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Abstract

We present linear-space sublogarithmic algorithms for handling the three-dimensional dominance
reporting problem and the two-dimensional range counting problem. Under the RAM model
as described in [M. L. Fredman and D. E. Willard. “Surpassing the information theoretic
bound with fusion trees”, Journal of Computer and System Sciences, 47:424-436, 1993], our
algorithms achieve O(logn/loglogn + f) query time for 3-D dominance reporting, where f is
the number of points reported, and O(logn/loglogn) query time for 2-D range counting case.
We extend these results to any constant dimension d achieving O(n(logn/loglogn)?=3)-space
and O((logn/loglog)?=2 + f)-query time for the reporting case and O(n(logn/loglogn)?=2)-
space and O((logn/loglogn)?~1!) query time for the counting case.

1 Introduction

Given a set S of d-dimensional points (d is assumed to be a constant), we wish to store these
points in a data structure so that, given a query point ¢, the points in 5 that dominate ¢, which
we will refer to as proper points, can be reported or counted quickly. A point p = (p1,p2,...,pd)
is S dominates ¢ = (¢1,42,-..,¢4) if and only if p; > ¢ for all ¢ = 1,...,d. Without loss of
generality, we assume that no two points in S have the same x-, y-, or z-coordinates. A number of
geometric retrieval problems involving iso-oriented objects can be reduced to this problem (see for
example [6]). Solutions to this problem have also been used recently in dealing with the so-called
temporal range queries on time-series data [13].

Throughout this paper, we will use n to represent the input size, f to represent the output
size (for the reporting case), and € to represent an arbitrarily small positive constant. We define
c as log® nt. Given a set S of d-dimensional points (x1,2,...,24), a point in § with the largest
x4-coordinate smaller than or equal to a number « is called the x;-predecessor of a and the one with
the smallest x;-coordinate larger than or equal to « is called the z;-successor of . The z;-rank of
a number a (with respect to 9) is defined as the number of points in § whose ;-coordinates are
smaller than or equal to a. The z;-rank of a d-dimensional point is defined as the z;-rank of its x;-
coordinate. Let i < j be two integers, we will use [i..j] to denote the set of integers {i,i+1,...,5}
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and [7..7]F to denote [i..j] x -+ x [i..5]. Given a tree, we will assign a label to each node v, which
N ——’
is equal to the number of siblfngs of v to its left.

Our model of computation is the RAM model as described in [8], in which it is assumed that
each word consists of w bits and the size of the data set never exceeds 2%, i.e. w > logn. In
addition, arithmetic and bitwise logical operations take constant time. We assume each coordinate
of a point is given as an integer in a single word.

In [4], Chazelle and Edelsbrunner proposed two linear-space algorithms to handle the 3-D dom-
inance reporting problem. The first achieves O(logn + flogn) query time and the second achieves
O(log? n+ f) query time. These two algorithms were later improved by Makris and Tsakalidis [9] to
yield O((loglog n)?logloglog n+ floglog n) and O(logn+ f) query time respectively. The previous
best linear-space algorithm for the 2-D dominance counting problem is due to Chazelle [3], which
achieves O(logn) query time.

In [12], Shi and JaJa improved the query performance of the O(logn + f) time algorithm of
Makris and Tsakalidis for the reporting case to O(logn/loglogn 4 f) query time and that of the
O(logn) time algorithm of Chazelle for the counting case to O(logn/loglogn) query time, but at
the expense of increasing the storage costs in both cases by a factor of log® n.

In this paper, we show how to reduce the storage cost required for handling the 3-D reporting
and the 2-D counting problems while maintaining the same query performance as in [12], thus
obtaining the fastest query time algorithms using linear space. In fact, our 3-D reporting algorithm
solves a more general “layered” 3-D reporting in linear space and O(logn/loglogn + f) query
time. Since answering a general range counting query is equivalent to answering a constant number
of dominance counting queries, our results for the dominance counting problems is valid for the
general range counting problems as well. We also extend these results to the high dimensional case.
The results of this paper are summarized as the following two theorems.

Theorem 1.1. For any constant d > 3 there exist data structures such that any d-dimensional
dominance reporting query can be handled in O((logn/ loglogn)?=24 f) time using O(n(log n/ loglog n)?=3)
space.

Theorem 1.2. For any constant d > 2 there exist data structures such that any d-dimensional
range counting query can be handled in O((logn/loglogn)?=1) time using O(n(logn/loglogn)=2)
space.

In Section 2, we summarize some previously known results that will be heavily used in this
paper. We briefly review the non-linear space algorithms (that appeared in [12]) in Section 3 and
describe the new linear-space algorithm for the 3-D reporting case in Section 4. In Section 5, we
give a linear-space solution to the more general layered 3-D dominance reporting problem and we
extend it to higher dimensions in Section 6. The 2-D counting case and its extensions to higher
dimensions are discussed in Sections 7 and 8 respectively.

2 Preliminaries

2.1 Q-heaps and Fusion Trees

)-heap and fusion trees achieve sublogarithmic search time on one-dimensional data. The following
two lemmas are shown in [7] and [8] respectively.

Lemma 2.1. Assume that in a database of n elements, we have available the use of precomputed
tables of size o(n). Then it is possible to construct a fusion tree data structure of size O(n) space,



which has a worst-case O(logn/loglogn) time for performing member, predecessor and rank oper-
ations.

Lemma 2.2. Suppose () is a subset with cardinality m < 10g1/5n lying in a larger database S
consisting of n elements. Then three exists a Q-heap data structure of size O(m) that enables
insertion, deletion, member, and predecessor queries on ) to run in constant worst-case time,
provided access is available to a precomputed table of size o(n).

