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Simulations have become one of the main methods in the development of autonomous

robots. With the application of physical simulations that closely represent real-world environ-

ments, the behavior of a robot in a variety of situations can be tested in a more efficient manner

than performing experiments in reality. With the implementation of ROS (Robot Operating Sys-

tem), the software of an autonomous system can be simulated separately without an existing

robot. In order to simulate the physical environment surrounding the robot, a physics simulation

has to be created through which the robot navigates and performs tasks. A commonly used plat-

form for such simulations is Unity which provides a wide range of simulation capabilities as well

as an interface for ROS.

In order to perform multi-agent simulations or simulations with varying initial locations for

the robot, it is crucial to find unobstructed spawn locations to avoid undesirable situations with

collisions upon start of the simulation. For this purpose, multiple methods were implemented



with this research, in order to generate feasible spawn locations within complex environments.

Each of the three applied methods generates a set of valid spawn positions, which can be used to

design simulations with varying initial locations for the agents. To assess the performance and

functionality of these approaches, the algorithms were applied to several environments varying

in complexity and scale.

Overall, the implemented approaches performed very well in the applied environments,

and generated mainly correctly classified locations which are suitable to spawn a robot. All

approaches were tested for performance and compared in respect to their fitness to be applied

to environments of varying complexity and scale. The resulting algorithms can be considered a

efficient solutions to prepare simulations with multiple initial locations for robots and other test

objects.
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Chapter 1: Introduction

Development of autonomous robotic systems is progressing rapidly. The official definition

by the International Organization for Standardization (ISO) for a robot is: ”actuated mechanism

programmable in two or more axes with a degree of autonomy, moving within its environment,

to perform intended tasks” [1]. To achieve autonomy in the system, the robot needs to be able

”to perform intended tasks based on current state and sensing, without human intervention”. Au-

tonomous mobile robots are already widely spread in industry as well as private sector where they

manage warehouses or autonomously vacuum the living room. Other application for autonomous

robots are surveillance or disaster response.

Autonomous robots require many sub-systems to work together to achieve the desired out-

come. These activities include sensing the environment, planning motions and manipulation

or actuation. Simulating the robots’ behavior before deployment can help to assess the sys-

tems functionality. Using modern simulation environments allows the developers to test changes

within the hardware and software without requiring costly alterations on the equipment or run-

ning time-consuming tests in a testing area. To perform such simulations, a physical model of

the robot and the environment is required in which the implemented algorithms can be tested.

One of the most commonly used software platform for robots is the Robot Operating Sys-

tem (ROS). While ROS is not comparable to a conventional operating system, it allows all compo-
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nents of the robot to communicate and interact with each other. ROS provides a communication

platform where micro-controllers can read data from sensors, perform motion-planning and send

instructions to actuators to execute the desired motions. An enormous advantage of ROS is the

ability to be installed on devices ranging from microcontrollers up to powerful processing sys-

tems. Using this capability, allows the developers to simulate robots on a Linux computer by

feeding sensor data which can be gained from a simulated environment and observe the robots’

behavior within the environment.

As ROS only provides a platform for the data exchange within the robot, this only cov-

ers the software side of the simulation. Over the past years, different platforms to perform the

physical simulation have been used, including GAZEBO, V-REP or Unity. For this project, the

Unity Game Engine [2] was chosen to design the environment and act as the physical part of the

simulation. Unity is at its core a video game engine which includes powerful tools for visual

rendering and uses the NVIDIA PhysX engine [3].

For simulating different situations that could be handled by autonomous robots, it might

be of interest to run different scenarios with varying conditions. For developers, it is important

to assess the robot’s capabilities to handle a variety of scenarios with different initial conditions

such as starting location of the robot itself or varying locations of objects which shall be reached

or interacted with.
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1.1 Aim of the research

The goal of my research project is to analyze approaches to generate different initial lo-

cations where a robot could be spawned in a complex environment. Such an algorithm could

greatly reduce the time for developers to generate possible spawn locations for both the robot or

goal objectives within a defined scenario. Using Unity’s scene editor allows me to create different

test environments which act as a foundation for the algorithms to find potential spawn locations.

All algorithms are tested in environments of different size and complexity to gain informa-

tion about their performance. The collected data can then be evaluated to match the best suited

methods for the different use-cases. The end result should give an overview about the expected

processing time as well as the success rate of each algorithm depending on the environment in

which they are deployed in.

1.2 Thesis Structure

To efficiently present the research I conducted,this thesis is structured according to the

performed workflow. This section gives a short overview of the structure of my work and de-

scriptions for each chapter and what it will include.

1. Introduction – The introduction chapter gives an overview of the background in the field, the

aim of this research and the use of the work conducted.

2. Related Work – As the field of autonomous robotic simulations is an extremely active field of

research, this chapter summarizes of the existing work related to my research.
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3. Research Approach – This chapter discusses the approach to conduct my research and the tasks

performed to implement and test the approaches.

4. Approaches – Here I will describe the different approaches to generate feasible spawn locations

with description of the algorithms.

5. Experiment Model and Setup – The model of the robot as well as the different test environ-

ments and their application are described in this chapter.

6. Experiments and Results – This chapter includes descriptions of the conducted experiments

and discussions of results.

7. Conclusion – Summary of this research and its outcome as well as limitations and potential

future work.
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Chapter 2: Related Work

2.1 Robot Operating System (ROS)

The complexity of robotic systems is increasing and requires a framework that allows on-

board as well as off-board hardware to communicate in a standardized protocol. The most com-

monly used platform for robots is the Robotic Operating System (ROS) which was introduced in

2009 by Quigley et al. [4]

ROS is not an operating system in the conventional way, but a toolkit which allows differ-

ent pieces of hardware to communicate in a clearly defined fashion. This framework uses topics

to which one system can publish data or instructions, while other systems can subscribe to topics

to receive the published information. This architecture allows all components of a robot, such as

cameras, path-planner or actuators, to communicate even if they use different programming lan-

guages or interfaces. Using this standardized communication platform allows developers to reuse

drivers and algorithms for different platforms and reduces the development efforts by minimizing

the time required to rewrite code and drivers for a new system.
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2.2 Unity Engine

By using the ROS package, which would be deployed on to the robot, the same packages

can be used to simulate the system’s behavior in a virtual environment. This approach saves

time and reduces costs during the development, as there are little to no expenses to create a test

environment or deploying a prototype of the robot. Using a simulation which closely represents

real-world conditions can reveal flaws in the hardware or software of the robot and can be cor-

rected in an early development stage. Furthermore, there is less effort required to make changes

to the environment which allows the developers to test their set-up in a variety of situations with

ease.

To represent the physical environment and behavior, there are numerous physics engines

which can represent a model of the robot as well as its surroundings. The Unity Game Engine

is one of the commonly used frameworks. Unity was designed as a game development platform

which allows even inexperienced developers to create complex products. While the main focus of

the engine is set on video games, it also includes all the desired functions for physical simulations.

Because of its wide range of methods, it is frequently used for research involving 3D physics

simulations and animation.

The platform called ”The Robot Engine” by Bartneck, et al. [5] utilized the Unity engine for

work in the field of human-robot interaction (HRI). ”The Robot Engine” allows non-programmers

to animate and control robots using a visual interface. This platform uses Unity as the main

middle-ware which receives information from cameras and microphones, translates them into

relative positions of a modeled robot, and finally sends the control commands to the robot which

interacts with a person.

6



The Unity engine also provides a solid ground for AI research and training purposes. In

”Unity: A General Platform for Intelligent Agents” by Juliani et al., the authors argue that mod-

ern game engines such as Unity are suited as general platforms for the development of intelli-

gent agent simulations, as they offer a rich complexity for visual and physical representations of

real test environments [6]. Their paper focuses on the performance of Unity and the Machine-

Learning-Agents Toolkit.

The work of Hussein, et al. [7] connects Unity with ROS to simulate the controls of au-

tonomous cars in a traffic environment. The authors of the paper developed a 3D simulator

for cooperative advanced driver assistance systems (ADAS) and autonomous robot by using the

advantages of Unity and its 3D simulation capabilities with a ROS system architecture for au-

tonomous vehicles. At the time when their paper was published, there was the issue that Unity

was only available on Windows, while ROS was only working on Linux. Therefore, the authors

had to implement a ”rosbridge” module which allowed simulations on both GAZEBO (Linux)

and Unity (Windows) to work together and publish/subscribe to the same ROS topics. By now,

Unity is also available for Ubuntu and other Linux distributions.

Using the Unity engine allows developers to create a physical simulation of the system’s

environment with increased level of detail compared to other physics engines. With imple-

mented optimization tools, the developed simulations can be designed physically and visually

near-accurate to real-world test environments while still maintaining a moderate performance.

According to the mentioned research papers, Unity is a good suit for autonomous robotics simu-

lations and is also widely used in the research community.
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2.2.1 Unity Simulation Design

The different environments in Unity are called scenes. In traditional video games, these

scenes are levels or menus and build a canvas of the game, where all GameObjects are placed.

The same concept applies for this research project. The scene includes the environment for the

simulation as well as the model of the robot. For Unity, every object in the game is a GameOb-

ject. This includes elements such as the camera, terrain or structures like houses or trees. Each

GameObject can be fit with different components that give the objects their desired behavior.

Unity already comes with many prefabricated components like physical or rendering properties.

Another component that can be added are scripts. For scripting, Unity supports natively the pro-

gramming language C#. However, other .NET languages are also supported as long as they can be

implemented as .dll files [8]. These scripts can be used to dynamically control the GameObjects

and are the backbone of simulations or video games as they give objects the ability to interact

and affect each other.

Unity offers options to create primitive shapes like boxes, cylinders or spheres as well as

more complex tools to create terrain or water. Furthermore, it is possible to import 3D objects

that were created with other software such as Blender [9] that allows the use of more complex

geometries such as robots. Another advantage of Unity is the implemented Asset Store [10]

which gives the developer access to an enormous library of assets which can be purchased or are

free to use for the project. This allows developers to use complex models for the scene without

the necessity to spend a large amount of time on creating detailed 3D models.
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2.2.2 Unity Physics Engine

The NVIDIA PhysX engine, integrated in Unity, can be used to simulate realistic physical

behavior such as gravity, impulse acting on an object or friction between objects. For my research,

the most important aspect is the integrated collision detection. Using colliders and overlap or

collision checks, it is possible to determine if any object is overlapping or touching another object

in the scene. The Unity physics library also includes methods for distance measurements such as

RayCasts, which casts a ray with defined origin and direction, to identify objects that are hit by

the ray. Some of the features that may be used for my research are the following:

Colliders [11] - Using invisible boundaries around an object, called colliders, allows the

detection of collisions between objects. These colliders are usually used to avoid objects to

move through each other and allows them to exert an impulse force. Another use for colliders

are trigger-events, which can be implemented to call a script or event to execute as soon as the

collider of an object enters the collider of the trigger object. The simplest colliders are primitive

colliders, such as box-, sphere- or capsule-colliders, which also require the least processing time.

These primitive shapes can be added together and applied to a single game object to create a

compound collider which can be used to better represent the object’s actual shape. The more

processor-intensive collider type are mesh colliders which use the objects mesh information to

form a collider which represents the object more precisely.

RayCast [12] - Casting a ray which can be described like a ”laser beam”, which returns

the colliders that are hit on its path. A ray-cast sends the ray from a given origin in a defined

direction with an optional parameter to limit the maximum range of the ray. Different methods

allow the ray-cast to return either the first collider that was hit or all colliders that were hit within
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the rays distance. More information can be returned form the raycast-hit such as distance or the

point where the ray hit another collider.

