
Space-E�cient and Fast Algorithms for MultidimensionalDominance Reporting and Range Counting(Technical Report CS-TR-4533 and UMIACS-TR-2003-101)Qingmin Shi� Joseph F. JaJay Christian W. MortensenzAbstractWe present linear-space sublogarithmic algorithms for handling the three-dimensional dominancereporting problem and the two-dimensional range counting problem. Under the RAM modelas described in [M. L. Fredman and D. E. Willard. \Surpassing the information theoreticbound with fusion trees", Journal of Computer and System Sciences, 47:424{436, 1993], ouralgorithms achieve O(logn= log logn + f) query time for 3-D dominance reporting, where f isthe number of points reported, and O(logn= log logn) query time for 2-D range counting case.We extend these results to any constant dimension d achieving O(n(logn= log logn)d�3)-spaceand O((logn= log log)d�2 + f)-query time for the reporting case and O(n(logn= log logn)d�2)-space and O((logn= log logn)d�1) query time for the counting case.1 IntroductionGiven a set S of d-dimensional points (d is assumed to be a constant), we wish to store thesepoints in a data structure so that, given a query point q, the points in S that dominate q, whichwe will refer to as proper points, can be reported or counted quickly. A point p = (p1; p2; : : : ; pd)is S dominates q = (q1; q2; : : : ; qd) if and only if pi � qi for all i = 1; : : : ; d. Without loss ofgenerality, we assume that no two points in S have the same x-, y-, or z-coordinates. A number ofgeometric retrieval problems involving iso-oriented objects can be reduced to this problem (see forexample [6]). Solutions to this problem have also been used recently in dealing with the so-calledtemporal range queries on time-series data [13].Throughout this paper, we will use n to represent the input size, f to represent the outputsize (for the reporting case), and � to represent an arbitrarily small positive constant. We de�nec as log� n1. Given a set S of d-dimensional points (x1; x2; : : : ; xd), a point in S with the largestxi-coordinate smaller than or equal to a number � is called the xi-predecessor of � and the one withthe smallest xi-coordinate larger than or equal to � is called the xi-successor of �. The xi-rank ofa number � (with respect to S) is de�ned as the number of points in S whose xi-coordinates aresmaller than or equal to �. The xi-rank of a d-dimensional point is de�ned as the xi-rank of its xi-coordinate. Let i � j be two integers, we will use [i::j] to denote the set of integers fi; i+1; : : : ; jg�Institute of Advanced Computer Studies, University of Maryland, College Park, MD 20742. Email:qshi@umiacs.umd.eduyInstitute of Advanced Computer Studies, University of Maryland, College Park, MD 20742. Email:joseph@umiacs.umd.eduzIT University of Copenhagen, Email: cworm@itu.dk1In this paper, we always assume that the logarithmic operations are to the base two.1



and [i::j]k to denote [i: :j]� � � � � [i:| {z }k :j]. Given a tree, we will assign a label to each node v, whichis equal to the number of siblings of v to its left.Our model of computation is the RAM model as described in [8], in which it is assumed thateach word consists of w bits and the size of the data set never exceeds 2w, i.e. w � logn. Inaddition, arithmetic and bitwise logical operations take constant time. We assume each coordinateof a point is given as an integer in a single word.In [4], Chazelle and Edelsbrunner proposed two linear-space algorithms to handle the 3-D dom-inance reporting problem. The �rst achieves O(logn+ f logn) query time and the second achievesO(log2 n+f) query time. These two algorithms were later improved by Makris and Tsakalidis [9] toyield O((log log n)2 log log log n+f log log n) and O(logn+f) query time respectively. The previousbest linear-space algorithm for the 2-D dominance counting problem is due to Chazelle [3], whichachieves O(logn) query time.In [12], Shi and JaJa improved the query performance of the O(logn + f) time algorithm ofMakris and Tsakalidis for the reporting case to O(logn= log logn + f) query time and that of theO(logn) time algorithm of Chazelle for the counting case to O(logn= log logn) query time, but atthe expense of increasing the storage costs in both cases by a factor of log� n.In this paper, we show how to reduce the storage cost required for handling the 3-D reportingand the 2-D counting problems while maintaining the same query performance as in [12], thusobtaining the fastest query time algorithms using linear space. In fact, our 3-D reporting algorithmsolves a more general \layered" 3-D reporting in linear space and O(logn= log logn + f) querytime. Since answering a general range counting query is equivalent to answering a constant numberof dominance counting queries, our results for the dominance counting problems is valid for thegeneral range counting problems as well. We also extend these results to the high dimensional case.The results of this paper are summarized as the following two theorems.Theorem 1.1. For any constant d � 3 there exist data structures such that any d-dimensionaldominance reporting query can be handled in O((logn= log logn)d�2+f) time using O(n(logn= log log n)d�3)space.Theorem 1.2. For any constant d � 2 there exist data structures such that any d-dimensionalrange counting query can be handled in O((logn= log logn)d�1) time using O(n(logn= log logn)d�2)space.In Section 2, we summarize some previously known results that will be heavily used in thispaper. We briey review the non-linear space algorithms (that appeared in [12]) in Section 3 anddescribe the new linear-space algorithm for the 3-D reporting case in Section 4. In Section 5, wegive a linear-space solution to the more general layered 3-D dominance reporting problem and weextend it to higher dimensions in Section 6. The 2-D counting case and its extensions to higherdimensions are discussed in Sections 7 and 8 respectively.2 Preliminaries2.1 Q-heaps and Fusion TreesQ-heap and fusion trees achieve sublogarithmic search time on one-dimensional data. The followingtwo lemmas are shown in [7] and [8] respectively.Lemma 2.1. Assume that in a database of n elements, we have available the use of precomputedtables of size o(n). Then it is possible to construct a fusion tree data structure of size O(n) space,2



