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The focus of this thesis is two equations that arise in special Lagrangian geom-

etry: the degenerate special Lagrangian equation (DSL) and the Lagrangian mean

curvature flow (LMCF). A significant part of this focus centers on Dirichlet dual-

ity, subequations, and viscosity solutions, the analytic framework which we use to

formulate and study both equations.

Given a Calabi–Yau manifold (X,ω, J,Ω) and a model manifold M , one can

construct a kind of moduli space of Lagrangians in X called the space of positive

Lagrangians. A Lagrangian L ⊂ X belongs to this infinite-dimensional space if L

is diffeomorphic to M and Re(Ω|L) > 0. A Hamiltonian deformation class of the

space of positive Lagrangians admits an L2-type Riemannian metric which allows

one to study this space from a geometric point of view. Geodesics in this space

play a crucial role in a program initiated by Solomon [37, 36] to understand the

existence and uniqueness of special Lagrangian submanifolds in Calabi–Yau mani-

folds. They also play a key role in a new approach to the Arnold conjecture put

forth by Rubinstein–Solomon and in the development of a pluripotential theory for



Lagrangian graphs [29, 8]. The DSL arises as the geodesic equation in the space

of positive graph Lagrangians when X = Cn and ω and Ω are associated to the

Euclidean structure [29].

Building on the results of Rubinstein–Solomon [29], we show that the DSL

induces a global equation on every Riemannian manifold, and that for certain asso-

ciated geometries this equation governs, as it does in the Euclidean setting, geodesics

in the space of positive Lagrangians. For example, geodesics in the space of positive

Lagrangian sections of a smooth semi-flat Calabi–Yau torus fibration are governed

by the Riemannian DSL on the product of the base manifold and an interval.

The geodesic endpoint problem in this setting thus corresponds to solving the

Dirichlet problem for the DSL. However, the DSL is a degenerate-elliptic, fully non-

linear, second-order equation, and so the standard elliptic theory does not furnish

solutions. Moreover, for Lagrangians with boundary the natural domains on which

one would like to solve the Dirichlet problem are cylindrical and thus not smooth.

These issues are resolved by Rubinstein–Solomon in the Euclidean setting by adapt-

ing the Dirichlet duality framework of Harvey–Lawson to domains with corners

[29]. We further develop these analytic techniques, specifically modifications of the

Dirichlet duality theory in the Riemannian setting to obtain continuous solutions

to the Dirichlet problem for the Riemannian DSL and hence, in certain settings,

continuous geodesics in the space of positive Lagrangians.

The uniqueness of solutions to the Dirichlet problem in the Euclidean formu-

lation of Dirichlet duality theory relies on an important convex-analytic theorem

of Slodkowski [34]. Motivated by the significance of this result and the technical,



geometric nature of its proof, we provide a detailed exposition of the proof. We then

study some of the quantities involved using the Legendre transform, offering a dual

perspective on this theorem.

Given a Lagrangian submanifold in a Calabi–Yau, a fundamental and still

open question is whether or not there is a special Lagrangian representative in its

homology or Hamiltonian isotopy class. A natural approach to this problem is the

Lagrangian mean curvature flow, which preserves not only the Lagrangian condition

but also the homology and isotopy class. Assuming the flow exists for all time and

converges, it will converge to a minimal (i.e., zero mean curvature) Lagrangian.

In the Calabi–Yau setting these are precisely the special Lagrangian submanifolds.

A major conjecture in this area is the Thomas–Yau conjecture [41], which posits

certain stability conditions on the initial Lagrangian under which the LMCF will

exist for all time and converge to the unique special Lagrangian in that isotopy class.

Thomas–Yau stated a variant of their conjecture for a related, more tractable flow,

called the almost Lagrangian mean curvature flow (ALMCF). In the setting of highly

symmetric Lagrangian spheres in Milnor fibers, and under some additional technical

assumptions, they made significant progress towards a proof of this variant of the

conjecture [41]. We study the flow of 2-spheres from a slightly different perspective

and provide a relatively short proof of the longtime existence of viscosity solutions

under certain stability conditions, and their convergence to a special Lagrangian

sphere.
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Chapter 1: Introduction

1.1 Background and motivation

This thesis is concerned with two partial differential equations in Lagrangian geom-

etry: the degenerate special Lagrangian equation (DSL) and the Lagrangian mean

curvature flow (LMCF), as well as the analytic methods used to study them. The

motivation for studying these equations is a better understanding of Calabi–Yau

manifolds through the existence and uniqueness of a particular class of submani-

folds, called special Lagrangians.

1.1.1 Calabi–Yau manifolds and special Lagrangian submanifolds

Let (X,ω, J,Ω) be a Calabi–Yau manifold. That is, let (X,ω, J) be Kähler, with

g := ω(·, J ·) the Riemannian metric, and let Ω be a nowhere-vanishing holomorphic

(n, 0)-form, satisfying the following compatibility condition:

ωn

n!
= (−1)n(n−1)/2

(
i

2

)n
Ω ∧ Ω. (1.1)

Condition (1.1) implies that the metric g is Ricci-flat. If this compatibility condition

does not hold, (X,ω, J,Ω) is referred to as almost Calabi–Yau.

Although this will be the definition we use throughout, there are several other
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commonly used definitions of Calabi–Yau manifolds. For instance, in terms of Rie-

mannian holonomy this is a Riemannian manifold (X, g) such that hol(g) ⊂ SU(n),

where SU(n) denotes the special unitary group of dimension n. In more complex-

algebraic terms, Calabi–Yau implies vanishing first Chern class, c1(X) = 0.

The existence of Calabi–Yau manifolds was conjectured by Calabi [5, 6] in

1954:

Conjecture 1.1.1 (Calabi Conjecture). Let (X, J) be a compact, complex manifold,

and g a Kähler metric on X with Kähler form ω. Suppose that ρ′ is a real, closed

(1, 1)-form on X with [ρ′] = c1(X). Then there exists a unique Kähler metric g′ on

X with Kähler form ω′, such that [ω′] = [ω] ∈ H2(X,R), and the Ricci form of g′ is

ρ′.

The Calabi Conjecture was proved by Yau [42], with previous partial results

by Aubin [2, 3, 4]. The conjecture can be reformulated as a nonlinear, elliptic,

second-order PDE of Monge–Ampère type, where the existence of the unique metric

g′ corresponds to a real-valued function on X being a unique smooth solution to

this PDE. Yau’s proof showed that this PDE does in fact admit unique, smooth

solutions. Before the proof of the Calabi Conjecture it was still unclear whether or

not there even existed compact Ricci-flat Riemannian manifolds that are not flat

[13].

Shortly after their existence was confirmed, Calabi–Yau manifolds began to

play a fundamental role in formulations of supersymmetric string theory [21], a

physical theory seeking to quantize gravity. In this framework, particles are modelled

2



as 1-dimensional objects (‘strings’) propogating in a 10-dimensional background

space-time M , such that, locally, M = R4×X, where R4 is Minkowski space and X

a compact, Calabi–Yau 3-fold (dimC X = 3).

An important class of submanifolds that arise as a type of boundary condition

for strings in X are calibrated submanifolds, introduced by Harvey–Lawson [17].

Given a Riemannian manifold (X, g) of dimension n, a calibration on X is a closed

differential p-form φ (for some 0 ≤ p ≤ n) such that for any x ∈ X and any oriented

p-dimensional subspace ξ ⊂ TxX,

φ|ξ = λvolξ, with λ ≤ 1,

where volξ is induced from g on ξ, in other words take a g-orthonormal basis for ξ

and use g to convert this to 1-forms and then wedge these 1-forms to obtain volξ.

We say that a p-dimensional submanifold Y ⊂ X is calibrated with respect to φ if

φ|TyY = volTyY , for all y ∈ Y.

One of the significant features of calibrated submanifolds is that, by Stokes’ theorem,

they are volume-minimizing in their homology class [17].

Given a Calabi–Yau (X, J, ω,Ω), the real part of any rotation of the holomor-

phic (n, 0)-form is a calibration, i.e.,

Re e−
√
−1c Ω, c ∈ (−π, π],

and the corresponding calibrated submanifolds are called special Lagrangian sub-

manifolds, a notion also introduced by Harvey–Lawson [17]. Equivalently, a La-

grangian L ⊂ X (i.e., dimR L = n and ω|L = 0) is called special Lagragian of phase

3



c if there exists a constant c ∈ (−π, π] such that

Im e−
√
−1c Ω|L = 0.

Special Lagrangians are also thought to play a fundamental role in Mirror

symmetry—a relationship between pairs of Calabi–Yau manifolds proposed by string

theorists. Although not fully understood, mirror symmetry has become a fundamen-

tal tool for doing calculations and has introduced deep connections between previ-

ously unrelated areas of mathematics [21]. It is conjectured by Strominger–Yau–

Zaslow [40] that Calabi–Yau manifolds are actually “built” from special Lagrangian

submanifolds and that mirror symmetry might be understood completely in terms

of this Calabi–Yau sub-structure.

Conjecture 1.1.2 (SYZ Conjecture [40]).

(i) Any Calabi–Yau X has a structure of a (possibly singular) special Lagrangian

torus fibration π : X → M , and its mirror W is obtained as the dual special La-

grangian torus fibration π : W →M .

(ii) There exists a fiberwise Fourier–Mukai transform which maps Lagrangian sub-

manifolds of X to coherent sheaves on W .

1.1.2 The equations

Special Lagrangians, as both an important type of calibrated submanifold and the

centerpiece of the SYZ conjecture, are thus of significant importance in understand-

ing Calabi–Yau geometry. However, even the most basic questions one can ask about

4



their existence and uniqueness are still largely open. For example, in a given ho-

mology or Hamiltonian isotopy class does there exists a unique special Lagrangian?

The DSL and LMCF can both be viewed as analytic approaches to this ques-

tion, in the sense that they are a PDE formulation of a geometric process or phe-

nomenon that can be used to find special Lagrangian submanifolds in a given class.

Roughly speaking, the DSL paves the way to a new variational approach to find-

ing special Lagrangians; while the LMCF represents a more classical gradient flow

approach.

More specifically, in certain settings the DSL is the geodesic equation in a

Hamiltonian deformation class of the space of positive Lagrangians of a fixed Calabi–

Yau [29]. There exists a functional on this infinite-dimensional space of Lagrangians

that is convex along geodesics and whose ciritical points are special Lagrangian

submanifolds [37, 36]. Thus, special Lagrangians correspond to the minimizers of

this functional. The LMCF is the flow of a Lagrangian submanifold so that the

normal component of its velocity is its mean curvature vector, or, equivalently,

the gradient flow of the area functional. The critical points of the area functional

are submanifolds with zero mean, i.e., minimal submanifolds. In a Calabi–Yau

manifold, the mean curvature flow not only preserves the Lagrangian condition [35],

but is also a Hamiltonian deformation. Minimal (connected) Lagrangians are special

Lagrangian, and so it is natural to consider the mean curvature flow to produce

special Lagrangians in a given class. The major open conjecture in this area is

the Thomas–Yau conjecture, stating roughly: Given a compact, zero Maslov class,

Lagrangian satisfying certain stability conditions, the mean curvature flow exists for

5



all time and converges smoothly to a special Lagrangian submanifold in the same

Hamiltonian isotopy class.

1.1.3 Dirichlet duality

Our work on the DSL is formulated in terms of Harvey–Lawson’s Dirichlet duality

theory [18, 19], which we briefly describe now. A more thorough review can be

found in Section 3.1.

Let Ω be a bounded domain in Rn and consider an equation of the form

F (D2u) = 0 on Ω.

To any such equation F , Dirichlet duality associates a subequation F . This is a

closed proper subset of Sym2(Rn) that is invariant under translation by positive

matrices. Roughly speaking,

F (D2u) = 0 −→ F := {A ∈ Sym2(Rn) : F (A) ≥ 0}.

In most cases, the set F will usually be a more regular proper subset of this set.

Regardless, solutions u ∈ C2(Ω) of F must satisfy D2
xu ∈ ∂F .

This gives rise to a natural notion of a subsolution to F . A C2 function u is

F–subharmonic on Ω if

D2
xu ∈ F , ∀x ∈ Ω. (1.2)

This definition extends to upper semi-continuous functions in a viscosity-like way

via C2 test functions, and these F -subharmonic functions comprise the subsolutions.

The class of F -subharmonic functions remarkably share most of the important

properties that the classical subharmonic and convex functions satisfy. For example,

6



closure under decreasing limits and taking maxima, decreasing limits, uniform limits,

and upper envelopes. See Theorem 3.1.2.

For each subequation F , there is an associated dual subequation F̃ , defined

as F̃ = −(∼ IntF). The importance of the dual subequation lies in the fact that

− F̃ ∩ F = ∂F ⊂ {F = 0}. (1.3)

This immediately allows one to define a notion of weak solution. Let u be a C2

function such that u is F -subharmonic and −u is F̃ -subharmonic on Ω. Then, by

(1.2) and (1.3), u satisfies

F (D2u(x)) = 0 ∀x ∈ Ω.

A function u is said to be F -harmonic if u is F -subharmonic and−u is F̃ -subharmonic.

These functions will comprise our weak solutions. Note that since both u and −u

are upper semi-continuous, u is automatically continuous.

Given a domain Ω and an equation F , the existence of continuous solutions

to Dirichlet problem for F requires that ∂Ω is F -convex, where F is a subequation

associated to F . This subequation-specific convexity generalizes conventional con-

vexity. The Perron method is used to construct solutions, and this convexity implies

the existence of barrier functions. This explicit relationship between the equation

and the necessary geometry of the boundary is one of the most attractive aspects

of Dirichlet duality.
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1.2 Summary of results

1.2.1 The degenerate special Lagrangian equation

Most of the results mentioned in this section were published in [10].

We begin with the observation that the DSL carries over to a global equation

on every Riemannian manifold. For precise statements see Section 2.3 and Section

3.1.

Proposition 1.2.1. Given any Riemannian manifold M , the degenerate special La-

grangian equation carries over (in the sense of Harvey–Lawson) to a global equation

on R×M , locally modelled on the DSL. We refer to this equation as the Riemannian

DSL on R×M .

We would like to understand the geometric significance of the Riemannian

DSL. In particular, does it also govern geodesics in the space of positive Lagrangians

for certain geometries associated to M? In most cases, it will not. However, there

are interesting settings where it does; for example, when the ambient Calabi–Yau

manifold is the cotangent bundle T ∗M of certain paralellizable manifolds or when

it is a semi-flat Lagrangian torus fibration over M . See Section 2.4 for details and

definitions.

Theorem 1.2.2. Let M be integrably parallelizable. Then T ∗M admits a Calabi–

Yau structure, and the Riemannian DSL on [0, 1]×M governs geodesics in the space

of positive graph Lagrangians in T ∗M .
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Theorem 1.2.3. Let X be a smooth Calabi–Yau torus fibration over M . Then the

Riemannian DSL on [0, 1]×M governs geodesics in the space of positive Lagrangian

sections in X.

This motivates the third goal of this thesis which is to solve the Dirchlet

problem for the Riemannian DSL, as this corresponds to the endpoint problem for

geodesics. More specifically, we aim to solve the Dirichlet problem on domains of

the form

D = [0, 1]×D ⊂ R×M,

where D ⊂M is a bounded domain. This is accomplished by following the approach

of Rubinstein–Solomon. In particular, we extend the Dirichlet duality theory of

Harvey–Lawson to include certain domains with corners in Riemannian manifolds,

such as D when D ⊂ M has boundary. This extension is contained in Theorem

3.2.5.

Under appropriate boundary conditions, Theorem 3.2.5 provides continuous

solutions to the Dirichlet problem for the Riemannian DSL onD and thus continuous

geodesics in the space of positive Lagrangians. A special case of this result is the

following theorem. By strictly convex we mean that all of the eigenvalues of the

second fundamental form II∂D are strictly positive, and by admissible we mean that

this local frame for TM is part of a family of frames whose transition maps are

O(n)-valued (see Appendix 3.1).

Theorem 1.2.4. Let (M, g) be a complete simply-connected Riemannian manifold

with non-positive sectional curvature, and let D ⊂ M be a bounded strictly convex
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domain. For i = 0, 1, let φi ∈ C2(D) satisfy

tr tan−1 (Hess φi(e, e)) ∈ (c− π/2, c+ π/2), (1.4)

where e = (e1, · · · , en) is any admissible local frame for the tangent bundle. Then

there exists a unique solution u ∈ C0(D) to the Dirichlet problem for the Riemannian

DSL of phase θ (where c = θ mod 2π) with u|{i}×D = φi and u|[0,1]×∂D affine in t.

In certain settings (see Section 2.4 and [29, Section 1]), condition (1.4) is

equivalent to the condition that the graph of dφi in the cotangent bundle is a positive

Lagrangian.

1.2.2 Dirichlet duality

In order to solve the Dirichlet problem on the natural domains that arise for the

Riemannian DSL in Chapter 2, we need extend Dirichlet duality to domains with

corners. To do this we develop the approach of [29] in the Riemannian setting, so

that, assuming a weakened form of boundary convexity appropriate for domains with

corners in Riemannian manifolds, the Dirichlet problem admits unique continuous

solutions. This result is contained in Theorem 3.2.5. The results of this chapter

were published in [10].

1.2.3 Theorem of Slodkowski

As mentioned earlier, the uniqueness of solutions to the Dirichlet problem in the

Euclidean formulation of Dirichlet duality theory relies on an important convex-

analytic theorem of Slodkowski. Motivated by the significance of this result and
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the technical, geometric nature of its proof, we provide a detailed exposition of the

proof. We then study some of the quantities involved using the Legendre transform,

offering a dual perspective on this theorem. The main result here is Theorem 4.1.9.

The results of this chapter were published in [9]

1.2.4 Lagrangian mean curvature flow

Given a Lagrangian submanifold in a Calabi–Yau, a fundamental and still open

question is whether or not there is a special Lagrangian representative in its ho-

mology or Hamiltonian isotopy class. A natural approach to this problem is the

Lagrangian mean curvature flow, which preserves not only the Lagrangian condi-

tion but also the homology and isotopy class. Assuming the flow exists for all time

and converges, it will converge to a minimal (i.e., zero mean curvature) Lagrangian.

In the Calabi–Yau setting these are precisely the special Lagrangian submanifolds.

A major conjecture in this area is the Thomas–Yau conjecture [41], which posits

certain stability conditions on the initial Lagrangian under which the LMCF will

exist for all time and converge to the unique special Lagrangian in that isotopy

class. Thomas–Yau stated a variant of their conjecture for a related, more tractable

flow, called the almost Lagrangian mean curvature flow (ALMCF). In the setting of

highly symmetric Lagrangian spheres in Milnor fibers, and under some additional

technical assumptions, they made significant progress towards a proof of this vari-

ant of the conjecture [41]. Here, we give a detailed description of the geometry of

these symmetric Lagrangian spheres and the various ways in which the flow can be
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formulated in this setting. We then follow this with an exposition of the proofs of

the long-time existence and convergence of the flow. We also find that an adjust-

ment needs to be made to a technical assumption used in their proof. We provide a

modified version of their result in Theorem 5.5.11.

We then restrict to the two-dimensional setting and study the flow of 2-spheres

from a different perspective and provide a relatively short proof of the longtime

existence of viscosity solutions under certain stability conditions, and their C0 con-

vergence to a smooth special Lagrangian 2-sphere. The main result here is Theorem

5.7.1.
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Chapter 2: The degenerate special Lagrangian equation

2.1 Introduction

Let f ∈ C2([0, 1]×Rn) and θ ∈ (−π, π]. Then f(t, x) satisfies the degenerate special

Lagrangian equation of phase θ if

Im
(
e−
√
−1θ det(In +

√
−1∇2f)

)
= 0 and Re

(
e−
√
−1θ det(I +

√
−1∇2

xf)
)
> 0.

(2.1)

Here In denotes the diagonal (n+1)×(n+1) matrix with diagonal entries (0, 1, . . . , 1).

The degenerate special Lagrangian equation (DSL) was introduced by Rubinstein–

Solomon [29] in connection to geodesics in the space of positive Lagrangians of a

Calabi–Yau manifold. It is a fully nonlinear, degenerate elliptic equation.

When the featured Calabi–Yau is Cn, the geodesic endpoint problem in the

space of positive graph Lagrangians corresponds to solving the Dirichlet problem

for the DSL. In particular, the conditions in (2.1) capture, respectively, the notions

of geodesic and positivity in this setting. Under appropriate boundary conditions,

unique continuous solutions to the Dirichlet problem for the DSL exist. This was

accomplished in [29] by finding a natural notion of subsolution to the DSL and

then adapting the Dirichlet duality framework of Harvey–Lawson [18] for degenerate
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elliptic equations in Euclidean space.

Harvey–Lawson [19] have also developed a Dirichlet duality theory for equa-

tions on Riemanian manifolds. The starting point for this framework is an equation

F in Euclidean space and a Riemannian manifold M . Assuming the topology on

M is sufficiently mild and the symmetry of F is sufficiently high, one can define a

global equation on M that is locally modelled on F . Thus, from this point of view,

it is natural to consider the equation induced by the DSL on Riemannian manifolds,

and that is the purpose of this note.

Geodesics in the space of positive Lagrangians play a crucial role in a program

initiated by Solomon [37, 36] (see also [38]) to understand the existence and unique-

ness of special Lagrangian submanifolds in Calabi–Yau manifolds. They also play

a key role in a new approach to the Arnold conjecture put forth by Rubinstein–

Solomon [29, Section 2.3] and in the development of a pluripotential theory for

Lagrangian graphs initiated in [29] (see also [8]).

2.1.1 Organization

In the next section, we prove Proposition 1.2.1, showing that the DSL induces (in

the sense of Harvey–Lawson) a global equation on every Riemannian manifold. We

then geometrically motivate our study of the Riemannian DSL in Section 3 by

proving Theorem 1.2.2 and Theorem 1.2.3. In Section 5, we extend the Dirichlet

duality theory in the Riemannian setting to include domains with corners, proving

a generalization of Theorem 1.2.4. In Section 6, we use these results to obtain
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unique continuous solutions to the Dirichlet problem for the DSL on Riemannian

manifolds, and hence continuous geodesics. Finally, for ease of reference, we include

an appendix with a brief summary of Dirichlet duality theory.

2.2 Geometry of the space of Lagrangians

The following section is based on the work of Solomon [37, 36] and briefly recalls

the terminology concerning the geometry of the space of positive Lagrangians.

Let L be an n-dimensional real manifold and (X, J, ω,Ω) an almost Calabi–

Yau manifold of complex dimension n. That is, (X, J, ω) is a Kähler manifold and

Ω is a nowhere vanishing holomorphic n-form. Define

L = {Γ ⊂ X : Γ is an oriented Lagrangian submanifold diffeomorphic to L}.

For θ ∈ (−π, π], the space of θ-positive Lagrangians is defined as

L+
θ = {Γ ∈ L | Re (e−

√
−1θΩ)|Γ > 0}. (2.2)

Denote by Oθ ⊂ L+
θ a connected component of the intersection of L+

θ with an orbit

Ham(X,ω) acting on L, where Ham(X,ω) is the group of compactly supported

Hamiltonion diffeomorphisms of X.

When L is compact the tangent space to Oθ can be identified with the space

of smooth functions satisfying a normalization condition

TΓOθ ≡ {h ∈ C∞(Γ) |
∫

Γ

hRe Ω = 0}, (2.3)

and a weak Riemannian metric on Oθ is defined by

(h, k)θ|Γ :=

∫
Γ

hkRe (e−
√
−1θΩ|Γ), for h, k ∈ TΓOθ. (2.4)
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When L is non-compact the normalization condition in (2.3) can be dropped

and the tangent space at Γ is isomorphic to the space of compactly supported

functions on Γ.

More specifically, given a path Λ : [0, 1]→ Oθ and a family of diffeomorphisms

gt : L→ Λt, let ht : Λt → R be the unique function satisfying

g∗t ι dgt
dt
ω = d(ht ◦ gt), (2.5)

and the normalization condition in (2.3). Then the velocity vector to Λ is defined

as dΛt
dt
≡ ht.

Given a vector field qt ∈ TΛtOθ along Λ, the Levi–Civita coavariant derivative

of qt in the direction of dΛt
dt

is defined by

Dqt
dt

=

(
∂

∂t
(qt ◦ gt) + g∗t dqt(ζt)

)
◦ g−1

t , (2.6)

where ζt is the unique vector field on L such that

ιζtg
∗
tRe (e−iθΩ) = −g∗t ι dgt

dt
Re (e−iθΩ), (2.7)

viewing gt : L→ Γt ⊂ X as a map from L to X.

The geodesic equation is then found by taking qt = ht = dΛt
dt

:

Dht
dt

=

(
∂

∂t
(ht ◦ gt) + g∗t dht(ζt)

)
◦ g−1

t = 0. (2.8)

2.3 The Riemannian DSL subequation

When X = Cn ∼= Rn ⊕
√
−1Rn, with the standard Calabi–Yau structure,

ω =

√
−1

2

∑
j

dzj ∧ dzj and Ω = dz1 ∧ . . . dzn,
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and L is identified with Rn × {0} ⊂ Cn, the analysis in Section 2.2 leads to the

degenerate special Lagrangian equation.

Theorem 2.3.1. [29, Proposition 2.3] Let θ ∈ (−π, π] and let ki ∈ C2(Rn), i =

0, 1 be such that graph(dki) ⊂ Cn are elements of Oθ. Let k ∈ C2([0, 1] × Rn)

be such that graph(dxk(t, ·)) ⊂ Cn is an element of Oθ for each t ∈ [0, 1]. Then

t→graph(dxk(t, ·)) is a geodesic in (Oθ, (·, ·)) with endpoints graph(dki), i = 0, 1, if

and only if k satisfies

Im
(
e−
√
−1θ det(In +

√
−1∇2k)

)
= 0 and Re

(
e−
√
−1θ det(I +

√
−1∇2

xk)
)
> 0,

(2.9)

and k(0, ·) = k0 + c, k(1, ·) = k1 + c, for a constant c ∈ R.

2.3.1 The DSL subequation

In order to obtain a subequation for the DSL, Rubinstein–Solomon associate to each

u ∈ C2(D), where D = (0, 1)×D, the circle valued function

Θu(t, x) = Θ(∇2u(t, x)) = arg det(In +
√
−1∇2u(t, x)) ∈ S1,

defined where det(In +
√
−1∇2u(t, x)) 6= 0. This angle Θ is called the space-time

Lagrangian angle by analogy with the Lagrangian angle of Harvey–Lawson [17].

Accordingly, if u ∈ C2(D) solves the DSL of phase θ, then Θu ≡ θ.

For a complex matrix B, let spec(B) be its set of eigenvalues, and for λ ∈

spec(B) denote by m(λ) its multiplicity as a root of the characteristic polynomial.

Let S ⊂Sym2(Rn+1) denote the set of symmetric matrices with all zeros in the first
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row and column, and for A ∈ Sym2(Rn+1) \ S, define

Θ̂(A) =
∑

λ∈spec(In+
√
−1A)

m(λ) arg(λ),

branch of arg with values in (−π, π]. Note that arg det(In +
√
−1A) = Θ̂(A) mod

2π. Denote by Θ̃ the minimal upper semi-continuous extension of Θ̂ to Sym2(Rn+1).

Theorem 2.3.2. [29, Theorem 1.1] The function Θ̂ is well-defined and differentiable

on Sym2(Rn+1 \S), and for each c ∈ (−(n+ 1)π/2, (n+ 1)π/2) such that c ≡ θ mod

2π, the set

Fc = {A ∈ Sym2(Rn+1) : Θ̃(A) ≥ c}

is a subequation for the DSL of phase θ.

Remark 2.3.3. The different choices of c for a given θ correspond to the different

branches of the DSL. The DSL subequation is unique in the sense that it arises as

the super-level set of an upper semi-continuous function and not a continuous one.

Θ̂ cannot be extended continuously to all of Sym2(Rn+1). See [29, Section 3] for

more details.

The positivity condition defining the space of positive Lagrangians can also

be phrased in terms of a subequation, namely the special Lagrangian subequation

introduced by Harvey–Lawson,

Fc := {A ∈ Sym2(Rn) : tr tan−1(A) ≥ c}.

Theorem 2.3.4. [29, Corollary 5.6] Let θ ∈ (−π, π], let D ⊂ Rn be a domain and

let k ∈ C2([0, 1] × D). Then k is a solution of the DSL if and only if for each
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(t, x) ∈ [0, 1]×D,

∇2k(t, x) ∈ Fc ∩ −F̃c = ∂Fc,

∇2
xk(t, x) ∈ int

(
Fc−π/2 ∩ −F−c−π/2

)
,

for a fixed c ∈ (−(n+ 1)π/2, (n+ 1)π/2) satisfying c = θ + 2πk with k ∈ Z.

2.3.2 The Riemannian DSL subequation

In this section we prove the following.

Proposition 2.3.5. For any Riemannian manifold M , the Riemannian manifold

R×M admits a global Riemannian subequation Fc locally modelled on the Euclidean

degenerate special Lagrangian subequation Fc.

Proposition 1.2.1 is then an immediate consequence. To prove Proposition

2.3.5 we show that the (n+1)-dimensional manifold R × M admits a topological

On-structure and that Fc has compact invariance group On. This implies that Fc

induces a global equation on R×M . See Section 3.1.5.

Proof of Proposition 2.3.5. To see that R × M admits an On-structure (viewing

On ⊂ On+1), observe that because R×M is globally a product,

T (R×M) ∼= TR⊕ TM,

and R, being parallelizable, admits a trivial structure. In terms of the metric, since

On-structures are equivalent to Riemannian structures, this represents the fact that

R×M admits a global product metric.
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Now we show that the compact invariance group of Fc contains On. Let S

denote the elements A ∈ Sym2(Rn+1) of the form A =diag(0, B), for some B ∈

Sym2(Rn) and set In =diag(0, I). From [29, Section 3.1] it follows that:

If A ∈ S,

Θ̃(A) =
π

2
+ tr arg (I +

√
−1B).

If A ∈ Sym2(Rn+1) \ S,

Θ̃(A) =
∑

λ∈spec(In+
√
−1A)

m(λ)arg(λ).

Let H =diag(1, h) ∈ On+1, where h ∈ On.

When A ∈ S, A =diag(0, B), so

Θ̃(HAH t) =
π

2
+ tr arg(I +

√
−1hBht)

=
π

2
+ tr arg(I +

√
−1B).

=Θ̃(A).

When A /∈ S, we have

In +
√
−1HAH t = HInH

t +
√
−1HAH t = H(In +

√
−1A)H t,

and since On+1 ⊂ Un+1 the spectrum of

In +
√
−1A and In +

√
−1hAht

are the same. Thus, Θ̃(HAH t) = Θ̃(A). Therefore, the compact invariance group

of Fc contains On ⊂ On+1.

The special Lagrangian subequation Fc has been studied by Harvey–Lawson.

See [18, Section 10] and [19, Section 14]. Since Fc depends only on the eigenvalues
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of A it is On-invariant and caries over to a Riemannian subequation Fc on any

n-dimensional Riemannian manifold.

2.3.3 The DSL on complex manifolds and higher corank

In unpublished notes [28], Rubinstein showed that the DSL subequation can also

be defined in the complex setting, i.e., there is a well defined subequation for the

equation

Im det(In +
√
−1Hess Cu) = 0, (2.10)

where Hess C is the complex (1, 1) Hessian. Harvey–Lawson considered the non-

degenerate case in [19, Section 15].

