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Abstract

The main contribution of the paper is to show the egquivalence between the following two
approaches for obtaining sufficient conditions for the robust stability of systems with structured
uncertainties: (i) apply the classical absolute stability theory with multipliers; (ii) use modern
& theory, specifically, the 4 upper bound obtained by Fan, Tits and Doyle [IEEE TAC, Vol. 36,
25-38]. In particular, the relationship between the stability multipliers used in absolute stability
theory and the scaling matrices used in the cited reference is explicitly characterized. The
development hinges on the derivation of certain properties of a parameterized family of complex
LMIs (linear matrix inequalities), a result of independent interest. The derivation also suggests
a general computational framework for checking the feasibility of a broad class of frequency-
dependent conditions, and in particular, yields a sequence of computable “mixed-u-norm upper
bounds”, defined with guaranteed convergence from above to the supremum over frequency of
the aforementioned y upper bound.

1 Introduction

A popular paradigm currently in use for robust control has a nominal finite-dimensional, linear,
time-invariant system with the uncertainty A in the feedback loop (see Figure 1). Often additional
information about the uncertainty is either known or assumed: diagonal or block-diagonal; sector-
bounded memoryless, linear time-invariant or parametric, etc. In such cases, the uncertainty is
called “structured”.

A fundamental question associated with this model is that of robust stability, i.e., “Is the model
stable irrespective of the uncertainty A, that is, with zero input, do all solutions of the system
equations go to zero, irrespective of A?” The origins of this question can be found in Russian

*This research was in part supported by NSF’s Engineering Research Center No. NSFD-CDR-88-03012, and in
part by NEC and GM Fellowships.
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Figure 1: Standard robustness analysis framework.

literature, where stability of the system in Figure 1 was studied for the special case when p and ¢
are scalars, and A is required to satisfy additional assumptions. This was known as the absolute
stability problem [1]. This problem has received considerable attention over the years, and a number
of sufficient conditions for stability have been proposed; perhaps the most celebrated of these have
been the circle and Popov criteria. These criteria have since then been generalized to multi-input
multi-output systems as the small-gain theorem (with loop transformations and scalings) and the
passivity theorem (with loop transformations and multipliers). An introduction to these methods
can be found in the book by Desoer and Vidyasagar [2].

A second approach to the problem of robust stability of control systems with structured un-
certainties is the modern u (or structured singular value) approach, pioneered by Doyle [3, 4] and
Safonov {5, 6]. This approach relies on deriving sufficient conditions for the robust stability of the
system in Figure 1 through simple linear-algebraic techniques.

Our main objective in this paper is to show explicitly and rigorously the connections between
these two approaches!. We illustrate the idea behind our treatment with the special case where A,
in Figure 1, consists of both unmodeled dynamics and uncertain parameters. A sufficient condition
for the robust stability of this system is given in [10], based on the application of the classical
,passivity theorem with multipliers. In the u approach, where this problem is called the “mixed-p
problem” (see [11]), a sufficient condition for robust stability is presented in the form of a matrix
inequality that should be satisfied at all frequencies.

The condition proposed in [11], which we will refer to as the standard mixed y upper bound
condition, can be recast as an LMI condition that must be satisfied at every boundary point of a
“stability” region (the open unit disk or the open left half complex plane) in the complex plane.
The passivity-multiplier-based robust stability condition in $10] can be reinterpreted as the same
LMI condition, with the additional restriction that the feasible solutions are themselves functions
of a certain form. Therefore, the first step in our treatment is to establish a general “interpolation”
style result for a class of parameterized (by frequencies) family of complex LMIs (many frequency-
dependent conditions for stability and robustness [11, 12, 13, 14, 15] belong to this class). This

!We must point out that other authors have hinted at the connection [7], [8], [9], without proving equivalence
however.



result serves as the basis for all later developments. In particular, this result suggests a state-space
method for checking feasibility of any LMI in the class that we study. Besides serving a key stepping
stone in our approach, we believe that this result is also of independent interest.

Thus, we show that the standard mixed p upper bound condition in [11] is mathematically
equivalent to the passivity-multiplier-based condition in [10]. Concurrently, we explicitly charac-
terize the relationship between the (D, G) scalings used in the standard mixed u approach, and
certain stability multipliers used in the passivity-multiplier-based condition in [10]. Finally, our
derivation also suggests a general computational framework for checking the feasibility of a broad
class of frequency-dependent conditions, and in particular, yields a sequence of computable “mixed-
p-norm upper bounds”, defined with guaranteed convergence to the standard mixed-u-norm upper
bound || P||4.

We first carry out the analysis in the discrete-time context, then briefly indicate how it extends
to the continuous-time context. The organization of the paper is as follows. Section 2 lists the
notation that is used throughout the paper. In Section 3, we present our study of a class of LMIs.
Section 4 is concerned with the connections between the standard mixed p upper bound condition
and a passivity-multiplier-based robust stability condition. Implications of the results of Sections 3
and 4 on computation are discussed in Section 5. In Section 6, we present the continuous-time case
results. Section 7 contains the conclusions. For clarity of presentation, the proofs of the lemmas,
the propositions, and the theorems have been relegated to the appendix.

Preliminary versions of some of the results presented here appeared in [16] and [17].

2 Notation

N := the set of nonnegative integers
R = the set of real numbers

R, = RU {OO}

C := the set of complex numbers
Ce = CU{oo}

C. := {z€C:Re{z} <0}

D := {zeC:|z|<1}

I = the k x k identity matrix

Ok = the k x k zero matrix

Given a complex matrix/scalar M,

M := complex conjugate of M

MT := transpose of M

M* := adjoint (conjugate transpose) of M .
(M) = the largest singular value of M

He(M) := (M + M*) (Hermitian part of M)

Sh(M) := %(M — M*) (skew Hermitian part of M)

Given a subset §2 of C,



clQd := the closure of Qin C

clef2 := the closure of 2 in C, (including oo if Q is unbounded)

an := the boundary of 2 in C

2 := the boundary of Q in C, (including oo if  is unbounded)

0° := the complement of 2 in C

RP := the set of real-rational, proper functions

Hy(Q) := the set of functions which are analytic and bounded in (clQ)®

HZ™(Q) := the set of n X n transfer function matrices whose entries are in Ho,((2)

RH,(Q) := the set of real-rational functions in H(Q2)

RHZ™(€)) := the set of n X n transfer function matrices whose entries are in RH({2)
Given a matrix M € C™" and three nonnegative integers m;, m., and mc with m = m, +

me + mc < n, a block structure X of dimensions (my, m¢, m¢) is an m-tuple of positive integers,
K o= (K, K kS, kS, kC, .. kS ), such that 370 kF + S0 k§ + S5k = n. Let
Ne i= me k° and nc := LS k. Define

=1 "1

B diag(Dj3,..., Dy, Dl, . D§,y DI = (DN)* € Chixk
B d Lo, d9Dig ) | DE = (D§)* € CH¥K df e R
D = {DeD:D>0}
g = diag(Gli,...,G;nr,okg,...,okgnc,okc, Okc ): Gt =—(G)* e Ckka{}
[I,(M) = infﬂZO,DED,Geg {,B MDM*+GM* - MG - ,62D < O}
Given X = C or RP,
SiX) = {diag($,.. %JSGX“hrﬂ.qm}
Se(X) = {diag(S1,...,Sm): S € XF¥H i =1,..., J
Sc(X) = dia.g(slIkc, smolkg ) s € X,i=1,. c}
Sec(X) = {diag( c,Sc) Sc € 5:.(X), Sc € Sc(X)}
Sr,c,C(X) = {diag( 3 SmSC 15 €8 ( ) S. € SC(X):SC € SC(X)}
Sro0(X) = {diag(S:, Ores Ong) St € Se(X)}

Given a set Q and a matrix/scalar function P continuous on 02,

IIPH# = SUp,eg,0 A(P(2)) (it is not a norm)

P~ is defined by P~(z) := (P(1/2))* when 2 =D, and (P(—Z))* when = C_
P is defined by P(z) := P(z)

P:=(I+P)(I-P)!