Note that in Lemma 2.2, the look-up table of size o(n) is shared among all the Q-heaps built
on subsets of 5.

2.2 Fast Fractional Cascading

Let T be a tree rooted at w and having a maximum degree of ¢ at each node. A node v in T
contains a sorted list L(v) of elements. The total number of elements in all the lists is n. Such a
tree is called a catalog tree [2]. An iterative search on T is defined as follows.

Given a query item z, and an embedded tree F of T, which is rooted at w and has p
nodes, find the predecessor of x in each of the lists associated with the nodes of F.

The fractional cascading technique [5] can be used to organize 7" and its associated lists so that
an iterative search can be performed in O(¢(n) + ploge) time, in which #(n) is the time it takes to
identify the predecessor of  in L(w) and log ¢ is the cost of finding the predecessor of x in each of
the remaining p — 1 lists. This technique uses O(n) space. Note that when ¢ is not a constant, the
time spent at each node is not a constant either.

In [12], we combined the Q-heap technique and the fractional cascading and obtained the fast
fractional cascading structure, which achieves constant search time at each node when the maximum
degree of T is polylogarithmic in n. The storage cost, however, is increased to nlog®n. This result
was improved in [14] by reducing the storage cost to linear while maintaining the same query
performance. This result is summarized in the following lemma.

Lemma 2.3. Let T be a catalog tree rooted at w with a total number n of items in its associated
lists, and let ¢ = log®n be the maxzimum degree of a node in T'. There exists a O(n)-space data
structure derived from T such that an iterative search operation specified by a query item x and an
embedded tree I with p nodes can be performed in O(t(n)+ p) time, where t(n) is the time it takes
to identify the predecessor of x in L(w).

2.3 Handling 3-Sided 2-D Reporting Queries Using Cartesian Trees

A Cartesian tree [15] C' is a binary tree defined on a finite set of 2-D points, say pi,p2,. .., P,
sorted by their x-coordinates. The root of this tree is associated with the point p; with the largest
y-coordinate. Its left child is the root of the Cartesian tree built on py,...,p;—1, and its right child
is the root of the Cartesian tree built on p;y1,...,Ps.

In [12], we explained how the Cartesian trees can be modified to efficiently handle the 3-sided
2-D reporting queries, i.e. to identify the points (z,y) that satisfy « < 2 < b and y > ¢, where a,
b, and ¢ are three numbers provided by the query, and showed the following Lemma.

Lemma 2.4. Let C' be the modified Cartesian tree that corresponds to a set of n 2-D points. A 3-
sided 2-D range query given as (a,b, d) can be handled in O(t(n)+ f) time using D(C') of size O(n),
where t(n) is the time to identify the nodes corresponding to the successor of a and the predecessor
of b, and D(C) is a transformation of C' to support the nearest common ancestor search in constant
time.



In the rest of this paper, whenever we refer to a Cartesian tree, we mean its transformation
that is suitable for 3-sided 2-D range reporting queries. We can also use the Cartesian tree to index
a set of d-dimensional points (z1,22,...,24) based on any two of their dimensions. If the points
are first sorted by the z;-dimension and are recursively picked during the construction of the tree
according to their z;-coordinates, then the resulting Cartesian tree is called an (z;, z;)-Cartesian
tree.

3 Previous O(log/loglogn + f)-Query Time Algorithms for 3-D
Dominance Reporting and 2-D Dominance Counting

In this section, we briefly review the data structures proposed in [12], upon which our new algo-
rithms are based.

3.1 An O(nlog®n)-Space and O(log /loglogn + f)-Query Time Algorithm for 3-D
Dominance Reporting

The skeleton of the data structure is a balanced search tree of degree ¢ = log®n (thus of height
O(logn/loglogn)) built on the points in 5 sorted by decreasing z-coordinates. A Q-heap K(v) is
used to index the keys stored at each internal node v. Let M(v) be the mazimal set of the points
stored in the subtree rooted at v, excluding the points that are already associated with the ancestors
of v (the maximal set of a point set R is the set of points p € R such that for all p’ € R where p # p/
the projection of p onto the x-y plane is not dominated by the projection of p’ onto the x-y plane).
In addition to the Q-heap, each node v is associated with several Cartesian trees: an (x,z)-Cartesian
tree D(v) and ¢ (x,y)-Cartesian trees Dy(v), Da(v), ..., Do(v). The (x,2)-Cartesian tree D(v) stores
the mazimal set M(v) of v; and D;(v) stores the union of the maximal sets associated with the
leftmost ¢ children of v. It is easy to see that the storage cost of this data structure is O(nlog® n),
since the tree 7" and the associated Q-heaps requires O(n) space, and each point is stored in at
most one (z, z)-Cartesian tree and ¢ (z,y)-Cartesian trees.

To answer a 3-D dominance query specified by the point (¢1, ¢z, ¢3), we first identify, in O(logn/
loglog n) time using the Q-heaps, the path II from the root to the leaf that corresponds to the
z-successor of gz. We then search the tree recursively, starting from the root. Note that we do not
visit any node that is in a subtree rooted at the right sibling of a node on II. For each node v
visited, finding the f(v) proper points in M(v) is equivalent to a 3-sided 2-D range query due to
the properties of a maximal set (see [9] for more details) and thus can be handled in O(f(v)) time
using D(v) (assuming that we already know the leftmost and rightmost leaf nodes of D(v) that are
in the query range). Suppose the kth child of v from the left is on Il (kK = ¢+ 1 if v is not on II).
Note that we cannot afford to visit the each of the leftmost & — 1 children of v. Instead, we visit
such a proper child u only if there is at least one proper point in M(u). We do so by searching
Dy_1(v) for proper points and mark the children of v they come from. Since each point reported
from Dy_1(v) will also be reported at a child w of v, each point may be reported twice.

