
and easily tailor it for use within the multicast system.

After expressing an initial application design in terms

of MIL speci�cations, the application code and speci-

�cations may be compiled and executed. The second

level of support we have presented here is demonstrated

by the PTM tool, discussed in the previous section. Us-

ing PTM, prototypers can concern themselves with the

way information should
ow through the application

and not with the mechanics of the integration of the

application. Together, these technologies enable pro-

grammers to spend less of their time crafting interfaces,

and more of their time studying the prototyping appa-

ratus behavior | a balance which leads to improved

requirements and a higher quality software product.

References

[1] B. Bershad, D. Ching, E. Lazowska, J. Sanislo and

M. Schwartz. A Remote Procedure Call Facility

for Interconnecting Heterogeneous Computer Sys-

tems. IEEE Transactions on Software Engineer-

ing, SE-13, 8 (August 1987), 880-894.

[2] J. Bloch. The Camelot library: C Language Ex-

tensions for Programming General Purpose Dis-

tributed Transaction Systems. Proceedings of the

9th Conference on Distributed Computing Sys-

tems, (June 1989) 172-180.

[3] J. Callahan, J. Purtilo. A Packaging System

for Heterogeneous Execution Environments. IEEE

Transactions on Software Engineering, (June

1991), 626-635.

[4] E. Cooper. Programming Language Support for

Multicast Communication in Distributed System.

IEEE Transactions on Computers, (July 1990),

450-457.

[5] S. Feldman. Make: A Program for Maintaining

Computer Programs. UNIX Programmer's Man-

ual, USENIX, (1984).

[6] J. Jones, R. Rashid, and M. Thompson. Match-

maker: An Interface Speci�cation Language for

Distributed Processing. Proceedings of the 12th

ACM Symposium on Principles of Programming

Languages, (January 1985), 225-235.

[7] J. Magee, J. Kramer and M. Sloman. Constructing

Distributed Systems in Conic. IEEE Transactions

on Software Engineering, 15,6 (June 1989), 663-

675.

[8] J. Purtilo. The Polylith Software Bus. To appear,

Transactions on Programming Language and Sys-

tems.

[9] J. Purtilo, C. Hofmeister. Dynamic Recon�gu-

ration of Distributed Programs. Proceedings of

the 11th International Conference on Distributed

Computing Systems, (1991), 560-571.

[10] C. Hofmeister, J. Atlee and J. Purtilo. Writing

Distributed Programs in Polylith. Dept of Com-

puter Science, University of Maryland, CS-TR-

2575 (December 1990).

[11] S. Reiss. Connecting Tools Using Message Passing

in the Field Environment. IEEE Transaction on

Computers, (July 1990), 57-66.

[12] V. Sunderam. PVM: A Framework for Parallel

Distributed Computing. Concurrency: Practice &

Experience, Vol. 2, No. 4 (December 1990).

[13] Sun Microsystems. Remote Procedure Call Pro-

tocol Speci�cation. Sun Microsystems, (January

1985).

its mode is sql. PTM currently recognizes modes in,

out and sql, but can easily be expanded and generate

more types of stubs if more stub generating routines

are written.

Given the spreadsheet de�ned by users, informa-

tion about modules is analyzed and stored in �le

application file by pressing button save. When but-

ton run is chosen, PTM generates the appropriate

stubs and creates an executable for each module on

its destination machine. The generated source code for

modules input1, db and output1 are shown in Figure

9. After the installation,Polycast uses the preprocessed

speci�cation given by PTM to invoke processes, coerce

data representation, synchronization, and marshaling

of data during communications between modules.

One feature of this tool is that it is very easy

to change the structure of the application simply by

changing the attributes on the spreadsheet. For exam-

ple, if a user wants module output2 to receive the mes-

sages from module input2, as shown in Figure 10, this

can be achieved by simply changing row output2 col-

umn in from db to db input2 in the original spreadsheet

speci�cation. Further work on this tool will involve fa-

cilitating this type of structure change dynamically, or

while the application is executing, by utilizing the re-

con�guration techniques described in [9].

