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Equilibrium sampling is at the core of computational thermodynamics, aiding our

understanding of various phenomena in the natural sciences including phase coexistence,

molecular solvation, and protein folding. Despite the widespread development of novel

sampling strategies over the years, efficient simulation of large complex systems remains

a challenge. While the majority of current methods such as simulated tempering, replica

exchange, and Monte Carlo methods rely solely on the use of equilibrium techniques,

recent results in statistical physics have uncovered the possibility to sample equilibrium

states through nonequilibrium simulations.

In our first study we present a new replica exchange sampling strategy, “Replica

Exchange with Nonequilibrium Switches,” which uses nonequilibrium simulations to en-

hance equilibrium sampling. In our method, trial swap configurations between replicas

are generated through nonequilibrium switching simulations which act to drive the repli-

cas towards each other in phase space. By means of these switching simulations we can

increase an effective overlap between replicas, enhancing the probability that these moves

are accepted and ultimately leading to more effective sampling of the underlying energy



landscape. Simulations on model systems reveal that our method can be beneficial in the

case of low replica overlap, able to match the efficiency of traditional replica exchange

while using fewer processors. We also demonstrate how our method can be applied for the

calculation of solvation free energies.

In a second, separate study, we investigate the dynamics leading to the dissociation

of Na+Cl− in water. Here we employ tools of rare event sampling to deduce the role of the

surrounding water molecules in promoting the dissociation of the ion pair. We first study

the thermodynamic forces leading to dissociation, finding it to be driven energetically and

opposed entropically. In further analysis of the system dynamics, we deduce a) the spatial

extent over which solvent fluctuations influence dissociation, b) the role of sterics and

electrostatics, and c) the importance of inertia in enhancing the reaction probability.
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Chapter 1

Introduction

1.1 Background

Over the past half century or so, computer simulations have become an increasingly

indispensable tool for basic scientific research. Our knowledge of the natural world has

been clarified by the ability to solve equations of motion numerically, providing informa-

tion about the behavior of a system in atomistic detail. Since the introduction of the

Metropolis Monte Carlo method [80] in 1953, molecular simulations have advanced our

understanding of various systems in physics, chemistry, and biology for which theories

are only approximate, including liquids and liquid structure [125], the nature of protein

folding [31,110], glassy systems [118], critical phenomena [16], and hydrophobicity [22] to

name a few.

The systems that are amenable to study through simulation are often large and

complex in nature, evolving in a high-dimensional phase space in which rugged energy

landscapes give rise to multiple, distinct conformationally-stable states separated by high

(free) energetic barriers. An ion channel, for instance, can exist in “open” and “closed”

states, with transitions between the stable states involving a complicated collective reori-
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entation of entire protein substructures. The process of protein folding from an unfolded

state to a native structure can proceed via Markov-like transitions between metastable

intermediaries, and through multiple pathways [86]. Even an ion pair in solution con-

tains stable associated and dissociated states, with transitions promoted by nontrivial

reorganization of the solvent molecules in the vicinity of the ions [43]. Simulations have

helped to understand structural properties of such systems, for example the classification

of metastable states, as well as dynamical properties like reaction rate constants and re-

action coordinate determination. The inherent complexity of such systems is often what

makes them so interesting to study.

Despite the success of simulations in describing various physical phenomena, the

effective simulation of complex systems proves to be challenging. Due to their rugged en-

ergy landscapes, complex systems tend to remain trapped in locals well for long times. In

many biomolecules, for instance, transitions between metastable states can occur in times

up to 100 ns or more, orders of magnitude larger than timescales which are accessible in

standard Molecular Dynamics simulations. As a result, estimation of equilibrium proper-

ties can be inaccurate at best. Complications also arise for large systems, as integration

times typically grow faster than the system size.

Advances in computational power and resources have partially been able to address

this issue. Perhaps most impressive example is Anton [109], a supercomputer hard-wired

for Molecular Dynamics simulations produced by D.E. Research, which is capable of orders

of magnitude speedup with respect to standard machines. The Folding@home project1,

spearheaded by the Pande lab at Stanford, has also pushed the limit of biomolecular

simulation, and is able to accomplish computations of similar scale in a parallelized fashion.

1folding.stanford.edu
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Here users throughout the globe donate a fraction of their computational resources to a

small bit of a large calculation. Despite these pioneering efforts, the vast majority of

scientific computing resources are unable to handle such large and lengthy computations.

To address this problem from a theoretical point of view, much research has been

devoted to the development of novel simulation methods that are effective at sampling com-

plex energy landscapes. While the complete understanding of a physical system requires

knowledge of static as well as dynamical properties, most simulation methods are only

able to retrieve one at the expense of the other. It is then useful to distinguish between

methods that are designed to obtain static thermodynamic information, i.e. quantities

that can be written as ensemble averages, such as metastable state probabilities, spe-

cific heats, and free energy differences, and methods for calculating dynamic quantities,

such as time correlation functions, reaction rates and reaction coordinates. Trajectory-

sampling methods such as transition path sampling [17] can be very efficient at sampling

rare events, and preserve dynamical information needed for the determination of reaction

coordinates and transition pathways. However, they only sample a subset of the canon-

ical distribution pertaining to transition path segments. Most thermodynamic sampling

methods, on the other hand, are able to achieve enhanced sampling of distributions by

introducing collective moves in Monte Carlo simulations, or applying configurational swap

moves between trajectories running in parallel. Although these methods efficiently sample

the desired distribution, because the employed moves alter the system dynamics, they do

not preserve the physical dynamics pertaining to the underlying system. In this thesis

we will investigate both thermodynamic and dynamical aspects of systems in equilibrium.

The first and largest part will be concerned with the development of a sampling method

for accurate determination of static equilibrium quantities. In the second part, where we

3



investigate the dissociation of Na+-Cl− in water, the dynamics are of central interest; this

project is self contained within its own chapter. In preparation for the introduction of our

sampling method, we now focus on thermodynamic sampling methods.

Energy

T1

TM

Figure 1.1: Schematic picture of a rugged (free) energy landscape, with
dashed lines representing typical system energies for various temperatures.
While large barriers separate metastable states at low temperatures, at higher
temperatures the system easily surmounts these barriers, readily exploring the
landscape with little difficulty.

Many novel methods have been developed for the efficient sampling of equilibrium

distributions of complex systems. Out of this has emerged a general class of extended

state methods in which multiple thermodynamic states of a given system are simulated in

tandem, in order to enhance the sampling of one (or more) of them. In general one consid-

ers M thermodynamic states, typically of the same system but at different temperatures

T1 < T2 < · · ·TM . These methods prescribe Monte Carlo-like moves that are attempted

between these thermodynamic states. The key to these methods is the realization that,

while at a low temperature T1 the system may be stuck in a given configuration, at higher

4



temperatures the enhanced thermal fluctuations allow for easier exploration of its config-

uration space (see Fig. 1.1). By means of these Monte Carlo moves, lower temperature

states are exposed the the broader distributions sampled by the higher temperature states.

These multistate methods have proven to be powerful and flexible tools for sampling

complex systems, and can be implemented in a variety of serial and parallel implementa-

tions. Before proceeding to a discussion of a parallel version, which will be the main focus

of this thesis, it is useful to briefly introduce a serial implementation, Simulated Tempering

(ST). In the Simulated Tempering [73,75] method, a single copy of a given system samples

M distinct thermodynamic ensembles at temperatures T1, · · ·TM . Here the system evolves

under Molecular Dynamics (or other dynamics) at a given temperature and for a specified

amount of time. Periodically this evolution is interrupted by moves that attempt to alter

the temperature Ti → Tj . If the move is accepted, the system continues MD sampling

but now at the new temperature Tj ; if the move is rejected, MD sampling resumes at Ti.

In this way, a single trajectory performs a random walk along a ladder of temperatures

in addition to sampling equilibrium at each fixed temperature. Importantly, these Monte

Carlo-like moves between temperatures are accepted with a detailed balance-preserving

condition, guaranteeing that sampling within a given temperature preserves the respective

equilibrium distribution. The gain in the method comes from the fact that, while at lower

temperatures the system may be trapped in a local well, at higher temperatures it can

readily cross barriers and explore other regions of phase space. Other variants allow for

switching of parameters other than temperature, such as pressure [91] or terms in the

Hamiltonian [70].

While ST has been successful at sampling complex systems, its parallel equivalent,

the Replica Exchange Method [33,41] (REM), is arguably the more commonly used of the

5



two. In the remainder of this section we describe REM, discuss conditions that guarantee

a successful implementation, and introduce a new replica exchange method that will be

the main subject matter of the thesis.

In REM we consider M independent copies (or replicas) of a given system which

each sample one of M unique thermodynamic states. To set the stage, let replica i have a

Hamiltonian Hi and temperature Ti, such that the reduced Hamiltonian hi(x) ≡ H/kBTi

specifies its equilibrium distribution peq
i (x) ∝ e−hi (in general H can also vary across

replicas). Here x (and later y) denotes a point in the system’s configuration or phase

space. In REM, the equilibrium sampling of each replica at fixed hi is supplemented by

moves which attempt to swap its configuration with its neighbors: if neighboring replicas

A and B exist in configurations x and y at the time of a swap attempt, the move

replica A : x

��

y

replica B : y

@@

x

represents a trial replica exchange. If the move is accepted, configuration x is copied into

B and y is copied into A; if rejected, replicas A and B revert to their initial configurations

x and y, respectively. In either case, after the swap each replica i resumes equilibrium

sampling at hi until the next swap attempt. To guarantee detailed balance, the swap move

is accepted with a probability

Pacc = min{1, e−∆h}, (1.1)

where ∆h(x, y) = hB(x) + hA(y) − hA(x) − hB(y). By means of these swaps, the lower

temperature replica gains access to the broader expanses of phase space explored by the

higher temperature replica, enhancing its sampling. As with serial versions, replicas can

be defined by unique temperatures (parallel tempering), terms in the Hamiltonian or other
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thermodynamic parameters. In its original development due to Swendsen and Wang [116],

REM was used in a temperature implementation with MC dynamics for efficient simulation

of spin glass systems. Since its development with Molecular Dynamics [82], it has been a

common and powerful tool for simulation of complex systems in chemistry and physics,

especially biomolecular systems [44].

There is an advantage to using REM over serial methods like ST: For an efficient ST

implementation, weights must be assigned to the individual ensembles to ensure roughly

equal sampling of each thermodynamic state. Because the optimal weight corresponds

to the free energy difference between two neighboring ensembles, estimation of effective

weights can be quite expensive computationally. With replica exchange, however, these

weights are unnecessary since all ensembles are sampled equally by construction. However,

provided one has the optimal weights, the serial algorithm always accepts more moves on

average [91].

While REM is in principle valid for any sequence of replicas (T1, · · ·TM ), an effec-

tive implementation demands that a decent fraction of exchange attempts are accepted,

which can only be achieved when neighboring replicas share a significant overlap in phase

space [64]. If two replicas share little overlap, most swap attempts will be rejected sim-

ply because the swap configurations are not representative of the equilibrium ensembles

they are swapped into. Consider, for example, an implementation with replicas A and

B, where the equilibrium distribution of replica A at temperature TA is largely confined

to locally-metastable regions. If TB >> TA, replica B will diffuse through an effectively

uniform energy landscape, sampling a very broad distribution and spending very little

time in local wells which A is confined to. In this case of low overlap, most swaps will

be rejected, simply because most configurations sampled in replica B lie outside the local
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wells which contribute most to the equilibrium of A. To prevent such a situation, the

spacings ∆T = TB − TA between neighboring replicas must be chosen small enough so

that decent overlap is achieved.

This overlap requirement ultimately leads to a replica scaling relation: the number

of replicas needed grows with the system size N as
√
N [51]. This is attributed to the

fact that the average system energy scales like N , yet the width of the distribution scales

like
√
N . In order to maintain a certain amount of overlap between energy distributions

(which determines the acceptance rate), O(
√
N) replicas must be added to fill this gap.

This scaling relation can be a particularly difficult reality for e.g. simulations of large

biomolecules in explicit solvent, which usually involves thousands of degrees of freedom.

This overlap problem has been addressed both through semi-analytic [64, 103, 104]

analysis of REM as well as novel REM methods [21,34,36,50,71,82,101,124]. For example,

research has been devoted to finding optimal temperature spacings of parallel tempering

simulations which guarantee uniform acceptance rates across all replica pairs. Kofke has

found that for systems with roughly-constant heat capacity, replica temperatures should

follow a geometric progression [64]. Adaptive schemes for determination of optimal replica

spacings have also been developed [99, 106]. Many REM methods have been proposed

where overlap is enhanced by sampling from Tsallis-like distributions [47, 54, 126], or in

combination with multicanonical [21,34,82] and expanded ensembles [36,101]. Berne and

coworkers [50, 71, 124] have also developed Replica Exchange with Solute Tempering, a

version of parallel tempering in which only a subset of the system is tempered. This

strategy, particularly useful for solutes in explicit solvent, involves a deformation of the

system Hamiltonian such that the effective temperature of the solvent molecules is constant

across all replicas. By tempering only the solute degrees of freedom, the acceptance
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criteria becomes independent of the solvent-solvent energy contributions and hence also

independent of the number of solvent molecules.

A

B

A

BREM RENS

Figure 1.2: Tackling the overlap problem: The shaded circles represent the
equilibrium distributions of replicas A and B, which share little phase space
overlap. In REM (left panel), sufficient overlap is ensured by adding replicas
between A and B, depicted by unfilled circles. With our method (right panel),
increased overlap is facilitated by driving A and B out of equilibrium and
towards the equilibrium ensembles of replicas B and A, respectively.

In this thesis we develop an alternative strategy, Replica Exchange with Nonequi-

librium Switches (RENS), which uses nonequilibrium simulations to increase replica over-

lap [7, 8]. Instead of performing instantaneous exchanges between replicas A and B, as is

the case in REM, in our method the configurations to be swapped are first generated from

finite-time “switching simulations,” during which the system evolves as the temperature

of the thermostat (and/or the system Hamiltonian) is parametrically switched between

its values corresponding to the equilibrium distributions of A and B. At the culmination

of a switching simulation, an attempt is made to exchange the final points generated in A
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and B.

replica A : x // x′

��

y′

replica B : y // y′

@@

x′

Although the replicas are driven out of equilibrium during the switching simulations, by

accepting the move with the probability

Pacc = min{1, e−wA−wB} (1.2)

we guarantee that equilibrium in each replica remains undisturbed. The quantities wA and

wB represent generalized reduced work values in replicas A and B, whose particular form

depends upon the dynamics used to model the system (see e.g. Eqs. 2.5 and 2.28 of Chapter

2). By means of the switching simulations, the system in replica A is brought nearer to the

region of phase space associated with replica B, and vice versa (see Fig. 1.2); at the same

time, the duration of the switching simulation is a parameter set by the user which gives

direct control over this overlap. While each replica incurs an additional CPU cost due to

the switching simulations, this comes in exchange for an increased exchange acceptance

rate. Related replica exchange methods have also incorporated nonequilibrium moves:

The annealed swapping [89] and C-Walking [18] methods, for instance, apply heating and

cooling protocols to generate trial swap configurations. Other methodologies [6,30,83–85,

113] have also incorporated nonequilibrium simulations to enhance equilibrium sampling,

including serial multistate methods [30,85].

Our method, which we will describe and derive in detail in the coming chapters, relies

upon recent theoretical results in nonequilibrium statistical physics that have made deep

connections between systems driven out of equilibrium and their corresponding equilibrium

states [59]. In order to understand our method in detail, it is important to first introduce
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two key results, Crooks’s fluctuation theorem (Eq. 1.3 below) and the nonequilibrium work

relation (Eq. 1.5 below), which will be exploited in later chapters.

1.2 Fluctuation theorems and nonequilibrium sampling strategies

Over the past 15 years or so, it has become clear that equilibrium information is

encoded in systems driven out of equilibrium. Various theoretical results have shown that

it is possible to extract equilibrium quantities such as free energy [55, 56] and entropy

differences [57] and equilibrium statistics [53, 55] from systems driven out of equilibrium.

Jarzynski [55], and Hummer and Szabo [53], for instance, showed that equilibrium distri-

butions can be recovered from systems driven out of equilibrium via proper reweighting

of nonequilibrium trajectories based upon the work performed. This can be utilized: In

experiments, for example, one can calculate the equilibrium potential of mean force of a

DNA hairpin as a function of its end-to-end distance from a series of force spectroscopy

experiments [46] in which the hairpin is repeatedly pulled apart at a finite rate. In com-

putations, these ideas have also gained traction, and recently methods have incorporated

nonequilibrium simulations to enhance sampling of equilibrium states. Our RENS method

is one such example, where replica exchange trial moves are generated by driving the repli-

cas out of equilibrium.

The ability to extract equilibrium information from systems out of equilibrium can

be understood in terms of a deep symmetry between conjugate processes driven out of

equilibrium. This symmetry relation, first shown by Crooks [26–28], provides an important

tool for development of equilibrium sampling methods which incorporate nonequilibrium

trajectories. To explain this, we consider a system initially in equilibrium at a temperature

T , which is driven out of equilibrium by variation of an external control parameter λ. We

11



denote the forward process to be one in which the system, initiated in equilibrium at

λ = A, is driven out of equilibrium by variation of λ from λ = A to λ = B in a time

τ . In the reverse process let the system be prepared in equilibrium state B, and driven

out of equilibrium through the time-reversed protocol λ̃(t) = λ(τ − t) from λ = B to

λ = A. (Within the context of our RENS simulations, the forward process could denote

the heating of the system in replica A from TA to TB, and the reverse process the cooling

in replica B from TB to TA.) Crooks’s fluctuation theorem relates the probability of

observing a trajectory γ in the forward process to the probability of observing its time-

reversed trajectory γ̃ in the reverse process:

PF [γ]

PR[γ̃]
= e(W [γ]−∆F )/kBT (1.3)

Eq. 1.3 quantifies the time asymmetry arising from such irreversible processes in terms of

the work dissipated into the environment, W −∆F , and can be viewed as an extension of

detailed balance to systems driven out of equilibrium. As such, this fluctuation theorem is

ultimately at the heart of the validity of nonequilibrium sampling methods such as RENS

and will be exploited in the coming chapters.

As Eq. 1.3 suggests, it is also possible to recover free energy differences ∆F from

systems driven out of equilibrium. It has long been known that the average work W per-

formed during an irreversible process is bounded from below by the free energy difference

∆F = FB − FA between the two equilibrium states A and B:

〈W 〉 ≥ ∆F, (1.4)

This is a statement of the second law of thermodynamics [37], and the equality is reached

when the process is performed reversibly and isothermally. In fact, this inequality follows
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from a stronger equality, first shown by Jarzynski in 1997 [56]:

〈e−W/kBT 〉 = e−∆F/kBT . (1.5)

This nonequilibrium work relation, which can be seen as a consequence of Eq. 1.3, states

that the free energy difference between two equilibrium states can be obtained from an

ensemble of work values performed by driving that system out of equilibrium. The average

in Eq. 1.5 (and Eq. 1.4) is taken over infinitely many repetitions of the forward process

described above in which the system is initially prepared in equilibrium at λ = A and

driven out of equilibrium through varying λ from A to B. In addition to the physical

insight it brings, the nonequilibrium work relation is useful in a practical sense, as it

provides a free energy estimator: For a simulation with n such trajectories, the free energy

can be estimated as

e−∆F/kBT ≈ 1

n

∑
i

e−Wi/kBT , (1.6)

where Wi is the work value obtained during trajectory i and the approximation becomes

an equality in the limit n → ∞. Since the introduction of the nonequilibrium work

relation, Eq. 1.5 (and variants thereof) has been used to estimate free energy differences

from computer simulations. This will be used in Chapter 4 for calculation of solvation

free energies.

1.3 Outline of Thesis

This thesis describes two distinct research projects. The first project, presented in

Chapters 2-4, is the development of RENS, our replica exchange method which imple-

ments nonequilibrium switching simulations. In Chapter 2 we focus on the theoretical

development of RENS, describing and deriving the method in detail. Because the par-

ticular implementation of RENS depends on the dynamics used to model the system, we
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present separate derivations for deterministic and stochastic equations of motion. We then

describe novel dynamical schemes which can be useful for enhancing simulation efficiency,

and present a consistency check for equilibrium sampling. In Chapter 3 we test RENS on

two model systems: a simple one-dimensional system of particles, and alanine dipeptide,

with the goal of finding the regimes in which it is useful to use RENS over REM. To this

end we quantify the gains in sampling quality and efficiency for RENS as a function of the

simulation time devoted to the nonequilibrium segments, a parameter set by the user. Our

findings confirm that our method can be beneficial when the replicas share little overlap.

