣∣

= I[Xj>t]

{
Ŝ(t)− Ŝ(−j)(t)

}

≤ I[Xj>t]

{
Ȳ (t)− 1

Ȳ (t)− 2
− 1

}
Ŝ(−j)(t)

= I[Xj>t]
1

Ȳ(−j) − 1
Ŝ(−j)(t)

≤ I[Xj>t]2Ŝ(−j)(t)/Ȳ−j(t). (A.26)

Add (A.25) and (A.26)to get

I[Ȳ (t)≥2]

∣∣Ŝ(t)− Ŝ(−j)(t)
∣∣
/

Ŝ(−j)(t) ≤ 2/Ȳ(−j)(t).

Hence (ii) is proved.

Lemma A.11 When V is discrete with finite values and ϕ̂(t, z, v) is the Kaplan-

Meier estimator for ϕ(t, z, v) which is defined at Section 5.1. Further assume

max
z,v,w

∫ ∞

0

{S(t, 0, w)/SC(t, z, w)}1/2λ(t, 0, v)dt < ∞, (A.27)

then under Assumptions 1.1 and 1.3 , we have

(i) n−
1
2 Û

(K,∞)
ϕ̂

p,L1→ 0 as K ↑ ∞

(ii) n−
1
2 Ũ

(K,∞)
ϕ̂

p,L1→ 0 as K ↑ ∞

uniformly over all n.
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proof.

From (5.6) and (5.7) we have

S
∗(K,∞)
1 ≡ n−

1
2 Ûϕ̂

(K,∞) − n−
1
2

∫ ∞

K

n∑
i=1

ϕ̂(t, Zi, Vi)(Zi − π)dNi(t)

= −n−
1
2

∫ ∞

K

n∑
i=1

ϕ̂(t, Zi, Vi)
(n−1

∑
j(Zj − π)ϕ̂(t, Zj, Vj)Yj(t))

n−1
∑

j ϕ̂(t, Zj, Vj)Yj(t)

)
dNi(t).

Hence

E{|S∗(K,∞)
1 |}

= E

{
n−

1
2

∫ ∞

K

ϕ̂(t, Zi, Vi)Yi(t)
(n−1

∑
j(Zj − π)ϕ̂(t, Zj, Vj)Yj(t))

n−1
∑

j ϕ̂(t, Zj, Vj)Yj(t)

)
λ(t, 0, Vi)dt

}

≤ E

{∑
v

∫ ∞

K

∑
i:Vi=v ϕ̂(t, Zi, Vi)Yi(t)∑

j ϕ̂(t, Zj, Vj)Yj(t)

∣∣∣n− 1
2

∑
j

(Zj − π)ϕ̂(t, Zj, Vj)Yj(t)
∣∣∣λ(t, 0, v)dt

}

≤ E

{∑
v

∫ ∞

K

∣∣∣n− 1
2

∑
j

(Zj − π)ϕ̂(t, Zj, Vj)Yj(t)
∣∣∣λ(t, 0, v)dt

}
.

≤ E

{∑
v

∫ ∞

K

n−
1
2

∑
j

∣∣∣ϕ̂(t, Zj, Vj)− ϕ(t, Zj, Vj)
∣∣∣Yj(t)λ(t, 0, v)dt

}

+ E

{∑
v

∫ ∞

K

∣∣∣n− 1
2

∑
j

(Zj − π)ϕ(t, Zj, Vj)Yj(t)
∣∣∣λ(t, 0, v)dt

}
(A.28)

The second term of (A.28) goes to 0 as K → ∞ as shown in the proof of Lemma

A.9. Hence it is sufficient to prove E{|S∗(K,∞)
1 |} → 0 by showing

E

{∑
v

∫ ∞

K

n−
1
2

∑
j

∣∣∣ϕ̂(t, Zj, Vj)− ϕ(t, Zj, Vj)
∣∣∣Yj(t)λ(t, 0, v)dt

}
→ 0 (A.29)
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as K ↑ ∞. Furthermore, by Assumption 5.1,

|ϕ̂(t, Zj, Vj)− ϕ(t, Zj, Vj)|

=

∣∣∣∣∣
1

SC(t, Zj, Vj)
{ĝ(t, Vj)− g(t, Vj)} − ĝ(t, Zj, Vj)

ŜC(t, Zj, Vj)
{ ŜC(t, Zj, Vj)