Overlap - Using the overlap-functions, such as Physics.OverlapBox [13], allows the pro-

gram to detect an overlap or enclosure of another object within the box whenever the method is

called, even if the physics simulation is not running. Overlap functions are only available for

primitive shapes like boxes, spheres and capsules. However, multiple overlap functions could

also be combined to achieve a similar result like compound colliders.

While the frame rate of the simulation might vary during runtime, the physics computations

are performed at fixed time steps. However, the physics engine is only running when the simula-

tion is started. As for my research, there will be no real-time physics simulation be used as the

spawn position should be generated before starting the simulation. An interesting solution to this

issue was suggested by ”ThePilgrim” in the Unity answer forum, where the physics simulation

can be advanced manually frame by frame [14]. Using this approach allows the evaluation of

physics methods and collision detection without entering the runtime simulation.

2.3 Experiment Design for Data Acquisition

For reporting the acquired data and making claims about the result, the data should be

presented following the guidelines of Jackson et al. [15]. The authors present three principles

to follow when reporting computational experiments. Following these guidelines, the reported

results are sufficient to justify the claims made and the information about the method and experi-

ment setup is described in detail to allow reproducibility of the results. In their work, the authors

do not create an exact set of rules to follow when presenting results, but lay the foundation to
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improve the quality for reports of computational experiments and reduce the effort of the readers

to judge the results.

The authors Hall and Posner discuss the topic of generating experimental data for compu-

tational testing [16] and the principles for data generation. While this journal entry is based on

their research for machine scheduling applications, the principles also apply for other computa-

tion testing research. The authors also base their key principles on the same guidelines as Jackson

in and introduce the properties of experiments. These properties include the variety of problems,

the practical relevance, the efficiency, and describability. As my work includes the generation of

data and conducting computational experiments, both works are important and their principles

are applied when conducting the experiments.

2.4 Conclusion

Research conducted in the field of autonomous robots and the application of 3D physics

simulations mainly focuses on the robotic behavior and the solution to developing working algo-

rithms to perform certain tasks. While there is a wide range of research concerning the implemen-

tation of ROS with adequate physics simulation tools, most applications rely on predetermined

initial conditions for the simulation. For performing multiple simulations with varying initial

conditions, or to generate simulations for multi-agent planning, it is crucial to be able to generate

randomized initial positions for robots or potential target objects.

With the described implementation of ROS and Unity, these tools can be used to design

versatile algorithms which can be applied for different test environments and would result in

randomized initial conditions for robotic simulations. The common practice to run simulations
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with varying start conditions requires specifically designed environments or predefined areas in

which an autonomous agent could start its task. With my research, I am planning to test different

approaches and provide an overview of potential methods to generate random spawn locations

within a complex environment.
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Chapter 3: Research Approach

In my research thesis, I am testing approaches to find feasible spawn locations for objects,

such as robots, in environments with different levels of complexity. Using such spawn positions

gives researchers the opportunity to run simulations of robotic behavior with varying initial con-

ditions. As the Unity engine offers an extensive set of functionalities, including an interface for

ROS, it was chosen to serve as a basis for this research. Since Unity is also widely used in the

video game industry, the result of this research could be used as ground work for a variety of

aspects for game development or automation research.

With Unity offering a broad range of implemented functions, I first carried out a literature

study to find existing approaches and applicable concepts to solve the issue at hand. As the

task of generating spawn locations in a complex environment was assumed to be a common

problem, I expected that there are existing solutions to the issue. However, the most commonly

applied solution is to randomly pick and check a location in the environment in a trial and error

procedure. This approach is less suitable for implementing ROS simulations, because ROS needs

to be initiated using ’.launch’-files which need to include the initial position for the simulation.

Therefore, a predetermined set of locations from which a random entry can be chosen would be

helpful to launch multiple robots or simulations in a given environment.

For my research, I developed and tested three different algorithms which yield lists of
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valid spawn-positions and pick a randomized set of entries from these lists. In the scope of

this project, the focus was set to test algorithms which generate spawn points for autonomous

ground robots only. The algorithms were applied in different environments which vary in scale

and complexity. To run and test the implemented algorithms, a simple test environment was

designed which includes a variety of obstacles and objects to test the accuracy and functionality

of the code. As soon as the methods were functional, they were applied on large scale scenes

which resembles a real-world example of an environment including buildings, lakes, and other

obstacles.

All algorithms were tested with a set of input parameters to generate a benchmark for

comparison. Testing the methods allows to determine their performance for a variety of use-cases

such as different environment sizes or number of objects that shall be spawned. A clearly defined

test approach was designed to generate data which can be used to compare various scenarios and

applications for the different methods.
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Chapter 4: Approaches

The approaches to find suitable initial positions for unmanned ground vehicle simulations

are designed to evaluate locations for their validity to accommodate a robot without any collision.

Therefore, all algorithms need to check the given locations for obstacles that might obstruct the

spawn area. Additionally, the spawn locations should not be located too far above ground. As

the algorithms were designed for ground vehicles, the robot simulation should start with only a

slight drop. This chapter explains the concept of each algorithm and how it was designed to find

suitable spawn locations as well as their implementation in Unity.

4.1 Feasibility Check

Each viable spawn location needs to satisfy a given set of conditions. In my case, I set the

requirements for a spawn location to be feasible, if it does not touch another object and if the

vertical distance to the terrain is below a certain threshold. Furthermore, the spawn location may

not be located below a water surface. While the threshold for the height above ground can be

easily adjusted as a value, the collision check needs to be implemented with colliders in both, the

environment and the robot.
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4.1.1 Collision Detection

In this research, a collision is defined as any two or more objects that either touch or over-

lap in the physical space. The algorithms assess a location’s viability by checking if any object

obstructs the space that the robot would occupy upon spawning. This can be achieved by mathe-

matically comparing the areas which two objects occupy and check if these areas overlap. If the

robot’s collider area does not overlap with any other object, the location can be assumed to be

collision-free.

4.1.2 Aerial Height Check

To assess the height above ground for in a potential spawn location, a simple height check

can be performed. As the ground might not be a primitive plane but a terrain with a complex

height map, the height can not just be determined by the vertical position in the coordinate system.

Therefore a point-height-check can be performed using a vertical line segment between the center

of the robot and the terrain. The length of the line segment yields the height above the point of

the terrain that was intersected. This is a very simplified height check, as the robot has 4 potential

contact points with the terrain, one for each wheel. Therefore, a situation might occur where

the center of the robot can be considered above ground while one or more wheels are actually

intersecting the terrain. Such a situation could be a spawn position near a steep slope. These

exceptions are not considered in my research and may be implemented in future work.
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4.1.3 Feasibility Check Procedure

With the established elements for the feasibility check, each selected coordinate can be

assessed and is considered valid or invalid as a spawn location. Because the height check is

mathematically less complex, it is possible to reduce processing time considerably by first check-

ing for the height and if this check fails, the collision and water checks can be skipped. The

following Algorithm 4.1 presents the basic steps taken to perform the feasibility check.
Algorithm 4.1: Feasibility-Check Algorithm

Data: Test Position (Pos), Height-Threshhold (HT ) and Robot Collider

Result: Viablity of Spawn Location

1 height← vertical distance from Pos to Terrain;

2 if height < HT then

3 if Pos below Water then

4 Return false;

5 else

6 move Robot to Pos;

7 if robot collision then

8 Return false;

9 else

10 Return true;

11 else

12 Return false;

4.1.3.1 Unity Implementation

Implementing the feasibility check in Unity allowed me to check any predetermined loca-

tion for its viability to spawn a robot. To perform the height check, a ray cast method was used.

With a ray cast, it is possible to cast a ray similar to a laser beam, from a selected position, in this
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case the coordinates that shall be checked, and cast the ray in a selected direction. The ray can be

defined to have a certain length which in this case can be the height threshold. When casting the

ray, it returns all colliders that it intersected, as well as the distance at which the collider was hit.

Using this information, the algorithm can detect if the ray hits the terrain or another object, such

as a house. Only the terrain and objects on which the robot should be allowed to spawn are tagged

with the tag ”terrain”. Therefore, it can also be examined if the ray intersects the terrain before

any other object, which means that spawnable terrain is above any other object that might be

covered in the scene. If a ray with the length of the height threshold intersects spawnable terrain

as a first hit, the aerial height check returns true and the collision check can be performed.

To assess if the current position is located under water, another ray cast can be performed

in the upward direction. As water surfaces in Unity are usually implemented as planes rather than

3-dimensional water areas, a ray cast is used instead of a collision check. Performing a ray cast

in the upward direction gives information if there is any water surface above the potential spawn

location. If the ray hits a water plane, the examined position is marked as invalid.

Using the Unity physics engine, the collision detection is a simple method to check if two

colliders intersect. For this, all objects that are considered obstacles, terrain, or water in the

environment need to be fitted with a collider. Also, the robot model needs to have a collider

component which is set to trigger mode. With the trigger mode, the robot does not physically

interact with other objects and does not exert force on colliding objects or itself but a set of

methods can be called, such as OnTriggerEnter() or OnTriggerExit(). As the spawn detection is

happening before starting the robot simulation, therefore in edit mode, the physics engine is not

running. Using a step-by-step simulation allowed me to advance the physics simulation manually

one step at a time. Using this approach to perform a collision check, the algorithm could move
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the robot to the location that should be assessed, then advance the physics simulation and call the

OnTriggerEnter() and OnTriggerExit() commands. Depending on the event of entering or leaving

the trigger, the collision check can then return a true or false value and the tested position can

be marked as a valid or invalid spawn point.

4.2 Methods

4.2.1 Random Search Approach

One approach that is commonly used in the video game industry, is to randomly search

for a viable spawn position. With this method, a random coordinate within a predetermined area

is selected and assessed for its viability. If the feasibility check fails, a new random location

is selected and the process is repeated. As soon as a viable location is found, the coordinates

are returned as a valid spawn location. To reduce computation power, already tested positions

are stored and are not checked again. An additional parameter is the minimum distance to al-

ready tested locations. Using this parameter will make sure, that already assessed positions are

separated by a minimum distance.

To avoid checking the same position multiple times, all previously tested coordinates are

stored in a sorted list. Because each coordinate contains three dimensions, the list is be sorted by

the X-coordinate. Searching a list of n elements results in a time complexity of O(n) if the list is

not sorted. When using a sorted list, a binary search can be conducted which reduces the search

complexity to O(log(n)). As a certain minimum distance shall be maintained, all X-coordinates

that are in the range of ± minimum distance around the currently tested coordinate. After the

already tested coordinates that match this condition are selected, the euclidean distance between
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the assessed position and the already checked positions can be calculated and compared to the

minimum distance. The following Algorithm 4.2 presents a simplified approach to find check

the distance between already found locations and the currently assessed position. If none of

the previously assessed positions are within the minimum distance of the current point and the

minimum distance check succeeds, the new location is being tested and the feasibility check 4.1

can be performed.

Algorithm 4.2: Check Minimum Distance
Data: Position to Check (Ptest), Minimum Distance (distmin),

List of checked Positions (checkList)

Result: Point too close to existing point (true or false)

1 limitleft = binarySearch(checkList.x, Ptest.x− distmin );

2 limitright = binarySearch(checkList.x, Ptest.x+ distmin );

3 foreach existingPosition in checkList[limitleft : limitright] do

4 if euclideanDistance(existingPosition, Ptest) < distmin then

5 return true;

6 return false;

4.2.1.1 Unity Implementation

To generate arbitrary test coordinates, a simple random number generator can be used to

generate X-, Y- and Z-coordinates. Before generating those numbers, the user can determine a

range in all three dimensions which allows to only check locations that are inside the environment

or to narrow down the locations where spawn positions shall be generated. Once a position is

generated, the new position is compared to all previously examined coordinates. If the new coor-

dinate is not within the minimum distance to other positions, the previously described feasibility

check is conducted and the returned value is used to determine whether the position can serve
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as a spawn location. This process is repeated until a feasible location is found. The following

Algorithm 4.3 describes the processes for the random search.