which has a worst-case O(logn= log logn) time for performing member, predecessor and rank oper-ations.Lemma 2.2. Suppose Q is a subset with cardinality m < log1=5n lying in a larger database Sconsisting of n elements. Then three exists a Q-heap data structure of size O(m) that enablesinsertion, deletion, member, and predecessor queries on Q to run in constant worst-case time,provided access is available to a precomputed table of size o(n).Note that in Lemma 2.2, the look-up table of size o(n) is shared among all the Q-heaps builton subsets of S.2.2 Fast Fractional CascadingLet T be a tree rooted at w and having a maximum degree of c at each node. A node v in Tcontains a sorted list L(v) of elements. The total number of elements in all the lists is n. Such atree is called a catalog tree [2]. An iterative search on T is de�ned as follows.Given a query item x, and an embedded tree F of T , which is rooted at w and has pnodes, �nd the predecessor of x in each of the lists associated with the nodes of F .The fractional cascading technique [5] can be used to organize T and its associated lists so thatan iterative search can be performed in O(t(n) + p log c) time, in which t(n) is the time it takes toidentify the predecessor of x in L(w) and log c is the cost of �nding the predecessor of x in each ofthe remaining p� 1 lists. This technique uses O(n) space. Note that when c is not a constant, thetime spent at each node is not a constant either.In [12], we combined the Q-heap technique and the fractional cascading and obtained the fastfractional cascading structure, which achieves constant search time at each node when the maximumdegree of T is polylogarithmic in n. The storage cost, however, is increased to n log� n. This resultwas improved in [14] by reducing the storage cost to linear while maintaining the same queryperformance. This result is summarized in the following lemma.Lemma 2.3. Let T be a catalog tree rooted at w with a total number n of items in its associatedlists, and let c = log� n be the maximum degree of a node in T . There exists a O(n)-space datastructure derived from T such that an iterative search operation speci�ed by a query item x and anembedded tree F with p nodes can be performed in O(t(n) + p) time, where t(n) is the time it takesto identify the predecessor of x in L(w).2.3 Handling 3-Sided 2-D Reporting Queries Using Cartesian TreesA Cartesian tree [15] C is a binary tree de�ned on a �nite set of 2-D points, say p1; p2; : : : ; pn,sorted by their x-coordinates. The root of this tree is associated with the point pi with the largesty-coordinate. Its left child is the root of the Cartesian tree built on p1; : : : ; pi�1, and its right childis the root of the Cartesian tree built on pi+1; : : : ; pn.In [12], we explained how the Cartesian trees can be modi�ed to e�ciently handle the 3-sided2-D reporting queries, i.e. to identify the points (x; y) that satisfy a � x � b and y � c, where a,b, and c are three numbers provided by the query, and showed the following Lemma.Lemma 2.4. Let C be the modi�ed Cartesian tree that corresponds to a set of n 2-D points. A 3-sided 2-D range query given as (a; b; d) can be handled in O(t(n)+f) time using D(C) of size O(n),where t(n) is the time to identify the nodes corresponding to the successor of a and the predecessorof b, and D(C) is a transformation of C to support the nearest common ancestor search in constanttime. 3



In the rest of this paper, whenever we refer to a Cartesian tree, we mean its transformationthat is suitable for 3-sided 2-D range reporting queries. We can also use the Cartesian tree to indexa set of d-dimensional points (x1; x2; : : : ; xd) based on any two of their dimensions. If the pointsare �rst sorted by the xi-dimension and are recursively picked during the construction of the treeaccording to their xj-coordinates, then the resulting Cartesian tree is called an (xi; xj)-Cartesiantree.3 Previous O(log = log log n + f)-Query Time Algorithms for 3-DDominance Reporting and 2-D Dominance CountingIn this section, we briey review the data structures proposed in [12], upon which our new algo-rithms are based.3.1 An O(n log� n)-Space and O(log = log log n+ f)-Query Time Algorithm for 3-DDominance ReportingThe skeleton of the data structure is a balanced search tree of degree c = log� n (thus of heightO(logn= log logn)) built on the points in S sorted by decreasing z-coordinates. A Q-heap K(v) isused to index the keys stored at each internal node v. Let M(v) be the maximal set of the pointsstored in the subtree rooted at v, excluding the points that are already associated with the ancestorsof v (the maximal set of a point set R is the set of points p 2 R such that for all p0 2 R where p 6= p0the projection of p onto the x-y plane is not dominated by the projection of p0 onto the x-y plane).In addition to the Q-heap, each node v is associated with several Cartesian trees: an (x,z)-Cartesiantree D(v) and c (x,y)-Cartesian trees D1(v); D2(v); : : : ; Dc(v). The (x,z)-Cartesian tree D(v) storesthe maximal set M(v) of v; and Di(v) stores the union of the maximal sets associated with theleftmost i children of v. It is easy to see that the storage cost of this data structure is O(n log� n),since the tree T and the associated Q-heaps requires O(n) space, and each point is stored in atmost one (x; z)-Cartesian tree and c (x; y)-Cartesian trees.To answer a 3-D dominance query speci�ed by the point (q1; q2; q3), we �rst identify, in O(logn=log log n) time using the Q-heaps, the path � from the root to the leaf that corresponds to thez-successor of q3. We then search the tree recursively, starting from the root. Note that we do notvisit any node that is in a subtree rooted at the right sibling of a node on �. For each node vvisited, �nding the f(v) proper points in M(v) is equivalent to a 3-sided 2-D range query due tothe properties of a maximal set (see [9] for more details) and thus can be handled in O(f(v)) timeusing D(v) (assuming that we already know the leftmost and rightmost leaf nodes of D(v) that arein the query range). Suppose the kth child of v from the left is on � (k = c+ 1 if v is not on �).Note that we cannot a�ord to visit the each of the leftmost k � 1 children of v. Instead, we visitsuch a proper child u only if there is at least one proper point in M(u). We do so by searchingDk�1(v) for proper points and mark the children of v they come from. Since each point reportedfrom Dk�1(v) will also be reported at a child w of v, each point may be reported twice.We build a fusion tree on the x-coordinates to index the points stored in each of the c + 1Cartesian trees associated with the root w. Furthermore, we connect all the Cartesian trees usinga modi�ed fractional cascading structure of size O(n log� n) (see [12] for more details). Theseadditional data structures do not asymptotically increase the storage cost and allow each Cartesiantree associated with a non-root node to be searched in constant time, plus the time it takes toretrieve proper points (Lemma 2.4). 4