We build a fusion tree on the x-coordinates to index the points stored in each of the ¢ + 1
Cartesian trees associated with the root w. Furthermore, we connect all the Cartesian trees using
a modified fractional cascading structure of size O(nlog®n) (see [12] for more details). These
additional data structures do not asymptotically increase the storage cost and allow each Cartesian
tree associated with a non-root node to be searched in constant time, plus the time it takes to
retrieve proper points (Lemma 2.4).



3.2 An O(nlog®n)-Space and O(logn/loglogn)-Query Time Algorithm for 2-D
Dominance Counting

As in the 3-D dominance reporting case, we use a balanced tree T of degree ¢ (thus of height
h = O(logn/loglogn)) as the skeleton of our data structure for handling the 2-D dominance
counting query. The tree T is built on the x-ranks of the points in 5 sorted in decreasing order.
Fach internal node v of T' is associated with two-secondary structures: a router r(v) and a counter
¢(v). The router r(v) stores, for each point p in the subtree rooted at v, the label of the child of
v to whose subtree p belongs. These labels are sorted in order of the decreasing y-coordinates of
the corresponding points. Let n(v) be the number of points stored in the subtree rooted at ». The
counter ¢(v) is a two-dimensional array of size (m(v)—1) X ¢, where m(v) = [n(v)logc/logn]. The
item ¢(v)[¢][j] stores the number of labels among those of the first ilogn/log ¢ points in r(v) which
are smaller than or equal to j. In addition to the tree T, we have two fusion trees built respectively
on the increasing x- and y-coordinates of the points in 5.

Since each entry of a router is a number in [1..c], it can be encoded using log ¢ bits. Thus the
space required for maintaining all the routers is O(n) words. Each item in a counter occupies a
single word, and therefore the space used to stored all the counters is O(en) words.

To answer a query ¢ given as (q1,¢z2), we first replace ¢; and ¢y with their respective x-
and y-ranks r; and ry with respect to the points in 5 using the two fusion trees. We then in
O(logn/loglogn) time identify the path II from the root of T' to the leaf node that corresponds
to the y-successor of r9. For each node v on II, suppose the label of its child » which is also on
the path is j. We can compute in constant time the number of points stored in the subtrees rooted
at the leftmost j — 1 subtrees by looking up an appropriate entry in the counter ¢(v) and a global
table of size O(n) that is shared by the search processes at all the nodes on II. Details can be found
in [12].
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Figure 1: An example for the 2-D dominance counting query where d = 2, =9, h = 2, and ¢ = 3.

Figure 1 gives an example on how such a 2-D dominance counting is handled. Consider the
query (2,4). We calculate the answer to this query along the path from the the root to the leaf
node [, which corresponds to the x-coordinate 2. At root a, since its child d is also on the path, we
compute the number of points contributed by the subtree rooted at b and ¢ by counting among the
first 6 entries of r(a) the number of entries whose value is in [1..2]; and we get 4. Since only two of
these 6 entries have value 3, we continue to visit node d, which is also on the path, and count among



the first 2 entries of 7(d) the number of entries whose value is in [1..1], which is 1. We continue to
search node [ and count zero point there. Hence the answer to the query is 44+ 140 = 5.

4 A Linear-Space Algorithm with O(logn/loglogn+ f) Query Time
for 3-D Dominance Reporting

In this section, we improve upon the result in Section 3.1 to achieve O(logn/loglogn + f) query
time and linear space. Two factors contributed to the non-linear space requirement of the data
structure described there. First, the fractional cascading technique uses non-linear space. Second,
with each node v, ¢ (z,y)-Cartesian trees were needed to ensure that we can in constant time
find the proper children. The first difficulty no longer exists since we now have at hand the fast
fractional cascading structure [14]. The rest of this section is devoted to overcoming the second
difficulty.

Let S(v) be the union of the maximal sets associated with the children of ». We associate
with each point p = (p1,p2,p3) in S(v) a layer p.l, which is the label of the child of » from whose
maximal set that point comes. To achieve linear space for the 3-D dominance reporting problem,
it is sufficient to solve the following problem.

Problem 4.1. Build a data structure for S(v) such that, given a query (x1,22,h), where h € [1..c],
the k(v) layers, from each of which there is at least one proper point p, which satisfies p1 > x1,p2 >
xq, and p.l < h, can be identified in O(k(v)) time.

We now discuss how to handle this problem using only O(|S(v)|) space. Let uy,ug,...,u. be
the children of v in 7" and let M(w;) = {(2i1,¥i1,21), (Zi2, Y525 % 2)s - o oy (Tings Yings Zing ) OT
i=1,2,...,¢. Since M(u;) is maximal, we can assume without loss of generality that ;1 < 2;2 <
v < Ty and Y1 > Yo > 0 > Yins > Yimg+1 = —o0. Now consider the projections of these
points to the x-y plane. We define a set G(v) of vertical segments in the x-y plane as follows:
Gi(v) = {(@ij3¥ij41,¥)7 = 1. oni} and G(v) = U,y . Gi(v). We say the segments in G;(v)
are from layer ¢. Figure 4 gives an example of such a set of segments, with segments from different
children depicted using lines of different thicknesses. It is obvious that |S(v)| = |G(v)|. We denote
|G(v)] as N(v).