More specifically, let k : Cn+1 → C so that

(τ, z1, · · · , zn) 7→ k(τ, z1, · · · , zn) = k(t, z1, · · · , zn),

where τ = t+
√
−1s.

Then equation (2.10) is invariant under the unitary matrices Un ⊂ Un+1 in the

sense that for any U = diag(1, V ) ∈ Un+1, where V ∈ Un,

Im det[In+
√
−1UHess CkU

∗] = Im det[V (In+
√
−1Hess Ck)V ∗] = Im det[In+

√
−1Hess Ck].

Any almost complex manifold X admits a topological Un structure. Since C

is paralellizable, C×X also admits a topological Un structure, viewing Un ⊂ Un+1.

Thus, for any almost complex manifold X, there exists a global equation on C×X

locally modelled on Equation (2.10). Taking D ⊂ X to be the domain

D = {(τ, z) ∈ C×X : 0 ≤ t ≤ 1 and z ∈ D},
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i.e., an infinite strip of width 1 in the complex plane times D ⊂ X, one can consider

the Dirichlet problem for equation (2.10) on D, with data depending only on the

real part.

It was also shown by Rubinstein [28] that there are corresponding subequations

for higher co-rank DSL equations on Rn+k, with In replaced by the diagonal matrix

diag(0, .., 0, 1, ...1) with k zeros and n ones. In an analogous manner, these equations

will carry over to equations on Rk×M , for any n-dimensional Riemannian manifold

M .

2.4 Geometry of the Riemannian DSL

In this section we prove Theorem 1.2.2 and Theorem 1.2.3.

2.4.1 Parallelizable manifolds

Recall that an n-dimensional manifold M is parallelizable if it admits a global frame

field for the tangent bundle. In terms of its topological structure group (see Section

3.1.5), a manifold is parallelizable if it admits an I-structure, where I is the trivial

subgroup in GL(n,R). Examples of parallelizable manifolds include all orientable

3-dimensional manifolds and all Lie groups [19, Section 5.2].

An almost Calabi–Yau manifold is an almost complex Hermitian manifold

X with a global section of Λ(n,0)(T ∗X) whose real part has comass 1 [19, Section

1]. This is equivalent to having topological structure group SU(n). When M is

parallelizable, we can explicitly construct an almost Calabi–Yau structure on T ∗M
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which respects the cotangent bundle fibration. The following construction is based

on [19, Section 14].

Let (M, g) be a parallelizable Riemannian manifold. Taking a global orthonor-

mal frame v = (v1, . . . , vn), we identify

TM = M × Rn.

Taking the global coframe w = (w1, . . . , wn) to v,

T ∗M = M × Rn.

Thus, (v, w) forms a global frame for

T (T ∗M) = T ∗M × R2n,

where movement along M is captured by v and movement within the fibre by w.

Let v∗ and w∗ denote the dual frames to v and w for the cotangent bundle of T ∗M .

In terms of this framing, T ∗M admits an almost Calabi–Yau structure.

Almost complex structure J :

Jvi = wi, Jwi = −vi,

Non-vanishing (n, 0)-form Ω:

Ω = (v∗1 +
√
−1w∗1) ∧ · · · ∧ (v∗n +

√
−1w∗n),

Non-degenerate 2-form ω:

ω =
∑
i

v∗i ∧ w∗i .
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In general, this structure is not integrable. That is, J is not a (integrable)

complex structure and ω and Ω are not closed. However, a certain degree of inte-

grability is necessary for Solomon’s geometry on the space of positive Lagrangians.

For instance, if J is not integrable then Ω will not be closed and the connection on

O may no longer be the Levi–Civita connection. To remedy this, we now consider

a special class of parallelizable manifolds on which the above almost Calabi–Yau

structure is a true Calabi–Yau structure, as defined in Section 2.2.

A manifold is called integrably parallelizable if it admits an atlas of charts such

that the differentials of the transition maps are the identity. In terms of topological

structure groups, this is equivalent to saying M admits an integrable I-structure.

Theorem 2.4.1. [16, Section 1] Let M be connected and parallelizable. Then M

is integrably paralellizable if and only if M is open (i.e., non-compact and without

boundary) or diffeomorphic to the n-dimensional torus.

Example 2.4.2. [16] Examples of integrably parallelizable manifolds:

i. Open Lie groups;

ii. Punctured compact connected Lie groups;

iii. Open orientable 3-manifolds;

iv. Diffeomorphic images of the torus;

v. Punctured Stiefel manifolds.

S3 and RP 3 are examples of parallelizable manifolds that are not integrably

parallelizable. We now prove Theorem 1.2.2.
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Proof of Theorem 1.2.2. We first construct a Calabi–Yau structure on T ∗M . Since

M is integrably parallelizable we have a covering of coordinate charts {Uα}α∈A such

that the differential of the transition maps is the identity. Let x be coordinates on

Uα, and consider the induced coordinate charts on T ∗M :

Vα = Uα × Rn,

where Rn corresponds to the coordinates ξ1, · · · , ξn for dx1, · · · , dxn. It is easy to

see that T ∗M is also integrably parallelizable with this corresponding atlas. Let

(v, w) to be the global frame for T (T ∗M) which on Vα takes the form vi = ∂
∂xi

and

wi = ∂
∂ξi

, and take the almost Calabi–Yau structure on T ∗M as defined above. This

almost Calabi–Yau structure is integrable: since the complex structure is defined in

terms of coordinate vector fields the Nijenhuis tensor vanishes, meaning the complex

structure is integrable; it follows that Ω is holomorphic; and it is clear that ω is closed

and compatible with J .

Next, we show that the Riemannian DSL coincides with the geodesic equation

for gradient graphs. These computations closely follow [29, Section 2.4] so we mostly

emphasize the differences.

Consider the path of Lagrangians in T ∗M given by

Λt = graph (dft),

where ft ∈ C2(M) for t ∈ [0, 1]. Let gt : M → Λt, where

gt(p) = (p, dft|p).
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Then, in local coordinates,

dgt
dt

= ∂tdft =
n∑
i=1

(
∂2ft
∂t∂xi

)
∂

∂ξi
and dgt = I⊕ Hess ft

(
∂

∂x
,
∂

∂x

)
,

where Hess ft
(
∂
∂x
, ∂
∂x

)
denotes the Riemannian Hessian in local coordinates on M

with respect to the (flat) metric on M induced by the Calabi–Yau structure on

T ∗M . It is obvious that dgt is the identity in the horizontal direction. To see that

it is the Riemannian Hessian in the vertical, we compute the image of ∂
∂xi

under

dgt. Let ∇∗ denote the induced metric connection on the cotangent bundle, given

in coordinates by

∇∗∂
∂xi
dxk = −Γkijdx

j.

Given s : (−ε, ε) → M satisfying s(0) = p and ds
dt

(0) = ∂
∂xi

, the vertical component

at p ∈M is given by

d

dt

[∑
k

∂ft
∂xk

(s(t))dxk|s(t)

]
t=0

=
∑
k

∂2ft
∂xi∂xk

(p)dxk|p +
∂ft
∂xk

d

dt
[dxk|s(t)]t=0

=
∑
k

∂2ft
∂xi∂xk

(p)dxk|p +
∂ft
∂xk
∇∗∂

∂xi
dxk|p

=
∑
k

∂2ft
∂xi∂xk

(p)dxk|p −
∂ft
∂xk

Γkijdx
j|p

=

(
∂2ft
∂xi∂xj

(p)− Γkij
∂ft
∂xk

)
dxj|p

= image under ith row of the matrix Hesspft

(
∂

∂x
,
∂

∂x

)
,

where the (ij)th entry of Hesspft
(
∂
∂x
, ∂
∂x

)
is Hesspft

(
∂
∂xi
, ∂
∂xj

)
. Note that in this

particular construction the Γkij = 0 as the metric on M is flat. This more gen-

eral computation will be relevant in the next section where the metric on the base

manifold is not flat.
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Now expressing gt with respect to the global frame (v, w),

gt(p) = (p, dft|p(v)) = (p, dft|p(v1), · · · , dft|p(vn)),

where dft|p(vi) is the coefficient for wi,

dgt
dt

= ∂tdft|p(v) =
n∑
i=1

∂tdft(vi)wi, and dgt = I⊕ Hesspft(v, v).

Plugging into equation (5.25),

g∗t ιdgt/dtω(·) = ω

(
dgt
dt
, dgt(·)

)
= −

∑
j

w∗j ⊗ v∗j

(
n∑
i=1

∂tdft(vi)wi, dgt(·)

)
= −dḟt(·),

where ḟt(p) denotes the derivative of ft(p) with respect to t, giving us

ht ◦ g(t, p) = −ḟt(p). (2.11)

We then compute

g∗t ιdgt/dtΩ =
n∑
i=1

Ω (dgt/dt, dgt(v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vn))w1 ∧ · · · ∧ ŵi ∧ · · · ∧ wn.

=
n∑
i=1

detBiw1 ∧ · · · ∧ ŵi ∧ · · · ∧ wn,

where Bi, i = 0, . . . , n, is the n-by-n matrix obtained by removing the (i+1)-th

column from the n-by-(n+1) matrix

B =
[√
−1∂tdft|x(v) | I +

√
−1Hessxft(v, v)

]
.

Similarly,

g∗tΩ = det
[
I +
√
−1Hessxft(v, v)

]
w1 ∧ · · · ∧ wn

= detB0 w
1 ∧ · · · ∧ wn
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From here, the analysis is the same as that in [29, Section 2.4]. Solving for the

vector field ζt we get

ζt =
n∑
i=1

ai(t, p)vi, where ai(t, p) = −(−1)i
Re (e−

√
−1θ detBi)

Re (e−
√
−1θ detB0)

.

Thus, the geodesic equation (2.8) becomes

Im e−
√
−1θ det

[
In +

√
−1Hessf(v, v)

]
= 0, (2.12)

where v = ( ∂
∂t
, v) is a global frame on [0, 1]×M and the Hessian of f is taken with

respect to t and x. The positivity condition (2.2) on the Lagrangians implies that

Re (e−
√
−1θ detB0) > 0, or

Re det
[
I +
√
−1Hessft(v, v)

]
> 0. (2.13)

2.4.2 Calabi–Yau torus fibrations

In this section, inspired by a paper of Leung–Yau–Zaslow [24], we consider Calabi–

Yau manifolds which admit a smooth torus fibration. That is, a Calabi–Yau man-

ifold X which is actually a fibred manifold π : X → M , where for any p ∈ M ,

π−1(p) = Tn. We show that the geodesic equation for positive Lagrangian sections

corresponds to the Riemannian DSL on [0, 1]×M , proving Theorem 1.2.4. We begin

by summarizing the calculations of [24, Section 3].

Let X be a Calabi–Yau n-fold admitting a smooth torus fibration over a base

manifold M , possibly compact. And let φ be a Tn-invariant Kähler potential on X.

That is, φ(xj, yj) = φ(xj), where y are local coordinates on the fiber and x local
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coordinates on the base. The coordinates zj = xj + iyj are holomorphic on X, and

the Kähler metric and form are given, respectively, by

h =
∂2φ

∂xi∂xj
(dxi ⊗ dxj + dyi ⊗ dyj) and ω =

√
−1

2

∂2φ

∂xi∂xj
(dzi ∧ dzj).

By Calabi [?], X is Ricci-flat and Ω = dz1 ∧ · · · ∧ dzn is covariant constant if and

only if φ satisfies the real Monge–Ampère equation

det
∂2φ

∂xi∂xj
= c, (2.14)

for some constant c. Since φ satisfies (2.14), the Calabi–Yau condition

ωn

n!
= c (−1)n(n−1)/2

(√
−1

2

)n
Ω ∧ Ω

is satisfied.

Because of the semi-flatness of h, X is locally isometric to the tangent bundle

TM with the metric induced by g = ∂2φ
∂xi∂xj

(dxi⊗dxj) on M . Moreover, if this metric

on M is used to identify its tangent and cotangent bundles, then ω is the standard

symplectic form on the cotangent bundle.

Consider a Lagrangian section C of this fibration, locally written as y(x), in X.

Using the identification with the cotangent bundle and the fact that C is Lagrangian

with respect to ω if and only if it is closed and hence locally exact, it is shown [24]

that locally

yj = φjk
∂f

∂xk
,

for some function f , and further computations show

dz1 ∧ · · · ∧ dzn|C = det
(
I +
√
−1g−1Hess f

)
dx1 ∧ · · · dxn. (2.15)
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Proof of Theorem 1.2.3. Let Ct : M → X be a smooth path of Lagrangian sections,

parametrized by t ∈ [0, 1]. Take gt : M → Ct, where gt(p) = (p, Ct(p)). Then,

locally, by the above analysis,

dgt
dt

=
n∑
j=1

φjk
∂2ft
∂t∂xk

∂

∂yj
.

By calculations similar to those in Section 2.4.1 and [29, Section 2.4],

g∗t ι dgt
dt
ω = −dḟt(x), g∗t ι dgt

dt
Ω =

n∑
i=1

detBi dx
1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn,

and

g∗tΩ = det
[
I +
√
−1g−1Hess ft

]
dx1 ∧ · · · ∧ dxn

= detB0 dx
1 ∧ · · · ∧ dxn,

where Bi, i = 0, . . . , n, is the n-by-n matrix obtained by removing the (i + 1)-th

column from the n-by-(n+ 1) matrix

B =
[√
−1∂tdft | I +

√
−1g−1Hess ft

]
.

Taking g = e⊕g, where e is the Euclidean metric on R, we can express the positivity

and geodesic conditions, respectively, as

Re e−iθ det
[
I +
√
−1g−1Hess ft

]
> 0,

and

Im e−
√
−1θ det

[
In +

√
−1g−1Hess f

]
= 0,

where the second Hessian is taken with respect to g and f is viewed as a function on

[0, 1] ×M . Finally, choosing a local orthonormal admissible frame v = (v1, . . . , vn)
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on M and extending this to R×M , by v = (∂t, v) we rewrite these conditions as

Re e−
√
−1θ det

[
I +
√
−1Hess ft(v, v)

]
> 0,

and

Im e−
√
−1θ det

[
In +

√
−1Hess f(v, v)

]
= 0.

2.5 Solution of the Dirichlet problem for the Riemannian DSL

In this section we seek unique continuous solutions to the Dirichlet problem for the

Riemannian DSL. Our set-up is the following. Let D ⊂ M be a bounded domain

with ∂D smooth and let D = (0, 1) × D, so that D is a compact manifold with

embedded corners in M = R×M . We assume that both Fc−π/2(D) and F̃c−π/2(D)

contain at least one C2 function bounded below, where Fc−π/2 is the corresponding

special Lagrangian subequation (see Section 3).

Theorem 2.5.1. Suppose comparison holds for the Riemannian DSL subequation Fc

onM and that ∂D is strictly Fc−π
2
, F̃c+π

2
convex. Let φ ∈ C0(∂D) be consistent and

affine in t when restricted to [0, 1]× ∂D ⊂ ∂D. Consider the following hypotheses:

1. c > −π
2

and for each i ∈ {0, 1},

φi := φ|{i}×D ∈ C2(D) ∩ Fc−π
2
(D).

2. For each i ∈ {0, 1},

φi ∈ C2(D) ∩ Fc−π
2
(D) ∩ −F−c−π

2
(D).
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If either (1) or (2) holds, there exists a unique solution in C0(D) to the Fc-Dirichlet

problem for (D, φ).

Remark 2.5.2. a. The boundary assumptions hold for any D such that ∂D is

strictly convex, in the sense that all of the eigenvalues of the second fundamental

form II∂D are strictly positive. See [19, Proposition 11.4 and Example 14.9].

b. If M (and hence M) carries a strictly convex C2 function, then by [19,

Theorem 9.13] comparison holds for every pure second order subequation on M and

thus for the Riemannian DSL. In particular, if M is a complete simply-connected

Riemannian manifold with non-positive sectional curvature, then the square of the

distance function from a fixed point is convex and thus comparison holds. Taking

hypothesis 2., gives Theorem 1.2.4.

c. It may happen that M does not admit a C2 convex function, but that some

D ⊂ M do. In this case, [19, Theorem 9.13] implies that comparison (and the

theorem) holds for the Riemannian DSL on D.

We prove Theorem 2.5.1 by showing that ∂D is appropriately convex and then

applying Theorem 3.2.5, following as closely as possible the approach in [29, Section

8]. In Lemma 2.5.3 and Lemma 2.5.4, we construct subsolutions to the DSL that are

maximal on various parts of the boundary. These are the analogues of [29, Lemma

8.3] and [29, Lemma 8.4], respectively.

The proof of Lemma 2.5.3 is essentially identical to that of [29, Lemma 8.3]

(note that our initial data is C2). However, the proof of [29, Lemma 8.4] does

not carry over to a proof of Lemma 2.5.4. This is due to the absence of appropriate
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global defining functions in the Riemannian setting. Instead, Lemma 2.5.4 is proved

by combining the techniques used to prove [29, Lemma 8.4] and [19, Proposition F ].

Lemma 2.5.5 then uses both Lemma 2.5.3 and Lemma 2.5.4 to to show that

∂D is both (Fc, φ) and (F̃c,−φ) strictly convex. We omit its proof as it is identical

to [29, Lemma 8.5].

2.5.1 Proof of Theorem 2.5.1

Given φi ∈ C2(D) (as above), define vi ∈ C0(D), by

v0 = φ0 − Ct, v1 = φ1 − C(1− t), (2.16)

where t is the coordinate on R.

Lemma 2.5.3. Suppose φi ∈ C2(D) ∩ Fc−π
2
(D). For each i ∈ {0, 1}, the function

vi is of type Fc.

Proof. Suppose v0 is not of type Fc. Then, by the definition of Fc (see Section

2.3.1), there is a point (t, x) ∈ D such that

Θ̃
(
Hess(t,x)v0(e, e)

)
= Θ̃ (diag[0,Hessxφ0(e, e)]) < c,

where e = (∂t, e) is an admissible frame near (t, x). Thus, by the definition of Θ̃,

tr tan−1 Hessxφ0(e, e) < c− π/2.

However, φ0 is of type Fc−π/2, so this is a contradiction. The same argument holds

for v1.
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Lemma 2.5.4. Let φ ∈ C0(∂D) be consistent and affine in t when restricted to

[0, 1] × ∂D. Let δ > 0 and let (t0, x0) ∈ [0, 1] × ∂D. If ∂D is Fc−π/2 strictly

convex, then there exists a subsolution to the Fc Dirichlet problem for (D, φ) that is

δ-maximal at (t0, x0).

Proof. Since the boundary of D is strictly Fc−π/2 convex at x0, by Theorem 3.1.7

there exists a local defining function ρ for ∂D near x0 which defines a barrier for

Fc−π/2 at x0. That is, there exists C0 > 0, ε > 0, and r > 0 such that in local

coordinates the functions

βi(x) = φi(x0)− δ + C

(
ρ(x)− ε |x− x0|2

2

)

are strictly Fc−π/2 subharmonic on B(x0, r) for all C ≥ C0. Here we have written φi

to mean φ|{i}×D, for i = 0, 1.

By the continuity of φ, we can shrink r > 0 so that

φi(x0)− δ < φi(x) on ∂D ∩B(x0, r).

Let ψ ∈ Fc−π/2(D) be bounded below, and pick N > sup∂D |φi|+ supD ψ so that

ψ −N < φi − δ on ∂D.

Choose C sufficiently large so that on (B(x0, r) \B(x0, r/2)) ∩D

βi < ψ −N

and on B(x0, r/2) ∩D

βi < φi(x).

34



Note that since ρ is a boundary defining function it is negative inside D, where

defined. As φ is affine in t along the boundary of D, it follows that on [0, 1] ×

(B(x0, r/2) ∩ ∂D)

β(t, x) = φ(t, x0)− δ + C

(
ρ(x)− ε |x− x0|2

2

)
≤ φ(t, x),

and on ∂D

(ψ −N)(t, x) = (ψ −N)(x) ≤ φ(t, x).

Now set w(t, x) := max{β, (ψ − N)}. Then, for every t, w(t, x) is equal to β(t, x)

near x0 and equal to ψ −N outside B(x0, r/2). Since

Hess β(t, x) = diag(0,Hess β(x)) and Hess (ψ−N)(t, x) = diag(0,Hess (ψ−N)(x)),

it follows that β(t, x) and (ψ−N)(t, x) are Fc-subharmonic. Thus, w(t, x), the max

of two Fc-subharmonic functions, is also of type Fc by Theorem 3.1.2.

Since w(t, x) is equal to β(t, x) near x0 it is immediate that w(t0, x0) =

φ(t0, x0)− δ.

Lemma 2.5.5. Let D and φ be as in Theorem 2.5.1. Then ∂D is (Fc, φ) strictly

convex and (F̃c,−φ) strictly convex.

Proof. The proof of this is essentially identical to the proof [29, Lemma 8.5].

Proof of Theorem 2.5.1. Combine Lemma 2.5.5 and Theorem 3.2.5.
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2.6 Fourier-Mukai transform

2.6.1 Background and Motivation

Let M be an n-dimensional Calabi-Yau, and assume M admits a smooth torus

fibration over a base B:

π : M → B, π−1(b) = Tm.

Let zj = xj + iyj be local holomorphic coordinates on M , where xj and yj are

coordinates on the base B and fibre Tm, respectively.

Let φ = φ(xj, yj) = φ(xj) (semi-flatness condition) be the Kähler potential,

where detφij = const. Then in these coordinates the Calabi-Yau structure is

g = φij(dx
idxj + dyidyj), ω =

√
−1

2
φijdz

i ∧ dzj, Ω = dz1 ∧ · · · ∧ dzn.

Leung–Yau–Zaslow [24] showed that the special Lagrangian equation, Im Ω =

0 transforms via the Fourier-Mukai transform into the deformed Hermitian-Yang-

Mills equation, Im(ω̃+FA)n = 0, where ω̃ is the Kähler form on the mirror manifold

W and FA is the curvature form of the corresponding connection (more details

below). Here we take the Fourier-Mukai transform of the degenerate Special La-

grangain equation.

When the Lagrangian is a section of the fibration, and thus locally a (gradient)

graph over the base, the special Lagrangian equation becomes an equation for a

function f : B → R,

Im det(g +
√
−1Hess(f)) = 0.
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Similarly, when a parametrized path of Lagranians are assumed to be sections of

the fibration, the degenerate Special Lagrangain equation on R×B takes the form

Im det(g0 +
√
−1Hess(f)) = 0,

where g0 = 0 ⊕ g and the Hessian of f is taken with respect to x and t variables.

Taking the Fourier-Mukai transform gives:

Im(ω̃0 + FȦ)n+1 = 0,

where ω̃0 = 0⊕ ω and FȦ is the curvature form of the corresponding connection.

2.6.2 Lagrangian Sections

Locally a section is given by a graph y(x) over the base. A section C is Lagrangian

with respect to ω if an only if

yj(x) = φjk(x)
∂f

∂xk
(x).

Then

dyj = φjl
(

∂2f

∂xl∂xk
− φpqφlkp

∂f

∂xq

)
dxk,

which is the product of the inverse of the metric times and the Riemannian Hessian.

Thus, since dzj = dxj +
√
−1dyj

Im Ω|C = dz1 . . . dzn|C = det(I +
√
−1g−1Hess(f))dx1 . . . dxn.

Setting equal to zero and multiplying through by g gives the special Lagrangian

equation above. Similar calculations give the degenerate special Lagrangina equa-

tion above.
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Leung-Yau-Zaslow showed that from this SLag data one can construct a con-

nection over the mirror manifold W which satisfies the deformed HYM equation.

Our goal is to follow this construction as closely as possible with the DSLag data.

2.6.3 Mirror Manifold

The dual manifold W to M is constructed by replacing each torus fibre T in M by

the dual torus T̃ =Hom(T, S1). This leads to the following Calabi-Yau structure on

W :

g̃ = φij(dx̃idx̃j + dỹidỹj), ω̃ =

√
−1

2
φijdz̃i ∧ dz̃j, Ω̃ = dz̃1 ∧ · · · ∧ dz̃n,

where ỹj and x̃j are dual coordinates to yj and xj, with

x̃j = x̃j(x) such that
∂x̃j
∂xk

= φjk

and holomorphic coordinates z̃j = x̃j +
√
−1ỹj.

2.6.4 Fourier-Mukai Transform

On each torus fibre there is the canonical isomorphism T = Hom(T̃, S1) = Hom(π1(T̃ ), S1),

where each point y = (y1, . . . , yn) ∈ T defines a flat connection Dy on its dual T̃ .

This is the real Fourier-Mukai transform. More specifically,

gy : T̃ →
√
−1(R/Z) = S1, ỹ 7→

√
−1
∑

yj ỹj,

and

Dy = d+ A = d+
√
−1dgy = d+

√
−1
∑

yjdỹj.
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As y varies as a function of x, we get a torus family of 1-forms over the base, i.e., a

a connection on W.

The curvature form of this connection is

FA = dA =
∑
k,j

√
−1

∂yj

∂xk
dx̃k ∧ dỹj.

In particular,

F 2,0
A =

1

2

∑
j,k

(
∂yk

∂x̃j
− ∂yj

∂x̃k

)
dz̃j ∧ dz̃k,

so DA being integrable is equivalent to there existing a function f = f(x) such

that yj = ∂f
∂x̃j

= φjk ∂f
∂xk

, which is equivalent to the section C, locally y(x), being

Lagrangian.

Since ∂yj

∂x̃k
= ∂2f

∂x̃j∂x̃k
is equal to the Hessian of f in the x variables, the section

C being special Lagrangian is equivalent to Im (ω̃ + FA)m = 0.

2.6.5 Transforming DSL

For the degenerate special Lagrangian equation we start with an equation on R×B,

so to make the transformation more natural we add a torus above this R factor to

get Ṁ = M × R× S1, with

π : Ṁ → B × R.

Then take the product Kähler metric, with the flat metric on the R× S1 factor (let

t be the coordinate on R, s the coordinate on S1, and v = t+ is):

ġ = φij(dx
idxj + dyidyj) + (dt2 + ds2),

ω̇ =

√
−1

2

∑
i,j

φij(dz
i ∧ dzj) +

√
−1

2
(dv ∧ dv).
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Then

DȦ = d+
√
−1

n∑
j=1

dỹj +
√
−1sds̃,

and

FȦ = dȦ =
n∑

k,j=1

√
−1

∂yj

∂x̃k
(dx̃k ∧ dỹj) +

n∑
k=1

√
−1

∂s

∂x̃k
(dx̃k ∧ ds̃)

+
n∑
j=1

√
−1

∂yj

∂t̃
(dt̃ ∧ dỹj) +

√
−1

∂s

∂t̃
(dt̃ ∧ ds̃).

Integrability is then equivalent to the existence of a function f = f(t̃, x̃), where

yj =
∂f

∂x̃j
= φjk

∂f

∂xk
and s =

∂f

∂t̃
=
∂f

∂t
,

and so

∂yj

∂x̃k
=

∂2f

∂x̃j∂x̃k
,

∂yj

∂t̃
=

∂2f

∂x̃j∂t
,

∂s

∂x̃k
=

∂2f

∂x̃j∂x̃k
,

∂s

∂t̃
=
∂2f

∂t2
,

which in terms of the (t, x)-variables is the Riemannian Hessian of f(t, x) on R ×

B (flat in the t-direction). Thus, the degenerate special Lagrangian equation is

equivalent to

Im(ω̃0 + FȦ)n+1 = 0,

where ω̃0 = 0⊕ ω.

2.6.6 Transforming the positivity condition

The degenerate special Lagrangian equation governs geodesics in the space of posi-

tive Lagrangians of a Calabi-Yau. In this setting the positivity conditions translates

to

Re det(g +
√
−1Hessx(f) > 0, for all t,
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where Hessx(f) denotes the Riemannian Hessian of f(t, x) with respect to just the

x-variables. Under the Fourier-Mukai transform this positivity condition becomes

Re(ω̃ + FA)n > 0, for all t.

2.7 Analytic solutions to the Cauchy problem for the DSL

2.7.1 Preliminaries

Let k ∈ C2(R×Rn). Then k(t, x) satisfies the degenerate special Lagrangian equation

if

Im
(
det(In +

√
−1∇2f)

)
= 0 and Re

(
det(I +

√
−1∇2

xf)
)
> 0. (2.17)

Here we consider the following Cauchy problem for the degenerate special La-

grangian equation:

Im
(
det(In +

√
−1∇2u)

)
= 0,

∂tu(0, x) = φ0, u(0, x) = φ0,

(2.18)

where φ0 and φ1 are analytic.

Note that (2.18) is (almost) a special case of the general Cauchy problem:

F
(
x, (∂αu)|α|≤k

)
= 0, ∂jνu = φj on S (0 ≤ j ≤ k), (2.19)

where x ∈ Rn+1 and S ⊂ Rn+1 is

Theorem 2.7.1 ([14]). [Cauchy-Kovalevskya] If G and φj are analytic functions

near 0, then the non-linear Cauchy problem

∂kt u = G
(
x, t, ∂jt ∂

α
xu
)
, (2.20)
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where j < k and |α|+ j ≤ k, with initial conditions

∂jtu(x, 0) = φj(x), 0 ≤ j < k, (2.21)

has a unique analytic solution near 0.

2.7.2 The two-dimensional case

Let u ∈ C2(R× R2). Then the DSL becomes

utt = det(∇2u) and det(∇2
xu) < 1. (2.22)

Rewriting

det(∇2u) = utt det(∇2
xu)− utx (uxtuyy − uytuxy) + uty (uxtuyx − uytuxx) ,

the first part of (2.22) becomes

utt =
−utx (uxtuyy − uytuxy) + uty (uxtuyx − uytuxx)

1− det(∇2
xu)

. (2.23)

Since the denominator is not equal to zero, this is analytic as a function of lower t

and x derivatives of u.

2.7.3 General case

Theorem 2.7.2. Given analytic initial data, the DSL admits analytic solution in

neighborhood of initial Lagrangian.

Proof. Expanding det(In +
√
−1∇2k) in terms of cofactors:

det(In +
√
−1∇2k) =

√
−1 (kttCtt + kt1Ct1 + · · ·+ kt1Ct1) , (2.24)
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where Cij = (−1)i+jMij, with Mij denoting the (i, j)-minor of (In +
√
−1∇2k), i.e.,

the determinant of the (n− 1)× (n− 1) matrix that results from deleting the i-th

row and the j-th column of B. Since Ctt = det(I +
√
−1∇2

xk),

det(In +
√
−1∇2k) =

√
−1
(
ktt det(I +

√
−1∇2

xk) + kt1Ct1 + · · ·+ kt1Ct1
)
.

Then the first part of (2.17) becomes

Im
[√
−1
(
ktt det(I +

√
−1∇2

xk) + kt1Ct1 + · · ·+ kt1Ct1
)]

= 0,

or

Re
[
ktt det(I +

√
−1∇2

xk) + kt1Ct1 + · · ·+ kt1Ct1
]

= 0.

Since ktt is real,

kttRe
[
det(I +

√
−1∇2

xk)
)

= −Re [kt1Ct1 + · · ·+ kt1Ct1] ,

which can be rewritten

ktt =
−Re [kt1Ct1 + · · ·+ kt1Ct1]

Re
[
det(I +

√
−1∇2

xk)
] .

By the second part of (2.17) the denominator is never equal to zero. As the Cti do

not contain double t derivatives for i ≥ 1, this is an analytic expression for ktt in

terms of lower t and x derivatives of k.
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Chapter 3: Dirichlet duality

3.1 Overview

This chapter provides a summary of Harvey–Lawson’s Dirichlet duality theory on

Riemannian manifolds [19]. For the Euclidean formulation, see [18]. See also the

related work of Slodkowski [31, 33, 32].

