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Using social information can be an efficient way to respond to changing situations 

or to learn skills. Other benefits of foraging in a group, such as social facilitation, have 

also been reported. Furthermore, individuals foraging near conspecifics may use acoustic 

communication to mediate interactions. Many bat species (Order Chiroptera) are 

gregarious, and many tropical frugivorous bats rely on seasonally-abundant foods such 

that following conspecifics to a food source could benefit “followers” without harming 

“leaders.” Animal-eating bats do not typically share food, but information obtained from 

experienced foragers could help facilitate development of prey acquisition skills in young 

bats. Additionally, communicative vocalizations serving various social functions have 

been reported in diverse bat species.  

Despite the opportunities for social learning and information transfer that many 

bats experience, few studies have attempted to determine if these phenomena occur in 



  

bats. Similarly, despite research on echolocation and some communicative calls, the 

context and function of social calls emitted by flying, foraging bats have received 

relatively little study. In this dissertation, I examine interactions between individuals in a 

foraging context and the impact of these interactions on the individuals’ behavior. 

Specifically, I used pairs of big brown bats (Eptesicus fuscus) to test whether 

insectivorous bats can acquire a new foraging skill via social learning and what social 

cues might facilitate learning. I then describe the context of and attribute function to 

social calls emitted by bats in pairs. Finally, I examine the effects of social context on the 

foraging behavior of the frugivorous short-tailed fruit bat (Carollia perspicillata) 

presented with a food-finding task.  

My results provide the first evidence of the role of social learning (via attention to 

feeding buzzes and interaction with experienced individuals) in the development of 

foraging skills in young insectivorous bats. I also report a repertoire of social calls 

produced by foraging big brown bats and present evidence that males use social calls to 

defend food and increase their foraging success. Finally, I present evidence that social 

facilitation increases foraging performance in short-tailed fruit bats. These findings 

contribute to our knowledge of the social aspects of foraging in group-living animals.  
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Introduction 

Relatively long-lived animals, particularly those whose roosts or food sources 

may change seasonally and over the course of a lifetime, should benefit from the ability 

to acquire new skills and learn new information throughout their lives. Flexibility, 

innovation, and learning ability should be especially important for animals with these 

characteristics. Animals that are able to use social information (e.g., watching, following, 

imitating, listening) in addition to individual learning (e.g., trial-and-error) can acquire 

skills that are not innate and respond more appropriately in unpredictable environments 

(Cavalli-Sforza & Feldman 1983, Boyd & Richerson 1985).  Social learning has been 

defined and categorized in a variety of ways but can be broadly defined as occurring 

“when individuals learn from information generated by the behavior of other individuals” 

(Giraldeau & Caraco 2000, p. 254). In contrast, individual learning is based solely upon 

private information (Giraldeau & Caraco 2000).   

In reality, many skills likely emerge through a combination of instinct, individual 

trial-and-error or exploration, and social information transmission (Wakano 2004), with 

animals modifying their acquisition mode(s) to best fit the environment and demands of 

their current circumstances. Group-living animals, especially, may benefit from gaining 

information based on the behavior of conspecifics (Cavalli-Sforza & Feldman 1983, 

Boyd & Richerson 1985).  This might include obtaining social information in a variety of 

ways, such as learning which food sources are safe for consumption based on olfactory or 

taste cues from roost-mates (e.g., Galef 1988), or learning a new way of finding or 

accessing food through observation of or interactions with a knowledgeable 

conspecific(s) (e.g., Lachlan et al. 1998, Rapaport & Ruiz-Miranda 2002, May & 
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Reboreda 2005, Thornton & McAuliffe 2006).  Obtaining information in these ways 

might benefit the observer by preventing it from harm caused by ingesting unpalatable 

items or increasing its foraging efficiency, respectively.  

While the assumption is often made that information must flow from individuals 

with prior knowledge of a situation to naïve individuals, animals can gain important 

information from conspecifics under a variety of circumstances (Bonnie & Earley 2007), 

including by observing individuals who, up until moments earlier, were also naïve. Thus, 

the presence of a skilled demonstrator is not necessary for social information to be 

exchanged (Danchin et al. 2004, Bonnie & Earley 2007). Furthermore, the presence of 

other individuals can sometimes hinder an animal’s foraging success even in the absence 

of directly competitive or aggressive behavior simply by distracting the naïve individual 

or by allowing it to steal food that it did not find on its own (Lefebvre & Girardeau 

1994).  

In addition to passively exchanging information with other individuals in a 

foraging context, animals may directly communicate with one another. Communication 

can be defined as information being conveyed from a sender to a receiver via a signal, 

and the subsequent impact of the information on the receiver’s behavior (Bradbury & 

Vehrencamp 2011). Signals sent and received in a foraging situation might serve to 

facilitate group cohesion (e.g., Wilkinson & Boughman 1998), recruit others to a food 

source (e.g., Mahurin & Freeberg 2009), or defend a food source (e.g., Barlow & Jones 

1997, Gros-Louis 2004, see Bradbury & Vehrencamp 2011). If the sender is successful in 

communicating, related responses by the receiver might include approaching the caller or 

food source, or leaving or avoiding the feeding area. 
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Many of the more than 1,200 described species of bats (Order Chiroptera) are 

gregarious, spending much time roosting, foraging, seeking hibernacula and caring for 

young in the company of conspecifics (e.g., Guthrie 1933, Davis & Hitchcock 1965, 

Wilkinson 1985).  Furthermore, many tropical frugivorous bat species rely on foods that 

are abundant during one season but absent during the remainder (e.g., Heithaus et al. 

1975, Fleming 1982), meaning that following conspecifics to a food source in a season of 

plentiful fruit would help the “followers” while not necessarily harming the “leaders.” 

Animal-eating bats, on the other hand, do not typically share food, but prey acquisition is 

a skill that must be acquired as young animals wean. Information obtained from more 

experienced foragers could help facilitate this process for young bats. 

Despite the opportunities for social learning and information transfer that many 

bats experience, relatively few studies have attempted to determine if these phenomena 

occur in bats. Gaudet and Fenton (1984) demonstrated that three species of captive 

insectivorous bats learned a novel foraging task significantly faster with a trained 

conspecific than through training by humans, and Wilkinson (1987) showed that naïve 

lesser spear-nosed bats (Phyllostomus discolor) found the single accessible food cup 

among sixteen faster when searching with a knowledgeable bat than without.  A study of 

evening bats (Nycticeius humeralis) indicated that individuals of this species exchange 

information by following one another to foraging sites or roosts (Wilkinson 1992).  

Similarly, Kerth & Reckardt (2003) demonstrated that Bechstein's bats (Myotis 

bechsteinii) exchange information about the suitability of new roosts. Ratcliffe and ter 

Hofstede (2005) demonstrated that short-tailed fruit bats (Carollia perspicillata) are more 

likely to eat a novel flavor of food if they have been exposed to a bat that has recently 
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consumed this food.  In addition, Page and Ryan (2006) found that the frog-eating bat, 

Trachops cirrhosus, acquired a novel foraging behavior more quickly in the presence of a 

trained conspecific than alone or with another naïve bat.   

The capacity of vocalizations to convey information to others has been 

demonstrated in some species of bats. For example, feeding buzzes (echolocation calls 

associated with honing in on and capturing prey) have been shown to attract conspecifics 

(Gillam 2007— Tadarida brasiliensis), and echolocation calls can encode information 

about individual identity, age, and sex (Masters et al. 1995— Eptesicus fuscus, Kazial et 

al. 2008— Myotis lucifugus, Jones & Siemers 2011). In addition, diverse bat species have 

been shown to use context-specific communication calls to serve a variety of functions 

(Fenton 1985, Pfalzer & Kusch 2003), including those related to mating (e.g., Bradbury 

1977— Hypsignathus monstrosus, Davidson & Wilkinson 2004— Saccopteryx 

bilineata), recruiting or locating conspecifics (e.g. Wilkinson & Boughman 1998—

Phyllostomus hastatus, Chaverri et al. 2010— Thyroptera tricolor, Arnold and Wilkinson 

2011— Antrozous pallidus), mother-offspring communication (e.g., Esser & Schmidt 

1989— Phyllostomus discolor, Balcombe 1990— Tadarida brasiliensis), conveying 

distress (e.g., Russ et al. 1998— Pipistrellus pipistrellus), and defending foraging patches 

(e.g., Barlow & Jones 1997— Pipistrellus pipistrellus). However, social calls emitted in a 

foraging context have received relatively little research attention, despite their potential 

capacity to mediate inter-individual interactions among feeding conspecifics. 

The goal of this dissertation is to examine interactions between individuals in a 

foraging context and the impact of these interactions on the individuals’ behavior. 

Specifically, I use pairs of bats to test whether young and adult insectivorous bats can 
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acquire a new foraging skill via social learning and what social cues might facilitate 

learning. I then describe and attribute function to social calls emitted by bats in pairs. 

Finally, I examine the effects of social context on the foraging behavior of a neotropical 

frugivorous bat presented with a food-finding task. 

In Chapter 1, I test whether big brown bats (Eptesicus fuscus) can learn a novel 

foraging task by interacting with knowledgeable conspecifics. To determine this, I allow 

juvenile and adult naïve bats to interact freely with either trained bats that are capturing 

tethered insects (experimental group) or with untrained bats (control group), and then 

assess the ability of naïve bats to capture tethered insects. I find that while no bat in the 

control group learns the task, a majority (64%) of bats in the experimental group, 

including juveniles with little or no prior foraging experience, show evidence of learning 

to attack and/or take the insect. I also find that bats attacking the prey item show 

increased interaction with demonstrators and fly closer to demonstrators during feeding 

buzzes at the time they display learning. These findings show that interacting with and 

gaining information from experienced individuals may play an important role in the 

acquisition of foraging skills by insect-eating bats. 

In addition to extracting information from acoustic cues produced by other 

echolocating individuals (e.g., feeding buzzes), bats may also emit and react to 

vocalizations with a communicative function. In Chapter 2, I examine the context and 

function of social calls emitted by foraging big brown bats. I describe a repertoire of 

seven types of vocalizations produced by bats flying in pairs in a laboratory flight room 

and find that call emission varies based on the sex, age, and foraging skills of bats 

present. I find a higher prevalence of social calls when males are present and that 
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individuals fly closer together when emitting some call types. I also report on a male-

emitted call sequence, produced exclusively in a foraging setting, which repels other 

individuals, is associated with foraging success by the caller, and elicits social call 

responses from male and female bats. These findings reveal the importance of inter-

individual acoustic communication among foraging bats. 

While testing pairs of individuals can provide important information about social 

interactions, learning, and communication, the more complex dynamic within a larger 

group of animals who can share a food source allows us to address additional questions 

about social foraging behavior. In Chapter 3, I investigate social influences, inter-

individual associations, and individual behavioral patterns in foraging short-tailed fruit 

bats (Carollia perspicillata) marked with passive integrated transponder (PIT) tags. By 

testing bats in groups and individually, I find that bats have greater foraging success in a 

group than alone, but animals with prior experience with the food’s location do not 

increase the foraging speed of naïve bats and in some cases slow their feeding rates. I 

find no evidence of stable foraging associations, but I do find that males are more likely 

to feed close together in time than expected and feed faster than females. In addition, I 

find consistent foraging patterns among individuals, with the same few male bats feeding 

first in most trials.  

The results in this dissertation provide the first evidence of the role of social 

learning in development of foraging skills in young insectivorous bats, as well as the 

mechanism (attending to feeding buzzes, and increased in-flight interaction with 

experienced bats) by which bats learn. In addition, I show that big brown bats produce a 

variety of communicative vocalizations when foraging and that males use social calls to 
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defend food sources and increase their foraging success. Finally, I present evidence that 

social facilitation increases foraging performance in short-tailed fruit bats. These findings 

contribute to the fields of information transfer, acoustic communication, and behavioral 

ecology by increasing our knowledge regarding the social aspects of foraging in group-

living animals.  
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Chapter 1: Social learning of a novel foraging task by big brown 

bats, Eptesicus fuscus 

Abstract 

Acquiring information via observation of others can be an efficient way to respond to 

changing situations or to learn skills, particularly for inexperienced individuals. Many bat 

species are gregarious, yet few studies have investigated their capacity for learning from 

conspecifics. We tested whether big brown bats can learn a novel foraging task by 

interacting with knowledgeable conspecifics. In experimental trials, 11 naïve bats (7 

juveniles, 4 adults) interacted freely with trained bats that were capturing tethered 

mealworms. In control trials, 11 naïve bats (7 juveniles, 4 adults) flew with untrained 

bats. Naïve bats were then assessed for their ability to capture tethered mealworms. 

While no bat in the control group learned the task, a significant number of experimental 

bats, including juveniles with little or no experience foraging, showed evidence of 

learning. Eighty-two per cent of experimental bats and 27% of control bats directed 

feeding buzzes (echolocation calls associated with prey capture) at the mealworm. 

Furthermore, seven experimental bats (64%) showed evidence of learning by attacking 

and/or capturing the mealworm, while no bat in the control group attacked or captured 

the prey. Analyses of high-speed stereo video recordings revealed increased interaction 

with demonstrators among bats attacking or capturing the mealworm. At the time they 

displayed evidence of learning, bats flew closer together during feeding buzzes than 

during other portions of trials. Our results demonstrate that social interaction with 
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experienced bats, and listening to feeding buzzes in particular, may play an integral role 

in development of foraging skills in bats. 

 

 

Introduction 

Relatively long-lived animals, particularly those whose roosts or food sources change 

seasonally and over the course of a lifetime, would benefit from the ability to acquire new 

skills and learn new information throughout their lives. Flexibility, innovation and 

learning ability should be especially important for these types of organisms. Acquiring 

skills that are not innate and responding to changing situations require animals to use 

individual learning or social information (e.g. watching, following, imitating or 

listening), or some combination of the two to behave appropriately (Cavalli-Sforza & 

Feldman 1983; Boyd & Richerson 1985). Group-living animals especially may benefit 

from gaining information based on the behaviour of other individuals. This might include 

obtaining social information about roosting, nesting or foraging sites, learning which 

foods are safe for consumption based on cues from others, or learning a new way of 

accessing food through interactions with knowledgeable conspecifics (e.g. Galef & 

Laland 2005; Bonnie & Earley 2007; Seppänen et al. 2007). Obtaining information in 

these ways might benefit the observer by allowing it to conserve energy that would be 

required otherwise to find a resource alone, preventing it from harm caused by ingesting 

unpalatable items, or increasing its foraging efficiency, respectively.  

Young animals, especially, may benefit from social information when they are 

first learning to forage and locate roosts as parental care comes to an end. Various young 

mammals have been shown to learn foraging techniques from their mothers (e.g. golden 
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hamsters, Mesocricetus auratus: Previde & Poli 1994; black rats, Rattus rattus: Terkel 

1996). However, young animals can also learn foraging-related skills from individuals 

other than their mothers. For example, Thornton (2008) found that meerkat (Suricata 

suricatta) pups learn about novel foods from helpers that are feeding them, young-of-the-

year perch (Perca fluviatilis) learn to eat a new food item from experienced demonstrator 

fish (Magnhagen & Staffan 2003), and juvenile ringdoves (Streptopelia risoria) learn 

food choice and foraging techniques from both kin and nonkin (Hatch & Lefebvre 1997). 

Many of the more than 1100 described species of bats (order Chiroptera), 

including big brown bats, are gregarious, spending much time roosting, foraging, seeking 

hibernacula and caring for young in the company of conspecifics (e.g. Guthrie 1933; 

Davis & Hitchcock 1965). Despite the opportunities for social learning and information 

transfer that bats could experience (Wilkinson & Boughman 1999), few studies have 

experimentally tested these phenomena in bats. When tested, bats have shown the 

capacity to socially learn methods of obtaining food (E. fuscus, Myotis lucifugus and 

Antrozous pallidus: Gaudet & Fenton 1984; Trachops cirrhosus: Page & Ryan 2006), 

food location (Phyllostomus discolor: Wilkinson 1987) and flavour preference (Carollia 

perspicillata: Ratcliffe & ter Hofstede 2005). In addition, there is evidence that 

Nycticeius humeralis (Wilkinson 1992) and Myotis bechsteinii (Kerth & Reckardt 2003) 

exchange information about roosting (both species) and foraging (N. humeralis) sites. 

While these studies demonstrate that bats can learn socially in some instances, 

few species of bats have been tested, and none of these studies focused on learning in 

juveniles. Furthermore, previous social learning studies in general often do not quantify 

the mechanism(s) by which social learning has occurred. While it is not well established 
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that young E. fuscus typically forage with their mothers (Brigham & Brighman 1989 

report one such instance), this species frequently forages in the vicinity of other bats. This 

foraging situation may allow young individuals to gain foraging skills via interaction with 

more experienced individuals. In addition, food availability may change seasonally or 

from year to year, making it beneficial for adults to acquire foraging information from 

one another as well. If bats are learning from conspecifics, then flying near, interacting 

with, and listening to knowledgeable individuals may maximize the amount of 

information they receive. With these factors in mind, the following questions motivated 

our research. (1) Does learning from conspecifics play a role in the development of 

foraging skills in E. fuscus? (2) If juveniles learn socially, is this ability limited to young 

bats, or can adults also learn a new foraging task from other bats? (3) Is the extent of 

interaction with experienced bats associated with likelihood of social learning? To 

address these questions, we tested whether young E. fuscus with little or no previous 

experience flying or foraging could learn a novel foraging task by observing, listening to, 

and interacting with experienced conspecifics. We also tested the ability of adult bats, 

which had experience capturing free-flying prey in the wild, to learn the same novel 

foraging task through exposure to trained conspecifics. Finally, we analysed 

synchronized audio and high-speed video recordings from these interactions to look for 

behavioural patterns potentially related to social learning and to quantify any association 

between the amount of inter-bat interaction (smaller inter-bat distances, following or 

chasing behaviour), auditory food-related cues and likelihood of learning. 
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Methods 

Study Subjects 

We selected 14 naïve young (estimated ages: 21–51 days (mean ± SD = 34 ± 10 

days) and eight adult (≥ 1 year old) big brown bats to be  ‘observer’ bats.  ‘Observer’ 

refers to the naïve individual whose ability to learn a novel foraging task, after exposure 

to others, was assessed. Except for one set of twins born in captivity, all bats were wild-

caught in Maryland, U.S.A. Juvenile ages were estimated from epiphyseal gap 

measurements and forearm length (Kunz 1974; Burnett & Kunz 1982), by physical 

appearance (e.g. naked versus with fur), and by comparison to known-age individuals 

born in the laboratory. Five bats were estimated to be between 21 and 26 days old, four 

were between 32 and 40 days of age, and four were between 41 and 51 days old when 

they began their time in the experiment (one bat’s age was not recorded). Age and 

experimental start date of bats in control and experimental groups was balanced (mean ± 

SD age: control: 35 ± 12 days; experimental: 35 ± 9 days), and we assigned individuals 

from the two sets of twins to opposite conditions (control versus experimental) from 

those of their siblings.  