SC(t, Zj, Vj)
− 1}

∣∣∣∣∣

≤ 1

SC(t, Zj, Vj)
|ĝ(t, Vj)− g(t, Vj)| +

∣∣∣∣∣
ŜC(t, Zj, Vj)

SC(t, Zj, Vj)
− 1

∣∣∣∣∣

≤ 1

SC(t, Zj, Vj)

{
c1

∣∣∣ŜC(t, 1, Vj)− SC(t, 1, Vj)
∣∣∣ + c0

∣∣∣ŜC(t, 0, Vj)− SC(t, 0, Vj)
∣∣∣
}

+
1

SC(t, Zj, Vj)

∣∣∣ŜC(t, Zj, Vj)− SC(t, Zj, Vj)
∣∣∣ (A.30)

for some constant c1 and c0. By Lemma A.10 (i), for n ≥ 2

√
nE

∣∣∣ŜC,(−1)(t, z, v)− SC(t, z, v)
∣∣∣ I[Ȳ(−1)(t)≥1]

=

√
n√

n− 1

√
n− 1 E

∣∣∣ŜC,(−1)(t, z, v)− SC(t, z, v)
∣∣∣ I[Ȳ(−1)(t)≥1]

≤
√

2
{

(n− 1)E{ŜC,(−1)(t, z, v)− SC(t, z, v)}2
}1/2

I[Ȳ(−1)(t)≥1]

≤
√

2/
√

SC(t, z, v)S(t, 0, v). (A.31)

By Lemma A.10 (ii),

√
n

∣∣∣ŜC,(−1)(t, z, v)− ŜC(t, z, v)
∣∣∣ I[Ȳ (t)≥2]

≤ 2
√

nI[Ȳ (t)≥2]ŜC,(−1)(t, z, v)/Ȳ(−1)(t)

≤ 2
√

n

Ȳ(−1)(t)

∣∣∣ŜC,(−1)(t, z, v)− SC(t, z, v)
∣∣∣ I[Ȳ (t)≥2] + 2

√
nSC(t, z, v)

Ȳ(−1)(t)
I[Ȳ (t)≥2]

≤ 2
√

n
∣∣∣ŜC,(−1)(t, z, v)− SC(t, z, v)

∣∣∣ I[Ȳ (t)≥2] + 2

√
nSC(t, z, v)

Ȳ(−1)(t)
I[Ȳ (t)≥2].

(A.32)

Furthermore, using (A.31) and (A.32) we derive the following,
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E

{∑
v

∫ ∞

K

n−
1
2

∑
j

1

SC(t, Zj, Vj)

∣∣∣ŜC(t, Zj, Vj)− SC(t, Zj, Vj)
∣∣∣ Yj(t)λ(t, 0, v)dt

}

= E

{∑
v

∫ ∞

K

√
n

SC(t, Z1, V1)

∣∣∣ŜC(t, Z1, V1)− SC(t, Z1, V1)
∣∣∣ Y1(t)λ(t, 0, v)dt

}

≤ E

{∑
v

∫ ∞

K

√
n

SC(t, Z1, V1)

∣∣∣ŜC,(−1)(t, Z1, V1)− SC(t, Z1, V1)
∣∣∣ Y1(t)λ(t, 0, v)dt

}

+ E

{∑
v

∫ ∞

K

√
n

SC(t, Z1, V1)

∣∣∣ŜC,(−1)(t, Z1, V1)− ŜC(t, Z1, V1)
∣∣∣ Y1(t)λ(t, 0, v)dt

}

≤ E

{∑
v

∫ ∞

K

3
√

n

SC(t, Z1, V1)

∣∣∣ŜC,(−1)(t, Z1, V1)− SC(t, Z1, V1)
∣∣∣ Y1(t)λ(t, 0, v)dt

}

+ E

{∑
v

∫ ∞

K

I[Ȳ(−1)(t)≥2]

√
n

SC(t, Z1, V1)

2SC(t, Z1, V1)

Ȳ(−1)(t)
Y1(t)λ(t, 0, v)dt

}

≤ E

{∑
v

∫ ∞

K

3
√

n
∣∣∣ŜC,(−1)(t, Z1, V1)− SC(t, Z1, V1)

∣∣∣ S(t, 0, V1)λ(t, 0, v)dt

}

+ E

{
(4 ∧√n)