3.1.1 The second-order jet bundle

Let X be a smooth n-dimensional manifold. The second-order jet bundle J2(X)→

X is the bundle whose fibre at a point x ∈ X is the quotient J2
x = C∞x /C

∞
x,3, where

C∞x denotes the germs of smooth functions at x and C∞x,3 the subspace of germs

which vanish to order 3 at x.

If X carries a Riemannian metric then the Riemannian Hessian, defined for

any C2 function u and vector fields V and W on X by (Hess u)(V,W ) := V (Wu)−

(∇VW )(u), is a section of Sym2(T ∗X). The following is a well-known result con-

cerning the Riemannian Hessian [19, Section 4].

Theorem 3.1.1 (The canonical splitting). The Riemannian Hessian provides a
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bundle isomorphism

J2(X)→ R⊕ T ∗X ⊕ Sym2(T ∗X) by mapping J2
xu→ (u(x), (du)x,Hessxu)

for a C2 function u at x.

3.1.2 Subequations

Let P = {A ∈ Sym2(T ∗xX) : A ≥ 0}. A subset F ⊂ J2(X) satisfies the Positivity

Condition (P) if

F + P ⊂ F.

Take the canonical splitting J2(X) = R ⊕ J2
red(X), where R denotes the 2-jets of

locally constant functions and J2
red(X)x ≡ {J2

xu : u(x) = 0} is the space of reduced

2-jets at x, and define N ⊂ R ⊂ J2(X) to have fibres Nx = R− = {c ∈ R : c ≤ 0}.

A subset F ⊂ J2(X) satisfies the Negativity Condition (N) if

F +N ⊂ F.

A subset F ⊂ J2(X) satisfies the Topological Condition (T) if

(i) F = Int F , (ii) Fx = Int Fx, (iii) Int Fx = (Int F )x.

The main existence and uniqueness results for Dirichlet duality assume that F sat-

isfies (P), (T), and (N), so this is formalized as follows. A subequation F on a

manifold X is a subset F ⊂ J2(X) satisfying conditions (P), (T), and (N).
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3.1.3 F -subharmonic functions

Let F ⊂ J2(X) be closed. The function u ∈ C2(X) is F -subharmonic if its 2-jet

satisfies J2
xu ∈ Fx, for all x ∈ X, and strictly F -subharmonic if its 2-jet satisfies

J2
xu ∈ (IntF )x, for all x ∈ X. This definition extends to the larger class of upper

semi-continuous functions on X taking values in [−∞,∞), USC(X), in a viscosity-

like way: u ∈ USC(X) is said to be F−subharmonic if for each x ∈ X and each

function φ which is C2 near x, one has that

{u ≤ φ near x0 and u(x0) = φ(x0)} =⇒ J2
xφ ∈ Fx.

The set of all such functions is denoted by F (X).

Theorem 3.1.2 (Remarkable Properties of F -Subharmonic Functions). Let F be

an arbitrary subequation.

(Maximums) If u, v ∈ F (X), then w = max{u, v} ∈ F (X).

(Coherence) If u ∈ F (X) is twice differentiable at x ∈ X, then D2
xu ∈ Fx.

(Decreasing Sequences) If {uj} is decreasing sequence of functions in F (X) then

limit is of type F .

(Uniform Limits) If {uj} is a sequence of functions in F (X) that converges uni-

formly on compact sets then the limit is if type F .

(Families Locally Bounded Above) If F ⊂ F (X) is a family which is locally uni-

formly bounded above. Then the USC regularization v∗ of the upper envelope v(x) =

supf∈F f(x) belongs to F (X).
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Given a subset F ⊂ J2(X) the Dirichlet dual F̃ of F is defined by F̃ =∼

(−IntF ) = −(∼ IntF ), and a function u is F -harmonic if u ∈ F (X) and−u ∈ F̃ (X).

3.1.4 Local trivialization

When X = Rn the 2-jet bundle is canonically trivialized by J2
xu = (u(x), Dxu,D

2
xu),

where

Dxu =

(
∂u

∂x1

(x), ...,
∂u

∂xn
(x)

)
and D2

xu =

(
∂2u

∂xi∂xj
(x)

)
.

Thus, for any open subset X ⊂ Rn there is a canonical trivialization

J2(X) = X × R× Rn × Sym2(Rn), with fibre J2 = R× Rn × Sym2(Rn).

The notation J = (r, p, A) ∈ J2 will be used for the coordinates on J2. Any

subset F ⊂ J2 which satisfies conditions (P), (N), and (T) determines a Euclidean

subequation on any open subset X ⊂ Rn by setting F = X × F ⊂ J2(X). This

subequation is often referred to as just F .

Let e = (e1, ..., en) be a choice of local framing of the tangent bundle TX on

some neighborhood U ⊂ X. With this framing the canonical splitting determines a

trivialization of J2(U) given at x ∈ U by

Φe : J2
x(U)→ R⊕Rn⊕Sym2(Rn), defined by Φe(J2

x(u)) ≡ (u, e(u), (Hess u)(e, e)),

where e(u) = (e1u, ..., enu) and (Hess u)(e, e) is the n × n−matrix with entries

(Hess u)(ei, ej).
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3.1.5 Riemannian G-manifolds and Riemannian G-subequations

The general linear group GLn(R) has a natural action on the fibre J2 given by

h(r, p, A) = (r, hp, hAht) for h ∈ GLn(R).

For each Euclidean subequation F ⊂ J2 this action determines a compact invariance

group

G(F) = {h ∈ On : h(F) = F}.

Fix a subgroup G ⊂ On. A topological G-structure on X is a family of smooth

local trivializations of TX over open sets in a covering {Uα} of X with G-valued

transition functions. A Riemannian G-manifold is a Riemannian manifold equipped

with a topological G-structure.

Lemma 3.1.3. [19, Lemma 5.2] Suppose F is a Euclidean subequation with compact

invariance group G and X is a Riemannian G-manifold. For x ∈ X, the condition

on a 2-jet J ≡ J2
xu that

Φe(J) ≡ (u(x), ex(u), (Hess xu)(e, e)) ∈ F

is independent of the choice of G-frame e at x. Hence there is a well-defined subset

F ⊂ J2(X) given by

J ∈ Fx ⇐⇒ Φe(J)(x) ∈ F.

This subset F ⊂ J2(X) is a subequation on X and will be called the Rieman-

nian G-subequation on X with Euclidean model F .
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Now in local coordinates x = (x1, ..., xn) on X, the Riemannian Hessian takes

the following form

(Hess u)

(
∂

∂xi
,
∂

∂xj

)
=

∂2u

∂xi∂xj
−

n∑
k=1

Γkij(x)
∂u

∂xk
,

where Γkij denote the Christoffel symbols of the Levi–Civita connection. In short-

hand,

(Hess u)

(
∂

∂x
,
∂

∂x

)
= D2u− Γx(Du).

Proposition 3.1.4. [19, Proposition 5.5] Let F be a Riemannian G-subequation on

X with Euclidean model F on a Riemannian G-manifold X. Suppose x = (x1, ..., xm)

is a local coordinate system on U and that e1, ..., en is an admissible G-frame on U .

Let h denote the GLn-valued function on U defined by e = h ∂
∂x

. Then a C2-function

u is F -subharmonic on U if and only if

(u, hDu, h(D2u− Γ(Du))ht) ∈ F on U.

3.1.6 Comparison and approximation

There is a comparison and approximation theory for subequations, which addresses

when the sum of an F -subharmonic function and an F̃ -subharmonic function satisfy

the maximum principle and when an arbitrary F -subharmonic function can be uni-

formly approximated with strictly F -subharmonic functions. We briefly introduce

the relevant terminology and an important result.

Comparison holds for the subequation F on X if for all compact sets K ⊂ X,

whenever

u ∈ F (K) and v ∈ F̃ (K),
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the Zero Maximum Principle holds for u+ v on K, that is,

u+ v ≤ 0 on ∂K =⇒ u+ v ≤ 0 on K.

Strict approximation holds for F on X if for each compact set K ⊂ X, each

function u ∈ F (X) can be uniformly approximated by strictly F -subharmonic func-

tions on K. A function u ∈ C2(X) is said to be strictly F -subharmonic on X if

J2
xu ∈ Int F for all x ∈ X. This notion extends to upper semicontinuous functions

(see [19, Definition 7.4]). Let Fstrict(X) denote the set of all upper semicontinuous

strictly F -subharmonic functions.

A subset M ⊂ J2(X) is a convex monotonicity cone for F if M is a convex

cone with vertex at the origin and F +M ⊂ F.

Theorem 3.1.5. [19, Theorem 10.3] Suppose F is a Riemannian G-subequation on

a manifold X. If X supports a C2 strictly M-subharmonic function, where M is a

monotonicity cone for F , then comparison holds for F on X.

3.1.7 Boundary convexity and barriers

Recall the canonical decomposition

J2(X) = R⊕ J2
red(X)

with fibre coordinates J ≡ (r, J0). A subequation of the form R⊕F with F ⊂ J2
red(X)

is referred to as a reduced subequation or a subequation independent of the r variable.

Given a subequation F ⊂ J2
red(X) independent of the r-variable, the asymp-

totic interior ~F of F is the set of all J ∈ J2
red(X) for which there exists a neighbor-
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hood N (J) in the total space of J2
red(X) and a number t0 > 0 such that

t · N (J) ⊂ F for all t ≥ t0.

Let Ω be a domain in X with smooth boundary ∂Ω. A defining function for

∂Ω is a smooth function ρ defined on a neighborhood of ∂Ω such that

∂Ω = {x : ρ(x) = 0}, dρ 6= 0 on ∂Ω, and ρ < 0 on Ω.

For x ∈ ∂Ω, J2
xρ = {0} × J2

red,xρ, so we use the notation J2
xρ = J2

red,xρ

Given a reduced subequation F on X with asymptotic interior ~F and Ω ⊂ X

a smoothly bounded domain, the ∂Ω is called strictly F -convex at x ∈ Ω if there

exists a local defining function ρ for ∂Ω near x such that J2
xρ ∈ ~Fx. If this holds at

every point x ∈ Ω then boundary ∂Ω is strictly F -convex.

For general subequations boundary convexity is defined as follows. Given any

subequation F ⊂ J2(X) there is a family of reduced subequations Fλ ⊂ J2
red(X),

λ ∈ R defined by

{λ} × Fλ = F ∩
{
{λ} × J2

red(X)
}
.

Definition 3.1.6. [19, Definition 11.10] Given a general subequation F ⊂ J2(X)

and a domain Ω ⊂ X with smooth boundary, we say that ∂Ω is strictly F -convex at

a point x if ∂Ω is strictly Fλ-convex at x for each λ ∈ R. The boundary ∂Ω is called

globally F -convex if it is F -convex at every x ∈ ∂Ω.

The importance of boundary convexity is that it implies the existence of barrier

functions at boundary points.
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Let Ω ⊂ X be a smooth domain and let ρ be a local defining function for ∂Ω

near x0 ∈ ∂Ω. Then given any λ ∈ R, ρ defines a λ-barrier for F at x0 ∈ ∂Ω if there

exists C0 > 0, ε > 0, and r0 > 0 such that the function

β(x) = λ+ C

(
ρ(x)− ε |x− x0|2

2

)
(3.1)

is strictly F -subharmonic on B(x0, r0) for all C ≥ C0. If F is a reduced subequation,

then we say that ρ defines a barrier for F at x0, since the same ρ works for all

λ ∈ R. The following result [19, Theorem 11.12] connects boundary convexity to

the existence of barriers.

Theorem 3.1.7 (Existence of Barriers). Suppose Ω ⊂ X is a domain with smooth

boundary ∂Ω which is strictly F -convex at x0 ∈ ∂Ω. Then for each λ ∈ R there

exists a local defining defining function ρ for ∂Ω near x0 which defines a λ-barrier

for F at x0.

3.1.8 Solution of the Dirichlet problem

Let Ω ⊂⊂ X. Then g : Ω → R is said to solve the F -Dirichlet problem on Ω for

boundary values φ if:

(a) g ∈ C(Ω), (b) g is F harmonic on Ω, (c) g = φ on ∂Ω.

Given φ ∈ C(∂Ω), define the Perron family

F (φ) ≡ {u ∈ UCS(Ω) : u|Ω ∈ F (Ω) and u|∂Ω ≤ φ}

and the Perron function uφ(x) ≡ sup{u(x) : u ∈ F (φ)}. Assuming that both
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Fstrict(Ω) and F̃strict(Ω) contain at least one function bounded below (this assumption

is minor - see [19, Section 12]), Harvey–Lawson prove the following.

Theorem 3.1.8. [19, Theorem 13.3] Assume comparison holds for the subequation

F on X and the domain Ω ⊂⊂ X has smooth boundary. If ∂Ω is both F and F̃

strictly convex, then for each φ ∈ C(∂Ω) the Perron function uφ uniquely solves the

Dirichlet problem on Ω for boundary values φ.

3.2 Extension to domains with corners

Let F be a Riemannian subequation on a manifold M. In this section we extend

Dirichlet duality theory to include certain domains U ⊂M with corners.

Following the conventions of Joyce [21], given a manifold with corners U , the

boundary ∂U is itself a manifold with corners, equipped with a map

iU : ∂U → U,

which may not be injective. The manifold U is said to be a manifold with embedded

corners if ∂U can be written as the disjoint union of a finite number of open and

closed subsets on each of which iU is injective. A function φ on ∂U is called consistent

if it is constant on the fibres of iU .

In the case that M = Rn, Rubinstein–Solomon extended Dirichlet duality to

include such domains.

Theorem 3.2.1. [29, Theorem 7.8] Let F be a subequation in Sym2(Rn), and let U

be a bounded domain in Rn such that U is a manifold with embedded corners. Let φ
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be a consistent continuous function on ∂U . Assume ∂U is strictly (F, φ)-convex and

strictly (F̃ ,−φ)-convex. Then the F -Dirichlet problem for (U, φ) admits a unique

solution in C0(U).

Theorem 3.2.1 was then used to obtain continuous solutions to the Dirichlet

problem for the DSL, which, as previously mentioned, is naturally posed on a domain

with corners. Our goal here is to achieve a similar extension in the setting of

Riemannian manifolds (Theorem 3.2.5) and use it to obtain solutions to the Dirichlet

problem for the Riemmanian DSL.

We briefly outline our approach and provide context for it in relation to [29,

18, 19]. In Section 3.2.1, we extend the notion of boundary convexity (in a weakened

sense) to domains with corners. This is accomplished by decomposing the boundary

into a part that is convex (in the original sense) and a part where given subsolutions

are well-behaved. Our definitions come straight from [29, Section 7.2].

Section 4.2 is then devoted to proving Theorem 3.2.5. Because of the local

nature of the arguments used in Dirichlet duality in the Riemannian setting, the

proofs in [19, Section 12] carry over almost exactly to this setting. This can be

contrasted to the Euclidean setting, where the use of global defining functions to

construct barriers [18, Theorem 5.12] makes this extension more difficult. See [29,

Proposition 7.3].
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3.2.1 Weak boundary convexity

Let U ⊂M be a bounded domain, and let ∂U denote the boundary of U considered

as a manifold with corners.

Definition 3.2.2. The boundary component ∂Ui is called strictly F -convex if for

each x ∈ ∂Ui, ∂Ui is strictly F -convex at x in the sense of Definition 3.1.6.

Definition 3.2.3. Let φ ∈ C0(∂U) be consistent. A subsolution of the F -Dirichlet

problem for (U, φ) is a function u ∈ F(U)∩USC(U) such that u|∂U ≤ φ. A subsolu-

tion u for (U, φ) is called δ-maximal at p ∈ ∂U if u(p) ≥ φ(p)− δ, and maximal at

p if u(p) = φ(p).

Definition 3.2.4. We say ∂U is strictly (F, φ)-convex if we can decompose ∂U as

the disjoint union A ∪B, where A and B are unions of components and satisfy the

following:

1. For each p ∈ A and δ > 0 there exists a C0(U) subsolution of the F -

Dirichlet problem for (U, φ) that is δ-maximal at p.

2. B is strictly F -convex.

3.2.2 Solution of the Dirichlet problem

The main result of this section is the following extension of Theorem 3.1.8 and

analogue of Theorem 3.2.1. Here we make the same minor technical assumption

that is made for Theorem 3.1.8 - that is, we assume F (U) and F̃ (U) both contain

at least one function bounded from below.
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Theorem 3.2.5. Suppose F is a subequation on M for which comparison holds.

Let U ⊂M be a bounded domain such that U is a manifold with embedded corners,

and let φ be a consistent function on ∂U . If ∂U is strictly (F, φ)-convex and strictly

(F̃ ,−φ)-convex, then the F -Dirichlet problem for (U, φ) admits a unique solution in

C0(U).

Remark 3.2.6. By Theorem 3.1.5, the existence of certain subequation-specific C2

functions on M implies that comparison holds for that subequation. For instance,

if M carries a strictly convex C2 function, then by [19, Theorem 9.13] comparison

holds for every pure second order subequation on M. Thus, in particular, when

M = Rn comparison holds for all pure second order subequations.

The proof of Theorem 3.2.5 is divided into a series of smaller steps, following

almost exactly [19, Section 12].

Definition 3.2.7. Given a consistent continuous function φ on ∂U , consider the

Perron family

F (φ) ≡ {u ∈ USC(U) : u|U ∈ F (U) and u|∂U ≤ φ}

and define the Perron function

uφ(x) ≡ sup{u(x) : u ∈ F (φ)}

to be the upper envelope of the Perron family.

Proposition 3.2.8 (F ). Let φ be a consistent continuous function on ∂U and sup-

pose ∂U is strictly (F, φ)-convex at x0 ∈ ∂U . Then for each δ > 0 small, there exists

w ∈ F (φ) such that
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i. w is continuous at x0

ii. w(x0) ≥ φ(x0)− δ

iii. w ∈ F (U).

Lemma 3.2.9. Let φ be a consistent continuous function on ∂U . Let x0 be a point

of a boundary component ∂Ui ⊂ ∂U that is strictly F -convex. Then for each δ > 0

small, there exists w ∈ F (φ) such that

i. w is continuous at x0

ii. w(x0) = φ(x0)− δ

iii. w ∈ F (X).

Proof. The proof of this is identical to that of [19, Proposition F], as the existence

of barriers (Theorem 3.1.7) is a purely local condition.

Clearly, an analogous result holds for strictly F̃ -convex boundary components,

providing an element in F̃ (−φ) with the corresponding properties.

Proof of Proposition 3.2.8. This follows either by assumption or Lemma 3.2.9.

Proposition 3.2.10 (F̃ ). Let φ be a consistent continuous function on ∂U and

suppose ∂U is strictly (F̃ , φ)-convex at x0 ∈ ∂U . Then for each δ > 0 small, there

exists w′ ∈ F̃ (−φ) such that

i. w′ is continuous at x0

ii. w′(x0) ≥ −φ(x0)− δ
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iii. w′ ∈ F̃ (U).

Proof. Same as Proposition 3.2.8 with an exchange of roles.

Given a function f , let usc f denote its upper semicontinuous regularization

usc f := lim
δ→0

sup{f(y) : y ∈ U and d(x, y) < δ},

and let lsc f denote its lower semicontinuous regularization, defined analogously.

Lemma 3.2.11 (F ). usc uφ|U ∈ F (U)

Proof. The proof of this is identical to that of [19, Lemma F].

Lemma 3.2.12 (F̃ ). −lsc uφ|U ∈ F̃ (U)

Proof. The proof of this is identical to that of [19, Lemma F̃ ].

Corollary 3.2.13 (F ). φ(x0) ≤ lsc uφ(x0)

Proof. This follows from Proposition 3.2.8, and is essentially identical to the proof

of [19, Corollary F ]. Since w ∈ F (φ), we have w ≤ uφ and thus lsc w ≤ lsc uφ.

Because w is continuous at x0 and w(x0) ≥ φ(x0)− δ,

φ(x0)− δ ≤ lsc uφ(x0) ∀δ > 0 small.

Corollary 3.2.14 (F̃ ). usc uφ(x0) ≤ φ(x0)

Proof. The proof of this is essentially identical to that of [19, Corollary F̃ ]. Take

u ∈ F (φ), arbitrary. Since w′ ≤ −φ on ∂U , this implies

u+ w′ ≤ 0 on ∂U.
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Since w′ ∈ F̃ (U), by comparison

u+ w′ ≤ 0 on U.

Thus, uφ + w′ ≤ 0 on U . By the continuity of w′ at x0, and the fact that w′(x0) ≥

−φ(x0)− δ, we have

usc uφ(x0) ≤ −w′(x0) ≤ φ(x0) + δ ∀δ > 0 small.

From this series of results we can draw the following conclusions.

1. By Corollary 3.2.13 and Corollary 3.2.14, we have lsc uφ = uφ = usc uφ = φ

on ∂U . Thus, uφ is continuous on ∂U .

2. By Corollary 3.2.14 and Lemma 3.2.11, it follows that usc uφ ∈ F (φ).

3. And since usc uφ ∈ F (φ), this means usc uφ ≤ uφ on ∂U . Thus, uφ = usc uφ.

We can now prove Theorem 3.2.5. This proof is identical to that of [19, Theorem

12.4].

Proof of Theorem 3.2.5. It only remains to show that uφ is F -harmonic. By Corol-

lary 3.2.13 and Lemma 3.2.12,

−lsc uφ ∈ F̃ (−φ).

By conclusion (1) above,

−lsc uφ = −uφ on ∂U.
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Since uφ|U ∈ F (U), −lsc uφ|U ∈ F̃ (U), and uφ − lsc uφ ≤ 0 on ∂U, comparison

implies

uφ − lsc uφ ≤ 0 on U.

Thus, lsc uφ = uφ, and so uφ is F -harmonic.
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Chapter 4: Theorem of Slodkowski

4.1 Introduction

In this chapter we explore a theorem of Slodkowski regarding the “largest eigenvalue”

of a convex function. This result plays a key role in proving the uniquenss of solutions

to the Dirichlet problem in the Euclidean formulation of Harvey–Lawson’s Dirichlet

duality theory [18].

4.1.1 Motivation

It is known that a convex function u on Rn is differentiable almost everywhere and

has distributional second-order partial derivatives. It is also known that a convex

function is twice differentiable almost everywhere in the sense that for a.e. x ∈ Rn,

there exists a symmetric positive semi-definite matrix D2f(x) such that

f(x+ h) = f(x) + 〈∇f(x), h〉+
1

2
〈D2f(x)h, h〉+ o(||h||2).

The operator D2f is called the second-order Peano derivative. Note that its exis-

tence does not imply the existence of ∇f in a neighbourhood, so it should not be

considered the second derivative of f in the usual sense.

In [34], Slodkowski studies uniqueness for a generalized Dirichlet problem in
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the class of q−plurisubharmonic (q–psh) functions (for C2 functions on Cn this is

equivalent to the complex Hessian having n − q nonnegative eigenvalues at every

point). The problem of uniqueness reduces to showing that the difference of two

such functions is n−1–psh, which implies that it satisfies a maximum principle, from

which uniqueness then follows. Functions of this q–psh class can be approximated

by a subclass which are convex up to a quadratic polynomial. Because of this it is

sufficient to study this smaller class, which given their quasi-convexity, retain some

of the nice properties of convex functions. In particular, quasi-convex functions

are a.e. twice differentiable, in the above sense. Thus, the second-order behavior

of these functions and their difference is known a.e. However, to show that the

difference is a member of the above mentioned class, they must satisfy this eigenvalue

property everywhere. To this end, Slodkowski introduces a generalized second-order

derivative, which for C2 functions is simply the largest eigenvalue of the Hessian, and

proves that if this quantity is bounded below almost everywhere in some domain,

it is bounded below everywhere in that domain. Using this, he shows that the

difference is contained in the desired n− 1–psh class.

Following Slodkowski [34, Section 3], we define the largest “eigenvalue” of a

convex function.

Definition 4.1.1. Let u : Rn → R. If ∇u(x0) exists, K(u, x0) is defined by the

formula

K(u, x0) = lim sup
ε→0

2ε−2 max{u(x0 + εh)− u(x0)− ε〈∇u(x0), h〉 : h ∈ Sn−1}

otherwise K(u, x) is defined as +∞.
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This is the generalized second-order derivative that Slodkowski defines. For

the sake of context, note that this quantity is a modification to the second-order

upper Peano derivative of u in the direction of h, which is defined as

lim sup
ε→0+

2ε−2(u(x0 + εh)− u(x0)− ε〈∇u(x0), h〉).

Being maximal, this second-order derivative is of particular interest because it cor-

responds to the largest eigenvalue of the Hessian when defined (which it does, in the

above sense, almost everywhere for convex functions), and gives a useful quantity

to work with otherwise, especially in the context of Slodkowski’s C1,1 estimates.

Regarding this quantity K(u, x), Slodkowski [34] shows the following.

Theorem 4.1.2. Let u : Rn → R be a locally convex function in U ⊂ Rn, such that

K(u, x) ≥M for almost every x ∈ U . Then K(u, x) ≥M for all x ∈ U .

The recent work of Harvey and Lawson [18] on the Dirichlet problem was one

of our motivations for studying this quantity K(u, x) and Slodkowski’s proof of the

above result. They study fully non-linear degenerate elliptic equations of the form

F (Hess(u)) = 0 on Ω (4.1)

u = φ on ∂Ω. (4.2)

Given certain convexity assumptions on the boundary, they establish the existence

and uniqueness of continuous solutions using their new Dirichlet duality theory.

The work of Slodkowski [34] was “an inspiration” for that paper, and in particular

Theorem 4.1.2 is the “deepest ingredient” of their proof of uniqueness of viscosity

solutions of (4.1). These existence and uniqueness results apply to many important
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problems including all branches of the homogeneous Monge-Ampère equation, all

branches of the special Lagrangian potential equation, and equations appearing

naturally in Lagrangian and calibrated geometry.

Given the usefulness of this generalized derivative and the above result to

recent progress on important problems, it makes sense to better understand both the

derivative and the proof of the theorem. The proof is technical and very geometric

so here an illustrated exposition is provided. The quantity K(u, x) is then studied

further for convex u. In particular, the Legendre–Fenchel transform is applied to give

a simple alternative characterization of K(u, x) in terms of the convexity of the dual

function u∗ to u. This allows for an alternative proof to a key proposition needed

to prove Slodkowski’s theorem. Altogether, there are now three ways to view this

generalized derivative K(u, x): analytic (Definition 4.1.1), geometric (Proposition

4.1.6), and dual-analytic (Theorem 4.1.9).

4.1.2 Summary

Theorem 4.1.2 follows immediately from the following theorem [34, Theorem 3.2],

the proof of which is the focus of the first part of this paper.

Theorem 4.1.3. Let u be convex near x0 ∈ Rn. Assume that K(u, x0) = k0 is finite.

Then for every k > k0 the set {x : K(u, x) < k} is Borel and its lower density at x0

is not less than
(
k−k0

2k

)n
.

Lower density is defined as follows.

Definition 4.1.4. The lower density of a Lebesgue measurable set Z ⊂ Rn at x0 ∈
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Rn is the number

lim inf
ε→0

mn (Z ∩B(x0, ε))

mn (B(x0, ε))
,

where mn denotes the n-dimensional Lebesgue measure.

Slodkowski’s proof of Theorem 4.1.3 divides naturally into two parts. First,

an equivalent geometric characterization of a bound on K(u, x) is given in terms of

spheres tangent to the graph of u. This is the content of the following definition

and proposition [34, Proposition 3.3].

For c = (c1, . . . , cn+1) ∈ Rn, let S(c, r) denote the n-sphere with center c and

radius r, and B(c, r) denote the open n+ 1-disk of radius r centered at c.

Definition 4.1.5. The sphere S(c, r) is a sphere of support from above at y =

(x0, u(x0)) if y ∈ S(c, r), B(c, r) ∩ graph(u) = ∅ and cn+1 > u(P (c)), where P

denotes the orthogonal projection of Rn+1 onto Rn.

Thus, S(c, r) can be visualized as a ball resting on a “surface” that is the

graph of u, and such that (x0, u(x0)) is one of its resting points.

Proposition 4.1.6. Let U ⊂ Rn be open and u : U → R be convex. Assume that u

has gradient at x.

(i) If u has second-order Peano derivatives at x, then K(u, x) is equal to the norm

(i.e. the largest eigenvalue) of the real Hessian of u at x.

(ii) If K(u, x) is finite, then for every K > K(u, x) there is ε > 0 such that

u(x+ h)− u(x)− 〈∇u(x), h〉 ≤ 1

2
K|h|2.
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(iii) If there is a sphere S(c, r), r > 0 which supports the graph of u from the above

at (x, u(x)), then

K(u, x) ≤ (1 + |∇u(x)|2)
3
2

r
. (4.3)

Parts (ii) and (iii) give the above mentioned equivalence between a bound on

K(u, x) and a sphere of support to the graph of a corresponding radius at (x, u(x)).

See Section 4.2.2 for a more detailed explanation.

The second part of the proof then uses this alternative characterization of

K(u, x) to obtain a density result, which is essentially the statement of the theorem

in terms of spheres of support as opposed to K(u, x). This is the content of the

following lemma [34, Lemma 3.4].

Lemma 4.1.7. Let u be a non-negative convex function in B(0, d) ⊂ Rn, d > 0,

such that u(0) = 0 and ∇u(0) = 0. Let R > 0 and assume that the closed ball

B̄(c, R), c = (0, ..., 0, R) ∈ Rn+1, intersects the graph of u only at 0 ∈ Rn+1. Let Xr,

0 < r < R denote the set of all x ∈ B(0, d) ⊂ Rn such that there exists a sphere of

radius r supporting the graph of u from above at (x, u(x)). Then the lower density

of Xr at 0 is not less than ((R− r)/2R)n.

As will be seen in more detail in Section 4.2, there is an inverse relationship

between the bound on K(u, x) and the radius of the sphere of support to the graph

of u at (x, u(x)). This will explain the similarity between the lower bound on density

given in the lemma and the one in the theorem.

The geometric characterization of K(u, x) is key to proving Theorem 4.1.3 and

helpful in understanding what quality this generalized derivative captures about the
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function u and its graph. Since the results here concern functions that are at least

locally convex, it is natural to study them via the Legendre–Fenchel transform, the

classical transform of convex analysis. By definition, the set of points above the

graph of a convex function (epigraph) is a convex set. Any convex set in Rn can be

defined entirely by a family of supporting hyperplanes. Thus, since the epigraph of

u completely determines the graph of u, which in turn completely determines u, this

family of hyperplanes can be considered an alternative description or parametriza-

tion of u. This is essentially how the transform of u (or dual function to u) u∗

is defined. Each point p ∈ Rn defines a collection of hyperplanes (via gradient),

and u∗ specifies a point u∗(p) ∈ R, such that (0, ..., 0,−u∗(p)) ∈ Rn lies on the one

hyperplane of this collection which supports the epigraph (or graph) of u.

Interestingly, under the Legendre–Fenchel transform, differentiability proper-

ties of u correspond to convexity properties of u∗. Two classic examples of this are

the following.

Proposition 4.1.8. Let f : Rn → R. Then

(i) f is strictly convex if and only if f ∗ is differentiable.

(ii) f is strongly convex with modulus c if and only if f ∗ is differentiable and ∇f ∗

is Lipschitz continuous with constant 1
c
.