Algorithm 4.3: Random Search Algorithm
Data: Number of Locations to find (N ), Height Threshhold (HT ),

Minimum Distance (distmin), Boundaries (xmax,min, ymax,min, zmax,min)

Robot Collider

Result: Set of Random Viable Spawn Locations

1 Ptest ; /* Position to test */

2 checkList← [] ; /* List of checked positions */

3 resultList← [ ] ; /* List of feasible spawn positions */

4 while resultList.length() < N do

5 Ptest ← (Random.range(xmax,min, ymax,min, zmax,min)); if

checkMinimumDistance(Ptest , checkList) == false then

6 if feasibilityCheck(Ptest) == true then

7 resultList.append(Ptest);

8 checkList.insertSorted(Ptest);

9 return resultList;

To performing robotic simulations with multiple robots, or to run multiple simulations with

different initial conditions, a desired number of spawn locations (N ) can be designated. Using

this N , the algorithm can be repeated until N different and viable spawn locations are found.

All assessed locations are stored to a text-file with the information if the coordinate is a valid or

invalid spawn-point. Using this text file allows further processing to generate ROS launch-files.

4.2.2 3D Raster Search

Similar to the trial and error approach, the 3D raster search builds on the feasibility check

method. To perform this raster search, the user can define boundaries which determine the three-

21



dimensional range in which the search shall be conducted. A second parameter that needs to be

defined is the step size which is used to generate a three-dimensional grid of coordinates within

the defined range. Each generated coordinate is separated by the same distance defined as step

size. Once the grid is created, the feasibility check is performed for every generated coordinate

in the grid. Depending on the layout of the environment, it can be assumed that the majority

of checked coordinates do not meet the aerial height constraint and can therefore be ruled out

before the more complex collision check is performed. A simplified version of the implemented

algorithm is shown in Algorithm 4.4 below.

Algorithm 4.4: 3D Raster Search Algorithm
Data: Height-Threshhold (HT ), Boundarys (xmax,min, ymax,min, zmax,min),

Step Size (Step), Robot Collider

Result: Set of Viable Spawn Locations

1 validSpawns← [ ];

2 invalidSpawns← [ ];

3 for xpos = xmin; xpos < xmax; xpos + step do

4 for ypos = ymin; ypos < ymax; ypos + step do

5 for zpos = zmin; zpos < zmax; zpos + step do

6 if feasibilityCheck(xpos, ypos, zpos) == true then

7 validSpawns.append(xpos, ypos, zpos);

8 else

9 invalidSpawns.append(xpos, ypos, zpos);

10 return validSpawns;

4.2.2.1 Unity Implementation

The implementation of the 3D raster search in Unity using the previously discussed feasi-

bility check is straight forward. To check each position in the 3D grid, the algorithm can iterate
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through three nested for-loops which are limited by the user-defined boundaries in each dimen-

sion and the defined step size. Iterating through the loops, each position is checked by performing

a feasibility check. The result of the check is then stored in a text-file including the locations co-

ordinate and the state of the position as valid or invalid.

4.2.3 2D Raster Search

To reduce the number of iteration steps required to search the entire environment, a grid

search in only two dimensions can be performed. This 2D raster search will generate a grid in

the length and width dimensions. For each coordinate in the grid, the corresponding position

projected on the terrain will be searched and evaluated. To project the 2D coordinate onto a

complex terrain, a vertical line can be drawn that returns the X-, Y-, and Z-coordinates at which it

intersects with the terrain. Using the exact location on the terrain surface, a user defined Y-offset

can be applied to make sure the robot will not intersect with uneven terrain. At the generated test

location, the defined feasibility-check can be performed and the result can be returned and stored.

The following Algorithm 4.5 presents the steps to perform a 2D raster search.

4.2.3.1 Unity Implementation

The approach for implementing the 2D search is similar to the 3D raster search. The user

defined boundary in the X and Z dimension and the determined step size are used to generate a

2D grid which builds the search raster. For each node in the grid, a ray cast can be performed that

returns all intersection coordinates with the terrain. This also allows to check multiple positions

that might be located above each other in a complex environment, such as positions on or under a
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Algorithm 4.5: 2D Raster Search Algorithm
Data: Height Offset (yoffset), Boundaries (xmax,min, zmax,min),

Step Size (Step), Robot Collider

Result: Set of Viable Spawn Locations

1 validSpawns← [ ];

2 invalidSpawns← [ ];

3 for xpos = xmin; xpos < xmax; xpos+ = Step do

4 for zpos = zmin; zpos < zmax; zpos + step do

5 (xcheck, ycheck, zcheck)← projectOnTerrain(xpos, zpos);

6 ycheck ← ycheck + yoffset;

7 if feasibilityCheck(xcheck, ycheck, zcheck) == true then

8 validSpawns.append(xcheck, ycheck, zcheck);

9 else

10 invalidSpawns.append(xcheck, ycheck, zcheck);

11 return validSpawns;

bridge. Using the user-defined Y-offset and the found intersection with the terrain, a new point to

check can be generated at which the feasibility check can be performed. The result of the check

will be stored in a file including coordinates and validity of the spawn location.
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Chapter 5: Experiment Model and Setup

5.1 Robot Model

For my research, the unmanned ground vehicle in use is the Husky UGV by Clearpath

Robotics [18]. The Husky is a medium-sized ground vehicle used for exploration and manipu-

lation with selected attachments. As it is capable of navigating through challenging terrain, it

is a well-suited model to be applied to the different environments of this project. To integrate

this robot into a 3D environment, Clearpath provides a 3D model of the Husky to be downloaded

from their homepage.

The model of the Husky is imported to Unity and serves as a game object that can be

equipped with physical components. To successfully perform collision detection and determine if

a selected spawn location is unobstructed, the Husky needs to be fitted with a collider component.

As the complexity of a collider could influence the processing time, especially for large numbers

of collision checks, two different types of colliders were chosen. The most primitive and least

processor intensive collider type is a box-collider. For this, only a bounding box will be applied

to the 3D model which encloses the entire model in all dimensions. The more complex collider

type which was selected is a convex mesh collider. While a mesh collider represents an object in

its form more precisely, it is also more processor intensive and may therefore lead to increased

processing time during collision checks. Unfortunately, the NVIDIA PhysX engine version 3.0
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Figure 5.1: Husky with different attached colliders (green). Box-collider (left) and
convex mesh-collider (right).

and above do not support concave mesh-colliders. The following Figure 5.1 provides an overview

of the box- and mesh-collider applied to the Husky.

As shown in Figure 5.1, the mesh-collider represents the shape of the husky robot more de-

tailed. However, this collider is also more complex and requires more computation time to check

for collisions. In most cases, choosing a primitive collider is sufficient to achieve good results.

Nevertheless, there are applications where a more complex mesh-collider is required. This repre-

sentation of a convex mesh-collider uses the maximum possible number of 255 triangles that can

be used for a single convex collider in the PhysX engine [17].

5.2 Environment

To test different methods to search for feasible spawn locations and assess their perfor-

mance, I created different environments that vary in complexity. These scenes were designed to

test the methods for different aspects, such as technical functionality, processing time, and ap-

plication in complex environments. The following sections describes the various aspects of the
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different environments as well as their intended test applications.

5.2.1 Training Environment

In order to develop different approaches and being able to assess their functionality, a sim-

ple training environment was created. This scene resembles an arena with a level floor and four

walls surrounding it. Inside the arena, there are numerous obstacles which are created from

primitive objects like spheres and boxes. As this environment was mainly created to check if

the algorithms are working properly, it is not a large-scale environment and only stretches over

20 meters in each direction. Figure 5.2 shows an aerial view of the environment as it was used to

test the algorithms.

Figure 5.2: Aerial view of the ”Training Environment” created in Unity.

This training arena features a couple of obstacles such as walls, pillars or spheres and is
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enclosed in a set of four walls to each side. The level floor is tagged as ”terrain” and will be

considered as a surface on which a robot can spawned. On the left side in Figure 5.2, there

can be seen a ramp which leads to a platform which are both green shaded and are also tagged

as ”terrain” for spawning. Therefore, the algorithm should only pick locations on the floor, the

ramp or the platform as viable spawn points.

5.2.2 Low-Complexity Environment

As the training environment does not simulate real-world conditions, another scene was

created which includes a forest area, a lake, a small town and an uneven terrain. This environment

was used to assess the algorithms in a larger area which includes more complex structures. Since

this environment is not highly complex, there are no exceptions for a robot to spawn but on the

terrain. There are no open buildings or bridges included in this environment. Figure 5.3 provides

an overview of the entire scene.
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Figure 5.3: Aerial view of the ”Low-Complexity Environment” created in Unity.

The generated environment includes a small town, a dense forest on the right-hand side,

a less dense forest with uneven terrain in the bottom area and a small lake to the left. It also

includes a path which leads through the town. This path does not stand out from the rest of the

terrain and is only a visual feature. The entire environment spreads over 500 meters in width

and length and an elevation of about 75 meters measured from the ground of the lake. Figure

5.4 shows a close-up picture of the town square and gives a more detailed overview of the used

houses, the fountain and benches. A list of all assets that I used in this work can be found in

Appendix C.
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Figure 5.4: Overview of the town square and some of the used assets as obstacles.

This environment is not very detailed and does not exactly represent a real-world environ-

ment. However, it does allow me to test how the algorithms behave in different situations and

can be used for benchmark tests in larger scenes. All objects in the environment were fit with

compound box colliders or capsule colliders to serve as a base for the algorithm to work with.

5.2.3 Complex Environment

The most complex environment for this research represents a partially flooded area which

can be used as a representation of a disaster area and simulations for recovery missions using

autonomous ground robots. For my research, I used a prefabricated environment from the Unity

Asset Store, the ”Flooded Grounds” environment. This scene includes highly detailed objects

like houses, roads and fences, as well as uneven terrain and flooded areas. An additional feature,
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Figure 5.5: Aerial view of the complex environment, ”Flooded Grounds”.

which is not covered in the low-complexity environment, are imported 3D models that are marked

as spawnable area. Therefore, the robot can not only spawn on the uneven terrain but also on

bridges or roads. The Flooded Grounds scene also provides the largest environment for this

study with a size of 1,300 meters by 1,300 meters. Figure 5.5 provides an overview of the

Flooded Grounds environment.

As this environment was created as a setup for a post-apocalyptic video game, some changes

on the environment were made. These changes include the removal of UFOs. Additionally, the

trees in the scene were placed using Unitys terrain tool which allows placing randomized trees

in the scene. Unfortunately, these trees do not interact with the collider as required for the algo-

rithms to function correctly. Therefore, the trees were replaced with objects that include colliders.
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Figure 5.6: Overview of Benchmark Environment with different settings. (a) Empty
Environment. (b) Populated with 80 box-colliders (5 x 2 x 8). (c) Populated with 80
complex mesh-colliders (5 x 2 x 8).

5.2.4 Benchmark Environment

To assess the computation time of different colliders, a benchmark environment was cre-

ated. This scene can be filled with an adjustable number of obstacles. For this, an empty scene

will be populated with two different versions of obstacles. For one, basic cubes with attached

box-colliders will be used. As a second set of colliders, spheres with attached convex mesh-

colliders with the maximum complexity of 255 triangles are used.