 We used 12 adult and one young E. fuscus as ‘demonstrators’ for the experimental 

or control group.  ‘Demonstrator’ refers to bats that were either (1) naïve, but had 

experience with the flight room (control demonstrators), or (2) were trained to capture a 

tethered prey item (experimental demonstrators), and were flown with observers during 

experiments. We trained six adult bats (two males, four females) to catch a tethered 

mealworm, Tenebrio molitor, hanging from the ceiling of a 7 x 6 x 2.5 m anechoic flight 

chamber (Fig. 1.1) to serve as demonstrators for the experimental group. Bats were 
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trained by feeding them mealworms from a tether and repeatedly drawing their attention 

to tethered mealworms while restricting their food intake outside of training sessions. We 

also used one adult female that learned to take a tethered mealworm as an observer in 

2006 and then served as a demonstrator the following year. In addition, we used one 

young male (~5.5 weeks old) as a demonstrator after he learned to catch mealworms as 

an observer.  

 

Figure 1.1. Schematic of flight room set-up showing positioning of high-speed 

cameras, ultrasound-sensitive microphones and tethered mealworm. Drawing not to 

scale.  

To ensure that bats would actively search for the mealworm, rather than rely 

primarily on spatial memory to find the prey, the location of the mealworm was varied 

from day to day during training and trials. The mealworm was generally within 1–2 m of 

the centre of the flight room. Once a bat took the tethered mealworm, there was no food 

item available in the room until the researcher presented a new mealworm on the tether. 
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We used the remaining five adults (two males, three females), which had experience 

flying in the flight room but did not know how to catch tethered mealworms, as 

‘demonstrators’ for the control group. We never observed control demonstrators emitting 

buzzes towards or attempting to capture the mealworm.  

Bats were maintained on a reverse 12:12 h light:dark cycle (lights off from 0830 

until 2030 hours) and, when not flying in experiments, were housed in cages containing 

three or four bats each. This research was conducted with approval from the Institutional 

Animal Care and Use Committee at the University of Maryland (protocol R-05-15) under 

a state collecting permit. As a condition of the permit, bats were not released at the 

conclusion of the study. Some individuals were, however, subsequently used for other 

experiments. 

 

 

Experimental Procedure 

Young E. fuscus learn to fly between 18 and 35 days of age (Kurta & Baker 

1990), and we tested juveniles about 1–3 weeks following collection from the wild (bats 

that could already fly when captured), or about 1–3 weeks after they became volant (bats 

born in captivity or collected when prevolant). Adults began testing approximately 2 

months after capture. Prior to the start of the experiment, we released prevolant juveniles 

in the flight room on several days until they learned to fly, as measured by successfully 

flying in several continuous loops around the room and landing on the wall rather than 

the floor. We tested a total of 22 observer bats. Sixteen bats (10 juveniles and six adults) 

were tested during July–September 2006, and the remaining six (four juveniles and two 

adults) were tested during July–August 2007. Half of the observers were assigned to a 
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control group, and the remaining 11 to an experimental group. Each group consisted of 

seven juveniles and four adults. Juveniles were tested for up to 18 days, while adults were 

tested for up to 10 days. Bats that did not eat during testing were fed in their cages later in 

the day after, but not immediately following, testing (typically at least 2 h later). Bats 

always had access to fresh water. Juvenile observers received the same number of 

mealworms during testing that they received during the nonexperimental period (to avoid 

food deprivation). Adult observers received about one-third of the usual number of 

mealworms during testing. This level and duration of food deprivation was not harmful to 

the animals, as evidenced by their continued active behaviour, lack of excessive weight 

loss (< 20% loss from prestudy weight), and return to pretesting weight with no apparent 

ill effects following the study. 

 

Experimental Trials 

On each day of testing, we allowed each observer in the experimental group to 

interact freely with a trained bat (demonstrator) while the demonstrator captured and 

consumed 15 mealworms from a tether approximately 1 m in length. This constituted one 

test session. With the exception of 1 day on which two sessions were conducted for the 

same bats (one in the morning and one in the afternoon), observer bats were flown in one 

session per day. If a bat hid out of view in the room, we retrieved and released it or 

placed it on the wall. After each mealworm was taken, we immediately suspended 

another tethered mealworm from the ceiling. Bats were free to fly or land on the wall 

between prey-capture events. We alternated the demonstrator bat with which each 

observer flew such that observers were generally not paired with the same demonstrator 2 
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days in a row and they were flown with each available trained demonstrator roughly an 

equal number of times. 

 

Control Trials 

 

We treated bats in the control group in the same manner as those in the 

experimental group, except that they were flown with untrained (naïve) bats. Control 

sessions lasted 7 min each, during which the  ‘demonstrator’ and the observer could 

interact freely. Trained bats frequently captured all 15 mealworms in less than 7 min, and 

attempts to allow untrained bats to fly for longer resulted in the bats landing on the walls 

or ceiling, rather than continuing to fly. To give control bats the same cues as 

experimental bats, we climbed a step ladder and appeared to present tethered mealworms 

at least seven but no more than 15 times during each control trial. We alternated the 

demonstrator with which each observer flew such that observers were generally not 

paired with the same demonstrator 2 days in a row and they were flown with each 

available control demonstrator equally often. Early in the experiment, two juveniles in the 

control group were inadvertently flown with a trained demonstrator for one 

session. These errors represent less than 1% of all test sessions and did not affect the 

outcome of the study.  

Except for the first 2–3 days of the study in 2006, we gave each observer bat (in 

experimental and control groups) the opportunity to fly alone in the presence of a 

mealworm for 3 min immediately following interaction with the demonstrator. The 

purpose of this was to assess behaviours potentially related to learning to capture the 

mealworm. Because it was often not possible to distinguish observer from demonstrator 

bats during test sessions, learning behaviour of observers might have gone unnoticed if 
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bats were only observed in pairs. If, during its time alone, a bat roosted on the wall for 

extended periods (e.g. > 1 min) or hid out of view, an experimenter approached the bat to 

encourage it to fly again. If the bat directed a feeding buzz (detected using either a 

Pettersson D100 or D240x heterodyne bat detector, Pettersson Electronik, AB, Uppsala, 

Sweden, set to 35 kHz) towards the mealworm, or otherwise appeared to show interest in 

the tethered mealworm (e.g. repeatedly flying near the mealworm), we extended the 3 

min period until the bat stopped flying (2006) or until an additional 3 min passed (2007). 

If the bat directed a buzz towards the mealworm during the additional 3 min, we extended 

the time by another 3 min. If a bat learned to capture the mealworm, we tested it alone by 

offering 10–20 tethered mealworms on two additional consecutive days to ensure that it 

retained this behaviour.  

 

Data Collection 

Set-up and equipment 

     We tested bats in a large, carpeted flight room (Fig. 1.1), with walls and 

ceiling covered with acoustic foam. The room was equipped with low-intensity and long 

wavelength overhead lighting (> 650 nm, red filters, Reed Plastics, Rockville, MD, 

U.S.A.) to minimize availability of visual cues (Hope & Bhatnagar 1979). The 

experimenters also used red light-emitting diode (LED) headlamps to observe behaviour 

and keep track of bats during experiments. We made synchronized stereo video and audio 

recordings using two high-speed (240 frames/s in 2006; 250 frames/s in 2007) infrared-

sensitive video cameras (in 2006: Kodak MotionCorder Analyzers, Model 1000, Eastman 

Kodak Company, San Diego, CA, U.S.A.; in 2007: Photron PCI-R2, Photron USA, Inc., 
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San Diego) and two ultrasound-sensitive microphones (UltraSound Advice, London, 

U.K.) amplified (UltraSound Advice) and recorded at 250 kHz/channel (Wavebook, 

IOTech, Cleveland, OH, U.S.A.; Fig. 1.1). We recorded 8 s segments of synchronized 

high-speed video and audio from experimental and control sessions. We also viewed 

trials in real-time using an infrared-sensitive Sony NightShot camcorder (Sony 

Electronics, San Diego). 

 Social learning 

   We scored the response of each observer bat into one of four categories with 

regard to how it interacted with the mealworm (henceforth referred to as category): 1: no 

buzz, 2: buzz only, 3a: attack without capture, or 3b: attack with capture. We used a 

combination of visual and auditory information (see Table 1.1) to categorize responses, 

and we based our assessment on times when bats were flying alone or when we could 

otherwise clearly identify which bat was the observer. For example, if it appeared that an 

observer might have buzzed at the mealworm while flying with a demonstrator, but we 

were uncertain which bat emitted the buzz, we did not attribute buzzing behaviour to the 

observer bat at this time. For subsequent analyses, we combined bats that attacked with or 

without capture (categories 3a and 3b) into one group (category 3). We made this 

decision because juvenile bats that made repeated attacks on the mealworm (emitting 

feeding buzzes while flying towards the mealworm and knocking it from the string) 

appeared to identify the mealworm as a prey item and attempted to capture it, but lacked 

the coordination to successfully take the prey from the tether. When being trained to take 

tethered mealworms, adult bats frequently produced buzz sequences towards the prey and 

knocked the prey to the ground prior to mastering the capture task. Because juveniles 
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were fed each day, some individuals may have lacked sufficient motivation to continue 

attempting to capture the mealworm as their motor coordination increased. Thus, we 

considered bats to have displayed evidence of learning socially about acquiring the prey 

if they produced feeding buzzes and attacked the prey item (knocked it to the ground), 

regardless of whether they successfully took prey from the tether during the experimental 

period. We did this because our aim was not to assess the flight skills and coordination of 

individuals (which is likely to be acquired only via individual learning/practise), but to 

assess whether the bats were learning to recognize and approach a prey item by observing 

conspecifics (learn socially).We used a Fisher’s exact test to compare evidence of 

learning from individuals in control versus experimental groups.  
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Table 1.1 

Learning categories used for big brown bats 

Category  Observed behaviour   Evidence Interpretation 

1. No Buzz No feeding buzzes or 

attempts to capture 

mealworm 

No buzz audible on bat 

detector; no visual evidence 

of bat approaching 

mealworm 

No learning 

Bat does not notice or 

recognize mealworm as a prey 

item 

2. Buzz only Feeding buzz(es) 

emitted while 

approaching tethered 

mealworm 

Detected by bat detector, 

combined with visual 

observation of the bat’s 

location and direction 

through NightShot camera 

Investigation 

Bat investigates mealworm but 

does not attack or capture it; 

bat may or may not recognize 

mealworm as a prey item 

3a. Attack 

without 

capture 

Makes contact with 

mealworm (i.e. 

hitting and knocking 

it from the tether) 

while producing a 

feeding buzz 

Detected via bat detector and 

visual observation through 

camera 

Learning (but lacks motor 

skills for successful capture) 

Bat recognizes mealworm as 

prey item and attacks it, but 

lacks the skills necessary to 

capture it 

3b. Attack 

with capture 

Successful, repeated 

capture and 

consumption of the 

mealworm from the 

tether 

Detected via bat detector, 

observation through camera, 

and subsequent chewing 

sounds/visual observation of 

bat chewing combined with 

absence of mealworm from 

string 

Learning (with motor skills 

for successful capture): 

Bat recognizes the mealworm 

as a prey item and shows the 

skills necessary to capture and 

consume it 
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   Flight behaviour 

  We tested whether increased inter-bat interaction was associated with increased 

likelihood of learning the foraging task. To quantify level of inter-bat interaction during 

trials, we analysed high-speed videos to assess both chasing/following behaviour and in-

flight inter-bat distances. We predicted that there would be an association between 

observer bats flying close to demonstrator bats and learning the foraging task. If naïve 

bats attend to the feeding behaviours of knowledgeable bats, or if knowledgeable bats 

behave competitively towards naïve bats as naïve bats learn a foraging task, then we 

would expect shorter inter-bat distances and a higher prevalence of following or chasing 

behaviour during trials in which observer bats that eventually learned the task were 

flying. Furthermore, we would expect bats that attacked or captured the prey item 

(category 3) to fly closer to demonstrator bats and engage in chasing/following behaviour 

more frequently than bats in category 1 (no evidence of learning) throughout the 

experiment. We also examined whether observer–demonstrator flight distance decreased 

over time only for category 3 bats, which could indicate that as observers fly increasingly 

close to demonstrators or follow them more frequently, they are more likely to acquire 

information from demonstrators and learn the task. This result, if found, might also 

indicate an increased level of competition between observers beginning to learn the task 

and demonstrators.  

We conducted video analysis on 145 (8 s) recordings from 22 observer bats. Some 

category 2 and 3 bats that never successfully consumed a tethered mealworm eventually 

stopped displaying buzzing and attacking behaviour. All such individuals were juveniles 
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and may have given up and waited to be fed later in the day after repeated unsuccessful 

capture attempts. Trials occurring from this point forward are not included in the 145 

analysed recordings. Aside from these trials, we used all available recordings for category 

3 bats (N = 67 recordings from 7 bats) and a minimum of six recordings per bat, 

including first, middle and last days (defined below) as available for category 1 (N = 52 

recordings from 10 bats) and 2 (N = 26 recordings from 5 bats) bats. We only included 

portions of recordings in which both bats were flying and visible in both camera views 

within the calibrated space and did not include recordings with fewer than 200 frames 

(~800 ms) meeting these criteria. In cases with more than one usable recording from the 

same bat on the same day, we combined data from these recordings for analyses of inter-

bat interactions. In total, these 145 recordings came from 99 distinct test sessions (29 

from category 3 bats, 22 from category 2 bats, and 48 from category 1 bats). The total 

number of frames used in the analyses was 113 710, and the mean ± SD number of 

frames used per session was 1149 ± 944, with number of frames ranging from 226 to 

5531.  

To account for any behavioural changes over time, sessions were divided into 

three ordered periods: (1) the first day that a bat flew in the experiment, or the first day 

with a useable recording, as long as it was not after the third day in the experiment; (2) 

any days between the days described in period 1 and period 3; and (3) the last day of 

flying (category 1) or buzzing/attacking/catching days (categories 2 and 3), which was 

the last day of flying for bats in category 1 (or the last available day, up to 3 days back), 

or days on which category 2 and 3 bats buzzed at, attacked and/or captured the 

mealworm. Days after a category 2 or 3 bat had first emitted buzzes at the mealworm but 
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did not do so on that day were not included in the analyses. For one control bat in 

category 2 (a juvenile that died after 5 days of testing), only one analysable day was 

available, and this was both the first day of testing and the first day that the bat buzzed at 

the mealworm; this session was counted as time period 3. 

Using a custom Matlab programme that allowed us to mark and plot the three-

dimensional flight trajectories of each bat (see Chiu et al. 2008), we calculated the mean 

in-flight inter-bat distance between observer and demonstrator bats for each video file 

analysed. We used a generalized linear mixed model (GLMM) to compare mean 

distances in different learning categories and time periods. This analysis accounted for 

the repeated measures nature of most of the data (we had more than one data point for 20 

of the 22 bats tested) by considering bat ID in the model.  

To test our hypothesis regarding chasing/following behaviour, we considered a 

combination of the angle between bats’ flight paths (inter-bat angle) and inter-bat 

distance to determine how often bats in each learning category flew in close, 

following/chasing configurations with demonstrators. Using position data from video 

analysis (described above), we calculated the proportion of each analysed test session that 

bats flew in a following formation (as opposed to converging or diverging flight) with an 

inter-bat angle of less than 30° and an inter-bat distance of less than 1 m simultaneously. 

This flight configuration represents one bat tightly following or chasing the other. 

Because the data were not normally distributed and contained many zeroes, we compared 

the percentage of sessions with following occurring at least 10% of the time (i.e. in ≥ 

10% of useable frames) versus those with following occurring less than 10% of the time 

between bats in each of the three learning categories and across time. We chose a 10% 



 

 25 

 

criterion because the overall mean percentage of frames representing the following 

configuration (including all learning categories and times) was approximately 10%. 

For each 8 s recording used, we evaluated whether we could identify the observer 

and the demonstrator in the video and audio recordings, and thus, determine which bat 

was following which. We identified observer and demonstrator bats based on written 

notes of individual behaviour during trials and by matching the bat that captured the 

mealworm with the bat that emitted a feeding buzz using position data of each bat 

relative to the two microphones. For a variety of reasons, positive identification of both 

bats was possible for only about one quarter of recordings (34 of 145).  

 

Feeding buzz analysis 

Feeding buzzes are calls made by a bat as it initiates an attack on a prey item. 