We proceed in Chapter 4 to apply RENS to an different problem, the calculation of the

solvation free energy of a small solute. Whereas in the previous examples our replicas were

defined by different temperatures, in this study the free energy of solvation is calculated

from a sequence of replicas with unique Hamiltonians. Here the two end replicas sample

the fully interacting and noninteracting solute-solvent system, and are connected through

a sequence of intermediately-solvated replicas which contain a solvent cavity surrounding

the solute. We use nonequilibrium-based free energy estimators (Eq. 1.5) to calculate the

solvation free energy of the small organic molecule monoethanolamine.

In the second project, discussed in Chapter 5, we shift gears and focus on rare event

sampling and dynamics leading to transitions between two metastable states. In particu-

lar, we investigate the dynamics which promote the dissociation of Na+ and Cl− in water.

It is known that the water molecules surrounding the ion pair play a non-trivial role during

the dissociation process [43]. To further elucidate this mechanism, we first show through

thermodynamic analysis that dissociation is driven energetically, and opposed entropi-

cally, where the loss of entropy is explained by an increasing number of solvent molecules

entering the highly-coordinated solvation shell. By using techniques developed within rare
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event sampling fields, we then investigate the dynamical aspects leading to dissociation,

including characterizing the spatial extent to which water influences this reaction, esti-

mating timescales associated with solvent rearrangements leading to dissociation, as well

as the effect of inertia near the transition state.

We note that Chapters 2, 3, and 5 of this thesis are based upon the following papers:

1. A.J. Ballard and C. Jarzynski. “Replica exchange with nonequilibrium switches,”

Proc. Natl. Acad. Sci. U.S.A, 106:1222412229, 2009.

2. A.J. Ballard and C. Jarzynski. “Replica exchange with nonequilibrium switches:

Enhancing equilibrium sampling by increasing replica overlap”, J. Chem. Phys.,

136:194101, 2012.

3. A.J. Ballard and C. Dellago, “Towards the mechanism of ionic dissociation in water”,

in revision.
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Chapter 2

Replica Exchange with Nonequilibrium

Switches: theoretical development

1In the previous chapter we introduced the replica exchange method (REM), a

strategy to enhance sampling of complex systems. An effective replica exchange imple-

mentation requires a phase space overlap in order to sample effectively. Within REM this

overlap is satisfied by adjusting the number of replicas in a given simulation. Our method

of Replica Exchange with Nonequilibrium Switches (RENS), which we briefly introduced

last chapter and describe in detail below, achieves an increased overlap through nonequi-

librium simulations which drive the replicas closer to one another in phase space. In doing

so, we forgo the need for many replicas at the expense of additional simulation time de-

voted to the nonequilibrium simulations in each replica. In this chapter we present the

theoretical framework for RENS, describing its implementation and deriving its validity

1This chapter is based on the papers “Replica exchange with nonequilibrium switches“, A. J. Ballard

and C. Jarzynski, Proc. Natl. Acad. Sci. U.S.A, 106 (30):12224 (2009) and “Replica Exchange with

Nonequilibrium Switches: Enhancing Equilibrium Sampling by Increasing Replica Overlap“, A. J. Ballard

and C. Jarzynski, J. Chem. Phys., 136 194101 (2012).
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for various dynamical schemes.

2.1 Description of method

To begin, consider a collection ofM replicas of a physical system, labeledR1, · · ·RM .

The thermodynamic state of Ri is described by Hamiltonian Hi and temperature Ti, al-

lowing for Hamiltonian and/or temperature replica exchange. As in Ref. [91], we define

the reduced Hamiltonian, hi(x) ≡ Hi(x)/kBTi, where x (and later y) denotes a point in

the phase space of the system. It is convenient to view the set of M replicas as a single,

extended system, characterized by a reduced Hamiltonian H(x1, · · · , xM ) =
∑M

i=1 hi(xi).

When each Ri is sampled according to its equilibrium distribution peq
i (x) ∝ exp[−hi(x)],

then the extended system samples the distribution P eq ∝ exp[−H]. Both the traditional

replica exchange method (REM) and our approach (RENS) represent strategies for sam-

pling the extended distribution P eq.

Imagine first that each Ri evolves under the equilibrium dynamics corresponding to

hi. Replica exchange supplements this independent evolution via swap attempts between

neighboring replicas: If replicas A and B exist in x and y, respectively, at the time

of an attempted swap, under REM the move (x, y) → (y, x) represents a trial replica

exchange. To ensure detailed balance, this move is accepted with a probability Pacc =

min{1, exp[−∆h]}, where ∆h = hA(y) − hA(x) + hB(x) − hB(y) is the total change in

reduced energy for the replica pair associated with the trial move under consideration.

Our method, RENS, is illustrated in Fig. 2.1. From time t0 to t1, replicas A and B

undergo independent equilibrium sampling at hA and hB, respectively (solid red lines). At

t1, a decision is made to attempt an exchange. Whereas in REM one would immediately

attempt to swap the points x and y, our method prescribes the generation of new swap
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points by first performing switching simulations (dashed blue lines): From t1 to t2 replica

A evolves as the Hamiltonian is parametrically switched between hA and hB in time τ ,

generating a path γA and arriving at final point x′. Similarly, the switching simulation

in replica B generates trajectory γB by switching from hB to hA, reaching a final point

y′. Upon completion of the switching simulations a swap is attempted between these

final points, represented by the trial move (x, y) → (y′, x′). The move is accepted with

probability

Pacc = min{1, e−wA−wB}. (2.1)

with wA and wB the reduced work performed during the switching simulations in A and

B. If accepted, x′ is copied into B and y′ into A; if the move is rejected, x and y are

copied back into A and B, respectively, and the momenta are inverted2. Whether the

move is accepted or rejected, at t2 both replicas resume their equilibrium dynamics (at

fixed h) and continue sampling until the next exchange attempt. Note that while switching

simulations are performed in RA and RB, the remaining replicas continue to sample at

fixed hi.

Thus, each replica alternates between sampling intervals at fixed hi (Fig. 2.1, solid

red lines), and switching intervals (dashed blue lines). In the next section will show that

RENS satisfies detailed balance, in the following sense: in each replicaRi, if we discard the

data generated during the switching intervals, and stitch together the remaining sampling

intervals, we obtain a long trajectory that samples the distribution peq
i . In effect, the

acceptance criterion compensates for the fact that the system is driven out of equilibrium

during the switching simulations.

2The momentum flip upon rejection also appears in e.g. the generalized hybrid Monte Carlo [69] and

NCMC [85] methods, and ensures equilibrium sampling.
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Figure 2.1: Replica Exchange with Nonequilibrium Switches: Between seg-
ments of equilibrium sampling (solid red intervals), replicas A and B undergo
switching simulations (dashed blue intervals). In this example the trial move
(x, y)→ (y′, x′) at time t2 is accepted.

19



The acceptance probability of a given trial move (Eq. 2.1 above) is determined by the

reduced work performed during the switching simulations. While the particular form of

wA and wB will in general depend upon the dynamics used to model the system (compare

Eqs. 2.5 and 2.28 below), the reduced work can generically be thought of as the change in

the system’s reduced energy due to parametrically switching its Hamiltonian between hA

and hB through control parameter λ:

w =

∫ τ

0
dtλ̇

∂h

∂λ
(2.2)

The specific form the work takes is described in more detail in the derivations below.

Our method is quite general, and ultimately traces its validity to Crooks’s exten-

sion of detailed balance to nonequilibrium trajectories [27]. In a given implementation,

however, the definition of reduced work depends on the dynamics chosen to model the

evolution of the system. For discrete-time Monte Carlo dynamics (MC), RENS is math-

ematically equivalent to the annealed swapping method of Opps and Schofield [89] and

related to the C-walking algorithm of Brown and Head-Gordon [18], although the physical

interpretation of RENS differs from that of Refs. [18, 89]. In the following sections we

derive our method for a) deterministic, reversible molecular dynamics, and b) stochas-

tic dynamics. In Appendix A we present a third derivation for dynamics which combine

deterministic and stochastic evolution (e.g. Molecular Dynamics in conjunction with an

Andersen thermostat).

2.2 Derivation: Deterministic dynamics

In this section we derive RENS for continuous-time, deterministic dynamics. Specif-

ically, we introduce a parameter-dependent reduced Hamiltonian h(x;λ) (see below), and

will be considering system evolution under deterministic equations of motion which are
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typically of the form

dx

dt
= v(x;λ). (2.3)

The dynamics represented by Eq. 2.3 are valid both when the parameter λ is fixed and

when it changes with time, as represented respectively by the solid red and dashed blue

lines in Fig. 2.1. As discussed in detail below, we will further assume that these dynamics

are symmetric under time-reversal3.

To begin our derivation for deterministic systems we consider a pair of replicas

RA and RB, and introduce a parametrized Hamiltonian h(x;λ) that interpolates from

h(x; 0) = hA(x) to h(x; 1) = hB(x). To implement an attempted swap between these

replicas, we first specify a switching protocol λA(t), with λA(0) = 0 and λA(τ) = 1. In

RA, starting from state x0 = x, we generate a trajectory γA during which the system

evolves under the specified dynamics as the parameter λ is varied from 0 to 1 according

to the switching protocol:

γA : x = x0
λ→1−→ xτ = x′. (2.4a)

Simultaneously, in RB we generate a trajectory γB by varying λ from 1 to 0 under the

time-reversed protocol, λB(t) = λA(τ − t),

γB : y′ = yτ
0←λ←− y0 = y. (2.4b)

Here the arrows denote evolution under the deterministic equations of motion, and the

arrowheads denote the direction of time. The two trajectories γA and γB are illustrated

by the dashed blue segments between times t1 and t2 in Fig. 2.1. We assume these

3Eq. 2.3 represents deterministic equations of motion for physically-relevant evolution such as Hamil-

ton’s equations and Nosè-Hoover dynamics, but the particular form represented by Eq. 2.3 is not assumed

in this derivation. The derivation to follow is also valid for generalizations of these dynamics (such as

Eq. 2.44 in Sec. 2.4 below), as long as the evolution is deterministic and symmetric under time reversal.
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trajectories are generated by deterministic equations of motion that are symmetric under

time-reversal; for any trajectory γA = (x0 → xτ ) that is a solution of Eq. 2.3 under

the protocol λA(t), the time-reversed trajectory γ̃B = (x̄0 ← x̄τ ) is a solution under

λB(t), where x̄ denotes inversion of momenta, p → −p. This assumption is satisfied by

Hamiltonian, Nosé-Hoover [48, 87], and other dynamics, provided the Hamiltonian itself

is time-reversal symmetric, i.e. h(x;λ) = h(x̄;λ).

For the trajectories γA and γB generated under these deterministic dynamics, we

define the reduced work as follows:

wA(x0 → xτ ) = hB(xτ )− hA(x0)− ln JA(x0) (2.5a)

wB(y0 → yτ ) = hA(yτ )− hB(y0)− ln JB(y0). (2.5b)

Here JA = |∂xτ/∂x0| and JB = |∂yτ/∂y0| are the Jacobians associated with propagating

the system from the initial to the final point. Eq. 2.5 is analogous to the first law of

thermodynamics, with lnJ representing a heat term associated with increase of system

entropy.

When both switching simulations have been completed, we attempt to swap the final

configurations, assigning x′ = xτ to replica B and y′ = yτ to replica A. Schematically,

replica A : x0
// xτ

  

yτ

replica B : y0
// yτ

>>

xτ

where the parallel arrows indicate the switching simulations, and the crossed arrows the

attempted swap. The acceptance probability for the swap is given by Eq. 2.1. If it is

rejected, the replicas are reset to the time-reverse of their initial states, x̄ = x̄0 and

ȳ = ȳ0.

To analyze our method, it is useful to think of an expanded phase space containing
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two copies of the system, corresponding to RA and RB. In this space, we wish to sample

the distribution peq
AB(x, y) ∝ e−hA(x)−hB(y). The switching simulations, followed by the

attempted swap, represent an elaborate trial Monte Carlo move (x, y)→ (y′, x′) [113]. In

what follows we will show that the method satisfies balance: The probability flux into

state (y′, x′), from all possible states (x, y), is such that the equilibrium distribution is

preserved. We write this balance condition as follows:

∫
dx

∫
dy P (y′, x′|x, y) peq

AB(x, y) = peq
AB(y′, x′). (2.6)

Here P (y′, x′|x, y) is the net transition probability associated with the move (x, y) →

(y′, x′), including contributions from both accepted and rejected moves. To establish

balance, we first show that our scheme satisfies a detailed balance condition for accepted

moves (Eq. 2.15), which ultimately implies Eq. 2.6 and the validity of our method.

For the switching simulations inRA andRB, because our dynamics are deterministic

we can treat the final microstate as a function of the initial microstate [88],

xτ = MA(x0) , yτ = MB(y0), (2.7)

obtained by integrating the equations of motion. We will use the notation

πA(x′|x) = δ(x′ −MA(x)) (2.8a)

to denote the probability to arrive at x′ during a switching simulation in RA, starting

from x; and similarly

πB(y′|y) = δ(y′ −MB(y)). (2.8b)

Moreover, let

π(x′, y′|x, y) = πA(x′|x)πB(y′|y) (2.9)
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denote the joint probability for both events; and let

α(x′, y′|x, y) = min{1, e−wA(x→x′)−wB(y→y′)} (2.10)

be the probability to accept the corresponding swap (Eq. 2.1). Finally, define

Kacc(y
′, x′|x, y) = π(y′, x′|x, y)α(y′, x′|x, y) (2.11)

Kacc is the joint probability of generating configurations (y′, x′) and accepting the swap,

given initial points (x, y).

The functions MA and MB introduced in Eq. 2.7 are related by our assumption of

time-reversal symmetry. Namely, if x′ = MA(x) then x̄ = MB(x̄′). This in turn implies

πA(x′|x) = πB(x̄|x̄′)/JA(x) (2.12a)

πB(y′|y) = πA(ȳ|ȳ′)/JB(y). (2.12b)

The Jacobians are necessary to ensure normalization of πA and πB. In Eq. 2.12a, for

instance,

∫
dx′ πA(x′|x) =

∫
dx′

∣∣∣∣ ∂x∂x′
∣∣∣∣πB(x̄|x̄′)

=

∫
dxπB(x̄|x̄′) = 1 (2.13)

(Identifying q = ln J as reduced heat, this result is equivalent to Eq. 9 of Ref. [27] and is

really a statement of a fluctuation theorem.) Finally, the reduced work (Eq. 2.5) is odd

under time-reversal,

wA(x→ x′) = −wB(x̄′ → x̄). (2.14)
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Now, combining Eqs. 2.5 and 2.9-2.14 we get

Kacc(y
′, x′|x, y) = π(x′, y′|x, y)α(x′, y′|x, y)

=
π(ȳ, x̄|ȳ′, x̄′)
JA(x) JB(y)

α(ȳ, x̄|ȳ′, x̄′) e−wA(x→x′)−wB(y→y′)

= Kacc(x̄, ȳ|ȳ′, x̄′) e−hA(y′)−hB(x′)+hA(x)+hB(y)

= Kacc(x̄, ȳ|ȳ′, x̄′)
peq
AB(ȳ′, x̄′)

peq
AB(x, y)

, (2.15)

a detailed balance-like condition for accepted moves.

To show that our scheme satisfies balance, we first note that the transition proba-

bility has contributions from accepted and rejected moves:

P (y′, x′|x, y) = Kacc(y
′, x′|x, y) +Krej(y

′, x′|x, y) (2.16)

The quantity Kacc(y
′, x′|x, y), defined in Eq. 2.11 above, is the joint probability that a swap

move is accepted and ends up in y′, x′, having begun at (x, y). Similarly, Krej(y
′, x′|x, y)

is the joint probability that a swap move is rejected and ends up in (y′, x′), having started

at (x, y). This rejection contribution is

Krej(y
′, x′|x, y) = [1− pacc(x, y)] · δ(y′ − x̄)δ(x′ − ȳ), (2.17)

where the delta functions revert the system back to the time-reverse of their original points

upon rejection, as specified in the method. The factor 1− pacc(x, y) is the net probability

to reject the swap, conditioned on initial points x and y, and

pacc(x, y) =

∫
dx′
∫

dy′Kacc(y
′, x′|x, y). (2.18)

Finally, to show that the balance condition is satisfied (Eq. 2.6) we integrate P over

a canonical distribution of initial points. The resulting contribution from the accepted
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moves is

∫
dx

∫
dy Kacc(y

′, x′|x, y) peq
AB(x, y) =

∫
dx

∫
dy Kacc(x̄, ȳ|ȳ′, x̄′) peq

AB(y′, x′)

= pacc(ȳ
′, x̄′) peq

AB(ȳ′, x̄′), (2.19a)

where we used Eqs. 2.15 and 2.18. The contribution from the rejected moves is

∫
dx

∫
dy Krej(y

′, x′|x, y) peq
AB(x, y) =

∫
dx

∫
dy [1− pacc(x, y)] · δ(y′ − x̄)δ(x′ − ȳ) peq

AB(x, y)

=
[
1− pacc(ȳ′, x̄′)

]
peq
AB(ȳ′, x̄′). (2.19b)

By adding Eqs. 2.19a and 2.19b together, we see that our condtion of balance, Eq. 2.6

above, is satisfied. Hence our method preserves equilibrium sampling within each replica.

In Appendix B we provide an example implementation of a deterministic RENS scheme,

where the system evolves under Nosé-Hoover dynamics.

2.3 Derivation: Stochastic dynamics

In this section we derive the validity of RENS for evolution under stochastic equa-

tions of motion. This derivation follows logic similar to the deterministic case, where we

introduce a parameter-dependent reduced hamiltonian h(x;λ), and show that a balance

condition is satisfied for our RENS swap moves (Eq. 2.29 below), guaranteeing equilibrium

sampling in each replica. In contrast to the deterministic case, however, here we will an-

alyze the evolution in a discretized manner, where trajectories will formally be composed

of a finite number of points (see Eq. 2.26), and the switching parameter λ is updated in

discrete steps (see below). We will assume that the dynamics are Markovian and sat-

isfy detailed balance when h is fixed. Our analysis is applicable to such dynamics that

are explicitly discrete in time, such as Monte Carlo evolution, as well as continuous-time

stochastic dynamics in which trajectories are generated through discretized equations of
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motion. Before proceeding to the derivation it is useful to illustrate dynamical schemes

which satisfy these assumptions.

We assume evolution under stochastic equations of motion which in general are

described by the transition probability pλ(y|x): given a value of λ and current state x,

the next configuration y a time δt later is a random sample from the distribution pλ(y|x).

We assume that these dynamics satisfy the condition of detailed balance:

pλ(y|x)

pλ(x̄|ȳ)
= e−[hλ(y)−hλ(x)] (2.20)

This condition implies that the canonical distribution peq
λ (x) ∝ e−hλ is stationary under

these dynamics. Under discrete-time Monte Carlo dynamics, detailed balance is enforced

explicitly: given current point x, a randomly-generated trial configuration y is accepted

according to the Metropolis algorithm [41], which guarantees Eq. 2.20 is satisfied.

If it is desired to implement continuous-time evolution, Langevin dynamics [122] is

a valid option. To illustrate this, we consider a single brownian particle of mass m moving

in a potential U . In the overdamped limit, the evolution of its position q can be described

by the following Langevin equation:

q̇ = − 1

mγp

dU(q)

dq
+ η(t), (2.21)

While the Newtonian forces acting on the particle are described by the potential U(q),

the random forces are manifested through gaussian white noise term η, obeying statistics

〈η〉 = 0 and 〈η(t)η(t+ t′)〉 = 2Dδ(t− t′). The diffusion constant D = kBT/mγp is given by

the fluctuation-dissipation theorem with friction coefficient γp. Langevin dynamics also

satisfy detailed balance. To demonstrate this on our simple overdamped case, we construct

the transition probability by discretizing the dynamics in time, showing Eq. 2.20 is satisfied

for δt sufficiently small4. Assuming at time t = 0 the system exists in configuration q, its

4For Langevin evolution, detailed balance only holds in the strict limit δt → 0, and so it is important
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position q′ a short time δt later is described by

q′ = q − δt

mγ

dU(q)

dq
+ δqR. (2.22)

Here the random component δqR is gaussian distributed with mean 0 and variance σ2 =

2kBTmγ δt. Given q then, q′ is also a gaussian random variable with a shifted mean and

variance σ2:

pλ(q′|q) =
1√

2πσ2
exp

[
−
(
q′ − q +

δt

mγ

dU(q)

dq

)2

/2σ2

]
. (2.23)

A similar expression holds for pλ(q|q′), which describes the reverse transition. By taking

the ratio of pλ(q′|q) and pλ(q|q′), substituting σ2 = 2kBTmγ δt and keeping only the leading-

order terms in δt we get

pλ(q′|q)
pλ(q|q′) = exp

[
−(q′ − q)

(
dU(q)

dq
+

dU(q′)

dq

)
/2kBT

]
. (2.24)

If we further assume U(q) is approximately linear between q and q′ (which is justified for

sufficiently small δt), then (q′ − q)dU(q)/dq = U(q′)− U(q) and from Eq. 2.24 we get

pλ(q′|q)
pλ(q|q′) = exp

[
−
(
U(q′)− U(q)

)
/kBT

]
. (2.25)

Such an analysis can be generalized to larger-dimensional systems, such that for δt → 0

detailed balance is satisfied. In addition to MC and Langevin dynamics, other stochastic

schemes such as the Andersen thermostat [3] satisfy the above assumptions.