This environment can be used to run tests and determine the differences in computation

time when using primitive or complex colliders on the robot as well as on the obstacles. The

environment can also be chosen to be empty in which case only the aerial component of the

feasibility-check is performed. Figure 5.6 provides an overview of examples for the three differ-

ent set-ups. To perform benchmark tests, a larger quantity of objects can be generated. The plane

only serves as a visual indicator of a floor and does not have a collider attached.
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5.3 Environment Design

To support the developed algorithm, the environments need to be designed to clearly in-

dicate what surfaces can be considered to be viable spawn locations. Making use of Unity’s

tag-system, each object in the Unity scene can be assigned to a specific tag. Using these tags, the

feasibility check method determines whether an object within the maximum height constraint is

considered terrain or an obstacle. Furthermore, certain environments need to be reworked and

adjusted to include colliders for all objects that are to be considered an obstacle.

5.4 Experiment Design

The experiments to analyze the performance of each method are designed to measure their

applicability for different use-cases. To analyze the performance of the fundamental feasibility

check, a set of experiments will be designed to measure the algorithm’s performance under clearly

defined conditions. Using this approach, the processing time for the different aspects of the

algorithm can be determined such as collisions or the aerial check.

The application for the 2D- and 3D search are very similar they will return all valid spawn

locations that were found in the defined search raster. Therefore, both algorithm can be used to

perform a full search of an environment and return sets of valid or invalid positions for a robot

to spawn. As the use-case for both algorithms are very similar, their performance can be directly

compared in terms of processing time depending on the density of the search grid. To assess the

performance of the raster searches, both algorithms are applied to the low-complexity- and the

complex environment. For each constellation, tests are performed using incremental step sizes
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and the results are compiled to be compared. The comparison of the full search algorithms can

be used to determine the conditions for which either algorithm is best suited.

In order to assess the functionality of the search algorithms, a manual inspection is per-

formed. For this, the generated array of valid and invalid locations are used to create a visual

representation of the result. Each position will be represented with a marker in the scene view

and be color coded depending on the classification as valid or invalid. This approach allows

to manually observe the algorithm’s decision making and check the position’s classification for

specific features in the environment.

With the random search algorithm, the outcome is a defined number of valid locations in

the environment. As the processing time of this method is based on the probability to find a

feasible spawn, this approach is considered nondeterministic. In order to generate a complete set

of feasible spawn locations covering the entire environment, the application of this algorithm can

result in excessive processing time. Therefore, the performance test for the random search algo-

rithm is designed differently. The key metrics for this method are the average total processing

time and the ability to find a set number of viable locations. As the algorithm shows a nondeter-

ministic behavior, the average processing time and the variance of the result is calculated from

multiple test runs. The algorithm will also be applied to the low-complexity- and the complex

environment.
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Chapter 6: Experiments and Results

In order to assess the performance of each method, the algorithms were applied to the

created environments to run a set of experiments. The results obtained from the tests are com-

pared to demonstrate the applicability and computation times depending on the complexity of

the environment. All experiments were carried out on a personal computer with the following

specifications. This chapter includes summaries of the test results. The detailed test results can

be found in Appendix A.

Operating System Windows 10 Pro

Unity Version 2020.3.24f1

Central Processing Unit (CPU) AMD Ryzen 7 3700X

Physical Memory (RAM) 32.0 GB

Graphics Processing Unit (GPU) NVIDIA GeForce RTX 2070-S

Table 6.1: Computer specifications for conducted experiments.

6.1 Benchmark Test

To investigate the processing time required for the feasibility check in environments with

varying number and complexity of obstacles, the benchmark environment as described in Section

5.2.4 was introduced and will be applied to conduct benchmark tests. in the following section,

the different experiment setups, including the independent aspect to be tested, are described.
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6.1.1 Aerial Test

As the feasibility check examines the robot’s height above ground in a first step, it is in-

teresting to know how much processing time is used to perform a certain amount of aerial tests.

This test includes the same code and steps that are used to perform the 3D raster search but all

observed locations are considered to be in the air. Therefore, the same algorithm as for the 3D

raster search is used but applied to an empty benchmark environment without terrain or obstacles.

6.1.1.1 Test Setup

To perform a large amount of aerial checks, tests with parameters as described in Table

6.2 were performed. As defined, the benchmark environment does not contain any obstacles or a

terrain. Setting up the environment as described in the following Table 6.2 results in a behavior

of the algorithm to only perform the aerial check for each feasibility check. The number of

feasibility checks is chosen to be rather large even for test 1.1 as the processing time per aerial

check is extremely low and large numbers of test yield a more meaningful result.
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Test # Test 1.1 Test 1.2 Test 1.3 Test 1.4

Nr. of Feasibility Checks 50,000 100,000 500,000 1,000,000

Test Raster (x, y, z) (10, 10, 500) (10, 10, 1000) (10, 10, 5000) (10, 10, 10000)

Step Size (x, y, z) (1, 1, 1)

Test Environment Benchmark Environment

Type of Obstacles None

Number of Obstacles: 0

Test Algorithm 3D Raster Search

Test Metric Processing Time

Observed Behavior Processing time depending on number of aerial checks

Table 6.2: Test 1 Setup for aerial check benchmark test.

6.1.1.2 Test Results

Table 6.3 presents the processing time results for the tests preformed as described in the

previous Section 6.1.1.1. The results contain the total processing time to perform the designated

number of aerial checks as well as the average time to perform 1,000 tests in the given environ-

ment. When taking a look at the time per 1,000 checks, it can be seen that the average processing

time does not increase with the number of total checks. Also, the processing power required

for this type of feasibility check can be considered extremely low compared to other feasibility

checks.

Test # Test 1.1 Test 1.2 Test 1.3 Test 1.4

Nr. of Feasibility-Checks 50,000 100,000 500,000 1,000,000

Total Processing Time [ms] 18.0 ms 34.0 ms 169.2 ms 342.0 ms

Processing Time per 1,000 Checks [ms] 0.360 ms 0.340 ms 0.338 µs 0.342 ms

Table 6.3: Test 1 results for aerial-check benchmark test.
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6.1.2 Collision Test

While the aerial tests could be implemented in a straight forward fashion, the collision

test does have more factors that can impact the processing time. The factors that shall be tested

with this experiment are the complexity of collider objects. The benchmark environment will

be prepared to include a number of obstacles and the robot for which the collision checks will

be performed. The raster, in which the search algorithm will assess potential spawn locations,

is aligned with the raster in which obstacles are spawned. Therefore, each feasibility check will

result in a collision with an obstacle.

6.1.2.1 Test Setup

To analyze the influence of different collider models, the complexity of the robot as well as

the complexity of the obstacles will be varied to run different test scenarios. For this, the robot

will implemented with two different colliders, a box-collider and a convex mesh-collider. For the

obstacles, the same variety of colliders is applied. This yields four basic test setups which will

be set up as described in the following Table 6.4. An example for the setup of the collision test is

shown in Figure 6.1.
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Test # Test 2.1 Test 2.2 Test 2.3 Test 2.4

Robot Collider Box Box Mesh Mesh

Obstacle Collider Box Mesh Box Mesh

Nr. of Obstacles 50,000

Obstacle Raster (x, y, z) (10, 10, 500)

Search Raster (x, y, z) (10, 10, 500)

Test Environment Benchmark Environment

Test Algorithm 3D Raster Search

Test Metric Average Processing Time (10 repetitions)

Observed Behavior Processing time depending on complexity of robot and ob-

stacle collider

Table 6.4: Test 2 setup for collision benchmark test with different collider types.

Figure 6.1: Overview of the collision experiment setup for test 2.1 and obstacles with
primitive box colliders.
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6.1.2.2 Test Results

All tests were executed as described in Table 6.4. To minimize the effect of background

processes on the processing time, the total time was calculated from the average of 10 repetitions

of each test. The results of the experiment are summarized in Table 6.5. The data provided by

this experiment clearly shows longer processing times to perform collision checks compared to

the aerial check. Therefore, the implementation of a preliminary check to rule out locations that

are too far above ground greatly increases the performance of the feasibility check.

Test # Test 2.1 Test 2.2 Test 2.3 Test 2.4

Nr. of Feasibility Checks 50,000 50,000 50,000 50,000

Nr. of Collision Detected 50,000 50,000 50,000 50,000

Robot Collider Box Box Mesh Mesh

Obstacle Collider Box Mesh Box Mesh

Average Total Processing Time [s] 10.63 s 10.89 s 10.18 s 11.15 s

Variance of Total Processing Time [s2] 0.016 s2 0.0081 s2 0.2992 s2 0.0397 s

Processing Time per 1,000 Checks [ms] 212.6 ms 217.8 ms 203.6 ms 223.0 ms

Table 6.5: Test 2 results for collision checks with different colliders.

While the complexity of the colliders would suggest that the computation time increases

drastically when applying more complex colliders to the models, the data yielded by the bench-

mark test does not support this claim. Form the data gained by this test, it can be seen that Test

2.4, which incorporates mesh colliders for both the robot and the obstacles, results in the highest

average processing time per check. However, there does not seem to be a difference or pattern in

the resulting processing time between applying complex and primitive colliders.
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6.2 Algorithm Application Testing

6.2.1 3D Raster Search

In this section, tests and results with the 3D raster search are described and analyzed. As

the number of locations to be tested within a certain area increases depending on the step size,

tests with a range of step sizes are performed and compared. The result of the applied tests

give an overview of the processing time to perform a full search in 3 dimensions. In a further

step, the intermediate results of the algorithm are examined by checking certain features of the

environment and observing the decisions made by the algorithm.

6.2.1.1 Performance Tests

To assess the performance of the 3D raster search, the algorithm was applied to the low-

complexity environment as well as the complex environment. For each scene, the algorithm

parameters were adjusted to cover the entire range of the environment. The main impact on the

processing time is expected to be the step size with which the search area is explored.

Low-Complexity Environment

For the first test, the search algorithm was applied to the low-complexity environment.

The test was designed to perform searches with varying step sizes and gives an overview of

the different processing times. Additionally, the ratio between valid, invalid, and aerial spawn

locations can be compared between the different test runs. Table 6.6 provides an overview of the

test setup. Figure 6.2 shows how the test area was selected to enclose the environment in its total
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height.

Test # Test 3.1 Test 3.2 Test 3.3 Test 3.4

Step Size [m] 0.5 m 1 m 1.5 m 2 m

Nr. of Checks ≈ 187,400,000 ≈ 23,600,000 ≈ 7,000,000 ≈ 3,000,000

Test Area (x, y, z) From (0, 31, 0) to (500, 124, 500)

Max. Height above Ground [m] 1.0 m

Test Environment Low-Complexity Environment

Test Algorithm 3D Raster Search

Test Metric Processing Time, Ratio of valid/invalid Spawns

Observed Behavior Processing time and spawn detection ratio depending step size

Table 6.6: Test 3 Setup for performance test of 3D raster search in low-complexity environment.

Figure 6.2: Overview of the chosen boundaries (red) for the 3D raster search applied
to the low-complexity environment to include the environments total height.