These calls are characterized by increasingly shorter duration and pulse interval (time 

from the start of one pulse to the start of the next pulse) as well as by a decrease in call 

frequency (e.g. Griffin et al. 1960; Surlykke & Moss 2000). For the following analysis, 

we identified feeding buzzes via visual and auditory examination of recordings. These 

were later confirmed by measuring the pulse interval from oscillograms and spectrograms 

to ensure that they were less than 13 ms long and dropped to less than 8 ms (Surlykke & 

Moss 2000). For data collected from bats in categories 2 and 3 that flew with 

demonstrators from the first study day through the last day that each bat emitted buzzes 

towards or first took the mealworm, we recorded 28 (8 s) recordings in which at least one 

feeding buzz was identified, both audio and video recordings were available for analysis, 

and both bats were flying and visible in the calibrated space during the entire feeding 
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buzz(es). We calculated the mean inter-bat distance during each feeding buzz (when 

pulse intervals were < 13 ms) and during another portion of the same trial. We then used 

the detailed information available from these 28 pairs of values recorded with eight 

different observer bats on 19 test days (sessions) to examine mean inter-bat distance at 

the time of the buzzes compared with other times during the same recordings.  

If naïve bats attend to the feeding behaviours of knowledgeable bats, or if 

knowledgeable bats behave competitively towards naïve bats as the latter learn the task, 

we expected the inter-bat distance during feeding buzzes to be smaller than at other times 

during the recording. To test this prediction, for each feeding buzz, we calculated the 

mean inter-bat distance during the buzz and compared this value to the mean inter-bat 

distance during another 260 ms (mean buzz duration = 257 ms) period in the same 8 s 

recording. Depending upon availability of  consecutive 260 ms segments with both bats 

flying in the calibrated space, this period began (in order of preference) approximately 1 s 

prior to the buzz, more than 1 s prior to the buzz, approximately 1 s after the buzz, or 

more than 1 s after the buzz. We conducted separate analyses for recordings on days 

before versus after the observers present began emitting buzzes towards or attacking the 

mealworm. We compared the inter-bat distance during feeding buzzes versus the other 

portion of each recording in a generalized linear mixed model (GLMM) accounting for 

the repeated measures nature of the data (i.e. more than one recording per bat). For a 

recording containing two feeding buzzes, we used the mean inter-bat distance during the 

buzzes and during two other portions of the recording.  
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Results 

Social Learning 

Observer bats in the experimental group, including juveniles with little or no prior 

experience foraging, were significantly more likely to direct feeding buzzes towards and 

attack the mealworm than were bats in the control group. Because we predicted that bats 

exposed to knowledgeable demonstrators were more likely to learn the task, we used a 

one-tailed test to assess the significance of our findings. A significantly greater number of 

experimental bats (82%, six juveniles and three adults) than control bats (27%, three 

juveniles) directed feeding buzzes towards the mealworm (Fisher’s exact test, one tailed: 

P = 0.015). Furthermore, seven bats in the experimental group (64%, five juveniles and 

two adults) and no bat in the control group showed evidence of learning the task by 

attacking the mealworm and knocking it from the tether (Fisher’s exact test, one tailed: P 

= 0.002). Four of the seven bats (two juveniles and two adults) successfully captured the 

mealworm after directing feeding buzzes towards it. Bats began to display 

attacking/catching behaviour after an average ± SD of 6.1 ± 2.5 sessions (range 2–9 

sessions) of exposure to knowledgeable demonstrators. A greater number of juveniles 

exposed to knowledgeable bats attacked the mealworm, compared to juveniles in the 

control group (Fisher’s exact test, one tailed: P = 0.010). No bat of any age in the control 

group ever attacked the mealworm. We found no consistent pattern between age and 

likelihood of learning the task (mean ± SD age: no learning (category 1): 35 ± 12 days; 

buzzes only (category 2): 38 ± 15 days; attack/capture (category 3): 34 ± 6 days). 
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Flight Behaviour and Inter-bat Interactions  

Bats that eventually attacked or captured the mealworm (category 3) flew 

significantly closer to demonstrators than did bats in other categories (Fig. 1.2).  

 

 

Figure 1.2. Mean inter-bat flight path distances between observer and demonstrator bats for 

observer bats that did not buzz at the mealworm (no learning) or that buzzed at but did not attack 

the mealworm (N = 70 test sessions, 15 bats) versus mean inter-bat flight path distances for 

observer bats that eventually attacked and/or captured the mealworm (N = 29 test sessions, 7 

bats). Error bars represent one standard error.  
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In addition, we found a higher prevalence of following/chasing behaviour in sessions 

from category 3 bats than in sessions with bats that never buzzed at the mealworm 

(category 1; Fig. 1.3). 

 

Figure 1.3. Percentage of test sessions in each learning category in which following or chasing 

behaviour (defined as one bat trailing the other within 1 m, with a flight path <30° from the 

leading bats’ flight path) was present at least 10% of the time. Different letters indicate significant 

differences in means. No learning (no buzz): N = 48 sessions, 10 bats; buzz only: N = 22 sessions, 

5 bats; attack or capture: N = 29 sessions, 7 bats.  

 

We found no significant trend with regard to inter-bat distance or following/chasing 

behaviour based on the number of days that bats had flown in the experiment (GLMM: 

time period P > 0.05 in both cases). However, we did find that bats flew closer together 

during feeding buzzes than at another time within the same 8 s recording after, but not 

before, the observer bat began to display buzzing/attacking behaviour (Fig. 1.4).  
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Figure 1.4 In recordings that contained one or more feeding buzzes, the mean inter-bat distances 

during the feeding buzz and at another segment of approximately equal length (260 ms) for each 

recording.  ‘Before’ (N = 15 recordings from 6 bats) and  ‘after’ (N = 13 recordings from 5 bats) 

refer to whether the observer bat present had yet begun to emit buzzes towards or attack the 

mealworm at the time of recording. Error bars represent one standard error.  

 

Analysis of video data revealed significant differences in mean inter-bat distances 

between bats in different learning categories. Specifically, smaller inter-bat distances 

were positively related to observers attacking or capturing the prey item. Category 1 and 

2 bats maintained a significantly larger mean distance from demonstrator bats than did 

bats in category 3 (GLMM: F1,20 = 4.84, P = 0.0398), with category 3 bats flying an 

average of 0.278 m closer to demonstrators (Fig. 1.2). 
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We defined following/chasing behaviour as bats flying in a following formation 

(not converging or diverging) with an inter-bat distances of less than 1 m while 

simultaneously flying with trajectories less than 30° apart. We found a significant 

difference in prevalence of chasing/following behaviour in test sessions with bats from 

different learning categories (GLMM: F2,19 = 3.99, P = 0.036), but not across time (same 

GLMM: F2,32 = 0.33, P = 0.72). Because we predicted that sessions in which bats 

displayed learning behaviour were more likely to contain chasing or following behaviour, 

we used one-tailed tests for pairwise comparisons. The percentage of sessions in which 

bats displayed following/chasing behaviour more than 10% of the time was more than 

two times greater for category 3 bats (55%; N = 29 test sessions from 7 bats) than for 

category 1 bats (21%; N = 48 test sessions from 10 bats; pairwise comparison from 

GLMM above, one-tailed test with Bonferroni correction: F1,19 = 7.00, P = 0.024; Fig. 

1.3).  

Of the 145 video/audio recordings used in the analysis, we could confidently 

identify the observer and demonstrator bats in 34 recordings. Of these recordings, 11 

(from 10 sessions: 7 observers, 4 demonstrators) contained following/chasing behaviour 

as described above, and eight of these contained category 3 bats. Of these eight trials, the 

demonstrator led at least some of the time in 87.5% of trials, compared with 62.5% of 

trials showing the observer leading. In considering total frame numbers containing 

following, 60% of these frames represent the demonstrator following the observer, and 

40% represent the observer following the demonstrator.  
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Behaviour during Feeding Buzzes 

For recordings on days before observer bats buzzed at or attacked the mealworm 

(before), we found no significant difference in inter-bat distances during feeding buzzes 

versus at another time in a recording (GLMM: F1,5 = 1.06, P = 0.35; N = 15 recordings). 

However, for recordings occurring once observer bats had begun directing buzzes 

towards or attacking the mealworm (after), we found that bats flew, on average, more 

than 1 m closer to one another during feeding buzzes than they did at other points in the 

same recording (GLMM: F1,4 = 8.25, P = 0.045; N = 13 recordings; Fig. 1.4). For 55% of 

the 29 feeding buzzes analysed, inter-bat distance decreased from the beginning of a 

feeding buzz (Fig. 1.5). 

 

Figure 1.5. Sample plots showing bat flight paths and inter-bat distances over time when two 

observer bats (a) first attacked and (b) captured the mealworm. Red and blue represent each bat’s 

flight path, and each circle represents a vocalization emitted by that bat. The box corresponds to 

the emission of a feeding buzz by one of the bats, and the arrows indicate the flight direction of 

each bat at the time of the buzz. In the time by distance plots, the darkened line and box show the 

timing of the buzz. In (a), the red bat first emits a feeding buzz towards the mealworm, then the 

blue bat emits a buzz in the direction of the mealworm. In (b), the red bat emits the feeding buzz 

and flies ahead of the blue bat. Because both observer and demonstrator were potentially emitting 

buzzes towards the mealworm, it is not clear which bat emitted the feeding buzz in these 

recordings, but inter-bat distance dropped steeply during the duration of the feeding buzz in both 

(a) and (b).  
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Discussion 

Our results demonstrate that big brown bats can learn a novel foraging task via 

exposure to knowledgeable conspecifics and that higher levels of interaction between 

demonstrators and naïve bats, including smaller inter-bat distance and increased 

following/chasing behaviour, are positively related to this learning. Furthermore, we 

found evidence that naïve bats showed increased levels of interaction with demonstrators 

during feeding buzzes over time as they learned the task (category 3). Our results indicate 

that the presence of knowledgeable, foraging bats may be important for newly volant E. 

fuscus first learning to catch insects. Observation of and interaction with other foraging 

bats, while developing increasing flight skills and agility, appear to facilitate rapid 

acquisition of foraging skills in young E. fuscus. While the number of adults we were 

able to test limited the power of some analyses, our observations indicate that learning 

from others is not limited to a particular developmental stage in this species. These 

results are consistent with those of Gaudet & Fenton (1984), who found that adult E. 

fuscus could learn a different foraging task from others.  

We found that increased inter-bat interaction was positively associated with 

increased likelihood of learning. The results do not allow us to infer whether interaction 

increased learning, or vice versa. It is possible that some observers were more likely to 

interact closely with (and perhaps attend more closely to the behaviour of) demonstrators, 

and therefore had greater opportunities for learning the foraging task. This inference is 

supported by the finding that bats that eventually attacked or captured the mealworm 

flew, on average, closer to demonstrator bats and displayed more following/chasing 

behaviour throughout the experiment than did bats failing to buzz towards the mealworm. 
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It is also possible that as observer bats began to learn the foraging task, interaction 

increased as the naïve bat began to attend more closely to the demonstrator’s feeding 

behaviour, or even as a result of competition for the prey item. These latter scenarios are 

supported by the fact that bats that eventually attacked or captured the mealworm flew 

closer to demonstrators during feeding buzzes (compared with other points in the same 

recordings) only after they began to show evidence of learning. A combination of these 

scenarios is supported by the fact that we found following and leading by both observer 

and demonstrator bats. 

We found that in the majority of test sessions (55%) recorded from bats 

eventually attacking or catching the mealworm, bats displayed close chasing/following 

behaviour at least 10% of the time, while this was only true in 21% of sessions examined 

from bats that did not emit buzzes towards the mealworm. Given the flight speed of this 

species, our criteria (inter-bat angle < 30° degree, inter-bat distance < 1 m) represent 

close following behaviour.  Assuming a mean flight speed of 3.5 m/s in an enclosed room 

(Craft et al. 1958; Chiu et al. 2008), a trailing bat flying in this configuration would be, at 

most, about 285 ms behind the leading bat. The angle constraint indicates that bats are 

travelling in the same direction, and this close inter-bat distance may relate to the amount 

and quality of information available to observer bats. Considering the darkened 

conditions, bats were probably attending to auditory cues from demonstrators. Spherical 

spreading loss and attenuation of high-frequency sounds result in lower levels of acoustic 

energy further from a sound source (Lawrence & Simmons 1982). Chiu et al. (2008) 

found that bats flying in a set-up similar to the one used in this experiment showed 

increased levels of silent behaviour (presumably to avoid echolocation interference) the 



 

 36 

 

closer together they flew, particularly when flying within 1 m of one another. If observer 

bats were obtaining acoustic information from demonstrator bats, flying closer to the 

knowledgeable bats may have increased the amount and quality of information they could 

obtain by listening to cues from the knowledgeable bat. A field study of foraging red 

bats, Lasiurus borealis, revealed that chasing behaviour may have facilitated 

eavesdropping on feeding-related cues of conspecifics (Hickey & Fenton 1990).  

The chasing/following behaviour we observed could also represent a 

demonstrator chasing an observer during competition for the prey item, as has been 

previously observed in some bat species. For example, Rydell (1986) reported that female 

northern bats, Eptesicus nilssoni, defend foraging areas via aggressive chasing and 

vocalizations. In addition, aerial  ‘dogfights’, wherein foraging E. fuscus chase one 

another, have been reported in the field (Simmons et al. 2001). In a set-up similar to the 

one in this study, Chiu et al. (2010) observed (sometimes aggressive) chasing behaviour 

frequently when two trained adult E. fuscus competed for a single mealworm. We could 

only confidently identify which bat was in the lead in eight trials containing 

following/chasing behaviour and with category 3 bats flying. In the majority of these 

trials (87.5%), demonstrators were leading at least some of the time; however, 60% of 

total following time was representative of observers flying in the lead. The small number 

of trials available for this level of detailed analysis does not allow for broad conclusions 

regarding the following/chasing behaviour observed, but these trials do confirm that both 

observer and demonstrator bats showed following or chasing behaviour. Hickey & 

Fenton (1990) found that four of five tagged red bats foraging in the wild chased and 

were chased equally often. Given the set-up of our study, we usually did not know which 
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bat captured the mealworm when a pair of bats was flying unless it was the demonstrator, 

so we do not have information about prey capture success relative to chasing behaviour. 

However, Chiu et al. (2010) found that bats that spent more time following/chasing 

generally had more success capturing the prey item and sometimes appeared to chase the 

leading bat away from the prey item, indicating that the trailing bat was behaving in a 

territorial manner. Our findings support the idea that chasing/following could be 

indicative both of observers following demonstrators to gain information and of 

demonstrators chasing observers in a competitive manner.  

Observer bats in this study presumably had the opportunity to eavesdrop on 

search-and-approach-phase echolocation calls, feeding buzzes and chewing sounds to 

learn about the location and nature of the tethered mealworm. Barclay (1982) found that 

little brown bats, Myotis lucifugus, and most likely E. fuscus, are attracted to the 

echolocation calls of other individuals in feeding situations, and that subadults are 

particularly responsive to these calls. Similarly, Gillam (2007) demonstrated that feeding 

buzzes attract Brazilian free-tailed bats, Tadarida brasiliensis, and Ruczynski et al. 

(2007) found that hearing conspecific echolocation calls helps noctule bats, Nyctalus 

noctula, locate roosts. In addition, Dechmann et al. (2009) found that echolocation calls 

mediate group foraging and passive information transfer about feeding activities in the 

insectivorous lesser bulldog bat, Noctilio albiventris. The nature of our study allowed us 

to make detailed observations of behaviour surrounding feeding buzzes, and our findings 

show that once bats began to buzz at or attack the mealworm, they flew, on average, 

closer to the demonstrators (or vice versa) than at other points during the same 8 s 

recordings. This finding strongly suggests an increase in attention to the feeding 
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behaviour of the demonstrator over time by observers.  

In addition to echolocation-related cues, other researchers (e.g. Fenton et al. 1983: 

Nycteris grandis; Page & Ryan 2006: Trachops cirrhosus) have noted that bats respond 

to the chewing sounds of conspecifics. We also made this observation during our study. 

Because our findings are consistent with bats using auditory cues to locate prey, it is 

possible that the behaviour we observed can be explained by local enhancement. If this 

was the case, naïve bats may have learned about the general location and nature of the 

prey item by listening to experienced bats forage. Once the attention of naïve bats was 

drawn to the correct area and prey item, they may have learned on their own how to 

capture the prey. This may also help explain why some bats attacked the mealworm 

without successful capture; perhaps they were able to make use of socially mediated 

information (location/type of prey) but failed to learn to capture the prey.  

We made several noteworthy observations about the behaviour of young bats 

during the experiment. We tested both juveniles that had never foraged outside our 

laboratory (captured when prevolant, or born in captivity) and those that had probably 

foraged briefly prior to capture (as evidenced by their estimated age when collected from 

the wild and their ability to fly). The only juvenile in the experimental group that did not 

emit buzzes towards the mealworm was also the only captive-born bat in this group. In 

addition, all three bats in the control group that buzzed at the mealworm were captured 

when already volant. These observations suggest that prior experience might be useful in 

learning a new foraging task; however, it does not appear to be essential. Of the two 

experimental juveniles captured when they were a few days old (prevolant), one emitted 

buzzes towards the mealworm and the other attacked the mealworm.  
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The three bats that repeatedly attacked the mealworm while directing buzzes 

towards it (but did not successfully capture it) were all juveniles, indicating that 

developmental abilities probably played a role in performance. In addition, because 

young bats were not food-deprived during the experiment, if a young bat began detecting 

the mealworm as a prey item, but was repeatedly unsuccessful at capture, it could have 

given up and waited to be fed later in the day. That juvenile bats, but not adults, in the 

control group emitted buzzes towards the mealworm may indicate that newly volant bats 

are more likely to investigate a novel item as a potential food source. This has been seen 

in other species as well; for example, Biondi et al. (2010) found that juvenile raptors 

(Milvago chimango) outperformed adults and were quicker to investigate a box 

containing food in a social learning experiment. This suggests that a tendency to explore 

and individual learning are also important in the process by which young animals, 

including insectivorous bats, learn to forage. The result that no bat in the control group, 

compared with a majority of juveniles in the experimental group, ever attacked the 

mealworm signifies that social learning can be an integral part of the process as well. 