We now proceed to our derivation. To perform the switching dynamics in replicas

A and B, we begin by introducing a parameter-dependent Hamiltonian h(x;λ) that inter-

polates between h(x; 0) = hA(x) and h(x; 1) = hB(x). Let us specify switching protocol

λA(t), for replica A, which switches between λA(0) = 0 and λA(τ) = 1 through series of

discrete steps of duration δt: λA(t) = {λ0, λδt, · · ·λτ}. As before, the switching time τ

to choose a sufficiently small timestep for such simulations (see Sec. 2.5 for a discussion).
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corresponds to the duration of the switching trajectory (measured in MC steps or simula-

tion time, depending on the dynamics). When a decision is made to perform an exchange,

the (reduced) Hamiltonian in RA is switched from hA to hB according to schedule λA(t).

Under these time-varying dynamics the system in A evolves from point x0 ≡ x, through

trajectory γA, reaching final point xτ ≡ x′ in a series of N = (τ/δt) + 1 points:

γA : x0 =⇒ x0
λδt−→ xδt · · ·xτ =⇒ xτ . (2.26a)

The notation indicates that between updates of the parameter (⇒) the system evolves

(under detailed balanced-dynamics) at fixed λ (→). Simultaneously, as the Hamiltonian

in RB is switched from hB to hA through protocol λB(t) = λA(τ − t), the system evolves

from y0 ≡ y to yτ ≡ y′ through trajectory γB:

γB : yτ ⇐= yτ · · · yδt
λτ−δt←− y0 ⇐= y0. (2.26b)

If γA and γB are generated from MC dynamics, the evolution x0
λ−→ xδt represents a

single Monte Carlo move at fixed λ. If, on the other hand, the system evolves under

continuous-time stochastic dynamics, this evolution represents propagating the system a

time δt under the equations of motion (e.g. Eq. 2.22) with fixed λ, and δt is the simulation

timestep.

Over the course of the switching simulations an amount of reduced work is performed

in each replica. For the case of MC dynamics, we define the work in RA as

wA =

N−1∑
i=0

h(xiδt, λ(i+1)δt)− h(xiδt, λiδt), (2.27a)

quantifying the change in “reduced energy” along γA due to variation of the control pa-

rameter λiδt → λ(i+1)δt at fixed xiδt. Similarly, in RB we have

wB =
N−1∑
i=0

h(yiδt, λτ−iδt)− h(yiδt, λτ−(i−1)δt), (2.27b)
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For continuous-time dynamics, assuming we are in the small-δt limit, we can write work

(and heat below) as integrals rather than sums: In RA, we define the work as

wA =

∫ τ

0
dt λ̇A

∂h(xt;λA)

∂λA
, (2.28a)

quantifying the change in “reduced energy” along γA due to variation of the control pa-

rameter λA. Similarly, in RB we have

wB =

∫ τ

0
dt λ̇B

∂h(yt;λB)

∂λB
. (2.28b)

[Of course, when calculating wA and wB from simulations, Eq. 2.28 is evaluated as a sum.]

We note that under certain conditions5 our definition of work for deterministic dynamics,

Eq. 2.5 above, can be shown to be equal to Eq. 2.28 (or Eq. 2.46 under more general

dynamics discussed below).

Upon completion of the switching simulations, the swap attempt is made between

the final points as described above and illustrated in Fig. 2.1. As above, to verify the

validity of RENS we have to show that the swap move satisfies balance,

∫
dx

∫
dy P (y′, x′|x, y) peq

AB(x, y) = peq
AB(y′, x′), (2.29)

such that the probability flux into (y′, x′), from all possible states (x, y) preserves the

distribution peq
AB. As before, P (y′, x′|x, y) is the transition probability to state (y′, x′)

from (x, y), and peq
AB(x, y) = peq

A (x) peq
B (y) is the joint equilibrium distribution of replicas

A and B.

To establish balance for this stochastic evolution, we follow the logic of the previous

derivation. In contrast to the deterministic case, however, we must now explicitly take

into account entire path probabilities when describing the evolution. We first analyze

5The deterministic definition for work, Eq. 2.5, can be written as Eq. 2.28 if the canonical distribution

is stationary under the deterministic dynamics when λ is held fixed.
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our system at the level of path probabilities, showing that our scheme satisfies a detailed

balance condition in path space (Eq. 2.39), which, in turn, via path integration (Eq. A-13),

leads to a detailed balance condition for accepted moves (Eq. 2.41). By using this detailed

balance condition in combination with the contributions to the transition probability P

arising from rejected moves, we arrive at our balance condition, Eq. 2.29.

To begin our path analysis, we first define

πA(γA) = PA(xδt, · · · , xτ |x0) (2.30)

as the path probability of γA (Eq. 2.26a), conditioned on its initial point. Because of our

Markov assumption, PA reduces to a product of pairwise transition probabilities,

PA(xδt, · · · , xτ |x0) =
N−2∏
i=0

pi(x(i+1)δt|xiδt). (2.31)

Expressions analogous to Eq. 2.30 and 2.31 hold for πB(γB). We note that in contrast

to deterministic dynamics, where πA depended solely on its initial point, here the path

probability depends on the entire sequence of points specified by γA. Now let

π(γA, γB) = πA(γA)πB(γB) (2.32)

be the probability of generating γA and γB, conditioned on initial points x and y. Also,

let

α(γA, γB) = min{1, e−wA(γA)−wB(γB)} (2.33)

be the probability of accepting the trial replica exchange. Finally, let g = πα. We can

view g as the path-analogue of the transition probability P , defined above: g(γA, γB) is

the probability of generating the trajectories γA and γB, and then accepting the swap,

given initial points x and y.

Now, for a specified trajectory γA = (x0 → xτ ) – which evolves as λ is varied from 0

to 1 in replica A – let us define its conjugate twin, γ̃B = (x̄0 ← x̄τ ), to be the time-reversed
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trajectory, passing through the same configurations only in time-reversed order and with

reversed momenta, as λ is varied from 1 to 0 in replica B. Similarly, for γB (Eq. 2.26b)

we define a twin γ̃A. As before we assume the Hamiltonian is time-reversal invariant,

h(x̄;λ) = h(x;λ), i.e. the system does not contain any magnetic fields.

From Eq. 2.28 (or Eq. 2.27) we have wA(γA) = −wB(γ̃B) and wA(γ̃A) = −wB(γB).

Combining this with Eqs. 2.32 and 2.33 we get

g(γA, γB)

g(γ̃A, γ̃B)
=
πA(γA)

πB(γ̃B)
e−wA(γA) · πB(γB)

πA(γ̃A)
e−wB(γB). (2.34)

Now, using our assumption of detailed balanced-dynamics (Eq. 2.20), along with Eq. 2.31,

a given trajectory and its twin satisfy [27]

πA(γA)

πB(γ̃B)
=

N−2∏
i=0

pi(x(i+1)δt|xiδt)
pi(xiδt|x(i+1)δt)

=

N∏
i=1

exp[h(xiδt;λiδt)− h(x(i−1)δt;λiδt)]

= e−qA(γA), (2.35)

where

qA(γA) =

N∑
i=1

h(xiδt;λiδt)− h(x(i−1)δt;λiδt). (2.36)

is the reduced heat. In its continuous-time form, we can write the heat as

qA(γA) =

∫ τ

0
dt ẋ · ∇h(xt;λA(t)). (2.37)

Eq. 2.35 is the analogue of Eq. 2.12a we found for deterministic dynamics, a fluctuation

theorem for conditional path probabilities originally shown by Crooks [27]. From Eqs. 2.28

and 2.37 (or Eqs. 2.27 and 2.36), we have

wA(γA) + qA(γA) = hB(xτ )− hA(x0). (2.38)
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Using Eqs. 2.35 and 2.38 and their analogues for the conjugate pair (γB, γ̃A), Eq. 2.34

gives us

g(γA, γB)

g(γ̃A, γ̃B)
=
peq
AB(yτ , xτ )

peq
AB(x0, y0)

, (2.39)

a detailed balance condition in path space.

As before, to show that our method satisfies balance, we consider the contributions

to the acceptance probability P (y′, x′|x, y) = Kacc(y
′, x′|x, y) + Krej(y

′, x′|x, y) arising

from accepted and rejected moves. The quantity Kacc is the joint probability of accepting

the move and ending up in (y′, x′), conditioned on initial points (x, y). Similarly, Krej is

the joint probability of rejecting the move and ending up in (y′, x′), conditioned on initial

points (x, y). Here Kacc is related to the g via path integration:

Kacc(y
′, x′|x, y) =

∫
D′γA

∫
D′γB g(γA, γB), (2.40)

where the notation
∫
D′γA =

∫
dxδt · · ·

∫
dxτ−δt represents an integral over all intermediate

points for trajectories in RA that begin and end in the fixed configurations x0 ≡ x and

xτ ≡ x′. (Analogous comments apply to
∫
D′γB.) Writing the corresponding expression

for the conjugate trial move, (x̄, ȳ)← (ȳ′, x̄′), we get

Kacc(x̄, ȳ|ȳ′, x̄′) =

∫
D′γ̃A

∫
D′γ̃B g(γ̃A, γ̃B)

=
peq
AB(x, y)

peq
AB(y′, x′)

∫
D′γA

∫
D′γB g(γA, γB)

=
peq
AB(x, y)

peq
AB(y′, x′)

Kacc(y
′, x′|x, y). (2.41)

Here we have used Eq. 2.39, along with the correspondence between a trajectory and

its conjugate twin (D′γ̃A = D′γB, etc.). Eq. 2.41 is a statement of detailed balance for

accepted moves, which we also arrived at in our previous derivation, Eqs. 2.15.

To complete the proof we simply follow the last two paragraphs of our previous

derivation (Eqs. 2.16-2.19), where we use the detailed balance expression above as well as
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the expression for the rejected moves. As before, the rejection kernel is

Krej(y
′, x′|x, y) = [1− pacc(x, y)] · δ(y′ − x̄)δ(x′ − ȳ), (2.42)

where the factor 1 − pacc(x, y) is the net probability to reject the swap, conditioned on

initial points x and y, and

pacc(x, y) =

∫
dx′
∫

dy′Kacc(y
′, x′|x, y). (2.43)

To show balance is satisfied, one need integrate P = Kacc + Krej over a canonical distri-

bution of initial points. This can be shown by following the steps, Eqs. 2.19a and 2.19b in

our previous derivation, together with Eqs. 2.41 and 2.42 derived for stochastic dynamics.

As before we find that the equilibrium distribution is preserved, hence our scheme with

stochastic dynamics samples equilibrium in each replica.

2.4 Velocity rescaling and other escorted switching dynamics

In the stochastic derivation above we have implicitly assumed that the system

evolves under equations of motion that model the system’s physical dynamics (e.g. Langevin

dynamics). It is, however, often useful to augment the equations of motion with terms

that couple the system evolution to changes in λ. Such dynamical schemes, although un-

physical, can also be incorporated into RENS, and, if chosen wisely, can enhance replica

overlap.

As an example of such a scheme, it is standard practice in temperature REM to

rescale the system velocities upon a successful swap [115]. Here the system momenta in

replica A undergo the transformation p →
√
TB/TA p upon being copied into replica B,

and the inverse scaling occuring in replica B. This rescaling enhances replica overlap

because immediately after the swap, the distribution of momenta is given by Maxwell-
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Boltzmann statistics in the corresponding replica. This rescaling practice can readily be

generalized to RENS. Consider, for example, a discretized switching protocol where up-

dates of λ occur at discrete intervals in time (see e.g. Fig. 3.10), and let each update

λi → λi+1 be accompanied by mapping p → αi p, with αi =
√
Tλi+1

/Tλi . The scaling

factor αi artificially heats up / cools down the replica in response to a changing environ-

ment, providing a means to push the system closer to its equilibrium state by artificially

changing the kinetic energy commensurate with changes in the heat bath temperature.

This velocity rescaling is one example of a general scheme in nonequilibrium simu-

lations in which the system evolution is coupled to changes in λ. Consider equations of

motion of the form

dx

dt
= v(x;λ) + λ̇u(x;λ), (2.44)

where vλ(x) = v(x;λ) corresponds to ordinary equilibrium-preserving sampling (e.g.

Langevin dynamics), and the flow field uλ = u(x;λ) acts on the system upon changes

in λ. The velocity rescaling above corresponds to a particular choice of uλ (see Eq. 2.47).

The use of switching simulations that evolve according to Eq. 2.44 has been developed

previously within the context of free energy simulations [58, 81, 119]. It has been shown

that these dynamics satisfy a fluctuation theorem [121], with a modified definition of work.

We note that the evolution given by Eq. 2.44 can be considered a continuous-time

version of the switching dynamics used in the related NCMC method [85], which consist

of alternating sets of propagation steps at fixed λ and perturbation steps during discrete

λ jumps.

RENS remains valid under these more general dynamics. If the dynamics described

by Eq. 2.44 are deterministic and time-reversible, they satisfy the assumptions required

for the derivation in Sec. 2.2, in which case the reduced work is given by (Eq. 2.5). In
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replica A, for instance,

w(u)(x0 → xτ ) = hB(xτ )− hA(x0)− ln JA(x0) (2.45)

If the dynamics are stochastic, RENS still remains valid6, with a modified definition of

work which accounts for the presence of uλ:

w(u) =

∫ τ

0
dt λ̇

[
∂hλ
∂λ

+ uλ · ∇hλ −∇ · uλ
]
. (2.46)

The first term on the right hand side of Eq. 2.46 corresponds to the normal definition of

work (Eq. 2.28); the two additional terms roughly account for the change in energy and

entropy-like phase space compression due to the influence of uλ.

Consider again the velocity rescaling above with a generic switching protocol. For

particle i at point {q,p}i, the flow field that achieves this rescaling acts independently on

each i as

{uλ}i = {0, sλp}i, sλ = (1/2Tλ)(dTλ/dλ). (2.47)

For a Hamiltonian with kinetic and potential parts, hλ = kλ + vλ, the scaling of velocities

achieved by the flow field is such that ∂kλ/∂λ is exactly canceled by uλ · ∇hλ, simplifying

the expression for the work in Eq. 2.46 above. The last term of Eq. 2.46 represents phase

space contraction of the system, and its integral can be evaluated analytically. In replica

A, for instance, ∫ τ

0
dt λ̇A∇ · uλ =

Nd

2
ln (TB/TA) , (2.48)

whereNd is the number of degrees of freedom. Similarly, the last term of Eq. 2.46 evaluated

6As in the derivations above, the validity of RENS for these new dynamics rests upon a fluctuation

theorem derived by Vaikuntanathan and Jarzynski (Eq. 33 of Ref. [121] )
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in replica B gives us the inverse of Eq. 2.48. The work in each replica is then given by

w
(u)
A =

∫ τ

0
dtλ̇A

∂vλA
∂λA

+
Nd

2
ln (TB/TA) , (2.49a)

w
(u)
B =

∫ τ

0
dtλ̇B

∂vλB
∂λB

− Nd

2
ln (TB/TA) . (2.49b)

The second term in Eq. 2.49 can be ignored for the purposes of the acceptance/rejection

decision, since the two terms cancel when adding w
(u)
A and w

(u)
B . Hence the work is

determined solely by the variation of the reduced potential v with time. While this simple

flow field only couples to momentum degrees of freedom, we have found it can substantially

enhance the replica exchange acceptance rate. More elaborate choices of uλ which couple

to configurational degrees of freedom can enhance the efficiency of free energy calculations

by orders of magnitude [58, 119, 121], and we expect such couplings to also be beneficial

in RENS.

2.5 A consistency check for equilibrium sampling

In RENS, trial swap configurations are generated by driving the replicas out of

equilibrium, but by accepting or rejecting the swap with a work-based criterion, the entire

move satisfies the balance condition. Although in principle this guarantees equilibrium

sampling, any real simulation is bound to contain errors due approximations made, such

as a finite timestep, insufficient simulation length etc., not to mention possible coding

mistakes. In this section we discuss a procedure7 to verify equilibrium sampling from

finite-time RENS simulations that combines Crooks’s fluctuation theorom for work dis-

tributions [26], Eq. 2.50 below, with Bennett’s overlapping distribution method [13]. We

then test this procedure on our simulations.

7See Ref. [96] for a discussion of this procedure within the context of free energy calculations.
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A symmetry exists between trajectories generated during switching intervals in RA

and RB: Crooks’s fluctuation theorem [27], integral in the derivation above (Eq. 2.35),

relates the statistical weight of a trajectory observed in A and its conjugate twin (time-

reversed counterpart) in B. This symmetry leads to a fluctuation theorem [26] (FT) that

relates the distribution of work values generated in RA to that of RB:

ρA(w)

ρB(−w)
= ew−∆f , (2.50)

Here ∆f = − ln
[∫

dx e−hB/
∫

dx e−hA
]

is the reduced free energy difference between ther-

modynamic states of replicas A and B. [Eq. 2.50 can be derived by performing an ap-

propriate path integral over Eq. 2.35 with initial conditions sampled canonically.] An

underlying assumption of Eq. 2.50 is that at the onset of the switching intervals, RA and

RB begin in their respective equilibrium states. As such, the extent to which Eq. 2.50

is satisfied provides an indication of whether equilibrium sampling is achieved during the

sampling intervals.

As a consistency check on our simulations we can graphically verify the FT through

the overlapping distribution method [13, 41] applied to switching segments of finite dura-

tion. Following Bennett, let us define two functions:

LA(w) = ln ρA(w)− w/2, (2.51)

LB(w) = ln ρB(−w) + w/2. (2.52)

By use of Eq. 2.50, we see that LA and LB combined give a free energy estimator, ∆f =

LB(w)−LA(w), for every value of w. Furthermore, the flatness of ∆L(w) ≡ LB(w)−LA(w)

(over the range of values for which we have good sampling statistics for both ρA and ρB)

is an indication of the extent to which Eq. 2.50 is satisfied.

We demonstrate this consistency check in Fig. 2.2, where we apply the above analysis
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Figure 2.2: Choosing a sufficiently small timestep: ∆L(w) is plotted for REM
simulations of alanine dipeptide with various timeteps. A flat line indicates
Crooks’s fluctuation theorem is satisfied (see Eqs. 2.50 and 2.51), suggesting
data is sampled from equilibrium.

on RENS simulations of alanine dipeptide (see Sec. 3.3 below). In these simulations the

system evolved under Langevin dynamics, which formally only satisfies detailed balance

in the limit the integration timestep δt → 0 [111]. To choose a small enough timestep

to sample equilibrium, we calculate ∆L(w) for REM simulations with timesteps of 2.0,

1.0 and 0.1 fs, displayed in Fig. 2.2. LA, LB, and ∆L were calculated by constructing

histograms of work values in RA and RB. While for δt = 2.0 fs we see a systematic slope

appear, the smaller timesteps are flat within statistical errors, suggesting that δt = 1.0

fs is sufficiently small. However, because we observe a small offset in the plots between

the two smaller timesteps, we chose the more conservative δt = 0.1 fs in our simulations

below.
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2.6 Summary

In this chapter we introduced our method of Replica Exchange with Nonequilibrium

Switches in detail. While RENS is valid for a very general class of dynamics, its proper

implementation depends upon the evolution used to model the system. We described and

derived our method for systems evolving under deterministic and stochastic equations of

motion. We further discussed novel dynamical schemes which can be used in conjunction

with RENS to enhance replica overlap, as well as a consistency check that can be used to

verify equilibrium sampling. In the following chapter we proceed to test RENS on model

systems, demonstrating the sampling gains our method can bring.
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Chapter 3

Replica Exchange with Nonequilibrium

Switches: numerical studies

1Systems that are amenable to replica exchange are typically complex, containing

rugged energy landscapes with deep wells and high barriers. Under standard Molecular

Dynamics, these barriers give rise to infrequent transitions between metastable states,

hindering full phase space exploration and supplying a bottleneck to system equilibration

on long timescales. Replica exchange provides an additional channel for transitions be-

tween metastable states, realized by configurational swaps between replicas. An effective

implementation will significantly lower transition times such that system equilibration is

achieved much more rapidly.