The data gained from the performance test is shown in Table 6.7. The results clearly show,

that the processing time increases exponentially with smaller step sizes. Another observation is

the percentage of checked locations which are considered too far in the air or below terrain. With

around 99.9 %, most of the checked locations already fail the aerial check. This shows that the

implementation of this check reduces the processing time greatly when referring to the results in

Table 6.3 and 6.5.
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Test # Test 3.1 Test 3.2 Test 3.3 Test 3.4

Step Size [m] 0.5 m 1 m 1.5 m 2 m

Nr. of Checks ≈ 187,400,000 ≈ 23,600,000 ≈ 7,000,000 ≈ 3,000,000

Nr. of Valid Locations ≈ 1,730,000 ≈ 217,000 ≈ 68,600 ≈ 30,800

Valid Locations [%] 0.926 % 0.923 % 0.976 % 1.04 %

Invalid Locations [%] 0.139 % 0.138 % 0.148 % 0.163 %

Aerial Locations [%] 98.93 % 98.94 % 98.88 % 98.80 %

Total Processing Time [s] 363.4 s 47.4 s 14.0 s 6.6 s

Time per 1000 checks [ms] 1.94 ms 2.01 ms 1.99 ms 2.23 ms

Ratio Invalid/Valid 0.150 0.149 0.151 0.156

Table 6.7: Test 3 results of performance test of 3D raster search in low-complexity environment.

Complex Environment

In a further test, the search algorithm was applied to the complex environment. The test

was designed analog to the previous test for the low-complexity environment. However, as the

scene is approximately six times larger than the previous one, the step size is adjusted to reduce

the test duration. Table 6.8 provides an overview of the test setup. Figure 6.3 shows how the test

area was selected to enclose the environment in its total height.

Test # Test 4.1 Test 4.2 Test 4.3 Test 4.4

Step Size [m] 1 m 1.5 m 2 m 2.5 m

Nr. of Checks ≈ 132,800,000 ≈ 39,400,000 ≈ 16,800,000 ≈ 8,700,000

Test Area (x, y, z) From (-128, 0, -212) to (1152, 80, 1067)

Max. Height above Ground [m] 1.0 m

Test Environment Complex Environment

Test Algorithm 3D Raster Search

Test Metric Processing Time, Ratio of valid/invalid Spawns

Observed Behavior Processing time and spawn detection ratio depending step size

Table 6.8: Test 4 Setup for performance test of 3D raster search in complex environment.
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Figure 6.3: Overview of the chosen boundaries (red) for the 3D raster search applied
to the complex scene to include the entire environment.

The data gained from this experiment is summarized in Table 6.9. The results look similar

to those of the low-complexity test as they also show that most checked positions are located

in the air. However, as this environment features a large water area, the percentage of invalid

locations is larger than in the low-complexity environment. Furthermore, the percentage of valid

locations in Test 4.2 is significantly lower than for the other tests. The reason for this occurrence

is the line up of the raster with the terrain height. As the maximum height above ground is lower

than the step size, it is possible that the terrain is at a height that is skipped by the raster search.

As this environment is rather flat without any hills, some potential spawn locations might have

been missed by the algorithm.
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Test # Test 4.1 Test 4.2 Test 4.3 Test 4.4

Step Size [m] 1 m 1.5 m 2 m 2.5 m

Nr. of Checks ≈ 133,000,000 ≈ 39,400,000 ≈ 16,800,000 ≈ 8,700,000

Nr. of Valid Locations ≈ 539,000 ≈ 125,000 ≈ 73,600 ≈ 40,100

Valid Locations [%] 0.406 % 0.317 % 0.437 % 0.462 %

Invalid Locations [%] 0.434 % 0.423 % 0.397 % 0.462 %

Aerial Locations [%] 99.16 % 99.14 % 99.01 % 99.88 %

Total Processing Time [s] 161.5 s 41.8 s 20.6 s 10.9 s

Time per 1000 checks [ms] 1.22 ms 1.06 ms 1.22 ms 1.26 ms

Ratio Invalid/Valid 1.07 1.33 0.91 1.00

Table 6.9: Test 4 results of performance test of 3D raster search in complex environment.

6.2.1.2 Functionality Tests

After examining the performance of the 3D raster search algorithm, I wanted to analyze

the algorithm’s functionality. For this purpose, I executed the algorithm to find valid and invalid

spawn locations in both environments and present the result with markers in the scene view. This

approach gives the opportunity to manually check if the algorithm determines the viability of a

location as expected. Figure 6.4 shows a collection of special cases in the low-complexity envi-

ronment and how the algorithm determines the validity of the locations. The examined locations

are indicated with green markers for valid locations and red markers for invalid spawn locations.
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Figure 6.4: Overview of the classification of spawn locations by the 3D raster search
algorithm in the low-complexity environment. a) Open terrain, mainly valid loca-
tions. b) Collision with fountain in town square. c) Detection of underwater loca-
tions. d) Collisions in dense forest.

As shown by the special cases in Figure 6.4, the decisions made by the search algorithm

conform to the expected outcome. Generally, the open areas provide plenty of room for a robot

to spawn. Therefore, the plains with little to no objects are mainly covered with valid spawn

locations. In addition, all positions where the robot would collide with an object near trees,

benches, or the fountain, are marked as invalid locations. Also, the algorithm detects areas which
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are in proximity to the terrain but underneath a water layer and stores them as invalid locations.

This manual functionality check showed that the algorithm works well with the low-complexity

environment.

In a next step, I applied the algorithm to the complex environment. As this environment

was not specifically designed to accommodate this algorithm, the scene provides a good example

for the application of the algorithm in a third-party scene. Figure 6.5 provides an overview of the

algorithm’s classification of spawn locations in different situations.

Figure 6.5: Overview of the classification of spawn locations by the 3D raster search
algorithm in the complex environment. a) Collision detection in town. b) Water and
collision detection with small objects. c) Spawn detection on bridge.

While the algorithm performs mostly correctly in this environment too, there are some

decisions which could lead to an unsuccessful robot simulation. In example a), the algorithm

correctly detects collisions with objects in the city. Therefore, locations which would be inside

or too close to the abandoned car are marked as invalid. In situation b), the classification is also

technically correct. Therefore, the locations in the water are marked as invalid and so are spawn

locations where the robot would collide with the fence. However, some viable spawn locations
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are positioned above the fence. While the robot would not collide with the fence when spawned,

it could lead to unwanted issues when the physics simulation is started and the robot might roll

over after partially landing on the fence. As for example c), the spawn locations on the bridge

are chosen correctly. However, as the entire object of the bridge is marked as spawnable terrain,

this also includes the pillars and the frames of the bridge. Spawning a robot on top of the frames

would lead to a failure of the simulation. However, this problem could be prevented by correctly

editing the bridge object and clearly defining which part of the bridge should be considered to be

valid spawn locations.

6.2.2 2D Raster Search

In a similar fashion to the tests performed with the 3D raster search, performance and

functionality tests are conducted using the 2D raster search. Conducting performance tests with

similar setup parameters as for the 3D search, the performance of the two algorithms can be

compared in a later step.

6.2.2.1 Performance Tests

The 2D raster search algorithm was applied to both the low-complexity and the complex

environment. For both scenes, raster searches with varying step size were conducted and the

required processing time was analyzed. Again, the search parameters are designed to cover the

entire environment.

Low-Complexity Environment
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In a first step, the low-complexity environment is used to perform the first analysis. All

of the following tests are performed with the same search parameters. The only variable that

changes is the step size. I assessed the outcome of the processing time and the ratio of valid

to invalid spawn locations. The search area was selected exactly the same as in test 3 and also

covers the entire height of the environment as shown in Figure 6.2. Table 6.10 presents the setup

for the test parameters.

Test # Test 5.1 Test 5.2 Test 5.3 Test 5.4

Step Size [m] 0.5 m 1 m 1.5 m 2 m

Nr. of Checks ≈ 1,000,000 ≈ 251,000 ≈ 112,000 ≈ 63,000

Test Area (x, z) From (0, 0) to (500, 500)

Ray Cast Height to Depth 124 to 31

Chosen Y-Offset [m] 1.0 m

Test Environment Low-Complexity Environment

Test Algorithm 2D Raster Search

Test Metric Processing Time, Ratio of valid/invalid Spawns

Observed Behavior Processing time and spawn detection ratio depending step

size

Table 6.10: Test 5 Setup for performance test of 2D raster search in low-complex environment.

Table 6.11 summarizes the results of the performance test using the 2D raster search on the

low-complexity environment. The data shows, that the percentage of valid and invalid locations

do not necessarily add up to 100%. As this algorithm only performs a feasibility check once the

terrain was hit, there are locations along the outskirt of the environment which miss the terrain

and therefore don’t return any position, valid or invalid.

Similar to the 3D search, the processing time also increases with smaller step sizes. How-

ever, it can be seen that the processing time does not increase as drastically as in the equivalent
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test using the 3D raster search. This is mainly caused because the number of checks grows in a

quadratic order, rather than a cubic one. The ratios of invalid to valid locations are in a similar

scale as in the results of test 3.

Test # Test 5.1 Test 5.2 Test 5.3 Test 5.4

Step Size [m] 0.5 m 1 m 1.5 m 2 m

Nr. of Checks ≈ 1,000,000 ≈ 251,000 ≈ 112,000 ≈ 63,000

Nr. of Valid Locations ≈ 896,000 ≈ 224,000 ≈ 100,000 ≈ 56,000

Valid Locations [%] 89.4 % 89.2 % 89.6 % 88.9 %

Invalid Locations [%] 10.4 % 10.4 % 10.4 % 10.3 %

Total Processing Time [s] 114.7 s 28.6 s 12.6 s 7.2 s

Time per 1000 checks [ms] 114.44 ms 113.93 ms 113.37 ms 114.51 ms

Ratio Invalid/Valid 0.116 0.116 0.116 0.117

Table 6.11: Test 5 results of performance test of 2D raster search in low-complexity environment.

Complex Environment

The same analysis was then applied to the complex environment. The setup for the test is

identical with the setup in test 5. However, the step size is adjusted to match the step sizes in test

4. I again observed the resulting processing time and the ratio of valid to invalid spawn locations.

The search area was also designed exactly the same as in test 4 to cover the entire environment

as shown in Figure 6.3. Table 6.12 presents the setup for the test parameters.
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Test # Test 6.1 Test 6.2 Test 6.3 Test 6.4

Step Size [m] 1 m 1.5 m 2 m 2.5 m

Nr. of Checks ≈ 1,640,000 ≈ 729,000 ≈ 411,000 ≈ 263,000

Test Area (x, z) From (-128, -212) to (1152, 1067)

Ray Cast Height to Depth 0 to 80

Chosen Y-Offset [m] 1.0 m

Test Environment Complex Environment

Test Algorithm 2D Raster Search

Test Metric Processing Time, Ratio of valid/invalid Spawns

Observed Behavior Processing time and spawn detection ratio depending step

size

Table 6.12: Test 6 Setup for performance test of 2D raster search in complex environment.

Table 6.13 presents the results of the performance test applying the 2D raster search to the

complex environment. Again, the data shows, that the percentage of valid and invalid locations

do not add up to 100%. As the design of this scene does not include terrain towards the outer edge

of the environment, no spawn locations were assessed for positions that were far out in the sea.

The processing time also behaves similarly to the previous test, where the time increases with

smaller step size and does not increase with the same magnitude as the 3D search time. The ratio

of invalid to valid spawn locations also behaves similarly to the ratio found with test 4. The only

significant difference in the ratio is between test 4.3 and test 6.3. This is most certainly caused by

the 3D algorithm missing a significant amount of viable spawn locations as the terrain is located

between steps.
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Test # Test 6.1 Test 6.2 Test 6.3 Test 6.4

Step Size [m] 1 m 1.5 m 2 m 2.5 m

Nr. of Checks ≈ 1,640,000 ≈ 729,000 ≈ 411,000 ≈ 263,000

Nr. of Valid Locations ≈ 618,000 ≈ 276,000 ≈ 155,000 ≈ 99,200

Valid Locations [%] 37.7 % 37.8 % 37.6 % 37.7 %

Invalid Locations [%] 35.5 % 35.5 % 35.3 % 35.2 %

Total Processing Time [s] 100.2 s 45.1 s 24.5 s 16.7 s

Time per 1000 checks [ms] 61.10 ms 61.79 ms 59.69 ms 63.61 ms

Ratio Invalid/Valid 0.943 0.938 0.938 0.935

Table 6.13: Test 6 results of performance test of 2D raster search in complex environment.