∑
v

∫ ∞

K

S(t, 0, V1)λ(t, 0, v)dt

}

≤ E

{
3
√

2
∑

v

∫ ∞

K

{1/S(t, 0, V1)SC(t, Z1, V1)}1/2S(t, 0, V1)λ(t, 0, v)dt

}

+ E

{
(4 ∧√n)

∑
v

∫ ∞

K

S(t, 0, V1)λ(t, 0, v)dt

}

≤ 6C0 max
z,v,w

{∫ ∞

K

{S(t, 0, w)/SC(t, z, w)}1/2λ(t, 0, v)dt +

∫ ∞

K

S(t, 0, w)λ(t, 0, v)dt

}

(A.33)

Thus from (A.28) to (A.33) we can derive

S
∗(K,∞)
1

L1→ 0 as K ↑ ∞. (A.34)
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Next consider S
∗(K,∞)
2 . It is clear that

E|S∗(K,∞)
2 |

≡ n−
1
2 E

∣∣∣∣∣
n∑

i=1

∫ ∞

K

ϕ̂(t, Zi, Vi)(Zi − π)dNi(t)

∣∣∣∣∣

= n−
1
2 E

∣∣∣∣∣
n∑

i=1

∫ ∞

K

{ϕ̂(t, Zi, Vi)− ϕ(t, Zi, Vi)}(Zi − π)dNi(t) + S
(K,∞)
2

∣∣∣∣∣

≤ n−
1
2 E

n∑
i=1

∫ ∞

K

|ϕ̂(t, Zi, Vi)− ϕ(t, Zi, Vi)|Yi(t)λ(t, 0, Vi)dt + E|S(K,∞)
2 |

≤ E

{∫ ∞

K

√
n |ϕ̂(t, Z1, V1)− ϕ(t, Z1, V1)|Y1(t)λ(t, 0, V1)dt

}
+ E|S(K,∞)

2 |

(A.35)

From the proof of Lemma A.9 we know E|S(K,∞)
2 | → 0 as K ↑ ∞. By applying the

similar technique of obtaining (A.34) on the first term of (A.35), it is sufficient to

show that

S
∗(K,∞)
2

L1→ 0 as K ↑ ∞. (A.36)

Finally

n−
1
2 Û

(K,∞)
ϕ̂ ≡ S

∗(K,∞)
1 + S

∗(K,∞)
2

L1→ 0

as K ↑ ∞. So (i) is proved.

Next consider Ũ
(K,∞)
ϕ̂ . By Definition,

n−
1
2 Ũ

(K,∞)
ϕ̂ ≡ S

∗(K,∞)
2 −n−

1
2

n∑
i=1

∫ ∞

K

[Zi−π]ϕ̂(t, Zi, Vi)Yi(t)
E[Y (t)ϕ(t, Z, V )λ(t, 0, V )]

E[Y (t)ϕ(t, Z, V )]
dt.

Since V is discrete with finite values,

E[Y (t)ϕ(t, Z, V )λ(t, 0, V )]

E[Y (t)ϕ(t, Z, V )]
≤ max

v
λ(t, 0, v) ≤

∑
v

λ(t, 0, v).
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Then

E
∣∣∣n− 1

2 Ũ
(K,∞)
ϕ̂ − n−

1
2 Ũ (K,∞)

ϕ

∣∣∣

≤ E
∣∣∣S∗(K,∞)

2 − S
(K,∞)
2

∣∣∣

+n−
1
2 E

{
n∑

i=1

∫ ∞

K

|ϕ̂(t, Zi, Vi)− ϕ(t, Zi, Vi)|Yi(t)
∑

v

λ(t, 0, v)dt

}

≤ E
∣∣∣S∗(K,∞)

2 − S
(K,∞)
2

∣∣∣

+C0 max
v

E

{√
n

∫ ∞

K

|ϕ̂(t, Z1, V1)− ϕ(t, Z1, V1)|Y1(t)λ(t, 0, v)dt

}
(A.37)

When K ↑ ∞, the first term of (A.37) goes to 0. By the similar reasoning of using

(A.29),(A.30) and (A.33) to derive (A.34), the second term of (A.37) also go to 0.