(x1,1¥1,
I (x1,2%1,2)
(x2,1¥2,1)
(x31¥3,2) (x1,31,3
(x2,2¥2,2)
(x3.2¥3,2)
(x2,3¥2,3)
PSR (S
(x1,4¥1,4)

|

Figure 2: The dominance query and orthogonal segment intersection.

Lemma 4.1. Let s = (20, +00;y0) be a semi-infinite horizontal line. For each i € {1,...,¢c}, u
contains at least one point whose projection to the -y plane dominates (xo,yo) if and only if there



exists a vertical segment (x; ;3 Y; i+1,Yi,;) € G(v) that intersects s and furthermore, there is at most
one such vertical segment.

Proof. If a segment (2 ;5 +1,¥i;) € G(v) intersects s, then by definition, (2;;,¥; ;) dominates
(z0,%0). On the other hand, suppose (z;;,y; ;) dominates (zg,y0). Then either the segment
(573 Yi j+1, ¥i,;) intersects s, or yo < yj41 # —oo, which means j < n;. Therefore, the point
(25 j+1,Y;j+1) also dominates (z¢,yo). Repeating this process ensures that we can find one verti-
cal segment corresponding to w; which intersects s. Finally, since the projections of the vertical
segments corresponding to u; do not overlap, s can only intersect one of these segments. O

As a result of Lemma 4.1, identifying the proper children of v in O(k(v)) time can be achieved
if we design an indexing scheme on G/(v), such that given s and an integer h, the segments from
Gi(v), with ¢ = 1,2,..., h, which intersect s can be reported in O(k(v)) time.

Note that this is not simply a segment intersection reporting problem, as we cannot afford to
report every segment in G/(v) that intersects s. This is the case because some of them may come
from other layers than those in [1..h]. Nevertheless, we can solve this problem by performing a
segment intersection counting query followed by a table look-up operation. This segment intersec-
tion counting query is defined as computing the number of segments in G(v) that intersect s (these
segments are not necessarily from the layers in [1..h]).

We first discuss the table look-up operation. The list of proper children of » with respect to a
3-D dominance reporting query can be represented as a vector r = (k(v), 1, I2, ..., [y()), where
I;, with ¢ = 1,...,k(v), is the index of a proper child. Obviously, the bit-cost of this vector is
O(clogc). Once we obtain such a vector, we can retrieve from it the index of the proper children
one by one in O(k(v)) time.

Lemma 4.2. The vector r is uniquely defined by the y-rank g of yo in the set of endpoints of G(v),
the value of h, and the number k of segments in G(v) which intersect s.

Proof. Let y1,y2,...,Yn(v) be the list of y-coordinates of the points in G/(v) in sorted order. Con-
sider two consecutive such y-coordinates y; and y;11. It is easy to see that the list of segments in
G/(v) sorted from left to right which intersect the query segment s = (zq, +00; o), with yo varying
in the range [y;, y;41), remains the same. Among these segments, the rightmost & intersect s. And,
knowing h, we can uniquely remove those coming from the rightmost ¢ — h children of ». O

Since only one segment from G;(v) could possibly intersect s, the value of k is bounded by c.
The value of & is also bounded by ¢ and the y-rank of yg is bounded by N(v). Therefore, we can
create a look-up table containing N(v) words, each corresponding to a possible y-rank of yo. The
log n bits of each such word is sufficient to record for each possible combination of £ and h, the
vector 7 that has been uniquely determined (c®logc < log n for large enough n).

Among the three indices ¢, h, and k, g can be computed in constant time by applying the
fast fractional cascading technique on the y-coordinates of the points in (J,_; .M(u;), and h is
known using the Q-heap associated with ». Thus we only need to show that the value of k can be
computed in constant time. We first give the following lemma.

Lemma 4.3. A 3-D dominance counting query on a set R of m < log®n points can be handled in
constant time using O(m) space.

Proof. An answer to such a query is uniquely decided by the ranks of the query point in R with
respect to the x-, y-, and z-coordinates, which can be computed by applying the Q-heap techniques
in constant time and O(m) space. These three ranks are used to index a m x m x m look-up table



to obtain the correct answer. Since m < 10g1/5 n, any possible answer can be represented using only
O(log log n) bits. Therefore all m® (not necessarily distinct) possible answers can be compacted
into a single word (m?loglogn < log n for large enough n). O

We now explain how to compute the value of k£ in constant time. We partition the endpoints of
the segments in G/(v) into N(v)/c horizontal stripes P, ..., Py(y/c, €ach containing ¢ endpoints.
Let Bi,..., BN(v)/c—1 be the boundaries such that B; separates P; and P;;. We associate with
each boundary the maximal subset 5; of G(v) such that every segment in 5; intersects B;, and
with each stripe P; the maximal subset T} of G/(v) such that every segment in 7} crosses the entire
stripe P;. We also denote the subset of segments in GG(v) that are completely inside P; as R;. Note
that a segment can belong to up to N(v)/c — 1 subsets associated with the boundaries and up
to N(v)/e— 2 subsets associated with the stripes. However, the size of each S; or T; is bounded
by ¢. The total size of all the subsets associated with the boundaries is equal to the number of
intersections between the segments in G(v) and the N(v)/c—1 boundaries. Notice that each G;(v),
with ¢ = 1,...,¢, contributes at most N(v)/c — 1 such intersections. Thus the total size of all
the subsets associated with the boundaries is O(N(v)). Similarly, the total size of all the subsets
associated with the stripes is also O(N(v)). And finally, 32, n()/ [l = O(N(v)).