3.2 An O(n log� n)-Space and O(log n= log log n)-Query Time Algorithm for 2-DDominance CountingAs in the 3-D dominance reporting case, we use a balanced tree T of degree c (thus of heighth = O(logn= log logn)) as the skeleton of our data structure for handling the 2-D dominancecounting query. The tree T is built on the x-ranks of the points in S sorted in decreasing order.Each internal node v of T is associated with two-secondary structures: a router r(v) and a counterc(v). The router r(v) stores, for each point p in the subtree rooted at v, the label of the child ofv to whose subtree p belongs. These labels are sorted in order of the decreasing y-coordinates ofthe corresponding points. Let n(v) be the number of points stored in the subtree rooted at v. Thecounter c(v) is a two-dimensional array of size (m(v)�1)�c, where m(v) = dn(v) log c= logne. Theitem c(v)[i][j] stores the number of labels among those of the �rst i logn= log c points in r(v) whichare smaller than or equal to j. In addition to the tree T , we have two fusion trees built respectivelyon the increasing x- and y-coordinates of the points in S.Since each entry of a router is a number in [1::c], it can be encoded using log c bits. Thus thespace required for maintaining all the routers is O(n) words. Each item in a counter occupies asingle word, and therefore the space used to stored all the counters is O(cn) words.To answer a query q given as (q1; q2), we �rst replace q1 and q2 with their respective x-and y-ranks r1 and r2 with respect to the points in S using the two fusion trees. We then inO(logn= log logn) time identify the path � from the root of T to the leaf node that correspondsto the y-successor of r2. For each node v on �, suppose the label of its child u which is also onthe path is j. We can compute in constant time the number of points stored in the subtrees rootedat the leftmost j � 1 subtrees by looking up an appropriate entry in the counter c(v) and a globaltable of size O(n) that is shared by the search processes at all the nodes on �. Details can be foundin [12].
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Figure 1: An example for the 2-D dominance counting query where d = 2, n = 9, h = 2, and c = 3.Figure 1 gives an example on how such a 2-D dominance counting is handled. Consider thequery (2; 4). We calculate the answer to this query along the path from the the root to the leafnode l, which corresponds to the x-coordinate 2. At root a, since its child d is also on the path, wecompute the number of points contributed by the subtree rooted at b and c by counting among the�rst 6 entries of r(a) the number of entries whose value is in [1::2]; and we get 4. Since only two ofthese 6 entries have value 3, we continue to visit node d, which is also on the path, and count among5



the �rst 2 entries of r(d) the number of entries whose value is in [1::1], which is 1. We continue tosearch node l and count zero point there. Hence the answer to the query is 4 + 1 + 0 = 5.4 A Linear-Space Algorithm with O(logn= log log n+f) Query Timefor 3-D Dominance ReportingIn this section, we improve upon the result in Section 3.1 to achieve O(logn= log logn + f) querytime and linear space. Two factors contributed to the non-linear space requirement of the datastructure described there. First, the fractional cascading technique uses non-linear space. Second,with each node v, c (x; y)-Cartesian trees were needed to ensure that we can in constant time�nd the proper children. The �rst di�culty no longer exists since we now have at hand the fastfractional cascading structure [14]. The rest of this section is devoted to overcoming the seconddi�culty.Let S(v) be the union of the maximal sets associated with the children of v. We associatewith each point p = (p1; p2; p3) in S(v) a layer p:l, which is the label of the child of v from whosemaximal set that point comes. To achieve linear space for the 3-D dominance reporting problem,it is su�cient to solve the following problem.Problem 4.1. Build a data structure for S(v) such that, given a query (x1; x2; h), where h 2 [1::c],the k(v) layers, from each of which there is at least one proper point p, which satis�es p1 � x1; p2 �x2, and p:l � h, can be identi�ed in O(k(v)) time.We now discuss how to handle this problem using only O(jS(v)j) space. Let u1; u2; : : : ; uc bethe children of v in T and let M(ui) = f(xi;1; yi;1; zi;1); (xi;2; yi;2; zi;2); : : : ; (xi;ni; yi;ni ; zi;ni)g fori = 1; 2; : : : ; c. Since M(ui) is maximal, we can assume without loss of generality that xi;1 < xi;2 <� � � < xi;ni and yi;1 > yi;2 > � � � > yi;ni > yi;ni+1 = �1. Now consider the projections of thesepoints to the x-y plane. We de�ne a set G(v) of vertical segments in the x-y plane as follows:Gi(v) = f(xi;j ; yi;j+1; yi;j)jj = 1; : : : ; nig and G(v) = Si=1;:::;cGi(v). We say the segments in Gi(v)are from layer i. Figure 4 gives an example of such a set of segments, with segments from di�erentchildren depicted using lines of di�erent thicknesses. It is obvious that jS(v)j= jG(v)j. We denotejG(v)j as N(v).
(x1,1,y1,1)