Given that K(u, x) is a (local) differentiability property of u, it seems there

should be an appropriate (local) convexity property corresponding to u∗. In section

3 we prove the following result.
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Theorem 4.1.9. Let f : Rn → R be convex. If K(f, x0) = k0 < k then f ∗ is

quadratically convex at y0 = ∇f(x0) with modulus 1
k
. Conversely, if u∗ is quadrati-

cally convex with modulus 1
k
, then K(f, x0) = k0 ≤ k.

Quadratically convex at y0, which is defined in section 3, is a more local form of

convexity than the two types of convexity referred to in Proposition 4.1.8. This dual

characterization ofK(u, x) allows for an alternative proof of Proposition 4.1.6. Using

quadratics to define different types of convexity is standard (e.g. quasi-convexity,

strong convexity). See section 3 for definitions of all these terms and a more detailed

discussion.

In Slodkowski’s proof, quadratics arise naturally via the definition of K(u, x),

and from this, spheres. The geometric properties of spheres make certain arguments

very clear (see proof of Lemma 4.1.7), however some manipulations and calculations

are simpler with quadratics, given their constant second-order behavior. For exam-

ple, in [?] Harvey and Lawson provide an alternative proof of Slodkoski’s lemma (as

well as Alexandrov’s theorem stated above) via a generalization by using quadratics

instead of spheres. Their proof is modelled off of Slodkowski’s, and they obtain

their result for the larger class of quasi-convex functions. Instead of spheres of sup-

port, they use the notion of upper contact jets, where given p ∈ Rn, and A a real

symmetric n × n matrix, (p,A) is an upper contact jet for u at x if there exists a

neighbourhood of x such that

u(y) ≤ u(x) + 〈p, y − x〉+
1

2
〈A(y − x), y − x〉.

Slodkowski’s result then corresponds to A = λI.
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4.1.3 Organization

Section 4.2 contains the exposition of Slodkowski’s proof of Theorem 4.1.3: Section

4.2.1 gives an overview of the proof, Section 4.2.2 a slight variation of Slodkowski’s

proof to Proposition 4.1.6 (the generalized C1,1 estimate), Section 4.2.3 an expanded

and illustrated version of Slodkowski’s proof to Lemma 4.1.7, and Section 4.2.4

combines these for the proof of the theorem.

Section 4.3 studies K(u, x) from the dual perspective: Section 4.3.1 recalls

some basic convex analysis, including Legendre–Fenchel duality, Section 4.3.2 pro-

vides an equivalent interpretation of K(u, x) in terms of the dual function to u, and

uses this for an alternative proof of the C1,1 estimate.

The appendix considers Lipschitz continuity of the gradient and the geometric

interpretation of K(u, x): Section 4.4.1 demonstrates K(u, x) is bounded by the

Lipschitz constant when u is C1,1, Section 4.4.2 gives an example of a function with

a sphere of support that is not C1,1 on any neighbourhood, Section 4.4.3 compares

K(u, x) to the classical notion of an osculating circle to a plane curve and gives an

extension of this to higher dimensions, Section 4.4.4 relates the radius of a sphere

of support to a function to that of the radius of a supporting sphere to its dual.

69



4.2 Exposition of Slodkowski’s proof

4.2.1 Overview

Theorem 4.1.3 is concerned with the set of points (near x0) such that K(u, x) < k,

for some fixed k > k0 = K(u, x0). However this set may be difficult to study directly

given that the only information available about u is that it is continuous (bounded

and convex) on some neighbourhood of x0 and K(u, x0) = k0 < ∞. In particular,

knowing the value of K(u, x) at a given point does not immediately suggest anything

about its value nearby. Thus, the first step towards a better understanding of this set

of points is an alternative characterization of what it means for K(u, x) to bounded

at some point.

If at the point x, K(u, x0) <∞ this is equivalent to a (local) sphere of support

from above to the graph of u at (x, u(x)). This is precisely what Proposition 4.1.6

(ii) and (iii) states. (ii) implies the existence (locally) of a quadratic function tangent

to the graph of u at (x, u(x)) which majorizes u on some neighbourhood, and this

in turn implies the (local) existence of a sphere of support to the graph of u at

(x, u(x)). The content of (iii) is clear.

With this alternative geometric characterization in hand, Lemma 4.1.7 then

proves the theorem in terms of these spheres of support. To accomplish this another

change in perspective is needed, which takes further advantage of this more geomet-

ric interpretation of K(u, x). Instead of looking at points x in the domain of u such

that there exists a sphere of support to the graph of u at (x, u(x)), it is better to
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consider for each point x in domain of u an n−sphere (of fixed radius) in Rn+1 above

the graph of u with center c ∈ Rn+1 such that P (c) = x, where P : Rn+1 → Rn is the

projection map. If we lower this sphere down towards x it will of course eventually

intersect the graph of u. Since u is continuous, it is not difficult to show that on

a small enough neighbourhood these spheres will come down on a closed part of

the graph of u and thus there will be an initial point of contact. This sphere is

by definition a sphere of support to the graph of u at that point. The next step is

to show that for every ε neighbourhood of 0 (x0 = 0 for Lemma 4.1.7) there is a

corresponding δ = δ(ε) such that the spheres above the points in B(0, δ) are spheres

of support to the graph at points (x, u(x)), where x ∈ B(0, ε). Now B(0, δ) is a

much nicer set to work with then Xr ∩ B(0, ε), and these two sets can be related

by a few simple Lipschitz maps. Since Lipschitz maps behave nicely with respect to

measures, this allows us to place a lower bound on the measure m(Xr ∩B(0, ε)) for

each epsilon. A limiting argument is then used to obtain the lower bound on the

lower density at 0.

Proposition 4.1.6 and Lemma 4.1.7 can then be combined to give Theorem

4.1.3. A sketch of the proof is as follows. Start with a point x0 where K(u, x0)

is finite (hypothesis of Theorem 4.1.3), and choose any k > K(u, x0). Note it can

be assumed without loss of generality that x0 = 0, u(0) = 0, and ∇u(0) = 0 (see

Section 4.2.3 for details). Then apply Proposition 4.1.6 (ii), which locally gives a

sphere of support of radius 1/k at (x0, u(x0)). Now, apply Lemma 4.1.7 to get a

lower bound on the density of Xr, r < 1/k, at x0. Next, apply Proposition 4.1.6

71



(iii) to convert this into a statement about the density of X ′k, where

X ′k ≡ {x ∈ dom(u)|K(u, x) < k}.

This last step is accomplished by using the continuity of the gradient to show that in

a small enough neighbourhood Xr ⊂ X ′k. More explicitly, x ∈ Xr implies K(u, x) ≤

r−1(1 + |∇u(x)|2)3/2 and ∇u(x0) = 0, so by continuity of the gradient of convex

functions and since k > 1/r, ∇u(x) will eventually be small enough so that r−1(1 +

|∇u(x)|2)3/2 < k. Thus, for x ∈ Xr, K(u, x) < 1/k. This gives the theorem by

choosing R arbitrarily close to 1/k0 and r arbitrarily close to 1/k (see Section 4.2.4

for a detailed proof).

4.2.2 The generalized C1,1 estimate

u

r

x+ hxc

t

Rn

R

d

Figure 4.1: Lower hemishpere function d : B(c, r)→ R

In this subsection we provide an alternative proof to Proposition 4.1.6 (iii).

The main idea is as follows: given a sphere of support of radius r to the graph of

u at the point (x, u(x)), the lower hemisphere of this sphere defines the graph of a

smooth convex function that agrees up to first order with u at x and majorizes u
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elsewhere. Denote this function by d. It immediately follows that K(u, x) ≤ K(d, x),

and the rest of the proof consists in computing K(d, x), which is equal to the largest

eigenvalue of d because d is smooth.

Proof of Proposition 4.1.6 (iii). Assume that the sphere S((c, t), r), c ∈ Rn sup-

ports the graph of u from the above at (x, u(x0)) and that u is differentiable at x0.

Define d : B(c, r)→ R to be the function whose graph is the lower open hemisphere

of S((c, t), r). Recall the definition for K(f, x0) :

K(u, x0) := lim sup
ε→0

2ε−2 max {u(x0 + εh)− u(x0)− ε〈∇u(x0), h〉 : |h| = 1}.

Clearly, since d(x0) = u(x0) and ∇d(x0) = ∇u(x0),

K(u, x0) ≤ K(d, x0).

Since d is smooth,

K(d, x0) = lim sup
ε→0

2ε−2 max {d(x0 + εh)− d(x0)− ε〈∇d(x0), h〉 : |h| = 1}

= lim sup
ε→0

2ε−2 max {1

2
〈∇2d(x0 + γε,hεh)εh, εh〉 : |h| = 1}, 0 < γε,h < 1

= lim sup
ε→0

max {〈∇2d(x0 + γε,hεh)h, h〉 : |h| = 1}, 0 < γε,h < 1

= max {〈∇2d(x0)h, h〉 : |h| = 1} by continuity and compactness.

=λmax, maximum eigenvalue of ∇2d(x0)

Thus, now we show that

λmax =
(1 + (∇u(x0))2)

3
2

r
.
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The equation for d, the sphere of radius r centered at (c, t), where c ∈ Rn and t ∈ R,

is

d(x) = t−
√
r2 − |c− x|2.

Without loss of generality we may assume that the sphere of support is centered at

the origin and x0 has just first component non-zero, as otherwise we could always

shift and then rotate without affecting the second-order behavior. In other words,

assume (c, t) = 0 ∈ Rn+1 and x0 = (s1, ..., sn) = (s, 0, ..., 0) ∈ Rn. Then d(x) =

−
√
r2 − |x|2.

Let

w(x) :=
1

r2 − s2

(
|x− x0|2 + 2〈x− x0, x0〉

)
.

Since

|x|2 = 〈x, x〉 = 〈(x− x0) + x0, (x− x0) + x0〉 = |x− x0|2 + 2〈x0, x− x0〉+ |x0|2

and |x0|2 = s2, we can write d(x) as

d(x) = −
√
r2 − s2

√
1− w(x).

Now expanding
√

1− w(x) as a series and dropping the terms of order higher than

two (as they will have 0 Hessian at x0),

d(x) ≈ −
√
r2 − s2

(
1− w(x)

2
− w(x)2

8

)
.

This can be further reduced to

d(x) ≈ −
√
r2 − s2

(
1− w(x)

2
− 1

8

(
2〈x− x0, x0〉
r2 − s2

)2
)
,
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since we are only concerned with the expression for d, modulo powers higher than

two.

Thus, d(x) has been replaced by a diagonal quadratic form and straightforward

computations give

∇d(x0) =
x0√
r2 − s2

,

and

∇2d(x0) =
1√

r2 − s2
I +

s

(r2 − s2)3/2
A,

where I is the n × n identity matrix and A is the n × n matrix with first row

x0 = (s, 0, ..., 0) and zeros elsewhere. It follows immediately that

λmax =
1√

r2 − s2
+

s2

(r2 − s2)3/2
.

Since |∇u(x0)|2 = |∇d(x0)|2 = s2

r2−s2 ,

λmax =
1 + |∇u(x0)|2√

r2 − s2
.

Furthermore, the vector (x0, u(x0)) is of length r, proportional to the upward point-

ing unit normal to the graph of u at (x0, u(x0)), which is equal to

(1 + |∇u(x0)|2)−
1
2 (−∇u(x0), 1).

Scaling by r, we obtain

x0 = −r(1 + |∇u(x0)|2))−
1
2∇u(x0).

Giving

x0 =
r∇u(x0)√

1 + |∇u(x0)|2
, s2 = |x0|2 =

r2|∇u(x2
0)

1 + |∇u(x0)|2
.
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Therefore,

λmax =
(1 + |∇u(x0)|2)

3
2

r
.

4.2.3 The density lemma

If at the point x0 = 0 there is a sphere of support of radius R, Lemma 4.1.7 provides

a lower bound on the lower density of the set Xr of points with sphere of support of

a radius r < R. Note that without loss of generality it may be assumed that x0 = 0,

u(0) = 0, and ∇u(0) = 0, since any convex function ũ can always be adjusted

by a constant and linear term so that this is true without affecting the 2nd-order

behaviour of ũ.

As mentioned in section 2.1, Lemma 4.1.7 is proved by looking not directly at

Xr but at small neighbourhoods of 0 that are the projection of the set of centers of

spheres of support to the graph of u on shrinking neighbourhoods. For each ε > 0

a δ = δ(ε) is needed so that B(0, δ) is contained in the projection onto Rn of the

set of centers of spheres of support to the graph of u restricted to an epsilon neigh-

bourhood. Since the only information about u is that there is a sphere of support

at 0, this is what is used to construct ε and δ. More specifically, the appropriate

ε’s and δ’s are found by constructing a family of convex functions that are identical

to u on a neighbourhood of 0, but greater and simpler outside this neighbourhood.

This allows one to fully utilize the only initial information given. Using this family

of simple functions and basic geometry, three key set inclusions are obtained, which
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essentially relate B(0, δ(ε)) to Xr ∩ B(0, ε). Then using Lipschitz maps to relate

these sets and by applying properties of Lipschitz functions on measure, the lower

density bound is shown. This whole construction is crucial because it provides a

much simpler approach to studying the possibly very complex set Xr. The following

is the proof given by Slodkowski.

Proof of Lemma 4.1.7. The number r ∈ (0, R) will be kept fixed so let X ≡ Xr.

Define

Z = {(x, u(x)) ∈ Rn+1 : x ∈ X}.

It is clear that Z∩(B̄(0, d′)×R) is compact for every d′ < d, thus X∩(B̄(0, d′)×R) is

also compact, as it is the orthogonal projection P : Rn+1 → Rn of Z. Since compact

sets are Lebesgue measurable, the notion of lower density is applicable to both X

and Z.

It is more convenient to first estimate the density of Z at 0 with respect to

Hausdorff measure, and then use the properties of Lipschitz functions on measure

to obtain bounds on the density of X. To accomplish this a family of convex

functions, built from the initial sphere of support of radius R at 0, which modify u

outside a small neighbourhood of 0 will be constructed. As mentioned above, these

functions will be identical to u on a neighbourhood of 0 and very simple outside

this neighbourhood. These functions will enable us to find a corresponding δ = δ(ε)

neighbourhood for each ε so that x ∈ B(0, δ) implies that x = P (c), where c ∈ Rn

is the center of a sphere of support to (x′, u(x′)), for some x′ ∈ B(0, ε) ∩Xr.

Step One. A family of convex functions is constructed which will let us find an
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appropriate δ(ε), as explained above. For each α such that 0 < α < 1
2

arcsin( d
R

),

define the function

vα : B(0, R)→ [0,∞),

as follows. First, define

Y = {y ∈ Rn+1 : |y − c| = R, (y − c, 0− c) = 2α}, (4.4)

where c = (0, ..., 0, R) ∈ Rn+1 is the center of the sphere of support to u at (0, u(0)).

Y forms a “ring ”on S(c, R), and clearly the projection of Y , P (Y ), onto Rn is the

u

c

2α 2α

Y Y

w

TαTα

CαCα

R

Rn

R

R sin 2α−R sin 2α

Figure 4.2: Construction of Auxiliary Convex Functions

n− 1 sphere of radius R sin 2α, centered at 0. Next, let Cα denote the union of all

closed segments wy with one endpoint w on the axis 0 × R ⊂ Rn+1 and tangent to

the sphere S(c, R) at the other endpoint y, where y ∈ Y . Note that w is independent

of which y ∈ Y that is being used. Cα is simply a finite cone with vertex w and

base Y , tangent to S(c, R) along Y .
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Define now

Tα = {y ∈ S(c, R) : R(1− cos 2α) ≤ yn+1 < R}. (4.5)

Tα can be visualized as a “strip” of S(c, r), and note that Tα ∩ Cα = Y and that

Tα ∪ Cα defines a convex function kα : B(0, R)→ R.

For 0 < α < 1
2

arcsin( d
R

), define

vα =


max(u(x), kα(x)), |x| < R sin 2α

kα(x), R sin 2α ≤ |x| < R.

Note that u is only defined on B(0, d) and R sin 2α < d < R, so that is why vα is

defined this way. It is clear that

vα(x) ≥ u(x), for |x| < d. (4.6)

Observe that vα is locally convex on the set |x| 6= R sin 2α since for |x| >

R sin 2α, vα = kα(x), which is convex, and for |x| < R sin 2α, vα is the maximum

of two convex functions which is convex. If |x| = R sin 2α, then (x, vα(x)) ∈ Y ⊂

S(c, r) Since S(c, r) lies above the graph of u, so kα|Y > u|Y . Thus near Y, vα ≡ kα,

and so vα is locally convex in B(0, R), which implies that vα is convex.

Step Two. For any convex function the following Lipschitz map can be constructed.

This will let us relate the possibly complex set, X, to the disk B(0, δ(ε)). Given a

convex function v : B(0, R) → R. Let E(v) = {(x, t) ∈ Rn+1 : t > v(x)} denote the

strict epigraph of v, and define Zv as the set of all y = (x, v(x)), where |x| < R,

and such that for some c′ ∈ Rn+1, B(c′, r) ⊂ E(v) and y ∈ S(c′, r), where r < R, as

defined earlier.
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Note that if y = (x, v(x)) ∈ Zv, then the graph(v) has a unique supporting

hyperplane at y (since any such hyperplane is tangent to S(c′, r)), and thus c′ is

uniquely determined by y.

Now consider the map γv : Zv → Rn+1, where γv(y) = c′. This map is

Lipschitz with constant one. To see this, let y1, y2 ∈ Zv and c′i = γv(yi), i =

1, 2. The set E(v) is convex (by definition since v is convex), and so it contains

W := co(B(c1, r) ∪ B(c1, r)), where co() denotes the convex hull. In particular,

W∩ graph(v)=∅. Since yi ∈ S(ci, r) ∩ graph(v), yi ∈ S(c′i, r) \W, i = 1, 2. Thus,

y1 and y2 do not belong to, and are separated by, the open region between two

hyperplanes which are orthogonal to the segment c′1c
′
2 and pass through its ends.

Therefore |c′1−c′2| ≤ |y1−y2|. The importance of this map will be seen below, where

combined with u and the projection map P it allows the set of interest in Rn to be

related to a small disk.

Step Three. Three key set inclusions are established. Along with step two this

will allow on small neighborhoods the measure of X to be bounded from below by

the volume of small n− balls. Using the notation above, let Zα and γα denote the

set Zv and map γv, respectively, for v = vα, where 0 < α < 1
2

arcsin( d
R

).

Consider the set

Uα = graph(vα) \ (Cα ∪ Tα). (4.7)

Note that this is a subset of the graph of u. For α ∈ (0, 1
2

arcsin( d
R

)), we have the
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following three inclusions:

P (Uα) ⊂ B(0, R sin 2α) (4.8)

Zα ∩ Uα ⊂ Z ∩ Uα (4.9)

BN(0, δ) ⊂ Pγα(Zα ∩ Uα),where δ = (R− r) tanα. (4.10)

The first inclusion follows directly from the definition of Uα: |x| ≥ R sin 2α⇒

vα(x) ∈ Tα.

By (5), Zα ∩ graph(u) ⊂ Z. To see this, let z ∈ Zα. Thus we have a c′ ∈ Rn+1

such that B(c′, r) ⊂ E(vα) and z ∈ S(c′, r). So there is a sphere of radius r

supporting the graph of vα from above at z. If z ∈ graph(u), then we must have

z ∈ Z: B(c′, r) ⊂ E(vα) and vα(x) ≥ u(x) give us that B(c′, r) ∩ graph(u) = ∅ and

c′n+1 > u(Pc′), which together with z ∈ S(c′, r) imply that z ∈ Z, by definition.

Since Uα ⊂ graph(u), Zα ∩ Uα ⊂ Zα ∩ graph(u) ⊂ Z. And of course Zα ∩ Uα ⊂ Uα,

so together we have Zα ∩ Uα ⊂ Z ∩ Uα, which gives us the second inclusion.

The third inclusion is the critical aforementioned relation between the set of points

with spheres of support and a disk in Rn. (Below we will take ε = R sinα and

δ = (R − r) tanα). To obtain this inclusion we proceed as follows. Let x ∈ Rn, be

such that |x| < R− r, and consider the set

{c′ ∈ {x} × R : B(c′, r) ⊂ E(vα)}. (4.11)

This set is a non-empty, closed half-line. To see this, consider lowering the sphere

S((x, c′n+1), r) in Rn+1 onto the graph of vα, by continuously decreasing the last

coordinate. Because the radius of this sphere is r and |x| < R− r, this sphere comes
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Figure 4.3: Closest Supporting Spheres to Origin

down on a closed subset of the graph of vα. Once contact is made with the graph

of vα we stop, and the corresponding value of (x, c′n+1) is our closed endpoint. Let

c′ ∈ Rn+1 be this endpoint and y ∈ S(c′, r) ∩ graph(vα) (note that y may not be

unique). Then c′ = γα(y) and x = Pγα(y), and so

BN(0, R− r) ⊂ Pγα(Zα). (4.12)

Now Zα\(Cα∪Tα) ⊂ graph(vα)\(Cα∪Tα) = Uα, so clearly Zα\(Cα∪Tα) ⊂ Zα∩Uα.

Therefore,

Pγα(Zα) \ Pγα(Zα ∩ (Cα ∪ Tα)) ⊂ Pγα(Zα ∩ Uα). (4.13)

This relation and (12) will give us our third inclusion (4.10), once we show that

Pγα(Zα ∩ (Cα ∪ Tα)) ∩BN(0, δ) = ∅. (4.14)

Consider the family of all spheres S(c′, r) which support Cα\Y from above and

are contained in the upper half space yn+1 ≥ 0. Clearly the smallest value of |P (c′)|

82



is attained when the sphere S(c′, r) is tangent to both Cα and {yn+1 = 0} (see Fig.

3). It is not difficult to see that in this case (c′ − c, 0− c) = α, where c here is the

center of the initial sphere of support. This gives us |P (c′)| = (|c| − c′N+1) tanα =

(R− r) tanα = δ, which implies

Pγα(Zα ∩ Cα) ∩BN(0, δ) = ∅. (4.15)

Now when S(c′, r) supports Tα \Y from the above at some point y, the segment c′, y

is normal to S(c, R) and yN+1 ≥ R(1− cos 2α) ≥ δ. Thus (c′ − c, 0− c) ≥ 2α and,

as above, |P (c)| ≥ (R− r) tan 2α ≥ δ (note 0 ≤ α ≤ π
4
). This gives

Pγα(Zα ∩ Tα) ∩BN(0, δ) = ∅. (4.16)

Combining (4.15) and (4.16) we have (4.14), which gives the third inclusion.

Step Four. Estimate of the density of X. The above inclusions and the effect of

Lipschitz maps on measure, will be enough to estimate the density of X = P (Z).

Recall that Z = {(x, u(x)) ∈ RN+1|x ∈ X}, where X is the set of points in B(0, d) ⊂

RN such that there exists a sphere of radius r supporting the graph of u from above

at (x, u(x)).

Using a few theorems from Rockafellar [27], it can be shown that the map

ϕ : P (Uα)→ Uα, where ϕ(x) = (x, u(x)) is Lipschitz with constant (1 + g2
α)

1
2 , where

gα = sup{|∇u| : |x| < R sin 2α}. More specifically, by [27, Theorem 10.4], u is

Lipschitz, and by [27, Theorems 24.7, 25.5, and 25.6] gα is a Lipschitz bound for

u|B(0,R sin 2α)). A simple Pythagorean argument then shows (1 + g2
α)

1
2 is a Lipschitz

bound for ϕ. Notice that ϕ maps X ∩ P (Uα) = P (Z ∩ Uα) onto Z ∩ Uα.
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A basic theorem regarding the effect of Lipschitz maps on Hausdorff measures

(see Rogers [?, Theorem 2.29]), along with our first inclusion from above (7), leads

to:

Hn(Z ∩ Uα) ≤(1 + g2
α)

n
2mn(X ∩ P (Uα))

≤(1 + g2
α)

n
2mn(X ∩B(0, ε)), ε = R sin 2α,

where again Hn and mn denote the Hausdorff and Lebesgues measure on Rn, re-

spectively. Furthermore

mn(B(0, δ)) ≤mn(Pγα(Zα ∩ Uα)) by (9)

≤Hn(Zα ∩ Uα) Pγα is Lipshitz with constant ≤ 1

≤Hn(Z ∩ Uα) by (8).

Finally, combining these inequalities one obtains

mn(X ∩B(0, ε))

mn(B(0, ε))
≥ (1 + g2

α)
−n
2
mn(B(0, δ))

mn(B(0, ε))

= (1 + g2
α)
−n
2

(
(R− r) tanα

R sin 2α

)n
= (1 + g2

α)
−n
2

(
R− r

2R

)n
cos−2n α,

where the volume of an n-ball of radius r is
π
n
2 rn

Γ(n
2

+ 1)
in the first equality, and Γ

denotes the gamma function. Thus,

lim inf
ε→0

mn(X ∩B(0, ε))

mn(B(0, ε))
≥ lim inf

ε→0
(1 + g2

α)
−n
2

(
R− r

2R

)n
cos−2n α.

Now since ε = R sin 2α and 0 < α < π
4
, as ε→ 0, α → 0. And as the gradient of a

convex function is continuous (Theorem 25.5, [1]), gα → 0 as well since ∇u(0) = 0.

Therefore the lower density of X at 0 is not less than

(
R− r

2R

)N
.
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4.2.4 Proof of Theorem 4.1.3

Lemma 4.1.7 and Proposition 4.1.6 now combine nicely to give us Theorem 4.1.3.

Proof of Theorem 4.1.3. Let X ′k = {x ∈ dom (u) : K(u, x) < k}. Note that K(u, x)

is of first Baire class, as it is the pointwise limit of a sequence of continuous functions.

Since the inverse image of an open set under a Baire function is Borel [8, 4.1 ], we

have that X ′k is Borel.

Now without loss of generality, let x0 = 0, u(x0) = 0,∇u(x0) = 0. Note that

by the convexity of u this implies u ≥ 0. Set k0 = K(u, x0) = K(u, 0), and let

k > k0 be fixed and take K such that k > K > k0.

Set R =
1

K
and note that R − (R2 − |x|) 1

2 ≥ 1

2R
|x|2 =

K

2
|x|2, ∀x such

that |x| < R. This follows immediately by contradiction. The left-hand side of

this inequality is the last component of the point (x, t) ∈ Rn, where x ∈ Rn, on

the (n + 1)-dimensional sphere of radius R centered (0, ..., 0, R) ∈ Rn+1 (i.e the

value of d(x), where d is the lower hemisphere function defined in the proof of the

proposition, see Figure ??).

Since K > K(u, 0), by Proposition 4.1.6 (ii) there exists d > 0 such that

u(0 + h)− u(0)− 〈∇u(0), h〉 ≤ 1

2
K|h|2 for every |h| < d.

So

u(h) ≤ 1

2
K|h|2 for every |h| < d.

Thus the sphere S(c, R), where c = (0, ...0, R) ∈ Rn+1, supports the graph of u|B(0,d)

form above at 0 ∈ Rn+1, and Lemma 4.1.7 can be applied to the function u|B(0,d).
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Figure 4.4: Tangent sphere

Let r, such that 1
k
< r < R, be arbitrary, and let X = Xr and Z = Zr be

defined as in Lemma 4.1.7. By Proposition 4.1.6 (iii), ∀x ∈ X

K(u, x) ≤ (1 + g2)
3
2

r
, where g = |∇u(x)|.

Set

gε = sup{|∇u(x)| : |x| < ε}.

Then clearly

K(u, x) ≤ (1 + g2
ε)

3
2

r
∀x ∈ X ∩B(0, ε).

By the continuity of the gradient function, limε→0 gε = |∇u(0)| = 0. Thus

since
1

r
< k, there exists ε′, where 0 < ε′ < d, such that

(1 + g2
ε)

3
2

r
< k, for 0 < ε < ε′,

and so

(B(0, ε) ∩X) ⊂ (B(0, ε) ∩X ′k), for 0 < ε < ε′.
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If x ∈ X then there exists a supporting sphere of radius r at (x, u(x)), and if

x ∈ B(0, ε), where ε < ε′, then K(u, x) < k.

It follows by Lemma 4.1.7 that

lim inf
ε→0

mn(X ′k ∩B(0, ε))

mn(B(0, ε))
≥ lim inf

ε→0

mn(X ∩B(0, ε))

mn(B(0, ε))

≥
(
R− r

2R

)n
.

Now recall that R =
1

K
was chosen arbitrarily so that it satisfied the inequality

1

k
<

1

K
<

1

k0

, where k and k0 are fixed. Similarly, r was chosen arbitrarily so that

1

k
< r <

1

K
. Thus we can choose R =

1

K
and r arbitrarily close to

1

k0

and
1

k
,

respectively, giving us the desired bound

(
k − k0

2k

)n
.

4.3 Dual Perspective

4.3.1 Background

Since u is convex near x0, it is natural to study this quantity K(u, x0) from the dual

perspective as well. Let Cvx(Rn) denote the space of convex, lower semi-continuous

functions on Rn. Given a function u ∈ Cvx(Rn), one can apply the Legendre–Fenchel

transform L : Cvx(Rn)→ Cvx(Rn) of u to obtain its conjugate or dual function u∗,

where

u∗ ≡ Lu(s) = sup
x

(〈s, x〉 − u(x)).

L is an order-reversing, involutive transform on Cvx(Rn), and for sufficiently nice

convex functions (differentiable, strictly convex, and 1-coercive), u∗ is given by

u∗(s) = 〈s, (∇u)−1(s)〉 − u((∇u)−1(s)).
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The conjugate function u∗ can be viewed as a reparametrization of the original

function u in terms of its tangents using the duality between points and hyperplanes.

More specifically, given a vector in Rn, there is an associated family of hyperplanes

with that gradient. u∗ distinguishes the one that supports the epigraph of u by

specifying a point on that plane.

For convex functions defined only in a neighbourhood it is standard to extend

the function to all of Rn by setting it equal +∞ outside that neighbourhood. In our

case, we are given u convex near x0, so we extend it in this manner, if necessary.

Clearly this does not affect K(u, x0), which is a purely local property. Recall the

following basic definitions:

Definition 4.3.1. The differentiable function f : Rn → R is convex if for all x, x′ ∈

Rn

f(x′) ≥ f(x) + 〈∇f(x), (x′ − x)〉,

and strictly convex if the inequality is strict for x 6= x′.

Definition 4.3.2. The differentiable function f : Rn → R is strongly convex with

modulus c if and only if for all (x, x′) ∈ Rn × Rn,

f(x′) ≥ f(x) + 〈∇f(x), (x′ − x)〉+
1

2
c|x′ − x|2.

When f is not differentiable a lot of analysis can still be done using the calculus

of subdifferentials.

Definition 4.3.3. 3.3 Let f : Rn → R be convex. The subdifferential of f , denoted

∂f , is a set function, where ∂f(x) = {s ∈ Rn : f(y) ≥ f(x) + 〈s, y − x〉 ∀y ∈ Rn} .
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Under the Legendre transform, differentiability of u corresponds to convexity

or monotonicity of u∗. Recall from Proposition 1.8, two properties that transform

especially well are (i) u ∈ C1 if and only if u∗ is strictly convex, and (ii) u ∈ C1,1,

where ∇u has Lipschitz constant c if and only if u is strongly convex with modulus

1
c
.