Given a query segment s = (2g, +00; yo), we can determine, using the fast fractional cascading
structure, the stripe P;4q within which it falls. Without loss of generality, suppose this is not the
first nor the last stripe, and hence the two boundaries B; and B;;; exist. The number of segments
in G/(v) that intersect s can be computed as A+ B — C' + D, where A and B are respectively the
numbers of segments in 5; and 5;4 that intersect s, C'is the number of segments in 7; that intersect
s, and D is the number of segments in R; that intersect s. Computing A and B is equivalent to a 2-
D dominance counting query on the lower endpoints of the segments in 5; and the upper endpoints
of the segments in 541 respectively; computing C' is equivalent to a 1-D dominance counting query
on the x-coordinates of the segments in 7’4; and computing D is equivalent to a 3-D dominance
counting query on the segments (z;y1,y2) in R;4q in the form (2 > 20,11 < yo,y2 > yo). Since the
size of each of the sets involved is bounded by O(log®n), by Lemma 4.3, these computation can be
performed in O(1) time and in linear space.

Theorem 4.1. There exists data structures such that any three-dimensional dominance reporting
query can be handled in O(logn/loglogn + f) time using O(n) space.

5 Layered 3-D Dominance Reporting

In this section, we present an algorithm for a more general layered 3-D dominance reporting problem,
whose solution enables an efficient extension of the results to higher dimensions. Within this setting,
each of the n 3-D point p in 9 is assigned a layer p.l, in addition to its coordinates. Let P([1..c])
denote the power set of [1..c]. Given a query as (¢1,¢z,¢s3, L), where L € P([l..c]), a point p is
proper if and only if p dominates ¢ and, in addition, p.l € L. By assigning all the points in 5 to the
same layer and letting L contain only that layer, we obtain the standard 3-D dominance reporting
problem. In sections 5.1 and 5.2, we discuss the algorithms for the layered and double-layered 3-
sided 2-D reporting problems, which will form the building blocks for our algorithm for the layered
3-D dominance reporting problem (the concept of layers was also used in [11] and [10]). These
algorithms build on known data structures for the non-layered case (see e.g. [1] for a survey). Our
overall strategy is the same as in Section 3.1 except that we replace the (z,y)-Cartesian trees with
the new data structures.



5.1 Layered 3-Sided 2-D Reporting

Suppose F'is a set of m < n two-dimensional points with x-coordinate p.z € [1..m], y-coordinate
p.y € [1..m] and layer p.l € [1..c]. The layered 3-sided 2-D reporting problem is defined as follows.

Problem 5.1. Develop a data structure for F' such that, given a query (a,b,d, L) with a,b,d €
[1..m] and L € P([l..c]), we can quickly report the points p that satisfy a < p.x <b, p.y > d, and
plelL.

We will store L as a bit vector in a single word. Further, we will assume that we are allowed to
use a constant number of global look-up tables of size O(n) words. Intuitively, the reader should
view F' as the the points stored in the (z,y)-Cartesian trees of a node as described in Section 3.1.
The above problem can be reduced to the following layered range-maximum problem.

Problem 5.2. Develop a data structure for F such that, given a query (a,b, L) with a,b € [1..m]
and L € P([1..c]), we can quickly report the point p such that p.y is mazimized under the conditions
a <pax<bandplel.

We will later show how to handle Problem 5.2 in constant time and linear space. With such
an algorithm, we can handle the layered 3-sided 2-D range query in O(f) time using linear space,
f being the output size, as follows. We first find the point p with x-coordinate between a and b
such that p.y is maximized under the condition that p.l € L. If p.y < d, then no point in S(v) is
proper. Otherwise, we report the point p and recursively apply two layered range-maximum queries
(a,p.x—1,L) and (p.x + 1,b, L).

What remains to be shown is that a layered range-maximum query on F can be handled in
constant time. We first give a non-linear space solution, and then discuss how to reduce the space
to linear.

5.1.1 A Non-Linear Space Solution

We build a binary tree T' on the increasing x-coordinates of the m points in F. We associate with
each leaf node v of T the two-dimensional arrays v.left[0..logm][1..c] and v.right[0..log m][1..c].
Let u be the ancestor of v whose distance to v is [ (the distance between v and itself is 0). Then
v.left[l][j] stores the maximum y-coordinate of the points with layer j corresponding to the leaf
nodes between the leftmost leaf node of the subtree rooted at u and and the leaf node v. Similarly,
v.right[l][j] stores the maximum y-coordinate of the points with layer j corresponding to the leaf
nodes between » and the rightmost leaf node of the subtree rooted at u.

Now suppose we are given a query (a,b, L) with ¢ < b. Let v, and v, be two leaf nodes
corresponding to the two points whose x-coordinates are a and b respectively. We can in constant
time locate the nearest common ancestor u of v, and v;. Let h be the height of u (the height of a
leaf node is 0). Then the point that satisfies the query is either the point in v,.right[h — 1][/] with
maximum y-coordinate where [ € L or the point in vp.left[h — 1][I] with maximum y-coordinate
where [ € L.

It follows that, to show that a layered range-maximum query can be handled in constant time,
it is sufficient to show that, given an array X[l..c] of elements in [1..m], we can preprocess X into
a data structure so that, given a subset L of [1..c], the value max{X[/]|l € L} can be computed in
constant time.

To do so, we replace each entry in X with its rank among the elements in X. Each possible array
thus can be represented using O(loglognlog®n) bits. Since each possible set L of layers specified
by a query can be represented using O(log®n) bits, we can construct a global look-up table of



O(n) entries, each occupying a word and corresponding to one of the 20(loglognlog®ntlog®n) — 0 (p)
possible instances of the query, i.e. a possible combination of an array X and a set L, and storing
the answer to that query.

The overall space required (beside the global look-up table) for this solution is O(m logmlog n)
because each of the m leaf nodes is associated with an array of size O(logmlog® n).