In the previous chapter we showed that RENS provides a means to sample equi-

librium distributions, and described a variety of dynamical schemes that can be used to

1This chapter is based on the papers “Replica exchange with nonequilibrium switches“, A. J. Ballard

and C. Jarzynski, Proc. Natl. Acad. Sci. U.S.A, 106 (30):12224 (2009) and “Replica Exchange with

Nonequilibrium Switches: Enhancing Equilibrium Sampling by Increasing Replica Overlap“, A. J. Ballard

and C. Jarzynski, J. Chem. Phys., 136 194101 (2012).
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perform RENS simulations. In this chapter we test our method on model systems, with

the goal of understanding when exactly it can be advantageous to use RENS over REM.

The two systems we consider below are model complex systems, containing rugged energy

landscapes. Our first example, presented in Sec. 3.2, is a system of independent particles

moving in a 1D potential containing deep wells separated by high energetic barriers. While

this example is uninteresting as a physical system, it allows us to check our empirical re-

sults against numerically-exact values as well as perform benchmarking to a high statistical

accuracy. Our second example, an alanine dipeptide molecule, is more relevant physically

and a prototypical example of a complex biomolecule containing long-lived metastable

states. We present this system in Sec. 3.3.

Before moving to the numerical studies, we first describe in Sec. 3.1 the intuition

we have for when RENS can be advantageous, as well as the methods we will use to

numerically test this intuition on our simulation results.

3.1 Using RENS to enhance simulation efficiency

The switching simulations in RENS provide an added flexibility to replica exchange

which can be used to enhance simulation efficiency. The choice of the switching time τ ,

the duration of the switching segment, ultimately determines the overlap shared between

replicas and the sampling quality of the simulation in general. In building up an intuition

for RENS, it is instructive to look at a couple limiting cases for the switching simulations:

For τ = 0, our method reduces to REM, where the overlap is determined solely by the

equilibrium distributions of A and B. If there is little overlap to begin with, we expect

that REM would be inefficient, and we would do do better to increase τ . Taking the

opposite limit, τ → ∞, the switching between hA and hB occurs infinitely slowly, and,

42



if properly thermostated, the system evolves reversibly between equilibrium distributions

corresponding to A and B. In this case [67]

wA = ∆f = fB − fA = −wB, (3.1)

where fA = − ln
∫

dx e−hA is the reduced free energy difference of RA; hence Pacc = 1.

However, in this limit a very large amount of time is spent on the switching segments, which

will also be inefficient. In any case, we intuit that by increasing τ , we can also increase

the acceptance rate of replica exchanges, at the expense of the added simulation time τ .

Because an increased acceptance rate comes at the cost of longer switching simulations

(which can’t directly be used for equilibrium sampling), this implies a computational

tradeoff. What is the optimal τ?

One of the goals in our examples below will be to characterize the effect of τ on

the sampling quality and overall simulation efficiency, which will be done as follows. In

our analysis we will consider M replicas, and assume for specificity that we are mainly

interested in sampling from one of them, which we denote the primary replica. The term

output trajectory will denote the trajectory obtained by concatenating the sampling inter-

vals generated in the primary replica, after discarding the switching intervals. The output

trajectory samples the equilibrium distribution of interest, and is in effect the end product

of our method. Now, the sampling quality will be quantified through a correlation time tc

associated with the long-time system relaxation observed from the output trajectory. This

correlation time determines the statistical independence of the equilibrium samples and

hence provides a measure for the quality of sampling. The simulation efficiency will be

determined through calculation of a sample cost t∗, defined as the total CPU time needed

to generate one output trajectory of length tc. As such, the sample cost t∗ determines

the total CPU time needed to generate one statistically-inependent configuration in the
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primary replica (see Eqs. 3.4 and 3.8 below). The optimal RENS implementation will

minimize t∗. We now proceed to our examples, where we will analyze the performance of

RENS using the above quantities.

We note that in the following simulations we have not implemented the inversion

of momenta upon rejection of a trial move (see Sec. 2.1). Our data suggest that this

inversion has little effect on the work distributions, and therefore on the applicability

of our method. Preliminary efficiency calculations including momentum inversion show

trends that remain qualitatively similar to our numerics reported below.

3.2 Example 1: 1D system

Our first example is a model system of np = 10 particles, moving independently

in the potential shown in Fig. 3.1. For our simulations we chose M = 2 replicas, at

temperatures TA = 0.30 and TB = 2.0 (arbitrary units). In the primary replica at TA =

0.30, sampling is hindered by the barriers separating the local minima of U(x); whereas

at TB = 2.0 the particles are able to jump from well to well. We performed Molecular

Dynamics simulations on this system using the velocity scaling dynamics described above

(see Sec. 2.4) in combination with an Andersen thermostat [3] (see Appendix A).

While REM performs well for a single particle in this potential [41], when np = 10

it encounters difficulties due to poor phase space overlap, as can be understood using an

argument due to Kofke [64]. Typically, in RA each particle is found near a local minimum

of U(x), while in RB they are distributed more uniformly. Thus a configuration swap is

likely to be accepted only if all particles in RB are found very near the minima of U(x),

which is unlikely when np � 1. With RENS, the switching simulation in RB increases

the swap acceptability by shepherding the particles closer to the minima of U(x).
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Figure 3.1: Mock-up of a rough potential energy landscape, adapted from
Ref. [41], Chapter 14. An asterisk marks the fourth well (x ≥ 1.25). Ordinary
replica exchange works well for one particle, but encounters difficulties when
np = 10.
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Figure 3.2: Observed occupations of wells 1 - 4, obtained by following a
single tagged particle in the output trajectory, for each of the 25 test runs.
The solid horizontal lines are exact values determined by integration of the
single-particle Boltzmann distribution.

When simulating this system using RENS, the replicas “toggle” between sampling

and switching intervals (Fig. 2.1). We implemented this as follows. During an interval of

sampling, a switching simulation was initiated at random, with an attempt rate r = 0.166.

Once initiated, the work interval lasted for the prescribed switching time τ , after which

the replicas reverted to sampling, and so on. Thus the average duration of a sampling

interval was τ̄eq = 1/r ≈ 6.0, which is roughly three times the relaxation rate within one

of the local wells of U .

With these parameters, we performed twenty-five test runs, with τ ranging from 0

to 100. To establish proof of principle, we tabulated empirical occupation probabilities for

the four wells by following a tagged particle in the output trajectory. For each test run,
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we found that the relative amount of time the particle spent in each well was in agreement

with the equilibrium distribution, within statistical error (Fig. 3.2).
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Figure 3.3: Average reduced work (filled circles) and observed acceptance
frequency (open circles), as functions of the fraction of simulation time devoted
to switching intervals. 〈Pacc〉 is defined as the fraction of attempted replica
exchanges that were accepted, in a given test run. At fsw = 0, corresponding
to ordinary (instantaneous) replica exchange, 〈Pacc〉 ≈ 0.003.

For the same set of test runs, in Fig. 3.3 we plot the observed swap acceptance

frequency and average reduced work, as functions of the fraction of simulation time devoted

to the switching intervals,

fsw =
τ

τ̄eq + τ
. (3.2)

As anticipated, with increasing fsw (or τ) we approach the reversible limit of w = 0 and

Pacc = 1 (Eq. 3.1).

To illustrate the accelerated sampling achieved with RENS, we considered n4(t), the
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The two traces represent roughly the same number of attempted replica ex-
changes (≈ 1700), but reveal substantially different acceptance rates.
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number of particles found in the fourth well of U(x) at time t of the output trajectory.

Fig. 3.4 shows n4(t) for segments of the τ = 0.0 and τ = 2.0 test runs. For the relatively

modest cost of setting aside 25% of the simulation time to the work intervals, transitions

into and out of the fourth well are greatly facilitated.

The long-time relaxation of our system is described by the random variable n4(t).

To evaluate this, we calculate for each test run a correlation time

tc =
1

σ2

∫ +∞

−∞
dt C(t), (3.3)

where σ2 and C(t) are the variance and auto-correlation of n4(t). The correlation time

was calculated using block-averaging [39]. As expected, tc decreases monotonically with

fsw (data not shown).

To measure simulation efficiency we define the sample cost t∗, introduced in Sec. 3.1

above, as

t∗ = (1 +X)Mtc, (3.4)

with

X ≡ τ/τ̄eq. (3.5)

Here t∗ is a measure of the total computational cost, summed over all M replicas [129],

of producing a single, statistically independent sample in the primary replica. The factor

(1+X) accounts for the overhead cost of the switching intervals: for every unit of sampling

time, X units of time were devoted to the discarded switching simulations. The sample

cost provides a figure of merit; the smaller the value of t∗, the more efficiently we are

using the computational resources. While the correlation time tc generally decreases with

increasing M or τ – through the randomizing effect of successful replica exchanges – in

Eq. 3.4 this trend competes with the overhead factors M and 1 +X.
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In Fig. 3.5 we plot the sample cost t∗, for each test run (empty squares). At fsw = 0

(that is, when using REM), this cost is high, t∗ > 4000; few swaps are accepted, and

particles are trapped in the fourth well for long times. As we increase fsw the sample cost

drops significantly, reaching a broad minimum t∗ ∼ 450− 500 for fsw ∼ 0.2− 0.6; here the

allocation of CPU time to switching intervals delivers a clear benefit. For fsw > 0.6 we

enter a regime of diminishing returns: 〈Pacc〉 continues to increase with τ (Fig. 3.3), but

not enough to justify the expense of increasingly long switching simulations.

For this efficiency calculation we have neglected the computational cost of the accep-

tance / rejection step itself, as well as that of the possible subsequent exchange of configu-

rations (which typically involves communication between different processors). Moreover,

we have assumed identical costs, per unit simulation time, for the switching and the sam-

pling intervals. It is easy enough to drop the latter assumption: we replace X by αX in

Eqs. 3.4, where α is the observed CPU cost of generating a switching simulation, relative

to that of a sampling trajectory of equal duration. In our test runs we found α = 2.9, and

the points shown as filled squares in Fig. 3.5 have been adjusted for this value.

Whether or not we make the adjustment to account for α 6= 1, Fig. 3.5 clearly

shows that for a fixed set of replicas, it can be highly advantageous to use nonequilibrium

switching simulations to generate attempted configuration swaps. The benefits of increased

acceptance substantially outweigh the overhead cost of generating the trial configurations.

With RENS we improve efficiency by tuning the switching time, τ , as in Fig. 3.5.

With REM, one can instead vary the number of replicas. To compare these two options,

we performed test runs of REM (τ = 0) at M = 2, 3, · · · 11. (In each run, we set T1 = 0.30

and TM = 2.0, with intermediate replicas spaced evenly in T−1.) Among these runs,

the smallest sample cost, t∗ = 706, was achieved with M = 4 replicas, and is shown as a
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Figure 3.5: Sample cost t∗ plotted against fsw, both with and without ad-
justment for increased relative cost of work simulations (see text). The circles
identify the run at τ = 2.0. The dashed line is the sample cost of REM with
M = 4 replicas.

straight line in Fig. 3.5. This value is comparable to the optimal sample cost achieved with

RENS using M = 2. Thus for this simple system, RENS is able to match the efficiency of

REM, with fewer replicas.

The simple model we have borrowed [41] is well suited as an initial test case of

our method: it exhibits the difficulties faced by REM for “large” (np = 10) systems,

its equilibrium properties can be evaluated exactly (Fig. 3.2), and its efficiency can be

computed with high statistical accuracy for many values of τ (Fig. 3.5).
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3.3 Example 2: Alanine Dipeptide

In our second example, we apply RENS to a more relevant complex system in

biology, the terminally-blocked alanine dipeptide (ACE ALA NME) in implicit solvent.

Alanine dipeptide is also an appropriate test case for study with temperature RENS: While

at lower temperatures AD tends to get stuck in locally-stable states, replica exchange

attempts with configurations at higher temperatures can greatly enhance sampling. The

alanine dipeptide (AD) system was simulated using the AMBER ff96 force field [65] with a

GBSA implicit solvent model [97,114]. The evolution was governed by Langevin dynamics,

with collision rate γp = 1 ps−1. For the Langevin integrator we chose a conservative

timestep of 0.1 fs (see Sec. 2.5). Our simulations of AD were performed using the OpenMM

molecular dynamics library [42]. The replica exchange implementation was facilitated

through PyOpenMM 2, the python wrapper for OpenMM, with modifications made to the

existing replica exchange routine to incorporate features specific to RENS. In Appendix C

we discuss these code modifications in more detail.

We proceed first by characterizing the metastable states of AD, from which we

calculate across a range of RENS simulations a characteristic timescale associated with

long-time configuration-space exploration of the system. From this we analyze the effi-

ciency of these RENS runs.

3.3.1 Metastable states and correlation times

In biomolecules, fast femtosecond motion is typically dominated by bond vibrations,

whereas large-scale changes such as rotation of one amino acid with respect to another

exist on much longer timescales [94]. The metastable states of alanine dipeptide are cap-

2http://simtk.org/home/pyopenmm
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Figure 3.6: Ramachandran plot of dihedral angles φ and ψ for alanine dipep-
tide at TA = 300 K. The plots were calculated from REM (left panel) and
RENS (right panel) simulations, and are shown on a log scale. The boxed
region in the left panel indicates confomer C7ax.

tured by the the backbone torsional angles (φ, ψ). We display in Fig. 3.6 Ramachandran

plots of these angles for equilibrium data at T = 300K. In the two plots generated from

independent REM and RENS runs we find identical sampling – a consistency check that

the two methods converge to the same result. From the Ramachandran plot we identify

three primary regions: Two confomers, centered around (−150, 150) and (−75, 75), con-

tain relatively equal populations and are dominant regions sampled. We identify a third

state, confomer C7ax, as all configurations for which 0 ≤ φ ≤ 120 and −130 ≤ ψ ≤ 0

(boxed region in Fig. 3.6). At 300 K, confomer C7ax has a small population, p ≈ 0.01.

Furthermore, under equilibrium Langevin dynamics, the system readily jumps between

the first two regions approximately every 10 ps, whereas transitions into C7ax are ob-

served much more rarely, on 100 ns timescales. Transitions between C7ax set the largest

timescale in our system and provide the bottleneck to full system equilibration.

To assess the enhanced sampling of our method, we investigate the timescale asso-

ciated with the C7ax transition in the lowest temperature replica, under various RENS
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conditions. The output trajectory in this replica, consisting of the stitched-together equi-

librium segments (solid red lines in Fig. 2.1) after having discarded the switching segments,

samples the desired equilibrium distribution, and evolves under effective dynamics that

are modified by the replica swap moves. To find a timescale associated with C7ax, we first

define an indicator function Y:

Y (x) =


1 if in C7ax

0 otherwise.

(3.6)

Our output trajectory provides us with a time series of Y , from which we calculate a

correlation time as

tc =
1

σ2

∫ ∞
0

dt C(t). (3.7)

Here σ2 and C(t) are the variance and time correlation function of Y calculated from

the output trajectory, as in our previous example. The value of tc quantifies the long-

time correlations and the quality of equilibrium sampling generated by RENS. Below we

proceed to characterize this across a number of RENS simulations.

In all of our RENS simulations of AD we consider M = 2 replicas, A and B, with

TA < TB and a common Hamiltonian H. We fix the highest temperature replica to

TB = 600 K, which is hot enough for the system to easily cross free-energy barriers. A

number of different TA values are considered, ranging from 160K to 300K. We considered

three different switching times, τ = 0, 10 and 100 fs, and implemented steplike switching

protocols (see Fig. 3.10 and Sec. 3.3.3 below) in conjunction with the velocity rescaling

procedure (Sec. 2.4). Between the switching intervals each replica sampled its equilibrium

state for τeq = 100 fs. In Fig. 3.7 we display tc as a function of TA, for the various values of

τ . At a coarse level, we see that for large values of TA, where the replicas begin with a good

degree of overlap, RENS provides minimal enhancement over REM. With decreasing TA,

54



 100

 1000

 10000

 100000

 150  200  250  300

t c 
/ τ

eq

TA / K

τ=0fs
τ=10fs

τ=100fs

Figure 3.7: Calculated values of tc, in units of swap attempts, for various
values of TA. The red, green and blue curves correspond, respectively, to
switching protocols with τ = 0, 10, and 100 fs.

the replicas move further apart, and the sampling enhancement increases with increasing

τ .

To ensure good statistics, each value of tc reported in Fig. 3.7 was calculated as an

average over tc estimates from many (50 to 75) independent RENS production runs, with

the tc values from each run estimated from Eq. 3.7 using the block averaging technique [39].

From the results of these individual runs, we found sampling to be overwhelmingly difficult

for the simulations with TA = 160 K, due to the very little overlap shared between between

RA and RB: In the TA = 160 K replica only 40% of the 75 REM (τ = 0) runs transitioned

into C7ax region over the course of the simulation. When the switching time is increased

to τ = 10 fs, 75% of the simulations observed at least one transition, and at τ = 100 fs, all

simulations transitioned into C7ax. Because it is impossible to estimate tc if no transitions
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Figure 3.8: Average replica exchange acceptance probability as a function
of TA for various values of the switching time: τ = 0 (filled red circles), 10 fs
(open green circles) and 100 fs (filled blue squares). Increasing τ systematically
increases 〈Pacc〉.

were observed, these simulations were not included when calculating the average values

reported in Fig. 3.7. By neglecting these simulations we certainly underestimate the true

value of tc, and correspondingly also underestimate the sampling gain of RENS over REM

in this low overlap regime.

The fluctuations of tc estimates across the production runs also reveal interesting

behavior. We observed at TA = 250 K and 300 K a few outlying tc values as large as

three orders of magnitude that of typical values. We believe this long timescale results

from a very rare situation in which replica A is found in region C7ax and replica B

is simultaneously sampling a low probability region in the vicinity of (−190,−120) ≤

(φ, ψ) ≤ (−20, 0). In this scenario the replica exchanges are overwhelmingly unsuccessful

because this region sampled by RB is extremely unfavorable in RA – causing A to be stuck
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in C7ax until B exits the region. These outlying tc values are not representative of the

typical relaxation time during the vast majority of the simulation: For a given simulation,

the probability of this scenario occurring, conditioned on A being in C7ax, is roughly 0.05

on average, and occurs over the entire simulation with a probability of roughly 10−3. As

a result of this rare behavior, we neglect outlying tc values from 3 simulations in our

averages reported in Fig. 3.7.

Another indicator of the sampling quality of RENS is given by 〈Pacc〉, the fraction

of accepted swaps, which we plot in Fig. 3.8. We see that for a given replica pair (TA, TB),

as τ increases, so too does the fraction of accepted swap attempts. As the equilibrium

distributions of A and B move further apart with decreasing TA, the acceptance rate of

RENS relative to REM grows: At TA = 300 K we see τ = 100 fs provides about a ten-fold

increase over REM; at TA = 160 K this increase grows to a factor of 100.

3.3.2 Simulation efficiency

RENS provides a means to tune the overlap between neighboring replicas via the

switching time. Given this added freedom, what is the optimal switching time? From

the previous section we have seen that increasing τ leads to enhanced sampling through

decreased correlations in the output trajectory (see Fig. 3.7). This enhanced sampling,

however, is only achieved at the cost of the computational time needed to generate the

switching trajectories, and to make a fair comparison between implementations, both of

these competing factors must be taken into account.

Suppose a given RENS implementation provides a system correlation time tc as

defined above. For this implementation, let TCPUsw represent the CPU time per replica of

performing a switching trajectory with the chosen protocol. Similarly, let TCPUeq denote
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the per-replica CPU time associated with an equilibrium trajectory. In terms of these

quantities, we define an efficiency measure

t∗ = M
tc
τeq
· (TCPUeq + TCPUsw ) (3.8)

as the total CPU time, summed over all M replicas, needed to generate an equilibrium

trajectory of one correlation time in the primary replica. Although in Eq. 3.8 we assume

uniform TCPUsw across all replica pairs, a more general definition for t∗ can also be made

that relaxes this restriction. The measure t∗ defined in Eq. 3.8 is analogous to the sample

cost defined in Eq. 3.4 in our previous numerical example. In Table 3.1 we list the empirical

values of TCPUsw for all τ considered. We note that there is a finite contribution to the

switching cost even for τ = 0, due to the acceptance/rejection and velocity rescaling steps.

With a fixed τeq across all RENS runs, the CPU contribution to the equilibrium sampling

was calculated as TCPUeq = 0.07 s.

We are after a RENS protocol which minimizes t∗. Generally, an optimal protocol

will depend upon many factors such as the physical system under consideration, replica

spacings and other input parameters. As we have discussed before, when there is very little

overlap between the equilibrium distributions of replicas A and B, REM (τ = 0), there will

will be very infrequent swaps between replicas, and t∗ will be very large due to a large tc.

As we devote more time to the switching segments, we expect a reduction in tc due to an

increase in swap acceptances, and a corresponding increase in efficiency. Beyond a certain

point, however, the gain in sampling due to increased replica overlap is outweighed by

the large overhead cost, TCPUsw , associated with generating the swap configurations, and t∗

rises. A protocol which minimizes t∗ should lie somewhere in between these two regimes.