PTM was constructed by combining Polycast, an

environment that supports multicast communication,

with technology from software packaging. However,

we have not fully exploited either of these ideas. Just

as the Polygen packaging technology allows program-

mers to transparently use point-to-point communica-

tion or RPC interactions between application modules,

we would like to further facilitate development of ap-

plications that use multicast communication for mod-

ules interactions. To accomplish this, we need to allow

designers to use a module interconnection language to

specify the events in the system and the set of events

each modules will generate and will be interested in.

Future work on this includes extending current pack-

aging technology to handle this situation, allowing de-

signers to reason about these types of applications at a

high level.

6 Conclusion

In this paper we have shown how to provide various

levels of support for multicast interactions between the

modules of an application. The �rst level is provided

by Polycast, a multicast execution environment built on

top of a software interconnection system that supports

applications executing in a heterogeneous distributed

environment. Programmers are able to take a compo-

nent's source program, written in a high-level language,

input1()
 /* declare message type name */
 mh_msgtype("S", "input1_msgtype");
 q = query;
 while (q is not empty) do
 /* multicast query */;
 mh_multicast("input1_msgtype,
 "S", q);
 q = next query;
 end while
end input1

db()
 /* declare standard null message */
 mh_nomsg("NO MESSAGE.");
 /* declare message type name */
 mh_msgtype("S", name);
 /* register its interest in multicast
 messages */
 mh_rgsmulticast("input1_msgtype");
 mh_rgsmulticast("input2_msgtype");
 while (true) do
 /* get a multicast message in q*/
 mh_getmsg("S", q, msgtypebuf);
 if q is not "NO MESSAGE."
 r = result of executing query q;
 /* multicast the result of the query */;
 mh_multicast(name, "S", r);
 end if
 end while
end db

output1
 /* register its interest in multicast
 messages */
 mh_rsgmulticast("db_msgypte");
 /* declare standard null message */
 mh_nomsg("NO MESSAGE.");
 while (true) do
 /* get a multicast message into r */;
 mh_getmsg("S", r, msgtypebuf);
 write r to output;
 end while
end output1

Figure 9: modules of mode in, out and sql

input1

input2

db

output1

 output2

Figure 10: the application structure for a new example

ident name binary machine in mode

1 calloo

-2 /jteam/input2

input1

input2 calvin

input1 input2

/jteam/input1

3 db /jteam/db

db4 outut1 /jteam/output1

callay

5 output2 grandwazoo/jteam/output2 db

save quit run

-

in

sql

out

out

home

in

Figure 8: a snapshot of the spreadsheet

interconnection system.

5 PTM and Example Revisited

When building a software prototype, developers need to

experiment with the system repeatedly in order to make

decisions to reduce risk of failure in a software product.

So we need a software environment that allows experi-

mental activities to be carried out inexpensively. PTM

is a multicast environment designed to help developers

to build prototypes for software components to com-

municate with each other in heterogeneous distributed

systems. It is made possible by combining results from

both multicast and software packaging. It helps devel-

opers to generate multicast software executables auto-

matically given abstract descriptions of the components

and of the desired application geometry. In such a way,

developers can experiment with their prototype quickly

and easily without the overhead of having to prepare

the software manually, and it is
exible enough to allow

applications to be recon�gured dynamically.

PTM provides a spreadsheet-like user interface for

developers that allows them to de�ne the structure of

the applications. PTM uses these speci�cations to de-

cide what interfaces a module must have, to select in-

terconnection options between interfaces, and to build

the interface software and integrate the modules. Cur-

rently, PTM packages applications to run in the Poly-

cast multicasting environment described in Section 4.1.

This tool allows designers to prototype applications

where:

� An event is the output of some module. For exam-

ple, in the database application, the events are the

output of information from module input1, the

output of information from module input2, and

the output of information from module db.

� More than one module may be interested in the

output of a given module.

� Each module may receive information from more

than one module.

� Modules are restricted to the set of types for which

there are implemented stub generators.

Figure 8 shows what the spreadsheet for the database

application described in Section 2 would look like. For

each application module, the name of the module, the

location of the binary, the machine where the module

should execute, the list of modules that the current

module is interested in and the mode of the module

are speci�ed. Users do not need to edit source �les and

or a Make�le to build the application; all they need to

do is to provide attributes associated with each module.