While a young bat may have an innate tendency to investigate an item, hearing an 

experienced conspecific track, capture and consume a prey item may both confirm that 

the object is edible and provide information about where and how to obtain the prey item.  

Although many studies addressing social learning by juveniles focus on 

transmission of information or skills from parent to offspring, our findings demonstrate 

that young animals that commonly forage in the vicinity of unrelated adults can learn 

from nonkin. This result is consistent with findings from previous studies of other 

animals that forage in similar social settings, such as birds that scramble-compete for 
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food (Hatch & Lefebvre 1997) and young perch that acquire information about 

appropriate prey (Magnhagen & Staffan 2003).  

Previous studies have demonstrated social learning in a foraging setting for a 

variety of species. However, the mechanism by which such learning occurs is often 

unknown, only anecdotally described, or poorly understood. Analysis of high-speed 

video interactions and audio files allowed us to quantitatively examine interactions 

between observer and demonstrator bats and reach the conclusion that increased in-flight 

interaction, as measured by smaller inter-bat distances and greater likelihood of 

following/chasing behaviour, is positively associated with social learning, a finding not 

previously reported for any bat species. In addition, we show quantitatively that bats that 

displayed evidence of learning (buzzing and/or attacking the mealworm) flew closer to 

demonstrator bats during feeding buzzes only after showing buzzing or attacking 

behaviour (indicating that they had begun to learn the task). In conclusion, our results 

indicate that juvenile E. fuscus learn about where and how to capture prey by interacting 

with experienced conspecifics and that this learning behaviour is not limited to young 

bats. Bats that learned to attack the mealworm interacted more with demonstrator bats, 

and appeared to learn via feeding-related auditory cues from conspecifics. Further 

research could determine whether other bat species learn to forage in a similar way.  

 

Acknowledgements 

We thank J. Finder, N. Luciano, R. Yu, W. Law, M. Chavis, S. Ball, J. Botvinick, 

A. Murti, C. Atekwana, N. Destler, K. Isgrig, J. Kalkavage and C. Seo for assistance in 

collecting and analysing data. C. Chiu, W. Xian, B. Falk A. Perez, H. Xi, M. Chadha and 



 

 41 

 

J. Wright also assisted. We are grateful to the Demery family and others who gave us 

access to the bats at their homes. Members of the Wilkinson and Moss labs provided 

useful discussions about this research, and along with two anonymous referees, helpful 

comments on earlier drafts of the manuscript. P. Blank and B. Momen provided guidance 

regarding statistical analyses. This research was conducted while G.S. Wright was 

supported by training grant DC-00046 from the National Institute of Deafness and 

Communicative Disorders of the National Institutes of Health. 

 

 

 

 

 

 

 

 



 

 42 

 

 

 

 

 

 

 

 

Collaboration Statement 

A portion of Chapter 2 was done in collaboration with Chen Chiu. Specifically, the data 

from the “skilled trial type” was collected, digitized, and partially analyzed by Chen for 

research relating to her dissertation. The data seen in this chapter was not included in 

Chen’s dissertation, nor has it been previously published.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 43 

 

Chapter 2: Social Calls in Free-flying Big Brown Bats (Eptesicus 

fuscus) 

 

Abstract 

Communicative vocalizations serving a variety of social functions have been 

reported in diverse bat species (Order Chiroptera).  Vocalizations used for echolocation 

by the big brown bat have been the subject of extensive study, but calls used by this 

species for communication have received comparatively little research attention. Here, I 

report on a rich repertoire of vocalizations produced by big brown bats in a large 

laboratory flight room equipped with synchronized high speed stereo video and audio 

recording equipment. Bats were studied individually and in pairs, while sex, age, and 

experience with a novel foraging task were experimentally manipulated.  I classified 

seven different vocalizations that were recorded when two bats were present. Analyses 

revealed a higher prevalence of social calls when males were present, and some call types 

varied in frequency of emission based on experimental trial type and bat age. Bats flew 

closer together around the time social calls were emitted. I also found that a newly-

described social call sequence, emitted only by males and only in a foraging setting, was 

associated with an increase in inter-bat distance and diverging flight. Bats emitting this 

sequence showed a higher probability of capturing prey within a given trial, and bats of 

both sexes responded to playbacks of this social sequence by emitting social calls 

themselves. These findings are the first reports of social calls from flying big brown bats 

and suggest the context and function of communicative vocalizations emitted by this 

species. 
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Introduction 

Since the pioneering studies of Griffin and Webster, it has been recognized that 

many bats produce high frequency calls to localize objects in their environment from 

echoes (Griffin 1958, Griffin et al. 1960). More recent research has shown that bats also 

emit vocalizations in other contexts (see Fenton 1985; Pfalzer & Kusch 2003). For 

example, vocalizations produced by bats have been reported to have mating-related 

functions (e.g., Bradbury 1977: Hypsignathus monstrosus; Lundberg & Gerell  1986: 

Pipistrellus pipistrellus; Davidson & Wilkinson 2004: Saccopteryx bilineata), to recruit 

conspecifics (e.g., Wilkinson & Boughman 1998: Phyllostomus hastatus; Arnold and 

Wilkinson 2011: Antrozous pallidus), to respond to bats calling from a roost (e.g., 

Chaverri et al. 2010: Thyroptera tricolor), to avoid physical aggression (Leippert 1994: 

Megaderma lyra), and to defend foraging patches (e.g., Rydell 1996: Eptesicus nilssoni; 

Barlow & Jones 1997: Pipistrellus pipistrellus). Despite these studies, there are relatively 

few reports of vocalizations emitted by flying, foraging bats. Examining such 

vocalizations in concert with information about inter-bat interactions and foraging 

success allows us to test hypotheses about their function.  

Calls emitted by bats during flight might influence mating, or attract or repel other 

foragers. Calls related to mating should occur most frequently at the time of year when 

mating occurs and should be produced by males when females are present. If calls attract 

or repel other bats near a food source, they should be produced in a foraging setting. 

Specifically, calls designed to recruit others should result in attraction to the calling bat. 

For example, Phyllostomus hastatus use social calls to coordinate group foraging 

(Wilkinson & Boughman 1998). In contrast, calls designed to defend a food source 
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should repel other individuals, as calls produced by Pipistrellus pipstrellus when food 

density is low have been demonstrated to do (Barlow & Jones 1997). Such calls should 

also result in increased foraging success for the calling bat. Finally, calls with an 

appeasement function should be given by vulnerable individuals such as juveniles to 

avoid aggressive encounters with other bats, as has been proposed for calls emitted by 

Megaderma lyra in response to aggressive vocalizations (Bastain & Schmidt 2008).  

Eptesicus fuscus is a temperate, aerial-hawking insectivore that is widespread in 

North America (Kurta & Baker 1990). Female E. fuscus form maternity colonies in the 

spring and early summer, and the bats “swarm” and mate at hibernation sites before 

hibernating for the winter. This species forms non-random associations with roost-mates 

(Willis & Brigham 2004; Metheny et al. 2008), and members of a colony tend to leave 

their roost to forage within a close time period, suggesting that bats may forage near 

familiar individuals. Multiple individuals can be found foraging at the same site, 

indicating that bats have opportunities to communicate while foraging.  Two studies 

reported that E. fuscus can learn a novel foraging task or food location by interacting with 

knowledgeable conspecifics (Gaudet & Fenton 1984; Wright et al. 2011). Echolocation 

by E. fuscus has been studied extensively (e.g., Simmons 1971; Masters et al. 1991; 

Surlykke & Moss 2000). Some research indicates that echolocation signals themselves 

can serve communication purposes, such as revealing information about individuals’ 

identity, age, and sex (Masters et al. 1995; Kazial & Masters 2004; Grilliot et al. 2009). 

However, aside from studies on mother-infant communication or documenting the 

ontogeny of vocal development (e.g., Gould 1971; Gould et al. 1973; Gould 1975; Moss 

1988; Monroy et al. 2011), social calls have only been recorded from non-flying E. 
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fuscus (Gadziola et al. 2012). Thus, to date there are no published reports of social calls 

from flying or foraging big brown bats. 

To document the presence of calls emitted by flying big brown bats and determine 

their function, I recorded vocalizations from pairs of bats flying in a large flight room 

with a tethered insect present. Pairs were comprised of two individuals in the following 

combinations:  two naïve bats, one naïve bat and one bat skilled at a prey capture task, or 

two skilled bats. I identified the age and sex of bats present when calls were produced 

and used high speed video to examine the position and flight behaviors of bats before and 

after the emission of social calls. I also played back recorded social calls to study vocal 

responses. If calls served a mating related function, I expected calls to be emitted 

primarily in late August or September when spermatogenesis peaks and mating typically 

begins (Kurta & Baker 1990) and to be produced by males flying with females. If calls 

served to recruit or repel individuals to or from a food source, I expected a higher rate of 

calls when at least one skilled bat was present. If calls were used for recruitment, I also 

predicted closer inter-bat distances and an increase in converging and following flight 

after call emission. Conversely, if calls served a food defense purpose, I expected 

increased inter-bat distance and more diverging flight after call emission, as well as 

increased foraging success by the calling bat. Finally, I predicted that calls related to 

appeasement would be most common when juveniles were present. Based upon context, I 

assigned function to the social calls of free-flying big brown bats.   
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Methods 

Subjects, Experimental Set-up, and Identification of Social Calls 

I flew pairs of big brown bats (Eptesicus fuscus) in the presence of a prey item 

(mealworm— larval Tenebrio molitor) in a 7 x 6 x 2.5 m anechoic flight room.  Bat pairs 

fell into three categories:  1) one individual had learned to take the tethered mealworm, 

while one was naïve (mixed trial type; July-September 2006 and July-August 2007), 2) 

both individuals were naïve (naïve trial type; July-September 2006 and July-August 

2007), or 3) both individuals had learned to take tethered mealworms (skilled trial type; 

July-August 2005 and July-August 2006). Because some naïve individuals in mixed trials 

began to learn the task, some mixed trials included two knowledgeable bats.  I recorded 

paired bat trials from 38 individuals (23 females, 15 males) including 14 young 

(estimated ages at start of testing:  21-51 days (X±SD = 34±10)) and 24 adult (≥ 1 year 

old) bats. In addition to two-bat trials, I recorded one-bat trials from 22 naïve and eight 

skilled bats. As bats flew, I recorded 8 s segments of synchronized audio and video data 

(see Chiu et al. 2008 and Wright et al. 2011 for details).   This research was conducted 

with approval from the Institutional Animal Care and Use Committee at the University of 

Maryland (protocols R-05-15 and R-10-30) and under a Maryland Department of Natural 

Resources collecting permit. As a condition of the permit, bats were not released at the 

conclusion of the study and were subsequently used for other experiments. 

Using data from 415 one-bat and 528 two-bat 8 s recordings involving 87 pairs of 

bats, I displayed spectrograms of sound recordings and listened to audio files slowed 10-

20x to initially identify and divide into categories calls that differed in sound and time-

frequency structure from typical echolocation calls (Fig. 2.1).  
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Figure 2.1.  Calls recorded in a flight room.  A:  standard echolocation calls (two bats flying) ; B:  

feeding buzz with the second bat echolocating; C:  rising frequency (RF); D:  U-shaped (U); E:  

chevron-shaped (CS); F:  squeak (S); G:  long frequency-modulated (LFM) call (double-LFM 

showing long and short varieties of the call type); H:  quasi-constant frequency (QCF); and I:  

social sequence (SS) with only the initial FM sweeps shown.  Note that for several of the 

examples above, echolocation calls from the other bat present in the trial are also visible.  

 

I excluded call types that were rare, low frequency and broadband, or not readily 

distinguished from echolocation calls. For example, some chirp-like calls were difficult 

to distinguish from search-phase echolocation calls, while buzz-like sequences (short 



 

 49 

 

duration and short pulse interval (PI: time from the start of one pulse to the start of the 

next)) may have served a social function but could have been associated with feeding or 

landing. Excluding such calls, I focus on seven call types (Table 2.1, Fig. 2.1) which 

occurred only when multiple bats were present, were recorded multiple times, and were 

qualitatively distinct from typical echolocation signals. In 187 two-bat trials, recorded 

from 32 bats comprising 53 pairs, I recorded at least one social call from one of the seven 

categories, giving a total of 764 vocalizations or call groups, henceforth referred to as 

calls. 

Table 2.1.   Call parameter values for each call type. See Fig. 2.1 for spectrograms of 

each call type. 

Call Type  Start freq X 

± SD (kHz)  

End freq 

X ±SD 

(kHz) 

Dur X ± SD 

(ms) 

% 

recordings 

present (N 

= 528 two-

bat 

recordings) 

Total number 

of calls 

recorded 

Social Sequence 

(SS)#^ 

69.2±10.9 17.3±4.7 9.2±0.8 35.2% 186  

(645 pulses) 

 

Quasi-Constant 

Frequency 

(QCF) 

 

44.1±12.0 41.8±14.1 12.7±5.2 5.5%  66 

Rising 

Frequency (RF) 

 

48.0±7.8     62.9±9.5 15.0±4.8 8.5%  140 

U-shaped (U) 50.8±7.4 51.1±10.8 16.9±6.6 3.03% 26 

 

Chevron-shaped 

(CS) 

 

47.7±9.0 44.0±11.2 16.6±5.4 6.06%  92 

Squeak (S) 39.0±5.5 25.6±4.4 3.5±1.2 9.7% 91 

 

Long Frequency-

Modulated 

(LFM)# 

42.6±9.1 18.1±4.8 23.8±13.6 7.6% 163  

(223 pulses) 

# The mean of all pulses within a call were used when calculating means and SD. ^Values are for the first 

3-4 calls per sequence and do not include the shorter duration, buzz-like calls that often follow.  
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Identification and Classification of Call Types 

I categorized call types according to their time-frequency structure:  1) rising 

frequency (RF)—end frequency exceeds start frequency by ≥ 5 kHz without additional 

change in frequency; 2) U-shaped (U)—dominant frequency decreases by ≥ 5 kHz, then 

increases again to between 50% and 150% of the start frequency; 3)  chevron-shaped 

(CS)—dominant frequency increases by ≥ 5 kHz, then decreases again to between 50% 

and 150% of the start frequency; 4) quasi-constant frequency (QCF) dominant frequency 

is within 5 kHz of the start frequency (some QCFs had a drop after the CF portion); 5) 

squeaks (S)— short duration, narrow bandwidth calls with ending frequency ≥ 18 kHz, 

duration ≤ 6 ms, and bandwidth ≤ 20 kHz ; 6) long frequency-modulated (LFM)—

duration longer than typical echolocation calls recorded in confined spaces (i.e., > 8 ms), 

with an initial downward sweep—these calls were roughly divided into two varieties:  

short (chirp-like FM sweeps (duration was occasionally < 8 ms) virtually always paired 

with a long LFM) and long (elongated quasi-CF portion after initial frequency drop, 

sometimes followed by a subsequent rise in frequency) and often occurred in pairs or 

trios; and 7) social sequence (SS)—a sequence of 3-4 frequency-modulated (FM) sweeps 

often followed by several short, buzz-like calls with relatively short PI (Fig. 2.1). In 

instances where calls were not readily distinguished by the above criteria, I categorized 

calls according to which type they most closely resembled based upon both 

spatiotemporal and auditory similarities. Table 2.1 contains temporal and frequency 

means for each call type.    

To verify classification of calls, I conducted a discriminant function analysis 

(DFA) and accompanying multivariate analysis of variance (MANOVA) using start 
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frequency (kHz), end frequency (kHz), call duration (ms), and an estimate of the mid-

frequency (that is, the frequency in the middle of the call’s start and end time; kHz) 

relative to the start frequency. For call types comprised of multiple pulses (i.e., SS and 

some LFM), I used the mean values of all pulses within a given call such that 764 calls 

were included in the analysis. I estimated mid-frequencies for QCF, RF, LFM, squeak, 

and SS calls by calculating the mean of the start and end frequency, and for U and CS 

calls, I subtracted or added (respectively) 5 kHz from the start frequency. This was a 

conservative estimate, considering that the call needed to fall or rise by at least 5 kHz to 

be classified as a U or CS. I then calculated the percentage of frequency change from the 

start frequency to the estimated mid-frequency and used these percentages in the DFA. 

 

Call Context and Caller Identification 

To account for variation in number of calls emitted per individual, I examined the 

data on a per-trial (= 8 s recording) basis to look for relationships between trial type, sex, 

or age and prevalence of social calls. Specifically, I compared the number of trials 

containing at least one instance of a given social call type. I excluded juvenile-juvenile 

trials from these analyses because all 25 trials were from the mixed trial type and 

contained one bat in common (only one trial contained any social call).  I had trials (total 

N = 503) from every combination of sex (female-female:  N = 126 trials; female-male:  N 

= 256 trials; male-male:  N = 121 trials) and trial type (naïve:  N = 181, mixed:  N = 170, 

and skilled:  N = 152). 

I tested each call type separately, and examined the relationship between each 

factor and call prevalence using separate contingency tests if no interaction was found 
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between factors.  For squeak calls, I found a significant interaction between trial type and 

sex, so I tested for effects of trial type within trials with the same sex combination. 

Because all bats tested in skilled trials were adults, I could not test for age effects overall.  

Instead, I looked for age (adult-adult:  N = 69 trials; adult-juvenile:  N = 282 trials) 

effects within naïve and mixed trials (combined) for QCF, RF, U, LFM, and squeak calls. 