4.3.2 Quadratic convexity

In this section we look at how a bound on K(u, x0) or equivalently a sphere of

support to the graph of u at (x0, u(x0)) transforms to a property of u∗. More

specifically, since K or a sphere of support is a bound on a generalized second-order

derivative of u, how does this translate to information about the convexity of u∗?

We should expect a more localized property then in Proposition 1.8, as we only have

information at x0. Further, we are not assuming any regularity beyond differentiable

at x0.

Now, strong convexity may also defined in terms of quadratic functions: u is

strongly convex with modulus m if u− 1
2
m|x|2 is convex. Similarly, quasi-convexity,

is defined via quadratics: u is λ- quasi-convex if u+ 1
2
λ|x|2 is convex.

Let u : Rn → R be convex with K(u, x0) = k0 < ∞. By the definition of

K(u, x), for any k > k0 there exists ε > 0 such that

u(x0 + h)− u(x0)− 〈∇u(x0), h〉 ≤ 1

2
k|h|2, for all |h| < ε.

This motivates the following definition.
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Definition 4.3.4. Let f : Rn → R be convex. Then f is quadratically (resp. sub-

quadratically) convex at x0 with modulus m > 0 if there exists ε > 0 and a quadratic

function Q : Rn → R with ∇2Q = mI such that

f(x0) = Q(x0) and f(x) ≥ Q(x), ∀x ∈ B(x0, ε)

resp.

f(x0) = Q(x0) and f(x) ≤ Q(x), ∀x ∈ B(x0, ε).

Example 4.3.5. f(x) = |x|4/3 is quadratically convex at 0, but not sub-quadratically

convex at 0. Note also that K(f, 0) = +∞ and it does not have a sphere of support

at 0.

Example 4.3.6. More generally, consider any function of the form f(x) = A|x|k,

at x = 0. If 0 < k < 1, f is not convex. If k = 1, f is quadratically convex at 0, but

not sub-quadratically convex. If 1 < k < 2 then f is strictly convex and quadratically

convex but not sub-quadratically convex. If k = 2, f is both quadratically convex and

sub-quadratically convex. If k > 2, f is sub-quadratically convex but not quadratically

convex.

If f is of the form f = |x|k
k

, then f ∗ = |y|q
q

, where 1
k

+ 1
q

= 1. So, in general,

given that the Legendre-Fenchel transform is order-reversing and quadratics are

transformed into quadratics, it follows that if f is quadratically convex, f ∗ is sub-

quadratically convex. For a convex C2 function f , if ∇2f(x0) is positive definite

then f is both quadratically and sub-quadratically convex at x0.

Proof of Theorem 4.1.9. Suppose K(u, x0) = k0 < ∞. As stated above, by defini-
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tion of K(u, x0), for any k > k0, there exists ε > 0 such that u satisfies

u(x)− u(x0)− 〈∇u(x0), x− x0〉 ≤
1

2
k|x− x0|2,

for all x ∈ B(x0, ε). Thus, on this neighbourhood of x0

u(x) ≤ u(x0) + 〈∇u(x0), x− x0〉+
1

2
k|x− x0|2.

By assumption u is convex, and k > k0 ≥ 0, so the right-hand side is also convex.

Taking the Legendre transform gives

u∗(y) ≥ 〈∇u(x0), x0〉 − u(x0) + 〈x0, y −∇u(x0)〉+
1

2
k

∣∣∣∣y −∇u(x0)

k

∣∣∣∣2 .
Now u∗ may not be differentiable at ∇u(x0), however ∇u(x0) ∈ ∂u(x0) if and only

if x0 ∈ ∂u∗(∇u(x0)), which is equivalent to u∗(∇u(x0)) = 〈∇u(x0), x0〉 − u(x0). So

the above inequality simplifies to

u∗(y) ≥ u∗(∇u(x0)) + 〈x0, y −∇u(x0)〉+
1

2k
|y −∇u(x0)|2.

Note that there is equality at y0 = ∇u(x0) and the Hessian of the right-hand side

is 1
k
I so u∗ is quadratically convex with modulus 1

k
.

On the other hand, if u∗ is quadratically convex at y0 = ∇u(x0) with modulus

1
k

then u will be sub-quadratically convex with modulus k at x0, and it follows that

K(u, x0) ≤ k.

In the above proof we do not need to worry about ∂u(B(x0, ε)) being degen-

erate (for example if u is locally a hyperplane at x0) because in that case u∗(y)

will then be +∞ away from ∇u(x0) so clearly the inequality will hold on some

neighbourhood.
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Our goal now is to obtain the nice bound on K(u, x) in Proposition 4.1.6

using the dual function, given a sphere of support to the graph of u at (x, u(x)).

The following elementary lemma, which we state without proof, will enable us to

reduce arguments on Rn to ones on R.

Lemma 4.3.7. Let Sr be an n-sphere with radius r in Rn+1, centered at (0, ..., 0, r),

and let d : Rn → R be the function defined by the lower hemisphere, i.e., for z ∈

Bn(0, r), d(z) = r −
√
r2 − |z|2. Then for any x ∈ Bn(0, r) and v ∈ Rn, |v| = 1,

the graph of ψ : I ⊂ R→ Rn+1 defined by ψ(t) = d(x+ tv) is a lower semi-circle in

Rn+1 of radius ≤ r, where I = (−ε, ε′) is of maximal length.

Proposition 4.3.8. Let f : Rn → R be C2 and convex and suppose there exists a

sphere of support to the graph of f at (x0, f(x0)) of radius r. Then

K(f, x0) ≤
(1 +∇f |2x0

)
3
2

r
.

Proof. In this case K(f, x0) is the largest eigenvalue λmax of ∇2f(x0). If λmax=0

then the bound on K(f, x0) is trivial, so let λmax > 0. Since f is convex ∇2f(x0)

is symmetric positive semi-definite, so there exists an orthonormal basis of eigen-

vectors. By Lemma 4.3.7, along each of these vectors the sphere of support can be

considered simply a circle of support, the second derivative the corresponding eigen-

value, and the first derivative the inner product with ∇f(x0). The largest eigenvalue

will be achieved in the direction of the gradient (or equivalently away from the cen-

ter) since this places x0 as far as possible from the center of a semi-circle, where the

gradient grows fastest. So without loss of generality assume that f is a function on

R.
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Let S((c, t), r) be a sphere of support of radius r, to the graph of f at x0. Let

d be the function defined by the lower hemisphere of this sphere, i.e.

d(x) =t−
√
r2 − (x− c)2, x ∈ [x− c, x+ c]

d(x) =∞, else.

Clearly d is convex and d ≥ f , by definition of a supporting sphere. By properties

of convex functions and their conjugates the following relations hold:

f(x0) = d(x0) ∇f(x0) = ∇d(x0) f ∗ ≥ d∗ ∇f ∗(x0) = ∇d∗(x0) = y0.

Now d∗ can be computed directly using the Legendre transforms of common func-

tions. First rewriting d:

d(x) =t−
√
r2 − (x− c)2

=t− r
√

1−
(x
r
− c

r

)2

,

and then applying the following well-known conjugate pairs:

h(x) = −
√

1− x2 h∗(y) =
√

1 + y2

g(x) = α + βx+ γu(λx+ δ) g∗(x) = −α− δ y − β
λ

+ γu∗(
y − β
γλ

).

This gives

d∗(y) =− t+ cy + r
√

1 + y2

∇d∗(y) =c+
ry√

1 + y2

∇2d∗(y) =
r

(1 + y2)
3
2
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The following relationship exists between the Hessians of dual functions

∇2f ∗(y0) = ∇2f(x0)−1 where y0 = ∇f(x0).

Since∇2f(x0) > 0 and f is C2 there exists an open interval I on which∇2f > 0, and

a corresponding interval I∗ on which ∇2f ∗ > 0. And since f ∗ ≥ d∗, f ∗(x0) = d∗(x0),

∇f ∗(y0) = ∇d∗(y0), by basic calculus

∇2f ∗(y0) ≥ ∇2d∗(y0) =
r

(1 + y2
0)

3
2

=
r

(1 +∇f(x0)2)
3
2

Therefore,

K(f, x0) = ∇2f(x0) =
1

∇2f ∗(y0)
≤ (1 +∇f(x0)2)

3
2

r
.

The more general case, where f is not assumed to be C2, will use Proposition

4.3.8 and quadratic convexity of the dual.

Proposition 4.3.9. Let f : Rn → R be convex with a sphere of support at x0 of

radius r. Then K(f, x0) ≤
(1 +∇f |2x0

)
3
2

r
.

Proof. Let d be the lower hemisphere function. Then d(x0) = f(x0), and

d ≥ f ⇒ f ∗ ≥ d∗.

If y0 = ∇f(x0) (which exists since there is a sphere of support) then

d∗(y0) = f ∗(y0) and ∇d∗(y0) ∈ ∂f ∗(y0).

94



From Proposition 4.3.8 the smallest eigenvalue of ∇2d∗(y0) is equal to r

(1+|y0|2)
3
2

, so

for any m < r

(1+|y0|2)
3
2

there exists a neighbourhood U of x0 such that

f ∗(y) ≥ d∗(y) ≥ d∗(y0) + 〈∇d∗(y0), y − y0〉+
1

2
m|y − y0|2.

Thus, f ∗ is quadratically convex with modulus m.

It follows that f = (f ∗)∗ is sub-quadratically convex at x0 with modulus 1
m
.

Let Qm be a satisfying quadratic. This implies that

K(f, x0) ≤ K(Qm, x0) =
1

m
,

and since this holds for any m < r

(1+|y0|2)
3
2

,

K(f, x0) ≤ (1 + |y0|2)
3
2

r
=

(1 + |∇f(x0)|2)
3
2

r
.

4.4 Appendix

4.4.1 Lipschitz gradient

Here we show that the generalized derivative K(f, x) retains the following standard

property regarding the derivative of a Lipschitz continuous function.

Proposition 4.4.1. Suppose f : Rn → R is convex and C1,1 (i.e f is differentiable

and has Lipschitz gradient), with Lipschitz constant L. Then K(f, x) ≤ L for all x.

Proof. Let x0 ∈ Rn.

K(f, x0) := lim sup
ε→0

2ε−2 max {f(x0 + εh)− f(x0)− ε〈∇f(x0), h〉 : |h| = 1},
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which can be can written as

K(f, x0) = lim sup
ε→0

max

{
2
f(x0 + εh)− f(x0)− ε〈∇f(x0), h〉

ε2
: |h| = 1

}
.

Differentiability lets us use the Cauchy mean value theorem. Let φ1(ε) = f(x0 +

εh)− ε〈∇f(x0), h〉, and φ2(ε) = ε2. Note that

2
f(x0 + εh)− f(x0)− ε〈∇f(x0), h〉

ε2
= 2

φ1(ε)− φ1(0)

φ2(ε)− φ2(0)
.

Thus, there exists γ ∈ (0, ε) such that

2
φ1(ε)− φ1(0)

φ2(ε)− φ2(0)
= 2

φ′1(γ)

φ′2(γ)
=
〈∇f(x0 + γh), h〉 − 〈∇f(x0), h〉

γ

=
〈∇f(x0 + γh)−∇f(x0), h〉

γ

≤|∇f(x0 + γh)−∇f(x0)|
γ

≤ L

Therefore K(f, x0) ≤ L, and thus 1
K(f,x0)

bounds the modulus of convexity of f ∗,

for any x0.

4.4.2 Example of a non C1,1 function with a sphere of support

Example 4.4.2. It may seem that since a bound on K(u, x) implies a sphere of

support to the graph of u at (x, u(x)), that this in turn implies some kind Lips-

chitz continuity of the gradient in a small neighbourhood of x. Here we construct

an example of a strictly convex function f that is C1 and twice differentiable with

K(f, 0) < ∞, but with gradient not Lipschitz in any neighbourhood of 0, to show

this is not the case. Let f : [−1, 1]→ R be given by f(0) = 0, and for x ≥ 0

f ′(x) =

∫ x

0

γ(t)dt, where γ(t) := n+ 4 on In and 0 otherwise,
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with In =
1

(n+ 4)2
[1− 1

(n+ 4)2
, 1]. Define f ′(−x) := −f ′(x).

Then f ′ is clearly increasing and so f is convex. And for xn =
1

(n+ 4)2
,

f ′(xn) =

∫ x1

0

γ(t) dt =
∑
k≥n

1

(k + 4)3
≤
∫ ∞
n+3

dt

t3
=

1

2(n+ 3)2
<

1

(n+ 4)2
= xn.

So we have f ′(x) ≤ x for all x ∈ [0, 1] and f ′(x) ≥ x for all x ∈ [−1, 0]. Since

d′(x) ≥ x for all x ∈ [0, 1] and d′(x) ≤ x for all x ∈ [−1, 0], it follows that the graph

of d, and thus the unit circle centered at (0, 1), is always at or above the graph of f ,

with f(0) = d(0). Therefore, f has a sphere of support at x0 = 0.

However, there exist sequences {xi}, {xj} such that

f ′(xi)− f ′(xj)
xi − xj

blows up: Taking xi and xj as the endpoints of In,

f ′(xi)− f ′(xj)
xi − xj

=
1

xi − xj

(∫ xi

0

γ(t)dt−
∫ xj

0

γ(t)dt

)
= (n+4)4

∫ xi

xj

n+4dt = n+4.

We can make f strictly convex by adding an xm term, which does not affect any

of the above analysis. The above example can be adjusted to show that f ′ is not

α-Holder continuous for any α.

4.4.3 Osculating and locally supporting spheres

Here we extend the concept of an osculating circle to a plane curve to that of an

“osculating sphere” to the graph of a function in higher dimensions. The bound on

the “largest eigenvalue” K(u, x) can be seen as a generalization of the relationship
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between the second derivative of a C2 plane curve u and the radius of its osculating

circle:

Let u : R→ R be C2. Provided u′′ 6= 0, the radius of curvature at x is defined

as

ru,x :=
1

κ
=

(1 + u′2)
3
2

u′′
,

where κ is the curvature of u at x, and the right-hand side is the standard formula

for computing the curvature of a planar curve [2, §8]. Thus,

u′′ =
(1 + u′2)3/2

r
.

Definition 4.4.3. The osculating circle, or circle of curvature, to a planar curve C

at p is the circle that touches C (on the concave side) at p and whose radius is the

radius of curvature of C at p.

We extend this to the graphs of C2 convex functions in higher dimensions by

Definition 4.4.4. For a convex function u : Rn → R let the osculating sphere to

the graph of u at x be the n−sphere tangent to the graph of u at x the with radius

equal to that of 1
λmax

.

It is easy to show that any tangent sphere at (x, u(x)) with radius less than

the osculating sphere at that point is a (local) sphere of support. And any tangent

sphere at (x, u(x)) with radius greater than the osculating sphere cannot be a (local)

sphere of support.
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4.4.4 Spheres of support to a function and its dual

Given a convex function u with a sphere of support at (x0, u(x0)), the conjugate

function u∗ will not necessarily have a sphere of support at the corresponding point

(∇u(x0), u∗(∇u(x0)). For example take u = 1
4
|x|4 and u∗ = 3

4
|x| 43 . However, for

more regular and sufficiently convex functions (e.g. C2 and locally strongly convex),

we will have a sphere of support (locally) to both graphs at corresponding points,

and the order-reversing property of L provide a simple inequality relating the radii

of these spheres. We state this without proof.

Proposition 4.4.5. Let u : Rn → R be strongly convex and C2 near x0, and suppose

u has a sphere of support of radius rx0. If ry0 is the radius of a sphere of support to

u∗ at y0 = ∇u(x0), then

ry0 ≤
(1 + |x|2)

3
2 (1 + |∇u(x0)|2)

3
2

rx0

.
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Chapter 5: The almost Lagrangian mean curvature flow of symmet-

ric spheres in Milnor fibers

5.1 Introduction

In Sections 5.2 and 5.3, we introduce the Lagrangian mean curvature flow, high-

lighting its special features in the Calabi–Yau setting, and state the Thomas–Yau

conjecture.

In Section 5.4, we then discuss a class of algebraic varieties, called Milnor

fibers. These spaces admit an almost Calabi–Yau structure and contain a particu-

larly natural family of Lagrangians spheres, which will be the primary focus of this

chapter. Sections 5.5 and 5.6 provide an exposition of the work of Thomas–Yau [41],

which includes a detailed study of the (almost) Lagrangian mean curvature flow of

these spheres, and a proof of a modified version of their conjecture in this setting, as-

suming some key technical assumptions. The content of these Sections 5.4, 5.5, and

5.6 is not new. However, in revisiting the work of Thomas–Yau, we have concluded

their work requires a few technical assumptions that were not originally stated. In

many places we have clarified notation, added background, expanded arguments,

and, in a few places, made some corrections.
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In the penultimate Section 5.7, we provide a new, alternative proof to a

Thomas–Yau type conjecture in two-dimensional Milnor fibers. Here, we show the

existence of viscosity solutions to the (almost) Lagrangian mean curvature flow and

their convergence in C0 to a smooth special Lagrangian.

Finally, in Section 5.8 we collect a number of important results that are used

in the preceding sections.

5.2 Lagrangian mean curvature flow

Some of the notation here has been introduced in previous sections but we take a

fresh start here for the sake of clarity.

Let (X, g) be a Riemannian manifold of dimension m, L a smooth embedded

submanifold of dimension n < m, and

ι : L→ X (5.1)

the inclusion mapping. The metric g on X restricts to a metric gL on L, given by

gL := ι∗g. (5.2)

Definition 5.2.1. At each p ∈ L ⊂ X, the tangent space TpX splits as an orthogonal

direct sum

TpX = ι∗TpL⊕NpL,

where NpL := (ι∗TpL)⊥ is the normal space at p with respect to g on TpX. The

normal bundle of L in X is defined as

NL :=
⋃
p∈L

NpL. (5.3)
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Definition 5.2.2. The second fundamental form of L, denoted IIL, is a quadratic

form on the tangent bundle of L with values in the normal bundle of L:

IIL : TL× TL→ NL,

such that, given V,W ∈ TL,

IIL(V,W ) := (∇ι∗V ι∗W )⊥, (5.4)

where ⊥ denotes projection onto the normal bundle (5.3) and ∇ is covariant differ-

entiation on (X, g).

Proposition 5.2.3. The value of the second fundamental form at p ∈ L depends

only on the values of V and W at p.

Proof. Let x1, . . . , xn, . . . , xm be local coordinates on X about p ∈ L, so that

x1, . . . , xn form local coordinates for the embedded submanifold L. Let V,W ∈ TL.

In this coordinate frame we can write

ι∗V = V 1∂1 + . . . V n∂n, ι∗W = W 1∂1 + . . .W n∂n,

where ∂i := ∂
∂xi

. The second fundamental form (5.4) is then

IIL(V,W ) := (∇ι∗V ι∗W )⊥ =
m∑
k=1

((
V jW iΓkij + V j ∂W

k

∂xj

)
∂k

)⊥
=

m∑
k=n+1

(
V jW iΓkij + V j ∂W

k

∂xj

)
∂k

=
m∑

k=n+1

(
V jW iΓkij

)
∂k,

since W k = 0 for k > n.
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The mean curvature vector is then defined as the trace with respect to gL of

the second fundamental form:

Definition 5.2.4. Let p ∈ L, and let {V1, . . . , Vn} be a basis for TpL. Then the

mean curvature vector at p is defined as the trace of the second fundamental form

at p:

trgLIIL = gijL IIL(Vi, Vj), (5.5)

where gijL = gL(Vi, Vj).

Note that the mean curvature vector is well-defined, i.e., independent of the

choice of basis {V1, . . . , Vn}, since at every point in L the second fundamental form

is a linear map and the trace of a linear map is basis-independent.

Definition 5.2.5. Let L(t), for t ∈ [0, T ), be a family of Lagrangians in X. We

say that the L(t) evolves by the Lagrangian mean curvature flow if

d

dt
L(t) = trgL(t)

IIL(t), L(0) = L. (5.6)

More precisely, if ιt : L → L(t) is a family of embeddings, such that ιt(L) = L(t)

and ι0 is the identity map on L, then d
dt
L(t) := d

dt
ιt(L).

We now consider the case where X is Calabi–Yau and L ⊂ X is Lagrangian.

Recall from Section 1.1.1 the definition of a Calabi–Yau manifold (X, J, ω,Ω) of

complex dimension n, i.e., (X, J, ω) is a Kähler manifold, with complex structure

J and Kähler form ω, and Ω is a compatible (1.1) nowhere vanishing holomorphic

(n, 0)-form. Recall also from Section 1.1.1 the definition of a Lagrangian submani-

fold, i.e., dimR L = n and ι∗ω = 0.
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The Riemannian metric on X is given by

g = ω(·, J ·).

As in (5.2), we define gL as the restriction of this metric to L, and denote by

dVgL

the corresponding Riemannian volume on L. Since Ω is a nowhere vanishing (n, 0)-

form, it restricts to a nowhere vanishing complex-valued n-form on L, denoted by

ι∗Ω. These two n-forms on L are related by the Harvey–Lawson formula [17]:

ι∗Ω = e
√
−1θLdVgL , (5.7)

where θL is an S1-valued function on L, referred to as the Lagrangian angle.

Definition 5.2.6. A Lagrangian L ⊂ X is called a special Lagrangian if the function

θL : L→ S1 is constant.

The Lagrangian angle, θL, defines a homology class [dθL] ∈ H1(L,Z), called

the Maslov class of L. If the Maslov class vanishes, then θL lifts to a real-valued

function.

Definition 5.2.7. A grading of L, denoted by θ : L→ R, is the choice of a smooth

“lift” of the Lagrangian angle, θL, in the sense that for any p ∈ L

θ(p) = θL(p) mod 2π. (5.8)

Note that a grading is not unique.
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From here on, we will only concern ourselves with compact, graded Lagrangians.

A special feature of Lagrangian mean curvature flow in the Calabi–Yau setting

is that the mean curvature vector can be expressed in terms of the gradient of the

Lagrangian angle. See [17, p. 96], [41, p. 1077], [26].

Proposition 5.2.8. Let X be a Calabi–Yau manifold and L ⊂ X a graded La-

grangian submanifold. Then the mean curvature vector on L is given by Jι∗∇gLθ.

Remark 5.2.9. In most of the literature this vector is denoted by J∇θ, however

this is rather abusive notation in a number of ways.

Proof. First, observe that if {Ei}ni=1 is a local orthornormal frame for TL, then

{ei = ι∗Ei}ni=1 is a local orthonormal frame for ι∗TL, and the second fundamental

form (Definition 5.2.2) is given by:

IIL(Ei, Ej) = (∇eiej)
⊥.

Since L is Lagrangian, the complex structure, J , on X provides an isomorphism

J : TL→ NL, and thus the component of IIL(Ei, Ej) in the Jek direction is simply

g(∇eiej, Jek). Therefore,

IIL(Ei, Ej) =
∑
k

g(∇eiej, Jek)Jek.

The mean curvature vector then becomes

trgLIIL =
∑
k

g

(∑
i

∇eiei, Jek

)
Jek. (5.9)

Now, let p ∈ L and take any vector V ∈ TpL. Since

V θ = dθ(V ) = gL(∇gLθ, V ) = ι∗g(∇gLθ, V ) = g(ι∗∇gLθ, ι∗V ) = g(Jι∗∇gLθ, Jι∗V ),
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we want to show that

V θ = g(trgLIIL, Jι∗V ). (5.10)

We first simplify the right-hand side. Writing ι∗V =
∑

l vlel in the orthonormal

frame and using equation (5.9) we can expand the right-hand side of (5.10) as:

g(trgLIIL, Jι∗V ) =g

(∑
k

g(
∑
i

∇eiei, Jek)Jek,
∑
l

vlJel

)

=
∑
k

g

(
g(
∑
i

∇eiei, Jek)Jek, vkJek

)

=g

(∑
i

∇eiei, JV

)

=g

(∑
i

∇eiJei, V

)
.

Since g(Jei, ι∗V ) = 0 for all i,

0 = ∇ei (g(Jei, ι∗V )) = g(∇eiJei, ι∗V ) + g(Jei,∇eiι∗V ),

this implies

∑
i

g(∇eiJei, ι∗V ) = −
∑

g(Jei,∇eiι∗V ) = −
∑
i

g(ei, J∇ι∗V ei), (5.11)

where in the last equality we applied J to both vectors and used the fact that J is

parallel, i.e., ∇ι∗J = 0, and that we can extend ι∗V so that [ei, ι∗V ] = 0.

Now, we rewrite the left-hand side of (5.10). Note that {ei, Jei}ni=1 is an

orthonormal frame for TX near p. Letting {αi, βi}ni=1, where βi = −αi ◦ J , be the

dual basis of 1-forms for T ∗X near p, we can express Ω as

Ω = e
√
−1θ
∧
j

(αj +
√
−1βj),
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where θ is the Lagrangian angle on L. Since Ω is parallel,

0 = ∇ι∗V Ω = ∇ι∗V

(
e
√
−1θ
∧
j

(αj +
√
−1βj)

)

= e
√
−1θ
√
−1ι∗V θ

∧
j

(αj +
√
−1βj) + e

√
−1θ∇ι∗V

(∧
j

(αj +
√
−1βj)

)
.

Thus,

√
−1ι∗V (θ)

∧
j

(αj+
√
−1βj) = −

∑
k

(α1+
√
−1β1)∧· · ·∧∇ι∗V (αk+

√
−1βk)∧. . . (αn+

√
−1βn).

Evaluating this against the (n, 0)-vector
∧
j

(
1
2
(ej −

√
−1Jej)

)
gives

−
∑
k

[
∇ι∗V (αk +

√
−1βk)[

1

2
(ek −

√
−1Jek)]

]∧
j

(αj +
√
−1βj). (5.12)

Thus, comparing the right-hand side (5.11) and left-hand side (5.12), we are left

with showing

∑
k

[
∇ι∗V (αk +

√
−1βk)[

1

2
(ek −

√
−1Jek)]

]
=
∑
i

g(ei, J∇ι∗V ei),

or equivalently

∇ι∗V (αk +
√
−1βk)[(ek −

√
−1Jek)] = 2

√
−1g(ek, J∇ι∗V ek). (5.13)

Since

0 =∇ι∗V

[
(αk +

√
−1βk)(ek −

√
−1Jek)

]
=∇ι∗V (αk +

√
−1βk)[ek +

√
−1Jek] + (αk +

√
−1βk)∇ι∗V (ek −

√
−1Jek),
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we can write

∇ι∗V (αk +
√
−1βk)[ek −

√
−1Jek] = −(αk +

√
−1βk)∇ι∗V (ek −

√
−1Jek)

= −αk[∇ι∗V ek] +
√
−1αk[∇ι∗V (Jek)]

−
√
−1βk[∇ι∗V ek]− βk[∇ι∗V (Jek)]

=
√
−1αk[∇ι∗V (Jek)]−

√
−1βk[∇ι∗V ek]

=
√
−1 (αk[∇ι∗V (Jek)] + αk[∇ι∗V (Jek)]

= 2
√
−1αk[∇ι∗V (Jek)]

= 2
√
−1g(ek, J∇ι∗V ek),

which verifies (5.13).

Corollary 5.2.10. If L ⊂ X is a graded embedded Lagrangian submanifold, then

the mean curvature flow is a Hamiltonian deformation and thus preserves the Hamil-

tonian deformation class of L.

Using the identity in Proposition 5.2.8, Smoczyk [35, Theorem 1.9] showed

that the Lagrangian mean curvature flow in the Calabi–Yau setting preserves the

Lagrangian condition, and that along the flow θ evolves by the following equations:

Proposition 5.2.11. Under mean curvature flow, the phase θ and the Riemannian

volume form satisfy:

θ̇ = ∆θ and
d

dt
dVgL = −|dθ|2gLdVgL . (5.14)

Proof. We will prove a more general result in Proposition 5.5.7.
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5.3 The Thomas–Yau conjecture

The Thomas–Yau conjecture suggests conditions under which the Lagrangian mean

curvature flow exists for all time and converges. These conditions are formulated

in terms of the variation of the grading θ on L and involve a notion of stability,

formulated in terms of Lagrangian connect sums, which we discuss below.

5.3.1 Lagrangian connect sums

In this section we summarize the discussion on connect sums in [41, Section 3.1].

Let X be an n-dimensional Calabi–Yau and L1, L2 ⊂ X be two Lagrangians

in X that intersect transversally at the point p. About this point one can chooses

Darboux coordinates (xi, yi)
n
i=1, in which ω =

∑
i dxi ∧ dyi, and such that L2 is

represented by the (x1 . . . xn)-plane:

L2 = {y1 = · · · = yn = 0},

and

L1 = {yi = tan(α)xi, i = 1, . . . , n},

for some α ∈ (0, π). Identifying this coordinate patch with Cn, via zi = xi +
√
−1yi,

we can express the Li as:

L(α) = e
√
−1αR>0.S

n−1(1) := {z = re
√
−1αa : r ∈ R>0, a = (aj)

n
j=1 ∈ Sn−1(1) ⊂ Rn ⊂ Cn},

where L2 = L(0) and L1 = L(α). (Note that this complex structure may not

coincide with the complex structure on X.)
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More generally, given a curve γ ⊂ C, one can define a Lagrangian

Lγ = γ.Sn−1 = {zj = γaj : a = (aj)
n
j=1 ∈ Sn−1 ⊂ Rn ⊂ Cn}.

In this notation, L1 is represented by γ1 = e
√
−1α[0,∞) ⊂ C, L2 by γ2 = [0,∞) ⊂ C,

and L1 ∪ L2 by the union of these two curves γ1 ∪ γ2 ⊂ C.

Definition 5.3.1. The Lagrangian connect sum of L1 and L2, denoted L1#L2, is

represented by any smoothing of γ1 ∪ γ2 staying inside the cone {re
√
−1β : r > 0, β ∈

[0, α]} and coinciding with γ1 ∪ γ2 outside a compact set. We denote any such

smoothing by γ1#γ2.

5.3.2 A conjecture for the LMCF

Let

arg : C \ {0} → (−π, π] (5.15)

be the principal branch of the argument function defined on the non-zero complex

numbers. Note its discontinuity along the negative x-axis.

Definition 5.3.2. Let L be a compact, graded (as in Definition 5.2.7), Lagrangian

submanifold of a Calabi–Yau manifold X. Then the phase of L is defined as

φ(L) := arg

(∫
L

ι∗Ω

)
= arg

(∫
L

e
√
−1θdVgL

)
,

and depends only on the homology class of L.

The following conjecture is due to Thomas–Yau [41, p. 1101]:
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Conjecture 5.3.3. Let L be a compact, graded, Lagrangian submanifold of a Calabi–

Yau manifold X, and let θ (as in Definition 5.2.7) and φ (as in Definition 5.3.2) be

the grading and phase of L, respectively. If L satisfies

[φ(L1), φ(L2)] 6⊂ (inf
L
θ, sup

L
θ), (5.16)

for all graded connect sums [L]Ham = [L1#L2]Ham, then the mean curvature flow of

L (5.2.5) exists for all time and converges to a special Lagrangian in its Hamiltonian

deformation class.

We emphasize that we will not study this conjecture but rather a modification

of this conjecture, see Conjecture 5.5.8.

5.4 Milnor fibers

5.4.1 Introduction

In this section we introduce an important class of almost Calabi–Yau manifolds,

called Milnor fibers [25, 22], following the exposition by [41, Section 6]. As mentioned

earlier, in general, there are very few explicitly known Calabi–Yau structures. The

next best thing is then an explicit almost Calabi–Yau structure, which, as we will

see (Proposition 5.4.3), Milnor fibers admit. Moreover, due to their high degree of

symmetry, Milnor fibers can be represented by 1-dimensional objects, which further

simplifies their analysis.