B, := (al + P)(al — P)~! where « is a positive scalar

+

3 Framework: Parametrized Families of Complex LMIs

A linear matrix inequality (LMI) is a matrix inequality of the form

[ [ *
M(C) & Mo+ Y GM; + (Mo + ZCiMi> >0, ey

=1 =1



where ( € C¢ is the variable, and M, € C**",i = (,...,{ are given data. The inequality symbol
in (1) means that M(() is positive-definite, i.e., u*M({)u > 0 for all nonzero u € C*. LMIs (1) are
widely encountered in system and control theory and their applications; see, for example [18].

In this section, we consider a parametrized family of LMIs, every element of which is of the
form (1). The variable z parametrizing this family takes on values from the boundary of a subset
2 C C (whose properties we will make precise shortly). Using arguments from the theory of complex
variables, we will show that if every member of this parametrized family of LMIs is feasible, then,
the feasible variables themselves can be interpolated by complex-valued functions with various
properties. We will see later that such statements help establish the equivalence between two
classes of numerical procedures for checking (approximately) the feasibility of the parametrized
family of LMIs: The first procedure relies on “sampling” along the boundary of Q; this results in a
number of independent LMIs of the form (1). The second procedure involves searches for a function
(of the parametrizing variable z) of a certain form, whose values sampled along the boundary of
{2 serve as feasible points for the parametrized family of LMIs; this results in a single LMI of the
form (1).

We will proceed with the development for a general set Q; we will soon see that both discrete-
time case (the open unit disk) and continuous-time case (the open left half complex plane) fit into
this general framework.

The description of the parametrized family of LMIs begins with the definition of a class of sets

{2 is non-empty, open, simply connected, symmetric with respect to the
Z:=<(Q C C: real axis, and such that there exists a continuous bijection 9 : 8,0 — D

satisfying ¥(Z) = ¢(z) for all z € .02
Given a set € Z, we define
Fao = {F : 0eQ = C™™™ ; F is continuous, with F(Z) = F(z)} .

Finally, given complex numbers z;,---, Ty and n X n complex matrices My, - - -, My, we define the
Hermitian matrix

[4 14 *
L(zy,---,ze, Mo, -+, Mp) := Mo+ ) _ &:M; + (Mo + ZwiMi> :
=1 i=1
Lemma 3.1 below, proved in the appendix, presents different mathematical representations that

the solutions of a class of parameterized family of complex LMIs of the form
L(mly"')anFO(z)a""Fl(z))) >0’ (2)
can take. 4 )

Lemma 3.1 Let Q€ =. Let F; € Fq,1=0,...,¢. Let S be the set of functions s mapping clef) to
C, which are continuous on cleQ, analytic in Q, and satisfy s(Z) = s(2) for all z € clR, and let S
be equipped with the norm ||sllec := supsea, q |5(2)|- Let {p;} be a countable basis for S, let

N
Hy = {Z(ai% +b%i) : N €N, a;,b; € C}'

=0



and let N
Hp = {Z (aic" +b7) : NeN, a;,b; € R} :
1=0
The following conditions are equivalent:

(a) for every z € 9eQ, there exist complez numbers x,, i = 1,...,4, such that (2) holds;

(b) there exist continuous functions x, : 0.Q — C, i = 1,...,4, such that, for all z € 3.9,

zi(Z) = z(2),1=1,...,¢, and

L(z(2),- -+, 2e(2), Fo(z),- -+, Fo(2)) > 0; (3)

(c) there exist sz €S,i=1,...,4 7 = 1,2, such that (3) holds for all z € 8,Q with z;(2) =

si(z) + 82(z), forall z € 30, i =1,...,¢;
(d) there exist z; € Hy, 1 = 1,...,¢, such that (3) holds for all z € 8,QQ.

Moreover, if Q is bounded, then the above are equivalent to

(e) there exist z; € Hp, i = 1,...,¢, such that (3) holds for all z € 9.

Lemma 3.1 deals with a very general domain Q. When Q is specialized to be the open unit
disk D, and the open left half complex plane C_, respectively, under mild assumptions, more LMI
properties ensue. In order to present our results in a compact manner, for the time being, we
restrict ourselves to the discrete-time case. The extension to the continuous-time case is carried
out in Section 6.

In the discrete-time case, using the fact that for all z € 8D, Z = 27! along with certain
approximation results on the closed unit disk, we are able to establish the following propositions.
Proposition 3.2 below states that the solution to a parameterized family of complex LMIs

L(xla"'ameO(z)"":FE(z)) >0 VzedD

simultaneously exist in various forms: (i) complex number (at each z), (ii) continuous function in
z, or (iii) sums of a polynomial in z and a polynomial in z~!. It is the very result that helps us
'to clarify the relationships between two large classes of frequency domain conditions, those using
scalings and those using multipliers. For notational convenience, let

N

HFIR = {Z (aizz + biz_z) :N e N, a;, b1, € R} .
=0

Proposition 3.2 Let F; € Fp, ¢ =0,...,£L. The following conditions are equivalent:

(a) for every z € dD, there exist complez numbers z;, i = 1‘, ..., ¢, such that (2) holds;

(b) there ezist continuous functions z; : 0D — C, i = 1,...,4, such that, for all z € 8D,

zi(Z) = zi(2), i =1,...,¢, and (3) holds;

(c) there ezist z; € Hem, 1 = 1,...,¢, such that (3) holds for all z € HD;

Proof: Since for all z € 8D, Z = 271, the result follows directly from Lemma 3.1. 0



4 Small ¢ Theorem and Absolute Stability

We now apply the results of §3 to explore the connection between two popular sufficient conditions
for the robust stability of discrete-time systems with structured uncertainty. The first is the stan-
dard mixed p upper bound condition, given in [11]. This condition is derived using linear-algebraic
methods, and is usually stated as an LMI condition that should be satisfied on the unit circle.
The derivation of the second condition involves augmenting the system with multipliers (that are
introduced to take advantage of the structure and the nature of the uncertainty), and then applying
the classical passivity theorem [10]. The resulting stability condition takes the form of the same
LMI as with the mixed x upper bound condition, with the additional restriction that the LMI
variables be values assumed by the multipliers on the unit circle. As the multipliers are typically
assumed to belong to a finite basis, this restriction is equivalent to the LMI variables from the
mixed p upper bound condition being interpolated by functions of a certain form. Proposition 3.2
then helps establish the equivalence between these two conditions.