(x ,y )1,2 1,2

(x2,1,y2,1)

(x3,1,y3,1) (x1,3,y1,3)

2,2 2,2),y(x
(x3,2,y3,2)

(x2,3 2,3),y

(x1,4,y1,4)

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�Figure 2: The dominance query and orthogonal segment intersection.Lemma 4.1. Let s = (x0;+1; y0) be a semi-in�nite horizontal line. For each i 2 f1; : : : ; cg, uicontains at least one point whose projection to the x-y plane dominates (x0; y0) if and only if there6



exists a vertical segment (xi;j ; yi;j+1; yi;j) 2 G(v) that intersects s and furthermore, there is at mostone such vertical segment.Proof. If a segment (xi;j ; yi;j+1; yi;j) 2 G(v) intersects s, then by de�nition, (xi;j ; yi;j) dominates(x0; y0). On the other hand, suppose (xi;j ; yi;j) dominates (x0; y0). Then either the segment(xi;j ; yi;j+1; yi;j) intersects s, or y0 < yj+1 6= �1, which means j < ni. Therefore, the point(xi;j+1; yj+1) also dominates (x0; y0). Repeating this process ensures that we can �nd one verti-cal segment corresponding to ui which intersects s. Finally, since the projections of the verticalsegments corresponding to ui do not overlap, s can only intersect one of these segments.As a result of Lemma 4.1, identifying the proper children of v in O(k(v)) time can be achievedif we design an indexing scheme on G(v), such that given s and an integer h, the segments fromGi(v), with i = 1; 2; : : : ; h, which intersect s can be reported in O(k(v)) time.Note that this is not simply a segment intersection reporting problem, as we cannot a�ord toreport every segment in G(v) that intersects s. This is the case because some of them may comefrom other layers than those in [1::h]. Nevertheless, we can solve this problem by performing asegment intersection counting query followed by a table look-up operation. This segment intersec-tion counting query is de�ned as computing the number of segments in G(v) that intersect s (thesesegments are not necessarily from the layers in [1::h]).We �rst discuss the table look-up operation. The list of proper children of v with respect to a3-D dominance reporting query can be represented as a vector r = (k(v); I1; I2; : : : ; Ik(v)), whereIi, with i = 1; : : : ; k(v), is the index of a proper child. Obviously, the bit-cost of this vector isO(c log c). Once we obtain such a vector, we can retrieve from it the index of the proper childrenone by one in O(k(v)) time.Lemma 4.2. The vector r is uniquely de�ned by the y-rank g of y0 in the set of endpoints of G(v),the value of h, and the number k of segments in G(v) which intersect s.Proof. Let y1; y2; : : : ; yN(v) be the list of y-coordinates of the points in G(v) in sorted order. Con-sider two consecutive such y-coordinates yj and yj+1. It is easy to see that the list of segments inG(v) sorted from left to right which intersect the query segment s = (x0;+1; y0), with y0 varyingin the range [yj ; yj+1), remains the same. Among these segments, the rightmost k intersect s. And,knowing h, we can uniquely remove those coming from the rightmost c� h children of v.Since only one segment from Gi(v) could possibly intersect s, the value of k is bounded by c.The value of h is also bounded by c and the y-rank of y0 is bounded by N(v). Therefore, we cancreate a look-up table containing N(v) words, each corresponding to a possible y-rank of y0. Thelogn bits of each such word is su�cient to record for each possible combination of k and h, thevector r that has been uniquely determined (c3 log c < log n for large enough n).Among the three indices g, h, and k, g can be computed in constant time by applying thefast fractional cascading technique on the y-coordinates of the points in Si=1;:::;cM(ui), and h isknown using the Q-heap associated with v. Thus we only need to show that the value of k can becomputed in constant time. We �rst give the following lemma.Lemma 4.3. A 3-D dominance counting query on a set R of m < log� n points can be handled inconstant time using O(m) space.Proof. An answer to such a query is uniquely decided by the ranks of the query point in R withrespect to the x-, y-, and z-coordinates, which can be computed by applying the Q-heap techniquesin constant time and O(m) space. These three ranks are used to index a m�m�m look-up table7