Definition 5.4.1. Let f : C → C be a complex polynomial with only simple roots.
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Then the Milnor fiber of degree n is the complex submanifold of Cn+1, defined by

X = Xn
f := {(w, z1, . . . , zn) ∈ Cn+1 : z2

1 + . . . z2
n = f(w)}.

We claim that X is indeed a complex submanifold. To see this, set

F (w, z1, . . . , zn) := z2
1 + . . . z2

n − f(w)

we can write

X = {F (w, z1, . . . , zn) = 0}.

Thus, the complex Jacobian matrix of F at a point (w, z1, . . . , zn) is given by

[
−∂wf,

∂f

∂z1

, . . . ,
∂f

∂zn

]
= [−∂wf(w), 2z1, . . . , 2zn] ,

which is surjective at every point on X. In particular, z1 = z2 = · · · = zn = 0 only

at a root w0 of f , but by the simpleness of the roots ∂wf(w0) 6= 0. Therefore, one

can apply the holomorphic implicit function theorem [20, Theorem 2.1.2], and X is

a complex submanifold of Cn+1 of dimension n.

As a complex submanifold of (Cn+1, ω), where ω is the standard Euclidean

Kähler form, X inherits a Kähler structure,

ωX := ι∗nω, (5.17)

where ιn : X → Cn+1 is the inclusion map. To give X an almost Calabi–Yau

structure, it needs to be equipped with a non-vanishing holomorphic (n, 0)-form

(Section 1.1.1). This is given by the Poincaré residue of dw ∧ dz1 ∧ · · · ∧ dzn, which

we briefly discuss in the next section.
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5.4.2 Poincaré residue

Let

ιV : V → Cm

be an analytic hypersurface, and let

ψ

be a meromorphic m-form on Cm with a single pole along V . The Poincaré residue

is a higher-dimensional generalization of the residue of a meromorphic function in

complex analysis.

If V is defined by φ = 0, where

φ : Cm → C

is holomorphic and dφ is nowhere vanishing, then the 1-form

dφ

φ
,

is meromorphic on Cm, with a single pole along V .

Definition 5.4.2. The Poincaré residue of ψ, which we denote by ψV , is defined to

be the unique holomorphic (m−1, 0)-form on V for which there exists a holomorphic

(m, 0)-form β on Cm such that ψV = ι∗V β, and

ψ =
dφ

φ
∧ β.

More explicitly, in coordinates z1, . . . , zm on Cm, if

ψ =
h(z)dz1 ∧ · · · ∧ dzm

φ(z)
,
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where h(z) is holomorphic, then β corresponds to the unique holomorphic (m−1, 0)-

form satisfying

ψ =
dφ

φ
∧ β,

i.e.,

h(z)dz1 ∧ · · · ∧ dzm
φ(z)

=

(
1

φ(z)

∑ ∂φ

∂zi
(z)dzi

)
∧ β.

Thus, on the set in Cm on which ∂φ
∂zi
6= 0, we can take

β = (−1)i−1h(z)dz1 ∧ · · · ∧ d̂zi ∧ · · · ∧ dzm
∂φ
∂zi

.

Clearly, β is a holomorphic (m − 1, 0)-form. Note that β is defined on all of Cm

since we assumed dφ is nowhere vanishing. Therefore,

ψV = (−1)i−1h(z)dz1 ∧ · · · ∧ d̂zi ∧ · · · ∧ dzm
∂φ
∂zi

∣∣∣∣
V

. (5.18)

See [15, Chapter 1] for additional discussion on the Poincaré residue.

5.4.3 Almost Calabi–Yau structure

The Milnor fiber X is an analytic hypersurface in Cn+1. Consider the meromorphic

(n+ 1, 0)-form on Cn+1 given by

ψ =
dw ∧ dz1 ∧ · · · ∧ dzn

f(w)−
∑
z2
i

.

Then, by (5.18), in a chart where zi 6= 0, the Poincaré residue of ψ can be expressed

as

ΩX = (−1)i
dw ∧ dz1 ∧ . . . d̂zi · · · ∧ dzn

2zi

∣∣∣∣
X

, (5.19)
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and, in a chart where ∂wf(w) 6= 0, it can be expressed as

ΩX =
dz1 ∧ · · · ∧ dzn

∂wf(w)

∣∣∣∣
X

. (5.20)

Note that these charts cover X by assumption on the simpleness of the roots of f .

Proposition 5.4.3. With ωX and ΩX as defined in (5.17), (5.19)–(5.20), respec-

tively, (X, J, ωX ,ΩX) is an almost Calabi–Yau n-fold.

Proof. As we saw above (Section 5.4.1), (X, J, ωX) is Kähler, where J and ωX are

the induced complex structure and Kähler form from Cn+1. Taking ΩX , as defined

in (5.19)–(5.20), equips X with a nowhere-vanishing holomorphic n-form.

Remark 5.4.4. Note that X is only an almost Calabi–Yau manifold in the sense

that the metric is not Ricci-flat, i.e., the condition

ωnX
n!

= (−1)n(n−1)/2

(√
−1

2

)n
ΩX ∧ ΩX , (5.21)

does not hold. To see this, consider the point (w, z1, . . . , zn) = (w0, 0, . . . , 0) on X,

where w0 is a root of f . At this point:

ΩX =
1

∂wf(w0)
dz1 ∧ · · · ∧ dzn and ωX = dz1 ∧ dz1 + · · ·+ dzn ∧ dzn,

which does not satisfy condition (5.21). The advantage of these forms is that they

are the restrictions of explicit Euclidean forms.

Remark 5.4.5. There are not many known explicit Calabi–Yau metrics. Although

there are several known in the non-compact setting (e.g., Stenzel [39] and Eguchi-

Hanson [12] metrics), there are currently no closed form expressions for a Ricci-flat

metric on any nontrivial compact Calabi–Yau [11].
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Since X is a complex submanifold of Cn+1, with Kähler form the restriction of

the Euclidean Kähler form on Cn+1, it is computationally advantageous to express

tangent vectors to X as vectors in Cn+1. Throughout the rest of this chapter we

make use the following notation:

Notation 5.4.6. (i) Let (w, z1, . . . , zn) be coordinates on Cn+1, with real and

imaginary parts

w = u+
√
−1v, zj = xj +

√
−1yj.

We represent a vector

V = (v0, . . . , vn) ∈ Cn+1

by

V = v0∂u +
∑

vj∂xj ,

and identify

√
−1∂u = ∂v,

√
−1∂xj = ∂yj .

(ii) Let

πn : Cn+1 → C

denote projection onto the first coordinate, i.e.,

πn(w, z1, . . . zn)→ w.

(iii) The map γ : [0, 1]→ C, where a 7→ γ(a), will always denote a simple, regular

path in C, i.e., γ does not cross itself and

γ′(a) 6= 0

116



for all a ∈ [0, 1]. Here,

γ′ :=
dγ

da
∈ C,

which, using the above (i) notation, we could express as dγ
da
∂u.

(iv) Let

gCk := |dz1|2 + · · ·+ |dzk|2

denote the Euclidean metric on Ck.

(v) Let ιn : Xn ↪→ Cn+1 denote the inclusion mapping. We denote the metric on

X, as in (5.2), by

gXn := ι∗n(gCn+1).

5.4.4 Symmetric Lagrangian spheres

We focus on a specific type of Lagrangian inside of X. These are the symmetric

n-spheres, with an Sn−1 fibration that respects the fibration structure of X, which

we will discuss below. In this section, we explain how these spheres are constructed

and show that they are Lagrangian.

Let w ∈ C. If f(w) 6= 0, then the smooth fiber in X over w has a Lagrangian

Sn−1 ‘real’ slice:

Sn−1
w :=

{
(w, z1, . . . , zn) ∈ X :

zi√
f(w)

∈ R

}
. (5.22)

We can identify Sn−1
w with a real (n− 1)-sphere in Cn via

{
√
f(w)(r1, . . . , rn) : r ∈ Sn−1(1) ⊂ Rn} ⊂ Cn, (5.23)
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where Sn−1(1) := {r = (r1, . . . , rn) ∈ Rn : |r|2 = 1} denotes the unit (n− 1)-sphere

in Rn. The tangent space to Sn−1
w (thought of as a real subspace of Cn = R2n) is

then contained in the image of Rn under multiplication by
√
f(w). Thus, taking

A = diag

( √
f(w)

|
√
f(w)|

, . . . ,

√
f(w)

|
√
f(w)|

)
∈ U(n),

this can be expressed as

TpS
n−1
w ⊂ A(Rn × {0}) ⊂ Cn.

Let Λ(n) denote the set of Lagrangian n-planes in Cn, i.e., the real n-planes

in (Cn, ω) on which ω vanishes. Harvey–Lawson [17, p.87] showed that the unitary

group U(n) acts transitively on Λ(n), and that the isotropy subgroup at the point

Rn ∈ Λ(n) is SO(n) acting diagonally on Cn ∼= Rn⊕ iRn. Thus, symbolically we can

write

Λ(n) = U(n)/SO(n).

Therefore, the Kähler form on the fiber, which is the restriction of the Eu-

clidean form
√
−1

2

∑
j

dzj ∧ dzj

on Cn, vanishes. In summary:

Lemma 5.4.7. The (n− 1)-sphere Sn−1
w (5.23) is a Lagrangian submanifold of Cn.

These Lagrangian (n − 1)-spheres are invariant under O(n) acting on X (on

the z coordinates), and from them we can construct an O(n)-invariant Lagrangian

n-sphere in X as follows.
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Definition 5.4.8. Let γ : [0, 1]→ C be any regular, simple path between two distinct

roots of f and not containing any roots in its interior. Then γ can be lifted to

Γ = Γγ :=
⋃

a∈(0,1)

Sn−1
γ(a) , (5.24)

which is an n-sphere in X, Sn−1-fibered over γ, except at the end points where it

closes up. See Figure 5.1.

According to Proposition 5.8.4, Γ is actually a smooth submanifold of X,

diffeomorphic to the n-sphere. The following proposition is due to Thomas–Yau

[41, Section 6]:

Cn, z1, . . . , zn

C, w

w = γ(0) w = γ(1)
w = γ(a)

Γ

Figure 5.1: Lift of γ to the Lagrangian sphere, Γ

Proposition 5.4.9. Γ is Lagrangian.
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Proof. Since Γ is an Sn−1 fibration over the curve γ. The tangent space at any

point can be decomposed as the tangent space to the Sn−1 fiber plus the tangent

space along γ. The Kähler form on X is the restriction of the Euclidean Kähler

form ω =
√
−1
2

(
dw ∧ dw +

∑
j dzj ∧ dzj

)
. So for Γ to be Lagrangian, we check that

ω|Γ = 0.

We saw above (Lemma 5.4.7) that the restriction of
√
−1
2

∑
j dzj ∧ dzj is zero

on the Sn−1 component of the tangent space. Thus, we now need to check that ω

vanishes on tangent vectors to Γ, along the path γ.

Lemma 5.4.10. Let γ : [0, 1] → C be a simple, regular path between two distinct

roots of f and not containing any roots in its interior. For any a0 ∈ (0, 1), the

vector

γ′(a0)

(
∂u +

∂wf(γ(a0))

2f(γ(a0))

∑
zi∂xi

)
, (5.25)

is tangent to Γ at the point (γ(a0), z1, . . . , zn), and projects to the vector γ′(a0)∂u ∈ C

tangent to γ, i.e.

π∗

(
γ′(a0)

(
∂u +

∂wf(γ(a0))

2f(γ(a0))

∑
zi∂xi

)
= γ′(a0)∂u,

where π : Cn → C is the projection map and we are using the notation from Notation

5.4.6.

Proof. Fix a point (γ(a0), z1, . . . , zn) ∈ Γ in the fiber above t = γ(a0). Using the

identification (5.23), we can write this point as:

(γ(a0), z1, . . . , zn) =
(
γ(a0),

√
f(γ(a0))r1, . . . ,

√
f(γ(a0))rn

)
,

where (r1, . . . rn) ∈ Sn−1 is fixed.
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Now consider the curve Cγ : (0, 1)→ Γ, defined by

Cγ(a) =
(
γ(a),

√
f(γ(a))r1, . . . .

√
f(γ(a))rn

)
∈ Cn+1,

This curve passes through our fixed point at a = a0. Thus, the derivative at a = a0

dCγ
da

∣∣∣∣
a0

=

(
γ′(a0), γ′(a0)

∂wf(γ(a0))

2
√
f(γ(a0)

r1, . . . , γ
′(a0)

∂wf(γ(a0))

2
√
f(γ(a0)

rn

)
∈ Cn+1

is tangent to Γ at this point. Rewriting this in terms of the zi =
√
f(γ(a0))ri, we

get (
γ′(a0), γ′(a0)

∂wf(γ(a0))

2f(γ(a0))
z1, . . . , γ

′(a0)
∂wf(γ(a0))

2f(γ(a0))
zn

)
,

which we express, using Notation 5.4.6, as

γ′(a0)

(
∂u +

∂wf(γ(a0))

2f(γ(a0))

∑
zi∂xi

)
.

Notice that since Γ is O(n)-invariant, the lift of γ′ to another point on the

same fiber of Sn−1
γ(a0), i.e., some other (r1, . . . , rn), is the image under1 0

0 A

 ∈ O(n+ 1) ⊂ U(n+ 1), for A ∈ O(n).

Thus, since ω is invariant under U(n + 1) it can be calculated at any point in

the fiber. For simplicity, choose z1 =
√
f(w) =

√
f(γ(a0)), and zi = 0, for i =

2, . . . , n. By (5.25), the following vectors form a basis for the tangent space at

p = (γ(a0),
√
f(γ(a0)), 0, . . . , 0):{

γ′(a0)

(
∂u +

∂wf(γ(a0))

2
√
f(γ(a0))

∂x1

)
,
√
f(γ(a0))∂x2 , . . . ,

√
f(γ(a0))∂xn

}
. (5.26)
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Notice that at this point we are at one of the poles of Sn−1, so the fiber component

of the tangent space is spanned by the last (n− 2) vectors in (5.26).

Finally, we see that

ω =

√
−1

2

(
dw ∧ dw +

∑
j

dzj ∧ dzj

)
= ds ∧ dq +

∑
j

dxj ∧ dyj

evaluates to zero on (5.26):

ω|p
(√

f(γ(a0))∂xi ,
√
f(γ(a0))∂xj

)
= 0 ∀i, j = 2, . . . , n

and

ω|p

(√
f(γ(a0))∂xi , γ

′(a0)(∂u +
∂wf(γ(a0))

2
√
f(γ(a0))

∂x1)

)
= 0 ∀i = 2, . . . n.

By continuity and the fact that Γ is smooth (Proposition 5.8.4), ω|Γ must also vanish

at the endpoints of γ. Therefore, ω|Γ = 0 and so Γ is Lagrangian.

Lemma 5.4.11. Let Γ ⊂ be as in Definition (5.24). Then the Lagrangian angle,

θΓ : Γ→ S1, is an O(n)-invariant function, given by

θΓ(a) = arg(γ′(a)) + (n/2− 1) arg(f(γ(a))) mod 2π, (5.27)

where arg : C \ {0} → (−π, π] denotes principal branch of the argument function

defined on non-zero complex numbers, as in Definition 5.15.

Proof. Since ΩX = 1
∂wf(w)

dz1 ∧ . . . dzn is unchanged by an O(n) action on the zi,

the phase function θΓ is also O(n)-invariant and thus a function of u ∈ [0, 1], where

u 7→ γ(u) ∈ C. We can calculate θΓ at the point z1 =
√
f(w), zi = 0, for i > 1.

Take the basis (5.26) for the tangent space to Γ at this point:

γ′

(
∂u +

∂wf(γ)

2
√
f(γ)

∂x1

)
,
√
f(γ)∂x2 , . . . ,

√
f(γ)∂xn . (5.28)
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Plugging these vectors (5.28) into ΩX evaluates to

γ′
∂wf(γ)

2
√
f(γ)

(
√
f(γ))n−1

∂wf(γ)
=

1

2
γ′(f(γ))n/2−1.

Thus, the phase function (5.7) on Γ is given by

θΓ(a) = arg(γ′(a)) + (n/2− 1) arg(f(γ(a))).

Definition 5.4.12. Given any regular curve c : [0, 1]→ C, such that c(a) 6= 0,∀a ∈

(0, 1), we define a lift of arg (as defined in 5.15) along c, denoted by ãrg, as follows:

1. ãrg(c(a)) is continuous in a ∈ [0, 1],

2. ãrg(c(a)) = arg(c(a)) mod 2π.

3.

ãrg(c(0)) :=


arg(c(0)), c(0) 6= 0

arg( d
da
|a=0+c(a)), c(0) = 0

.

Note that this defines ãrg(c(1)) by continuity.

Remark 5.4.13. This works regardless if c is a simple curve.

Corollary 5.4.14. Γ is a graded Lagrangian, and

θ(a) = ãrg(γ′(a)) + (n/2− 1)ãrg(f(γ(a))), (5.29)

is a grading for Γ, where ãrg is given by Definition 5.4.12.

Proof. This follows immediately from the proof of Lemma 5.4.11, with arg replaced

with ãrg, since γ′fn/2−1 6= 0 except at the endpoints of γ.
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Remark 5.4.15. ãrg(γ′(a)(f(γ(a)))(n/2−1)) is also a grading, possibly different from

(5.29).

5.5 The almost mean curvature vector in Milnor fibers

Let X be an almost Calabi–Yau manifold, and let L ⊂ X a Lagrangian submanifold.

In general, Proposition 5.2.8 will no longer hold. However, Jι∗∇θ is still a normal

vector field along L and the corresponding flow represents an interesting geometric

process [41, Section 6]. In this more general setting, we refer to this vector as follows:

Definition 5.5.1. Let X be an almost Calabi–Yau manifold, and let L ⊂ X be a

Lagrangian submanifold with grading θ : L → R. Then we refer to Jι∗∇θ as the

almost mean curvature vector on L.

Let Γ ⊂ X be the O(n)-invariant Lagrangian n-sphere, fibered over the simple,

regular curve

γ : [0, 1]→ C, (5.30)

between two distinct roots of f , and let

πn : Cn+1 → C

be projection onto the w-coordinate, as described in Notation 5.4.6. The following

is shown in [41, Section 6].

Proposition 5.5.2. Let θ : Γ → R be the grading of Γ, as in (5.29). Then, where

πn is defined as in Notation 5.4.6,

πn∗Jι∗∇θ =
1

1 + |∂wf(γ)|2
4|f(γ)|

(
κ+ (1− n/2)N(log |f(γ)|)

)
N, (5.31)
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where κ is the curvature of γ and N is the unit (upward-pointing) normal to γ. At

the endpoints γ, πn∗Jι∗∇θ vanishes.

Proof. Using (5.29), we can write

dθ =

(
d

da
ãrg(γ′(a)) + (n/2− 1)

d

da
ãrg(f(γ(a))

)
π∗nγ∗da. (5.32)

The basis (5.26) for the tangent space to Γ is orthogonal with respect to the

metric g on X, Dividing these basis vectors by their norms gives an orthonormal

basis for the tangent space to Γ:

γ′(∂u + ∂wf
2f
z1∂x1)

|γ′(∂u + ∂wf
2f
z1∂x1)|g

,

√
f∂x2

|
√
f∂x2|g

, . . . ,

√
f∂xn

|
√
f∂xn|g

, (5.33)

since g = ι∗ngCn+1 and these vectors are orthogonal in Cn+1.

We then see that the one-forms:

g

(
γ′(∂u + ∂wf

2f
z1∂x1)

|γ′(∂u + ∂wf
2f
z1∂x1)|2g

, ·

)
and π∗nγ∗da (·) (5.34)

both evaluate to 1 on the vector γ′(∂u + ∂wf
2f
z1∂x1). This follows from (5.33) and the

computation:

π∗nγ∗da

(
γ′(∂u +

∂wf

2f
z1∂x1)

)
= (γ∗da)(γ′∂u) = 1,

where γ̃∗∂u denotes the lift (5.25) of γ∗∂u to Γ. Therefore,

(π∗nγ∗da)#g =
γ′(∂u + ∂wf

2f
z1∂x1)

|γ′(∂u + ∂wf
2f
z1∂x1)|2g

.

Using (5.32) and the fact that the projection πn is holomorphic, we have

πn∗J = iπn∗,
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as in Notation 5.4.6. We can then calculate that Jι∗∇θ is the lift (5.25) of(
d

da
ãrg(γ′) + (n/2− 1)

d

da
ãrg(f)

)
πn∗

[
J
γ′(∂u + ∂wf

2f
z1∂x1)

|γ′(∂u + ∂wf
2f
z1∂x1)|2g

]

=
d
da

(
ãrg(γ′) + (n

2
− 1)ãrg(f)

)
|γ′| (1 + |∂wf |2/4|f |)

√
−1

γ′

|γ′|
∂u. (5.35)

Let

T := γ′∂u/|γ′| and N :=
√
−1T = γ′∂v/|γ′| (5.36)

denote the unit tangent and normal vectors to γ at γ(a) using the notation from

Notation 5.4.6. The vector (5.35) can then be written as

T [ãrg(γ′) + (n/2− 1)ãrg(f)]

1 + |∂wf |2/4|f |
N. (5.37)

The first term in the numerator is the curvature vector of γ in the Euclidean

metric on C, i.e., the rate at which the unit tangent vector is rotating, which we will

denote by κ (see Definition 5.8.5).

For the second term, consider the holomorphic function

log f = log |f |+
√
−1ãrg(f).

By the Cauchy–Riemann equations,

∂uãrg(f) = −∂v log |f |,

in the notation of Notation 5.4.6. Therefore, (5.36) gives

T ãrg(f) = −N log |f |.

Rewriting (5.37), we see that πn∗Jι∗∇θ is

1

1 + |∂wf |2/4|f |
(
κ+ (1− n/2)N(log |f |)

)
N. (5.38)
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To see that πn∗Jι∗∇θ vanishes at the endpoints, we can look directly at θ :

Γ → R. Since θ is O(n)-invariant, the directional derivative of θ at the point on Γ

corresponding to the endpoint of γ must be the same in all directions. However,

this is only possible if ∇θ = 0. Therefore, πn∗Jι∗∇θ = 0 at the endpoints of γ.

Recall, from Definition 5.4.1, that X1 = X1
f is defined as

X1
f :=

{
(w, z) ∈ C2 : z = ±

√
f(w)

}
,

and thus forms a double cover of C, branched over the roots of f . Let Zf ⊂ C denote

the discrete finite set of roots of f , i.e.,

Zf := {w ∈ C : f(w) = 0}, (5.39)

and let Bf denote the set of branch points of X1, i.e.,

Bf := {(w, 0) ∈ X1 : w ∈ Zf}. (5.40)

Define the “upper” layer of X1 by

X1
up := X1

f,up :=
{

(w, z) ∈ C2 : z =
√
f(w)

}
, (5.41)

where
√
f(w) denotes a consistent choice of a branch of the square root function

which makes X1
up a smooth submanifold. Observe that away from Bf , X

1
up is the

image of C \ Zf under the smooth map

Ψ : C \ Zf → X1
up \Bf , (5.42)

w 7→ (w,
√
f(w)).
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Proposition 5.5.3. Away from its branch points, X1 is conformally equivalent to

C. More precisely, (X1
up \Bf , gX1) is isometric to (C \ Zf , hgC), where

h =

(
1 +
|∂wf |2

4|f |

)
and gC = |dw|2,

as in Notation 5.4.6.

Proof. Recall from Section 5.4.3 that since X1 is a smooth submanifold of C2, the

Euclidean metric on C2, gC2 = |dw|2 + |dz|2, induces a metric

gX1 = ι∗1gC2 , (5.43)

on X1, where ι : X1 ↪→ C2, is the inclusion map.

Using (5.42) and (5.43), we can pull the metric on X1
up \Bf back to C \ Zf :

Ψ∗ι∗1gC2 = Ψ∗(|dw|2 + |dz|2) =

(
1 +
|∂wf |2

4|f |

)
|dw|2 =

(
1 +
|∂wf |2

4|f |

)
gC.

Γ1 ⊂
(
X1
up \Bf , gX1

)

γ ⊂ (C \ Zf , hgC)

Ψ

Figure 5.2: Local isometry between X1 and C

Therefore, one can view the map

Ψ : C \ Zf → X1
up \Bf ,
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as coordinates on X1
up, which we can use to endow C \Zf with the pull-back metric

Ψ∗(gX1) = hgC, where

h =

(
1 +
|∂wf |2

4|f |

)
. (5.44)

Equivalently, Ψ can be viewed as an isometry between the Riemannian manifolds

(C \ Zf , hgC) and
(
X1
up \Bf , gX1

)
.

Lemma 5.5.4. Let (M, gM) and (N, gN) be Riemannian manifolds, and φ : M → N

an isometry, i.e., φ is a diffeomorphism and

φ∗(gN) = gM .

Let SM ⊂ M and SN ⊂ N be submanifolds of M and N , such that φ(SM) = SN .

Then the the mean curvature of SM is equal to the pull-back of the mean curvature

of SN , i.e.,

φ∗trgSN IISN = trgSM IISM , (5.45)

where gSN denotes the metric induced on SN from gN , and gSM denotes the metric

induced on SM from gM , as in (5.2).

Proof. The mean curvature vector (5.5) of SN is given by

trgSN IISN .

Since φ is an isometry, φ∗gSn = gSM . Thus, it is sufficient to show that

φ∗IISM = IISN .

Given V,W ∈ TSM , the second fundamental form (5.4), is given by

IISM (V,W ) := (∇M
V W )⊥,
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where ∇M is the Levi-CIvita connection on M . To prove that φ preserves the second

fundamental form, it is then sufficient to show that

φ∗(∇M
V W ) = ∇N

φ∗V φ∗W. (5.46)

To see this, we use the uniqueness of the Levi-Civita connection. Define a connection

∇ on N by (5.46),i.e.,

∇φ∗V φ∗W := φ∗(∇M
V W ).

We show that ∇ is the Levi-Civita connection on N and therefore, by uniqueness,

∇ = ∇N .

• (Metric)

gN(∇φ∗V φ∗W,φ∗U) + gN(φ∗W,∇φ∗V φ∗U)

= gN(φ∗(∇M
V W ), φ∗(U)) + gN(φ∗(W ), φ∗(∇M

V U))

= gM(∇M
V W,U) + gM(W,∇M

V U)

= V gM(W,U)

= φ∗V gN(φ∗W,φ∗U),

where in the last equality we used the fact that if m(t) is a curve in M such

that d
dt
m(t) = V and m(0) = m, then

φ∗|mV gN(φ∗|mW,φ∗|mU) =
d

dt
gN(φ∗|m(t)W,φ∗|m(t)U) =

d

dt
gM(W,U) = V gM(W,U).
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• (Symmetry)

∇φ∗V φ∗W −∇φ∗Wφ∗V = φ∗(∇M
V W )− φ∗(∇M

WV )

= φ∗(∇M
V W −∇M

WV )

= φ∗([V,W ])

= [φ∗V, φ∗W ],

since Lie bracket is preserved by diffeomorphism.

Therefore, since Ψ(γ \ Zf ) = Γ1
up \ Bf , the mean curvature of Γ1 ⊂ (X1, gX1)

away from the branch points of X1 is equal to the pull-back of the mean curvautre

of γ ⊂ (C, hgC) away from the roots of f . We denote this quantity by κ1. By Lemma

5.8.7, the mean curvature of γ ⊂ (C, hgC) is

κ1 =
1

h

(
κ− 1

2
N(log h)

)
, (5.47)

where κ is curvature of γ and N is the unit normal to γ in (C, gC).

Proposition 5.5.5. Let πn∗Jι∗∇θ be as in (5.31), and let Ψ : C \Zf → X1 \Bf be

as in (5.42). Then,

Ψ∗πn∗Jι∗∇θ

=

(
κ1 − 1

2
(n− 1)N1(log |f(γ)|) +

1

2
N1
(
log(|f(γ)|+ |∂wf(γ)|2/4)

))
N1, (5.48)

where κ1 and N1 are the curvature and unit normal vector to Γ1 ⊂ X1. Since

πn∗Jι∗∇θ = 0 at the endpoints of γ, we extend this vector field to all of Γ1 by

setting it equal to 0 at the branch points. See Figure 5.3.
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Proof. By (5.31), we want to show that (5.48) is equal to

Ψ∗

(
1

1 + |∂wf(γ)|2
4|f(γ)|

(
κ+ (1− n/2)N(log |f(γ)|)

)
N

)
. (5.49)

Note that we are using Lemma 5.5.4 to identify, away from the branch points, the

curvature and normal of Γ1 ⊂ (X1, gX) with the curvature and normal of γ ⊂

(C, hgC), where, as in (5.44),

h = 1 +
|∂wf(γ)|2

4|f(γ)|
.

Then, the normal vector to (C, hgC) is given by

N1 =
1

h1/2
N,

and (5.49) becomes

Ψ∗

(
1

h

(
κ+ (1− n/2)N(log |f(γ)|)

)
N

)
.

Motivated by formula (5.47), we express this as

Ψ∗

(
1

h

(
κ+ (1− n/2)N(log |f(γ)|)

)
N

)
= Ψ∗

(
1

h

(
κ− 1

2
N(log h) +

1

2
N(log h) + (1− n/2)N(log |f(γ)|)

)
N

)
= κ1N1 + Ψ∗

(
1

h

(
1

2
N(log h) + (1− n/2)N(log |f(γ)|)

)
N

)
. (5.50)

Expanding the N(log h) term:

N(log h) = N log

(
|f(γ)|+ |∂wf(γ)|2/4

|f(γ)|

)
= N

(
log(|f(γ)|+ |∂wf(γ)|2/4)

)
−N(log |f(γ)|).

Thus,

1

h

(
1

2
N(log h) + (1− n/2)N(log |f(γ)|)

)
N
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=
1

h

(
1

2
N
(
log(|f(γ)|+ |∂wf(γ)|2/4)

)
− 1

2
N(log |f(γ)|) + (1− n/2)N(log |f(γ)|)

)
N

=
1

h

(
−1

2
(n− 1)N(log |f(γ)|) +

1

2
N
(
log(|f(γ)|+ |∂wf(γ)|2/4)

))
N.

In sum,

Ψ∗

(
1

h

(
1

2
N(log h) + (1− n/2)N(log |f(γ)|)

)
N

)

=

(
−1

2
(n− 1)N1(log |f(γ)|) +

1

2
N1
(
log(|f(γ)|+ |∂wf(γ)|2/4)

))
N1.

Plugging into (5.50), gives (5.49).

γ ⊂ C

Γ1 ⊂ X1

Ψ

πn

Jι∗∇θ

πn∗Jι∗∇θ

Ψ∗πn∗Jι∗∇θ

Γ ⊂ X

Figure 5.3: Projected and lifted flow

5.5.1 Statement of the modified Thomas–Yau conjecture

Definition 5.5.6. Let L(t), for t ∈ [0, T ), be a family of Lagrangians in the almost

Calabi–Yau manifold, X. We say that the L(t) evolves by the almost Lagrangian

mean curvature flow if

d

dt
L(t) = Jι∗∇θ, L(0) = L. (5.51)
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More precisely, if ιt : L → L(t) is a family of embeddings, such that ιt(L) = L(t),

then, d
dt
L(t) := d

dt
ιt(L).