To proceed with establishing the equivalence, we need to establish a certain factorization prop-
erty for a class of strictly positive real, real-rational, proper transfer function matrices. This is
known as canonical factorization in the literature [19]; a number of sufficient conditions are known
for canonical factorization [2, §VI.9.4]. We establish here that strict positive realness of a real-
rational, proper transfer function is sufficient for its canonical factorization.

Proposition 4.1 Suppose that M is an m X m real-rational biproper transfer function matriz with
no poles on the unit circle, and the frequency domain condition

M(e”) + (M(e”))* >0, (4)

holds for all §. Then there exist My, My € RH™X™(D), such that M{*, M; ' € RHTX™(D), and
M = M, M.

Remark: In addition to the hypotheses of Proposition 4.1, suppose further that M (e¥) is Hermi-
tian for all . Then there exists M; € RHT*™(D) such that M;! € RHT*™(D), and M = M; M7".
This is the spectral factorization of M; it is well-known that condition (4) is both necessary and
sufficient for such a factorization (see, for example, [19]). Note however that condition (4) is only
sufficient for a canonical factorization of M.

We now state Theorem 4.2, which essentially states that the standard mixed p upper bound
condition is mathematically equivalent to a passivity-multiplier-based stability condition: strict
positive realness of Wy lf’Wl' ! with W; and W5 belonging to‘ a certain subset of RHZX™(D). In
addition, the relationship between the (D, G) scalings used in the mixed u analysis, and certain
stability multipliers W, and W5 used in the absolute stability theory, is explicitly characterized.

Theorem 4.2 Let P € RHYX"(D). The following conditions are equivalent:

(a)
IPlla <1,



(b) (I = P)~1 is in RHY"(D) and there ezist a positive integer N, and n x n, real matrices
Qi € Sre,c(C), and U; € S, 00(C), 1 =1,..., N, such that with

N

D(z) = > (Qiz' + QT 2™, (5)
1=0
N . .

G(z) = Y (Uiz* - UTz™), (6)
=0

D and G have no poles on the unit circle and the inequalities
D(e?) > 0, (7
P(¢*)D(e”)(P(e”))* + G(°)(P(e”))" - P(¢°)G(¢°) — D() <0, 8)
hold for all 8 € R,
(¢) (I — P)~! is in RHY™(D) and there ezist a positive integer N, and n X n, real matrices

R;,S; € S cc(C), i=1,...,N, such that with

N
T(z) = Z(Rizi + 83271, (9)

i=0
T has no poles on the unit circle, the lower right (n¢ +ng) X (ne + ng) submatriz Tec(el) of
T(ei®) is Hermitian for all § € R, and the inequalities
He(T(e)) > 0,
He(P(el)T(e%)) > 0,
hold for all 6 € R,

(d) (I—P)~! is in RH™™(D) and there ezist transfer function matrices Wy = diag(W{, W¢, WF)
and Wy = diag(W§, W§, WE), where W§ and WJ, W§ and W§, and WT and W§, are in
S:(RP), S.(RP), and Sc(RP), respectively, satisfying

(i) Wi, Wo, WL, and W5! are in RHZ(D), WfWS = I, and WEWE =1,
(i) Wy Wy is strictly positive real,
(1) WQ_IPWl' 1 is strictly positive real.
Moreover, suppose that (I — P)™! is in RHY™(D) and let W), Wy € RHYX™*(D) be such that
wit, Wyl e RHY (D). Let
. . *,
D(e%) = He( (Wi (&)~ (Wa(e%))"),
G(ei?) = Sh( (W1(e)) =1 (W2(e?))").
Then WQ_IPWI'I 18 strictly positive real if and only if

P(e1%) D(el) (P(e1))* + G(e¥®) (P(e¥))* — P(e?)G(ei®) — D(e?®) <0 V8 € R.



In addition to establishing the precise equivalence between modern mixed u-theory based suffi-
cient condition for robust staility and the classical passivity-multiplier-based condition, Theorem 4.2
also states that the mutlipliers can be chosen to of a particularly simple form, given in (5) and
in (6). This fact has important ramifications for the numerical verification of these robust stability
conditions, as we shall see shortly.

5 State-Space Verification of Frequency Domain Conditions

Many frequency-dependent conditions for stability and robustness [11, 12, 13, 14, 15] belong to
the class of parameterized families of complex LMIs that we studied in Section 3. From a math-
ematical viewpoint, these conditions amount to infinite-dimensional convex feasibility problems.
Conventionally, there are two methods to handle the infinite dimensionality of these conditions and
turn them into finite-dimensional LMIs. One is the so called frequency sampling method, which is
to conclude to feasibility of a frequency-dependent condition from feasibility of the condition at a
finite number of frequencies. In practice, this is the simplest way to perform the test; however, in
theory, there is generally no guarantee that such implication holds (for an exception, see, e.g., [20]).
The other method, the basis function method [10], is to select finitely many basis functions and
restrict the search to the span of these functions, using a state-space approach to obtain a single
LMI. Here, it is not known if and how the choice of basis functions affects the outcome of the
stability test, and whether there is a “gap” between the basis function method and the frequency
sampling method.

In this section, we discuss the implications of Proposition 3.2 on the numerical solution of
infinite-dimensional convex feasibility problems. Specifically, we show that the frequency sampling
method and the basis function method are equivalent in the limit, as the number of frequency
points and the basis elements respectively in each method goes to infinity. In particular, we show
that we may choose the basis elements to be of finite impulse response (FIR). Our approach follows
a direct application of Proposition 3.2. More precisely, recall that given n x n, real-rational transfer
function matrices F;, i = 0,..., ¢, with no poles on the unit circle, an infinite-dimensional convex

problem
L(zy,---,z¢, Fo(2), -+, Fe(2)) >0 Vze€ D (10)

is feasible if and only if there exist z; € Hp, ¢ = 1,...,£, such that

L(xl(z)’ toe ,zg(Z),Fo(Z), cee ’Fl(z)) >0 VzedD.

When F;, i = 0,...,¢, are real-rational transfer function matrices (not necessarily proper) with
no poles on the unit circle, and when z; € Hgpw, ¢ = 1,..., ¥4, an interesting decomposition exists
for L(z1(2),--,ze(2), Fo(2),- - -, Fz(2)) when z € 0D. Roughly speaking L(z(2),- -, ze(2), Fo(2),
.-+, Fp(2)) can in such case be rewritten as the sum of a linear combination of real-rational, proper
transfer functions and its adjoint. In the statement below, we say that z € Hg is of order N if
z(2) = N o (a;2* + b;z™*) for some a;, b; € R.



Proposition 5.1 Let F;, i =0,...,¢, be n x n, real-rational transfer function matrices (not neces-
sarily proper) with no poles on the unit circle, let N; € N, i=1,...,¢ and let t = 23" 5_|(N; + 1).
Then there exist n xn real-rational, proper transfer function matrices H,, k = 0,. .., t, with no poles
on the unit circle, such that, for every {-tuple (z1,...,xz), with z; € Heg of order N;, i =1,... ¢,
there exist scalars p € R, k=1,...,t such that

t t *
L(z1(2), -+, z4(2), Folz) -+, Fo(2)) = Ho(2) + Y puHi(z) + <H0(z) + Zpka(z)> Vz € 6D.