to obtain the correct answer. Since m < log1=5n, any possible answer can be represented using onlyO(log log n) bits. Therefore all m3 (not necessarily distinct) possible answers can be compactedinto a single word (m3 log log n < log n for large enough n).We now explain how to compute the value of k in constant time. We partition the endpoints ofthe segments in G(v) into N(v)=c horizontal stripes P1; : : : ; PN(v)=c, each containing c endpoints.Let B1; : : : ; BN(v)=c�1 be the boundaries such that Bi separates Pi and Pi+1. We associate witheach boundary the maximal subset Si of G(v) such that every segment in Si intersects Bi, andwith each stripe Pi the maximal subset Ti of G(v) such that every segment in Ti crosses the entirestripe Pi. We also denote the subset of segments in G(v) that are completely inside Pi as Ri. Notethat a segment can belong to up to N(v)=c � 1 subsets associated with the boundaries and upto N(v)=c� 2 subsets associated with the stripes. However, the size of each Si or Ti is boundedby c. The total size of all the subsets associated with the boundaries is equal to the number ofintersections between the segments in G(v) and the N(v)=c�1 boundaries. Notice that each Gi(v),with i = 1; : : : ; c, contributes at most N(v)=c � 1 such intersections. Thus the total size of allthe subsets associated with the boundaries is O(N(v)). Similarly, the total size of all the subsetsassociated with the stripes is also O(N(v)). And �nally, Pi=1;:::;N(v)=c jRij = O(N(v)).Given a query segment s = (x0;+1; y0), we can determine, using the fast fractional cascadingstructure, the stripe Pj+1 within which it falls. Without loss of generality, suppose this is not the�rst nor the last stripe, and hence the two boundaries Bj and Bj+1 exist. The number of segmentsin G(v) that intersect s can be computed as A+ B � C +D, where A and B are respectively thenumbers of segments in Sj and Sj+1 that intersect s, C is the number of segments in Tj that intersects, and D is the number of segments in Ri that intersect s. Computing A and B is equivalent to a 2-D dominance counting query on the lower endpoints of the segments in Sj and the upper endpointsof the segments in Sj+1 respectively; computing C is equivalent to a 1-D dominance counting queryon the x-coordinates of the segments in Tj+1; and computing D is equivalent to a 3-D dominancecounting query on the segments (x; y1; y2) in Rj+1 in the form (x � x0; y1 � y0; y2 � y0). Since thesize of each of the sets involved is bounded by O(log� n), by Lemma 4.3, these computation can beperformed in O(1) time and in linear space.Theorem 4.1. There exists data structures such that any three-dimensional dominance reportingquery can be handled in O(logn= log logn + f) time using O(n) space.5 Layered 3-D Dominance ReportingIn this section, we present an algorithm for a more general layered 3-D dominance reporting problem,whose solution enables an e�cient extension of the results to higher dimensions. Within this setting,each of the n 3-D point p in S is assigned a layer p:l, in addition to its coordinates. Let P([1::c])denote the power set of [1::c]. Given a query as (q1; q2; q3; L), where L 2 P([1::c]), a point p isproper if and only if p dominates q and, in addition, p:l 2 L. By assigning all the points in S to thesame layer and letting L contain only that layer, we obtain the standard 3-D dominance reportingproblem. In sections 5.1 and 5.2, we discuss the algorithms for the layered and double-layered 3-sided 2-D reporting problems, which will form the building blocks for our algorithm for the layered3-D dominance reporting problem (the concept of layers was also used in [11] and [10]). Thesealgorithms build on known data structures for the non-layered case (see e.g. [1] for a survey). Ouroverall strategy is the same as in Section 3.1 except that we replace the (x; y)-Cartesian trees withthe new data structures. 8



5.1 Layered 3-Sided 2-D ReportingSuppose F is a set of m � n two-dimensional points with x-coordinate p:x 2 [1::m], y-coordinatep:y 2 [1::m] and layer p:l 2 [1::c]. The layered 3-sided 2-D reporting problem is de�ned as follows.Problem 5.1. Develop a data structure for F such that, given a query (a; b; d;L) with a; b; d 2[1::m] and L 2 P([1::c]), we can quickly report the points p that satisfy a � p:x � b, p:y � d, andp:l 2 L.We will store L as a bit vector in a single word. Further, we will assume that we are allowed touse a constant number of global look-up tables of size O(n) words. Intuitively, the reader shouldview F as the the points stored in the (x; y)-Cartesian trees of a node as described in Section 3.1.The above problem can be reduced to the following layered range-maximum problem.Problem 5.2. Develop a data structure for F such that, given a query (a; b; L) with a; b 2 [1::m]and L 2 P([1::c]), we can quickly report the point p such that p:y is maximized under the conditionsa � p:x � b and p:l 2 L.We will later show how to handle Problem 5.2 in constant time and linear space. With suchan algorithm, we can handle the layered 3-sided 2-D range query in O(f) time using linear space,f being the output size, as follows. We �rst �nd the point p with x-coordinate between a and bsuch that p:y is maximized under the condition that p:l 2 L. If p:y < d, then no point in S(v) isproper. Otherwise, we report the point p and recursively apply two layered range-maximum queries(a; p:x� 1; L) and (p:x+ 1; b; L).What remains to be shown is that a layered range-maximum query on F can be handled inconstant time. We �rst give a non-linear space solution, and then discuss how to reduce the spaceto linear.5.1.1 A Non-Linear Space SolutionWe build a binary tree T on the increasing x-coordinates of the m points in F . We associate witheach leaf node v of T the two-dimensional arrays v:left[0:: logm][1::c] and v:right[0:: logm][1::c].Let u be the ancestor of v whose distance to v is l (the distance between v and itself is 0). Thenv:left[l][j] stores the maximum y-coordinate of the points with layer j corresponding to the leafnodes between the leftmost leaf node of the subtree rooted at u and and the leaf node v. Similarly,v:right[l][j] stores the maximum y-coordinate of the points with layer j corresponding to the leafnodes between v and the rightmost leaf node of the subtree rooted at u.Now suppose we are given a query (a; b; L) with a < b. Let va and vb be two leaf nodescorresponding to the two points whose x-coordinates are a and b respectively. We can in constanttime locate the nearest common ancestor u of va and vb. Let h be the height of u (the height of aleaf node is 0). Then the point that satis�es the query is either the point in va:right[h� 1][l] withmaximum y-coordinate where l 2 L or the point in vb:left[h � 1][l] with maximum y-coordinatewhere l 2 L.It follows that, to show that a layered range-maximum query can be handled in constant time,it is su�cient to show that, given an array X [1::c] of elements in [1::m], we can preprocess X intoa data structure so that, given a subset L of [1::c], the value maxfX [l]jl 2 Lg can be computed inconstant time.To do so, we replace each entry in X with its rank among the elements in X . Each possible arraythus can be represented using O(log logn log� n) bits. Since each possible set L of layers speci�edby a query can be represented using O(log� n) bits, we can construct a global look-up table of9