I had too few SS from naïve and mixed trials to conduct this analysis, and too few U calls 

to evaluate possible effects of trial type, sex, or age. Because tests regarding these factors 

were all drawn from the same data set, I used a sequential Bonferroni correction to assign 

significance in each of the 19 comparisons made. For call types with significant 

differences based on trial type or sex, I conducted pairwise comparisons (e.g., female-

male vs. male-male trials, or naïve vs. skilled trials). I used a separate sequential 

Bonferroni correction within each factor for each call type (three comparisons for each 

combination). 

To determine whether calls were produced exclusively by one or two individuals, 

I calculated the minimum number of individuals emitting each call type by examining the 

number and composition of pairs from which calls were recorded. In addition, I used a 

combination of video and audio data to identify which bat had emitted each vocalization 

when possible using the following criteria: 1) the social call was visible in the 

spectrogram of both audio channels, and 2) at least one bat was in view of both cameras 

during the time the call was emitted (see Chiu et al. 2008). For call types emitted by ≥5 

known callers, I compared the number of callers of each sex with the proportion of bats 

we tested that were female (61%) or male.  
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Flight Behavior 

I calculated mean inter-bat distance for the 500 ms before the start and after the 

end of each social call, as well as the mean inter-bat distance for the entire 8 s trial in 

which each social call was recorded.  In all cases, only video frames with both bats flying 

in the calibrated volume of the two cameras were included in the analyses. Therefore, 

position data was not available for every social call or for every frame within each 8 s 

recording, and I sometimes had fewer than 500 ms of data before or after each call. For 

SS with position data available, I established the identity of the caller in all but three 

cases; therefore, I compared the mean inter-bat distance values before and after each SS 

using a general linearized mixed model (GLMM) that accounted for which bat emitted 

each SS. For the other call types, I had unequal and often sparse numbers of recordings 

from more than 80 pairs of bats and often did not know caller identity. Therefore, I 

averaged mean IBDs for all calls of a given type across a single recording. For each call 

type with no significant difference between inter-bat distance before vs. after calls (true 

for all types except SS; paired t-tests, P > 0.1 for each), I averaged before and after means 

to get mean inter-bat distances at the time of the call. I then used paired t-tests to compare 

these means with mean inter-bat distances for each trial overall. I did not run the above 

analysis if position data was available for fewer than 10 calls of a given type. 

 Using information about position, flight direction, and angle between the bats 

during the time segment before and after each social call, I calculated mean flight 

configurations for each segment by averaging values from each video frame. I assigned 

each segment to following, converging, or diverging flight (see Chiu et al. 2008 for 

details). The ‘following’ flight category was subdivided based upon which bat was 
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leading and which was trailing. I compared mean flight configurations before and after 

calls. For call types with a sufficient number of calls, I compared the number of calls with 

changes in flight behavior before vs. after call emission with a goodness-of-fit test and an 

expected change rate of 50%.  

To assess individual variation in calling behavior, I also examined the number of 

SS during which flight configuration changed for each bat known to emit multiple SS (N 

= 68 SS from four bats; mean number of SS per bat ±SD = 17±7.35). In addition, I 

examined mean flight patterns before and after the SS were emitted for all pairs 

combined and for each pair from which I recorded SS.  For pairs of bats with at least five 

SS emitted by a single individual (three pairs had three or fewer SS), I ran a separate 

analysis of flight configurations before and after calls occurred. I conducted separate 

analyses (Fisher’s Exact Tests with a sequential Bonferroni correction to account for all 

six comparisons) for the same pair of bats if a different bat was emitting the SS.   

 

Social Sequence Emission and Prey Capture 

I used contingency tests to determine whether emission of SS was related to prey 

capture success by either bat in a pair (e.g., by attracting or repelling the non-calling bat). 

I evaluated the relationship between SS emitted before a feeding buzz or after a feeding 

buzz and an attack on the prey item by the caller. Based on examination of many audio 

files, I considered the start of a feeding buzz (which is indicative of prey capture) to be 

the point at which the pulse interval dropped below 9 ms and only used the last feeding 

buzz present in a given trial (bats sometimes emitted buzzes earlier in the trial without 

actually attacking/taking the prey). 
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Playback Experiments  

 Using calls recorded in 2006-2007 I selected exemplars emitted by two different 

individuals for each of six call types (RF, QCF, U, CS, squeak, & SS) and extracted a 1 s 

segment containing a social call and surrounding echolocation calls. As controls for RF, 

QCF, U, CS, and squeak calls, I replaced the social call with an equal-length portion of 

background noise from the same trial. As a control for SS, I replaced the sequence with a 

natural train of echolocation calls of matching length. I repeated each segment 16 times 

to make 24 different 16 s playbacks (i.e. control and experimental x 2 exemplars x 6 call 

types).  Thus, each experimental segment presented the social call to the bat 16 times. For 

comparison, I recorded up to 12 calls of the same type in an 8 s recording.  

I presented playbacks in an ABBA or BAAB order where A  = control stimulus 

and B = experimental stimulus. Bats flown on a given day were usually presented with 

the same call types, but in different orders. Due to the nature of the recordings, playback 

segments varied in signal intensity. I set the gain on the loudspeaker amplifier to the 

highest level possible without overload during the most intense portions of the playback 

segments, and then used this gain throughout the experiment.  I used the same gain for 

each playback to reproduce the natural variation in intensity of different call types. I 

tested 17 Eptesicus fuscus (eight females and nine males) with playbacks of both 

exemplars of the SS and one exemplar each of the other five call types. Each bat was 

tested on 2-4 days between 13 September and 4 October 2011 with 1-5 call types 

presented on each day. All eight females and five of the males were actively flying for all 

or most of the experimental period, while four additional males flew rarely or not at all 

and sat on a platform during testing. 
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 I played back calls with an Ultrasound Advice S56 loudspeaker and S55 amplifier 

via a NI-DAQ board (National Instruments, Austin, Texas, USA) connected to a 

computer running Matlab.  The speaker was positioned on a tripod such that the 

loudspeaker’s center was 1.44 m above the floor and 2 m from a felt-covered square 

platform of the same height. I used two ultrasound-sensitive microphones (UltraSound 

Advice, London, UK) amplified (UltraSound Advice, London, UK) and recorded at 250 

kHz/channel to record vocal responses to each playback stimulus. I used a Pettersson 

D100 bat detector so that I could hear the playbacks and observed responses using an 

infrared-sensitive Sony NightShot camcorder (Sony Electronics, San Diego, California, 

USA). Lighting only from low level, long-wavelength (> 650 nm, red filters, Reed 

Plastics, Rockville, MD) overhead lights and red LED headlamps was available to the 

bats. Playbacks were initiated with the subject either already in flight or situated on the 

platform, depending on its willingness to fly around the room. The same bat was 

sometimes tested in multiple ways (e.g., platform and flying) for different trials on the 

same day (usually balanced with control vs. experimental trials).  At least 60 s elapsed 

between each playback presentation. I examined each 17 s audio recording and noted any 

apparent social calls recorded during control and experimental trials.  

 

Results 

Call Classification 

 Overall, 87.3% of calls were correctly classified (MANOVA:  Wilk’s lambda = 

0.0087, F24, 2632 = 317.4, P <0.0001). Individual call types were correctly classified as 

follows:  QCF, 74.2%; RF, 92.1%, U, 80.8%; CS, 85.9%; squeak, 96.7%; LFM, 85.3%; 
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and SS, 96.2%. Generalized squared distances between call types were all > 5 (range:  5.1 

to 114.1; Fig. 2.2). Based upon these results, I treated these seven call types as distinct for 

subsequent analyses.  

 

Figure 2.2. Plot showing discriminant function analysis (DFA) results for call classification. Each 

color represents a different call type. 87.3% of calls were correctly classified.  

  

Call Context 

Contingency tests of independence (Table 2.2) show that the type of trial, sex, and 

age each influence when five of the seven different social calls are given. With regard to 

trial type, QCF calls were more common in mixed and naïve trials than skilled trials, and 

CS calls were more common in naïve than mixed or skilled trials and more common in 

mixed than skilled trials. In addition, squeaks and SS were significantly more prevalent in 

skilled trials compared with naïve or mixed trials, and SS were more common in mixed 
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than naïve trials. With regard to sex, QCF, RF, and SS were significantly more common 

in male-male than female-male or female-female trials, and SS were also significantly 

more common in female-male pairs vs. female-female pairs. Finally, RF calls were more 

likely to occur in adult-juvenile vs. adult-adult trials (Table 2.2, Fig. 2.3).  LFM calls 

were emitted independent of trial type, sex or age. 

 

Table 2.2. Differences in call prevalence based on trial type, sex combination, and age 

combination. Each cell gives the X
2
 value (Pearson’s Chi-Square) followed by the raw 

two-tailed P-value. Bolded values are significant after a sequential Bonferroni correction. 

For overall comparisons, DF = 2 for type and sex and 1 for age. For pairwise 

comparisons (DF =1), only significant pairs are shown. N = naïve, M = mixed, and S = 

skilled trial type; MM = male-male, and FM = female-male, and FF = female-female 

trials; AA = adult-adult, and AJ = adult-juvenile. Please see Fig. 2.3 for direction of 

differences. 

 Comparison QCF RF CS LFM S SS 

Type 

 

Overall 

 

M vs. S 

 

N vs. S 

 

N vs. M 

16.61, 

0.0002 

17.05, 

<0.0001 

9.55, 

0.002 

 

2.15, 

0.341 

21.32, 

<0.0001 

4.84, 

0.028 

17.94, 

<0.0001 

6.97, 

0.0083 

1.81, 

0.404 

25.82, 

<0.0001~ 

 

177.85, 

<0.0001 

84.34,  

<0.0001 

125.39;  

<0.0001 

12.09, 

 0.0005 

Sex 

 

Overall 

 

MM vs. FM 

 

MM vs. FF 

 

FM vs. FF 

17.45, 

0.0002 

9.85, 

0.0017 

12.37, 

0.0004 

38.67, 

<0.0001 

22.47, 

<0.0001 

25.59, 

<0.0001 

6.82, 

0.033 

0.54, 

0.764 

9.44, 0.0089 

 

57.62,  

<0.0001 

16.58,  

<0.0001 

57.3, 

 <0.0001 

25.74,  

<0.0001 
Age*  AA vs. AJ 7.73, 

0.0054 

9.21, 

0.0024 

5.81, 

0.0159 

3.26, 

0.071 

0.29, 0.59 N/A 

*Data pertaining to age refers only to naïve and mixed trial types. 

~Because I found a significant interaction between sex and trial type for squeaks, I also tested for type 

effects within female-male (FM) and male-male (MM) trials separately (insufficient data to test within FF 

trials). For type, within FM trials only:  overall, X
2

2 = 31.95, P < 0.0001, M vs. S, X
2

1 = 13.55, P = 0.0002, 

N vs. S, X
2

1 = 25.29, P < 0.0001; for MM trials only, X
2

2 = 0.046, P = 0.98. 
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Figure 2.3. Number of trials from each trial type (A), sex combination (B), and age combination 

(C) containing at least one instance of social calls of each type. N refers to naïve trials, M 

references mixed trials, and S refers to skilled trials. See Table 2.2 for related statistics. All 

skilled trials were adult-adult.  
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Based on 3-D video position data, I assigned 337 calls to a specific bat. These 

calls were attributed to 14 individuals (six juvenile observers and eight skilled adults; 

nine males and five females). The following call types were each only assigned to adult 

bats with certainty once (a single call per type):  U, CS, and QCF. The following call 

types were assigned to male bats but never assigned to female bats:  QCF, RF, U, and SS. 

Males were significantly more likely to emit RF (N = 32 calls) and SS (N = 168 calls) 

calls (X
2

1 = 9.4, P = 0.002 for each). Social calls were never recorded from six females in 

all three trial types. With the exception of squeaks, which were never assigned to a 

juvenile, every call type was emitted at least once by a juvenile, an adult, and a male bat. 

Each call type was produced by at least six individuals.  

 

Flight Behavior Response to Calls 

Social sequences (SS) 

For 72 SS emitted by six individuals, video position data was available for time 

segments both before and after SS emission. I found that inter-bat distance increased 

from before to after SS emission for 73.6% of the SS recorded.  When considering each 

pair of bats, the mean inter-bat distance was greater after SS emission than before for 

every pair except one female-male pair of bats. When considering all of the data together, 

bats flew significantly further apart during the time segment after SS emission (F1,5 = 

15.11, P = 0.0116; Fig. 2.4). 
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Figure 2.4. Mean inter-bat distance before versus after social sequences were emitted. Bats  flew 

significantly farther apart after a social sequence was emitted (N = 72 sequences). Error bars 

represent one standard error.  

 

For two-thirds of these 72 SS, bat flight configurations changed between the 500 

ms before and after the sequence.  This was significantly higher than expected by chance 

(i.e., the assumption that bats would change their flight after 50% of SS; X
2

1 = 8, P = 

0.0047). When examining data for each bat emitting multiple SS, flight configuration 

changed during more than half of the recordings containing a SS (range = 54.5-93.8%) 

for each calling bat. For 69 SS, I identified which bat was emitting the SS and which bat 

caught the prey item during that trial. For these calls, I also examined whether the calling 

bat was leading or trailing at the time the SS was emitted.  In only one instance was the 

calling bat trailing prior to SS emission (a juvenile male emitted the SS, and the skilled 

adult male with whom he was flying caught the prey in this trial). Instead, the calling bat 
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was either leading or converging with the other bat immediately before 84% of 

sequences. However, the calling bat was either trailing or diverging from the other bat 

immediately after 65.2% of SS (Fig. 2.5). A comparison of all four possible 

configurations revealed a significant difference in flight patterns before versus after SS 

were emitted (X
2

3 = 46.12, P < 0.0001, N = 138 values; Fig. 2.5). When examining the 

data on a per-pair basis, I found a significant difference in flight configuration before vs. 

after for 50% of the six pairs (P < 0.005 for each pair).   

 

 

Figure 2.5. Average flight patterns of bats 500ms before and 500ms after the start of a social 

sequence (N = 69). Flight patterns differed significantly before versus after call emission. 

 

Other social calls 

For calls that occurred with both bats flying in view of the cameras, bats flew 

significantly closer around the time of calls compared with recordings overall for RF (N = 



 

 64 

 

61 calls, 29 recordings), QCF (N = 25 calls, 16 recordings), squeaks (N = 55 calls, 27 

recordings), and LFM (N = 25 calls, 8 recordings) calls (paired t-tests, P < 0.03 for each 

call type; Fig. 2.6). When LFM calls were emitted, both bats were flying and in view of 

the cameras for only 15% of calls. I found no significant difference regarding inter-bat 

distance for CS calls (N = 41 calls, 20 recordings; P > 0.1) and had insufficient data to 

make this comparison for U calls.  

 

Figure 2.6.  Mean inter-bat distances before and after (“at time of call”) social calls were emitted 

and for trials containing these types of social calls overall.  * indicates that for these call types, 

bats flew significantly closer together at the time of the call than during the trial in general. Error 

bars represent one standard error. 

 

Flight configurations changed (excluding changes in leader during following) 

around the time of squeak call production significantly more often than expected by 

chance (71% of calls); X
2

1 = 4.23, P = 0.04). The most prevalent flight configuration 

before squeak call emission was following (60% of calls), while converging was most 
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frequently seen after emission of this call (47.3%). Around the time of the 37 calls when 

bats changed flight configuration, bats most frequently shifted from diverging or 

following to converging (59.5% of calls) and least frequently from converging or 

following to diverging (10.8%). The most common change was from following to 

converging (54.1%).  

 

Social Sequence Emission and Prey Capture 

To determine if SS were emitted in association with prey capture attempts I tested 

if instances of SS were emitted independently of feeding buzzes. Compared with SS 

emitted after feeding buzzes (N = 25 trials), the bat emitting the greatest number of SS 

before a feeding buzz (N = 69 trials) was significantly more likely to capture the 

mealworm in that trial (Fisher’s Exact Test:  P < 0.0001, N = 79 trials total; SS were 

recorded both before and after the buzz in 15 trials; Fig. 2.7).  
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Figure 2.7. Relationship between social sequence (SS) emission and prey capture. For SS emitted 

after the feeding buzz, the bat emitting the SS buzzed (i.e., attacked the prey) in 12% of trials, 

significantly fewer than when SS were emitted before the buzz, when the bat emitting the greatest 

number of SS attacked the prey item in 59% of trials. N =79 trials; SS were recorded both before 

and after the buzz in some trials. 

 

Vocal Responses to Calls 

Three (one female and two males) of 17 individuals responded vocally to 

playbacks of SS and/or CS calls but not to the controls for the same call types. All three 

bats responded to version 1 of the SS playback, and one of these bats also responded to 

version 2 of the CS call playback. Here I define any social call except the seven types 

described in this paper as ‘other.’ The male bat responding to the CS playback emitted 

one CS call. Responses to the SS playback were as follows: Female: one U call, one CS 

call, and one other; Male 1:  two other; and Male 2 (responded in two experimental trials 

separated by two control trials during which he did not emit social calls)—trial 1:  four 
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CS calls and one SS; trial 2:  one CS call, one U call, two RF calls, one partial SS (only 

two initial calls), five complete SS, and eleven other calls/bouts.   

 

Discussion 

I recorded 764 social calls, which I divided into seven categories based on the 

time-frequency characteristics of the vocalizations. These calls were produced by free-

flying bats in three types of experimental trials: naïve (two bats naïve to a novel prey 

capture task), mixed (one naïve bat and one bat skilled at the prey capture task), and 

skilled (two skilled bats presented with a single prey item). Each call type was emitted by 

several individuals, and there were significant relationships between call prevalence and 

trial type, sex, and/or age for a subset of call types, as detailed below.  I found decreased 

inter-bat distance when RF, QCF, LFM, and squeak calls were emitted compared with 

other times. Emission of squeaks and social sequences (SS) was associated with 

significant changes in flight patterns.  I also found increased inter-bat distances following 

SS emission and increased prey capture success by the calling bat for SS emitted prior to 

(compared with after) feeding buzzes. Three bats responded to SS playbacks by 

producing social calls, while one bat emitted a social call when presented with playbacks 

of a CS call.  