Looking back at Figure 1, we see that module db

takes input from input1 and input2 and sends its re-

sults to output1 and output2. Using the spreadsheet

interface, this interaction is described by the column

in. The mode of a module indicates what stub genera-

tor will be used to construct the module. For example,

in the �rst row of the spreadsheet, we have module in-

put1 with its executable =jteam=input1 on machine

calloo. Since input1 does not take input from other

modules but sends output to other modules, its mode

is out. On the other hand, output1 takes input from

some module but does not send output to other mod-

ules, its mode is in. Module db queries the database,

input1()
 /* declare message type name */
 mh_msgtype("S", "input1_msgtype");
 q = query;
 while (q is not empty) do
 /* multicast query */;
 mh_multicast("input1_msgtype,
 "S", q);
 q = next query;
 end while
end input1

db()
 /* declare standard null message */
 mh_nomsg("NO MESSAGE.");
 /* declare message type name */
 mh_msgtype("S", "db_msgtype");
 /* register its interest in multicast
 messages */
 mh_rgsmulticast("input1_msgtype");
 mh_rgsmulticast("input2_msgtype");
 while (true) do
 /* get a multicast message in q*/
 mh_getmsg("S", q, msgtypebuf);
 if q is not "NO MESSAGE."
 r = result of executing query q;
 /* multicast the result of the query */;
 mh_multicast("db_msgtype", "S", r);
 end if
 end while
end db

output1
 /* register its interest in multicast
 messages */
 mh_rsgmulticast("db_msgypte");
 /* declare standard null message */
 mh_nomsg("NO MESSAGE.");
 while (true) do
 /* get a multicast message into r */;
 mh_getmsg("S", r, msgtypebuf);
 end while
 write r to output;
end output1

Figure 7: Modules for the database example using mul-

ticast

ticast communications between modules in Polycast,

programmers take some ordinary software modules, in-

sert multicast primitives into the modules, write speci-

�cations for the application in terms of MIL, and then

compile it. It is easy to build multicast applications

using Polycast; the extra cost of building applications

is to insert multicast primitives and write the speci�-

cation by programmers.

4.2 Software Packaging

One of the goals of this work was to provide multi-

casting facilities at a minimum cost to programmers.

The approach we take is to use programmer-supplied

module and application speci�cations to direct the au-

tomatic packaging of the application. This packaging

includes the automatic generation of interface software

(or stubs) and the automatic enumeration of commands

required to transform (compile and link, for example)

the components of the application into executable ob-

jects.

The way application modules are adapted for inte-

gration depends in part on the languages in which the

modules are implemented, the hardware on which the

modules are to execute, and the interprocess commu-

nication (IPC facilities) available in the environment.

Given this kind of information plus a speci�cation of

the modules' interfaces, stubs can be generated cus-

tomized to the environment and to some type of mod-

ule interaction, such as remote procedure call (RPC).

Once compiled with or otherwise included in the im-

plementation of a module, a stub acts as an intermedi-

ary between the module and the rest of the application.

RPC stub generation tools such as Matchmaker [6] and

SunRPC [13] have existed for many years.

However, programmers need assistance with more

than just the generation of stubs themselves. Each

desired con�guration requires di�erent communication

mechanisms and integration strategies. Once stubs are

generated and the commands needed to integrate the

new �les have been enumerated, tools such as make-

files [5] can help programmer obtain executables re-

liably | the problem is identifying the program units

and generating the appropriate command. This is a

tedious task that no programmer is interested in per-

forming manually.

The packaging work described in this paper is based

on the software packaging technology of Polygen[3]. In

Polygen, a primitive module speci�cation is an abstract

description of a software module describing the inter-

faces of a module and other attributes (the location of

the source code for example) of that module. The ini-

tial con�guration of an application is given in an com-

posite speci�cation that lists the modules of the applica-

tion and describes the bindings between the module in-

terfaces. Polygen uses these speci�cations analyze con-

straints a�ecting compatibility, select interconnection

options between interfaces and enumerate the con�gu-

ration commands needed to build the interface software

and integrate the modules. The generated con�gura-

tion commands include calls to Polygen's stub gener-

ators to produce interface software customized for the

modules and the environment. In this manner, modules

can be composed and reused in di�erent applications

without being modi�ed explicitly by the software de-

veloper. Currently, Polygen packages applications that

use point-to-point communication channels or RPC in-

teractions between modules for the Polylith software

environments. The software toolbus already manages

data marshaling; encoding data into a stream. When

an encoded stream is transmitted to another module,

Polylith decodes it into the corresponding data struc-

ture. In addition to the data marshaling, the software

toolbus coerces the low level representation of primitive

data types on di�erent underlying architecture.