O(n) entries, each occupying a word and corresponding to one of the 2O(log logn log� n+log� n) = O(n)possible instances of the query, i.e. a possible combination of an array X and a set L, and storingthe answer to that query.The overall space required (beside the global look-up table) for this solution is O(m logm log� n)because each of the m leaf nodes is associated with an array of size O(logm log� n).5.1.2 Reducing the Space to LinearWe now describe how to reduce the space usage to O(m). We sort the points in F by their x-coordinates and group them into blocks each with O(logm log2� n) points. For each block and foreach layer, we take the point in the block with maximum y-coordinate. We then build a structureT 0 just described over these points. Since the number of such points is O(m=(logm log� n)), thesize of T 0 is O(m). Given a query (a; b; L), the interval [a; b] can be partitioned into three parts[a::(l� 1)], [l::r], and [(r+ 1)::b], in which [l::r], if it exists, corresponds to the maximum sequenceof consecutive blocks that are fully contained in [a::b]. Therefore, the output of the query (a; b; L)is one of the three points reported by the queries (a; l � 1; L), (l; r; L), and (r + 1; b; L), with thelargest y-coordinate. The (l; r; L) query can be handled in constant time using T 0.What remains is to describe how we query each block B of points in constant time. This is aspecial layered range-maximum problem in which the problem size jBj is at most O(logm log2� n).First, we replace the y-coordinates of the points with their ranks among the y-coordinates. Next,we build a tree T (B) with degree O(log� n) (for a su�ciently small constant � > 0) and thusconstant height on the x-coordinates of the points in B. Since the tree is of constant depth, we cansolve the query on B in constant time as long as the following problem can be solved in constanttime: given a node v, and two integers k1; k2 2 [1:: log� n] with k1 � k2 and L 2 P([1::c]), how todecide in constant time the point with the maximum y-coordinate which is stored in the childrenof v with labels between k1 and k2, and is from a layer in L. Again, the number of possible queryinstances is bounded by 2O((log logn)2 log� n+2 log logn+log� n) = O(n) and thus the answer to each suchinstance can be obtained in constant time using a global look-up table of size O(n). Therefore, anylayered range-maximum query on any block can be handled in linear space and constant time andLemma 5.1 follows.Lemma 5.1. There exists a data structure such that any layered three-sided two-dimensional re-porting query as de�ned in Problem 5.1 can be handled in O(f) time using linear space.5.2 Double-layered 3-Sided 2-D ReportingWe now discuss the double-layered 3-sided 2-D reporting problem, which is more general than theone addressed in Section 5.1. For this new problem, each of the m point p = (p:x; p:y) in F isassigned two layers p:l1 and p:l2. A double-layered 3-sided 2-D reporting problem is de�ned as:Problem 5.3. Develop a data structure for F such that, given a query (a; b; d; L1; L2), whereL1; L2 2 P([1::c]), we can quickly report the proper points p, which satisfy a � p:x � b, p:y � d,p:l1 2 L1, and p:l2 2 L2.Following the same argument as in Section 5.1, we can reduce the above problem to the followingdouble-layered range maximum problem.Problem 5.4. Develop a data structure for F such that, given a query (a; b; L1; L2) with a; b 2[1::m] and L1; L2 2 P([1::c]), we can quickly report the points p such that p:y is maximized underthe conditions a � p:x � b, p:l1 2 L1, and p:l2 2 L2.10



Our algorithm for Problem 5.4 is almost identical to the one for Problem 5.2 and runs in constanttime. So we will only comment on the necessary changes to that algorithm. We start from the non-linear space solution. For each leaf node v, we replace v:left[0:: logm][1::c] and v:right[0:: logm][1::c]with two three-dimensional arrays v:left[0:: logm][1::c][1::c] and v:right[0:: logm][1::c][1::c], each en-try storing a maximum value corresponding to a distinct pair of layers. To show that a double-layered range-maximum query can be handled in constant time, it is su�cient to show that, givenan array X [1::c][1::c] of elements in [1::m], we can preprocess X into a data structure so that, givenL1; L2 2 P([1::c]), the value maxfX [l1][l2]jl1 2 L1; l2 2 L2g can be identi�ed in constant time. Aswe did in Section 5.1, we solve this problem by using a global-lookup table. This is possible becausethe number of possible query instances is 2O(log logn log2� n+2 log� n) = O(n). The space used, asidefrom this global-lookup table is O(m logm log2� n).To reduce the space to linear, we group the points into blocks, each with O(logm log4� n) points.For each block, we pick for each possible pair of layers, the point with maximum y-coordinate. Thedata structure described in the previous paragraph is then used to index the points thus pickedand the space used is O(m). Following similar argument as in Section 5.1, the double-layered rangemaximum problem on each block can be solved in constant time using linear space provided thatwe have available a global look-up table of size 2O((log logn)3 log� n+2 log logn+2 log� n) = O(n).Lemma 5.2. There exists a data structure such that any double-layered three-sided two-dimensionalreporting query as de�ned in Problem 5.3 can be handled in O(f) time using linear space.5.3 Layered 3-D Dominance ReportingNote that by replacing the c (x; y)-Cartesian trees associated with each of the internal node v inthe data structure described in Section 3.1 with the data structure for solving the layered 3-sided2-D reporting problem (m is equal to the number of points in the union of the maximal sets ofv's children), we immediately obtain an alternative O(n)-space and O(logn= log logn + f)-querytime solution for the 3-D dominance reporting problem. However, in order to make the solutionextendable to higher dimensions, we need a stronger result than in Theorem 4.1. We now describehow to use Lemmas 5.1 and 5.2 to solve the layered 3-D dominance reporting problem.The skeleton of our structure is the same tree T described in Section 4. At each node v of T ,we store two structures: D(v), and R(v). D(v) is the structure of Lemma 5.1 built on the maximalset M(v), and R(v) is the structure of Lemma 5.2 built on the union S(v) of the maximal sets ofthe children of v. For each point p in S(v), if p comes from the maximal set of the child of v withlabel l, then, in addition to the layer p:l1 initially assigned to p, we assign a second layer p:l2 = l+1to p.The search process for a query (q1; q2; q3; L) is almost the same as described in Section 4. Thedi�erence is that, at each node v visited, we use the query (q1; q02; q3; L) on D(v) to report theproper points in M(v), where q02 is the x-coordinate of the y-successor of q2 in M(v), which can becomputed in constant time using fast fractional cascading. Suppose the jth child of v is also onthe path �. To decide which child of v should be visited, we use the double-layered 3-sided 2-Dreporting query (q1; q2; L; [1::(j� 1)]) on R(v).Notice that Lemmas 5.1 and 5.2 are valid only when the points are from a rank space. Thisis not the case here since we only have at each internal node of the primary tree a subset of theoriginal data set. However, this problem can be easily solved by using the fast fractional cascadingstructure to replace the coordinates of each point with its x- and y-ranks in that subset.Theorem 5.1. There exists a data structure such that any layered three-dimensional dominancereporting query can be handled in O(logn= log logn+ f) time using O(n) space.11