We are interested in finding the regimes in which it is advantageous to use RENS.

In Fig. 3.9 we plot t∗ as a function of TA for the same RENS simulations as in Fig. 3.7. At
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τ (fs) TCPUsw (clock seconds)

0 0.048

10 0.093

100 0.501

Table 3.1: Empirical CPU times needed for switching trajectories.

large values of TA we find REM (τ = 0) to give the lowest value of t∗. As TA decreases,

the gain in RENS grows relative to REM, with a crossover occuring between 250 and 200

K. At 160 K REM performs poorly compared to RENS. As in Sec. 3.3.1, we expect the

efficiency gain of RENS to be underestimated in the low overlap regime, since the τ = 0

and τ = 10 fs results for TA = 160 K reported in Figs. 3.7 and 3.9 contain estimates

from only 40% and 75% of the runs, respectively, due to a number of simulations failing

to produce a single transition within the simulation time. Interestingly, the protocol that

seems to be most efficient overall is the intermediate run of τ = 10 fs.

We note that although our simulations were performed with a conservative timestep

of δt = 0.1 fs, had we used a standard δt = 1 fs our efficiency profile would to a good ap-

proximation remain unchanced (apart from an overall scaling factor). This is because the

vast majority of TCPUsw is due to processes associated with updating λ (see Sec. 3.3.3 be-

low), which is a property of the switching protocol alone and independent of the timestep.

As shown in Fig. 3.9, the advantage of RENS over REM increases with decreasing

overlap (decreasing TA). For the case of very little overlap, REM would dictate adding

more replicas to enhance sampling. To test this against our method, we calculated t∗ for a

REM simulation with 5 replicas (with a geometric progression of temperatures [64]), with
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the lowest temperature replica TA = 160 K. Comparing this result to the corresponding

RENS run containing 2 replicas at τ = 100 fs, we find REM ouperforms RENS by roughly

a factor of 80. This result, which is contrary to our previous one-dimensional example

(Sec. 3.2) where RENS matched the efficiency of REM, is due to the fact that the software

used for our AD simulations severely restricted the type of switching protocols performed.

We expect that RENS could become much more efficient if the software was more amenable

to generation of nonequilibrium trajectories. We proceed to explain this in more detail

below.
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Figure 3.9: The CPU cost, t∗, for the simulations of Fig. 3.7.

3.3.3 Switching protocols and CPU costs

The overhead cost TCPUsw associated with the switching simulations can be quite

expensive depending on the particular implementation of the switching protocol λ(t). For
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the software used for our AD simulations, updates of the control parameter λ → λ + dλ

are a particularly costly step. Because we do not have easy access to the base code, each

incremental λ update must be implemented at an outer code level, requiring the system

integrater to be reinitialized every time hλ is updated, a costly step computationally. An-

other expensive contributor to the λ updates were the velocity rescaling steps (introduced

in Sec. 2.4 ), as without direct access to the integrator the velocities need to be called,

modified and read back in at an outer level of the code multiple times during the course of

a single switching trajectory, adding much overhead. Because of these overhead costs, it

was necessary to implement steplike protocols, illustrated by Fig. 3.10, in which updates

of λ are separated by relaxation intervals of duration ∆t at fixed λ, with ∆t� δt. Choos-

ing ∆t = 10 fs was sufficiently large such that the number of λ updates, n = τ/∆t + 1,

remained small for all τ considered and kept the overhead costs TCPUsw relatively small.

A switching protocol containing a λ update after every integration timestep (∆t = δt) –

standard in free energy simulations [56,68,128] – is for our AD simulations computation-

ally unfeasible. In Appendix C we discuss in more detail the implementation of switching

simulations in the OpenMM code.

While the steplike protocol circumvents a large switching overhead, this comes at the

cost of reduced replica overlap. Large jumps of the parameter λ disturb the system fairly

strongly compared to linear protocols, leading to larger dissipation and reduced number

of accepted replica exchange moves. Had we been able to implement linear protocols, we

expect that RENS would experience greater overall acceptance rates and would perform

as efficiently as REM, as we saw in our previous test system.
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Figure 3.10: Discretized switching protocol: The evolution of the system out
of equilibrium proceeds via instantaneous changes ∆λ in the control parameter,
followed by relaxation steps of duration ∆t. Here ∆t is much larger than the
integration timestep δt.

3.4 Discussion

Our method of Replica Exchange with Nonequilibrium Switches enhances equilib-

rium sampling through switching simulations which guide neighboring replicas towards

each other in phase space. By devoting extra computer resources to the switching simu-

lations, we can increase an effective overlap between replicas, increasing the average swap

acceptance rate and foregoing the need for additional replicas (see Fig. 1.2).

In this chapter we tested RENS on two model systems, a simple 1D example, and

alanine dipeptide. Our results confirm that increasing the switching time 1) increases the

average swap acceptance between replicas, and 2) provides equilibrium data that is less

correlated. We calculated the efficiency for RENS simulations that takes into account the

62



CPU time associated with the switching simulations. For simulations with a restricted

number of replicas, M , we find that the benefit of RENS over REM grows with shrinking

overlap.

We also tested RENS against REM simulations that were optimized by allowing

M to vary. We found for the simple 1D simulations that RENS can match the efficiency

of REM, while using fewer replicas; the simulations of alanine dipeptide, however, were

unable perform as well as optimized REM. This is due to the fact that the code alterations

that performed the switching simulations were quite costly computationally, due to limited

access to the base level code. Had this software been more amenable to generation of

nonequilibrium trajectories, the efficiency of RENS relative to REM would be closer to

what we observed for the 1D case. This remains to be tested and will be the subject of

future studies.

As discussed in Chapter 1, when applying REM to a problem of interest, the phase

space overlap requirement dictates a minimum number of replicas, M∗, needed to achieve

a reasonable swap acceptance frequency. With RENS, the switching simulations have the

effect of increasing phase space overlap, thus allowing for fewer replicas, M < M∗. There

are several reasons why one might wish to exploit this flexibility.

(i) Most obviously, if we perform simulations using a cluster of P processors, then

RENS allows us to assign one replica per processor – the easiest and most natural (and

traditional) allocation – even if P < M∗.

(ii) It is often useful to picture replica exchange as a diffusion process in which

trajectories hop randomly along the chain R1, · · ·RM . In this picture, ∼ M2 successful

swaps are needed for a given trajectory to accomplish an entire transit between R1 to RM .

Thus using fewer replicas (with RENS) can significantly reduce the cost of inter-processor
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communication associated with attempted configuration swaps.

(iii) REM is often implemented synchronously: swaps are attempted only after

every replica completes a pre-determined duration of equilibrium sampling. With one

replica per processor, this can be highly inefficient, limited by the speed of the slowest

processor. RENS lends itself naturally to asynchronous implementation. A master process

initiates work simulations in a randomly chosen replica pair, while the remaining replicas,

unaffected, continue sampling.

(iv) With any replica exchange strategy, there are parameters we adjust to optimize

efficiency, such as the number of replicas, M , and the choice of intermediate temperatures

or Hamiltonians. It is potentially very useful to improve efficiency adaptively, during the

actual production run [117]. RENS offers a relatively painless way to accomplish this,

namely by adjusting the durations of the switching simulations. E.g. if it is observed

that a low Pacc between Rn and Rn+1 poses a bottleneck for efficient sampling, then the

switching time for that replica pair, τn,n+1, can be increased.

(v) To this point we have treated the data generated during the switching simulations

as “junk”, to be discarded after the attempted configuration swap. However, by a trick of

statistical reweighting one can scavenge equilibrium information from such nonequilibrium

trajectories (see Eq. 4 of Ref. [53]). This suggests that the switching simulations themselves

can contribute to the equilibrium sampling in each replica, thus increasing the efficiency

of RENS. For Monte Carlo sampling, Frenkel [40] has developed an analogous, thrifty

algorithm that relies on the “waste-recycling” of otherwise rejected trial moves.

With the development of RENS and similar methods [6, 18,83–85,89,113], it is im-

portant to further characterize the efficiency gains nonequilibrium simulations can bring

to equilibrium sampling. As we have seen from our two examples, the efficiency gains
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RENS can offer is dependent upon how efficiently the switching simulations can be imple-

mented in the computer code. We suspect our method could become much more beneficial

if one has predefined routines to perform the switching simulations which update time-

dependent parameters at the integration level in the code. Such preprogrammed routines

would significantly decrease the CPU time needed to perform switching simulations, and

in doing so provide more natural implementation of nonequilibrium sampling methods

such as RENS in standard simulation packages.
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Chapter 4

Small molecule solvation

4.1 Introduction

The solvation free energy, the reversible work required to move a solute from the gas

phase into solution, is a key concept in thermodynamics and important for the understand-

ing of thermodynamic systems in chemistry and biology. Research efforts in computational

thermodynamics have long strived for efficient calculation of solvation free energies, with

applications ranging from phase coexistence [41] to hydrophobicity [25]. To begin we con-

sider a system composed of a single solute immersed in an explicit solvent environment.

The interaction energy which describes this system

U(x, y) = Uu(x) + Uv(y) + Vint(x, y) (4.1)

is composed of solute-solute interactions, Uu, solvent-solvent interactions Uv, and interac-

tions between the solute and solvent, Vint. Here x denotes the configuration of the solute,

and y the configuration of the solvent atoms, such that z = (x, y) is a point in the config-

uration space of the complete system. The solvation free energy of our solute, ∆Fsolv, is

the free energy change associated with “turning on” the the interactions Vint between the
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solute and solvent. In the standard definition of ∆Fsolv, we have

e−β∆Fsolv =
Z

Z0
=

∫
dx
∫

dy e−β[Uu(x)+Uv(y)+Vint(x,y)]∫
dx
∫

dy e−β[Uu(x)+Uv(y)]
, (4.2)

where Z is the partition function of the fully interacting system, and Z0 is the partition

function of the system in which the solute and solvent are free to move but do not interact

with each other. We can alternatively conceive of a solvation free energy where the solute

is frozen in a configuration x:

e−β∆Fsolv(x) =
Z(x)

Zv
0

=

∫
dy e−β[Uv(y)+Vint(x,y)]∫

dy e−βUv(y)
. (4.3)

Here ∆Fsolv(x) is defined as the reversible work required to move the solvent molecule –

constrained to position x – from the gas phase into the solution. In Eq. 4.3 the partition

function Z(x) corresponds to the frozen solute interacting with the solvent, and Zv
0 is the

partition function of the solvent in absence of the solute. While the solvation free energy

of the unconstrained solute (Eq. 4.2) is more relevant for describing the thermodynamic

properties of the solute as a whole, the free energy of the constrained solute (Eq. 4.3) can

provide insight into the microscopic details of the solute which promote or hinder solvation

(such as hydrophobicity of the solute surface). Such configuration-dependent solvation free

energies are a central concept for implicit solvation theories [105], and accurate determi-

nation of ∆Fsolv(x) could assist in the development of such models.1 In this study we will

focus on the calculation of configuration-dependent solvation free energies described by

Eq. 4.3. For notational convenience we will suppress the dependence of ∆Fsolv(x) on x in

the discussion below.

In this chapter we propose a RENS method for calculation of solvation free energies.

In contrast to our previous studies, where RENS was used primarily to overcome poor

1We note that one can also conceive of constrained solvation studies in which some collective variable

of the solute (for instance a dihedral angle) is frozen instead of an entire configuration.
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sampling in complex systems, here method is designed for the efficient estimation of ∆Fsolv.

Because we will be considering solvation of frozen solutes, effective sampling of the solute

degrees of freedom is not a concern. However, the RENS solvation simulations we describe

below can also be combined with other RENS methods (such as temperature RENS) such

that estimation of ∆Fsolv of an unconstrained solute can be achieved in a reliable and

efficient manner.

To illustrate how RENS simulations can be used for solvation free energy calculation,

we first consider a Hamiltonian RENS simulation, whereby replicas are defined by unique

Hamiltonians and a uniform temperature. In a näıve implementation with two replicas,

let replica A be comprised of the noninteracting solute and solvent, UA = Uu + Uv,

and replica B the fully-interacting system, UB = Uu + Uv + Vint. Here the switching

simulations between A and B are performed by switching U between UA and UB, which

in replica A amounts to switching on the solute-solvent interactions Vint. In replica B

the switching simulations correspond to turning off Vint. The work values performed

during these switching simulations provide an estimate of ∆Fsolv = FB − FA through the

nonequilibrium work relation discussed in Chapter 1: from the work values wA generated

in replica A, for instance, we have

e−β∆Fsolv ≈ 1

n

n∑
i=1

e−w
i
A . (4.4a)

Similarly, the set of wB values gives us an estimator

e+β∆Fsolv ≈ 1

n

n∑
i=1

e−w
i
B (4.4b)

If our switching simulations are performed instantaneously, τ = 0, the free energy esti-

mators from the nonequilibrium work relation coincide with Widom’s particle insertion

method [127]. In the opposite limit as τ → ∞, our estimator resembles thermodynamic
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integration [63].

While this simple RENS implementation, together with standard free energy esti-

mators, can in principle be used to estimate ∆Fsolv, the convergence of this estimate can

be somewhat problematic. If during the switching simulations in replica A the interac-

tions are turned on very quickly, we expect the work values to be quite large on average,

since typical configurations sampled from A will have the solute sitting right on top of the

solvent. The dominant contributors to the exponential average, however, will come from

the small work values which are very rare, and can lead to large errors associated with

∆Fsolv estimates. However, if the interactions are turned on more slowly this dissipation

should decrease, as the surrounding solvent has more time to equilibrate to the presence

of the solute.

In general we can address large dissipation which plagues free energy estimation by

ensuring good replica overlap. Indeed, Vaikuntanathan and Jarzynski have shown that

this dissipation is related to a lack of overlap between the current state of the system

and its corresponding equilibrium state [120]. This implies that by increasing effective

overlap between our replicas – through altering the switching time or by other means – we

can reduce dissipation and hence reduce the number of samples needed for convergence of

∆Fsolv.

The method we propose for estimation of ∆Fsolv directly addresses this overlap prob-

lem by embedding solute solvation within a larger thermodynamic cycle involving cavity

formation. The cycle, depicted in Fig. 4.1, includes a progression of replicas representing

growth of a cavity in the pure solvent, followed by a turning-on of solvent-solute interac-

tions in presence of the cavity, and culminating in the shrinking of the cavity in presence

of the solute-solvent interactions. As the initial and final replicas correspond to the un-
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solvated and completely solvated states, the quantity ∆Fsolv is recovered by summing up

the free energy changes between all intermediate replica pairs.

The thermodynamic cycle involving cavity growth used for calculation of ∆Fsolv

is adapted from the ideas of quasichemical theory (QCT) formalism [10] developed by

Pratt and others. In QCT, the solvation free energy ∆Fsolv is decomposed into three

contributions related to the solvent statistics in proximity to the solute. Specifically,

∆Fsolv = kBT lnx0 − kBT ln p0 + ∆Fint. (4.5)

Here x0 and p0 are probabilities that the system is spontaneously void of solvent within a

given radius of the solute. The probability p0 is calculated in the noninteracting solvent-

solute ensemble, and x0 is calculated in the ensemble where the solute-solvent interactions

are present. The contribution −kBT ln p0 to Eq. 4.5 can then be interpreted as the free

energy associated with forming a hard sphere cavity in absence of the solute; similarly,

kBT lnx0 is the free energy associated with shrinking the hard sphere cavity in presence

of the solute. The final term ∆Fint is the free energy associated with inserting the solute

into the solvent-void cavity. (See e.g. Eq. 6 and Sec. II of Ref. [90] for further discus-

sion.) QCT calculations of solvation free energies have estimated the various components

in Eq. 4.5 through standard methods: ∆Fsolv is calculated by Widom insertion [127]; the

probabilities p0 and x0 are each estimated from solvent statistics obtained from a corre-

sponding MD or MC simulation [5, 90, 108]. In our RENS method we incorporate this

thermodynamic cycle into a replica exchange simulation. However, in contrast to QCT,

our method involves cavity formation from non hard-sphere potentials (see Eq. 4.10). Be-

cause of this, our calculation of ∆Fsolv, while similar in spirit to the QCT calculation, is

not identical (see Eq. 4.12). Our RENS method also naturally incorporates cavity growth

/ shrinking from nonequilibrium switching simulations into the calculation of the various
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free energy differences.

By incorporating this thermodynamic cycle within the framework of RENS, we can

use the tools and intuition for increasing replica overlap in order to efficiently estimate free

energy differences. In particular, this method addresses the large dissipation associated

with switching on solute-solvent interactions, as now the solute is inserted in the center of

a cavity void of solvent. For a large enough cavity size R, we expect the solvent density

to be largely unaffected by turning on the solute since all interactions are long-ranged

– resulting in a good overlap between replicas. On the other hand, for small values of

R we expect very little overlap, since the unsolvated system typically contains solvent

molecules that protrude into the region occupied by the solute, which is extremely rare in

the solvated system. We can then think of the cavity size R as an additional parameter

to tune the overlap between the unsolvated and solvated systems. Whereas in the RENS

investigations up until now our strategy for enhancing replica overlap has been by altering

the switching time, now we take a hybrid approach, where greater overlap is achieved

through τ as well as the cavity size R.

∆F solv cavity

∆F i→ i+1

Figure 4.1: RENS solvation free energy calculations assisted by cavity
growth: Replicas progress from the fully noninteracting to fully interacting
system through a series of solvent cavities of growing size. Switching on solute-
solvent interactions (rightmost pair of replicas) becomes easier in the presence
of a large cavity.
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4.2 RENS implementation

We investigate solute solvation through Hamiltonian RENS consisting of M replicas

described in Fig. 4.1. For replicas i < M/2, the solute-solvent interactions are turned off

(bottom set of replicas in Fig. 4.1), and the interaction energy is

U i(x, y) = Uu(x) + Uv(y) + Vcav(y;Ri). (4.6a)

Similarly, replicas i ≥M/2 contain the interacting solute-solvent system (top half), with

U i(x, y) = Uu(x) + Uv(y) + Vint(x, y) + Vcav(y;Ri). (4.6b)

Here the cavity of replica i is realized through an externally-applied potential Vcav(y;Ri)

acting on the solvent configuration y alone (See Eq. 4.10 below), with a size specified by

Ri. Although our specificl simulations below consider of a frozen solute, where Uv(x) =

const., we keep the x-dependence in Eq. 4.6 above for generality.

Because our replicas now contain unique potentials but the same temperature, hi =

βHi, the switching simulations between replica pair (i, i+ 1) evolves each replica under a

time-dependent potential Uλ(t) which interpolates between U i and U i+1 through control

parameter λ in switching time τ . For the switching simulations within the noninteracting

or interacting replicas, the cavity is grown / shrunk (see Fig. 4.2) asR(t) = Ri+λ(t)(Ri+1−

Ri). Because λ only couples to U through R, the reduced work (Eq. 2.28) is given by

incremental changes in Vcav upon changes in λ. In replica i we have

wi→i+1 = β

∫ τ

0
dtλ̇i→i+1

∂Vcav(yt;Ri(λi→i+1))

∂λi→i+1
(4.7a)

Similarly, in replica i+ 1, the work is

wi←i+1 = β

∫ τ

0
dtλ̇i←i+1

∂Vcav(yt;Ri(λi←i+1))

∂λi←i+1
. (4.7b)

72



As usual λ̇i→i+1 = −λ̇i←i+1.

The switching simulations performed between the middle set of replicas involve

the turning on/off of the interaction term Vint. Here λ(t) specifies the time-dependence

of interaction interaction potentials between all solute-solvent atom pairs, and the work

performed in replica A = M/2− 1 is

wA→B = β

∫ τ

0
dtλ̇A→B

∂Vint(yt;λA→B)

∂λA→B
, (4.8a)

and in replica B = M/2, we have

wB←A = β

∫ τ

0
dtλ̇A←B

∂Vint(yt;λA←B)

∂λA←B
. (4.8b)

R(t)

Ri+1

Ri

Figure 4.2: Cavity growth simulations: During the switching simulations
between replicas i and i+1 the cavity size R is grown / shrunk at a finite rate.

4.3 Solute of study: Monoethanolamine

We test our method on the solvation of monoethanolamine (MEA), an organic solute

(NH2-(CH2)2-OH) consisting of a single ethanol attached to an amine group, displayed

in Fig. 4.7. MEA and other ethanolamine molecules are commonly used in industry
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for the manufacturing of detergents, cosmetic creams, cooling lubricants and industrial

cements [4]. More recently MEA has been gaining interest for its potential use in carbon

scrubbing, where aqueous solutions of ethanolamines can be used for absorption of CO2

and other acidic gases [4] released by power plants, making it an important potential

cleaning agent for greenhouse gases emissions [1, 98]. Recent computational studies of

ethanolamines have investigated thermodynamic properties aqueous solutions of MEA [72]

as well as pure MEA liquids [20].