6.2.2.2 Functionality Tests

As the performance of the 2D raster search seems to be preferable over the 3D search, I also

wanted to analyze this algorithm’s functionality. For this purpose, I used the same approach as for

the previous functionality test and executed the algorithm in both environments and present the

result with markers in the scene view. Figure 6.6 shows some special cases in the low-complexity

environment and how the algorithm classifies the spawn locations. The examined locations are

indicated with green markers for valid locations and red markers for invalid spawn locations.
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Figure 6.6: Overview of the classification of spawn locations by the 2D-raster-search
algorithm in the low-complexity environment. a) Collision with fountain in town. b)
Spawn classification for open terrain and lake. c) Collision detection in dense forest.

As shown by the special cases in Figure 6.6, the decisions made by the 2D search algorithm

also correctly classified the spawn locations. As shown in example a), locations around the

objects in the town center are correctly classified as invalid locations. In example b), tested

position in the water are correctly marked as invalid while locations on terrain are marked as

valid. Example c) shows the detection of small objects such as trees, which are also correctly

identified.

The algorithm was also applied to the complex environment. Figure 6.7 provides an

overview of the algorithm’s classification of spawn locations in different situations.
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Figure 6.7: Overview of the classification of spawn locations by the 2D-raster-search
algorithm in the complex environment. a) Collision detection in town. b) Water and
collision detection with small objects. c) Spawn detection on bridge.

The algorithm correctly handles objects such as cars or fences and marks them as invalid

locations as shown in example a). When comparing example b) to the results of the 3D search, it

can be seen that no spawn locations above the fence are marked as valid. This happens because

the algorithm only checks locations that are a defined distance above the terrain. Example c)

shows a similar outcome as the result of the 3D search algorithm. However, after a location on

the frame was checked, the location on the path of the bridge is not checked again. This is caused

by the issue that a ray cast only returns the collider once. Therefore, the collider is stored when

when the ray hits the frame and not again for the path on the bridge’s surface. Similar to the

previous functionality test with the 3D raster search, this issue could be solved by modeling the

bridges differently to include separate colliders for the path and the frame.
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6.2.3 Comparison of 2D- and 3D Raster Search Performance

As shown by the performance tests for both search algorithms, the processing time for

the 3-dimensional search increases more drastically with lower step size than the 2-dimensional

search. While the processing time per single check is longer for the 2D search, the quadratic

increase in steps taken for the search results in a lower processing time than the cubic increase

of the 3D search algorithm. Therefore, at a certain point, the 2-dimensional search will be more

efficient than the 3-dimensional search algorithm.

To compare the effect of step sizes and the number of steps with the required processing

time, tests 3 to 6 were repeated with smaller increments of step size. With the additional data, a

set of graphs were created which show the increase of processing time depending on the number

of steps taken. Figure 6.8 shows graphs comparing the processing time depending on step size

and number of total steps.
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Figure 6.8: Performance graphs of 2D- and 3D-Search. a) Low-Complexity Envi-
ronment: Processing Time vs. Number of Steps. b) Low-Complexity Environment:
Processing Time vs. Step Size. c) Complex Environment: Processing Time vs. Num-
ber of Steps. d) Complex Environment: Processing Time vs. Step Size.

By comparing the graphs, information about the break-even point of the two algorithms

can be gained. As shown in graphs a) and b), the processing time for both algorithm in the low-

complexity environment is approximately equal at about 12.5 million steps which corresponds to

a step size of about 1.8 meters. When comparing the algorithms’ performances in the complex

environment as shown in graphs c) and d), the break-even point is at approximately 20 million

steps and a step size of about 1.8 meters. After this point, and increased number of positions to

check favors the use of the 2D-raster-search algorithm.
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The mentioned issue with the 3D search algorithm is the possibility to skip the terrain

because of the defined step size. This issue can have a considerable impact when choosing large

step sizes, especially if the step size is larger than the maximum height above ground. Because the

2D search algorithm does only consider the height of the terrain hit, such an issue does not occur.

Figure 6.9 compares the result when choosing a step size of 2.5 meters and a height parameter

of 1 meter for the 2D- and the 3D search algorithm. As shown in the picture, the 3D algorithm

skips the terrain at certain positions, as the terrain is located between two steps, but not within

the height. Therefore, some feasible locations are missed when performing a 3D raster search.

Compared to the 3D algorithm, the 2D search algorithm finds all locations in the same area. As

the maximum spawn height can not always be increased with the step size, as it could result in

a large drop when starting the simulation, a solution of independent step-sizes for the XZ-plane

and Y-axis was implemented.

Figure 6.9: Comparison of a) 2D-search and b) 3D search algorithm and the resulting
valid spawn locations. Step size: 2.5 meter, spawn height: 1 meter.

According to the results of the tests conducted, it can be assumed that the complexity, size
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and shape of the environment determine the exact number of steps at which the 2D raster search

becomes more efficient. Therefore, the 3D raster search might still be a viable solution to search

for valid spawn locations in a broader grid. The advantage of the 2D search is the ability to search

a narrow grid and yield a large set of viable spawn locations within a reasonable calculation time.

Considering the increased processing time of the 3D search and the issue of potentially missing

feasible locations due to step size and maximum spawn height, it is concluded that the 2D raster

search provides generally better results.

6.2.4 Random Search

In contrast to the raster-search-algorithms, which examine the environment in a structured

manner, this random search algorithm assesses randomly chosen locations within the defined

boundaries. This algorithm can not directly be compared to the other algorithms in terms of

efficiency to find all viable locations. However, the random search may be a good option to

randomly generate a defined number of spawn locations without first searching the entire envi-

ronment. Therefore, the performance tests are structured differently.

6.2.4.1 Performance Test

The key performance to test for this algorithm is the time to find a set number of valid

spawn locations. As the time to find a new spawn location is nondeterministic, it is not possible

to run a single experiment and receive significant data. Therefore, the same test parameters are

used to run multiple tests and visualize the performance for each run. In a further step, more tests

are performed to gain an average time required to find the determined number of valid spawn
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locations.

Low-Complexity Environment

Again, the first test is conducted on the less complex environment. The test is repeated 5

times to present overlaying graphs of the time required to find new spawn locations. In a next

step, the test is performed 20 times to gain an average total time to find the set number of spawn

locations. Table 6.14 presents the setup for test 7.

Test # Test 7.1 Test 7.2

Nr. of Tests 5 20

Test Area (x, y, z) From (0, 31, 0) to (500, 124, 500)

Min. Distance between Checks [m] 2.5 m

Nr. of Spawns to Find 2,000

Limit Consecutive Failures 100,000

Max. Height above Ground [m] 1.0 m

Test Environment Low-Complexity Environment

Test Algorithm Random Search

Test Metric Completion time and time per per spawn found.

Observed Behavior Total time to find all spawns and compare the

time between new spawns found.

Table 6.14: Test 7 Setup for performance test of random search algorithm in low-complexity

environment.

For test 7.1, the search was performed 5 times using the same settings. Figure 6.10 shows

the time required to find all searched valid spawn locations. As shown by the graphs, each

run behaves slightly differently. This is caused by the nondeterministic behavior of the search

algorithm. However, the differences between the completion times are not as large as expected.

Furthermore, each run yielded the desired number of 2,000 valid spawn locations.
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Figure 6.10: Test 7.1 results showing the time required to find 2,000 valid spawn
locations in the low-complexity environment.

An interesting observations is that the time between the detection of valid locations seems

to follow polynomial growth. The main impact on the processing time for this algorithm is the

test for nearby checked locations. As for each checked location the list grows, the search for

potentially nearby locations gets more time consuming with every iteration. In order to test this

hypothesis, a separate test without the implementation of the distance check. Therefore, the

binary search of a list of already assessed locations is skipped and the processing time per new

location should not increase. Figure 6.11 shows the result of this test. As shown by the graphs,

which represent the time to find a number of locations, the time to find a new locations does not

seem to increase. The time required to find 2,000 feasible locations is also considerably lower

than with the included distance check. Therefore it is assumed, that the distance check is one of
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the main factors for the processing time of this algorithm.

Figure 6.11: Test of the random search algorithm without distance check for previ-
ously checked locations.

To analyze the average completion time of the algorithm with the defined properties as

shown in Table 6.14, a test with 20 consecutive runs was performed. Table 6.15 shows the average

completion time as well as the variance of the data set. The results show, that the completion time

to find a rather large number of spawn positions is low compared to a full search using the raster

search algorithms. Furthermore, the variance of the data set lies within an acceptable range

considering the quantity of found locations spread over the entire environment.
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Test # Test 7.2

Environment Low-Complexity Environment

Nr. of Runs 20

Total Completion Time [s] 376.5 s

Average Time per Run [s] 18.8 s

Variance of Completion Time [s2] 1.03 s2

Table 6.15: Test 7.2 results of average completion time for random search algorithm in low-

complexity environment.

To showcase the result of the random search algorithm, Figure 6.12 presents an overview

of the spread of 2,000 valid spawn locations in the low-complexity environment. This overview

shows that the discovered spawn locations are in fact random and do not seem to follow a certain

trend.
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Figure 6.12: Overview of 2,000 random spawn location (blue) in the low-complexity
environment.

Complex Environment

Analog to test 7, another experiment with the complex environment was conducted. This

test was performed with the same parameters as for test 7 but the search area was adjusted to

include the entire environment. Table 6.16 presents the setup parameters for the performance test

using the random search algorithm within the complex environment.
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Test # Test 8.1 Test 8.2

Nr. of Tests 5 20

Test Area (x, y, z) From (-128, 0, -212) to (1152, 80, 1067)

Min. Distance between Checks [m] 2.5 m

Nr. of Spawns to Find 2,000

Limit Consecutive Failures 100,000

Max. Height above Ground [m] 1.0 m

Test Environment Complex Environment

Test Algorithm Random Search

Test Metric Completion time and time per per spawn found.

Observed Behavior Total time to find all spawns and compare the

time between new spawns found.

Table 6.16: Test 8 Setup for performance test of random search algorithm in complex environ-

ment.

To visually present the differences between separate test runs, the results from test 8.1 are

shown in Figure 6.13. The graphs clearly show a variance in completion time over the set of 5

test runs. Similar to test 7.1, all runs follow the same trend and found the required 2,000 spawn

locations. Again, the total processing time varies from run to run.
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Figure 6.13: Test 8.1 results showing the time required to find 2,000 valid spawn
locations in the complex environment.

Performing test runs with the same settings as in test 8.1, a test with 20 consecutive runs

was performed. The resulting total completion time, average run time and the variance of the

data-set are summarized in Table 6.17. With an increased size of the environment, the total

completion time is larger than the time required to search the less complex environment. The

main factor for the search time, using a random search algorithm, is the probability to find a valid

location. Considering the results from test 3 (Table 6.7) and test 4 (Table 6.9), the probability to

find a valid spawn location in the complex environment (≈ 0.4%) is approximately half of the

probability to find a viable location in the less complex environment (≈ 0.95%). Therefore, it is

reasonable that the runtime to find the equal amount of valid locations is also roughly doubled.
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Test # Test 8.2

Environment Complex Environment

Nr. of Runs 20

Total Completion Time [s] 852.5 s

Average Time per Run [s] 42.6 s

Variance of Completion Time [s2] 3.05 s2

Table 6.17: Test 8.2 results of average completion time for random search algorithm in complex

environment.
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Chapter 7: Conclusion

7.1 Summary

Using Unity as a physics simulation platform has been well established in industry and

research. The capability of the implemented physics engine and the accessibility of the develop-

ment platform provide a convenient environment to develop simulations for autonomous robots.