Now we present details concerning Polycast, the en-

vironment we have constructed for experimenting with

multicast in heterogeneous distributed systems. To

build Polycast, we have added a set of primitives to

Polylith to support multicast communications between

modules:

� mh msgtype(data type;msgtype name)

A module uses this service to declare a message

type msgtype name of data type data type. For ex-

ample, mh msgtype(\S"; \input1 msgtype") de-

clares a multicast message type \input1 msgtype"

of data type string.

� mh rgsmulticast(msgtype name)

A module uses this service to register its interest

in message type msgtype name.

� mh multicast(msgtype name; data type;msg)

A module uses this service to multicast a message.

� mh signal multicast(msgtype name; data type;

message)

A module uses this service to multicast a message

and send signals to all the modules interested in

this type of message.

� mh bgetmsg(data type;msgtype name;message)

A module uses this service to receive a multicast

message. This operation is blocking, returning a

message from the message queue if one is available,

otherwise, it waits until one is available.

� mh getmsg(data type; msgtype name; message)

A module uses this service to receive a multicast

message. This operation is non-blocking, return-

ing a message from the message queue if one is

available, otherwise, a standard null message will

be returned.

� mh nomsg(message)

A module uses this service to declare the standard

null message that will be returned when there are

no waiting multicast message.

� mh query msgtype(msgtype buffer)

A module uses this service to list all message types

in which it has registered an interest.

module input1{
 binary = "/jteam/input1.exe"::
 machine = "calloo" ::
}
module input2{
 binary = "/jteam/input2.exe"::
 machine = "calvin" ::
}
module db{
 binary = "/jteam/db.exe" ::
 machine = "callay" ::
}
module output1{
 binary = "/jteam/output1.exe"::
 machine = "home" ::
}
module output2{
 binary = "/jteam/output2.exe"::
 machine = "grandwazoo" ::
}
module example{
 instance input1
 instance input2
 instance db
 instance output1
 instance output2
}

Figure 6: MIL for the database example using multi-

cast

Using Polycast, programmers can take ordinary soft-

ware modules and add multicast primitives into the

modules to execute in multicast-based environment.

Figure 6 and Figure 7 show what the MIL and

the pseudo code looks like for the database example

in Section 2 using our Polycast multicast primitives

when done manually. For example, db declares a

standard null message to be \NO MESSAGE" and

then declares a message type db msgtype. By using

mh rgsmulticast, it registers its interest in message

type input1 msgtype and input2 msgtype. Then db

calls mh getmsg to receive a message. If the message

queue for the multicast interface of module db is not

empty, then a message is dequeued and sent back to

db, otherwise it will get \NO MESSAGE". When

a message arrives, module db consults the database

and multicasts the result of the query as message type

db msgtype. Since module output1 and output2 are

interested in db msgtype type of message, a copy of the

message is enqueued on interfaces of both output1 and

output2.

Cooper discusses essential and desirable proper-

ties of a programming language support for multicast

communication[4]; Reiss's Field environment does not

allow tools across a heterogeneous network [11], while

Polycast is our implementation of an abstract multi-

cast formulation for software to execute in heteroge-

neous distributed environments. In order to allow mul-

with Polylith read and write operations is shown in

Figure 4. At runtime, Polylith starts the �ve modules

and handles message passing. Figure 5 shows what the

application would look like at runtime.

Unfortunately, this approach to application integra-

tion has several problems. Because the modules are

connected via point-to-point communication channels,

each module must know exactly how many other mod-

ules are interested in the messages it sends, making it

di�cult for the application to evolve and grow. Also, in

order to send the message to the N modules interested

in its message, the module must make N Polylith write

calls. This duplicate work increases the cost of the run

time performance. These problems would be solved

with a facility to support multicast message passing in

distributed systems application integration.