In our simulations we considered a system composed of a single MEA molecule in a

solvent environment of N = 421 waters. Our simulations were performed in the canonical

NV T ensemble with temperature T = 298K. The system volume V was chosen such

that the solvent density in absence of the solute corresponded to standard temperature

and pressure conditions: ρsolv = 1g/mL. The solute interactions were determined by the

GAFF force field (identical to Ref. [20]), with harmonic bond and angle terms, as well as

dihedral contributions. The water molecules were described by the rigid TIP3P model.

Intermolecular interaction energies consisted of Coulomb and Lennard-Jones terms,

Uij(rij) =
qiqj

4πε0rij
+ 4 εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

(4.9)

with charges qi, qj , Lennard-Jones parameters σij and εij for atomic pair i, j specified by

the GAFF force field.

4.4 Cavity formation

The solvation of MEA with our method requires the formation of a solvent cavity

in which MEA is to be inserted. To form the cavity we apply a spherically-symmetric
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repulsive potential that acts independently on each solvent oxygen as

Vcav(r;R) = E0 e
−(r−αR)/σ (4.10)

(depicted in Fig. 4.3.) Here r is the distance of the given oxygen relative to the center of

mass of the solute, with σ = 4 nm, E0 = 0.238 kcal/ mol, and α = 2. The parameter R

controls the size of the cavity whose value varies across replicas. Calculations of solvation

free energies based on QCT have also implemented non hard-sphere cavity potentials [102].

In Fig. 4.3 we show solvent profiles obtained from simulations performed in presence

of Vcav, for various values of R. We plot the solvent density ρ(r) as a function of r,

relative to the bulk density ρ0(r) = 4πr2N/V of a uniform solvent system (in absence of

Vcav). Simulations in absence of the solute (lower left panel) show the solvent distributed

relatively uniformly for small values of R. For larger values of R we see solvent depletion

near the origin, which widens with increasing R. (We note that for small values of R we

see some solvent structure for r < 3 Å, caused by the presence of the repulsive potential

even for R = 0 Å.) For simulations in the presence of the solute (lower right panel) the

solvent behaves differently: in contrast to the pure solvent case, here the solute prevents

the solvent from reaching inside r ≈ 3 Å. The effect of R is to control the solvent density

at contact. For small R we see a pronounced peak around r = 4 Å, which is diminished

with increasing R. For R > 6 Å, however, the cavity boundary is also shifted, as is clearly

seen by the rightmost curve at R = 10 Å. For reference we plot in the upper panel of

Fig. 4.3 the cavity potential Vcav(r;R) for various cavity sizes.

Now that we understand quantitatively the effect ofR on the unsolvated and solvated

systems, we can choose a prudent value of R = R∗ at which to insert the solute. On the

one hand, R∗ should be large enough such that there is a decent overlap between the

solvated and unsolvated replicas; on the other hand, it should be small enough such that
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Figure 4.3: The solvent density profile. Lower Panels: Solvent density profile
relative to bulk, as a function of the distance r from the center of the cavity.
The noninteracting (lower left panel) and interacting (lower right panel) solute-
solvent systems behave differently for smallR. ForR > 6Å, however, they show
similar behavior. Upper Panels: The external potential Vcav(r;R) (Eq. 4.10)
for various cavity sizes R.

we are not simulating an unnecessary number of replicas. Comparison of the upper and

lower panels in Fig 4.3 shows that for small R the solvent behaves quite differently when

in the presence of the solute. At R = 6.5 Å (in grey) however, we start to see similar

solvent structure between these two distributions, indicating a growing overlap. At R = 10

Å (rightmost red curve), we see very good agreement between solvated and unsolvated

systems. However, a RENS implementation with a cavity so large would require a very

large number of replicas and as such would be computationally expensive and unnecessary.
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The phase space overlap requirement between the solvated and unsolvated systems

can be probed more directly by investigation of the overlap between distributions of work

values. If the work distributions ρA(w) and ρB(−w) associated with solute insertion (A)

and deletion (B) share a large overlap, then 〈wtot〉 = 〈wA + wB〉 ≈ 0 guarantees a good

swap acceptance rate – and good phase space overlap. If, however, there is little overlap,

then 〈wtot〉 � 0, most swaps are rejected and there is little phase space overlap. To find

a satisfactory value of R∗ we performed RENS simulations on pairs of replicas involving

solute insertion / deletion, for various values of R. The work values associated with solute

insertion / deletion were calculated using Eq. 4.8. To measure the overlap we calculate

C =

∫
dw

ρA(w)ρB(−w)

ρA(w) + ρB(−w)
. (4.11)

The quantity C ≥ 0 is a statistical measure of the distinguishability between distributions

ρA and ρB [13, 121]. When ρA and ρB share no overlap, C = 0; in the limit where the

distributions are identical, C obtains its maximal value of 1/2. In Fig. 4.4 we plot both C

and 〈wtot〉 as a function of R for RENS simulations involving solute insertion / deletion.

The turning on / off of the cavity potential Vcav was performed instantaneously (τ = 0)

such that wA(x) = ∆hA(x) = hB(x)− hA(x) and wB(y) = ∆hB(y) = hA(y)− hB(y). For

small cavity sizes, we see that 〈wtot〉 � 0 and C ≈ 0, indicating very little overlap between

A and B. With increasing R the value of C increases towards its maximum of 1/2 and

〈wtot〉 ≈ 0. In the lower panel of Fig. 4.4, plots of the distributions ρA(w) and ρB(−w)

visually confirm an increasing overlap with increasing R. In light of Figs. 4.3 and 4.4 we

choose a cavity size R∗ = 6.5 Å for solute insertion, roughly the point at which C takes

half its maximal value.
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4.5 RENS simulation setup

Our RENS production runs for calculation of ∆Fsolv consisted of M = 19 replicas,

9 of which containing the solvent alone, and 10 containing the solvent-solute system. The

R values were chosen roughly uniformly between 0 and R∗, for both the noninteracting

and interacting replicas.

The switching simulations, initiated every τeq = 100 fs, were implemented simulta-

neously on multiple replica replica pairs, as follows. At the onset of a switching simulation,

neighboring replicas were paired together either with an odd low replica, (1, 2), (3, 4), · · · ,

or an even low one (2, 3), (4, 5) · · · , with equal probability. While these replicas were

switching, the remaining unpaired replicas (replicas 1 and/or M) underwent equilibrium

sampling. For the switching simulations involving cavity growth we chose a switching

time τ = 10 fs. The solute insertion switching simulations were performed instanta-

neously, τ = 0 fs. During the switching simulations the system evolved under Langevin

dynamics with a switching rate λ̇ = 1/τ and a damping rate γ = 50 ps−1. The simulation

timestep was set at δt = 1 fs.

All RENS simulations were performed using the OpenMM simulation package [42] in

conjunction with the python wrapper PyOpenMM2. The integration of the switching dy-

namics was implemented using the CustomIntegrator class of OpenMM, with an Langevin

integration scheme proposed by Vanden-Eijnden and Ciccotti [123] developed for systems

with holonomic constraints and accurate to δt2.

As we described above, our calculations below involve the solvation of MEA in a

frozen configuration x. The solvation free energy, then, is calculated with respect to this

constraint, and ∆Fsolv = ∆Fsolv(x) (see Eq. 4.3 above). Because our RENS setup is

2http://simtk.org/home/pyopenmm
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tailored for solvation calculations and not efficient phase space sampling, the sampling of

the unconstrained solute would be challenging in the current implementation. While we

present work in this direction in Sec. 4.7 through analysis of the metastable states of MEA,

we leave other solvation calculations of the unconstrained molecule for future studies that

will potentially combine cavity growth with temperature replica exchange.

4.6 Solvation free energy calculation

The solvation free energy of the solute is calculated from the thermodynamic cycle

formed by our sequence of replicas (see Fig. 4.5). In analogy to QCT calculation (Eq. 4.5),

∆Fsolv can be split up into three contributions,

∆Fsolv = ∆F 0
cav −∆Fcav + ∆Fint (4.12)

where ∆F 0
cav is the free energy change associated with growing out the cavity in absence

of the solute, and ∆Fcav is the free energy change associated with growing out the cavity

in presence of the solute. Finally, ∆Fint is the free energy cost associated with turning on

the solute-solvent interactions. We note that while ∆Fcav and ∆Fint depend on the details

of the solute, ∆F 0
cav depends solely on the solvent state, and need only be calculated once

when one is interested in many solutes. In the case that our cavity potential is modeled

by a hard sphere, Eq. 4.12 is analogous to the QCT decomposition, Eq. 4.5, above.

In Fig. 4.6 we plot the free energy change associated with cavity growth as a function

of cavity size R, both in the pure solvent ∆F 0
cav (red) and in presence of the solute ∆Fcav

(green). These quantities are given as a sum over the free energy differences ∆Fi→i+1

between neighboring replicas i and i+1, which represent the cost associated with growing

the cavity from Ri to Ri+1. In absence of the solute, cavity growth proceeds from replicas
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Figure 4.5: Calculation of ∆Fsolv from a thermodynamic cycle with cavity
growth.

1 to M/2− 1, and for a given R

∆F 0
cav(R) =

n∑
i=1

∆Fi→i+1 (4.13)

with R1 = 0 and Rn = R. Similarly, cavity growth in presence of the solute is performed

from replica M to replicas M/2, and

∆Fcav(R) =

M−1∑
i=m

∆Fi←i+1 (4.14)

where RM = 0 Rm = R (see Fig. 4.1). The ∆Fi→i+1 values between neighboring replicas

were each estimated with Bennett’s acceptance ratio [13], generalized to nonequilibrium

processes [28]. Finally, ∆Fint was calculated from the the solute insertion step performed

between replicas M/2 − 1 and M/2 at R = R∗ (rightmost pair of replicas in Fig 4.1),

calculaed to be ∆Fint = −21.9kBT .

We can now obtain the solvation free energy ∆Fsolv from Eq. 4.12 by using our

estimate for ∆Fint, as well as ∆F 0
cav and ∆Fcav evaluated at R = R∗. However, because

the cavity potential is still non-zero for R = 0 (see Eq. 4.10), there is an additional
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contribution to ∆Fsolv given by the free energy cost associated with turning off Vcav at

R = 0 in presence of the solute, relative to that in absence of the solute. Because Vcav

is relatively weak and slowly decaying for R = 0, this contribution, calculated to be

−0.8kBT , is small relative to the above calculation. Using Eq. 4.12, along with this small

correction, our final estimate is ∆Fsolv = −12.8kBT .

We note that our estimate for ∆Fsolv is relatively small compared to the cost as-

sociated with growing out the cavity, potentially contributing a large uncertainty in the

estimation of ∆Fsolv. This issue remains to be investigated more fully.
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4.7 Metastable states

In working towards a complete understanding of the solvation of MEA, we analyze

the metastable states arising from our molecule. The conformationally-stable states of

MEA can be described by the torsion angle ψ defined by the backbone atom sequence

N-C-C-O (see Fig. 4.7). Because the stable states of MEA can be described by a one-
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dimensional known variable, we need not use temperature RENS to probe the equilibrium

distribution of MEA. Again we performed Hamiltionian RENS on the fully interacting

solvent-solute system (in absence of the cavity potential), where the potential of replica i

was augmented by a harmonic bias on ψ about center ψi

U i(x) = U(x) +
1

2
kψ [ψ(x)− ψi]2 . (4.15)

We performed a RENS simulation with M = 20 replicas, with ψi values equally spaced

from −162◦ to +162◦ and a spring constant kψ = 1.2× 10−2kBT/degree2. The switching

time of τ = 10 fs was chosen between all replica pairs, with a total simulation run time of

1.25 ns which provided sufficient sampling within each replica.
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Figure 4.7: Potential of mean force of MEA along dihedral angle ψ.

The potential of mean force PMF (ψ) ≡ −kBT ln p(ψ) of the unbiased system was

recovered by using the WHAM method [38, 66] on the histograms of ψ for each of the 20

replicas. The potential of mean force in Fig. 4.7 reveals the gauche state at ψ = ±60◦ to

be the most stable. This is in accordance with previous findings [29,72], and presumably
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influenced by the presence of strong intramolecular hydrogen bonding between ends of the

molecule, as previous studies have found [19, 23, 24, 62]. MEA also exhibits a slightly less

populated trans state at ψ = 180◦. The symmetry of PMF (ψ) about ψ = 0 is expected

from the unerlying symmetries of the force field.

4.8 Summary

In this chapter we developed a RENS implementation for the calculation of solvation

free energies small solutes. While traditional solvation free energy estimates involving

insertion of the solute into the solvent are typically plagued by slow convergence due to

poor overlap, with our method insertion was assisted by the formation of a solvent cavity

to hinder solvent-solute overlaps. We tested our method on a frozen configuration of the

solute monoethanolamine in explicit TIP3P water. In working towards a complete picture

of MEA solvation we also characterized the metastable states arising through a series of

umbrella sampling windows used in congjunction with RENS, finding stable gauche and

trans configurations.

In the future we plan to calculate the free energy of solvation of the unfrozen MEA

molecule by combination of the above RENS solvation method with efficient sampling

strategies such as temperature replica exchange.
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Chapter 5

Dynamics of complex systems: finding

the mechanism of ionic dissociation in

water

5.1 Introduction

1In the chapters up until now we have focused on efficient methods for sampling equi-

librium distributions of complex systems. While novel sampling methods such as RENS

can be very helpful for understanding thermodynamic properties such as the free energy

or the classification of metastable states, a complex system is not completely understood

without an adequate description of the dynamics that govern transitions between these

states. In this chapter we focus on the dynamics of rare events which bring a system from

one state to another.

Characterizing the dynamics of these rare events is vital to the understanding of

large-scale structural changes that occur in many complex systems in nature. Rare events

1This chapter is based upon work performed with Christoph Dellago at the University of Vienna.
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typically involve many cooperative parts that act together in a complicated way along a

transition from one long-lived state to another, and the determination of the collective

variables responsible for the reaction dynamics can provide much insight into the physical

mechanism underlying a transition. In the best circumstance a reaction coordinate is

found, a function of these collective variables that alone is sufficient to track the progress

of a reaction. Unfortunately finding an adequate description of the reaction in terms

of a reaction coordinate or even only identifying the collective variables is a challenging

task: not only is sampling computationally demanding due to the rare nature of the

transition, but the reaction also proceeds through a high-dimensional phase space and

so it is often difficult to discern which variables promote the transition. Despite many

novel techniques for reaction analysis (see e.g. [74,93]), finding a good reaction coordinate

remains a challenge for many processes occurring in complex systems.

In this chapter we investigate the kinetic pathways leading to ionic dissociation,

in particular the dissociation of Na+Cl− in water. Microscopically this system contains

metastable associated and dissociated states, separated by a free energy barrier preventing

frequent transitions. Along a reaction in which the ion pair transitions between associ-

ated and dissociated states, a number of system rearrangements must take place which

crucially involve the surrounding solvent molecules. The first simulations of this system

were performed by McCammon et al. [12,14] and Rey et al. [100] who used umbrella sam-

pling and constrained solute simulations, respectively, to investigate solvent structure and

thermodynamic properties as the interionic distance rion = |rNa+ − rCl− | is varied. More

recent work by Geissler et al. [43] employed transition path sampling to study the reaction,

showing under careful statistical analysis that rion alone is a poor reaction coordinate in

describing dissociation – and that the surrounding solvent must be taken into account in
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a good reaction coordinate. Despite this work and others, a complete description of the

solvent motion leading to dissociation is missing. While the ultimate goal is to find a reac-

tion coordinate for the event, even a complete set of solvent variables that are responsible

for dissociation is still unknown, and hence further investigation is needed.

In this study we shed some more light on water’s unique role by investigating the

thermodynamic and dynamical properties of the dissociation reaction. Our main results

are organized as follows. After describing our model in Sec. 5.2, we present in Sec. 5.3 a

thermodynamic description of the reaction in terms of competing thermodynamic driving

forces, showing that dissociation is an energetically favorable but entropically unfavorable

process. We argue that the decrease in solvent entropy upon dissociation is due to an

increasingly large number of highly-coordinated solvent molecules in the first hydration

shell as the ions move apart. In Sec. 5.4 we investigate the relative importance of various

system variables in promoting dissociation. Following Ref. [43], we employ statistical anal-

ysis of dissociation (committor) probabilities on data from various constrained ensembles:

For data with constrained rion we verify in Sec 5.4.1 that rion is indeed important in the

reaction, but does not capture the entire mechanism, in confirmation with Ref. [43]. In

Sec. 5.4.2 various solvent degrees of freedom are constrained to pinpoint the range over

which the solvent influences the dissociation event. In Secs. 5.5 and 5.6 we investigate

various dynamical aspects of dissociation, highlighting in Sec. 5.5 timescales under which

solvent rearrangements occur which drive dissociation, and in Sec. 5.6 the importance of

inertial effects near the transition state. Finally, our results are summarized and discussed

in Sec. 5.7.
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5.2 Model

The system we studied consists of one Na+ ion and one Cl− ion immersed in a bath of

Nw = 216 water molecules. The ion pair and ion-water interactions were modelled using

the OPLS force field [60], which includes short-ranged Lennard-Jones and long-ranged

Coulomb terms. More specifically, the ion-ion interaction is given by

V (rion) = 4ε

[(
σion

rion

)12

−
(
σion

rion

)6
]
− e2

4πε0rion
, (5.1)

where e is the elementary charge, ε0 is the permittivity of free space, and Lennard-Jones

parameters for the ion pair are σion = 3.8355 Åand ε = 0.0756034201 kJ/mol. The

water molecules interact via the rigid TIP4P model [61]. Calculation of the long-ranged

electrostatic forces from periodic boundary conditions were handled with particle mesh

Ewald summation. The simulations were performed at a constant temperature T = 300

K and constant volume V = (18.64 Å)3, which was chosen from an equilibrated constant-

pressure simulation at ambient conditions. To sample the NVT ensemble the system

evolved under Langevin dynamics with a friction coefficient corresponding to a timescale

of 0.1 ps. Our simulations were performed using Gromacs [11], with a timestep δt = 2 fs

and integration performed via a stochastic leap-frog algorithm [45].

To begin our study we generated 10 trajectories sampling the canonical ensemble,

totaling 80 ns, that involved 227 transitions between associated and dissociated states.

Initial conditions for each of the 10 trajectories were taken from a previous simulation run

using same Langevin dynamics. Each of the 10 points were separated by 400 ps from their

neighbors, such that they can be considered statistically independent. We calculate the

free energy along the interionic distance rion as

F (rion) = −kBT ln p(rion), (5.2)
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by histogramming rion from the concatenated trajectories. Here kB is the Boltzmann

constant. From Fig. 5.1 we see that F (rion) contains a metastable associated state with a

corresponding free energy minimum at rion = 2.7 Å. This minimum is separated from the

solvent-separated state, centered around 5 Å, by a barrier of 5 kBT . For future reference

we identify the associated state as all configurations for which rion < 3.2 Å, the dissociated

state as rion > 4.4 Å, and the transition region to be 3.2 Å< rion < 4.4 Å.

5.3 Thermodynamics of ionic dissociation

To gain an understanding of ionic dissociation, we first investigate the thermody-

namics of the process along the order parameter rion. In the NV T ensemble, the Helmholtz

free energy F contains energetic and entropic contributions, which we calculate as a func-

tion of the ion pair separation (see Fig. 5.1). The energy profile is computed from a number

of simulations, in each of which rion is constrained to a value between 2.47 Å and 7.51 Å.

For each simulation the potential energy E was averaged over a 100 ns-long trajectory.

Plotted in green is U(rion) = 〈E〉rion − 〈E〉∞ the average energy, after subtracting the

asymptotic value. The entropy S, plotted in blue, is identified from

F (rion) = U(rion)− TS(rion). (5.3)

Note that the errors on U and S are due to the large energy fluctuations of the many

solvent-solvent interactions in the bulk. We see, in Fig. 5.1, that the associated state is

stabilized energetically, with a 3 kBT barrier to overcome before energetically-favorable

dissociation occurs. The entropy S leads to an attractive contribution to the free energy

opposing dissociation in the range rion < 4.0 Å, a behavior familiar from entropy-driven

hydrophobic association [112]. Thus, the energy and entropy shown in Fig. 5.1 show

markedly different behavior than in the implicit solvent case where the solvent is mod-
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eled simply by a dielectric constant. In this case, the energy has only one minimum at

the associated state, and the driving force to dissociation is entirely entropic, due to an

available configuration space that grows as r2
ion. This confirms that the solvent plays a

non-trivial role in the dissociation process. We note that this thermodynamic picture is

contrary to the behavior of a model protein-ligand complexs in water as found in recent

simulations studies by McCammon [9, 107]. For oppositely charged protein and ligands,

the dissociation is an enthalpically-unfavorable and entropically favorable process.
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Figure 5.1: Thermodynamics of ionic dissociation. The free energy (red) as
a function of rion displays a stable associated state at rion = 2.7 Å, separated
from the dissociated state by a free energy barrier of 5 kBT . Also plotted are
the average energy (green) and negative entropy (blue) as a function of rion.
Dissociation is driven energetically and opposed by entropy. The inset shows
the free energy, the energy and the entropic contribution for an implicit solvent
model, in which the electrostatic interaction between the two ions is reduced
by a factor ε = 80.