Finally by Lemma A.9,

n−
1
2 Ũ

(K,∞)
ϕ̂ = {n− 1

2 Ũ
(K,∞)
ϕ̂ − n−

1
2 Ũ (K,∞)

ϕ } + n−
1
2 Ũ (K,∞)

ϕ
L1→ 0

as K ↑ 0. so (ii) is also proved. ¤

Lemma A.12 Let (Xi, Vi), i = 1, . . . , n, be iid vectors of random variables. As-

sumes that for each i, there exist

0 ≤ ui = sup
0≤t<∞

|g(t, Vi)| < ∞, with E(ui) < ∞

and {g(·, v)}v are uniformly equicontinuous. Then

sup
0≤t<∞

| 1
n

n∑
i=1

{I[Xi≥t]g(t, Vi)} − E{I[X1≥t]g(t, V1)}| P,L(Ω)−→ 0

Proof:

Since E(ui) < ∞ and ui · I[Xi≥t]
a.s.→ 0 as t ↑ ∞,

by the Dominated convergence theorem, as t∗ →∞

E[sup
t>t∗

|I[Xi≥t]g(t, Vi)|] → 0. (A.38)
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For j = 1, 2, . . . , m and 0 < t∗ < ∞, define tj ≡ j
m

t∗ and g∗m,t∗(s, V ) ≡ g(tj, V ) for

tj ≤ s < tj+1. Thus, for any s ∈ [0, t∗], we have

|g(s, V )− g∗m,t∗(s, V )| ≤ sup
x,y:|x−y|≤ t∗

m

|g(x, V )− g(y, V )| (A.39)

For any ε > 0, there exist 0 < t∗ < ∞ and m, such that

E[sup
t>t∗

|I[Xi≥t]g(t, V )|] <
ε

2

and

sup
x,y∈[0,t∗],|x−y|≤ t∗

m

|g(x, V )− g(y, V )| < ε

6
.

Then from (A.39), we have

E[ sup
t∈[0,t∗]

|g(t, V )− g∗m,t∗(t, V )|] ≤ ε

6
.

Then From Lemma A.3 we know that there exist a large integer N > 0, such that

for any n ≥ N ,

E
[

sup
t∈[0,t∗]

∣∣∣ 1
n

n∑
i=1

g∗m,t∗(t, Vi) · I[Xi≥t] − E[g∗m,t∗(t, V ) · I[X>t]]
∣∣∣
]

= max
0≤j≤m<∞

E
[

sup
tj≤t<tj+1

∣∣∣ 1
n

n∑
i=1

g(tj, Vi)I[Xi≥t] − E[g(tj, V )I[X≥t]]
∣∣∣
]

<
ε

6
.
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Thus,

E
[

sup
t∈[0,t∗]

∣∣∣ 1
n

n∑
i=1

g(t, Vi)I[Xi≥t] − E[g(t, V )I[X≥t]]
∣∣∣
]

≤ E
[

sup
t∈[0,t∗]

∣∣∣ 1
n

n∑
i=1

g(t, Vi)I[Xi≥t] − 1

n

n∑
i=1

g∗m,t∗(t, Vi)I[Xi≥t]

∣∣∣
]

+ E
[

sup
t∈[0,t∗]

∣∣∣ 1
n

n∑
i=1

g∗m,t∗(t, Vi)I[Xi≥t] − E[g∗m,t∗(t, V )I[X≥t]]
∣∣∣

+
∣∣∣E[g(t, V )I[X≥t]] − E[g∗m, t∗(t, V )I)[X ≥ t]]

∣∣∣

<
ε

6
+

ε

6
+

ε

6

=
ε

2
. (A.40)

Thus, from (A.40) and (A.40), we have

sup
0≤t<∞

| 1
n

n∑
i=1

{I[Xi≤t]g(t, Vi)} − E{I[X1≤t]g(t, V1)}| P,L(Ω)−→ 0

This lemma is proved. 2

Corollary A.1 If E(u2
i ) ≤ ∞ and in addition to the hypotheses of Lemma A.12,

then

sup
0≤t<∞

| 1
n

n∑
i=1

{I[Xi≥t]g(t, Vi)} − E{I[X1≥t]g(t, V1)}| P,L2(Ω)−→ 0

Proof.