An approach to implement multiple robots into a simulation can help with the development of

multi-agent simulations and performing tests with multi-agent control algorithms. In this thesis,

I present three approaches to generate sets of viable spawn locations for such experiments.

The implemented algorithms provide an example for simple approaches to search for all

feasible spawn locations within given search parameters, or to find a defined number of spawn

locations which are spread randomly throughout the defined search perimeter. With the intro-

duction of the 2-dimensional and 3-dimensional raster search algorithms, the user can have the

entire environment explored and receive a text-based list of feasible spawn location coordinates.

The resulting set of locations can then be processed to generate initial conditions for multiple

simulations or simulations with multiple agents. By applying the random search algorithm, a

predefined number of spawn locations are searched and returned. This algorithm does not return

every possible location, but rather a set of random locations which are valid for spawning a robot

in the simulation.
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With this research, I applied the developed algorithms to various environments which vary

in complexity and features present in the scene. The conducted performance analysis allowed

to directly compare the 2D and 3D search algorithm in terms of processing time. With this

comparison, it can be suggested to apply a 2-dimensional search for large environment or to

generate a denser set of viable spawn locations. With the increased complexity per position check,

the 3D search performs better for small sample sets. To generalize both algorithms performed

well considering the size of the environment and the number of valid locations that are returned.

The random search algorithm is preferable to directly generate a randomized set of initial position

for a simulation. The performance of the random approach depends vastly on the design of the

environment and the definition of the search perimeter, as the probability of finding a feasible

locations within the perimeter factors into the search time of the algorithm.

The output of each method was assessed and the algorithms’ classification of positions were

examined for proper functionality of the code. Every algorithm managed to correctly classify

spawn locations for their validity. Therefore, no location that was labeled as valid would result

in a collision or otherwise unfeasible initial position for a robot simulation. With the parameter

for maximum height above ground, for each algorithm, there are certain situations where a valid

spawn point was located above a low-lying obstacle. Such conditions might result in unwanted

behavior of the robot upon launching the physics simulation. Overall, the algorithms performed

well and yielded satisfying results in both performance and functionality.
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7.2 Contributions

With this thesis, I am proposed methods for generating feasible spawn positions, tested, and

compared their performance applied to environments which vary in scale and complexity. The

problem of searching feasible spawn locations has not been discussed to a great extent in available

literature and there are only few approaches to find feasible locations. With the performed anal-

ysis of the implemented algorithms, a baseline for approaching the problem was created. The

methods, used in this research, are easy to deploy in different environments and allow further

research to be conducted with multi-agent simulations or to implement reinforcement learning

approaches by performing a large number of simulations.

The results of the performance analysis suggest that the applied brute-force search algo-

rithms already perform well within reasonable processing time. Each algorithm is executed with

rather low time effort and can actively reduce the development time for generating multiple sim-

ulation scenarios. The performance analysis shows the advantage of the 2D search algorithm

over the 3D search in any case where a large area with a dense search grid is explored, due to

the reduced completion time. In order to generate a randomized list with a determined number of

viable spawn locations, the random search algorithm can drastically reduces the search time by

reducing the number of locations to check. However, the random search algorithm is not suitable

to perform a full search of the environment.
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7.3 Limitations

This research project only considers generating valid initial positions for robots. Therefore,

there is no implementation of ROS or any robotics simulation itself. The result of the algorithms

is a set of viable spawn-locations which could then be used to run autonomous robotic experi-

ments. As it is assumed that the Unity simulation will start when the robot is placed and connected

to ROS, it is desirable that the spawn locations are generated before running the Unity simula-

tion. There is no real-time physics simulation applied and it is assumed that the environment is

static. Collisions with dynamic objects would need to be double-checked once the simulation

is launched. Therefore, if the environment for a robot simulation includes objects like moving

cars and the robot should be spawned during runtime, a collision with the newly spawned robot

could occur and the spawn location would need to be reevaluated. Additionally, spawn locations

that were considered invalid when generating the set of spawn locations could be viable once

a dynamic object moves. In the scope of this research, such issues are not resolved and would

require further development.

Furthermore, this research only studies generating spawn positions for autonomous ground

vehicles. Therefore, all spawn locations are expected to be either on the ground or close to the

terrain which would result in only a small drop when launching the simulation. The terrain is

also assumed to be in an acceptable shape that allows the robot to spawn on the ground. There

is no check of the terrain’s gradient to avoid a situation where the robot might roll over after

spawning. The developed algorithms are intended to provide a good solution for most environ-

ments. However, there are always possible forms of terrain that could result in a location that

is assumed suitable for the robot but results in an undesired physical issue once the real-time
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physics simulation is started. For this research, only the center position of the robot is used to

check for the terrain height. Depending on the slope or geometry of the terrain, this approach can

lead to issues in certain situations. An additional check for the terrain slop was not implemented

but could potentially solve this issue.

7.4 Further Work

One critical issue that might occur when initiating the physics simulation, is the behavior

of the robot when dropping to the ground. As the developed algorithms do not consider the shape

and gradient of the terrain below the robot, unwanted issues such as a roll-over of the robot may

occur. Further development could tackle this issue by analyzing the terrain in the area where the

robot will make contact with the ground. Such an inspection could further increase the reliability

of the generated spawn locations and reduce the number of failed simulation due to a demobilized

robot. Combined with this addition, it might be considered to adjust the orientation of the robot

to create the best-case scenario for each spawn location.

With the introduced search algorithms, only the spawn validity of each locations is as-

sessed. While this guarantees a successful spawn procedure, it does not assure a successful

simulation of the robot’s mission. There are many situations where a spawn location can be clas-

sified as viable, but there would be no possible path to the goal locations for the robot’s task.

Additionally, there is no information about the quality of a spawn locations in terms of slope,

maneuverability or the robot’s vision at a given spawn location. Using the existing information

of the designed environment, an interesting approach will be to determine the quality of a loca-

tion and use this information to generate different simulation scenarios to assess the performance
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of the robot’s planning algorithm.

In order to improve the search quality of the algorithms, a dynamic step size depending

on the complexity of the environment in different regions could be added. This approach would

require more information about the environment and could be used to increase the search density

in regions with more obstacles and reduce the grids density in areas where less obstacles are

located. Using such an approach can increase the quality of the search by finding locations even

in a region which is densely occupied by obstacles, for example in a forest. By reducing the

search density, less processing time will be required to search open areas where no or only few

obstacles are expected.

Another aspect that was not considered in this research is the implementation in a dynamic

environment. The introduced algorithms are not able to determine the validity of a location in

an environment that may change over time. Such dynamic behavior presents a complex problem

which would require a an improved algorithm which can handle dynamic objects in the environ-

ment.
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Appendix A: Detailed Test Results

Test
Environment
Robot Collider Type
Obstacle Collider Type
Obstacle Arrangement
Nr. of Obstacles 0 0 0 0
Test Algorithm
Algorithm Settings:
  - Search Perimeter
  - Step Size XZ 1 m 1 m 1 m 1 m
  - Step Size Y 1 m 1 m 1 m 1 m
  - Height Check 1.5 m 1.5 m 1.5 m 1.5 m
Results:
  - Nr. of Checked Positions 50,000 100,000 500,000 1,000,000
  - Nr. of Valid Spawns 0 0 0 0
  - Nr. of Invalid Spawns 0 0 0 0
  - Nr. of Aerial Spawns 50,000 100,000 500,000 1,000,000
  - Processing Time [ms] 18.007 ms 34.030 ms 169.153 ms 341.974 ms
  - Processing Time per 1000 [ms] 0.360 ms 0.340 ms 0.338 ms 0.342 ms

Test
Environment
Robot Collider Type
Obstacle Collider Type
Obstacle Arrangement
Nr. of Obstacles 50,000 50,000 50,000 50,000
Test Algorithm
Algorithm Settings:
  - Search Perimeter
  - Step Size XZ 1 m 1 m 1 m 1 m
  - Step Size Y 1 m 1 m 1 m 1 m
  - Height Check 1.5 m 1.5 m 1.5 m 1.5 m
Results:
  - Nr. of Checked Positions 50,000 50,000 50,000 50,000
  - Nr. of Valid Spawns 0 0 0 0
  - Nr. of Invalid Spawns 50,000 50,000 50,000 50,000
  - Nr. of Aerial Spawns 0 0 0 0
  - Processing Time - Run 1 10.457 s 10.766 s 9.484 s 10.657 s
  - Processing Time - Run 2 10.557 s 11.009 s 9.556 s 11.005 s
  - Processing Time - Run 3 10.596 s 10.839 s 9.430 s 11.439 s
  - Processing Time - Run 4 10.488 s 10.801 s 9.723 s 11.190 s
  - Processing Time - Run 5 10.728 s 10.775 s 10.224 s 11.260 s
  - Processing Time - Run 6 10.696 s 10.901 s 10.722 s 11.224 s
  - Processing Time - Run 7 10.560 s 10.960 s 10.779 s 11.245 s
  - Processing Time - Run 8 10.660 s 11.009 s 10.622 s 11.221 s
  - Processing Time - Run 9 10.654 s 10.987 s 10.812 s 11.231 s
  - Processing Time - Run 10 10.916 s 10.892 s 10.493 s 11.050 s
  - Average Processing Time [s] 10.631 s 10.894 s 10.184 s 11.152 s
  - Avg. Processing Time per 1000 [ms] 212.627 ms 217.877 ms 203.688 ms 223.042 ms

Test 1.1 Test 1.2 Test 1.3 Test 1.4

Test 2.1 Test 2.2 Test 2.3 Test 2.4

ComplexBoxBox

(0, 0, 0) to (9, 9, 499)(0, 0, 0) to (9, 9, 499)(0, 0, 0) to (9, 9, 499)(0, 0, 0) to (9, 9, 499)

3D Raster Search 3D Raster Search

(0, 0, 0) to (9, 9, 4999) (0, 0, 0) to (9, 9, 9999)

BoxComplexBox

Benchmark Environment Benchmark Environment Benchmark Environment Benchmark Environment

Complex

(0, 0, 0) to (9, 9, 499)

3D Raster Search 3D Raster Search

(10, 10, 500)(10, 10, 500)(10, 10, 500)(10, 10, 500)

Complex

Benchmark Environment
Complex

None
None

3D Raster Search

Benchmark Environment
Complex

None
None

3D Raster Search

Benchmark Environment
Complex

None
None

3D Raster Search

(0, 0, 0) to (9, 9, 999)

Benchmark Environment
Complex

None
None

3D Raster Search
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Test
Environment
Robot Collider Type
Test Algorithm
Algorithm Settings:
  - Search Perimeter
  - Step Size XZ 0.5 m 1 m 1.5 m 2 m
  - Step Size Y 0.5 m 1 m 1.5 m 2 m
  - Height Check 1 m 1 m 1 m 1 m
Results:
  - Nr. of Checked Positions 187,374,200 23,594,090 7,028,028 2,961,047
  - Nr. of Valid Spawns 1,735,798 217,802 68,606 30,795
  - Nr. of Invalid Spawns 260,086 32,467 10,392 4,817
  - Nr. of Aerial Spawns 185,378,303 23,343,825 6,949,030 2,925,435
  - Processing Time [s] 363.372 s 47.365 s 14.000 s 6.606 s
  - Processing Time per 1000 [ms] 1.939 ms 2.007 ms 1.992 ms 2.231 ms