6 Handling d-Dimensional Dominance Reporting Using Dimen-sion Increasing LemmaIn this section, we extend the results in Section 5 to handle d-dimensional dominance reportingqueries on a set of n d-dimensional points, with d � 3. We do so by introducing the dimensionincreasing lemma (a similar lemma for a dynamic set of points was proved in [10]), which basicallystates that, for any k < d, if we can handle a layered range reporting (resp. counting) query ink-dimensional space, then we can handle a layered range reporting (resp. counting) query in (k+1)-dimensional space by increasing both the space and query time by a factor of O(logn= log logn).In this section, we de�ne L� = [1:: log� n] for any constant 0 < � < 1=5, and assume that we haveavailable a global look-up table of size O(n) as required by the algorithms in Section 5.Let (S;+) be a semigroup. We now de�ne what a (Q; �) data structure is. Each elemente 2 (Q; �) has a point e:p, a layer e:layer 2 L� and a semigroup element e:s 2 S. The constant �satis�es 0 < � < 1=5 and Q is a set of predicates on points. (Q; �) is assumed to support a query(q; L) 2 Q� P(L�) whose answer is Pe2(Q;�) j q(e:p)^e:layer2L e:s.Lemma 6.1. Suppose we have a (Q; �) structure. Suppose further f is an injective function frompoints to integers in single words which can be evaluated in constant time. Then there exists a(Q0; �=2) structure where Q0 is the set of predicates q0 that can be written as q0(p) = i � f(p) �j ^ q(p) for q 2 Q and integers i and j. Further, if m = j(Q0; �=2)j � n is the number of elementsin (Q0; �=2) then:1. Each element in (Q0; �=2) is stored in O(logm= log logn) (Q; �) structures.2. Each (Q; �) structure contains at most m elements.3. Given a query in (Q0; �=2), we can answer it by performing O(logm= log logn) queries in(Q; �) structures and then return the semigroup sum of the answers as result.Further the space usage besides the space usage in item 1 is O(m) and the queries to perform initem 3 can be determined in constant time per query.Proof. We make a search tree T containing the elements of (Q0; �=2) in the leaves, such that T hasdegree d = blog�=2 nc and hence height O(logm= log logn). For e 2 (Q0; �=2) we use f(e:p) as keyin T . Let v 2 T be an internal node. We keep in v a q-heap containing the keys stored to guidethe search through v. Further, we keep in v a secondary (Q; �) structure. Let e 2 (Q0; �=2) bean element stored in a leaf descendant to v which is also descendant to the child of v with labell. We then store an element e0 in the secondary structure in v with e0:p = e:p, e0:s = e:s ande0:layer = l+ d � e:layer. Note that e0:layer 2 L�.Now suppose we are given a query (q0; L0) 2 Q0�P(L�=2) where q0(p) = i � f(p) � j ^ q(p) andassume without loss of generality that i 6= j. The interval [i : : :j] identi�es a set M � T �P(L�=2)with jM j = O(logm= log logn) as follows. Let �left and �right be the two paths from the root of T tothe two leaves that respectively correspond to the successor of i and the predecessor of j. Further,let w be the lowest internal node on both �left and �right. Suppose the lth child of w is on �left andthe rth child is on �right. Then M contains the element (w; [(l+ 1)::(r� 1)]). Suppose next that vis an internal node on �left (resp. �right) which is not on �right (resp. �left). Suppose also that thelth (resp. rth) child of v is on �left (resp. �right). Then M contains the element (v; [1::l� 1]) (resp.(v; [r+1::d])). For each (v; L) 2M we perform the query (q; fl1+d �l2 2 L� j l1 2 L^l2 2 L0g) in thesecondary structure of v and then we return the semigroup sum in S of the answers to these queriesas answer. Using the q-heaps stored in the nodes of T we can �nd M in time O(logm= log logn)and the lemma follows. 12