Thus the feasibility condition (10) is equivalent to the existence of nonnegative integers N;, i =
1,...,¢, and of real numbers py’s, collected as p = (p1,...,pt), with t = 255, (V; + 1) such that

H(ejo’va-' 7N€1p) + (H(eio’Nl,' .o 7NE>p))* >0 Voe [0?27T]’ (11)

where H(el% Ny,..., Ny, p) = Ho(el) + 38 _, ppHy(ei®). Given Ny, ..., N;, we can obtain a state-
space realization
(4,B,C(p), D(p))

for H, where A and B are constant real matrices, and C are D are real-valued functions affine in
p. This enables us to check feasibility of the infinite-dimensional constraint (10) by performing
a sequence of finite-dimensional feasibility analyses of (11): if (11) is not feasible in p for given
Ni,..., Ny, then increase the N;’s. That feasibility of (11) can be ascertained in terms of a finite
dimensional LMI follows from the next lemma (see, e.g., [21]), which is a generalization of the
classical positive real lemma (see, e.g., [22, 23]).

Lemma 5.2 Let H be an n X n real-rational, proper transfer function matriz with no poles on the
unit circle, and with state-space realization (A, B,C, D), where A, B, C, and D are real matrices.
Then

H() + (H(E)* >0 V8 e[0,2n],

if and only if there exists a real symmetric matriz X satisfying the matriz inequality

T _ T _ T
(AXA X ATXB-C )><0. 12)

BTXA-C BTXB-(D+DT

Applying this lemma to inequality (11) and noting that C and D are affine in p, thus that the
matrix inequality (12) is affine in the variables X and p, we end up with a finite-dimensional LMI.
Therefore we can conclude that any parameterized LMI feasibility problem of type (10) with the
F;’s as in Proposition 5.1 can be approximately solved by sollving a sequence of finite-dimensional
LMI feasibility problems.

The idea just outlined can be used, for example, to compute the mixed-y-norm upper bound
| P||5- Indeed, a byproduct of the equivalence of statements (a), (b), and (c) in Theorem 4.2 is the

10



convergence result stated below. Given P € RHY™(D) and given a positive integer N, let Dy, G,
and Ty be the sets of functions D(z), G(z), and T'(2) of the forms (5), (6), and (9), respectively.
Let ML (P,N) be the infimum of the set of real scalars « such that, for some D(z) € Dy and
G(Z) € gN7

D% >0 VPeR,
P(6)D()(P(e))* + G(e?)(P(e))* = P(e?)G(e) — a?D(e) <0 V0 € R,

and let M2 (P, N) be the infimum of the set of scalars & such that, for some 7'(z) € Ty

He(T(el?)) >0 V8 €R,
He(P,(e®)T(e%)) >0 VO €eR.

Then clearly
. 1 — 1 2 — .
A}gn M,,(P,N) = Nl{_in;oMub(P, N) =||P|a-

Thus ||P||; can then be computed as follows, where we now write My, (P, N) to denote either
ML (P,N) or M2 (P,N). First let ag = ||Pljec (the Hoo norm of P), let ofy = 0 and let 3 € (0, 1).
Then, for each positive integer N, generate numbers ay > Myp(P,N) and ofy < My(P,N)
satisfying ay < an—_1, and ay — ofy < Blan—1 — afy_;). It is easy to check that the sequences,
{an} and {a/y}, constructed satisfy the relation

ay < Myp(P,N)<ay VN >0.

Since {ay — o'y} and {Myp(P, N)} converge to 0 and ||P||;, respectively, it follows that both
sequences, {an} and {a/y}, converge to ||P||;. The following algorithm assumes that 8 = 1/2 and
uses the fact that the sequence { M, (P, N)} is monotone nonincreasing.
Algorithm
Step 1. Set N =0, ap = ||P||oo, @ = 0.
Step 2. Set ay41 = an, dy,, = %(aN +aly), d= %(aN aly)-
Step 3. While oy ; > My, (P, N), do
set oy, = a4y — 4, aN+1 = any1 —d.
Step 4. Set oy, ; = max(0,y ).
Step 5. Set N = N + 1 and go to Step 2.

6 Synopsis of the Continuous-Time Case

In this section, we state the continuous-time analogue to the results obtained in the previous

sections. First, an analogue to Proposition 3.2. Let )
‘ Hoon = i( oy b )NeNabeR
UDR +— paard (1 _ z)z (1 + ) 13

(The subscript “UDR” stands for unit-decay rate; the two-sided inverse Laplace transforms of the
elements of Hypr decay exponentially with a unit rate of decay.) We have the following continuous-

time representation results for LMI solutions.

11



Proposition 6.1 Let F; € Fo_,1=0,...,£, The following conditions are equivalent:
(a) for every z € 8. C_, there ezist compler numbers z,, i = 1,...,¢, such that (2) holds;

(b) there exist continuous functions z; : .C_ — C, i = 1,...,¢, such that, for all z € 0,C_,
z,(Z) = z4(2), 1 =1,...,¢, and (3) holds;

(c) there ezist x; € Huypr, @ = 1,...,£, such that, (3) holds for all z € 8,C_;

We next state Theorem 6.2, our main result for the continuous-time case, which is the continuous-

time analogue of Theorem 4.2. It is easily proved by invoking Theorem 4.2, and making use of the

bilinear transformation ¢(z) = }%=.

Theorem 6.2 Let P € RHY"(C_). The following conditions are equivalent:

(a)
I1Plla <1,

(b) (I — P)7! is in RHY™(C_) and there exist a positive integer N, and n X n, real matrices
Qi € Srec(C), and U; € Srp0(C), i =1,..., N, such that with

D=3 (Q o ) (13)
"(L-z) (1 +z)

=0
) =3 <U~——1—— - UT—l———) (14)
L\ T e )

the inequalities

D(jw) > 0,
P(jw) D(jw)(P(jw))* + G(jw)(P(jw))* — P(jw)G(jw) — D(jw) < 0,

hold for all w € R,

(c) (I —P)7! is in RH™™(C.) and there exist a positive integer N, and n x n, real matrices
R;,S; € S cc(C), i=1,...,N, such that with
N

1 1
T(:) =} (m T ST z),.) , (15)

the lower right (nc+nc) X (ne+nce) submatriz Tec (jw) o}T(jw) 18 in S¢,c(C) and is Hermitian
" for all w € R, and the inequalities

He(T(jw)) > 0,
He(P(j«)T(jw)) > 0,

hold for all w € R,
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(d) (I-P)~! is in RHX"(C_) and there ezist transfer function matrices Wy = diag(WF, W¢, WE)
and Wy = diag(W5, W§,Wy), where WT and Wi, W{ and W5, and WE and WE, are in
S:(RP), S¢(RP), and Sc(RP), respectively, satisfying

(i) W1, Wa, Wi, and Wt are in RHY™(C_), WiW§ = I, and WEWE =1,
(1t) W1Ws is strictly positive real,
(iii) Wy tPW ! is strictly positive real.
Moreover, suppose that (I — P)~! is in RHYX*(C_) and let W1, Wo € RHY™(C_) be such that
wil, Wyl € RHY™(C_). Let '

D(w) = He( (W1(jw)) ™ (W2 (jw))*),
G(w) = Sh( (W1(jw)) ™ (W2(jw))*).