To further investigate the influence of the solvent on the system entropy, we plot
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in Fig. 5.2 the average numbers nNa and nCl of water molecules within the first solvation

shell of Na+ and Cl−, respectively. [The solvation shell radii for each ion correspond to

the respective minimum in the ion-oxygen radial distribution function, 3.34 Å for Na+ and

3.74 Å for Cl− (data not shown).] During the dissociation process, the solvation numbers

of the Na+ and Cl− ions increase by about 2 and 1, respectively. In Fig. 5.2 we also plot

in blue the average number of water molecules simultaneously in the solvation shells of

both ions. While for the associated state there is one shared molecule, the number of such

molecules starts to increase at about rion = 3.3 Å and reaches 2 at rion = 4 Å, where

the solvation number the ions saturate. The number of shared water molecules then falls

to 1 as the solvent-separated state is reached around rion = 5 Å and finally to 0 around

rion = 6 Å. Since the number of shared water molecules is constant for rion . 3.3 Å, the

increase in the average solvation numbers nNa and nCl is due to additional water molecules

entering the respective solvation shells from the bulk. In the range 3.3 Å . rion . 4.0 Å,

however, the total number of water molecules in the combined solvations shells of Na+ and

Cl− grows only slowly, while the solvation numbers in the individual shells increase by a

total of about 1 water molecule due to a solvent reorganization that creates an additional

shared water molecule. As the interionic distance grows further, the solvation numbers

of the individual ions stays roughly constant while the number of shared water molecules

decreases to 0 for sufficiently separated ions. During this final stage of the dissociation, 2

water molecules enter the solvation shell of the ions from the bulk to compensate for the

loss of shared water molecules. During the entire dissociation process, the total number

of water molecules in the combined solvations shells of Na+ and Cl− increases by about 4

in the average.

As shown in Fig. 5.2, the solvation numbers nNa and nCl show the same roughly
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Figure 5.2: Top: Average number 〈nNa〉 and 〈nCl〉 of water molecules in the
first solvation shell of Na+ and Cl−. Shown in blue is the number 〈ns〉 of waters
common to the solvation shells of both ions. Bottom: Sum 〈n〉 = 〈nNa〉+ 〈nCl〉
of the number of water molecules in the first solvation shells of Na+ and Cl−

and total number of water molecules 〈m〉 = 〈nNa〉+〈nCl〉−〈ns〉 in the combined
first solvation shell.

linear increase with interionic distance as the entropy (see Fig. 5.1), suggesting that the

entropy change during dissociation is due to the reduced freedom of motion of water

molecules tightly bound to the ions. Indeed, water molecules in the first solvation shell

of ions have been observed in simulations to be orientationally highly restricted [35],

reducing the configurational space available to the molecules compared to the bulk. The

orientational restraints acting on first solvation shell molecules are particularly pronounced

for water molecules shared by both ions. As the ions dissociate, the number of such “low

entropy” solvent molecules increases, leading to a net entropy decrease in the system. For

interionic distances rion ≈ 4 Å and larger, the entropy is approximately constant even

though the number of total water molecules in the combined first solvation shells of the

two ions continues to increase (see green line in the bottom panel of Fig. 5.2). In this
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regime, the sum nNa and nCl, which double counts shared water molecules and equals the

number close constacts of water molecules with one of the ions, remains constant. This

indicates that the entropy is related to the number of such close contacts rather than

the total number of solvating water molecules. This conclusion is confirmed by the linear

behavior of the entropy in the range 3.3 Å . rion . 4.0 Å, where the total number of

solvating water molecules grows only slowly, but the number of close contacts increases

due to the increase of shared water molecules. For rion . 3.3 Å, on the other hand,

the number of close contacts increases due to water molecules entering the first solvation

shells of the ions from the bulk. Thus, as shown in Fig. 5.3, overall there is a roughly

linear relationship between the number of close contacts and the entropy, where each close

contact contributes an entropy decrease of ∆s ≈ 1.9kB.

The above analysis, however, provides only a partial picture of ionic dissociation:

As shown in Ref. [43], the interionic distance rion can be used as an order parameter

to distinguish between the associated and dissociated states, but fails in describing the

progress of the dissociation. In other words, rion is a poor reaction coordinate implying

that solvent degrees of freedom must be explicitly taken into account. In the next section

we corroborate this finding and carry out a new type of statistical analysis to identify the

range within which solvent degrees of freedom affect the dissociation process.

5.4 Transition path analysis

One of the major goals of characterizing a reaction pathway is the determination of

the system variables that are important for the reaction to proceed. This set of variables,

if known, provide a basis for understanding the physical mechanism underlying a complex

transition. A good reaction coordinate r will in general be a function of a number of
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Figure 5.3: Entropy S as a function the number 〈n〉 = 〈nNa〉 + 〈nCl〉 of
close contacts between the ions and water molecules in the first solvation shell.
The dotted line denotes a linear fit to the data, displaced vertically for better
visibility.

such collective variables, which together completely specify the progress of a reaction. In

this section we employ committor analysis first to test the quality of rion as a reaction

coordinate, confirming the results of Ref. [43], and then to examine the influence of various

solvent degrees of freedom on the dissociation process.

In searching for the important collective variables, or optimally a reaction coordi-

nate, we ultimately seek a projection of phase space that preserves the dynamical informa-

tion pertaining to the reaction. This dynamical information is captured by the committor

probability, pB(x), a key tool in determining these collective variables. For a system con-

taining two long-lived stable states, labeled A and B, pB(x) is defined as the probability

that a trajectory initiated from configuration x will relax to state B before reaching state
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A. As such, pB is a statistical measure of the progress of a reaction. In particular, con-

figurations with pB = 1/2 can be considered to be transition states as they have equal

probability to relax in to A or B.

While the perfect reaction coordinate is the committor itself [32,52], r†(x) = pB(x),

a good reaction coordinate r(x) will to a good accuracy specify pB(x), in the sense that the

committor can be written as pB(x) ≈ pB [r(x)] and the reaction information is contained in

the variables in r(x). Thus, for a good reaction coordinate, the distribution of pB values

for configurations restricted to a particular value of r should be sharply peaked around

some characteristic value.

The quality of a trial reaction coordinate can then be investigated by probing this

distribution of committor values. For a trial reaction coordinate r̂, one calculates pB values

for configurations in the constrained equilibrium ensemble with r̂(x) =const. A distribu-

tion Pr̂(pB) is estimated by histogramming the pB values of the constrained ensemble, and

the quality of r̂ is assessed from the shape of Pr̂(pB): if Pr̂(pB) is a sharply peaked function

of pB , then the degrees of freedom specified by r̂(x) determine to a good approximation

the fate of the reaction. If however Pr̂(pB) is not sharply peaked, then other degrees of

freedom not included in r̂(x) play a role in specifying how the reaction will proceed, and

thus r̂(x) is an insufficient reaction coordinate.

In the following sections we assess the relative importance of various system variables

in Na+Cl− dissociation by applying committor analysis to various constrained ensembles.

In our solvated Na+Cl− system, we define B as the dissociated state, for which rion >

4.4Å, and A as the associated state, rion < 3.2 Å. For our committor calculations, pB(x)

is estimated by shooting off Ns independent trajectories starting from x, with initial

velocities drawn from the corresponding Maxwell-Boltzmann distribution and evolving
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under Hamilton’s equations of motion. The estimate for pB(x) is given by the fraction of

these trajectories that reach the dissociated state before associating, with an error

σ =

√
pB(1− pB)

Ns
. (5.4)

For our calculations Ns = 100 shots were performed for each pB estimate such that σ ≤

0.05. Note that this statistical error of the estimated committor leads to a broadening of

the committor distribution that can be statistically quantified and needs to be taken into

account in the interpretation of committor distributions [92].

5.4.1 Constrained interionic distance rion

In characterizing the kinetic pathways leading to ionic dissociation, we first test the

performance of the interionic distance rion as a reaction coordinate. Such a calculation for

rion has been done previously [43], but we repeat it here, because we use a slightly different

force field for the ion-ion interaction and the ion-water interaction. To test whether rion

alone is a good reaction coordinate, we apply committor analysis on configurations with

constrained rion. Committor values were estimated for 665 configurations having 3.45 Å

≤ rion ≤ 3.75 Å 2 taken from the equilibrium run used to generate Fig. 5.1, which involved

many transitions between associated and dissociated states. The constraint range of rion

was chosen around the position of the top of the free energy barrier (see Fig. 5.1). We

plot in Fig. 5.4 the distribution of pB values on this constrained surface. Because this

range of rion corresponds to the top of the free energy barrier, one would expect for a good

reaction coordinate a sharp unimodal distribution centered at pB = 0.5. What one sees,

however, is a bimodal distribution peaked at pB ≈ 0 and 1 and relatively low population

at 0.5. Hence, there are structures with the same interionic distance rion but very different

2Narrowing the width of r∗ion did not qualitatively change the behavior of our results.

96



relaxation behavior, indicating that the solvent degrees of freedom are important in the

system committing to associate or dissociate. As this behavior was observed previously

by Geissler et al. [43] for a different force field, these findings highlight that the solvent’s

role in dissociation is robust and of general importance in describing the reaction.

 0.5

 1

 1.5

 2

 2.5

 0  0.2  0.4  0.6  0.8  1

P(
p B

)

pB

Figure 5.4: Distribution of pB values for equilibrium configurations x re-
stricted to rion(x) = r∗ion, corresponding to the top of the free energy barrier
shown in Fig. 5.1. The bimodal behavior indicates that rion alone is not a
sufficient reaction coordinate.

5.4.2 Constrained solvent

Since the interionic distance rion alone is an insufficient reaction coordinate, the

surrounding solvent must play a crucial role in the system committing to associate or dis-

sociate. To investigate the role of the solvent more closely we seek to identify which water

molecules are important in the reaction, with the specific goal of finding a length scale
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over which the water molecules influence the reaction. Specifically, we perform committor

analysis, on a constrained system as above, where in addition to a fixed interionic dis-

tance rion, we also constrain or “freeze” water molecules within a particular probe range

of the ion pair. Committor analysis applied to this system in which a part of the water

molecules is held at fixed positions will guide us in finding the length scale that determines

the range of solvent influence on dissociation: If the distribution of pB values on these con-

strained configurations is sharply-peaked, then the dissociation event is only sensitive to

the frozen molecules within the given probe range; If, however, the remaining unfrozen

molecules in the periphery of the simulation box strongly influence the reaction, then the

pB distribution will not show a single pronounced peak.

We wish to find the probe range over which the peripheral variable solvent molecules

cease to influence pB . In the limit of a very small probe range, only the ions are restrained,

and we expect to see a distribution of pB values like Fig. 5.4, where the other unfrozen

molecules are clearly influencing the fate of the ion pair. In the opposite limit of a very

large probe range, the entire simulation box is frozen and we expect a pB distribution that

is very sharply peaked about some characteristic value. We seek the smallest probe range

over which the variability of pB becomes small enough that we are confident the molecules

within the probe range specify the fate of the reaction. To this end, three separate probe

ranges were considered, set by the hydration structure of the ion-pair: either all molecules

up through the first, second or third hydration shells were frozen (see Fig. 5.5). [A water

molecule was said to be within the n-th solvation shell of the ion pair if the oxygen resides

within the n-th hydration shell of either Na or Cl. The solvation shell distances for each

ion were set by the respective minimum in the ion-O radial distribution function (data

not shown).]
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Figure 5.5: Depiction of the first three solvation shells of the ion pair, which
were selectively constrained to investigate solvent influence on ionic dissocia-
tion.

To begin the analysis, one of the three probe ranges is chosen, centered around

the ion pair, within which all waters are constrained. A representative initial configura-

tion is selected, from which 125 new configurations are generated by evolving the system

dynamically, each with identical solvent positions within the probe range but variable

positions outside. We enforced these constraints on the dynamics by simply preventing

the positions of the relevant waters to be updated during the integration of the Langevin

equation of motion. This dynamical scheme samples a constrained equilibrium state that

is equivalent to a reduced system (the solvent outside the probe region), in the presence

of a static external field (imposed by the frozen solvent molecules and ion pair within

the probe region). Committor analysis is then performed on this constrained state by

calculating pB values for each of the 125 configurations and histogramming the obtained
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committor values. Note that in the trajectories generated for the committor calculation

all constraints used to prepare the initial conditions were released.

The results of the committor analysis are shown in Fig. 5.6, where each subfigure

corresponds to a given probe range. Plotted within a given probe range are three dis-

tributions, colored red, green, and blue, which correspond to three distinct sets of 125

configurations with frozen solvent having pB values near 0, 0.5 and 1 respectively. For the

smallest probe range, where the solvent is constrained only in the first hydration shell (sub-

figure (a)), there is a very wide distribution of pB values for each of the three configuration

sets. In subfigure (b), where the first two solvation shells are constrained, the distributions

are not as broad as (a), but still show rather large pB-variability, implying that molecules

farther out are of importance. Finally, when all three solvation shells are constrained, in

subfigure (c), we see a tight distribution of pB values, which suggests that the committ-

ment to associate or dissociate is more or less determined by the solvent molecules within

the first three solvation shells. These results are consistent with Ref. [43], who found that

the dissociation couples to solvent motion between the second and third solvation shells.

Interestingly, the pB = 0.5 configuration set (green) shows the broadest distribution for

all three probe ranges, implying that pB is particularly sensitive to long-ranged solvent

motion near the transition state. This is also consistent with Ref. [43], who came to the

same conclusion from studies of the mean solvent force on the ion pair at the transition

state.

The waters within the first three hydration shells seems to be sufficient to specify

the outcome of the reaction. Can this picture be refined further? Specifically, what is the

relative importance of steric forces to electrostatics? Because of the long-ranged influence

of solvent on pB , we would expect electrostatics to play an important role. To test this
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Figure 5.6: Committor analysis applied to configurations containing “frozen”
(identical) solvent coordinates in (a) the first, (b) first two, and (c) first three
solvation shells. In each figure, the colors distinguish between different sets of
frozen solvent, chosen near the associated state (red), transition region (green),
and dissociated state (blue). Note that the variance of the committor distri-
butions shown in panel (c) is consistent with sharp pB values in the respective
sets of configurations and should just be due to the statistical uncertainty in
the pB calculations [92].

conjecture, we generated a set of 125 configurations having identical oxygen positions

within the first three solvation shells, but variable hydrogen and dummy atom positions

for our 4-point TIP4P model. Because the Lennard-Jones forces are specified by the

oxygen position alone, the only variable forces within the three solvation shells are due to

electrostatic interactions. The resulting committor distributions, shown in Fig. 5.7, are

still somewhat broad, indicating that the charge distribution of the waters are of general

importance, and that the pB is determined by a combination of steric and electrostatic

effects.

5.5 Timescales of p
B

fluctuations

In this section we investigate the time-fluctuations of pB , with the goal of finding

the relevant timescales under which the solvent rearranges itself to promote dissociation.

101



 0

 2

 4

 6

 8

 0  0.2  0.4  0.6  0.8  1

P(
p B

)

pB

Figure 5.7: The effect of water orientations on pB . All configurations within
each color contain identical oxygen coordinates but have varying orientations
of the water molecules in the first three solvation shells. We analyzed three
sets of oxygen positions, chosen near the associated (red), transition (green)
and dissociated (blue) states.

We capture the dynamics of the entire solvent by calculating pB along a trajectory with

constraint rion = 3.73 Å, near the peak of the free energy barrier, which we plot in Fig. 5.8a.

This is contrasted with Fig. 5.8b, where our trajectory contains a constrained first solvation

shell as well as constrained rion = 3.73 Å. We see qualitatively that the pB fluctuations are

somewhat suppressed when the first solvation shell is fixed in addition to rion, consistent

with committor analysis of previous sections (compare Figs. 5.4 and 5.6a). In Fig. 5.8a

where all solvent is free, we observe two timescales: on a large timescale of roughly 5ps we

observe large pB fluctuations between 0 and 1, and on a shorter timescale of roughly 0.5ps

we see oscillatory-like fluctuations of a much smaller magnitude. Because this smaller
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timescale persists in Fig. 5.8b, when we freeze the first solvation shell, it is tempting to

conclude that the smaller fluctuations are due to solvent rearrangements outside the first

solvation shell, and the larger pB fluctuations are due to the water rearrangements in the

first solvation shell, which occur under timescales ten times as large.
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Figure 5.8: Time-dependence of pB [x(t)], for trajectories generated from
dynamics with (a) constrained rion and (b) constrained rion and first solvation
shell.

5.6 Inertial effects

The reaction pathways characterizing rare events will ultimately depend upon the

system dynamics. Observables such as kinetic rate constants, committor values and tran-

sition probabilities are generally properties of the underlying dynamics governing the time

evolution of the system. By analyzing transition pathways for various types of dynamics,

one can then learn something about the relative importance of certain dynamical features

in facilitating a rare transition. In this section, we compare our calculations for Hamilto-

nian dynamics to analytic results for diffusive dynamics, highlighting the importance of
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inertial effects in enhancing reaction probability.

To track the differences that arise in these two dynamical regimes, we compare

the committor probability pB to the transition path probability pTP . While pB(x) is

the probability that a trajectory passing through x relaxes into B, pTP(x) quantifies the

probability that a trajectory passing through x is a transition pathway. For a given

configuration x, pTP(x) is estimated by generating NTP = 100 trajectories from x by

integrating the equations of motion (Hamilton’s equations) forward and backwards in

time with initial velocities sampled from the Maxwell-Boltzmann distribution. In the

diffusive regime, Hummer [52] showed that pTP is determined solely by pB :

pTP(x) = 2 pB(x) [1− pB(x)] (5.5)

We compare this analytic result to correlations we observe between pTP and pB when using

Hamiltonian dynamics.

In Fig. 5.9 we display a scatter plot of pTP vs pB for equilibrium configurations

constrained to rion = r∗ion (data from Fig. 5.4), plotted against the analytic result, Eq. 5.5,

for diffusive dynamics. While for configurations close to pB = 0 and 1 we see similar

behavior between the two regimes, near the transition state pTP is enhanced relative to

diffusive behavior. Hence for Hamiltonian dynamics, inertial effects enhance the reaction

probability near the transition state by up to 40-50%. This is intuitive: Under Hamiltonian

dynamics, when the system evolves from A and up to the transition state, the probability

to complete the transition by moving down to the reactant region B will be influenced by

the instantaneous value of the momenta at the top of the free energy barrier. However,

under diffusive dynamics this enhancement is not present simply because the momenta

are equilibrated instantaneously, providing no means to help push the system to the other

side.
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It is known that the rate of a given reaction is dependent upon the isotopic com-

position of the reactants and products [2,15], which ultimately quantifies the influence of

molecular mass on a given reaction. We suspect that the importance of inertia on ionic

dissociation can be further refined by investigating the effect of isotopic substitution of

Na+ and Cl− on transition probabilities.
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Figure 5.9: Inertial effects near the transition state. The calculated transi-
tion path probability pTP is plotted against the committor probability pB for
configurations constrained to rion = r∗ion. Our results under Hamiltonian dy-
namics, shown in red, show a deviation of the observed pTP from the analytic
result under diffusive dynamics [52]. These inertial effects enhance pTP near
the transition state.

5.7 Discussion and conclusions

In this chapter we investigated the thermodynamics and dynamics leading to disso-

ciation Na+Cl− in water. We showed that the thermodynamics of dissociation is driven
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energetically, and opposed entropically, with the loss of entropy explained by an increas-

ing number of highly-coordinated solvent molecules in the first solvation shell as the ions

separate. By performing committor analysis on the system with various constraints, we

showed that a) the interionic distance is an insufficient reaction coordinate, in accordance

with previous findings, b) the influence of the solvent on ionic dissociation is long-ranged,

extending out into the third solvation shell, and c) both steric effects and electrostatics

contribute to the system’s commitment to dissociation. We also highlighted the timescales

under which solvent fluctuations influence dissociation, as well as the importance of inertial

effects near the transition state.

In characterizing the kinetic pathway to dissociation the ultimate goal is to find a

good reaction coordinate for the system. Despite the seeming simplicity of the solute,

two atoms, finding an accurate description of the solvent is a difficult task. Previous

attempts have shown correlations between Na+Cl− dissociation and solvation numbers [43]

and other orientational indicators of local solvent density [43, 76, 79]. Geissler et al. [43]

have suggested a mechanism whereby dissociation is accompanied by insertion of a water

molecule from the bulk into the first solvation shell, preceded by a buildup of water density

in the second solvation shell and a depletion between the second and third shells at the

transition state. This picture is consistent with our findings that dissociation is sensitive

to solvent rearrangements into the third solvation shell.