Another problem with this approach is that the pro-

grammer is responsible for de�ning the structure of the

application. In a multicast framework, this means de-

ciding what message types are to be sent by each mod-

ule and what message types are of interest to each mod-

ule. Once this is done, the module code must be aug-

mented manually with Polylith read and write calls on

interfaces and PolylithMIL speci�cations must be writ-

ten that de�ne the module interfaces and bindings. It

is the programmer's responsibility to ensure that these

capture the intended structure of the application. We

believe that programmers might �nd it useful to be able

to reason about an application's con�guration in terms

on a module interconnection language for multicast in-

terconnection.

In the rest of this paper, we focus on answering

a number of questions. Can we provide multicast-

ing in the presence of system architecture heterogene-

ity? Moreover, how can we provide this capability at

the minimum cost to programmers? Can the prepara-

tion for execution in a multicast environment be auto-

mated? Our answer to these questions are embodied

in a new research tool called PTM that helps program-

mers generate software executables tailored to a multi-

casting environment.

4 Contributing Technologies

The work described in this paper is based on two di�er-

ent technologies: multicast communications and soft-

ware packaging. Section 4.1 discusses our requirements

for multicast communications in distributed systems

and presents Polycast, our implementation of a mul-

ticast environment in terms of a software bus organi-

zation. Section 4.2 introduces the software packaging

technology that we use to assist the development of

distributed software applications using multicast.

4.1 Polycast: Multicast in the Polylith

Environment

In the previous sections, we talked about the problems

we have in a traditional point-to-point communication

system. Multicast is a mode of module interaction

where messages or events produced by one module can

be sent to multiple modules at the same time. In order

to let modules interact in a multicasting environment,

application modules need to specify what types of mes-

sages they are interested in receiving. When a message

is multicast from some module, all modules that are in-

terested in this type of message can receive it. Modules

that want to multicast messages do not have to know

which modules are interested in this type of message.

Modules that want to get multicast messages do not

have to know where the messages come from.

Our objective is to provide a framework for multicast

in distributed applications. An environment to support

multicast must meet the following requirements:

� Users need an easy way to con�gure and invoke an

application.

� Multicast communication between modules should

function normally in the presence of system archi-

tecture heterogeneity.

� The mechanism must not compromise the data

type system of the programming language. The

parameters must be marshaled correctly. The low

level representations of primitive data types on di-

verse underlying architectures should match.

� A module should be able to declare any type of

message.

� A module should be able to register its interest in

any type of message.

� A module should be able to multicast any message.

� A module should be able to get a multicast mes-

sage it is interested in it.

� Multicast should be provided at minimum cost to

programmers and without loss of run-time perfor-

mance.

Our approach to meeting the above requirements is

to build a multicast execution environment Polycast

upon the existing Polylith interconnection system men-

tioned in Section 2. We made this decision for sev-

eral reasons. Polylith already provides users with an

environment that facilitates construction of applica-

tions. Using Polylith, the modules interface directly

with a software toolbus for execution in heterogeneous

module input1{
 binary = "/jteam/input1.exe"::
 machine = "calloo" ::
 source "send_input1_db"
 pattern = {string} ::
}
module input2{
 binary = "/jteam/input2.exe"::
 machine = "calvin" ::
 source "send_input2_db"
 pattern = {string} ::
}
module db{
 binary = "/jteam/db.exe" ::
 machine = "callay" ::
 source "send_db_output1" ::
 pattern = {string}
 source "send_db_output2"
 pattern = {string} ::
 sink "receive_input_db"
 pattern = {string} ::
}
module output1{
 binary = "/jteam/output1.exe"::
 machine = "home" ::
 sink "receive_db_output1"
 pattern = {string} ::
}
module output2{
 binary = "/jteam/output2.exe"::
 machine = "grandwazoo" ::
 sink "receive_db_output2"
 pattern = {string} ::
}

module example{
 instance input1
 instance input2
 instance db
 instance output1
 instance output2
 bind "input1 send_input1_db"
 "db receive_input_db"
 bind "input2 send_input2_db"
 "db receive_input_db"
 bind "db send_db_output1"
 "output1 receive_db_output1"
 bind "db send_db_output2"
 "output2 receive_db_output2"
}

Figure 3: MIL program for the database example

to establish communication channels. For example,

bind \input1 send input1 db" \db receive input db"

establishes a communication channel from module in-

put1 to module db. When input1 sends messages

using interface send input1 db, db can receive these

messages from interface receive input db.