Then W{lf’Wf L is strictly positive real if and only if

P(jw)D(jw)(P(jw))* + G(jw)(P(jw))* — P(jw)G(jw) = D(jw) <0 Vw € Re.

Similar to the discrete-time case, Proposition 6.1 also has implications on computation. Propo-
sition 6.3 below is the analogue of Propostion 5.1. Here we say that £ € Hypg is of order N if
z(z) =N, (z—l—f-;T; + (—1%;7;) for some a;, b; € R.

Proposition 6.3 Let F;, i = 0,...,¢, be n X n, real-rational, proper transfer function matrices
with no poles on the imaginary azis, and let N; € N, i = 1,... ¢ and let t = ZZle(Ni + 1).
Then there exist n X n real-rational, proper transfer function matrices Hy, k = 0,...,¢t, with no
poles on the imaginary azis, such that, for every £-tuple (z1,...,xs), with z; € Hypr of order Nj,
i=1,...,¢, there exist scalars pp € R, k =1,...,t such that

L(-’El(Z),'",I[(Z),F()(Z),F]_(Z)'-',Fg(z)) = .
Ho(2) + Ther piHi(2) + (Ho(2) + Ty PuHi(2)) V2 € 8,C-.

This result, together with a strong version of the continuous-time positive real lemma (again
see, e.g., [21]) suggests a scheme to approximately solve parameterized LMI feasibility problems of

the type
L(ml,"',mg,Fo(Z),"',Fg(Z)) >0 Vzeaec—? (16)

with the F;’s as in Proposition 6.3, by solving a sequence of finite-dimensional LMI feasibility
problems. For example, exactly like in the discrete-time case, this can be used to compute a
sequence of upper bounds to the continuous-time mixed-y-norm upper bound || P||; that converges
o 1Pl
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7 Conclusions

A few explicit connections between the modern mixed x theory and the classical absolute stability
theory have been made. It has been shown that the standard mixed u upper bound condition is
mathematically equivalent to a passivity-multiplier-based stability condition in [10]. Concurrently,
the relationship between the scaling matrices widely used in mixed u theory and certain stability
multipliers used in absolute stability theory, is explicitly characterized. The establishment of the
connections not only clarifies the relationship between two large classes of frequency-domain con-
ditions (those using scaling matrices and those using multipliers) through a careful study of the
standard mixed p upper bound condition, but also offers us an alternative direction, to take advan-
tage of the wealth knowledge of the absolute stability theory, to perform robust stability analysis.
Additionally, a sequence of computable mixed-p-norm upper bounds was defined with guaranteed
convergence to the standard mixed-y-norm upper bound || P||;. Moreover, a conceptual algorithm
for computing ||P||; was given. A state-space method has been developed to check feasibility of a
class of general LMIs across frequency (in which the standard mixed p upper bound condition is
a special case). The result has wide applications in checking feasibility of many robust stability,
robust performance, and nonlinear stability conditions, as well as in optimal stability margin design

problems (e.g., 4 synthesis).

A  Appendix
A.1 Proof of Lemma 3.1

Before proving Lemma 3.1, we introduce three lemmas which will be used later.
The first lemma, Lemma A.1, extends a result of Packard and Doyle (Theorem 9.10 in [24]),
which explores an intrinsic solution property for a class of parameterized family of complex LMIs.

Lemma A.1 Let Q€ =. Let F; € Fq,1=0,...,L. Let z € 0.2 be given. Suppose that there exist
complez numbers z;, i = 1,...,¢, such that L(zy,---,ze, Fo(2),---, Fe(2)) > 0. Then the inequality
also holds with z and z;, 1 = 1,...,£ replaced with Z and T, respectively. Furthermore, when z is
"such that F(z) is real (in particular, z € R or z = o), the inequality holds with z;, i = 1,...,¢,
replaced with 3(z; +77), i = 1,..., L.

Proof: Recall that, given a Hermitian matrix A, A > 0 if and only if y*Ay > 0 for all y # 0.
Taking complex conjugates on both sides of the resulting inequality proves the first claim. The
second claim is a direct consequence of the first one. (|

Lemma A.2 below is a key to prove the implication (b)=>(‘c) of Lemma 3.1. With a direct appli-
cation of the results of the Dirichlet problem on a simply connected set and the Schwarz Reflection
Principle, we are able to establish the lemma, which implies the existence of a combination of
functions of certain type that matches on J0.Q2 a given complex-valued function z satisfying certain

properties.
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Lemma A.2 Let Q € E. Let z : 3.2 = C be a continuous function satisfying z(Z) = z(z) for all
z € 8.Q. Then there ezist s : cleQ — C, i=1,2, such that, for i=1,2, s* is continuous on clQ,
analytic in Q, and satisfies s'(Z) = si(z) for all z € cloQ, and z(2) = s'(2) +52(2) for all z € 3,0

Proof: We define the sets IIy := {z € C: Im{z} > 0} and II_ := {z € C : Im{z} < 0}. It is easy
to verify that when Q € Z, both the sets Q N II; and Q@ NII_ are simply connected, and the set
QN R is an interval (a,b) where a,b € Re.

Let 2 : 3.2 - C be given as assumed. Let Re{z} and Im{z} denote its real part and imaginary
part, respectively. Then both Re{z} and Im{z} are real-valued, continuous functions defined on
0e. Define f.(z) = Re{z}(z) for all z € 9.2 NII;, and equal to some real-valued continuous
function for z € [a, b]. Consider the Dirichlet problem on Q2 NII; with the real-valued, continuous
boundary function f,. It is known that, given a.simply connected set X and a real-valued continu-
ous function g defined on 9, X, there exists a function u which is harmonic inside X and matches g
on 8.X (see, e.g., Corollary 4.18, pp.274, in [25]). Moreover, for any function u which is harmonic
in a simply connected set X, there exists a harmonic conjugate v such that u + jv is analytic in X
(see, e.g., Theorem 2.2(j), pp-202, in [25]). Thus there exists a function analytic in 2 NI, whose
real part matches fi on 9. NII,. By the Schwarz Reflection Principle (e.g., Theorem 11.14 in
(26]), this function extends to a function s;, continuous on cleQ, analytic in Q, with 5;(Z) = 51(2)
for all z € cL.(?, and Re{s;}(z) = Re{z}(z) for all z € 3.Q. Similarly, there exists a function s,
continuous on cl(, analytic in Q, $5(Z) = s2(z) for all z € clef, and Im{s2}(z) = Im{z}(2) for all
2 € 0.0 Let sl = %(sl +59) and s% = %(31 — $9). It follows that, for all z € 9,12,

z(z) = Re{z}(z)+jIm{z}(2)

ol
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Lemma A.3 below, a slight extension of Mergelyan’s Theorem (e.g., Theorem 20.5 in [26]), gives

conditions for uniform approximation, on a bounded set, of a class of complex-valued functions by
polynomials with real coefficients.