 

Call Context and Function 

For call types which covaried with sex (QCF, RF, and SS), trials with one or more 

male bat(s) were always more likely than female-only trials to contain social calls, with 

male-male trials yielding the greatest prevalence of social calls. SS were produced 
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exclusively by male bats. Despite these findings, I did not find evidence to support a 

mating-related function for any call type. First, I found no call type in September that was 

not also recorded in July and August. In Maryland, the peak of spermatogenic activity for 

E. fuscus is in August, and mating occurs between September and March (Kurta & Baker 

1990). Second, calls were not emitted only in the presence of other males or of females 

but were emitted with either sex present. While I did not find evidence of a mating-

related function, I did find support for the hypothesis that some call types are related to 

foraging. Specifically, squeaks and SS were emitted more frequently in trials in which 

bats had experience taking tethered insects. Bats also changed flight patterns more often 

than expected by chance after emission of squeaks, with following behavior most 

common before emission and converging flight most common afterwards. While these 

results suggest that squeak calls may attract another bat or warn it of the calling bat’s 

impending presence, there was no decrease in inter-bat distance after call emission, and I 

did not find strong evidence that this or any other call type was actively attracting other 

individuals. 

 Conversely, several lines of evidence indicate that SS serve a food defense 

function. 1) I never recorded SS in a trial with two naïve bats present, and this call type 

was more prevalent in skilled trials where both bats knew how to capture the tethered 

prey compared with mixed trials containing only one knowledgeable bat. While 

communicative calls can sometimes serve to increase the foraging-related behavior of 

other individuals (e.g., Evans & Evans 1999: domestic chickens, Gallus gallus 

domesticus;  Kitzmann & Caine 2009: marmosets, Callithrix geoffroyi) or coordinate 

foraging among group members (e.g., Wilkinson & Boughman 1998: Phyllostomus 
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hastatus), my results indicate the opposite effect of SS. 2) I saw a pronounced change in 

inter-bat distance, with bats flying an average of almost 0.5 m farther apart after SS 

emission, indicating that emission of SS acts to repel the other individual. 3) I noted that 

the trailing bat virtually never emitted SS. In addition, while converging flight and 

leading on the part of the caller were the predominant flight patterns before SS were 

emitted, diverging or trailing by the caller were the primary patterns after a call was 

produced.  If two bats are converging (e.g., on the prey item) or one bat is leading and the 

bats are flying close together, it appears that the leading bat (and/or the bat closest to the 

prey item) emits a SS, and then catches the prey item relatively soon afterwards. The 

second bat in turn, may hear the SS, and then change its flight path such that it is 

diverging from or flying past the other bat and prey item, thus abandoning an attempt to 

catch the prey item during that trial. 4) The bat emitting SS prior to feeding buzz 

emission was significantly more likely to capture the prey item compared with the bat 

emitting SS after buzz emission. This collection of findings supports the hypothesis that 

SS are emitted by male bats to claim prey items.  

Use of vocalizations to claim food or deter other individuals from food has been 

documented in other species.  White-face capuchins (Cebus capucinus) emit calls to 

claim ownership of a food item, thus reducing chances of subsequent aggressive 

encounters related to competition for the food (Gros-Louis 2004). Similarly, ravens emit 

a specific call type when a food item is available in limited quantities (Bugnyar et al. 

2001). Within the Chiroptera, Barlow and Jones (1997) found that Pipistrellus 

pipistrellus increased emission of social calls when foraging in areas with low insect 

densities and that playing back these calls resulted in decreased bat activity in the area. 
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Additionally, Rydell (1986) reported that female northern bats (Eptesicus nilssoni) 

defend foraging areas via vocalizations and aggressive chasing, and aerial “dogfights” 

among foraging E. fuscus have been reported in the field (Simmons et al. 2001). 

In the present study, SS were produced exclusively by male E. fuscus, and QCF 

and RF calls were recorded from more trials containing males. Territoriality related to 

food and mediated in part via vocalizations produced by males during flight is seen in 

some bird species (see Bradbury & Vehrencamp 2011) such as blue-throated (Lampornis 

clemenciae) and amethyst-throated (Lampornis amethystinus) hummingbirds (Lyon 

1976; Ornelas et al. 2002).  In playback experiments, I found a variety of vocal responses 

to SS from a small number of male and female individuals, including SS emitted by one 

male. Tests were conducted in the fall, when some bats had reduced activity level. This, 

combined with the lack of a prey item during playback experiments, may account for the 

lack of responses by more individuals. However, the finding that bats responded to SS 

but not control playbacks provides further evidence that this call sequence is salient. 

While some call types appear to be related to foraging, CS calls were recorded 

significantly more often in trials with two naïve bats, and these calls were not associated 

with decreased inter-bat distance. The bat who responded to playbacks of CS calls by 

emitting a CS call was male. Higher prevalence of this call type in naïve trials indicates 

that its function is not related to foraging, and that a foraging situation may somehow 

reduce the frequency with which it is emitted, possibly because it is replaced by foraging-

related social calls.  
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Flight Behavior 

With the exception of SS, I did not find strong evidence that any call type attracts 

or repels other bats (no significant changes in inter-bat distance before vs. after call 

emission).  It is possible, though, that call emission might result in individuals 

maintaining their current distance rather than flying closer. Bats did fly closer together 

around the time of QCF, RF, squeak, and LFM calls than during the 8 s recordings 

containing these calls (Fig. 2.5). The tendency to fly closer together when emitting 

vocalizations may indicate that bats selectively give calls when they are closer together, 

or that there is a greater need for communication when flying in close proximity.  For 

instance, if the function of a call is food-related, it might not be necessary to emit this call 

unless the other bat is close to the caller or the food item in question.  If the function of a 

call is to warn another bat to keep its distance or to reduce potential aggression, the same 

idea holds true. For most call types, I did not see a consistent pattern regarding inter-bat 

flight patterns before vs. after calls were emitted or had position data available for too 

few calls to draw conclusions.  

 

Bat Age and Call Prevalence 

While the preceding data includes only times when both bats were flying and in 

view of both cameras, many calls were emitted when at least one bat was out of view 

(either flying or resting on the wall). Anecdotally, I observed juvenile bats resting on the 

wall emitting social calls each time the other bat approached it as it circled the room. 

Both bats were flying and visible during emission of LFM for only a small percentage of 

calls. It is possible that juveniles resting on the wall were emitting appeasement calls 
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when approached by flying adults. QCF calls were never recorded in adult-only trials, 

while all call types were recorded in adult-juvenile trials. Because I did not always know 

the identity of the caller, I cannot say whether this result represents juveniles emitting 

more social calls, adults producing more social calls in the presence of juveniles, or both. 

One possible explanation is that juvenile-adult dyads create a different social dynamic 

than adult pairs, perhaps resulting in increased likelihood of aggressive calling by the 

adult and/or increased appeasement-related calling by juveniles.  

There is a paucity of literature reporting social calls from E. fuscus, but papers 

outlining vocal development of pups and some calls from adults describe vocalizations 

resembling QCF, LFM, and CS calls (Moss 1988) and U and LFM calls (Monroy et al. 

2011). Gadziola et al. (2012) also reported on neural responses to calls resembling LFM, 

CS, and QCF calls and other call types not described in this paper. While the structure of 

LFM calls was similar in some ways to that of isolation calls, my findings do not indicate 

that this call type functions as an isolation call. Emission of isolation calls in E. fuscus is 

reported to taper off by week four (Moss 1988; Monroy et al. 2011), yet most trials 

containing LFM calls were recorded from bats more than 28 days of age at time of 

recording, including adults.  

 This study uncovered a rich repertoire of social calls produced by free-flying 

Eptesicus fuscus, one of the most well-studied bats in North America. I found that males 

produced more social calls and that bats flew in closer proximity when emitting QCF, 

RF, LFM, and squeak calls. By varying the context in which pairs of bats flew, I was able 

to determine that some call types are produced in a foraging-related function. This 

research resulted in the discovery that an ultrasonic social sequence emitted only by 
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males, used only in a foraging setting, and to which bats of both sexes responded, repels 

other individuals and is associated with higher foraging success by the caller. These 

findings highlight the importance of inter-individual acoustic communication in bats as 

they forage, and lay the foundation for future research on the functional role of bat social 

calls in a variety of settings, both in the lab and the field. 
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Chapter 3: Social Influences on Foraging Behavior in Short-tailed 

Fruit Bats (Carollia perspicillata) 

 

Abstract 

 Many factors, such as social context, availability of social information, and 

reproductive condition, may influence the foraging behavior and success of animals 

living in groups. Using PIT-tag data to collect detailed information about foraging 

behavior in individual bats, I tested Carollia perspicillata in groups and individually to 

test predictions relating to the presence of conspecifics, prior experience of conspecifics, 

reproductive condition, body weight, and sex on their foraging success and time to find 

food. I also looked for evidence of stable inter-individual relationships and consistent 

feeding patterns by individuals. My results indicate that the presence and experience of 

conspecifics, sex, and reproductive condition all have significant effects on the rate at 

which bats access food. Bats found the food more quickly in a group than alone, and I 

found evidence of social facilitation. Animals with prior experience with the food’s 

location did not facilitate foraging success of conspecifics and in some cases reduced the 

feeding rate of naïve bats. I did not find consistent foraging associations between pairs of 

individuals, but males were more likely to feed close together in time than expected by 

chance. Females exhibited faster foraging times when they were lactating, and males 

were the first to find the food more often than expected by chance.  
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Introduction 

 Social behavior in group foraging settings has received much research attention 

(Giraldeau & Caraco 2000, Galef & Giraldeau 2001), yet many questions remain. 

Depending on the situation, the presence of conspecifics can help or hinder foraging 

efforts by other individuals (e.g., Lefebvre & Giraldeau 1994). In addition, while there 

are many examples of animals using social information to learn about food location and 

feeding methods, at least one individual must make the initial discovery of a food source 

or foraging technique via individual learning. Furthermore, consistent associations with 

specific individuals could be useful in a foraging context to reduce aggression or to share 

information, or even food (Wilkinson 1985). 

While all individuals must obtain food, past research has characterized 

heterogeneous feeding behavior among animals of the same species. Individuals within a 

population may exhibit different behavioral strategies related to exploration and learning 

within a behavioral syndrome. Behavioral syndromes refer to groups of behaviors that are 

consistent across different contexts and situations but vary among individuals within a 

population or species (Sih et al. 2004). Behavioral types (e.g., highly aggressive versus 

passive, or bold versus shy) are different manifestations of behavioral syndromes 

exhibited by individuals within the group.  For instance, animals exhibiting the bold 

behavioral type may be more likely to take risks or exhibit exploratory behavior to 

discover a new food source, whereas those who are shy may be more likely to learn 

cautiously by observing bold conspecifics or to scrounge. If a habitat changes over time, 

multiple behavioral types can be advantageous and maintained within a population (Sih et 

al. 2004). 
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While behavioral syndromes could underlie differences in foraging behavior, 

differences may also be related to the sex or reproductive condition of the individual. For 

example, pregnant or lactating females may compensate behaviorally for their increased 

caloric requirements (e.g., Gittleman & Thompson 1988), and the sex providing parental 

care may make shorter foraging trips while caring for young (e.g., Barclay 1989, Clarke 

et al. 1998). In addition, harem male fruit bats defending a roost site search for and 

consume food closer to their territory than other individuals (Fleming 1988), and 

aggressive or more competitive behaviors of males in a foraging setting, as is seen in 

some bird species (e.g., Gill & Wolf 1975, Cadieu et al. 2010), could also be responsible 

for sex-related differences in foraging behavior. 

 The short-tailed fruit bat, Carollia perspicillata, is a neotropical frugivore that 

roosts in large groups (Fleming 1988). C. perspicillata display short-term fidelity to a 

few feeding areas nightly (Fleming & Heithaus 1986), feed only on ripe fruit which may 

be present at low densities, change diet frequently based on seasonal availability, and 

exhibit prolonged searches for food (Fleming 1982). In addition, they have been shown to 

acquire flavor preferences based on experience with conspecifics (Ratcliffe & ter 

Hofstede 2005). Considering these factors, this species is well-suited for addressing 

questions about social influences on foraging. By studying a captive colony of bats, I 

used detailed information about foraging and social behavior of groups and individuals to 

test several predictions about foraging behavior. I outline my predictions and expected 

findings below. 

First, I examined the possible influence of others on an individual’s foraging 

performance. I postulated that if the presence of other individuals is disadvantageous due 
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to competition, distraction, aggression, or confusion, lower foraging performance would 

be expected when a bat feeds with conspecifics. Conversely, if the presence of 

conspecifics is beneficial (e.g., because of social facilitation or information transfer), 

increased foraging success would be expected when individuals forage with others.  

I also attempted to determine whether any increase in foraging performance in the 

company of conspecifics is related solely to social facilitation (Heyes 1994, Shettleworth 

2010), as opposed or in addition to use of social information. If only individual learning 

is occurring, and the overall learning distribution of individuals within a group follows a 

Poisson distribution, then the cumulative number of skilled individuals is expected to 

follow a logistic curve. Giraldeau and Caraco (2000) present a model in which the rate 

naive individuals in a group learn a foraging task via individual learning decreases as the 

number of skilled individuals increases and results in a decelerating curve. Because such 

models alone may be inadequate to determine which type(s) of learning is(are) occurring 

(Laland & Kendal 2003, Reader 2004), other forms of information, such as clustering of 

times to first access food and comparisons of bats tested in groups and alone, are useful 

when attempting to determine whether social information is being used. I predicted that if 

social facilitation was responsible for any decrease in latency to find food, the time that 

the fastest bat within a trial fed would be shorter in a group versus a lone setting. If 

information transfer was occurring (instead of or in addition to social facilitation), I 

expected the interval between the fastest and second fastest bat to be smaller in a group 

setting.   

In a related vein, if individuals with prior experience with food locations can act 

as demonstrators that facilitate others (e.g., Lefebvre & Giraldeau 1994), I would expect 
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increased foraging success when such an individual is present in a group. In contrast, if 

an individual with knowledge of food location distracts others, guards the food source, or 

behaves aggressively (e.g., Cadieu et al. 2010), I would expect decreased foraging 

success in the presence of such an experienced bat (EB).  

If animals gain an advantage from the presence of conspecifics when foraging, 

consistent associations between pairs of individuals could provide each pair member with 

a reliable individual(s) with whom to exchange information. Indeed, C. perspicillata form 

relatively stable roosting associations, at least seasonally (Porter 1978, Fleming 1988). If 

these bats also maintain stable associations while foraging, I would expect to see 

instances of the same pairs of bats feeding close together in time more often than 

expected by chance. If there is no advantage to consistent social associations while 

foraging, I would not expect to find stable foraging pairs. Regardless of whether 

individuals forage in stable pairs, it is possible that individuals are more likely to pair 

with members of the same sex. For instance, males may feed one after the other in 

competitive efforts to access the food, or females may feed close in time with one another 

to avoid potential aggression from competitive males. While association during foraging 

may differ from roosting associations, female and bachelor male C. perspicillata roost in 

same-sex groups (Fleming 1988).  

I also examined any potential differences in foraging success related to sex or 

reproductive condition. If males are behaving in a more competitive or aggressive way 

than females, or are more successful at fending off others attempting to obtain access to 

the food (and if females seek to avoid aggressive interactions, as has been suggested 

(Porter 1978, Fleming 1988)), I expect increased foraging success among males and more 
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instances of males feeding close together in time. However, breeding females might be 

expected to feed more quickly to meet increased energetic needs. Finally, I examined 

predictions about which individuals are most likely to feed first. Studies of wild C. 

perspicillata have shown heavier males to exhibit higher levels of foraging activity than 

other bats (Charles-Dominique 1991). In addition, I might expect males defending roost 

sites to be among the first to access the food before returning to their roosting sites 

(Fleming 1988). It is also possible that animals with a bold or exploratory behavioral type 

(Sih et al. 2004) routinely feed first. 

 To test the predictions above, I studied foraging behavior and success of a captive 

colony of C. perspicillata under controlled conditions in which the number of animals 

feeding together (one individual, small groups of 8-10, and a large group of 25) and the 

presence or absence of an experienced individual were experimentally manipulated. 

Using a passive-integrated transponder (PIT) tag reader and video cameras, I recorded 

time to feed, time elapsed between two individuals feeding, and behavior at the feeding 

sites. I then compared time to feed and foraging success under different conditions and 

also looked for instances of consistent associations between individuals or consistent 

feeding patterns among individuals. In addition, I evaluated any differences between 

males and females, and females of different reproductive status, with regard to foraging 

speed and success and other foraging-related behaviors. 
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Methods 

Study Subjects  

In total, I collected data from 32 Carollia perspicillata (19 M, 13 F) marked with 

individually distinct passive integrative transponder (PIT) tags in two experiments (see 

Table 3.1 for distribution of bats in different experimental set-ups). Most, if not all, of 

these individuals were born in captivity either at the Biodome (Montreal, Canada) or in 

the lab (Maryland, USA). Some bats participated in both experiments. All bats were 

housed and tested in a large flight cage with approximately 8-12 untagged Glossophaga 

soricina (nectar bats) that were also present during each experiment and training of 

individual C. perspicillata. A small number (up to 7, usually fewer) of untagged C. 

perspicillata, typically not-yet-tagged juveniles or pregnant or lactating females, and an 

older, non-volant PIT-tagged male were also present during Experiment I. With the 

exception of data related to inter-individual associations, the nonvolant male was 

excluded from all counts and analyses.  

Throughout the course of the experiment, I periodically captured and tagged 

individuals that had not been tagged previously. Occasionally (~3 times), tags fell out 

prior to retagging. This could have resulted in data from the same individual being 

attributed to two separate bats, but this was the case with fewer than 10% of the bats I 

tested and therefore should not affect the findings or conclusions. Bats were fed fruit and 

nectar daily, had ad libitum access to water, and were kept on a reverse day-night cycle. 