In order to use Polylith to allow communication be-

tween the modules of an application, the user manually

inserts into the modules' code Polylith read (mh read)

and write (mh write) calls using the interfaces de�ned

in the MIL. The pseudo code for the database example

input1()
 q = query;
 while (q is not empty) do
 /* send q on the "send_input1_db"
 interface */;
 mh_write("send_input1_db",
 "S", NULL, NULL, q);
 q = next query;
 end while
end input1

db()
 while (true) do
 /* q is a query message from the
 "receive_input_db" interface; */
 mh_read("receive_input_db", "S",
 NULL, NULL, q);
 r = result of executing query q;
 /* send r on the "send_db_output1"
 interface */;
 mh_write("send_db_output1", "S",
 NULL, NULL, r);
 /* send r on the "send_db_output2"
 interface */;
 mh_write("send_db_output2", "S",
 NULL, NULL, r);
 end while
end db

output1()
 while (true) do
 /* r is a result message from the
 "receive_db_output1" interface */;
 mh_read("receive_db_output1",
 "S", NULL, NULL, r);
 write r to output;
 end while
end output1

Figure 4: Modules for the example with Polylith read

and write operations

bus

POLYLITH

input1

input2

 db

output1

output2

Figure 5: application structure using the Polylith in-

terconnection system

input1

input2

db

output1

 output2

Figure 1: application structure

input1()
 q = query;
 while (q is not empty) do
 send q on "send_input1_db" interface;
 q = next query;
 end while
end input1

output1()
 while (true) do
 r is a result message from
 "receive_db_output1" interface;
 write r to output;
 end while
end output1

db()
 while (true) do
 q is a query message from the
 "receive_input_db" interface;
 r = result of executing query q;
 send r on "send_db_output1" interface;
 send r on "send_db_output2" interface;
 end while
end db

Figure 2: Modules for the database problem

multicast environment and proposes Polycast, a set of

primitives and underlying system that ful�lls these re-

quirements. Packaging technology is discussed in Sec-

tion 3.2. Finally, in Section 4 we explain how multi-

cast facilities and packaging technology are combined

to produce PTM.

3 Motivating Problem

A distributed software application is a group of inter-

operating components distributed across a network of

possibly heterogeneous processors. Each component is

implemented by a module, i.e. a collection of individ-

ual data and program units, and has interfaces that

are used to send and receive messages. These mod-

ule interfaces may be bound to one another, providing

communication channels between the modules.

Figure 1 shows an application consisting of �ve mod-

ules input1, input2, db, output1 and output2,

that are distributed across di�erent host machines in

order to balance the load of the system. A relational

database is resident on the same machine where db

will execute. Modules input1 and input2 are sim-

ply input windows where a user of the application can

type in sql queries. Module db will receive the queries

sent from input1 and input2 and will send the re-

sults of the queries to output1 and output2, the mod-

ules responsible for displaying the results of the queries.

Pseudo code for module input1, output1 and db in

this database application is shown in Figure 2, while

input2 and output2 are similar to input1 and out-

put1 respectively.

Developing a distributed software application such as

this one can be a di�cult task. One approach to build-

ing or integrating distributed software applications is

to manually transform the modules so that the code

(also called interface software) that uses the underly-

ing environment to send and receive messages is part

of the implementation. Unfortunately, interface soft-

ware is di�cult and time consuming to create since it

requires an understanding of how the modules of an

application are to interact and requires knowledge of

the target machine's architecture and communication

mechanisms.

Another approach to developing a distributed soft-

ware application is to use a system, such as Polylith [8],

PVM [12], and Camelot [2], that provides a standard

interface for message passing between modules. We

will �rst describe how to implement this application in

terms of the software interconnection system Polylith.