Lemma A.3 Let Q € Z be bounded in C. Suppose that s : clQ — C is continuous on clQ and
analytic in Q. Assume that for all z € cl, s(Z) = s(z). Then given € > 0, there exists a polynomial
p with real coefficients, such that

sup | s(z) —p(2) |< e
z€cl) [

Proof: Given e > 0, by Mergelyan’s theorem, there exists a polynomial py = p + jq¢ where p and ¢
are real-coefficient polynomials, such that

sup | 5(2) = po(2) [< €/2. (17)

zéecl
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We show that p is as claimed. First, since for all z € clQ2, 5(Z) = s(2), it follows from (17) that, for
all z € cl(),

| po(2) — po(Z) |

AIA I
Ty
o
O
|

On the other hand, for all z € clf,

|po(z) ~po(2) | = |p(x) —ja(z) - (0(z) +ia(2)) | -

Since, for any real-coefficient polynomial m(z), m(z) = m(z) for all z, it follows that

| po(2) —po(Z) | = 2]4q(2)].
Thus, for all z € clf, | ¢(z) |< €/2. Again using (17), it follows that, for all z € clf,

| 5(2) —p(2) | | 5(2) — (p(2) +ja(2)) +ja(2) |
|s(z) —po(2) | +|qlz)| < e

IA

This proves the claim. a
Now we are ready to prove Lemma 3.1.
Proof of Lemma 8.1: We show first that (a)= (b)=>(c)=>(d)= (a), and then, under the assumption
that Q is bounded, we show that (c)=>(e)=(a).
To prove the implication (a)=>(b), with Lemma A.1l in mind, we can obtain statement (b) via
the following arguments.
Let 1 : 3,Q — 0D be a continuous bijection such that (Z) = 9(z) for all z € 8,0 (since Q € E,
such ¢ exists). Thus, for every z € 3.2, there exist complex numbers z;, i = 1,..., ¢, such that

L(.’L‘]_,"',fIIg,Fo(Z),"',Fg(Z)) >0
if and only if for every z € 8D, there exist complex numbers z;, i = 1,...,¥¢, such that
L(IL']_, e, T, Fo(d)_l(z)): Tty FZ(¢_1(z))) > 0.

Furthermore, for ¢ = 0,...,¢, F; 0™l : 6D — C™ " are continuous, and satisfy W =
F,(¥~1(Z)), for all z € D. Based on this observation, we will construct a continuous function on
0D from an appropriate choice of the solutions z;’s. When this is achieved, we change the domain
back to Q, which finally leads to the claim.

In the unit disk case the problem of constructing a continuous function on 8D based on data
z;’s reduces to that on the closed interval [—7, 7] with same value assigned at the endpoint —# and
7. The following argument is similar to that in [12].

For each 6 € (—m,x], let 2%, i = 1,...,¢, satisfy

L(mg) o 71"27F0(ei0)7“ ' aFZ(ejo)) >0
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and let ;" =27, ¢ =1,...,4 By Lemma A.1, the z¥’s can be chosen such that, for all § € [0, ],
i=1,...,4 ;% = 2% and, in particular 20 and z7 are real. Since the F;’s are continuous, for every
6 € [0, 7] there exists an open neighborhood I % C R of § such that

L, 20 Foe?), -, Fy@?)) >0 vo eI’

We now show that there exists a finite open cover {I1,---,I,} C {I?,8 € [0, 7]} with I; = I and
Im = I™, where for i = 1,...,m, ; = (a,0}), o1 <0< a2 < -+ < am < a1 < 7 < 0y,
and each I; is not a subset of the union of the other I;’s. Without loss of generality, assume that
[0, 7]\ (I°UI™) is not empty. Let {I1, -, Ix} C {I%,6 € [0, 7]} be a finite open cover of the compact
interval [0, 7] \ (I° U I™), and replace each I; by its intersection with (0, 7). For i =1,...,¢, let :z:f ,
j=1,...,k, be the associated :z:f’s. Let Ip:=1° Iy, :=I"and, fori = 1,...,¢, xf‘*’l :=z7. Then
{Iy,- -, Ixs1} is a finite open cover of the compact interval [0, 7]. Repeatedly take out any interval
I, which is a subset of the union of the remaining I;’s (clearly I 0 and I™ will not be taken out in
this process) and denote by m the number of remaining intervals. Finally, relabel the I;’s so that
I; = (o, 0l) with o;’s, i = 1,...,m being in increasing order and, for i = 1,...,¢, relabel the x{’s
accordingly. It is readily checked that the finite cover obtained possesses the desired properties.
Now, foreachi =1,...,m, let V; := (zi,---,2%). Then V; and V;, are real. Define, for § € [0, 7],

V(9) = Vi 0el; -Ujglji=1,...,m.
' Vit (1=NVigr 0=2Aozp1 +(1— N, A€ (0,1),i=1,...,m—1.

Then V : [0,7] — C* is continuous. Note that, since ap > 0 and o, ; < 7, V(0) and V(r) are
real. Extending V(.) by the formula V(-6) = V() to the interval [~m, 0] results in a continuous
function defined on [—, 7] with the same value V() assigned at the endpoints —m and m. This
completes the proof of the implication (a)=>(b).

The implication (b)=>(c) is a direct consequence of Lemma A.2.

The implication (c)=>(d) follows easily from continuity of the F;’s, i = 1,..., £ over the compact
set 8.0, and uniform approximation of functions s € S to arbitrarily degree of accuracy by the
basis functions {(;}. The implication (d)=>(a) is trivial.

Now we assume that € is bounded. To show the implication (c)=>(e), it suffices to show
that given s € S and any € > 0, there always exists a polynomial p with real coefficients which
uniformly approximates the given function s over cl2 within e. This result follows immediately

from Lemma A.3.

The implication (e)=-(a) is obvious. This completes the prooftof Lemma 3.1.

A.2 Proof of Proposition 4.1

The proof of Proposition 4.1 makes use of the following two lemmas.

Lemma A.4 Given a square complez matriz A, let n_(A), ny(4), and ng(A) be the numbers of
eigenvalues of A inside the open unit disk, outside the closed unit disk, and on the unit circle,
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respectively. Let X be a Hermitian matriz such that
A*XA-X <0. (18)

Then n_(A) = ny(X), ne(A) = n_(X), and no(A) = ng(X) = 0. Moreover, if A is stable, i.e.,
ny=ny=0, X >0, and if A is antistable, i.e., n_ =ny =0, X <O0.

Proof: This first claim of the lemma is simply the discrete-time version of Theorem 3.3 in [27].
A proof can be given simply by conformally mapping the unit-disk to the right half-plane, and
appealing to the proof of Theorem 3.3 in [27]. The second claim is a standard result from Lyapunov
theory for finite-dimensional linear time-invariant systems (see, for example, [28, Thm. 23.7]). O

The next lemma plays a key role in the proof of Proposition 4.1. Specifically, we show here
that strictly positive-realness of a real-rational proper, transfer function M can be used to derive
certain properties that are sufficient for its canonical factorization. In what follows, we let x_(A)
be the invariant subspace corresponding to the eigenvalues of a square matrix A inside the open
unit disk, and let x+(A) be the invariant subspace corresponding to the eigenvalues of A outside
the closed unit disk.