5.1.2 Reducing the Space to Linear

We now describe how to reduce the space usage to O(m). We sort the points in F' by their x-
coordinates and group them into blocks each with O(logm log®* n) points. For each block and for
each layer, we take the point in the block with maximum y-coordinate. We then build a structure
T" just described over these points. Since the number of such points is O(m/(logmlog®n)), the
size of T" is O(m). Given a query (a,b, L), the interval [a,b] can be partitioned into three parts
[a..(l—1)], [l..r], and [(r + 1)..b], in which [l..r], if it exists, corresponds to the maximum sequence
of consecutive blocks that are fully contained in [a..b]. Therefore, the output of the query (a,b, L)
is one of the three points reported by the queries (a,{ — 1, L), ({,r, L), and (r + 1,b, L), with the
largest y-coordinate. The (I,7, L) query can be handled in constant time using T".

What remains is to describe how we query each block B of points in constant time. This is a
special layered range-maximum problem in which the problem size | B| is at most O(log m log*“ n).
First, we replace the y-coordinates of the points with their ranks among the y-coordinates. Next,
we build a tree T(B) with degree O(log®n) (for a sufficiently small constant 6 > 0) and thus
constant height on the x-coordinates of the points in B. Since the tree is of constant depth, we can
solve the query on B in constant time as long as the following problem can be solved in constant
time: given a node v, and two integers kq, ko € [1..10g‘S n] with k1 < k2 and L € P([1..c]), how to
decide in constant time the point with the maximum y-coordinate which is stored in the children
of v with labels between k; and ks, and is from a layer in L. Again, the number of possible query
instances is bounded by 20((oglogn)?log nt2loglogn-tlog®n) — O(n) and thus the answer to each such
instance can be obtained in constant time using a global look-up table of size O(n). Therefore, any
layered range-maximum query on any block can be handled in linear space and constant time and
Lemma 5.1 follows.

Lemma 5.1. There exists a data structure such that any layered three-sided two-dimensional re-
porting query as defined in Problem 5.1 can be handled in O(f) time using linear space.

5.2 Double-layered 3-Sided 2-D Reporting

We now discuss the double-layered 3-sided 2-D reporting problem, which is more general than the
one addressed in Section 5.1. For this new problem, each of the m point p = (p.z,p.y) in F is
assigned two layers p.ly and p.ls. A double-layered 3-sided 2-D reporting problem is defined as:

Problem 5.3. Develop a data structure for F' such that, given a query (a,b,d, Ly, Ly), where
L1, Ly € P([1..c]), we can quickly report the proper points p, which satisfy a < p.x < b, p.y > d,
ply € L1, and p.ls € Ls.

Following the same argument as in Section 5.1, we can reduce the above problem to the following
double-layered range maximum problem.

Problem 5.4. Develop a data structure for F' such that, given a query (a,b, L1, Ly) with a,b €
[1..m] and Ly, Ly € P([1..c]), we can quickly report the points p such that p.y is mazimized under
the conditions a < p.x < b, p.ly € Ly, and p.ly € L.
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Our algorithm for Problem 5.4 is almost identical to the one for Problem 5.2 and runs in constant
time. So we will only comment on the necessary changes to that algorithm. We start from the non-
linear space solution. For each leaf node v, we replace v.left[0..log m|[1..c] and v.right[0..log m][1..c]
with two three-dimensional arrays v.left]0..logm][1..c][1..c] and v.right[0..logm][1..c][1..c], each en-
try storing a maximum value corresponding to a distinct pair of layers. To show that a double-
layered range-maximum query can be handled in constant time, it is sufflicient to show that, given
an array X[1..c][l..c] of elements in [1..m], we can preprocess X into a data structure so that, given
L1, Ly € P([1..c]), the value max{X [l1][l2]|l1 € L1,lz € L3} can be identified in constant time. As
we did in Section 5.1, we solve this problem by using a global-lookup table. This is possible because
the number of possible query instances is 20 (loglogn log”* n+2log n) — O(n). The space used, aside
from this global-lookup table is O(m logm log® n).

To reduce the space to linear, we group the points into blocks, each with O(log m log*® n) points.
For each block, we pick for each possible pair of layers, the point with maximum y-coordinate. The
data structure described in the previous paragraph is then used to index the points thus picked
and the space used is O(m). Following similar argument as in Section 5.1, the double-layered range
maximum problem on each block can be solved in constant time using linear space provided that
we have available a global look-up table of size 20((loglogn)log® n+2loglognt2log“n) — ()(p),

Lemma 5.2. There exists a data structure such that any double-layered three-sided two-dimensional
reporting query as defined in Problem 5.3 can be handled in O( f) time using linear space.

5.3 Layered 3-D Dominance Reporting

Note that by replacing the ¢ (x,y)-Cartesian trees associated with each of the internal node v in
the data structure described in Section 3.1 with the data structure for solving the layered 3-sided
2-D reporting problem (m is equal to the number of points in the union of the maximal sets of
v’s children), we immediately obtain an alternative O(n)-space and O(logn/loglogn + f)-query
time solution for the 3-D dominance reporting problem. However, in order to make the solution
extendable to higher dimensions, we need a stronger result than in Theorem 4.1. We now describe
how to use Lemmas 5.1 and 5.2 to solve the layered 3-D dominance reporting problem.

The skeleton of our structure is the same tree T' described in Section 4. At each node v of T,
we store two structures: D(v), and R(v). D(v) is the structure of Lemma 5.1 built on the maximal
set M(v), and R(v) is the structure of Lemma 5.2 built on the union S(v) of the maximal sets of
the children of v. For each point p in S(v), if p comes from the maximal set of the child of v with
label I, then, in addition to the layer p.l; initially assigned to p, we assign a second layer p.ly = [+ 1
to p.