Polylith allows programmers to con�gure applications

from mixed-language software components (modules),

and then execute those applications in diverse envi-

ronments. Users provide abstract descriptions of the

application modules, including information about the

modules' interfaces, a list of the modules that make up

the application and the bindings between these mod-

ules' interfaces. This information is processed and at

runtime, Polylith's software tool bus is responsible for

invoking processes, and for coercing data representa-

tion, synchronization, and marshaling of data during

communication.

A Polylith module interconnection language (MIL)

speci�cation program for the database application

is shown in Figure 3. In the MIL program, we

specify information for each module: the location

of the executable code, the name of host machine

where it should run, and information about its in-

terfaces such as the data type of the messages or

whether it it is a source interface (outgoing), a sink

interface (incoming) or bidirectional. For the ap-

plication as a whole we must specify what mod-

ules make up the application (using tool) and we

also have to specify bindings between the interfaces

PTM, which helps programmers view and manipulate

the connectivity of their program structures within this

run time environment.

2 Background

Writing distributed programs can be di�cult for pro-

grammers, who must deal with network interfacing con-

siderations at the same time they write their appli-

cation. Moreover, once the programs are completed,

they are typically di�cult to alter for reuse in other

applications. To combat this problem, programmers

use systems and tools that allow them to encapsulate

interfacing decisions separately from their application

code. This makes the network transparent and gives

programmers the illusion of simplicity in coding, as

the support tools prepare interfacing code automati-

cally while generating executables. Many systems now

provide this functionality, such as HRPC [1] and Conic

[7].

This approach has proven e�ective for applications

whose interfaces are established by programmers using

explicit, point-to-point communication semantics. But

recently the community has shown increasing interest

in multicast communication mechanisms, where output

from a tool interface may be delivered to a set of other

processes that are not only unknown to the sender, but

a set that is dynamically changing. Up to now, this

situation has defeated automatic packaging tools that

bind interfaces using static conventions. The network

is once again visible to programmers, who must manu-

ally introduce interface code to their applications. This

reverses the trend towards software that is less costly

to build and more easily reused.

The problem for programmers is in managing the

events that characterize communication in multicast.

Hiding a raw network from programmers is easy

enough, and most multicast systems that we are aware

of would support introduction of simple interface stubs.

The di�culty is how to �ll in those stubs with enough

information so that an initial con�guration involving

those components can be established in the network

reliably and repeatably. `Bindings' in a multicast envi-

ronment are manifest very di�erently than in a tradi-

tional point-to-point system| in a sense, tools produce

certain kinds of messages or events, and similarly con-

sume certain others. Each tool is either statically pre-

pared to produce and consume these events, or the user

of the program enables the mapping of these events dy-

namically. In previous systems, if programmers wished

to have a particular set of programs con�gured as a

system, then they have the following obligations:

1. They need to determine the kinds of events that

constitute discourse between the processes.

2. They must tailor each tool to produce or consume

such events (or know the kinds of events traded by

tools already packaged by others).

3. At execution time, each tool must be initiated

manually.

By itself, this multicast con�guration would have little

advantage over point-to-point communication seman-

tics, so it is only in observing how easily multicast sys-

tems can evolve without needing to alter the tools that

we see multicast excel.

Our hypothesis in this work was that programmers

might �nd it more useful on occasion to reason about an

application's initial con�guration in terms of a module

interconnection language, much like how they operate

on networks providing point-to-point communication

semantics already [10]. If this structural description of

the system could be used to automatically prepare ex-

ecutables suitable for multicast environments, then we

could have the
exibility and evolvability of the mul-

ticast paradigm, along with the software engineering

bene�ts a�orded by modern packager technology. In

short, programmers would not need to think up `kinds'

of events for tools to produce and consume in order for

them to be `bound' via an interface.