Lemma A.5 Suppose that M is an m x m real-rational biproper transfer function matriz with no

poles on the unit circle such that the frequency domain condition
M(e®) + (M(@%)* >0, (19)

holds for all §. Then there exits a minimal state-space realization (A, B,C,D) of M, where A,
B, C, and D are real matrices, with D invertible, such that x-(A) is spanned by the columns of

5

where
Ty )’

T = é , and x4+(A — BD7'C) is spanned by the columns of a matriz Ty =

both Ti5 and The are real matrices, and Toe is invertible.

Proof: Let (A, B,C, D) be a minimal state-space realization for M, where A, B, C, and D are
real matrices. Since M is biproper, D is invertible. Also, since M has no pole on the unit circle,

without loss of generality, we may assume that

A_ 0
where A_ € R®™*"- and A, € R"+*™+ and have all eigenvalues inside the open unit disk and
outside the closed unit disk, respectively. Then the columns of the matrix

I *
ri=(4); @)
where I € R™-*"-, span x—(4).
Since He(M (/%)) > 0 for all §, Lemma 5.2 implies that there exists a real symmetric matrix X

such that

(22)

A*XA-X  A*XB-C* <0
B*XA—-C B*XB - (D+D*) :
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This implies that
A*XA-X <. (23)

X1 X2
X =
< Xz X2
where X1; € R™-*"~ X5 € R**"+ and X3 € R™*"+. Since A satisfies (20), inequality (23)
implies that

Partition X as

A:X11A—- - X11<0.

It follows from Lemma A.4 that X;; > 0.
On the other hand, premultiplying and postmultiplying inequality (22) by

( I —(D'C) )
0 I

and its conjugate transpose respectively yields, with A* denoting A — BD~!C,

(A*)*XA4* =X  (A)'XB+C*'D™'D _,
B*XAX +D*D-C  B*XB - (D + D*) ’

which in turn implies that
(AX)*X(A*) - X <. (24)

Since inequalities (23) and (24) share the common Hermitian solution X, it follows from Lemma A .4
that A and A* have the same inertia, that is they both have the same number of eigenvalues inside
the open unit disk, outside the closed unit disk, and on the unit circle, respectively. Recall that A
can have no eigenvalues on the unit circle, therefore, A* has n, eigenvalues outside the closed unit
disk and n_ eigenvalues inside the open unit disk.

Let T be a real matrix with n,. columns that span x4 (A*). This means that AXT, = T A,
where A is a square matrix of size ny X n; whose eigenvalues are all the eigenvalues of A* outside
the closed unit disk.

" Then multiplying (24) on the left by T3 and on the right by T5, we get

THAX)* X(AX)Ty — T3 X T < 0.

Equivalently
(ALY T3 XTo(AY) - T3 XTr < 0.

Since Ai is anti-stable, it follows from Lemma A.4 that T5 X ’}'2 < 0. Partitioning T as

_ Toy .
where Ti2 € R"- X"+ and Thy € R"*"+, we get

T, X11To1 + Ty X12To2 + Toa X19To1 + Top X20To2 < 0.
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This implies that T59 is invertible. Indeed, otherwise, multiplying the above inequality on the right
by any nonzero vector v in the null space of Ty and on the left by v* yields

U*Tnglng]_U <0,

which contradicts the fact that Xi; > 0 (note that Th;v # 0, otherwise T3 is not of full column
rank). The proof is complete. g

Proof of Proposition 4.1:

It turns out that Lemma A.5 yields precisely the conditions required for M to have a canonical
factorization [19, Ch. 7, Thm. 1], and hence establishes Proposition 4.1. For convenience, we let
[4, B, C, D] denote C(zI —~ A)~'B + D.

Let A, B, C, D, Ty and T be as given by Lemma A.5. Define

(T Tx
e (1),
Partition the following matrices as

T‘lAT=<j; jj), T‘lB=<§;>, c*:r=(c1 02),

where A; € R*-*"-, Ay € R"-*"+ Az € R™*"- A4y € R*™**"+ B; € R*-*™, By € R***™,
Cr € R™*"=, Cy € R™*%+_ Define

M_ := [A,, By, Cyi, D],
M, = [A4, B,, D710, I].
Then
M- = [Al - B,D !¢y, ByD7!, -D"'¢y, D-l],
M;' = [Ai=B,D7Cy, By, —=D7IC, .

Then, following [19, Ch. 7, Thm. 1], we have
o M_, M- My, (M7~ € RHZ*™(D), and
o M =M_M,.

Define M; = M_ and M, = M7. This completes the proof of Proposition 4.1.

A.3 Proof of Theorem 4.2

The proof of Theorem 4.2 makes use of the following lemma.

Lemma A.6 Let z be in Hrr. Then given € > 0 there exists w € RP, with no poles at the origin,

such that w uniformly approzimates  over 8D within e.
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Proof: Let ¢ > 0. Suppose that z(z) = p(z) + ¢(2), where p(z) = Y g;2¢ and ¢(z) = Tl bz,
with g; € R, i =0,...,1;, a;, #0,and b; € R, j = 1,...,l, by, # 0. Define ri(2) = (I—PU—)G

+€12
and 7o(2) = q(z)?jlj—ez, with €; and ey positive. Then if €; and ez are small enough, r; and
ro uniformly approximate, within %e, p and g, respectively, on 8D. Thus w(z) = ri(z) + ra(2)
uniformly approximates, within €, z(z) on dD. It is clear that w(z) has no poles at the origin, and

belongs to RP. This proves the claim. O

Proof of Theorem 4.2

(a)=>(b): Suppose that ||P||; < 1. Since this condition is stronger than the mixed x condition,
it follows from the Small 4 Theorem (e.g., [29]) that (I — P)~1 € RHX™*(D). By Proposition 3.2,
there exist D(z) and G(z) whose entries are in Hg, such that the inequalities

~

A ) D(z) >0, ) )
P(2)D(2)(P(2))* + G(2)(P(2))* — P(2)G(z) — D(2) <0,

hold for all z € D. Let D = D + D~ and G = G — G™~. Since Z = z~! for all z € 9D, it is easy
to verify that D(z) and G(z) have the forms as described and satisfy (7) and (8).
(b)=(c): Let D(z) and G(z) be as in (b). Then D(el®) € D, and G(e/?) € G for all §. Define
T(z) = D(2) + G(2) = =No((Q: + Ui)2* + (QF — UT)z™*) with real matrices Q; € Sr¢,c(C), and
U; € S:00(C). Clearly the submatrix Tec(el?) of T(el) is in S.c(C) and is Hermitian for all 6.
Moreover, since for all #, D(e¥?) is Hermitian and positive definite, and G(el?) is skew Hermitian,
we have for all 0,
He(T(¢"%)) = D(l%) > 0.