Test
Environment
Robot Collider Type
Test Algorithm
Algorithm Settings:
  - Search Perimeter
  - Step Size XZ 1 m 1.5 m 2 m 2.5 m
  - Step Size Y 1 m 1.5 m 2 m 2.5 m
  - Height Check 1 m 1 m 1 m 1 m
Results:
  - Nr. of Checked Positions 132,814,100 39,383,060 16,846,120 8,684,577
  - Nr. of Valid Spawns 538,963 125,019 73,634 40,121
  - Nr. of Invalid Spawns 575,878 166,763 66,804 40,141
  - Nr. of Aerial Spawns 131,699,239 39,045,166 16,679,402 8,587,386
  - Processing Time [s] 161.528 s 41.780 s 20.636 s 10.918 s
  - Processing Time per 1000 [ms] 1.216 ms 1.061 ms 1.225 ms 1.257 ms

Test
Environment
Robot Collider Type
Test Algorithm
Algorithm Settings:
  - Search Perimeter
  - Ray Perimeter
  - Step Size XZ 0.5 m 1 m 1.5 m 2 m
  - Y-Offset 1 m 1 m 1 m 1 m
Results:
  - Nr. of Checked Positions 1,002,001 251,001 111,556 63,001
  - Nr. of Valid Spawns 895,994 223,985 99,990 55,980
  - Nr. of Invalid Spawns 104,006 26,015 11,566 6,520
  - Processing Time [s] 114.672 s 28.596 s 12.647 s 7.214 s
  - Processing Time per 1000 [ms] 114.443 ms 113.928 ms 113.369 ms 114.506 ms

Test
Environment
Robot Collider Type
Test Algorithm
Algorithm Settings:
  - Search Perimeter
  - Ray Perimeter
  - Step Size XZ 1 m 1.5 m 2 m 2.5 m
  - Y-Offset 1 m 1 m 1 m 1 m
Results:
  - Nr. of Checked Positions 1,639,680 729,316 410,881 263,169
  - Nr. of Valid Spawns 618,089 275,742 154,688 99,228
  - Nr. of Invalid Spawns 582,852 258,768 145,070 92,759
  - Processing Time [s] 100.190 s 45.064 s 24.526 s 16.740 s
  - Processing Time per 1000 [ms] 61.103 ms 61.789 ms 59.691 ms 63.609 ms

(-128, -212) to (1152, 1067) (-128, -212) to (1152, 1067) (-128, -212) to (1152, 1067) (-128, -212) to (1152, 1067)
0 to 80 0 to 80 0 to 80 0 to 80

Complex Complex Complex Complex
2D Raster Search 2D Raster Search 2D Raster Search 2D Raster Search

Test 6.1 Test 6.2 Test 6.3 Test 6.4
Complex Environment Complex Environment Complex Environment Complex Environment

(0, 0) to (500, 500) (-128, 0, -212) to (1152, 80, 1067) (-128, 0, -212) to (1152, 80, 1067) (-128, 0, -212) to (1152, 80, 1067)
31 to 124 31 to 124 31 to 124 31 to 124

Complex Complex Complex Complex
2D Raster Search 2D Raster Search 2D Raster Search 2D Raster Search

Test 5.1 Test 5.2 Test 5.3 Test 5.4
Low Complexity Environmnet Low Complexity Environmnet Low Complexity Environmnet Low Complexity Environmnet

3D Raster Search 3D Raster Search 3D Raster Search 3D Raster Search

(-128, 0, -212) to (1152, 80, 1067) (-128, 0, -212) to (1152, 80, 1067) (-128, 0, -212) to (1152, 80, 1067) (-128, 0, -212) to (1152, 80, 1067)

Complex Environment Complex Environment Complex Environment Complex Environment
Complex Complex Complex Complex

Test 4.1 Test 4.2 Test 4.3 Test 4.4

Test 3.4Test 3.3Test 3.2Test 3.1

3D Raster Search 3D Raster Search 3D Raster Search 3D Raster Search

(0, 31, 0) to (500, 124, 500) (0, 31, 0) to (500, 124, 500) (0, 31, 0) to (500, 124, 500) (0, 31, 0) to (500, 124, 500)

Low Complexity Environmnet Low Complexity Environmnet Low Complexity Environmnet Low Complexity Environmnet
Complex Complex Complex Complex
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Test
Environment
Robot Collider Type
Test Algorithm
Algorithm Settings:
- Nr. of Test Runs 5 20
- Search Perimeter
- Number of Spawns to find 2,000 2,000
- Min. Distance between Checks 2.5 m 2.5 m
- Height Check 1 m 1 m
- Limit of Consecutive Failures 100,000 100,000

Results:
- Completion Time (Run 1) [s] 18.486 s 18.700 s
- Completion Time (Run 2) [s] 17.448 s 18.634 s
- Completion Time (Run 3) [s] 18.892 s 17.175 s
- Completion Time (Run 4) [s] 17.092 s 19.705 s
- Completion Time (Run 5) [s] 17.953 s 18.033 s
- Completion Time (Run 6) [s] 17.769 s
- Completion Time (Run 7) [s] 16.586 s
- Completion Time (Run 8) [s] 19.145 s
- Completion Time (Run 9) [s] 19.681 s
- Completion Time (Run 10) [s] 17.632 s
- Completion Time (Run 11) [s] 20.611 s
- Completion Time (Run 12) [s] 19.636 s
- Completion Time (Run 13) [s] 20.061 s
- Completion Time (Run 14) [s] 19.330 s
- Completion Time (Run 15) [s] 19.457 s
- Completion Time (Run 16) [s] 19.785 s
- Completion Time (Run 17) [s] 18.927 s
- Completion Time (Run 18) [s] 18.873 s
- Completion Time (Run 19) [s] 18.890 s
- Completion Time (Run 20) [s] 17.832 s
- Total Completion Time [s] 89.871 s 376.462 s
- Average Completion TIme [s] 17.974 s 18.823 s
- Variance of Completion Time [s2] 0.432 s2 1.026 s2

Test
Environment
Robot Collider Type
Test Algorithm
Algorithm Settings:
- Nr. of Test Runs 5 20
- Search Perimeter
- Number of Spawns to find 2,000 2,000
- Min. Distance between Checks 2.5 m 2.5 m
- Height Check 1 m 1 m
- Limit of Consecutive Failures 100,000 100,000

Results:
- Completion Time (Run 1) [s] 39.474 s 42.095 s
- Completion Time (Run 2) [s] 44.863 s 45.335 s
- Completion Time (Run 3) [s] 44.038 s 42.997 s
- Completion Time (Run 4) [s] 43.15 s 43.613 s
- Completion Time (Run 5) [s] 44.027 s 41.970 s
- Completion Time (Run 6) [s] 40.759 s
- Completion Time (Run 7) [s] 42.938 s
- Completion Time (Run 8) [s] 44.739 s
- Completion Time (Run 9) [s] 41.364 s
- Completion Time (Run 10) [s] 42.255 s
- Completion Time (Run 11) [s] 43.144 s
- Completion Time (Run 12) [s] 44.286 s
- Completion Time (Run 13) [s] 40.505 s
- Completion Time (Run 14) [s] 37.906 s
- Completion Time (Run 15) [s] 41.288 s
- Completion Time (Run 16) [s] 43.336 s
- Completion Time (Run 17) [s] 44.753 s
- Completion Time (Run 18) [s] 44.545 s
- Completion Time (Run 19) [s] 43.193 s
- Completion Time (Run 20) [s] 41.439 s
- Total Completion Time [s] 215.552 s 852.460 s
- Average Completion TIme [s] 43.110 s 42.623 s
- Variance of Completion Time [s2] 3.599 s2 3.049 s2

(0, 31, 0) to (500, 124, 500) (0, 31, 0) to (500, 124, 500)

Complex Complex
Random Search Random Search

Test 7.1
Low Complexity Environment

Test 7.2
Low Complexity Environment

Test 8.1 Test 8.2
Complex Environment Complex Environment

Complex Complex
Random Search Random Search

(-128, 0, -212) to (1152, 80, 1067) (-128, 0, -212) to (1152, 80, 1067)
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Appendix B: Code and Project Installation Guide

This guide will provide information for setting up the algorithms or my Unity project on

your computer. I am providing a GitHub repository which contains the algorithms as well as a

functioning Unity demo project which only includes the Training Environment. Due to license

issues, I am not allowed to publicly share the entire Unity project, including the low complexity-

and the complex environment. If interested, please reach out to me and I will be able to provide

access to the full project folder used in this research project.

Contact: rafael.ropelato.msc@gmail.com

B.1 Demo Project Setup

First, please clone the ”Demo Project” folder from the following GitHub repository to your com-

puter. The GitHub repository can be found under:

https://github.com/Rafael-Ropi/Ropelato-MSc-Thesis-Demo-Project

Launch Project

• Download and Install Unity Hub (https://unity3d.com/get-unity/download)

• Install Unity version 2020.3.24f1 (Other Unity versions might be compatible. Not tested!)

• Open Unity project folder in Unity Hub
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Figure B.1 shows the windows within the Unity program as an overview for the following steps.

Figure B.1: Overview of the Unity window.

Launch Search Algorithms

A reference for the parameters to set is shown in Figure B.2.

• Once the Project was loaded, it should open the training environment. If not, select the

scene in the Project Window under Assets/Scenes/Training Environment.

• The Project Hierarchy shows all GameObjects. This includes th 2D Search, 3D Search

and RandomSearch object.

• Select any of the search algorithms.

• The parameters for the search algorithm can be set in the Object Inspector on the right-hand

side.
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• Set up the parameters and launch the algorithm by setting the RUN TEST boolean (check

box) to True.

Figure B.2: Description of the search parameters for the 3D search algorithm.

Custom Environment

In order to create your own environment, some guidelines have to be followed.

• All objects that can cause a collision need to have a collider attached

• All objects which should server as spawnable terrain need to have the tag ”Terrain”. Can

be set in the top-left of the Object Inspector.

• All water planes need to have the tag ”Water”.
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Custom Robot

In order to use a different robot or object, set it up as follows.

• Import object.

• Add script in object inspector. ”Add Component”→ search ”Feasibility Check (Script)”.

• Append a ”Rigid Body” and a ”Collider” object in the object inspector.

If mesh collider, make it ”Convex”.

Make collider ”Is Trigger”.

Make rigid body ”Is Kinematic”.

• Attach robot object to the search algorithms. (Drag-and-drop robot object to Robot Model

variable)

• (OPTIONAL) Attach ”Colored Collision Detector (Script)” to robot object. This changes

the color of the robot to green or red depending on collision status in scene view.
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Appendix C: List of Used Assets

The following lists present all assets that were used to create the environments for this

research project. All assets are free-to-use assets from the Unity Asset Store [10].

Low Complexity Environment

Asset Name Publisher Application

Fountain Prop Thunderent Fountain for Town

Realistic Tree 9 [Rainbow Tree] Pixel Games Trees for Forest

GAZ Street Props Helsssoo Benches and Street Lamps

House Pack Mehdi Rabiee Buildings in Town

Terrain Sample Asset Pack Unity Technologies Terrain Creation Tools

Grass And Flowers Pack 1 Vladislav Pochezhertsev Flowers

Outdoor Ground Textures A dog’s life software Terrain Textures

Complex Environment

Asset Name Publisher Application

Flooded Grounds Sandro T Complex Environment

Conifers [BOTD] forst Detailed Trees
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