We are now able to demonstrate these bene�ts via

our experimental system called PTM. Our approach

has been to formulate a multicast execution environ-

ment in terms of software bus organization [8], and

then take advantage of existing packager technology [3]

(based upon the software bus) to show how large soft-

ware con�gurations can be automatically prepared for

execution on the new bus | without requiring manual

adaptation of the code. The multicast bus implemen-

tation by itself gives no more functionality than other

(and perhaps more mature) systems that came �rst,

but the structural requirements needed to be character-

ized as a `bus' mean that a packager will have enough

information to prepare interfacing software in order to

achieve a valid implementation of the programmer's

con�guration. The programmer can manipulate ordi-

nary software as if it is to execute using traditional

RPC or message passing semantics; he can automat-

ically prepare it for execution in the multicast-based

environments; and, once initiated, he can operate on

the software transparently and
exibility, just as with

any multicast system.

In the next section, we give some background on vari-

ous approaches to application integration and describe

a distributed software application. We then use this

application to demonstrate the need for tools that al-

low multicast facilities to be easily used by designers.

Section 3 gives background on the two ideas that we

have combined. Section 3.1 lists our requirements for a

A PACKAGER FOR MULTICAST SOFTWARE

IN DISTRIBUTED SYSTEMS

Chen Chen, Elizabeth L. White and James M. Purtilo

Computer Science Department

University of Maryland at College Park

Abstract

Prototyping is an important part of modern software

development projects, and the ease with which proto-

typing apparatus can be assembled for experimenta-

tion is a major factor in the e�ectiveness of a prototyp-

ing operation. If interconnecting existing components

for experimentation is too expensive, then the bene-

�ts promised from prototyping will remain unrealized.

Multicast is one run-time technology which delivers on

the promise of low-cost interconnection | but only

once the components are prepared to execute within

a multicast system. Moreover, �nding ways for proto-

typers to view their apparatus (fromwhat, in multicast,

can be a very tangled logical structure) can be di�-

cult. In support of a software prototyping initiative,

we have produced a new packaging technology which

automates the task of adapting software components

for execution within multicast execution environments.

This paper describes our new packager, along with our

experiences in use of the system to date. In addition,

we describe our visualization tool which, in the run-

time environment, allows prototypers to view and op-

erate upon their application's structure at run-time, as

enabled by the multicast control paradigm.

With oversight by O�ce of Naval Research, this re-

search is supported by DARPA/ISTO in conjunction

with the Common Prototyping Language project, con-

tract number N00014-90-C-0015.

1 Introduction

Prototyping | an experimental activity intended to

expose properties or design alternatives to developers

before they make critical decisions | is an increas-

ingly important step within modern software develop-

ment processes. Among the decisions which a developer

might wish to address by prototyping are those having

to do with the con�guration of a large application out

of reusable components. The desired choice of compo-

nents, their connectivity and their modularization may

in some cases only be determined by experiments in a

prototyping environment. In order to facilitate rapid

con�guration of the prototyping apparatus, some de-

velopers are turning to a multicast system for integrat-

ing the components. Multicast (also known as selec-

tive broadcast) is a communication mechanism where

the messages sent by some component may be received

by a set of components. The components in this set

are not only unknown to the sender, but the set may

be dynamically changing during execution. Since the

control paradigm for multicast is based upon events

rather than named interfaces, developers �nd reduced

coupling between their components, and are hence free

to vary the structural design easily (even dynamically,

in some cases). This greatly facilitates rapid experi-

mentation with prototyping alternatives, which in turn

leads to higher quality software products.

A multicast approach alone, however, does not re-

duce cost of experimentation su�ciently. Our expe-

rience with this interconnection mechanism indicates

that the cost of tailoring software components in or-

der to operate within a multicast run-time environment

can outweigh the cost of simply building the applica-

tion program statically for each experiment; when this

is true, then developers loose some of the incentive to

choose prototyping.

Our research shows how emerging packaging technol-

ogy can be applied to the task of automatically prepar-

ing software components for use in multicast execution

environments. `Packaging' refers to the task of rea-

soning about compatibility of software components in

order to determine valid means for integrating and in-

terconnecting them. It is made possible by the abstract

software bus organization developed here previously,

and in turn facilitates our research in the area of proto-

typing technology. In the work reported here, we have

build a packager called Polycast which lets us name

and package ordinary program units for use in our own

experimental multicast system. We describe the multi-

cast environment (built out of our Polylith software bus

system), and also a high level prototyping tool called

1