On the other hand, replacing D and G by %(T + T*) and %—(T — T*), respectively, in the second
inequality in (b) yields, for all 6,

P(¥)(T(e) + (T(e1?))*)(P(e))* + (T(e¥) — (T(e¥))*) (P(e19))* — P(e¥)(T(e¥) ~ (T(e”))")

~(T(e”) + (T(?))*) <0,

ie.,

(I + P(e®)T () (I — P())* + (I — P(e))(T(e))* (I + P(e?))* > 0. (26)
Note that (26) implies that I — P(e/’) must be nonsingular for all §. Thus it is equivalent to

(I = P(e?)H(I + P(°)T(e”) + (T())*(I + P(%)*(I — P(¢))™ > 0,

ie.,

P(e)T(6) + (P(¢)T(¢7))* > 0,
. +
ie.,

He(f’(eje)T(ew)) > 0.
This proves the claim.
(c)=>(d): Suppose that (c) holds.
First, using Lemma A.6 on the entries of T, approximate T on the unit circle with W =
diag(W*, W<, WC) € S, c(RP), with no poles at the origin, closely enough that W
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e like T, has no poles on the unit circle, and

o satisfies the inequalities satisfied by T', namely
He(W (/%)) > 0, (27)
He(P(e®)W () > 0. (28)

Then note that, since Tec(el®) = é‘é(ejg) for all 8 € R, both W,¢c = diag (WC,WC) and W2
approximate it on the unit circle, and so does (W.c + W2 )/2. Also, since Wc has no poles at
the origin, (W.c + WZ5)/2, which is Hermitian on the unit circle, is again proper. Thus, there is
no loss of generality in assuming that W¢(e’?) and W (el?) are Hermitian for all # € R. Next,
without loss of generality, we may assume W has a proper inverse. Indeed, if it does not, it can be
replaced by W + eI with e small enough for (27) and (28) to be preserved. Now note that, under
the assumption that (d) (%) holds, strict positive realness of W1 W, is equivalent to the condition

He ((Wl(eiﬁ))-l(wz(ei"))*) >0 Vo
and strict positive realness of W, ! PW;! is equivalent to the condition
He (P(e°)(W1(e")) 7 (Wa(e"))") >0 V6

(both of these conditions are obtained via congruence transformations). To complete the proof of
the implication (c)=>(d) it is thus enough to factorize W into W = W[ W5’ where W, and W,
satisfy (d)(%). The desired factorization of W is possible, in view of Proposition 4.1 and the well-
known symmetric factorization result mentioned in the subsequent remark. It remains to apply
this result to the block entries of WT, W¢, and WC (where W*, W¢, and W€ all satisfy (4), and
both W¢(el®) and W (ei?) are Hermitian for all §), and define W and W5 in the obvious way. This
completes the proof of the implication (c)=-(d).

(d) = (a): Suppose that (d) holds and let W1, W, satisfy (3)-(411). In particular
' Wy Y () P(?)WH () + (Wi H(e%))* (P(e®) (W51 () >0 V6 € [0,2n],
or, equivalently (via congruence transformation),

P(E)yW ) (Wa())* + Wa () (W () (P(e7)* >0 V6 € [0,2x].

Multiplying on the left by (I — P) and on the right by (I — P)% (another congruence transformation)

we get
P(el?)D(ei?)(P(ei%))* + G (i) (P(el?))* — P(el?)G(e)?) — D(ei®) <0 V8 € [0, 2],

with D(el?) = He( (W1(e?))~1(W2(ei?))*), and G(ei?) = Sh( (W1(e?))~1 (W, (ei?))*). It is easy to
check that D(e¥) = (D(ei®))* and G(elf) = —(G(e¥?))* for all 8, and condition (#) implies that
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D(ei) > 0 for all §. Since the left-hand side and D(e/) are both continuous over the compact set
[0, 2], it follows that, for a € (0, 1) close enough to 1 and for all 8 € [0, 27],

P(ei®)D(ei®)(P(e¥))* + G(e)(P(e))* — P(e?)G(e¥?) — aD(e?) < 0

Since « € (0,1), this implies that ||P||z < 1. This completes the proof of the implication (d)=>(a).
The remaining assertion follows directly from the same congruence transformations. The proof of

Theorem 4.2 is complete.

A.4 Proof of Proposition 5.1

The proof is by construction. Given any z; € Hp of order Nj, for all z € 6D

L(z1(2), -, ze(2), Fo(2),+, Fol2)) = Fol2) + (Fo(2))* + Lj=1(2(2) F(2) + (2(2))*(F;(2))")
= R(z)+ R~(2)

with R(z) = Fy(z) + Zle vazjl(afziﬁy(z) +blz7iF,(2)). Let us decompose Fy(z) and for each
(1,7), 2*F;(2) and 27" Fj(z) as
Fo(z) = Po(z) + Go(2)

and
2'Fj(z) = (z) + G}, " (2)

and

27 Fj(2) = P (2) + Gj;(2)

where the entries of F, Pu and P;; are polynomials and those of Go, G;} and G7; are proper

rational functions, yielding

e N

R(z) = Po(2) + Go(2) + 1. 3. (ad (P} (2) + G (2)) + B(P5 (2) + G5(2))) -

j=li=1

Note that Py*(z) and for all 4, 7, P+ (2) and P~ (2), which appear in R~(z), are proper and let

¢ N; ) .
S(z) = B'(2) + Go(2) + 3. 3 (al(PF™(2) + G (2)) + B (P~ (2) + G5(2))) -
j=li=1

Clearly

L(z1(2), -, ze(2), Fo(2), -, Fa(2)) = .f'(z) +5™(2).

To complete the proof, simply denote Hy(z) = Fj’(2) + Go(z) and denote by Hi(2), k = 1,...,1
all rational proper functions of the form P~ (2) + Gii(2) and P;™(z) + G;;(z) and by p; the
corresponding coefficients a! and .
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A.5 Proof of Proposition 6.1

Equivalence of (a) and (b) follows directly from Lemma 3.1. Let ¢(z) = 12 which is the familiar

1-z

bilinear transformation that maps C_ onto D, and its inverse ¢~(z) = ﬁ maps D back to C_.

The implication (a)=(c) follows from the following equivalent statements.

For every z € 0,C_, there exist complex numbers z;, 1 = 1,..., ¢, such that
L(:El) Tt )xf’FO(z)7 Tt 7FE(Z)) > 07

< for every 29 € 0D, there exist complex numbers z;, i = 1,...,, such that
L(xl, Tty Ty, F0(¢—1(zd))’ ) F£(¢_1(zd))) > 07

<= there exist x? € Hem,t=1,...,¢,
such that, for all z¢ € 6D
L(xtli(zd)v U az?(zd)7 FO(d)—l(Zd))r e aFl(¢—l(zd))) >0 (by Proposition 32)

Now, we define z = ¢1(29) and z;(2) = z¢($(2)), 1 = 1,..., £ Since z3(4(2)) € Hupr, i = 1,...,4,
there exist z; € Hypr, ¢ = 1,..., £, such that, for all z € 5,C_

L(zy(2), -+, ze(2), Fo(2), -+, Fo(2)) > 0.

The implication (c)=>(a) is trivial.
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