For an almost Calabi–Yau manifold (X,Ω, ω, J) and graded Lagrangian L ⊂ X

Ω|L = ρn/2e
√
−1θdVgL ,

where

ρ : L→ R>0

is defined by

ρn
ωn

n!
= (−1)n(n−1)/2(

√
−1/2)nΩ ∧ Ω, (5.52)

and measures the deviation of the metric g = ω(·, J ·) from being a Calabi–Yau

metric. When ρ = 1, g is Ricci-flat. The following proposition [41, Section 7]

generalizes Proposition 5.2.11.

Proposition 5.5.7. Let X be almost Calabi–Yau, and set φ := ρn/2, where ρ is

defined by (5.52). Then, under the flow of a Lagrangian by Jι∗∇θ, the function θ

satisfies

d

dt
θ = ∆θ +

〈dθ, dφ〉
φ

and
d

dt
(φ dVgL) = −|dθ|2 (φ dVgL) . (5.53)

Proof. Expanding out the derivative

d

dt

(
e
√
−1θφ dVgL

)
=
√
−1e

√
−1θ dθ

dt
φ dVgL + e

√
−1θ d

dt
(φ dVgL) . (5.54)

By Lie derivative and Cartan’s formula

d

dt

(
e
√
−1θφ dVgL

)
= LJι∗∇θΩ|L = d (ιJι∗∇θ Ω) |L. (5.55)
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Writing out the right-hand side of (5.55),

√
−1d

(
φe
√
−1θι∇θ dVgL

)
=
(
−φe

√
−1θdθ +

√
−1e

√
−1θdφ

)
∧ (ι∇θ dVgL)

−
√
−1φe

√
−1θd∗dθ dVgL

=
(
−φe

√
−1θdθ ∧ ι∇θ dVgL +

√
−1e

√
−1θdφ ∧ ι∇θ dVgL

)
−
√
−1φe

√
−1θd∗dθ dVgL .

Using the identity α ∧ ιβ̃ dVgL = 〈α, β〉 dVgL , for 1-forms α and β, where 〈·, ·〉 is the

metric-induced inner product on forms, and d∗d = ∆,

d

dt

(
e
√
−1θφ dVgL

)
= −φe

√
−1θ|dθ|2 dVgL+

√
−1e

√
−1θ〈dθ, dφ〉 dVgL−

√
−1e

√
−1θφ∆θ dVgL .

Equating with (5.54) proves the proposition.

In this setting of almost Calabi–Yau manifolds, we refer to the following as

the modified Thomas–Yau conjecture:

Conjecture 5.5.8. Let L be a compact, graded, Lagrangian submanifold of an al-

most Calabi–Yau manifold X. If L satisfies

[φ(L1), φ(L2)] 6⊂ (inf
L
θ, sup

L
θ), (5.56)

for all graded connect sums [L]Ham = [L1#L2]Ham, then the almost Lagrangian mean

curvature flow (Definition 5.5.6) of L exists for all time and converges to a special

Lagrangian in its Hamiltonian deformation class.

Thomas–Yau stated the following result which would resolve Conjecture 5.5.8,

modulo a technical assumption (5.57), for O(n)-invariant Lagrangian spheres in

Milnor fibers [41, Theorem 7.6]:
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Theorem 5.5.9. Let Γ ⊂ Xn be an O(n)-invariant Lagrangian sphere. Suppose the

phase, θ, of Γ satisfies condition (5.56), and also

sup
Γ
θ − inf

Γ
θ <

2π

3
. (5.57)

Then the almost Lagrangian mean curvature flow (5.51) of Γ exists for all time and

converges in C∞ to a smooth special Lagrangian.

Remark 5.5.10. As noted by Thomas–Yau, it is enough to assume (5.56) is satisfied

for just O(n)-invariant Lagrangian spheres L1, L2.

It seems to us that their proof in fact requires a slightly different technical

assumption: see equation (5.59) below which we use to replace equation (5.57)

above. Moreover, we need to assume that:

There exists C1 solutions, γc, to the one-dimensional

initial value problem for the special Lagrangian equation:

ãrg(γ′c) + (n/2− 1)ãrg(f(γc)) = c, for c = inf
Γ
θ, sup

Γ
θ,

γc(0) = any of the two roots of f that are the endpoints of γ (5.30).

(5.58)

Theorem 5.5.11. Let Γ ⊂ Xn
f be an O(n)-invariant Lagrangian sphere. Suppose

the grading, θ, of Γ satisfies condition (5.56), that (5.58) holds, and that

sup
Γ
θ − inf

Γ
θ <


π, if n = 1,

πn
2(n−1)

, if n > 1.

(5.59)

Then the almost Lagrangian mean curvature flow (5.51) of Γ exists for all time and

converges in C∞ to a smooth special Lagrangian.
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5.5.2 Formulations of the almost Lagrangian mean curvature flow in

Milnor fibers

The Milnor fiberX is an almost Calabi–Yau manifold (Proposition 5.4.3). Let Γinitial

be the O(n)-invariant Lagrangian sphere in X, with grading θinitial : Γ→ R fibered

over the regular, simple curve γinitial : [0, 1]→ C. In Section 5.5, we saw that due to

the high degree of symmetry of Γ there are several ways of representing the vector

Jι∗∇θ (see Propositions 5.5.2 and 5.5.5). These different representations allow for

different formulations of the almost Lagrangian mean curvature flow (Definition

5.5.6).

(i) The flow of the curve γ in (C, gC), with fixed endpoints.

Let γ = γ(s, t), then

γt =
1

1 + |∂wf(γ)|2/4|f(γ)|
(
γss + (1− n/2)N(log |f(γ)|)

)
N, (5.60)

γ(s, 0) = γinitial(s), γ(si, t) = γinitial(si), i = 0, 1, ∀t

where t is time, s is arclength, N is the upward-pointing unit normal to γ(s, t),

and s0 = 0, s1 = s1(t) are the pre-images of the endpoints of γ(·, t). See

Proposition 5.5.2.

(ii) The flow of the closed curve Γ1 ∼= S1 in (X1, gX1).

Let Γ1 = Γ1(s, t), then

Γ1
t =

(
κ1 − 1

2
(n− 1)N1(log |f(π1(Γ1))|)

)
N1 (5.61)
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+
1

2
N1(log(|f(π1(Γ1))|+ |∂wf(π1(Γ1))|2/4))N1,

π1(Γ1(s, 0)) = γinitial .

where κ1 is the curvature and N1 is the upward-pointing unit normal to

Γ1 ⊂ (X1, gX1). At the branch points Γ1 is fixed, i.e. Γ1(0, t) = Γ1(0, 0)

and Γ1(s1(t), t) = Γ1(s1(0), 0). See Proposition 5.5.5.

Note: This is the lift of the flow (5.60), not the Jι∗∇θ flow on Γ1. See Remark

5.5.12.

(iii) The almost Lagrangian mean curvature flow of Γ ⊂ (X, gX).

Let Γ = Γ(t), then

d

dt
Γ(t) = Jιt∗∇gΓ(t)θ, (5.62)

where ιt : Γ(t) → X is the inclusion map and where θ is a grading of the

Lagrangian angle θΓ(t). See Definition 5.5.6.

(iv) A consequence of flow (iii) is the following n-dimensional evolution equation

for θ along the flow. See Proposition 5.5.7.

Let θ = θ(p, t), then

θt = ∆θ +
〈dθ, dφ.〉

φ
(5.63)

θ(p, 0) = θinitial,

where θinitial is a grading of θΓ

Remark 5.5.12. One can think of flow (ii) in the following way. The Jι∗∇θ flow

(iii) of Γ ⊂ X corresponds to the flow (i) of γ ⊂ with fixed endpoints (Propositions
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5.5.2). Given a flow of γ we can look at the corresponding family of lifted curves

Γ1 ⊂ X1 over these curves in C (Definition 5.24). Since the flow of γ ⊂ C keeps the

endpoints fixed, the family of lifted closed curves Γ1 ⊂ X1 is fixed at the branch

points. One can look at how this family Γ1 evolves in coordinates (5.42) and this

evolution equation is (ii). Roughly speaking, looking at the flow in C (i) is not as

natural as looking at the flow in X1 (ii) because the projection map πn collapses

the geometry of Γ at its ends (where it closes up) to a point. This is why the flow

in C degenerates at the endpoints (in the sense that the coefficients vanish at the

endpoints). This corresponds to the fact that the flow vector Jι∗∇θ vanishes as the

ends of Γ. However, the Jι∗∇θ is a uniformly parabolic equation (the curvature

itself vanishes at the ends, but the coefficient does not vanish). The remedy to this

is to lift the flow of γ ∈ C to Γ1. Here, the flow is uniformly parabolic (the coefficient

of curvature term no longer degenerates). The reason for this, as suggested in [41,

Section 6], is that X1 is canonically embedded in X and thus maintains the geometry

at the endpoints.

5.6 Proof of Theorem 5.5.9

In this section we provide an exposition of the proof of Theorem 5.5.9 [41, Section

7] with some additional details and corrections.
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5.6.1 Long-time existence

Using formulation (5.61), we show that the flow exists as long as the curvature stays

bounded [41, Lemma 7.7].

Lemma 5.6.1. Suppose that the flow (5.61) does not exists up to time T . Then

sup
t∈[0,T )

sup
a∈[0,1]

|κ1(Γ1(a, t))|gX1 =∞.

Proof. Suppose, for the sake of contradiction, that the curvature |κ1(Γ1(a, t)|gX1 is

uniformly bounded for t < T .

1. (Short-time existence) Given any initial regular, C2,α curve γinitial two zeros of

f , short-time existence for the flow is given by [1, Theorem 3.1]. (See Theorem

5.8.8 and note that the function V for our flow (5.61) satisfies ∂V
∂k

= 1.)

2. (Bounded flow vector) If κ1 is uniformly bounded for t < T , then the flow

vector, i.e., the right-hand side of (5.61):

(
κ1 − 1

2
(n− 1)N1(log |f |) +

1

2
N1(log(|f |+ |∂wf |2/4))

)
N1

will also remain bounded. The third term is the derivative of a smooth

bounded function (by the simpleness of the roots of f), and therefore bounded.

And the second term, recalling (Section 5.8.2) that N1 = h−1/2N , where

h = 1 + |∂wf |2
4|f | and N is the unit normal to γ in C, can be written as

N1(log |f(γ)|)N1 = h−1N(log |f(γ)|)N =
1

1 + |∂wf(γ)|2
4|f(γ)|

1

|f(γ)|
N(|f(γ)|)N.
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This simplifies to

1

|f(γ)|+ |∂wf(γ)|2/4
N(|f(γ)|)N < max

{
4

|∂wf(γ)|
,

1

|f(γ)|

}
,

which is bounded by the simpleness of the roots of f .

3. (C1 limit curve) Since the flow vector is uniformly bounded for t < T , the

flow will converge point-wise to a limit curve, which we denote by Γ1
T . Recall

(Section 5.8.2) that the curvature of a curve on a surface is given by the

covariant derivative of the unit tangent vector, i.e., if Γ1(s, t) is parametrized

with respect to arclength,

κ1 =

∣∣∣∣Dds dΓ1(s, t)

ds

∣∣∣∣
gX1

.

A bound on the curvature then implies a bound on the first and second deriva-

tives with respect to arclength of the curves Γ1(s, t), for t < T . Therefore, by

Arzela-Ascoli, there exists a subsequence which converges in C1 to a C1 limit

curve. By the Lebesgue dominated convergence theorem, this limit curve has

bounded, possibly weak, curvature, i.e., the second derivative may only be in

L1. By the uniqueness of the point-wise limit, this limit curve must be Γ1
T .

4. (C2,α limit curve) The goal now is to show that the flow can be continued

beyond time T . To accomplish this, they use the classical theory of parabolic

equations [23] to show that Γ1
T is sufficiently smooth with Hölder continuous

curvature, i.e., Γ1
T ∈ C2,α for some α > 0. One can then use a result of

Angenent [1, Theorem 3.1] (see Theorem 5.8.8) on the short-time existence

of C2,α curves on surfaces. Indeed, the key assumption in that theorem is
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satisfied as we now check. In the notation of Theorem 5.8.8, the flow (5.61)

corresponds to a function V of the form

V (E, k) := k −W (E),

so that that dV
dk

= 1 > 0.

This is accomplished as follows. Since the phase θ on Γ is O(n)-invariant, i.e.,

only depends on arclength, bounds on the derivative of the phase of Γ1 give

bounds on the derivative of the phase of Γ via (5.29):

θ = ãrg(γ′) +
(n

2
− 1
)

ãrg(f(γ)).

Thus, the phase function θ on Γ is C0 convergent to the phase of ΓT .

Recall that along the flow the phase function satisfies the following uniformly

parabolic n-dimensional equation (5.53):

dθ

dt
= ∆θ +

〈d|Ω|, dθ〉
|Ω|

.

Differentiating this equation with respect to arclength and expressing it in local

coordinates gives a uniformly parabolic equation with bounded coefficients and

a bounded solution, θs, for t ∈ [0, T ]. By parabolic regularity [23, Section III,

Theorem 10.1], θs is α-Hölder continuous for some α > 0 and so Γ1
T is C2,α.

By the short-time existence for curves with Hölder continuous initial data [1,

Theorem 3.1], the flow exists for some time t > T .

Lemma 5.6.2. While the flow (5.60) exists γ cannot form a 180◦ kink. More

precisely, suppose the flow (5.60) exists for t ∈ [0, T ]. Then, the quantity:

lim sup
|s−s′|→0

|ãrg(γ′(s, t))− ãrg(γ′(s′, t))| < π, (5.64)

142



for every fixed t ∈ [0, T ], where s is the arclength along γ(·, t).

Proof. First, we show that γ must stay at a bounded distance from the other roots

of f . To do this we will use the maximum principle and the stability condition.

We begin by giving a simple proof of this for the n = 2 case, and then give a more

general argument for arbitrary n.

For n = 2, the stability condition becomes:

[φ(Γ1), φ(Γ2)] 6⊂ (inf
Γ
θ, sup

Γ
θ) = (inf

γ
ãrg(γ′), sup

γ
ãrg(γ′)), (5.65)

for all graded connect sums [Γ1#Γ2]Ham = [L]Ham.

Let w1 and w2 be the roots of f corresponding to the endpoints of γ, and let

w3 be another root of f . By stability, w3 cannot be “under” the graph of γ in the

sense that if we concatenate with γ the straight line path from w2 to w1, this closed

loop does not contain w3. Taking Γ1 to be the SLag (corresponding to the straight

line path γ1 from w3 to w2) and Γ2 to be the SLag (corresponding to the straight

line path γ2 from w1 to w3), this follows immediately from the mean value theorem.

See Figure 5.4.

w1 w2

w3

γ

γ2
γ1

Figure 5.4: Stable curve

Therefore, γ is “under” w3, in the above sense, and we want to show that it is
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precluded from approaching w3. Observe, by (5.65), that either

sup
γ

ãrg(γ′) ≤ γ′2 or inf
γ

ãrg(γ′) ≥ γ′1.

Without loss of generality, assume infγ ãrg(γ′) ≥ γ′1. Recall that θ = ãrg(γ′) satisfies

the uniformly parabolic equation (5.63) on the compact manifold Γ. Thus, by the

maximum principle, unless θ is constant, the infimum of θ will increase, i.e., at any

later time, t1, (for which the flow exists) there exists ε > 0, such that

inf
Γ
θ(t1) = inf

γ
ãrg(γ′(·, t1)) > γ′1 + ε, (5.66)

and this remains true for all t > t1 by the maximum principle.

Now, suppose, for the sake of contradiction, that γ approached w3. Then, the

average slope of γ between the points where γ approached w3 and the endpoint of γ

at w2 approaches γ′1. Therefore, by the mean value theorem, there exists a a point

on γ where

γ′ < γ′1 − ε.

However, this contradicts (5.66).

For n 6= 2, the grading θ does not have such a simple form, so we give a more

general argument using the cohomological phase. Recall (Definition 5.3.2) that the

phase of a graded Lagrangian L is defined as

φ(L) := arg

(∫
L

ι∗Ω

)
= arg

(∫
L

e
√
−1θdVgL

)
,

and depends only on the homology class of L. For a Lagrangian sphere, Γ, fibered

over γ, this becomes

φ(Γ) = arg

(∫
γ

e
√
−1θda

)
. (5.67)
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As above, Γ satisfies the stability condition

[φ(Γ1), φ(Γ2)] 6⊂ (inf
Γ
θ, sup

Γ
θ),

for all graded connect sums [Γ1#Γ2]Ham = [Γ]Ham. So assume, without loss of

generality, that

inf
Γ
θ ≥ φ(Γ1). (5.68)

As above, unless θ is constant, the maximum principle, for a uniformly parabolic

equation on a compact manifold, implies that for any later time, t1 > 0, (for which

the flow exists), there exists ε > 0 such that

inf θ(t) > φ(Γ1) + ε, (5.69)

for all t ≥ t1.

Now, suppose that γ approaches another root of f at w3 ∈ C. Then we can

choose (ai, ti)
∞
i=1 be such that

lim
i→∞

γ(ai, ti) = w3.

Define

γai,ti := γ(·, ti) : [ai, 1]→ C,

and let γai,ti denote any smooth continuation of γai,ti to w3. Note, by construction,

lim
i→∞

length(γai,ti) = 0. (5.70)

Denote by Γai,ti the Lagrangian fibered over the curve

γai,ti ∪ γai,ti ,
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which connects w3 to w2. Now, since Γai,ti is homologous to Γ1, we have that

φ(Γ1) = φ(Γai,ti).

We can expand

φ(Γai,ti) = arg

(∫
γai,ti

e
√
−1θ +

∫
γai,ti

e
√
−1θda

)
.

By (5.70), the contribution of γai,ti to the integral becomes negligible. Giving us

lim
i→∞

arg

(∫
γai,ti

e
√
−1θda

)
= φ(Γ1),

which contradicts (5.68).

We note that this same argument works to eliminate the possibility of γ inter-

secting one of its own endpoints at some time during the flow. Thus, knowing that

γ cannot approach another root of f (or its endpoints), the proof of (5.64) can be

divided into two cases:

• (Case 1) Outside a fixed neighborhood of the endpoints of γ, i.e., s ∈ (s1, s2).

When n > 1, recall that, by assumption, the initial curve γ, i.e., at t = 0,

satisfies:

sup
Γ
θ − inf

Γ
θ <

πn

2(n− 1)
. (5.71)

Along the flow θ evolves by the parabolic equation (5.63), and thus satisfies

the maximum principle, i.e., it achieves its maximum and minimum on the

parabolic boundary. Since Γ is a closed manifold this means these both occur

at time t = 0, and thus the initial bound on θ in (5.71) is preserved by the

flow.
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Outside of a fixed neighborhood of the endpoints of γ, the variation in ãrg(f(γ))

approaches 0 as |s− s′| → 0, by continuity. Thus, since (5.71) is preserved by

the flow, plugging into (5.29) gives

lim sup
|s−s′|−→0

|ãrg(γ′(s, t))− ãrg(γ′(s′, t))| < πn

2(n− 1)
< π.

When n = 1, the same exact argument goes through with πn
2(n−1)

replaced by

π in (5.71).

• (Case 2) Inside an arbitrarily small neighborhood of the endpoints of γ, i.e.,

s ∈ (0, ε).

In this case, one no longer has control over the variation of ãrg(f(γ)) since

we are arbitrarily close to a root of f , so the desired bound is obtained less

directly in the following way. Consider the curves in C representing special

Lagrangians of phase supγ θΓ and infγ θΓ emanating from a root of f , i.e., the

curves γS, γI in C solving

ãrg(γ′S) + (n/2− 1)ãrg(f(γS)) = sup
γ
θΓ,

and

ãrg(γ′I) + (n/2− 1)ãrg(f(γI)) = inf
γ
θΓ.

These ODEs can be solved with solutions emanating from either of the roots

of f by assumption (5.58) (see also [30, Section 5] for some heuristics).

We claim that in the tangent space to the root of f this gives a cone of angle

2

n

(
sup
γ
θΓ − inf

γ
θΓ

)
< π/(n− 1),
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which γ lies inside and cannot cross at any time during the flow (5.60). To see

this, note that, because the roots of f are simple, we can approximate f(γ(s))

near the endpoint (s = 0) using Taylor’s theorem as follows:

f(γ(s)) = ∂wf(γ(0))γ′(0)s+ o(s).

Thus, since the ãrg function is smooth (by Cauchy–Riemann equations), we

can approximate ãrg(f(γ)) near the endpoint by

ãrg(f(γ(s))) = ãrg(∂wf(γ(0)) + ãrg(γ′(0)) + o(s). (5.72)

Therefore, near a root, the above equations become, up to second-order,

ãrg(γ′S) + (n/2− 1)[ãrg(∂wf) + ãrg(γ′S)] = sup
γ
θΓ,

ãrg(γ′I) + (n/2− 1)[ãrg(∂wf) + ãrg(γ′I)] = inf
γ
θΓ.

Subtracting these from one another gives

(n/2)[ãrg(γ′S)− ãrg(γ′I)] = sup
γ
θΓ − inf

γ
θΓ <

πn

2(n− 1)
,

which gives a cone of angle

ãrg(γ′S)− ãrg(γ′I) < π/(n− 1).

Thus, in a sufficiently small neighborhood of this root, γ cannot leave this cone

because its phase, which we can approximate using (5.72), would then either

surpass its maximum, supγ θΓ, or drop below its minimum, infγ θΓ. Therefore,

ãrg(γ(s, t)) < π/(n− 1), ∀s < ε, ∀t. (5.73)
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We can now bound the variation of ãrg(f(γ)) inside a similar cone near the

root of f . Using Taylor’s theorem again, for w ∈ C near γ(0)

f(w) = f(γ(0)) + ∂wf(γ(0))w + o(w).

Thus,

ãrg(f(γ)) = ãrg(∂wf(γ(0))) + ãrg(γ) + o(γ)

which, using (5.73) gives a cone

ãrg(f(γ(s, t))) < π/(n− 1), ∀s < ε, ∀t. (5.74)

Finally, to obtain the desired bound, we can write the formula for the phase

(5.29) as:

−ãrg(γ′) = −θ + (n/2− 1)ãrg(f(γ)).

Then, using the cone (5.74) and the fact that the bound supγ θΓ − infγ θΓ =

πn
2(n−1)

on the variation θ is preserved by the maximum principle, we get, by

the triangle inequality,

|ãrg(γ′(s, t))− ãrg(γ′(s′, t))| < πn

2(n− 1)
+ (n/2− 1)

π

(n− 1)
= π.

By Lemma 5.6.1, the flow exists, unless the curvature of Γ1 blows up. If the

curvature were to blow-up at time T ∈ R>0 ∪+{∞}, then one can choose

{si}, {ti}, i = 1, 2, . . . ,

such that ti converges to T , and the curvature,

κ1
i := κ1(Γ1(si, ti)), (5.75)
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is maximal over the curvatures of Γ1(s, t) for all s and all t ≤ ti.

Definition 5.6.3. Suppose the curvature of Γ1(s, t) blows up at time T , and let

{si}, {ti}, i = 1, 2, . . . be chosen as above (5.75). The curvature is said to blow-up

at the branch point Γ1(0, T ) if

|si| = O

(
1

|κ1
i |gX1

)
. (5.76)

The curvature is said to blow-up in the interior if

|si| >>
1

|κ1
i |gX1

. (5.77)

Here, | · | denotes the Euclidean norm (note that s denotes arclength), and | · |gX1

denotes the norm with respect to gX1.

Lemma 5.6.4. If the curvature κ1 blows-up, it must blows-up at one of the branch

points of Γ1.

More precisely, suppose

sup
t∈[0,T )

sup
a∈[0,1]

|κ1(Γ1(a, t))|gX1 =∞,

and let {si}, {ti}, i = 1, 2, . . . be chosen as above (5.75). Then,

|si| = O

(
1

|κ1
i |gX1

)
.

Proof. For the sake of contradiction, suppose the curvature blows-up and that this

blow-up occurs in the interior, as in Definition 5.6.3. Then there are two cases to

consider:

• (Case 1) The blow-up occurs at a finite distance |si| > ε from either branch

point of Γ1.
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Here, the flow will be a finite perturbation of mean curvature flow, satisfying

the conditions of [1, Theorem 9.1] (see Theorem 5.8.9), and thus a 180◦ kink

must occur. However, this contradicts Lemma 5.6.2.

• (Case 2) The blow-up tends to one of the branch points such that si → 0,

while ri := |si||κ1
i |gX1 →∞.

We divide the proof that this cannot occur into the following steps:

1. (Parabolic rescaling) For each i, following [1, Section 9], we can rescale

the variables to zoom in around the blow-up point. This gives a new

metric on X1 for each i:

s 7→ |κ1
i |gX1s, gX1 7→ |κ1

i |gX1gX1 t 7→ κ
1/2
i (t− ti), (5.78)

where gX1 is the original metric on X1.

The flow vector (5.61) for each i becomes:

(γi)t =

(
κ1 − 1

2
(n− 1)N1

i (log |f |i) +
1

2
N1
i (log(|f |i + |∂wf |2i /4))

)
N1
i ,

(5.79)

where | · |i is the norm and N1
i is the unit normal in the ith metric |κ1

i |gX1 .

Note that gradients and the curvature get scaled by 1/|κ1
i |gX1 . Thus, the

curvature has a maximum over t ≤ 0 of 1 at yi at time t = 0.

2. (Non-curvature terms vanish) We want to show that the second and third

terms on the right-hand side of (5.79) converge to 0 as i→∞.

In the ith metric on X1, take a geodesic disc of radius ri/2 about yi

(where ri := |κ1
i |gX1si → ∞ as i → ∞, and yi = Γ1(si, ti) ∈ X1 were
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chosen above).

Since si −→ 0, this is within an arbitrarily small neighborhood of z (root

of f) in the original metric. Thus, by the proof of Lemma 5.6.2, the angle

of γ′ is less than π, which implies that Γ1
s(s, t) varies within an angle π/2

cone on X1. i.e., no spiraling around the root

In the rescaled variable (s 7→ |κ1
i |gX1s), yi ∈ Γ1

i is at an arclength of

s = qi = |κ1
i |gX1si ≥ ri from z, the root of f , at s = 0. Note that

ri = si|κ1
i |gX1 , is the same as above and not rescaled, so it approaches

infinity and gives us the radius of neighborhood in X1
i .

Thus, all of the points in the geodesic disc of radius ri/2 are at a distance

≥ cri/2 from the root of f (for some constant c > 0 for all i >> 1) in the

new metric. It follows that for i sufficiently large:

|f |1/2i ≥ C(1/|κ1
i |gX1 )(cri/2),

where C is a constant just less than the norm of the derivative of f 1/2

at the root z in the original metric, and the 1/|κ1
i |gX1 factor comes from

scaling the derivative to the new metric.

We can now bound the non-curvature terms by:

|(γ1
i )t − κ1|gX1 ≤ (n− 1)

|κ1
i |−1
gX1

sup |d(f 1/2)|gX1

C|κ1
i |gX1 (cri/2)

+
1

2
|κ1
i |−1
gX1

sup |d log(|f |+ |∂wf |2/4)|gX1 ,

where both sups are taken over small neighborhoods of z in the original

metric on X1 (because this includes all of the blown-up neighborhoods).
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In these two terms the derivative (d) is taken on X1 with respect to the

original metric and then scaled by |κ1
i |gX1 when pulled back. Both of

these supremums are finite:

|d(f 1/2)|gX1 =

(
4|f |

4|f |+ |∂wf |2

)1/2
∂wf

f 1/2
=

2∂wf

(4|f |+ |∂wf |2)1/2
,

and

|d log(|f |+ |∂wf |2/4)gX1

=

(
4|f |

4|f |+ |∂wf |2

)1/2
4

4|f |+ |∂wf |2

(
f

|f |
+ d(|∂wf |2/4)

)
≤ 8

(4|f |+ |∂wf |2)3/2

(
|f |1/2 + d(|∂wf |2/4)

)
.

As i −→∞, |κ1
i |gX1 , ri −→∞, so the above bound tends to root, and the

radius of the disc we are working on ri/2 −→ ∞. Thus, in the limit the

flow is the mean curvature flow of a curve inside an infinite flat disc R2.

3. (Apply theorem of Angenent) By Theorem 5.8.9 and Remark 5.8.10, for

the curvature to blow-up, a 180◦ kink must occur in the curve Γ1(s, t).

However, this is a contradiction to Lemma 5.6.2.

Lemma 5.6.5. The curvature κ1 of Γ1 does not blow-up in finite time.

Proof. In Lemma 5.6.4 it was shown that the curvature does not blow up in the

interior (in the sense of Definition 5.6.3). Thus, if it can be shown that the curvature

does not blow-up at the endpoints (the only alternative), then the curvature will

not blow-up in finite time.
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More precisely, if the curvatures κ1
i , at points yi = Γ1(si, ti), blow up, then by

Lemma 5.6.2 there exists some constant A such that for all i:

|si||κ1
i |gX1 < A.

Assume for the sake of contradiction that such a blow-up occurs. We first rescale

the variables as above (5.78):

s 7→ |κi|1gX1
s, gX1 7→ |κ1

i |gX1gX1 t 7→ |κ1
i |2gX1

(t− ti), (5.80)

where gX1 is the original metric on X1. We will work on an interval of length

|κ1
i |

1/2
gX1 −→ ∞ (in the new metric) on Γ1, centered at the root of f (s = 0). Notice

that this is contained inside the ball of radius |κ1
i |
−1/2
gX1 → 0 about z in X1 in the

original metric, so for i sufficiently large we can assume f(w) − Cw (w ∈ C) is

arbitrarily small in any Ck-norm. We then proceed as follows:

1. Obtain bounds on the polar angle of the curve and its tangent vector (recall

that the derivative of the angle of tangent vector with respect to arclength is

the curvature). This will involve using polar coordinates and applying Lemma

5.6.2.

Taking i sufficiently large so that the metric on the radius κ
1/2
i disc about z

in X1 is close to being flat, define geodesic polar coordinates on X1 by

r1 := |Γ1|i and θ1 := θ(Γ1),

where | · | and θ are length and angle on X1, with respect to the i-th metric.

So θ(Γ1) ≈ θ(γ)/2, up to a constant. Thomas–Yau then claim that θ1
s is
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arbitrarily C1 close to

1

r
sin
(
θ(Γ1

s)− θ1
)
, (5.81)

which is the exact formula for θ1
s in the flat metric and polar coordinates.

Thus,

|rθ1
s | ≤ sin

(
θ(Γ1

s)− θ1
)
.

By construction, the curvature of Γ1 is bounded by 1, i.e., | (θ(Γ1
s))s | ≤ 1.

Thus, we can bound

|θ(Γ1
s)| ≤ s.

Substituting f = θ(Γ1
s)− θ1 into (5.81), we get (in the flat setting)

fs = κi −
sin f

r
,

for f(0) = 0 and |κi| ≤ 1. This implies that |f(s)| ≤ |s|, so for i suffi-

ciently large that our polar coordinates are sufficiently flat one gets a bound

on |θ(Γ1
s) − θ1|, which gives a bound on θ1/s and, subsequently (by uniform

comparison bounds of r and s of Lemma 5.6.4), a bound on θ1/r.

2. Analyze equation (4) for θΓ on Γ in the new metrics, as i −→∞:

dθΓ

dt
= ∆θΓ +

〈d|Ω|i, dθΓ〉
|Ω|i

. (5.82)

Here |Ω|i is the pullback of |Ω| to Γ1 with the ith metric. *They use the above

polar angle estimates to show that the second term goes to zero as i −→ ∞.