We have applied, with little success, a maximum likelihood approach akin to Ref. [93]

to find an optimal reaction coordinate that depends on these and other solvent variables

sensitive to solvent density rearrangements. We have also found weak correlations between

pB and a) the net solvent dipole along the interionic axis as well as b) the net solvent

force along the interionic axis. The microscopic mechanism leading to ionic dissociation,
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however, is still not completely known, and more study is needed.
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Chapter 6

Summary and outlook

Despite the recent growth of computer power and resources, efficient and effective

sampling of complex systems remains a challenge. In the first part of this thesis we in-

troduced a simulation method which can efficiently sample equilibrium distributions by

incorporating nonequilibrium trajectories. Our method draws upon precise quantitative

relations between processes driven out of equilibrium and their corresponding equilibrium

states. The method which we developed, Replica Exchange with Nonequilibrium Switches

(RENS), is a replica exchange strategy in which trial swap configurations of neighbor-

ing replicas are generated by driving the replicas out of equilibrium through finite-time

switching simulations. Although these trial configurations are representative of ensembles

out of equilibrium, with a work-based acceptance criteria the sampling within each replica

preserves the equilibrium distribution.

With any replica exchange strategy, an effective implementation demands that

neighboring replicas share a decent overlap in phase space. Our method is able to di-

rectly address this overlap requirement which often plagues replica exchange simulations.

by devoting time to driving the replicas out of equilibrium, we can increase an effec-
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tive phase space overlap, leading to an increased exchange acceptance rate and enhanced

sampling quality of our output trajectory. Furthermore, the duration of our switching sim-

ulations, τ , is a parameter of the simulation, which can be used to tune a desired overlap.

Whereas in ordinary replica exchange (REM) this overlap is achieved by adding replicas,

with RENS replica overlap is enhanced through nonequilibrium switching simulations. In

Chapter 3 we tested RENS on two model systems, finding it to be beneficial in the low

overlap regime and able to match the efficiency of REM using fewer replicas.

In Chapters 2 and 3 we focused on the development of RENS as an efficient method

to sample complex systems. In Chapter 4 we used RENS to study a different problem,

namely the calculation of the solvation free energy ∆Fsolv of a small molecule. Here

we embed solute solvation within a larger thermodynamic cycle which involves cavity

growth [10]. Along this cycle a progression of replicas represents a) cavity growth in

absence of the solute, b) insertion of the solute in the cavity, and c) shrinking of the

cavity in presence of the solute. Because the solute is now inserted in a cavity, the

calculation of the insertion free energy, typically slowly convergent for simple Widom

insertion [127], now becomes more manageable. Whereas in our previous studies the

replicas were heated and cooled, here the switching simulations involve growing/shrinking

of a solvent cavity. We used this method to calculate ∆Fsolv associated with the small

organic molecule monoethanolamine in water.

There are a number of future projects involving development of RENS as a sim-

ulation method as well as its applications on various systems. We briefly outline these

three projects below: 1. We have demonstrated numerically that our method can bring

efficiency gains when a switching protocol is chosen prudently. In general, however, it is

impossible to know a priori what the most efficient protocol is. To this end it would be
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useful to develop an adaptive version of RENS in which the switching time can be tuned

on the fly. If this is possible, one could in principle achieve an optimal protocol by simply

adjusting τ in response to the current simulation performance. 2. Along similar lines,

it may be advantageous to develop a version of RENS with feedback control, in which a

switching protocol is chosen from a few candidates based upon the current state of the

system. If, for instance, during the course of a switching simulation the accumulated

work is large, a longer switching time would be chosen for the remainder of the switching

simulation in order to reduce net dissipation. This hypothetical method has a theoretical

justification, as recently fluctuation theorems have been discovered for systems evolving

under feedback control [49]. 3. As we have discussed in Sec. 2.4, RENS can be used in

conjunction with escorted dynamics [119,121] in which the system evolution is coupled to

changes in the control parameter λ. We described one such example in which switching

simulations involving heating / cooling protocols are accompanied by scaling of velocities.

It would be useful to implement such escorted dynamics within the context of the solvation

free energy study of Chapter 4. In particular, as the solvent cavity size increases during

the switching simulations, the water molecules near the surface could simultaneously be

escorted outside the cavity. Previous studies have shown that this technique can provide

accurate and efficient estimates of solvation free energies for isotropic solutes [58, 121].

Refined dynamical schemes could be developed for more complicated solutes which take

into account non-uniform solvent density near the surface of the solute.

In the second part of the thesis, distinct from the above studies, we investigated the

dynamics of rare events. We studied the dissociation of Na+Cl− in water, with the specific

aim of determining the role of the surrounding solvent in promoting the dissociation of

the ion pair. We first studied the thermodynamics of dissociation, finding the process

110



to be energetically-favorable and opposed entropically; we argued that the decrease of

entropy upon dissociation can be attributed to an increasingly large number of restricted

solvent molecules which join the first solvation shell. Finally, we used committor analysis

to investigate various dynamical aspects related to dissociaiton. Our study revealed that

the solvent molecules can influence ionic dissociation at long ranges, and that sterics as

well as electrostatics are important for the dissociation event. Ultimately, we hope to find

a reaction coordinate that can describe this dissociation process. Future studies will focus

on the determination of collective variables of the solvent which are responsible for this

reaction.
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Appendix A

Derivation of RENS for deterministic

dynamics with Andersen thermostat

Here we extend our derivation of RENS to allow for stochastic updates in the sys-

tem’s evolution. For specificity, we assume that our dynamics are given by a combination

of deterministic equations of motion (e.g. Hamiltonian dynamics), in conjunction with

the Andersen thermostat, in a manner described below. We assume that the determinis-

tic equations satisfy the assumptions in Sec. 2.2, namely that they are symmetric under

time-reversal. For these dynamics we define reduced work by Eq. A-8 below, and we argue

that with this definition detailed balance is satisfied in the sense described by Eq. 2.15,

which, as we have shown in the above derivations implies that RA and RB sample their

respective equilibrium distributions.

In the Andersen thermostating scheme, the momenta of randomly selected particles

are re-assigned from a Maxwell-Boltmann distribution. To keep our analysis simple, we

will at first assume a single Andersen update at time t = s during the switching simulation,
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and we will use the notation

γA : x0 −→ xs=⇒x′s −→ xτ (A-1)

to denote a switching simulation in replica A. The notation is interpreted as follows. The

trajectory evolves deterministically from t = 0 to t = s; this is denoted by the first arrow

on the right side of Eq. A-1. Then the momentum of the i’th particle (selected randomly)

is replaced by a new momentum sampled from the Maxwell-Boltzmann distribution: pi ⇒

p′i, where pMB(p′i;λ
A
s ) ∝ exp[−p′2i /2mikBTλAs ]. Finally, deterministic evolution continues

from t = s to t = τ . In replica B we generate a trajectory

γB : yτ ←− y′τ−s⇐=yτ−s ←− y0 , (A-2)

with a similar interpretation. Since the protocols for varying λ in the two replicas are

related by time-reversal, λAt = λBτ−t, the Andersen updates in Eqs. A-1 and A-2 occur at

the same value of work parameter, which we will denote λ∗.

The probability to generate a given trajectory γA in RA, conditioned on the initial

state x0, can be written as

πA[γA] = πA(x0 → xs) · πA(xs ⇒ x′s) · πA(x′s → xτ ) . (A-3)

The first and third factors are analogous to Eq. 7a, and describe evolution during the two

deterministic intervals; and

πA(xs ⇒ x′s) ∝ exp(−p′2i /2mikBTλ∗) . (A-4)

Similar expressions hold for πB[γB].

Now consider a trajectory γA in RA (Eq. A-1), along with the time-reversed version

of that trajectory, which we denote

γ̃B : x̄0 ←− x̄s⇐=x̄′s ←− x̄τ . (A-5)
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The conditional probabilities for these two trajectories are related as follows:

πA[γA] =
πB[γ̃B]

JA

πA(xs ⇒ x′s)

πB(x̄s ⇐ x̄′s)
= πB[γ̃B] e−qA[γA] , (A-6)

where

qA[γA] = h(x′s;λ
∗)− h(xs;λ

∗) + ln JA (A-7)

and JA = (TB/TA)Nd/2. In Eq. A-6, the factor πB[γ̃B]/JA was obtained as in Eq. 10a;

and the remaining factor was evaluated using Eq. A-4. Here Nd denotes the number of

degrees of freedom in the system, not the number of particles.

The quantity h(x′s;λ
∗) − h(xs;λ

∗) in Eq. A-7 is the change in h that accompanies

the Andersen update pi ⇒ p′i. Interpreting qA[γA] as the reduced heat absorbed by the

system during the trajectory γA, we define the reduced work:

wA[γA] = h(xτ ;λτ )− h(x0;λ0)− qA[γA]. (A-8)

Eqs. A-6 and A-8 are analogues of Eqs. 10 and 4 of the derivation for determin-

istic dynamics, and Eq. A-6 is equivalent to Crooks’s result, Eq. 9 of Ref. [18]. With

these equations – and similar ones for a trajectory γB generated in RB (Eq. A-2) – we

now establish detailed balance for the accepted transitions (x, y) → (y′, x′), in a manner

analogous to Eq. 2.15 of the main text:

Kacc(y
′, x′|x, y) = πA[γA]πB[γB]α[γA, γB]

= πB[γ̃B]πA[γ̃A] e−qA[γA]−qB [γB ] α[γ̃A, γ̃B] e−wA[γA]−wB [γB ]

= Kacc(x̄, ȳ|ȳ′, x̄′) e−hA(y′)−hB(x′)+hA(x)+hB(y) . (A-9)

Here, γA is the unique trajectory that starts at x0 and ends at xτ , and similarly for γB;

and α = min{1, e−w} where w = wA + wB.
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In obtaining this result we have made the simplifying assumption that only a single

Andersen update is made during the work simulation. We now sketch a derivation for the

more general case in which K Andersen updates are performed, at times s1, · · · sK , and

the evolution between these updates is deterministic and time-reversal symmetric (in the

sense discussed in the text), but otherwise quite general. Under these assumptions we can

obtain the following expression for the relative probabilities of generating γA in RA and

its time-reverse γ̃B in RB:

πA[γA] = πB[γ̃B] e−qA[γA] , (A-10)

where

qA[γA] = ln JA[γA] +

K∑
k=1

[
h(x′sk ;λAsk)− h(xsk ;λAsk)

]
(A-11)

and JA is the product of Jacobians along the deterministic intervals of the trajectory:

JA[γA] =

∣∣∣∣ ∂xτ∂x′sK

∣∣∣∣ ·
∣∣∣∣∣ ∂xsK∂x′sK−1

∣∣∣∣∣ · · ·
∣∣∣∣∂xs1∂x0

∣∣∣∣ . (A-12)

(As with Eqs. 10 and A-6, Eq. A-10 corresponds to Eq. 9 of Ref. [18].) We then define

reduced work as in Eq. A-8.

Since there now exist multiple trajectories that connect given initial and final points,

the acceptance kernel Kacc will be given by an integral over all intermediate points:

P (y′, x′|x, y) =

∫
D′γA

∫
D′γB πA[γA]πB[γB]α[γA, γB] (A-13)

where
∫
D′γA =

∫
dxs1

∫
dx′s1 · · ·

∫
dxsK

∫
dx′sK , and γA begins and ends in the fixed con-

figurations x0 = x and xτ = x′. Analogous comments apply to
∫
D′γB.

Eq. A-13 is a path-integral expression for the transition probability for the trial

move (x, y) → (y′, x′). Writing the corresponding expression for the reverse trial move,
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(x̄, ȳ)← (ȳ′, x̄′), we get

Kacc(x̄, ȳ|ȳ′, x̄′) =

∫
D′γ̄A

∫
D′γ̄B πA[γ̄A]πB[γ̄B]α[γ̄A, γ̄B]

=

∫
D′γA

∫
D′γB πB[γB]πA[γA] eqA[γA]+qB [γB ] α[γA, γB] ewA[γA]+wB [γB ]

= ehA(y′)+hB(x′)−hA(x)−hB(y)

∫
D′γA

∫
D′γB πB[γB]πA[γA]α[γA, γB]

= ehA(y′)+hB(x′)−hA(x)−hB(y)Kacc(y
′, x′|x, y) (A-14)

Here we have used Eqs. A-8 and A-10, along with the correspondence between a trajectory

and its time-reversed twin (D′γ̃A = D′γB, etc.).

This derivation can be generalized further by replacing the Andersen updates with

any stochastic moves that satisfy detailed balance (for instance Metropolis Monte Carlo

moves). Eqs. A-10 - A-14 remain unchanged under these quite general conditions, and

therefore RENS remains valid.
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Appendix B

RENS implementation with the

Nosé-Hoover thermostat

The Nosé-Hoover (NH) thermostat [48, 87] has become a popular algorithm for

simulating thermostated systems. In this Appendix we describe how to implement RENS

with systems evolving under NH equations of motion. Here the influence of the bath on

the system is modeled by an extra dynamical degree of freedom ζ, a “bath variable” that

interacts with the system variables. Let x = ({qi}, {pi}) (and later y) represent a point in

the phase space of the physical system. Then z = (x, ζ) is a point in the expanded phase

space consisting of both system and bath variables. In this expanded space the system

evolves deterministically under the following dynamics:

q̇i =
∂Hλ

∂pi
, ṗi = −∂Hλ

∂qi
− ζ pi (B-1a)

ζ̇ =
1

τ2
NH

(
K

K0
λ

− 1

)
. (B-1b)

Here K =
∑
p2
i /2mi is the kinetic energy of the system and K0

λ = NpkBTλ/2 is the

equilibrium average of K and Np is the number of degrees of freedom. The parameter

τNH is a relaxation time associated with the coupling of the system and the heat bath.
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Intuitively, ζ can be viewed as a friction coefficient whose evolution depends upon the

extent to which the kinetic energy deviates from its equilibrium average. If, for instance,

the system has a kinetic energy K > K0
λ, the variable ζ increases, intensifying the damping

of the momenta, and ultimately restoring the system’s kinetic energy towards its thermal

value.

It can be shown that the distribution

peq(x, ζ;λ) ∝ exp[−hλ(x, ζ)], (B-2)

is stationary under the NH dynamics (Eq. B-1), where the reduced Hamiltonian in this

expanded phase space

hλ(x, ζ) = hsys
λ (x) +

1

2
Nτ2

NHζ
2. (B-3)

contains hsys
λ (x), the reduced Hamiltonian of the physical system, as well as a term that

depends solely on the bath variable ζ. In the space of system variables x, then, a trajectory

samples the canonical distribution.

The NH equations are deterministic and time-reversible in our expanded phase

space, satisfying our assumptions for dynamical schemes for RENS described in Sec. 2.2.

Let us use these dynamics to drive our replicas out of equilibrium: During the course of a

switching simulation, as λ is switched from 0 to 1 in RA, the Hamiltonian H and/or the

temperature T of RA are switched from HA, TA to HB, TB. This generates a trajectory

γA : (x0, ζ
A
0 )→ (xτ , ζ

A
τ ). (B-4a)

Similarly, in RB a trajectory γB is generated as λ is switched from 1 to 0:

γB : (y0, ζ
B
0 )← (yτ , ζ

B
τ ). (B-4b)
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The dynamics that generate these trajectories do not preserve phase space volume:

∇ · (ẋ , ζ̇) =
∑
i

∂

∂qi
q̇i +

∑
i

∂

∂pi
ṗi +

∂

∂ζ
ζ̇ = −Npζ 6= 0. (B-5)

The Jacobian associated with RA, for instance, is then

JA(γA) = e−Np
∫ τ
0 dt ζAt . (B-6)

The work performed, given by Eq. 2.5, is

wA(γA) = hB(xτ , ζ
A
τ )− hA(x0, ζ

A
0 ) +Np

∫ τ

0
dt ζAt . (B-7a)

Similarly, for γB in RB the work is

wB(γB) = hA(yτ , ζ
B
τ )− hB(y0, ζ

B
0 ) +Np

∫ τ

0
dt ζBt . (B-7b)

In the NH scheme above the system variables x are thermostated through a single

bath variable. It is often desirable to implement an entire chain of variables: ζ1 is ther-

mostated by another bath variable ζ2, which in turn is coupled to ζ3 and so on. This

method of Nosé-Hoover chains [77] provides a way to overcome cumbersome non-ergodic

sampling issues often found with normal NH dynamics [41]. Although not discussed here

in detail, it is straightforward to follow the steps above to identify a reduced hamiltonian

h(x, ζ1, · · · , ζC) and Jacobian JA for NH dynamics with chains, from which the work wA

can be defined.
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Appendix C

Code development

A considerable amount of coding was involved in order to test RENS on alanine

dipeptide and monoethanolamine. In this Appendix we describe the major steps involved

in producing simulation software capable of RENS simulations.

The majority of our RENS simulations were performed with the OpenMM pack-

age, a library of classes and functions pertaining to molecular simulation. The RENS

code we developed is largely based upon an existing replica exchange routine written in

python, and used in conjunction with OpenMM via the python wrapper for OpenMM,

PyOpenMM. Shortly we plan to release these OpenMM code alterations, described in the

next paragraphs, to the simulation community for general use.

Two major modifications to the existing replica exchange routine were needed to

allow for RENS simulations. The first modification was parallelization of the simulation

code. The original development, used mostly for testing purposes, had involved serial

integration of replicas on a single processor, where evolution of replica i + 1 could only

proceed after replica i had evolved. This was impractical for implementations involving

larger numbers of replicas and larger system sizes. In order to take full advantage of
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multiple-processor CPUs, we parallelized the computer code such that each replica was

devoted its own processor, as is standard in replica exchange programs. The parallelization

was implemented with mpi4py 1, a MPI (Message Passing Interface) package for python

allowing for initialization of parallel routines and communication between processors.

The second and most involved component of RENS code development was the in-

corporation of the switching simulations into the replica exchange code. While practi-

cally every simulation package provides “equilibrium integration” schemes for Hamilto-

nian (Molecular) dynamics, Langevin dynamics and other dynamics, the incorporation of

dynamical schemes with time-dependent parameters is largely absent in standard simula-

tion packages. To perform the RENS switching simulations, which involve time-dependent

parameters defined through the control parameter λ(t) (such as temperature), we incorpo-

rated a “switching routine” into the outer (python) code level, consisting of a loop through

the following steps:

1. integrate the system using an equilibrium integrator initialized at a cur-

rent value of λ

2. update λ and all λ-dependent parameters: λ→ λ+ ∆λ

3. reinitialize the integrator to the new λ parameters for the next loop iter-

ation.

Hence the switching trajectory was achieved by integrating the system through a series

of equilibrium integrators with increasing λ values. Because step 3 is particularly costly

computationally, these switching simulations were limited (in a practical sense) to a rel-

atively small number n = 1/∆λ of iterations of the above steps, which restricted us to

switching protocols involving larger jumps (∆λ = O(0.1)). As discussed in Sec. 3.3.3, this

1http://mpi4py.scipy.org
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limited the gains RENS can bring to the simulation efficiency.

Nonequilibrium methods such as RENS will only be accessible to a broader audience

once standard simulations packages (such as Gromacs, LAMMPS, and OpenMM) incor-

porate “switching integrators” which are initialized once with an input protocol λ(t), from

which all updates of λ are performed at a base code level2. With growing interest in the

use of nonequilibrium methods in calculation of thermodynamic properties, incorporation

of such routines will become increasingly important. (In our opinion, much research could

be done even in the development of accurate integration schemes for systems evolving with

time-dependent parameters.)

Another coding project that was part of my graduate research (but not contained

in the main thesis text) was the development of the LAMMPS simulation package [95],

specifically an expansion of the Nosé-Hoover (NH) thermostatting routine to include Nosé-

Hoover chains. The NH equations, introduced in Appendix B, are a deterministic set of

dynamics in which the system is coupled to an auxiliary bath variable ζ. It is known that

the NH thermostat in its original implementation does not sample the desired canonical

ensemble for systems that are not sufficiently chaotic [48]. This problem can be rectified

by coupling the system to a series or “chain” of bath variables instead of only one, which

together are able to achieve system ergodicity [77]. The project consisted of expanding

the LAMMPS NH thermostat routine to allow for chains, to ensure proper sampling of

the desired NV T ensemble. We used a discretization scheme for the dynamics developed

by Martyna et al [78].

2The OpenMM package is taking a step in this direction: Their CustomIntegrator class, currently in

development, allows for the building of custom integration routines from a set of instructions provided by

the user.
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