The search process for a query (¢1, ¢z, ¢3, L) is almost the same as described in Section 4. The
difference is that, at each node v visited, we use the query (¢1,¢5,¢3, L) on D(v) to report the
proper points in M (v), where ¢} is the x-coordinate of the y-successor of g3 in M(v), which can be
computed in constant time using fast fractional cascading. Suppose the jth child of » is also on
the path II. To decide which child of v should be visited, we use the double-layered 3-sided 2-D
reporting query (¢1, ¢z, L,[1..(j — 1)]) on R(v).

Notice that Lemmas 5.1 and 5.2 are valid only when the points are from a rank space. This
is not the case here since we only have at each internal node of the primary tree a subset of the
original data set. However, this problem can be easily solved by using the fast fractional cascading
structure to replace the coordinates of each point with its x- and y-ranks in that subset.

Theorem 5.1. There exists a data structure such that any layered three-dimensional dominance
reporting query can be handled in O(logn/loglogn + f) time using O(n) space.
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6 Handling d-Dimensional Dominance Reporting Using Dimen-
sion Increasing Lemma

In this section, we extend the results in Section 5 to handle d-dimensional dominance reporting
queries on a set of n d-dimensional points, with d > 3. We do so by introducing the dimension
increasing lemma (a similar lemma for a dynamic set of points was proved in [10]), which basically
states that, for any k£ < d, if we can handle a layered range reporting (resp. counting) query in
k-dimensional space, then we can handle a layered range reporting (resp. counting) query in (k+1)-
dimensional space by increasing both the space and query time by a factor of O(logn/loglogn).
In this section, we define £¢ = [1..1log® n] for any constant 0 < € < 1/5, and assume that we have
available a global look-up table of size O(n) as required by the algorithms in Section 5.

Let (5,4) be a semigroup. We now define what a (Q,¢) data structure is. Each element
e € (9Q,¢€) has a point e.p, a layer elayer € £ and a semigroup element e.s € 5. The constant €
satisfies 0 < € < 1/5 and Q is a set of predicates on points. (Q,¢€) is assumed to support a query
(¢, L) € @ x P(LF) whose answer is > _c(0 y|q(c.p)Ac layere L, €-5-

Lemma 6.1. Suppose we have a (Q,€) structure. Suppose further f is an injective function from
points to integers in single words which can be evaluated in constant time. Then there exists a
(Q',€/2) structure where Q' is the set of predicates ¢' that can be written as ¢'(p) = ¢ < f(p) <
J AN q(p) for ¢ € Q and integers i and j. Further, if m = |(Q',€/2)| < n is the number of elements
in (Q',€/2) then:

1. Fach element in (Q',€/2) is stored in O(logm/loglogn) (Q,¢€) structures.
2. Fach (Q,¢€) structure contains at most m elements.

3. Given a query in (Q',¢/2), we can answer it by performing O(logm/loglogn) queries in
(Q, €) structures and then return the semigroup sum of the answers as result.

Further the space usage besides the space usage in item 1 is O(m) and the queries to perform in
item 3 can be determined in constant time per query.

Proof. We make a search tree T' containing the elements of (Q’,¢/2) in the leaves, such that 7" has
degree d = [log? n] and hence height O(logm/loglogn). For e € (Q',¢/2) we use f(e.p) as key
in T. Let v € T be an internal node. We keep in v a gq-heap containing the keys stored to guide
the search through v. Further, we keep in v a secondary (Q,¢) structure. Let e € (Q',¢/2) be
an element stored in a leaf descendant to » which is also descendant to the child of » with label
[. We then store an element ¢’ in the secondary structure in v with €’.p = e.p, €’.s = e.s and
e’ layer = [ + d - e.layer. Note that €'.layer € L°.

Now suppose we are given a query (¢, L') € Q' x P(L/?) where ¢/(p) = i < f(p) < j Aq(p) and
assume without loss of generality that ¢ # j. The interval [i...j] identifies a set M C T x P(L/?)
with | M| = O(logm/loglog n) as follows. Let Iljeg and Ilyigne be the two paths from the root of T' to
the two leaves that respectively correspond to the successor of ¢ and the predecessor of j. Further,
let w be the lowest internal node on both Iljer; and Ighe. Suppose the [th child of w is on Iler and
the rth child is on Ilighe. Then M contains the element (w,[({41)..(r — 1)]). Suppose next that v
is an internal node on Iljes; (resp. Ilyighe) which is not on Ilighe (resp. Mege). Suppose also that the
Ith (resp. rth) child of v is on Iljeg (resp. Iyight). Then M contains the element (v, [1../—1]) (resp.
(v,[r+1..d])). For each (v, L) € M we perform the query (¢,{li+d-lz € L*|l; € LAly € L'}) in the
secondary structure of v and then we return the semigroup sum in 5 of the answers to these queries
as answer. Using the q-heaps stored in the nodes of 7" we can find M in time O(logm/loglogn)
and the lemma follows. O
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By using the layered 3-D dominance reporting structure of Theorem 5.1 (for the dominance
reporting problem where we have m points with layers from [1..log® n] and a global look-up table
of size O(n)) as a basis and applying Lemma 6.1 d — 3 times, we immediately obtain Theorem 1.1.