First, observe that

|dθΓ| = |(θΓ)s| =
∣∣∂u[θ(Γ1

s)/2 + (n/2− 1)θ(f(Γ1))]
∣∣ ,
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since θΓ(s) := θ(γ′) + (n/2− 1)θ(f(γ)), pulling back to Γ1 and using the fact

that θ(γs) ≈ θ(Γ1
s)/2. For i sufficiently large, this is then bounded by the

estimates above, as θ(f(Γ1)) is C1 close to θ1/2 in the disc in which we are

working. i.e., we have bounds on the first term (curvature) and bounds on the

second term ∂uθ
1 ≈ θ1/s. Therefore, the second term (5.82) can be bounded

by

κ−1
i

sup |dΩ|
inf |Ω|

,

where the sup and inf are taken over a small neighborhood (in the original

metric) of the point (0, . . . , 0, z) ∈ X1, where z is the endpoint of γ, root of f .

This clearly goes to 0 as i −→∞.

Computing the Laplacian on the space Γ, using a radial coordinate s and

rotational symmetry about the origin s = 0, makes (5.82)

(θΓ)t = (θΓ)ss + (n− 1)
Ri
r

Ri
(θΓ)s +O(κ−1

i ),

where Ri = Ri(r) is the radius of the sphere Sn−1 at r in the new metric.

We use the arclength s on Γ1 ⊂ X1, the radial coordinate r = κis on X1, and

a radial coordinate ρ on C. Then, for i sufficiently large, and for s ≤ κ
1/2
i in

the new metric, f can be approximated linearly, i.e., f ≈ ∂wf(z)ρ. So we can

assume that Ri is as close as we like to κi
√
|∂wf(z)|ρ in C2, as lengths in the

new metric gets scaled by the curvature. Thus,

Ri
r =

Rρ

rρ
=

Ri
ρ√

κ2
i + (Ri

ρ)
2

=
1√

1 +
κ2
i

(Riρ)2
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By obtaining bounds on the derivatives of Ri as i −→ ∞ one can show that

it converges in C1 to some R with Rr(0) = 1. Moreover, the limit curve γ1
∞

satisfies a limiting equation for θ∞:

θ∞t = θ∞ss + (n− 1)
Rs

R
θ∞s .

The solution to this is θ∞ = constant.

3. However, by construction max θs = 1 for all i, and θs is Hölder continuous

with uniform (in i) bounds, by [23, Section III, Theorem 10.1] and the above

bounds. Therefore, one can show that max θ∞s = 1, which is a contradiction.

Thus, the curvature cannot blow-up in this way.

5.6.2 Smooth convergence to a special Lagrangian

Lemma 5.6.6. The flow (5.31) converges in C∞ to a special Lagrangian.

Proof. The convergence of the flow to a special Lagrangian can be seen as follows:

1. (Bounded curvature) The curvature of Γ1 is bounded for all time. This follows

from the same argument used in the proof of Lemma 5.6.5 to show that the

curvature does not blow up in finite time. This implies, by the On-symmetry,

that the curvature of Γ is uniformly bounded We also have a C1 bound on θ

(with respect to arclength and which is constant in the fibers).

2. (Convergence of subsequence in C∞) It follows that the coefficients in

dθ

dt
= ∆θ +

〈d|Ω|, dθ〉
|Ω|
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have uniform C1 bounds. (The coefficients involve only first derivatives of

the metric). This implies, by parabolic Schauder estimates, [23, III. Theorem

12.1], that θ actually has uniform C3 bounds, which then gives, again by

symmetry as described above, uniform C2 bounds on the curvature (curvature

is first derivative of θ). This can be continued to give C∞ bounds and so gives

a subsequence converging in C∞ to a special Lagrangian submanifold.

3. (Unique limit) To see that every convergent subsequence converges to the same

limit, we show that θ converges in a (weighted) L2-norm. To do this, they first

rewrite the evolution equation for θ as:

θ̇ = −∆Ωθ :=
1

|Ω|
∗ d(|Ω| ∗ dθ),

similar to how the classical Laplacian can be written as ∆ = ∗d ∗ d, where ∗

is the Hodge star.

Then, setting θ to be the average angle over Γ:

θ =
1∫

Γ
|Ω|dVgΓ

∫
Γ

θ|Ω|dVgΓ
,

which is constant on Γ, but not in time, we compute

d

dt

∫
Γ

(θ − θ)2|Ω|dVgΓ
=

∫
Γ

[
2(θ − θ)(−∆Ωθ − d

dt
θ)− (θ − θ)2|dθ|2

]
|Ω|dVgΓ

≤ −2

∫
Γ

(θ − θ)∆Ω(θ − θ)|Ω|dVgΓ
. (5.83)

Recall that on a compact manifold, the classical Laplacian can also be written

as ∆ = d∗d, where d∗ is the adjoint of d with respect to the L2-norm, i.e.,∫
Γ

h∆kdVgΓ
=

∫
Γ

hd∗(dk)dVgΓ
=

∫
Γ

〈dh, dk〉dVgΓ
.
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Similarly, the operator ∆Ω can be expressed as ∆Ω = d∗Ωd, where d∗Ω is the

adjoint of d with respect to the weighted L2-norm |Ω|dVgΓ
we have been using

here, i.e.,

∫
Γ

h∆Ωk|Ω|dVgΓ
=

∫
Γ

hd∗Ω(dk)|Ω|dVgΓ
=

∫
Γ

〈dh, dk〉|Ω|dVgΓ
.

Therefore, the kernel contains just the constant functions. And the uniform

C∞ bounds on the metric and |Ω| (for all t) give a uniform lower bound λ > 0

for the smallest eigenvalue of ∆Ω.

This gives a bound of the form

∫
Γ

(f∆Ωf)|Ω|dVgΓ
≥ λ

∫
Γ

f 2|Ω|dVgΓ
.

To see this, write f = a1f1 + a2f2 + . . . , where the fi are an orthornormal

basis of eigenfunctions, corresponding to the eigenvalues λ1 < λ2 < . . . of ∆Ω.

Then,

∫
Γ

f∆Ωf |Ω|dVgΓ
=

∫
Γ

(a1f1 + a2f2 + . . . )(λ1a1f1 + λ2a2f2 + . . . )|Ω|dVgΓ
.

By the orthonormality,

=

∫
Γ

(λ1a
2
1f

2
1 + λ2a

2
2f

2
2 + . . . )|Ω|dVgΓ

≥
∫

Γ

λ1(a2
1f

2
1 + a2

2f
2
2 + . . . )|Ω|dVgΓ

=λ1

∫
Γ

f 2|Ω|dVgΓ
.

Taking f = θ − θ and combining with (5.83), we get

d

dt

∫
Γ

(θ − θ)2|Ω|dVgΓ
≤ −2λ

∫
Γ

(θ − θ)2|Ω|dVgΓ
.
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Thus, since this quantity decreases monotonically in time, the convergent sub-

sequence implies that it tends to 0 as t → ∞, and we have convergence to

constant phase.

5.7 A viscosity approach

5.7.1 Introduction

In this section we study the flow (5.31) from a slightly different perspective, in

that we work directly with the degenerate parabolic equation for a curve with fixed

endpoint in C evolving by (5.31). Our main result is the following theorem:

Theorem 5.7.1. Let Γ be a stable (5.65), O(2)-invariant, Lagrangian 2-sphere in

the Milnor fiber X. Then there exists viscosity solutions to the almost Lagrangian

mean curvature flow (5.5.6) of Γ for all time, and this flow converges in C0 to a

special Lagrangian 2-sphere.

Although our graphical assumption is more restrictive, the constraint on the

variation of the grading is weakened to π, which coincides with the modification in

(5.59).

5.7.2 The equation

As above, let z0 and z1 be two roots of the polynomial f in C, and let γ : [0, 1]→ C

be a smooth path over which L0 is fiberd, such that γ(0) = z0 and γ(1) = z1. The
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flow of γ then corresponds to the evolution of u(t, x) by:

ut = A(x, u)
uxx

1 + u2
x

, (5.84)

where

A(x, u) =
4|f(x+ iu)|

4|f(x+ iu)|+ |f ′(x+ iu)|2
.

Thus, the existence of the flow of γ corresponds to solving equation (5.84) for u on

the domain

ΩT = [0, T )× (0, 1), (5.85)

with initial and boundary conditions:

u(0, x) = Im γ(x), for x ∈ [0, 1], (5.86)

u(t, 0) = Im γ(0) and u(t, 1) = Im γ(1) for t ∈ [0, T ). (5.87)

Observations:

1. A(x, u) is well-defined because the roots of f are simple, and therefore f and

f ′ are never zero at the same place and time.

2. Since f stays at a bounded distance from its other roots (see proof of Lemma

5.6.2), it follows that:

For 0 < x < 1,

0 < A(x, u) ≤ 1.

For x = 0 and x = 1,

A(x, u) = 0.
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Thus, the equation is strictly parabolic on the interior but degenerates at the

endpoints.

3. The equation is quasilinear, but because it degenerates at the boundary, the

standard parabolic theory of linear and quasilinear equations [23] is not di-

rectly applicable.

5.7.3 Viscosity solutions

In this section we provide a short proof of the existence of viscosity solutions for

equation (5.84).

Lemma 5.7.2. For any T > 0, equation (5.84) admits viscosity solutions.

Proof. Without loss of generality, assume that z0 = 0 and z1 = x1, i.e., z0 and z1 lie

on the x-axis, so u(0) = u(1) = 0. Now consider the following perturbed boundary

conditions:

u(0, x) = Im γ(x) + ε, u(t, 0) = u(t, 1) = ε for all t ∈ [0,∞). (5.88)

Writing equation (5.84) in the more standard PDE form, we have an equation

of the form:

ut = a(ux, u, x, t)uxx, (5.89)

where,

a(ux, u, x, t) =
A(x, u)

1 + u2
x

=
4|f(x+ iu)|

(4|f(x+ iu)|+ |f ′(x+ iu)|2) (1 + u2
x)
.

With the perturbed boundary conditions (5.88) this equation is now uniformly

parabolic, i.e., for all bounded K ⊂ R × R × Ω × [0, T ] we can find positive λK
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and ΛK such that

λK ≤ a(p, q, x, t) ≤ ΛK, when (p, q, x, t) ∈ K.

We would like to use the Leray-Schauder theory for quasilinear parabolic equa-

tion [23] to obtain a unique solution uε(t, x) ∈ C2+1
x+t (ΩT )∩C(ΩT ), for each ε > 0. To

prove existence one follows the standard approach: a bound on sup |u|; a bound on

sup |ux|; a Hölder gradient bound |ux|α; and finally the application of a fixed point

theorem. We will carry these steps out for each ε to give a solution uε. Uniqueness

follows from the maximum principle.

We are ultimately seeking a solution to the limit ε→ 0. However, taking the

limit of these uε would require the above bounds to be ε-independent, which they are

not - the Hölder gradient bound depends on the uniformly parabolic bounds, which,

essentially by construction, depend on ε, as the original problem degenerates on the

boundary. However, we do have ε-independence for the sup bound on u and its

spatial gradient, as well as an ε-independent Hölder norm in time. Combining these

gives us a family of solutions with a uniform Hölder bound. Hence, by Arzela-Ascoli,

we can take a uniformly convergent subsequence of these solutions. Viewing the uε

solutions as simply viscosity solutions and then using the fact that the uniform

limit of viscosity solutions on a compact set is a viscosity solution tells us that

u0 := limε→0 u
ε is also a viscosity solution.

More precisely, for each ε we have the following bounds on uε:

i. Sup bound. By the comparison principle, [7, Lemma 4.2]:

sup
Ω×[0,T ]

|uε(t, x)| ≤ sup |uε0|,
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where uε0 = uε|P(ΩT ) is our initial data on the parabolic boundary.

ii. Boundary gradient estimate. Since uε0 is time-independent, by [7, Lemma

4.3]:

sup
(x,t)∈∂Ω×[0,T ]
(y,s)∈Ω×[0,t]

|u(x, t)− u(y, s)|
|(x, t)− (y, s)|

≤ L,

where L depends only on osc uε0, |uε0|1+β,β/2.

iii. Global gradient estimate. Using the above boundary estimate and the fact

that the oscillation of uε is bounded, by [7, Lemma 4.5]:

sup
Ω×[0,T ]

|uεx| ≤ 2L.

iv. Hölder bound in time. Since a(p, q, x, t) ≤ 1 and uε admits a global spatial

gradient bound, by [7, Corollary 4.9]:

|uε(x, t)− uε(x, s)| ≤ C0|t− s|1/2,

where C = C(L)

Therefore, being C1 in space and C0,1/2 in time, uε is C0,1/2(ΩT ). Since the

above bounds are independent of ε, this gives us a family of uniformly bounded

functions in C0,1/2(ΩT ). Thus, by Arzelà-Ascoli there is a uniformly convergent sub-

sequence. Let u0 ∈ C0,1/2(ΩT ) denote this limit.

As the uniform limit of viscosity solutions to an equation is itself a viscosity so-

lution to that same equation, u0 is a viscosity solution to equation (5.84). Moreover,

by continuity, u0 satisfies the appropriate boundary conditions:

u0(0, x) = Im γ(x) and u0(t, 0) = u0(t, 1) = 0.
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5.7.4 Convergence to special Lagrangians

Recall from the previous section that the Lagrangian angle, θΓ, of an O(n)-invariant

sphere is given by:

θΓ = arg(γ′) +
(n

2
− 1
)

arg(f(γ)) mod 2π,

where arg(z) denotes the the principal branch of the argument function, as in No-

tation 5.4.6 (iii).

In two-dimensional Milnor fibers the curves in C corresponding to special La-

grangian spheres are the straight lines:

θΓ = arg(γ′) = constant.

Therefore, we want to show that the flow of γ, formulated in terms of the potential

function u (5.84 - 5.87) converges to a straight line as t→∞.

Lemma 5.7.3. Let u0 : ΩT → R be a solution to the flow (5.84), as constructed

above, with initial curve γ. Then as t → ∞ the solution converges to the straight

line connecting γ(0) and γ(1).

Proof. First consider the ε-perturbed problem and its solution

uε(t, x) ∈ C2+1([0,∞)× [0, 1]).

The length of the curve uε(t, ·) : [0, 1]→ R at time t is given by

L(t) =

∫ 1

0

dst.
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Along the flow (5.84) the length changes over time according to

d

dt
L(t) = −

∫ 1

0

Aεκ
2ds.

Since Aε > 0 and uε admits a global gradient bound it follows that uε converges to

a straight line as t→∞.

To see that u0 also converges to a straight line as t→∞, suppose for the sake

of contradiction that it does not. Without loss of generality, assume γ(0) = γ(1) = 0,

so that limt→∞ uε(t, x) = ε. Then there exists {xn}∞n=1 ⊂ [0, 1], tn →∞, and δ > 0

such that

|u0(tn, xn)| > δ for all n.

However, this contradicts the fact that uε is a decreasing sequence of functions and

uε → u0 uniformly on [0, tn]× [0, 1], so that

|u0(tn, xn)− uε(tn, xn)| −→ 0.

5.8 Appendix

In this appendix, we collect important results that are used in the earlier sections

of Chapter 5.

5.8.1 Smooth Lagrangian spheres

In this section we give the proof of Solomon-Yuval [38, Proposition 3.7] that Γ = Γγ

(see 5.24) is in fact smooth and diffeomorphic to an n-sphere. We first introduce
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their notation and terminology:

Throughout, we think of S1 as the additive quotient group R/2πZ, with inver-

sion given by −, i.e., −π = π.

Definition 5.8.1. A symmetric circle is an embedding

γ : S1 → X1 (5.90)

u 7→ (z(u), t(u)), (5.91)

satisfying (z(−u), t(−u)) = (−z(u), t(u)), for all u ∈ S1, and for all u 6= 0, π,

z(u) 6= 0.

Lemma 5.8.2. Let g : (−ε, ε) → R be smooth and satisfy g(−x) = g(x) for all x.

Then, the composition h = g ◦ √ : [0, ε2) → R is infinitely differentiable from the

right at 0 and satisfies h′(0) = g′′(0)/2.

Lemma 5.8.3. Let α : (−ε, ε) → X1, x 7→ (z(x), t(x)), be a smooth embedding

satisfying z(0) = 0, z(x) 6= 0 ∀x 6= 0, and

(z(−x), t(x)) = (−z(x), t(x))∀x.

Let c = {t(x) : x ∈ (−ε, ε)} ⊂ C. Then the map ν : [0, ε2) → c, x 7→ t(
√
x) is a

diffeomorphism.

Proof. At any (t, z) ∈ X1, where z 6= 0, the projection (t, z) 7→ t is a local dif-

feomorphism. Thus, we need only show the regularity of ν at 0. By assumption,

t is even, and so ν is infinitely differentiable from the right at 0 by the previous

lemma. We need to verify that ν ′(0) 6= 0, or equivalently t′′(0) 6= 0. Differentiating
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(z(x))2 = f(t(x)) yields

2z(x)z′(x) = f ′(t(x))t′(x),

Differentiating again yields

2(z′(x))2 + 2z(x)z′′(x) = f ′′(t(x))(t′(x))2 + f ′(t(x))t′′(x).

Since z(0) = t′(0) = 0, substituting x = 0 yields

2(z′(0))2 = f ′(t(0))t′′(0).

And since α is an embedding and t′(0) = 0, we must have z′(0) 6= 0.

Proposition 5.8.4. Let γ be a symmetric circle. Then Γ = Γ(γ) is diffeomorphic

to Sn.

Proof. More specifically, we set

φ : S1 × Sn−1 → Γ, where (u, x) 7→ (z(u) · x, t(x))

and

χ : S1 × Sn−1 → Sn, where (u, x) 7→ (sin(u) · x, cos(u)).

There is a unique map Ψ : Sn → Γ, which satisfies Ψ◦χ = φ and is a diffeomorphism.

The existence, uniqueness, and bijectivity of Ψ follow from the universal prop-

erty of quotients. Both φ and χ are local diffeomorphisms at any (u, x) where

u 6= 0, π. Hence Ψ is smooth and regular anywhere away from the two poles. Let

Dn be the open n-dimensional unit ball, and parametrize the north n-hemisphere

by

Y : Dn → Sn, y 7→ (y, 1−
√

1− |y|2).
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We show that Ψ ◦ Y is smooth and regular at y = 0. By assumption on γ, there is

a smooth even nonvanishing function r : S1 → C such that for all u ∈ S1,

z(u) = r(u) sin(u).

Let U ⊂ S1 be a small neighborhood of 0. If y ∈ Dn and (u, x) ∈ U × Sn−1 satisfy

Y (y) = χ(u, x), then u = ± arcsin |y|, and it follows that

Ψ ◦ Y (y) = (r(arcsin |y|) · y, t(arcsin |y|)).

The function y 7→ r(arcsin |y|) can written as y 7→ r◦arcsin ◦
√
|y|2, which is smooth

by Lemma 5.8.2 since r ◦ arcsin is smooth and even. The function y 7→ t(arcsin |y|)

is smooth by a similar argument. Hence Ψ ◦ Y is smooth, and it is regular at y = 0

since r is non-vanishing. The other pole can be treated similarly.

5.8.2 Curvature of planar curves

In this section we briefly recall some definitions and basic results concerning curves

in the plane. For curves in the plane there is only one notion of curvature, so given

a curve γ ⊂ C we simply refer to the curvature of γ.

Definition 5.8.5. Let γ : [0, 1]→ C be a C2 curve, parametrized by arclength, i.e.,

|γ′(s)| = 1, and let N(s) = iγ′(s) be the upward-pointing unit normal to γ. Then

the curvature of γ, denoted by κ, is defined by

κ(s)N(s) = γ′′(s). (5.92)

Remark 5.8.6 (Alternative definition). An equivalent and more geometric defini-

tion of the curvature of a plane curve can be formulated in terms of the angle of the
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tangent vector. Let γ : [0, 1] → C be a C2 curve, parametrized by arclength. Since

|γ′(s)| = 1 for all s, only the direction or angle of the tangent vector is changing

along the curve. Thus, γ′′(s) is a measure of how fast the angle of the tangent vector

is changing:

κ(s) =
d

ds
arg(γ′(s)), (5.93)

where arg(γ′(s)) is the phase of γ′(s) ∈ C.

As mentioned earlier, the flow of Γ ⊂ X1 by the vector Jι∗∇θΓ is equivalent

to the flow of γ ⊂ C (where γ is the curve used to construct Γ). The flow of γ can

be formulated as a perturbation of the mean curvature flow in C with a different

metric. In order to show this, we need the following lemma [41, Lemma 6.6]:

Lemma 5.8.7. Let 〈·, ·〉 be the Euclidean metric on C, and h a positive real-valued

function on C. Then, with respect to the metric h〈·, ·〉, the curvature of a curve

γ ⊂ C is,

1

h

(
κ− 1

2
N(log h)

)
,

where κ is curvature of and N is the unit normal to γ in C with the Euclidean metric

〈·, ·〉.

Proof. Let A be the endomorphism-valued 1-form on C defined by

AXY =
1

2h
((Xh)Y + (Y h)X − 〈X, Y 〉∇h) .

For vector fields X, Y on C, A is symmetric and so defines a torsion-free connection

on C by D + A, where D is the usual connection on C:

(D + A)fXY = f(D + A)XY
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and

(D+A)XfY = DX(fY ) +AX(fY ) = (df(X)Y + fDXY ) + fAXY = f(D+A)XY.

Moreover, D = D+A is the Levi–Civita connection on C with respect to h〈·, ·〉, i.e.,

for vector fields X, Y, Z,

∂Xh〈Y, Z〉 = h〈(D + A)XY, Z〉+ h〈Y, (D + A)X〉 (5.94)

To see this, observe that the left-hand side of (5.94) is:

dh(X)〈Y, Z〉+ h〈DXY, Z〉+ h〈Y,DXZ〉,

and the right-hand side of (5.94) is:

h〈DXY, Z〉+ h〈Y,DXZ〉+ h〈AXY, Z〉+ h〈Y,AXZ〉.

Thus, we need to show

dh(X)〈Y, Z〉 = h〈AXY, Z〉+ h〈Y,AXZ〉. (5.95)

Expanding this out

h〈AXY, Z〉 = h〈 1

2h
((Xh)Y + (Y h)X − 〈X, Y 〉Dh) , Z〉,

so the right-hand side of (5.95) is:

(Xh)〈Z, Y 〉+
1

2
(〈(Y h)X,Z〉+ 〈(Zh)X, Y 〉 − 〈〈X, Y 〉Dh,Z〉 − 〈〈X,Z〉Dh,Z〉) .

Note that 〈〈X, Y 〉Dh,Z〉 = 〈X, Y 〉dh(Z) = 〈X, Y 〉(Zh) by the definition of Dh, so

the right-hand side of (5.95) reduces to just dh(X)〈Y, Z〉.
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Now let N be the unit normal to γ in the standard metric. Then h−1/2N is

the unit normal in the metric h〈·, ·〉. If T is the unit tangent vector γ′

||γ′|| , where || · ||

is the norm in the metric h〈·, ·〉, then the curvature vector in C with respect to the

connection D = D + A is:

κN := (DTT )⊥ =
1

||γ′||2
(Dγ′γ

′)⊥.

Expanding D = D + A and taking the normal component, we get:

h〈(D + A)γ′γ
′, h−1/2N〉

h|γ′|2
h−1/2N =

1

h

(
〈γ′′, N〉
|γ′|2

+
〈Aγ′γ′, N〉
|γ′|2

)
N. (5.96)

The first term on the right-hand side of (5.96) is the curvature in the standard

metric. For the second term, expanding and using orthogonality of γ′ and N :

〈Aγ′γ′, N〉
|γ′|2

=
〈(γ′h)γ′ + (γ′h)γ′ − |γ′|2Dh,N〉

2h|γ′|2

= − 1

2h
〈Dh,N〉 = − 1

2h
dh(N) = −1

2
N(log h).

Therefore, the curvature of γ in the new metric is

1

h

(
κ− 1

2
N(log h)

)
.

5.8.3 Theorems of Angenent

Let (M, g) be a smooth 2-dimensional Riemannian manifold, and denote its unit

tangent bundle by

T 1M := {E ∈ TM : g(E,E) = 1}.
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Let S1 denote the unit circle. Given a curve,

γ : S1 →M,

we denote its unit tangent vector by

T := γs(s),

its unit upward-pointing normal by N , and its curvature by κγ(s).

The following result is due to Angenent [1, Theorem 3.1].

Theorem 5.8.8. Assume V : T 1(M)× R→ R is a C1,1 function which satisfies

∂V

∂k
> 0 for all (E, k) ∈ T 1(M)× R.

Let γ0 : S1 →M be a C2,α curve in M . Then there exists a maximal time, tmax > 0,

for which the equation

γt(s, t) = V (γs(s, t), κγ(s, t))N

admits a unique solution γ(s, t), with γ(·, t) ∈ C3,α for all 0 < t < tmax.

The unit tangent bundle is a smooth submanifold of the tangent bundle and

thus carries a natural Riemannian metric. Let

TT 1M

denote the tangent bundle to T 1M , and ∇ the connection on T 1M . Taking an

orthogonal splitting of T 1M into its horizontal and vertical subbundles,

TT 1M = HT 1M ⊕ V T 1M,
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one can decompose ∇ into its horizontal and vertical components

∇ = ∇H ⊕∇V .

The following result is from [1, Theorem 9.1]:

Theorem 5.8.9. Assume V : T 1(M)× R→ R is a C1,1 function which satisfies

∂V

∂k
> 0 for all (E, k) ∈ T 1(M)× R,

and |∇HV | + |k||∇V V | ≤ C(1 + k2) for almost every (E, k) ∈ T 1M × R, for some

C > 0. Let γ0 : S1 →M be a C2,α curve in M , and let γ(s, t) be a maximal solution

to

γt(s, t) = V (γs(s, t), κγ(s, t))N,

for t ∈ [0, tmax), where tmax <∞. Then, for any ε > 0

lim sup
t→tmax

sup
|s1−s0|<ε

|ãrg(γs(s1, t))− ãrg(γs(s0, t))| ≥ π.

Remark 5.8.10. Here one compares angle, by parallel transporting γs(s1, t) ∈

Tγ(s1,t)M to Tγ(s0,t)M . In Euclidean space, this is of course not necessary.
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C. R. Acad. Sci. Paris, Série I, 292:633–636, 1981.

[27] R.T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, NJ,
1970.

[28] Y.A. Rubinstein. The complex degenerate special Lagrangian equation and
higher corank. unpublished notes, 2016.

176



[29] Y.A. Rubinstein and J. Solomon. The degenerate special Lagrangian equation.
Advances in Mathematics, 218:1526–1565, 2008.

[30] A. Shapere and C. Vafa. BPS structure of Argyres–Douglas superconformal
theories. preprint, 1999.

[31] Z. Slodkowski. Pseudoconvex classes of functions. I. Pseudoconcave and pseu-
doconvex sets. Pacific J. Math., 134.

[32] Z. Slodkowski. Pseudoconvex classes of functions. II. Affine pseudoconvex
classes on Rn. Pacific J. Math., 141.

[33] Z. Slodkowski. Pseudoconvex classes of functions. III. Characterization of dual
pseudoconvex classes on complex homogeneous spaces. Trans. Amer. Math.
Soc., 309.

[34] Z. Slodkowski. The Bremermann-Dirichlet problem for q-plurisubharmonic
functions. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze,
Serie 4, 11(2):303–326, 1984.

[35] K. Smoczyk. A canonical way to deform a Lagrangian submanifold. preprint,
arXiv:dg-ga/9605005, 1996.

[36] J. Solomon. The Calabi homomorphism, Lagrangian paths and special La-
grangians. Math. Ann., 357:1389–1424, 2013.

[37] J. Solomon. Curvature of the space of positive Lagrangians. Geom. Funct.
Anal., 24:670–689, 2014.

[38] J. Solomon and A. Yuval. Geodesics of positive Lagrangians in Milnor fibres.
Int. Math. Res. Notices, 2017:830–868, 2017.

[39] M.B. Stenzel. Ricci-flat metrics on the complexification of a compact rank one
symmetric space. manuscripta mathematica, 80:151–163, 1993.

[40] A. Strominger, S.-T. Yau, and E. Zaslow. Mirror symmetry is t-duality. Nuclear
Physics B, 479:243–259, 1996.

[41] R.P. Thomas and S.-T. Yau. Special Lagrangians, stable bundles and mean cur-
vature flow. Communications in Analysis and Geometry, 10:1075–1113, 2002.

[42] S.-T. Yau. On the Ricci curvature of a compact Kähler manifold and the
complex Monge–Ampère equation, I. Communications on Pure and Applied
Mathematics, 31:339–411, 1978.

177


	Dedication
	Acknowledgements
	List of Figures
	Introduction
	Background and motivation
	Calabi–Yau manifolds and special Lagrangian submanifolds
	The equations
	Dirichlet duality

	Summary of results
	The degenerate special Lagrangian equation
	Dirichlet duality
	Theorem of Slodkowski
	Lagrangian mean curvature flow


	The degenerate special Lagrangian equation
	Introduction
	Organization

	Geometry of the space of Lagrangians
	The Riemannian DSL subequation
	The DSL subequation
	The Riemannian DSL subequation
	The DSL on complex manifolds and higher corank

	Geometry of the Riemannian DSL
	Parallelizable manifolds
	Calabi–Yau torus fibrations

	Solution of the Dirichlet problem for the Riemannian DSL
	Proof of Theorem 2.5.1

	Fourier-Mukai transform
	Background and Motivation
	Lagrangian Sections
	Mirror Manifold
	Fourier-Mukai Transform
	Transforming DSL
	Transforming the positivity condition

	Analytic solutions to the Cauchy problem for the DSL
	Preliminaries
	The two-dimensional case
	General case


	Dirichlet duality
	Overview
	The second-order jet bundle
	Subequations
	F-subharmonic functions
	Local trivialization
	Riemannian G-manifolds and Riemannian G-subequations
	Comparison and approximation
	Boundary convexity and barriers
	Solution of the Dirichlet problem

	Extension to domains with corners
	Weak boundary convexity
	Solution of the Dirichlet problem


	Theorem of Slodkowski
	Introduction
	Motivation
	Summary
	Organization

	Exposition of Slodkowski's proof
	Overview
	The generalized C1,1 estimate
	The density lemma
	Proof of Theorem 4.1.3

	Dual Perspective
	Background
	Quadratic convexity

	Appendix
	Lipschitz gradient
	Example of a non C1,1 function with a sphere of support
	Osculating and locally supporting spheres 
	Spheres of support to a function and its dual


	The almost Lagrangian mean curvature flow of symmetric spheres in Milnor fibers
	Introduction
	Lagrangian mean curvature flow
	The Thomas–Yau conjecture
	Lagrangian connect sums
	A conjecture for the LMCF

	Milnor fibers
	Introduction
	Poincaré residue
	Almost Calabi–Yau structure
	Symmetric Lagrangian spheres

	The almost mean curvature vector in Milnor fibers
	Statement of the modified Thomas–Yau conjecture
	Formulations of the almost Lagrangian mean curvature flow in Milnor fibers

	Proof of Theorem 5.5.9
	Long-time existence
	Smooth convergence to a special Lagrangian

	A viscosity approach
	Introduction
	The equation
	Viscosity solutions
	Convergence to special Lagrangians

	Appendix
	Smooth Lagrangian spheres
	Curvature of planar curves
	Theorems of Angenent


	Bibliography