The proof of this corollary is analogous to the proof of Lemma A.12. 2

Lemma A.13 Let N be a counting process and M = N − A be the corresponding

local square integrable martingale. If Hn is a predicable and locally bounded process
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with sup0≤t<∞ |Hn(t)| p→ 0, then for any bounded stopping time τ ,

(i) sup
0≤t<τ

∣∣∣
∫ t

0

Hn(s)dM(s)
∣∣∣ p→, as n →∞;

(ii) sup
0≤t<τ

∣∣∣ 1√
n

n∑
i=1

∫ t

0

Hn(s)dM
(n)
i (s)

∣∣∣ p→ 0, as n →∞,

where M
(n)
i = N

(n)
i − A

(n)
i , i = 1, 2, . . . , n are iid realizations of M .

proof.

(i) By Lenglart’s inequality and Corollary 3.4.1 of Fleming and Harrington (1991),

for any ε, η > 0,

P
{

sup
0≤t<τ

∣∣∣
∫ t

0

Hn(s)dM(s)
∣∣∣ ≥ ε

}
≤ η

ε2
+ P

{∫ τ

0

H2
n(s)d〈M,M〉(s) ≥ η

}
, (A.41)

where 〈M,M〉 = A is nonegative and monotone increasing with E(A) = E(N) < ∞

for all t ∈ [0, τ ]. Since sup0≤t<∞ |Hn(t)| p→ 0, then for any ε > 0 and η < ε3/2, there

exists an integer N > 0, such that, for any n ≥ N ,

0 ≤ P
{∫ τ

0

H2
n(s)d〈M,M〉(s) ≥ η

}
<

ε3 − η

ε2

By (A.41)

P
{

sup
0≤t≤τ

∣∣∣
∫ t

0

Hn(s)dM(s)
∣∣∣ ≥ ε

}
<

η

ε2
+

ε3 − η

ε2
= ε

Hence (i) is proved.

(ii) For each n,

M (n)(t) ≡ 1√
n

n∑
i=1

∫ t

0

Hn(s)dM
(n)
i (s)

is an Ft-martingale with predictable-variance process

〈M (n),M (n)〉(t) =
n∑

i=1

∫ t

0

1

n
H2

n(s)dA
(n)
i (s).
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As in (A.41),

P{ sup
0≤t≤τ

|M (n)(t)| ≥ ε} ≤ η

ε2
+ P{

∫ τ

0

H2
n(s)

1

n

n∑
i=1

dA
(n)
i (s) > η} (A.42)

Since sup0≤t<∞ |Hn(t)| p→ 0 and

1

n

n∑
i=1

A
(n)
i (t) ≤ 1

n

n∑
i=1

A
(n)
i (τ)

p→ E[A
(n)
1 (τ)]

then

0 < [ sup
0≤t≤τ

H2
n(t)] · 1

n

n∑
i=1

Ai(τ)
p→ 0, as n →∞,

hence
∫ τ

0

H2
n(s)

1

n

n∑
i=1

dA
(n)
i (s)

p→ 0, as →∞.

Thus for any ε, η > 0 and η << ε, there exist an integer N > 0, such that for any

n ≥ N , for the bounded stopping-time τ ,

P [

∫ τ

0

H2
n(s)

1

n

n∑
i=1

dA
(n)
i (s) > η] <

ε3 − η

ε2
,

hence

P [ sup
0≤t≤τ

|M (n)(t)| ≥ ε] < ε.

and (ii) is proved, since

sup
0≤t<τ

∣∣∣ 1√
n

n∑
i=1

∫ t

0

Hn(s)dM
(n)
i (s)

∣∣∣ p→ 0, as n →∞,

2

Lemma A.14 Write θ = b/
√

n, and assume for all t, V that
∫ t

0
λ(s, 0, V )ds < ∞,

and also that, on each interval [0, t], the function λ′(s, θ, V ) are uniformly integrable,
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with respect to ds, over θ in a sufficiently small neighborhood of 0. Then for any

integrable random variable of the form K(V, Z),

Eθn{Y (t)K(V, Z)} = E0{Y (t)k(V, Z)} − b√
n

E0

{
Y (t)k(V, Z)

∫ t

0

λ′(s, 0, V )ds
}

+ o(n−
1
2 ) (A.43)

where the expectation is taken with respect to the true model. As a consequence, for

integrable k(V ),

n
1
n Eθn{Y (t)[Z − µ(t)]k(V )} = −bσ2

ZE0

{
Y (t)k(V )

∫ t

0

λ′(s, 0, V )ds
}

+ o(1)

(A.44)

This is Lemma A·1 of Kong and Slud (1997). 2
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