This research was approved by the University of Maryland Institutional Animal Care and 

Use Committee (Protocol R-08-08). 
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Experimental Set-up and Data Analysis  

Bats were presented with 15 feeders (mesh cylinders on a flight cage wall; Fig. 

3.1), only one of which contained food that could be accessed on a given day. A circular 

antenna for a PIT-tag reader was placed around the accessible food, such that a bat 

crawling through the antenna to get food resulted in automatic recording of time and 

individual identification. Banana, a highly palatable food for these bats, was used as a 

food reward in the experiments, and bats were only offered this fruit during the data 

collection period.  

Artificial vegetation was affixed to the flight cage wall to cover at least 5 or 6 

feeders each day, including the feeder with the accessible food (Fig. 3.1). Previous trials 

indicated that the antenna did not act as a landmark that attracted or repelled bats. The 

exact location of plants varied from day to day but was similar throughout the 

experiments. A different feeder had accessible food during each test session, but all 

feeders had (inaccessible) banana behind them so that bats could not rely on olfactory 

cues to locate the accessible food. Attempts to food-deprive bats resulted in low activity 

levels; therefore, bats were fed non-banana food each day following data collection. Any 

fruit remaining in the cage the following day was removed at least two hours prior to the 

start of data collection. 
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Figure 3.1. Experimental set-up to which bats were exposed-- feeders covered with artificial 

vegetation. The circular PIT-tag reader antenna is visible near the top of the photo. 

 

The reader was programmed not to record the same bat until 3 s had passed since 

it was previously recorded. A spare PIT-tag was scanned at the antenna to denote start 

and end of the experiment. This tag was also faux-scanned at several other feeders, just 

as I pretended to place banana at them to avoid clues about food location. An infrared-

sensitive video camera recorded the trials, and a Pettersson D240 bat detector set to 

frequency division mode was placed near the camera so that calls were recorded on the 
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camera’s audio track. An infrared light was positioned to illuminate the feeder with 

accessible food and the surrounding area. During some experimental sessions, an 

experimenter was also present outside the flight cage with a red LED light.  

 In each instance where I wished to quantify feeding performance, I log-

transformed time in seconds and used the maximum time allowed within a given trial as 

the time for those bats that did not feed. This allowed me to use data from every bat on 

each day and provided a conservative estimate of feeding time because these bats might 

have taken much longer to find food had the experiment continued. I also assessed 

success or failure to find food within a given session. For pairwise comparisons from 

models testing more than two levels of a given factor and for other multiple comparisons 

involving the same data, I report the raw P-values but used sequential Bonferroni tests 

(unless otherwise noted) to determine significance.   

 

Experiment I 

Presence of conspecifics 

To address the question of whether presence of conspecifics helps or hinders 

speed and success of foraging, I tested five male bats both with and without conspecifics 

present. These bats were tested on seven days in a group setting (May-June 2009), then 

each bat was tested in ten sessions with no other C. perspicillata present (June 2009), and 

then the bats were tested in eight additional group sessions (July 2009; Table 3.1). The 

accessible feeder changed location in each session.  
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Table 3.1. Experiments conducted. 

Experiment Number 

of tagged 

bats  

Max. 

time 

allowed 

(min) 

Testing period No. of 

trials 

Social context 

I- Group 25 90 May-July 2009 15  Large group 

(all tagged 

bats) 

 

I- Lone 5 90 June 2009 10 per bat Individual 

 

II 24 60 Feb-June 2010 Per group: 

5 baseline 

4 with EB* 

4 post-test 

(no EB) 

Two groups of 

8-10 bats; 

sometimes 

with EB* 

*EB = experienced bat with prior exposure to the food’s location 

 

Data were collected for the first 90 min after food was placed in the feeder. In 

group trials, I collected a total of 375 feeding times from 25 bats (21 of whom found the 

food on at least one day). To test for possible effects of test day, I used a GLMM to 

account for bat ID and compared time to feed in group trials before and after lone trials 

with trial number in the model and found no significant difference based on before/after 

(F1,23 = 2.06, P = 0.16), trial (F1,348 = 2.20, P = 0.14; Fig. 3.2; raw times to feed can be 

found in Appendix A), or an interaction between the two (F1,348 = 1.66, P = 0.198).  

Therefore, I combined these categories and compared all lone to all group trials. Using 

GLMMs accounting for bat ID, I compared the time to feed and foraging success in a 

group versus alone for the five individuals tested under both conditions. This allowed me 

to determine the effect of a group on the foraging performance of the same individuals. 
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Figure 3.2. Times for each bat to feed on each test day. Within each panel, each symbol 

represents a different bat.  Only bats who fed on at least one day within an experiment are shown. 

A shows Experiment I group data, B shows Experiment I lone data, and C shows Experiment II 

group data. The maximum time allowed is shown for bats that did not feed within the allotted 

time. In Experiment I, individual test days occurred between group days 7 and 8. I did not find a 

significant relationship between foraging performance and trial number. 
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First times to feed and time intervals between bats feeding 

 Using data from the five bats tested in both group and lone trials, I compared the 

time for the fastest bat to access the food in each group trial and on each lone trial day 

(i.e., day 1 of testing for each lone bat was treated as trial day 1, even if every bat was not 

C 

A 

B 
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tested on the same calendar day). If social facilitation was occurring, I expected a smaller 

value in group vs. lone trials. In addition, I compared the intervals between the fastest and 

second fastest bat (using the same five bats) on a given day between group and lone days. 

If information transfer was occurring, I expected smaller intervals in a group vs. lone 

setting. 

 

Sex and reproductive condition 

 To determine whether bat sex was related to foraging speed, I compared latencies 

to feed for males and females (N = 375 records from 9 females and 16 males) using a 

GLMM accounting for bat ID with log time to feed as the response variable. I used a 

separate GLMM to compare foraging success (whether bats accessed the food within 90 

min) between sexes. I also evaluated possible effects of reproductive condition on 

foraging behavior in females. I predicted that females who were lactating or pregnant 

would be more likely to access the food quickly due to increased caloric needs. I had 

information about reproductive condition of females at two points during the experiment. 

During this experiment, six of nine females were pregnant, lactating, or recently post-

lactating at some point (2 pregnant, 3 lactating/recently lactating, and 1 pregnant and then 

lactating). Using a GLMM accounting for bat ID, I tested for differences in foraging 

success and log time to feed between pregnant, lactating, and non-reproductively active 

bats.  
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Feeding order and body weight 

To look for consistent foraging patterns within individuals, I evaluated which bat 

was first to find food on a given day. I calculated the percentage of sessions a bat feeding 

first was male vs. female and compared these values with the number of males and 

females present (16 M, 9 F). I then did a goodness of fit test to determine if the leading 

bat was male or female more often than expected by chance. I also wanted to know if 

some bats were “leaders” (the first to feed) more often than expected by chance, 

assuming that by chance each bat would find the food first an equal number of times. I 

calculated how many times each bat would be expected to lead by chance (25 bats flying 

in 15 trials = 0.6 times), then used a goodness of fit test to compare expected vs. observed 

values for bats feeding first on more than one day.  

To determine if body weight is related to which bats feed first, I examined the 

weights of bats that frequently led relative to median weights for bats of a leader’s sex. 

Excluding pregnant and juvenile bats, I had weights for 25 bats from 8 June and 16 bats 

from 6 July 2009. While bat weight may fluctuate, 75% of the bats weighed maintained 

their position relative to the sex median between the two weighing sessions. I had 

weights from June 2009 available for each bat that led on at least one day. If relative 

weight and propensity for leading are independent, I expected 50% of these bats to weigh 

less than the median for their sex. I used a Chi-square test to make this comparison. 

 

Inter-individual associations 

 In addition to comparing food discovery patterns, I examined whether pairs of 

individuals associated with one another while feeding more often than expected by 
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chance. To evaluate this, I looked at pairs of bats visiting the target feeder within 10 s of 

one another.  To eliminate data from bats sitting in place at the feeder for lengthy periods 

during the same visit, I only counted a second “pairing” if it occurred a minimum of 30 s 

after the previous pairing of the same two individuals (i.e., 30+ s from the time bat 2 was 

recorded in the first pairing to the time bat 1 was recorded in the second pairing).  

I then quantified associations using the symmetrical index of Fager (1957), which 

is computationally the same as the half-weight index, for each pair of bats. To determine 

if pairing is nonrandom I compared the number of pairings between two individuals with 

the total number of times each bat paired with any other individual.  The index is Iij = 

(2Nij)/(Ni+Nj), where Nij is the number of times bats were paired with each other and Ni 

and Nj represent the total number of times each individual was paired with any bat (Fager 

1957). An index value of 1 would indicate that bats only paired with each other, while 0 

would mean they never fed together. I calculated the following t-statistic, t = 

[(Nj+Ni)(2Nij-1)]/[(2NiNi-1)(Ni+Nj-1)], with infinite degrees of freedom, to determine 

whether associations occurred more often than expected by chance (Fager 1957).  Finally, 

I tested whether pair formation was independent of sex by calculating the expected 

proportion of male-male, female-male, and female-female pairs using the number of bats 

of each sex who ever found food and comparing these proportions to observed values. 
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Experiment II 

Presence of an experienced bat 

To ascertain whether bats with experience with the food’s location (i.e., bats 

trained to a certain feeder) affected the foraging behavior of other individuals, I trained 

one male and one female bat, each to a different feeder. To allow for replication of 

conditions, I first divided bats with tags into two groups of 8-9 individuals (balanced for 

sex). One group was housed in an alternate flight cage while the other was being tested.  

 

Baseline trials 

Prior to training, for five days between 28 February and 8 March 2010, each 

group was tested for an hour with the same set-up described in Experiment I (Table 3.1; 

Fig. 3.1). Once an hour had passed, group A was captured and removed from the flight 

cage.  Fresh banana was placed in a different feeder, and group B was tested for one 

hour in the same fashion. During collection of baseline data, no experienced bat was 

present. 

 

Training and experimental trials 

 Two individuals were trained to access food from a particular feeder (each bat 

was trained to a different feeder). Bats were shown the location of the banana, and extra 

banana near the feeder was presented at the start of training. Each bat was trained daily 

until it consistently accessed the food in the correct feeder.  After training was complete, 

each group was tested with each experienced bat (EB) twice for an hour in May 2010. 

The same procedures used in collection of the baseline data were used for experimental 
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trials, except that an EB was released simultaneously with each group.  After the first 

group was tested on each day, this group and the EB were captured and removed, and 

the second group and EB were tested. A piece of reflective tape was affixed to the back 

of each EB for easier identification in video recordings.   

 

Post-test trials and data analysis 

 Following experimental trials, four post-test trials (same methodology as baseline 

trials) per group were repeated between 25 May and 2 June 2010 with no EB present. To 

mimic exposure to each EB (and its associated feeder) twice, each group was exposed to 

the same two feeders (one feeder at a time) across the four trials. I evaluated latency to 

feed both with and without an EB present. The pre-training baseline trials ended more 

than two months before experimental trials began (due to the time required to train bats) 

and did not contain all of the same individuals as the experimental trials. Therefore, I 

chose not to include the pre-training baseline trials in the analysis and instead focused on 

the more temporally similar experimental and post-test trials (N = 136 records).  

I tested groups A and B separately but analyzed the data together. I used a GLMM 

accounting for bat ID to compare times to feed and foraging success (feeding within 60 

min) with the male EB, the female EB, and without an EB present. To determine if 

males and females are affected differently by presence of an EB, I also included sex in 

the time-to-feed and success models. I excluded times to feed for the EBs themselves. In 

addition, I tested for an effect of trial by including trial number and experimental 

subtype (no EB, male EB, female EB) in a model and found no significant difference 

based on trial (F1,117 = 3.36, P = 0.07; Fig. 3.2) 
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Results 

Experiment I 

Presence of conspecifics 

Bats found food faster when foraging with conspecifics. When considering bats 

tested both with and without conspecifics, bats accessed the food significantly faster 

when flying in a group vs. alone (F1,4 = 9.69, P = 0.036; Fig. 3.3). For four of the five 

bats tested, the difference between their mean time to feed alone and in a group was 

positive. I did not find a difference in foraging success between trial types (F1,4 = 3.71, P 

= 0.127; Fig. 3.3). When comparing the fastest time to feed for these five bats within a 

given group or lone trial day, I found that the fastest time was significantly shorter when 

bats flew in a group vs. alone (F1,23 = 6.99, P = 0.015; Fig. 3.3).  However, when 

comparing the intervals between the fastest and second fastest bat in each trial (using the 

same five bats) I found no significant difference between group and lone trials (F1,23 = 

0.06, P = 0.805; Fig. 3.3). 
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Figure 3.3. Comparisons between group and lone trials regarding A) foraging success, and B) 

mean time to feed, minimum time to feed (fastest bat), and interval between the fastest and 

second fastest bat within a trial (± SE for each). *P < 0.05. 

 

Feeding order and body weight  

Within the 15 group sessions, 7 (of 25) bats were the first to feed at least once, 

including one bat that fed first in 1/3 of all sessions. Three bats were first to feed in 73% 

A 

B 
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of sessions. These three bats were each leaders more often than expected by chance (X
2

1 

= 33.61, P <0.0001 and X
2

1 = 10, P = 0.0016). The first bat to feed was male significantly 

more often than expected by chance (X
2

1= 8.44, P = 0.0037). While some bats that 

commonly fed first had additional exposure to the set-up when they were tested 

individually, these bats had the same propensity for leading both before and after this 

additional exposure. I found no significant relationship between relative weight and 

tendency to feed first (X
2

1= 0.14, P = 0.71). 

 

Inter-individual associations, sex differences, and reproductive condition 

 If bats consistently exchange social information with the same individuals, they 

might form stable foraging associations. On the other hand, if they use information from 

others opportunistically, I would not expect stable pairs of individuals. I evaluated pair 

data to determine if specific pairs of bats occurred more often than expected by chance. 

In total, I found 38 pairs of bats feeding within 10 s of each other at least once.  Fifteen 

individuals occurred in one or more pairs. For bats that paired with another individual at 

least once, the number of pairs in which they participated ranged from 2 to 10 (X±SD = 

5±2.27). I recorded a total of 54 pairings at least 30 s apart, with an average of 1.4 

pairings per bat (SD = 0.76), and 68% of pairings occurred only once.  

The mean association among bat pairs was 0.18 (±SD 0.09; range:  0.08 to 0.42), 

and no pair occurred more often than expected by chance (P > 0.5 for each pair). While I 

did not find stable pairs, I did find that the frequency of pairs differed significantly from 

expected with regard to sex (X
2
2 = 8.08, P = 0.0177). Specifically, I found that male-male 

pairs were more common than expected by chance (Fig. 3.4).  
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Figure 3.4. Distribution of bat pairs by sex combinations expected and observed. There was a 

significant difference between expected and observed values. MM = male-male, FM = female-

male, and FF = female-female. 

 

I also found differences in time to access food and in foraging success based on 

bat sex (time: F1,351 = 5.99, P = 0.0149; Fig. 3.5; success:  F1,351 = 4.03, P = 0.045), with 

males exhibiting faster feeding times and greater foraging success than females. While I 

did not find a significant difference in foraging success between reproductive conditions 

(F2,3 = 5.50, P = 0.099), I did find a difference in time to feed (F2,3 = 10.6, P = 0.044).  

Specifically, lactating bats found food significantly more quickly than non-reproductive 

females (t3 = 4.43, P = 0.043; Tukey-Kramer adjustment for multiple comparisons; Fig. 

3.6.) 
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Figure 3.5. Mean (± SE) time to feed by sex (N = 240 records from males and 135 from females). 

Males fed significantly faster than females.  

 

 

 

 
 

Figure 3.6. Mean (± SE) time to find food for 9 females of different reproductive condition 

foraging in a group of 25 individuals over 15 trials.  A differs from B at P < 0.05.  

 



 

 97 

 

Experiment II 

Presence of an experienced bat 

 Presence of an experienced bat (EB) influenced foraging behavior in some trials. I 

compared trials with no EB, with the male EB, and with the female EB and found a 

difference in mean time to feed overall (F2,28 = 5.52, P = 0.0095; Fig. 3.7). I then 

examined the data on a pairwise basis and found no difference in mean time to feed when 

the male EB or no EB were present (F1,28 = 0.89, P = 0.354). In contrast, bats found the 

food significantly faster in the no EB condition compared with trials in which the female 

EB was present (F1,28 = 10.99, P = 0.0025; Fig. 3.7). Within these data, there were no 

significant interactions and no difference in time to feed based on sex (F1,14 = 0.11, P = 

0.74). I also found no significant difference in foraging success based on presence or 

absence of an EB (F2,28 = 2.37, P = 0.112) or sex (F1,88 = 0.08, P = 0.78).  

 

 
 
Figure 3.7.  Mean (± SE) feeding latency with a male experienced bat (EB), a female EB, and no 

EB present. Times for EBs themselves are not included. A differs from B at P < 0.05.  
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Although EBs had been repeatedly exposed to food in a specific location and had 

shown some proficiency in finding it before being tested with the groups, the female was 

never the first bat to access the food when serving as an EB. She was the second (of 10), 

eighth (of 10), and last (of 5) bats recorded in the three of four trials in which she 

accessed the food, feeding an average of almost 19 min after the first bat. The male was 

the first bat to feed in two of four trials and was the seventh (of 10) and last (of 10) bats 

to feed during the other two trials, feeding an average of 14 min after the first bat on 

these two days.  