7 A Linear-Space Algorithms with O(logn/loglogn) query time for
2-D Dominance Counting

In this section, we show how to modify the data structure mentioned in Section 3.2 so that the
space usage is reduced to linear and the query performance remains the same. We consider the case
where the coordinates of the n points are integers in [1..n]. The general case can be converted to
this one by replacing ¢; of a query (¢1, ..., qq) with its z;-rank r; with respect to S. This conversion
can be performed in O(logn/loglogn) time using the fusion tree technique with an additional
space usage of O(n).

Recall that in Section 3.2, we associate with each node v two structures: a router r7(v) and a
counter ¢(v). The overall size of the routers is O(n). Therefore the bottleneck in terms of space
usage is the set of counters.

We can view a router with m points as a set I of two-dimensional points in [1..m] X [1..¢],
and hence the corresponding counter can be viewed as a counting structure that allows a 2-D
dominance counting query on F' to be handled in constant time. Let h = logn/loglogn. The
solution in Section 3.2 uses O(m/h - log®n) space. In this section, we give a more space-efficient
solution that uses only O(m/h) space. The following theorem shows a more general result which
will also be used for d-dimensional dominance counting.

Lemma 7.1. Assume we are given m < n points I in [1.m] x [1..c]*". Then there exists a
dominance counting structure for F using O(m/h) words supporting queries in O(1) time. This
structure makes use of a precomputed global look-up table of size O(n).

Proof. We create a tree of height 3 on the x-coordinates of the points in F, sorted by decreasing
x-coordinates, in the following way (see Figure 3). At level 0 we have m leafs. The nodes at level
1 have degree h and the nodes at level 2 have degree ¢?~1. It follows that the root node at level 3
has degree m/(he®™1).

Level 3

degreem/ (hd1 )

Level 2
Level 1

Level O

Figure 3: The tree structure for the proof of Lemma 7.1

For each node v at levels 1 and 2, we store a table L(v)indexed by [1..c]*"!. Atentry (uz, ..., uq)
of L(v) we store the number of points p = (p1, p2, . . ., pqa) which satisfy the following two conditions:
(i) p2 > ug,...,pq > ug; (ii) p1 corresponds to a leaf node in one of the subtrees rooted at the
siblings of v which are to the left of v.
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For each node v at level 2, each entry of L(v) uses O(logn) bits. Since there are O(m/(hc?™1))
nodes at level 2, the total number of words needed for all the tables of level 2 nodes is O(m/h).

For each node v at level 1, O(log(hc?1)) = O(loglogn) bits are sufficient to represent each
entry of L(v). Since there are O(n/h) such nodes. The overall bit-size of the tables at level 1 is
O(c?'loglogn - m/h). For a small enough constant € > 0, O(c?"!loglogn) = O(logn) and hence
the word-cost of these tables is O(m/h).

We pack the nodes at level 0 into m/h chunks, each containing A nodes that have the same
parent. Since each such node describes a point in [1..c]?1, the number of bits required to represent
a chunk is O(h(d — 1)logc) = O(logn). Hence the word-cost for representing all the m/h chunks
is O(m/h).

Now suppose we are given a query (71,...,74). The answer to this query is computed by
aggregating the numbers we obtain along the path from the root to the leaf node that corresponds
to the number ry. For the two nodes uq and us on this path at levels 1 and 2 respectively, the

desired numbers can be obtained from entries (r1,...,74) in L(uy) and L(ug). At level 0, since the
number of possible chunks is O(n), the number of points in a chunk that dominates (r1,...,74) can
be found by looking up in a global table of size O(n). O

8 d-Dimensional Dominance Counting

The techniques described in Section 7 can be extended to higher dimensions. As we did in that
section, we build a tree with degree d on the first dimension. At each node v, we have a router that
record for each point in the subtree rooted at v which subtree of »’s child this point comes from.
Given a query ¢ = (r1,...,7,), what we need to compute at each of the nodes visited (one at each
level) is the number of points p = (p1,...,pq) coming from the subtrees rooted at the left most k
children of that node which satisfy po > ro,...,pq > 74.

Following the same approach as in Section 7, a router can be viewed as a set F' of d-dimensional
points in [1..m]?" 1 x[1..c]. By setting e = d—1, the following lemma immediately gives Theorem 1.2.

Lemma 8.1. For any e € [1..d], there exists a dominance counting structure for m < n points in
[1..m]° x [1..¢]7¢ using O(mh*=?) words of memory and O(h*~') query time. The structure needs
a precomputed table with O(n) words.

Proof. We prove the lemma by induction on e. For e = 1, this is just Lemma 7.1. For the inductive
step, suppose Lemma 8.1 holds for e = k£ — 1 > 1. We show that the lemma holds for e = k. We
create a tree R with m leaves and degree ¢ on the decreasing xj-coordinates of the m points in F.

For each internal node u of R, we associate a dominance counting structure for e = k£ — 1 on the
points in the subtree rooted at w. By the induction hypothesis, the overall size of such structures
for all the nodes in R is bounded by O(E?:o cd(m/c)RWF=3) = O(mhF=2).

Now suppose we are given a query (71, ...74), we compute the answer to the query by aggregating
the count along the path from the root of R to the leaf node that corresponds the point whose
xg-coordinate is r.. Consider an internal node w on this path. Suppose its jth child is also on the
path. Then the count contributed by u is the output of the query (r1,...,7%5—1,7, Tkt1,-..,74) ON
the dominance counting structure of u for e = k — 1; and this count can be computed in O(h¥~2)
time.

Since the height of R is O(logm/loge) = O(h), the time it takes to search R is O(h*~2h) =
O(h*=1). This completes the inductive step. O

Comment: Note that Lemma 6.1 applies to counting queries as well. It would also be possible
to obtain Theorem 1.2 by modifying the 2-D counting algorithm in Section 7 to support layers.
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