By using the layered 3-D dominance reporting structure of Theorem 5.1 (for the dominancereporting problem where we have m points with layers from [1:: log� n] and a global look-up tableof size O(n)) as a basis and applying Lemma 6.1 d� 3 times, we immediately obtain Theorem 1.1.7 A Linear-Space Algorithms with O(logn= log log n) query time for2-D Dominance CountingIn this section, we show how to modify the data structure mentioned in Section 3.2 so that thespace usage is reduced to linear and the query performance remains the same. We consider the casewhere the coordinates of the n points are integers in [1::n]. The general case can be converted tothis one by replacing qi of a query (q1; : : : ; qd) with its xi-rank ri with respect to S. This conversioncan be performed in O(logn= log logn) time using the fusion tree technique with an additionalspace usage of O(n).Recall that in Section 3.2, we associate with each node v two structures: a router r(v) and acounter c(v). The overall size of the routers is O(n). Therefore the bottleneck in terms of spaceusage is the set of counters.We can view a router with m points as a set F of two-dimensional points in [1::m] � [1::c],and hence the corresponding counter can be viewed as a counting structure that allows a 2-Ddominance counting query on F to be handled in constant time. Let h = log n= log log n. Thesolution in Section 3.2 uses O(m=h � log� n) space. In this section, we give a more space-e�cientsolution that uses only O(m=h) space. The following theorem shows a more general result whichwill also be used for d-dimensional dominance counting.Lemma 7.1. Assume we are given m � n points F in [1::m] � [1::c]d�1. Then there exists adominance counting structure for F using O(m=h) words supporting queries in O(1) time. Thisstructure makes use of a precomputed global look-up table of size O(n).Proof. We create a tree of height 3 on the x-coordinates of the points in F , sorted by decreasingx-coordinates, in the following way (see Figure 3). At level 0 we have m leafs. The nodes at level1 have degree h and the nodes at level 2 have degree cd�1. It follows that the root node at level 3has degree m=(hcd�1).
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degree h

degree m / (hc      )

d-1

d-1Figure 3: The tree structure for the proof of Lemma 7.1For each node v at levels 1 and 2, we store a table L(v) indexed by [1::c]d�1. At entry (u2; : : : ; ud)of L(v) we store the number of points p = (p1; p2; : : : ; pd) which satisfy the following two conditions:(i) p2 � u2; : : : ; pd � ud; (ii) p1 corresponds to a leaf node in one of the subtrees rooted at thesiblings of v which are to the left of v. 13



For each node v at level 2, each entry of L(v) uses O(logn) bits. Since there are O(m=(hcd�1))nodes at level 2, the total number of words needed for all the tables of level 2 nodes is O(m=h).For each node v at level 1, O(log(hcd�1)) = O(log logn) bits are su�cient to represent eachentry of L(v). Since there are O(n=h) such nodes. The overall bit-size of the tables at level 1 isO(cd�1 log log n �m=h). For a small enough constant � > 0, O(cd�1 log logn) = O(logn) and hencethe word-cost of these tables is O(m=h).We pack the nodes at level 0 into m=h chunks, each containing h nodes that have the sameparent. Since each such node describes a point in [1::c]d�1, the number of bits required to representa chunk is O(h(d� 1) log c) = O(logn). Hence the word-cost for representing all the m=h chunksis O(m=h).Now suppose we are given a query (r1; : : : ; rd). The answer to this query is computed byaggregating the numbers we obtain along the path from the root to the leaf node that correspondsto the number r1. For the two nodes u1 and u2 on this path at levels 1 and 2 respectively, thedesired numbers can be obtained from entries (r1; : : : ; rd) in L(u1) and L(u2). At level 0, since thenumber of possible chunks is O(n), the number of points in a chunk that dominates (r1; : : : ; rd) canbe found by looking up in a global table of size O(n).8 d-Dimensional Dominance CountingThe techniques described in Section 7 can be extended to higher dimensions. As we did in thatsection, we build a tree with degree d on the �rst dimension. At each node v, we have a router thatrecord for each point in the subtree rooted at v which subtree of v's child this point comes from.Given a query q = (r1; : : : ; rn), what we need to compute at each of the nodes visited (one at eachlevel) is the number of points p = (p1; : : : ; pd) coming from the subtrees rooted at the left most kchildren of that node which satisfy p2 � r2; : : : ; pd � rd.Following the same approach as in Section 7, a router can be viewed as a set F of d-dimensionalpoints in [1::m]d�1�[1::c]. By setting e = d�1, the following lemma immediately gives Theorem 1.2.Lemma 8.1. For any e 2 [1::d], there exists a dominance counting structure for m � n points in[1::m]e� [1::c]d�e using O(mhe�2) words of memory and O(he�1) query time. The structure needsa precomputed table with O(n) words.Proof. We prove the lemma by induction on e. For e = 1, this is just Lemma 7.1. For the inductivestep, suppose Lemma 8.1 holds for e = k � 1 � 1. We show that the lemma holds for e = k. Wecreate a tree R with m leaves and degree c on the decreasing xk-coordinates of the m points in F .For each internal node u of R, we associate a dominance counting structure for e = k�1 on thepoints in the subtree rooted at u. By the induction hypothesis, the overall size of such structuresfor all the nodes in R is bounded by O(Phj=0 cj(m=cj)hk�3) = O(mhk�2).Now suppose we are given a query (r1; : : :rd), we compute the answer to the query by aggregatingthe count along the path from the root of R to the leaf node that corresponds the point whosexk-coordinate is re. Consider an internal node u on this path. Suppose its jth child is also on thepath. Then the count contributed by u is the output of the query (r1; : : : ; rk�1; j; rk+1; : : : ; rd) onthe dominance counting structure of u for e = k � 1; and this count can be computed in O(hk�2)time.Since the height of R is O(logm= log c) = O(h), the time it takes to search R is O(hk�2h) =O(hk�1). This completes the inductive step.Comment: Note that Lemma 6.1 applies to counting queries as well. It would also be possibleto obtain Theorem 1.2 by modifying the 2-D counting algorithm in Section 7 to support layers.14
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