 

Discussion 

My results show that presence of conspecifics, experience of conspecifics, sex, 

and reproductive condition all influence foraging behavior in Carollia perspicillata. I 

found that while bats find the food more quickly when conspecifics are present, the 

presence of a bat with prior experience with the food’s location can have a negative 

impact on the foraging speed of others. In addition, my findings indicate that C. 

perspicillata do not form consistent inter-individual associations while foraging, but 

males are more likely to feed close together in time. Lactating females have higher 

foraging success than non-reproductive females, and males find food faster than females. 

Furthermore, certain individuals, and males in general, are more likely to find food first 

than expected by chance. While there were some trends towards better foraging 

performance on later test days, I did not find consistent relationships between feeding 

behavior and trial number within either experiment. 
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Presence of Conspecifics 

 I tested five males both with and without conspecifics and found that the bats fed 

more quickly in the presence of other C. perspicillata. One possible explanation for this 

finding is social facilitation, i.e. animals feed more readily if others are present. Another 

possibility is that, instead of or in addition to facilitation, bats that had already found the 

food in the group setting provided social information to the other individuals, thus 

lowering the mean time to feed for bats when flying in a group. The multitude of 

variables at play in a group foraging setting can make it difficult to distinguish precisely 

what is influencing the behavior of individuals. However, my data support social 

facilitation as at least a partial explanation for the difference in time to feed. Specifically, 

I found that the feeding times of the fastest bats within a trial were smaller in a group vs. 

lone setting. However, I did not find a difference between inter-bat intervals across trial 

types. While I did not find evidence to support information transfer, I cannot rule out that 

this, along with social facilitation, may underlie the observed differences in group and 

lone feeding times. 

 

Presence of an Experienced Individual 

I sought to test whether a bat with prior experience with the location of the food 

would help, hinder, or have no effect on how other bats find food. If bats were acting as 

demonstrators and providing other bats with information about the location of the food, I 

expected faster feeding times when the experienced bat was present. Conversely, 

experienced bats could have distracted or competitively inhibited other animals from 

accessing the food. My data show that the experienced bats (EBs) were usually not the 
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first bat within a group to access the food; however, bats, on average, took longer to find 

the food when the female EB was present, indicating that she may have distracted or 

otherwise inhibited other bats. Even without accessing the food, the EB bats may have 

hovered or crawled near the appropriate feeder. Anecdotally, some video recordings 

showed bats excluding others from the feeder while they fed.  

A study of canaries found that when naïve individuals interacted freely with 

experienced males, they were unable to learn a foraging task because of aggressive 

interactions with the demonstrators (Cadieu et al. 2010). In addition, presence of other 

naïve individuals can inhibit an animal from obtaining social information from a 

knowledgeable conspecific (Lefebvre & Giraldeau 1994). While the male EB in this 

study did not inhibit other bats’ foraging rates, they also did not improve in his presence. 

Thus, I found no evidence that bats with previous exposure to the food’s location 

facilitate other bats’ foraging performance, either actively or passively. Instead, certain 

individuals, either motivated by reproductive or social status, or perhaps due to 

predisposed behavioral tendencies, seek and access the food first, and other individuals 

may be just as likely to gather information from these individuals as from bats with prior 

experience. 

It is important to note that bats are unlikely to encounter situations in the wild 

mimicking the situation presented in this study. The presence of food that bats can smell 

but not access is not a natural foraging scenario for this species. However, presenting bats 

with a novel foraging task allowed me to examine how new skills and behaviors might 

spread through a group of bats, and bats showed that they could indeed learn to locate 

and access the food.  
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Feeding Order and Body Weight 

When Porter (1978) observed a captive colony of C. perspicillata, she reported no 

consistent patterns regarding feeding behavior among individuals. However, my findings 

indicate that the first bat to feed on a given day is non-random, and a relatively small 

number of bats were the first to feed on a proportionally large number of days. Leading 

bats could represent a “bold” behavioral type making them more prone to risk-taking and 

exploration (Sih et al. 2004) and leading them to locate and/or access the food ahead of 

other individuals. Although socially-obtained information should be advantageous, at 

least one individual must find the food via individual learning before others can learn 

from it. My findings may provide an example of different individuals within a population 

specializing in different “skills” related to finding and processing food (Giraldeau 1984).  

Indeed, I observed what appear to be individual differences in social foraging 

behavior among the bats I tested. Video records and personal observation revealed that 

some individuals appeared to “defend” the food by physically interacting with other bats 

attempting to access the food, while other bats (or perhaps the same bats at different 

times) passively allowed other bats to join them inside the feeder. In a different 

experiment from the one described in this paper, I also observed occasional 

kleptoparasitism, where a bat physically took food from another that had recently located 

the food source rather than accessing the food source itself (unpublished data); it is 

possible that some bats in the current study also chose to “scrounge” (Giraldeau & 

Lefebvre 1986) rather than seek the food themselves.  

It is also possible that some individuals (perhaps territorial harem males) are more 

likely to feed first either because they are dominant within the group or because they feed 



 

 102 

 

quickly and then return to defend their roosting territory. Fleming (1988) reported that 

territorial male C. perspicillata tend to forage closer to their day roost than other 

individuals. Because I did not have data regarding the roosting habits or social status of 

individuals, it is difficult to make firm conclusions in this regard. While heavier males 

have been shown to display higher levels of foraging activity (Charles-Dominique 1991), 

I found no evidence of a relationship between body weight and tendency to feed first.  

 

Inter-individual Associations and Sex Differences 

 If bats consistently exchange information with the same individuals, I would 

expect stable foraging associations. However, I found that C. perspicillata do not often 

feed in pairs or within quick succession (<10 s) with the same individual when accessing 

a single food source. When considering how often pairs of bats feed together, the highest 

level of association I found was one pair feeding together 42% of the number of times 

they were paired with any bat, which was not more than expected by chance. Therefore, 

while this species is known to form relatively stable roosting associations (e.g., Porter 

1978), they did not appear to form consistent foraging associations in my study. This is 

consistent with the finding that female roost-mates of this species do not forage near each 

other (Fleming 1988). This also indicates that it is unlikely that bats are gaining social 

information about food from specific individuals on a regular basis. Instead, they are 

likely to obtain social information opportunistically. 

 Despite the lack of stable pairs, I found that males fed in quick succession with 

one another more often than expected by chance, compared with female-female and 

male-female pairs. This could be related to the fact that females and bachelor males tend 



 

 103 

 

to roost in same-sex groups (Fleming 1988); however, I did not find more female-female 

pairings than expected. The high instance of males feeding close together in time may be 

due to faster feeding times for males in general, or it could reflect competition among 

males in a foraging context. If males view one another as competition for a limited food 

source, they may be more eager to obtain the food quickly when other males are present, 

resulting in more pairings of males feeding within a short time of one another.  

 Increased competition between males is also supported by the finding that, on 

average, males found the food more quickly than females. Other possible explanations for 

males feeding faster include increased aggression by males, which could make females 

hesitate to approach the food until males are out of the way. While interactions between 

individuals of this species are not typically aggressive (Fleming 1988), males do engage 

in “boxing” fights, and it has been postulated that females have left roosting areas to 

avoid aggressive interactions between males (Porter 1978). Considering that I did observe 

defense of the food source but that aggressive interactions between feeding bats were not 

prevalent, simple motivation through perceived competition seems more likely than 

outright aggression.  

My results show that females who are lactating feed more quickly than non-

reproductive females, presumably due to the increased caloric needs associated with 

reproduction. In contrast to my results, a study of wild C. perspicillata found that 

reproductive females exhibit less exploratory food-finding behavior compared with non-

reproductive females and some males (Charles-Dominique 1991). However, exploratory 

behavior in a laboratory flight cage is much less energetically demanding than in the 

wild, and increased motivation to find food could easily account for this result.  
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In conclusion, I found that individual C. perspicillata find food more quickly in a 

group of conspecifics but that feeding intervals between the two fastest bats are not 

smaller in groups than expected based on bats tested alone. These findings support the 

idea that social facilitation decreases feeding latencies. In addition, bats with prior 

experience do not serve as demonstrators and can sometimes inhibit the foraging speed of 

other individuals. Furthermore, lactating females feed more quickly than non-

reproductive females, and males are more likely to feed close in time with one another 

and to feed faster in general, possibly due to competition for the food source. The same 

few male bats frequently find the food first. These results offer revealing information 

about factors related to the foraging behavior and success of a group-living bat species. 
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Conclusion 

 The findings of this dissertation demonstrate that social learning, vocal 

communication, and social facilitation are all mechanisms by which bats influence the 

behavior of the conspecifics with which they fly. This collection of findings 

simultaneously addresses questions about social influences on foraging in group-living 

animals and raises additional queries worthy of study. In Chapter 1, I presented the first 

evidence of social learning facilitating acquisition of foraging skills in young 

insectivorous bats. In addition, while social learning has been demonstrated in a variety 

of species, including some bats, the mechanism by which naïve individuals are learning, 

and the social cues to which they are attending, are often unclear. In contrast, my data 

show that increased following behavior and decreased inter-bat distance, as well as bats 

flying closer together at the time of prey capture (during feeding buzzes) are positively 

associated with social learning. Demonstrating that not only can young bats learn from 

others, but shedding light on how they are learning, opens opportunities for future studies 

related to social learning of foraging skills.  

 Further research building upon these findings could include testing young bats 

with their mothers, as well as familiar but unrelated and unfamiliar bats, to compare 

learning frequency and speed across situations. If familiar bats are less likely than 

unfamiliar bats to show aggression or competitive behavior (e.g., chasing other bats away 

or emitting food defense calls) towards young bats, juveniles may learn more quickly 

from familiar individuals. Such experiments would also reveal whether mothers of 

fledgling bats, who should have a vested interest in the survival of their offspring, behave 

in such a manner (even without direct teaching or helping) as to facilitate more rapid 
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learning by their young. In addition, tests of social learning involving a moving prey item 

that more closely replicates the challenge of hunting insects in the wild could provide 

useful information about the extent to which the behavior I observed occurs in a natural 

setting. Finally, one could test groups of young, naïve bats. Such experiments could help 

determine how and the rate at which naive bats learn to forage in the absence of 

experienced individuals. Indeed, if groups of young bats are left behind by more 

experienced flyers and foragers when emerging for the first time(s) from a roost, the 

group may take advantage of the first juveniles which learn to capture insects 

independently, with the remainder of the group emulating them. It is also possible that the 

presence (in my study) of other non-foraging individuals served to distract or inhibit 

naïve bats, perhaps by sending them a signal that no food was present, since another bat 

was present but not eating (although some bats in the control group—i.e., tested with 

another naïve bat—did direct buzzes towards the prey item). Testing bats alone would 

help address this possibility. 

The findings in Chapter 2 reveal a rich repertoire of social calls, some of which 

have not been previously reported in the literature, emitted by flying big brown bats. The 

study of communicative vocalizations by bats has a long history (e.g., Fenton 1985), and 

a handful of social calls, primarily those related to mother-offspring communication, 

have been previously reported in big brown bats (Eptesicus fuscus; e.g., Gould 1971, 

Gould 1975, Moss 1988, Monroy et al. 2011). However, many studies of bat social calls 

are largely descriptive, and relatively few studies focus on the vocalizations of foraging 

bats. Indeed, to my knowledge, there have been no previous published reports of social 

calls from foraging big brown bats in flight. In addition to revealing the variety of 
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vocalizations flying big brown bats emit, I found that for several call types, males 

produce more calls, and bats fly closer together around the time of call emission. The 

discovery of a newly-described, foraging-specific call sequence (“social sequence”) that 

males apparently use to repel other bats and potentially claim a food item sheds light on 

the way bats foraging near one another interact. While many species of bats are known to 

feed in the company of conspecifics, there is comparatively little known about direct 

interactions between individuals and what mediates these interactions. Questions related 

to how bats orient and hunt in the presence of others have been of interest to scientists for 

decades (e.g., Barclay 1982, Obrist 1995, Gillam 2007). The results in Chapter 2 show 

that, in a foraging context, social calls may be very important. 

  Going forward with the knowledge that foraging big brown bats use social calls 

that affect flight behavior and are related to foraging success, future studies could further 

elucidate the breadth of social call use in this species, as well as answer additional 

questions about the precise mechanisms leading to behavioral changes. For example, 

calls recorded using a microphone array could reveal information about the directionality 

of social calls and help determine if bats “aim” these calls towards conspecifics. In 

addition, playback experiments testing bats with social sequences and a control of 

echolocation calls with a prey item present could indicate whether the sequence itself, in 

the absence of a competing bat, lowers the prey capture success of an individual and offer 

insight into the mechanism by which this occurs. It is possible that bats recognize the 

social sequence as a sign that the other bat has claimed a food item (or will physically 

defend it). However, it is also possible that attributes of the call serve to acoustically 

“jam” or interfere with the acoustic orientation or prey tracking of the competing bat, 
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thus making prey capture more difficult. Individuals have been shown to alter their 

echolocation calls in jamming avoidance attempts (e.g., Ibanez et al. 2004, Ulanovsky et 

al. 2004), and recent research revealed that the clicking sounds emitted by some moths 

serve to disrupt bat echolocation and allow the moth to escape (Corcoran et al. 2009). 

Testing bats with the playback loudspeaker at different proximities to the prey item, then 

examining both behavioral and acoustic responses could help ascertain whether the call 

causes acoustic interference or if bats are deterred merely because they recognize that the 

other bat has claimed the prey item. Examining the behavioral and call responses of bats 

to playbacks of social sequences in the wild could also be informative.  

 In addition to studies focusing on the social sequence specifically, experiments 

testing bats with varying levels of familiarity could help identify the function of big 

brown bat social calls in general. While some of the calls I recorded occurred exclusively 

or predominately in a foraging situation, this was not true for all call types. Bats that are 

housed together might emit fewer social calls when flying/foraging in the presence of 

each other because they already have an established social relationship, whereas bats who 

are “strangers” to one another may rely more upon vocalizations to mediate interactions. 

Finally, my findings inform neurobiological studies that seek to determine whether 

communicative calls are processed differently than echolocation calls. 

 In Chapter 3, I presented results showing that short-tailed fruit bats (Carollia 

perspicillata) exhibit variation in foraging performance based upon factors including sex, 

reproductive condition, and social context. Specifically, social facilitation resulted in bats 

finding food more quickly in a group setting than when foraging alone. Despite relatively 

stable roosting associations in some cases (Porter 1978) and the ability to exchange 
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information about food in a roost setting (Ratcliffe & ter Hofstede 2005), C. perspicillata 

are considered to be solitary foragers who feed passively near other individuals (Fleming 

1988). Regardless, my findings show that the presence of other individuals influences the 

foraging performance of these bats. Indeed, animals need not be considered “social” 

foragers to influence one another in a foraging setting (Giraldeau & Caraco 2000). 

Examples from other taxa (e.g., Crane et al. 2012) show that social facilitation can occur 

even in “non-social” species, or those that are not thought to behave “socially” in a 

specific situation but are still in the proximity of conspecifics. 

While I did not find evidence of information transfer in this study, further 

research could help determine whether this mechanism, in addition to social facilitation, 

is at play. For example, testing a larger number of individuals (e.g., 10 or 20 bats) both 

alone and in a group setting (without any additional bats present) would allow for 

comparisons of times to feed, feeding success, and intervals between individuals. Using 

the same number of bats, as well as the same individuals, removes variation based upon 

individual behavior while allowing for direct comparisons regarding feeding performance 

between the two situations. In addition, testing bats in groups of varying size could reveal 

how the number of bats present might affect the foraging performance of individuals, and 

whether different mechanisms (e.g., social facilitation or information transfer) are more 

prevalent with different group sizes. Testing bats with a more complex foraging task 

could also help determine if bats are able to learn from one another. 

Another useful experiment would involve collecting detailed information from 

individual bats about roosting behavior, social status, and roosting associations in 

conjunction with foraging behavior, preferably over an extended period of time (e.g., 
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several months). It could then be determined whether, for example, hierarchies in a roost 

transfer to a foraging situation with regard to food finding speed and success, and 

whether roosting relationships are correlated with which bats exclude versus tolerate 

other individuals at a feeder. Examining social status and roosting behavior, combined 

with information about reproductive condition, could also reveal how much apparent 

individual variation is due to current condition versus more static factors. For example, I 

observed some bats finding the food first in multiple trials spanning more than a year in 

time. If foraging behavior (e.g., time to feed, success rate, feeding first) within an 

individual is consistent over time, such data could offer revealing information about 

individual differences that may be due to behavioral syndromes or other attributes 

inherent to the bat itself, as opposed to external or temporary factors. 

Several attributes of bats, including a relatively long lifespan, an intermediate 

level of environmental change with regard to feeding and/or roosting, and a gregarious 

nature, make them useful models for asking questions about social learning, 

communication, and other influences of conspecifics. Through the experiments described 

in this dissertation, I was able to add important, novel information to our understanding 

of these phenomena and how they explain or even shape observed interactions and 

behaviors. Social learning of hunting skills by young bats may extend to other species 

and appears to be a benefit of foraging in the company of others. Vocal communication 

during foraging may be instrumental in minimizing superfluous energy expenditure (e.g., 

pursuing prey that another individual has “claimed”), or even in avoiding aggression 

(while competing for prey), as has been shown in other taxa. In addition, even animals 

that are generally considered “passive” or “solitary” foragers can be affected by and even 
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benefit from the presence of others nearby when they forage, an idea that can be extended 

to many other species. These findings contribute to the fields of acoustic communication 

and behavioral ecology and provide a foundation for a variety of related research. 
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Appendix A:  Raw times to feed for Carollia perspicillata 

(Chapter 3) experiments. 

 

Figure A.1. Raw times for each bat to feed on each test day. Within each panel, each symbol 

represents a different bat.  Only bats who fed on at least one day within an experiment are shown. 

A shows Experiment I group data, B shows Experiment I lone data, and C shows Experiment II 

group data. The maximum time allowed is shown for bats that did not feed within the allotted 

time. In Experiment I, individual test days occurred between group days 7 and 8.  
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